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Zusammenfassung

Diese Arbeit behandelt die Modellierung der Genexpression (Proteinsynthese) durch die
Rahmensynchronisation, einem Verfahren der digitalen Datenübertragung. Hierbei detek-
tiert der Empfänger den Beginn einer Nachricht anhand kurzer Signalisierungssequenzen,
sogenannter Synchronisationswörter. Analog dazu verwendet die Natur feste Sequenzmo-
tive, um den Beginn von fundamentalen DNA-Regionen zu markieren. Diese Analogie
erlaubt es, Methoden der Rahmensynchronisation anzupassen und mittels Simulationen
auf verfügbare Genome anzuwenden. Die beiden Hauptschritte der Genexpression, Tran-
skription und Translation, werden als Rahmensynchronisationsprozess modelliert. Zur
weiterführenden Untersuchung der DNA-Sequenzen werden klassische informationsthe-
oretische Maße verwendet. Die Ergebnisse dieser Arbeit belegen, dass die Synchroni-
sationswörter der Genexpression und ihre Umgebung im nachrichtentechnischen Sinne
nahezu optimal gewählt wurden.

Abstract

This thesis deals with the modeling of gene expression (protein synthesis) using frame syn-
chronization, a method applied in digital data transmission. There, the receiver detects
the beginning of a message based on short signaling sequences, so-called synchronization
words. Analogously, nature makes use of fixed sequence motifs to mark the beginning of
fundamental DNA regions. This analogy allows to adapt techniques from frame synchro-
nization and to apply these to available genomes using simulations. The two main steps
of gene expression, transcription and translation, are modeled as a frame synchronization
process. For a continuative analysis of the DNA sequences, classical information theo-
retic measures are applied. The results of this thesis indicate that the synchronization
words of gene expression and their surrounding have been chosen nearly optimally in the
communications engineering sense.





1
Introduction

In 1940, Claude E. Shannon submitted his doctoral dissertation entitled “An Algebra
for Theoretical Genetics” [Sha40] in which he mathematically investigated Mendelian
heredity. His results have never appeared in a publication besides his Ph. D. thesis for
three main reasons: First, it was a time of personal and professional changes in Shannon’s
life. Second, genetics was at that time in a crisis since it had been revealed that the Nazis
used eugenics to justify their genocide. Last and most importantly, many geneticists
lacked appreciation of mathematics without experimental evidence, and mathematicians
were not interested in problems related to population genetics. Vannevar Bush, Shannon’s
thesis supervisor, wrote in a note to Barbara Barks at Cold Spring Harbor that “few
scientists are ever able to apply creatively a new and unconventional method furnished
by some one else - at least of their own generation” and further in a correspondence
with Shannon: “I doubt very much whether your publication will result in further work
by others using your method, for there are very few individuals in this general field who
would be likely to do so” (quotations taken from [CLM+01]).

During the following 50 years, information and communication theory on the one hand
and molecular biology and genetics on the other hand did not enter substantial coop-
erations. While the biological community focussed on the structure, transmission and
transformation of genetic information as well as on the sequencing of complete genomes,
information theory mainly focussed on the optimization of the reliable transmission of dig-
ital data. With few exceptions (e.g. Solomon W. Golomb, see [Hay98]), it is only by today
that communications engineers and information theorists are beginning to foster the co-
operation with biologists. To name but few, Gérard Battail derived speculative indication
for the existence of error-correcting codes in genomes [Bat04,Bat06], Elebeoba E. May pre-
sented coding theory based models of protein synthesis [MVBR04,MVB06], and Joachim
Hagenauer applied mutual information to infer the relationship between positions in the
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DNA and genetic diseases like Schizophrenia and Parkinson [HDG+04,DGH+06]. Accord-
ingly, several biologists are beginning to appreciate methods from information theory for
the analysis of complex genetic problems (e.g. [Moo08,For81,Yoc92,Sch97,Sch96]).

In the past years, an increasing number of completely sequenced genomes have become
available in public databases. Recalling that the typical genome length of higher organ-
isms ranges between 1 and 100 billion bases illustrates impressively the need for methods
to computationally store, handle and analyze the huge amount of data – a framework that
information and communication theory can provide. Moreover, the processes occurring
inside the cell during protein synthesis (e.g. the conservation, readout and transformation
of genetic information) bear substantial analogies to processes in digital data transmis-
sion. Therefore, modeling cell processes through communication and information theory
ideally serves two tasks: give yet unknown insights into the details of biological processes
and inspire the design of technical systems based on biological systems that have been
optimized over millions of years.

This thesis shall attempt to shed light upon the processes involved in protein synthesis
(gene expression) taking place in the two steps transcription and translation. The models
are derived from frame synchronization in communication systems, which refers to the
detection of a message in a continuous data stream. The common procedure to achieve
frame synchronization in digital data transmission is to insert a known pattern into the
data stream with a fixed distance to the message. At the receiver side, a correlation
measure is applied to detect the pattern. Analogously, short DNA motifs are found at
positions where information has to be read out during gene expression. This analogy
facilitates and suggests to apply measures and algorithms from frame synchronization in
technical systems for the analysis of biological synchronization processes and motifs. As
mentioned above for the case of Shannon’s Ph. D. thesis, the successful establishment of
such interdisciplinary approaches is rendered difficult by the limited number of cooperating
research groups and potential reviewers. Therefore, the ultimate objective of this thesis
work is to be recognized by and to be published in both communities – biology and
communications engineering.

The structure of this thesis is as follows:

Chapter 2 introduces the reader to the basics of frame synchronization in digital trans-
mission systems. It starts with the definition of detection methods and sync word loca-
tion rules. Thereafter, the synchronization performance is derived based on possible error
sources. Due to its importance for later chapters, a strong focus is subsequently laid on
the design of sync words. Based on these design criteria, sync word families have emerged
for various channel scenarios.

Chapter 3 provides the biological background needed to understand the communication
theoretic models in later chapters. It is written such that the reader is not required to
have any prior knowledge. Important literature references are supplied that provide a
broader introduction to the topic than possible in this thesis. The focus lies on gene
expression, the process of protein synthesis vital to all organisms. It is covered separately
for bacteria (prokaryotes) and higher organisms (eukaryotes) as well as for transcription
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and translation – the two main steps of gene expression.

Chapter 4 follows with the investigation of biological synchronization words in bacteria.
While sync words in technical systems are carefully designed to minimize the probability of
false synchronizations, the biological community has spent little attention to the analysis
of biological signalization sequences. First, the bacterial promoter – the sync word of
transcription – is investigated with respect to its synchronization properties. Second,
the bacterial Shine-Dalgarno sequence – the sync word of translation – is analyzed using
information theoretic measures.

The following four chapters (Chapter 5 to Chapter 8) detail the communication theo-
retic modeling of transcription and translation in both bacteria (prokaryotes) and higher
organisms (eukaryotes).

Chapter 5 marks the beginning with the modeling of transcription in the bacterium
Escherichia coli. A synchronization algorithm based on a weight matrix is derived that
models the detection of the promoter sequence whose synchronization properties were
investigated in Chapter 4. The results are interpreted with respect to their impact on
reliable and fast detection of the transcription start site. The interpretations are verified
using biophysical theory and computer simulations on real promoter sequences.

Chapter 6 deals with eukaryotic transcription. Since the process is far more complex
than in bacteria, the focus lies on a general sequence analysis of promoter sequences
instead of modeling single interactions. For this purpose, two information theoretic mea-
sures are adapted for the application to DNA sequences: mutual information and the
related Kullback-Leibler divergence. In order to obtain meaningful results, the datasets
of promoter sequences are thereafter subdivided according to promoter characteristics.

Chapter 7 follows with the synchronization modeling of translation in bacteria. Differ-
ent codebooks are designed to model the detection of the Shine-Dalgarno sequence – the
sync word of prokaryotic translation. The codebook models are applied to sequence data
of Escherichia coli and evaluated based on the achieved detection strength. The best-
performing model is subsequently adapted to include a synchronization metric based on
binding energies. Thereafter, the effect of mutations is analyzed using codebook changes.

Chapter 8 completes the work on the modeling of gene expression by investigating
eukaryotic translation. The emphasis is placed on information theoretic measures for
sequence analysis. Kullback-Leibler divergence and mutual information are applied to de-
tect functional positions and dependencies in eukaryotic sequence datasets. Additionally,
a codebook model is derived for the detection of the Kozak sequence – the sync word of
eukaryotic translation.

Chapter 9 concludes this thesis. The main achievements are detailed along with future
research directions.

Parts of this work have been published in the technical conference publication [WH07b],
in the technical journal publications [DHW+07] and [HGD+07] as well as in the biological
journal publications [WHD+07] and [DMWM09].



2
Frame Synchronization in
Continuous Transmission

Frame synchronization is an essential problem of data transmission in all digital commu-
nication systems. It refers to localizing the beginning of a message in received data, i.e. to
”the correct association at the receiver of the received symbols to blocks such as words, bytes
or data-frames” [Rob95]. The most common procedure to achieve frame synchronization
is to insert a fixed pattern into the data stream which is known to both the transmit-
ter and the receiver. This so-called marker concept was introduced by R. H. Barker in
1953 [Bar53] and further investigated by J. L. Massey in 1972 [Mas72]. Since then, re-
searchers have addressed the design and reliable detection of these sync words for both
packet transmission and continuous transmission.

This chapter provides the basics of frame synchronization in continuous transmission.
In Section 2.1, the objective of frame synchronization in digital data transmission sys-
tems is introduced along with necessary notations. Moreover, two detection methods are
introduced, namely threshold detection and maximum selection. Section 2.2 details the
optimum synchronization rule for periodically as well as aperiodically inserted sync words
as first proposed by J. L. Massey in 1972. Section 2.3 follows with a derivation of the
synchronization performance of threshold detection. It is presented separately for peri-
odically and aperiodically inserted sync words as well as two different sequence models
(symbols independently and uniformly distributed vs. Markov chain). Subsequently, Sec-
tion 2.4 presents the main aspects of sync word design. Several measures are detailed to
rate the suitability of a sequence as a sync word, e.g. characteristics of its autocorrelation
function and the Hamming distance between its suffices and prefixes. Based on these
quality measures, well-known sync word families are presented in Section 2.5.
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2.1 Problem definition

To achieve frame synchronization, the receiver evaluates the incoming discrete data stream
d = {d1, . . . , dNd

} of length Nd, where the dk are elements of the alphabet A. At each
position µ ∈ [1; Nd − L + 1], it compares the subsequence {dµ, . . . , dµ+L−1} of the data
stream with the sync word s = {s1, . . . , sL} of length L to determine the position µs

at which the possibly altered sync word is most likely located. In the periodic case
(synchronous communication), the data is divided into frames of constant length Nf ,
where each frame contains one sync word at the same position. In the aperiodic case
(asynchronous communication), the sync words start at random positions along the data
stream. In both cases, detection of the sync word is based on a likelihood function L(µ),
which the receiver evaluates at each position µ to decide about the location of a sync
word (see Figure 2.1). L(µ) is a measure for the probability of the currently considered –
possibly erroneous – sequence of symbols to be a sync word. In Section 2.2, the optimal
definition of L(µ) with respect to minimizing synchronization errors is derived.

Figure 2.1: For detection of the sync word, the receiver evaluates a likelihood function
L(µ) at each step µ of the incoming data stream.

2.1.1 Threshold detection

Threshold detection is based on defining a threshold for the likelihood function L(µ),
above which the receiver assumes the currently considered sequence {dµ, . . . , dµ+L−1} to
be a sync word (see Figure 2.2, left):

µs,l = {µl|L(µl) > Lth}, (2.1)

where µl refers to the lth position µs of the data stream that fulfills the condition. A sync
word is assumed to be located at all positions µs,l, l ∈ [1; Nd −L + 1]. A crucial point for
successful detection lies in the optimization of the threshold Lth with respect to the false
positive and false negative rate. Threshold detection is applied for detecting aperiodically
inserted sync words (asynchronous transmission).



6 Chapter 2 � Frame Synchronization in Continuous Transmission

2.1.2 Maximum selection

In contrast to threshold detection, maximum selection only considers one frame length Nf

of the data stream at a time. That position µ of the lth data frame {d(l−1)·Nf+1, . . . , dl·Nf
}

with the highest value of L(µ) is assumed to be the location of the lth sync word (see
Figure 2.2, right):

µs,l = argmax
µ∈[(l−1)·Nf+1;l·Nf ]

L(µ). (2.2)

Of course, this method is only applicable for periodically embedded sync words (syn-
chronous transmission), i.e. if the receiver knows a priori that each frame of length Nf

contains exactly one sync word.
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Figure 2.2: Illustration of sync word detection methods. Left: threshold detection.
Right: maximum selection.

2.2 Optimum sync word location rule

An intuitive definition of L(µ) is the cross-correlation function between the incoming data
stream d and the known sync word s, i.e.

L(µ) =
L∑

k=1

sk · dk+µ, (2.3)

where L denotes the length of the sync word. This so-called correlation rule was applied in
synchronization systems until J. J. Stiffler first recognized that the data surrounding the
sync word should be taken into account for the sync word localization [Sti71]. However,
this was assumed to be computationally too extensive until J. L. Massey derived an
optimal decision rule for periodically inserted sync words transmitted over the additive
white Gaussian noise (AWGN) channel with binary phase shift keying (BPSK) [Mas72].
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2.2.1 Periodically inserted sync words

In the case of periodically inserted sync words, each frame length Nf contains exactly one
sync word (SW) (see Figure 2.3).

Figure 2.3: Frame structure for periodically inserted sync words (SW).

J. L. Massey found out that the optimum location rule Lopt(µ) for this case with respect
to minimizing the number of erroneously synchronized frames is achieved by adding a
correction term to the correlation rule (Eq. (2.3)):

Lopt(µ) =
L∑

k=1

sk · dk+µ − N0

2
√

Eb

L∑

k=1

ln

[
cosh

(
2
√

Ebdk+µ

N0

)]
, (2.4)

where N0 is the one-sided noise spectral density and Eb the bit energy. The dk are defined
to have value either +

√
Eb or −

√
Eb, while the sk are either +1 or −1. Therefore, the

metric Lopt(µ) has the same dimension as
√

Eb. J. L. Massey moreover presented easily
computable approximations Llow(µ) and Lhigh(µ) of the correction term for low SNRs
(Eb/N0 ≪ 1) and high SNRs (Eb/N0 ≫ 1):

Llow(µ) =
L∑

k=1

sk · dk+µ −
√

Eb

N0

L∑

k=1

d2
k+µ, (2.5)

Lhigh(µ) =
L∑

k=1

sk · dk+µ −
L∑

k=1

|dk+µ|. (2.6)

These approximations are based on the replacement of the cosh-function in Eq. (2.4) by
the first term of its Maclaurin series expansion in case of low SNRs and by an exponential
function in case of high SNRs [Mas72]:

SNR ≪ 1 : ln [cosh (x)] ≈ 1

2
· x2, SNR ≫ 1 : cosh (x) ≈ 1

2
· e|x|. (2.7)

Using Monte Carlo simulations, J. L. Massey verified that the optimum location rule
provides a 3-dB improvement over the correlation rule in the case of SNRs near one
(Eb/N0 ≈ 1) for wide ranges of the sync word length and the frame length [Mas72].



8 Chapter 2 � Frame Synchronization in Continuous Transmission

2.2.2 Aperiodically inserted sync words

In the case of aperiodically inserted sync words, two successive sync words SWl and SWl+1

are spaced at distance Tl (see Figure 2.4).

Figure 2.4: Data stream structure for aperiodically inserted sync words (SW).

The optimal decision rule introduced by J. L. Massey was later extended to the case of
aperiodically inserted sync words transmitted over the AWGN channel. A. Kopansky and
M. Bystrom [KB04] derived for BPSK modulation

L′
opt(µ) =

L∑

k=1

sk · dk+µ − N0

2
√

Eb

L∑

k=1

ln

[
cosh

(
2
√

Ebdk+µ

N0

)]
+

N0

2
√

Eb

ln [Pr{µ = µs,l}],

(2.8)

where Pr(µ = µs,l) is the probability of the lth synchronization pattern to occur at position
µ. It can be seen that L′

opt(µ) adds a correction term to Lopt(µ) taking into account the
probabilities of synchronization patterns starting in a particular position. For the periodic
case (see Section 2.2.1), the probability Pr(µ = µs,l) becomes one, and thus the third term
becomes zero in accordance with Eq. (2.4). To evaluate Eq. (2.8), knowledge about the
distribution of sync words in the received data is required. An approximation for high
SNRs is given by

L′
high(µ) =

L∑

k=1

sk · dk+µ −
L∑

k=1

|dk+µ| −
N0

2
√

Eb

L ln
1

2
+

N0

2
√

Eb

ln [Pr(µ = µs,l)]. (2.9)

The third term results from the factor 1
2

in the approximation of the cosh-function by
an exponential function (see Eq. (2.7)) and was left out by Massey in Eq. (2.6) since it is
independent of the data stream and, thus, does not add value to the metric. This approx-
imation was shown to result in no performance loss for SNRs of above three (Eb/N0 > 3),
which is consistent with the findings for the periodical insertion of sync words considered
in Section 2.2.1 [KB04].

2.3 Synchronization performance and error sources

In this section, the synchronization performance of threshold detection is derived. Since
the case of maximum selection has no relevance for later application to biological processes,
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its synchronization performance is not derived here but can be found in [Nie73b,Rob95].
In general, three error sources have to be taken into account to evaluate the performance
of a frame synchronizer:

1. An overlap of a part of the sync word with neighboring symbols yields a valid sync
word (shifted detection, see Figure 2.5, (A)).

2. The sync pattern appears in the random data in the surrounding of the correct sync
word (false detection, see Figure 2.5, (B)).

3. The sync word is not recognized by the receiver because it was too strongly altered
by transmission errors (missed detection).

Figure 2.5: Illustration of error sources during frame synchronization.

In the following, the probabilities of these three error sources is presented. In Sec-
tion 2.3.1, the symbols of the data stream are assumed to be independently and uni-
formly distributed on an arbitrary discrete alphabet A. In Section 2.3.2, the data stream
is assumed to exhibit statistical dependencies according to a Markov model Mm.

2.3.1 Sequence model: symbols independently and uniformly
distributed

The symbols are now assumed to be independently and uniformly distributed (i. u. d.)
on the alphabet A. They are transmitted over a symmetric channel, i.e. each symbol
is mistaken for another (arbitrary) one with probability Pe. More information on the
following derivations can be found in [Sch80].

ad 1) A false detection on random data takes place if a correct or slightly altered sync
pattern occurs by chance in the surrounding of the sync word. The probability PFD of a
false detection can thus be written as
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PFD =

(
1

|A|

)L

·
h∑

x=0

(
L

x

)
, (2.10)

where |A| denotes the cardinality of the alphabet A, and h is the error tolerance of the syn-
chronization algorithm. The latter refers to the maximum number of acceptable changes
in the sync word that still leads to a correct detection. Depending on the application,
different thresholds h are practicable.

ad 2) In general, the probability PSD for a shifted detection (L − v symbols too early)
of the sync word at position µ is [Sch80]

PSD =

min (v,h)∑

x=0

Pr{dH [{dµ . . . dµ+v−1}; {s1 . . . sv}] = x} · (2.11)

Pr{dH [{dµ+v . . . dµ+L−1}; {sv+1 . . . sL}] ≤ h − x},

where {dµ . . . dµ+L−1} denotes the part of d that is at position µ evaluated with respect
to its resemblance to the sync word. dH denotes the Hamming distance between two
sequences of the same length, i.e. dH(x, y) = |{k|xk 6= yk}|. The first term of Eq. (2.11)
defines the probability that the v received marker symbols contribute x units to the
Hamming distance and the second term defines the probability that the surrounding data
symbols contribute at most the remaining h − x units. Let hv denote the Hamming
distance dH between the first v and the last v symbols of the sync word:

hv = dH [{s1 . . . sv}; {sL−v+1 . . . sL}]. (2.12)

Then, Eq. (2.11) can be evaluated as [Sch80]

PSD(h, v, hv) =

min (v,h)∑

x=0

[ min (x,v−hv)∑

y=max (0,x−hv)

(
v − hv

y

)(
hv

x − y

)
(1 − Pe)

v

(
Pe

1 − Pe

)hv−x+2y]
·

[(
1

|A|

)L−v min (h−x,L−v)∑

z=0

(
L − v

z

)]
, (2.13)

where the first term in brackets is the probability that y transmission errors occurred in
the v − hv marker symbols which otherwise would have matched. The second term in
brackets refers to the probability of z mismatches occurring in the remaining L − v data
symbols.

ad 3) The probability PCD for a correct detection of the sync word at a fixed position
is [Sch80]

PCD =
h∑

x=0

(
L

x

)
(1 − Pe)

L−xP x
e , (2.14)
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Thus, the probability PMD of a missed detection due to transmission errors in the sync
word is given by

PMD = 1 − PCD = 1 −
h∑

x=0

(
L

x

)
(1 − Pe)

L−xP x
e . (2.15)

2.3.2 Sequence model: Markov chain

Since the assumption of i. u. d. symbols does not apply to all data streams, the symbols
are now assumed to be statistically dependent following a Markov chain of order m. In
this case, the probability Pm(r) of a sequence r = {r1, . . . , rL} being generated by the
Markov chain is

Pm(r) = Pr{r1}·Pr{r2|r1}·. . .·Pr{rm+1|{r1, . . . , rm}}·. . .·Pr{rL|{rL−m, . . . , rL−1}}. (2.16)

As in Section 2.3.1, the symbols are transmitted over a symmetric channel, i.e. each
symbol is mistaken for another (arbitrary) one with probability Pe. In the following,
the probabilities of the three error sources introduced in the beginning of Section 2.3 are
derived for the case of a Markov chain.

ad 1) If taking the error tolerance h of the synchronization algorithm into account, there
exist u =

∑h

t=0

(
L

t

)
different sequences that yield a false detection. Thus, the probability

PFD for a false detection on random data is given by

PFD =
u∑

t=1

Pm(rt), (2.17)

where Pm(rt) refers to the probability that the tth possible sequence rt is generated by
the Markov chain (according to Eq. (2.16)).

ad 2) The probability PSD for a shifted synchronization at position µ by L−v positions
is given in Eq. (2.13) for the case of an i. u. d. data stream. In the case of statistical
dependencies according to Mm, the first term stays the same since it only deals with y
transmission errors occurring in the v received marker symbols. The second term refers to
the probability that the number of mismatches in the remaining L−v symbols is z. Since
there exist uz =

∑z

t=0

(
L−v

t

)
such sequences, the following expression of PSD is obtained:

PSD(h, v, hv) =

min (v,h)∑

x=0

[ min (x,v−hv)∑

y=max (0,x−hv)

(
v − hv

y

)(
hv

x − y

)
(1 − Pe)

v

(
Pe

1 − Pe

)hv−x+2y]
·

[
Pm({s1, . . . , sL−v}) +

min (h−x,L−v)∑

z=1

uz∑

t=1

Pm(rt)

]
, (2.18)
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where Pm({s1, . . . , sL−v}) refers to the probability that the first L − v marker symbols
are received without a mismatch, and Pm(rt) refers to the probability of the tth out of uz

possible sequences containing z mismatches to the marker symbols {s1, . . . , sL−v}.

ad 3) The probability PMD of a missed detection of a sync word is not influenced by
the sequence statistics since it only depends on the error probability Pe of the channel.
Therefore, it remains the same as derived in Section 2.3.1 for i. u. d. symbols:

PMD = 1 − PCD = 1 −
h∑

x=0

(
L

x

)
(1 − Pe)

L−xP x
e . (2.19)

2.3.3 Threshold detection of periodically inserted sync words

In the case of periodically inserted sync words, each frame length Nf contains exactly
one sync word (SW) (see Figure 2.3). To derive a bound on the performance of threshold
detection of periodically inserted sync words, the following worst case scenario is consid-
ered: The first received symbol is s2, i.e. the next sync word lies L + D = Nf symbols
ahead. Then, the probability P (Nf ) for a correct detection at position Nf is given by

P (Nf ) = Pr{detection at µ = Nf | no detection for µ < Nf} ·
Pr{no detection for µ < Nf}. (2.20)

When taking the three error sources into account, this probability can be bounded by
(see [Sch80])

P (Nf ) ≥
[
1 − (D − L + 1) · PFD − 2 ·

L−1∑

v=1

PSD(h, v, hv)

]
· PCD. (2.21)

The factor (D − L + 1) · PFD is the probability that the sync word occurs by chance in
the D symbols between SWl and SWl+1. The term 2

∑L−1
v=1 PSD(h, v, hv) is the probability

of a shifted synchronization of a part of SWl with the successive symbols or of a part of
SWl+1 with the preceding symbols. If the sync word is well designed (see Section 2.4 for
details about sync word design), the following assumption holds true [Sch80]:

PSD(h, v, hv) ≤ PFD. (2.22)

Plugging this into Eq. (2.21) yields

P (Nf ) ≥ [1 − (Nf − 1) · PFD] · PCD. (2.23)

R. A. Scholtz simulated the behavior of P (Nf ) as a function of L for binary sync words
with Pe = 0.01, data frames of length D = 1000 and different values of h [Sch80]. He found
out that a success probability of at least 0.9994 can be achieved if 3.6 % of the transmitted
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symbols are spent on markers. P. Robertson later showed that even for transmission over
an AWGN-channel (Eb/N0 > 3) with BPSK modulation, a success probability of at least
0.99 can be achieved for a sync word length of L = 13 and of at least 0.999 for L = 18
(Nf = 130 and Nf = 135, respectively) [Rob95].

2.3.4 Threshold detection of aperiodically inserted sync words

In the case of aperiodically inserted sync words, two successive sync words SWl and
SWl+1 are spaced at distance Tl (see Figure 2.4). The lower bound of the probability of a
correct detection of the sync word SWl+1 at position Tl is again derived by considering the
following worst case scenario: The first received symbol is s2 of SWl, i.e. the successive
sync word SWl+1 lies Tl symbols apart. Then, Eq. (2.21) can be generalized to

P (Tl) ≥
[
1 − (Tl − L + 1) · PFD − 2 ·

L−1∑

v=1

PSD(h, v, hv)

]
· PCD (2.24)

Eq. (2.22)

≥ [1 − (Tl + L − 1) · PFD] · PCD. (2.25)

2.4 Sync word design

In Section 2.3.1, the performance of frame synchronizers was derived based on the as-
sumption that PSD(h, v, hv) ≤ PFD (see Eq. (2.22)) for well-designed sync words without
going into details. In this section, the design of sync words depending on characteristics
of the transmission channel is presented. The major criteria are introduced which are
applied to search for sequences that yield low probabilities of false detections on random
data (Section 2.4.1) as well as of shifted synchronizations (Section 2.4.2).

2.4.1 Random occurrence of the sync word

To avoid false detections of the sync word, it should be chosen such to occur with a small
probability PFD in random data. In case of i. u. d. symbols, this probability does not
depend on the sequence itself but only on its length L (see Eq. 2.10). In case of inter-
symbol dependencies, the probability of an occurrence of the sync word in the random data
can be calculated from a Markov chain Mm that describes the data (see Section 2.3.2):

PFD =
u∑

t=1

Pm(rt), u =
h∑

t=0

(
L

t

)
, (2.26)

where the Pm(rt) are calculated according to Eq. (2.16). The sync word s should be chosen
in a way to minimize PFD, which corresponds to choosing an unlikely word with respect
to the data stream. Let N̂m(r) denote the random variable of the count of sequence r in
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the data stream under Markov model Mm. Then, the expected count E{N̂m(r)} of this
sequence r of length L depending on the Markov model is [Sch06,RRS05]

E{N̂m(r)} =
N({r1, . . . , rm+1}) · . . . · N({rL−m, . . . , rL})

N({r2, . . . , rm+1}) · . . . · N({rL−m, . . . , rL−1})
=

L−m∏
x=1

N({rx, . . . , rm+x})
L−m∏
x=2

N({rx, . . . , rx+m−1})
,

(2.27)

where N(r) denotes the observed number of occurrences of the sequence r in the data
stream. This is simply given by

N(r) =

Nd−L+1∑

µ=1

1({dµ, . . . , dµ+L−1} = {r1, . . . , rL}), (2.28)

with 1(expr) equaling one if expr is true and zero otherwise. Thus, in order to avoid
random occurrences in the data stream, the word with the minimum expected count
E{N̂m(r)} should be chosen as the sync word s:

s = argmin
r

E{N̂m(r)}. (2.29)

If the sync word has to satisfy additional constraints that preclude it to be chosen
according to its expected number of occurrences, it should instead be a word that is
avoided in the surrounding data, e.g. a word that is no codeword in the coding scheme
underlying the data stream. This corresponds to choosing an under-represented word
(occurring exceptionally seldom), i.e. the word that maximizes the following probability:

s = argmax
r

Pr{N̂m(r) ≥ N(r)}. (2.30)

2.4.2 Shifted synchronization

In addition to avoiding random occurrences of the sync word, the probability of shifted
synchronizations should be minimized, i.e. it should be excluded that a prefix or suffix
of the sync word together with the surrounding data yields a valid sync pattern. In the
following, the common measures for evaluating the quality of a sync word are presented.

⊲ Example 2.1

We first consider the binary sequence +1 +1 +1 +1. In case of equally probable symbols, the
probability of the sequence being preceded by a +1 is 0.5, which may lead to a shifted synchro-
nization (one position too early). In contrast to that, the sequence +1 -1 +1 +1 needs to be
preceded by three specific symbols (+1 -1 +1) to yield a shifted sync word.

⊳
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Aperiodic autocorrelation behavior

One way of determining the suitability of a sequence s to serve as a sync word is to
evaluate its aperiodic autocorrelation function (ACF) ϕss(τ):

ϕss(τ) =

L−|τ |∑

k=1

sk · sk+τ . (2.31)

The aperiodic autocorrelation function describes the similarity of a sequence s sur-
rounded by random data to itself for different shifts τ ∈ [−(L − 1); +(L − 1)]. Since
we consider the aperiodic ACF (and not the periodic one), the surrounding of the se-
quence s is assumed to be random and uniformly distributed over the symbol alphabet.
Thus, for |τ | > L − 1, the autocorrelation function ϕss(τ) represents the expected value
(i.e. usually equals zero for uniformly distributed symbols).

High sidelobes of the aperiodic ACF indicate periodicities in the sequence which may
yield a shifted synchronization if noise is present. Therefore, the task in sync word
design lies in finding sequences with low sidelobes. In case of expected phase ambiguities
(e.g. after BPSK modulation), their absolute value should be as small as possible, whereas
otherwise they should be as low (and possibly negative) as possible.

