
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fachgebiet Methoden der Signalverarbeitung

Principles and Algorithms for

Transmission in Multiple-Input

Multiple-Output Broadband

Multiuser Systems

Pedro Tejera Palomares

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. R. Kötter, Ph.D.

Prüfer der Dissertation:

1. Unv.-Prof. Dr. W. Utschick

2. Prof. Dr. H. Bölcskei,
Eidgenössische Technische Hochschule Zürich/Schweiz

Die Dissertation wurde am 27.05.2008 bei der Technischen Universität
München eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik
am 24.07.2008 angenommen.





Acknowledgements

I would like to thank everybody I had the opportunity to meet, work with or simply spend
some time with during my time at the Technische Universität München (TUM), since, in
the end, in one way or the other, they all left an imprint in this work. Of course, the same
can be said of all my relatives, friends and acquaintances in the private sphere. To them I
am most grateful.

3





Contents

1 Introduction 15
1.1 Scope and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 The MIMO OFDM system model . . . . . . . . . . . . . . . . . . . . . . . 19

2 Information Theoretic Fundamentals 23
2.1 The general broadcast channel . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 The degraded broadcast channel . . . . . . . . . . . . . . . . . . . 24
2.1.3 The non-degraded broadcast channel . . . . . . . . . . . . . . . . . 26

2.1.3.1 Marton’s achievability region . . . . . . . . . . . . . . . . 26
2.1.3.2 Coding with known interference and Marton’s region . . . 27
2.1.3.3 Marton’s region and degraded channels . . . . . . . . . . . 29
2.1.3.4 Sato bound . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 The Gaussian broadcast channel . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1 The single-input Gaussian broadcast channel . . . . . . . . . . . . . 31
2.2.2 The multiple-input Gaussian broadcast channel . . . . . . . . . . . 34

2.2.2.1 Writing on Dirty Paper . . . . . . . . . . . . . . . . . . . 35
2.2.2.2 Dirty paper coding region . . . . . . . . . . . . . . . . . . 36
2.2.2.3 The dual multiple access channel . . . . . . . . . . . . . . 43
2.2.2.4 The capacity region . . . . . . . . . . . . . . . . . . . . . 51

3 Optimization criteria and optimum approaches 53
3.1 Sum-rate maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Memoryless channels . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.1.1 Sum-power iterative waterfilling . . . . . . . . . . . . . . 56
3.1.1.2 Dual decomposition . . . . . . . . . . . . . . . . . . . . . 58
3.1.1.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.2 Time-dispersive channels . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.2.1 Sum-power iterative waterfilling . . . . . . . . . . . . . . 64
3.1.2.2 Dual decomposition . . . . . . . . . . . . . . . . . . . . . 65

3.2 Weighted sum rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.1 Memoryless channels . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.1.1 Rank-one gradient ascent . . . . . . . . . . . . . . . . . . 74
3.2.1.2 Projected gradient ascent . . . . . . . . . . . . . . . . . . 75

3.2.2 Time-dispersive channels . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.2.1 Factorization-based decomposition approach . . . . . . . . 77

3.3 Rate balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5



6 Contents

3.3.1 Ellipsoid method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.2 Projected subgradient method . . . . . . . . . . . . . . . . . . . . . 82
3.3.3 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Non-iterative approaches for the broadcast channel 89
4.1 Broadcast channel decomposition schemes . . . . . . . . . . . . . . . . . . 89

4.1.1 Linear decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.1.2 Successive-encoding-based decomposition . . . . . . . . . . . . . . 93
4.1.3 Successive subchannel allocation method . . . . . . . . . . . . . . . 94

4.1.3.1 Successive subchannel allocation method for linear ap-
proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.4 Sum-rate maximization . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.4.1 Selection rule . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.4.2 Power allocation policy . . . . . . . . . . . . . . . . . . . 100
4.1.4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . 100

4.1.5 Weighted sum-rate maximization . . . . . . . . . . . . . . . . . . . 104
4.1.5.1 Selection rule . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.1.5.2 Power allocation policy . . . . . . . . . . . . . . . . . . . . 105
4.1.5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.6 Rate balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.1.6.1 Selection rule . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.1.6.2 Power allocation policy . . . . . . . . . . . . . . . . . . . 114
4.1.6.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 116

