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Nomenclature 
 
Symbols frequently used in this thesis are listed below alphabetically. In addition, the 
place of their first occurrence in the text is given in the very right column. The state 
space matrices A, B, C, and D are only used in Eq. 2-1, and are not noted here. Neither 
are the counting variables i, k, and m, or the discrete frequency domain auxiliary 
functions, such as ( )kfa1 , ( )kfa∆ , ( )kfb , ( )kfb , ( )kfg1 , ( )kfg∆ , ( )ωv , ( )ωw  in this list. 
 
Latin Symbols 
 
Symbol Meaning First occurrence 

( )TjeA ω  Fourier transform of the reference signal Eq. (2-13) 
( )zA  numerator of discrete transfer function of IIR controller Eq. (6-2) 

ia  ith coefficient of ( )zA  Eq. (6-2) 

ab  distance between the points “a” and “b” Eq. (2-14) 
( )zB  denominator of discrete transfer function of IIR controller Eq. (6-2) 

kb  kth coefficient of ( )zB  Eq. (6-2) 

( )TjeB ω  multiplicative magnitude error Eq. (4-5) 

c convergence coefficient for FIR controller update Eq. (3-15) 

c1, c2 convergence coefficients for IIR controller update Eqs. (6-3), (6-4) 

d, ( )TjeD ω  disturbance signal and its Fourier transform Figure 2-11 

e, ( )TjeE ω  error signal and its Fourier transform Eq. (2-3) 
( )sF  closed loop transfer function Eq. (2-6) 
( )sFP  parasitic feedback transfer function, i.e. from FFu  to α  Eq. (2-19) 

)(sFδ  aileron actuation mechanism’s transfer function Eq. (2-2) 

f frequency Eq. (2-14) 

kf  kth discrete frequency Eq. (3-16) 
( )zG  plant transfer function seen by the digital controller ( )zH  Figure 3-2 
( )kfG  estimated value of 2N-point DFT of plant impulse response Eq. (3-37) 

( )kfG~  biased approximation of ( )kfG  by evaluating ( )TjeG ω  at kf  Eq. (4-19) 

( )kfĜ  estimate or mean of ( )kfG  at the discrete frequency kf  Eq. (3-18) 
( )sGc  continuous-time SCP transfer function Eq. (2-4) 

( )sH  transfer function of the (pseudo) feed-forward controller Figure 2-11 
( )zH  discrete-time transfer function of the FIR controller Eq. (3-4) 

h
v

 vector of FIR coefficients Eq. (3-1) 

I order of numerator of IIR controller Eq. (6-2) 
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j 1−  Eq. (2-8) 

K order of denominator of IIR controller Eq. (6-2) 
( )sK  transfer function of feedback controller Eq. (2-5) 

( )vK 65 , ( )vK 611  modified Bessel functions of the second kind for orders 
five sixths and eleven sixths, respectively Eq. (2-14) 

),(ˆ aKt ω  von Kármán power spectral density of zv  at point “a” Eq. (2-14) 

),(ˆ bKt ω  von Kármán power spectral density of zv  at point “b” Eq. (2-14) 

),(ˆ abKt ω  von Kármán cross spectral density between “a” and “b” Eq. (2-14) 

L integral scale length of the turbulence Eq. (2-14) 

l number of Eigen modes in a state-space model Eq. (2-1) 

Ma Mach number page 10 

WRMx  deviation of the vertical bending moment at the left 
wing root from the static value in trimmed 1-g flight Eq. (2-1) 

N number of FIR coefficients Eq. (3-3) 

Nz vertical acceleration Eq. (2-1) 

n discrete time step Eq. (3-1) 
( )sP  transfer function of the PCP Eq. (2-4) 

q pitch rate Eq. (2-1) 

r, ( )TjeR ω  SCP filtered reference signal and its Fourier transform Eq. (3-5) 

r̂ , ( )TjeR ωˆ  filtered reference signal and its Fourier transform Eq. (3-15) 
( )Tj

xy eS ω
 cross spectral density between the signals x and y Eq. (2-11) 

( )kxy fS~  estimate of ( )Tj
xy eS ω  over the last N samples at kf  Eq. (3-25) 

( )kxy fS  average value of ( )Tj
xy eS ω~  over the last ∆ samples at kf  Eq. (3-34) 

s Laplace variable Eq. (2-4) 

T sample time in seconds Eq. (2-11) 

t time Eq. (4-18) 

u, ( )TjeU ω  control input to the actuator and its Fourier transform Eq. (2-2) 

u~  IIR controller’s output filtered by ( ) ( )zBzĜ , or ( )zĜ  Eq. (6-4) 

VTAS true airspeed of the aircraft page 10 

zv  vertical flow rate page 57 

x gust generator driving signal used as reference signal Figure 5-1 
xchirp, )( kchirp fX  chirp signal for plant identification and its DFT Eq. (5-1) 

y(n), ( )TjeY ω  output of ( )zG  and the output’s Fourier transform Eq. (3-5) 

z z-transform variable Eq. (6-1) 
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Eq. (2-1) 
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wα  atmospheric turbulence induced angle of attack variation at the 
alpha probe mounting position Eq. (2-1) 

windα  measurable atmospheric turbulence induced angle of attack 
variation at the alpha probe mounting position Eq. (2-18) 

να  non-measurable atmospheric turbulence induced angle of 
attack variation at the alpha probe mounting position Eq. (2-17) 

( )31Γ  gamma function of 31  Eq. (2-14) 

( )Tj
xy e ωγ 2  quadratic coherence function between the signals x and y Eq. (2-11) 

∆ maximum feedback delay in samples Eq. (3-23) 
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nexcessε  excess mean square control error for )(nhh
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=  Eq. (3-21) 
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( )Tje ωΞ  (frequency dependent) performance index for feed-forward 
control Eq. (4-6) 

iξ  ith element of the modal state vector Eq. (2-1) 
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Abstract 
 
 
 
 
This thesis provides the design and the validation of an adaptive feed-forward 
controller for the compensation of atmospheric turbulence excited symmetric wing 
bending vibrations on large transport aircraft. Thereby, it is shown that the adaptation 
increases the robustness of the feed-forward controller’s performance against plant 
uncertainties. In order to allow for a certification of the proposed adaptive controller on 
a flying aircraft a detailed robust stability analysis is performed. 
 
The performance of a feed-forward control system depends mainly on the availability 
of an appropriate reference signal. Investigations on the two-dimensional von Kármán 
turbulence spectrum show that a 50% reduction of the first symmetric vertical wing 
bending vibration magnitude can be obtained on a large four-engine example aircraft by 
pure feed-forward control when an alpha probe that responds quite directly to alpha 
variations up to 4 Hz is used as a reference sensor. Subsequent numeric simulations 
with state space models of said large four-engine transport aircraft confirm this 
performance estimate. Thereby, the highest alleviation of first symmetric vertical wing 
bending vibrations is naturally obtained with a hybrid controller, i.e. a combination 
between a robust feedback controller, and an adaptive feed-forward controller. The 
stable convergence of the adaptation of the feed-forward controller is in accordance 
with the previously derived mathematical analysis. 
 
In order to demonstrate the implementation of the proposed adaptive feed-forward 
controller on a real plant, and also to investigate the real time behavior, a wind tunnel 
experiment is performed. Thereby, an elastic aircraft model which is mounted in the 
airflow with free rotational degrees of freedom serves as control plant. A gust generator 
is placed upstream in order to provide a locally correlated excitation. This gust 
generator is driven with a white noise signal, which is also used as reference signal for 
feed-forward wing bending vibration control. Symmetrically driven piezo-electric 
trailing edge flaps serve as actuators. As predicted by the previously performed robust 
stability analysis, the controller adaptation remains stable under the real-time 
conditions in the wind tunnel. Moreover, the reduction of the first symmetric vertical 
wing bending vibration is in accordance with the mathematical analysis, as well as with 
the numeric simulations. 
 
It is concluded that the proposed adaptive wing bending vibration controller is a 
promising approach for the realization of feed-forward control of atmospheric 
turbulence excited structural vibrations on large transport aircraft. One important point 
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thereby is that the adaptation provides high performance robustness against plant 
uncertainties. In combination with robust feedback control the proposed adaptive feed-
forward wing bending vibration controller offers a great chance for further reduction of 
dynamic structural loads, and an increase of passenger comfort and handling qualities 
on large transport aircraft. 
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Kurzfassung 
 
 
 
 
Die vorliegende Arbeit beschäftigt sich mit dem Entwurf und mit der Validierung einer 
adaptiven Vorsteuerung zur Kompensation von turbulenzerregten symmetrischen 
Flügelbiegeschwingungen. Der Einsatz einer solchen Steuerung ist vor allem für sehr 
große Transportflugzeuge geeignet, deren Strukturmoden stark von atmosphärischer 
Turbulenz angeregt werden. Es kann gezeigt werden, daß die Adaption der 
Vorsteuerung zu einer Erhöhung der Robustheit der Regelgüte gegenüber 
Unsicherheiten in der Regelstrecke beiträgt. Um auch eine Flugzulassung zu 
ermöglichen, wird eine detaillierte Stabilitätsanalyse des vorgeschlagenen adaptiven 
Regelalgorithmus durchgeführt. 
 
Die Regelgüte einer Vorsteuerung hängt stark von der Verfügbarkeit eines geeigneten 
Referenzsignals ab. Untersuchungen am zwei-dimensionalen von Kármán 
Turbulenzspektrum zeigen, daß die modalen Beschleunigungen der ersten 
symmetrischen Flügelbiegeschwingung bei einem großen vierstrahligen 
Beispielflugzeug um 50% reduziert werden können, sofern ein Anstellwinkelsensor 
verfügbar ist, der Änderungen des Anstellwinkels bis 4 Hz direkt wiedergibt. Diese 
Vorhersage kann schließlich durch numerische Simulationen mit 
Zustandsraummodellen dieses vierstrahligen Transportflugzeuges bestätigt werden. Die 
höchste Reduktion der ersten symmetrischen Flügelbiegeschwingung wird dabei 
natürlich mit einem Hybridregler, also einer Kombination aus robuster 
Rückführregelung und adaptiver Vorsteuerung erreicht. Das Stabilitätsverhalten der 
Adaption der Vorsteuerung stimmt in den Simulationen mit der zuvor durchgeführten 
mathematischen Analyse überein. 
 
Um letztendlich auch die Implementierung der adaptiven Vorsteuerung anhand einer 
echten Regelstrecke zu demonstrieren, und das Echtzeitverhalten zu überprüfen, wird 
ein Windkanalversuch durchgeführt. Dabei dient ein, in der Strömung frei drehbar 
gelagertes elastisches Flugzeugmodell als Regelstrecke. Ein stromaufwärts montierter 
Böengenerator, der mit einem weißen Rauschsignal betrieben wird, erzeugt örtlich 
korrelierte Störungen. Besagtes Rauschsignal dient gleichzeitig als Referenzsignal für 
die Vorsteuerung. Als Aktoren werden symmetrisch betriebene piezoelektrische 
Hinterkantenklappen benutzt. Die Adaption der Vorsteuerung verläuft stabil, wie in der 
Stabilitätsanalyse vorhergesagt. Auch die Reduktion der ersten symmetrischen 
Flügelbiegeschwingung stimmt mit den Berechnungen, und den numerischen 
Simulationen überein. 
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Zusammenfassend kann gesagt werden, daß die vorgeschlagene adaptive Vorsteuerung 
einen vielversprechenden Ansatz zur Realisierung einer Kompensation von 
turbulenzerregten Strukturschwingungen bei großen Transportflugzeugen darstellt. 
Dabei ist ein wichtiger Punkt, daß die Robustheit der Regelgüte gegenüber 
Unsicherheiten in der Regelstrecke durch die Adaption entscheidend verbessert werden 
kann. In Kombination mit einem robusten Rückführstrukturregler ermöglicht die 
vorgeschlagene adaptive Vorsteuerung eine weitere Reduktion dynamischer 
Strukturlasten, sowie eine Verbesserung des Passagierkomforts und des Flugverhaltens. 
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1 Introduction 
 
Economic aspects demand the design of large transport aircraft with high aspect ratio 
wings and fuselage at low structural weight/payload ratio. For such aircraft it can be 
shown by fairly simple calculations, that the frequencies of rigid body motions and 
aeroelastic vibrations have the tendency to get closer to each other, increasing the 
aeroelastic coupling between flight mechanics and structural dynamics, see HANEL 
[50]. Thus, turbulent atmosphere, gusts and maneuvers significantly excite structural 
vibrations. These vibrations cause dynamic structural loads and also influence the rigid 
body motions of the aircraft, decreasing handling qualities and passenger comfort. 
 
In the last decades active control technology was found to be the appropriate means to 
overcome these problems and thus significantly improve the performance of aircraft 
[58]. According to HARRIS & RICKARD [53] an aircraft utilizing active controls can in 
general be identified as one in which significant inputs (over and above those of the 
pilot) are transmitted to the control surfaces for the purpose of augmenting vehicle 
performance. Although the use of control surfaces generally seems to be the most 
obvious approach, other actuator concepts such as piezo-electric or additional 
aerodynamic devices are possible, see for example BREITSAMTER [10]/[11], KRAG [70], 
RANEY ET AL. [93], or SHETA ET AL. [103]. 
 
An important field of active control technology is noise and vibration control. The idea 
of noise control dates back to the 1930’s, when LUEG [76]/[77] patented a “process of 
silencing sound oscillations”, as he called it. He suggested to eliminate a one-
dimensional sound wave with a 180° phase shifted sound wave, which is the principle 
of Active Noise Control (ANC). In the 1950’s this principle was used to develop 
headsets that actively reduced the noise in the instant adjacence of the ears [33]. The 
development of modern digital computers finally allowed for active noise and vibration 
control of much more complex systems and led to a boom of active noise and vibration 
control applications from the 1970’s on. 
 
Regarding a standard configuration aircraft, it is generally the vertical wing bending 
modes as well as fuselage bending modes which are responsible for high dynamic 
loads, and the decrease of ride comfort. Thereby, the highest dynamic structural loads 
are usually experienced at the wing roots and are due mainly to the first symmetric 
vertical wing bending vibration. Moreover, maneuvers, gust loads, the landing impact, 
and airdrops (e.g. water for fire fighting, bombs) cause static load peaks mainly at the 
wing roots. The reduction of static wing loads is generally achieved by lift distribution 
control systems as state of the art [63]. However, this thesis is concerned with the 



2                                                                                                               Chapter 1   Introduction 

alleviation of aircraft vibration, in particular with the reduction of vertical wing 
bending vibrations. 
 
In the 1950’s the problem of aircraft vibration was intensely investigated by SCANLAN 
& ROSENBAUM [99]. Active wing bending vibration control was applied on a 
commercial aircraft in the 1970’s, when an active wing load alleviation system was 
developed to be able to increase the wing span of the L-1011 commercial transport 
aircraft without reinforcement of the wing structure, see JOHNSTON, J. F., ET AL. [66]. 
Said wing load alleviation system was based on robust feedback of structural 
accelerations to the aircraft’s control surfaces. Even though a very large amount of new 
control techniques, such as adaptive vibration compensation (i.e. feed-forward 
controller that monitors its own performance and adjusts its parameters in the direction 
of better performance), has been developed and successfully applied to various 
application fields of active noise and vibration control in the last decades, control 
strategies for active wing load alleviation have not changed. 
 
Thus, the objective of this thesis is to investigate if advanced control architectures can 
be used to increase the performance of active wing bending vibration alleviation on a 
standard configuration commercial transport aircraft. 
 

1.1 State of the Art 
 
Today active control is utilized to provide reduced trim drag and tail area through 
stability augmentation (i.e. active control of rigid body modes [111]), as well as to 
reduce structural fatigue (i.e. active control of structural modes, see [13], [22], [23], 
[63], [66], [70], [93]). Active control is also used for gust load (or gust response) 
alleviation [3], [22], [23], [48], [97], [106], [69], to reduce cabin noise [26], [89], [90], 
[104] as well as to improve ride comfort (e.g. reduction of weather cocking [22]). 
Another objective of active control, generally applied to modern fighter aircraft is the 
enhancement of agility and flight performance [10], [11], [16], [103]. 
 
Active control of wing bending and fuselage bending modes on transport aircraft today 
is still based on the same principle that was already used by JOHNSTON ET AL. [66] in 
the 1970’s. On the Airbus A330/A340 and the Boeing 777 feedback control drives the 
control surfaces (i.e. rudder, elevator, ailerons) using measured structural accelerations 
to reduce oscillations by up to 50%, see DORNHEIM [22]. Thereby, the plant transfer 
functions vary mainly due to changing filling levels of the fuel tanks during flight 
operation, compare JEANNEAU ET AL. [63]. The active vibration control design must be 
robust against these plant variations and thus can only be regarded as a compromise 
over all flight and load conditions. Robust stability of the feedback controller is 
generally achieved by the choice of the error sensor positions and the controller transfer 
function. Advances were made on optimization techniques (especially regarding multi-
objective control) rather than on finding new control strategies, see [38], [50], [64], 
[92], [101]. Current research activities are also dedicated to gain scheduled control to 
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reduce the performance degradation related to robust stability constraints, see [7], [39]. 
However, the idea of gain scheduled flight control originates from the late 1960s, see 
[6]. The technical challenge of gain scheduling lies in the transition between different 
operating points. A key problem in the design of gain scheduled control is to find 
suitable scheduling variables (e.g. the wing bending frequency for wing bending 
vibration control.) 
 
Moreover, feed-forward control can provide an improved vibration reduction compared 
to feedback control if a proper reference signal is available [42], [52]. According to 
DORNHEIM [22] feed-forward control thus should be considered if aggressive efforts in 
vibration control on aircraft are sought. HAHN & KOENIG [48], and KOENIG ET AL. [69] 
for example present a gust load alleviation system for the DLR Advanced Technologies 
Testing Aircraft System (ATTAS) with a feedback system for the control of the first 
symmetric vertical wing bending mode and an additional feed-forward controller for 
gust load alleviation. A modified alpha probe thereby provided the reference signal for 
feed-forward control. RYNASKI ET AL. [98] present the design of a feed-forward gust 
alleviation system that compensates rigid and structural modes. However, RYNASKI ET 
AL. do not consider whether a suitable reference signal is available, which in fact is 
valued as the key problem of feed-forward control. SOREIDE ET AL. [106] and 
ROBINSON [97] suggest the use of a LIDAR (light detection and ranging) sensor for 
predictive control of static gust loads. For the control of atmospheric turbulence excited 
vibrations such LIDAR systems are not yet accurate enough to provide a proper lead-
time reference signal [100]. However, an alpha probe mounted at the front fuselage can 
easily provide a lead-time reference for vertical winds and gusts as shown by SLEEPER 
[105]. SLEEPER used alpha probe sensors mounted on the nose and on the wing tips of 
the NASA B-57B test airplane to investigate the validity of the von Kármán 
atmospheric turbulence model [112], [113] in rough atmosphere. HECKER & HAHN [54] 
propose a sensor fusion algorithm in order to combine the accuracy of the alpha probe 
with the lead-time advantage of a LIDAR for dynamic feed-forward control of gust 
loads. 
 
Moreover, advanced control concepts can often be found on military aircraft. The 
Northrop Grumman B-2 stealth bomber already uses a feed-forward control system for 
gust load alleviation, see [13], [23]. The reference signal is taken from differential 
pressure sensors on the leading edge of this flying wing aircraft. The Rockwell/Boeing 
B-1B strategic bomber is equipped with small canard-like control surfaces for active 
damping of vertical fuselage-bending, see [70]. It is notable that also for future 
supersonic civil transport aircraft additional control surfaces on the forward fuselage 
were suggested in RANEY ET AL. [93] in order to actively damp the fuselage bending 
modes. Moreover, several attempts were made to address vertical tail buffet alleviation 
of fighter aircraft at high angles of attack, see BREITSAMTER [10], [11] or SHETA ET AL. 
[103]. Thereby, advances were rather made on using new actuation concepts such as 
smart materials than on the introduction of new control algorithms. A large amount of 
research activities addressing active flutter suppression was done since the 1970’s, see 
[1], [2], [25], [41], [73], [84], [85]. In the early 1980’s an active flutter suppression 
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system was flight tested with a transonic drone vehicle. Unfortunately the drone was 
destroyed in a flutter incident due to an implementation error of the controller [25]. 
 
Regarding adaptive control, several useful algorithms have been developed and 
successfully implemented in active control applications. ASTRÖM [6] gives an 
interesting summary about the developments on adaptive feedback control from the 
1960’s to the 1990’s. A suitable summary of stability Lemmas for adaptive systems can 
be found in NARENDRA & ANNASWAMY [86]. REW ET AL. [95] have successfully 
demonstrated an adaptive control algorithm for active damping of a cantilevered 
composite plate (i.e. idealized delta wing with external loads). They used an adaptive 
2nd order band pass controller for each mode to control (i.e. multi-narrowband 
controller.) Thereby, the center frequency of each band pass controller was 
continuously updated according to the online identified natural frequencies (i.e. 
scheduling variables) of the composite plate. The advantage of this adaptive (gain 
scheduled) control system over fixed feedback control is that optimum performance is 
maintained also when the natural frequencies of the investigated structure change due 
to variations of the external load configuration. However, the structure of an entire 
transport aircraft with pylon mounted engines generally shows a more complex transfer 
function, higher mode density and higher modal damping than the composite plate in 
[95]. Thus, on a real aircraft structure a 2nd order band pass controller will probably 
show less performance than reported in REW ET AL. 
 
A similar adaptive multi-narrowband algorithm, also described in [8], and in [47], was 
successfully flight tested on the Raytheon 1900D turboprop aircraft for the reduction of 
blade-passing noise inside the cabin, see PALUMBO ET AL. [89], [90]. The same 
approach was used for cabin noise reduction on helicopters by active vibration isolation 
of the rotor/gearbox from the cabin (see for example HOFFMANN ET AL. [57] or 
MILLOTT ET AL. [80]). In these applications narrowband or tonal noise related to the 
engine speed is controlled, which is generally easier than controlling broadband 
disturbances like atmospheric turbulence. However, in TEWES [110] cabin panel 
vibrations are successfully controlled to reduce tonal as well as random noise. 
 
The technology, where a vibrating structure is controlled for noise reduction is called 
Active Structural-Acoustic Control (ASAC), and is closely related to active vibration 
control. The main difference is that ANC and ASAC, unlike vibration control seek to 
reduce noise. Note, that reducing vibration does not necessarily reduce noise (e.g. 
active vibration control of a robot arm [102]). Efforts in ANC were made in many 
application fields, see [51], such as reduction of tonal noise (e.g. blade passage 
frequency of turbofan) radiated by aircraft turbo engines, see MAIER ET AL. [79], and 
noise cancellation for vehicle [5], [20], helicopter [9] and aircraft cabins [26], [104], to 
mention only a few applications. However, ANC already is a standard feature in active 
headsets, in the cabins of the Honda Accord hybrid car and the Acura RL, as well as in 
the cabin of the Saab 340B-Plus turboprop aircraft [104]. 
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The same (adaptive) algorithms used for ANC and ASAC applications can be used for 
active wing bending vibration control. Thus, the ANC and ASAC literature is fairly 
important for this thesis. One of the most popular adaptive algorithms used in many 
ANC and ASAC applications is the Least-Mean-Square-algorithm (LMS-algorithm) 
which was first described by WIDROW & STEARNS [116]. This adaptive control 
algorithm is counted to the steepest descent algorithms [28]. The LMS-algorithm’s 
architecture is very simple which, regarding certification issues, is very important for 
implementation on flying vehicles. It also features high robustness against modeling 
errors. The convergence behavior of the LMS-algorithm is well understood, see [15], 
[42], [45], [94], [114]. For several simple applications stability proofs are available in 
the literature, see [8], [75], [82]. The LMS-algorithm like most algorithms for active 
vibration control requires a plant model, and is therefore counted to the indirect 
adaptive control algorithms. 
 
However, KEWLEY ET AL. [68], as well as MAEDA & YOSHIDA [78] present adaptive 
ANC systems that do not require a plant model of any kind. These algorithms are likely 
to only work for alleviation of tonal, time-invariant disturbances (e.g. propeller noise) 
and to have long convergence time. They are not regarded as useful for broadband 
disturbance rejection with a time varying plant such as wing bending vibration control 
on a transport aircraft. 
 