In the 1960s, the peak sidelobe level (PSL) was introduced to rate the autocorrelation
sidelobes of a sequence [Boe67,Tur68]. It is also known as minimal peak sidelobe [Gol77]
or maximum sidelobe correlation [Lev75] and is defined as

PSL(s) = max
τ\{0}

|ϕss(τ)| (2.32)

in case of expected phase ambiguities (e.g. after BPSK modulation) and defined as

PSL’(s) = max
τ\{0}

ϕss(τ) (2.33)

if no phase ambiguities are present. Thus, the task in ensuring successful frame synchro-
nization over noisy channels lies in choosing a sync word which minimizes the PSL- and
PSL’-value, respectively. For the case of no expected phase ambiguities, the merit factor
MF is another measure for the synchronization quality of a sequence [Lue92]:

MF =
ϕ2

ss(0)

2
L−1∑
τ=1

|ϕss(τ)|2
. (2.34)

In contrast to the PSL-value, the merit factor should be maximized to avoid shifted syn-
chronizations. Moreover, while the PSL-value only rates the position with the worst effect
on the synchronization rate, the MF-value sums over all sidelobes and, thus, is a measure
for the overall effect of non-ideal autocorrelation properties on the synchronization rate.
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⊲ Example 2.2

We again consider the two sequences from Example 2.1. Figure 2.6 (left) shows the aperiodic
ACF of the sequence +1 +1 +1 +1, Figure 2.6 (right) shows that of the sequence +1 -1 +1 +1.
It can be seen that the former has higher sidelobes than the latter, which makes it a worse sync
word. This is confirmed by their PSL-values (which here correspond to the PSL’-values):

PSL(+1 +1 +1 +1) = ϕss(τ = 1) = 3, PSL(+1 -1 +1 +1) = ϕss(τ = 3) = 1. (2.35)

The merit factor also confirms the poor synchronization properties of the sequence +1 +1 +1 +1:

MF(+1 +1 +1 +1) = 0.57, MF(+1 -1 +1 +1) = ϕss(τ = 3) = 4. (2.36)
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Figure 2.6: Aperiodic autocorrelation functions of the binary sequences +1 +1 +1 +1

(left) and +1 -1 +1 +1 (right).

⊳

Distribution of correlation values

In 1971, F. Neuman and L. Hofman derived a measure to rate the synchronization quality
of a binary sequence transmitted over a BSC channel [NH71]. They focused on sync words
for application in systems without phase ambiguities (type I), but extended their results
also to the case of expected phase ambiguities (type II). Depending on the surrounding
data and the symbol error probability, the correlation between the altered sync word in
the data stream and the known sync word s follows a probability distribution at each
shift τ from the complete overlap. To ensure a low synchronization failure probability,
the probability distribution at shift τ = 0 should be widely separated from the proba-
bility distributions at all shifts τ 6= 0. The resulting distance Dτ between the means of
the probability distributions should thus be maximized to minimize the synchronization
failure probability:
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Dτ =





[L − ϕss(τ)](1 − 2Pe) −
√

4LPe(1 − Pe)−√
4(L − τ)Pe(1 − Pe) + τ for τ ≤ L

L(1 − 2Pe) −
√

4LPe(1 − Pe) −
√

L for τ > L

, (2.37)

where Pe here refers to the error probability of a BSC channel. In contrast to the peak
sidelobe level (PSL), the distance measure Dτ particularly punishes high correlations
at high shifts. A special case to consider is the noiseless case, i.e. if the symbol error
probability approaches zero and false detections are only caused by random occurrences
of the sync word in the data stream:

Dτ =





L − ϕss(τ) −√
τ for τ ≤ L

L −
√

L for τ > L
. (2.38)

It can be seen that ϕss(τ) is the only parameter in Eq. (2.37) and Eq. (2.38) that
depends on the sync word design. Using the proposed distance measure Dτ , the following
conclusions can be drawn about the quality of sync words in the BSC case:

⊲ Noisy case: evaluating the elements of Eq. (2.37) that are independent of the struc-
ture of the sync word (see [NH71]) shows that for low symbol error probabilities
sync words with low autocorrelation sidelobes ϕss(τ) especially for large shifts τ
are preferable. For high error probabilities, low and nearly uniform autocorrelation
sidelobes are preferable.

⊲ Noiseless case (Eq. (2.38)): L − √
τ is independent of the sync word structure

but punishes correlations at large shifts, thus, the autocorrelation ϕss(τ) should be
minimized especially for large shifts.

Therefore, that sequence r with the lowest PSL’-value should be chosen as sync word s
in noisy systems with high error probabilities (see Section 2.4.2). In the case of low or
zero error probabilities, that sequence r should be chosen that satisfies

s = argmax
r

Dτ,min(r), (2.39)

where Dτ,min(r) defines the minimum value of Dτ obtained for the sequence r.

Hamming distance between prefixes and suffixes

Another measure to rate the synchronization properties of a sequence is the Hamming
distance hv between a prefix and suffix of length v. This should be high to preclude shifted
synchronizations resulting from concatenations of the prefix or suffix and the surrounding
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random data. This results in minimizing PSD(h, v, hv) for the given value of the error
tolerance h of the synchronization algorithm (see Section 2.3). The Hamming distance
measure hv of the pattern and the autocorrelation measure are related by (see [Sch80])

τ = L − v, (2.40)

ϕss(τ) =
L−τ∑

k=1

(−1)sk+sk+τ = L − 2hv. (2.41)

⊲ Example 2.3

For the two sequences from Example 2.1, the following values of hv are obtained:

sequence h1 h2 h3 h4

+1 +1 +1 +1 0 0 0 0

+1 -1 +1 +1 0 1 2 0

Equivalent to earlier results, the sequence +1 +1 +1 +1 shows to have the minimum Hamming
distance hv = 0 for each v. Thus, it is a poor sync word and will be avoided in most systems.

⊳

The optimum case is to use a sync word with hv ≥ L−1, a so-called bifix-free sequence. A
bifix is a sequence which is both a prefix and a suffix of a longer sequence (see e.g. [Nie73a]).
For example, the sequence +1 -1 +1 +1 +1 -1 +1 is not bifix-free since the first three
bits equal the last three bits (i.e. +1 -1 +1 is a bifix of the sequence).

2.5 Sync word families

2.5.1 Sync words for channels with phase ambiguities

Barker sequences

In 1953, R. H. Barker published his pioneering work on frame synchronization and the
design of sync words [Bar53]. He presented sequences with absolute autocorrelation side-
lobes smaller than 1, i.e. with PSL ≤ 1 (see Eq. (4.3)). All existing Barker sequences with
2 ≤ L ≤ 13 are listed in Table B.1 (Appendix B). It was shown that no Barker sequences
exist for 13 < L ≤ 12100 and that the one with L = 4 is the only Barker sequence of
even length [TS61]. Since Barker sequences minimize the absolute autocorrelation side-
lobe (i.e. the PSL), they are only suitable for application in noisy systems where phase
ambiguities are expected after demodulation.
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Neuman-Hofman sequences (type II)

In 1971, F. Neuman and L. Hofman applied their distance measure Dτ (see Section 2.4.2)
to search for sync words with desirable sync word properties [NH71]. They found se-
quences with 7 ≤ L ≤ 24 for BSC channels with phase ambiguities (see Table B.3,
Appendix B). A comparison between Neuman-Hofman sequences (type II) and Barker
sequences can be found in [Mas72], where the former outperformed the latter on unmod-
ulated binary data streams for the considered SNR range of 0.5 ≤ Eb/N0 ≤ 2.

2.5.2 Sync words for channels without phase ambiguities

Sequences found by Maury and Styles

In 1965, J. L. Maury and F. J. Styles presented their search for sync words for channels
without phase ambiguities aimed at usage in PCM telemetry [MS64]. They tried to
minimize the probability of shifted synchronizations by minimizing the values of the so-
called agreement vector which is inversely related to the Hamming distance hv between
suffices and prefixes of the sync word. The error tolerance was set to h = 2 and the
symbol error probability was set to Pe = 0.1. Table B.2 (Appendix B) lists the found
sequences with 7 ≤ L ≤ 30.

Neuman-Hofman sequences (type I)

In addition to the Neuman-Hofman sequences suitable for channels with expected phase
ambiguities (see Section 2.5.1), F. Neuman and L. Hofman also applied their distance mea-
sure Dτ to search for sync words for application in BSC systems without phase ambiguities.
They focused on sequences with good properties for high symbol error probabilities. The
found sequences with 7 ≤ L ≤ 24 are listed in Table B.4 (Appendix B).

2.5.3 Bifix-free sequences

As mentioned Section 2.4.2, a bifix is a sequence which is both a prefix and a suffix of a
longer sequence. In noise-free systems, the autocorrelation properties play a minor role,
instead, the sync word should be bifix-free. In most cases, one will try to find a pattern
that is bifix-free but at the same time has preferable autocorrelation properties to ensure
independence of the noise in the transmission system [Nie73a]. Table B.5 (Appendix B)
lists half of the existing bifix-free sequences for 2 ≤ L ≤ 6, the second half is created
by exchanging zeros and ones of the listed sequences. Note that the bifix-free sequences
aa . . . ab . . . bb as well as aa . . . ab and ab . . . bb – where a and b denote two letters from the
alphabet A – generally have bad autocorrelation properties and thus will be avoided in
most systems.
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2.5.4 Distributed sequences

In [dLvW98] and [dLvWW00], A. J. de Lind van Wijngaarden proposed the use of so-
called distributed sequences. These are defined as patterns containing constrained and
unconstrained symbols, i.e. containing synchronization symbols interspersed with data
symbols. One example of a distributed sequence is the pattern 10001**1**1, which has
seven constrained symbols (synchronization symbols) and four unconstrained positions
(*) that can take on any value. In [dLvWW00], A. J. de Lind van Wijngaarden and
T. J. Willink presented a performance comparison between the Barker sequence 1110010
and the distributed sequence 111**0***0*10. For this purpose, they considered not only
the autocorrelation function of the sequences but also the maximum correlation that it
can yield if taking the surrounding data symbols into account. This analysis brought up
that the correlation peak of the Barker sequence is more distinct, however, in case of the
distributed sequence the correlation values remain below the peak over more positions.
They used these correlation properties to search for distributed sequences that are bifix-
free and at the same time fulfil the Barker-criterion PSL ≤ 1 (i.e. distributed sequences
suitable for channels with expected phase ambiguities). The found sequences for 5 ≤ L ≤
32 are listed in Table B.6 (Appendix B).

2.6 Summary

In this chapter, frame synchronization in digital data transmission was introduced. This
included the synchronization performance, major error sources and the design of sync
words depending on the channel characteristics. Four main aspects hereof are particularly
important for the gene expression models derived in later chapters:

⊲ The detection of the sync word at the receiver side is based on a likelihood function
L(µ) which measures the similarity between the incoming data stream and the sync
word at each position µ. In technical systems, L(µ) is generally defined based on
the cross-correlation function.

⊲ The sync word should be designed such that the probability of shifted and false
synchronizations on random data is minimized.

⊲ The probability of shifted synchronizations is minimized if choosing sync words with
lowest possible self-similarity. This is rated using e.g. the autocorrelation function
of the sync word which should not exhibit high sidelobes.

⊲ The probability of false synchronizations through random occurrences of the sync
word does not depend on the sync word in case the data stream carries no statistical
dependencies. If it does, however, the sync word should be chosen such that its
random occurrences in the data stream are minimized. This aspect is commonly
evaluated using a Markov model of the data stream.



3
Biological Background

This chapter provides the biological background necessary to understand the communi-
cation theory models in later chapters. In Section 3.1, the DNA is described as a digital
signal. Section 3.2 introduces important historical steps that led to today’s knowledge
about genetics and molecular biology. Section 3.3 deals with basic terms and definitions.
This includes the structure of DNA and RNA, genes, mutations as well as the organi-
zation of genomes of both bacteria (prokaryotes) and higher organisms (eukaryotes). In
Section 3.4, a detailed description of gene expression, the process of protein synthesis,
is presented. The main steps and involved components are presented for prokaryotic
and eukaryotic organisms. Section 3.5 introduces interactions between proteins and the
DNA that occur during all steps of gene expression. The fundamental interactions are
presented together with common theories of target search on the DNA by proteins. Fi-
nally, the analogies between gene expression and digital data transmission are discussed in
Section 3.6. For an in-depth introduction to molecular biology refer to [Lew07,AJL+02].

3.1 The DNA as a digital signal

The deoxyribonucleic acid (DNA) is the primary carrier of genetic information, which
can be seen as a digital signal of the quaternary alphabet A = {A,C,G, T}. In digital
data transmission, information is processed in numerous steps: it is read out, transformed
(modulation, coding), transmitted, possibly altered by transmission errors, corrected and
interpreted (see Figure 3.1). The genetic information stored in the DNA comes into effect
only after transformation into proteins, molecules that determine many genetic traits of
living beings. This process takes place in a series of transformation steps similar to those
in digital data transmission: parts of the DNA sequence are read out, transformed into
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different alphabets, possibly altered by mutations and corrected. In this chapter, the
basic steps underlying protein synthesis are detailed.

Figure 3.1: Illustration of a digital transmission system as proposed by C. E. Shannon
in his famous Fig. 1 [Sha48].

3.2 Historical steps in molecular biology

The first step in the long story of research in the field of genetics was done by monk Gregor
Mendel, who investigated inheritance in the pea plant and published his results and the
Mendelian laws of heredity in 1866 [SMC08]. In the beginning of the 20th century, scientist
Thomas Morgan conducted experiments with Drosophila melanogaster, the fruit fly. In the
course of his research, he already identified the genes that are responsible for certain traits
of the external appearance [Wat04]. Nonetheless, for a long time, biologists had difficulties
accepting the deoxyribonucleic acid (DNA) as the carrier of genetic information due to its
apparent chemical simplicity (see Section 3.3.1). The three-dimensional chemical structure
of the DNA could first be obtained in 1953, when James Watson and Francis Crick brought
up an exact model of the DNA molecule and proved that genes determine heredity. It
took however until the 1960s until the transformation of DNA sequences into proteins
following the genetic code was widely understood (see Section 3.4.4) [Hay98]. Since then,
many ground-breaking discoveries have been made that led to a better understanding
of heredity as well as to the sequencing of an increasing number of complete genomes.
After years of experiments, the sequencing of the complete human genome along with the
identification of the majority of genes was achieved in 2003 [NIoH08a] [DoEOoS08].

3.3 Terms and definitions

3.3.1 DNA and RNA

The DNA is formed by two strands, linked together and twisted in the shape of a double
helix. The strands consist of a chain of nucleotides, small molecules built up by a nucle-
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obase, a pentose sugar and a phosphate. The nucleobase can be of four types: adenine
(A), cytosine (C), guanine (G) and thymine (T). The larger nucleotides adenine and gua-
nine belong to the class of a double-ringed chemical structure called purine. They form
hydrogen bonds with their respective complements thymine and cytosine, belonging to
the single-ringed pyrimidines (see Figure 3.2, right). Two nucleotides on opposite com-
plementary DNA strands that are connected via hydrogen bonds are called a base pair (in
the following abbreviated as bp). Base-pairing in the DNA can exclusively occur between
A and T as well as between G and C [Lew07]. Other bonds are unfavorable since the
patterns of hydrogen acceptors and donors do not match: While adenine and thymine
bind via two hydrogen bonds, cytosine and guanine are connected via three hydrogen
bonds (see Figure 3.3). The binding between the two strands is called Watson-Crick
base-pairing. A DNA sequence is typically written from its 5’-end to its 3’-end, where the
naming originates from the chemical structure of the pentose sugar. With respect to this
directionality of the DNA, the relative position of a sequence element is either denoted as
upstream (towards the 5’-end) or downstream (towards the 3’-end).

⊲ Example 3.1

An exemplary nucleotide sequence (upper line) and its Watson-Crick complement (lower line)
look as follows:

5′ . . . T A A C G C A T G C C T A A G . . . 3′

3′ . . . A T T G C G T A C G G A T T C . . . 5′

⊳

During protein synthesis (gene expression), parts of the DNA are transformed into RNA
(ribonucleic acid) in the process of transcription (see Section 3.4). The difference to DNA
lies in the chemical structure: RNA is single-stranded and uracil replaces thymine as the
base complement to adenine (see Figure 3.2, left). Since RNA is single-stranded, it often
contains short sequences of nucleotides that can base-pair with complementary sequences
found somewhere else on the same molecule [AJL+02]. These interactions arrange for an
RNA molecule to fold into a stable three-dimensional structure, which allows it to play
regulatory roles during protein synthesis.

3.3.2 Mutations

Mutations are changes happening to the nucleotide sequence of genetic material (DNA
or RNA). They correspond to transmission errors and noise in communication systems
that alter the signal during transmission. Mutations occur due to both external influences
(like radiation) and errors during cell processes (like replication). Three basic types of
small-scale mutations exist [GGML99]:

⊲ Point mutation: a single nucleotide is exchanged for another one. The most com-
mon point mutation exchanges a purine for a purine (A↔G) or a pyrimidine for
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Figure 3.2: Structure of RNA (left) and DNA (right) [NIoH08b].

a pyrimidine (C↔T). This type of mutation is called a transition as opposed to a
transversion which exchanges a purine for a pyrimidine or vice versa (A/G↔C/T).

⊲ Deletion: one or several nucleotides are deleted irreversibly from their position in
the DNA.

⊲ Insertion: one or several nucleotides are inserted at a random position in the DNA.

The effect of mutations depends on their position and on whether they effect the synthesis
of a protein. In the majority of cases, the effect is either neutral or can be corrected before
bringing harm to the organism. In some cases, mutations are harmful or – in rare cases –
beneficial and, thus, lead to an evolutionary change through positive or negative selection.

3.3.3 Genes and proteins

A gene is a sequence of nucleic acids containing the information for a functional product
(usually a protein). Proteins (Greek prota = ‘of primary importance’) are large organic
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Figure 3.3: Bonding between complementary bases (N: nitrogen, H: hydrogen, O: oxy-
gen, P: phosphate) [NIoH08b].

compounds that constitute an essential part of all living beings [Lew07]. They are re-
sponsible for oxygen transport, cell signaling, catalysis of biochemical reactions, immune
response as well as maintaining the cell scaffold. While it was long believed that one gene
codes for one protein which is itself responsible for one trait, many exceptions to this rule
have been found until today [Pea06]. Nonetheless, in the following, the term gene is used
in its traditional definition as those parts of the DNA that are copied into mRNA in the
process of transcription (see Section 3.4).

3.3.4 Genome

The term genome refers to the entire genetic information or hereditary material possessed
by an organism, i.e. the entirety of genes and extra-genic DNA [AJL+02]. The latter refers
to those parts of the DNA that are not transformed into mRNA during gene expression.
The organization of the genome depends on the organism: While simple organisms carry
only a single chromosome organized as a ring, the majority of higher organisms has
between 8 and 100 chromosomes organized in an X-shape [Lew07]. In addition to the
organization, the length of the genome varies significantly between organisms (bacterium
Carsonella ruddii : 1.6 · 105 bases, human: 3 · 109 bases).

3.3.5 Prokaryotic and eukaryotic organisms

Organisms are classified into two basic families, namely prokaryotes and eukaryotes (Greek
pro = ‘before’, eu = ‘true’, karyon = ‘kernel’). Prokaryotes comprise all organisms from
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the families archaea and bacteria (see Figure 3.4). Prokaryotic organisms are in most cases
unicellular, and their cells have no cell nucleus, i.e. the genetic material is not membrane-
bound but freely floating in the cytoplasm. The DNA of prokaryotes consists of one
single circular chromosome localized in an area called nucleoid. The single chromosome
is densely packed with genes (typically several thousand [TPM07]), only few percent are
non-coding and serve regulatory purposes. Research on prokaryotes strongly focuses on
the bacterium Escherichia coli (E. coli), which infects the lower intestines of mammals.
Eukaryotes comprise all unicellular and multicellular organisms whose cells contain a cell
nucleus. The genetic information is stored in chromosomes localized inside the membrane-
bound nucleus which is surrounded by the cytoplasm. In contrast to prokaryotes, the
chromosomes in eukaryotes contain a high percentage (> 90%) of DNA not coding for
proteins. Eukaryotes comprise all higher organisms like plants and animals. The best
studied eukaryotes are the human (Homo sapiens), the thale cress (Arabidopsis thaliana),
the fruit fly (Drosphila melanogaster) as well as the yeast species Sacharomyces cerevisiae.

Figure 3.4: The phylogenetic tree of life.

3.4 Gene expression

3.4.1 Overview

Gene expression is the process in which the information stored in the DNA is used to
synthesize proteins. It takes place in two basic steps:

DNA
Transcription

- mRNA
Translation

- Protein
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During the process of transcription, the double stranded DNA serves as a template to
synthesize the single stranded mRNA (messenger RNA, see Figure 3.5, middle). In the
second step of gene expression (translation), this mRNA is translated into proteins by
chaining amino acids (see Figure 3.5, bottom).

...CG

gene

coding sequence

protein

3’

5’

5’

...GC

CATAGATGGATCACGATCGATCGATCGTGTAGCTGTAGCATCG(double stranded)

DNA

mRNA

(single stranded)

GTATCTACCTAGTGCTAGCTAGCTAGCACATCGACATCGTAGC A...

T...

5’

3’

3’

MetAspHisAsp ArgSerIle AspTyrLeuStpamino acid chain

CAUAG AUGGAUCACGAUCGAUCGAUCGUGUAUCUGUAGCAUCG

Figure 3.5: Illustration of sequence transformations during gene expression.

The main differences in the gene expression of prokaryotes and eukaryotes are:

⊲ In eukaryotic organisms, the mRNA only contains the information to translate one
protein (monocistronic mRNA), but it may as well contain the information for
several proteins in prokaryotes (polycistronic mRNA).

⊲ After transcription, the mRNA of eukaryotes consists of coding regions (exons) and
non-coding regions (introns) separating the exons. In the process of splicing, the
introns are cut out of the mRNA yielding the so-called mature mRNA.

⊲ In contrast to prokaryotes, translation and transcription of eukaryotes are locally
separated. Transcription and splicing take place inside the nucleus membrane,
whereas translation takes place in the cytoplasm surrounding the nucleus membrane.
Therefore, the mature mRNA is exposed to additional radiations and thermal noise
during its travel to the less protected cytoplasm.

⊲ Due to the missing separation of transcription and translation in prokaryotic cells,
no intermediate step lies between transcription and translation, which allows si-
multaneous processing, i.e. the mRNA can already be translated while still being
synthesized through transcription.

The process of transcription is described in Section 3.4.2 for prokaryotes and in Sec-
tion 3.4.3 for eukaryotes. Subsequently, the process of translation is detailed in Sec-
tion 3.4.4 for prokaryotes and in Section 3.4.5 for eukaryotes.
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3.4.2 Prokaryotic transcription

During transcription, a part of the DNA (the gene) is copied into mRNA (see Figure 3.5).
This step is performed by the macromolecule RNA polymerase (RNAP) and its sigma
subunit which first randomly bind to the DNA and move along it [Lew07]. Equivalent
to frame synchronization in continuous transmission, a short DNA motif (the so-called
promoter) informs the RNA polymerase about the upcoming gene start. After the sigma
factor recognizes the promoter, the RNA polymerase opens and unwinds the DNA (also
called DNA melting) on a range of around 12 base pairs to enable the copying of one
strand [LBZ+00]. The sigma factor does not play a role in this copying process: in
around 30 % of the cases, it dissociates from the RNA polymerase directly after initiation,
while it otherwise dissociates at random points during transcription [GvH05]. During
transcription elongation, the RNA polymerase moves along the DNA, opens the double
helix and copies one strand (the so-called coding strand) by building the complement of
the template strand (see Figure 3.6). Termination of transcription is either induced by an
RNA-binding protein or based on sequences in the RNA that fold into hairpin structures
that mechanically interrupt transcription [AJL+02]. After dissociating from the DNA,
the RNA polymerase can bind to another sigma factor and restart the process.

template strand
RNA polymerase

coding strand

DNA

mRNA

Figure 3.6: Transcription by RNA polymerase [NIoH08b].

Sigma factor

As mentioned before, the sigma factor is a kidney-shaped molecule that attaches to the
RNA polymerase to enable promoter detection. In the communications engineering sense,
it corresponds to the synchronization unit of the RNA polymerase responsible for detection
of the sync word (the promoter, see Figure 3.7). Every prokaryotic organism has one main
and several alternative sigma subunits, each of which transcribes its own set of genes. The



3.4 Gene expression 29

main sigma factor is responsible for transcription under exponential cell growth, i.e. for
transcription of the so-called housekeeping genes. The alternative ones come into effect to
adapt protein synthesis to certain environmental circumstances, e.g. temperature rise or
changes in food supply. At the same time, the mentioned external factors activate anti-
sigma factors that form complexes with their cognate factors to inhibit their function.
This happens for instance after a heat shock, i.e. a steep rise of the temperature: The
main sigma factor gets bound and hereby inhibited by its anti-sigma factor, while at
the same time one alternative sigma factor becomes chemically more stable, and thus its
probability to bind to a RNA polymerase is increased. In E. coli, six alternative sigma
factors exist in addition to the main sigma factor σ70 to ensure expression of specific sets
of genes under various environmental conditions (see Table 3.1).

Figure 3.7: Analogy between frame synchronization (A) and promoter detection (B).

Table 3.1: Functions of the seven sigma factors in E. coli [GG03]. The exponents refer
to the molecular weight in kilo Dalton (kD).

sigma factor function

σ70 exponential cell growth

σ54 (σN) nitrogen starvation

σ38 (σS) general stress conditions (stationary phase)

σ32 (σH) heat shock

σ28 (σF ) flagellar development

σ24 (σE) extreme heat stress

σ19 (σFecI) regulation of the iron transport
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Promoter

The prokaryotic promoter is the sync word of transcription and consists of two sequences
of length six: the -35 region and the -10 region, named after their approximate position
before the gene start. Each set of promoters associated with one sigma factor has a
consensus sequence, which can be seen as the template sync word the sigma factor uses
to search for sync word positions in the DNA.

Definition 3.1

The consensus sequence is a way of representing the results of an alignment of related
sequences, e.g. known binding sites of a certain protein. High positional nucleotide biases
in the alignment indicate a functional significance of these positions for the underlying
protein-DNA interaction. Therefore, the consensus sequence is built up using the most
frequently observed nucleotide at each position.

�

The consensus sequence of σ70 consists of the -35 region TTGACA, a spacing of 19 ar-
bitrary nucleotides and the -10 region TATAAT. However, only in few cases the actual
promoter corresponds in all bases to the consensus. More than 90 % of promoter sequences
differ in at least one nucleotide from the consensus. This fact constitutes an important
possibility for the regulation of protein synthesis: the degree of divergence determines
the rate of synthesis of the corresponding protein, i.e. genes with promoter sequences
that are far from the consensus (so-called weak promoters) are less often transcribed than
genes with promoters close to the consensus (so-called strong promoters) [AJL+02]. In
communication systems, this would correspond to intentionally introducing errors in the
sync words (at the transmitter side) to determine their rate of detection by the receiver.
While this application of a “soft sync word” hardly makes sense in technical frame syn-
chronization systems, it allows nature a first rough adjustment of the transcription rate
according to the cell requirements.

3.4.3 Eukaryotic transcription

Transcription in eukaryotic organisms is far more complex than in prokaryotes. It involves
numerous proteins (so-called general transcription factors) that interact with each other
and the DNA to detect the promoter and initiate transcription. Promoter detection can
still be seen as a process of synchronization, however, it involves several biological sync
words and a complex synchronization unit of many interacting proteins (the so-called
transcription initiation complex). Additionally, in contrast to prokaryotic cells, the nuclei
of eukaryotes contain three RNA polymerases RNAP I, RNAP II and RNAP III, each
of which is responsible for a different set of genes. RNAP II is most similar to bacterial
RNAP and responsible for the majority of genes [Ebr00]. The complexity of eukaryotic
transcription and the involvement of so many factors makes it highly flexible in its response
to environmental changes and tissue specific requirements.
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Assembly of the transcription initiation complex

Six main transcription factors are involved in transcription by RNAP II (therefore denoted
as TFII): In the first step, the transcription factor TFIID binds to the DNA, more precisely
to the TATA-box (the main promoter of eukaryotic transcription). During this step, its
subunit TBP (TATA-binding protein) is responsible for the recognition of the TATA-box
as well as a deformation of the double helix [AJL+02]. While it was long believed that
every gene has a TATA-box, many exceptions have been found in the last years. In
those cases, the transcription complex assembles on other promoter elements around the
transcription start site. Nonetheless, the TBP can roughly be considered as the main
synchronization unit of the transcription complex. After binding of TFIID to the TATA-
box, two other transcription factors (TFIIA and TFIIB) bind to the complex of TBP
and TFIID with the DNA, enabling the binding of the RNAP II and the three remaining
transcription factors TFIIE, TFIIF and TFIIH [Lat04]. After DNA melting and the
first transcribed nucleotides, all transcription factors except TFIIF dissociate from the
DNA, and RNAP II processes elongation. The end of the gene and thus, termination of
transcription is again detected by a transcription factor. The exact order of transcription
factors binding to each other and the DNA is not known with certainty and depends on
the transcribed gene, e.g. some transcription factors may assemble before binding to the
DNA. The functions of the transcription factors involved are listed in Table 3.2 in the
order of the assembly of the transcription initiation complex.

Table 3.2: Role of transcription factors during transcription by RNA polymerase II.

transcription factor function

TFIID recognizes the core promoter

TFIIA stabilizes TFIID

TFIIB enables the binding of RNA polymerase II

TFIIE enables binding of TFIIH

TFIIF guides the RNA polymerase to the promoter

TFIIH unwinds the DNA and eases the start of transcription

Promoter

The promoters of eukaryotes can be classified into three subgroups: core, proximal and
distal promoter [CH07]. The first corresponds in function and structure to the promoter of
prokaryotes and refers to the range of 35 bp before the transcription start site (gene start).
It contains the main sync words of eukaryotic transcription that are detected by proteins
of the transcription complex. The second class of promoters, the proximal promoters,
includes binding sites for transcription factors up to 250 bp before the transcription start
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site. The third class, the distal promoter, denotes all binding sites with more than 250 bp
distance to the transcription start site. Through binding of additional transcription factors
to these sites, the amount of transcription of the respective gene is regulated.

3.4.4 Prokaryotic translation

During translation, the mRNA is transformed into a protein. This step is performed by the
ribosome, a complex of two large subunits that are themselves made up of protein subunits
as well as rRNAs (ribosomal RNAs). The larger subunit is denoted as 50S subunit, the
smaller one as 30S subunit, together building the 70S ribosome1. It is important to note
that not the complete mRNA is translated into a protein but only the so-called coding
sequence, which is delimited by the start codon AUG and one of the stop codons UAA,
UAG or UGA (a codon is a nucleotide triplet).

Initiation

In the first step of translation, the 30S subunit binds to the initiator region of the mRNA
(the so-called 5’ untranslated region or 5’-UTR, see Figure 3.8). The length of the 5’-UTR
varies between 0 and 920 bp with the mean length being around 100 bp [BLZ05,SCLS07].
After binding to the 5’-UTR, the 30S subunit moves rapidly along the mRNA until it
detects the start codon (AUG, position +1) and the Shine-Dalgarno sequence (SD), a
hexamer located shortly before the coding sequence. The 16S rRNA is the part of the
30S subunit of the ribosome that is responsible for the detection of the Shine-Dalgarno
sequence via base-pairing [SJ75]. In the communications engineering sense, the Shine-
Dalgarno sequence corresponds to the sync word of translation that needs to be detected
by the 16S rRNA, the synchronization unit of the ribosome.

5’ 3’start stop

5’-UTR coding sequence 3’-UTR

SD

Figure 3.8: mRNA structure in prokaryotes.

Elongation

After the 30S subunit has detected the Shine-Dalgarno sequence, the 50S subunit joins
the complex. It then starts translating the coding sequence in steps of three nucleotides
(triplets, the so-called codons) beginning with the start codon AUG. At each step, the
ribosome serves as a platform for the tRNA (transfer RNA), a functional RNA carrying

1S: Svedberg (sedimentation coefficient); dependent on the mass and shape of the molecule as well as
the interaction with the medium; not additive.
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a specific amino acid (out of 21 possible types of amino acids). On its opposite end,
the tRNA has a so-called anticodon, a triplet of nucleotides that is complementary to
the currently translated mRNA-triplet (see Figure 3.9, left). The mapping between the
anticodon and the amino acid of the tRNA follows the genetic code (see Figure 3.9,
right), which defines the relation between the 43 = 64 codons and the 21 amino acids.
For example, the codon AGG is mapped to the amino acid Arginine (Arg).

