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Zusammenfassung

Schwerpunkt dieser Arbeit ist die Entwicklung von Bioinformatikmethoden sowie
deren Anwendung in der vergleichenden Proteomik. Dabei werden die hier neu
entwickelten Methoden (Schmidt and Frishman 2006; Antonov, Schmidt et al.
2008; Schmidt and Frishman 2008) auf biologische Fragestellungen angewandt und
die Ergebnisse prasentiert (Riley, Schmidt et al. 2005; Schmidt and Frishman 2006;
Smialowski, Schmidt et al. 2006; Riley, Schmidt et al. 2007; Ruepp, Brauner et al.
2007; Schmidt, Hombach et al. 2007; Antonov, Schmidt et al. 2008; Irmler, Hartl et
al. 2008; Ishihama, Schmidt et al. 2008; Schmidt and Frishman 2008). Die Arbeit
gliedert sich — neben einer Einfilhrung und Hintergrundinformation in Kapitel eins -
in drei thematische Abschnitte:

Kapitel zwei stellt das PROMPT Framework zur vergleichenden Analyse von
biologischen Daten insbesondere aus dem Gebiet der Genomik und Proteomik
(Schmidt and Frishman 2006) vor. Dabei werden fiir das hédufige Problem der
korrekten Zuordnung von Identifiern (dem sogenannten Mapping) sowie fir die
Integration von funktionellen, strukturellen und weiteren Proteineigenschaften neu
entwickelte Losungen und deren Nutzen présentiert (Irmler, Hartl et al. 2008;
Ishihama, Schmidt et al. 2008).

Um die volle Michtigkeit der in dieser Arbeit entwickelten, evaluierten und
angewandten Methoden nutzen zu konnen, ist eine solide Datenbasis unabdingbar.
Zusitzlich werden daher im Rahmen dieser Arbeit Datenbanken und Retrieval
Systeme, basierend auf Web Service und J2EE Technologien, entwickelt und
vorgestellt (Riley, Schmidt et al. 2005; Riley, Schmidt et al. 2007; Ruepp, Brauner
et al. 2007). Kapitel drei gibt hierzu eine kurze Ubersicht. Dariiber hinaus wird in
Kapitel drei demonstriert, wie mittels der eingefiihrten Datenbanksysteme im
Zusammenspiel mit den vorgestellten Methoden - komplexe Funktionen besser
beschrieben werden kénnen (Antonov, Schmidt et al. 2008) und ein prediktives
Modell hinsichtlich Proteinkristallisierbarkeit erstellt werden kann (Smialowski,
Schmidt et al. 2006).

In Kapitel vier werden die entwickelten Methoden erstmals in groem Umfang auf
Protein-Abundanz Daten angewandt. Im ersten Teil von Kapitel vier werden neue
biologische Erkenntnisse im Hinblick auf Funktion, Struktur und weiterer Aspekte
in E.coli vorgestellt (Ishihama, Schmidt et al. 2008).
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Im zweiten Teil von Kapitel vier, wird dariiber hinaus die zugrunde liegende
Genomarchitektur von hoheren Eukaryoten analysiert. Dabei konnten nicht nur
Gemeinsamkeiten und Unterschiede zwischen Organismen und Methoden gezeigt
werden (Schmidt, Hombach et al. 2007), sondern =zusdtzlich eine neue
Konsensusmethode zur Vorhersage von Isochore-Genomstrukturen fiir alle
vollstindig sequenzierten Vetebratengenome etabliert werden (Schmidt and
Frishman 2008).

Kapitel fiinf fasst die wichtigsten Erkenntnisse der Forschungsarbeiten zusammen
und gibt einen Ausblick fiir weitere Fragestellungen. Jedes Kapitel beginnt mit einer
Beschreibung des relevanten spezifischen Hintergrundwissens und beschreibt die
entwickelten Methoden sowie die Anwendungen und erzielten Ergebnisse.



Chapter 1

Motivation and Overview

Deciphering the mechanisms of any human disease needs a comprehensive analysis
of the underlying biological system. For example, complex illnesses like cancer
need to be targeted by taking proteomic-, genomic- as well as time- and spatial
interplays into account. Threatening viral pandemics, like avian influenza and
SARS, require iterated host-pathogen-inference analysis, hypothesis generation and
evaluation with experimental- as well as bioinformatics approaches. Moreover,
epigenetic - as well as individual- differences will raise the need of further
personalized medicine. Bioinformatics modeling of cellular systems promises a
solution of these challenges, but clearly depends on a satisfactory amount of
knowledge and methods.

Although current genomic as well as proteomic high-throughput and large-scale
experiments are generating a flood of data, a multitude of essential issues are open
yet. For example, protein structure crystallization experiments are seriously hindered
by unpredictable outcomes. Moreover, the modeling of biological networks and
further exploration of functional modules is hampered by the lack of quantitative
information. Beyond, functional analysis of expression data is limited in ways to
describe complex functions and relationships and expression analysis usually
remains behind its possibilities by neglecting available information like protein
structures. Additionally, even trivial data integration tasks are significantly delayed
by incompatible formats, identifiers and interfaces. Moreover, general
bioinformatics frameworks and methods for basic comparative analyses hardly exist.
To put all in a nutshell, biological interdependencies and interactions need a broad
system-wide analysis, based upon solid data integration and analysis.

In this work, we addressed the outlined questions. We provide new bioinformatics
methods for data integration and comparative analysis on the level of genome and
proteome data (Schmidt and Frishman 2006; Schmidt and Frishman 2006; Schmidt,
Hombach et al. 2007; Schmidt and Frishman 2008). Applying our developed
technology, we further revealed novel insights of biological functions and finally
provide new data resources and interfaces for free public usage (Riley, Schmidt et
al. 2005; Smialowski, Schmidt et al. 2006; Riley, Schmidt et al. 2007; Ruepp,
Brauner et al. 2007; Schmidt, Hombach et al. 2007; Antonov, Schmidt et al. 2008;
Irmler, Hartl et al. 2008; Ishihama, Schmidt et al. 2008; Schmidt and Frishman
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2008). In the following parts of this chapter, an overview of the basic background of
each facet is given. Finally an outline of this thesis is presented at the end of this
chapter.

1.1 Genome sequencing and annotation

Progress in DNA sequencing and data management made in the last years has
generated a wealth of information usable in many scientific fields. Presently, more
than 330 annotated genomes are available in the PEDANT database (Riley, Schmidt
et al. 2005; Riley, Schmidt et al. 2007) and other data sources like UniProt (Bairoch,
Apweiler et al. 2005), EMBL (Kanz, Aldebert et al. 2005) and CORUM (Ruepp,
Brauner et al. 2007). Multiple levels of annotation e.g. gene, domain, structure and
ontologies like Gene-Ontology and FunCat provide a pledora of data; for a detailed
review of the current state of databases and annotations a comprehensive review is
given by Frishman (2007).

Unfortunately, analysis of the increasingly growing data is complicated by a number
of factors. Firstly, knowledge from different resources is not accessible in a
standardized way. For example, processing simple sequence information from
different sources like GenBank (Benson, Karsch-Mizrachi et al. 2005) entries and
Swiss-Prot (Gasteiger, Jung et al. 2001) files needs different parsers. Secondly,
linking information of interest together is essential but hampered by differing names
and identifiers, e.g. the same gene of Escherichia coli can be referenced in different
sources with Blattner-IDs (Blattner, Plunkett et al. 1997), GenBank identifiers or by
UniProt entry names. Finally, software to compare protein sets is virtually
nonexistent. In addition to large-scale sequencing and automated annotation
pipelines, high-through-put technologies like expression arrays and proteomic
determination technologies provide a new plethora of data. Current proteomic
measurements are in range not only to identify proteins as such, but provide
additional information like posttranslational modifications, protein interactions and
insights of quantitative protein copy numbers. In consequence proteomics is already
discussed to be the “New Genomics” (Cox and Mann 2007). The following section
gives a basic introduction into proteomic technology with a focus on estimating
protein abundance levels which were used throughout this work. Beyond, detailed
guidelines about proteomics experiments and a recent critical review with regard to
quantitative proteomics are discussed by Wilkins et al. (2006) and Bantscheff et al.
(2007).
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1.2 Proteomic measurements

Mass spectrometry (MS), in combination with protein and peptide separation
methods, allows the efficient qualitative identification of proteins in complex
mixtures. As an alternative to two-dimensional gel electrophoresis (2-DE) and mass
spectrometric analysis of the resulting individual spots, shotgun approaches have
been developed as suitable tools for large scale proteome analysis (Link, Eng et al.
1999; Peng, Elias et al. 2003). These are based on protease digestion of the sample
as a whole and subsequent peptide separation and identification by multidimensional
LC-MS/MS. However, in contrast to the 2-DE approaches, information about
protein abundances is initially unavailable in the shotgun approaches. Relative
quantification for abundance comparison of the same protein in different samples
can be realized by incorporation of stable isotopes into the samples (Gygi, Rist et al.
1999; Oda, Huang et al. 1999; Mirgorodskaya, Kozmin et al. 2000) which is utilized
in methods like cICAT (Hansen, Schmitt-Ulms et al. 2003), iTRAQ™ (Ross, Huang
et al. 2004), '*O-labeling (Mirgorodskaya, Kozmin et al. 2000) or SILAC (Ong,
Blagoev et al. 2002). Relative changes in concentration of the same protein between
different experimental setups can be very accurately determined by these methods,
but a major disadvantage is the absence of a direct measure of protein
concentrations. Abundance comparison of different proteins is hence not possible.

Several mass spectrometric strategies have been reported to overcome this limitation.
The more traditional ones utilize internal standards, e.g. spiking the complex
mixture with peptides of known concentration (Barr, Maggio et al. 1996; Gerber,
Rush et al. 2003), and typically require calibration for each protein to be quantified.
A more recently introduced method describes a new parameter to express protein
concentrations without the need of introducing labels or internal standards. It is
calculated from the averaged ion intensities of the three most intense tryptic peptides
per protein, as extracted from the ion current chromatograms. This parameter is
called ‘xPAI’ for ‘extracted ion intensity-based protein abundance index’. It has
been shown to correlate well with known protein concentrations in the human RNA
polymerase II complex (Rappsilber, Ishihama et al. 2003) and rat mitochondria
(Forner, Foster et al. 2006). However, XxPAI is limited to samples of low complexity
since selection of only the three most intense peptides becomes unreliable with an
increasing number of different proteins in the sample. Additionally, it is difficult to
apply the xPAI approach to samples which were pre-fractionated at the peptide level,
due to carry-over effects between the different fractions. A similar method has been
described using an alternate scanning LCMS method (LCMS(E)), which is available
on certain mass spectrometer instruments (Silva, Gorenstein et al. 2006). Here, all
peaks in the MS spectra are selected as precursor ions for subsequent MS/MS scans
resulting in lower peak intensity dependence of peptide identification as is the case
for conventional data-dependent MS/MS scans. If the MS device allows this kind of
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detection mode it is preferable to xPAI, but it is still presented with the mentioned
basic challenges of this approach.

Other label free ways of large scale protein quantification by MS make use of
correlations between the number of actually identified tryptic peptides per protein
and the theoretical number of tryptic peptides (Rappsilber, Ryder et al. 2002), or the
molecular weight of the proteins (Sanders, Jennings et al. 2002). These ratios have
been termed ‘protein abundance index’ (PAI). More recently, we found empirically
that PAI correlates better with the logarithm of protein concentration and defined an
exponentially modified PAI (emPAI) (Ishihama, Oda et al. 2005). Although such a
method of concentration determination may not be expected to be overly precise, the
accuracy of emPAl-derived concentration measurements has been shown to lie
within an error range of only a factor of maximally 3.4 for 46 proteins in whole cell
lysates of murine neuroblastoma (N2A) cells (Ishihama, Oda et al. 2005) and is
therefore in the same range or better than protein concentration measurements based
on staining methods. A major advantage is that the emPAI based protein
concentration is automatically and quickly available for all proteins identified by
MS without the need of any additional experimental setup. A similar approach was
reported recently for the membrane proteome of S. cerevisiae, where protein
concentrations were estimated by using the number of obtained spectra per protein
divided by the length of the protein (Zybailov, Mosley et al. 2006).

In this work, we used an approach to maximize MS based proteome identification
coverage in an application to the E. coli cytosol, in combination with a reliable and
quick concentration estimation of the identified proteins. We thus provide data as
well as novel significant associations between abundance and protein properties. In
addition to an analysis of proteins, we address underlying genomic properties. The
direct dependency of biological systems from their genome commits to take all
available information under account. For example, recently it was shown that the
“genome landscape” of hosts is related to the codon usage of bacteriaphages (Lucks,
Nelson et al. 2008). Especially higher organisms as plants and mammalian genomes
show specific and clear genome structures. The next section provides a brief
overview of the history and of biological properties found to be associated with
genome structures.

1.3 Genome structure

More than three decades ago gradient density analyses of fragmented DNA
identified long fairly compositionally homogenous regions on mammalian
chromosomes, widely known as isochores (Filipski, Thiery et al. 1973; Macaya,
Thiery et al. 1976; Thiery, Macaya et al. 1976) or long homogeneous genome
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regions (LHGRs) (Oliver, Carpena et al. 2002), associated with a wide range of
important biological properties. Gene density is up to 16 times higher in GC-rich
isochores than in GC-poor isochores (Mouchiroud, D'Onofrio et al. 1991), and the
genes in the high GC-isochores code for shorter proteins and are more compact with
a smaller amount of introns (Duret, Mouchiroud et al. 1995). It was also shown, that
the GC-rich codons, such as those coding for alanine and arginine, are more frequent
in GC-rich isochores (D'Onofrio, Mouchiroud et al. 1991; Clay, Caccio et al. 1996).
The distribution of repeat elements is influenced by the isochore structure of the
genome: SINE (short-interspersed nuclear element) sequences tend to be more
frequent in GC-rich isochores while the LINE (long-interspersed nuclear elements)
sequences are preferentially found in GC-poorer regions (Meunier-Rotival, Soriano
et al. 1982; Soriano, Meunier-Rotival et al. 1983; Jabbari and Bernardi 1998). The
structure of chromosome bands also correlates with isochores: T-bands
predominantly consist of GC-rich isochores, while the GC-poorer isochores are
found in G-bands (Saccone, De Sario et al. 1992; Saccone, De Sario et al. 1993;
Costantini, Clay et al. 2006). The recombination frequency is higher (Eisenbarth,
Beyer et al. 2000; Fullerton, Bernardo Carvalho et al. 2001) and the replication starts
up to two hours earlier (Tenzen, Yamagata et al. 1997) in regions with high GC-
content.

Taking all information on the genomic as well as on the proteomic levels together is
destinated to provide further insights into intra- and inter-cellular modes of
operations. In the following two sections we will firstly give an overview of here
applied comparative approaches and secondly outline the need of general
bioinformatic frameworks addressing such problem domains.

1.4 Comparative genomics and proteomics in the
space of gene attributes

Molecular bioinformatics was born as a science of comparing individual DNA and
amino acid sequences with each other. Over the past three decades important
biological insights have been obtained by establishing unexpected sequence
similarity between seemingly unrelated proteins e.g. (Koonin, Altschul et al. 1996).
More recently, modern high-throughput technologies (genome sequencing,
expression profiling, mass spectrometry) injected tremendous amounts of sequence
data and associated experimental information into the public databases, creating the
need for collective comparisons of large sequence groups (e.g., whole proteomes).
The transition from pairwise sequence comparison to comparing large protein
datasets against each other is similar to switching from finding differences between
individuals to comparing populations of whole countries. Is wine consumption in

10
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France higher than in England? Do Germans drive faster than Americans?
Analogous queries applied to biological molecules prevail in post-genomic
bioinformatics. In many genome sequencing papers one finds a bar chart contrasting
the new sequence with other genomes in terms of sequence motif composition.
While analysing gene clusters obtained by expression analysis it is typical to ask
whether one gene group is significantly enriched in certain functional categories
with respect to another one. Are proteins with many interaction partners different
from less prolific interactors (Pagel, Mewes et al. 2004)? Are essential genes more
evolutionary conserved than non-essential ones (Jordan, Rogozin et al. 2002)? The
list of such questions is endless. Answering some of them involves a mere counting
exercise while others require the application of sophisticated bioinformatics
approaches and careful statistical analyses.

Mining protein properties at large scale has been especially productive in
computational structural genomics where it helped to establish basic facts about
structural complements encoded in complete genomes. For example, it was shown
that membrane proteins constitute roughly 30% of each proteome (Frishman and
Mewes 1997). The patterns of globular fold occurrence in different organism groups
were carefully investigated (Gerstein 1997). The mechanisms of protein structure
adaptation to extreme environments were revealed by comparing the genomes of
thermophilic (Thompson and Eisenberg 1999; Das and Gerstein 2000), halophilic
(Kennedy, Ng et al. 2001), psychrophilic (Gianese, Bossa et al. 2002), and
barophilic (Di Giulio 2005) species with their counterparts living under normal
conditions.

Large-scale comparison of protein datasets has the impact to answer a multitude of
scientific questions. For example what distinguish crystallizable and non-
crystallizable proteins, essential and non-essential ones or abundant and non-
abundant proteins? What characterize interactions vs. non interactors, soluble vs.
non-soluble, disease related vs. non-disease related, GroEL substrates vs. non-
GroEL substrates? For instance, it was shown that the GroEL obligate protein prefer
to fold into a TIM-Barrel structure (Kerner, Naylor et al. 2005), translate faster and
show a lower folding propensity (Noivirt-Brik, Unger et al. 2007) than non-GroEL
substrates. The realm of open questions is almost endless and only restricted by the
number of attributes and the amount of available data. In general one would like to
compare two or more sets of proteins or genes. These two sets may result of
different experiments or of distinct protein groups. Common of such analyses is that
— instead of comparing the properties of two single entities — whole populations can
be compared.

11
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1.5 Lack of software tools

One recurrent bioinformatics task in comparative proteomics involves mapping and
integrating information from disparate sources. While reporting experimental results
as well as theoretical predictions one may refer to proteins using the UniProt
(Bairoch, Apweiler et al. 2005), GenBank (Benson, Karsch-Mizrachi et al. 2005), or
RefSeq (Pruitt, Tatusova et al. 2005) nomenclature, or custom IDs for sequences not
yet submitted to public databases. The situation is additionally complicated by
frequent genome updates which may result in new, previously missed ORFs
identified, existing sequences corrected, as well as the removal of misannotated
ORFs. As a result, establishing unambiguous correspondence between protein
sequence entries and associated experimental data may represent a difficult, albeit
trivial challenge.

Countless customized software tools with varying degrees of complexity have been
independently written in research labs throughout the world to address protein
comparison and mapping tasks, although there are significant commonalities in the
technical steps that need to be implemented. The authors of this contribution, too,
wrote their share of throw-away perl scripts and quick-shot Java programs to
compare GroEL substrates with the rest of the Escherichia coli lysate (Kerner,
Naylor et al. 2005), crystallizable and non-crystallizable proteins (Smialowski,
Schmidt et al. 2006), disease-associated proteins and those without such association
(Wong, Fritz et al. 2005), abundant and non-abundant proteins (Ishihama, Schmidt
et al. 2008), as well as completely sequenced genomes (Frishman, Albermann et al.
2001) and  functional properties of alternatively spliced genes (Neverov,
Artamonova et al. 2005). It is precisely the fatigue from re-inventing the wheel over
and over again that motivated us to develop a bioinformatics framework for large-
scale protein comparisons.

Much to our surprise, we realized that general solutions for comparing and analysing
large sets of proteins in the space of arbitrary annotation attributes are currently
hardly available or limited to certain application areas. We are aware of only two
software projects addressing the need for large scale comparative analysis. The
comprehensive Genome Properties resource (Haft, Selengut et al. 2005) allows
comparing complete prokaryotic genomes based on a multitude of pre-defined
property assertions. The system is primarily focused on metabolic information, does
not allow user-supplied protein attributes, does not provide statistical tests to
validate differences between genomes, and is not available for local installation.
GeneMerge (Castillo-Davis and Hartl 2003) is an excellent tool for detecting over-
representation of certain functional or categorical descriptors in a given subset of
proteins relative to the general set based on rigorous statistical tests, but it provides
neither integration with bioinformatics databases nor a graphical user interface.

12
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1.6 Thesis Outline

The completion of the sequencing of several mammalian genomes as well as
advances in the large-scale measurement of gene expression on transcript and
protein levels provide the basis for the emerging field of systems biology. A major
challenge towards a comprehensive analysis of biological systems is the integration
of data from different “omics” sources and their interpretation on a functional level.

In chapter 2, we describe a new platform-independent system named PROMPT
(Protein Mapping and Comparison Tool) capable of addressing a wide spectrum of
routine tasks in comparative proteomics (Schmidt and Frishman 2006). PROMPT
enables the user to compare arbitrary protein sequence sets, revealing statistically
significant differences in their annotation features. Protein annotation can be
imported from a variety of standard bioinformatics databases as well as from generic
XML description files. Facilities are provided for linking experimental information
obtained from different sources to appropriate genes despite discrepancies in gene
identifiers and minor sequence variation. The entire functionality of the system is
available via a full-featured server-independent graphical user interface. At the same
time, a Java API is provided for integration with user applications. In chapter 2.2 we
demonstrate the advantages of the PROMPT software suite for comparative
proteomics by analyzing physical features of regulated gene products from multiple
databases (Irmler, Hartl et al. 2008).

Chapter 3, starts with a brief description of contributions to the databases PEDANT
and CORUM and data retrivial systems that were developed in the context of this
work (Riley, Schmidt et al. 2005; Riley, Schmidt et al. 2007; Ruepp, Brauner et al.
2007).

In the second section of chapter 3, the the power of comparative proteomics is
demonstrated by confronting proteins yielding crystal structures with non-
crystallizable proteins (Smialowski, Schmidt et al. 2006). We present newly
identified sequence-based features that can predict the outcome of a crystallization
experiment with high accuracy. As even small advantages in the field of
experimental structure determination directly respond in remarkable time and
resource savings a computational estimation of the crystallizability under given
experimental settings is very helpful for structure determination experiments.

In the third part of chapter three, we extend the comparative approach to a higher
level of complexity. In addition to comparing single gene and protein attributes
combinations of such information may result in more informative statements. In
analogy of a natural language we introduce operators like AND, OR and EXCLUDE
to combine annotation terms. Thus, connecting all single functions with operators
reveals the previously hidden interplay and relationships. Moreover, we present a
web-based service named ProfCom implementing this method. Finally, we

13
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demonstrate that ProfCom surpasses current state-of-the-art functional profiling
methods and give examples of newly revealed complex functions of genes in
multiple human cancer types. We discuss new insights beyond existing co-
occurrence approaches into the functions of up-regulated genes in various cancer
samples (Antonov, Schmidt et al. 2008).

Chapter 4 builds upon all previous chapters and is based on the data resources,
integration and methodology developed in this work. In the first part of chapter 4,
we present abundance measurements for more than 1000 E.coli proteins and present
new significant relations between protein abundance and the properties and
functions of proteins. Thus, we give novel insights into the role of protein levels in
this model organism. Moreover, we show associations between genetic properties
like localization in operons and protein abundance (Ishihama, Schmidt et al. 2008).
This leads directly to the inclusion of genome properties and to a more wholistic
view of biological systems. In the second part, we present a new method for fully
automated isochore assignments. Isochores are long genomic regions with fairly
homogenous GC content and were firstly described by ultra-centrifugation
experiments (Bernardi 1989). Isochores represent a “fundamental level of genome
organization” (Eyre-Walker and Hurst 2001) and are associated with multiple
biological properties and epigenetic programming (Vinogradov 2005; Schmegner,
Hameister et al. 2007). Several algorithms for compositional segmentation of
genomic sequences have recently been proposed. In the second section of chapter 4,
we show that although the currently available isochore mapping methods agree on
the isochore classification of about two thirds of the human DNA, they produce
significantly different results with regard to the location of isochore boundaries and
isochore length distribution. We present a new consensus isochore assignment
method based on a majority voting and evaluate it against the currently available
body of isochore knowledge. The isochores derived by the consensus approach
correlate higher with the distribution of gene density and experimental evidence than
individual methods. We provide a measure of the isochore assignment confidence
based on the number of methods that agree for a given base pair and demonstrate
how the confidence depends on GC content and the distance to isochore border
regions. Moreover, we provide IsoBase - a comprehensive on-line database of
isochore maps for all completely sequenced vertebrate genomes - that enables the
user to evaluate statistical distributions of isochore properties and compare isochore
assignments between organisms and methods.