4.2 SINR-based successive subchannel allocation method . . . . . . . . . . . . 119
4.2.1 Sum-rate maximization . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2.2 Weighted sum-rate maximization . . . . . . . . . . . . . . . . . . . 122

5 Feedback of channel state information 127
5.1 Delay-limited and rate-limited feedback paradigms . . . . . . . . . . . . . . 127
5.2 Single-input single-output time-dispersive fading feedback channel . . . . . 128

5.2.1 Feedback link model . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2.2 Theoretical upper bounds . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.2.1 Optimum performance theoretically achievable . . . . . . 130
5.2.2.2 Optimum performance theoretically achievable with lim-

ited diversity . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.2.3 Asymptotical analysis . . . . . . . . . . . . . . . . . . . . 134

5.2.3 Analog transmission . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.3.1 Flat Fading Feedback Channel (M = 1) . . . . . . . . . . 136
5.2.3.2 Flat Fading Forward Channel (L = 1) . . . . . . . . . . . 137
5.2.3.3 Moderately time-dispersive channels LM ≤ N . . . . . . 138
5.2.3.4 Asymptotical analysis . . . . . . . . . . . . . . . . . . . . 139

5.2.4 Delay-constrained digital transmission . . . . . . . . . . . . . . . . 140
5.2.4.1 Arquitecture and optimum decoder . . . . . . . . . . . . . 142
5.2.4.2 Lower bound on asymptotic decay rate . . . . . . . . . . . 143
5.2.4.3 Encoder design paradigms . . . . . . . . . . . . . . . . . . 147



Contents 7

5.2.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3 Extension to feedback channels with multiple antennas . . . . . . . . . . . 154

5.3.1 Theoretical upper bounds . . . . . . . . . . . . . . . . . . . . . . . 155
5.3.2 Analog transmission . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.4 Forward link performance under delay limited feedback . . . . . . . . . . . 159
5.4.1 Information theoretic measures . . . . . . . . . . . . . . . . . . . . 159
5.4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A Appendix 165
A.1 Duality transformations and the matrix inversion lemma . . . . . . . . . . 165

A.1.1 Duality transformations . . . . . . . . . . . . . . . . . . . . . . . . 165
A.1.2 Matrix inversion lemma . . . . . . . . . . . . . . . . . . . . . . . . 165

A.2 Asymptotic equipartition property and typical sequences . . . . . . . . . . 166
A.3 Langrangian duality and subgradients . . . . . . . . . . . . . . . . . . . . . 169

A.3.1 Lagrangian duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.3.2 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.3.3 Subgradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.4 Duality of streamwise multiuser strategies . . . . . . . . . . . . . . . . . . 172
A.4.1 Optimality of streamwise strategies . . . . . . . . . . . . . . . . . . 172
A.4.2 Streamwise duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 174





List of Figures

1.1 Cyclic prefix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Broadcast channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Broadcast coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Coding with known interference. . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Successive coding in broadcast channels. . . . . . . . . . . . . . . . . . . . 29
2.5 Gaussian broadcast channel with single transmit antenna. . . . . . . . . . 33
2.6 Capacity region for a degraded Gaussian broadcast channel with P = 10

dB, σ2
1 = 1/2 and σ2

2 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 Successive coding for the Gaussian MIMO broadcast channel. . . . . . . . 37
2.8 Marton regions for two different statistics of the transmit signals obtained by

application of dirty paper coding with different orderings and equal beam-
forming matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9 Capacity region of a two-user multiple access channel with fixed input dis-
tributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.10 MAC capacity regions and associated Marton regions. . . . . . . . . . . . 49