Figure 3.9: The tRNAs map the codons in the mRNA to an amino acid (left) [NIoH08b].
This mapping follows the genetic code (right) [NIoH08b].

3.4.5 Eukaryotic translation

Like it is the case with transcription, translation in eukaryotes involves far more factors
than in prokaryotes. The ribosome is larger and comprises a 60S and a 40S subunit,
moreover, it is made up of more protein and rRNA subunits. In addition, the mRNA
has a cap of methylated guanine bases (denoted as m7G-cap) and carries 100 to 200
adenine bases at its 3’-end (denoted as poly(A)-tail). In the first step of translation, the
40S subunit binds to the 5’-UTR and scans along it until it detects a start codon in a
favorable context: This context was described by M. Kozak and is therefore named Kozak
sequence [Koz97]. Thus, the Kozak sequence can be seen as the sync word of eukaryotic
translation, and the ribosome again corresponds to the receiver in frame synchronization
systems. As soon as the 40S subunit has detected the start codon, the 60S subunit joins
the complex, and translation starts.

3.5 Protein-DNA interactions

Interactions between proteins and the DNA occur at several steps of cellular processes like
gene expression, replication and recombination [Slu05]. They include some of the tightest



34 Chapter 3 � Biological Background

and most specific molecular interactions known in molecular biology and are based on
bonds of different type and strength. In addition to specific bonds, the interaction involves
a deformation of the DNA to achieve the best possible fit of the protein. The protein
interacts with the DNA using 10 to 20 weak bonds that add together to ensure that
the interaction is both highly specific and very strong [AJL+02]. Although thousands
of protein binding sites have already been identified, it is not yet possible to accurately
predict contacts between amino acids and base pairs of the DNA [Lew07].

3.5.1 Changes in the DNA geometry

For a long time after the discovery of the DNA structure, it was not clear how proteins
read the DNA and thus recognize their specific binding sites without opening the double
helix. For 20 years after its discovery, the DNA was thought to have the same monoto-
nous structure with a uniform helical twist. However, in the 1970s, scientists found out
that the exact shape of the DNA actually depends on the nucleotide sequence on the
inside [AJL+02]: The double helix shows small irregularities in the helical twist angle
depending on the nucleotide sequence. Apart from that, the sequence on the inside of the
double helix also determines the flexibility for deformations, which is a critical feature for
the binding of proteins. In general, AT-rich regions (sequences with a high content of the
nucleotides A and T) are more flexible than GC-rich regions, which shows the importance
of the TATA-box and the -10 promoter region for transcription initiation (see Section 3.4).

3.5.2 Major and minor groove

In addition to the changes in the overall structure of the DNA depending on the nucleotide
sequence, the edges of base pairs constitute an important factor for the recognition by
proteins. These edges are exposed on the surface of the helix, presenting a distinctive
pattern of bonds [Lew07]. As the two edges of base pairs do not comprise the same
angle, the DNA is structured into the major and minor groove (see Figure 3.10). The
interactions of proteins with the base pairs inside the double helix occur almost exclusively
to the major groove since here – in contrast to the minor groove – the pattern of bonds
markedly differs between A-T and G-C base pairs [AJL+02].

Figure 3.10: Major and minor groove of the DNA.
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3.5.3 Fundamental interactions

Binding of proteins to the DNA occurs via different structural motifs containing alpha-
helices and beta-sheets, two common folding patterns of proteins [AJL+02]. Both form
through hydrogen bonding of amino acids, yielding a regular helix in case of the alpha-helix
and a pleated sheet in case of the beta-sheet (see Figure 3.11). The three most common
motifs of protein-DNA interactions during gene expression based on these folding patterns
are the helix-turn-helix motif, the zinc finger and the leucine zipper motif [AJL+02].

Figure 3.11: Structure of a protein [NIoH08b].

3.5.4 Target search of proteins on the DNA

The exact details of promoter detection by the RNA polymerase (RNAP) or, more gen-
erally, how DNA-binding proteins find their cognate site could still not be clarified un-
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ambiguously. In the first step, the protein diffuses randomly through the cell (three-
dimensional motion) until it associates with the DNA molecule. It was long assumed that
if the attached site is not its target site, the protein would dissociate and rebind at another
random position. However, Riggs et al. measured in 1970 that the association rate of the
E.coli LacI repressor and its target sequence on DNA is much higher than the rate achiev-
able by three-dimensional diffusion [RBC70]. In 1981, Berg, Winter and von Hippel pub-
lished a seminal series of articles presenting a theory for protein-DNA interactions which
provided a first explanation for this faster-than-diffusion search [BWvH81, WBvH81].
They conjectured that the dimensionality changes while the protein searches its target
site; the protein at first randomly binds to the DNA in a round of three-dimensional
diffusion through the cell and subsequently moves along it in a process of one-dimensional
diffusion. On short ranges, the one-dimensional search round was assumed to be a sliding
process along the double helix. Two additional mechanisms were later suggested to sup-
plement sliding, namely hopping and intersegmental transfer (see [vHB89] and references
therein). These three processes could first be visualized in 1999 for the RNA polymerase
of E. coli over several hundred base pairs [BGZY99,GZR+99].

3.6 Gene expression as a communication system

In this section, the analogies between gene expression in prokaryotes and communications
engineering systems are discussed. The following basic analogies exist:

⊲ The DNA contains all the information necessary for protein synthesis; hence, it can
be regarded as the storage medium for the message that is to be transmitted.

⊲ Transcription initiation corresponds to a process of frame synchronization, where
the sigma factor detects the promoter sequences (two biological sync words). Sub-
sequently, the RNA polymerase processes transcription, i.e. reads out the genetic
information.

⊲ Translation can be divided into two steps. At first, the ribosome detects the Shine-
Dalgarno sequence (a biological sync word) that marks the beginning of the coding
sequence. In the second step, mRNA triplets are mapped to amino acids by the
molecule tRNA (transfer RNA). Since three nucleotides are mapped to one amino
acid, this step can be seen as a process of decoding during which redundancy is
removed.

⊲ Mutations correspond to transmission errors and noise that is added to the signal
during transmission. Mutations occur during all stages of gene expression due to
radiation and external influences and can damage the genetic information in the
DNA or mRNA.

A channel model of gene expression is depicted in Figure 3.12. Steps (A) - (E) are
detailed in the following subsections (Section 3.6.1 - Section 3.6.4). Additionally, the



3.6 Gene expression as a communication system 37

analogies between frame synchronization and protein-DNA interactions are derived in
Subsection 3.6.5 due to their importance for subsequent chapters.

Figure 3.12: Channel model for the gene expression of prokaryotes.

3.6.1 Non-protein-coding DNA

As mentioned in Section 3.3.5, eukaryotic genomes contain a high percentage of DNA that
does not code for proteins and whose function is not yet understood. Taft et al. [TPM07]
found a relationship between the amount of non-protein-coding DNA and eukaryotic com-
plexity, which might suggest that the former was added during evolution to protect the
vital genetic information. This line of thought was later taken up by G. Battail who tried
to find theoretical evidence for error-correcting codes in eukaryotic genomes [Bat04,Bat06].
These theories are supported by the fact that the genomes of eukaryotes generally contain
by far more redundancy (> 90% of the genome) than those of prokaryotes (only < 5%
of the genome) which have such short reproduction cycles that errors in single cells have
no great impact. Instead, prokaryotes aim at decreasing the energy cost of cell processes
like DNA replication by keeping the DNA as short as possible. If this hypothesis holds
true, the addition of non-coding DNA would correspond to an encoding process, during
which redundancy is added to protect the data. However, no indication has yet been
found for specific error-correcting codes embedded in the genetic information – except for
a repetition code: many genes exist in numerous copies spread along the genome [Lew07].
In 2005, Lolle et al. [LVYP05] presented a first experimental support for the existence of
error-correction capabilities of eukaryotic cells: They inserted a point mutation in a single
gene of the plant Arabidopsis thaliana and observed that the mutation was reversed within
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two generations in about 10 % of the offsprings. In the following, evolution is therefore
modeled as a process of encoding, during which extra information is added (l2 > l1) to
protect the genetic information (see Figure 3.12, (A)).

3.6.2 Transcription

Transcription starts as soon as the RNA polymerase has detected the promoter shortly be-
fore the gene. Therefore, transcription initiation can be seen as a synchronization process,
involving the detection of the two promoter regions (see Figure 3.13) and subsequent ex-
traction of the genetic information (l3 < l2, see Figure 3.12, (B)). The RNA polymerase
and its sigma factor correspond to the receiver and its synchronization unit. Since the
distance between any two promoters varies, transcription corresponds to an asynchronous
transmission (see Section 2.2.2).

21

...

...

...

...message

gene(s)-10 region

sync wordrandom data

random nuc.

sync word

-35 region

promoter

random nuc.

random data

Figure 3.13: Analogy between promoter regions and sync words.

3.6.3 Translation

Similar to transcription, translation is initiated when the ribosome has detected the Shine-
Dalgarno sequence, the sync word of translation (l4 < l3, see Figure 3.12, (C)). The
mapping of codons to amino acids corresponds to a process of decoding, during which
redundancy is removed by mapping three nucleotides to one amino acid (l5 < l4, see
Figure 3.12, (D)). Since mRNAs generally contain only one Shine-Dalgarno sequence (even
those with more than one coding sequence), translation can be considered as a synchronous
transmission where data frames contain exactly one sync word (see Section 2.2.1).

3.6.4 Mutations

The DNA, though protected by the cell membrane, encounters different types of radia-
tions that may lead to mutations and damage the genetic material. Furthermore, errors
and mutations may occur during transcription and translation as well as during the short
lifetime of the mRNA. In addition to these errors mutating the genetic information that
is to be synthesized, mutations may also occur in the genes encoding for the proteins
involved as well as the proteins themselves, i.e. the RNA polymerase for transcription,
the ribosome and the tRNA for translation. These mutations may result in the failure
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to properly detect synchronization sequences or to correctly map codons to amino acids.
Thus, they can be modeled as errors that occur during the transmission of the template
synchronization word or the mapping from the encoder to the receiver (see Figure 3.12,
(E)). Hence, synchronization and decoding would be performed using an erroneous tem-
plate synchronization word and wrong mapping, respectively.

3.6.5 Protein-DNA interactions

Interactions between proteins and the DNA constitute the crucial first step of important
cell processes, as for example the interaction between the RNA polymerase and the DNA
initiates transcription (see Section 3.4). During protein-DNA interactions, a protein binds
to the DNA double-helix and searches for its cognate site (see Section 3.5.4). This can be
compared to the receiver in technical systems which evaluates the incoming data stream
symbol by symbol. However, while the likelihood function L(µ) in frame synchronization
is usually defined based on the cross-correlation function between the sync word and the
data stream (see Section 2.2), in biological synchronization processes it is based on the
binding energy between protein and DNA [PG02]. The binding region of the protein that
is in contact with the DNA is highly specific due to the geometry of possible bonds to the
nucleotides (see Section 3.5). Therefore, one certain sequence – the consensus sequence –
is bound tightly, while strong variations of this sequence may not allow the formation of
hydrogen bonds with the protein. The binding region can therefore be considered as the
template sync word used for comparison with the data stream. If the protein encounters
its target site, it is strongly attached to it based on the concordant pattern of bonds and
hereby halted in its movement along the DNA. This enables the initiation of its regulatory
process. The analogies are summarized in Table 3.3.

Table 3.3: Comparison between synchronization in communication systems and during
protein-DNA interactions.

communication systems protein-DNA interactions

data received data stream DNA

alphabet arbitrary (mostly binary) quaternary

template sync word stored in the memory of the
receiver

binding region of the protein

correlator receiver protein

L(µ) cross-correlation binding energy

As mentioned in Section 3.4, not only the optimal target site sequence is detected (the
consensus sequence) but many variations of it. As mentioned in Section 3.4.2, it is ob-
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tained by using the most frequently observed nucleotide at each position of the target
site. Therefore, the target sites of protein-DNA interactions can be considered as a “soft
sync word” whose homology to the consensus determines the rate of detection (see also
Section 3.4.2). It should be mentioned that the analogies derived in this section apply in
the same way to interactions between proteins and the mRNA as in the case of translation
initiation where the ribosome binds to the mRNA initiator region.

3.7 Summary

This chapter aimed at providing the basics of molecular biology. After necessary terms
and definitions, the process of gene expression (protein synthesis) was detailed for bacte-
ria (prokaryotes) and higher organisms (eukaryotes). Subsequently, interactions between
proteins and the DNA were elaborated due to their importance for later synchronization
models. Furthermore, the analogies between gene expression and digital data transmission
were derived. The following points should be taken along to subsequent chapters:

⊲ Organisms are divided into prokaryotes and eukaryotes. The former comprise the
mostly unicellular organisms without a cell nucleus (especially bacteria), the latter
refer to all higher organisms, which have a cell nucleus and are usually multi-cellular.

⊲ The DNA is organized in a double-helix and can be considered as a digital signal of
the alphabet A = {A,C,G, T}. The entire hereditary information encoded in the
DNA is referred to as the genome.

⊲ During gene expression, parts of the genome – the genes – are transformed into
proteins in the two steps transcription and translation. During the former, the
genes are copied into a template molecule, the mRNA (messenger RNA). During
the latter, a part of the mRNA (the coding sequence) is then transformed into a
protein.

⊲ Short DNA motifs mark the beginning of the gene and the coding sequence: For tran-
scription, the promoter sequence is located shortly before the gene. For translation,
the Shine-Dalgarno sequence (prokaryotes) and the Kozak sequence (eukaryotes),
respectively, are located shortly before the coding sequence. These are detected
by the proteins RNA polymerase (transcription) and the ribosome (translation) to
initiate the respective process.

⊲ It could be demonstrated for the RNA polymerase and is assumed to be the case
for all DNA-binding proteins that they attach to the double-helix and slide along it
until they find the short DNA motif before the regulatory regions (e.g. the genes).

⊲ Substantial analogies exist between gene expression and communication systems,
especially between the protein-DNA / protein-mRNA interactions underlying tran-
scription and translation on the one hand and frame synchronization in digital data
transmission on the other hand.
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As outlined in Chapter 2, the receiver in digital data transmission evaluates each posi-
tion of the incoming data stream with respect to the similarity to the sync word that
indicates the beginning of a message. Analogously, DNA-binding proteins randomly bind
to the double-helix and move along it to find their target site, a short sequence of nu-
cleotides. This short DNA motif marks the beginning of a regulatory region (e.g. the gene
in case of transcription or the coding sequence in case of translation) (see Chapter 3).
In technical systems, the sync pattern is chosen from all possible patterns such that the
probability of false synchronizations is minimized. In this chapter, two sync patterns un-
derlying protein-DNA / protein-mRNA interactions are investigated with respect to their
synchronization properties: the bacterial promoter (the sync word of transcription) and
the Shine-Dalgarno sequence (the sync word of bacterial translation).

In Section 4.1, the promoter sequences (the -35 region and the -10 region) of the bacterium
Escherichia coli are investigated. Their synchronization properties are evaluated using
an adapted autocorrelation function and a Markov analysis of the genome. Moreover,
the promoter is modeled as a distributed synchronization sequence, where the spacing
between the -35 promoter region and the -10 promoter region corresponds to unconstrained
nucleotides not used for synchronization purposes. In Section 4.2, the prokaryotic Shine-
Dalgarno sequence is investigated using the information theoretic measures Kullback-
Leibler divergence and mutual information. The results are detailed in terms of their
impact on translational frameshifts resulting from shifted synchronizations.
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4.1 Promoter in Escherichia coli

In this section, the synchronization properties of the promoter sequences in the bacterium
Escherichia coli (E. coli) are investigated. The promoters act as synchronization patterns
that need to be detected by the RNA polymerase to indicate the beginning of the gene,
i.e. that part of the DNA that is copied in the process of transcription. In the DNA
of prokaryotes, these promoters consist of two regions of six nucleotides each (so-called
hexamers): The first one is located around 35 base pairs before the start site, the second
one around 10 base pairs before the start site (see Figure 4.1). Due to their position,
the two regions are called -35 region and -10 region (or also Pribnow-box), respectively.
Position +1 refers to the transcription start site (TSS).

5’ 3’gene(s)

nucleotides ∈ {A,C,G,U}
-35 region

6 bp 6 bp

-10 region15-21 bp

promoter

TSS

-32 -10 +1

Figure 4.1: Structure of the promoter region in prokaryotes.

The consensus sequence (i.e. the optimal sequence) for the detection by the main sigma
factor σ70 is given by [Lew07]:

TTGACA .................................. TATAAT ............ A

︸ ︷︷ ︸
-35 region

︸ ︷︷ ︸
17 arbitrary nucleotides

︸ ︷︷ ︸
-10 region

︸ ︷︷ ︸
6 arbitrary nucleotides

︸︷︷︸
TSS

In addition to this consensus sequence, many variations of it occur in the genome and are
successfully detected by the RNA polymerase. However, the homology to the consensus
decides about the frequency of detection: sequences far from the consensus result in a
weaker binding energy which does not always suffice to halt the movement of the RNA
polymerase along the DNA (see Section 3.4.2).

4.1.1 Autocorrelation properties

One measure to rate the synchronization properties of a sequence s is its aperiodic auto-
correlation function (see Section 2.4.2):

ϕss(τ) =

L−|τ |∑

k=1

sk · sk+|τ |. (4.1)
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For reasons of clarifying the application to promoter sequences in subsequent sections,
Eq. (4.1) can be rewritten in a generalized form

ϕss(τ) =

L−|τ |∑

k=1

D(sk, sk+|τ |), (4.2)

where D denotes a matrix defining the multiplication of the elements sk and sk+|τ | with
sk indexing the rows of D and sk+|τ | indexing the columns of D. In the binary, antipodal
case, i.e. for sk ∈ {−1; +1}, this results in

sk+|τ | → +1 −1 sk ↓

Dbin =

(
+ 1 −1

− 1 +1

)
+ 1

− 1

In order to avoid shifted synchronizations, the autocorrelation function of the sync word
should have a sharp peak at τ = 0 and

⊲ smallest possible values for τ 6= 0 if unambiguous phase recovery after demodulation
is guaranteed.

⊲ smallest possible absolute values for τ 6= 0 if phase ambiguities are expected af-
ter demodulation (e.g. for BPSK modulated data streams), i.e. the autocorrelation
function should be as similar as possible to the Dirac delta function δ(t) [Lev75].

As introduced in Section 2.4.2, the peak sidelobe level PSL is a measure of the synchro-
nization properties of a sequence:

PSL = max
τ\{0}

|ϕss(τ)|. (4.3)

If correct phase recovery is guaranteed, the absolute values in Eq. (4.3) are omitted since
negative values indicate strong dissimilarity and therefore minimize the probability of
false synchronizations:

PSL’ = max
τ\{0}

ϕss(τ). (4.4)

4.1.2 Adapted autocorrelation function

To rate the synchronization properties of the promoter sequences, the autocorrelation
function has to be adapted to the quaternary alphabet of nucleotides n ∈ A = {A,C,G, T}
and the product in Eq. (4.1) has to be redefined with respect to its biological meaning.
Apparently, nature does not use a multiplication as in the field of real or complex numbers,
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thus, the product has to be redefined such that it rates the effect of nucleotide matches
and mismatches on the synchronization quality of the sequence. In order not to violate
the properties of aperiodic autocorrelation functions, which are

ϕss(0) = L, (4.5)

ϕss(τ) = 0 ∀ |τ | > (L − 1), (4.6)

an accordance of nucleotides is rated by +1 and a divergence of nucleotides with a nega-
tive value such that mismatches are punished with an overall weight of −1. As mentioned
before, the binding energy decides about detection of the promoter regions (i.e. correct
synchronization). This implies that if during autocorrelation shifted versions of the inves-
tigated DNA sequence yield low (i.e. strong) binding energies, they might cause shifted
synchronizations. Thus, the adapted autocorrelation has to be related to the binding
energy of the shifted sequences. Therefore, the individual values rating mismatches are
derived from the binding energy between sigma factor and DNA. In [KOA05], H. Kiryu
et al. calculated the effect of the nucleotides on the binding energy depending on their
position in the promoter of E. coli. Figure 4.2 shows the average effect of the four nu-
cleotides on the binding energy. It is important to note that negative energies reflect a
strong binding, whereas positive energies imply a weak binding.

A C G T

−0.1 

−0.05

0    

0.05 

0.1  

0.15 

−0.15

n

e
(n

)

Figure 4.2: Average contribution of nucleotides in the promoter sequence to the binding
energy between the sigma factor and the promoter in E. coli.

It can be seen that the nucleotides A and T in the promoter have on average a strength-
ening effect on the contact between sigma factor and DNA sequence (e = −0.11 and
e = −0.06, respectively), whereas the nucleotides C (e = +0.10) and G (e = +0.07) make
the contact loose. A mismatch during autocorrelation is rated by the absolute difference
|e(nx) − e(ny)| between the binding energies of the two nucleotides nx and ny, where
nx, ny ∈ A = {A,C,G, T}:

d(nx, ny) =

{
1 for nx = ny

c · |e(nx) − e(ny)| for nx 6= ny
. (4.7)
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The constant c is still to be determined since in addition to reflecting the differences
of binding energies, the values of d(nx, ny) have to satisfy Eq. (4.6), i.e. the expected
value E{d(nx, ny)} has to be zero if assuming independently and uniformly distributed
nucleotides:

E{d(nx, ny)} = 0, (4.8)

which corresponds to

∑

nx,ny

d(nx, ny) = 0,

⇒
∑

nx,ny
nx=ny

d(nx, ny)

︸ ︷︷ ︸
(4.7)
= 4

+
∑

nx,ny

nx 6=ny

d(nx, ny) = 0,

⇒
∑

nx,ny
nx=ny

d(nx, ny)
!
= −

∑

nx,ny

nx 6=ny

d(nx, ny) = −4. (4.9)

Eq. (4.9) is fulfilled if scaling the individual energy differences in Eq. (4.7) by the value

c =
−4

∑
nx,ny

nx 6=ny

|e(nx) − e(ny)|
=

−4

1.56
= −2.56. (4.10)

In order to adapt the autocorrelation function to the quaternary alphabet of nucleotides
and detection by the RNA polymerase and its sigma factor, Eq. (4.2) is used with a matrix
Dnuc containing the values of d(nx, ny), i.e. Dnuc(sk, sk+|τ |) = d(nx = sk, ny = sk+|τ |),
which results for the presented case of E. coli promoters in

sk+|τ | → A C G T sk ↓

Dnuc =




1 −0.55 −0.46 −0.11

− 0.55 1 −0.08 −0.44

− 0.46 −0.08 1 −0.36

− 0.11 −0.44 −0.36 1




A

C

G

T

Therefore, the autocorrelation function ϕ̃ss(τ) of E. coli promoter sequences is given by

ϕ̃ss(τ) =

L−|τ |∑

k=1

Dnuc(sk, sk+|τ |). (4.11)

This adapted autocorrelation function allows to evaluate the synchronization properties
of promoter sequences. It considers a linear algebraic addition of binding energies, which



46 Chapter 4 � Analysis of Biological Synchronization Words in Bacteria

is reported in biological literature to be a valid assumption (see e.g. [DSS03, SF98]). It
has to be mentioned that the matrix values of Dnuc are calculated based on the data
from [KOA05], i.e. the adapted autocorrelation is based on the interaction between sigma
factor and promoter regions in E. coli and is, therefore, specific for this biological syn-
chronization process.

4.1.3 Results

Figure 4.3 shows the autocorrelation functions of the consensus sequences of the -35 region
(left) and the -10 region (right) calculated using Eq. (4.11). As mentioned before, the
autocorrelation function of sync words should have small and possibly negative sidelobes to
minimize the probability of false synchronizations. This criteria seems to be well satisfied
for the -35 region (Figure 4.3, left), whereas the autocorrelation function of the -10 region
(Figure 4.3, right) has relatively high sidelobes for |τ | = 2 and |τ | = 3, which indicates
periodicities in the sync word that may lead to shifted synchronizations. Calculation of
the peak sidelobe level for both promoter regions according to Eq. (4.4) confirms this
observation:

PSL’−35 = ϕ̃−35(|τ | = 2) = 0.45, PSL’−10 = ϕ̃−10(|τ | = 3) = 1.89.
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Figure 4.3: Autocorrelation function of the consensus sequences of the -35 promoter
region (left, TTGACA, L = 6) and the -10 promoter region (right, TATAAT, L = 6).

To rate the autocorrelation properties of the promoter sequences, the values of PSL’ are
additionally calculated for all 46 = 4096 possible nucleotide sequences of length L = 6.
The mean value and the standard deviation of the resulting values are listed in Table 4.1.
Figure 4.4 shows the histogram of PSL’ with the values of the -35 and -10 region high-
lighted by vertical lines. It can be seen that the value of the -35 promoter sequence is well
below average, whereas those of the -10 promoter sequence lies above the mean value. In
fact, only 11.1 % of all possible sequences of length L = 6 have better autocorrelation
properties with respect to the peak sidelobe level than the -35 region. Opposed to that,
75.4 % of all sequences have lower values of PSL’ compared to the -10 region.



4.1 Promoter in Escherichia coli 47

Table 4.1: Mean and standard deviation of PSL’ for all possible sequences of A =
{A,C,G, T} with length L = 6.

mean std. deviation

PSL’ 1.32 0.77
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Figure 4.4: Histogram of the peak sidelobe level PSL’ for all possible sequences of
A = {A,C,G, T} with length L = 6.

4.1.4 Interpretation

The outstanding PSL’ value of the -35 region compared to those of the -10 region suggests
that the synchronization takes place in two steps: First, the -35 region has to be detected
out of all possible sequences with high accuracy to enable localization of the transcription
start site (see Figure 4.5, (A)). In the second step, the -10 region is detected, however,
due to the synchronization conducted before, the sigma factor only needs to detect the
-10 region out of around seven sequences based on the shape and limited deformability
of the sigma factor that allow a variable spacing of 15 to 21 base pairs between the
two promoter regions (see Figure 4.5, (B)). Therefore, the sequence of the -10 promoter
region is less important for synchronization. This brings up the conclusion that the two
promoters evolved to serve two tasks with different priorities and during different steps of
transcription initiation: While the -35 region is indispensable for indicating the close-by
transcription start site and, thus, needs to have excellent synchronization properties, the
sequence and structure of the -10 region seems to play a more important role during later
steps of transcription initiation. These steps may e.g. impose stronger constraints on
the AT-richness (i.e. a high content of the nucleotides A and T) than on the sequence’s
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detectability: The DNA double helix is easily opened and unwound in AT-rich regions
which is necessary during transcription initiation [SY99]. Therefore, the AT-richness of
the -10 region is assumed to have had a stronger impact on promoter evolution than its
synchronization properties and, thus, the latter evolved with lower priority.

Figure 4.5: Detection of promoters by the sigma subunit.

To corroborate the assumption about the stronger importance of the AT-richness com-
pared to the synchronization properties, the PSL’ values for all 26 = 64 possible nucleotide
sequences of length L = 6 made up of only A and T are calculated. The mean value and
the standard deviation of the resulting values are listed in Table 4.2. Figure 4.6 shows the
histogram of PSL’ for the considered sequences. Recalling the calculated value of the -10
region (PSL’ = 1.89) shows clearly that it belongs to the sequences with highly below-
average values if restricting the alphabet to A′ = {A, T}. In fact, no other sequence of
the 64 ones considered has a better PSL’ value. This result strongly supports the conclu-
sion that the bacterial promoter sequences evolved with respect to their synchronization
properties: While the -35 region is an excellent synchronization pattern, the -10 region
seems to constitute a good trade-off between the AT-richness required for DNA opening
/ unwinding and the sequence’s detectability.

Table 4.2: Mean and standard deviation of PSL’ for all possible sequences of A′ = {A, T}
with length L = 6.

mean std. deviation

PSL’ 2.89 0.76

4.1.5 The promoter as a distributed synchronization sequence

As detailed in Section 2.5.4, a distributed synchronization sequence is a sync word con-
taining unconstrained bits, i.e. the synchronization bits are interspersed with data bits
(denoted by *). The receiver knows the unconstrained positions a priori and thus ignores
them for synchronization. Due to the 15 to 21 arbitrary nucleotides between the -35 and
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Figure 4.6: Histogram of the peak sidelobe level SPL’ for all possible sequences of
A′ = {A, T} with length L = 6.

the -10 region, the promoter of E. coli can be considered as a distributed sync word with
12 synchronization bits separated midway by a sequence of 17 unconstrained bits. To rate
the synchronization properties of this pattern, the adapted autocorrelation function from
Section 4.1.1 is extended by the following definition:

D(sk, ∗) = D(∗, sk+|τ |) = D(∗, ∗) = 0.

Including this definition into the derivation of the adapted autocorrelation function
(Eq. (4.11)) yields an extended matrix D′

nuc:

sk+|τ | → A C G T * sk ↓

D′
nuc =




1 −0.55 −0.46 −0.11 0

− 0.55 1 −0.08 −0.44 0

− 0.46 −0.08 1 −0.36 0

− 0.11 −0.44 −0.36 1 0

0 0 0 0 0




A

C

G

T

*

Figure 4.7 shows the autocorrelation function of the promoter consensus sequence as a
distributed sequence. The PSL’-value is ϕss(|τ | = 2) = 2.23.

The left-most and right-most part represent the cross-correlation between the -35 and the
-10 region, while the middle part stems from the autocorrelation of the -35 region as well
as the -10 region. To rate the quality of the autocorrelation properties of the promoter
sequence, the PSL’-values of all possible distributed sequences made up of two hexamers
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Figure 4.7: Autocorrelation function of the promoter sequence as a distributed sequence.

separated by 17 unconstrained bits are calculated. Due to the symmetry of the cross-
correlation function (ϕxy(τ) = ϕyx(τ)), only 223 + 2048 of the 412 possible sequences from
the alphabet A = {A,C,G, T} yield different values. This analysis reveals that 49.6 %
of the sequences exhibit a lower PSL’-value compared to the promoter (PSL’=2.23). If
again restricting the -10 promoter region to the alphabet A′ = {A, T}, still 33.0 % of the
sequences have a lower PSL’-value. This poor performance of the promoter as a distributed
sequence strengthen the conclusion drawn in Section 4.1.4 that the two promoter regions
act as separate synchronization sequences with the -35 sequence being the more important
detection signal and the -10 region primarily serving DNA opening.

4.1.6 Markov analysis

As detailed in Section 2.4, the sync word should be chosen such that it minimizes the
probability of shifted synchronization as well as of random occurrences. The latter is
independent of the sync word in case of i. i. d. symbols but needs to be taken into account
if the data stream exhibits statistical dependencies. In that case, the sync word should be
a pattern that occurs with the smallest possible probability by chance. If the sync word
has to satisfy additional constraints that preclude it being chosen as the most unlikely
sequence, it should instead be avoided in the surrounding data stream, i.e. it should be
an under-represented word – occurring exceptionally rare – with respect to the Markov
model Mm of the data stream. The exceptionality of a pattern r depends on the relation
between expected and observed occurrences in the data stream. The expected number
E{N̂m(r)} of occurrences of a pattern r depending on Mm is given by (see Section 2.4.1)

E{N̂m(r)} =
N({r1, . . . , rm+1}) · . . . · N({rL−m, . . . , rL})

N({r2, . . . , rm+1}) · . . . · N({rL−m, . . . , rL−1})
=

L−m∏
x=1

N({rx, . . . , rm+x})
L−m∏
x=2

N({rx, . . . , rx+m−1})
,

(4.12)
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the observed number of occurrences of the word r is simply given by

N(r) =

Nd−L+1∑

µ=1

1({dµ, . . . , dµ+L−1} = {r1, . . . , rL}), (4.13)

where Nd refers to the length of the analyzed sequence {d1, . . . , dNd
} (here: the E. coli

genome).