Another application field of active control is adaptive flight control, which can be used 
to optimize the control of the time-varying plant (e.g. adaptive inverse control, see 
WIDROW & WALACH [117]). Adaptive flight control was also used for the realization of 
fault tolerant control by PAGE ET AL. [88], who flight tested a reconfigurable flight 
controller, that would automatically re-trim an F/A-18C fighter aircraft in the case of a 
control surface failure. Another application field of adaptive flight control is the 
reduction of pilot excited vibrations. In general, pilot excited vibrations are alleviated 
by active damping systems, but it is also possible to add a dynamic signal to the pilot 
command to drive the actuators in a way, that the aircraft carries out the demanded 
maneuver at least possible structural vibration excitation. In this context CALISE ET AL. 
[16] propose direct adaptive control (i.e. adaptive control without a plant model, also 
known as MRAC or Model Reference Approach Control) based on a Neural Network 
(NN) controller for the compensation of the flexible dynamics. This approach provides 
the advantage that structural modes do not have to be filtered out of the flight control 
system’s signals in order to avoid the interaction between flight controls and flexible 
modes, as it is state of the art [49], [81]. Moreover, the MRAC flight controller 
smoothly maneuvers the aircraft without excitation of flexible modes by using a model 
of desired aircraft response (i.e. reference model). 
 
A NN MRAC was also proposed for flight control of a reusable launch vehicle by 
JOHNSON & CALISE [65]. KROGMANN [71] designed a NN controller for a missile to 
demonstrate neuronal control of a time-variant nonlinear plant. NN control was also 
applied to control fighter aircraft in highly non-linear flight conditions such as wing 
rock at high angles of attack, see CALISE ET AL. [17]. A NN-based direct adaptive flight 
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controller was flight tested by PRASAD ET AL. [91]. It can be summarized that MRAC 
(described in detail for example in LANDAU [72] or in KAUFMAN ET AL. [67]) is an 
excellent adaptive algorithm for the alleviation of pilot excited structural vibrations but 
does not offer anything new in regards to the reduction of atmospheric turbulence 
excited structural vibrations. Moreover, NN control architectures were shown to be 
powerful in controlling nonlinear plants, and can adapt to quickly changing plants (e.g. 
actuator failure). However, for vibration control of transport aircraft structures which in 
general behave almost linearly within their flight envelope NN control is not the best 
choice. Another problem with NN aircraft control is its certification. Procedures would 
have to be changed to allow for certification of NN controllers. This subject is 
discussed in detail by CORTELLESSA ET AL. [19]. 
 
Summarizing the literature, several ANC and ASAC applications advantageously make 
use of adaptive algorithms. In many cases tonal noise is reduced [57], [79], [80], [89], 
[90], etc., or structures with slightly damped modal peaks are controlled respectively 
(i.e. modal control, see [95]), which in general is easier than broadband control. 
Successful adaptive control of broadband disturbances in a commercial product is only 
known from active headsets [34]. Adaptive control methods have also been developed 
for flight control, see [16], [17], [65], [71], [88], [91], etc., but these algorithms do not 
seem to be useful for vibration control on a transport aircraft. However, several 
applications of active vibration alleviation on aircraft based on robust feedback control 
can be found in the literature [48], [63], [66], [69]. In [98] a feed-forward system for 
the control of rigid and structural modes is presented without considering the problem 
of providing an appropriate reference signal. In [54] however, a combination between 
alpha probe and LIDAR is proposed for the dynamic feed-forward compensation of 
atmospheric turbulence excited wing bending vibrations. 
 

1.2 The Main Research Objective of this Thesis 
 
As already shown in [119] the performance of wing bending vibration alleviation based 
on a feedback control system can be improved by the additional use of feed-forward 
control if a proper reference signal for the atmospheric turbulence excitation is 
available. The performance of feed-forward control however is more sensitive to 
modeling errors and plant variations than it is for feedback control. Thus, the main 
objective of this thesis is to investigate if an online self-optimization of feed-forward 
wing bending vibration control can make its performance more robust against plant 
uncertainties. Thereby, a model of a four-engine example aircraft in different fuel mass 
and Mach conditions is used for the design of an adaptive controller as well as for 
validation in numeric simulations. 
 
Moreover, the two-dimensional von Kármán turbulence model is investigated in order 
to find out in how far an alpha probe can provide a proper reference signal. These 
results are used to obtain an estimate of the performance of feed-forward wing bending 
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vibration control, as well as for the correct modeling of the control problem for the 
subsequent numeric simulations. 
 
In order to allow for certification on a flying aircraft another objective of this thesis is 
to provide a detailed stability analysis of the adaptation algorithm. Finally, the 
proposed adaptive wing bending vibration control system is tested in a wind tunnel 
experiment in order to demonstrate its implementation, as well as to study the real-time 
behavior of the adaptive wing bending vibration controller and above all, to validate the 
conditions for robust stability of the adaptation. 
 

1.3 Organization of the Thesis 
 
Following the introduction of Chapter 1, Chapter 2 provides an analysis of the control 
problem. At first the aircraft model used for the controller design and validation is 
introduced. Thereafter, the possibilities for wing bending vibration control are 
discussed. Based on the two-dimensional von Kármán turbulence model, Chapter 2 also 
features a performance estimation for active alleviation of atmospheric turbulence 
induced aircraft vibrations with feed-forward control. Said performance estimation is 
based on the assumption that an alpha probe with quite direct response to alpha 
variations up to 4 Hz is used for the generation of a proper feed-forward reference 
signal. Chapter 2 also shows how the required reference for atmospheric turbulence can 
be extracted from the alpha probe measurement. Finally, Chapter 2 concludes that a 
hybrid controller (i.e. combination of robust feedback and adaptive feed-forward wing 
bending vibration control) provides optimum wing bending vibration alleviation, as 
well as additional active damping of maneuver excited vibrations. 
 
In Chapter 3, the proposed adaptive feed-forward wing bending vibration controller is 
derived including a detailed stability analysis. The designed controller is validated in 
numeric simulations in Chapter 4 with the aircraft model introduced in Chapter 2. It is 
shown that the adaptation algorithm remains stable, and converges to an estimate of the 
optimum feed-forward controller even in the presence of modeling errors and plant 
variations. The performances of a robust feedback controller, of the converged adaptive 
feed-forward controller, and of said hybrid controller are compared. In order to obtain a 
benchmark for adaptive feed-forward control, a formula for rough performance 
estimation of non-adaptive feed-forward control is derived. Therewith, Chapter 4 
illustrates that an adaptive feed-forward wing bending vibration controller truly 
provides higher control performance in the presence of plant deviations from the 
nominal plant than a non-adaptive feed-forward controller. Moreover, it is shown that 
the proposed adaptive controller is able to track variations in the plant which are due to 
changing Mach and mass conditions. The converged feed-forward wing bending 
vibration controller can also compensate discrete gusts. 
 
For the validation of the real-time performance of the proposed adaptive wing bending 
vibration controller, wind tunnel tests with an elastic aircraft model with a structural 
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Eigen mode distribution similar to the aircraft model used for the numeric simulations 
in Chapter 4, have been performed. The results of this test are shown in Chapter 5, 
proving that the wing bending vibration controller also works perfectly in a real-time 
environment. In order to provide a perspective, Chapter 6 introduces a recursive 
adaptive filter for feed-forward wing bending vibration control in order to significantly 
reduce the number of controller coefficients that have to be updated. However, no 
stability proof is available yet for this approach. Finally, Chapter 7 summarizes the 
conclusions of this thesis. 
 



    9 

2 Analysis of the Control Problem 
 

During flight, atmospheric turbulence, gusts and maneuvers can excite the structural 
Eigen modes significantly, especially on large transport aircraft. Thereby, vertical gusts 
are the most disruptive as they act on the large wing area, see DORNHEIM [22]. 
Particularly, the first symmetric vertical wing bending mode is responsible for dynamic 
loads, and the decrease of ride comfort. Therefore, the main control objective in this 
thesis is the active alleviation of first symmetric vertical wing bending vibrations on a 
large transport aircraft. Thus, a plant model of only the symmetric dynamics of a large 
four-engine example aircraft is used for control law design. Due to the changing fuel 
mass condition and Mach number during flight, an aircraft is generally exposed to 
variations of its dynamics. Thus, for the control law design and validation, aircraft 
models for various fuel load and Mach cases are used. 
 
Chapter 2.1 shortly introduces the description and the properties of these models. It is 
shown that symmetrically driven ailerons represent a suitable actuator for the control of 
the first symmetric vertical wing bending mode. Chapter 2.2 contains a discussion 
about the available concepts for active wing bending vibration control. It is explained 
why the adaptation of feedback control does not provide any notable improvements 
regarding the trade-off between robust stability and control performance. The 
performance of feed-forward control in general is more sensitive to variations in the 
plant, and to modeling errors than feedback control. The adaptation of a feed-forward 
controller can make its performance more robust against such deviations from a 
nominal plant model. Moreover, unlike a feedback controller, a feed-forward controller 
cannot destabilize the plant. It is thus argued that introducing an adaptation algorithm to 
feed-forward wing bending vibration control truly makes sense. 
 
In Chapter 2.3 the two-dimensional von Kármán turbulence spectrum is used to 
estimate of the achievable performance of feed-forward wing bending vibration control. 
It is concluded that a reduction of modal wing bending vibration accelerations of 50% 
is achievable, when an alpha probe mounted at the front fuselage is used as reference 
sensor. Chapter 2.4 deals with the modeling of the reference measurement. Finally, 
Chapter 2.5 concludes that using a hybrid controller (i.e. combination of robust 
feedback, and adaptive feed-forward wing bending vibration control) an optimum wing 
bending vibration alleviation, as well as additional active damping of maneuver excited 
vibrations can be achieved. 
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2.1 The Example Aircraft Model 
 
The following problem analysis of wing bending vibration control on large transport 
aircraft is based on state-space models which have been generated in the European 
AWIATOR project for the design of a feedback control law for active wing load 
alleviation, compare [63]. Said models are also used for the validation of the adaptive 
feed-forward wing bending vibration controller designed in this thesis, see Chapter 4. 
They represent the symmetric aeroelastic dynamics of a large four-engine transport 
aircraft in trimmed cruise at three different Mach number/altitude combinations 
(denoted Ma=0.7 Ma=0.82 and Ma=0.86) in the four different fuel mass conditions, 
shown in Table 2-1. The linearization of the aeroelastic equations at a certain Mach 
number/altitude/fuel mass case is feasible because Mach number, altitude, and filling 
levels of the fuel tanks change only slowly compared to the system dynamics. The fuel 
tanks are located in the outer, the inner, and the centre wing box as well as in the 
horizontal tail plane. 
 

Table 2-1. Representative fuel tank fillings 

 
 Mass case 

A 
Mass case 

B 
Mass case 

C 
Mass case 

D 
Outer 

wing tanks 0% 100% 100% 100% 

Inner wing 
tanks 21% 21% 100% 0% 

Wing box 
tank 100% 100% 100% 0% 

Trim tank 
in the 

horizontal 
tail plane 

0% 0% 100% 100% 

 
 
The separation of the symmetric structural Eigen modes is possible due to the modal 
representation of the state-space models. Moreover, under the assumption of quasi-
steady state flight, also the longitudinal motion may be separated from the lateral 
motion, see BROCKHAUS [14]. 
 
The symmetric dynamics state-space models’ original number of states of around 190 
(depending on the mass and Mach case) has been reduced to 41, or to 42 respectively in 
order to reduce the computational effort for the performed time domain simulations. In 
this thesis the reduced modal state-space representation of the symmetric plant 
dynamics reads (with Bik, Cik, and Dik denoting the elements of the matrices B, C, and 
D): 
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(2-1) 
 
The first equation is called the state equation, and the second one is the measurement 
equation. The inputs of each model are the atmospheric turbulence induced (span-wise 
constant) angle of attack variation related to the alpha probe mounting position wα  (i.e. 
one-dimensional vertical turbulence), and the deflection angle of the symmetrically 
driven ailerons δ . Unless the ailerons’ actuators are driven into saturation, or over rate 
limits, the actuation mechanism behavior may be approximated as transfer function 

)(sFδ . Thus, with { }δL , and { }uL  denoting the Laplace transforms of the 
symmetrically driven ailerons’ deflection angle δ and the input command u, one gets: 

 { } { }usF LL ⋅= )(δδ  (2-2) 

With the assumption, that the actuation mechanism’s natural frequencies lie high 
enough to be neglected, )(sFδ  is represented by a 2nd order low pass filter with a cut-off 
frequency at about 4 Hz in order to consider the mechanism’s inertia. The symbol µ 
denotes the number of modal states, and l is the number of Eigen modes represented in 
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the state space model. The matrices C and D are chosen in order to obtain the following 
outputs: 
 

• Angle of attack deviation from the static value 0α  at the alpha probe mounting 
position (measured in a ground reference system) groundα . This angle of attack 
deviation from the static value is due to aircraft movements and structural 
vibrations. 

• Pitch rate q at the CG, denoted CGq . 
• Vertical accelerations at the CG, denoted CGNz , and vertical accelerations at the 

left and at the right outer engine LWNz , RWNz , at the cockpit frontNz , and at the 
rear fuselage rearNz . 

• Deviation of the vertical wing bending moment at the (left) wing root 
WRxM  from 

the static value in trimmed 1-g level flight. 
 
The diagonal elements of the A-matrix (i.e. Aii) are the real parts of the Eigen values, 
the secondary diagonal elements are the imaginary parts. For oscillatory Eigen modes 
both elements arise pair wise, so that a block of four elements of the A-matrix describe 
one imaginary Eigen value. For each mode i, iω  denotes the natural frequency, and iζ  
denotes the damping. Non-oscillatory modes (i.e. real Eigen values) occupy only one 
element in the A-matrix. The advantage of this modal representation is, that one gets l 
independent linear differential equation systems, allowing direct access to the modes. 
The outputs are calculated by superposition of influences of the different modes. The 
generated state-space models describe the angle of attack mode as well as several 
symmetric structural Eigen modes. 
 
For the computation of the example aircraft’s aero-elastic dynamics, required for the 
state-space modeling, full FEM models consisting of beam and shell elements, as well 
as mass elements have been used. Thereby, the original models’ degree of freedom of 
about 2.5*105 has been reduced to about 2*103 after node condensation. In the 
following, Figure 2-1 through Figure 2-6 illustrate the first 6 symmetric structural 
Eigen modes of the four-engine example aircraft. The red arrows illustrate the 
displacement of the according nodes (in blue color) of the respective Eigen mode: 
 

• Figure 2-1: First symmetric vertical wing bending mode. 
• Figure 2-2: Outer engines vertical mode. 
• Figure 2-3: Inner engines lateral mode. 
• Figure 2-4: First vertical fuselage bending mode. 
• Figure 2-5: Outer engines lateral mode. 
• Figure 2-6: First symmetric planar wing bending mode. 

 
The dimensions are in meters. The origin is at the nose of the aircraft. The X-axis is 
positive rearward along the fuselage centerline, the Y-axis is positive to the right, and 
the Z-axis is positive upwards. In order to obtain the aerodynamic influence 
coefficients required for the state-space modeling, the Doublet Lattice Method was 
applied using around 1*103 panels. 
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Figure 2-1. First symmetric vertical wing bending mode (internal source). 
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Figure 2-2. Outer engines vertical mode (internal source). 
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Figure 2-3. Inner engines lateral mode (internal source). 
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Figure 2-4. First vertical fuselage bending mode (internal source). 
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Figure 2-5. Outer engines lateral mode (internal source). 
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Figure 2-6. First symmetric planar wing bending mode (internal source). 
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Note, that on the example aircraft the engines are mounted on elastic pylons under the 
wings, which is generally done for easy maintenance, and to avoid engine excited 
vibrations, and noise in the fuselage. As illustrated in Figure 2-1 through Figure 2-6 
this leads to a coupling between the engine mass/elastic pylon system and the wing and 
fuselage bending modes, increasing the mode-density of the plant. The aeroelastic 
behavior of this coupled wing/fuselage/pylon/engine mass system depends on the Mach 
number, altitude, and on the filling levels of the fuel tanks. The elastic aircraft structure 
therefore represents a time-variant plant. 
 
If an active vibration controller was optimized for a certain Mach number, altitude, and 
fuel distribution, it generally will have decreased performance for another Mach 
number/altitude/fuel mass condition. An active vibration controller thus either must be 
robust against the expected variations in the plant, or track these variations. 
 
In order to observe mainly vertical wing bending vibrations, a modal acceleration 
signal )(tNzlaw , also called error signal )(te  is calculated, as illustrated in Eq. (2-3). As 
proposed in [63], the vertical accelerations on the two wings at the locations of the 
outer engines )(tNzLW , )(tNzRW  are added and the vertical acceleration at the CG 

)(tNzCG  is subtracted from half of this value, see Figure 2-7. 
 
This allows for observation of mainly vertical wing bending, but inhibits the 
measurement of rigid body motions. 
 
 

 ( )
⎥⎦
⎤

⎢⎣
⎡ −+== )(

2
)()()()( tNztNztNztNzte CG

RWLW
law  (2-3) 

 
 
 
Assuming the sensor signals are sampled at 25 Hz for discrete time flight control, a 60 
ms time delay was impinged on the error signal )(te  for the sake of completeness. This 
delay considers a one period delay reserved for pre-filtering of the sensor signal plus an 
average delay of half a period because orders are executed at any time during the next 
period. This delay however has no influence on the feed-forward control design. 
 
The green dot in Figure 2-7 marks the location of the example aircraft’s alpha probe. 
Said alpha probe is mounted at the front fuselage, and will be used for feed-forward 
control in this thesis, compare Chapter 2.2, and all following chapters. 
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The control path from the atmospheric turbulence induced angle of attack variation at 
the alpha probe mounting position )(twα  to the error signal )(te  is called primary 
control path (PCP). Its transfer function will be denoted ( )sPc  in the following. The 
control path from symmetric aileron deflection command u to the error signal )(te  is 
the secondary control path (SCP). Its transfer function will be denoted ( )sGc . Thereby, 
the subscript “c” denotes that these are the transfer functions of the continuous-time 
plant. Figure 2-8 illustrates the magnitudes over frequency of the transfer functions 
from )(twα  to (from top to bottom): 
 

• The vertical acceleration at the cockpit frontNz . 
• The vertical acceleration at the CG CGNz . 
• The vertical acceleration at a node at the rear fuselage rearNz . 
• The modal acceleration lawNz  (i.e. transfer function of the PCP ( )sPc .) 

 
The transfer functions are plotted for the different Mach and mass cases shown in Table 
2-1. It can be seen that the ride comfort (i.e. vertical accelerations of the fuselage due to 

)(twα ) is influenced by the first vertical wing bending vibration, and also by higher 
Eigen modes. The error sensor (plot at the very bottom) not only measures the first 
symmetric vertical wing bending vibration (observability of the first symmetric vertical 

 
 

Figure 2-7. Positions of the reference sensor, and of the vertical acceleration 
sensors on the large four-engine example aircraft. 

Position of the 
alpha probe 
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wing bending mode) but also measures higher modes. Thus, pure modal control of the 
first vertical wing bending vibration is still difficult with this error sensor. 
 

 
Figure 2-9 illustrates the magnitudes over frequency of the transfer functions from 
symmetric aileron deflection command )(tu  to (from top to bottom): 
 

• The vertical acceleration at the cockpit frontNz . 
• The vertical acceleration at the CG CGNz . 
• The vertical acceleration at a node at the rear fuselage rearNz . 
• The modal acceleration lawNz  (i.e. transfer function of the SCP ( )sGc .) 
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Figure 2-8. Magnitudes of the wind to Nz transfer functions of the four-engine 
aircraft model. 
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Again the transfer functions are plotted for the different Mach and mass cases shown in 
Table 2-1. It can be seen, that the symmetrically commanded ailerons are indeed a 
suitable actuator for first symmetric vertical wing bending vibration control 
(controllability of the first symmetric vertical wing bending mode), and in addition can 
also be used for the control of several higher symmetric Eigen modes. Using the 
symmetrically commanded ailerons as actuator has the advantage that no additional 
components have to be implemented on the aircraft. 
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Figure 2-9. Magnitudes of the symmetric aileron command to Nz transfer functions of 
the four-engine aircraft model. 

First vertical wing 
bending frequency 



Chapter 2.2   Concepts for Active Wing Bending Vibration Control 23 

2.2 Concepts for Active Wing Bending Vibration Control 
 
As will be shown in this section, there are basically two concepts for vibration control 
[18]. One is increasing the damping of the system by feedback control, see Figure 2-10, 
and the other is compensating the excitation of structural vibrations by feed-forward 
control, see Figure 2-12. 
 
For a SISO (Single Input Single Output) controller, in both cases (feedback and feed-
forward) an error signal )(te  measures structural vibrations (or a plant state estimate for 
state feedback respectively). Regarding feedback control the error signal )(te  is fed to a 
feedback controller K(s) which calculates a proper control input )()( tutu FB= . The 
advantages of feedback control are that structural vibrations are alleviated regardless of 
the excitation (maneuvers, turbulence/gusts, airdrops, etc.), and that the performance is 
generally more robust against uncertainties in the plant model, than for feed-forward 
control. 

 
 
The objective of the feedback controller in Figure 2-10 is the minimization of wing 
bending vibrations (i.e. minimization of the error signal )(te ) caused by exogenous 
disturbances (i.e. maneuvers, turbulence/gusts, airdrops, etc.) If said exogenous 
disturbance is just a span-wise constant angle of attack variation at the alpha probe 
mounting position )(twα , the Laplace transform of the error signal { })(teL  makes: 
 

 { } ( ) ( )[ ] { }
{ } ⎥⎦

⎤
⎢
⎣

⎡
⋅=

)(
)(

)(
tu
t

sGsPte w
cc L

L
L

α
 (2-4) 

 
 

Figure 2-10. Active wing bending damping with a feedback controller. 
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with { })(twαL  and { })(tuL  denoting the Laplace transforms of )(twα  and )(tu , and s 
denoting the complex Laplace variable. In this case the control plant aircraft consists of 
a Primary Control Path (PCP) with transfer function ( )sPc , i.e. the transfer function 
from )(twα  to the error signal )(te , and a Secondary Control Path (SCP) with transfer 
function ( )sGc , i.e. the transfer function from the control input )(tu  (i.e. symmetric 
aileron command) to the error signal )(te . With the feedback controller K(s) the control 
input )()( tutu FB=  is calculated by: 
 

 { } ( ) { })()( tesKtuFB LL ⋅=  (2-5) 

 
Thereby, { })(tuFBL  denotes the Laplace transform of )(tuFB . The closed-loop 
dependence of the error signal )(te  on the atmospheric turbulence induced angle of 
attack variation )(twα , can be expressed as: 
 

 { } ( ) { })()( tsFte wαLL ⋅=  (2-6) 

 

 ( ) ( )
( ) ( )sKsG

sPsF
c

c

⋅−
=

1  (2-7) 

 
For ωjs =  the Fourier transform is obtained with ω denoting the angular frequency, see 
Appendix G. The aim of the feedback vibration controller design is the minimization of 
some norm of the closed loop transfer function ( )ωjF . Two important norms are the 
H∞ and the H2 norm. 
 

H∞ norm: ( ) ( )ωω
ω

jFjF max=
∞  (2-8) 

 

H2 norm: ( ) ( )
21
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2 2
1
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⋅= ∫

∞
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ωω
π

ω djFjF  (2-9) 

 
The minimization of the H∞ norm corresponds to a minimization of the maximum value 
of the frequency response magnitude of ( )ωjF , while the H2 norm minimization aims 
at minimizing the total energy of the magnitude of ( )ωjF . 
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Regarding Figure 2-8 and Figure 2-9, if only the first wing bending damping shall be 
increased, the H∞ minimization can be used for controller design (i.e. H∞ synthesis), as 
described in JEANNEAU ET AL. [63]. If the damping of all structural modes with 
frequencies e.g. < 4 Hz shall be increased (e.g. to reduce the total energy which the 
wing structure has to absorb), H2 minimization will be more practical (i.e. H2 optimal 
controller). According to ELLIOT [33] pure H2 minimization of the closed loop transfer 
function ( )ωjF  leads to rather aggressive control with potentially poor robustness. 
Thus, it is recommended to include the additional constraints of robust stability in 
regards to modeling errors and plant variations, as well as the constraint of limited 
disturbance enhancement outside the frequency range of control. 
 