3.1 Dual values g(ℓ) and corresponding primal values γ(ℓ) during the first 30
iterations of the ellipsoid algorithm for a MIMO OFDM broadcast channel
with N = 16, K = 3, t = 4 and rk = 2, ∀k, SNR = 20 dB. The vector
of relative rates is given by q = [1, 3, 6]T and the optimum weights w =
[0.0214, 0.0400, 0.1431]T, i.e., no time-sharing is required to achieve the rate-
balancing solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 Dual values g(ℓ) and corresponding primal values γ(ℓ) during the first 30
iterations of the ellipsoid algorithm for a MIMO OFDM broadcast channel
with N = 16, K = 3, t = 4, rk = 2, ∀k, SNR = 20 dB. The vector
of relative rates is given by q = [1, 3, 3]T and the optimum weights w =
[0.0775, 0.1537, 0.1537]T, i.e., time-sharing between users 2 and 3 is required
to achieve the rate balancing solution. . . . . . . . . . . . . . . . . . . . . 87

3.3 Convergence of the ellipsoid method applied to the dual of the rate-balancing
problem. Averaged curves over 100 channel realizations. N = 16, t = 4,
rk = 2, SNR = 10 dB, q = [1, . . . , 1]T. . . . . . . . . . . . . . . . . . . . . . 87

4.1 Average sum rate for a Gaussian broadcast channel with spatially uncorre-
lated Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 2. . 101

4.2 Average sum rate for a Gaussian broadcast channel with spatially correlated
Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 2. . . . . 102

4.3 Average sum rate for a Gaussian broadcast channel with spatially uncorre-
lated Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 10. 103

9



10 List of Figures

4.4 Average sum rate for a Gaussian broadcast channel with spatially correlated
Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 10. . . . . 104

4.5 Average rate tuples for a Gaussian broadcast channel with spatially uncor-
related Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 2. 107

4.6 Average rate tuples for a Gaussian broadcast channel with spatially corre-
lated Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 2. . 108

4.7 Average rate tuple for a Gaussian broadcast channel with spatially uncorre-
lated Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 10,
SNR = 15 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.8 Average rate tuple for a Gaussian broadcast channel with spatially correlated
Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 10,
SNR = 15 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.9 Average optimum and suboptimum rate balancing points for an uncorrelated
channel with K = 2, t = 4, rk = 2 and N = 16. . . . . . . . . . . . . . . . 116

4.10 Average optimum and suboptimum rate balancing points for a correlated
channel with K = 2, t = 4, rk = 2 and N = 16. . . . . . . . . . . . . . . . 117

4.11 Average optimum and suboptimum rates per user with equal rate require-
ments, i.e., qk = 1, ∀k. N = 16, t = 4 and rk = 2. . . . . . . . . . . . . . . 118

4.12 Comparison of SINR-based and SESAM sum-rate maximizing allocation for
spatially uncorrelated (solid lines) and spatially correlated (dashed lines)
channels. K = 2, t = 4, rk = 2 and N = 16. . . . . . . . . . . . . . . . . . . 122

4.13 Comparison of SINR-based and SESAM sum-rate maximizing allocation for
spatially uncorrelated (solid lines) and spatially correlated (dashed lines)
channels. K = 10, t = 4, rk = 2 and N = 16. . . . . . . . . . . . . . . . . . 123

4.14 Comparison of SINR-based and SESAM weighted sum-rate maximizing al-
location for a spatially uncorrelated broadcast channel with K = 2, t = 4,
rk = 2 and N = 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.15 Comparison of SINR-based and SESAM weighted sum-rate maximizing al-
location for a spatially correlated broadcast channel with K = 2, t = 4,
rk = 2 and N = 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.16 Comparison of SINR-based and SESAM weighted sum-rate maximizing al-
location for a spatially uncorrelated broadcast channel with K = 10, t = 4,
rk = 2 and N = 16. SNR = 15 dB. . . . . . . . . . . . . . . . . . . . . . . 125

4.17 Comparison of SINR-based and SESAM weighted sum-rate maximizing al-
location for a spatially correlated broadcast channel with K = 10, t = 4,
rk = 2 and N = 16. SNR = 15 dB. . . . . . . . . . . . . . . . . . . . . . . 126

5.1 Feedback link model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2 Encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3 Topological and non topological mappings for L = 1, S = 16 and N = 2. . 148
5.4 Performance of delay-constrained digital transmission. L = 1, N = 4, M =