Exceptionality score

The exceptionality of words in the data stream is measured using the following probability,
called p-value [RRS05]:

p(r) = Pr{N̂m(r) ≥ N(r)}, (4.14)

If the p-value is close to zero, the word is exceptionally frequent since there is almost no
chance of observing it so many times in random sequences. In contrast to that, if the
p-value is close to one, the probability Pr{N̂m(r) < N(r)} is close to zero. Thus, the word
is exceptionally rare under the model since there is almost no chance that it occurs so
rarely in random sequences [RRS05].

For calculation of the p-values, the statistical distribution of the count N̂m(r) is required.
Since it is computationally extensive to derive the exact distribution – especially for long
sequences and orders m ≥ 2 – two approximations are frequently used: Gaussian or
compound Poisson distribution. The former yields accurate results for short word lengths
L, the latter is applicable for long words. Both approximations were shown to be highly
accurate for sequence lengths Nd ≥ 10000 [RRS05].

The software R’MES – aimed at finding exceptional sequence motifs in DNA sequences
– is used to evaluate the representation of sequences in the E. coli genome (available
at [SfSB07], see [RRS05, RSV07] for more information). It calculates an exceptionality
score derived from the p-value: For reasons of better resolution of very low and very
high values, the interval p ∈ [0; 1] is mapped to R such that positive values indicate
exceptionally frequent words and negative values indicate exceptionally rare words. To
ensure accurate results, the complete sequence length Nd should not be lower than 3000 ·
4m [Sch06], and the order of the Markov model should be chosen as m = L − 2 (see
e.g. [RRS05]).

Promoter analysis

To gain a more detailed insight into the representation of the promoter sequences, the
genome is divided into two categories: promoter regions and non-promoter regions. The
former are taken as the region ranging from 300 bp before the TSS to 200 bp after the TSS
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of known promoters downloaded from RegulonDB [SGCPG+06] (see Appendix C.1.1 for
more information on the used dataset). The non-promoter regions simply comprise the
rest of the genome, i.e. those regions that do not fall into the promoter regions of either
strand. Subsequently, a Markov analysis is conducted on the two categories as presented
above using the software R’MES. The Markov model is derived from the whole genome
for the maximum order m = 4 (since L = 6 for the promoter regions), and the Gaussian

approximation is used to derive the exact distribution of N̂m(r) (since the promoters
constitute short words). The order of the Markov model underlying the DNA is actually
unknown, however, previous investigations of the E. coli genome (conducted until order
m = 6) showed that models of low orders overlooked exceptional motifs [RRS05].

Results and interpretation

The resulting scores for the occurrence of the two promoter sequences on the forward
strand are listed in Table 4.3.

Table 4.3: Scores of the -35 promoter region (TTGACA) and the -10 region (TATAAT)
on the forward strand of the E. coli genome.

promoter regions non-promoter regions

sequence TTGACA TATAAT TTGACA TATAAT

observed count 26 32 507 473

expected count 30 36 624 705

p-score -1.07 -0.80 -5.74 -10.85

It can be seen that both promoter sequences are occurring almost as often as expected in
the promoter regions (scores close to zero). In contrast to that, both are clearly under-
represented in the non-promoter regions (negative scores), which indicates that they were
evolutionary avoided in those regions. For reasons of comparison, Figure 4.8 shows the
histogram of scores in the promoter regions (left) and in the non-promoter regions (right)
for all 4096 possible sequences of length L = 6. The under-representation of both promoter
sequences is in accordance with the objective of frame synchronization to avoid the sync
pattern outside the header of transmitted messages to prevent synchronizations on random
data. Among all 4096 possible sequences, only 5.9 % have lower scores than the -35 region,
however, only 15 of these sequences (0.36 %) also have better synchronization properties
(regarding the PSL’-value). In case of the -10 region, none of the sequences with a lower
score and made up of only A and T has better synchronization properties. This fact
again indicates that the promoter sequences evolved with respect to their synchronization
properties. Moreover, it strengthens the conclusion from Section 4.1.5 that both promoter
regions act as separate synchronization signals.
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Figure 4.8: Histogram of p-scores in the promoter regions (left) and in the non-promoter
regions (right).

4.2 Translation initiator region in Escherichia coli

After the RNA polymerase has copied a gene into mRNA in the process of transcription,
the ribosome initiates translation of the mRNA into a protein (see Section 3.4.4). After
binding to the 5’-UTR, the 30S ribosomal subunit moves rapidly along the mRNA until
it detects the start codon (AUG, position +1) and the Shine-Dalgarno sequence (SD), a
hexamer located shortly before the coding sequence (see Figure 7.1).

5’ 3’AUG8-13 bp

+1

SD

-10 nucleotides ∈ {A,C,G,U}
coding sequence(s)

start codon6 bp5’-UTR

Figure 4.9: Structure of the initiator region of prokaryotic mRNA.

The Shine-Dalgarno (SD) sequence hereby acts as the sync word to ensure reliable de-
tection of the close-by start codon. Its consensus sequence (i.e. its optimal sequence for
detection by the ribosome) is given by [CBKJ94]:

AGGAGG ............ AUG

︸ ︷︷ ︸
SD sequence

︸ ︷︷ ︸
6 arbitrary nucleotides

︸ ︷︷ ︸
TLS
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Similarly to the promoter sequences, numerous variations of this consensus sequence are
also detected by the ribosome. However, the homology to the consensus decides about
the frequency of detection. In the following, the initiator region and the coding sequence
of Escherichia coli are investigated using information theoretic measures.

4.2.1 Sequence data

A set S of 3194 E. coli mRNA sequences is downloaded from the NCBI data
base [NCfBI08] (see Appendix C.1.3 for more information on sequence extraction). There-
after, the mRNA sequences are aligned (centered) to the start as well as to the stop codon.
Since the coding sequences (CDS) and the untranslated regions (UTRs) do not all have
the same length, this alignment implies the need to cut them to a fixed length: the UTRs
are truncated to 200 bp each and the middle part of the coding sequence is cut out leaving
the first and the last 300 bp. The sequence layout is presented in Figure 4.10.

5’ UTR start codon CDS CDS (ctd.) stop codon 3’ UTR

. . . AUG . . . . . . UAA . . .

. . . AUG . . . . . . UAG . . .
...

...
...

...

. . . AUG . . . . . . UGA . . .

. . . AUG . . . . . . UAG . . .

200 bp 300 bp 300 bp 200bp

Figure 4.10: Sequence layout of aligned mRNA sequences.

4.2.2 Kullback-Leibler divergence

The relative entropy – or Kullback-Leibler divergence – is a measure for the dissimilarity
of two probability distributions pX(x) and qX(x). It is defined as [CT91]

D(pX ‖ qX) =
∑

x∈X

pX(x)ld
pX(x)

qX(x)
. (4.15)

An intuitive interpretation of D(pX ‖ qX) based on Shannon’s compression theorem is
that it refers to the additional number of bits required for transmission of symbols that
are distributed according to pX(x) if they are coded according to a wrongly estimated
distribution qX(x). Note that D(pX ‖ qX) is always non-negative (i.e. D(pX ‖ qX) ≥ 0),
in general not symmetric (i.e. D(pX ‖ qX) 6= D(qX ‖ pX)) and zero for pX(x) = qX(x).
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Positions in the mRNA or DNA whose nucleotide distribution strongly differ from the
background distribution (in prokaryotes usually close to a uniform distribution) are ex-
pected to be of functional significance to cell processes, since non-essential genetic features
tend to be degraded over the course of evolution. To investigate the Shine-Dalgarno se-
quence, the actual distribution pX(x) is estimated by the nucleotide distribution at each
position of the alignment S of mRNA sequences. The general nucleotide distribution ob-
served in the genome is used as the assumed probability qX(x). Then, the Kullback-Leibler
divergence D(p̂S(n, i) ‖ p̂S(n)) at position i of the dataset is calculated as

D(p̂S(n, i) ‖ p̂S(n)) =
∑

n∈A

p̂S(n, i)ld
p̂S(n, i)

p̂S(n)
, (4.16)

where n denotes a nucleotide from the alphabet A = {A,C,G, T}, p̂S(n, i) the relative
occurrence of base n at position i of the aligned dataset S and p̂S(n) the overall occurrence
frequency of nucleotide n in the dataset. It is important to note that D(p̂S(n, i) ‖ p̂S(n)) is
only an estimate of the Kullback-Leibler divergence and that the accuracy of this estimate
strongly depends on the size of the dataset.

For detection by the ribosome, the Shine-Dalgarno sequence can be seen as a first synchro-
nization signal indicating the close-by start codon, which serves as a second synchroniza-
tion signal. Figure 4.11 shows the Kullback-Leibler divergence around the Shine-Dalgarno
sequence (position -13 to -7) and the start codon (position +1 to +3). Since the sequences
are aligned to the position +1, the conservation of the start codon is higher (almost 2)
than that of the Shine-Dalgarno sequence whose position varies between 5 and 13 bp be-
fore the start codon. The Kullback-Leibler divergence of the first base in the start codon
is below those of the second and third base due to alternative start codons: GUG and
UUG are reported to occur in 10 % of bacterial mRNAs [Koz99].
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Figure 4.11: Kullback-Leibler divergence around the Shine-Dalgarno sequence (position
-13 to -7) and the start codon (position +1 to +3).
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4.2.3 Mutual information

The mutual information is a measure for the mutual statistical dependence between two
random variables X and Y . It is defined as [CT91]

I(X; Y ) =
∑

x∈X

∑

y∈Y

pX,Y (x, y)ld
pX,Y (x, y)

pX(x)pY (y)
, (4.17)

where pX,Y (x, y) denotes the joint probability mass function and pX(x) and pY (y) the
marginal probability mass functions of X and Y . Mutual information is the Kullback-
Leibler divergence between the joint distribution and the product distribution pX(x)pY (y),
thus, it becomes zero only in the case of independence between X and Y (i.e. for the case
that pX,Y (x, y) = pX(x)pY (y)). Note that mutual information is always non-negative
(i.e. I(X; Y ) ≥ 0) and symmetric (i.e. I(X; Y ) = I(Y ; X)).

An important aspect of biological sequence analysis is to investigate which positions in a
binding site (e.g. the SD sequence) are mutually dependent. These are expected to have a
conjoint functional significance [OST06]. The mutual information between two positions
ix and iy is given by

I(ix; iy) =
∑

nx∈A

∑

ny∈A

p̂S(nx, ny, ix, iy)ld
p̂S(nx, ny, ix, iy)

p̂S(nx, ix)p̂S(ny, iy)
. (4.18)

where the relative occurrence p̂S(nx, ny, ix, iy) is again calculated from the set S of aligned
mRNA sequences and refers to the count of conjointly observing nucleotide nx at position
ix and nucleotide ny at position iy.

In the first step, the region around the start codon is investigated in terms of nucleotide
dependencies. Figure 4.12 depicts the mutual information I(i; i + 1) between neighboring
nucleotides. It exhibits high values of dependence between the nucleotides in the Shine-
Dalgarno sequence (position -13 to -8) and directly after the start codon (beginning at
position +4). Contrary, the mutual information between neighboring bases in the start
codon (positions +1 to +3) are nearly zero due to the strongly limited nucleotide variation.
Y. Osada reported that the nucleotides at positions i = −2 and i = −1 are strongly
correlated in several prokaryotes [OST06]. This seems not to be the case for E. coli,
where I(−2;−1) exhibits a value of around 0.03 which is below many other values.

To further investigate the observed dependence between distant positions beginning di-
rectly after the start codon (see Figure 4.12), the whole range of the dataset is analyzed in
the next step. Figure 4.13 shows the values of the mutual information between positions
with a distance d = ix − iy, d ∈ [1; 3] for the 500 base pairs around the start codon (left
part of the plots) and for the 500 base pairs around the stop codon (right part of the
plots). Interestingly, the mutual information between neighboring nucleotides (top) ex-
hibits constantly high values throughout the coding sequence. This fact indicates strong
dependencies in that region that are likely to stem from the codon bias: First, several
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Figure 4.12: Detailed view of the mutual information between neighboring nucleotides
(d = 1) around the start codon.

codons may code for the same amino acid but are not uniformly employed in the coding
sequence. Second, the sequence structure of the codons is not random, i.e. they usually
have nucleotide preferences (e.g. GC- or purine richness) [BBDI+06]. This interpretation
is supported by the fact that the dependence decreases if increasing the distance between
the two considered nucleotides to d = 2 (Figure 4.13, middle) and d = 3 (Figure 4.13,
bottom). The results observed in Figure 4.13 for the first 200 bp (5’-UTR) and the
last 200 bp (3’-UTR) can be seen as an indication for the mutual information estimates
on random sequences. Their small range of values thus enhances the significance of the
variations inside the coding sequence.

4.2.4 Synchronization properties

Frame synchronization in communication systems is most often a hit-or-miss problem,
where shifted synchronizations by as few as one bit can lead to a decoding failure of
the respective message. Synchronization during translation is similarly important for the
synthesis of a correct protein. As mentioned in Section 3.4.4, the mRNA is translated in
steps of three nucleotides (codons) with the start codon AUG being the first translated
codon. If a frameshift occurs, i.e. if translation starts with a wrong phase, the whole
mRNA sequence is translated into an erroneous and possibly shortened or – seldom –
lengthened protein.

⊲ Example 4.1

The correct translation of the following nucleotide sequence according to the genetic code (see
Figure 3.9) would be
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Figure 4.13: Mutual information between bases at distance d = 1 (top), d = 2 (middle)
and d = 3 (bottom) for the E. coli mRNAs (left part: start codon at position i = +1,
right part: stop codon at position i = +1).
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AGA UGU CCG UAC CUC AUC GCU UGG Axx
Arg Cys Pro Tyr Leu Ile Ala Trp

If a frameshift by one base (+1) occurred, this amino acid chain would change to

GAU GUC CGU ACC UCA UCG CUU GGA
Asp Val Arg Thr Ser Ser Leu Gly

It can be seen that even a small frameshift can have dramatic effects on the resulting amino
acid chain and, thus, the synthesized protein.

⊳

The example illustrates the importance of synchronization in enabling the correct in-
frame translation. As mentioned before, this synchronization is achieved by detection
of the Shine-Dalgarno sequence shortly upstream of the start codon. In Section 2.4, the
design of sync words was detailed: To avoid shifted synchronizations, the sync word should
not exhibit periodicities. The Shine-Dalgarno sequence (AGGAGG) is periodic to τ = 3
and thus – at first sight – appears to be a poor choice for such an important task as
maintaining the reading frame of translation. This interpretation is, however, misleading
since the mapping of codons to amino acids occurs in steps of three, i.e. a frame shift
of +3 yields the same amino acid chain. If taking this into account, the Shine-Dalgarno
sequence even appears to be a smart choice: Due to the periodicity, the ribosome has
two chances to synchronize to the correct phase of translation. The two sequences AGG
constitute rather short, but bifix-free synchronization sequences, whose concatenation
strongly diminishes the probability of missed detections in the correct phase.

4.3 Summary

During vital cell processes, proteins bind to short DNA motifs which serve as biological
synchronization words that mark the beginning of a regulatory sequence. In this chapter,
two types of biological sync words were investigated with respect to their synchronization
properties: the bacterial promoter and the Shine-Dalgarno sequence. The former is the
sync word of transcription which is detected by the RNA polymerase, the latter is the
sync word of bacterial translation which is detected by the ribosome. The main results
of the investigations in this chapter are:

⊲ An adapted autocorrelation function was derived based on binding energies between
the synchronizing protein (the sigma factor) and the nucleotides. It was applied to
rate the synchronization properties of the two promoter regions (the -35 and the -10
region) in E. coli. This brought up that the -35 promoter region is an excellent sync
word in terms of minimizing the probability of shifted synchronizations. The -10
region showed to be the best possible sync word if taking other constraints imposed
by transcription into account. The results suggest that the promoter regions evolved
with respect to avoiding shifted synchronizations.
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⊲ The promoter was subsequently modeled as a distributed sync word, in which syn-
chronization symbols are dispersed with arbitrary symbols. Its autocorrelation prop-
erties showed to be only average compared to all other possible sequences, which
indicates that the promoter regions do not jointly serve synchronization.

⊲ The probability of false synchronizations on random data is minimized by avoid-
ing the sync pattern in the surrounding data stream, i.e. by choosing an under-
represented word with respect to the Markov model underlying the data stream.
Therefore, a Markov analysis of the E. coli genome was conducted, and the pro-
moter regions were investigated in terms of their exceptionality. Both regions showed
to be under-represented in the genome, which indicates that they were evolutionary
avoided outside the promoter regions to minimize synchronization errors.

⊲ The Shine-Dalgarno sequence was thereafter analyzed using the Kullback-Leibler
divergence. For this purpose, a dataset of mRNA sequences was aligned to the
translation start site. A high Kullback-Leibler divergence then indicates nucleotide
biases at a fixed distance to the start site and thus might suggest a functional role in
translation. The Shine-Dalgarno sequence was successfully detected by the relative
entropy measure, however, no additional signal appeared.

⊲ The Shine-Dalgarno sequence and the coding sequence were investigated using
mutual information between two nucleotides at short distances from each other
(d ∈ [1; 3]). It exposed a strong dependency of neighboring nucleotides (d = 1) in
the Shine-Dalgarno sequence. Moreover, strong dependencies for neighboring nu-
cleotides were detected in the whole coding sequence, which is likely to stem from
the triplet structure (3 nucleotides → 1 amino acid).

⊲ Finally, the synchronization properties of the Shine-Dalgarno sequence were dis-
cussed. It exhibits a strong periodicity of three, which is generally an unfavored
characteristic of sync words. In this case, however, a shifted synchronization caused
by the periodicity would not have a strong impact on translation due to the 3-
periodicity of the coding sequence itself. This fact supports the conclusion that the
synchronization properties influenced the evolution of biological sync words.



5
Modeling Transcription
Initiation in Prokaryotes

In Chapter 4, the analogies between transcription initiation and frame synchronization
were outlined. While synchronization in technical systems is usually based on the cross-
correlation between the sync word and the received data stream, the RNA polymerase
detects the promoter based on the binding energy between its sigma subunit and the DNA
sequence. Therefore, in order to obtain a valid synchronization model of transcription, a
measure for the binding energy has to be derived. This measure is afterwards applied to
known promoter sequences of Escherichia coli and their surrounding to investigate the
synchronization signals the RNA polymerase encounters during its target search.

In Section 5.1, a derivation of the binding energy from published experimental data is
presented. The energy measure is thereafter fit into a matrix to ease its application to
DNA sequences. In contrast to known methods from bioinformatics, the matrix is applied
to a large set of available promoter sequences to extract the common energy landscape,
that is the behavior of binding energies in the surrounding of the transcription start
site. The results of applying the algorithm to a wide surrounding of the promoters are
presented and thoroughly interpreted in Section 5.2. Moreover, the promoter dataset is
subdivided into smaller datasets to lay open correlations between the energy landscape
and promoter characteristics. In Section 5.3, the process of promoter search by the RNA
polymerase is analytically modeled as a random walk along the DNA with sequence-
dependent transition probabilities. This enables the estimation of biophysical parameters
with the aim of explaining the efficiency of promoter detection in the over-abundance of
non-promoter sites present in the large genome of Escherichia coli (4.6 · 106 bp).
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5.1 Promoter detection in Escherichia coli

In general, the binding energy El(s) between sigma factor and a promoter sequence l can
be written as the sum of three energy terms:

El(s) =
6∑

k=1

e(nk, k)

︸ ︷︷ ︸
-35 region

+
12∑

k=7

e(nk+s, k)

︸ ︷︷ ︸
-10 region

+ ǫ(s)︸︷︷︸
Spacing

, (5.1)

where e(n, k) denotes the partial binding energy between the nucleotide n ∈ {A,C,G, T}
and the binding site of the sigma factor associated with promoter position k (see Fig-
ure 5.1). Thus, nk and nk+s refer to the nucleotides at positions k and k + s, respectively,
of a given DNA sequence. The term ǫ(s) is the contribution of the spacing s between
the promoter regions to the binding energy. This adds the energy the sigma factor needs
to stretch or to squeeze in order to detect promoters with non-ideal spacing (i.e. other
than 17 bp) [DJLG96,MBM85]. In Eq. (5.1), the contribution of nucleotides are assumed
to be independent of their neighboring nucleotides, which is in most cases a reasonable
approximation [DSS03,SF98].

Figure 5.1: Components of the binding energy between sigma factor and the promoter.

5.1.1 Weight matrix model of σ70

The values of e(n, k) are extracted from [KOA05], where H. Kiryu et al. derived a mea-
sure for the nucleotide-dependent contribution to the binding energy by applying vector
regression on gene expression data. The values e(n, k) are used to build up a [4 x 12]
weight matrix W(n, k) containing the contribution of the 12 nucleotides to the binding
energy:

W(n, k) =




e(A, 1) e(A, 2) . . . e(A, 11) e(A, 12)
e(C, 1) e(C, 2) . . . e(C, 11) e(C, 12)
e(G, 1) e(G, 2) . . . e(G, 11) e(G, 12)
e(T, 1) e(T, 2) . . . e(T, 11) e(T, 12)


 .
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The values k ∈ [1; 6] reference the positions in the -35 region and k ∈ [7; 12] reference those
in the -10 region. In [KOA05], the partial binding energies were defined such that positive
values indicate a strengthening effect on the overall binding energy, whereas negative
values imply a weakening effect. However, since in chemistry binding energies underlying
stable interactions are generally given by negative values and, thus, high negative overall
energies should indicate candidate target sites [SDS02], all values are multiplied by −1.
Figure 5.2 shows the obtained values for each position k ∈ [1; 12] in the two promoter
regions (left) as well as for each spacing s ∈ [15; 19] (right). It has to be mentioned
that the values were obtained after various normalizations and hence have no physical
unit. Nevertheless, in the following, the obtained measure is denoted by the term binding
energy given without unit. It can be seen in Figure 5.2 and is reported in [KOA05] that
the -35 sequence yielding the strongest (i.e. lowest) binding energy (AAGAAT) differs
from the generally reported -35 consensus sequence (TTGACA, [LM93]).

⊲ Example 5.1

According to Figure 5.2, a promoter with the -35 region TTCTAT, the -10 region TAAACC and
a spacing of s = 17 would yield a binding energy of

E−35 = −0.04 − 0.17 + 0.07 + 0.08 − 0.11 − 0.11 = −0.28,

E−10 = −0.21 − 0.32 − 0.10 − 0.18 + 0.03 + 0.04 = −0.74,

Es = −0.30,

⇒ E = E−35 + E−10 + Es = −1.32.

This highly negative energy indicates a strong binding of the sigma factor to the given sequence.
Since this is the prerequisite for detection by the RNA polymerase, the given sequence would
constitute a frequently detected promoter.

⊳

Figure 5.2: Partial binding energy contributions as extracted from [KOA05] and modi-
fied. Left: Promoter regions, color scheme: Black = A, dark gray = C, light gray = G,
white = T. Right: Spacing between the promoter regions.
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5.1.2 Synchronization algorithm

The matrix W(n, k) is applied using a sliding window that is shifted in single steps over
the DNA. As mentioned before, the sigma factor can expand or compress and hereby
adapt to different promoter spacings s in order to bind to the energetically most favorable
site. That is, the sigma factor minimizes the binding energy over the possible spacings at
each position. Therefore, the binding energy E(i) at position i is obtained by minimizing
the energy score E(s, i) calculated according to Eq. (5.1) over the spacing s:

E(i) = min
s∈[15;19]

[E(s, i)] = min
s∈[15;19]

[
6∑

k=1

e(ni+k−1, k) +
12∑

k=7

e(ni+k+s−1, k) + ǫ(s)

]
, (5.2)

where ni+k−1 and ni+k+s−1 reference the nucleotides at positions k and k +s, respectively,
of the sliding window, which is situated at position i with respect to the transcription
start site (TSS, position 0, see illustration in Figure 5.3). The spacing is limited to
s ∈ [15; 19] since most of the promoters fall in this range [LM93]. The binding energy
E(i) inversely measures the similarity between the template promoter sequence and the
currently considered window. Therefore, the likelihood function defined in Section 2.1 is
here given by:

L(µ) = −E(i). (5.3)

Figure 5.3: Graphical illustration of the parameters k, s and i from Eq. (5.2).

5.1.3 Average consideration

Applying the described algorithm to single sequences exhibits a noisy output with many
false-positive signals, i.e. positions with energies as low or even lower compared to the
actual promoter site. Therefore, the algorithm is applied on average, i.e. not for promoter
detection of individual sequences but to a set of N known promoters of σ70 aligned to
the transcription start site. Afterwards, the arithmetic mean (average) of the resulting
values El(i) is calculated for each position i, where the index l references the l-th promoter
(l ∈ [1; N ]). Additionally, the algorithm is applied to 10000 random sequences of length
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31 (i.e. enabling all possible spacings) considering p(A) = p(T ) = 0.246 and p(C) =
p(G) = 0.254 as estimated from the entire E. coli genome, which yields a mean value
of Eran = −0.4423 (calculated according to Eq. (5.2)). Since it is convenient to set the
average energy as 0 (see e.g. [SDS02]), the energy measure obtained through averaging
over all El(i) is normalized accordingly:

E(i) =
1

N

N∑

l=1

El(i) − Eran. (5.4)

In considering average values, the noise of individual sequences can be eliminated in
order to extract the common energy landscape of all σ70-promoters, i.e. the characteristic
behavior of binding energies around the transcription start sites. Due to the normalization
by Eran in Eq. (5.4), positive values of E(i) indicate a below-average binding strength,
while negative values refer to an above-average binding strength between sigma factor
and DNA sequence.

5.2 Results and interpretation

The algorithm is applied to a set of E.coli σ70-promoters from the NCBI database (see
Appendix C.1.1) that classifies promoters into computationally predicted and experimen-
tally documented. Figure 5.4 shows the modeled average binding energy E(i) calculated
according to Eq. (5.2) and Eq. (5.4) (see Section 5.1.2) for all 3765 predicted and docu-
mented promoters in a range of 200 bp around the promoters aligned to the transcription
start site (TSS, i = 0). E(i) = 0 corresponds to the energy Eran of random sequences.
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Figure 5.4: Average binding energy E(i) of 3765 known σ70-promoters aligned to the
transcription start site (TSS).
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5.2.1 Additional synchronization signals

Figure 5.4 shows three significant synchronization signals at positions -58 (see (A)), -35
(see (B)) and -12 (see (C)) compared to the surrounding and to the average binding energy
E(i) = 0 of random sequences. The most significant minimum at around -35 reflects the
actual recognition of both promoter regions, whereas those at -58 and -12 occur due to
correlation between the -35 sequence and the -10 sequence; At position -58, the -10 part
of the weight matrix (modeling the sigma factor) is overlapping the -35 promoter region
(see Figure 5.5, (A)). The same applies for the minimum at -12, which occurs due to
correlation between the -35 matrix part and the -10 promoter region (see Figure 5.5,
(C)). The absolute minimum at -35 indicates the actual detection site and hereby the
appropriate modeling through the weight matrix (see Figure 5.5, (B)).

Figure 5.5: Illustration of the process of promoter detection in three steps.

The additional synchronization signals before and after the promoter suggest an interest-
ing approach to ensure reliable detection of the target site: Due to correlation between
the two promoter region, the sigma factor encounters a pre-synchronization signal from
either side which may prepare the RNA polymerase for the close-by target site.

It should be mentioned that the strength of the binding is not only reflected by the depth
of the minima but by their area due to the flexibility of the promoter’s position with
respect to the TSS. While the position of the -35 region varies by around ±3, the position
of the -10 region is restricted within around ±1. Therefore, since Figure 5.4 shows the
average binding energies of 3765 promoters, the minimum at -58 is broad but flat, whereas
that at -12 is deep but narrow. The minimum at -35 is broad and deep at the same time
and, thus, reflects – as expected – the strongest binding.

5.2.2 Energy landscape in the wider surrounding

In order to investigate the energy landscape in the wider surrounding of the promoters,
the presented method is applied to a range of 800 bp around the transcription start site.
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Figure 5.6 shows the average binding energy E(i) of all 3765 promoters aligned to the
TSS (position 0). Remarkable are the decline beginning 300 bp before the promoter and
the constant incline of the binding energy in the 200 bp after the promoter. It is obvious
in comparison with the energy E(i) = 0 of random sequences that the average binding
energy deviates significantly from the random case in a range of about 500 bp around
the promoter. (A), (B), and (C) in Figure 5.6 show the three minima at -58, -35, and
-12 that were observed in Figure 5.4. The wide range of non-random binding energies
around the promoters implies that the movement of the RNA polymerase is influenced
long before the target site is encountered. This suggests that not only the promoter
site itself but a range of 500 bp around the latter is involved in the synchronization
process underlying transcription initiation. The underlying mechanisms is biophysically
investigated in Section 5.3.

−500 −400 −300 −200 −100 0 100 200 300

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

i

E
(i

)

(A)

(B)
(C)

Figure 5.6: Average energy landscape E(i) in a wider range around the 3765 known
σ70-promoters aligned to the transcription start site.

5.2.3 Clustering of promoters

In the next step, it is investigated whether the energy landscape observed in Figure 5.6 is
present in all σ70-promoters or only occurs in certain sets with specific promoter strength.
Therefore, the 3765 promoters are split into subgroups according to their strength as mea-
sured by the sigma factor’s binding energy El(i) to the l-th promoter sequence calculated
according to Eq. (5.2) (see Section 5.1.2). Here, i ∈ [−38;−32] depending on the position
of the l-th promoter with respect to the TSS. In order to maintain a sufficient statistical
basis, the promoters are divided into four groups with approximately 900 promoters each.
Figure 5.7 shows the resulting plots sorted from weak (top) to strong promoters (bottom).
It can be seen that the characteristic energy landscape is not observed for weak promot-
ers, whereas it becomes distinct for stronger promoters. It is generally assumed that the
binding energy at the promoter itself determines the rate of detection and hereby the
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expression rate of the respective gene [KNI90,SDS02,KOA05]. However, a dependence of
the promoter strength on the wider surrounding has not been reported before.

Figure 5.7: Average energy landscapes E(i) of 4 groups with approximately 900 se-
quences each (top: weak promoters, bottom: strong promoters).

5.3 Kinetic analysis of promoter search by σ70

In 1999, it was impressively visualized that the RNA polymerase searches its target site
(the promoter) by randomly binding the DNA and subsequently sliding along several



5.3 Kinetic analysis of promoter search by σ70 69

hundred base pairs before dissociating or moving to another site through hopping or
intersegmental transfer [BGZY99, GZR+99]. The sliding process was assumed to be a
1D Brownian motion along the DNA – a random movement with same probabilities for
moving right and left. In contrast to that, the following considerations are based on
the assumption that the sliding process has a sequence-dependent component, i.e., that
the RNA polymerase encounters a specific energy landscape that depends on the bound
DNA sequence (sliding model). This assumption is supported by results from L. Mirny
et al. [SM04], M. Barbi et al. [BPPS04] and others.