In general a robust feedback controller must provide a robust stability margin for 
changes in the plant transfer functions and modeling errors [4]. Thus, every controller 
design poses a trade-off between robust stability margin and performance. An adaptive 
feedback control algorithm however would minimize the respective norm of ( )ωjF  in 
regards to the transfer functions of the PCP, and the SCP, as well as in regards to the 
actual excitation. Thus, the control design would not need a robust stability margin 
against plant uncertainties any more and thus can provide a better performance. 
However, there are 3 possible reasons for instability of adaptive feedback control: 
 

1. Instability of the closed feedback loop 
2. Instability of the adaptation 
3. Instability of the adaptive feedback controller 

 
It is quite difficult to formulate an optimization criteria for the minimization of a norm 
of ( )ωjF  explicitly considering plant and disturbance uncertainties, and at the same 
time to assure that none of the three possible instabilities occur. One possibility of 
realizing adaptive feedback wing bending vibration control would be to monitor the 
wing bending frequency, or other related parameters (i.e. fuel tank filling levels, Mach 
number,…), and switch or interpolate between different feedback controllers, as 
proposed by AYACHE ET AL. [7]. This concept, also known as gain scheduling, deems 
very promising. The technical challenge of gain scheduling mainly lies in the transition 
between different operating points. A simpler adaptive solution would be to move the 
center frequency of a band-pass feedback controller according to the online-identified 
wing bending frequency like proposed by REW ET AL. [95]. Such parameter-adaptive 
methods seem to be the only useful solutions for the realization of adaptive feedback 
wing bending vibration control. Parameter-adaptive feedback control, also proposed in 
[60] is not further investigated in this thesis. 
 
Another common method (which was originally proposed by NEWTON ET AL. [87] for 
the analytical design of linear feedback control), which can be used for a fairly simple 
implementation of adaptive feedback control algorithms (see [35]), is the 
reorganization of the feedback control system in the form shown in Figure 2-11. This 
scheme is called Internal Model Control (IMC) formulation of the feedback control 
problem. Today this formulation is widely used for robust feedback controller design. 
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The effect of exogenous disturbances on the error signal is thereby represented by the 
so-called disturbance signal )(td . Said effect is not regarded as common signal (since 
the exogenous disturbances contain the spatial turbulence distribution) and is thus 
illustrated by a dashed arrow from exogenous disturbances to the according aircraft 
reactions. The Internal Model (IM) is a model of the SCP transfer function ( )sGc  with 
transfer function ( )sGc

ˆ . If ( )sGc
ˆ  was a perfect representation of ( )sGc , the IMC-scheme 

would be a perfect compensator like controller (i.e. estimated disturbance signal 
)()(ˆ tdtd = ), though without any lead-time. Thus, the optimum (pseudo feed-forward) 

controller ( )sH
IMCopt  would be: 

 

 ( )
)(

1
sG

sH
c

optIMC
−=  (2-10) 

 
Thereby, ( )sH

IMCopt  is only realizable if the SCP transfer function ( )sGc  is minimum 
phase (i.e. ( )sGc1  is stable), and if there was no delay in the SCP (i.e. ( )sGc1  is causal). 
These constraints generally limit the performance of IMC. Moreover, adaptive IMC is 
suitable for control of non-steady state disturbances when ( )sGc  is very accurately 
known. However, if the SCP is not accurately known or exposed to variations during 
operation (i.e. ( ) )(ˆ sGsG cc ≠ ) the adaptation even decreases the robust stability margins 
of the IMC, compare ELLIOT [35]. 

 
Figure 2-11. IMC-scheme. 
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If a proper reference )(tα  for the exogenous disturbances is available (in this thesis i.e. 
the measurement of atmospheric turbulence with e.g. an alpha probe mounted at the 
front fuselage, see Figure 2-7), the wing bending vibration excitation can be 
compensated by feed-forward control, avoiding said problems of IMC, see Figure 2-12. 
In order to get optimal performance with a causal feed-forward controller ( )sH , the 
time interval it takes for the exogenous disturbances to affect the error signal )(te  must 
be longer than the time it takes the feed-forward controller to affect the error signal, 
compare BURDISSO ET AL. [15]. This implies that the disturbance is measurable before 
it excites the plant. The performance advantage compared to feedback control is that a 
proper (feed-forward) control input )()( tutu FF=  is already available when the 
disturbance excites the plant. 

 
Moreover, FULLER ET AL. [42] argue that, since feed-forward control is more sensitive 
to magnitude and phase errors than feedback control, the need for an adaptive algorithm 
is greater for a feed-forward system than for a feedback one. Moreover, there are only 2 
possible reasons for instability of adaptive feed-forward control: 
 

1. Instability of the adaptation 
2. Instability of the adaptive feed-forward controller, which can be avoided by 

monitoring ( )sH  during adaptation 
 
Assuming that the reference signal has at least the lead-time to compensate the 
computational delay of the controller plus the delay of the SCP minus the delay of the 
PCP, the optimum feed-forward controller is causal. Furthermore, a feed-forward 
controller cannot destabilize the plant, since the system dynamics remain untouched. 
Thus, adaptive feed-forward control in general may adapt more aggressively than 
adaptive feedback control. The design of the adaptive feed-forward wing bending 
vibration controller is discussed in Chapter 3. 

 
 

Figure 2-12. Alleviation of structural vibrations with a feed-forward control algorithm. 
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2.3 Estimation of Expected Performance of Feed-Forward Control 
 
The performance of the proposed feed-forward compensation of atmospheric 
turbulence excited wing bending vibrations depends mainly on the coherence between 
the reference signal α , and the disturbance signal d  (i.e. the error signal when the 
feed-forward wing bending vibration controller is turned off), see [30], [43]. 
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The derivation of the term ( )Tj

d e ω
αγ 2 , which is called the (quadratic) coherence function 

between the reference signal α, and the disturbance signal d, is shown in Chapter 3. ( )Tj
dd eS ω  is the power spectral density of the disturbance signal d, defined as: 

 

 ( ) ( ) ( )TjTjTj
dd eDeDeS ωωω *=  (2-12) 

 
Thereby, ( )TjeD ω  is the Fourier transform of the sampled disturbance signal )(nd  
with discrete time step n, angular frequency ω, sample period T and (non-dimensional) 
normalized angular frequency ωT, compare [27]. The superscript * denotes complex 
conjugation, and ...  denotes the expectation value of the quantity inside the brackets. 

( )Tj
ee eS ω

min
 is the minimum control error, i.e. the minimum attainable power spectral 

density of the error signal e. ( )TjeS ω
αα  is the power spectral density of the reference 

signal α . The term ( )Tj
d eS ω

α  denotes the cross spectral density between the reference 
signal α  and the disturbance signal d: 
 

 ( ) ( ) ( )TjTjTj
d eDeAeS ωωω

α
*=  (2-13) 

 
with ( )TjeA ω  denoting the Fourier transform of the sampled reference signal )(nα . 
The higher the coherence function between α  and the disturbance signal d, the smaller 
the remaining control error. For the theoretic value of ( ) 12 =Tj

d e ω
αγ  the minimum 

control error is zero, which means that the wing bending vibrations can be completely 
erased through feed-forward control. In this thesis the reference signal α  is provided 
by an angle of attack measurement at the front fuselage, compare green dot in Figure 
2-7. That means that atmospheric turbulence is measured at only one point of the 
generally span-wise turbulence distribution and thus, the coherence between the 
reference signal α  and the disturbance signal d will be far from one. 
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One way to analytically formulate the span-wise turbulence distribution is by a two-
dimensional von Kármán spectrum, compare [59]. This formulation is widely accepted 
and also validated by flight tests in rough atmosphere with the NASA B-57B test 
airplane, see [105]. The quadratic coherence function ( )ωγ 2

ab  of the vertical flow field 
variations between two span-wise separated points “a” and “b” can be expressed as: 
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Thereby, the same notation as in [59] has been used. ),(ˆ abKt ω  is the cross spectral 
density between the vertical flow field variations at two span-wise separated points “a” 
and “b”, which depends on the distance between “a” and “b”, i.e. ab . ),(ˆ aKt ω  and 

),(ˆ bKt ω  are the related power spectral densities of the vertical flow field variations at 
point “a” and point “b”. So, the left equation of Eq. (2-14) is in accordance with the 
right equation of Eq. (2-11). For the right side of Eq. (2-14) it is assumed, that 

),(ˆ),(ˆ bKaK tt ωω = , i.e. the power of the turbulence is constant over the wing-span, 
which is reasonable as long as phenomena such as wake vortex are excluded. ( )31Γ  is 
the gamma function of 31 , and ( )vK 65  and ( )vK 611  are modified Bessel functions of the 
second kind for orders five sixths and eleven sixths, respectively. TASV  is the true 
airspeed and L denotes the integral scale length of turbulence. 
 
The quadratic coherence function ( )ωγ 2

ab  has been evaluated for various span-wise 
separation distances ab , and for two different integral scale lengths L. Figure 2-13 
shows ( )ωγ 2

ab  over frequency in Hz for TASV =260m/s, and for 10=ab m, 15=ab m, and 
20=ab m. One can see, that ( )ωγ 2

ab  is degraded with increasing ab , as well as with 
increasing frequency, and that above 1 Hz (i.e. in the frequency range of structural 
modes) the integral scale length L has almost no influence on ( )ωγ 2

ab , see also [55]. 
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A simplified view of the excitation of first symmetric vertical wing bending by span-
wise distributed vertical turbulence is to consider a resultant vertical flow rate )(tvz  
acting on the aerodynamic center of the wing. The four-engine example aircraft wing’s 
aerodynamic center has an Y-coordinate of +/-10m to +/-15m. Assuming that the Y-
coordinate of the alpha probe is zero, the relevant span-wise separation between 
reference measurement and wing excitation is between 10=ab m, and 15=ab m. Thus, 
an estimate for the quadratic coherence function between reference measurement and 
first symmetric vertical wing bending excitation can be read from Figure 2-13. 
Considering, that the first symmetric vertical wing bending frequency of the four-
engine example aircraft is a bit above 1 Hz, an optimistic estimate is ( )Tj

d e ω
αγ 2  = 75%. 

The validity of this simple method for the estimation of the quadratic coherence 
function between the reference signal α, and the disturbance signal d is supported by 
flight tests results, see Appendix H. 
 
The estimate can also be numerically validated by feeding the outputs of a two-
dimensional von Kármán turbulence generator described in [59] to a full model of the 
four-engine example aircraft. Such a model, containing longitudinal and lateral motion, 
as well as symmetric, anti-symmetric and asymmetric structural Eigen modes was also 
used in the European AWIATOR project, compare [54]. 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency, Hz

Q
ua

dr
at

ic
 c

oh
er

en
ce

 fu
nc

tio
n 

m
ag

ni
tu

de

10m span-wise separation distance, L=150m
15m span-wise separation distance, L=150m
20m span-wise separation distance, L=150m
10m span-wise separation distance, L=762m
15m span-wise separation distance, L=762m
20m span-wise separation distance, L=762m

 
Figure 2-13. Von Kármán turbulence model computed quadratic coherence 

function between two span-wise separated points “a” and “b”. 
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Instead of just one gust input wα  as in Eq. (2-1), this full aircraft model has 13 gust 
inputs distributed over the wing span, which are fed by the 13 outputs of the two-
dimensional von Kármán turbulence generator [59]. Figure 2-14 shows the magnitude 
of the quadratic coherence function ( )Tj

d e ω
αγ 2  between the reference signal α , and the 

disturbance signal d , which has been measured in a numeric simulation with two-
dimensional von Kármán turbulence and full aircraft model, but without structural 
control. For this simulation, TASV =260m/s, and L = 762m, which is the recommended 
value for L for the determination of gust loads, see HOBLIT [55]. 

 
In Figure 2-14 the coherence function ( )Tj

d e ω
αγ 2  is approximately 75% in the 

frequency range of the first symmetric vertical wing bending mode of the four-engine 
example aircraft gwingbendinω , which (according to Eq. 2-11) is sufficient for a 50% 
reduction of related vibration accelerations by feed-forward control alone: 
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Figure 2-14. Magnitude of 2

dαγ  obtained by numeric simulation of mass case D. 
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2.4 Using the Alpha Probe as a Reference Sensor 
 
It is assumed now, that an alpha probe is available that responds quite directly to angle 
of attack variations in the controlled frequency range (in this thesis up to 4 Hz), and 
that has no natural Eigen frequencies in said frequency range. This assumption is 
reasonable, since the NASA B-57B test airplane described in [105] has an alpha vane 
sensor with even harder constraints. Excluding flight situations with high span-wise 
gradients of the turbulence such as flight through a wake vortex, such an alpha probe 
can provide a proper reference for the turbulence. On the four-engine example aircraft 
used in this thesis, the delay from an atmospheric disturbance passing the alpha probe 
till the symmetric deflection of the ailerons (i.e. the overall delay of the feed-forward 
control system including the alpha probe dynamics, the controller, converters, filters, 
and the aileron actuation mechanism) must not be larger than about 100 ms in order 
ensure that the optimum feed-forward controller is causal for all Mach and mass cases. 
 
An alpha probe not only measures gust, and turbulence (i.e. subscript wind), but also 
aircraft reactions to maneuvers, turbulence/gust, as well as aircraft reactions to the feed-
forward control input FFu . The measurable angle of attack at the alpha probe mounting 
position airα , (i.e. the angle between the aircraft, and the velocity vector of the airflow) 
can be split up into: 

 
CLOL groundgroundwindgroundwindair αααααααα +++=++= 00  (2-18) 

Thereby, 0α  denotes the static angle of attack of the trimmed aircraft in a ground 
reference system, ( 0α  is a constant in each state-space model of the four-engine 
example aircraft.) The static angle of attack 0α  can easily be erased by a high-pass 
filter as shown in [48]. The alpha probe mounting node’s angle of attack deviation from 
this static value 0α  in a ground reference system is denoted groundα , (the term groundα  is 
modeled as an output of the four-engine example aircraft's state-space model.) The 
feed-forward controller however requires windα  as reference signal. The signal groundα  
can be split up into an open loop share 

OLgroundα , and into a closed loop share 
CLgroundα . 

The open loop share 
OLgroundα  is due to two effects, which are related to rigid body 

motions and structural vibrations: 
 

I. Aircraft reactions to maneuvers: Aircraft reactions to maneuvers can affect the 
alpha probe measurement, but must not be interpreted as disturbance in order to 
prevent the adaptive feed-forward wing bending vibration controller from 
counteracting any pilot commands. Pilot inputs however are not considered in this 
thesis. 

II. Aircraft reactions to turbulence/gust: The alpha probe measurement of aircraft 
reactions to turbulence does not contain any lead-time information about the 
turbulence, and thus can cause a non-causal share in the optimum feed-forward 
wing bending vibration controller. In the frequency range of structural Eigen modes 
this effect is negligibly small for the state-space models of the symmetric dynamics 
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of the four-engine example aircraft (i.e. less than one per cent of the alpha probe 
signal.) 

 
The closed loop share 

CLgroundα , which is due to the coupling between the feed-forward 
control input FFu  and the alpha probe measurement, can even destabilize the system. 
The control path from FFu  to airα  is therefore called parasitic feedback path with ( )sFP  
denoting its transfer function: 

 { } { } ( )sFtut PFFgroundCL
⋅= )()( LL α  (2-19) 

Any significant parasitic feedback has to be compensated. It has been shown in numeric 
simulations of the proposed adaptive feed-forward wing bending vibration controller 
that, at least for the example aircraft, parasitic feedback due to coupling via aircraft 
movements and vibrations is very small in the frequency range of structural modes, see 
Appendix E. Feed-forward control input induced local aerodynamic effects on airα  have 
not been investigated in this thesis, but are expected to be even smaller. Anyway, 
parasitic feedback is neglected in the derivation of the proposed adaptive feed-forward 
wing bending vibration control algorithm, as well as in the subsequent stability 
analysis. 
 
An algorithm for the extraction of windα  from the alpha probe measurement at least in 
the frequency range of rigid body motions is presented in HAHN & KOENIG [48], and in 
HECKER & HAHN [54]. In conclusion it is to say that the feed-forward vibration control 
system will work properly only if both the static angle of attack 0α  and groundα  are 
compensated in the frequency range of rigid body motions, and if: 

 groundwind αα >>   in the frequency range of controlled structural modes (2-20) 

The feed-forward vibration control system should be turned off in flight phases where 
Eq. (2-20) is not valid (i.e. rough maneuvers in calm atmosphere as worst case) in order 
to avoid malfunction. For the numeric simulations presented in Chapter 4 rigid body 
motions due to turbulence were not compensated. The effect II of the open loop share 
of groundα , as well as the closed loop share due to structural coupling between FFu  and 

airα  have been fully considered without any loss of control performance. 
 

2.5 Conclusions of Chapter 2 – The Hybrid Control Concept 
 
In Chapter 2 the problem of wing bending vibration control has been illustrated. 
Thereby, state-space models of the linearized symmetric dynamics of a four-engine 
example aircraft in different Mach and mass conditions serve as plant. A modal sensor 
(i.e. error sensor) for mainly the observation of the first symmetric vertical wing 
bending vibration is defined. The symmetrically driven ailerons serve as actuator. The 
concepts of feedback and feed-forward control have been opposed. Thereby, feed-
forward control theoretically can perfectly compensate atmospheric turbulence excited 
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wing bending vibrations. Essentially, the performance of such a feed-forward system 
mainly depends on the accuracy of the reference measurement. 
 
It has been shown that using an alpha measurement at the front fuselage as reference 
sensor can be sufficient for 50% reduction of modal wing bending vibration 
accelerations by feed-forward control. Since the performance of feed-forward 
compensation is more sensitive to plant uncertainties than the performance of feedback 
control, it really makes sense to introduce an adaptive algorithm to feed-forward wing 
bending vibration control in order to track the generally present variations of the PCP 
and the SCP, and to compensate any modeling errors. 
 
In order to achieve maximum wing bending vibration alleviation, and additionally 
actively damp maneuver (and airdrop) excited vibrations, a combination of robust 
feedback and adaptive feed-forward wing bending control (i.e. hybrid control [18]) is 
proposed in this thesis, see Figure 2-15. Thereby, the inner control loop increases the 
damping of the wing bending mode. The adaptive feed-forward controller ( )sH  aims at 
the additional compensation of atmospheric turbulence excited wing bending 
vibrations. The outputs of the robust feedback controller ( )sK  and the adaptive feed-
forward controller ( )sH  are added, in order to generate the combined signal uHY for the 
symmetric aileron deflection command: 

 FBFFHY uuuu +==  (2-21) 

In Figure 2-15 the (slow) adaptation loop from the error signal e to the feed-forward 
controller update is indicated as dashed line in order to illustrate the problem of 
stability of the controller adaptation. The properties of this (slow feedback) loop are 
discussed in detail in the following chapters. 

 

 

 

Figure 2-15. Hybrid wing bending vibration control. 
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3 Wing Bending Vibration Controller Synthesis 
 
The proposed adaptive wing bending vibration control system is designed as shown in 
Chapter 2.5, see Figure 2-15. An inner control loop feeds the error signal back to the 
symmetrically driven ailerons in order to increase the damping of the wing bending 
mode. This robust feedback loop also acts on maneuver excited vibrations. In addition, 
an adaptive feed-forward control path alleviates the remaining share of the error signal 
e that is correlated with the alpha probe measured atmospheric turbulence. 
 
As proposed by CLARK & BERNSTEIN [18] the design of feedback, and feed-forward 
controller are separated. The H∞ optimal feedback controller designed in the European 
AWIATOR project [63] is used for the inner control loop. The subsequent design of the 
adaptive feed-forward controller regards the aircraft plus said inner control loop as the 
plant. The feed-forward controller shall adapt automatically to the changing aircraft 
dynamics, mainly dependent on the Mach and mass condition. 
 
The proposed adaptive feed-forward control algorithm for the compensation of 
atmospheric turbulence excited wing bending vibrations is derived in Chapter 3.1. The 
stability analysis of this algorithm is performed in the frequency domain in Chapter 3.2. 
For said derivation it is assumed in Chapter 3 that the reference signal α is: 
 

I. persistently exciting (i.e. the adaptive controller can be turned on only when a 
predefined threshold of turbulence strength is exceeded), and 

II. ergodic (i.e. the ensemble average may be replaced by time average, compare 
[83].), and 

III. has a zero mean value in order to avoid static symmetric aileron deflections. 
This can be ensured by high pass filtering of airα , as also proposed in [48]. 

IV. The parasitic feedback from FFu  to the reference signal is assumed to be small 
enough to be neglected, i.e. 

CLgroundwind αα >>  (The validity of this assumption is 
supported by the results shown in Appendix E), or else 

CLgroundα  is compensated. 
V. It is also assumed, that the reference signal has enough lead time to ensure the 

causality of the optimum feed-forward controller. 
VI. The share in the reference signal that is due to aircraft vibrations excited by 

turbulence and maneuvers is assumed to be marginal, i.e. 
OLgroundwind αα >>  in the 

frequency range of controlled structural modes, and the influence of rigid body 
motions on the reference signal is assumed to be compensated. 

VII. Sensor noise as well as any offset or measurement bias in the alpha probe are 
neglected in the following derivation. Neither are Eigen dynamics of the alpha 
sensor considered, i.e. in conclusion: windαα ≈ . 
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3.1 Design of the Adaptive Feed-Forward Controller 
 
The adaptive feed-forward controller is realized as a digital filter. Common digital 
controller structures with linear steady-state response (i.e. with linear behavior when 
not being adapted) are FIR (Finite Impulse Response), and IIR (Infinite Impulse 
Response) filters. An FIR controller generally needs more coefficients than an IIR 
controller for the same control task, compare Chapter 6. 
 
On the other hand, since the poles and zeros of an IIR controller are both adaptive, an 
IIR controller can become unstable. An FIR controller however only has adaptive zeros 
(i.e. all poles of an FIR controller lie in the origin, see Eq. (3-4)), and therefore can 
never become unstable, which is in favor of an aspired certification on commercial 
aircraft. The adaptive feed-forward controller thus is realized as an FIR filter.  
 
An FIR filter generates the discrete-time feed-forward control input )(nuFF  from the 
discrete-time reference signal )(nα  with the following vector equation: 
 

 hnnhnu TT
FF

vvvv
⋅=⋅= )()()( αα  (3-1) 

 

with: [ ]T
Nhhhhh 1210 ...,,, −=

v
 (3-2) 

 
Thereby, 1210 ...,,, −Nhhhh  are the controller coefficients, and N denotes the filter length 
of the FIR filter. The superscript T denotes transposition, and )(nαv  is the vector of the 
sampled reference signal at time step n. 
 

 [ ]TNnnnn )1(),...,1(),()( +−−= ααααv  (3-3) 

 
Figure 3-1 illustrates the implementation of the FIR filter. The z-transform variable is z, 
and 1−z  therefore denotes a one sample delay. So, the delayed versions of the sampled 
reference signal )(nα  are multiplied with the according controller coefficients 

110 ,...,, −Nhhh , and are then linearly combined in order to obtain the discrete-time feed-
forward control input )(nuFF . Thus, the FIR controller’s transfer function, which relates 
the z-transform of the discrete control input sequence )(zUFF  to the z-transform of the 
sampled reference signal sequence )(zA , can be written as [27]: 
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 1
1

2
2

1
10 ...

)(
)()( +−

−
−− ⋅++⋅+⋅+== N

N
FF zhzhzhh

zA
zUzH  (3-4) 

In order to be able to introduce the digital feed-forward controller to the continuous-
time plant, the wing bending vibration control system shown in Figure 2-15 is refined 
as illustrated in Figure 3-2. The sampled reference signal )(nα  is fed forward to the 
adaptive FIR controller )(zH  in order to calculate a discrete-time feed-forward control 
input )(nuFF  for the compensation of the continuous time disturbance signal )(tdc . 
Thereby, Tnt ⋅=  is the continuous time, with T denoting the sample period, and 

TFs 1=  denoting the sampling frequency. 
 
As proposed in [31] the sampled plant transfer function )(zG , i.e. the transfer function 
which is seen by the digital feed-forward controller, is assumed to include not only the 
continuous-time SCP transfer function )(sGc , but also the Digital to Analogue 
Converter (DAC) and the Reconstruction Filter (RF) required for the generation of a 
continuous-time control input that can be forwarded to the (continuous-time) plant, as 
well as the Anti-aliasing Filter (AF) and the Analogue to Digital Converter (ADC) 
required to obtain the discrete error signal )(ne . 
 
For the sake of generalization it is also presumed in the following derivation that the 
inner feedback loop for additional active wing bending damping is already included in 
the transfer function )(zG . Moreover, the computational delay of the digital controller 
is counted to )(zG . For completeness it should be mentioned, that an additional AF cuts 
off frequencies 2Fsf >  in the continuous time reference signal )(tα  before it is 
sampled. 

Figure 3-1. Implementation of the FIR controller. 
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Finally, the sampled-time representation of the proposed wing bending vibration 
control system can be illustrated as shown in Figure 3-3. Thereby, it is already 
considered that the new sampled-time disturbance signal )(nd  is a sampled version of 
the analogue disturbance signal )(tdc  filtered by the transfer function of the AF, as well 
as by ( ) ( )( )sKsGc ⋅−11 , i.e. consideration of the inner feedback loop. 
 