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.5 Performance of delay constrained digital transmission over an AWGN feed-

back channel. L = 1, N = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.6 Performance over a fading feedback link with L = 2, N = 16, M = 2. . . . 153



List of Figures 11

5.7 Performance over a fading feedback link with L = 2, N = 16, M = 4. . . . 154
5.8 Performance over a fading feedback link with L = 2, N = 16, M = 2, t = 2. 158
5.9 Performance over a fading feedback link with L = 2, N = 16, M = 2, t = 4. 159
5.10 Achievable sum throughput in a broadcast forward link with N = 16 sub-

carriers, K = 2 users, t = 2 transmit antennas and single-antenna receivers.
Transmitter fixes the transmission rate as if the CSI were perfect. . . . . . 163

5.11 Achievable sum throughput in a broadcast forward link with N = 16 sub-
carriers, K = 2 users, t = 2 transmit antennas and single-antenna receivers.
Transmitter allows for a rate margin of 0.5 bits per subchannel. . . . . . . 164





List of Tables

1.1 List of frequently used operators and symbols. . . . . . . . . . . . . . . . . 19

4.1 Average number of iterations needed by Algorithm 3.6 to achieve
0.999RSESAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Average numbers of iterations involved in the computation of the optimum
solution in order to reach 99.9% of the weighted sum rate achieved by
SESAM in a spatially uncorrelated broadcast channel with t = 4, rk = 2,
N = 16, K = 2 and SNR = 5/15/25 dB. . . . . . . . . . . . . . . . . . . . 107

4.3 Average numbers of iterations involved in the computation of the optimum
solution in order to reach 99.9% of the weighted sum rate achieved by
SESAM in a spatially correlated broadcast channel with t = 4, rk = 2,
N = 16, K = 2 and SNR = 5/15/25 dB. . . . . . . . . . . . . . . . . . . . 108

4.4 Average numbers involved in the computation and implementation of the
optimum rate balancing with fairness QoS constraint for N = 16, t = 4,
rk = 2 and K = 2/5/10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

13





1 Introduction

1.1 Scope and contributions

Increasing demand for broadband services calls for higher data rates in future wireless
communication systems [109]. Data rates of up to 100 Mb/s for high mobility and wide
area coverage and up to 1 Gb/s for low mobility and local area coverage are expected in
fourth generation systems [138, 3]. In the way to such transmission rates there are two
major barriers to be overcome. The first is the scarcity of spectrum, which limits the
amount of bandwidth available for transmission. The second is the wireless channel that
severely distorts the signal due to multipath propagation. The combination of multiple an-
tennas and multicarrier technology seems key in enabling achievability of the expected rates
under the mentioned constraints [98, 138, 44]. On the one hand, multiple-input multiple-
output (MIMO) channels resulting from the use of multiple antennas at both transmitter
and receiver show higher capacity than single-input single-output (SISO) channels and,
at high signal-to-noise ratios (SNR), this difference linearly grows with the rank of the
MIMO channel matrix. Thus, multiple antennas lead to higher spectral efficiency. On the
other hand, multicarrier techniques, such as orthogonal frequency-division multiplexing
(OFDM), transform the frequency selective broadband channel into a set of nearly flat
narrowband channels. As a result, distortion due to multipath is reduced and equalization
at the receiver is greatly simplified. These technologies have already been embraced in on-
going standardarization activities for future wireless systems. These include fixed wireless
access networks for the last mile, wireless local area networks and cellular mobile networks.
Also in modern digital subscriber line communication systems plays the combination of
MIMO and multicarrier technologies a key role [26, 27]. In these systems, the use of high
frequencies causes significant electromagnetic coupling between neighboring twisted-pairs
within a binder group, which is commonly known as crosstalk and gives rise to an effective
MIMO channel. In addition, high frequencies in transmission also causes the channel to
exhibit severe frequency selectivity. This motivates the use of multicarrier technology in
order to keep equalization simple and adapt to the selective spectral characteristic of the
channel through adequate bit- and power-loading schemes.