5.3.1 Arrhenius equation

According to the assumptions underlying the sliding model, the RNA polymerase does
not perform a random walk with equal probabilities of stepping forward or backward, but
the sliding is influenced by the binding energy at each position. In this case, the transition
rates wi,i+1 and wi,i−1 from site i to site i + 1 and site i − 1, respectively, depend on the
binding energies E between RNA polymerase and the DNA at these sites through

wi,i±1 = ν ·
{

e−β[E(i±1)−E(i)] if E(i ± 1) > E(i)
1 otherwise

, (5.5)

with β = (kBT )−1, where ν denotes the affective attempt frequency, kB the Boltzmann
constant, and T the ambient temperature in Kelvin [SM04]. The affective attempt fre-
quency can be considered as the rate at which thermal fluctuations try to push the protein
away from site i. According to Eq. (5.5), known as the regular activated transport form
or Arrhenius equation, the transition rate wi,i±1 is under constant conditions solely de-
pendent on the difference between E(i ± 1) and E(i), which corresponds to the gradient
g of the function E(i). The constant rate ν of wi,i±1 in the case E(i ± 1) ≤ E(i) is used
since any thermal fluctuation will push the RNA polymerase independently of the value
∆E = E(i ± 1) − E(i). Hence, it steps uphill (i.e., to a site with higher energy) with
a rate smaller than ν (depending on ∆E) and steps downhill (i.e., to a site with lower
energy) with constant rate ν. Note that β = N−1

0 , i.e. it corresponds to the thermal noise
present in all communications engineering systems.

5.3.2 Linear approximation of the energy landscape

As mentioned before, the movement of the RNA polymerase depends on the gradient of
the binding energy function. In order to ease the calculation of the transition rates wi,i±1

and further kinetic parameters based on the gradient of the energy landscape, the latter is
approximated by four straight lines with different gradients g (see Figure 5.8). Region 1
and region 4 correspond to random sequences, since g = 0 and E(i) = 0. In region 2 and
region 3, however, a negative and positive gradient g, respectively, is observed. Since g is
constant in each of the four regions of the approximation, it can easily be deduced that
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g = E(i + 1) − E(i) = −
[
E(i − 1) − E(i)

]
. (5.6)
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Figure 5.8: Linear approximation of the characteristic energy landscape.

5.3.3 Speed

In the sliding model, the protein is assumed to slide in single nucleotide steps along the
DNA. The escape rate of the protein at site i to one of the neighboring sites and, therefore,
the speed of the sliding process is given by (see Appendix D.1)

ρi =
1

τi

= wi,i+1 + wi,i−1 = ν(e−β|g| + 1), (5.7)

where τi denotes the time the protein spends bound to site i [SM04]. Applying Eq. (5.7)
to the four regions of the linear approximation yields the following estimations for ρi:

Region 1: |g| = 0 → ρi = 2ν.

Region 2: |g| > 0 → ρi < 2ν.

Region 3: |g| > 0 → ρi < 2ν.

Region 4: |g| = 0 → ρi = 2ν.

It can be seen that the escape rate ρi is lower in the direct surrounding of the promoters
than on random sequences (|g| = 0). Consequently, the on-site time τi of the protein is
higher and thus the speed of the sliding process is lower than on random sequences.
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5.3.4 Direction

At each site i, the protein eventually escapes to the site i + 1 with probability pi and to
the site i − 1 with probability qi = 1 − pi. This probability pi depends on the transition
rates wi,i+1 and wi,i−1 through [SM04]

pi =
wi,i+1

wi,i+1 + wi,i−1

=
wi,i+1

ρi

. (5.8)

Applying Eq. (5.8) to the approximation of E(i) yields the following estimations of the
transition probability pi:

Region 1: wi,i+1 = ν and wi,i−1 = ν → pi = 0.5, qi = 0.5.

Region 2: wi,i+1 = ν and wi,i−1 < ν → pi > 0.5, qi < 0.5.

Region 3: wi,i+1 < ν and wi,i−1 = ν → pi < 0.5, qi > 0.5.

Region 4: wi,i+1 = ν and wi,i−1 = ν → pi = 0.5, qi = 0.5.

Note that the transition probability pi from site i to site i+1 increases when approaching
the promoter regions from upstream and decreases when leaving the promoter regions. In
case the RNA polymerase approaches the promoter from downstream, the probability qi

increases upon entering region 3. Thus, in both cases the surrounding of the transcription
start site seems to direct the sliding towards the target site. Guthold et al. [GZR+99]
showed that the RNA polymerase has no defined direction of sliding when binding to
promoter-less DNA fragments, which is consistent with the calculated values of pi and qi

for region 1 and region 4.

5.3.5 Efficiency

It was shown in previous studies [BGZY99,GZR+99] that the RNAP slides forward and
backward several times during its search for the promoters. The efficiency of the sliding
process can be regarded as the number of steps the protein needs to reach from one site
to another. Therefore, the mean first-passage time (MFPT) is used, which is defined as
the mean number of steps the protein will make to slide from site i = 0 to site i = x
assuming a certain set of transition probabilities {pi} (see [MK89] for more information).
The mean first-passage time t0,x is given by

t0,x = x +
x−1∑

k=0

αk +
x−2∑

k=0

x−1∑

i=k+1

(1 + αk)
i∏

j=k+1

αj, (5.9)

where αi = qi/pi (see [SM04] and references therein). For negative values of x (i.e., a
sliding backwards), the definition of α changes to αi = pi/qi and x in Eq. (5.9) has to be
exchanged for its absolute value |x|. Considering the linear approximation in Figure 5.8,
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the values of αi are constant over wide ranges. Therefore, α0 = α1 = · · · = αx := α is
assumed in each region, which simplifies Eq. (5.9) to (see Appendix D.2 for the derivation)

t
′

0,x = (1 + α)
x−1∑

k=0

(x − k)αk, (5.10)

i.e., the mean first-passage time t
′

0,x for the approximation is given by a polynomial in
α of degree x. Figure 5.9 shows the MFPT for x = 50. It can be seen that even small
decreases of α from the random walk case with equal transition probabilities (α = 1, i.e.,
pi = qi = 0.5) significantly decrease the mean first-passage time. At the same time, small

increases of α lead to dramatic increases of t
′

0,x. For the four regions of the approximation
and for x = 50 (αi = qi/pi), this can be summarized by:

Region 1: pi = 0.5, i.e., α = 1 → t
′

0,x = 2550.

Region 2: pi > 0.5, i.e., α < 1 → t
′

0,x ↓
Region 3: pi < 0.5, i.e., α > 1 → t

′

0,x ⇑
Region 4: pi = 0.5, i.e., α = 1 → t

′

0,x = 2550.

The symbols ↓ and ⇑ denote a slight decrease and a strong increase, respectively. For
x = −50 (αi = pi/qi), i.e., reaching 50 positions backward of position i, the values in

region 2 and region 3 are exchanged. The value t
′

0,x = 2550 shows clearly the inefficiency
of the sliding process on random sequences: According to this calculation, the RNA poly-
merase needs on average 2550 steps to bridge a distance of only 50 bases. Apparently,
the decrease of binding energies the RNA polymerase faces when approaching the pro-
moters strongly influences the efficiency of promoter search. In case the RNA polymerase
approaches the promoter from downstream, region 3 increases the efficiency in direction
of the promoter. If approaching the promoter from upstream, the search becomes more
efficient upon entering region 2. Hence, the RNA polymerase is directed towards the
promoter from either side. Opposed to that, it seems to be nearly impossible for the
RNA polymerase to move further downstream if the promoter has been missed (entering
region 3 from upstream), i.e., if no transcription initiation has taken place. Since it is
known that the RNA polymerase is able to slide backward, this suggests that the RNA
polymerase is guided back to the promoter in case it missed the detection.

5.3.6 Verification

In Sections 5.3.3 - 5.3.5, it was hypothesized that the observed characteristic behavior of
binding energies around the promoter guides the RNA polymerase to the transcription
start site. As mentioned before, the binding energies are assumed to depend on the
underlying sequence, thus, the surrounding seems to exhibit sequence features that are
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Figure 5.9: Mean first-passage time for x = 50 (αi = qi/pi) or x = −50 (αi = pi/qi) if
assuming constant values of αi.

unlikely to continue into the coding sequence since that has to serve other sequence
constraints and can only code further signals through the variability of the third codon
position. Therefore, one would expect a positive correlation between the length of the
5’-UTR (the range between the transcription start site, TSS, and the translation start
site, TLS) and the promoter strength, since a long 5’-UTR constitutes a larger range that
can guide the RNA polymerase during promoter detection. Figure 5.10 shows the average
correlation between the length of the 5’-UTR and the promoter strength measured by the
transcription rate. A sliding window of length 150 is used to smooth the results. The
transcription rates are extracted from the ASAP database [UoWM07] (see Appendix C.1.1
for more information). As expected, it exhibits a positive trend and thus supports the
hypotheses presented in Section 5.3.

5.4 Summary

In this chapter, the process of transcription initiation in E. coli was modeled using a syn-
chronization algorithm. It was built upon previously published binding energies between
the sigma factor (the synchronizing protein) and the promoter sequence (the sync word of
transcription). This binding energy corresponds to the likelihood function that is used in
technical systems to measure the similarity between sync word and data stream. It was
subsequently applied to an aligned set of known promoters to extract the energy land-
scape, i.e. the behavior of binding energies around the transcription start sites. Minima
of the energy landscape indicate signaling sequences related to transcription initiation.
The following main results were achieved:

⊲ In addition to a minimum at the exact promoter site, the energy landscape exhib-
ited two minima shortly after and before that site. These showed to occur due to
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Figure 5.10: Correlation between the length of the 5’-UTR (distance between TSS and
TLS) and the transcription rate.

correlation between the two promoter regions (the -35 and the -10 region). Due
to this correlation, the sigma factor encounters pre-synchronization signals when
approaching the promoter from either side.

⊲ A characteristic behavior of binding energies in the wider surrounding of the pro-
moter (500 base pairs) was observed. This allows the assumption that not only the
promoter site itself aids the detection by the sigma factor but that in addition the
wider surrounding guides the sigma factor during its search for the promoter.

⊲ In the next step, the promoters were subdivided according to their strength as
measured by the binding energy at their location. Applying the synchronization
algorithm to these subsets brought up that only the strong promoters exhibit the
characteristic energy landscape. This fact strengthens the hypothesis that the latter
is related to guiding the sigma factor towards the promoter site.

⊲ The characteristic energy landscape was thereafter theoretically analyzed in terms
of the underlying biophysical properties of the movement of the sigma factor along
the DNA during promoter search. The results indicate that the movement is slowed
down, guided towards the promoter and made efficient through the observed energy
landscape.

⊲ In summary, all listed results imply that the behavior of binding energies aids the
synchronization process underlying transcription initiation: While the wider sur-
rounding guides the sigma factor to the transcription start site of highly expressed
genes, pre-synchronization signals ensure that the exact promoter site is not missed.



6
Modeling Transcription
Initiation in Eukaryotes

The process of promoter search and transcription by bacterial RNA polymerase has been
visualized using scanning force microscopy (see e.g. [GZR+99, HFM+99, BGZY99]). In
contrast to that, the process is far less understood in higher organisms (eukaryotes) and
no according direct observations exist to date. Not even the exact order of proteins
binding to the DNA is known yet. For this reason, this chapter focusses on a thorough
analysis of the DNA sequences in the surrounding of annotated transcription start sites
rather than on modeling single interactions.

In Section 6.1, the major differences between transcription in prokaryotes and in eu-
karyotes are specified. Section 6.2 follows with an information theoretic analysis of two
promoter datasets that aim at detecting the TATA-box – the main promoter element
in eukaryotes. First, weight matrices are introduced, a standard bioinformatics tool for
the detection of protein binding sites. Subsequently, two alternative methods are derived
based on mutual information and the Kullback-Leibler divergence. The results of all three
methods are thereafter interpreted in Section 6.3. In Section 6.4, the promoter sequences
are subdivided into smaller groups to obtain more meaningful results.

6.1 Differences to bacterial transcription initiation

In Section 3.4, the process of transcription was detailed for bacteria (prokaryotes) as well
as for higher organisms (eukaryotes). It could be seen that while the process is based on
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relatively few interactions in the former, it involves numerous components and steps in
the latter. Therefore, modeling transcription initiation in eukaryotes, especially in more
complex ones like animals or humans, yields no complete picture if focusing only on single
interactions. For this reason, the results presented in the following should be considered
as a general analysis that, however, most likely does not apply to all conditions of the cell
and all tissues.

6.1.1 Protein-DNA interaction of the RNA polymerase

In Chapter 5, a model of the bacterial RNA polymerase during its search for the promoter
site was presented. Since prokaryotic transcription can take place without the additional
binding of other proteins, the interaction between the RNA polymerase and the DNA
constituted the clear focus of communication theoretic modeling. In eukaryotes, however,
this interaction is only made possible through the binding of transcription factors, proteins
that bind the DNA at specific positions and later guide the RNA polymerase to the
promoter. Moreover, the RNA polymerase in E. coli has been shown to slide along the
DNA, thus enabling a scanning process of the underlying nucleotide sequence (equivalent
to the receiving process in frame synchronization) [GZR+99, HFM+99]. In contrast to
that, the process of promoter binding in eukaryotes is believed to occur based on three-
dimensional looping of the DNA combined with the mentioned aiding proteins [Nog00].

6.1.2 Promoter elements

The most important promoter for eukaryotic transcription initiation is the TATA-box, an
AT-rich region located around 25 bp before the transcription start site (see Figure 6.1, con-
sensus sequence TATAAAAG). In contrast to prokaryotes, the promoters of eukaryotes do
not contain a -35 box. Instead, an initiator region (Inr) overlapping with the transcription
start site serves as a second, though weaker, signal for transcription initiation [RH05].

5’ 3’gene

nucleotides ∈ {A,C,G,U}
∼ 22 bp Inr

+1

TATA-box

8 bp8 bp

core promoter

-30

Figure 6.1: Structure of the core promoter region in eukaryotes.

In addition to the TATA-box, the equivalent to the bacterial -10 region (see Section 3.4.2),
many promoters also exhibit a pyrimidine-rich region around the transcription start site
(the initiator region), a GC-rich sequence immediately upstream of the TATA-box (the
TFIIB recognition element, BRE) and the downstream promoter element (DPE, located
around 30 bp after the transcription start site). In the following, the focus lies on the
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TATA-box since this is the most conserved promoter element between different species
which indicates its functional importance for transcription initiation. It is reported to be
present in a high number of promoters and located around position i = −30.

6.1.3 Transcription factor binding sites

Transcription factors are proteins that bind to the DNA to regulate transcription. The
core promoter region in prokaryotes is confined to approximately 60 bp before the tran-
scription start site (TSS, see Section 3.4.2), and transcription factor binding sites cumulate
in the few hundred base pairs around the TSS. In eukaryotes, the core promoter region
comprises a similar region as in bacteria, however, transcription factor binding sites play
a more important role and are scattered over more than 1000 bp around the TSS.

6.1.4 CpG islands

A prominent sequence feature of eukaryotic DNA are CpG islands, i.e. regions with high
concentration of the dinucleotide CG (5’-CG-3’). The ”p” refers to the phosphodiester
bond between the C and the G. CpG islands accumulate in promoter regions and con-
stitute regulatory targets during transcription initiation. The human genome is expected
to carry 29 000 CpG islands [Lew07], especially in the promoter regions of constitutively
expressed genes [SBB06]. Methylation of CpG islands – the addition of a methyl group
to the cytosine ring – can both prevent and cause proteins to bind to their target DNA
sequence. The strongest deviation in the CpG-content is observed between insects and
mammals [JB04].

6.1.5 Chromatin

In most prokaryotes, the genome is a single circular molecule of easily accessible DNA.
In contrast to that, the DNA in eukaryotic organisms is organized in a complex structure
called chromatin that makes up the chromosomes. One function of chromatin is to com-
press the DNA by wrapping it tightly around histone proteins and hereby reaching a high
packing ratio (see Figure 6.2). Another effect of chromatin lies in the resulting limited
accessability of the DNA: proteins required for gene expression to occur can only bind to
the DNA at stretches not occupied by proteins of the chromatin complex [SFMC+06].

6.2 Information theoretic analysis

In the first step of transcription initiation, the transcription factor TFIID binds to the
TATA-box (see Section 3.4.3). As soon as this step has taken place, the other transcription
factors join the complex to build the initiation complex that starts transcription. The
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Figure 6.2: Chromatin structure of eukaryotic DNA [NIoH08b].

detection of the TATA-box thus constitutes an essential step that corresponds to a frame
synchronization process where TFIID acts as the receiver. In this section, information
theoretic measures are adapted for their application to promoter datasets. They are
derived such that they constitute a similarity measure between the TATA-box and the
dataset, i.e. they mimic the likelihood function applied for technical frame synchronization
(see Section 2.1). Additionally, a weight matrix – a standard method from bioinformatics
for the detection of sequence motifs – is applied for reasons of comparison. The approaches
are applied to two datasets of DNA sequences: human and arthropod promoter sequences
downloaded from the EPD database (see Appendix C.1.2 for more information on the
datasets). The human dataset comprises N = 1871 sequences, the arthropod dataset
comprises N = 1996 sequences. Both are aligned (i.e. centered) to the transcription start
site as done in Section 5.1.3 with prokaryotic promoters.

6.2.1 Weight matrix model

Weight matrices constitute a method frequently applied in bioinformatics for the detection
of sequence motifs (or words) in the DNA. They are trained on known motifs and then
assign a score to a DNA sequence that reflects its similarity to the sought sequence motif
(see e.g. [Sto00]). In Chapter 5, a weight matrix based on partial binding energies was
presented for the bacterial promoter.



6.2 Information theoretic analysis 79

Derivation

The more common way of constructing a weight matrix – due to the limited availability of
binding energy data – is based on the nucleotide distribution at each position of the motif.
Table 6.1 lists the probabilities of bases at each of the eight positions of the TATA-box
(taken from [Buc90]). In position k = 1 for example, the nucleotide T was observed in
80 % of 389 analyzed promoter sequences with a TATA-box, C was observed in 12 % of the
sequences etc. In most applications, those probability values are subsequently normalized
to the background distribution of bases. Moreover, the values are transformed such that
a value of zero refers to a maximum over-representation of a base (p(n, k) = 1), while
high negative values indicate an under-representation of a base at a certain position:

W(n, k) = ln

(
p̂s(n, k)

p̂(n, k)
+ c1

)
+ c2, (6.1)

where p̂s(n, k) denotes the observed probability of nucleotide n at position k of the motif
s and p̂(n, k) the expected frequency of nucleotide n at position k. The latter is usually
derived from the dinucleotide composition of the genome, i.e. the occurrence frequencies
of bases under Markov model M2 (order m = 2, see Section 2.3.2). Moreover, c1 is
a smoothing parameter that prevents zero-terms in the logarithm, and c2 is a constant
commonly chosen such that the maximum resulting value is zero (see [Buc90] for more
details on the transformation and normalization). The normalized and transformed weight
matrix of the TATA-box is given in Table 6.2 [SIoB07].

Table 6.1: Probability matrix of the eukaryotic TATA-box.

position k 1 2 3 4 5 6 7 8

W(A, k) 0.04 0.91 0.01 0.91 0.69 0.93 0.57 0.40

W(C, k) 0.12 0.00 0.03 0.00 0.00 0.01 0.01 0.11

W(G, k) 0.04 0.00 0.00 0.01 0.00 0.05 0.11 0.40

W(T, k) 0.80 0.09 0.96 0.08 0.31 0.01 0.31 0.09

consensus T A T A A A A A/G

Homology score

The homology score S(n, s) between a DNA sequence n = {n1, . . . , nL}, nk ∈ A =
{A,C,G, T}, and a sought sequence motif s = {s1, . . . , sL}, sk ∈ A, is given by

S(n, s) =
L∑

k=1

W(nk, k), (6.2)
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Table 6.2: Normalized and transformed weight matrix of the eukaryotic TATA-box.

position k 1 2 3 4 5 6 7 8

W(A, k) -3.05 0.00 -4.61 0.00 0.00 0.00 0.00 -0.01

W(C, k) -2.06 -5.22 -3.49 -5.17 -4.63 -4.12 -3.74 -1.13

W(G, k) -2.74 -4.28 -4.61 -3.77 -4.73 -2.65 -1.50 0.00

W(T, k) 0.00 -2.28 0.00 -2.34 -0.52 -3.65 -0.37 -1.40

where L denotes the length of the motif. High scores S(n, s) indicate a high similarity
between the two sequences.

⊲ Example 6.1

The homology score between the DNA sequence n = CAAATAAA and the TATA-box consensus
sequence s = TATAAAAG is given by

S(n, s) = −2.06 + 0.00 − 4.61 + 0.00 − 0.52 + 0.00 + 0.00 − 0.01 = −7.2.

Since this constitutes a rather high score, the sequence CAAATAAA has – as expected – a high
similarity to the TATA-box consensus sequence TATAAAAG.

⊳

In the past, weight matrices have been applied for the detection of protein binding sites,
e.g. yet unknown promoters or transcription factor binding sites (see e.g. [Sto00,SH89]).
For this purpose, the weight matrix is shifted in single-nucleotide steps over the DNA and
the matrix score is calculated between the current subsequence n(i) = {ni, . . . , ni+L−1}
and the motif for each position i:

S(n(i), s) =
L∑

k=1

W(ni+k−1, k). (6.3)

Positions with high scores constitute candidate sites for the existence of binding sites.
This, however, showed to have a highly limited specificity [Sto00]. For this reason, the
weight matrix of the TATA-box is in the following not applied for detection of individual
promoters but to an aligned set S of known promoters (see also Section 5.1.3). Then, the
average matrix score over all N aligned sequences is calculated for each position:

S(i) =
1

N

N∑

l=1

S(nl(i), s), (6.4)

where S(nl(i), s) denotes the matrix score at position i of the lth sequence. High scores
indicate sliding windows of the dataset that possess a high sequence similarity to the
TATA-box consensus sequence.
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Results

Figure 6.3 depicts the resulting average TATA-box matrix score obtained for the two sets
of aligned promoters (human and arthropod) from the EPD database [SIoB07] (N = 1871
and N = 1996, respectively). It shows a slow decrease of the matrix scores towards the
human promoter site and two peaks shortly before the transcription start site (position
+1). Since the TATA-box is highly AT-rich (consensus sequence: ps(A) = 0.625, ps(C) =
0, ps(G) = 0.125, ps(T ) = 0.25), the matrix score is related to the AT-content. Hence, the
low values around the human promoters indicate a high GC-content. A different behavior
of matrix scores is observed around the arthropod promoters, where the surrounding
indicates a high AT-content. The characteristics are interpreted in Section 6.3.

Figure 6.3: Homology score to the TATA-box around human EPD promoters (top) and
arthropod EPD promoters (bottom).

6.2.2 Mutual information

In the previous section, the surrounding of the transcription start site was analyzed using
a weight matrix. In this section, an alternative measure based on the mutual information
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between the TATA-box and the aligned dataset of promoter sequences is derived. The
mutual information I(X; Y ) between two variables X and Y is defined by Eq. (4.17) (see
Section 4.2.3). The following convention applies for calculating the mutual information:

0 log
0

0
= 0. (6.5)

Objective

Mutual information is a measure of the statistical dependence between two random vari-
ables. In its application to DNA sequences, it has a major advantage over weight matrices:
While those only detect stretches exhibiting the same structure and nucleotide sequence,
mutual information does not depend on the nucleotide sequence. For example, the DNA
sequences AAGAAG and TTCTTC yield a low homology score of the weight matrix, but
they yield high values of mutual information due to their highly similar sequence structure.
For this reason, mutual information has already been applied for detecting dependencies
between different parts of eukaryotic genomes (see [AKL+07]). In the following, mutual
information is adapted for its application to a large set of promoter sequences aligned to
the transcription start site. It is derived such that it detects positions of the dataset with
statistical dependencies to the TATA-box consensus sequence.

Application for promoter analysis

In the following, an estimation of the mutual information I(s;S(i)) between a short
sequence motif s and sliding windows of a set of N aligned DNA sequences S of length
Nd is derived. At each position i of the dataset, the average mutual information between
the sought motif and the sequence subset in the sliding window is given by

I(s;S(i)) =
∑

nx∈A

∑

ny∈A

p̂
s,S(i)(nx, ny)ld

p̂
s,S(i)(nx, ny)

p̂s(nx)p̂S(i)(ny)
, (6.6)

where S(i) references a sliding window of the dataset, which begins at position i and is
as long as the sought motif (i.e. L nucleotides). The empirical probability mass func-
tion p̂s(nx) is derived from the consensus sequence of the short motif, while p̂S(i)(ny) and
p̂
s,S(i)(nx, ny) are calculated for each position i from the given sequence dataset (see Ex-

ample 6.2). The former refers to the occurrence of nucleotide ny in the sliding window, the
latter denotes the joint occurrence of nucleotide nx in the sequence motif and nucleotide
ny in the sliding window at position i. Since p̂S(i)(ny) and p̂

s,S(i)(nx, ny) are derived from
the given dataset, the calculation of I(s;S(i)) constitutes an estimate to the exact mutual
information, whose accuracy depends on the availability of sequence data.

⊲ Example 6.2

Consider the following set S of N = 5 DNA sequences of length Nd = 20:
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C G T A A C C G G T T A A G A C C A G T
T G G A C A C A T A C T G C A T C A T G
T A C G A T A C A T A T T A A A C G A T
C A G T A C G A T A C A G C A T A C G A
A A G G T A C T A C T A T G C G G A T G

The probability mass function p̂s(nx) is given by the base composition of the consensus sequence
of the TATA-box (L = 8, sequence TATAAAAG) and does not depend on the position i:

p̂s(nx = A) =
5

8
, p̂s(nx = C) =

0

8
, p̂s(nx = G) =

1

8
, p̂s(nx = T ) =

2

8
,

For calculating the mutual information between the TATA-box consensus sequence and the first
position of the dataset, the sliding window S(1) of the dataset is considered, which is L = 8
positions long and starts at position i = 1:

C G T A A C C G
T G G A C A C A
T A C G A T A C
C A G T A C G A
A A G G T A C T

The probability mass function p̂S(1)(ny) of the sliding window is then given by (e.g. 14 A’s in
40 positions)

p̂S(1)(ny = A) =
14

40
, p̂S(1)(ny = C) =

10

40
, p̂S(1)(ny = G) =

9

40
, p̂S(1)(ny = T ) =

7

40
,

Finally, the joint probability mass function p̂
s,S(1)(nx, ny) is determined for the alignment of the

TATA-box consensus sequence and the sliding window S(1) from the number of positions where
nucleotide nx in the motif co-occurs with nucleotide ny in the sliding window:

C G T A A C C G
T G G A C A C A
T A C G A T A C
C A G T A C G A
A A G G T A C T

T A T A A A A G

This yields the following values of p̂
s,S(1)(nx, ny):

p̂
s,S(1)(nx = A, ny = A) =

11

40
, . . . p̂

s,S(1)(nx = A, ny = T ) =
3

40
,

p̂
s,S(1)(nx = C, ny = A) =

0

40
, . . . p̂

s,S(1)(nx = C, ny = T ) =
0

40
,

p̂
s,S(1)(nx = G, ny = A) =

2

40
, . . . p̂

s,S(1)(nx = G, ny = T ) =
1

40
,

p̂
s,S(1)(nx = T, ny = A) =

1

40
, . . . p̂

s,S(1)(nx = T, ny = T ) =
3

40
.

The mutual information I(s;S(1)) is then calculated using Eq. (6.6) and yields 0.086 bits. ⊳
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Figure 6.4 depicts the mutual information between the TATA-box consensus sequence
and the two aligned datasets (human, arthropod) downloaded from the EPD database.
High values of mutual information indicate a statistical dependence between the currently
considered sliding window S(i) and the TATA-box consensus sequence. For both datasets,
a maximum is observed at the position of the TATA-box (i = −30), however, the output
is generally rather noisy, which is due to the short length of the TATA-box: p̂s(nx) and
p̂
s,S(i)(nx, ny) are calculated from a sequence / alignment of length L = 8, which does not

yield an accurate estimate of the probability mass functions. Since the most prominent
sequence feature of the TATA-box is its alternations between the nucleotides A and T
(which is a required feature for detection by TFIID [JLB+96]), the mutual information
values can only be considered as a noisy measure of short alternating sequences of two
bases. A thorough interpretation is presented in Section 6.3. More detailed views of the
exact promoter site are depicted in Section 6.3.3.

Figure 6.4: Mutual information between two EPD datasets (top: human promoters,
bottom: arthropod promoters) and the consensus sequence of the TATA-box.
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6.2.3 Kullback-Leibler divergence

The Kullback-Leibler divergence (or relative entropy) between two probability mass func-
tions pX(x) and qX(x) is defined by Eq. (4.15) (see Section 4.2.2). The following conven-
tions apply for the calculation of the Kullback-Leibler divergence:

0 log
0

qX(x)
= 0 ∀ qX(x), (6.7)

pX(x) log
pX(x)

0
= ∞ ∀ pX(x) 6= 0. (6.8)

Note that the Kullback-Leibler divergence is non-negative and zero for pX(x) = qX(x).

Objective

The Kullback-Leibler divergence is a measure for the similarity of two probability dis-
tributions. Since the positional nucleotide distribution of the TATA-box is given from
the weight matrix in Table 6.1, it can be used as the background distribution qX(x), and
the Kullback-Leibler divergence is investigated between this background distribution and
the observed distribution in the dataset of promoter sequences. A low Kullback-Leibler
divergence then indicates the presence of stretches of the aligned data set with a similar
positional nucleotide distribution as the TATA-box.

Application for promoter analysis

In the case of promoter search, the objective is to detect ranges of the given set of aligned
DNA sequences that have a similar distribution and arrangement of nucleotides as the
TATA-box. For this case, the empirical Kullback-Leibler divergence is given by

D(p̂s(n) ‖ p̂S(i)(n)) =
L∑

k=1

∑

n∈A

p̂s(n, k)ld
p̂s(n, k)

p̂S(i)(n, k)
, (6.9)

where p̂s(n, k) refers to the nucleotide occurrences at position k of the sequence motif as
given from the weight matrix and p̂S(i)(n, k) to the nucleotide distribution at position k
of the sliding window S(i) which is situated at position i of the aligned dataset.

⊲ Example 6.3

Consider again the set of five DNA sequences of length Nd = 20 presented in Example 6.2.

In contrast to the approach based on mutual information, the probability mass function p̂s(n, k)
for calculation of the Kullback-Leibler divergence is given from the unnormalized weight matrix
of the TATA-box (see Table 6.1):
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p̂s(n = A, k = 1) = 0.04, p̂s(n = A, k = 2) = 0.91, . . . p̂s(n = A, k = 8) = 0.40,

p̂s(n = C, k = 1) = 0.12, p̂s(n = C, k = 2) = 0.00, . . . p̂s(n = C, k = 8) = 0.11,

p̂s(n = G, k = 1) = 0.04, p̂s(n = G, k = 2) = 0.00, . . . p̂s(n = G, k = 8) = 0.40,

p̂s(n = T, k = 1) = 0.80, p̂s(n = T, k = 2) = 0.09, . . . p̂s(n = T, k = 8) = 0.09.