Finally, chapter 5 gives a concise summary and outlook of this thesis. Each chapter
starts with a brief introduction and presents the used methodology in detail. In
addition to a general discussion of the results in chapter 5, all results are depicted
and discussed exhaustively within the respective chapter.
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Chapter 2

Data integration, mapping and statistical
analyses

Comparison of large protein datasets has become a standard task in bioinformatics.
Typically researchers wish to know whether one group of proteins is significantly
enriched in certain annotation attributes or sequence properties compared to another
group, and whether this enrichment is statistically significant. In order to conduct
such comparisons it is often required to integrate molecular sequence data and
experimental information from disparate incompatible sources. While many
specialized programs exist for comparisons of this kind in individual problem
domains, such as expression data analysis, no generic solution capable of addressing
a wide spectrum of routine tasks in comparative proteomics was available yet.

In this chapter we present PROMPT — A protein mapping and comparison tool
(Schmidt and Frishman 2006). We further show how genomic and proteomic data
can be integrated and complemented using the PROMPT software suite (Irmler,
Hartl et al. 2008).

2.1 PROMPT - Protein Mapping and Comparison

2.1.1 Introduction

Although a multitude of software is available that calculates many protein features
like the Biology Workbench (Subramaniam 1998), solutions to compare and analyse
arbitrary sets of proteins are hardly available or limited to narrow application areas.
For example, the recently published GenomeProperties (Haft, Selengut et al. 2005)
service allows relating various protein properties, but is limited to the investigation
of whole prokaryotic genomes and does not provide statistical tests to validate
differences or similarities between the genomes. Another approach, the GeneMerge
(Castillo-Davis and Hartl 2003) algorithm evades limitations to predefined datasets
by requesting a custom input format, and thus shifting the responsibility of data
integration to the user.

Nevertheless, large scale automatic comparison of protein sets is gaining more and
more impact since the amount of biological data is increasing rapidly and manual in-
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depth analysis is not possible in the majority of cases. In particular a multitude of
new insights have been achieved due to comparative studies. For example,
mechanisms of thermal adaptations have been revealed by comparative genomics
showing major factors for protein stability (Thompson and Eisenberg 1999; Das and
Gerstein 2000; Saunders, Thomas et al. 2003). Other application domains of
comparative analyses are structural and functional genomics. For illustration,
Proteome Analyst (Lu, Szafron et al. 2004) predicts functional assignments or sub
cellular localizations based on a Support Vector Machine (SVM) classifier utilizing
differences in sets of proteins. A similar approach is used in SVM-Prot (Cai, Han et
al. 2003), which classifies proteins based on their primary sequence into functional
categories.

2.1.2 Material and Methods

Functional overview

PROMPT operates with three types of information associated with proteins:
database IDs, amino acid sequences, and annotation attributes. The latter may be any
protein feature manually assigned, experimentally measured, or calculated from
sequence; such features may be nominal and/or numeric. Examples of numeric
features are molecular weight, pl, abundance, and the number of interaction
partners. Nominal features can be sequence motifs, keywords, functional categories,
EC numbers, and so on. Sequences are primarily used by PROMPT to establish the
correspondence between proteins imported from different sources and thus having
incompatible database IDs. This is done by similarity-based mapping and careful
handling of exceptions and minor sequence variations. Sequence data can be either
obtained directly from public databases, or supplied by the user as flat files using
one of the commonly accepted formats as well as a custom XML format.

Once annotation features have been imported and assigned to appropriate proteins,
actual large scale comparisons of protein properties, data interpretation, and
statistical analyses can be conducted. The central task consists of comparing two
sets of proteins and finding significantly enriched or depleted features in one of the
sets. Results can be viewed in tabular form, visualized by various types of plots, and
exported to other applications.

As seen in Figure 1, a general PROMPT workflow involves three stages: i) data
import, i1) data processing which includes mapping, comparison, and statistical tests,
and 1iii) visualization and presentation of results for subsequent analyses.
Additionally, the data can be exported and saved at each step.
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Protein set A Protein set B

User (SwissProt, EMBL, GenBank, (SwissProt, EMBL, GenBank,
Input PEDANT, SIMAP, FASTA, XML) PEDANT, SIMAP, FASTA, XML)
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@ Import
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Mapping = Comparison =
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Presentation | Figure Plotting Spreadsheet —»  View
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Figure 1 General Workflow of PROMPT

Technology

PROMPT is written in Java 1.5. The Graphical User Interface (GUI) was built with
Java Swing, and the help system utilizes Java Help Extensions. The Apache log4j
package (http://logging.apache.org/log4j/) handles message logging and reporting.
All input, test, engine and visualization classes are loaded dynamically by the GUI
using Java reflections. Scripting functionality is realized with the BeanShell package
(www.beanshell.org).

Software Architecture

PROMPT is partitioned into three self-contained layers — the input layer, the
processing layer, and the visualization layer- which are interconnected via clearly
defined interfaces. These interfaces ensure interoperability between a wide variety of
input sources, algorithms, visualization techniques and export methods by defining
cross-layer communication in such a way that an algorithm, once developed, will
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work with any input module that provides the requested input interface. It does not
matter, for example, whether the sequence data comes from a local UniProt XML
file (Bairoch, Apweiler et al. 2005), an SQL database or a Web service. This
approach allows the application of PROMPT’s algorithms to new and currently
unknown data formats and sources. Conversely, newly added algorithms can
immediately reuse all of the available input and output modules. The same applies to
new import modules that can be used with all applicable algorithms as soon as the
required interfaces have been implemented. Similar to the approach adopted in Java
Beans (Cochrane, Aldebert et al. 2006) all PROMPT modules are encapsulated by
the troika of Init, Run, and GetResults methods that perform initialization, actual
computation and the returning of results, respectively. This design pattern provides a
comfortable and uniform handling of all parts of the PROMPT framework.
Furthermore, the clear separation between individual layers ensures reproducibility
of results as the data can be saved and evaluated at every step. An overview of
PROMPT’s software architecture is shown in Figure 2.

IN Graphical User Interface (GUI) ouT
Input Processing Visualisation Results of
Layer Layer Layer comparative
analyses
Flatfiles
Fasta Engines Plotting -
Swlss—Prot, «Comparisons » -R -GnuPlot » Data
UniProt, ), : a i} Q
reparation Q *Analyses 3] -JFreeChart (%) e

Genbank... ) © S ‘ |

n © 4= 4= n,_lT,n_n_.ﬁ,

Q h = o Q : |

) (] =) ) |

S k= < < I
. = £ = . - Significance

o m § View § g
Databases: c Data 3 Mabbin @  -spreadsheet & ;
e.g. PEDANT §. Caching 3 pping A - o =k |

£ ﬁ g -interactive QE, Figures

- i 5 5
;'St 0: Statistical Export 1L
identifiers tests figures: :
« Common usage vector + bitmap Mapped

- 7 for all tests Hata identifier
Any generic = 220 tests -Excel + tab txt
numeric or
symbolic
properties Scripting Engine

Figure 2 PROMPT Software architecture.

PROMPT is based on a three-layered architecture namely an input-layer, a
processing layer and a visualization layer. The input layer is responsible for reading
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and importing data from a wide variety of sources. The classes of the processing
layer are in charge of doing the actual analysis work. Here calculations are
performed and statistical tests applied. Finally the visualization layer is responsible
for creating figures and presenting results.

All layers are independently from each other, but can interact with each other
seamlessly by interfaces. Instances of the input layer act as Data Accession Objects
(DAOs) and provide methods to access the input independently of the input format
or source. New algorithms or input formats can be easily added by implementing,
and if desired extending, the respective interfaces. By inheriting from the basic
input-interfaces third party parts can be used immediately within the graphical user
interface and benefit from the existing framework. Furthermore as long as the
interfaces are not changed, the current implementation can be modified without any
need to update code that is using the framework objects.

Data retrieval and integration

Data import from flat files is predominantly based on BioJava (Castillo-Davis and
Hartl 2003) which is used to parse multi-FASTA, EMBL (Cochrane, Aldebert et al.
2006), Genbank (Benson, Karsch-Mizrachi et al. 2005), and UniProt (Bairoch,
Apweiler et al. 2005) formats. In particular, the UniProt XML format is supported.
Additionally, data can be directly imported from two MIPS databases - PEDANT
(Frishman, Albermann et al. 2001) and SIMAP (Rattei, Arnold et al. 2006) — using
data access objects provided by these two resources. User extensions can be easily
incorporated by creating Java classes that implement or extend the Java interfaces
provided by PROMPT.
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<dataset label="Escherichia_coli_k12">
<property id="setdef" type="setdef" >
<input id="P68191" value="MKSNRQARHIL..." />
<input id="P00882" value=" MTDLKASSLR..." />

</property>

<property id="transmembrane segments" type="numeric">
<input id="P68191" value="0" />
<input id="P00882" value="6" />

</property>

<property id="funcat" type="symbolic" >
<input id="P68191" value="04.02" />
<input id="P00882" value="01.01;01.02" />

</daté;set>

Figure 3 Example PROMPT XML File.

The file contains a set definition property that encompasses all E.coli proteins together with
their amino acid sequences. Additionally, annotation information stored in the numeric
property transmembrane segments and in the symbolic property funcat is provided.

Alternatively user-specific data can be loaded in PROMPT’s custom XML format.
Such an XML file (Figure 3) can contain any number of numeric or nominal
attributes for a set of elements that we, for simplicity, assume here to be proteins
(but could also be any other kind of object including protein sequence domains,
DNA sequences, molecular structures, phenotype data, and so on). A numerical
attribute could be e.g. the number of predicted transmembrane segments or
molecular weight. Examples of nominal attributes are EC numbers or functional
categories. Annotation properties are represented as XML nodes with the name
property. They have an id attribute that serves as a unique reference to the property
within the XML file. Additionally, the property nodes have an attribute of the name
type that can have either the value numeric or symbolic for numeric or nominal data,
respectively. Within the property elements the annotation data for each protein are
stored as XML nodes in the form <input id="XX" value="YY”> where YY
represents annotation data for the protein with the identifier XX. A numerical
attribute can be any number in Anglo-Saxon notation, e.g. 10, 0.7, or 1E-6. Nominal
attributes of a protein contain one or many arbitrary strings separated by semicolons,
e.g. “energy; metabolism; ATP”. Optionally, XML files can contain a property
element of the type setdef which defines a set of elements (proteins). A formal
Document Type Definition (DTD) of the XML structure is given in Figure 4.
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<?xml version="1.0" encoding="UTF-8"?>
<!--DTD for the generic XML format-->
<!ELEMENT dataset (property+)>
<!ELEMENT property (input+)>
<!ELEMENT input EMPTY>
<!ATTLIST dataset

label CDATA #REQUIRED

version CDATA #IMPLIED
>
<!ATTLIST property

id CDATA #REQUIRED

type (symbolic | numeric) #REQUIRED
>
<!ATTLIST input

id CDATA #IMPLIED

value CDATA #REQUIRED

Figure 4 Document Type Definition (DTD) of PROMPT's generic XML format

Due to the generic XML import capability the system can be fed with arbitrary
annotation without considering its semantics, making PROMPT applicable to data
analysis in any knowledge domain, not necessarily limited to molecular
bioinformatics. Additionally, data in widely used tab-delimited text and WEKA’s
ARFF (Witten and Frank 2005) files can be processed. A full list of available data
import options can be found in Table 1.

Table 1 Overview of possible data inputs.
Shown are the types of input that can be processed by PROMPT. The Generic XML format
can contain any numeric or nominal properties provided by the user.

Folder with Elements Elements
multiple files, may may
each Individual file with contain contain
containing one or more List of sequences annotation
Format: one element  elements Identifiers attributes
FASTA X X
GenBank X X X
EMBL X X
Swiss-Prot X X X X X
UniProt XML | x X X X X
Generic XML X X X
Tab-delimited X X X
WEKA X X

Sequences and annotation available in major public databases may be fetched by
their identifiers via the SeqHound (Michalickova, Bader et al. 2002) web services
(Figure 5). All the user needs to do is to supply a list of UniProt (Bairoch, Apweiler
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et al. 2005) or GenBank (Benson, Karsch-Mizrachi et al. 2005) identifiers and the
corresponding information will be downloaded automatically in the background. All
actions are tracked by a fully-configurable logging facility; if ambiguous IDs or
errors are encountered, warnings will be issued. Remotely retrieved data are cached
locally to avoid repeated re-fetching of the same data items during processing.

User Protein set A Protein set B
Input (SwissProt, EMBL, GenBank, (SwissProt, EMBL, GenBank,
PEDANT, SIMAP, FASTA, XML) PEDANT, SIMAP, FASTA, XML)

IDs +sequences | IDs only IDs only IDs +sequences
EEEEEEEEEEEDR EEEEEEEEEEEEEESR EEEEEEEEDR EEEEEEEEEEEEEEEDR EEEEENI
PROMPT Sequences are
retrieved automatlcally
r
A: IDs + N y B: IDs +
sequences s sequences

Compare A and B by BLAST,
find equivalent sequences

Set B
Results ID3

No equivalent

IDS
Mapped identifiers

Figure 5 Data input and mapping workflow

Similarity-based sequence mapping

If input data contain proteins with incompatible database IDs, correspondence
between individual entries can be established by sequence comparisons. PROMPT
automates all-against-all BLAST (Altschul, Madden et al. 1997) searches (Figure 5),
producing (n*(n-1))/2 alignments, where n is the number of proteins in the dataset.
The user is then prompted to choose the extent to which sequence differences can be
tolerated for specific purposes. The list of typical minor variations between
essentially the same gene products includes missing start methionines, different
versions of the same genomic ORF, and splice isoforms. For example, the brain
tumor protein BRAT DROME in Drosophila melanogaster has seven synonymous
UniProt (Bairoch, Apweiler et al. 2005) accession numbers and 9 associated
GenBank (Benson, Karsch-Mizrachi et al. 2005) entries; according to UniProt
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(Bairoch, Apweiler et al. 2005) its amino acid sequence has been revised after the
primary submission. Using the mechanism described above, a given list of GenBank
(Benson, Karsch-Mizrachi et al. 2005) identifiers can be instantly mapped onto
UniProt (Bairoch, Apweiler et al. 2005) accession numbers, PEDANT (Frishman,
Albermann et al. 2001) protein codes, or EMBL (Cochrane, Aldebert et al. 2006)
IDs. The PROMPT software facilitates adding new input data types to the mapping
procedure by providing an interface for custom input adapters written in Java.

Computable sequence features

In addition to annotation features contained in input files a number of selected
characteristics can be calculated directly from protein sequences, mainly using
BioJava (Castillo-Davis and Hartl 2003). These include isoelectric point, the
distance of the isoelectric point from neutrality, molecular weight in Daltons,
sequence length, grand average hydrophobicity (GRAVY) and the total
hydrophobicity of all residues. Additionally the number of alternating hydrophobic/
hydrophilic strands is calculated as described in Wong et al. (Wong, Fritz et al.
2005). We will be gradually adding additional computable sequence properties
driven by our own research needs as well as user requests.

Statistical analyses

Formally, we are addressing the task of comparing two (protein) datasets in the
space of N supplied features. PROMPT contains a set of generic engines to analyze
and compare nominal as well as numerical attributes. In addition to generating basic
descriptive statistics such as mean, standard deviation and median for the
distribution of each feature, statistical tests are performed to determine whether the
input sets differ significantly with respect to a feature of interest. All statistical tests
are encapsulated as Java classes and predominantly use the free open source
statistical software R or its commercial counterpart S-PLUS as reliable calculation
engines. The linkage to R/S is accomplished by PROMPT automatically, assuming
R/S is installed in default locations. Alternative and detailed R/S configuration
settings can be provided by the user via the GUI configuration dialog, the XML
configuration file, environmental parameters or by direct API usage. Although all
tests can be chosen manually, PROMPT typically applies the appropriate tests
automatically depending on the user’s type of input and addressed question.
Basically, PROMPT distinguishes four different generic cases: 1) comparison of the
frequencies of categorical annotations between two sets, ii) enrichment of nominal
features in one set with respect to another one, iii) comparison of numeric
distributions, and iv) correlation of numeric variables. These four types of analyses
are described in more detail below and are also exemplified in Table 2.
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2.1 PROMPT - Protein Mapping and Comparison

(1) Feature comparison

The questions handled within this use case are: Are certain categories (e.g. protein
functional classes) more frequent in one set or in the other? If yes which ones? And
are these differences statistically significant based on respective p-values? PROMPT
computes a Chi-Square test for each categorical value that occurs in both sets.

Formally, let A={a,a,,...,a.} and B = {b,,b,,....b,} be sets with i and j distinct
objects and let V' be the set of nominal categories that can be attributed to the
objects. Then each set element can have zero, one or more categorical values
assigned. Furthermore let NV, and N, be the number of objects of the set 4 and B

that have at least one category of V assigned. Then frg,=N,/(N,+N,) and
Jrqy =N, (N, +N,) are the relative frequencies of elements with attributes. Thus

only the objects for which annotation data is available are considered.

For each category v eV that is found attributed to objects of A and B a Chi-Square
test with the following observation and expectation variables is performed:

Observation:
obs,(v) = |{a edlve attributes(a)}| and obs, (V) respectively for the set B, i.e. the

number of objects in 4 and B that have the attribute v assigned.

Expectation:

exp ,(v)=(0bs ,(v)+0bs,(v))* frq, and exp,(v)=(0bs (v)+obs,(v))* frq, , i.e.
under the assumption that all variables are independent and identically distributed,
exp,(v) and expy(Vv) are the number of observations that we would expect if the

category v is uniformly distributed in 4 and B.

The calculation of the Chi-Square test is performed using the Jakarta commons math
implementation (Oliver, Carpena et al. 2002) as the pure JAVA implementation is
faster than delegating this simple test.

(i1) Feature enrichment

The second method requires the same type of nominal data as in the previous case,
but with the additional precondition that one set is a true subset of the other e.g.
AcCB. Typical questions that can be answered with this method are: Are up-
regulated genes enriched in certain functions? Does the GroEL chaperonin prefer
substrates with certain structural folds? Do cancer-associated proteins show non-
random enrichment of certain functional families or transcription factor binding
sites?

Analogous to the case (i) for each category v €V that is found attributed to objects
of A and B, the over- or under representation is calculated and an e-score returns the
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2.1 PROMPT - Protein Mapping and Comparison

likelihood that the difference would be found by random. The e-score is calculated
as described in Castillo-Davis et al. (Castillo-Davis and Hartl 2003) using a
hypergeometric distribution with conservative Bonferroni correction.

(ii1) Comparison of numeric distributions

Are proteins of thermophilic organisms shorter than those of mesophilic organisms
(Thompson and Eisenberg 1999)? With PROMPT, this question can be answered
immediately using its generic method to compare numeric distributions (see our web
page, Figure 6). More generally, the questions that can be answered are: do both sets
differ with respect to their means, e.g. are they shifted? Are the distribution
functions different? Additionally, for more detailed analyses the distributions can be
compared within freely definable intervals, enabling the user to examine whether the
protein sets differ within specific ranges of variable values, even if no global
differences can be found.

‘2l PROMPT-Protein Mapping and Comparison Tool - Microsoft Internet Exploren X
Datei  EBearbeiten  Ansicht  Faworiten  Extras 7 4.
A @ e - = =
Qo - ) [¥] @ @0 O suhen Frraoien @) (2- -
Adresse @ hitp fiwebehu.bio, waw.bum defprampty V‘ Wechselnzu - Links ™ = @& -

Protein Mapping and Comparison Tool

PROMPT: Protein Mapping and Comparison Tool

(Menu: |

& Homa
om0 | i PROMPT is a platform independent system for retrieval, analysis, mapping and comparison of protein i
i sets. It allows easy mapping of different types of seguence identifiers, automatical data retrieval and i
integration, a multitude of analysis and comparisan algorithrms and a full-blown easy to use graphical user
L case studies interface (GUI) application with an integrated help-systemn. Moreower exhaustive statistical tests are
mii i conducted in appropriate cases autormnatically or could be performed manually. Furthermore all analysis i
P — results can be wiewed orwisualized with one mouse-click and exported in various formats e.g. to Microsoft !

& Downloads

Screanshols

& .
L i Excel. Additionally all methads can be used easily in your own Java code or with powerful beanshell ;
€ Help i scripting in own scripts, a pipeline or grid systems :
Download
Screenshats
Case Studies
& &4 L oleales Intranet

Figure 6 Screenshot of the PROMPT web page.

Here, we provide the latest news and PROMPT versions along with useful information.
Additionally, all case studies shown in this paper including the underlying data are freely
available as detailed work-through tutorials.

Given two sets of numerical values, PROMPT applies the Mann-Whitney test with
the null hypothesis of both distribution functions being equal versus the alternative
of the two distribution functions being not equal. The test is sensitive towards
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differences in the mean, but not towards different variances. Given a continuous
distribution function, the two-sample Kolmogorov-Smirnov test checks the null
hypothesis that both variables are equally distributed. Both tests can only be applied
under the assumption of the variables being independent. They have the advantage
that they do not assume the data to follow any specific statistical distribution. By
providing the Mann-Whitney and the Kolomogorov-Smirnov test, PROMPT covers
both discrete and continuous input data.

For both datasets the key statistical values (such as minimum, maximum, mean,
median and standard deviation) as well as histograms with equal binning are
calculated. The relative difference of observed values is computed and its
significance tested by a Chi-Square test. The Mann-Whitney test is applied to the
values of all histogram intervals in order to test whether the distribution functions of
the two datasets are identical within each bin.

(iv) Correlation of numeric variables

PROMPT provides a generic method to check for correlation between two numeric
variables. First, the Pearson correlation coefficient is calculated which is not based
on any assumptions about the variables’ distributions. Secondly, the Pearson
correlation test is performed which expects samples from two independent, bivariate
normally distributed distributions. The null hypothesis is that no correlation either
negative or positive exists.

Graphical user interface and scripting capabilities

All implemented algorithms can be comfortably run via a stand-alone application
with a graphical user interface (GUI), as well as from custom scripts or JAVA
programs. The GUI provides a dynamical workspace where input data and results
can be managed, analyses performed, statistical tests executed and the results
examined, visualized or further processed (Figure 7). All available input adapters,
statistical tests and algorithms can be accessed through a menu bar. The menu bar
and the GUI itself are fully configurable and extensible by new in-house or third-
party modules through XML configuration files or configuration dialogs. The GUI
workspace allows confident handling of multiple data sources, analyses, and results,
and supports saving and loading any of the input or result objects to/from files.
Moreover, the entire workspace can be stored in a compressed form and restored
later so that the work on a particular project can be suspended and resumed by the
user at any time. The workspace files are portable and can be transferred to other
computer systems and shared between different users.
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£ PROMPT GUI (=1 E3
File Import Mapping Analyse Tests Export Help
Type Description Type File Description

FastaFils membrane.fasta Compare:symbolic:onlyIns... resultl3 [FuncatLevell | Escherichia... | 2
FastaFile lvsate.fasta Compare:symbulic:onlyIns. .. resultl4 [FuncatLevell | Escherichia...
Genericsh e Escherichia_call K12 update. .. | |opare symbolicienrich. ., result15 Funcatl evell | Escherichia...
GenericxMLFils Hpyloris3. xml AaDistribution result1s Imembrane. Fasta <-> lysat...
GenericiMLFie Ureaplasma_ureahyticm _ser .. T

result17
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Manniwhitney result1s (Compare:numeric : pl | Es...