The fact that this new sampled-time disturbance signal )(nd  differs from the original 
continuous-time signal )(tdc  however does not have any consequences on the design of 
the adaptive control algorithm, and therefore will not be indicated in the notation in the 
following. The signal ( )ny  denotes the share of feed-forward control (of the actively 
damped plant) in the error signal ( )ne . 

It is assumed that all signals are steady state, allowing for a frequency domain 
representation. The applied Fourier transform is considered to be a special case of the z 
transform with Tjez ω= , where ωT is the (non-dimensional) normalized angular 
frequency [27]. For the derivation of a proper update law for the adaptive feed-forward 

Figure 3-2. Digital feed-forward controller driving the continuous-time plant. 
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Figure 3-3. Sampled-time representation of hybrid wing bending vibration control. 
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wing bending vibration controller )(zH  it is also presumed that the FIR coefficients 
and the Mach and fuel mass conditions of the aircraft change only very slowly. Under 
the assumption that )(zH  and )(zG  are linear quasi-steady state, )(zH  and )(zG  may 
be rearranged as shown in Figure 3-4. 
 
For a large transport aircraft in trimmed flight the plant can certainly be regarded as 
linear quasi-steady state. In order to support the validity of the assumption that the 
adaptive controller )(zH  is quasi-steady state, Appendix D shows that the bias that is 
made by the rearrangement of )(zH  and )(zG  is marginal in the controlled frequency 
range. 

 
The frequency domain reference signal ( )TjeA ω , filtered by ( )TjeG ω  is called filtered 
reference signal ( )TjeR ω , with ( )nr  denoting its discrete time-domain representation. 
The Fourier transformed error signal ( )TjeE ω  makes: 
 

 ( ) ( ) ( ) ( ) ( ) ( )TjTjTjTjTjTj eReHeDeYeDeE ωωωωωω +=+=  (3-5) 

 
with ( )TjeD ω  and ( )TjeY ω  denoting the Fourier transforms of the discrete-time signals 

( )nd  and ( )ny , and ( )TjeH ω  denotes the frequency response of the adaptive FIR 
controller. The objective is to find the controller ( )TjeH ω  that minimizes the power 
spectral density of the error signal ( )Tj

ee eS ω . 
 
This optimization criteria assures that there is only one (global) optimum of the FIR 
filter (also called Wiener filter), and that the adaptation therefore cannot be trapped in a 
local optimum, see [27]. The power spectral density of the error signal ( )Tj

ee eS ω  is: 
 

 ( ) ( ) ( )TjTjTj
ee eEeEeS ωωω *=  (3-6) 
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Figure 3-4. Rearranged controller ( )TjeH ω  and plant ( )TjeG ω . 
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Introducing Eq. (3-5) into Eq. (3-6), ( )Tj
ee eS ω  may be written as: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )TjTj
rr

TjTj
rd

TjTjTj
rd

Tj
dd

Tj
ee eHeSeHeSeHeHeSeSeS ωωωωωωωωω *** +++=  

(3-7) 

with ( )Tj
dd eS ω  denoting the power spectral density of the disturbance signal d, 

compare Eq. (2-12), and with the cross spectral density between filtered reference 
signal r and disturbance signal d being defined as: 
 

 ( ) ( ) ( )TjTjTj
rd eDeReS ωωω *=  (3-8) 

 
The power spectral density of filtered reference signal r makes: 
 

 ( ) ( ) ( ) ( ) ( )TjTjTjTjTj
rr eSeGeReReS ω

αα
ωωωω 2* ==  (3-9) 

 
Thereby, ( )TjeS ω

αα  is the power spectral density of the reference signal α. Eq. (3-7) is a 
standard Hermitian quadratic form [36]. The complex gradient of ( )Tj

ee eS ω  is obtained 
by differentiating the power spectral density ( )Tj

ee eS ω  with respect to real and 
imaginary part of the controller’s frequency responses ( ){ }TjeH ωRe  and ( ){ }TjeH ωIm : 
 

( )
( ){ }

( )
( ){ } =

∂
∂⋅+

∂
∂

Tj

Tj
ee

Tj

Tj
ee

eH
eSj

eH
eS

ω

ω

ω

ω

ImRe  

( ) ( ) ( )[ ] ( ) ( )TjTjTj
rd

TjTj
rr eEeReSeHeS ωωωωω *22 ⋅=+⋅=  

(3-10) 
 
 
The minimum of ( )Tj

ee eS ω  is obtained by setting the term ( ) ( ) ( )[ ]Tj
rd

TjTj
rr eSeHeS ωωω +  to 

zero at each frequency. Under the assumption of a non-singular power spectral density 
( )Tj

rr eS ω  the unconstrained optimum controller in the frequency domain thus finally 
makes: 

 ( ) ( )
( )Tj

rr

Tj
rdTj

opt eS
eSeH ω

ω
ω −=  (3-11) 
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For frequencies where the magnitude of ( )TjeG ω  is zero (i.e. non-controllability), no 
optimum controller exists. Unconstrained means, that it is presumed that the optimum 
controller is realizable [42], so that the time-domain representation of the optimum 
controller ( )zHopt  is causal. 
 
The major requirement for the causality of the time-domain representation of the 
optimum controller is, that the lead-time of the reference signal is long enough, to 
compensate the delay of the SCP and the feed-forward controller minus the delay of the 
PCP. It has already been assumed at the beginning of Chapter 3, that this requirement is 
fulfilled. 
 
Introducing Eq. (3-11) into Eq (3-7) gives the minimum control error ( )Tj

ee eS ω
min

, i.e. 
the remaining power spectral density of the error signal, when the optimum feed-
forward controller is implemented: 
 

 ( ) ( ) ( )
( )Tj

rr

Tj
rdTj

dd
Tj

ee eS

eS
eSeS ω

ω
ωω

2

min
−=  (3-12) 

 
Normalizing the minimum control error by the power spectral density of the 
disturbance signal ( )Tj

dd eS ω  gives: 
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(3-13) 

 
with ( )Tj

d eS ω
α  denoting the cross spectral density between the reference signal α and 

the disturbance signal d, where: 
 

 ( ) ( ) ( )Tj
d

TjTj
rd eSeGeS ω

α
ωω *=  (3-14) 

 
and ( )Tj

d e ω
αγ 2  is the quadratic coherence function between the reference signal α and 

the disturbance signal d. 
 
Thus, the better the coherence between the reference signal α and the disturbance signal 
d, the better the performance of the structural feed-forward control, compare Eq. (2-11). 
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For the convergence of the feed-forward wing bending vibration controller to its 
optimum, the controller coefficients are updated with the gradient of the power spectral 
density ( )Tj

ee eS ω . Defining a positive real convergence coefficient c (that already 
includes the factor 2 from Eq. (3-10)) the vector of the FIR controller coefficients h

v
 

can be updated proportional to the negative local gradient of ( )Tj
ee eS ω , which depends 

on the actual controller )1( −= nhh
vv

, see Eq. (3-10). This frequency domain steepest 
descent algorithm then reads: 
 

 ( ) ( ){ }Tj
nhh

Tj eEeRIFTcnhnh ωω
)1(

*ˆ)1()( −=⋅−−= vv
vv

 (3-15) 

 
Thereby, IFT denotes the Inverse Fourier Transform of the quantity inside { }... , and 

( )Tj
nhh eE ω

)1( −=
vv  is the Fourier transform of the error signal with quasi-steady state 

controller )1( −= nhh
vv

. Since the filtered reference signal r is not directly available, it 
has to be estimated online with the help of an (approximate) plant model of ( )TjeG ω , 
compare [31]. This estimated filtered reference signal is denoted with r̂ . Its Fourier 
transform is ( )TjeR ωˆ . 
 
Note, that the frequency domain version of the steepest descent algorithm used for wing 
bending vibration controller adaptation in this thesis has the advantage to save 
computational costs compared to time domain algorithms such as the LMS algorithm, 
compare [28]. 
 
Furthermore the frequency domain steepest descent algorithm allows to manipulate the 
adaptation at certain frequencies (i.e. to set the quantity inside ...  to zero at 
frequencies where the plant transfer function is not properly known, or exposed to huge 
variations between different mass and Mach cases, see Chapter 4.4. Introduction of a 
Mean Plant Model.) 
 
The Calculation of the expectation value ...  in the right term Eq. (3-15) requires 
averaging over an infinite, or at least very large data segment. Thus, the controller 
coefficients could only be updated rather infrequently. In order to be able to update the 
controller every time step n, an estimate of the gradient of ( )Tj

ee eS ω  over the last N 
samples is used. Then the frequency domain steepest descent algorithm may finally be 
written as: 
 

 ( ) ( ){ }+⋅−−= knkn fEfRIDFTcnhnh *ˆ)1()(
vv

 (3-16) 

 
Thereby, circular correlation effects are erased by the application of the overlap-save 
method, see [29] and [83], with { }+...IDFT  denoting the causal part of the Inverse 
Discrete Fourier Transform (IDFT) of the quantity inside { }... . 
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The term ( )kn fR̂  denotes the Discrete Fourier Transform (DFT) of the latest 2N point 
segment of )(ˆ nr , and ( )kn fE  is the 2N point DFT of the latest N point segment of )(ne  
padded with N zeros. For computational efficiency, ( )kn fR̂  and ( )kn fE  are only updated 
every ∆overlap

th sample. 
 
In order to be able to update the controller every sample n, and thus assure a smooth 
convergence, the values for ( )kn fR̂  and ( )kn fE  are held constant until new values are 
available. With the discrete frequency variable k=1,…,2N the discrete frequencies kf  
are: 
 

 ( )
N
kFsfk 2

1−=  (3-17) 

 
For an efficient controller implementation, the 2N point DFT of the estimated filtered 
reference signal ( )kn fR̂  is approximated by multiplying the 2N point DFT of the 
reference signal ( )kn fA  with the estimated plant response ( )kfĜ  at each discrete 
frequency kf , as also proposed in [28]: 
 

 ( ) ( ) ( )kknkn fGfAfR ˆˆ ≈  (3-18) 

 
This procedure however involves neglecting circular convolution effects. Since the 
conservative choice of the convergence coefficient c makes the adaptation robust to a 
biased estimate of the filtered reference signal, see Eq. (3-41), above approximation did 
hardly influence the performance of the adaptive wing bending vibration controller. 
 
The resulting adaptive feed-forward control algorithm for wing bending alleviation is 
illustrated in Figure 3-5. The reference signal )(tα  is passed through an AF, and the 
ADC. The sampled-time reference signal )(nα  is split in order to be fed to the adaptive 
FIR controller, as well as to the frequency domain steepest descent algorithm defined in 
Eq. (3-16). The update algorithm also requires the sampled-time error signal )(ne  in 
order to calculate the new vector of controller coefficients )(nh

v
. 

 
The adaptive FIR controller is implemented as defined in Eq. (3-1) in order to generate 
the feed-forward control input )(nuFF . This feed-forward control input )(nuFF  is passed 
through the DAC before being fed to the actuators of the ailerons to generate a 
symmetric aileron deflection )(tδ . 
 
As already mentioned the actuator transfer function )(sFδ  has low pass character, and 
thus already provides the required properties of a RF. So, in order to minimize the 
delay of the feed-forward path, no additional RF is used. 
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3.2 Stability Analysis of the Adaptive Control Algorithm 
 
For the derivation of a frequency domain stability analysis of the proposed adaptive 
control algorithm shown in Eq. (3-16) the deviation of the frequency response of the 
(regarded as quasi-steady state) controller ( )Tj

n eH ω  from the optimum causal controller 
( )Tj

opt eH ω  is defined as: 
 

 ( ) ( ) ( )Tj
opt

Tj
n

Tj
n eHeHeH ωωω −=∆  (3-19) 

 
Then Eq. (3-7) can be rewritten for ( ) ( )Tj

n
Tj eHeH ωω =  as: 
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n

Tj
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Tj
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TjTj
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ωωωωωω ∆∆++= **  
 

(3-20) 
 
Thereby, ( )Tj

ee eS
n

ω  denotes the power spectral density of the error signal obtained with 
the controller )(nhh

vv
= , and ( )Tj

nhh eE ω
)(

vv
=  is the Fourier transform of said error signal. 

The first and the second term of Eq. (3-20) are independent of the actual controller, and 
again denoted the minimum control error ( )Tj

ee eS ω
min

, see Eq. (3-12). 

Figure 3-5. The adaptive feed-forward control algorithm. 
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The term on the very right of Eq. (3-20) depends on ( )Tj
n eH ω∆ , and is denoted the 

excess square control error for the quasi-steady state controller ( )Tj
n eH ω , i.e.: 

 

 ( ) ( ) ( )Tj
n

Tj
rr

Tj
n

Tj
excess eHeSeHe

n

ωωωωε ∆∆= *)(  (3-21) 

 
In order to get an estimate of the boundaries for the convergence coefficient c for stable 
convergence of the controller update algorithm, the expected progression of this excess 
square control error against c is investigated in the following. Said progression has a 
fundamental effect on the stability and on the performance of the adaptation algorithm. 
If the adaptation of the feed-forward controller works properly, )( Tj

excess e
n

ωε  will 
decrease with increasing n. If )( Tj

excess e
n

ωε  goes to infinity the adaptation is unstable. 
 
Thus, a necessary constraint for stable adaptation of the feed-forward wing bending 
vibration controller is the existence of a finite steady-state of )( Tj

excess e
n

ωε . In the 
following sufficient conditions for the existence of a finite steady-state excess square 
control error are derived. 
 
Assuming the controller update defined in Eq. (3-16) is completely performed in the 
frequency domain before { }+...IDFT  is computed in order to obtain )(nh

v
, one can 

write: 
 

( ){ } ( ) ( ) ( ){ }+−+ ⋅−== knknknkn fEfRcfHIDFTfHIDFTnh *
1

ˆ)(
v

 

(3-22) 

 
Thereby, ( )kn fH  is the frequency response of the controller at time step n that still 
contains circular correlation effects from the multiplication of ( )kn fR̂  with ( )kn fE . 
 
The 2N point DFT of the zero padded error signal that is actually used for controller 
update is considered to depend on the controller ∆+1 samples ago in the worst case. 
With the assumption of a quasi-steady state controller )1( −∆−nh

v
, and neglecting 

circular convolution effects one can thus write: 
 

 ( ) ( ) ( ) ( )knknknkn fRfHfDfE 1−∆−+≈  (3-23) 

 
Thereby, ( )kn fD , and ( )kn fR  denote the 2N point DFTs of )(nd  and )(nr  evaluated at 
the discrete frequency kf , and ( )kn fH 1−∆−  is the frequency response of the controller at 
time step n-∆-1. 
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The one sample delay represents the fact that the computation of a new set of filter 
coefficients )(nh

v
 is based on the error signal obtained with the set of filter coefficients 

of at least one sample ago )1( −nh
v

. As already shown in [118], the additional delay of ∆ 
samples originates from two effects: 
 

• Firstly, the plant introduces a (frequency dependent) group delay 
( ) ωωφω ∂∂−=∆ GG )(  between the sampled-time symmetric aileron command 

u(n) and the sampled-time error signal e(n). Thereby, ( )ωφG  denotes phase 
angle of the transfer function ( )TjeG ω  in radians. The maximum of this group 
delay in the controlled frequency range is rounded down to an integer value. 
This integer value corresponds to a delay of max∆  samples in addition to the 
minimum one sample delay. 

 
• Secondly, although the controller is updated every time step n for smooth 

convergence of its coefficients, the quantity inside { }+...IDFT  is generally 
updated only every ∆overlap

th sample for a reduction of required computing power 
(i.e. usually very important on a flight computer). Thus, the update of the 
quantity inside { }+...IDFT  is additionally delayed by ∆overlap-1 samples in the 
worst case. 

 

Therefore, the maximum feedback delay ∆ (in addition to the one obligatory sample) is 
calculated as shown in Eq. (3-24): 

 

 max1 ∆+−∆=∆ overlap  (3-24) 

 
 
Based on the assumption that DFT coefficients are approximately de-correlated, 
compare [83], the controller adaptation at a discrete frequency kf  is regarded as 
independent from the adaptation at all other frequencies in the following. 
 
Thus, introducing Eq. (3-23) into Eq. (3-22), neglecting the { }+...IDFT  operation, and 
substituting ( ) ( ) ( )koptknkn fHfHfH +∆=  gives an approximate update equation for 

( )kn fH∆ , i.e. the controller deviation from the optimum controller at the discrete 
frequency kf : 
 

 ( ) ( ) ( ) ( ) ( ) ( )koptknknkrrknkn fEfRcfHfScfHfH
nn

*
1ˆ1

ˆ~ ⋅−∆⋅−∆≈∆ −∆−−  (3-25) 
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Thereby, the following definition for the estimate of the cross spectral density between 
the estimated filtered reference signal r̂  and the sampled-time filtered reference signal 
r  at the discrete frequency kf  at time step n has been applied: 
 

 ( ) ( ) ( )knknkrr fRfRfS
n

*
ˆ

ˆ~ =  (3-26) 

 
The term ( )kopt fE

n
 is defined as the 2N-point DFT of the error signal that would be 

obtained with the optimum controller opte , evaluated for the discrete frequency kf , i.e.: 
 

 ( ) ( ) ( ) ( )knkoptknkopt fRfHfDfE
n

+=  (3-27) 

 
with ( )kopt fH  denoting the evaluation of ( )Tj

opt eH ω  at the discrete frequency kf . The 
signal opte  is statistically independent from the filtered reference signal r, and also from 
its estimate r̂ , compare the definition of ( )Tj

opt eH ω  in Eq. (3-11). 
 
Evaluating Eq. (3-21) at the discrete frequency kf , taking the expectation value, and 
introducing Eq. (3-25) gives: 
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(3-28) 
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The last four terms in Eq. (3-28) are zero since opte  is statistically independent from r, 
and from r̂ , as already mentioned above. Moreover, the following approximation is 
made for the fifth term on the right side of Eq. (3-28): 
 

( ) ( )( ) ( ) ( ) =koptknkoptkn fEfRfEfRc
nn

***2 ˆˆ  

( ) ( ) ( ) ( ) ( ) ( )krrkeekoptkoptknkn fSfScfEfEfRfRc
nn ˆˆ

2**2
min

ˆˆ ⋅≈⋅=  

(3-29) 

 
with ( )kee fS

min
 and ( )krr fS ˆˆ  denoting the power spectral densities of opte  and of r̂  

evaluated at the discrete frequency kf . Introducing Eq. (3-21) and Eq. (3-29) into Eq. 
(3-28) then makes: 
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(3-30) 
 

where ( )kn fa 1−∆  is defined as (the subscript ∆ in the function ( )kn fa 1−∆  denotes that 
( )kn fH 1−∆−∆  is ∆ samples older than ( )kn fH 1−∆ , and the sub-subscript n-1 denotes that 

( )kn fH 1−∆  originates from one sample before n): 
 

 ( ) ( ) ( ) ( )knkrrknkn fHfSfHfa 1
*

11 −∆−−−∆ ∆∆=  (3-31) 

 
which, under the assumption that ( ) 1~

ˆ <<⋅ krr fSc
n

 for all kf  in the controlled frequency 
range, may be expanded to (see Appendix A): 
 

 ( ) ( ) ( ) ( ) ( )knknkrrknexcesskn fgfafScffa 1
*

11
*

ˆ11 −∆−∆−−∆−−∆ +⋅⋅∆−= ε   

(3-32) 
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with ( )kn fg 1−∆  denoting a dummy function with zero ensemble average defined in 
Appendix A, and with: 

 

 ( ) ( ) ( ) ( )knkrrknkn fHfSfHfa
u 2

*
111 −∆−−∆−−∆− ∆∆=  (3-33) 

 
The subscript 1 in the function ( )kn fa 11 −∆−  denotes that ( )kn fH 2−∆−∆  is 1 sample older 
than ( )kn fH 1−∆−∆ , and the sub-subscript n-∆-1 denotes that ( )kn fH 1−∆−∆  originates from 
∆+1 samples before n. The term ( )krr fS *

ˆ  in Eq. (3-32) is defined as: 
 

 [ ]∑
∆

=
−∆

=
1

*
ˆ

*
ˆ )(~1)(

m
kmnrrkrr fSfS  (3-34) 

 
Thereby, m denotes a counting variable. Assuming that the adaptation algorithm 
converges to a steady state, with ( )kexcess f

∞
ε  denoting the ensemble average of the 

steady-state excess square control error, and with the assumption that ( ) 1~
ˆ <<⋅

− krr fSc
mn

 
for all kf  in the controlled frequency range, one can rewrite Eq. (3-30) for this 
converged steady state (see Appendix B): 
 

( ) ( ){ } ( ) ( ) ( ) ≈⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ +∆⋅⋅⋅−⋅⋅⋅
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2

ˆ
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ˆˆ
2

ˆ
~~2~Re2 krrkrrkrrkrrkexcess fSfSfScfScf

nnn
ε  

( ) ( )krrkee fSfSc ˆˆ
2

min
⋅≈  

(3-35) 

 
If the multiplier of ( )kexcess f

∞
ε  equals zero in Eq. (3-35), then ( )kexcess f

∞
ε  tends to infinity, 

(since there is a finite value on the right side of the equation) and the adaptation 
algorithm becomes unstable. Thus, for the calculation of necessary boundaries for the 
convergence coefficient c, one can write: 
 

 ( ){ } ( ) ( ) ( ) 0~~2~Re2
2

ˆ
*

ˆˆ
2

ˆ =⎟
⎠
⎞⎜

⎝
⎛ +∆⋅⋅⋅−⋅⋅ krrkrrkrrkrr fSfSfScfSc

nnn  (3-36) 
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With ( )kfG  denoting the 2N-point DFT of the real plant’s impulse response at the 
discrete frequency kf , and with ( )kfĜ  denoting the frequency response of the plant 
model at the discrete frequency kf , ( )krr fS

mn−ˆ
~

 is expanded to: 
 

 ( ) ( ) ( )
( )k

k
krrkrr fG

fGfSfS
mnmn ˆ

~~
ˆˆˆ −−

=  (3-37) 

 
Its real part ( ){ }krr fS

mn−ˆ
~Re  thus can be written as: 

( ){ } ( ) ( )
( )

=
⎪⎭

⎪
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⎪
⎨
⎧

=
−−

k

k
krrkrr fG

fGfSfS
mnmn ˆRe~~Re ˆˆˆ  

( ) ( )
( )

( ) ( )( )kGkG
k

k
krr ff

fG

fG
fS

mn ˆˆˆ cos
ˆ

~ φφ −=
−  (3-38) 

 
Thereby, ( )krr fS

mn−ˆˆ
~

 denotes the estimate of the power spectral density of r̂  over N 
samples at the n-mth time step, ( )kG fφ  and ( )kG fˆφ  denote the phase angles of the 
transfer function ( )kfG , and its estimate ( )kfĜ , (i.e. the plant model), ( )kfG  and 

( )kfĜ  are the correspondent magnitudes. 
 
The key issue about ( )krr fS

mn−ˆˆ
~

 denoting an estimate of the power spectral density of the 
estimated filtered reference signal is that ( )krr fS

mn−ˆˆ
~

 can be calculated at each time step n 
anew which allows for continuous online calculation of the boundaries of the 
convergence coefficient c. The boundaries for the convergence coefficient c are 
obtained by introducing Eqs. (3-37) and (3-38) into Eq. (3-36) and taking the minimum 
over discrete frequencies kf : 
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( )
( ) ( ) ( )( )

k
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kGkG
k

k

krrkrr
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fG
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(3-39) 

 

with: ( ) ( )[ ]∑
∆

=
−∆

=
1

ˆˆˆˆ
~1

m
kmnrrkrr fSfS  (3-40) 
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In principle also a frequency dependent convergence coefficient ( )kfc  could be used for 
updating the controller ( )kn fH . However, using a frequency dependent ( )kfc  can cause 
the frequency domain controller ( )kn fH  to update to values without causal time domain 
representation [29]. Thus, the same convergence coefficient was used for all 
frequencies here. Therefore, the upper boundary in Eq. (3-39) is the minimum over kf  
of the quantity inside the brackets. 
 
Since the quantity inside the brackets generally has a minimum at frequencies of modal 
peaks of the frequency responses ( )kfG , and ( )kfĜ  respectively (i.e. here, at the 
frequency of the modal peak of first symmetric vertical wing bending vibration), taking 
the minimum over frequency in Eq. (3-39) is usually not too conservative. 
 