This defines the background distribution that is searched for in the given dataset to detect
the TATA-box. The actual distribution p̂S(1)(n, k) at position i = 1 in the dataset of aligned
sequences is exemplarily assumed to be:

p̂S(1)(n = A, k = 1) = 0.19, p̂S(1)(n = A, k = 2) = 0.08, . . . p̂S(1)(n = A, k = 8) = 0.19,

p̂S(1)(n = C, k = 1) = 0.35, p̂S(1)(n = C, k = 2) = 0.47, . . . p̂S(1)(n = C, k = 8) = 0.14,

p̂S(1)(n = G, k = 1) = 0.43, p̂S(1)(n = G, k = 2) = 0.23, . . . p̂S(1)(n = G, k = 8) = 0.45,

p̂S(1)(n = T, k = 1) = 0.03, p̂S(1)(n = T, k = 2) = 0.22, . . . p̂S(1)(n = T, k = 8) = 0.22.

The Kullback-Leibler divergence is subsequently calculated for each position i based on the
probability mass functions p̂s(n, k) and p̂S(i)(n, k) using Eq. (6.9). For position i = 1, this yields

D(p̂s(n, k = 1) ‖ p̂S(1)(n, k = 1)) = (−0.09)︸ ︷︷ ︸
x=A

+ (−0.19)︸ ︷︷ ︸
x=C

+ (−0.14)︸ ︷︷ ︸
x=G

+ (+3.79)︸ ︷︷ ︸
x=T

= 3.37

...

D(p̂s(n, k = 8) ‖ p̂S(1)(n, k = 8)) = (+0.43)︸ ︷︷ ︸
x=A

+ (−0.04)︸ ︷︷ ︸
x=C

+ (−0.07)︸ ︷︷ ︸
x=G

+ (−0.12)︸ ︷︷ ︸
x=T

= 0.20

⇒ D(p̂s(n) ‖ p̂S(i)(n)) =
L∑

k=1

D(p̂s(n, k) ‖ p̂S(i)(n, k)) ⊳

Figure 6.5 shows the result of applying the approach based on the Kullback-Leibler di-
vergence to the two promoter datasets from the EPD database. In contrast to the weight
matrix score and the mutual information, low values of the Kullback-Leibler divergence
indicate a strong similarity between the probability mass function of the current sliding
window S(i) and that of the TATA-box. Likewise, high values indicate a strong dissim-
ilarity to the TATA-box (even more dissimilar than random sequences). A clear trend
is observed for both the human promoters (top) and the arthropod promoters (bottom):
While the scores steadily increase around the former, they are slightly below the sur-
rounding around the latter. A minimum at the TATA-box (around position i = −30) is
observed for both datasets. A thorough interpretation is presented in Section 6.3.

6.3 Results and interpretation

In the last section, mutual information and the Kullback-Leibler divergence were modified
for the application to promoter sequences and compared to a weight matrix of the TATA-
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Figure 6.5: Kullback-Leibler divergence between the nucleotide distribution of EPD
datasets (top: human promoters, bottom: arthropod promoters) and the nucleotide dis-
tribution of the TATA-box.

box. The results showed a characteristic behavior of the weight matrix scores and the
Kullback-Leibler scores in the 3000 bp surrounding the transcription start site. In contrast
to that, the mutual information scores were too noisy to expose a characteristic behavior.
In the following sections, these results are interpreted with respect to their influence on
transcription initiation. An important background information for the interpretation of
the results is the nucleotide composition in the promoter surrounding. This can be found
in Appendix C.3.1 for the human EPD dataset and in Appendix C.3.2 for the arthropod
EPD dataset (see Appendix C.1.2 for more information about the datasets).

6.3.1 Comparison of the information theoretic measures

The application of mutual information yielded highly noisy results. This is due to the
short length of the TATA-box (L = 8) that is used to estimate the sought nucleotide
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distribution: the probability mass function of a random variable with |A| = 4 is estimated
over only L = 8 samples. Since the main sequence characteristic of the TATA-box is
its alternations between A and T, the mutual information score simply detects short
alternations between two arbitrary bases. In [AKL+07], H. M. Aktulga applied a similar
mutual information estimate to search for mutually dependent sequences in a maize gene.
They derived the probability mass function of a sequence of length 369 and still obtained
noisy results. In the approach presented in Section 6.2.2, the noise is partially diminished
by estimating the joint probability mass function over all sequences in the aligned dataset
S, which however can by far not account for the insufficient motif length. B. Goebel
showed in [GDHM05] that that even for very large samples sizes, e.g. N=10000, mutual
information estimates exhibit a considerable error range. It is thus preferable to solely
test the results for significance. For a sample size of N = 8, the significance level is 1.5256
bits1, i.e. all values in Figure 6.4 are – as expected – far from being significant.

Contrary to that, the Kullback-Leibler score showed a clear trend around the transcription
start site – although its nucleotide distribution is also obtained from the TATA-box.
However, it is not estimated over only 8 positions of one sequence but derived for each
position over a large set of aligned sequences: The probability mass function of the random
variable with |A| = 4 is here estimated over N = 1871 samples in case of the human
dataset and over N = 1996 samples in case of the arthropod dataset. The nucleotide
distribution of the TATA-box is given by the weight matrix, which was derived from
N = 502 sequences [Buc90]. The estimation of a probability mass function is in essence
a Bernoulli trial, and the resulting estimates (the probability masses) follow a scaled
multinomial distribution. The variance of each estimate is thus given by σ2 = p(n) · (1−
p(n))/N , where N is the total number of samples and p(n) is the (true) probability of the
nth event (here: n ∈ {A,C,G, T}) [Fel68]. In the worst case of having to estimate a true
probability of p(n) = 0.5, a variance of only σ2 = 5.0 · 10−4 is reached for N = 502 and of
only σ2 = 1.3 · 10−4 for N = 1871.

6.3.2 Promoter surrounding

Impact of CpG islands around human promoters

Figure 6.3 (top) shows a continuous decrease of weight matrix scores around the tran-
scription start sites of the human EPD dataset. Since the consensus sequence of the
TATA-box is highly AT-rich (7 of the 8 positions are A or T), the weight matrix score
correlates inversely with the GC-content (low scores indicate GC-rich sequences). It was
mentioned in Section 6.1.4 that many eukaryotic promoters are surrounded by CpG is-
lands, accumulations of GC-dinucleotides. Especially the human genome is reported to
be rich in CpG islands [Lew07]. Accordingly, Figure C.1 (Appendix C) shows a high GC-
content around the promoters of the human EPD dataset. For this reason, the continuous
decrease of weight matrix scores observed in Figure 6.3 (top) is expected to stem from the

1Calculated as the inverse of the gamma cumulative distribution function, see [GDHM05]
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CpG islands. While the approach based on mutual information does not clearly detect
the CpG islands (Figure 6.4, top), the approach based on Kullback-Leibler divergence
exhibits a significant increase around the human promoters (Figure 6.5, top). The latter
is expected if recalling that the Kullback-Leibler divergence measures the dissimilarity
between the background nucleotide distribution and the nucleotide distribution of the
TATA-box, which is highly AT-rich.

Impact of AT accumulation around arthropod promoters

In contrast to human promoters, the weight matrix scores around arthropod promoters
increase before the transcription start site (see Figure 6.3 (bottom)). It can be seen
from Figure C.2 (Appendix C) that the according region exhibits a high AT-content,
which explains the observed increase of scores. At the same time, the low GC-content
implies the absence of CpG-islands. In fact, the arthropod EPD dataset mainly consists of
sequences of the fruitfly (Drosophila melanogaster), whose non-genic regions are reported
to be generally AT-rich [DBSH07]. The approach based on mutual information shows
no significant deviation from its values on random sequences (see Figure 6.4, bottom).
This indicates that – though the nucleotide composition changes before the promoter –
the sequence structure with respect to nucleotide alternations does not. The approach
based on Kullback-Leibler divergence exhibits a weak but noticeable decrease before the
promoter (see Figure 6.5, bottom), indicating that the nucleotide composition slowly
approaches that of the TATA consensus sequence.

6.3.3 Promoter site

Figure 6.6 shows the values of the approaches based on a weight matrix (top), on mu-
tual information (middle) and on the Kullback-Leibler divergence (bottom) in the direct
surrounding of the transcription start site (position i = +1). The results are depicted
for human promoters (left) and arthropod promoters (right). It can be seen from Fig-
ure 6.6 (top) that the weight matrix yields a clear peak at position i = −30 (the position
of the TATA-box), both on human and on arthropod sequences. Moreover, it exhibits a
maximum at the transcription start site, which occurs due to the high AT-content at that
position (see Figure C.1 and Figure C.2, Appendix C). The approach based on mutual
information (Figure 6.6, middle) yields a less clear distinction of the TATA-box and the
transcription start site, especially for arthropod promoters. However, since the output is
generally noisy due to the inaccurate estimation of the probability mass functions (see
Section 6.2.2), these results are expected. The approach based on the Kullback-Leibler
divergence exhibits the most distinct picture (see Figure 6.6, bottom). In case of human
promoters (left), a clear minimum is visible at the TATA-box and at the transcription
start site. In contrast to that, the arthropod promoters (right) exhibit a minimum at the
TATA-box but a maximum at the transcription start site. This fact indicates that the
position-specific nucleotide content is dissimilar to that of the TATA-box – despite the
high overall AT-content of both sequences.
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Figure 6.6: Detailed view of scores around the promoter site in human (left) and arthro-
pod (right) dataset. Top: weight matrix, middle: mutual information, bottom: Kullback-
Leibler divergence. The TATA-box (around position i = −30) and the transcription start
site (position i = +1) are marked by vertical lines.
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6.4 Clustering of promoters

It was shown in Section 6.3.2 that the weight matrix score is best capable of detect-
ing CpG islands and AT-rich sequences. Therefore, it is now applied to specific sets
of promoters to gain a more detailed understanding of the promoter surrounding. The
promoter strength – i.e. the promoter’s ability to initiate transcription – depends among
other factors on the sequence homology to the TATA consensus sequence, which is in turn
measured by the weight matrix score. Since promoter strength is assumed to influence
the initiation mechanism, the human promoters are subdivided into three groups based
on their maximum weight matrix score in the region i ∈ [−40;−23], where the TATA-box
is frequently located. Figure 6.7 depicts the results for the three datasets: 450 promoters
with a weak TATA-box (top), 900 promoters with an average TATA-box (middle) and
450 promoters with a strong TATA-box (bottom). The two maxima at the TATA-box
and at the transcription start site are visible in all three datasets, however, the strong and
the weak promoters additionally exhibit an interesting minimum / maximum around 450
nucleotides after the transcription start site. In the following subsections, three possible
explanations for the additional peak are elucidated.

6.4.1 Transcription-factor binding site

A possible explanation for the additional minimum / maximum is that the binding site
of a transcription factor is located at the respective position. Due to the dependency
on the promoter strength, it is likely to constitute a way to compensate for promoters
with a weak TATA-box or without a TATA-box. However, finding a maximum in weak
promoters and a minimum in strong promoters implies that a transcription factor with a
highly AT-rich binding site regulates weak promoters and that a transcription factor with
a highly GC-rich sequence regulates strong promoters. Moreover, the peaks are rather
broad, while transcription factor binding sites usually cover ranges of only 6 to 20 bp.

6.4.2 Nucleosome positioning

As detailed in Section 6.1.5, eukaryotic DNA is packaged into chromatin, in which the
DNA is wrapped around histone proteins. The compact units of DNA and four histone
proteins is referred to as a nucleosome. It is known that the positioning of nucleosomes is
a sequence-specific process that depends on initiating sequences in the DNA [SFMC+06].
The positions of the nucleosomes determine the accessability of the promoter and can
thus be related to promoter strength. G. C. Yuan et al. [YL08] derived the nucleosome
occupancy along the genomes of yeast and human. They found a relationship between
promoter strength and nucleosome occupancy. Evidence for a connection between the
detected maximum / minimum and nucleosome positioning are the facts that it is broader
than expected for transcription factor binding sites and that nucleosome positioning is
reported to strongly depend on the AT-richness of the underlying sequence [YL08].
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Figure 6.7: Weight matrix score for three subsets of human promoters. Top: weak
TATA-box, middle: TATA-box of average strength, bottom: strong TATA-box.
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6.4.3 DNA bendability

It is known that the bendability of DNA strongly depends on the underlying DNA se-
quence: While AT-rich sequences are easily bent (especially sequences with an alternation
between A and T), GC-rich sequences are rigid [PKS+99,JLB+96]. During transcription
initiation, the DNA is strongly bent by the RNA polymerase in order to form loops and
thus attach to distant transcription factors. Since the detected maximum / minimum
indicates an AT-rich region in weak promoters and a GC-rich sequences in strong pro-
moters, it might constitute a way to allow or disallow the bending of DNA in order to
position it correctly in the transcription initiation machinery and hereby compensate for
a weak TATA-box.

6.5 Summary

This chapter dealt with the analysis of transcription initiation sites in higher organ-
isms (eukaryotes) using measures from information theory. Mutual information and the
Kullback-Leibler divergence were adapted for their application to large sets of aligned
promoter sequences, more precisely as a similarity measure to the TATA-box. Addition-
ally, a weight matrix – a standard tool from bioinformatics that assigns a score to a short
sequence depending on its homology to a template motif – was applied for comparison.
The following main results could be achieved:

⊲ The application of the weight matrix to promoter datasets exposed huge differences
between human sequences and arthropod sequences. This fact suggests that the
mechanisms underlying transcription initiation in these species vary significantly.
Moreover, a characteristic behavior of the score in a region of 2000 base pairs
around the transcription start site was observed that indicates an influence of a
wide surrounding on the detection of the promoter.

⊲ Mutual information was adapted to measure the dependence between a sliding win-
dow of the dataset and the consensus sequence. The results were rather inconclusive
and not even exhibited a strong detection signal at the TATA-box. This is due to
the insufficient length of the TATA-box for accurately estimating the probability
mass functions required for calculation of the mutual information.

⊲ Subsequently, the Kullback-Leibler divergence was applied to the datasets to expose
positions with very similar and very dissimilar nucleotide distributions compared
to the TATA-box. Since its probability mass functions were not estimated over
the positions of the TATA-box but over all sequences of the dataset, it showed to
be a promising approach that exposed clear characteristics around the promoters.
It revealed that the nucleotide distribution around human transcription start sites
strongly differs from that at the TATA-box, which might serve synchronization since
it amplifies the signal at the promoter site.
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⊲ Finally, the promoter sequences were subdivided according to their strength mea-
sured as the detection strength of the TATA-box. The promoter set with a very weak
TATA-box exhibited an unexpected maximum, that with a very strong TATA-box
exhibited an unexpected minimum, both at around 500 bp after the transcription
start site. These showed to be most likely related to nucleosome positioning – a
process involved in packaging the DNA into the compact form that builds the chro-
mosomes.



7
Modeling Translation Initiation
in Prokaryotes

Translation is the second step of gene expression and refers to the transformation of an
mRNA into a protein. Not the complete mRNA is hereby translated but only the so-
called coding sequence (see Chapter 3), which makes a process of frame synchronization
necessary to detect the beginning of the start point marked by the Shine-Dalgarno se-
quence. In this chapter, this process is modeled using different codebooks derived from
the underlying interactions between the ribosome and the mRNA.

In Section 7.1, four codebook models for the detection of the Shine-Dalgarno sequence are
derived, the biological sync word of translation. Moreover, it includes the synchroniza-
tion algorithm as well as a performance measure to rate the presented codebook models.
Subsequently, three energy metrics based on binding energies between nucleotides are
introduced in Section 7.2 which make the model output more biologically meaningful.
Finally, Section 7.3 presents a mutational analysis where nucleotide mutations in the ri-
bosome are simulated through changes of the codebook. This allows to rate the effect of
mutations without conducting expensive biological experiments.

7.1 Detection of the Shine-Dalgarno sequence in Es-

cherichia coli

The process of translation initiation corresponds to a frame synchronization where the
ribosome – more precisely the 3’-end of its 16S rRNA subunit – detects the Shine-Dalgarno
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sequence (SD) located shortly before the translation start site (TLS) (see Figure 7.1),
which is marked by the start codon AUG.

5’ 3’AUG8-13 bp

+1

SD

-10 nucleotides ∈ {A,C,G,U}
coding sequence(s)

start codon6 bp5’-UTR

Figure 7.1: Structure of the initiator region of prokaryotic mRNA.

In this chapter, synchronization models based on codebooks are presented. The codebooks
contain codewords of length L and can be seen as a list of template sync words that mimics
allowed variations of the detected sequence. Several different codebooks are derived, and
the detection strength of the Shine-Dalgarno sequence is measured as an indicator for the
significance of the models. Since it is known that the detection of the Shine-Dalgarno
sequence is based on an interaction between the mRNA and the 3’-end (13 bases) of the
16S rRNA (see Section 3.4.4), the codebooks are developed from the complement of these
last 13 bases:

5’ U A A G G A G G U G A U C 3’.
︸ ︷︷ ︸

SD sequence

It can be seen that the Shine-Dalgarno sequence (AGGAGG) is part of these 13 bases.
Figure 7.2 shows the 16S rRNA of Escherichia coli with its exposed 3’-end.

7.1.1 Synchronization algorithm

The detection of the Shine-Dalgarno sequence by the 16S rRNA is modeled as a process of
frame synchronization. The synchronization process is executed in single nucleotide steps
along the mRNA. At each step i, every codeword sj, j ∈ [1; J ], with sj = {s1j

, . . . , sLj
} of

the codebook is compared to an mRNA sequence of length L [DGHM05]. That codeword
with the minimum distance dmin with respect to a defined distance metric δ is chosen:

dmin(i) = min
j∈[1;J ]

δ(d(i), sj), (7.1)

where d(i) = {di, . . . , di+L−1}, and d is the mRNA sequence which corresponds to the
received data stream in technical synchronization processes. In the following sections,
the distance δ is defined to be the Hamming distance dH(di,L, sj). In Section 7.2, it is
then extended to an energy metric based on the binding energies between 16S rRNA and
mRNA to make the results biologically more meaningful.
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Figure 7.2: The 16S rRNA subunit of Escherichia coli [CfMBoR08].

⊲ Example 7.1

Consider the mRNA subsequence di,L=AUGUCA and a codebook containing the 3 codewords
s1 =AAGAAG, s2 =AACAAC and s3 =AUGAAA. In case of the Hamming distance, this results
in the following value of the minimum distance dmin(i):

dH(di,L, s1) = 4, dH(di,L, s2) = 5, dH(di,L, s3) = 2 ⇒ dmin(i) = dh(di,L, s3) = 2.

⊳

7.1.2 Sequence data

The decoding algorithm is applied to the same set of 3194 E. coli mRNA sequences from
the NCBI data base used in Section 4.2 [NCfBI08] (see Appendix C.1.3 for more informa-
tion on sequence extraction). Similar to the handling of promoter sequences presented in
Section 5.1.3, the sequences are not treated individually but average values are calculated
over all available sequences. The mRNA sequences are again aligned to the start as well
as to the stop codon and cut to a fixed length: the UTRs are truncated to 100 bp each
and the middle part of the coding sequence is cut out leaving the first and the last 150 bp.
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The sequence layout is presented in Figure 7.3.

5’ UTR start codon CDS CDS (ctd.) stop codon 3’ UTR

. . . AUG . . . . . . UAA . . .

. . . AUG . . . . . . UAG . . .

. . . AUG . . . . . . UAA . . .
...

...
...

...

. . . AUG . . . . . . UGA . . .

. . . AUG . . . . . . UAA . . .

. . . AUG . . . . . . UAG . . .

100 bp 150 bp 150 bp 100bp

Figure 7.3: Sequence layout of aligned mRNA sequences.

In addition to the 3194 mRNA sequences, non-translated sequences are used as control
of the results. These are sequences from the complete genome of E. coli that contain a
start codon (AUG) and a stop codon (UAA, UAG, UGA) but that are not part of the
3194 mRNAs or part of a gene.

7.1.3 Performance measure

To rate the quality of detection of the Shine-Dalgarno sequence obtained using models
with different codeword length, the following performance ratio is proposed:

R =
∆act

∆max

, 0 ≤ R ≤ 1, (7.2)

where ∆act refers to the actual depth of the minimum at the Shine-Dalgarno sequence
(with respect to the average surrounding level), and ∆max refers to the maximum possible
depth of the minimum (i.e. a perfect detection of the Shine-Dalgarno sequence). Figure 7.4
depicts an arbitrary scenario illustrating the parameters needed for calculation of R for
the case that the Hamming distance is used as the distance measure in Eq. (7.1), i.e. if
the minimum achievable distance is zero.

7.1.4 13 bases complement model

In the first model, the 13 last bases of the 16S rRNA are used as a single codeword (J = 1)
of length L = 13. The resulting codebook – which here consists of only one codeword –
is shown in Table 7.1.
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Figure 7.4: Illustration of the parameters used in the performance ratio.

Table 7.1: Codebook of the 13 bases complement model.

s1 U A A G G A G G U G A U C

Application of the 13 bases complement model to the above described mRNA sequences as
well as the non-translated sequences yields the output depicted in Figure 7.5 [Gon04]. It
can be seen that the Shine-Dalgarno sequence is detected, however, several side-peaks are
exhibited for both types of sequences. The performance ratio yields a value of R = 0.08,
i.e. only 8 % of the possible detection strength in terms of the depth of the minimum is
achieved by the 13 bases complement model. This is due to the inflexibility of the model,
since it contains only one codeword that does not allow any variations in the detected
sequence. One interesting aspect though is the detection minimum at the start codon
(position +1): it stems from the sequence similarity between subsequences of the 13 last
bases and the start codon AUG.

7.1.5 Shine-Dalgarno sequence based model

The second model is constructed from the variability of the Shine-Dalgarno sequence. It
is known that not only the consensus sequence AGGAGG is detected but also certain
variations of it. In [SBRS01], R. Y. Shultzaberger et al. conducted an information the-
oretic analysis of Shine-Dalgarno sequences in E. coli. For this purpose, they aligned
all available sequences to the first base and calculated the conservation of bases similar
to the way presented in Section 4.2.2. They found out that bases 2 to 4 of the Shine-
Dalgarno sequence are most conserved and that base 3 must be G. Surprisingly, the last
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Figure 7.5: Decoding output obtained for the 13 bases complement model.

base neither showed a strong conservation nor a strong preference for one particular base,
which indicates that it is not of great importance for the detection by the 16S rRNA. This
raises the question why the Shine-Dalgarno sequence has been reported to comprise six
nucleotides and not just five. Based on the preferences for bases at the positions in the
Shine-Dalgarno sequence, a codebook with codeword length L = 6 and J = 32 codewords
is created (see Table 7.2). For example, A and U are the most probable bases at position 1
of the Shine-Dalgarno sequence, thus, codewords with these two bases at the first position
are created. For the last position - the one not showing strong preferences for a particular
base - A and G are selected since they occur slightly more frequently than C and U.

Table 7.2: Codebook of the Shine-Dalgarno based model.

s1 A G G A G G s9 A G G A A G s17 A G G A G A s25 A G G A A A

s2 U G G A G G s10 U G G A A G s18 U G G A G A s26 U G G A A A

s3 A A G A G G s11 A A G A A G s19 A A G A G A s27 A A G A A A

s4 U A G A G G s12 U A G A A G s20 U A G A G A s28 U A G A A A

s5 A G G U G G s13 A G G U A G s21 A G G U G A s29 A G G U A A

s6 U G G U G G s14 U G G U A G s22 U G G U G A s30 U G G U A A

s7 A A G U G G s15 A A G U A G s23 A A G U G A s31 A A G U A A

s8 U A G U G G s16 U A G U A G s24 U A G U G A s32 U A G U A A

Figure 7.6 shows the decoding output of the Shine-Dalgarno sequence based
model [Gon04]. Compared to the non-translated sequences, the mRNA sequences ex-
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hibit a clear detection of the Shine-Dalgarno sequence. The performance ratio yields
a value of R = 0.25, i.e. 25 % of the possible detection strength is achieved using the
Shine-Dalgarno sequence based model.
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Figure 7.6: Decoding output obtained for the Shine-Dalgarno sequence based model.

7.1.6 May’s parity check model

In 2004, E. E. May presented a coding theory model of translation initiation in E. coli
based on the hypothesis that the mRNA is a block-encoded sequence [MVBR04,MVB06].
Consequently, the ribosome acts as a decoder that decodes the mRNA-sequence to detect
the Shine-Dalgarno sequence. The block code was (arbitrarily) assumed to be a (5,2)
parity check code, where the parity vectors are obtained from the subsequences of length
3 of the 13 bases complement (see Table 7.3). The nucleotides were mapped to I=01,
A=1, G=2, C=3 and U=4 and operations are calculated modulo 5. The mapping was
chosen in a way so that the modulo 5 sum of nucleotides that form hydrogen bonds is zero
(i.e. A and T, C and G). The codewords were then chosen as all possible combinations of
two information bits and three parity bits that satisfy the following parity condition:

5∑

k=1

sk = 0 (mod 5), (7.3)

If several combinations of an information vector and a parity vector satisfy Eq. (7.3), all
of these are valid codewords. The resulting codebook is listed in Table 7.4.

1Inosine, a nucleotide rarely found in the mRNA but commonly occurring in tRNAs. Base pairs with
A, C and U.



102 Chapter 7 � Prokaryotic Translation Initiation

Table 7.3: Parity vectors of May’s parity check code.

parity vector sum parity vector sum

U A A 1 G G U 8 = 3 (mod 5)

A A G 4 G U G 8 = 3 (mod 5)

A G G 5 = 0 (mod 5) U G A 7 = 2 (mod 5)

G G A 5 = 0 (mod 5) G A U 7 = 2 (mod 5)

G A G 5 = 0 (mod 5) A U C 8 = 3 (mod 5)

⊲ Example 7.2

If the information sequence is given as (G U) = (2 4), the modulo 5 sum of the information
vector is 1. To satisfy Eq. (7.3), the modulo 5 sum of the parity vector needs to be 4. According
to Table 7.3, the according parity vector is (A A G). Thus, the resulting codeword is (2 4 1 1 2) =
(G U A A G).

⊳

Table 7.4: Codebook of May’s parity check model.

s1-s3 I I A G G - G G A - G A G s25-s27 C G A G G - G G A - G A G

s4 I A A A G s28-s30 C U G G U - G U G - A U C

s5-s6 I C U G A - G A U s31-s33 G I G G U - G U G - A U C

s7-s9 I G G G U - G U G - A U C s34-s35 G A U G A - G A U

s10 I U U A A s36-s38 G C A G G - G G A - G A G

s11 A I A A G s39 G G U A A

s12-s14 A A G G U - G U G - A U C s41 U I U A A

s15 A C U A A s40 G U A A G

s16-s17 A G U G A - G A U s42-s44 U A A G G - G G A - G A G

s18-s20 A U A G G - G G A - G A G s45-s47 U C G G U - G U G - A U C

s21-s22 C I U G A - G A U s48 U G A A G

s23 C A U A A s49-s50 U I U G A - G A U

s24 C C A A G

Figure 7.7 shows the output of May’s parity check model applied to the 3194 mRNA
sequences [Gon04]. The performance ratio yields a value of R = 0.22. This fairly good
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performance is due to the construction of the codebook based on the 13 last bases, i.e. such
that it includes subsequences of the Shine-Dalgarno sequence. Nonetheless, there is no
indication that the DNA has been block encoded during evolution and – even more in-
questioned – if the 16S rRNA can perform such complicated decoding tasks with modulo 5
operations. In [MVBR04], May et al. also developed an (8,2) code analog to the presented
(5,2) code which yielded very similar results. In summary, May based her models on highly
speculative hypotheses, and the results should thus not be over-interpreted.
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Figure 7.7: Decoding output obtained for May’s parity check model.

7.1.7 16S rRNA based model

The three models presented above all showed to detect the Shine-Dalgarno sequence,
however, in some cases with a very poor performance (13 bases complement model) or
based on speculative hypotheses (May’s parity check model). Therefore, a new model is
proposed which is based on a codebook created from the 13 last bases of the 16S rRNA.
The derivation follows closely that in [DGHM05]. It can be seen that the Shine-Dalgarno
(length 6) is part of the complement of these 13 bases which suggests that detection takes
place via a successive comparison of subsequences of the last 13 bases with the mRNA.
For this reason, the codebook is obtained by taking all subsequences of length L of the
complement of these bases. Table 7.5 lists the 9 resulting codewords for L = 5.

The output of the 16S rRNA model with L = 5 is depicted in Figure 7.8 [Gon04]. The
performance ratio yields a value of R = 0.32, the highest value achieved so far. Compared
to the 13 bases complement model, the performance improved four-fold. The performance
of other codeword lengths (2 ≤ L ≤ 7) showed to be slightly inferior. This is surprising
since the Shine-Dalgarno sequence is reported to have length 6 and is part of the 13 bases
complement, which would suggest L = 6 to show the best performance. The fact that the
codebook with L = 5 performed better implies that only 5 bases of the Shine-Dalgarno
sequence are important for detection by the 16S rRNA. This is confirmed by the results
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Table 7.5: Codebook of the 16S rRNA model for L = 5.

s1 U A A G G

s2 A A G G A

s3 A G G A G

s4 G G A G G

s5 G A G G U

s6 A G G U G

s7 G G U G A

s8 G U G A U

s9 U G A U C

in [SBRS01] (see also Section 7.1.5), where the last base of the Shine-Dalgarno sequence
showed a low conservation and no strong preference for a particular base. The results and
the inferior performance obtained with the 16S rRNA model indicate that it simulates
the behavior of the ribosome during translation initiation best.
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Figure 7.8: Decoding output obtained for the 16S rRNA based model.

7.1.8 Detection signals

Different models for the detection of the translation initiation signals were presented in
the last sections. The 16S rRNA model showed the best performance and is less based
on speculative hypotheses. In the next step, the model is applied to the full range of the
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dataset as depicted in Figure 7.3, i.e. to the region around the start codon as well as that
around the stop codon. Figure 7.9 shows the resulting output, the horizontal line depicts
the position of the dataset where the sequences were cut to a fixed length. Interestingly,
it exhibits not only the minimum at the Shine-Dalgarno sequence and at the start codon
but also a significant minimum at the stop codon. This fact suggests that the 16S rRNA
is involved in detection of the termination signal, which was already proposed in the early
work by J. Shine and L. Dalgarno [SD74] but neither substantiated nor disproved since
then. It was proposed in [DGHM05] that the 16S rRNA formerly used to be responsible
for detection of both initiation and termination signals but was later replaced by more
sophisticated systems involving more interactions. Nonetheless, the evolutionary role of
the 16S rRNA for translation termination is still observable in the results. The results
are supported by publications reporting that mutations in the 16S rRNA have a negative
effect on translation termination [GHMD91,PG90].
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Figure 7.9: Decoding output obtained for the 16S rRNA model (L = 5) applied to the
whole range of the mRNA dataset.

7.2 Energy metric

In the proposed models, the Hamming distance was used for calculation of the minimum
distance (Eq. (7.1)). Since the actual interaction between the 16S rRNA and the mRNA
is based on hydrogen bonds between the bases, a free energy metric is now proposed to
replace the Hamming distance. The free energy ∆G is the energy that is released if a
chemical reaction takes place, e.g. the hydrogen bonding between nucleotides. The more
negative the free energy, the stronger is the bond between the nucleotides. The values
presented in the following are downloaded from the website of D. H. Turner [UoR08], since
these are publicly available and well accepted among biologists. The free energy values are
always given for two neighboring nucleotides, i.e. they refer to the free binding energy of
two nucleotides in the mRNA to two nucleotides in the 16S rRNA (see Figure 7.10). The
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derivations and more information on the calculation of the free energy values can be found
in [FKJ+86, JTZ89]. The energy metrics presented in the following are solely calculated
from the binding energies of nucleotides (the so-called nearest neighbor parameters) and
do not account for loops that may occur in RNA sequences. The nearest neighbor model
is generally considered as a valid approach for the calculation of RNA-RNA binding
energies (see e.g. [KMC+06]). As mentioned in Section 4.1 and Section 5.1 for bacterial
transcription, low energies indicate a strong binding.

mRNA . . . U G . . .