Mannwhitney result20 (Compare:numeric : pl | Es...

Mannwhitney result21 (Compare:numeric : pl | Es... | w

This result shows descriptive statistics like mean or median and the results of statistical tests. The lower the p-values the more il
significant is the result and both muneric distributions differ.

KS_pvalue  is the p-value of a Kolmogorov-Sradrnov test between all walues of both sets
MW _Pvalue is the p-value of a Matn-Whitney test between all values of both sets

setA mean is the mean of all numeric vaties of the first protein set

setA std is the standard deviation

setA median is the median

setB_... the same for the other set of numeric values

Infos | [0 Messages|

Figure 7 Graphical User Interface (GUI).

Shown is a typical workspace session with input data and results. The information panel in
the bottom part of the screen provides context sensitive information related to the current
user action.

The PROMPT GUI includes information and message logging panels. The
information area displays extensive context-sensitive information about a chosen
menu entry or about a selected result entry, providing the user with appropriate hints
regarding data integration facilities, available analysis engines, and their results.
The message panel shows all logging notes and gives full insight into the analysis
progress which is especially useful if longer calculations, such as BLAST similarity
searches, are being run. The level of detail and the scope of the logging facility are
fully configurable. The data input and retrieval module dialogs guide the user
through the data acquisition process and explain various data import features.
Likewise, the comparison engines and statistical tests provide context-specific
dialogs prompting the user to set or change appropriate parameters. For example, all
27 statistical tests provide individual dialogs (either in simple or advanced mode),
tool-tip information, and test specific documentation explaining the meaning of the
test and its parameters. These dialogs are rendered automatically from the parameter
description of the tests (Figure 8).
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Figure 8 Screenshots of a typical statistical test dialog.

A. The Mann-Whitney test dialog in the simple handling mode with reduced parameters.

B. The same test in the advanced view with all options allowing full control.

C. The built-in help with general description of the test and its parameters. The statistical
background information was derived from the R documentation.

Furthermore, a fully searchable and browsable documentation is integrated in the
GUI (Figure 9). The GUI provides appropriate actions that match to a chosen result
type in a pop-up menu that can be accessed by a right-button mouse click. Via this
functionality figures can be generated directly out of the GUI. The GUI checks
automatically which of the available plotting classes are applicable to a given data
type and allows one to select the desired type of figure.
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Figure 9 Built-in help system.
Comprehensive and intelligent online help with example data and a demonstration
workspace allows easy usage of PROMPT without prior knowledge.

All of the input, analysis and visualization functionality is accessible from custom
Java programs by utilizing the PROMPT framework classes. Additionally, it is
possible to use the whole set of features by writing simple BeanShell scripts as
demonstrated in the accompanying examples. BeanShell has the full power of the
Java language including access to all Java libraries, and extends it with common
scripting capabilities such as loose types, commands, and method closures similar to
those in Perl and JavaScript. In addition to Beanshell scripts, PROMPT can execute
conventional Java source code files directly, without the need to compile them. The
complete PROMPT framework with all necessary helper classes is provided as one
single jar library, eliminating the need to conduct extensive Java path configuration.

Data visualisation and export

The results of all analyses can be further examined in a graphical spreadsheet view
of PROMPT or exported as tab-delimited-, comma-separated- or Microsoft Excel
document. Additionally, for the majority of results customized figures can be
generated automatically and either saved in the bitmap-oriented portable network
graphic (PNG) format or in vector formats such enhanced postscript (EPS) or
enhanced windows meta-format (EMF). This allows seamless import of PROMPT
results into standard office applications. In some cases, figures produced may be
further fine-tuned manually. For example, all underlying data and R (www.r-
project.org) language commands corresponding to the figures constructed by using
R as plotting engine can be saved into files. This allows easy customization without
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2.1 PROMPT - Protein Mapping and Comparison

the need to run PROMPT analyses again. Another feature is interactive figures
(using JFreeChart) as illustrated with the Enzyme-classification viewer of a Swiss-
Prot property comparison. By clicking on the enzyme classes it is possible to browse
through the different hierarchical levels analyzing the functions of interest (Figure
10). The hierarchical category browser is currently restricted to the enzyme
classification as available in SwissProt (Boeckmann, Bairoch et al. 2003); further
categories will follow in subsequent releases of PROMPT. All generic graphical
views allow for zooming in or out, inspecting numeric values associated with
individual items on the plot, and adjusting the figure appearance in various ways.

relative frequency

0.050

0025

0.000
]

%1 L3 °
& & & &

EC (Enzyme Commission) numbers

W List of Swiss-Prot Accession Numbers B Folder of UniProt XML Files

Figure 10 Example of an interactive browsable figure.

Shown is a comparison of EC numbers found in the annotation of two protein sets. By
clicking on the bars the user can zoom in and out the different levels of the Enzyme
Nomenclature.
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2.1.3 Applications

Here, we demonstrate the functionality of PROMPT based on three well
documented test cases. Each case study highlights different elementary analysis
modes of PROMPT. All used data can be found on the PROMPT home page (Figure
6), where we additionally provide detailed step-by-step instructions for all cases
along with up-to-date information.
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Figure 11 Example of a categorical comparison analysis.

Frequency of SCOP folds in GroEL substrates compared with the whole E.coli lysate. Only
folds that were found at least two times in both sets and that were significantly different at a
significance level of 0.05 are shown. The stars on top of the red bars show that the
differences are significant with the p-values: <0.05 *, <0.01 ** and <0.001 ***. The figure is a
screenshot of an interactive built-in visualisation module provided by PROMPT. All
interactive plots allow easy adjustments (changing font sizes, title, axis labels, etc.) and can
be saved as graphic files.

In the first case we have reproduced our own previously published analysis of
GroEL substrates from E.coli (Kerner, Naylor et al. 2005). In this work, essentially
the entire GroEL-substrate proteome consisting of approximately 250 proteins was
identified by a combination of biochemical analyses and quantitative proteomics.
What protein features determine substrate specificity of GroEL? To answer this
question we imported into PROMPT 20 annotation features for all E.coli proteins
directly from the PEDANT genome database and compared GroEL substrates with
3202 E.coli lysate proteins (Riley, Schmidt et al. 2005). The only significant
difference reported between these two protein datasets was in terms of their
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structural folds. Using PROMPT’s nominal comparison method we could easily
demonstrate that the GroEL substrates are significantly enriched in proteins
possessing the TIM-barrel fold (Figure 11). Possible evolutionary implications of
this phenomenon are discussed in Kerner et al. (Kerner, Naylor et al. 2005). Thus,
PROMPT allows finding significant enrichments and differences of categorical
features between two sets of elements. Furthermore, the generic solution allows an
analysis independent of the feature semantic and problem domain.

A. B.
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Numeric correlation statistical values
Description line 1 'yeastabundance'
Description line 2:  'steady-statemRNA_level
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\cor 0.4385356
[
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[ 5 [setA_mean 11880.149122807015

6 [seth_std |S0687.021532322324

7 |setA_median 22800

8 |setA_min 4.1

9 [setA_max 1260000.0
10 |setB_mean 12.895438596491227
11 [setd_std 7.2043596232097645
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Figure 12 Results of a correlation analysis.

A. Scatter plot of protein abundance against steady-state mMRNA expression levels in yeast.
The solid and dotted lines show the local polynomial loess fitting curve and the linear
regression, respectively. The axes are scaled logarithmically. The box plots visualise the
value distribution of each variable.

B. PROMPT’s spread sheet viewer with the Pearson correlation coefficient of 0.44, a highly
significant p-value of 0.0 (values below 10-300 are rounded to zero), and further statistical
key values. All analysis results can be exported to tab-delimited, comma separated, or
Microsoft Excel files.

In the second example we repeat the analysis of protein expression in yeast from
Ghaemmaghami et al. (Ghaemmaghami, Huh et al. 2003). This case highlights the
ease of using external data with PROMPT, comparing numerical distributions and
performing correlation analyses. Absolute protein abundance levels and steady-state
mRNA expression levels in S.cerevisae were already available as tab-delimited text
files associated with the publications by Ghaemmaghami et al. (Ghaemmaghami,
Huh et al. 2003) and Holstege et al. (Holstege, Jennings et al. 1998), and could be
imported easily using PROMPT’s tab-delimited input facility. The first question we
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addressed was whether protein abundance correlates with mRNA expression levels.
In addition to calculating the Pearson correlation coefficient PROMPT assesses its
statistical significance by performing a correlation test. For visualization of results
PROMPT will suggest appropriate options which in this case include a static scatter
plot of abundance versus mRNA levels with logarithmic axes and linear- as well as
polynomial loess regression lines. Besides the statistical test results, descriptive key
data such as minimum, maximum, mean, median and standard deviation are always
returned by PROMPT and can be analysed, sorted and further processed within a
comfortable spread sheet viewer as seen in Figure 12.
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Figure 13 Comparison of two numeric distributions by PROMPT.

Here normalized abundance distributions of all observed proteins (blue) and essential
proteins only (green), as well as the relative difference (red) are shown. These distributions
are significantly different (Kolmogorov-Smirnov p-value 6.2 E-12, Mann-Whitney p-value 1.7
E-13). Additionally the stars on top of the red bars show the specific intervals in which the
difference is significant. The p-values are indicated by the number of stars: p-value *<0.05,
**<0.01 and *** <0.001.

Another question investigated by Ghaemmaghami et. al. (Ghaemmaghami, Huh et
al. 2003) was whether essential proteins are more abundant than non-essential
proteins. Within a few seconds the results reported by the authors could be
reproduced using PROMPT’s generic method to compare numerical distributions.
Specifically, we compared the abundance distributions of all yeast proteins vs. the
essential proteins. Applicable statistical tests were automatically performed by
PROMPT. First, the value distributions were compared with the Kolmogorov-
Smirnov and Mann-Whitney tests based on the complete data set. Secondly, we
attempted to identify potential local differences between the two distributions by
binning the data and comparing individual bins of both groups separately. This
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demonstrates that essential proteins are significantly underrepresented within the
logarithmic abundance ranges 8 to 11 and significantly overrepresented within the
range 13 to 16. The bin intervals can be chosen either automatically or manually
guided by a user-friendly graphical dialog box (Figure 15). The resulting
comparison of the protein abundance levels of essential proteins versus the complete
yeast proteome is shown in Figure 13.
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Figure 14 Examples of built-in interactive plots.

A. Screenshot of a scatterplot. Protein length of E.coli lysate proteins is plotted against their
hydrophobicity. The Pearson correlation coefficient is -0.69 with a p-value of 2.8E-54. By
pressing and holding the left mouse button it is possible to zoom in the desired area.
Clicking on an individual point on the plot leads to numeric values associated with this point

HydrophobicityAvg
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o fom
H

0.00
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being displayed.

B. Usage of derived sequence based properties in a generic analysis of PROMPT. Here
the isoelectric point (pl) distributions of the E.coli lysate and membrane proteins are
compared using the numeric comparison method. PROMPT calculates the pl values
automatically if protein sequences are available.
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Figure 15 Binning wizard for setting up interval borders.

A. First dialog page. The user can either let PROMPT automatically estimate the interval
borders, of specify a fixed interval width or the number of intervals. The selected options
shown create histogram intervals that have a width of 1, no decimal places, and the range
from 6 to 21. B. Optional second dialog page. Here the proposed binning can be previewed
and altered. Note that we used the special keywords -INF and +INF for negative and
positive infinity in the first and last interval to specify that all values less than 7 or higher
than 20 fall into these bins.
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In the final example we use PROMPT to automatically retrieve protein sequences by
sequence identifiers from public databases and to calculate some of their basic
properties such as the isoelectric point. As input we used two lists of GenBank
(Benson, Karsch-Mizrachi et al. 2005) identifiers of membrane and globular proteins
of E.coli. In this experiment we use only multi-spanning membrane proteins with
more than 6 membrane spanning regions predicted by TMHMM 2.0 (Krogh,
Larsson et al. 2001) to avoid any noise from false positive predictions or small
membrane-coupled proteins. As seen in Figure 14 A, longer membrane proteins are
less hydrophobic than shorter ones. The observed high correlation between the
protein length and its hydrophobicity (expressed as the GRAVY index) of -0.7 is
significant with a p-value of 3 E-54. Sequence based properties can also be used in
any other generic analysis. For example, Figure 14 B shows a comparison of the
automatically derived pl values of membrane and lysate proteins. In addition to the
methods based on amino acid sequences, PROMPT provides statistical analyses and
comparisons of symbol frequencies of arbitrary alphabets. Thus, in addition to
finding over- or under-represented amino acids in a given protein dataset (Figure
16), it is also possible to calculate the enrichment/depletion of other symbols such as
those taken from the three-state secondary structure alphabet with Helix (H), Strand
(E) and Coil (C) as elements.
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Figure 16 Screenshots of PROMPT’s visualisations of the sequence based symbol
analysis methods.

In this example we compared two protein sets with respect of their amino acid composition.
The positive and the negative datasets are constituted by the proteins known to crystallize
and the proteins whose structure was only resolved by NMR, respectively (Smialowski et al.,
2005).

A. Here the frequencies of each amino acid in both proteins are plotted. For example: a
frequency of 5% for threonine in the positive protein dataset means that out of all residues
5% are T’s.

B. Using the same data as in A, here the frequency differences of all sequence elements
are shown. For example, the positive value of 0.5% for Y means that this amino acid is
about a half percent more frequent is the first dataset. Bars with red color have a significant
p-value according to the Mann-Whitney test.

C. Additionally the frequency distributions of all amino acids can be shown as box plots as
exemplified by cysteine here.

D. Complementary to a box plot depiction PROMPT provides histogram visualizations.
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2.1.4 Discussion

PROMPT is a platform-independent, multi-purpose stand-alone software system for
solving a broad spectrum of standard problems in comparative proteomics. It is
implemented as a highly-reusable and extensible framework for analysing biological
data. With its rich data integration functionality and built-in statistical tests,
PROMPT facilitates data mining and hypothesis testing.

PROMPT makes possible incorporation of new algorithms by providing hulls, layers
and infrastructure. The availability of both scripting-capability and an intuitive GUI
with a context-sensitive help system makes PROMPT equally accessible to both
professional bioinformaticians and biologically oriented users. The structure of
PROMPT is well adapted for batch processing and automation.

Unlike the multitude of specialized analytical tools, PROMPT has been designed as
a versatile general platform for routine analyses and comparisons in the field of
molecular bioinformatics. The current version of PROMPT includes a large set of
generic comparison methods and statistical tests applicable to any nominal and
numeric data as shown in Table 2. User-specific extensions and custom methods
can be seamlessly integrated by providing Java classes that implement the interfaces
defined in the PROMPT documentation and by adding additional entries to the
application’s configuration file. Although PROMPT is easily extensible by third-
parties, we encourage members of the scientific community to suggest new
PROMPT features that may be of particular interest to their research. In the long run
we hope to make PROMPT a community resource for comparative proteomics
(Schmidt and Frishman 2006).
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2.2 Integration of functional and physical
annotations

A major challenge towards a comprehensive analysis of biological systems is the
integration of data from different “omics” sources and their interpretation at a
functional level. Here we address this issue by analysing transcriptomic and
proteomic datasets from mouse brain tissue at embryonic days 9.5 and 13.5 provided
from (Daniela Hartl). In the following, we give an example how the PROMPT
software suite for comparative proteomics is suited to analyse physical features of
regulated gene products from multiple databases. This application demonstrate
PROMPT’s advantages in integration- and data analysis of experimental expression
data (Irmler, Hartl et al. 2008).

2.2.1 Introduction

Since the advent of high-throughput techniques to study gene expression at
transcriptome and proteome levels, large datasets are being generated. Generally
these datasets are analyzed by distinct tools, each developed for the individual
datasets (Meunier, Bouley et al. 2005; Rainer, Sanchez-Cabo et al. 2006; Meunier,
Dumas et al. 2007). However, transcriptome and proteome feedback to each other in
a highly complex and controlled manner and should therefore be analyzed by
integrative approaches. The inclusion of information derived from other resources
such as public databases would assist the functional interpretation of expression data
and provide a basis for the emerging field of systems biology. However, there is an
apparent lack of tools to translate the information from various sources and levels
into a common processible format (Hack 2004). Also, standardized methodologies
for data analysis, for example for the correct assignment of transcripts to their
corresponding proteins, are needed, to allow better comparability of results. Such
methods are being developed (Cox, Kislinger et al. 2005; Cox, Kislinger et al. 2007)
and make use of hierarchical clustering methods combined with statistical analysis
of large datasets.

In a recent study, the developing mouse brain at embryonic days 9.5 and 13.5 (E9.5
and E13.5) was analyzed (Daniela Hartl). During these two days the brain undergoes
major morphological changes and differentiation processes. Due to these cellular
differentiation and patterning processes a high number of genes and proteins
undergo changes in expression levels providing a sufficient amount of data for
statistical analysis. Here we provide an example of how the PROMPT tool (Schmidt
and Frishman 2006) can add to the functional interpretation of such an analysis.
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2.2.2 Material and Methods

Data

The transcriptome and proteome data in this experiment was obtained from (Daniela
Hartl). Briefly, for transcript analyses whole genome Affymetrix MOE430 2.0
arrays were used with 45k probe sets. The proteome dataset was derived from 2-
dimensional fluorescence difference gel electrophoresis (DIGE). Of about 3,700
distinct protein spots detectable in each gel, 300 spots were identified by mass
spectrometry. About 15 % of all transcripts present on the array and 30 % of all
DIGE-detectable proteins were significantly regulated between both developmental
stages. The resulting gene and protein lists were used for further analysis in this
work.

Properties

Functional roles of gene products were described in terms of the manually curated
hierarchical functional catalogue (FunCat) developed at MIPS (Ruepp, Zollner et al.
2004). In this catalogue each of the 16 main classes (e.g., metabolism, energy) may
contain up to six subclasses. An essential feature of FUNCAT is its
multidimensionality, meaning that any protein can be assigned to multiple
categories. Carefully verified FunCat assignment as well as enzyme classifications,
InterPro domains (Mulder, Apweiler et al. 2002; Mulder, Apweiler et al. 2007) and
genomic (e.g. number of exons) as well as sequence information was taken from the
Mouse Functional Genome Database (MfunGD) (Ruepp, Doudieu et al. 2006).
Gene Ontology (GO) functional annotations (Ashburner, Ball et al. 2000),
Mammalian Phenotype (MP) classification (Smith, Goldsmith et al. 2005) and the
currently known number of single nucleotide polymorphisms (SNPs) were obtained
from The Mouse Genome Database (MGD) (Eppig, Bult et al. 2005) as of June
2007.

Disorder, low complexity, probability to be non-globular or adopt a coiled-coiled
structure, similarity to clusters of orthologous groups (COGs) (Tatusov, Koonin et
al. 1997; Tatusov, Fedorova et al. 2003) and protein structural information were
taken from our PEDANT database Mus musculus new (Frishman, Mokrejs et al.
2003; Riley, Schmidt et al. 2005; Riley, Schmidt et al. 2007). Disorder attributes
were calculated with the software GlobPlot (Linding, Russell et al. 2003). GlobProt
utilizes the statistics of proteins known to have unstructured regions (Wright and
Dyson 1999; Tompa 2002). Low complexity and non-globular regions were
computed with the original SEG algorithm (Wootton 1994). The probability that a
protein structure adopts a coiled-coiled structure was calculated with the program
COILS program (Lupas, Van Dyke et al. 1991). Protein structures were further
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analyzed with regard of their secondary structure content i.e. percentage of residues
that are part of alpha helices, beta sheets or coils and their three dimensional
structure folds using the SCOP classification schema. Like FunCat the SCOP
database (Murzin, Brenner et al. 1995; Andreeva, Howorth et al. 2004) provides a
hierarchical classification of protein structural domains. Data retrieval from
PEDANT was accomplished using the protein mapping and comparison tool
PROMPT version 0.9.2 (Schmidt and Frishman 2006). SCOP class and COG
assignments to M. musculus proteins were based on BLAST (Altschul, Gish et al.
1990) hits with an E-value of 10-4 (PROMPT default thresholds).

The number of alternating hydrophobic/hydrophilic stretches was computed as
described (Wong, Fritz et al. 2005) using the implementation of PROMPT. The
residues A, C, F, G, [, L, M, P, V, W and Y were considered to be hydrophobic and
H, Q, N, S, T, K, R, D, E were considered hydrophilic in this thereby. The
hydrophobicity of a protein was defined as average of the hydrophobicity values of
the amino acids averaged over the complete protein. Hydrophobicity values were
calculated using the Kyte-Doolittle scale (Kyte and Doolittle 1982). Molecular
protein mass, theoretical isoelectric point (pl) as well the averaged hydrophobicity
were calculated with the PROMPT software from the amino acid sequences.

Statistics

All statistical tests and most figures were done using the R software package version
2.5.0 (www.r-project.org) and PROMPT (Schmidt and Frishman 2006). To compare
the distributions of two unpaired samples with non-Gaussian or unknown
distributions, the rank-sum Mann-Whitney (MW) test and the two sample
Kolmogorov-Smirnov (KS) were applied using the significance threshold a=0.05.
Briefly spoken, the null hypothesis of the Mann-Whitney test is that the abundance
means are equal; the null hypothesis of the Kolmogorov-Smirnov test is that the
values of the two samples are drawn from the same continuous distributions. Both
tests have the advantage that they make almost no assumptions about the distribution
of data.
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2.2.3 Results

The interpretation of expression datasets at a functional level may be regarded as a
major goal for most studies. Various tools have been developed to assist in this
issue. Examples include tools to detect significant enrichments of annotation terms
as done by the GeneMerge tool (Castillo-Davis and Hartl 2003) and programming
frameworks such as Bioconductor (Gentleman, Carey et al. 2004). However, a major
challenge lies in the complex, and dynamic data being maintained in heterogeneous
databases that are hardly interconnected and provide limited statistical means for
data interpretation. To access the information present in such public databases, we
used the PROMPT tool (Schmidt and Frishman 2006). It enables the collection,
integration and statistical analysis of data from various sources. We applied this tool
to our embryo gene expression datasets to identify features, which distinguish
proteins that are higher expressed at E13.5 (up-regulated) from those that are higher
expressed at E9.5 (down-regulated). The analysis of distinct physical protein and
gene features revealed statistically significant results at the protein structure level
(p<0.05; Table 3).

Up-regulated proteins were predicted to have more residues being part of alpha
helices (36% versus 28%) and less beta-sheets (16% vs. 24%), whereas the degree
of turns remained constant. One explanation for this finding may be a trend to up-
regulate the production of transport proteins, which frequently include alpha-helical
structures (Veenhoff, Heuberger et al. 2002). Supporting this interpretation, we
observed the statistical significant enrichment of transport-related GO terms among
the up-regulated proteins (E13.5) as compared to the down-regulated proteins
(E9.5). In addition, we also observed differences between significantly regulated
proteins (E13.5 versus E9.5) and proteins with a constant expression level (Table 3).
Interestingly, our analysis also indicated a trend towards smaller genes and
corresponding proteins at E13.5 (p<0.1). These are on average 16% shorter in amino
acid sequence (61 of 374 amino acids), have a reduced molecular weight and contain
on average one exon less.