Moreover, this procedure has the advantage, that outside the frequency range of first 
symmetric vertical wing bending vibration, where the coherence ( )Tj

d e ω
αγ 2  is usually 

bad, the adaptation is slowed down. 
 
Eq. (3-39) must hold for all discrete frequencies kf . Thus, the minimum value over kf  
of the right side of Eq. (3-39) bounds the convergence coefficient c. Eq. (3-39) also 
illustrates that the phase error between the plant model ( )kfĜ , and the real plant 
response ( )kfG  must be smaller than +/-90° to ensure stable adaptation. This is in 
accordance with the results in the literature [94], [114]. 
 
The convergence coefficient c that provides fastest adaptation of the structural 
controller in the frequency range of the first symmetric vertical wing bending vibration, 
the so-called optimum convergence coefficient optc  is only about half the maximum 
possible convergence coefficient maxc , see Appendix C. 
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(3-41) 

 
 
Note, that using the optimum convergence coefficient optc  makes the adaptation robust 
against e.g. a plant model phase error of +/- 60°, or to a plant model magnitude of only 
half of the ( )kfG  transfer function’s magnitude (i.e. ( ) ( )kk fGfG ⋅= 5.0ˆ .) For ∆=0, Eq. 
(3-39) provides the stability conditions for harmonic control without plant delay [8]. 
But one has to remember that Eq. (3-39) derivates from the assumption that 

( ) 1~
ˆ <<⋅

− krr fSc
mn

 for all kf  in the controlled frequency range. For ∆=0 however this 
assumption would not be quite justified. 
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For the four-engine example aircraft with proposed wing bending vibration control 
system ∆+1≈100 samples. Thus, for this thesis ( ) 1~

ˆ <<⋅
− krr fSc

mn
 was sufficiently 

fulfilled. 
 
Note, that with calm atmosphere ( ) 0~

ˆˆ ≈
− krr fS

mn
, and thus the upper bound of the 

convergence coefficient c tends to infinity according to Eq. (3-39). In this context it is 
recommended to introduce a threshold for ( )krr fS

mn−ˆˆ
~  and to stop adaptation of the 

structural controller if ( )krr fS
mn−ˆˆ

~ falls below this threshold. 
 
The author believes that the above stability bounds are both necessary and sufficient, 
although a rigorous proof for their sufficiency could not be found. However, sufficiency 
can be shown numerically by solving the characteristic equation of Eq. (3-25) for 
different convergence coefficients c. With the approximation 

( ) ( ) n over constant=≈ krrkrr fSfS
n ˆˆ

~  for a sufficiently long DFT length 2N (which is a good 
approximation unless the power spectral density of r̂  changes, e.g. when the 
atmospheric turbulence strength abruptly changes), the characteristic equation of Eq. 
(3-25) for the discrete frequency kf  makes: 
 

 ( ) 01 1
ˆ

1 =⋅⋅+− −∆−− zfScz krr  (3-42) 

 
For the evaluation of Eq. (3-42), ( )krr fS ˆ  is expanded to: 
 

( ) ( ){ } ( ){ }=⋅+= krrkrrkrr fSjfSfS ˆˆˆ ImRe  

( ) ( )
( )

( ) ( )( ) ( ) ( )( )[ ]kGkGkGkG

k

k
krr ffjff

fG

fG
fS ˆˆˆˆ sincos

ˆ
φφφφ −⋅+−=  

(3-43) 
 
Introducing Eq. (3-43) and maxcc ⋅= λ  with maxc  from Eq. (3-39) into Eq. (3-42), and 
again approximating ( ) ( ) ( )  n over constant=≈≈ krrkrrkrr fSfSfS

n ˆˆˆˆˆˆ
~  for a sufficiently long 

DFT length 2N, it can be calculated numerically that for 10 << λ  all roots of Eq. (3-42) 
lie inside the unit circle, independently from the chosen value of ∆. Thus, the controller 
update algorithm in Eq. (3-25) is stable for max0 cc << . 
 
Just to give an example, Figure 3-6 illustrates the roots of Eq. (3-42) depending on the 
convergence coefficient c for ∆ = 5 and a plant model phase error 

( ) ( )( ) 3ˆ πφφ −=− kGkG ff . Then one finds ∆ nearly axially symmetrical roots far inside 
the unit circle with increasing magnitude as the convergence coefficient is increased. 
These roots are not critical for the stability of the controller update algorithm. Only the 
∆+1th root is stability critical. 
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It converges to one at the convergence coefficient’s lower boundary 0=c . For optcc =  
the stability critical root approximately reaches its smallest magnitude. When the 
convergence coefficient is further increased, the stability critical root is again heading 
towards the unity circle, which it crosses, at about the convergence coefficient’s upper 
boundary maxcc = . For the sake of completeness it is alluded that for a plant model 
phase error close to zero there would be two such stability critical roots. 

 
 

Figure 3-6. Root locus of the controller update algorithm’s characteristic 
equation versus convergence coefficient c for ∆=5, and for 

( ) ( )( ) 3ˆ πφφ ωω −=− Tj
G

Tj
G ee . 

λ = 0 

λ = 1 
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4 Numeric Simulations 

 

In this chapter the behavior of the proposed adaptive wing bending vibration controller 
is investigated. The numeric simulations were carried out with state-space models of 
the symmetric dynamics of a large four-engine transport aircraft in steady state trimmed 
flight, compare Chapter 2.1. For the adaptive feed-forward controller an FIR length of 
N = 64 was chosen (N is chosen a power of two in order to be able to use the Fast 
Fourier Transform algorithm, compare [12].) This FIR length showed to be a good 
compromise between the demand for low computational load, and sufficient high 
frequency resolution. 
 
For a good trade-off between low computational costs and high convergence speed, the 
quantity inside the { }+...IDFT  brackets in Eq. (3-16) was updated only every ∆overlap = 
64th sample. 
 
The SCP delay ( ) ωωφ ∂∂−

cG , measured from the plant transfer functions of all Mach 
and mass cases, plus a on sample delay reserved for the digital controller, converters, 
and anti-aliasing filters (AFs) is denoted )(ωG∆ , and has been identified to be less than 
36 samples, or rounded down to an integer value, max∆  makes 35 samples. Thus, the 
maximum feedback delay (in addition to the obligatory one sample delay considered in 
Eq. (3-23)) is ∆ = 99 samples for the time-domain simulations with the four-engine 
example aircraft. A sample time of T = 40 ms was used for the numeric simulations. 
 
In Chapter 4.1 it is explained how the turbulence excitation and the reference 
measurement have been modeled. Chapter 4.2 shows the modal wing bending vibration 
reduction of the converged controller for mass case A at Mach 0.86, see Table 2-1. For 
this analysis a perfect plant model was used. The converged controller performance is 
about the same for all mass and Mach cases. 
 
Chapter 4.3 shows the adaptation behavior with phase errors in the plant model. It is 
concluded that the feed-forward controller converges to a (slightly time-varying) 
estimate of a causal representation of ( )Tj

opt eH ω  after sufficient convergence time as 
long as the phase error in the plant model is smaller than +/- 90°, and the convergence 
coefficient c does not exceed the boundaries defined in Eq. (3-39). For the estimation of 
the performance of a non-adaptive feed-forward controller in the presence of phase and 
magnitude deviations from ( )Tj

opt eH ω  a rule of thumb formula is derived. In Chapter 4.4 
it is shown that for the four-engine example aircraft used in this thesis one single mean 
plant model is sufficient for stable convergence of the wing bending vibration 
controller adaptation at all mass and Mach cases. 
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Finally, Chapter 4.5 shows the tracking capability of the adaptation algorithm. For this 
analysis the time variation of the plant was modeled by switching between state-space 
models of different mass cases and Mach numbers during the simulation. Moreover, in 
Chapter 4.6 it is shown for mass case A, Ma=0.86, that the converged feed-forward 
wing bending vibration controller can also compensate discrete gusts. 
 
To sum up Chapter 4 shows that the proposed adaptation of the feed-forward wing 
bending vibration controller significantly improves the robustness of the control 
performance against modeling errors and also against variations in the plant dynamics 
compared to a non-adaptive feed-forward controller. 
 

4.1 Modeling of the Turbulence and of the Reference Measurement 
 
For the derivation of the adaptive feed-forward wing bending vibration control 
algorithm it has been assumed that the disturbance signal d is steady state in order to 
allow for a frequency domain representation. No assumption has been made about how 
atmospheric turbulence generates such a steady state disturbance signal d. The 
statistical properties of atmospheric turbulence were already investigated in the early 
19th century by several authors (RIBNER [96], DRYDEN [24], and VON KÁRMÁN [112], 
[113]). Today the von Kármán turbulence formulation prevailed. 
 
For an aircraft flying through turbulent atmosphere at transonic Mach numbers the 
validity of TAYLOR’s frozen field assumption can be assumed (i.e. assumption that a 
turbulence field remains unchanged while passing the aircraft [107].) Then due to the 
geometry and dimensions of an aircraft the following approximations are obtained 
[109]: 
 

• The aircraft’s Eigen modes are mainly excited by vertical and lateral flow 
field variations. 

• These variations are distributed stochastically in the horizontal plane (i.e. 2-
dimensional turbulence), compare [21], [108], and [109]. 

• They are almost constant over the height of the aircraft due to the fact that 
the height of the aircraft is small compared to its length and its wingspan. 

• The vertical flow field variations remain constant while moving from the 
front to the rear of the aircraft (i.e. Taylor’s hypothesis, which is also 
supported by flight tests, see SLEEPER [105].) 

 
 
In TEUFEL [109] the excitation of the symmetric and asymmetric Eigen modes of a 
large transport aircraft by 2-dimensional vertical and lateral turbulence is described. In 
this thesis however only the excitation of symmetric Eigen modes of the four-engine 
example aircraft by one-dimensional vertical turbulence is considered for the evaluation 
of the adaptive wing bending vibration controller. 
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This vertical turbulence excitation is modeled as span-wise constant angle of attack 
variation at the alpha probe mounting position wα : 
 

 ( )νααα += windw  [rad] (4-1) 

 
The term wα  consists of a measurable share windα , and a non-measurable share να . 
Thereby, να  considers the real time effect that the reference measurement of 2-
dimensional vertical and lateral airflow at only one point of the span-wise distribution, 
and only in the vertical direction (i.e. measurement of only one-dimensional vertical 
turbulence) cannot provide a perfect reference for the real aircraft excitation. For high 
span-wise gradients of the turbulence (e.g. flight through a wake vortex) however this 
modeling is not valid, and the alpha probe does not provide a proper reference. 
 
Considering small angles, TASzwind Vv=α  in radians. Thereby, the vertical flow velocity 

zv  shall represent the one-dimensional von Kármán turbulence spectrum. For the time-
domain simulations the von Kármán turbulence spectrum is generated by filtering a 
white noise signal. HOBLIT [56] proposes a 4th order filter in order to obtain a good 
approximation of the von Kármán turbulence spectrum. In this thesis this 4th order filter 
is further approximated by a 3rd order filter with the integral scale length chosen to L = 
762m, as also recommended for the determination of gust loads, see HOBLIT [55]. 
 
In order to obtain a 75% coherence between the desired reference signal windα , and the 
aircraft excitation wα , να  must be von Kármán filtered white noise with ( ) 2131  
magnitude of windα , but with different initial seed, see Figure 4-1. This follows from the 
definition of the coherence function in Eq. (3-13). Since the white noise signals for να , 
and for windα  are completely de-correlated, the cross spectral density between the 
desired reference signal windα  and the aircraft excitation wα  is equal to the power 
spectral density of windα , i.e.: 
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and with Eq. (4-1): 
( )

( ) ( ) 75.0=
+

= TjTj

Tj

eSeS
eS

windwind

windwind

ω
αα

ω
αα

ω
αα

νν

 (4-2) 

 
From the second line of Eq. (4-3), it follows, that ( )TjeS ω

αα νν
 is 31  of ( )TjeS

windwind

ω
αα , and 

thus the magnitude of να  is ( ) 2131  of the magnitude of windα , what was to be 
demonstrated. 
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In the time-domain simulations the reference signal simα  is generated by adding windα  to 
the aircraft state-space model’s output groundα . Note, that groundα  has been neglected in 
the derivation of the adaptive control algorithm and the stability analysis. However, 

groundα  was so small for the example aircraft without pilot inputs, that it did not affect 
the simulation results: 
 

 )()()()()( 0 ttttt airgroundwindsim ααααα −=+=  [rad] (4-3) 

 
The reference signal used for the time-domain simulations simα  is thus also equal to the 
measurable angle of attack at the alpha probe mounting position airα  minus the static 
angle of attack of the trimmed aircraft in a ground reference system 0α , i.e. the 
alternating share of the alpha probe signal. Any dynamic behavior of the alpha probe 
sensor has been neglected in this thesis. 
 

 
 

4.2 Performance of the Converged Controller 
 
In order to validate the performance of the converged controller, simulation runs with 
an approximately perfect plant model were performed (i.e. ( ) ( )kk fGfG ≈ˆ .) For 
convenience the estimated plant response ( )kfĜ  thereby has been generated by 
evaluating the plant transfer function ( )sG  for the discrete frequencies kf , instead of 
evaluating the expectation value of the 2N-point DFT of the real plant’s impulse 
response at discrete frequencies kf . 

 

Figure 4-1. Modeling of the turbulence excitation with 75% coherence between the 
reference signal and the aircraft excitation. 
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That means that the magnitude of the real plant response ( )kfG  has been slightly 
underestimated. This underestimation however is compensated by using optc  for the 
adaptation, compare bottom of page 51. 
 
So, one can write: 

 
( )
( ) ( ) ( )( ) 1cos

ˆ
ˆ ≈−⋅ kGkG

k

k
ff

fG

fG
φφ  (4-4) 

 
Introducing Eq. (4-4) into Eq. (3-41) the following computation algorithm for the 
convergence coefficient c at time step n (i.e. )(nc ) is obtained: 
 

 
( )[ ] ( )

k

n

er fMinimum ov
krr

m
kmnrr fSfS

nc

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+⋅
=

∑
∆

=
− ˆˆ

1
ˆˆ

~~2

1)(  (4-5) 

 
This algorithm was used to continuously compute the convergence coefficient )(nc  
used for controller update in the simulation. As a consequence of the results shown in 
Chapter 2-3 the quadratic coherence function between the disturbance signal and the 
reference signal was chosen to be ( ) 75.02 =Tj

d e ω
αγ  for performance validation of the 

converged controller. The performance of the controller was measured after 1*104 
samples of convergence time starting from zero initialization of its coefficients (i.e. 

0)0(...)0()0()0( 1210 ========= − nhnhnhnh N .) 
 
Note, that for the implementation on a flying aircraft the controller coefficients would 
be initialized with the approximate optimum of the feed-forward wing bending 
vibration controller in order to reduce the convergence time. 
 
Figure 4-2 illustrates the mean standardized magnitudes of the error signal output (i.e. 
average modal wing bending acceleration magnitude) over frequency for several cases. 
The blue line represents the uncontrolled aircraft whereas the red line represents the 
example aircraft with the robust band pass feedback wing bending vibration controller, 
designed in the European AWIATOR project [63]. 
 
An approximate 50% reduction of the modal wing bending acceleration magnitude was 
obtained at the first symmetric vertical wing bending frequency with this active wing 
bending damping system. 
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The orange line represents the example aircraft with the adaptive feed-forward wing 
bending vibration controller proposed in this thesis after 1*104 samples of convergence 
time. As postulated by Eq. (2-17) an approximate 50% reduction of the mean 
standardized magnitude of the Fourier transform of the error signal, i.e. of ( )TjeE ω  was 
obtained at the first symmetric vertical wing bending frequency. Since in the simulation 

( ) 75.02 =Tj
d e ω

αγ  is constant over frequency, the compensation of the higher modes (i.e. 
above 2.5 Hz) is overestimated. Note, that according to Chapter 2-3 the quadratic 
coherence function ( )Tj

d e ω
αγ 2  actually decreases with increasing frequency in the real 

atmosphere. 
 
The cyan line illustrates the average modal wing bending acceleration magnitude with a 
combination between robust band pass feedback and converged adaptive feed-forward 
wing bending vibration control. This hybrid controller reduces the atmospheric 
turbulence excited first symmetric vertical wing bending vibration magnitude by more 
than 70%. The converged controller performance was about the same for all mass and 
Mach cases. For the performance plots for the other cases see Appendix F. 
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4.3 Performance with Modeling Errors 
 
The previous chapter showed that the proposed adaptive feed-forward wing bending 
vibration controller reaches the theoretic maximum attainable performance with a 
perfect plant model. In order to test the convergence behavior of the adaptation 
algorithm under more realistic conditions, numeric simulations were performed with 
phase errors in the plant model (i.e. ( ) ( )kk fGfG ≠ˆ .) 
 
Note, that for demonstration purposes these simulations were carried out for plant 
model phase errors which, for the sake of a simple illustration, are constant over 
frequency kf , well knowing that for such systems no physical representation exists. 
Furthermore a perfect coherence between the disturbance signal and the reference 
signal is assumed (i.e. ( ) 12 =Tj

d e ω
αγ .) in order to separate the two performance 

degrading effects, namely the performance degradation due to modeling errors, and the 
performance degradation due to an imperfect coherence ( )Tj

d e ω
αγ 2 . 

 
Figure 4-3 shows the time behavior of the first 12 values of the N-point DFT of )(nh

v
 

for three cases. The blue lines illustrate the adaptation with an approximately perfect 
plant model (i.e. ( ) ( )kk fGfG ≈ˆ .) The red lines illustrate the adaptation with +45° 
constant phase error for all kf  in the plant model ( )kfĜ , and the green lines illustrate 
the adaptation with -45° constant phase error for all kf . For the simulation runs with +/- 
45° phase error one gets: 
 

 
( )
( ) ( ) ( )( ) 71.0cos

ˆ
ˆ ≈−⋅ kGkG

k

k
ff

fG

fG
φφ  (4-6) 

 
For the simulation runs with +/- 45° phase error the convergence coefficient 
computation algorithm thus makes: 
 

 
( )[ ] ( )

k

n

er fMinimum ov
krr

m
kmnrr fSfS

nc

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+⋅
=

∑
∆

=
− ˆˆ

1
ˆˆ

~~2

71.0)(  (4-7) 

 
 
At the beginning of each run the controller coefficients were again initialized with zero 
(i.e. 0)0(...)0()0()0( 1210 ========= − nhnhnhnh N .) The simulations were run for 
1.25*105 samples in order to test also the long-term behavior. 
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It has been observed that the discrete frequency domain controller coefficients move 
into different directions depending on the phase error at the beginning of the adaptation. 
But finally, the coefficients at high SCP gain frequencies (e.g. coefficients No. 4 and 5 
for first symmetric vertical wing bending vibration control) converge to a (slightly 
time-varying) estimate of a causal representation of ( )Tj

opt eH ω  after about 6*103 
samples (with N=∆overlap=64 and T=40ms.) 
 
Thus, after sufficient convergence time the adaptive feed-forward wing bending 
vibration control system provides the optimum performance (already illustrated in 
Figure 4-2 for a perfect plant model) even with +/- 45° phase error in the plant model. 
According to Eq. (3-41), this is the case for any plant model phase error that is smaller 
than +/- 90°. 
 
However, the upper boundary of the convergence coefficient decreases with the cosine 
function of the plant model phase errors. That means that the required convergence 
time goes to infinity, when the plant model phase errors goes to +/- 90°. For a plant 
model phase error of +/- 60° the upper boundary of the convergence coefficient is only 
halved, which still provides reasonably fast convergence of the adaptation algorithm. 
 
Moreover, using the optimum convergence coefficient optc  for the update of the 
controller coefficients already makes the adaptation algorithm robust against a plant 
model phase error of < +/- 60°. Thus, in order to provide a rule of thumb, one could say 
that plant model phase errors of up to +/- 60° will not affect the convergence speed 
severely. 
 
Since in Eq. (3-16) the quantity inside the brackets { }+...  represents an estimate of the 
gradient of the error surface by averaging over the last N samples the controller 
coefficients keep continuously slightly adapting within a certain area after 6*103 
samples. The way the controller tracks the estimated optimum depends on the phase 
error in the plant model, and has no notable influence on the wing bending vibration 
alleviation performance. 
 
Note, that the controller converges much slower for frequencies with low SCP gain due 
to the small adaptation steps with a convergence coefficient which is constant over 
frequency. However, this has no influence on the performance of wing bending 
vibration control since there are no structural modes to control at low gain frequencies 
anyways. 
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In order to get a feeling for the performance of a non-adaptive feed-forward controller 
in the presence of modeling errors, the following admittedly simplistic calculations 
were performed. Thereby, a steady state excitation is assumed to allow for a frequency 
domain representation. Let the phase error of a non-adaptive feed-forward controller 

( )TjeH ω  be ( ) ( )Tj
H

Tj
optH ee ωω φφ −  at a certain frequency ω, and let the multiplicative 

magnitude error ( )TjeB ω  be defined as: 
 

 ( ) ( )( ) ( )Tj
opt

TjTj eHeBeH ωωω += 1  (4-8) 

 
The terms ( )Tj

optH e ωφ , and ( )Tj
opt eH ω  are the phase and magnitude of the optimum feed-

forward controller ( )Tj
opt eH ω , whereas ( )Tj

H e ωφ , and ( )TjeH ω  are the phase and 
magnitude of the actually realized non-adaptive feed-forward controller ( )TjeH ω .  
 
 
For the further derivation some equations from Chapter 3 have to be reconsidered. 
Assuming ( ) 12 =Tj

d e ω
αγ , Eq. (3-5) may be illustrated in the following vector graph, see 

Figure 4-4: 

 
Thereby, ( )TjeE ω

control adaptivenon−  is the Fourier transform of the error signal e with a non-
adaptive feed-forward controller ( )TjeH ω  commanding the symmetrically driven 
ailerons. 
 
Introducing Eq. (3-5) into Eq. (3-6), makes: 
 

 ( ) ( ) ( ) ( ){ }Tj
yd

Tj
yy

Tj
dd

Tj
ee eSeSeSeS ωωωω Re2 ⋅++=  (4-9) 

Figure 4-4. Vector graph for disturbance compensation with feed-forward control for 
a certain normalized angular frequency ωT. 
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with ( )Tj
ee eS ω , ( )Tj

dd eS ω , and ( )Tj
yy eS ω  denoting the power spectral densities of the 

error signal e, the disturbance signal d, and the share in the error signal due to feed-
forward control y. Making use of Eq. (4-8) the term ( )Tj

yy eS ω  may be written as: 
 

( ) ( ) ( ) ( ) ( ) ( )( )222
1 TjTj

opt
Tj

rr
TjTj

rr
Tj

yy eBeHeSeHeSeS ωωωωωω +==  
(4-10) 

 
Assuming that ( ) 12 =Tj

rd e ωγ  and introducing Eq. (3-11)) one can rewrite ( )Tj
yy eS ω  to: 

 

( ) ( )
( ) ( )( ) ( ) ( )( )22

2

11 TjTj
dd

Tj
Tj

rr

Tj
rdTj

yy eBeSeB
eS

eS
eS ωωω

ω

ω
ω +=+=  

 
(4-11) 

 
The term ( ){ }Tj

yd eS ωRe  is the real part of the cross spectral density between the share in 
the error signal due to feed-forward control y, and the disturbance signal d. Assuming 
that ( ) 12 =Tj

rd e ωγ , ( ){ }Tj
yd eS ωRe  may be rewritten as: 

 
 

( ){ } ( ) ( ){ }== TjTjTj
yd eDeYeS ωωω *ReRe  
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Y
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D
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rd eeeBeHeS ωωωωω φφcos1  

 
 

(again introducing Eq. (3-11)) 
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(4-12) 
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The terms ( )Tj
D e ωφ  and ( )Tj

Y e ωφ  denote the phase angles of the Fourier transforms of 
the disturbance signal d and of the feed-forward share in the error signal y, whereas the 
term ( )Tj

A e ωφ  denotes the phase angle of the Fourier transform of the reference signal α, 
and ( )Tj

G e ωφ  is the phase angle of the plant transfer function ( )TjeG ω . 
 