16S rRNA . . . A C . . .

Figure 7.10: Illustration of the calculation of the free binding energy ∆G.

⊲ Example 7.3

To illustrate the calculation of the free energy, the mRNA sequence AGGAG and the codeword
UCCUC are considered exemplarily. In the first step, the first two nucleotides of both sequences
are considered (energy between the dinucleotide AG and the dinucleotide UC). The subsequent
energies are calculated in single-nucleotide steps, i.e. the next energy term is that between the
dinucleotide GG and the dinucleotide CC. This ends up with

∆Gseq = ∆GAG−UC + ∆GGG−CC + ∆GGA−CU + ∆GAG−UC. ⊳

7.2.1 Watson-Crick base pairing

The first proposed energy metric only takes into account the Watson-Crick base pairing,
i.e. bonds between A and U as well as between C and G. The resulting values are listed
in Table 7.6.

Table 7.6: Turner’s free energy values based on Watson-Crick base pairing [kcal/mol].

mRNA AA AC AG AU CA CC CG CU

16S rRNA UU UG UC UA GU GG GC GA

energy -0.9 -2.2 -2.1 -1.1 -2.1 -3.3 -2.4 -2.1

mRNA GA GC GG GU UA UC UG UU

16S rRNA CU CG CC CA AU AG AC AA

energy -2.4 -3.4 -3.3 -2.2 -1.3 -2.4 -2.1 -0.9
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7.2.2 Including wobble base pairs

In addition to the Watson-Crick base pairing, a so-called wobble base pair between G and
U can also occur and is a fundamental part of all RNAs [VM00]. It is even reported to
have the same thermodynamic stability as Watson-Crick base pairs. Table 7.7 lists the
resulting energy values between the 16S rRNA and the mRNA if including wobble base
pairs.

Table 7.7: Turner’s free energy values including wobble base pairs [kcal/mol].

mRNA AA AC AG AU AG AU CA CC CG CU CG CU

16S rRNA UU UG UC UA UU UG GU GG GC GA GU GG

energy -0.9 -2.2 -2.1 -1.1 -0.6 -1.4 -2.1 -3.3 -2.4 -2.1 -1.4 -2.1

mRNA GA GC GG GU GG GU UA UC UG UU UG UU

16S rRNA CU CG CC CA CU CG AU AG AC AA AU AG

energy -2.4 -3.4 -3.3 -2.2 -1.5 -2.5 -1.3 -2.4 -2.1 -0.9 -1.0 -1.3

mRNA GA GC GG GU GG GU UA UC UG UU UG UU

16S rRNA UU UG UC UA UU UG GU GG GC GA GU UG

energy -1.3 -2.5 -2.1 -1.4 -0.5 +1.3 -1.0 -1.5 -1.4 -0.6 +0.3 -0.5

7.2.3 Including terminal mismatches

The third presented energy metric considers a base doublet with a Watson-Crick or a
wobble base pair at the first position and any other combination of base X in the mRNA
and base Y in the 16S rRNA at the second position. Table 7.8 lists the resulting energy
values including terminal mismatches.

7.2.4 Comparison

In case of usage of an energy metric, the codewords are constructed from the 13 last
bases themselves instead of their complement. Figure 7.11 shows a comparison between
the decoding output obtained with the three presented energy metrics combined with the
16S rRNA model for L = 5, since this codeword length showed the best performance in
Section 7.1.7. The results are plotted with respect to the optimum detection: In case of
the Hamming distance, the optimum detection yields a value of zero, whereas in case of
the energy metrics the optimum detection gives a high negative energy value. For the
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Table 7.8: Turner’s free energy values with terminal mismatches [kcal/mol].

AX Y CX Y

UY A C G U GY A C G U

A -0.8 -1.0 -0.8 -1.0 A -1.5 -1.5 -1.4 -1.5

X C -0.6 -0.7 -0.6 -0.7 X C -1.0 -1.1 -1.0 -0.8

G -0.8 -1.0 -0.8 -1.0 G -1.4 -1.5 -1.6 -1.5

U -0.6 -0.8 -0.6 -0.8 U -1.0 -1.4 -1.0 -1.2

GX Y UX Y

CY A C G U AY A C G U

A -1.1 -1.5 -1.3 -1.5 A -1.0 -0.8 -1.1 -0.8

X C -1.1 -0.7 -1.1 -0.5 X C -0.7 -0.6 -0.7 -0.5

G -1.6 -1.5 -1.4 -1.5 G -1.1 -0.8 -1.2 -0.8

U -1.1 -1.0 -1.1 -0.7 U -0.7 -0.6 -0.7 -0.5

GX Y UX Y

UY A C G U GY A C G U

A -0.3 -1.0 -0.8 -1.0 A -1.0 -0.8 -1.1 -0.8

X C -0.6 -0.7 -0.6 -0.7 X C -0.7 -0.6 -0.7 -0.5

G -0.6 -1.0 -0.8 -1.0 G -0.5 -0.8 -0.8 -0.8

U -0.6 -0.8 -0.6 -0.6 U -0.7 -0.6 -0.7 -0.5

16S rRNA model with L = 5, optimum detection is achieved if the currently considered
mRNA sequence is AGGAG (the first 5 bases of the Shine-Dalgarno sequence) yielding an
energy value of −9.9 for the energy metrics without terminal mismatches and an energy
value of −5.0 for the energy metric including terminal mismatches. With respect to these
values, the energy metric including terminal mismatches seems to perform best, which is
confirmed by evaluating Eq. (7.2): The energy metric based on Watson-Crick base pairs
has a performance ratio of R = 0.32, that including wobble base pairs R = 0.36 and that
including terminal mismatches R = 0.43. Therefore, the last metric seems to provide the
best model of nature due to its flexibility in base pairings at the second position. Recalling
the performance ratio obtained for the 16S rRNA model based on the Hamming distance
(R = 0.32) shows that the energy metrics are able to improve the detection of the Shine-
Dalgarno sequence due to their appropriate modeling of the chemical interaction.
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Figure 7.11: Decoding output obtained for the 16S rRNA model with the three energy
metrics (top: Watson-Crick base pairing, middle: including wobble base pairs, bottom:
including terminal mismatches). Note: y-axes range is adjusted with respect to the value
of optimum detection.
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7.3 Mutational analysis

In the last section, three models were presented together with several metrics of calcu-
lating the distance between mRNA sequences and the codewords. The 16S rRNA model
combined with Turner’s free energy including terminal mismatches exhibited the best per-
formance since they simulate the flexibility in nature best. In the next step, this model is
used to predict the behavior of point mutations in the 16S rRNA. Biological laboratory
experiments in this direction are time and cost extensive, which can be bypassed through
simulations based on the presented model [DGHM05].

7.3.1 Verification

To prove that simulations on the effect of mutations are valid, three mutations whose
effect on translation is known are inserted into the codebook and the effect in terms of
detection of the Shine-Dalgarno sequence is measured. The positions of the mutations
are referenced in the following way:

position 1 2 3 4 5 6 7 8 9 10 11 12 13

base 3’ A U U C C U C C A C U A G 5’

| | | | | |
SD sequence 5’ A G G A G G 3’

Mutations by Hui and de Boer

In 1987, A. Hui and H. A. de Boer investigated the effect of the following mutation in a
single mRNA species [HdB87]: They changed bases 2 to 6 of the Shine-Dalgarno sequence
(normally complementary to positions 4 - 8 of the 16S rRNA) from GGAGG to CCUCC,
which corresponds to changing bases 4 - 8 of the codebook from CCUCC to GGAGG. The
mutation led to a strong decrease of the synthesis of the respective protein. Thereafter,
they mutated the 16S rRNA at positions 4 to 8 such that the complementarity to the
mutant Shine-Dalgarno sequence was restored, which led to a full resumption of protein
synthesis. Figure 7.12 depicts the effect of the mentioned mutation on the simulation
output. It shows clearly that the detection of the Shine-Dalgarno sequence is strongly
diminished by the changes in the codebook (the performance decreases from R = 0.43 to
R = 0.21), while the detection of the start codon remains the same.

Mutations by Firpo et al.

In 1996, M. A. Firpo et al. mutagenized positions 12 and 13 of the 16S rRNA from A and
G to G and A [FCGD96]. They observed a dramatic effect on the vitality of the organism,
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which they showed to be due to a hindered binding of the 16S rRNA to initiation factors
and tRNAs. However, an influence on binding to the mRNA during translation initiation
could be experimentally excluded. Figure 7.12 depicts the effect of the mutation on the
detection of the Shine-Dalgarno sequence and the start codon based on the 16S rRNA
model. It can be seen that the detection of both regions is not altered by the mutations,
which is in accordance with the experimental results of Firpo et al.
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Figure 7.12: Effect of mutations by Hui and de Boer (left) and by Firpo (right).

7.3.2 Generalization to all bases

In the last sections, the validity of simulations for measuring the effect of mutations was
supported. Therefore, the effect can now be generalized to all bases by inserting single-
base changes in the codebook and classifying the increase or decrease on the detection.
Table 7.9 lists the effect on the detection of the start codon and the stop codon, Table 7.10
lists the obtained effect on the detection of the Shine-Dalgarno sequence (SD). ↓ and ⇓
refer to a slight and strong decrease, respectively, in the detection strength as measured
by the ratio R.

Recalling that positions 3 to 8 of the 13 last bases are complementary to the Shine-
Dalgarno sequence explains the strong effect of bases 4 to 7 on the detection. In Sec-
tion 7.1.5 and Section 7.1.7, it was reported that the last base of the Shine-Dalgarno
sequence seems not to be of great importance for the detection by the 16S rRNA. This
is confirmed by the mutational analysis, where a mutation in position 8 showed to have
no influence. Positions 5 and 6 are complementary to the third and fourth base in the
Shine-Dalgarno sequence, the most conserved bases that are thus expected to have the
dramatic effect observed after inserting changes in the codebook at these positions. In
case of the start codon, many bases seem to be involved in its detection. The effect on
the detection of the stop codon is especially strong for the first few bases, a region that
otherwise contains the complement of the stop codon UAA.
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Table 7.9: Qualitative, worst effect of mutations in the last 13 bases of the 16S rRNA
on the detection of the start and the stop codon.

position 1 2 3 4 5 6 7 8 9 10 11 12 13

start codon → → → ↓ ↓ ↓ → ↓ ↓ → → → →
mutation – – – G G G – A G – – – –

position 1 2 3 4 5 6 7 8 9 10 11 12 13

stop codon ↓ ⇓ ⇓ ↓ ⇓ ↓ ↓ ↓ ↓ ↓ ↓ → →
mutation U G G G G G G G G G G – –

Table 7.10: Effect of mutations in the last 13 bases of the 16S rRNA on the detection
of the Shine-Dalgarno sequence (performance loss or gain in percent of R).

position 1 2 3 4 5

A – ± 0 % -15.9 % -30.2 % -30.3 %

C ± 0 % -3.2 % -9.0 % – –

G +8.3 % +3.2 % -13.9 % -26.8 % -31.1 %

U ± 0 % – – -2.4 % -2.4 %

average → (+2.8 %) → (± 0 %) ↓ (-12.9 %) ↓ (-19.8 %) ⇓ (-21.3 %)

position 6 7 8 9 10

A -24.4 % -17.3 % -2.4 % – ± 0 %

C -15.9 % – – +8.0 % –

G -23.8 % -18.7 % -3.4 % +2.4 % -2.4 %

U – -2.4 % ± 0 % +8.0 % ± 0 %

average ⇓ (-21.4 %) ↓ (-12.8 %) → (-1.9 %) → (+6.1 %) → ( -0.8 %)

position 11 12 13 - -

A -2.4 % – ± 0 %

C ± 0 % ± 0 % ± 0 %

G -2.4 % ± 0 % –

U – ± 0 % ± 0 %

average → ( -0.8 %) → (± 0 %) → (± 0 %)
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7.4 Summary

In this chapter, the process of prokaryotic translation initiation was modeled using frame
synchronization and codebook models. Biological experiments have shown that the de-
tection of the Shine-Dalgarno sequence – the sync word of prokaryotic translation – is
based on the interaction between the 16S rRNA (a subunit of the ribosome) and the
mRNA. Therefore, codebook models were derived from this interaction in the bacterium
Escherichia coli, which led to the following results:

⊲ Four codebook models were designed focusing on different aspects of the interac-
tion and on different underlying hypotheses. The detection strength of the Shine-
Dalgarno sequence was compared to rate the quality of the models. Interestingly, a
simplistic model with few underlying hypotheses showed to perform best, which al-
lows conclusions on the nature of the interaction: The last 13 bases of the 16S rRNA
seem to serve as a codebook for detection of the Shine-Dalgarno sequence.

⊲ Subsequently, the best-performing codebook model was applied to a wide range of
an aligned dataset of mRNA sequences. An astonishing result was that not only a
detection signal at the Shine-Dalgarno sequence was observed but also one at the
stop codon. This suggests that the 16S rRNA is also responsible for detecting the
end of the coding sequence which strengthens an old hypothesis that could not be
substantiated until today.

⊲ The codebook model was thereafter extended by an energy metric, i.e. the bind-
ing energies between the 16S rRNA and the mRNA were included in the distance
calculation to the codewords. Three different energy metrics were introduced.

⊲ The best-performing codebook model combined with the best-performing energy
metric was then used to model mutations in the 16S rRNA. Conducting mutational
analyses in biological experiments is highly time- and cost-extensive and can there-
fore only be performed for few individual mutations. The correct prediction of the
effect of mutation through the model was tested using known mutations. Subse-
quently, the model was applied to predict the effect of all possible mutations on the
detection of the Shine-Dalgarno sequence, the start codon and the stop codon. The
mutational analysis supported the involvement of the 16S rRNA in the detection of
the start and stop codon and exposed the varying importance of its 13 last bases
for the detection of the Shine-Dalgarno sequence.



8
Modeling Translation Initiation
in Eukaryotes

In Chapter 7, codebook models for the detection of the Shine-Dalgarno sequence – the
sync word of bacterial (prokaryotic) translation – were derived. In higher organisms
(eukaryotes), the process involves far more interactions and factors. Moreover, the details
of many interactions are not yet fully understood, which renders the development of a
simple model nearly impossible. Instead, the focus of this chapter is to provide a general
sequence analysis of the coding sequence and the translation initiator region based on
methods derived from information theory.

In Section 8.1, the main differences between translation initiation in prokaryotes and
eukaryotes are detailed. Subsequently, Section 8.2 investigates the coding sequence of
eukaryotic mRNAs using Kullback-Leibler divergence and mutual information. Results
are interpreted with respect to their influence on the synchronization process underlying
translation initiation. Section 8.3 follows with a codebook model for the detection of the
Kozak sequence – the biological sync word of eukaryotic translation.

8.1 Differences to prokaryotic translation initiation

It was stated in Section 6.1 that transcription in eukaryotes is highly complex and involves
many factors. The same holds true for translation: While a model for translation initiation
in prokaryotes could be derived by focusing on the interaction between the 16S rRNA and
the mRNA (see Chapter 7), it is difficult to simply extend this approach to eukaryotes.
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8.1.1 Initiator region

The major differences between translation in prokaryotes and eukaryotes are related to
the initiation, while the process of elongation does not differ significantly. In the first step
of translation, the 40S subunit binds to the 5’-UTR and scans along it until it detects a
start codon and the Kozak sequence. The latter ranges from -7 to +4 with respect to the
first position of the start codon (+1, see Figure 8.1).

coding sequenceAUG 3’5’

+4+1-7

5’-UTR Kozak
sequence

nucleotides ∈ {A,C,G,U}

Figure 8.1: Structure of the initiator region of eukaryotic mRNA.

The most important difference to prokaryotes lies in the interaction of the small ribosomal
subunit with the mRNA. As detailed in Section 3.4.4, the prokaryotic 16S rRNA base-
pairs to the mRNA to detect the Shine-Dalgarno sequence. In contrast to that, it was
long assumed that no base-pairing between the 18S rRNA (the eukaryotic equivalent to
the 16S rRNA) and the mRNA takes place. It was only in 2006 that evidence for this
mechanism could be found for a specific mRNA [DCZM06].

8.1.2 mRNA modification for protection

Transcription and translation in eukaryotes occur locally separated (see Section 3.4.1).
After transcription, the mRNA exits the nucleus to the surrounding cytoplasm. It is thus
strongly exposed to radiation and degradation, which could alter the mRNA before being
translated if it was not specifically protected. This protection is achieved by a methylated
guanine cap at the 5’-end and a poly(A)-tail at the 3’-end of the mRNA. The former seals
the sensitive 5’-end and hereby prevents degradation in the 5’→3’-direction. The latter
is a sequence of 100 - 200 adenine nucleotides which the poly(A)-binding protein (PABP)
binds to in order to prevent degradation of the mRNA in the 3’→5’-direction. Both mRNA
modifications seem to be important for translation, since it was shown that initiation is
strongly inhibited if one modification is reversed experimentally [Lew07].

8.1.3 Translation initiation factors

Translation in eukaryotes involves far more proteins than in prokaryotes. While only three
initiation factors (IF) are required for bacterial translation initiation, 12 factors are cur-
rently known to be involved in the equivalent eukaryotic steps (denoted by eIF) [Lew07].
These are required for all stages of translation initiation including formation of an ini-
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tiation complex at the 5’-end, movement of the ribosome along the mRNA as well as
detection of the start codon.

8.1.4 mRNA ring structure

During translation initiation, the initiation factor eIF4G binds to the guanine cap at the
5’-end of the mRNA. The poly(A)-binding protein (PABP) can thereafter bind to eIF4G
to create a loop where the 5’-end and the 3’-end find themselves held in the same protein
complex [Lew07]. The function of this ring structure is not fully understood yet, however,
it is assumed to enable re-initiation of translation, i.e. the ribosome can directly start a
new round of translation after having completed one.

Figure 8.2: Ring structure of eukaryotic mRNAs.

8.1.5 Protein interactions during initiation

Translation initiation in prokaryotes is based on the interaction between the 16S rRNA
and the mRNA (see Section 3.4.4). In eukaryotes however, it could not yet been proven
that an according rRNA-mRNA interaction takes place. The 18S rRNA subunit of the
eukaryotic ribosome – the evolutionary equivalent of the 16S rRNA in prokaryotes – was
shown to affect translational efficiency of individual mRNAs [DCZM06], but generaliz-
ing experimental results stay inconclusive [Koz01] This fact makes the extension of the
codebook models derived in Chapter 7 for prokaryotes particularly difficult.

8.2 Information theoretic analysis

In the following, two information theoretic measures – Kullback-Leibler divergence and
mutual information – are applied to investigate the coding sequence and the initiator
region of eukaryotic mRNAs. The latter refers to the 5’-UTR of the mRNA, i.e. the
non-coding part ranging from the 5’-end to the start codon AUG. It is responsible for
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initiation of transcription based on the recruitment of the translation machinery: The
eukaryotic ribosome binds to the 5’-UTR and slides along it until it detects the Kozak
sequence – the sync word of eukaryotic translation – and the start codon [Koz02,Koz99]
(see also Section 3.4.5). A set of mRNAs of the house mouse Mus musculus is used for
the analysis (see Appendix C.1.4), the data structure is as presented in Section 4.2.

8.2.1 Kullback-Leibler divergence

The relative entropy (or Kullback-Leibler divergence) at position i of a given dataset S
of aligned mRNA sequences is given by (see also Section 4.2.2)

D(p̂S(n, i) ‖ p̂S(n)) =
∑

n∈A

p̂S(n, i)ld
p̂S(n, i)

p̂S(n)
, (8.1)

where p̂S(n, i) refers to the distribution of the nucleotide n ∈ {A,C,G, U} at position i
of the dataset S and p̂S(n) the background nucleotide distribution in the whole dataset.
In case of a uniform background distribution, Eq. (8.1) can be simplified to

D(p̂S(n, i) ‖ p̂S(n)) = 2 − H(n, i), (8.2)

where H(n, i) refers to the entropy at position i. In case of a perfect nucleotide con-
servation at position i, i.e. if one specific nucleotide occurs in all sequences at that po-
sition, the Kullback-Leibler divergence to the uniform distribution reaches a value of
D(p̂S(n, i) ‖ p̂S(n)) = 2, since there is no uncertainty about the nucleotide (H(n, i) = 0).

Objective

The Kullback-Leibler divergence is a measure of the evolutionary conservation of a base at
a certain position. In this context, position-specific conservation is measured as opposed
to inter-species conservation. The first expresses the conservation of a nucleotide at a
specific position on an mRNA over the whole mRNA population of an organism. The
latter compares genes or mRNAs that code proteins of functional or chemical similarity or
identity in different organisms. A number of metrics exist to research inter-species conser-
vation. If a sufficiently large dataset of mRNA sequences is available, the Kullback-Leibler
divergence constitutes a promising approach for measuring position-specific conservation.
Highly conserved nucleotides in this sense are generally expected to be related to impor-
tant cellular functions.

Results

The presented adaptation of the Kullback-Leibler divergence is applied to the set of
mRNAs of the house mouse (Mus musculus). Figure 8.3 (top) depicts the Kullback-
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Leibler divergence between the nucleotide distribution at position i of the aligned dataset
and the background nucleotide distribution. Figure 8.3 (middle, bottom) show detailed
views of the Kullback-Leibler divergence around the start codon and around the stop
codon, respectively. Note that the peaks at the exact position of the start and stop codon
are cut to enhance the surrounding details. As can be seen from Figure 8.3 (top), the
Kullback-Leibler divergence at those positions is around D(p̂S(n, i) ‖ p̂S(n)) = 2, which
implies an almost perfect base conservation if the background distribution is close to a
uniform distribution. No significant values are observed in the 5’-UTR (see Figure 8.3,
middle), except at the positions directly upstream of the start codon, which are known to
be occupied by the Kozak sequence. Equivalently, low values are observed in the 3’-UTR
(see Figure 8.3, bottom). Interestingly, the pattern of the Kullback-Leibler divergence
in the coding sequence changes between start and stop codon: While most codons after
the start codon exhibit the strongest conservation at their third position (third position
marked by arrows), most codons before the stop codon exhibit the strongest conservation
at their second position (second position marked by arrows).

Interpretation

As can be seen from the genetic code (see Figure 3.9), several codons may code for the
same amino acid (the so-called synonymous codons), e.g. the four triplets GCA, GCC,
GCG and GCU are translated into the amino acids alanine. These codons are however not
used with equal frequency, but one codon (named the major codon) is generally preferred
over the others, which is known as codon usage bias. In most cases of synonymous codons,
only the third base varies, while the first and – above all – the second base stay the same.
This explains well that the second base exhibits the strongest conservation at the end of
the coding sequence (see Figure 8.3, bottom). The fact that the second base is normally
the least varied one between synonymous codons makes the high conservation at the
second position that is observed directly after the start codon (see Figure 8.3, middle)
even more astonishing. Several explanations might be conceivable for this:

First, certain codons might be favored at the beginning of the coding sequence to achieve
a charge of the protein end. Amino acids are categorized into hydrophobic (repelled from
water) and hydrophilic (soluble in water). While the former are non-polar (uncharged),
the latter are further categorized into positively and negatively charged. Several classes
of proteins require a charged terminus for specific functions or processes, e.g. secretory
proteins need a positively charged end for exiting the plasma membrane [ZPJ07]. Due to
the preference of the major codon over the other synonymous codons, the preference for
certain amino acids also introduces nucleotide biases and thus a higher conservation at
the respective positions.

Second, the strong conservation of the third position could stem from nucleotide biases
serving the interaction with the ribosome and initiation factors: The first codons of
the coding sequence are reported to have a strong impact on translational efficiency.
Specifically, adenine-rich codons promote translation initiation in prokaryotes [ZPJ07,
CPCB+94]. However, it could not yet be conclusively inferred whether the same holds
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Figure 8.3: Kullback-Leibler divergence of the Mus musculus mRNAs (top: wide range,
middle: start codon, bottom: stop codon).
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true for eukaryotic organisms. Hence, an influence of adenine-rich codons on the high
conservation at the third codon position can neither be supported nor disproved.

Third, protein binding sites in the coding sequence could influence the codon usage and,
thus, the nucleotide conservation. As exemplarily listed for the amino acid arginine
above, many amino acids are coded by fixed bases at the first two positions combined
with any arbitrary nucleotide at the third position. Therefore, the third position can be
used to encode additional signals, e.g. binding sites of so-called exonic splice enhancers
(ESE) [WH07a]. Those are proteins that bind to the exonic regions of the pre-mRNA to
induce splicing, the process during which the introns are removed to create the mature
mRNA that is thereafter translated (see Section 3.4.1). The binding sites of these ESEs
are typically 6 to 20 nucleotides long and purine-rich (i.e. AG-rich) [CB07]. Possibly
existent ESE binding sites shortly after the start codon may thus introduce a nucleotide
bias leading to the observed conservation at the third codon position. This hypothesis is
supported by the fact that a low cytosine content co-occurs with high entropy (exposed
through correlation analysis, data not shown).

8.2.2 Mutual information

The mutual information between two positions ix and iy of a given dataset of aligned
mRNAs can be empirically estimated by (see also Section 4.2.3)

I(ix; iy) =
∑

nx∈A

∑

ny∈A

p̂S(nx, ny, ix, iy)ld
p̂S(nx, ny, ix, iy)

p̂S(nx, ix)p̂S(ny, iy)
, (8.3)

where p̂S(nx, ny, ix, iy), p̂S(nx, ix), and p̂S(ny, iy) are again estimated from the dataset S.
The first refers to the counted joint occurrences of base nx at position ix and base ny at
position ix. I(ix; iy) quantifies the information that is obtained about nucleotide nx by
observing nucleotide ny at a distance d = ix − iy.

Objective

Application of mutual information to mRNA sequences allows conclusions on the relations
between two nucleotides that are neighboring each other or separated by short distances
d. High mutual information between two nucleotides at distance d is a strong indicator
for a functional relationship, since non-essential genetic features tend to be degraded over
the course of evolution. Large-sized datasets are hereby necessary to produce meaningful
results, for more information about the required sample size see [GDHM05].

Results

The presented mutual information estimate between distant positions is again applied
to the dataset of mRNAs of Mus musculus (see Appendix C.1.4). Figure 8.4 shows the
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average mutual information between nucleotides at distance d in the 5’-UTR (top), the
coding sequence (middle) and the 3’-UTR (bottom). The values of the mutual information
obtained for the whole dataset are depicted by the dashed lines in all three plots for
reasons of comparison. As expected, a 3-periodicity is observed in the coding sequence
(CDS), which stems from the triplet structure and has been detected before using signal
processing techniques (see e.g. [Vai04]). Also expected is the fact that no periodicity is
exhibited in the 3’-UTR. However interesting is the 3-periodicity in the 5’-UTR, which
most investigations overlooked since they analyzed all non-coding DNA as one dataset
instead of separating it into 3’-UTR, 5’-UTR etc. (see e.g. [GHBS00]).

Interpretation

As detailed in Section 4.2.4, translation is a highly sensitive process with respect to frame
shifts, i.e. if shifted mRNA triplets are transformed into amino acids, which may yield
a completely different protein. It was therefore concluded that the 3-periodicity in the
coding sequence ensures the maintenance of the reading frame [XBA+06]. The observed
3-periodicity in the 5’-UTR strongly suggests that the ribosome is already synchronized
to the triplet structure during its scanning process for the start codon. This hypothesis
is backed by the fact that in E. coli not only the 5’-UTR but also the 3’-UTR exhibit the
3-periodicity [AM90]. Since bacterial mRNAs are polycistronic – i.e. they generally carry
more than one coding sequence – many 3’-UTR constitute the 5’-UTRs of the subsequent
coding sequence and, thus, should also carry the periodicity if it was related to reading
frame maintenance.

Another possible explanation for the 3-periodicity in the 5’-UTR lies in evolutionary
remainders of former coding sequences. Mutations occur at all times and during all
stages of gene expression. These can either alter existing start codons, change similar
codons into a start codon or modify the surrounding of randomly occurring AUG-codons
such that it can initiate translation. This explanation however appears to be unlikely to
be the only cause of the 3-periodicity, since single remainders of coding sequences would
not have such a major effect on a huge dataset of mRNA sequences. Furthermore, if the
periodicity was due to former coding sequences, a similar effect would be expected for
the 3’-UTR, where mutations can alter the stop codon. Since this is not the case there,
the 3-periodicity is more likely an aspect of synchronizing the ribosome to the codon
structure.

8.3 Detection of the Kozak sequence

In this section, a codebook model for the detection of the Kozak consensus sequence
is derived. The biological relevance of the Kozak consensus sequence is explained in
Section 3.4.5. As mentioned in Section 8.1, the exact details of the interaction between
the ribosome and the Kozak sequences are still unknown. Hence, the results of the
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Figure 8.4: Mutual information between distant positions of the Mus musculus mRNAs
(top: 5’-UTR, middle: CDS, bottom: 3’-UTR).
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codebook modeling should be seen as a further aspect of sequence analysis rather than
conclusions on a specific protein.

8.3.1 Codebook model

The codebook is created using the results presented in Section 8.2.1. As detailed there,
the Kullback-Leibler divergence hints at how well conserved a nucleotide at a specific
position is and thus at how important it is for translation. At each highly conserved
position, the most probable base is chosen for the respective position in the codeword.
When two bases have almost equal occurrence rates, one codeword is created for each.
Taking into consideration all possible combinations, the codebook shown in Table 8.1 is
obtained. Note that nucleotides remaining constant over all codewords are printed in
lowercase. The exact location of the sequence used to build up the codebook is depicted
in Figure 8.5.

Table 8.1: Kozak sequence codebook.

s1 g c c g C c A C c

s2 g c c g G c A C c

s3 g c c g C c A A c

s4 g c c g G c A A c

s5 g c c g C c G C c

s6 g c c g G c G C c

s7 g c c g C c G A c

s8 g c c g G c G A c

mRNA

5’ . . . [codebook]AUG. . . 3’

Figure 8.5: Position of the Kozak sequence codebook relative to the start codon.

8.3.2 Results and interpretation

The resulting output of applying the codebook to the aligned mRNA dataset of Mus
musculus using Turner’s free energy metric (see Section 7.2) is plotted in Figure 8.6
(top), while an enlarged view of the start codon region is given in Figure 8.6 (bottom).
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It exhibits a relatively strong negative peak just upstream of the start codon followed by
a positive one. A similar yet weaker behavior can be seen upstream of the stop codon.
The peak before the start codon (marked by an arrow) indicates a good match between
one of the codewords and the sequence there. Since the codebook is created from analysis
of this very region, this match is not surprising. Much more surprising are the positive
peaks that precede and follow and that stand for poor binding properties. Furthermore,
a minimum is exhibited at the stop codon.