Based on these data, we suggest that the analysis of structural and physical features
of genes and their products provides an additional independent layer of information
that can complement the analysis of functional annotations. Additional transcript
and protein data like alternative splicing events, protein modifications and stability
may further improve the integration of transcriptome and proteome datasets.
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2.2 Integration of functional and physical annotations

Table 3 PROMPT analysis results

Significantly regulated

Significantly down- vs. up-

Feature vs. unregulated proteins regulated proteins
KS MW KS MW
Molecular weight [Da] 0.82 0.62 0.1 0.08
SCF;@)/Y (Hydrophobicity KD- - 47 0.27 0.67 0.88
No. of alternating
hydrophobic/hydrophilic 1.00 0.71 0.41 0.15
stretches
Length (amino acids) 0.71 0.59 0.09 0.07
pl 0.20 0.21 0.26 0.21
|7-pl| 0.37 0.26 0.69 0.73
Total length of gene 0.88 0.83 0.37 0.31
No. of exons 1.00 0.70 0.08 0.12
% GC of total gene 0.88 0.97 0.55 0.21
% Low complexity 0.27 0.17 0.37 0.29
% Disorder 0.09 0.18 0.89 0.84
% Non globular 0.10 0.14 0.90 0.80
Prob. coiled-coiled 0.97 0.39 0.98 0.42
% Helix 0.95 0.55 *0.04* *0.02*
% Beta strand 0.40 0.31 *0.01* *0.002*
% Turn 0.99 0.70 0.69 0.61
No. of SNPs 0.98 0.57 0.16 0.55
SNPs relativ to gene length 0.95 0.61 0.23 0.39

Statistical significance was assessed by the Kolmogorov Smirnov test (KS) and by the
Mann-Whitney test (MW) and significant differences (alpha < 0.05) are indicated by
asterisks. Shown are the tests’ p-values. Trends (p-value between 0.05 and 0.1) that are

however not statistically significant are shown in bold letters only. Features are
defined as described in the text.

44



Chapter 3

Applications in comparative proteomics

All analyses depend on the body of acquired knowledge. In this chapter, we first
present databases and retrieval systems (Ruepp, Zollner et al. 2004; Riley, Schmidt
et al. 2005; Riley, Schmidt et al. 2007; Ruepp, Brauner et al. 2007) that were used
and co-developed within this work. Secondly, we show how protein properties can
be predicted by identifying unique protein features and traits: we show how
comparative proteomics was useful to find sequence based features with predictive
power for protein crystallizability (Smialowski, Schmidt et al. 2006). This is
especially valuable for experimentalist who are interested in structure determination
and target selection questions (Smialowski, Martin-Galiano et al. 2007).

The third section of this chapter discusses the challenge of finding and describing
gene and protein traits given a limited set of annotation terms. Instead of extending
existing ontologies, current annotation terms can be combined using logical
operators like AND, OR and EXCLUDE. Here, such a new profiling implementation
is presented and evaluated. Our server-based service, named ProfCom (Antonov,
Schmidt et al. 2008), is founded on the PROMPT framework and the databases and
retrieval systems created and presented in this work.

3.1 Databases and retrieval systems

Integration of annotation data relies on solid databases and data retrieval systems. In
this section we present the PEDANT and CORUM databases and developed data
access functions.

3.1.1 PEDANT-Webservices

The PEDANT database provides exhaustive annotation for hundreds of genomes
(Riley, Schmidt et al. 2005; Riley, Schmidt et al. 2007). The absolute majority of all
proteins have functional PFAM (Finn, Tate et al. 2008), FunCat (Ruepp, Zollner et
al. 2004) and structural annotations (Murzin, Brenner et al. 1995; Andreeva,
Howorth et al. 2004) assigned.
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A / / \\ FUNCAT
64.3% 40.9%
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FUNCAT
/ [ se2% \

PFAM,FUNCAT
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15.2%
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FUNCAT

0,
SCOP and 15.9%

PFAM 24.3%

Figure 17 Illlustration of the functional and structural content of the PEDANT
database.

The figure shows the percentage of protein sequences associated with PFAM sequence
motifs, SCOP structural domains, and FUNCAT categories, as well as any combinations of
these three attributes.

Metabolism Information Transport Perception and Devel I L
processes facilitation response to processes
stimuli

Figure 18 FunCat distribution

FunCat distribution of all genomes in PEDANT. Here the relative amounts of proteins that
are assigned to one or more of the six general FunCat classes metabolism (24.32%),
information processes (33.07%), transport (9.15%), perception and response to stimuli
(8.15%), developmental processes (12.62%) and localization (30.59%) are shown. Since
proteins can be assigned to more than one functional category the total fraction exceeds
100%.
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3.1 Databases and retrieval systems

Figure 17 shows a breakdown and contribution of the major information sources.
FunCat is a hierarchical multidimensional annotation scheme described in detail in
(Ruepp, Zollner et al. 2004). The distribution snap-shot of the major functions
attributed to all proteins annotated in the PEDANT database is shown in Figure 18.

One of the major practical challenges is to access the wealth of information stored in
databases like PEDANT. Due to the mere size and complexity as well as due to the
permanent need being up-to-date, such data resources cannot simply being copied
and locally installed. Although user-friendly web-interfaces are provided, automated
large-scale analyses require programmatic access interfaces to query and retrieve
information from the databases. Here, we have developed a set of Web Service
methods for the PEDANT databases that allow to query and access all information
stored in the PEDANT databases.

PEDANT Client
Annotations like Background Optional data
Information Bridge processing e.g. in:
* Function » Workflows

_e.g. getReportbyDbCode...

data in structured XML

* Structure * custom scripts

* PROMPT

» Sequences

,;/ //

Figure 19 Web Service communication schema

Web Services technology is becoming increasingly popular within the
bioinformatics community as a means to exploit the large amounts of data, software
programs and computing power available at various institutions (Pillai, Silventoinen
et al. 2005; Wilkinson, Schoof et al. 2005). According to the World Wide Web
Consortium (W3C) a Web Service is a software system designed to support
interoperable machine-to-machine interactions over a network
(http://www.w3.0rg/2002/ws/). This technology is based on the eXtensible Markup
Language (XML) and open standards, and is platform and programming language
independent. This enables clients for a particular service to be written in many
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3.1 Databases and retrieval systems

languages, such as Java or Perl, irrespective of the language the service was written
in. A systematic overview is shown in Figure 19. A Web Service has an interface
that is described in a machine process-able format using the XML based Web
Services Description Language (WSDL). WSDL provides a format for the
description of a Web Service interface, including parameters and data types in
sufficient detail for a programmer to write a client application for that service. Tools
are available for various programming languages to generate the required client
classes, such as Apache Axis’s WSDL2Java (http://ws.apache.org/ axis/java/user-
guide.html). The client programs interact with the Web Service using messages
based on the Simple Object Access Protocol (SOAP). As with WSDL, SOAP
messages are XML based, permitting the interoperability of Web Services. For the
transport layer itself, Web Services typically use the Hypertext Transfer Protocol
(HTTP), preventing problems sending the SOAP messages through firewalls.

Bioinformatics users can avoid keeping local copies of databases and software and
use a client program instead to access remote databases and software via Web
Services. The PEDANT Web Service allows the user to query the database in an
automated way from client programs and workflows. We provide a number of data
retrieval methods in our Data Retrieval Service. For example, to fetch the functional
and structural annotations of a particular protein, the client program can call the
getReportbyDbCodeand-Contig method. All these methods are described in the
WSDL  file:  http://mips.gsf.de/  webservice/  pedant2retrieval  /services/
DataRetrievalService?wsdl and in our publication (Riley, Schmidt et al. 2007).
Example scripts and source code can be downloaded from the PEDANT database
web site. Furthermore the PEDANT 2 Web Services are integrated into the
PROMPT software suite. Figure 20 A-C shows screenshots of a comfortable dialog
of the PROMPT-PEDANT interface. Currently the public PROMPT version
supports version 2 of the Web Services, support for PEDANT 3 Web Services is
possible by direct utilization of the programming and scripting interfaces. In any
case, the retrieved information can be immediately used and processed in any
analysis within PROMPT. Optionally they can be also exported, combined and
integrated with additional data sources. This allows a very flexible and powerful
immediate usage. In multiple applications in this work this functionality was
employed for fast and improved data-pipelines and data integration (see for example
chapters 2.2, 3.2, 3.3 and chapter 4).
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Overview | Found (33| No match (0) | PEDANT IDs

Choosed database: Agrobacterium_tumefaciens_C58
Total number of proteins in database: 2721

Fraction found: 0,11%(3

Figure 20 PROMPT-PEDANT integration

Shown are screenshots of the graphical user interface of PROMPT that allow comfortable
retrieval of PEDANT annotations in three simple steps.

A. Initially the user can chose one of the hundreds of genomes annotated by PEDANT.

B. In the second step, the identifiers of the entries in which the user is interested can be
specified. This is either possible via a text-form or by upload of a file. Additionally it is
possible to use the invers-selection feature. With the invers checkbox selected all entries
are downloaded from the PEDANT database and the entries entered by the user excluded.
This allows to exclude a certain subset of proteins or genes from the set of interest.

C. Finally, a multi-tabbed form reports the number of found and downloaded entries. If —for
any reason — the user wants to change any of his identifiers or the organism, the back-
button allows returning to the previous step.
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3.1 Databases and retrieval systems

3.1.2 CORUM- Search and EJB accession

Protein complexes are central players in various cellular functions like protein
synthesis and cell cycle. Information about the cellular inventory of molecular
machines establishes an important basis for protein network analysis and systems
biology. CORUM is a database with manually annotated resource of mammalian
protein complexes including information about subunits, protein complex functions
and purification methods. With more than 2000 entries, CORUM is the largest
resource of protein complexes currently available. Nucleic Acids Research (Ruepp,
Brauner et al. 2007).

ntry information
Protein complex ID: 1215
Last modified on: ~ 2007-08-28

Protein complex name and species

Name Ubiquitin E3 ligase (containing FBXW7, CUL1, SKP1A and RBX1)
Synonyms:

Organism: Human

Protein description Gene name Organism UniProt ID mouse ortholog
F-box/WD repeat protein 7 FBXW7 Homo sapiens Q969H0 |mc3000959
Cullin-1 CuUL1 Homo sapiens Q13616 FCEOOOSM
|S-phase kinase-associated protein 1A SKP1A Homo sapiens P63208 mc11000801
RING-box protein 1 RBX1 Homo sapiens P62877 [mc15001056

Purification method
MI:0019- coimmunoprecipitation

FunCat FunCat-Evi Reference

14 PROTEIN FATE (folding, modification, destination)
14.07 protein modification

14.07.05 modification by ubiquitination, deubigquitinati exp 11585921
14 PROTEIN FATE (folding. modification, destination)

14.13 protein/peptide degradation

14.13.01 cytoplasmic and nuclear protein degradation
14.13.01.01 proteasomal degradation (ubiquitin/proteasomal pathway) exp 11585921
30 CELLULAR COMMUNICATION/SIGMAL TRANSDUCTION MECHANISM
30.05 transmembrane signal transduction

30.05.02 non-enzymatic receptor mediated signalling

30.05.02.14 Notch-receptor signalling pathway exp 11585921
30 CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM
30.07 regulation of signal transduction exp 11585921

omment
FBXWT is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation.

|

Reference
PubMed= 11585921

Figure 21 Screenshot of a complex entry.
Result page of the Ubiquitin E3 ligase (containing FBXW7, CUL1, SKP1A and RBX1)
protein complex from the CORUM database

CORUM is embedded within the MIPS Genome Research Environment (GenRE)
(Mewes, Frishman et al. 2006). This component-oriented multi-tier architecture,
based on J2EE technology, ensures scalability and provides consistent data access
via Enterprise Java Beans (EJBs). As data exchange format XML is used, thus
enabling readability across platforms and systems. The web page layout is rendered
with XSL transformations following the Model-View-Controller design pattern. As
data backend, the relational MySQL database system (www.mysql.com) is applied.
Figure 21 shows a screenshot of a complex entry.

CORUM offers three different possibilities to select suitable protein complexes from
the dataset. As a quick start we offer predefined sets of protein complexes on the

5
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2

home page. The ‘Browse protein complexes localized in...” and ‘Browse protein
complexes involved in..” buttons are linked to selections of protein complexes with a
certain cellular localization or function, respectively. The underlying information of
the selected complexes is based on the FunCat annotation. Further selections with
the same topic can be inspected via the ‘more..” link. A comprehensive overview
about protein complexes associated with a specific FunCat category is given with
the ‘Browse functional annotation’ link (Figure 22) on the home page. The numbers
beside the functional categories show how many protein complexes were annotated
with the respective category.

ettt et e et =ttt eam . =it eim e = ¢ et oot imn = mmim g mm g e
General Search Highlighted functional categories link to more specific categories Numbers link to the list of respective complexes
functional category number of complexes

01 METABOLISM 2
Submit 02 ENERGY 49
) 10 CELL CYCLE AND DNA PROCESSING ast
Enter a protein complex 44 TRANSCRIPTION 438
name, protein complex ID, 4 pROTEIN SYNTHESIS 2
e iy Prefen 1aMS: 14 PROTEIN FATE {folding, modification, destination) 420
UniProtD or MGHD 16 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (structural o catalytic) 554
18 REGULATION OF METABOLISM AND PROTEIN FUNCTION 193
20 CELLULAR TRANSPORT, TRANSPORT FACILITIES AND TRANSPORT ROUTES 314
Specific Search 30 CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM 226
32 CELL RESCUE, DEFENSE AND VIRULENCE 135
[ComplexName =] 34 INTERACTION WITH THE ENVIRONMENT 133
36 SYSTEMIC INTERACTION WITH THE ENVIRONMENT 54
40 CELL FATE 86
o 41 DEVELOPMENT (Systemic) 68
42 BIOGENESIS OF CELLULAR COMPONENT $ 261
43 CELL TYPE DIFFERENTIATION 53
ComplexNName | 45 TISSUE DIFFERENTIATION 3
47 ORGAN DIFFERENTIATION FL]
70 SUBCELLULAR LOCALIZATION 1068
Al - 73 CELL TYPE LOCALIZATION 12
Organism 75 TISSUE LOCALIZATION o7
77 ORGAN LOCALIZATION 209

Submit

Browse
functional annotation

Figure 22 CORUM Search and FunCat browser.

This screenshots shows the different search options of the database (left part).
Furthermore the FunCat funcational annotation browser is displayed. The FunCat
browser is internally based on the CORUM search engine.

The second search option is the ‘General search’ which performs simultaneous
searches across several attributes (Figure 22). This is especially suited for searches
where comprehensiveness rather than specificity is required. A query for
‘proteasome’ e.g. reveals not only all proteasome complexes but also all complexes
that contain a proteasomal subunit. Finally, the ‘Specific search’ allows to select
individual attributes that were annotated (Figure 22). Additionally, specific searches
can be combined by using the logic operators AND, OR and NOT. Searches for
gene names and protein names include also the synonyms that were annotated by
UniProt.

Contributions: The author of this thesis conceived, directed and co-implemented
(together with B. Wigele) the migration of the underlying database to a relational
database system. Additionally the author rebuilt the search functionality from the
scratch. Thus queries —that could took more than 5-10 minutes in the previous
implementation- were accelerated to a handful of milliseconds. This finally allowed
to provide a fast search functionality to the CORUM website.
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3.2 Comparative analyses for  structural
bioinformatics

In the following section we show the usefulness of comparative approaches to
determine features that are relevant for protein structure determination experiments.
In this example application, sequence-based features were resolved that allow a
prediction of protein crystallizability (Smialowski, Schmidt et al. 2006). This part
was done in cooperation with P. Smialowsiki, J. Cox, A. Kirschner and D. Frishman.
J. Cox contributed to the machine learning optimization, A. Kirschner provided the
secondary structure feature used in this study and P. Smialowski coordinated the
project. This section 3.2 demonstrates how the developed methodology (see
previous chapters) can yield to new insights. In the subsequent sections we will give
a short background about structure determination, limitations and prospects, outline
very briefly the basic bioinformatic concepts and conclude with a concise summary
of the results.

3.2.1 Background

The ultimate goal of structural genomics is to determine structures for every natural
protein through both a large-scale experimental structure characterization and
computational analysis. However, in anticipation of the development of cost-
effective techniques, current efforts in structural genomics are aimed towards
determining structures of limited portion of representative proteins to achieve
coverage of the protein structure and function space (Frishman 2002).

Nuclear Magnetic Resonance (NMR) spectroscopy and X-ray crystallography are
the prevalent methods of structure determination that can contribute to the rapid
production of structures. Even though X-ray crystallography is leading technique
used for structure elucidation it also has serious deficiencies. A major factor that
limits the success of large-scale structure determination efforts is the intrinsic
difficulty in obtaining well diffracting crystals for X-ray analysis. The choice of
experimental conditions for protein production and crystallization remains a tedious
trial-and-error process with uncertain outcome. The preparation of protein samples
to yield good quality structural data is considered to be the most time-consuming
phase of the structural proteomics program (Yee, Pardee et al. 2003). It was reported
(Yee, Pardee et al. 2003) that during pilot Methanobacterium thermoautotrophicum
structural genomic project only some 42 % of the purified proteins that went into
initial crystallization trials crystallized. Nowadays it is apparent that any structural
genomics project would enormously benefit if a rational strategy exist that allows to
filter out potentially recalcitrant proteins or, to determine at least in some cases the
chances of protein to crystallize. At the current pace of structural genomics even a
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minimal advance in this direction leading to improvement of success rate by just a
few percentage points would translate into significant reduction of cost and yield
dozens of additional structures.

Although factors determining protein crystallizability are generally poorly
understood and elusive, recently there were many attempts to data mine “pipeline”
of structural genomics in aim to characterize the differences between proteins which
are successfully progressing throughout research stages (cloning, expression,
purification, crystallization, structure determination) and those which are recalcitrant
(Christendat, Yee et al. 2000; Bertone, Kluger et al. 2001; Goh, Lan et al. 2004).
The most comprehensive effort so far was the study of Goh and coworkers (Goh,
Lan et al. 2004). Authors made systematic statistical characterization of 27000
proteins from TargetDB (Chen, Oughtred et al. 2004). They calculated average
features of proteins from different stages of structural genomics “pipeline” and
found that there is a correlation between average proteins characteristics and its
progress through each stage of the structural genomics pipeline, from cloning,
expression, purification, and ultimately to structural determination. By using tree-
based analysis they rate significance of features in protein’s amenability throughout
high-throughput experimentation. The most pronounced differences between
structurally determined targets and all targets from TargetDB are that the earlier
have: higher degree of conservation throughout the organisms; higher percentage
composition of charged residues; lower occurrence of hydrophobic patterns; shorter
length of hydrophobic stretches; lower number of interacting partners and shorter
protein sequence.

Unlike research of Goh and coworkers (Goh, Lan et al. 2004) which was primarily
analyzing differences among groups of proteins we attempt to developed a general
computational technique to classify protein sequences between two groups. We use
this method to assess the feasibility of proteins for crystallization solely based on
sequence information and independent of protein length.

3.2.2 Material and Methods

Datasets

The primary datasets used for this analysis were collected by P. Smialowski. Briefly,
protein sequences with a length range of 30 and 200 amino acids were collected
from the PDB database (Berman, Westbrook et al. 2000) and split accordingly to the
experimental methods by which the structure was resolved. The resulting datasets
XRAY (resolved by X-ray diffraction) and NMR (resolved by Nuclear Magnetic
Resonance) were further filtered accordingly to their sequence similarity: NMR
sequences without any homology to XRAY sequences (BLAST bit score cut-off less
than 30) make up the NMR_ONLY dataset. Proteins with a comparable length (at
maximum 10% difference) and high sequence similarity (>75%) build the
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XRAY_ NMR dataset. All datasets were made non-redundant with the tool CD-Hit
(L1, Jaroszewski et al. 2001; Li, Jaroszewski et al. 2002) at 50% sequence identity
level. Further datasets and details are described in detail in the supplements of our
publication (Smialowski, Schmidt et al. 2006).

Adjustment of sequence length distributions

The three raw datasets (NMR_ONLY, XRAY NMR and XRAY) have significantly
different protein length distribution. This is a result of the increasing experimental
difficulty to use NMR with larger proteins. To avoid a classifier prediction based on
sequence length, the training datasets were adjusted via sampling from the more
populated set so that protein length distributions are comparable and not revocable
by a Kolmogorov-Smirnov test. This resulted in multiple datasets and combinations
thereof. Although P. Smialowski and the author of this thesis evaluated all of them
(see our paper and supplements for full details), the following will focus on the
smaller but more conceive dataset that was used in the training of the final classifier.
An evaluation of all dataset and combinations thereof can be found in the
supplements of (Smialowski, Schmidt et al. 2006).

Protein sequence features

Frequencies of mono-, di-, and tri-peptides can be used to represent protein
sequences for classification. However, the space of peptide frequencies rapidly
becomes very highly-dimensional with growing peptide length. Increasing the
peptide size by one, results in multiplying the number of features by a factor of
twenty. To reduce the dimensionality of the feature space we decided to cluster the
amino acids into groups with similar physico-chemical or structural properties.
Given that structural redundancy exists in the amino acid code, it is reasonable to
assume that a collapse of the twenty letter alphabet to a suitable condensed version
will not lead to a strong loss of information. Utilization of a reduced alphabet also
results in larger counts of individual words which increases the signal-to-noise ratio.
For the original amino acid alphabet we calculated the frequencies of words of
length one and two while for condensed alphabets, words of length one, two, and
three were considered. In the following, we describe the alphabets used in this work.
All alphabets and groupings are implemented in the PROMPT framework (see
chapter 2) and can be used readily in any further application.

Counting single amino acid and dipeptides frequencies we obtained attribute spaces
of dimensions 20 and 400, respectively. Furthermore the hydrophobicity of amino
acids was taken under consideration: Each amino acid sequence was represented in
the new alphabet as a sequence of hydrophobicity classes, and the percentages of
corresponding words of length one, two, and three were recorded. As a result, each
protein was represented by a vector of 3, 9, or 27 numbers for each of the
hydrophobicity scales considered. Amino acids were clustered using the
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Expectation-Maximization (EM) algorithm (Dempster, Laird et al. 1977) into three
groups: low (-), medium (0), and high (+) according to the values assigned to them
by three different hydrophobicity scales: GES (Engelman, Steitz et al. 1986), Kyte &
Doolittle (Kyte and Doolittle 1982), and Rose (Rose, Geselowitz et al. 1985) (Table
4). Further amino acid groups were done by P. Smialowski based on properties
obtained from the Amino Acid Index Database (Kawashima and Kanehisa 2000).
The data was further adjusted to values between 0 and 1 and normalized by UniProt
background probabilities (done together with P.S.). Secondary structure states were
contributed by A. Kirschner using the STRIDE software (H — helix, E — strand, C —
coil) (Frishman and Argos 1995).

Table 4 Amino acid grouping

Group
Scale GES Kyte & Doolittle Rose
- (hydrophobic) M ITLc\3/ g W.A RN,D.QEHK R.N,D,QE,K,P.S
0 (neutral) P, Y: H,, Q, N G,P,S,TW)Y AGHTY
+ (hydrophilic) E,K D,R A,CLLMFV C,I.LLM,F, W,V

Classification methods

As first classifier a support vector machine (SVM) was employed. One of the
features used are frequencies of amino acids. Additionally the frequencies of the
reduced hydrophobicity alphabets are used as input. Moreover, combinations of two
and three amino acids were used as features for the SVM. Adjustable parameters of
a SVM are the gamma (width of Gaussian curve) and the C (softness of support
vector machine margin). These parameters were optimized to obtain the best
discriminate crystallizable proteins from the negative ones. This optimization was
accomplished by a grid-search of the two-dimensional parameter space.
Parallelization, comparison of the datasets and evaluation was carried out using the
PROMPT framework (see previous chapter two for details). Moreover, a second
Naive Bayes classifier, that uses the input of the best trained primary classifiers, was
applied. This sum up outcomes of multiple primary predictions and allows to
estimate the accuracy of the prediction. All classifiers were evaluated by ten-fold
cross-validation.
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3.2.3 Results

We are far from naive believe that in silico predictions, alone, will be sufficient for
efficient selection of experimentally tractable proteins, but it will certainly play an
important role in the systematic refinement of structure determination technology. In
any case, it is a fact that crystallizability under a given range of experimental
conditions is an individual protein trait - it is thus not unreasonable to expect it to
correlate with amino acid sequence. This expectation is a simple consequence of the
general dogma postulating that protein structural properties are encoded in its
primary structure.