Introducing Eq. (4-11) and Eq. (4-12) into Eq. (4-9) with ( ) ( )Tj

ee
Tj

ee eSeS ωω
control adaptivenon −

=  
finally gives the following performance index ( )Tje ωΞ  for ( ) 12 =Tj

d e ω
αγ : 

 

( ) ( ) ( )
( ) =

−
=Ξ −

Tj
dd

Tj
ee

Tj
ddTj

eS

eSeS
e ω

ωω
ω control adaptivenon

 

 ( )( ) ( ) ( )( ) ( )( )21cos12 TjTj
H

Tj
optH

Tj eBeeeB ωωωω φφ +−−+⋅=  (4-13) 

 
Thereby, ( )Tj

dd eS ω  denotes the power spectral density of the disturbance signal d, and ( )Tj
ee eS ω

control adaptivenon−
 is the power spectral density of the error signal e when a non-

adaptive feed-forward controller ( )TjeH ω  is used. As illustrated in Table 4-1, a 
performance index ( )Tje ωΞ  equal to one means perfect compensation of the disturbance 
signal, whereas ( ) 0=Ξ Tje ω  means no compensation. 
 

Table 4-1. Significance of the performance index 

 

Value of ( )Tje ωΞ  Impact on the control 
performance 

Attainable ( )Tj
ee eS ω

control adaptivenon−
 

0 % no compensation of 
the disturbance signal 

( ) ( )Tj
dd

Tj
ee eSeS ωω =

− control adaptivenon
 

100 % perfect compensation 
of disturbance signal 

( ) 0
control adaptivenon

=
−

Tj
ee eS ω  

 
 
In Figure 4-5 the performance index ( )Tje ωΞ  is plotted against the phase error and the 
multiplicative magnitude error for a certain normalized angular frequency ωT. It can be 
seen that, for steady state conditions and for ( ) 12 =Tj

d e ω
αγ , a non-adaptive feed-forward 

controller with optimal magnitude (i.e. ( ) 0=TjeB ω ), but with a phase error of 
( ) ( )Tj

H
Tj

optH ee ωω φφ − = +/- 45° at said normalized angular frequency ωT provides a 
performance index ( )Tje ωΞ  of about 41% at this frequency. As shown before, an 
adaptive feed-forward controller provides a performance index ( )Tje ωΞ  of 100% for a 
plant model phase error of +/- 45°. In fact this simple example illustrates very clearly 
the advantage of the adaptation of feed-forward wing bending vibration control. 
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For ( ) 12 ≠Tj

d e ω
αγ  the power spectral density of the error signal ( )Tj

ee eS ω  makes: 
 

 ( ) ( ) ( )Tj
ee

Tj
ee

Tj
ee eSeSeS ωωω

mincontrol adaptivenon
+=

−  (4-14) 

 
The non-adaptive controller can only compensate the share of the disturbance signal 
that is correlated with the reference signal, compare Figure 4-6 where the feed-forward 
compensation is illustrated in terms of power spectral densities of the related signals. 
The power spectral density of the correlated share of the disturbance signal is denoted 

( ) ( )( )Tj
ee

Tj
dd eSeS ωω

min
− . 

 

Figure 4-5. Performance index against phase error and magnitude error for a 
certain normalized angular frequency ωT, and perfect coherence ( ) 12 =Tj

d e ω
αγ . 
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However, for a non-adaptive feed-forward controller with phase and/or magnitude 
errors respectively this share cannot be fully compensated. An error due to imperfect 
compensation denoted ( )Tj

ee eS ω
control adaptivenon−

 remains in the secondary signal path. 
 

 
Thus, substituting ( )Tj

dd eS ω  in Eq. (4-13) by ( ) ( )( )Tj
ee

Tj
dd eSeS ωω

min
−  a more general 

form of the performance index can be defined for ( ) 12 ≠Tj
d e ω

αγ : 
 

 ( ) ( ) ( )( ) ( )
( ) ( )( )Tj

ee
Tj

dd

Tj
ee

Tj
ee

Tj
ddTj

eSeS

eSeSeS
e ωω

ωωω
ω

min

control adaptivenonmin

−

−−
=Ξ −

 (4-15) 

 
In addition Eq. (3-13) may be rewritten so that: 
 

 ( ) ( )( ) ( )Tj
dd

Tj
d

Tj
ee eSeeS ωω

α
ω γ 21

min
−=  (4-16) 

 
Substituting the term ( )Tj

ee eS ω
control adaptivenon−

 in Eq. (4-14) by the rearranged Eq. (4-15), 
and introducing Eq. (4-16), one finally obtains: 
 

 ( ) ( ) ( )( )TjTj
ddd

Tj
ee eeSeS ωω

α
ω γ Ξ−= 21  (4-17) 

 
Figure 4-6. Illustration of feed-forward compensation in terms of signal powers. 
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which can easily be reordered in order to obtain the following equation for the 
estimation of the performance of a non-adaptive feed-forward controller with imperfect 
coherence between the reference, and the disturbance signal (i.e. ( ) 12 ≠Tj

d e ω
αγ ): 

 

 
( ) ( )

( ) ( ) ( )TjTj
dTj

dd

Tj
ee

Tj
dd ee

eS
eSeS ωω

αω

ωω

γ Ξ=− 2
 (4-18) 

 
Remember, that the value for ( )Tje ωΞ  is calculated from the right side of Eq. (4-13). 
 

4.4 Introduction of a Mean Plant Model 
 
The previous chapter showed that unlike non-adaptive feed-forward control, the 
proposed adaptive feed-forward wing bending vibration controller converges to an 
estimate of a causal representation of ( )Tj

opt eH ω  as long as the plant model phase error 
is smaller than +/- 90°, and the convergence coefficient c remains within the boundaries 
defined in Eq. (3-39). The (mass case and Mach number dependent) variations of the 
SCP transfer function of the four-engine example aircraft used in this thesis turned out 
to be considerably smaller than +/- 90° in the controlled frequency range of up to 4 Hz. 
Thus, it was possible to use only one single mean plant model for the generation of the 
estimated filtered reference signal r̂  required for controller update (review Eq. (3-15)) 
for all the mass cases and Mach numbers listed in Table 2-1. 
 
Figure 4-7 shows magnitude and phase over frequency of the SCP transfer function of 
the four-engine example aircraft for different mass and Mach conditions evaluated at 
discrete frequencies kf . In fact, ( )kfG  would have to be calculated by evaluating the 
expectation value of the 2N-point DFT of the SPC’s impulse response at discrete 
frequencies kf . The underestimation of the plant magnitude is compensated by using 

optc  for the adaptation, as it was done in Chapter 4.2. The mean plant model ( )kfĜ  (i.e. 
red line) has been calculated as mean value between maximum and minimum 
magnitude ( ( )kfGmax

~  and ( )kfGmin
~ ), and mean value between maximum and minimum 

phase ( ( )kG f
max

~φ  and ( )kG f
min

~φ ) of the slightly biased estimates of ( )kfG , denoted with 
( )kfG~ , over all mass and Mach cases for all discrete frequencies kf : 

 

 ( )
( ) ( )

2

~~
ˆ minmax kk

k

fGfG
fG

+
=  (4-19) 

 ( ) ( ) ( )
2

min
~

max
~

ˆ
kGkG

kG

ff
f

φφ
φ

+
=  (4-20) 
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The calculation of the mean plant model’s phase as described in Eq. (4-20) is only valid 
if the phases of the SCP transfer functions are illustrated in an unwrapped 
representation as it is done in the lower plot of Figure 4-7. The black dotted lines mark 
the corridor of +/-90° phase deviation from the mean plant transfer function. Using the 
red line transfer function for the generation of the estimated filtered reference signal r̂ , 
the proposed adaptation algorithm will converge to an estimate of a causal 
representation of the optimum controller ( )Tj

opt eH ω  as long as the actual phase of ( )kfG  
remains inside this corridor, and the convergence coefficient c is chosen according to 
Eq. (3-39). 
 
For all mass and Mach cases the phase of the plant response lies well inside this 
corridor. Thus, according to the theory one mean plant model is sufficient for the 
proposed adaptive algorithm to converge to an estimate of a causal representation of the 
optimum controller ( )Tj

opt eH ω  for all mass and Mach cases of the investigated aircraft 
model. 
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Figure 4-7. Mean plant model. 
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The static value of the plant model was chosen to be zero, see red line in Figure 4-7, 
because the static phase varies 180° between different mass and Mach cases. The plant 
model was also set to zero at frequencies above 4 Hz because of the huge phase 
variations between different mass and Mach cases. Setting the plant model to zero at 
frequencies where the phase is very uncertain or exposed to huge variations affects the 
causality of the plant model’s time-domain representation. As long as the magnitude of 
the real SCP transfer function is very low at these frequencies compared to the 
magnitude at Eigen mode frequencies this effect is negligible. For convenience, no 
phase uncertainties of the SCP in addition to the phase variations due to flight and fuel 
mass condition are considered. Additional uncertainties can be caused by neglected 
higher structural modes, actuator uncertainties, etc. 
 
A big challenge with respect to the maiden flight is the estimation of the magnitude of 
the SCP, which sometimes is evaluated too low at certain frequencies due to 
unexpected lightly damped modes. It is therefore recommended to use a conservative 
convergence coefficient c for a maiden flight. According to Eq. (3-39), if c is chosen 10 
times smaller, the algorithm is safe against a SCP magnitude that is 10 times higher 
than estimated. 
 
 

4.5 Transition Between Different Mass and Mach Cases 
 
In the previous chapter it was shown that for the four-engine example aircraft used in 
this investigations one single mean plant model is sufficient for stable convergence of 
the wing bending vibration controller adaptation at all mass and Mach cases. For the 
analysis of the adaptive control algorithm with a mean plant model the time variation of 
the plant was modeled by switching between state-space models of different mass cases 
and Mach numbers during the simulation. This procedure takes into account that the 
feed-forward wing bending vibration controller has been adapted to a certain mass case 
before a flight phase in calm atmosphere, or landing and refueling respectively, i.e. 
before a phase, where the adaptation must be turned off due to following requirements: 
 

• groundwind αα >>  in the frequency range of controlled structural modes, Eq. (2-20). 
• ( ) 0≠Tj

rr eS ω  required for the existence of ( )Tj
opt eH ω , see Eq. (3-11). 

• Finite upper boundary of the convergence coefficient c, see Eq. (3-39). 
 
The mass case (as well as the Mach number) will probably change during this flight 
phase in calm atmosphere, or during ground time/refueling. When a flight phase in 
turbulent atmosphere is encountered thereafter, the adaptive feed-forward controller is 
turned on again, and has to adapt to the new mass case (and Mach number.) An open 
question thereby is, if a flight phase in turbulent atmosphere generally is long enough 
for proper controller adaptation. The answer can only be given through a detailed 
analysis of test flights, which goes beyond the scope of this thesis. 
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Looking at Figure 4-7 the following observations can be made for the SCP transfer 
functions of the four-engine example aircraft. Regarding phase and magnitude, the 
mass cases B and D are rather similar for equal Mach numbers. The SCP transfer 
function of mass case A at Ma = 0.86 is completely different from the transfer 
functions of all other cases. Naturally, there is also a huge magnitude difference 
between the transfer functions for low and high Mach numbers making the magnitude 
adaptation almost as important as the phase adaptation. Two worst cases have been 
identified: 
 

• Switching from mass case A at Ma = 0.86 to any other mass case and back. 
• Switching between Ma = 0.86 and Ma = 0.7. 

 
Mainly these two worst cases are investigated in the following. At first the ability of the 
adaptive feed-forward wing bending vibration controller to track mass case variations is 
investigated. The (quadratic) coherence function between the disturbance signal and the 
reference signal was chosen to be ( ) 75.02 =Tj

d e ω
αγ for the performance validation of the 

adaptive controller with a mean plant model. 
 
Moreover, the maximum deviation of the mean plant model’s transfer function ( )kfĜ  
from any ( )kfG~  transfer function was calculated for each frequency kf  and introduced 
into Eq. (3-41) in order to compute the optimum convergence coefficient optc  used for 
the simulations with this mean plant model. The performance of the converged 
controller naturally was the same as for the adaptation with a perfect plant model, 
compare Figure 4-2. 
 
In Figure 4-8 the time behavior of the frequency domain controller coefficients is 
illustrated for the following mass case variations. After 1*104 samples (blue line) of 
adaptation to mass case A, Ma=0.86 starting from zero initialization, the controller is 
well adapted at least in the frequency range of the first symmetric vertical wing bending 
vibration (i.e. coefficients No. 4 and 5.) Then, the SCP transfer function is switched to 
mass case B for 5*103 samples (red line). After that the SCP transfer function is 
switched to mass case C for 5*103 samples (green line), then to mass case D again for 
5*103 samples (cyan line), and finally back to mass case A (magenta line). The 
simulation was stopped after 3*104 samples. 
 
Figure 4-9 shows the time behavior of the frequency domain controller coefficients for 
Mach number variations with an additional transition between mass case A and mass 
case B. Starting from zero initialization the feed-forward wing bending vibration 
controller is adapted to mass case B, Ma=0.86 for the first 1*104 samples (blue line). 
Then, the SCP transfer function is switched to Ma=0.7 for 5*103 samples (red line), 
still mass case B. After that, the SCP transfer function is switched to mass case A, 
Ma=0.86 for another 5*103 samples (green line). Then, the Mach number is switched to 
Ma=0.7 again for 5*103 samples (cyan line). Finally, the SCP transfer function is 
switched back to mass case B, Ma=0.86 (magenta line). The simulation was stopped 
after 3*104 samples. 
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It could be observed that at least the controller coefficient No. 4, which is apparently 
closest to the first symmetric vertical wing bending frequency, as well as the controller 
coefficient No. 8, which is in the frequency range of higher Eigen modes with high 
SCP gain track the mass case variations faster than within the 5*103 samples and 
remain in a certain region until the mass case is changed again. 
 
Note, that the coefficients at low SCP gain (i.e. low plant model gain) frequencies (i.e. 
coefficients No. 1, 2, 6, 10, 11) have not converged after the first 1*104 samples, and 
remain converging into the same direction even when the mass case is switched. As 
already explained the slow convergence at frequencies with low SCP gain is due to the 
small adaptation steps at low SCP gain frequencies. This in turn is due to the 
convergence coefficient being chosen as minimum over allowed values over frequency, 
as described in Eq. (3-41). However, this does not affect the control performance. The 
coefficients at low SCP gain frequencies seem to result mainly from causality 
constraints for the time domain feed-forward controller )(zH . 
 
Despite the switching between different mass and Mach cases no notable loss of wing 
bending vibration alleviation performance could be observed. The controller’s tracking 
of plant variations seems to be fast enough to avoid any significant performance 
degradation due to plant variations. 
 

4.6 Response of the Converged Controller to a Discrete Gust 
 
In this chapter, it is demonstrated that the converged feed-forward wing bending 
vibration controller can also compensate transient atmospheric excitation. However, 
that does not necessarily mean that the adaptation works properly in the presence of a 
transient excitation. The influence of discrete gusts on the controller adaptation needs 
further investigations (e.g. on flight tests) going beyond the scope of this thesis. 
 
In order to give a preliminary validation result of the influence of the converged feed-
forward wing bending vibration controller (i.e. no additional robust feedback wing 
bending vibration control loop) on the time response of the four-engine example 
aircraft to a discrete gust, one case, namely mass case A, Ma = 0.86 is investigated in 
the following. 
 
In these simulations no additional homogenous atmospheric turbulence is considered. 
The discrete gust is assumed to be one-dimensional, and to remain unchanged while 
passing the aircraft. The feed-forward controller is adapted with steady state 
atmospheric turbulence excitation (i.e. one-dimensional von Kármán turbulence 
spectrum) before the simulations with the discrete gust are performed. 
 
The disturbance has been modelled as already described, i.e. TASzwind Vv=α  in radians. 
with the vertical airflow )(tvz  of the discrete gust being defined as: 
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Thereby, VTAS denotes the true airspeed of the investigated aircraft model. The gust 
starts at t0=0.5s. Three different scales of turbulence L have been investigated. Figure 
4-10 shows the gust response for L = 100m, Figure 4-11 shows the gust response for L 
= 200m, and Figure 4-12 shows the gust response for L = 750m. The upper left plot in 
each figure illustrates the vertical airspeed of the discrete gust over time )(tvz . The 
second plot from the top in the left column shows the according discrete feed-forward 
control input to the aileron actuators )(nuFF . Thereby, the maximum vertical speed of 
the gust was chosen to 1max =zv  m/s for each simulation. For higher maxzv  the control 
input partly exceeded the rate limit of the ailerons’ actuators, especially for the gusts 
with L = 100m, and with L = 200m. 
 
The third, and the 4th plot on the left side of each figure illustrate the pitch rate at the 
CG over time )(tqCG , and the deviation of the wing bending moment on the left wing 
root )(tMxWR  from the static value in trimmed flight for the uncontrolled aircraft at mass 
case A, Ma = 0.86 (blue line), and for the aircraft with converged feed-forward wing 
bending vibration controller (red line.) In the right column of each figure from top to 
bottom the modal acceleration )(tNzlaw , as well as the vertical accelerations at the front 
fuselage )(tNz front , at the CG )(tNzCG , and at the rear fuselage )(tNzrear  are plotted over 
time. 
 
All three figures feature the same scaling. It can thus be seen, that for the simulation 
with a scale of turbulence of L = 100m, the highest vertical accelerations at the front 
fuselage )(tNz front  are obtained, due to higher Eigen mode excitation. The highest wing 
root bending moment deviation from the static value, )(tMxWR  however is obtained with 
a scale of turbulence of L = 200m, where the excitation of the first symmetric vertical 
wing bending mode dominates. 
 
The gust with a scale of turbulence of L = 750m excites mainly the alpha mode, and the 
modal wing bending acceleration excitation )(tNzlaw  therefore is very low. For all three 
scales of turbulence the converged feed-forward controller partly compensates the gust 
excitation of the pitch rate )(tqCG , of the wing root bending moment deviation from the 
static value )(tMxWR , of the modal acceleration )(tNzlaw , as well as of the vertical 
accelerations )(tNz front , )(tNzCG , and )(tNzrear . 
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Figure 4-12. Time response of the aircraft with and without converged feed-forward 
controller to a discrete gust with L=750m. 
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5 Wind Tunnel Testing of the Adaptive Control System 
 
In the previous chapters it has been shown by numeric simulations that adaptive feed-
forward control is a very efficient means for the reduction of atmospheric turbulence 
excited wing bending vibrations on large transport aircraft. In order to investigate the 
real-time behavior of such an adaptive control system, a wind tunnel experiment has 
been performed with an elastic aircraft model. Thereby, the control objective was the 
active compensation of the first symmetric vertical wing bending mode excitation. 
 
The testing of feed-forward vibration control in a wind tunnel poses many technical 
challenges. The most important of which is to generate locally correlated disturbances 
in order to provide a coherence between the disturbance signal and the reference 
measurement that is realistic for a flight in real atmosphere. This problem has been 
solved by designing a gust generator which was mounted right in front of the elastic 
wind tunnel model, while keeping wind tunnel turbulence low at the same time. 
Moreover, the signal that drives this gust generator was also used as reference signal. 
 
In Chapter 5.1 the design of the experimental setup is explained whereas in Chapter 5.2 
the wind tunnel test results are presented. These results from the real-time environment 
impressively support the validity of the previously derived theory and the numeric 
investigations. Said wind tunnel test partly has also been presented in [120]. 
 

5.1 The Experimental Setup 
 
The wind tunnel test has been performed in the low speed wind tunnel facility A of the 
Institute of Aerodynamics at Technische Universität München. For investigations on 
the real-time behavior of the proposed adaptive wing bending vibration control system, 
subsonic wind tunnel tests at low Mach numbers are sufficient, regarding also costs of 
the experiments. Figure 5-1 illustrates the experimental setup. A gust generator 
consisting of a shaker motor which is able to continuously change the angle of attack of 
a wing segment is mounted in front of an elastic aircraft model. In order to obtain a 
75% coherence between the reference signal and the disturbance signal in the frequency 
range of the first symmetric vertical wing bending mode (which would be realistic for a 
flight in real atmosphere, see Chapter 2.3), the signal x that drives the gust generator 
has been used as reference signal for feed-forward control at the same time. 
 
The adaptive feed-forward controller then drives piezo-electric trailing edge flaps (i.e. 
one flap on each wing) in order to compensate the excitation of the first symmetric 
vertical wing bending mode. Piezo-electric drivers have the advantage that they can be 
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miniaturized at a reasonable prize, and offer control of phase and magnitude over a 
wide frequency range. The adaptive feed-forward control algorithm is implemented on 
a Digital Signal Processor (DSP), which is located outside the section of measurement. 

The elastic aircraft model is mounted on a vertical pole, see Figure 5-2 for details. The 
mounting allows roll, pitch, and yaw, but hinders vertical movements in order to 
prevent the model from exiting the narrow area of influence of the gust generator. 

 

 
Figure 5-2. Mounting of the aircraft model. 

Figure 5-1. Layout of the experimental setup. 
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The gust generator consists of a very stiff composite wing (i.e. part of a discarded 
helicopter blade) which is rotatably hinged in front of the aircraft model’s nose in order 
to achieve maximum coherence (i.e. about 75%) between the gust excitation and the 
model’s vibrations. The angle of attack of this wing is changed rapidly by a shaker 
motor, see Figure 5-3. This motor is driven with a white noise signal which is cut off at 
25 Hz. This band pass white noise signal is generated by a separate signal generator. 
Due to the inertia, the gust generator naturally features a low pass behavior, but still 
excites the model’s vibrations up to 25 Hz. Thus, it can be perfectly used for excitation 
of the first few Eigen modes of the aircraft model, especially for the excitation of the 
first symmetric vertical wing bending mode at about 10 Hz. 

 
For the wind tunnel tests an elastic model of a transport aircraft with similar structural 
Eigen mode distribution like the one that has been modeled for the numeric simulations 
in Chapter 4 has been designed. The design process of this elastic wind tunnel model is 
discussed in detail in [46]. Therefore only the most important features shall be 
mentioned here. The size of the elastic aircraft model was limited by the wind tunnel 
dimensions. The test section of wind tunnel A is 2.4m wide and 1.8m high. The model 
was built as large as possible in order to produce lowest possible Eigen frequencies and 

       
 

Figure 5-3. The gust generator. 
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to avoid actuators of very small size and with very high stiffness standards which are 
very costly. Figure 5-4 illustrates the dimensions of the wind tunnel model. 
 

 
 
As discussed in detail in [46] the wind tunnel model’s inner load carrying structure is 
made of aluminum, which is covered with foamed material to provide a suitable 
aerodynamic surface. The wings are additionally reinforced with GFRP ribs to ensure 
proper transmission of aerodynamic loads to the inner aluminum structure. Finally, a 
thin GFRP skin provides a smooth aerodynamic wing surface. The four aluminum 
engine masses are mounted on very stiff CFRP pylons, compare Figure 5-9. 
 
The model has been designed with the first symmetric vertical wing bending frequency 
being at about 10 Hz, the first vertical fuselage bending frequency being at about 19 
Hz, and the first symmetric planar wing bending frequency being at about 24 Hz. The 
second symmetric wing bending frequency resulted to be at about 30 Hz. Note, that in 
this thesis the control objective is the active compensation of only the first symmetric 
vertical wing bending mode excitation. If also the higher modes shall be controlled, 
stiffer, and thus more expensive actuators would be required. 
 
Figures 5-5 through 5-8 illustrate the FEM derived first four symmetric Eigen modes of 
the inner load carrying aluminum structure, GFRP ribs, and rigidly connected masses of 

 
 

Figure 5-4. Dimensions of the elastic aircraft model and positions of the vertical 
acceleration sensors. 
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the four engines and the tail unit of the elastic wind tunnel model. The foam material, 
as well as the thin GFRP skin have been neglected in the FEM simulations in order to 
save time. The shown FEM model consists of shell and beam elements, as well as of 
rigidly connected mass elements. 

 

 

Figure 5-5. First symmetric wing bending mode of the wind tunnel model (~ 10 Hz). 
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Figure 5-6. First fuselage bending mode of the wind tunnel model (~ 19 Hz). 
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Figure 5-7. First in-plane wing mode of the wind tunnel model (~ 24 Hz).
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Comparing Figures 5-5 through 5-8 with Figure 2-1 through 2-6 one can see that the 
first four symmetric structural modes of the wind tunnel model do not contain any 
engine modes. This is due to the unrealistically high stiffness of the model’s CFRP 
pylons (which have been modeled rigidly for the FEM analysis.) If the consideration of 
engine modes shall be introduced to the wind tunnel experiment an elastic design of the 
engine pylons would be required. 

 

Figure 5-8. Second symmetric wing bending mode of the wind tunnel model (~ 30 Hz). 
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For the observation of the first symmetric vertical wing bending mode three vertical 
acceleration sensors have been mounted on the wind tunnel aircraft model, as proposed 
in Eq. (2-3), see red circles in Figure 5-4. Figure 5-9 shows the two aluminum engine 
masses and CFRP pylons of the right wing with a vertical acceleration sensor mounted 
on the outer engine mass. 
 