In order to ensure initiation at the exact location of the start codon, it seems plausible
that its surroundings should match as badly as possible to relatively enhance it. As
derived in Chapter 2, sync words should not exhibit a strong self-similarity for any overlap
v. Fulfillment of this criteria minimizes the probability for shifted synchronization with
the surrounding random data. If, however, the surrounding data is not random but
can be chosen by the transmitter, it should be designed such that it is as dissimilar as
possible to the sync word. The dissimilarity should include the symbol distribution as
well as the structure. The positions with very poor binding properties directly before and
after the detection of the Kozak sequence (see Figure 8.6, bottom) thus suggest that the
surrounding nucleotides aid synchronization. This enables an exact detection of the start
codon as hereby an in-frame start of translation. As observed for prokaryotic translation
in Section 7.1.8, another position of strong binding is exhibited at the stop codon. This
indicates that the ribosome subunits involved in start codon detection have also a share
in detection of the stop codon.

8.4 Summary

This chapter dealt with transcription initiation in higher organisms (eukaryotes). Due
to the high number of interactions between protein subunits and the mRNA, a strong
focus was laid on sequence analysis using information theoretic measures rather than on
deriving models for specific interactions. All sequence data used in the analyses belong
to the house mouse (Mus musculus). The following results have been achieved:

⊲ First, the Kullback-Leibler divergence (relative entropy) was adapted to its applica-
tion to large sets of aligned mRNA sequences. Positions with high relative entropy
are generally assumed to be of functional significance for translation initiation. Due
to the fact that numerous amino acids are coded by codons with a varying third
base, the lowest relative entropy is expected at that position. Surprisingly, this
showed not to be true at the beginning of the coding sequence. This suggests that
signals for other cell functions are hidden at the beginning of the coding sequence
and hereby decrease the variability of the bases.

⊲ Subsequently, the mutual information between nucleotides at short distances from
each other was calculated. This analysis revealed a 3-periodicity in the coding
sequence and the 5’-UTR. While the former has already been detected by methods
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Figure 8.6: Detection of the Kozak sequence of Mus musculus. Top: complete mRNAs,
bottom: start codon (the arrow marks the first position of the Kozak sequence).

from signal processing, the latter has never been reported. It suggests that the
ribosome is synchronized to the triplet structure of the coding sequence during its
search for the start codon.

⊲ Thereafter, a codebook was derived from the Kozak sequence – the sync word of
eukaryotic translation. Positions with very bad binding properties were observed
on both sides of the detection signal. This indicates that the surrounding of the
Kozak sequence is chosen such that the probability of shifted synchronizations is
minimized. These may have a severe effect on the resulting protein due to the
codon structure of the coding sequence.



9
Conclusions

This thesis dealt with the application of frame synchronization techniques combined with
methods from coding and information theory to gene expression. With few exceptions,
the two fields communications engineering and molecular biology have only in the last
years started a cautious rapprochement, 50 years after Claude E. Shannon’s “An Algebra
for Theoretical Genetics” [Sha40]. This thesis aimed at fostering the cooperation between
the two fields and to achieve the appreciation of this interdisciplinary topic in both com-
munities. In the following sections, the main aspects and achievements of this thesis are
summarized. Moreover, possible future research directions are presented.

9.1 Summary

After two introductory chapters detailing the technical and biological background, five
chapters investigated the processes of transcription and translation for both bacteria
(prokaryotes) and higher organisms (eukaryotes).

Chapter 2 introduced the basics of frame synchronization in technical systems. Its main
objective was to provide the criteria underlying sync word detection and design.

Chapter 3 followed with the biological background needed for subsequent chapters. A
strong focus was laid on gene expression, the vital process of protein synthesis taking place
in the two steps transcription and translation. The two steps were detailed separately for
prokaryotes and eukaryotes.

In Chapter 4, biological sync words were investigated. These are located shortly before
specific regions of the DNA and need to be detected by proteins to initiate regulatory
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processes. First, the prokaryotic promoter was analyzed with respect to its synchroniza-
tion properties. Second, the Shine-Dalgarno sequence was examined using information
theoretic measures.

In Chapter 5, a synchronization model of prokaryotic transcription was presented. It was
derived based on binding energies and applied to an exhaustive set of known promoter
sequences. The results were thereafter interpreted in terms of their biophysical impact on
promoter detection by the RNA polymerase.

In Chapter 6, a sequence analysis of the promoter region in eukaryotes was conducted.
For this purpose, mutual information and the Kullback-Leibler divergence were adapted
and compared to weight matrices, a standard approach from bioinformatics.

Chapter 7 followed with a codebook model approach to modeling translation in prokary-
otes. Four codebook models were derived based on the interaction between the 16S rRNA
(a subunit of the ribosome) and the Shine-Dalgarno sequence. The best-performing model
was extended by the base pairing energies to make the results more biologically meaning-
ful. It was thereafter applied for a mutational analysis of the 16 rRNA.

Chapter 8 detailed translation initiation in eukaryotes. It focussed on a sequence analysis
of large mRNA datasets based on mutual information and Kullback-Leibler divergence.
Additionally, a codebook was derived for the detection of the Kozak sequence by the
eukaryotic ribosome.

9.2 Achievements

The following main results were achieved for the bacterium Escherichia coli as the model
organism of prokaryotes:

⊲ The promoter and the Shine-Dalgarno sequence were analyzed with respect to their
synchronization properties. The question that was sought to be answered was: Are
biological sync words designed to serve synchronization by proteins? Interestingly,
the autocorrelation properties and a Markov analysis of the whole genome suggest
that the promoter is among the best possible sequences to ensure reliable detec-
tion by the RNA polymerase. The Shine-Dalgarno has unfavorable autocorrelation
properties, which, however, help to synchronize the ribosome to the triplet structure
of the coding sequence. These results give new perspectives on sequence evolution
(see Chapter 4).

⊲ A synchronization model was derived for transcription initiation. It was applied to
a large set of known promoters and exposed a characteristic behavior of binding
energies between the RNA polymerase and the DNA. Since the movement of the
RNA polymerase along the double helix during promoter search depends on these
binding energies, the characteristic behavior allowed a biophysical interpretation
that yielded new insights into the interaction. The reliable synchronization to the
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transcription start site seems to not only depend on the sync word (the promoter)
but also on a wide surrounding (500 nucleotides). This fact should give strong indi-
cations for the future design of technical synchronization systems (see Chapter 5).

⊲ Four codebooks were derived from the 16S rRNA (a subunit of the ribosome) in-
volved in translation initiation. The models showed strong differences in their de-
tection strength of the Shine-Dalgarno sequence. The results of the best-performing
model suggest that the 13 last bases of the 16S rRNA serve as a codebook that
enables a reliable detection (see Chapter 7).

⊲ The successful development of an appropriate codebook model allowed to conduct
a mutational analysis of the last 13 bases of the 16S rRNA. Biological experiments
on the effect of single mutations are highly time and cost extensive but important
to gain a sophisticated understanding on the important positions of an interaction.
The conducted mutational analysis supported the importance of five nucleotides for
detection of the Shine-Dalgarno sequence. Additionally, several nucleotides were
found to have a strong impact on the detection of the start and stop codon.

The results achieved for eukaryotes are more generic, since less information is available
about the underlying interactions. Moreover, the processes involve numerous factors that
disallow simple models. Three model organisms were used for the investigations: the
human (Homo sapiens), the house mouse (Mus musculus) and the family of arthropods
(including the fruit fly Drosophila melanogaster).

⊲ The promoter and the Kozak sequence were analyzed in terms of their synchroniza-
tion properties. An important criterion in technical systems is to minimize shifted
synchronizations, i.e. if an overlap of a part of the sync word with neighboring bits
yields a valid sync word. In addition to an appropriate design of the sync word,
the surrounding data should be as dissimilar as possible to the sync word. In the
case of the human promoter, an extensive surrounding (2000 nucleotides) differs
strongly in terms of nucleotide distributions and sequence structure. In the case of
the Kozak sequence, the neighboring positions showed to be particularly dissimilar.
These results indicate that – as seen for prokaryotes – biological synchronization
processes incorporate both the design of the sync word and the choice of the wide
surrounding (see Chapter 6 and Chapter 8).

⊲ Strong differences were detected between the promoter surrounding in human and
arthropods. This fact implies differences in the process of transcription initiation.
While only minor differences were detected between gene expression processes in
bacterial species, the results obtained for the eukaryotic species indicate a strong
organism differentiation that took place during eukaryotic evolution (see Chapter 6).

⊲ Mutual information and the Kullback-Leibler divergence were adapted for the analy-
sis of promoter datasets. While the former showed no superiority to weight matrices
from bioinformatics, the latter turned out to be a powerful tool for laying open the
properties of the promoter surrounding (see Chapter 6).
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⊲ Both information theoretic measures were additionally adapted for the analysis of
eukaryotic mRNA datasets. The Kullback-Leibler divergence exposed a yet un-
known pattern of nucleotide biases in the coding sequence of Mus musculus. Due
to synonymous codons that yield the same amino acid and generally differ only in
the third position, the lowest nucleotide conservation would be expected at that
position. However, this showed to be not the case at the beginning of the coding
sequence, which suggests that additional regulatory signals are hidden in that re-
gion. Mutual information revealed that the 3-periodicity that has been reported
for the coding sequence is also exhibited in the 5’-UTR (untranslated region). This
suggests that the ribosome gets already synchronized to the triplet structure while
searching for the Kozak sequence and the start codon (see Chapter 8).

9.3 Future research directions

The most interesting focus of future research would be a detailed analysis of gene expres-
sion in eukaryotes. Due to the highly limited understanding of underlying interactions,
only a general sequence analysis was possible in this thesis. As soon as a better un-
derstanding will have been gained, single interactions could be modeled using techniques
from frame synchronization. In this respect as well as regarding the analysis of prokaryotic
processes, the following aspects could constitute interesting extensions of this work:

⊲ In this thesis, the promoters of the main sigma factor of Escherichia coli were
analyzed. Due to the limited availability of promoters, the analysis could not be
extended to the six alternative sigma factors. Each sigma factor detects an own
set of promoter sequences, which should therefore be as dissimilar as possible to
avoid false detections by inappropriate sigma factors. In technical systems, orthog-
onal sequences and signals are employed to separate information. For example,
orthogonal spreading sequences separate the users in code division multiple access
(CDMA). The promoters of different sigma factors would be recognized with max-
imum reliability if they were orthogonal in a biological sense, i.e. if their structure
and nucleotide content yields unique binding energy patterns. Therefore, as soon
as enough data is available, promoter detection could be modeled as a multi user
system where the sigma factors act as the receivers that extract their information
from the data stream (the DNA) based on biologically orthogonal sync words (the
promoters).

⊲ The analysis of eukaryotic promoter sequences exposed major differences between
the human and arthropod species. Therefore, the consideration of other eukaryotic
organisms might reveal further differences that yield a better understanding of eu-
karyotic transcription initiation. For this purpose, the investigated organisms should
be evolutionary distant, since those are more likely to exhibit strong differences. For
example, the yeast species Saccharomyces cerevisae – a unicellular representative of
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the kingdom Fungi – and the thale cress (Arabidopsis thaliana) – a well annotated
species of the kingdom Plantae – could serve as model organisms.

⊲ Protein-DNA interactions constitute a basic step of all cellular processes. For exam-
ple, transcription factors bind to positions close to the gene start site. The binding
sites of these proteins could be investigated with respect to their synchronization
properties as presented in this thesis for prokaryotic and eukaryotic promoter se-
quences. Transcription factor binding sites are available in databases like Trans-
fac [BIO08].

B. Hayes speculates in [Hay98] about possible reactions of researchers if they had known
the rather simple mapping of nucleotide triplets to amino acids (known as the genetic
code) before its discovery in 1961: “My guess is that Nature1 would have rejected the paper.
‘This notion of the ribosome ratcheting along the messenger RNA three bases at a time
– it sounds like a computer reading a data tape. Biological systems don’t work that way.
In biochemistry we have templates, where all the reactants come together simultaneously,
not assembly lines where machines are built step by step.’ ”. This thesis demonstrated
that biological systems sometimes do work that way and that the analogies between
data transmission in communications engineering and molecular biology are not even
confined to the genetic code – but rather comprise the complete process leading from
DNA sequences to proteins.

1B. Hayes here refers to the prominent scientific journal Nature, see [NPG08].
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Notation and Symbols

A.1 Abbreviations

A adenine

aa amino acid

ACF autocorrelation function

Arg arginine

Asp aspartic acid

AWGN additive white Gaussian noise

bp base pair

BPSK binary phase shift keying

BRE TFIIB recognition element

BSC binary symmetric channel

C cytosine

CDS coding sequence

DNA deoxyribonucleic acid

DPE downstream promoter element

E. coli Escherichia coli

ESE exonic splice enhancer
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G guanine

His histidine

HTH helix-turn-helix motif

I inosine

Ile isoleucine

Inr initiator region

i. u. d. independently and uniformly distributed

kD kilo Dalton

ld logarithm to the base 2

Leu leucine

Met methionine

MF merit factor

MFPT mean first-passage time

mRNA messenger RNA

PSL peak sidelobe level

RNA ribonucleic acid

RNAP ribonucleic acid polymerase (RNA polymerase)

rRNA ribosomal RNA

S Svedberg (unit), sedimentation coefficient

SD Shine-Dalgarno sequence

Ser serine

SNR signal-to-noise ratio

Stp stop codon

SW sync word

T thymine

TBP TATA-binding protein

TFIIx transcription factor x for eukaryotic RNA polymerase II

TLS translation start site

tRNA transfer RNA

TSS transcription start site

Tyr tyrosine

UTR untranslated region
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A.2 Symbols

c constant page 45

d distance between positions ix and iy (d = iy − ix) page 56

d received data stream {d1, . . . , dNd
} page 5

D length of the data part of a frame (synchronous trans-
mission)

page 12

D matrix defining the multiplication of two arbitrary sym-
bols

page 43

Dbin matrix defining the multiplication of two binary sym-
bols

page 43

dH Hamming distance page 10

dmin minimum distance measure page 96

d(nx, ny) distance measure between nucleotide nx and nucleotide
ny

page 44

Dnuc matrix defining the multiplication of two nucleotide
symbols

page 45

D′
nuc matrix defining the multiplication of nucleotides and

non-constrained symbols (in distributed sync words)
page 49

D(p̂S(n, i) ‖ p̂S(n)) Kullback-Leibler divergence between the background
nucleotide distribution and the actual nucleotide distri-
bution at position i of a given set of aligned sequences

page 55

D(p̂s(n) ‖ p̂S(i)(n)) Kullback-Leibler divergence between the nucleotide dis-
tribution in a sliding window of the dataset S and in a
short sequence motif s

page 85

D(pX ‖ qX) Kullback-Leibler divergence between the probability
distributions pX(x) and qX(x)

page 54

Dτ distance measure used to rate the synchronization prop-
erties of a sync word depending on the shift τ

page 17

Eb bit energy page 7

E(i) minimum binding energy over all possible spacings s ∈
[15; 19] between the sigma factor and a DNA sequence
beginning at position i of an aligned dataset

page 64

E(i) average E(i) over all N sequences of the aligned dataset page 65

e(n) average binding energy between the sigma factor and
nucleotide n

page 44

e(n, k) partial binding energy between the nucleotide n ∈
{A,C,G, T} and the binding site of the sigma factor
associated with promoter position k

page 62
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El(s) binding energy between the sigma factor and a given promoter
sequence l with spacing s between the -35 and the -10 region

page 62

E(s, i) binding energy between the sigma factor and a DNA sequence
beginning at position i of an aligned dataset for one spacing s

page 64

Eran average binding energy for a large set of random sequences page 65

g gradient of a function page 69

∆G free energy released by a chemical reaction page 105

h error tolerance of the frame synchronizer page 10

H(n, i) entropy of nucleotide n at position i of a dataset page 117

hv Hamming distance H between the first and the last n bits of a
sequence

page 10

i position of a dataset of aligned sequences page 55

I(i; i + d) average mutual information between two positions at distance d page 121

I(s;S(i)) mutual information estimate between a sought motif and a sliding
window of an aligned dataset S

page 82

I(ix; ix) mutual information between position ix and iy of a given set S of
aligned sequences

page 56

I(X; Y ) mutual information between the random variables X and Y page 56

J number of codewords in a codebook page 96

k position in a short motif page 5

kB Boltzmann constant page 69

L length of the sync word page 5

Lhigh(µ) approximation of Lopt(µ) for high SNRs (synchronous transmis-
sion)

page 7

L′
high(µ) approximation of L′

opt(µ) for high SNRs (asynchronous transmis-
sion)

page 8

Llow(µ) approximation of Lopt(µ) for low SNRs (synchronous transmis-
sion)

page 7

Lopt(µ) optimum sync word location rule (synchronous transmission) page 7

L′
opt(µ) optimum sync word location rule (asynchronous transmission) page 8

Lth value of the likelihood function used for threshold detection page 5

L(µ) likelihood function to be evaluated at each position µ of the in-
coming data stream

page 5

Mm Markov chain of order m page 11

n nucleotide page 43

n DNA sequence page 79

N number of sequences in a dataset page 64
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Nd length of the received or analyzed data stream page 5

Nf frame length (synchronous transmission) page 6

N̂m(r) random variable of the count of sequence r based on the
Markov chain Mm

page 50

N(r) observed number of occurrences of sequence r in the data
stream

page 50

N0 one-sided noise spectral density page 7

PCD probability of a correct detection of the sync word page 10

Pe bit error probability page 9

PFD probability of a false detection of the sync word page 10

pi probability that a protein at position i moves to the right page 71

PMD probability of a missed detection of the sync word page 11

Pr{expr} probability of the event expr page 8

PSL peak sidelobe level of sync words for application in systems
with expected phase ambiguities

page 43

PSL’ peak sidelobe level of sync words for application in systems
without expected phase ambiguities

page 43

p̂S(n) occurrence of nucleotide n in the whole dataset S page 55

p̂S(n, i) occurrence of nucleotide n at position i of a given set S of
aligned sequences

page 55

p̂S(nx, ny, ix, iy) joint occurrence of nucleotide nx at position ix and nu-
cleotide ny at position iy of a given set S of aligned sequences

page 56

qi probability that a protein at position i moves to the left
(qi = 1 − pi)

page 71

R performance measure for codebook models of translation ini-
tiation

page 98

s spacing between the -35 promoter region and the -10 pro-
moter region

page 62

s sync word {s1, . . . , sL} page 5

S(i) average homology score over all sequences n of an aligned
dataset

page 80

S(n) homology score between a given consensus sequence and a
nucleotide sequence n

page 79

S(n(i), s) homology score between a given consensus sequence s and
a subsequence of n starting at position i

page 80

t control variable

T temperature page 69

Tl distance between the current sync word SWl and the suc-
cessive sync word SWl+1

page 8
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t0,x mean first-passage time from position i = 0 to position i = x page 71

t
′
0,x simplified mean first-passage time from position i = 0 to position

i = x
page 72

u number of sequences that may yield a false synchronization under
error tolerance h

page 11

v self-overlap of a sequence page 10

wi,i±1 transition rate from position i to position i ± 1 (of a protein during
its movement along the DNA)

page 69

W(n, k) weight matrix score of nucleotide n at position k of a short motif page 79

x control variable

y control variable

z control variable

αi ratio of pi and qi page 71

β inverse product of kB and T page 69

δ distance measure page 96

∆max maximum possible strength of a detection signal page 98

∆act actual strength of a detection signal page 98

E{.} expected value page 50

µs position that the receiver evaluates to be the position of the sync
word

page 5

ν affective attempt rate of a protein moving to one of its neighboring
sites

page 69

ρi escape rate at position i (of a protein during its movement along the
DNA)

page 70

τi time a protein spends bound to position i page 70

ϕss(τ) aperiodic autocorrelation function of the sync word s (τ denotes the
shift of s against itself)

page 15

ϕ̃ss(τ) adapted autocorrelation function for bacterial promoter sequences page 45

A alphabet page 9

|A| cardinality of the alphabet A page 9

R set of all real numbers page 51

S given set of aligned DNA or mRNA sequences page 54

S(i) sliding window (length L) of the aligned dataset S starting at posi-
tion i

page 82

1{expr} equals one if expr is true and zero otherwise page 14

∗ unconstrained symbol of a distributed sync word page 20



B
Sync Word Families

B.1 Barker sequences

Table B.1: Barker sequences [Lue92].

L sync word

2 10

3 110

4 1101 and 1110

5 11101

7 1110010

11 11100010010

13 1111100110101



138 Appendix B � Sync Word Families

B.2 Sequences found by Maury and Styles

Table B.2: Binary sync words for channels without phase ambiguities taken
from [Rob95], results of search by Maury and Styles [MS64].

L sync word L sync word

7 1011000 19 1111100110010100000

8 10111000 20 11101101111000100000

9 101110000 21 111011101001011000000

10 1101110000 22 1111001101101010000000

11 10110111000 23 10110101101011010000000

12 110101100000 24 111110101111001100100000

13 1110101100000 25 1111100101101110001000000

14 11100110100000 26 11111010011010011001000000

15 111011001010000 27 111110101101001100110000000

16 1110101110010000 28 1111010111100101100110000000

17 11110011010100000 29 11110101111001100110100000000

18 111100110101000000 30 111110101111001100110100000000
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B.3 Sequences found by Neuman and Hofman

Table B.3: Binary sync words for channels with expected phase ambiguities (type II),
results of search by Neuman and Hofman [NH71].

L sync word L sync word

7 0001101 16 0000011001101011

8 00011101 17 00001011001110101

9 000011101 18 000010101101100111

10 0000110101 19 0001110111011011010

11 00011101101 20 00010001111100101101

12 000111101101 21 000000101110100111001

13 0000010110011 22 0001000111110011011010

14 00001100110101 23 00000010101100110100111

15 001111100110101 24 000001110011101010110110

Table B.4: Binary sync words for channels without phase ambiguities (type I), results
of search by Neuman and Hofman [NH71].

L sync word L sync word

7 0001101 16 0000011001101011

8 00011101 17 00001011001110101

9 000011101 18 000010101101100111

10 0000110101 19 0001110111011011010

11 00011101101 20 00010001111100101101

12 000111101101 21 000000101110100111001

13 0000010110011 22 0001000111110011011010

14 00001100110101 23 00000010101100110100111

15 001111100110101 24 000001110011101010110110
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B.4 Bifix-free sequences

Table B.5: Bifix-free sequences [Lue92].

L sync word

2 10

3 100 and 110

4 1000 and 1100 and 1110

5 10000 and 10100 and 11000 and 11100 and 11010 and 11110

6 100000 and 101000 and 101100 and 110000 and 110100 and

111000 and 111100 and 110010 and 111010 and 111110

B.5 Distributed sequences

Table B.6: Bifix-free distributed sequences with PSL ≤ 1 [dLvW98].

L sync word L sync word

5 110*0 24 11****110**0**1****0*0*0

7 110*0*0 110*11******0*0**1***0*0

1110**0 111**0***0***0***0*10**0

10 1110**0**0 11**11*******0*01**1*0*0

13 111**0***0*10 11**11*******0*0*1**10*0

11****110*0*0 28 111**0*0****0****0******0110

17 111**0***0***0*10 11**110*****0***10*0*****0*0

11**110*0*****0*0 32 111**0*0*0****0****0********0110

20 111**0***0***0*10**0 111**0*0****0***0****0******0110

110*11***0*0*****0*0 11**0*10*1******1****1***0*0*0*0

110***1**1****10*0*0



C
Sequence Data and
Implementation Details

C.1 Datasets

Throughout this thesis, large datasets of DNA / mRNA sequences are used to prove the
applicability of the derived models. This section aims at detailing these datasets, their
accessability and their statistical properties.

C.1.1 Promoters of Escherichia coli

Two data bases are used for the extraction of E. coli promoters: GenBank of the National
Institute for Biotechnology Information (NCBI, [NCfBI08]) and RegulonDB of the Centro
de Ciencas Genómicas [CdCG07]. Throughout the thesis, it is clearly stated which of the
data bases is currently used. Both offer a high number of promoters for the main sigma
factor σ70 but only few promoters of alternative sigma factors. Generally, the datasets of
RegulonDB are frequently updated and expanded and thus are the preferable choice.

RegulonDB

The data base RegulonDB offers a text-file containing experimentally verified promoters of
E. coli including their respective sigma factor. The promoter sequences are given together
with their position, the strand (forward or reverse), the gene they belong to as well as the
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type of experimental verification that resulted in their annotation. The mentioned dataset
currently contains 651 σ70-promoters and a total of 230 promoters for the six alternative
sigma factors (version 5.7). Moreover, RegulonDB offers a large set of computationally
predicted promoters. For more information on RegulonDB see [SGCPG+06].

National Center for Biotechnology Information (NCBI)

The whole genome of E. coli (strain K-12) is available under GenBank entry u00096. This
file contains information on genes but not on promoters. These can be extracted from
the 400 subfiles AE000x.1 with x ∈ [111; 510] (accessible via 400 links in the file u00096)
using a parser. The 400 files each contain more detailed information on a part of around
11500 bp of the genome, e.g. promoters together with their respective sigma factor and
protein binding sites. The promoters are classified into experimentally documented and
computationally predicted. Their position with respect to the current part of the genome,
the strand (forward or reverse) and the gene they belong to are given. The 400 files
contain 3765 promoters in total for σ70 of which only a small number are experimentally
documented. Only few promoters are annotated for alternative sigma factors (i.e. other
than σ70). Since the 400 files are not frequently updated, this promoter set should only
be preferred over the RegulonDB promoters if a very large dataset is required.

Transcription rates

The transcription rate refers to the number of transcripts obtained from a gene under
certain circumstances, i.e. how often has the gene been transcribed in the measured time
period. These rates are determined using microarray experiments, where single RNAs are
attached to the surface of a chip that is exposed to fluoridated cell mRNAs. Those bind to
their counterpart on the chip and yield a fluorescence signal after readout [BH02]. An ex-
tensive database for microarray experiments is ASAP (A Systematic Annotation Package
for Community Analysis of Genomes) [UoWM07] (see [GLP+03] for more information). It
offers microarray data for the E. coli genome (strain K-12) under different growth condi-
tions and using different chips. Throughout this thesis, the focus lies on standard growth
conditions, i.e. the conditions under which σ70 is active (see Section 3.4.2). Therefore, the
results under standard growth conditions obtained with an Affymetrix chip are used.

C.1.2 Eukaryotic promoters

The Eukaryotic Promoter Database (EPD, [SIoB07]) currently offers 4809 experimen-
tally verified promoter sequences of different eukaryotic species. Most of these belong to
Drosophila melanogaster (the fruit fly, 1926 sequences) and the human (1871 sequences).
Throughout the thesis, the human promoters are used as one dataset and the arthropod
promoters as a second one. Arthropods are the largest phylum of animals and include
insects like Drosophila melanogaster. They can be downloaded as a text file together with
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their strand (forward or reverse) and the gene they belong to. See [SPPB06] for more
information on EPD.

C.1.3 mRNAs of Escherichia coli

The mRNA sequences of E. coli are extracted from the same 400 subfiles of the GenBank
entry u00096 as the promoters (see Section C.1.1, [NCfBI08]). A parser is used to obtain
the position and strand (forward or reverse) of the translated sequences. A total of 3194
mRNA sequences are available.

C.1.4 Eukaryotic mRNAs

The eukaryotic mRNA sequences are downloaded from the UniGene database [NCfBI07],
hosted by the National Center for Biotechnology Information (NCBI). It offers mRNA
sequences of almost 100 eukaryotic species that can be handily downloaded from the
ftp-site (ftp://ftp.ncbi.nih.gov/repository/UniGene/). Among those are 122000 sequence
entries of different types for Homo sapiens (human), 77000 entries for Mus musculus
(house mouse) and 17000 entries for Drosophila melanogaster (fruit fly).

C.2 Data access and processing

All implementations were done in Matlab using the Bioinformatics Toolbox. The latter
offers functions for downloading, converting and analyzing DNA sequences. Most data-
bases provide their sequences in the FASTA format, a text-based format for representing
nucleotide or amino acid sequences. These files can be easily imported into MATLAB
using the function fastaread.

⊲ Example C.1

A FASTA entry typically looks like this:

> gi | 48994873 | gb | U00096.2 | Escherichia coli K12 MG1655, complete genome
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAG
TTGTCTGATAGCAGCTTCTGAAC...

The first row identifies the sequence in terms of accession numbers (here: 48994873, U00096.2),
the organism (here: Escherichia coli), the strain (here: K12 MG1655) and a short description
(here: complete genome). Using the function fastaread, the FASTA file is converted to a
Matlab structure with the fields Header (containing the identifier) and Sequence.

⊳
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C.3 Nucleotide composition of the eukaryotic pro-

moter datasets

C.3.1 Human promoter surrounding
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Figure C.1: Nucleotide composition around promoters of the human EPD dataset.
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C.3.2 Arthropod promoter surrounding
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Figure C.2: Nucleotide composition around promoters of the arthropod EPD dataset.



D
Derivations

D.1 Escape rate

During the sliding process of a protein along the DNA, it is assumed to move in single
nucleotide steps. The escape rate of the protein at site i to one of the neighboring sites
is given by [SM04]

ρi =
1

τi

= wi,i+1 + wi,i−1, (D.1)

where wi,i+1 and wi,i−1 are defined by the Arrhenius equation as

wi,i±1 = ν ·
{

e−β[E(i±1)−E(i)] if E(i ± 1) > E(i)
1 otherwise

. (D.2)

A case differentiation for the gradient g is now conducted in order to derive a closed
expression for the escape rate ρi:

Case 1: E(i + 1) > E(i), i.e., g = E(i + 1) − E(i) > 0

ρi = wi,i+1 + wi,i−1

= ν · e−β[E(i+1)−E(i)] + ν

= ν · e−βg + ν

= ν(e−βg + 1). (D.3)
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Case 2: E(i + 1) < E(i), i.e., g = E(i + 1) − E(i) = −[E(i − 1) − E(i)] < 0

ρi = wi,i+1 + wi,i−1

= ν + ν · e−β[E(i−1)−E(i)]

Since g is constant in each of the four regions of the approximation (see Figure 5.8), it
can easily be deduced that

g = E(i + 1) − E(i) = −
[
E(i − 1) − E(i)

]
, (D.4)

which leads to

ρi = ν · e−β(−g) + ν

= ν(eβg + 1). (D.5)

Case 3: E(i + 1) = E(i), i.e., g = 0

ρi = wi,i+1 + wi,i−1

= ν + ν

= 2ν. (D.6)

Straightforwardly, the three cases (Eq. (D.3), Eq. (D.5), Eq. (D.6)) combine to

ρi = ν(e−β|g| + 1). (D.7)

D.2 Mean first-passage time

The mean-first passage time (MFPT) is defined as the number of steps the protein makes
to reach from site i = 0 to site i = x if assuming a certain set of transition probabilities
αi. Then, the MFPT is given by [SM04] is

t0,x = x +
x−1∑

k=0

αk +
x−2∑

k=0

x−1∑

i=k+1

(1 + αk)
i∏

j=k+1

αj. (D.8)

Since the values of αi are constant over sufficiently wide ranges, α0 = α1 = · · · = αx := α
is assumed. Plugging this into Eq. (D.8) results in
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t
′

0,x=x + x · α + (1 + α)
x−2∑

k=0

x−1∑

i=k+1

αi−k, (D.9)

which leads with

x−2∑

k=0

x−1∑

i=k+1

αi−k = (α1 + . . . + αx−1) + (α1 + . . . + αx−2) + . . . + (α1)

= (x − 1) · α1 + . . . + 1 · αx−1

=
x−1∑

k=1

(x − k)αk

to

t
′

0,x = x + x · α + (1 + α)
x−1∑

k=1

(x − k)αk (D.10)

= (1 + α)
x−1∑

k=0

(x − k)αk. (D.11)
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