Indeed, we found significant differences in the amino acid composition and amino
acid properties between the positive (crystallizable) and negative (non-
crystallizable) dataset. We found that the accuracy reaches already up to 63% by
using simple amino acid frequency as input feature to predict crystallizablity.

To achieve a robust classification beyond amino acid frequencies, a second-level
meta-classifier was used to aggregate the information from primary classifiers. Input
data for the meta-classifier was constituted by the class assessments made for each
instance in the course of 10-fold cross validation of the twelve best performing
primary-classifiers (four for each of the three different word lengths). The rationale
for using classifiers for each word length is that they contribute different types of
information to the meta-method.

The meta-classifier had an accuracy of 67% for the dataset discussed. A confusion
matrix is shown in Table 5. This clearly demonstrates how by a simple comparison
of two protein sets a predictive model could be created.

Table 5 Confusion Matrix for Naive Bayes Meta-classifier

Classified as:

Class - ]

Positive Negative Accuracy
Positive 147 79 65.04%
Negative 59 133 69.3%
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3.3 Complex functional profiling of protein and gene
sets

In the previous section we showed how protein crystallizability could be addressed
by comparing crystallizable versus non-crystallizable protein sets and described
associated protein traits. We thus showed how by comparative approaches and our
developed technology difficult problems can be addressed. However, in scientific
rationales with increasingly complexity, rare sets of features may not be sufficient
for an adequate description of the traits of gene and protein sets. Therefore it is an
advantage to combine annotation features using (logical) operators. In the following
a system for complex function profiling is described and new significant properties
of gene sets related to ovarian and prostate cancer are discussed (Antonov, Schmidt
et al. 2008). The presented web-tool is specially suited for a functional analysis of
gene and protein sets. Beyond, it allows to analyze any custom datasets and
annotation types via additional Web Services. This section starts with a short
introduction into the field of functional profiling and outlines how the developed
technology is based on- and adds to the PROMPT framework (see chapter 2 for
details). Finally new insights into the complex functionality of regulated genes in
cancer cells are presented and discussed.

3.3.1 Introduction

Relating experimental data to biological knowledge is a necessity to cope with the
data avalanches emerging from recent developments in high-throughput
technologies. Automatic functional profiling has become the de facto approach for
the secondary analysis of high throughput data. A number of tools employing
available gene functional annotations as well as pathway databases have been
developed (Khatri, Draghici et al. 2002; Berriz, King et al. 2003; Zeeberg, Feng et
al. 2003; Al-Shahrour, az-Uriarte et al. 2004; Khatri, Bhavsar et al. 2004; Martin,
Brun et al. 2004; Masseroli, Martucci et al. 2004; Al-Shahrour, Minguez et al. 2005;
Zhang, Kirov et al. 2005; Al-Shahrour, Minguez et al. 2006; Antonov and Mewes
2006; Antonov, Tetko et al. 2006; Al-Shahrour, Minguez et al. 2007; Carmona-Saez,
Chagoyen et al. 2007; Draghici, Khatri et al. 2007; Goffard and Weiller 2007;
Khatri, Voichita et al. 2007; Reimand, Kull et al. 2007). The advantages and
limitations of most of these tools are reviewed in (Khatri and Draghici 2005).

An important aspect of standard functional profiling methodology is inability to
overcome the limits of employed annotation vocabularies. Do current annotation
vocabularies cover all possible biological functions? Can they cover them in the
future? The space of possible biological functions is almost infinite. However to
control it one does not need an infinite number of functional terms. Consider a very
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direct analogy. Human language contains a limited number of words but through
grammar rules these words can be transformed into an almost infinite number of
sentences which allow the expression of almost any idea. In the previous paper
(Antonov and Mewes 2006) we proposed to construct new functional terms (referred
to as “complex functions”). A “complex function” is constructed as a combination
of available terms. The three Boolean operations (“AND”, “OR”, “NOT”) play the
role of grammar rules and resulting space of “complex functions” covers an almost
infinite number of possible biological functions.

This section describes ProfCom, a web tool for functional profiling based on the
concept of complex functionality. ProfCom supports automatic analyses for several
model organisms as well as provides a web service interface which allows
submitting any kind of annotation data. For each organism ProfCom provides
analysis of different annotations, including Gene Ontology (GO) (Ashburner, Ball et
al. 2000), FunCat (Mewes, Amid et al. 2004) , and InterPro Motifs (Apweiler,
Attwood et al. 2001). ProfCom currently offers automatic analyses for Homo
sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila
melanogaster, and Saccharomyces cerevisiae. In addition, any organism and
annotation can be analyzed by ProfCom using Web Service interface.

3.3.2 Methods and Implementation

ProfCom runs on a standard Apache/Tomcat web server. The actual profiling
algorithm is implemented in Java and C for platform independence and high
performance. The computation is distributed on Linux workstations utilizing a Sun
Grid engine and thus ensures scalability. A ProfCom analysis starts by user-friendly
dialog-driven web form: The user can chose a model organism and the list of gene
or protein names of interest can be uploaded. Depending on the chosen model
organism ProfCom shows all available annotations. Detailed information on data
sources used to retrieve each annotation presented in the Table 6. Annotations were
downloaded and preprocessed aided by PROMPT (Schmidt and Frishman 2006)

Table 6 Data files used by ProfCom to automatically retrieve annotations.

Annotation File Used

Gene Ontology fip:/ftp.ncbi.nim.nih.gov/gene/DATA/gene2go

InterPro Motifs  ftp://ftp.ebi.ac.uk/pub/databases/interpro/protein2ipr.dat

FunCat http://mips.gsf.de/
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ProfCom is resolving synonyms and annotation data automatically and returns the
percentage of recognized identifiers immediately using the PROMPT framework as
backend. At the first step user supplied gene IDs are mapped to “Entrez Gene”
identifiers. For this purpose synonymous list from NCBI and Affymetrix web sites
are used. Detailed information on data sources used by ProfCom are shown in Table
7.

Table 7 Types of gene identifiers recognized by ProfCom and data sources used for
ID mapping.

Type Of Ids File Used

“Gene Symbol”,

“Ensembl”, ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene info.gz
“LocusTag”

“RefSeq Protein ID”,

“RefSeq Transcript ID” ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2refseq.gz

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene refseq uniprotkb
_collab.gz

“UniProt/Swiss-Prot”

“UniGene” ftp://ftp.ncbi.nim.nih.gov/gene/DATA/gene2unigene

http://www.affymetrix.com/
Annotation files

“Affymetrix probe codes”

The profiling algorithm is implemented as described in (Antonov and Mewes 2006).
Briefly, a greedy-search through the space of annotation tupels is performed. The
complex annotation functions’ statistical significance is evaluated by a Monte-Carlo
simulation after each level-wise iteration.

3.3.3 Results

Automatically Supported Annotations and Gene lds

As input ProfCom accepts several types of gene or protein identifiers. For example,
for human genome ProfCom supports identifiers of “Entrez Gene”(Wheeler, Barrett
et al. 2006), “UniProt/Swiss-Prot” , “Gene Symbol” (Wheeler, Barrett et al. 2006;
Wheeler, Barrett et al. 2007), “UniGene”(Wheeler, Barrett et al. 2006),
Ensembl”(Birney, Andrews et al. 2006) , “RefSeq Protein ID”, “RefSeq Transcript
ID”’(Pruitt, Tatusova et al. 2007), and “Affymetrix probe codes” (Liu, Loraine et al.
2003). Additionally a mixture of several identifier types is possible.

The user gets full information on mapping of the supplied gene IDs. It includes 4
result tables. The first ProfCom result table reports full mapping details of
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recognized gene IDs. It includes the data source used as well as possible multiple
mapping of the user supplied IDs to the “Entrez Gene” IDs. The second ProfCom
result table reports all unrecognized gene IDs. Result table three reports the final
mapping (one to one mapping) which is used in analyses. ProfCom implements
simple heuristics to resolve multiple mapping issues. Among possibilities to map
user gene ID to the several “Entrez Gene” IDs, the IDs which has most abundant
annotation is selected. However, if the user finds this mapping is incorrect, one can
simply resubmit the data by substituting those ambiguous gene IDs with “Entrez
Gene” IDs he consider correct. On the other hand, if several supplied gene IDs are
mapped to the same “Entrez Gene” ID then they are considered as one gene and
reported concatenated together by semicolons. The last ProfCom result table reports
all such cases ambiguous cases.

We would like to point out that protein and gene identifiers can be highly ambiguous
(Draghici, Sellamuthu et al. 2006) with multiple synonymous variants. For this
reason the quality of the retrieved annotation can be different for different types of
identifiers. Several powerful recourses to map different type of gene Ids are exist
(http://beta.uniprot.org/). To escape multiple mapping issues we recommend
submitting “Entrez Gene” identifies to ProfCom.

ProfCom automatically supports several annotations. Currently they include Gene
Ontology (Ashburner, Ball et al. 2000), FunCat (Mewes, Amid et al. 2004) and
InterPro Motifs(Apweiler, Attwood et al. 2001). ProfCom web interface allow user
to use all annotations simultaneously or combine them.

In addition to the interactive web-submissions, custom annotation data can be
analyzed using the ProfCom Web service. This allows using ProfCom for almost
any problem domain e.g. different annotation types or organisms. Furthermore, the
web services enable to run ProfCom analyzes in pipelines or automated workflows
from most systems. This ensures a fast and convenient usage for a broad range of
use cases: starting from a quick hypothesis evaluation to detailed high quality
annotations.

Comparison of ProfCom with related tools

Here we present numerous examples of data analyses by ProfCom. We bring
together several independent studies that performed gene expression analyses to
identify over/under expressed genes in different cancer types. We collect a set of
differentially expressed genes originally identified for each study. Further we refer
to each of these sets as set A. The set of all human genes was considered as the
reference set (referred to as set B). For each case we analyzed enrichment related to
GO terms and “complex functions” constructed from GO terms in the set A. To
compare ProfCom to other related tools we examined the examples additionally by
GENECODIS (Carmona-Saez, Chagoyen et al. 2007). Full results of Profcom
analyses can be found at our web site (http://webclu.bio.wzw.tum.de/profcom/).
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Example 1. Gene Expression in Ovarian Cancer Reflects Both
Morphology and Biological Behavior, Distinguishing Clear Cell from
Other Poor-Prognosis Ovarian Carcinomas

Gene expression in 113 ovarian epithelial tumors using oligonucleotide microarrays
was analyzed (Schwartz, Kardia et al. 2002). In total, 73 genes, expressed 2- to 29-
fold higher in clear cell ovarian carcinoma compared with each of the other ovarian
carcinoma types, were identified. Standard functional profiling of these genes
reveals statistically significant enrichments related to several GO terms.

One of the enriched terms was “cell adhesion”. In the set A of 73 up-regulated genes
10 genes belonged to this category while 390 genes classified by this term in all
human genome. This group of genes may be of particular interest as it was shown in
different studies that cell adhesion molecules can play important role in epithelial
ovarian cancer development (Hong, Baudhuin et al. 1999; Spizzo, Went et al. 2006).
By analyses of relation between GO terms in the set A, ProfCom classify these
genes more specifically. The complex function “cell adhesion EXCLUDING
homophilic cell adhesion EXCLUDING structural molecule activity” inferred by
ProfCom classifies only 245 (compare to 390) genes in the whole genome and all 10
genes in the set A. The resolved complex function is more specific (the same
selectivity with almost 2-fold increase in specificity). In addition, this information
may be useful to analyze cancer molecular mechanisms.

GENECODIS detects single GO term “cell adhesion” as being overrepresented.
However, no other evidences that can be helpful to understand the role of up-
regulated “cell adhesion” genes were provided.

Example 2. Comprehensive Gene Expression Analysis of Prostate
Cancer Reveals Distinct Transcriptional Programs Associated with
Metastatic Disease

The study of LaTulippe and co-workers (LaTulippe, Satagopan et al. 2002) performs
a comprehensive gene expression analysis of prostate cancer using oligonucleotide
arrays with 63,175 probe sets to identify genes with strong differential expression
between non-recurrent primary prostate cancers and metastatic prostate cancers.
Among highly ranked over-expressed genes (73 genes selected based on the t test
statistic) by manual analyses the authors found genes that participate in cell cycle
regulation, DNA replication, and DNA repair. Standard functional profiling of these
genes reveals statistically significant enrichments related to several GO terms.

For example, a subset of 10 from 73 over-expressed genes was related by term
“regulation of progression through cell cycle”. This category may be relevant for
understanding of transcriptional programs associated with metastatic disease.
According to GO annotation, the term “regulation of progression through cell cycle”
unites approximately 160 genes in human genome. It is clear that only a fraction of
genes classified by this term may be involved in the molecular model of cancer.
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ProfCom classify these genes by complex functions “regulation of progression
through cell cycle EXCLUDING growth factor activity EXCLUDING transcription”
which is more specific. Only 106 genes from the whole human genome are
classified by this complex function.

GENOCODIS detects single GO term “regulation of progression through cell cycle”
as being overrepresented. However, no other evidences that can be helpful to
understand the role of up-regulated “regulation of progression through cell cycle”
genes were provided.

Comparison Summary

In the recent paper by Carmona-Saez and colleges (Carmona-Saez, Chagoyen et al.
2007), GENECODIS was extensively compared to other available tools. Being able
to profile terms co-occurrence (in our terms “AND” complex functions)
GENECODIS demonstrated clear advantage over other available web tools in
interpretation of biological data.

Table 8 Performance comparison ProfCom vs. GENECODIS

Example Standard Enrichment analyses ProfCom
GO term Complex Function

cell adhesion

. 10 390 EXCLUDING 10 245
1 cell adhesion . .
(73) (17589) | homophilic cell adhesion (73) (17589)
EXCLUDING

structural molecule activity

regulation of progression

. through cell cycle
regulation of

. 10 160 EXCLUDING 10 106
2 progression through »
(73) (17589) growth factor activity (73) (17589)
cell cycle
EXCLUDING
transcription

Three columns reports profiling results for two independent considered gene lists by
standard enrichment analyses (here GENECODIS) and ProfCom. The two sub-columns
reports functional category (GO term or complex function), the number of genes from
category in the set A and the size of the set A (indicated in brackets), the number of genes
from category in the set B and the size of the set B (indicated the brackets). For all
considered cases ProfCom provided more specific “complex functions” constructed by
EXCLUDE Boolean operations while GENECODIS was unable to provide any classification
models better than simple GO term in all cases.
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Whenever the analyzed data can be best modeled by the “AND” complex function
GENECODIS was superior to other tools as they, in principle, can not identify such
models. We have compared the performance of ProfCom and GENECODIS by
analyzing two independent data sets. Table 8§ summarizes the considered examples.
As it was expected in a number of cases ProfCom was able to supply more specific
classification models for a group of genes united by the same GO term. The
complex functions inferred by ProfCom were not only better from statistical point of
view (increased specificity with approximately equal selectivity) but describe more
accurately the functional role of analyzed genes. GENECODIS was able to infer
only “AND” complex functions. Here, we demonstrated that in a number of cases
when the analyzed data was modeled by “EXCLUDE” logical operation the
GENECODIS was unable to provide additional classification models that can be
helpful for interpretation of experimental data. The full feature comparison of
ProfCom and GENECODIS are summarized in the Table 9.

Table 9 Feature comparison ProfCom vs. GENECODIS

GENECODIS ProfCom
Able to profile terms co- Able to profile “complex functions”,
occurrence, categories united by three logical
Profiling engine categories united by logical operations
operation
(AND, OR,
(AND) EXCLUDE)

Gene Ontology,

Interpro Motifs, Gene Ontology,

Annotations Interpro Motifs
KEGG pathways, ’
supported SwisProt keywords FunCat
User annotations
Supported No Yes
Affymetrix Chips No Yes
supported
Webservices for
remote No Yes

automation
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3.3.4 Discussion

ProfCom is a web-based tool for the interpretation of genes that were identified to be
related by experiment. Figure 23 shows a screenshot of the ProfCom web page. A
trait which makes ProfCom a unique tool is an ability to profile enrichments of not
only available annotational terms but also of “complex functions”. A “Complex
function” is constructed as Boolean combination of available annotational terms.
This frees the user from the limits of available annotational vocabularies and enables
to construct almost infinite number of possible biological functions. ProfCom has a
user friendly dialog-driven web page submission available for several model
organisms and supports most of available gene identifiers. In addition the Web
Service interface allows submitting any kind of annotation data. Thus, ProfCom is
not limited to a particular organism or problem domain. ProfCom is freely available
at http://webclu.bio.wzw.tum.de/profcom/.

; Q' @Gm ncl‘ionality

Enter genes 5 ‘\\_ Confirm &
.~ of interest ‘ Submit

= Start Analysis

Choose organism your are analyzing

=
5 SEnE for further organisms or user-specific annotations please use the ProfCom YWeb Serices!

Y Method

| Homo_sapiens V|

® weh Services

@Supp\ementary . )
~ impim Example identifiers

2 Uplead file containing IDs
NMM_WIMIMI_J PS one ID each line or blanks, commans, tab seperators, semicolons as 1D delimiter):
PELER Browse...

OR

Enter identifiers (IDs) in the form below.

Background-set:
OPTIONAL. To use the default background-set simply leave this field empty.

|[ Browse... ]

Goto next step

Figure 23 Screenshot of the ProfCom web page
Shown is the first step to analyze a set of identifiers. In the second step profiling parameters
can be adjusted and finally in step three the functional profiling data can be checked and the
analysis started.
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Chapter 4

Gene and protein expression

In this chapter we apply the developed methods and technologies presented the
previous chapters at large-scale to biological problem sets. In the first section 4.1 we
present the to-date largest protein abundance proteine profiling of the E.coli
bacteria. In the second section 4.2 we analyse the structure of underlying genomic
archictures that are associated with gene and protein expression.

4.1 Abundance profiling of the E.coli proteome

Knowledge about the abundance of molecular components is an important
prerequisite for building quantitative predictive models of cellular behavior. Proteins
are central components of these models, since they carry out most of the
fundamental processes in the cell. In this section we describe the application of our
developed technology at large-scale to protein abundance data of the E.coli
proteome (Ishihama, Schmidt et al. 2008).

4.1.1 Introduction

Proteins fulfill a wide variety of functions and are central to almost all processes in
living cells. In order to improve our understanding of the complex network of
protein interactions in the cell, it is of central importance to obtain information about
the activities of the individual components; these are directly linked to their cellular
concentrations. The fast development of genomic and proteomic methods has
already revealed the basic protein inventory of a few hundred different organisms,
but large scale quantitative information on protein concentrations is still largely
missing. Comprehensive analyses of cellular mRNA levels have proven to be highly
useful tools to monitor the state of a cell, but by design they are missing all
influences of the vast amount of posttranscriptional regulations.

One of the few organisms where direct protein concentrations are available on a
nearly proteome wide level is the yeast Saccharomyces cerevisiae. It has been
subject to large scale protein quantification using epitope tagging of virtually the
whole proteome followed by quantitative western blotting (Ghaemmaghami, Huh et
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al. 2003) and to single cell based quantitative proteomic analysis using flow-cell
cytometry and a library of GFP-tagged yeast strains (Newman, Ghaemmaghami et
al. 2006). While both methods provided high-quality abundance data for nearly the
entire proteome, their dependence on the availability of a strain library containing
tagged versions of all proteins of interest presents a serious limitation. Depending on
the organism under study, to generate such a library may involve an immense
amount of work or may even be impossible to achieve.

The proteomics field and its key technology mass spectrometry are developing
rapidly from qualitative towards quantitative measurements without the need for
individual tagging of proteins. These efforts, however, are mostly restricted to the
comparison of relative concentrations of the same proteins in different samples.
Direct, non-relative abundance data of proteins, allowing a comparison of different
proteins within and between samples, are still difficult to obtain on a large scale as
reviewed in the first chapter.

Here we present a protein abundance analysis of the E.coli proteome with regard to
genomic, proteomic, functional and structural features. E. coli is a Gram-negative
bacterium of the family Enterobacteriacae. Due to its simple cellular structure and
the relative ease of its cultivation and biological modification, it has become the
standard ‘workhorse’ of molecular biology, genetics and biotechnology. This
resulted in E. coli becoming one of the most completely characterized organisms in
biology. The genome of the laboratory strain E. coli K12 has been among the first
organisms to be completely sequenced (Blattner, Plunkett et al. 1997). It has a
relatively small size of ~ 4.6 Mb, and is predicted to code for approximately 4300
proteins. The genes, proteins, biochemical pathways and molecular interactions in E.
coli have been subject to countless experimental studies and the growing number of
available information in large scale databases like Genbank and Swiss-Prot, but also
in more specialized database projects like e.g. EcoCyc (Keseler, Collado-Vides et al.
2005) or EchoBase (Misra, Horler et al. 2005) allows easy access to a wealth of
information. However, in spite of the combined efforts of the scientific community,
the complex network of molecular interactions within living organisms, including E.
coli, is still far from being fully understood. Deciphering these interaction networks
will be a major task of biology in coming years, and the in the following presented
detailed knowledge about the concentrations of the individual parts in the system
will be an important step on the way to accomplishing this goal.

4.1.2 Material and Methods

Genome data

Amino acid sequences of all proteins identified in this study were obtained from
Swiss-Prot (Boeckmann, Bairoch et al. 2003). Throughout this work the primary
Swiss-Prot accession code in conjunction with the Swiss-Prot entry name are used as
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unique protein identifiers. Codon Adaptation Index values (CAI) according to the
method of (Sharp and Li 1987) were used as reported by (Blattner, Plunkett et al.
1997). Classification of E. coli genes into three groups - (E) genes essential for cell
growth (essential), (N) those dispensable for cell growth (non-essential), and (U)
those unknown to be essential or non-essential - was based on the comprehensive
experimental analysis of (Gerdes, Scholle et al. 2003). In the latter work, 630 genes
were identified as being essential and 3126 as being dispensable using a genetic
fingerprinting technique. Data on predicted expression measure of E. coli proteins
(Karlin, Mrazek et al. 2001) were downloaded from the genomic.stanford.edu web
server. Proteins possessing significant sequence similarity (BLAST (Altschul,
Madden et al. 1997) E-value threshold 0.001) to one or several domains of known
three-dimensional structure as classified in the SCOP database (Andreeva, Howorth
et al. 2004) were attributed to the corresponding SCOP fold. Assignment of genes to
functional roles as defined by the MIPS functional catalog version 1.3 (Ruepp,
Zollner et al. 2004) was conducted manually at Biomax Informatics AG. Where
necessary, correspondence between published protein datasets and the SwissProt
database was established based on sequence identity (at least 98%), with some
ambiguous cases resolved manually. Minor discrepancies such as a missing
methionine at the sequence start or a single amino acid replacement were tolerated.

Abundance data

Protein abundance measurements were obtained from Yasushi Ishihama. Details
about the experimental set-up can be found in our publication (Ishihama, Schmidt et
al. 2008). Briefly, we employed approximately 200 LC-MS/MS runs in combination
with a variety of peptide/protein fractionation methods, different protease digestion
schemes, LC-MS conditions and MS/MS fragmentation.

This combined and more stringent dataset yielded a total of 1103 proteins,
quantified by emPAI, based on 13469 observed peptides with unique parent ions
(10339 unique sequences) from 209 LC-MS/MS runs with less than 5% false
positive rate. All all identified proteins and peptides can be found in the
supplementary material of our publication (Ishihama, Schmidt et al. 2008) in the
Tables S2 and S3). The abundance measurements thus provide ~ 32 — 41 %
coverage of the approximately 2680 cytosolic proteins in E. coli, depending on the
exact definition of the cytosolic dataset.