 
 

 
 
 
 
On each wing a piezo-electric driven trailing edge flap has been mounted for active 
wing bending vibration control. The trailing edge flaps consist of flat GFRP plates. 
Each of the two flaps are driven by two TH-7R THUNDER® piezo-actuators which are 
commercially available at the FACE® International Corporation. These actuators 
consist of a cambered metal plate with a piezo-electric layer on their upper side. 
Thereby, the camber of the metal plates serve as deflection amplifier.  
 

 

 

Figure 5-9. Vertical acceleration sensor mounted on the outer engine mass. 
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The metal plates have been screwed to the wing arbors on one side. The GFRP flaps 
have been glued on the other plates’ side, see Figure 5-10. The flaps are controlled via 
the voltage applied to the piezo-actuators, which is the simplest approach, but leads to a 
non-linear actuator behavior due to the piezo-material’s hysteresis. The first bending 
frequency of the piezo-actuators with attached GFRP flap lies above 15 Hz, with as 
well as without current flow between the piezo-actuators’ poles. The high voltages 
required for the piezo-electric flap drivers are generated by separate amplifiers outside 
the section of measurement, which are counted to the SCP in the following. 
 

 
 

 
 

Figure 5-10. The piezo-electric driven trailing edge flap. 
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Finally, Figure 5-11 shows the elastic aircraft model mounted on the vertical support 
rod in the wind tunnel. The elastic aircraft model is trimmed by remotely controlled 
elevators (in red color.) 
 

 
 

5.2 Wind Tunnel Test Results 
 
At first the discrete time plant transfer function )(zG  was identified offline at an 
airspeed of 30 m/s. For this system identification the gust generator was dismounted in 
order to keep the measurement noise as low as possible. In the literature various 
methods for system identification can be found, see [61], [62], [74]. 
 
Here, the DSP drives the plant with a linear chirp )(nxchirp , defined in Eq. (5-1), in order 
to identify the plant transfer functions from the sampled-time symmetric trailing edge 
flap command to the sampled acceleration sensor signals )(nNzLW , )(nNzCG , and 

)(nNzRW . The identified plant transfer functions therefore also include the Digital to 
Analogue Converter (DAC) and the Reconstruction Filter (RF) required for the 
generation of a continuous-time control input that can be forwarded to the (continuous-
time) plant, as well as the Anti-aliasing Filter (AF) and the Analogue to Digital 
Converter (ADC) required to obtain the sampled acceleration signals. The identified 
plant also includes the delay of the DSP, see Figure 5-12. 

 

Figure 5-11. The complete elastic aircraft model in the wind tunnel. 
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The chirp signal )(nxchirp  is a cosine signal with a temporally linear increasing 
frequency in the frequency range of the first symmetric vertical wing bending mode 
and the alpha mode. 
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22
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max
nT

TN
ff

nTfxnx startstop
startchirp π , 12,...,2,1,0 −= Nn  (5-1) 

 
Thereby, nTt =  denotes the time in seconds at the discrete time step n, with T denoting 
the sampling time. The sampling frequency TFs 1=  has been chosen to 250 Hz, and 
the DFT length for each identification run is 20482 =⋅ N . The stop frequency has been 
chosen to 1.15=stopf  Hz resulting in a start frequency of 0367.0≈startf  Hz, i.e. the start 
frequency is adjusted, so that when Eq. (5-1) is evaluated for Nn 2= , the chirp’s phase 
is an integer multiple of π2 . 
 
This approach allows to string together several chirps, compare Eq. (5-3), without 
generating discontinuities at Nn 2= , Nn 4= , and so on. The chirp amplitude maxx  has 
been adjusted so that the voltage limits of the piezo-electric trailing edge flaps are not 
exceeded. 
 
The result of the plant identification with one single chirp is the 2N-point DFT of the 
chirp signal ( )kchirp fX , as well as the according 2N-point DFT of the error signal 

( )kfE , in which ( )kfE  is calculated from the sampled acceleration signals )(nNzLW , 
)(nNzCG , and )(nNzRW . 

 

 ( ) ( ) ( )( ) ( ))()()(5.0 nNzDFTnNzDFTnNzDFTfE CGRWLWk −+⋅=  (5-2) 

 

Figure 5-12. Offline system identification of the control plant. 
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The influence of measurement noise has been reduced by taking the mean value of the 
2N-point DFTs of the error signals from i=5 continuously stringed together chirps. 
Considering, that the i stringed together chirps are identical, and with ( )ki fE  denoting 

( )kfE  identified with the ith chirp, the Filter model ( )kfĜ  is calculated as shown in 
Eq. (5-3): 

 ( )
( )
( )kchirp

i

i
ki

k fX

fE
fG

⋅
=
∑

=

=

5
ˆ

5

1  (5-3) 

 
In Figure 5-13 the two upper plots illustrate the magnitude and the phase of the plant 
transfer function’s estimate ( )kfĜ  for discrete frequencies kf  as defined in Eq. (3-17) 
with 123,...,4,3,2=k . 
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Figure 5-13. Magnitude and Phase of the transfer function ( )kfĜ  of the offline 
identified plant, and according group delay ( )kG fˆ∆  for discrete frequencies kf . 
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The third plot shows the group delay ( )kG fˆ∆  calculated from the plant transfer 
function’s estimate ( )kfĜ  (including the delay of the DSP) over discrete frequencies kf  
in seconds. With ( )kG fˆφ  denoting the phase angle of ( )kfĜ  in radians, the group delay 
in seconds is approximated by numeric differentiation: 
 

 ( ) ( ) ( )1ˆ1ˆ2 −+ −⋅
⋅

−≈∆ kGkGkG ff
Fs

Nf φφ
π

 (5-4) 

 
In the frequency range, where the plant transfer function’s phase estimate is very 
uncertain (i.e. below about 4.7 Hz the phase uncertainty is > +/- 90°), the plant model 

( )kfĜ  has to be set to zero to avoid an incorrect controller adaptation. This means, that 
the computed non-causal frequency domain controller coefficients ( )kn fH  will also be 
zero in this frequency range, whatever the value of the convergence coefficient c is. 
Thus, for the calculation of the convergence coefficient c the frequency range of 

( ) 0ˆ =kfG  may be excluded. 
 
Note, that strictly speaking setting the magnitude of ( )kfĜ  to zero at certain frequencies 
must not generate magnitude steps in the transfer function of ( )kfĜ , because this would 
affect the causality of the time domain controller ( )zHn . 
 
At frequencies above about 15 Hz, ( )kfĜ  was set to zero too in order to control only the 
first symmetric vertical wing bending mode. If also the compensation of the excitation 
of higher wind tunnel model’s Eigen modes is aspired, stiffer actuators, or flaps 
deflection angle control instead of controlling the voltage applied to the piezo-actuators 
(i.e. using the actuators also in the frequency range of their Eigen modes) would be 
required. The plant model was introduced to the control algorithm implemented on the 
digital signal processor. Assuming that the identification uncertainty is a good 
quantitative measure of the estimation error, the following approximation has been 
made from the data illustrated in Figure 5-13: 
 

 
( )
( ) ( ) ( )( ) 25.0cos

ˆ
ˆ ≈−⋅ kGkG

k

k
ff

fG

fG
φφ    for:    Hzf Hz k 157.4 <<  (5-5) 

 
Thereby, it has been assumed that in the frequency range of the first symmetric vertical 
wing bending mode the maximum deviation of the plant model’s phase ( )kG fˆφ  from 
the true plant phase ( )kG fφ  is smaller than 60°, and that the plant model’s magnitude 

( )kfĜ  is at least 0.5 times the true plant magnitude ( )kfG . Outside this frequency 
range the power spectral density of r̂  is so small that the identification error has a 
minor influence on the convergence coefficients upper boundary, compare Eq. (3-41). 
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Since the power spectral density of r̂  did hardly vary during the wind tunnel 
experiment (i.e. the plant was time-invariant, and the gust generator was driven with a 
steady state white noise signal x), the convergence coefficient’s upper boundary maxc  
was regarded as almost time-invariant. Thus, in order to ease the implementation the 
delay of m samples (with m = 1,2,…,∆) of the power spectral density estimate has been 
omitted in Eq. (3-41), i.e.: 
 

 ( ) ( )[ ] ( )krr
m

krrkrr fSfSfS
nmn ˆˆ

1
ˆˆˆˆ

~~1 ≈
∆

= ∑
∆

=
−  (5-6) 

 
The highest group delays are usually experienced at the plant’s Eigen frequencies. 
According to the offline system identification of the transfer function ( )zG , the plant 
delay (including the delay of the DSP) is less than one second in the frequency range of 
the first symmetric vertical wing bending mode (compare the red dotted line in the third 
plot of Figure 5-13.) The sampling frequency of the DSP was adjusted to Fs=250 Hz 
for the wind tunnel experiment. A lower sampling rate would have done it too, but 
however, the used hardware was not designed for lower sampling rates. Thus, it can be 
seen that in the frequency range of the first symmetric vertical wing bending mode: 
 

 samplesfkG 250)(ˆ <∆  (5-7) 

 
The FIR length N was chosen to be 1024 in order to be on the safe side in regards to the 
frequency resolution. An FIR length of 512, or even less should have been sufficient 
too. In order to speed up controller convergence and minimize the required time for 
testing in the wind tunnel, ∆overlap was set equal to one. Moreover, computation power 
was not a problem for the digital signal processor. Thus, according to Eq. (3-24), 1+∆  
was taken to be: 

 samples2501 =+∆  (5-8) 

 
Introducing Eqs. (5-5), (5-6), and (5-8) into Eq. (3-41), the convergence coefficient c 
can be computed online: 
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As predicted by previous stability analysis and the numeric simulations the adaptive 
controller converged stable towards its optimum with the convergence coefficient 
computed as in Eq. (5-9). 
 
Figure 5-14 shows the wind tunnel measurement of the coherence function between the 
reference signal x (i.e. also the gust generator driving signal), and the error signal e, 
(i.e. ( )Tj

xe e ωγ 2 ), without control (blue line), as well as with converged controller (red 
line). For the case without control (blue line), the error signal e is equal to the 
disturbance signal d. That means that the blue line represents also ( )Tj

xd e ωγ 2 , and that 
the blue line’s values can be used for attainable performance estimation according to 
Eq. (2-11). 
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Figure 5-14. Coherence between reference signal and error signal. 
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The gust generator was driven with a steady state white noise signal x which was cut 
off at 25 Hz. The white noise magnitude was chosen so as to obtain about 75% 
measured coherence between the reference signal x, and the disturbance signal d (i.e. 

( ) 75.02 ≈Tj
xd e ωγ ) in the frequency range of the first vertical wing bending mode. The 

controller adapts until the share of the error signal e, which is correlated with the 
reference signal x is fully compensated by the feed-forward control system. This means 
that the coherence between the reference signal x, and the error signal e, ( )Tj

xe e ωγ 2  
converges to zero in the frequency range of the first symmetric vertical wing bending 
mode, while the controller converges to a causal representation of an estimate of its 
optimum ( )Tj

opt eH ω . 
 
Looking at Figure 5-14 the difference between the blue and the red line in the end made 
about 0.7 at the first symmetric vertical wing bending frequency (i.e. slightly above 10 
Hz for a free stream velocity of 30 m/s, compare Figure 5-15), which corresponds to 
around 45% compensation of the error signal magnitude at this frequency, compare Eq. 
(2-11). The peak at about 4 Hz with almost perfect coherence between x and e (with as 
well as without control) represents the wind tunnel model’s alpha mode. This mode is 
not controlled because the plant model is set to zero below about 4.7 Hz, preventing the 
controller from adaptation in this frequency range. The blue and the red line thus show 
almost the same coherence function up to 7 Hz. 
 
Figure 5-15 shows the standardized average magnitude of the error signal e over 
frequency. The blue line represents the uncontrolled wind tunnel aircraft model, while 
the red line represents the model with converged feed-forward wing bending vibration 
controller (i.e. after about 250 seconds corresponding to ~6.25*104 samples of 
adaptation with a sample time T = 1/250 seconds starting from 

0)0(...)0()0( 110 ======= − nhnhnh N .) As shown in Figure 5-15 an average 45% 
reduction of modal accelerations of the first symmetric vertical wing bending mode has 
been obtained. This is in accordance with Eq. (2-11) for a coherence of ( ) 7.02 ≈Tj

xd e ωγ . 
 
Note, that due to the piezo-electric driven trailing edge flaps’ strong non-linear 
behavior, active control of the first symmetric vertical wing bending mode (i.e. 
controlled frequency range of about 4.7 Hz till 15 Hz) also excited the actuators Eigen 
frequencies (i.e. above 15 Hz.) In order to avoid this effect either a much stiffer 
actuator, or an actuator with linear behavior, or a compensation of the non-linearity (i.e. 
controlling the flaps’ deflection angle instead of controlling the voltage applied to the 
piezo-actuators) would be required. 
 
The handling of actuator non-linearities, especially at higher frequencies, is a general 
problem in active control technology. The objective of the wind tunnel experiment 
however, is to demonstrate the implementation of the proposed adaptive control 
algorithm, and investigate the real-time behavior of the adaptation. The optimization of 
the flap actuators is not an objective of this thesis. 



98                                           Chapter 5   Wind Tunnel Testing of the Adaptive Control System 

 
 
 
 
Figure 5-16 shows the magnitude and phase of the feed-forward wing bending vibration 
controller after 1.5*105 samples of adaptation (i.e. end of the test run.) The illustrated 
frequency response represents the DFT of the (causal) time domain controller ( )zh 5105.1 ⋅

v
. 

 
Thus, although the plant model ( )kfĜ  has been set to zero below about 4.7 Hz and 
above about 15 Hz, the magnitude does not have a step at those frequencies, but rather 
smoothly goes to zero below about 4.7 Hz and above about 15 Hz due to the constraint 
of causality of the feed-forward controller. 
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Figure 5-15. Reduction of the vertical wing bending acceleration magnitude. 
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Finally, Figure 5-17 illustrates 1.5*105 adaptation steps n of the frequency domain 
controller (i.e. N-point DFT of the (causal) time domain controller) coefficients number 
36 through number 59 (corresponding to a frequency range of 8.5449 Hz to 14.1602 
Hz) in the complex plane. All coefficients start from zero. At n = 1.5*105 the 
coefficients have already converged to a certain region around the theoretic optimum 

( )Tj
opt eH ω  though. But, since in Eq. (3-16) the quantity inside the brackets { }+...  

represents an estimate of the gradient of the error surface by averaging over the last N 
samples the controller coefficients keep continuously slightly adapting. This 
oscillations of the controller around its theoretic optimum ( )Tj

opt eH ω  affects the 
performance only marginally. A smaller convergence coefficient c would reduce these 
oscillations, which can be seen from the term on the very right in Eq. (3-25), but would 
also increase the convergence time. 
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Figure 5-16. The feed-forward controller after 1.5*105 samples of adaptation. 
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Figure 5-17. Convergence of the frequency domain controller 
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coefficients No. 36 through No. 59 during the wind tunnel experiment. 
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6 An Infinite Impulse Response Controller as a Perspective 
 
It has been argued in the previous chapters that by supplementing state of the art 
feedback wing bending vibration control with an additional adaptive feed-forward 
controller the control performance can be maximized and dynamic loads excited by 
turbulence and maneuvers can be addressed at the same time. For the realization of the 
adaptive feed-forward controller mainly two approaches deem appropriate, use of an 
FIR feed-forward controller, and use of an Infinite Impulse Response (IIR) feed-
forward controller. With the complex variable z, the according discrete transfer 
functions denote: 
 

FIR controller: 

 ( ) ( ) ( ) ( ) ( ) 1
1

2
2

1
10 ... +−

−
−− ++++= N

N znhznhznhnhzH  (6-1) 

 

IIR controller: 
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Thereby, n denotes the time step, N is the filter length of the FIR controller, and I and K 
are the numbers of zeros, and poles of the IIR controller. The terms ( )zA  and ( )zB  are 
the numerator and the denominator of the discrete transfer function of the IIR 
controller, whereas ia , and kb  are the according coefficients with i = 0, 1, 2,…,I, and 
with k = 1, 2,…,K. 
 
As already mentioned the FIR controller has the advantage that it cannot converge to an 
unstable controller since only the zeros are adapted and all poles remain in the origin. 
Moreover, using an FIR controller the adaptation of the feed-forward path increases the 
robustness of the performance against modeling errors. 
 
Note, that robust stability against modeling errors is much more difficult to prove for an 
adaptive IIR controller than for an adaptive FIR controller, and still would have to be 
investigated. 
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However, an IIR controller has the advantage that an infinite impulse response can be 
represented with a finite number of controller coefficients (i.e. I+K+2). Figure 6-1 
shows that a 2nd order IIR controller is sufficient for proper feed-forward wing bending 
compensation on the four-engine example aircraft. Remember that according to the 
numeric simulations a filter length of N = 64 was required for wing bending 
compensation on the example aircraft with a controller sample time of T = 1/25. 
 
In order to test the performance of such an adaptive IIR wing bending vibration control 
system, numeric simulation have been performed in WILDSCHEK ET AL. [119] with the 
state-space model of the symmetric dynamics of the previously described four-engine 
example aircraft for mass case A, Ma = 0.86, compare Table 2-1. An algorithm for 
feed-forward IIR controller adaptation that offers promising convergence behavior is 
the so-called filtered-U algorithm developed by ERIKSSON [37]. 
 
Using the filtered-U algorithm the time domain adaptation law for the IIR coefficients 
is: 
 

 ( ) ( ) ( ) ( )inrnecnana ii −⋅−=+ ˆ1 1  (6-3) 

 

 ( ) ( ) ( ) ( )knunecnbnb kk −⋅−=+ ~1 2  (6-4) 

 
Thereby, ( )inr −ˆ  is the n-ith sample of the reference signal α filtered by the transfer 
function ( ) ( )zBzĜ , and ( )knu −~  is the n-kth sample of the IIR controller’s output u 
filtered by a transfer function ( ) ( )zBzĜ . As an approximation the factor ( )zB1  may be 
removed for simplification of the adaptation algorithm, compare [37], and [115]. In 
both cases the controller converges to almost the same IIR approximation of 

( )Tj
opt eH ω , defined in Eq. (3-11), compare the green and the blue line Figure 6-2. 

 
As already explained, the transfer function ( )zĜ  is an estimate of the control path from 
the sampled-time feed-forward control input )(nuFF  to the sampled-time error sensor 
signal )(ne . This means that ( )zĜ  also includes the inner robust feedback loop. In 
WANG & REN [115] constraints on the accuracy of the estimate ( )zĜ  for stable 
convergence of the IIR adaptation are provided. The choice of the convergence 
coefficients c1 and c2 determine the convergence speed of the adaptive IIR controller 
towards the IIR approximation of ( )Tj

opt eH ω , and thus also the stability of the 
adaptation. 
 
Due to the lack of theoretic stability boundaries for c1 and c2, the convergence 
coefficients were chosen empirically. Moreover, a perfect representation of the four-
engine example aircraft’s SCP has been used for the filtering of the reference signal, 
i.e. ( ) ( )zGzG =ˆ . 
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Figure 6-1 shows the standardized power spectral density of the modal wing bending 
vibration acceleration Nzlaw over frequency for the four-engine example aircraft with 
IIR feed-forward controllers of different orders after 7500 samples of adaptation time 
starting from ( ) ( ) 000 ==== nbna kj . The excitation is modeled as von Kármán 
turbulence with ( ) 12 =Tj

d e ω
αγ . For convenience only IIR controllers with the same 

number of poles and zeros were considered (i.e. I = K.) One can see that a 2nd order IIR 
controller provides more than 90% reduction of ( )Tj

ee eS ω  for the example aircraft, 
which is almost the same as for a 3rd order IIR controller. A 1st order IIR controller 
however reduces ( )Tj

ee eS ω  by only 75%. Therefore, a 2nd order IIR controller was 
chosen for feed-forward wing bending vibration control with: I = K = 2. 
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Figure 6-2 shows the bode plots of the discrete-time transfer functions of 2nd order IIR 
controllers with ( ) ( )zBzĜ  (i.e. blue line) and with ( )zĜ  (i.e. green line) filtering of the 
reference signal after 7500 samples convergence time. One can see that the 
simplification of the calculation of ( )inr −ˆ  and ( )knu −~  does not make any notably 
difference in the transfer function of the converged IIR controller. 
 
For comparison the bode plot of the discrete-time transfer function of a converged FIR 
wing bending vibration controller with N = 64 is plotted in Figure 6-2 too. One can see 
that the phase and magnitude of IIR and FIR controller are almost the same at 
frequencies of high gains in the SCP transfer function, i.e. at frequencies of modal 
peaks. This explains the fact that for the example aircraft the 2nd order IIR controller 
provides the same wing bending vibration alleviation as the FIR controller, see Figure 
6-3. 
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Figure 6-3 illustrates the standardized magnitude of the modal acceleration Nzlaw over 
frequency for the four-engine example aircraft for mass case A, Ma = 0.86. The blue 
line denotes the aircraft without structural control, and the red line is the standardized 
magnitude of Nzlaw with a band pass feedback controller. The violet and the green line 
are for said robust feedback control with converged adaptive feed-forward 
augmentation using either an FIR or an IIR controller. The coherence between the 
reference signal α and the disturbance signal d was 75% in this simulation. The 
performance is almost the same for both, the FIR and the IIR feed-forward controller. 
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7 Conclusions and Outlook 
 
In this thesis an adaptive feed-forward controller is proposed for the compensation of 
atmospheric turbulence excited wing bending vibrations on large transport aircraft (i.e. 
on aircraft with a first symmetric vertical wing bending frequency of about 1 Hz.) 
Investigations on the two-dimensional von Kármán turbulence spectrum show, that 
50% reduction of the first symmetric vertical wing bending vibration magnitude can be 
obtained on a large four-engine example aircraft by pure feed-forward control if an 
alpha probe that responds quite directly to alpha variations up to 4 Hz is used as 
reference sensor. The problem with feed-forward compensation however, is that its 
performance is very sensitive to uncertainties in the plant. 
 
In order to improve the robustness of the feed-forward wing bending vibration 
controller’s performance against modeling errors, an adaptation loop is introduced. The 
performed robust stability analysis provides boundaries for the convergence coefficient 
and for the maximum allowable phase error. The controller update algorithm 
theoretically converges for phase errors in the Secondary Control Path (SCP) model 
below +/- 90° with the convergence time going to infinity for a +/- 90° phase error. The 
stable convergence of the controller adaptation has been exemplarily verified in 
numeric simulations for a phase error of +/- 45°. 
 
As predicted the converged feed-forward controller provides a 50% reduction of the 
first symmetric vertical wing bending vibration magnitude with the coherence function 
modeled to be 75%. On the basis of the robust stability proof it is argued that the 
proposed adaptive feed-forward wing bending vibration controller can be implemented 
on a flying aircraft. Moreover, a formula is derived to demonstrate that the adaptation 
provides improved robustness of the performance against modeling errors compared to 
a non-adaptive feed-forward control system. 
 
The design of a non-adaptive feed-forward control system would require accurate 
models of the Primary Control Path (PCP) and of the SCP. The SCPs (i.e. actuator to 
sensor transfer functions) of a new aircraft type are generally identified in flight tests in 
order to improve the quality of the SCP models for feedback control design. The flight 
test identification of the PCP however is not straightforward since flights through 
significant turbulence of several minutes duration would be required for the different 
Mach and mass cases, as well as for different flight levels. Without accurate knowledge 
of the PCP it is difficult to validate how optimal a non-adaptive feed-forward vibration 
control system is (i.e. to evaluate its performance.) Moreover, it has to be kept in mind, 
that the costs increase with increasing accuracy constraints on the plant model. 
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The proposed adaptive feed-forward wing bending vibration controller converges to the 
optimum with an approximate model of the SCP and without any knowledge of the 
PCP, and thus offers a fast and low cost method for feed-forward vibration control law 
optimization. 
 
In addition an experimental wind tunnel setup for the investigation of the real-time 
behavior of the proposed adaptive wing bending vibration control system has been 
designed. In this context an elastic model of the four-engine transport aircraft has been 
built to serve as control plant. In order to provide a locally correlated disturbance a gust 
generator has been mounted upstream said elastic aircraft model. By using the gust 
generator driving signal as reference signal for feed-forward control, a coherence 
between the reference signal and the disturbance signal of 70% to 80% was obtained, 
which is comparable to the coherence estimate provided by the two-dimensional von 
Kármán turbulence model. Symmetrically driven piezo-electric trailing edge flaps were 
used as actuators. The SCP of the aircraft model was properly identified at 30 m/s 
airspeed with a chirp signal. 
 