Coverage of the cytosolic protein content

To compare the coverage of our experimental cytosol sample with the theoretical
protein content of cytosol we combined several recent sources of data as well as
bioinformatics prediction techniques. For 13% (568 out of 4289) of E. coli proteins
experimentally determined cellular localization information has been reported by
Lopez-Campistrous et al. (Lopez-Campistrous, Semchuk et al. 2005). We further
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utilized the PSORT database (Rey, Acab et al. 2005) version 2.0 that provides
localization annotation for 62% of the complete E. coli proteome (2678 proteins).
The remaining E. coli proteins are classified in the PSORT database as “unknown”
or “unknown with multiple possible localizations”. We complemented this
information with the number of transmembrane segments predicted using TMHMM
(Krogh, Larsson et al. 2001) version 2.0. Proteins with a high number of predicted
transmembrane segments can be safely assumed to be not located within the cytosol.
However the TMHMM predictions may lead to an over prediction of cytosolic
proteins as this method reliably allows to exclude only those proteins that have
multiple integral membrane segments. Furthermore, the possibility of falsely
predicted membrane segments needs to be considered. We therefore combined the
three data sources described above — the number of transmembrane segments,
PSORT localization, and experimental localization - to find the most accurate
definition of the E. coli cytosol proteome. First we consider all proteins that have at
most one membrane predicted region and are annotated as “cytosolic” or “unknown”
in the PSORT database. This criterion would predict 61.46% (2636 of 3289) of the
E. coli proteome to be cytosolic (Table 10). The advantage of this estimate is
twofold. On the one hand a false positive prediction of one membrane region is still
tolerated and thus does not lead to loss of information. On the other hand the
intersection with the independent PSORT data ensures that an over prediction of
cytosolic proteins is avoided as much as possible. Finally we extend our previous
definition and add all proteins that were experimentally determined as cytsolic
proteins. This results in 2680 proteins that we adopt as our final estimate of the E.
coli cytosol proteome. It is notable that the experimental localization data hardly
increase the number of the defined cytosolic proteins (plus 1% or 44 of 2680
difference only). This shows the almost complete overlap of the first definition with
the experimentally confirmed protein set and confirms the validly of our approach.

Low vs. high abundance proteins

For convenience we considered proteins with copy number values greater than 2050
(emPAI >29.0) highly abundant, while the rest of the proteins were attributed to the
low abundance category. This optimal threshold was automatically found by
clustering of the log-copy number values using the Expectation Maximization
algorithm (Hartigan 1975) as implemented in the WEKA machine learning
workbench (Witten and Frank 2005), version 3.5.6 using default parameters with the
number of clusters set to two. As the copy number values are distributed according
to the extreme value distribution, they were logarithmized to be useable with the
Gaussian distribution approximation in the clustering process.
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Table 10 E.coli cytosol.

Comparison of the experimental cytosolic sample with the complete predicted E. coli proteome with
respect to the number of predicted transmembrane segments (TMS), cellular localization from the
PSORT-database and experimental localization data (EXP). Shown is the amount of unique proteins
and the relation to the measured number of molecules in the cell.

E. coli complete Experimental cytosolic dataset

Attribute © Proteins® % Proteins® | Proteins® % Proteins® % Abundance °
TMS=0 3202 75.66 940 89.5 976
TMS=1 265 6.26 50 4.8 17
TMS=2 117 2.76 10 1.0 0.2
TMS=3 54 1.28 7 0.7 0.1
TMS=4 82 1.94 7 07 6.2E-02
TMS=5 61 1.44 5 05 2.9E-02
TMS=6 81 1.91 5 0.5 4.0E-02
TMS=7 30 0.7 1 0.1 1.1E-02
TMS=8 52 1.23 3 0.3 2 6E-02
PSORT=CytopIasmic (C) 1574 36.51 554 52.8 65.3
PSORT=CytoplasmicMembrane (CM) 851 19.74 93 8.9 1.2
PSORT=Periplasmic (P) 142 3.29 61 5.8 16
PSORT=0OuterMembrane (OM) 91 2.1 25 24 23
PSORT=Extracellular (E) 20 0.46 0 0.0

PSORT=Unknown (U) 1577 36.58 288 27.4 29.0
PSORT=Unknown (multiple sites) (UM) 56 1.30 14 13 0.4
PSORT=C|CM | U | UM 4058 94.13 949 90.4 95.9
PSORT=C | U 3054 71.21 842 80.2 94.3
TMS=0 & PSORT=C 1253 29.21 548 52.2 65.1
TMS=0 & PSORT=C | CM 1903 44 .37 580 55.3 65.7
TMS=0 & PSORT=C |CM | U 3111 72.53 843 80.3 94.3
TMS<=1 & PSORT=C 1335 31.13 553 52.7 65.3
TMS<=1 & PSORT=C | CM 2033 47.40 592 56.4 65.8
TMS<=1 & PSORT=C |CM | U 3334 77.73 877 83.5 94.8
TMS<=1 & PSORT=C | U 2636 61.46 838 79.8 94.3
EXP=C 370 18.57 279 26.6 63.0
EXP=IM 76 3.82 46 4.4 4.7
EXP=0OM 62 3.11 40 3.8 21
EXP=P 60 3.01 43 4.1 17
TMS<=1 & EXP=C 281 6.55 279 26.6 63.0
TMS<=1 & EXP=IM 62 1.45 42 4.0 4.6
TMS<=1 & EXP=0OM 44 1.03 36 3.4 2.0
TMS<=1 & EXP=P 48 1.12 43 4.1 1.7
TMS<=1 & (PSORT=C|U | EXP=C) 2655 61.90 853 81.2 924.6
(TMS<=1 & PSORT=C|U ) | EXP=C 2680 62.49 853 81.2 94.6

a) Annotated attributes of the proteins depicted as logical statements. An ampersand (&) indicates that both
conditions must be fulfilled (‘and’), a vertical line (|) indicates ‘or’. The following abbreviations are used: TMS -
number of predicted transmembrane segments; PSORT - localization annotation from the PSORT database (C
Cytoplasmic, CM Cytoplasmic Membrane, E Extracellular, OM Outer Membrane, P Periplasmic, U Unknown, UM
Unknown - this protein may have multiple localization sites); EXP - experimental localization data from Lopez-
Campistrous et al (2005) (C Cytoplasmic, IM Inner membrane, OM Outer Membrane, P Periplasmic). b) Number of
unique proteins with the given attributes annotated. ¢) Percentage of the unique proteins relative to the sum of
unique proteins in the predicted E. coli proteome or in the experimental cytosolic sample, respectively. d)
Percentage of the actual number of protein copies found in the experimental sample, i.e. fraction of the total protein
copy number sum.
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Statistical methods

All statistical tests and most figures were prepared with the R software package
version 2.0 (www.r-project.org) and PROMPT (Schmidt and Frishman 2006). To
compare the distributions of two unpaired samples with non-Gaussian or unknown
distributions, the rank-sum Mann-Whitney (MW) test and the two sample
Kolmogorov-Smirnov (KS) test were applied using the significance threshold
a=0.05. The null hypothesis of the Mann-Whitney test is that the abundance means
are equal. The null hypothesis of the Kolmogorov-Smirnov test is that the values of
the two samples are drawn from the same continuous distributions. Both tests have
the advantage that they make no assumptions about the distribution of data. To
ensure that our tests are not biased by small sample sizes while comparing essential
genes with their counterparts, the test results were verified with additional random
sampling whereby each of the applied tests was repeated 10° times with a randomly
drawn sample of the associated basic population. Then the p-value of the actual test
was compared with the p-value distribution of random samples (data not shown). An
observed p-value which lies in the 5% quartile shows a reliable test outcome
independently of the sampling bias. Descriptive boxplot distribution statistics such
as median, quartiles and outliers were generated with R. According to the canonical
statistical definition, values greater than the 3rd quartile plus the inter quartile range
(IQR) were considered outliers. The IQR is defined as the 3rd quartile value minus
the first quartile value. Relationships between variables were analyzed utilizing the
least squares regression, loess estimation and the Pearson or Spearman rank
correlation methods implemented in R with default parameters.

Operon structure

A set of known E. coli operons was obtained from RegulonDB (Huerta, Salgado et
al. 1998). For all operons with abundance information available for at least 3
proteins the variance of the natural logarithm of the emPAI values was calculated.
The variance indicates how similar the abundance of the proteins within each operon
is.

Function and structure of proteins

Functional roles of gene products were described in terms of the manually curated
hierarchical functional catalog (FUNCAT) (Ruepp, Zollner et al. 2004). In this
catalog each of the 16 main classes (e.g., metabolism, energy) may contain up to six
subclasses. An essential feature of FUNCAT is its multidimensionality, meaning
that any protein can be assigned to multiple categories. Carefully verified manual
assignment of E. coli gene products to functional categories was obtained from
Biomax Informatics AG (www.biomax.com). Likewise, the SCOP database
(Andreeva, Howorth et al. 2004) provides a hierarchical classification of protein
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structural domains. SCOP fold assignments to gene E. coli products were based on
BLAST E-value of 0.001. In this work both FUNCAT and SCOP designators were
truncated to include only the two upper levels of hierarchy. Proteins assigned to the
same SCOP fold were grouped and the average emPAI value for each group was
calculated. To avoid individual outliers with very high or very low expression levels,
only groups with 10 or more proteins were considered. The EC Enzyme
Nomenclature information was taken from the Swiss-Prot protein descriptions.
Disorder predictions were taken from our PEDANT database where they are
calculated with the software GlobPlot (Linding, Russell et al. 2003). GlobProt
utilizes the statistics of proteins known to have unstructured regions (Wright and
Dyson 1999; Tompa 2002). The number of alternating hydrophobic/hydrophilic
stretches was computed as described (Wong, Fritz et al. 2005). The residues A, C, F,
G, LL,M,P,V,Wand Y were considered to be hydrophobic and H, Q, N, S, T, K,
R, D, E were considered hydrophilic in this study. The hydrophobicity of a protein
M, with H; denoting the hydrophobicity value of the amino
n

acid at position i of a protein of n amino acids. Hydrophobicity values were
calculated using the Kyte-Doolittle scale (Kyte and Doolittle 1982).

was defined as
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4.1.3 Results

Large scale determination of protein abundance in the Escherichia
coli cytosol.

Approximately 200 individual LC-MS/MS runs were performed of the E. coli
MC4100 cytosol, in combination with a variety of protein and peptide separation
methods in order to maximize protein identification coverage. A summary and
detailed evaluations of the methods employed is given in (Ishihama, Schmidt et al.
2008). The decision to only investigate the cytosol of E. coli, rather than a whole
cell lysate, was a direct consequence of our intention to provide reliable
concentration estimates of all identified proteins, and avoid technical difficulties
frequently arising from the quantitative proteolytic digestion of membrane proteins
(Corbin, Paliy et al. 2003; Wu and Yates 2003).

In total, 1103 proteins were quantified by emPAI. This result is based on 13469
observed peptides with unique parent ions (10339 unique sequences) from 209 LC-
MS/MS runs with less than 5% false positive rate, all data can be found as
supplementary material of (Ishihama, Schmidt et al. 2008). Our measurements thus
provide ~ 32 — 41 % coverage of the approximately 2680 cytosolic proteins in E.
coli, depending on the exact definition of the cytosolic dataset, as defined in
Materials and Methods.

Validation of the emPAI-based protein abundance dataset.

To test for potential biases in the peptide identification process we compared a
number of physico-chemical properties of the observed peptides with all predicted
peptides from the corresponding proteins. These parameters are expected to
influence the peptide behavior during many of the employed fractionation and
separations steps as for instance chromatography. As listed in Table 11, the two sets
did not exhibit a significant difference in peptide length, mass, pl or hydrophobicity.
Peptide identification should therefore not be largely influenced by the separation
and fractionation methods, which is a basic requirement for valid estimation of
protein abundance by the emPAI approach (Ishihama, Oda et al. 2005). Independent
measurements of emPAI values from biological replicates revealed a good
reproducibility with a Pearson correlation coefficient of 0.78 (Figure 24). To further
validate the protein abundance values based on emPAI and also test for potential
biases introduced by the protein and peptide fractionation schemes, we compared the
emPAI based concentrations of 40 proteins from our final set with independently
determined concentrations. This was achieved by isotope dilution with a lysate of
the E. coli K12 strain BW25113, for which accurate concentrations of these 40
proteins are known (Ishii, Nakahigashi et al. 2007) (see Materials & Methods for
details).
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Table 11 Comparison of predicted peptides and observed peptides.

Dataset Length Mass pl Hydrophobicity
Mean 13.28 1468.13 6.35 -0.19
Std. Deviation 5.22 550.91 2.31 0.72
Variance 27.25 303501.83 5.34 0.52
observed
Minimum 4.0 374.46 3.01 -3.72
Maximum 47.0 5368.79 12.52 2.94
Median 12.0 1358.60 6.31 -0.16
Mean 13.36 1493.17 6.19 -0.15
Std. Deviation 5.05 531.98 2.19 0.79
Variance 25.54 283006.37 4.81 0.63
predicted
Minimum 5.00 799.00 3.01 -3.67
Maximum 29.00 2799.30 12.98 2.99
Median 12.00 1371.48 6.22 -0.12

? Grand average hydrophobicity using the Kyte-Doolittle scale as described in Material and
Methods.

As shown in Figure 24, emPAI correlates well with the copy numbers per cell of
these proteins over a range of approximately four orders of magnitude, with a
Pearson correlation coefficient of 0.84 and a p-value <10°. The achieved accuracy
of emPAI derived protein abundance in E. coli is therefore similar to the reported
values (Ishihama, Oda et al. 2005) and the employed protein and peptide
fractionation schemes did not introduce a detectable bias for the tested 40 proteins.
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Figure 24 Reproducibility of emPAl values for replicate biological samples of E. coli
cytosol.

Comparison of emPAl values of 714 proteins with more than one identified peptide between
two experiments performed with replicate preparations of the E. coli cytosol.

Proteins of very high abundance are expected to exhibit a saturated emPAI signal. In
order to test the impact of this effect, we examined the correlation between
measured protein concentrations and their detection frequency. This new measure
was defined as the average detection ratio of the observed parent ions of a given
protein in all of the 209 LCMS experiments. A high detection frequency indicates a
possible saturation effect of the emPAI based concentrations of the affected protein.
As shown in Figure 26, there is a good correlation between this measure and the
emPAI derived protein concentration, yet with considerable noise in the high
abundance and high detection frequency range. The measured concentrations of the
reference proteins introduced in Figure 25 correlate well with their detection
frequencies, while ribosomal proteins, which are some of the most abundant proteins
in the cell, scatter noticeably. The saturation effect is responsible for the deviation of
some ribosomal proteins to lower than expected observed concentration values. On
the other hand, in particular the very short ribosomal proteins also deviate into
regions with higher than expected measured concentrations. This can be explained
by the small number of observable peptides of these proteins, which leads to higher
errors of the emPAI signal, amplified by the high abundance of these proteins.
Based on these observed high variations of the ribosomal protein concentrations we
decided to remove all 53 detected ribosomal proteins from further analysis. There is
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a general tendency of other high abundance proteins and small proteins to exhibit
emPAI concentrations of limited accuracy, but removal of all these proteins would
inevitably lead to other artifacts in the following analysis. We therefore decided to
keep these proteins and accept the noise they are introducing.
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Figure 25 Correlation between observed emPAl values and independently measured
protein copy numbers per cell.

Protein abundances in the E. coli cytosol as measured by the emPAIl approach correlate
well with protein copy numbers per cell measured independently by isotope dilution using
spiked E. coli BW25113 cells containing 40 proteins with known amounts (Ishii, Nakahigashi
et al. 2007). A dynamic range of approximately 4 orders of magnitude of protein copy
numbers per cell is covered. The Pearson correlation coefficient is 0.84 with a p-value <
10" for logarithmized and 0.52 (p-value <10'4) for non-logarithmized variables.
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Figure 26 Observed concentration and protein detection frequencies.

Correlation between the observed protein copy numbers (based on emPAl) and the
detection frequency of the identified proteins. Detection frequency is defined as the average
ratio of detection of the observed parent ions of a given protein in all performed LCMS
experiments. Red dots indicate reference proteins (introduced in Figure 25), black dots
indicate ribosomal proteins.
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Coverage of abundance measurements

In order to assess the coverage of our abundance measurements we compared the
final set of 1050 proteins with a set of E. coli proteins known or predicted to be
cytosolic. As shown in Table 10, the ratio of uniquely detected cytosolic proteins
depends on the definition of this theoretical cytosol. As described in Materials and
Methods we combined experimental localization data (Lopez-Campistrous,
Semchuk et al. 2005) with data from the PSORT database (Gardy, Laird et al. 2005;
Rey, Acab et al. 2005) and computational transmembrane segment predictions. Our
cytosol definition — shown in the last row of Table 10— results in 2680 theoretic
cytosolic proteins that represent 62.5 % of the complete E. coli proteome. Applying
the same strict criteria to the measured samples, 853 of the 1050 identified proteins
(81.2%) can be safely considered cytosolic proteins. Under these very conservative
assumptions we cover at least 32% (853 of 2680) of the theoretical E. coli cytosol.
If, however, we extrapolate the experimental localization data we would cover ~75%
(279 of 370) of the theoretical cytosol. Although the number of detected unique
proteins that we do not consider as cytosolic is relatively high - 197 out of 1050, or
18.7% - their emPAI derived abundances indicate that these proteins represent only
less than 5.4% of all measured protein copies in our sample. If the ribosomal
proteins were not excluded, the amount of protein copies of non-cytosolic proteins
would be less than 0.1%. This demonstrates the high specificity of our sample
preparation and almost all proteins in the sample by mass can be considered
cytosolic. Our method is highly sensitive in identifying and quantifying proteins
even if they occur only in very low copy numbers. We were able to identify many
proteins which are present in low copy number and are hardly detectable by other
techniques. For example, the adenylyl protein gIlnE and members of the fts-family
are known to be constitutively expressed at a very low level (van Heeswijk,
Rabenberg et al. 1993; Errington, Daniel et al. 2003). Overall, the abundance
measurements for 1050 E. coli proteins presented in this work represent the most
complete study of protein abundance in a bacterial cell so far, accounting for around
one fourth of all E. coli gene products with a specificity of nearly 100% for the
targeted cytosolic protein set.

General characteristics of protein abundance in the E. coli cell

The main bulk of E. coli proteins in the cytosolic lysate are found in relatively small
amounts, with 75% and 25% of them appearing in copy numbers below 250 and
1160, respectively (Figure 27). At the same time, a sizeable fraction of highly
abundant proteins with copy numbers of up to 10° and more was identified. This
broad dynamic range of abundance values corresponds to protein copy numbers per
cell from ~100 to 10° and s in accordance with previously reported data on yeast in
which the number of molecules per cell ranges from 50 to 10° (Ghaemmaghami,
Hubh et al. 2003). Both E. coli and yeast proteins show an extreme value distribution,
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implying that this may be a general rule for abundance distribution in any cell. Due
to the presence of very abundant proteins the arithmetic mean of the amount of
copies per cell is around 3648 whereas the median copy number is only 526. The top
17% of abundant proteins are constituted by 179 proteins with more than 2050
copies per cell. The optimal separation between low and high abundance proteins at
this threshold has been established by Expectation-Maximization clustering.
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Figure 27 Abundance distribution of all identified proteins.

Distributions are shown for the group of highly abundant proteins and the remaining low
abundance protein group. Circles show distribution outliers as defined in Methods. The
lower hinge represents the first quartile (25%) and the upper hinge the third quartile (75%).
The high and low group were separated by clustering at a copy number cutoff of 2050
proteins per cell as described in Methods.
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Functional and structural classes

In this section we compare whole groups of proteins with different functions and
structures. Omitting the highly abundant ribosomal proteins would introduce a
significant bias in these comparisons, with higher impact than the one caused by
their less accurate emPAI based concentration values. For this reason all 1103
identified proteins, including the 53 ribosomal proteins, are considered. As expected,
the latter are most abundant, followed by the proteins involved in metabolism (Table
12).

Table 12 The most abundant functional groups in the E. coli cytosol

Distinct Rank
FunCat number FunCat category description proteins in (by mean
this group ~ copy number)
05.01.01 ribosomal proteins 55 1
05.01 ribosome biogenesis 62 2
63.03.03 RNA binding 83 3
05 Protein synthesis 107 4
63.03 nucleic acid binding 144 5
40.03 cytoplasm 275 6

Protein with binding function or
63 cofactor requirement 483 7
(structural or catalytic)

63.07 structural protein 6 8
05.04 translation 34 9
63.01 protein binding 113 10
06.01 protein folding and stabilization 70 11
04.01.99 other rRNA-transcription activities 6 12

In general, highly abundant proteins are predominately involved in protein synthesis,
as shown in Figure 28. In the high abundance protein group (top 150 proteins) more
than 40% of all proteins are involved in protein synthesis whereas in the low
abundance group only 0.5% (42 of 915) are associated with protein synthesis
processes. Other abundant functional groups are energy and proteins with binding
function, while proteins associated with transcription, transport and cellular
organization are relatively rare. In particular, transcription factors are found in small
copy numbers since they act as regulatory elements and do not need to be expressed
at high levels themselves, as discussed in (Greenbaum, Jansen et al. 2002). In the
low abundance group proteins involved in metabolism are predominant. In general,
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the distribution of functional roles among proteins of high and low abundance
follows the pattern characteristic for predicted strongly and weakly expressed genes
in bacteria (Karlin, Mrazek et al. 2001).
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Figure 28 Abundance functional profile.

Shown is the fraction of proteins which are involved in different functional categories in
different abundance ranges. The first data point shows the functional breakdown of the 50
most abundant proteins, the second data point corresponds to the 100 most abundant
proteins, and so on. Note that the fractions relative to the number of proteins (e.g. 50,
100...) do not sum up to 1 since a protein can have assigned multiple functions like protein
synthesis and with binding function. The functional categories shown in the legend are the
FunCat top level classifications as outlined in the Methods sections. In this plot all 1103
proteins — inclusive the 53 ribosomal proteins - are shown. Since the plot is based on
relative ranking it is robust with respect to the observed copy number variability of these
most abundant proteins.

With respect to enzymatic functions (Figure 29), ligases, which play an essential
role in protein synthesis, are the most abundant group, followed by isomerases.
Oxidoreductases are the least abundant enzymes. Transferases and lyases are also
not very abundant, but together they represent the majority of enzymes detected by
our measurements. Structural fold occurrence among highly abundant proteins is
also substantially biased.
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Figure 29 Abundance distribution of proteins classified according to the EC Enzyme
classification scheme.

The thick vertical bar shows the median abundance value of each group. The thickness of
each boxplot represents the number of different proteins which belong to each class. Taking
the median abundance for comparisons, ligases are the most abundant enzymes followed
by isomerases.

The most characteristic topology is represented by the barrel-sandwich fold (Table
13), as defined in the SCOP structural database (Andreeva, Howorth et al. 2004).
The second most abundant fold is the ribonuclease H-like motif followed by the OB-
fold. 55% (6 of 11) of proteins with the ribonuclease H-like motif belong to the
actin-like ATPase domain superfamily associated with many metabolic reactions.
Out of the 27 proteins with the OB-fold, 24 (or 87%) were assigned to the SCOP
superfamily nucleic acid-binding protein, consistent with the finding that proteins
involved in synthesis processes are the most abundant. This list of most abundant
folds by protein concentration, as presented in Table 13, is in strong contrast to the
fold distribution in bacteria, based solely on the number of different proteins in each
group. Here, the five most common folds are the Rossmann Fold, P-loop containing
Hydrolase, Flavodoxin Like, TIM Barrel and Ferredoxinlike fold (Gerstein and
Levitt 1997). With respect to protein concentrations in the cytosol, the TIM-barrel,
P-Loop containing Hydrolases, and the Ferredoxinlike fold are found at places 7,8
and 11 of the list of most abundant folds. It is remarkable that proteins with the P-
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loop containing Hydrolase fold are on average about 10 times less abundant than
proteins with the most abundant Barrel-sandwich fold. Furthermore, the widely
spread TIM-barrel is on average around 6 times less abundant than the Barrel-
sandwich fold. At the structural class level we found o/f proteins to be the least and
a+P to be the most abundant. All-a proteins are the second most abundant proteins,
followed by all-B proteins (data not shown). No significant correlation was found
between abundance and the presence of structurally disordered regions.

Table 13 Most abundant protein folds in the E. coli cytosol

Number of distinct Rank

Scop Fold proteins with this (by mean copy
fold ® number)
Barrel-sandwich hybrid 10 1
Ribonuclease H-like motif 11 2
OB-fold 27 3
Thioredoxin fold 15 4
NAD(P)-binding Rossmann-fold domains 41 5
Transmembrane beta-barrels 12 6
Ferredoxin-like 22 7
TIM beta/alpha-barrel 47 8
Flavodoxin-like 28 9
DNA/RNA-binding 3-helical bundle 20 10
P-loop containing nucleoside triphosphate 57 11
hydrolases
FAD/NAD(P)-binding domain 14 12
PLP-dependent transferases 14 13
Class Il aaRS and biotin synthetases 13 14
Adenine nucleotide alpha hydrolase-like 17 15
Periplasmic binding protein-like Il 22 16
ATP-grasp 10 17
S-adenosyl-L-methionine-dependent 12 18
methyltransferases

2 All folds with 10 or more proteins were considered to avoid single outliers influencing the
general trend.

Protein aggregation

It has recently been shown that unfolded proteins with isoelectric points closer to
neutrality and more stretches of alternating hydrophobic-hydrophilic residues with
length 5 or more show increased aggregation rates in vivo (Chiti, Stefani et al. 2003;
DuBay, Pawar et al. 2004). Additional features associated with protein aggregation
are protein length and hydrophobicity. Long proteins and more hydrophobic proteins
are known to be more likely to aggregate (Calamai, Taddei et al. 2003). Our analysis
shows that highly abundant proteins have isoelectric points further away from
neutrality and slightly fewer alternating hydrophobic-hydrophilic stretches in
comparison to the low abundance proteins in E. coli as defined in the Materials and
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Methods section. Additionally we show that highly abundant proteins are on average
shorter and less hydrophobic than proteins with low copy numbers (Table 14).
Taken together, our data indicate that highly abundant proteins may have evolved to
be less prone to aggregation. These observations are further strengthened when
ribosomal proteins, known to be highly expressed, are also considered.

Table 14 Comparison of features associated with protein aggregation between high
abundant proteins and the remaining detected proteins.
The high abundant group is defined as described in Material and Methods.

Low abundant  High abundant

Property proteins proteins p-value
Mean (Median)  Mean (Median) KS-, MW-test
Protein length 386 (327) 300 (252) 10 107

(in amino acids)

Number of alternating
hydrophobic-/hydrophilic 11.7 (9.0) 9.5 (8.0) 0.03, 10™
stretches (>= 5aa)

pl distance from neutrality 1.52 (1.50) 1.69 (1,84) 0.003, 0.01

Hydrophobicity (Kyte-Doolite

-0.20 (-0.21) -0.25 (-0.24) 0.17,0.08
scale)

Amino acid composition

In agreement with Greenbaum et al. (2002), greater frequencies of small amino
acids Ala, Gly and Val were found in highly abundant proteins. Additionally we
determined that Leu, Gln, Pro, Ser and Trp are more common in low abundance
proteins whereas Lys and Glu is more common in the high abundance group. These
compositional differences are a direct consequence of the functional bias observed
in abundant and scarce proteins, as described above. Amino acid preferences in
proteins of different functionality have been utilized before for coarse function
prediction from sequence alone (e.g. (Cai, Han et al. 2003)).
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Figure 30 Abundance and essentiality.

The abundance distribution of essential and non-essential proteins is shown: essential
proteins are more abundant than non-essential proteins. The medians which represent 50%
of all proteins within each group are shown as thick black bars, the one in the essential
group is clearly higher (613 copies per cell vs. 432). Additionally in the essential group
proteins can be found in higher abundance ranges than non-essential proteins (as can be
seen by the difference of the upper whisker and upper hinge). A Mann-Whitney test as well
as a Kolmogorov-Smirnov test indicated that the abundance distributions of essential and
non-essential proteins are significantly different with p-values 0.0002 and 0.0001
respectively.

Essentiality and length

Protein abundance shows a remarkable correlation to the essentiality of a protein for
bacterial growth, as determined by Gerdes et al. (Gerdes, Scholle et al. 2003)
(Figure 30). Low abundance gene products are overwhelmingly non-essential while
highly abundant gene products tend to be predominantly essential. Furthermore,
abundant proteins tend to be shorter (Figure 31), similar to the trends reported for
highly expressed genes in yeast (Coghlan and Wolfe 2000; Jansen and Gerstein
2000).
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Figure 31 Abundance vs. Protein length

High abundant proteins tend to be short, in the right upper corner (abundant and long) no
proteins can be found, whereas in the low abundant range multiple long proteins can be
seen.

Protein abundance versus gene expression

The extent to which protein abundance correlates with the level of gene expression
has been the subject of intensive studies in the past, primarily based on available
yeast data. Early studies made on relatively small sets of abundance measurements
were either inconclusive (Gygi, Rochon et al. 1999) or reported only a weak
correlation between protein and mRNA abundance due to different rates of
translation and protein degradation as well as various post-translational
modifications (Greenbaum, Jansen et al. 2002). In a more recent study Beyer et al.
(Beyer, Hollunder et al. 2004) hypothesized that a stronger correlation between
mRNA and protein abundance may exist within functional modules such as
“Metabolism”, “Energy”, and “Protein synthesis” and within cellular compartments.

In this work we compare protein abundance with two computationally derived
measures of gene expressivity. One of them, the codon adaptation index (CAI) as
originally defined by (Sharp and Li 1987) and refined by (Jansen, Bussemaker et al.
2003), has been shown to correlate both with mRNA expression levels and protein
abundance in yeast (Futcher, Latter et al. 1999). The second expression measure is
that of Karlin and co-workers (Karlin, Mrazek et al. 2001) and is based on assessing
codon usage difference between all genes and a subset of genes known to be highly
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expressed. Both CAI and the Karlin measure show a significant correlation with the
emPAI values (Figure 32, Figure 33), although in the latter case the variance in the
high abundance range was rather high.
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Figure 32 Abundance versus codon
adaptation index (CAl).

Each point on the plot corresponds to a
protein characterized by two values:
abundance and CAIl. The Spearman rank
correlation coefficient rs between log-copy
number and CAl is 0.5 and the Pearson
correlation coefficient is 0.57 indicating a
good non-random (p-values both < 107°)
correlation with some variance. The dotted

Figure 33 Karlin’s predicted gene
expression and measured protein
abundance.

The dotted line is linear regression and the
solid line a loess local fitting curve. The
Pearson correlation coefficient between
log(copy number) and Karlin’s expression
value is 0.52 (p-value <10"%) and the
Spearman’s rho is 0.53 (p-value <10™?).

line is a linear regression between log(copy
number) and CAl, the solid line a loess local
fitting curve.

Furthermore, the abundance variance within operons is smaller than the variance of
all proteins in more than 90% of all known operons (Figure 34). Thus a large
majority of proteins within the same operon display similar abundance values. This
result is in accordance with what would be expected, since mRNA expression in
prokaryotes mainly depends on the rate of transcriptional initiation. Assuming
similar mRNA levels of genes within operons and comparable translation rates
protein concentration mainly depends on the half-live of the proteins. The fact that
in 9% of the operons the abundance variation is higher than expected shows the
existence of additional mechanisms which control the level of protein expression.
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Figure 34 Variance of abundance within known operons.

Only the 33 operons for which we have abundance data of 3 or more proteins are
considered. The variance of all 1050 proteins is 0.35 and shown as dashed line. Low
variance within an operon shows that the abundance of its proteins is similar. Here in 91%
(30 of 33) of all operons the variance is lower than the variance of all proteins (left to the
vertical bar). Copy number values are distributed according to the extreme value distribution
and were therefore logarithmized for better representation.

4.1.4 Discussion

We showed that the most abundant proteins (as expected) were those involved in
protein synthesis, most notably ribosomal proteins. Proteins involved in energy
metabolism as well as those with binding function were also found in high copy
number while proteins annotated with the terms metabolism, transcription, transport,
and cellular organization were rare. The barrel-sandwich fold was found to be the
structural fold with the highest abundance. Highly abundant proteins are predicted to
be less prone to aggregation based on their length, pI values, and occurrence patterns
of hydrophobic stretches. We also find that abundant proteins tend to be
predominantly essential. Additionally we observe a significant correlation between
protein and mRNA abundance in E. coli cells.
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4.2 Genome architectures and evaluation

In the previous section we analyzed absolute quantities of the E.coli proteome. As
next step we further questioned the impact of underlying genome structures. It was
reported in various studies that the GC content of genes influences gene expression
(Kudla, Lipinski et al. 2006). However, in contrast to bacteria, higher mammalian
genomes do not have “one GC content”, but are build up of large regions with fairly
homogenous GC content widely known as isochores. In the following section we
investigate such higher genome attributes at large-scale and present a new consensus
method for fully automated isochore assignment. We show that our new method
provides superior explanation of experimental observations than previous
approaches. Finally, we present a rich online resource and database for exploration
and download of all data.

4.2.1 Introduction

More than three decades ago gradient density analyses of fragmented DNA
identified long compositionally homogenous regions on mammalian chromosomes,
widely known as isochores (Filipski, Thiery et al. 1973; Macaya, Thiery et al. 1976;
Thiery, Macaya et al. 1976) or long homogeneous genome regions (LHGRs)
(Oliver, Carpena et al. 2002), associated with a wide range of important biological
properties. Gene density is up to 16 times higher in GC-rich isochores than in GC-
poor isochores (Mouchiroud, D'Onoftio et al. 1991), and the genes in the high GC-
isochores code for shorter proteins and are more compact with a smaller amount of
introns (Duret, Mouchiroud et al. 1995). It was also shown that the GC-rich codons,
such as those coding for alanine and arginine, are more frequent in GC-rich
isochores (D'Onofrio, Mouchiroud et al. 1991; Clay, Caccio et al. 1996). The
distribution of repeat elements is influenced by the isochore structure of the genome:
SINE (short-interspersed nuclear element) sequences tend to be more frequent in
GC-rich isochores while the LINE (long-interspersed nuclear elements) sequences
are preferentially found in GC-poorer regions (Meunier-Rotival, Soriano et al. 1982;
Soriano, Meunier-Rotival et al. 1983; Jabbari and Bernardi 1998). The structure of
chromosome bands also correlates with isochores: T-bands predominantly consist of
GC-rich isochores, while the GC-poorer isochores are found in G-bands (Saccone,
De Sario et al. 1992; Saccone, De Sario et al. 1993; Costantini, Clay et al. 2006).
The recombination frequency is higher (Eisenbarth, Beyer et al. 2000; Fullerton,
Bernardo Carvalho et al. 2001) and the replication starts up to 2 hours earlier
(Tenzen, Yamagata et al. 1997) in regions with high GC-content.

Further progress in understanding the biological role and evolution of long-range
variation in base composition is seriously hindered by the lack of objective and
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generally accepted isochore assignment methods. A multitude of prediction
approaches has been developed by various groups (Ramensky, Makeev et al. 2001;
Zhang, Wang et al. 2001; Oliver, Carpena et al. 2004; Zhang, Gao et al. 2005;
Costantini, Clay et al. 2006; Haiminen and Mannila 2007), but no single resource
allows to access, compare, and combine isochore assignments made by various
techniques in different genomes. Here we introduce a new consensus predictor
which characterizes the level of support for isochore locations determined by
individual methods. We present a database of isochore maps for all completely
sequenced vertebrate genomes and interactive viewers that allow to explore this
“fundamental level of genome organization” (Eyre-Walker and Hurst 2001) online
(http://webclu.bio.wzw.tum.de/isobase).

4.2.2 Material and Methods

Isochore assignments

We refer to the isochore nomenclature as it was first described based on ultra-
centrifugation experiments (Bernardi 1989). Bernardi and colleagues defined the
isochores according to their GC-content (Costantini, Clay et al. 2006). There are
three isochore types with high GC-content: H3 (> 53%), H2 (46% - 53%), H1 (41%
- 46%), and two types with low GC-content: L1 (< 37%) and L2 (37% - 41%). The
Bernardi group (Costantini, Clay et al. 2006) calculated the GC-content of 100 kb
long, non-overlapping sequence windows and then merged the windows if the
difference in their GC content was below 1-2%. However, no hard threshold was
used, and in many cases subjective decisions were made whether or not to merge
windows, making the Constantini method as described in the original publication
hardly fully-automatable. In particular, this circumstance makes it impossible to
consider the Constantini data for our comparison of isochore assignment methods
which is based on a more recent version of the human genome than the one used in
the original publication.

In this work isochores were predicted by four methods for automatic genome
segmentation: GC-Profile (Zhang, Wang et al. 2001; Zhang, Gao et al. 2005),
BASIO (Ramensky, Makeev et al. 2001), IsoFinder (Oliver, Carpena et al. 2004),
and least squares optimal segmentation (Haiminen and Mannila 2007). Briefly, GC-
Profile is a windowless method which recursively partitions the input sequence into
two subsequences, left and right, based on the quadratic divergence between
statistical measures (such as genome order indices, a2+c2+g2+t2, where a, c, g, and t
are occurrences of individual bases) reflecting base composition. IsoFinder moves a
sliding pointer along the input DNA sequence and finds a position that maximizes
the GC difference between its left and right portions according to the t-Student
statistics. Then both portions get split into non-overlapping 300 kb windows, and for
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each individual window the GC content is computed. If the mean values of the
window GC content on the left and on the right from the pointer position are
significantly different, this position becomes the cutting point and the input
sequence gets divided into two subsequences. Both GC-Profile and IsoFinder
proceed from left to right and may produce different results if the direction is
inverted. BASIO calculates Bayesian marginal likelihood for sequence segments
and, for reasonably short DNA contigs, attempts to find a global maximum of the
overall likelihood over all possible configurations of segment borders using a
Viterbi-like dynamic programming algorithm. For large DNA sequences, such as
complete chromosomes, BASIO relies on an approximate split-and-merge procedure
to find an optimal segmentation. We applied the BASIO method using the default
border insertion penalty 3 and 10 kb sequence blocks as initial input. Finally, the
Least Squares method calculates GC content in non-overlapping 100 kb windows
and then derives optimal segmentation of the resulting array of real values which
yields the minimal sum of squares of the Euclidian distance between each value and
its segment average. However, the Least Squares algorithm requires the user to
provide the expected number of output segments as a parameter. As an estimate of
this number for the Least-Squares method we utilized the minimum number of
isochores produced by the three other methods - GC-Profile, BASIO, and IsoFinder.
This approach makes over-fragmentation unlikely and provides a lower limit for the
actual number of isochores.

Methods that rely on any information beyond the raw nucleotide sequence for
isochore prediction were not considered in this study. For example, the markovian
approach of Melodima et al (Melodelima, Gueguen et al. 2006) incorporates
information about known biological features such as genes and their properties to
create hidden Markov models. By contrast, all the methods in this study are solely
based on the GC content and therefore can be used even in the absence of reliable
gene models, e.g. in a newly sequenced genome.

Genomic data

We used the human genome as a test case for comparing isochore assignments made
by different methods. The latest human genome assembly hgl8 (build 36) was
obtained from the UCSC genome browser (Karolchik, Kuhn et al. 2008). Further
vertebrate genomes were downloaded from UCSC, Ensembl (Flicek, Aken et al.
2008), and the Broad Institute (www.broad.mit.edu) (Mikkelsen, Wakefield et al.
2007). Assembly parts marked as random and short scaffold parts were not
considered. The UCSC known genes models were used (Hsu, Kent et al. 2006) for
computing the gene density defined as the number of genes per million nucleotides
(Mb). To determine the gene density in individual isochores we counted the number
of genes that start in each isochore family and divided it by the total amount of
genomic DNA classified into the respective isochore family. For the regression
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analysis the isochore family lables were translated into their ordinal value: from 1
for the L1-family to 5 for the H3 family. Gene density values were logarithmized
(natural logarithm) as they grow polynominally with increasing isochore family
number. Statistical tests were performed using PROMPT (Schmidt and Frishman
2006).

Entropy distance

In this study we are measuring the distance between two segmentations P and Q by
the entropy distance as described by Haiminen et al. (Haiminen, Mannila et al.
2007). Briefly, the entropy H of a segmentation P with k segments can be defined as

k
H(P)=-) Pr(p,)logPr(p,) with
i=1

length of segment i

Pr(p,) =
total length of the segmented sequence

The entropy distance is the conditional entropy of P given Q and vice versa.
Conditional entropy is thus an information theoretic measure that quantifies the
amount of information that one segmentation gives about the other. The lower the
entropy distance between the reference isochore segmentation and the prediction,
the better is the prediction.

As further shown in (Haiminen, Mannila et al. 2007) the conditional probability of
the segmentation P given the segmentation Q can be computed with the complexity
O(ky,tky) with k, and k, being the number of segments in P and Q. This efficient
algorithm uses the fact that H(P|Q) = H(U) — H(Q), with H(U) being the entropy of
the union of P and Q. Therefore, the entropy distance of P and Q can be represented
as H(P|Q) + H(Q|P) = 2 H(U) - H(Q) —H(P).

Consensus isochore assignments

We sought to integrate several available methods in order to provide more balanced
isochore assignments. It is known that GC fluctuations tend to be higher in GC rich
regions than in GC poor regions (Clay and Bernardi 2001). This means, for example,
that if one chops human DNA sequence into blocks of 100 kb, the GC content
variation between such blocks in a GC-rich region will be higher than in a GC-poor
region. A segmentation algorithm that aims at partitioning a genome based on the
GC variance must be able to handle these differences. If a method is optimized to
detect small GC jumps between genomic blocks, it is likely to overfragment GC-rich
regions. Conversely, if the cut-off value of the GC content change required to
initiate a new segment is too high, GC changes between different isochores in GC-
poor regions will not be detected. The significant variety of currently available
isochore prediction methods reflects to some degree this difficult challenge.
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Our consensus classifier tackles this issue by integrating all available ab initio
methods that are fully automateble: IsoFinder, GC-Profile and Least-Squares and
BASIO. For all genomes in our database we provide a consensus isochore map in
addition to the assignments calculated by individual methods. Each base position
gets classified independently by each method into one of the five isochore families -
L1, L2, H1, H2 or H3 - as defined by Bernardi et al (Bernardi 1989). The consensus
isochore assignment is then made based on the majority vote. Standoff regions are
marked as such and classified into the L1 to H3 families by their GC level. For
example, a standoff situation can occur if exactly one half of all methods assign a
certain isochore family e.g. L1, whereas the other half of all methods proposes an
opposing isochore family e.g. L2. In such a case the decision to choose one isochore
family is made based on the GC-level of the affected sequence. Remaining rare
positions, where no majority could be found, for example because all four methods
give different results, or where some of the predictions are missing, are marked as
ambiguous.

One adjustable parameter of our consensus approach is the genomic resolution at
which the majority vote is taken. For those isochore maps based on 100kb windows
(Costantini et al., Least-Squares) the best resolution would be at the level of 0.1
Mega bases (Mb). Other methods such as IsoFinder (Oliver, Carpena et al. 2004)
determine isochore borders at the level of single bases. Considering that the average
isochore length obtained by the four methods used in this study is in the range
between 0.1 Mb and 0.9 Mb (see Results), the resolution of 0.01 Mb for deriving
consensus is a compromise between these extremes and is used as the default setting
in our study. The consensus confidence is defined as the number of methods that
agree at a certain genomic position and can this take values between one and four.
The confidence of the isochore assignment for an entire genomic region is computed
as the average of all base confidence values.
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4.2.3 Results

Computational methods significantly differ in terms of assigned
isochore borders and length

Published isochore datasets show remarkable diversity. In the following we will use
the human genome for comparisons of different isochore assignments if not stated
otherwise. The number of isochore segments found in the human genome ranges
from about 1200 for GC-Profile and Least-Squares to up to more than 76000 for
BASIO. As a consequence the resulting isochores show very different length
distributions. Isochores of the Least-Square segmentation are on average longest
with 2459 kilo bases (kb) whereas the BASIO and IsoFinder segments are shortest
with 40 and 72 kb on average (Figure 35). This divergence results from different
criteria used by the four tested methods to determine the beginning and the end of
the segments. As explained in the Methods section, a difficult challenge in the GC-
content based partitioning of complex eukaryotic genomes is to find a set of
parameters suitable for coping with the significantly different levels of GC
fluctuations in the GC-rich and GC-poor regions.
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Figure 35 Comparison of isochore assignments in the human genome made by
different methods.

All isochore maps show remarkable differences with respect to the number and the average
length of their isochore segments. The IsoFinder and the BASIO methods result in the most
fine-grained segmentations while GC-profile and Least-Squares produce less fragmented
partitioning of the genome. The consensus map provides a compromise solution.

A. Number of isochore stretches

B. Average isochore length.
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Using the GC level of each isochore, we evaluated the GC difference (delta GC)
between adjacent segments and found that the delta GC distributions of the
compared methods are significantly different. The BASIO and the Least-Square data
show the smallest GC jumps while the GC-Profile and IsoFinder methods produce
the broadest distribution and the greatest delta GC values on average (Figure 36).

15

10
|

Delta GC

T T T T T
IsoFinder GC-Profile BASIO Least-Squares Consensus

Figure 36 GC differences between neighboring isochores.

The distribution of the GC differences between adjacent isochores is shown for each
method. The thick bars within each box plot indicate the median. The IsoFinder and the GC-
Profile assignments have the highest GC-jumps on average, whereas in the BASIO
isochore map the GC deltas are lowest (median 3.5, mean 4.0). Outliers are not shown in
this plot. The average delta GC in the consensus map is 4.6, the median 4.1.

We further assessed the differences between the segmentations based on the entropy
distance between them. Lower values of entropy distances indicate a better
agreement of two isochore maps. As shown in Table 15, the results of the Least-
Squares and BASIO approaches are most dissimilar as measured by this criterion. It
is noteworthy that the positions of about 25% of the borders of the Least-Squares
map are identical with the BASIO segmentation. This exact border coincidence is
however rather an exception. In most of the cases segment borders are shifted by
between 10 kb and 100kb between the methods. No borders are shifted by more than
1 Mb with regard to the BASIO borders (Figure 37).
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Table 15 Entropy distance

IsoFinder GC-Profile BASIO ;east- Consensus Average®
quares

IsoFinder 0.00 1.28 0.53 1.26 0.28 1.02
GC-Profile 1.28 0.00 1.57 0.25 1.20 1.03
BASIO 0.53 1.57 0.00 1.61 0.44 1.23
Least- 1.26 0.25 161  0.00 1.24 1.04
Squares

Consensus 0.28 1.20 0.44 1.24 0.00 0.79

@ The average agreement of the method in the respective row with all other methods except
itself and the consensus isochore map.

Entropy distance was calculated between all segmentations as described in Methods.
Higher numbers indicate greater difference between segmentations. The actual
classification into particular isochore families is not regarded here. The segmentations of
Least-Square and GC-Profile are most similar whereas the isochore partitioning of the
Least-Squares and the BASIO method are most distinct. The consensus isochore map is
most similar to all other methods on average.