The adaptive control algorithm was implemented on a digital signal processor and then 
tested in the real-time wind tunnel environment at an airspeed of about 30 m/s. As 
predicted by previous stability analysis and numeric simulations the adaptive controller 
converged stable towards its optimum. So the theoretic boundaries for the convergence 
coefficient also proved to be valid in the wind tunnel experiment. With around 75% 
coherence between the reference signal and the disturbance signal, the converged 
controller reduced the average magnitude of the first symmetric vertical wing bending 
vibration by about 45% in the wind tunnel experiment. This is almost in accordance 
with the theoretical attainable vibration reduction. 
 
Along with the results of this thesis however some further questions arose: 
 

• One question is if the coherence between the disturbance signal and the 
reference signal can be increased by using other sensors than the alpha probe for 
the reference measurement. Research on improved reference sensors is being 
done e.g. at DLR [54], and at EADS [100]. 

• Another open question is whether the duration of flight phases with rough steady 
state turbulence excitation is generally long enough for proper controller 
adaptation (i.e. if for controller adaptation, real atmospheric turbulence 
excitation can be regarded as steady state.) It has been shown that the converged 
feed-forward controller can also compensate transient atmospheric excitation, 
compare Chapter 4.6. However, it has not been investigated yet in how far the 
superposition of the steady state turbulence with such transient excitation affects 
the adaptation of the controller. These questions can be answered best by 
excessive flight testing. 

• The performance estimates provided in this thesis are based on the assumption 
that the quadratic coherence function between the alpha probe signal and the 
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excitation of the first symmetric vertical wing bending mode is about 75%. Said 
performance estimate should be validated in flight tests. 

• Following such flight tests it should also be investigated if the convergence 
speed of the controller adaptation can be increased, and (if necessary) if the 
adaptation performance can be made robust in the presence of transient 
atmospheric excitation by developing an improved update algorithm. Note, that 
for example an LMS algorithm would provide a faster convergence speed than 
the frequency domain steepest descent algorithm used in this thesis. The LMS 
algorithm however, would also require more computational power. 

• For simplification of the stability analysis of the proposed adaptive feed-forward 
controller, parasitic feedback from the actuators to the reference sensor has been 
neglected. For wing bending vibration compensation on the example aircraft it 
has been shown in numeric simulations that at least parasitic feedback due to 
structural coupling indeed is very small on the four-engine example aircraft. 
However, for a more general approach parasitic feedback should be considering 
in the stability proof in ongoing research. 

• Moreover, the long-term influence of non-linearities in the plant has not been 
investigated yet. This should be done either in long-term numeric simulations or 
in flight tests. The introduction of a so-called leakage-term to the update 
algorithm might increase its robustness also in regards to non-linearities in the 
plant, compare [32], [40], and [44]. 

• In the previous chapter a recursive adaptive filter was introduced as feed-
forward controller in order to reduce the required number of controller 
coefficients that have to be adapted. The derivation of proper conditions for 
robust stability of such an adaptive feed-forward control system would be an 
ambitious research project. 

• In this thesis a SISO system has been sufficient for the compensation of 
symmetric wing bending vibrations on a transport aircraft of conventional 
configuration. If more than one error signal shall be considered in the cost 
function, and/or if more actuators have to be used (e.g. on unconventional 
aircraft configurations such as flying wing transport aircraft, and/or for 
simultaneous compensation of atmospheric turbulence excited rigid body 
motions and structural vibrations respectively), a MIMO system is required. 
Thus, it is proposed to investigate robust stability of an adaptive MIMO feed-
forward controller too in the future. 

 
Despite this open points the proposed adaptive wing bending vibration controller is 
valued to be a promising approach for the realization of feed-forward control of 
atmospheric turbulence excited structural vibrations with high performance robustness 
against modeling errors. The best vibration alleviation was obtained by a combination 
between robust feedback control and adaptive feed-forward compensation (i.e. hybrid 
control.) Such hybrid control offers a great potential for further reduction of dynamic 
loads (and thus a reduction of structural weight), as well as for the increase of 
passenger comfort and handling qualities on large airliners. 
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Appendix 
 
 
 
 

Appendix A – Series Expansion of the Term ∆a  
 
In the style of another paper [75] the term ( )kin fa −∆  from Eq. (3-30) can be derived for 
∆=1 and for time step n-i to: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )kkinkinkinexcess

kinkrrkoptkin

kinkinkinexcess

kinkrrkoptkin

kinkrrkinkrrkinkrrkin

kinkrrkinkin

fgfafbf

fHfSfEfRc

fafbf

fHfSfEfRc

fHfSfHfScfHfSfH

fHfSfHfa

in

in

in

in

−

−

−

−

+⋅−=

∆⋅−

⋅−=

∆⋅−

∆∆⋅⋅−∆∆=

∆∆=

−−−−−

−−−

−−−−−

−−−

−−−−−−−−

−−−−

1
*

11
*

1

1
*

*
11

*
1

1
*

1
*

2
*

ˆ1
*

1

1
*

1

ˆ

ˆ

~

ε

ε

(A-1) 
 
with the definition ( ) ( ) ( ) ( ) ( )kkkrrkrrkin fGfGfScfScfb
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(A-2) 

 
Note, that here ( )kin fa −1  denotes the auxiliary function ( )kin fa −∆  with ∆=1, and must 
not be mixed up with the coefficients of numerator of the IIR filter in Chapter 6. 
 
Implementing the same approach with an arbitrary delay of ∆ samples and assuming 
that generally ( ) 1<<− kin fb  for all kf  in the controlled frequency range gives for time 
step n-1: 
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Appendix B – Stability Bounds for the Convergence Coefficient c 
 
Rewriting Eq. (3-30) with ( )kn fb  as defined in Appendix A gives: 
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and introducing Eq. (A-3) into Eq. (B-1) gives: 
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Due to the fact that opte  is statistically independent from r, and from r̂ , the expectation 
value of Eq. (A-4) is zero. Moreover, the last term in Eq. (B-2) is zero. Introducing Eq. 
(A-1) into Eq. (B-2) thus gives: 
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Now all higher than 2nd order terms of ( )kin fb −  are neglected since ( ) 1<<− kin fb . 
Moreover, the last term in Eq (B-3) is zero, because ( )kopt fe  is statistically independent 
from r , and from r̂ ,and the expectation value of Eq. (A-2) is zero. 
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A necessary condition for stable adaptation of the structural controller is the existence 
of a finite steady-state of the ensemble average of the excess square control error 

( )kexcess f
∞

ε , for which the following applies: 
 

 ( ) ( ) ( ) ( ) ( )kexcesskexcesskexcesskexcesskexcess fffff
mnnnn ∞−−∆−−−

≈≈≈≈≈ εεεεε
121

...  (B-5) 

 
A sufficient condition for Eq. (B-5) is that Eq. (B-5) also holds without expectation 
values: 
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Thus, one can write: 
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Setting the multiplier of ( )kexcess f

∞
ε  in Eq. (B-7) to zero gives the necessary boundaries 

for the convergence coefficient c. 
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Appendix C – Derivation of the Optimum Convergence Coefficient copt 
 
For a rough estimate of the convergence coefficient c that provides the fastest 
adaptation of the structural controller in the frequency range of the first symmetric 
vertical wing bending mode, Eq. (B-4) is rewritten: 
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When the controller is still far from its optimum, the first three terms in Eq. (C-1) are 
assumed to be much bigger than ( ) ( )krrkee fSfSc ˆˆ

2
min

⋅ . Thus, the term ( ) ( )krrkee fSfSc ˆˆ
2

min
⋅  is 

neglected. For derivation of the optimum convergence coefficient ( )kopt fc  (i.e. 
convergence coefficient that provides fastest adaptation) Eq. (C-1) is differentiated with 
respect to c, and it is assumed, that for the first adaptation step n=1 it applies that: 
 

 ( ) ( ) ( )kexcesskexcesskexcess fff
mnnn 121

...
−−∆−−−

=== εεε  (C-2) 

 

Thus, one gets: 
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(C-3) 

 
For setting the right side of Eq. (C-3) to zero, a sufficient solution would be: 
 

 
( ){ }

( ) ( ) ( ) 2~~2

~Re
max

2

ˆ
*

ˆˆ

ˆ c

fSfSfS

fS
c

krrkrrkrr

krr
opt

nn

n =
+∆⋅⋅⋅

≈  (C-4) 

 
Thus, the convergence coefficient with shortest possible convergence time optc  is about 
half the maximum convergence coefficient maxc . 
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Appendix D – Assumption of a Quasi-Steady State Feed-Forward Controller 
 
In Chapter 3 it has been assumed, that the adaptive feed-forward controller may be 
regarded as quasi-steady state, in order to be able to rearrange the controller )(zH  and 
the plant )(zG . This procedure (which is commonly used in the literature [30]) is 
necessary for the computation of the complex gradient of ( )Tj

ee eS ω  required for the 
derivation of the update algorithm for controller adaptation, and for the computation of 
the global optimum of the FIR controller respectively. In order to be able to illustrate 
the error that is made by this rearrangement, the share of feed-forward control in the 
error signal for rearranged )(zH  and )(zG , namely the signal )(~ ny  has been 
monitored throughout a time-domain simulation, see Figure D-1. 

The feed-forward controller thereby is adapted with a convergence coefficient chosen 
according to Eq. (C-4). The coefficients of the adaptive FIR controller are copied to a 
second dummy controller. The input to this dummy controller is the sampled filtered 
reference signal )(nr  generated by an auxiliary sampled plant, whereas the output of 
the dummy controller is the signal )(~ ny . The simulation was run with the four-engine 
example aircraft for mass case A, Ma=0.86 for 1.25*104 samples starting from zero 
initialization, i.e. 0)0(...)0()0( 110 ======= − nhnhnh N . 

Figure D-1. Rearranged controller )(zH  and plant )(zG . 
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Generating the quotient of the cross spectral density ( ) ( )TjTj eYeY ωω ~*  and the power 
spectral density ( ) ( )TjTj eYeY ωω*  from the monitored signals )(ny , and )(~ ny , finally 
provides an estimate of the error which is made by rearranging the controller )(zH  
and the plant )(zG . Figure D-2 illustrates the magnitude and the phase of 

( ) ( ) ( ) ( )TjTjTjTj eYeYeYeY ωωωω ** ~  over frequency, which would represent an estimate of 
the transfer function from )(ny  to )(~ ny  if )(ny , and )(~ ny  were steady state. For 

)()(~ nyny =  the quotient of the cross spectral density ( ) ( )TjTj eYeY ωω ~*  and the power 
spectral density ( ) ( )TjTj eYeY ωω*  would be equal to one, i.e. no error. One can see, 
that in the controlled frequency range (i.e. zero till 4 Hz) the deviations from one in fact 
are marginally, i.e. < 1% in magnitude, and < 1° in phase. With increasing frequency 
the error increases, which however should not affect the controller adaptation and 
performance. 
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Figure D-2. Quotient of the cross spectral density ( ) ( )TjTj eYeY ωω ~*  and the power 

spectral density ( ) ( )TjTj eYeY ωω*  for controller adaptation to mass case A, Ma=0.86. 

 ( ) ( ) ( ) ( )TjTjTjTj eYeYeYeY ωωωω ** ~  over 1.25*104 samples of 

feed-forward wing bending vibration controller adaptation to 

mass case A, Ma=0.86 starting from zero initialization. 



Appendix E – Justification of Neglecting Parasitic Feedback 119 

Appendix E – Justification of Neglecting Parasitic Feedback 
 
The derivation of the adaptive structural control algorithm did not take parasitic 
feedback from the feed-forward control input uFF to the alpha probe measurement into 
account. In order to check the share of parasitic feedback in the alpha probe signal due 
to feed-forward control input induced aircraft movements and vibrations, uFF is fed 
through a second auxiliary aircraft model during the numeric simulations. 
 
The output of this second aircraft model represents the parasitic feedback share in the 
alpha probe signal, and is compared with the alpha probe signal 0ααα −= airsim , see 
Figure E-1. As already mentioned, any feed-forward control input induced local 
aerodynamic effects on airα  have been neglected in this thesis. 
 

 
 
The blue line in Figure E-2 represents the standardized magnitude of the Fourier 
transform of the alpha probe signal ( )Tj

sim eA ω  over frequency, whereas the red line 
represents the standardized magnitude of the Fourier transform of the parasitic 
feedback share in the alpha probe signal ( )Tj

ground eA
CL

ω . For the example aircraft model 
parasitic feedback makes less than 1% of the alpha probe signal’s magnitude in the 
frequency range of controlled structural modes (i.e. > ~ 0.7 Hz). Parasitic feedback due 
to feed-forward control input induced local aerodynamic effects on airα  has not been 
investigated, but is expected to be even smaller. Thus, neglecting parasitic feedback in 
the stability analysis seems to be justified, which is also approved by results of numeric 
simulations. 

Figure E-1. Modeling of the parasitic feedback measurement. 
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It was tested numerically, that if the parasitic feedback’s magnitude is twice as high, the 
performance of the controller convergence is already decreased with the convergence 
coefficient chosen as in Eq. (C-4). By choosing a smaller convergence coefficient a 
stable controller adaptation has been obtained for even higher magnitudes of parasitic 
feedback. However, the stability analysis introduced in this thesis then would not be 
valid any more. Note, that in the frequency range of rigid body modes parasitic 
feedback is much higher (i.e. > 5%.), but did not affect the performance of the adaptive 
wing bending vibration controller. 
 
 

Appendix F – Performance of the Converged Controller for Different Cases 
 
In the following the mean standardized magnitudes of the DFTs of the following 
example aircraft state-space model outputs are plotted over frequency: 
 

• Modal acceleration sensor Nzlaw (i.e. error signal e.) 
• Pitch rate q at the CG CGq . 
• Vertical wing bending moment deviation at the left wing root 

WRxM . 
• Vertical acceleration at the cockpit frontNz . 
• Vertical acceleration at the CG CGNz . 
• Vertical acceleration at the rear fuselage rearNz . 

 
 

Figure E-2. Parasitic feedback in the alpha probe signal. 
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The Figures F-1 through F-12 represent the simulation results with a mean plant model 
for the following cases, compare also Table 2-1. 
 
 

Table F-1. Assignment of the Figures F-1 through F-12. 
 

Mach 
number 

Mass case 
A 

Mass case 
B 

Mass case 
C 

Mass case D 

0.7 F-9 F-10 F-11 F-12 
0.82 F-5 F-6 F-7 F-8 
0.86 F-1 F-2 F-3 F-4 

 
 
 
Thereby, the blue line represents the uncontrolled aircraft, whereas the red line 
represents the example aircraft with a robust band pass feedback wing bending 
vibration controller optimized for high Mach numbers [63]. An approximate 50% 
reduction of the first symmetric vertical wing bending vibration magnitude is achieved 
with this active wing bending damping system for all mass cases at Ma = 0.86. At 
lower Mach numbers the performance of the robust feedback controller decreases. 
 
The orange line represents the example aircraft with the proposed adaptive feed-
forward wing bending vibration controller after 1*104 samples of convergence time. As 
postulated by Eq. (2-13) an approximate 50% reduction of the first symmetric vertical 
wing bending vibration magnitude is obtained for all mass and Mach cases. Since in the 
simulation ( ) 75.02 =Tj

d e ω
αγ  is constant over frequency (which is actually not true for the 

real atmosphere, compare Chapter 2-3), the compensation of higher modes (i.e. above 
2.5 Hz) is overestimated. Note, that according to the two-dimensional von Kármán 
turbulence model, the quadratic coherence function ( )Tj

d e ω
αγ 2  actually decreases with 

increasing frequency in the real atmosphere, and so does the performance of the feed-
forward compensation of turbulence excited vibrations. 
 
The cyan line illustrates the average modal wing bending acceleration magnitude with a 
combination between robust band pass feedback and converged adaptive feed-forward 
wing bending vibration control. This hybrid controller reduces the magnitude of the 
atmospheric turbulence excited first symmetric vertical wing bending vibration by more 
than 70% for all mass cases at Ma = 0.86. 
 
Due to the reduced performance of the robust feedback controller at lower Mach 
numbers the performance of the hybrid controller naturally is also decreased. Since the 
control objective was to reduce the quadratic cost function of only the error signal e, the 
other state-space model outputs are slightly excited in some cases, particularly in the 
frequency range of rigid body motions. In order to avoid this effect, the according 
quantities would have to be considered in the control optimization criteria. 
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Figure F-1. Performance comparison of different controllers with a mean plant 

model, mass case A, Ma=0.86, ( ) 75.02 =Tj
d e ω

αγ . 
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Figure F-2. Performance comparison of different controllers with a mean plant 

model, mass case B, Ma=0.86, ( ) 75.02 =Tj
d e ω

αγ . 



124   Appendix 

 

Uncontrolled aircraft
Robust feedback control

Adaptive feed−forward control
Combined feedback/feed−forward  

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Frequency, Hz

N
z la

w

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Frequency, Hz

N
z fr

on
t

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Frequency, Hz

q C
G

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Frequency, Hz

N
z C

G

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Frequency, Hz

M
x W

R

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Frequency, Hz

N
z re

ar

 
Figure F-3. Performance comparison of different controllers with a mean plant 

model, mass case C, Ma=0.86, ( ) 75.02 =Tj
d e ω

αγ . 
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Figure F-4. Performance comparison of different controllers with a mean plant 

model, mass case D, Ma=0.86, ( ) 75.02 =Tj
d e ω

αγ . 
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Figure F-5. Performance comparison of different controllers with a mean plant 

model, mass case A, Ma=0.82, ( ) 75.02 =Tj
d e ω

αγ . 
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Figure F-6. Performance comparison of different controllers with a mean plant 

model, mass case B, Ma=0.82, ( ) 75.02 =Tj
d e ω

αγ . 
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Figure F-7. Performance comparison of different controllers with a mean plant 

model, mass case C, Ma=0.82, ( ) 75.02 =Tj
d e ω

αγ . 
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Figure F-8. Performance comparison of different controllers with a mean plant 

model, mass case D, Ma=0.82, ( ) 75.02 =Tj
d e ω

αγ . 
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Figure F-9. Performance comparison of different controllers with a mean plant 

model, mass case A, Ma=0.7, ( ) 75.02 =Tj
d e ω

αγ . 
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Figure F-10. Performance comparison of different controllers with a mean plant 

model, mass case B, Ma=0.7, ( ) 75.02 =Tj
d e ω

αγ . 
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Figure F-11. Performance comparison of different controllers with a mean plant 

model, mass case C, Ma=0.7, ( ) 75.02 =Tj
d e ω

αγ . 
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Figure F-12. Performance comparison of different controllers with a mean plant 

model, mass case D, Ma=0.7, ( ) 75.02 =Tj
d e ω

αγ . 
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Appendix G – Definition of Transforms Used in this Thesis 
 
The Laplace transform of a function )(tx  (in this thesis t is the time in seconds) is given 
by the one-sided integral transformation: 
 

 { } ∫
∞

−==
0

)()( dttxetxX(s) stL  (G-1) 

 
With angular frequency ω, the Fourier transform of a function )(tx  is obtained by 
setting the Laplace variable ωjs = , and integration also over negative time: 
 

 { } ∫
∞

∞−

−== dttxetx)X(j tj )()( ωω F  (G-2) 

 
Then the Inverse Fourier Transform (IFT) is given by: 
 

 { } ωω
π

ω ω de)X(jX(jIFTtx tj∫
∞

∞−

==
2
1))(  (G-3) 

 
The z transform of a sequence )(nx , e.g. of a sampled-time signal is defined as: 
 

 ∑
∞

−∞=

−=
n

nznxX(z) )(  (G-4) 

 
The Fourier transform of a sampled-time signal )(nx  is obtained by setting the z-
transform variable Tjez ω= , compare [27], with T denoting the sample time in seconds: 
 

 { } ∑
∞

−∞=

−==
n

nTjTj enxnx)X(e ωω )()(F  (G-5) 

 
Thereby, ωT denotes the (non-dimensional) normalized angular frequency, and n is the 
discrete time step. Thus, the time nTt = . 
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In this thesis also the Inverse Fourier Transform (IFT) for sampled signals is required, 
which is given by: 
 

 { } Tde)X(eX(jIFTnx nTjTj ω
π

ω ω
π

ω∫==
2

02
1))(  (G-6) 

 
The Discrete Fourier Transform (DFT) over N samples of a sampled-time signal )(nx  
with n=0,1,2,…,N-1 is defined by: 
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 (G-7) 

 
with discrete frequencies kf  (in Hertz) defined for the discrete frequency variable 
k=1,2,…,N by the following equation: 
 

 ( )
N
kFsfk

1−=  (G-8) 

 
Thereby, TFs 1=  denotes the sampling frequency in Hertz of the sampled-time signal 

)(nx . The Inverse Discrete Fourier Transform (IDFT) is given by: 
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The Fast Fourier Transform and its inverse are efficient implementations of the DFT 
and the IDFT which can be applied for mN 2= , when m is an arbitrary integer value. 
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Appendix H – Measured Coherence for the ATTAS Aircraft 
 
In Chapter 2.3 the two-dimensional von Kármán turbulence spectrum was used to 
estimate the performance that can be expected of feed-forward compensation of 
turbulence-excited wing bending vibrations. The theoretically obtainable performance 
depends on the quadratic coherence function between the reference signal α, and the 
disturbance signal d, denoted ( )Tj

d e ω
αγ 2 . In order to validate the approach used in 

Chapter 2.3, flight test data from the DLR Advanced Technologies Testing Aircraft 
System (ATTAS, see [48], [69]), was evaluated. For this coherence analysis, data from 
a flight in rough atmosphere was used. 
 
The first structural Eigen mode of the ATTAS aircraft is a symmetric pylon bending 
mode at about 3.5 Hz, compare Figure H-1. The first symmetric vertical wing bending 
mode has an Eigen frequency of about 5 Hz. 

 
The first structural Eigen mode can be observed at high signal to noise ratio by a lateral 
acceleration sensor mounted on top of the left engine (unfortunately no proper modal 
acceleration sensor signal as described in Eq. (2-3) was available for the observation of 
first symmetric vertical wing bending). This lateral acceleration sensor does not 
measure any disturbing longitudinal rigid body motions, which is very advantageous 
for the coherence analysis since the rigid body motions then do not have to be 
compensated in the acceleration signal. 

 

 

Figure H-1. Eigen modes of the ATTAS research aircraft. 

Position of the lateral engine 
acceleration sensor  



Appendix H – Measured Coherence for the ATTAS Aircraft 137 

The aerodynamic center of the ATTAS aircraft has an Y-coordinate of +/-4m to +/-5m, 
and the Y-coordinate of the nose boom mounted alpha probe is zero, i.e. the relevant 
span-wise separation between reference measurement and wing excitation is between 

4=ab m, and 5=ab m. As already illustrated in Chapter 2.3 for the four-engine 
example aircraft, an estimate of the quadratic coherence function between reference 
measurement and excitation of the first structural Eigen modes can be read from 
plotting Eq (2-14) for a reasonable cruise speed, and for various span-wise separation 
distances ab , see Figure H-2 for such a plot for the ATTAS aircraft. 

According to Figure H-2 the quadratic coherence function between nose boom mounted 
alpha probe and lateral engine acceleration for the ATTAS makes almost 40% at 3.5 
Hz, i.e. at the frequency of the first structural Eigen mode of the ATTAS. 
 
In order to confirm the coherence estimate obtained by evaluating Eq (2-14) for the Y-
distance between the alpha probe and the aerodynamic center of the wing, data of a 
ATTAS test flight in rough atmosphere has been evaluated, see Figure H-3. 
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Figure H-2. Von Kármán turbulence model computed quadratic coherence 
function between two span-wise separated points “a” and “b” for the ATTAS. 
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The flight test measured quadratic coherence function between nose boom mounted 
alpha probe signal and lateral engine acceleration signal indeed is at least 30% at 3.5 
Hz. Thus, according to Eq. (2-17) the modal acceleration of the first structural Eigen 
mode of the ATTAS theoretically can be reduced by 15-20% by feed-forward 
compensation. 
 
This is far less than the estimated reduction of modal wing bending accelerations for 
the large four-engine example aircraft. As indicated by the title of this thesis, the 
proposed adaptive feed-forward controller is a proper means for the compensation of 
turbulence excited vibrations only on large aircraft, where the first structural Eigen 
modes (such as the first symmetric vertical wing bending mode) are at rather low 
frequencies (~1 Hz). 
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Figure H-3. Quadratic coherence function between nose boom mounted alpha 
probe and lateral engine acceleration for the ATTAS. 
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