IsoFinder mGC-Profile m®Least-Squares

70 ~
60 -
50 -

40 -

% borders

0 ; ‘ — ; ‘

Obp  <=10bp <=100bp <=1kb <=10kb <=100kb <=1Mb  >1Mb

Distance to next segment border

Figure 37 Distances between the isochore borders produced by different methods
Most borders are between 10 kb and 100kb shifted among all methods. No borders are
more than 1 Mb shifted in comparison to the BASIO borders. One exception is the Least-
Squares segmentation which has identical borders with the BASIO map in about 25
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Most of the genomic DNA gets classified to the same isochore family
by different methods

Despite the striking differences between the isochore assignments in terms of
segment borders and isochore length, a strong agreement exists with regard to the
amount of equally classified DNA and genes. As shown in Table 16, about 66% of
the human genome is assigned to the same isochore family by all four methods.
Furthermore, around two thirds of all genes are located in the isochores of the same
family Table 17). On average, the consent in attributing genes to the same isochore
between each individual method and the three other methods is between 60.1%
(IsoFinder) and 62.4% (Least-Squares).

Table 16 The amount of genomic DNA in which methods agree (%)

lsoFinder  GC-Profile BASIO  -°st Consensu  Ayerage®
Squares S

IsoFinder 100.0 62.2 74.8 58.8 82.3 65.3
GC-Profile 622 100.0 59.9 83.1 72.8 68.4
BASIO 748 59.9 1000 609 85.5 65.2
Least- 58.8 83.1 60.9 100.0 73.7 67.6
Squares

Consensus  82.3 72.8 85.5 73.7 100.0 78.6

® The average agreement of the method in the respective row with all other methods except
itself and the consensus isochore map.

Percentage of the human genome classified into the same isochore family by each pair of
methods. The amount of equally classified human DNA ranges from 59 to 86% in an all-
against-all pairwise comparison. On average all methods agree in about 66% of the
genome. The consensus isochore map has the best agreement of 79% on average with all
other methods.

Table 17 Agreement on gene classification (%)

Least-
IsoFinder GC-Profile BASIO Squares Consensus Average®

IsoFinder 100.0 53.1 76.5 50.7 81.1 60.1
GC-Profile 53.1 100.0 54.6 83.8 68.9 63.8
BASIO 76.5 54.6 100.0 526 83.7 61.2
Least-

Squares 50.7 83.8 52.6 100.0 66.7 62.4
Consensus 81.1 68.9 83.7 66.7 100.0 75.1

® The average agreement of the method in the respective row with all other methods except
itself and the consensus isochore map.

Percentage of genes that are classified equally by all methods. Between 50 to 84% of all
genes are classified into the same isochore family by all methods. The consensus isochore
map shows the greatest agreement with all other isochore maps on average.
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The breakdown of the genome into the five isochore families is very similar for all
methods. On average 22 + 2.5% (standard deviation) of the complete human DNA
are found in the L1 isochore. The most dominant isochore family is L2 with 34 +
2.7% of the DNA, followed by the H1 family with 23 + 1.5%. The remaining 15%
of the genome are distributed between the H2 and H3 families with 11.4 + 0 .2% and
3 + 1.1% of the DNA, respectively. The low deviation values among the methods
indicate a good overall agreement between all isochore maps.

Properties of the human consensus isochore map

Significant similarities of DNA and gene classification produced by different
computational methods render a consensus isochore assignment feasible. As
outlined in the Methods section, the consensus assignment assumes the isochore
family that is predicted by the majority of methods at each genomic position. This
simple consensus approach results in 31176 distinct isochores in the human genome,
with the average isochore length of 99 kb (Figure 35). The median and average
delta GC differences between neighboring isochores are 4.1 and 4.6, respectively
(Figure 36). With regard to the number, length and delta GC values of isochores the
consensus assignment shows a reasonable balance between the observed extreme
values of the individual methods. The amount of ambiguous DNA, i.e. the
nucleotides that could not be classified by the majority approach, is less than 0.2%.
Our interactive online isochore browser (Figure 38) allows for a visual comparison
between the individual isochore assignment methods and the consensus isochore
map.

Evaluation of the fit to biological models

Due to the lack of large-scale experimental data on isochore location in the human
genome we are evaluating whole-genome isochore assignments using indirect
evidence by considering independent biological properties known to be associated
with GC content variation. One such property is gene density (the number of genes
per Mb) which is known to significantly vary between different isochore families of
the human genome (Bernardi 1989; Mouchiroud, D'Onofrio et al. 1991; Zoubak,
Clay et al. 1996), from very high in H3 to very low in L1. This observation was first
made experimentally and subsequently confirmed by genome sequencing; for a
review of possible causes see (Gardiner 1996; Zoubak, Clay et al. 1996; Eyre-
Walker and Hurst 2001; Bernardi 2007). A biologically meaningful genome
segmentation would thus be expected to display a strong correlation with gene
density.
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Figure 38 Graphical representation of the isochore assignments for the first 100 Mb
of the human chromosome 1.

(obtained from the IsoBase web page, see http://webclu.bio.wzw.tum.de/isobase/).

A. Consensus assignment. The color code depicts the isochore families as defined
by Bernardi et al.

B. Confidence of the assignments. For each residue the number of isochore
methods that support a given isochore class is depicted as red line. Support values
for individual bases are averaged over a sliding window (blue line).

C. Isochore predictions made by each of the available methods.
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We compared different isochore maps with respect to the degree of correlation
between the genome segmentation and the gene density. As an example, Figure 39
A shows a comparison between GC-profile and the consensus method. Both
methods display a clear dependence between the isochore classification of genomic
regions, with gene density varying in a broad range between five for both GC-profile
and the consensus map in the L1 isochore to 73 and 92 in the H3 isochore,
respectively. The consensus assignment thus conforms better to the intuitive
isochore-gene-density model in that it displays higher gene density in the H3
isochore (Figure 39). Therefore, the consensus isochore assignment provides a
stronger signal in terms of gene-density - isochore correlation than the GC-Profile
segmentation.

In a more rigorous way, the strength of the correlation between two variables can be
estimated based on the slope of their respective linear regression lines, as shown in
Figure 39 B. A greater slope of the consensus regression line indicates stronger
association of the resulting segmentation with gene density compared to GC-profile.
As seen in Table 18 the slope of the consensus isochore map is steeper than that of
all other methods signifying that the consensus approach is the most valid one with
respect to this particular biological feature.

Table 18 Isochores and gene density

Source of gene IsoFinder GC- BASIO Least- Avg.? Consensus
models Profile Squares
UCSC Known genes  0.696 0.681 0.703  0.693 0.693 0.708

® The average gene density of all methods except the consensus isochore map.

For each isochore map gene density (number of genes per Mb) in each of the isochore
families L1 to H3 was calculated. Shown is the slope of a linear regression line of the
logarithmized densities versus the isochore families. For computing the regression the
isochore families were treated as numbers, from 1 for the L1-family to 5 for the H3 family.
First of all, one can see that gene density is positively correlated with isochore families as all
values are positive. Secondly, the consensus isochore map explains gene density best as
the slope of the consensus method is greatest. A greater line slope means less gene
density in the L-isochores and a higher gene density in the H-isochores. This is exactly what
would be expected in a model with the best fit to the biological hypothesis.
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Figure 39 Correlation between isochore classification and gene density.

A. A comparison of the gene density in the consensus isochore map and the GC-Profile
segmentation. The underlined data labels denote the gene densities of the GC-Profile
segmentation, the italic labels the gene densities of the consensus map. In the consensus
assignment more genes can be found in the H3 isochore family than in the GC-Profile
assignment. The consensus assignment thus provides a stronger signal in terms of the
expected correlation between gene density and isochore class.

B. Linear regression lines of the logarithmized (base 10) gene density values with the
isochore families L1 to H3. The isochore families were numbered from 1 to 5 to compute the
regression. The slope of the regression line is slightly greater for the consensus isochore
map.
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Evaluation with regard to experimentally confirmed isochore
knowledge

In addition to our genome-wide analysis of gene density, we carefully analyzed
direct experimental evidence pertinent to isochore properties available to date (Table
19). For each of the five computational methods (IsoFinder, GC-Profile, BASIO,
Least-Squares, and the Consensus approach) we investigated whether or not they
meet the respective criteria. The first two tests take advantage of the recent
experiments of Schmeger et al. (Schmegner, Hameister et al. 2007). In their work,
they showed that the human MN1 gene (residing in a GC rich isochore) is replicated
several hours earlier (during the S phase of the cell cycle) than the neighboring gene
PITPNB from a GC poor isochore. Furthermore, a second isochore border within the
human KIAA1043 gene was described and experimentally verified. As seen in Table
19, the first border between MN1 and PITPNB was correctly recognized by all
methods except for the Least-Squares approach. The second border in the
KIAA1043 gene was not detected by the Least-Squares nor by the GC-Profile
assignments. We are aware that these failures may be overcome by further tuning of
these methods, however this will give rise to a host of new questions. Yet, all
isochore borders are correctly found by the consensus approach. In a further test, we
checked the detection of the well known isochore border between the human MHC
class II and class III region (Tenzen, Yamagata et al. 1997). This border is correctly
found by all methods. This is not surprising as all methods were evaluated against
the available body of experimental evidence at time of publication and fine-tuned by
their respective authors.

Finally, we evaluated the isochore length distributions. Early experiments that
applied fragmentations at various scales (Macaya, Thiery et al. 1976; Thiery,
Macaya et al. 1976) as well as theoretical studies (Costantini, Clay et al. 2006)
suggest a typical isochore length significantly longer than the average size of 72 and
40 kb as predicted by IsoFinder and BASIO in the human genome. GC-Profile and
Least-Square meet these isochore length requirements. However, none of the
individual methods — except for the consensus - results in an isochore map that
shows an isochore length distribution similar to that annotated by the Bernardi group
for an outdated human genome assembly (Costantini, Clay et al. 2006). As
summarized in Table 19, the consensus approach appears to be more robust in that
meets all experimentally verified criteria, while all other methods fail in one or more
tests. Furthermore, the quality of the consensus assignments is bound to further
improve as more complementary isochore prediction methods get incorporated.
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4.2 Genome architectures and evaluation

Confidence of isochore assignments and cross-genome comparison

The majority of genes completely reside within a single isochore stretch (Figure 40).
A comparison with random segmentations (with comparable length of the blocks)
shows that more genes are wholly located within an isochore segment than would be
expected at random. This is especially pronounced in isochore segmentations with
relatively short average lengths of segments, such as IsoFinder and BASIO, and
underlines the utility of isochore information for gene prediction.
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Figure 40 Percentage of genes that are completely located within a single isochore.
For all isochore assignments, more genes reside completely within a single stretch than one
would expect by random. All results are statistical significant (Chi-Square test, all p-
values < 0.001).

We also found that most of the genes are classified into the same isochore family by
different methods. As a consequence, the isochore assignment confidence is very
good for most genes and hardly any genes are classified with low confidence (Figure
41). One further observation is that most genes are found in regions with whole
confidence values. This can be explained by the fact that genes typically reside
completely within a single isochore stretch, irrespective of the applied method. For
example, if a gene is completely covered by an isochore stretch in all isochore
predictions, then the confidence value for this gene will be always two, three or four,
depending on the number of methods that agree in their classification. In contrast,
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4.2 Genome architectures and evaluation

confidence values between whole numbers indicate regions that show a certain
agreement for parts of the gene only, usually because an isochore border is located
within a given gene. Overall, 99.8% of all genes are assigned to the same isochore
family by at least two methods. This provides a sound basis for using isochore
classification of genes in experimental studies such as expression analysis.
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Confidence of isochore classification

Figure 41 Isochore assignment confidence of human genes.

Each bin of the histogram shows the percentage of genes supported by a given average
number of computational methods. Denoted is the upper border of each bin. Each bin
shows the number of genes having an isochore assignment confidence ¢ with lower-border
< ¢ < upper border. For example, 30% of genes have a confidence value of more than 1.8
and less or equal of 2.0. About one third (29%, bar most right) of all genes are equally
classified by all four independent methods (BASIO, IsoFinder, GC-Profile and Least-
Squares). Gene classifications with low confidence can hardly be found. For 99.8% of all
genes at least two methods agree completely over the whole coding region. Furthermore,
only very few genes have a confidence value between two full numbers. This can be
explained by two observations: i) the genes are usually completely located within a single
isochore stretch, and ii) these gene regions are hardly separated by any of the
segmentation methods. Therefore usually two, three or all four methods agree for the
complete gene. The mean and median support of all genes is 3.0.

Overall, the isochore assignment confidence in the human genome is higher in GC-
poor regions (Figure 42). The confidence decreases in GC-richer regions and
reaches a minimum at GC content values around 55-58%. This may be explained by
the increasing GC fluctuations in GC higher regions (Clay and Bernardi 2001).
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4.2 Genome architectures and evaluation

Elevated confidence levels corresponding to the lowest and highest GC levels may
be explained by simple statistical reasons. For example, the GC-richest regions are
most likely to be classified into one out of two isochore families: the GC-richest H3
or the less GC-rich H2 class. By contrast, a segment with an intermediate GC-level
may fall into one of three isochore families (e.g. H2, H1 or L1). Given this limited
event space, the likelihood to observe an agreement of the methods in the GC-richest
and GC-poorest regions will be higher.
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Figure 42 Isochore assignment confidence and GC context

A. Confidence as a function of the GC content of the genomic environment.
Isochore assignment confidence is best in GC-poor regions; it decreases as the
genomic context gets more GC rich and reaches a minimum around 55-58% GC.
However, the assignment confidence becomes better again in the GC-richest
regions with >59% GC.

B. Variance of the confidence depending on the GC content. The confidence
variance is independent from the GC context for isochores with a GC content
between about 33 and 62% GC, i.e. for the main bulk of the genomic DNA.

The isochore confidence is least near isochore borders (Figure 43). It quickly grows
with the distance from the borders and reaches saturation at a distance of ~0.2 Mb
from the border. This empirical observation can be useful for defining a “safe
distance” threshold in practical applications of isochore information, allowing the
estimation of the isochore classification reliability at any region of interest even if
no consensus or confidence information is at hand.
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Figure 43 Isochore assignment confidence in border regions

A. On average the isochore assignment confidence is lowest near borders. It grows with the
distance from the border and reaches saturation at the distance of about 0.2 Mb from the
border. This can be considered as empirically derived safe distance threshold.

B. Variance of the assignment confidence is almost independent of the border distance.

We calculated isochore assignments and evaluated their confidence for 20
completely sequenced vertebrate genomes by GC-Profile, IsoFinder, Least-Squares
and BASIO as well as by our consensus method (Table 20). The amount of DNA
that could not be classified by majority vote into one of the five isochore families in
our consensus maps for any of these 20 genomes is very small, less than 1% on
average. The overall isochore assignment confidence is generally very high, with 2.6
methods agreeing on average. The entropy distance between the consensus maps and
the segmentations of all four individual methods indicates to which isochore
segmentation the consensus map is most similar. This large-scale comparison shows
that there is neither a single method clearly superior to others, nor a simple
dependency of the method performance on the overall GC-richness of the genomes.

We furthermore present in Table 20 the amount of DNA that is found in each of the
isochore families for all genomes. As expected, the overall GC content of a genome
influences the amount of DNA in the different isochore families in that the genomes
that have on average more GC are supposed to have more DNA in GC richer
isochores. However, a simple correlation could not be found. For example, the
genomes of dog and mouse have almost the same GC content (41.3% vs. 41.8%),
but 26% of the dog DNA is found in the GC-poor L1 isochores whereas in mouse
only 7% of the genomic DNA is part of the L1 isochores. A second counter-intuitive
example is the amount of DNA in the GC-richest H3 isochores in dog and platypus.
In the dog genome, 5% of the DNA is in H3 isochores, whereas of the platypus
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genome merely 1% is in the H3 isochores. The opposite would have been expected
as the platypus genome has a high overall GC content (46%) in comparison to a
much lower GC content (41%) of the dog genome.

Availability and database content

We created an online database IsoBase where all data described in this study are
freely accessible. Our website enables the user to evaluate statistical distributions of
isochore properties, and compare isochore assignments within and between
organisms and methods. Multiple qualitative and quantitative properties of isochore
maps can be interactively explored. For each consensus isochore map confidence
values of each segment are displayed. Table 20 shows an overview of genomes
included in our database and their isochore properties.

For convenient usage, we provide two search interfaces at our IsoBase website. The
first search feature allows to look-up the genomic positions and the isochore families
of genes by free text searches and by multiple identifier types. Currently genes can
be looked-up by RefSeq identifiers, UniProt/SwissProt accessions, Ensembl IDs,
gene and protein names, as well as by their descriptions, and SwissProt keywords.
The second search option allows retrieval of available isochore information for a list
of genomic positions in one step. All isochore assignments and the corresponding
confidence information can be visualized online and downloaded as tab-delimited
data files. In addition, we provide UCSC custom annotation tracks of the consensus
isochore assignments for all genomes. All UCSC tracks can be downloaded from
our web site. Furthermore, the isochore tracks are integrated into the UCSC view
automatically by using the links to the UCSC genome browser at our web site.
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4.2.4 Discussion

We have demonstrated that available isochore assignment approaches produce
significantly different segmentations in terms of the location of isochore borders and
the GC differences between neighboring stretches. At the same time, the total
amount of genomic DNA classified into the same isochore family is very large, with
all methods being in perfect agreement for more than two thirds of the human
genome.

The consensus isochore assignment method based on the majority vote at each
genomic position has four distinct advantages. First, it provides a more balanced
isochore assignment that is more robust against under -and over fragmentation.
Secondly, it appears to produce more biologically relevant results as judged by a
better correlation between the resulting segmentation and gene density. Thirdly,
evaluation based on experimentally derived isochore data shows that our consensus
approach is in a better accordance with all criteria than individual methods. Finally,
our procedure allows estimating the reliability of the isochore assignments. We
suggest that the consensus method has the potential to be further improved in the
future by adding more complementary datasets.

We have demonstrated that the majority of genes reside within a single isochore
stretch and can be classified with high confidence. The isochore assignments
become very reliable at the distance of about 0.2 Mb from the isochore borders. This
empirical observation allows to estimate the assignment confidence even in the
absence of any further knowledge.

In conclusion, we recommend using consensus assignments for best confidence and
best accordance to biological models that were found to be associated with
isochores. We further demonstrated that the consensus approach is more robust than
relying on a single method alone. At our website IsoBase, we provide isochore
consensus assignments for all completely sequenced vertebrate genomes along with
confidence information for visual exploration, search and downloading. We will add
isochore consensus maps for new genomes as they become available. We hope that
this resource will stimulate further analysis and exploration of the large-scale
variation of genome properties.
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Chapter 5

Conclusions and future work

The progress towards -and beyond- personalized medicine, epigenetic understanding
and systemic analysis of multifactorial diseases results in avalanches of data. For
example, a single high-throughput proteomic mass-spec experiment generates
billion of data points already. Analyses of metabolite time courses, non-coding
RNA, and genomic variants like single nucleotide polymorphism exponentiate our
space of information. It is without any doubt, that in-depth manual analysis of the
increasing data basis is beyond feasibility. Therefore, fundamental steps, in a typical
analysis, are to integrate the knowledge spheres of interest and to deduce new
information by contrasting data domains. A classical example would be to compare
the change of expression and function over a time course experiment. Actually,
comparison of large biological datasets has become a prime task in bioinformatics.
In this context and in general, mapping and data integration are essential steps in
almost any computational analysis by now. In this work we developed a multitude
of new methods for comparative proteomics that intelligibly promote this field of
research (Schmidt and Frishman 2006; Schmidt and Frishman 2006; Smialowski,
Schmidt et al. 2006; Hager 2007; Schmidt, Hombach et al. 2007; Antonov, Schmidt
et al. 2008; Irmler, Hartl et al. 2008; Ishihama, Schmidt et al. 2008; Schmidt and
Frishman 2008). We further applied the new technologies to multiple biological
questions and thus inferred quite a few new insights (Smialowski, Schmidt et al.
2006; Schmidt, Hombach et al. 2007; Irmler, Hartl et al. 2008; Ishihama, Schmidt et
al. 2008; Schmidt and Frishman 2008). Besides we contributed to numerous
databases and tools yielding to advances even beyond the scope of work (Riley,
Schmidt et al. 2005; Riley, Schmidt et al. 2007; Ruepp, Brauner et al. 2007;
Schmidt, Hombach et al. 2007; Irmler, Hartl et al. 2008) .

Comparative proteomic analyses can be broken down into a number of subtasks. In
the following a short condensation of the main points is outlined. For details about
all methodical details, data sources, and full results the reference to the respective
chapter of this work is given.



Summary

Summary

The new software described in chapter 2, PROMPT (Schmidt and Frishman 2006),
is a versatile, platform-independent, easily expandable, stand-alone application.
PROMPT proved to be a practical workhorse in analyzing and mining protein
sequences and associated annotation. Its availability of a Java Application
Programming Interface and scripting capabilities on one hand, and the intuitive
Graphical User Interface with context-sensitive help system on the other, make it
equally accessible to professional bioinformaticians as well as to biologically-
oriented users.

In chapter 2.2, we further demonstrated that the PROMPT tool can provide an
additional independent layer of evidence to results obtained by existing functional
analysis tools. The integration of structural and physical features into data analysis
tools provides complementary means for functional interpretation (Irmler, Hartl et
al. 2008). The design of PROMPT allows the implementation of additional
transcript and protein data in the future. It is freely available for academic users at
our web page. More than 6,000 downloads and already 9 citations in high-ranking
journals motivated us to constantly improve the functionality of PROMPT.

In chapter 3, additionally developed methods, data resources and applications are
presented. The first section of chapter 3, showed an outline of co-developed
databases (Riley, Schmidt et al. 2005; Riley, Schmidt et al. 2007; Ruepp, Brauner et
al. 2007) and powerful data retrieval systems (Schmidt and Frishman 2006; Riley,
Schmidt et al. 2007; Ruepp, Brauner et al. 2007).

In the second section of chapter 3, we illustrated how the developed comparative
approach in conjunction with our data resources can be used for predicting protein
properties. As result, we proposed a machine-learning approach to sequence-based
prediction of protein crystallizability and demonstrated that small sequence-based
features impact the possibility to yield a protein crystal (Smialowski, Schmidt et al.
2006).

In the last section of chapter 3, we introduced a new procedure to reveal “complex
functions” of gene and protein sets. A so called “complex function” is constructed as
Boolean combination of available annotation terms. We described a new web-tool
named ProfCom that is able to infer new previously hidden functional roles of
gene/protein sets. We showed that we could not only confirm previous theories
about up-regulated genes of two human cancer types, but add additional hypotheses
that may inspire further experiments (Antonov, Schmidt et al. 2008).

Finally, in chapter 4, we present the first large-scale abundance measurement and
profiling for more than 1000 E. coli proteins. This represents the most complete
study of protein abundance in a bacterial cell so far. We showed significant
associations between the abundance of a protein and its properties and functions in
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the cell. In this way, we provided both data and novel insights into the role of
protein concentration in this model organism (Ishihama, Schmidt et al. 2008).
Additionally, in the second part of chapter 4, we further questioned the impact of
underlying genome architectures. The genomes of higher organisms show non-
random patterns of fairly homogenous GC content that are commonly referred as
isochores. Multiple experimental evidences showed the impact of isochores for gene
expression, regulation, and replication timing (see chapters 1 and 4 for details). As
consequence, we investigated the genome-architecture at large-scale. Here, we
presented a new consensus isochore assignment method based on a majority voting
and evaluated it against the currently available body of isochore knowledge. The
isochores derived by the consensus approach correlate better with the distribution of
gene density and experimental evidence than individual methods. We provide a
measure of the isochore assignment confidence based on the number of methods that
agree for a given base pair and demonstrate how the confidence depends on GC
content and the distance to isochore border regions. Finally, we provide IsoBase - a
comprehensive on-line database of isochore maps for all completely sequenced
vertebrate genomes - that enables the user to evaluate statistical distributions of
isochore properties and compare isochore assignments between organisms and
methods (Schmidt and Frishman 2008).

We showed that the developed tools and methods contribute to the field of
comparative proteomics in many ways. The field of applications in this thesis range
from proteomic investigations- up to genomic background analyzes. Beyond, this
work extended the field of functional profiling and provided new biological insights
and hypotheses in E.coli (chapter 4.1), mouse (chapter 2.2) and human (chapter 3.3).
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