The focus of this work is on transmission schemes in point-to-multipoint MIMO-OFDM
communication systems. That is, communication systems are considered in which a trans-
mitter sends information to a number of receivers or users. These systems are in the
information-theoretic literature commonly known as broadcast channels. Information sent
to each user is independent of the information sent to any other user and users can not
cooperate with each other in order to perform detection. The transmitter transmits infor-
mation over multiple inputs and each receiver receives information over multiple outputs.
Inputs and outputs will be generally referred to as antennas although application of the
principles and algorithms presented and discussed in this work are generally also applicable
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16 1 Introduction

to wired communication systems. The underlying transmission scheme is assumed to be
OFDM. All along this work we shall assume that the transmitter has perfect knowledge
of the channel matrices of all users in the system and each receiver perfectly knows its
own channel matrix. Correspondingly, the focus will be on algorithms that exploit this
knowledge available at the transmitter in order to adapt to the channel rather than on
algorithms that leverage diversity in order to bridge uncertainty about the channel state.

Chapter 1 starts reviewing fundamental results on general broadcast channels, i.e.,
broadcast channels defined by generic alphabets and probability transition functions. This
part has a tutorial character and includes classical results from the late seventies and early
eighties such as the Marton achievability region. In the second part of this chapter we
turn our attention to recent results concerning MIMO Gaussian broadcast channels, i.e.,
broadcast channels with multiple antennas and Gaussian probability transition functions.
Relating the recent results for Gaussian channels to the classical results for generic chan-
nels we are able to provide interesting insights into the structure of the capacity region
of Gaussian broadcast channels. Probably the most interesting result is in the form of a
conjecture towards the end of the chapter. There, it is claimed that all points of the ca-
pacity region might be reachable without resorting to time-sharing, i.e., switching between
different transmission strategies. This is in contrast to current literature that claims that
some points in the capacity region can only be reached by switching between a number
of different transmission strategies. This conjecture is shown to be valid for a broadcast
channel with two single-antenna receivers in Chapter 1 and for a part of the time-sharing
points of a broadcast channel with three single-antenna users in Chapter 2. Avoidance of
time-sharing is interesting from a practical point of view as switching between different
transmission strategies requires an increased signaling overhead. In this sense, this result,
should it be true in all its generality, might be of practical interest. However, it is observed
that reaching "time-sharing" points without time-sharing calls for the use of joint encoding,
i.e., the information streams of the different users in the network must be encoded jointly
rather than successively or independently. Thus, the practical relevance of this result is
conditioned on the development of practical joint-encoding approaches.

In Chapter 2 three problems are discussed whose solutions are rate vectors on the bound-
ary of the capacity region. These are the sum-rate maximizing problem, the weighted
sum-rate maximizing problem and the rate-balancing problem. For each problem, existing
algorithms for memoryless MIMO broadcast channels are reviewed. For the sum-rate and
weighted sum-rate maximization problems, it is shown how the block-diagonal structure
characteristic of channel matrices in MIMO-OFDM systems can be exploited in order to
attain efficient extensions of existing algorithms to time-dispersive channels in some cases,
and to develop own algorithmic solutions in others. For the rate-balancing problem, we
look at some interesting and significant subtleties around the implementation of optimum
subgradient-based approaches and point out some of the shortcomings of this solution such
as convergence rate.

The optimum algorithmic solutions discussed in Chapter 2 are all based on an iterative
search of the optimum solution. This feature introduces a kind of non-determinism in terms
of the computational power required in order to find optimum transmission strategies that
is somehow objectionable as far as practical deployment of these algorithms is concerned.
That is especially true for scenarios with fast-varying channels, where the quick computa-
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tion of the transmit strategy is mandatory in order to leverage the channel state informa-
tion available at the transmitter. This offers the motivation for considering non-iterative
suboptimum approaches in Chapter 3. There, the focus is on what we call decomposition
approaches. These are schemes that decompose the broadcast channel into a set of scalar
subchannels that are mutually decoupled in the sense that transmission over any particular
subchannel does not interfere with transmission over any other subchannel. We first intro-
duce a general framework for decomposition approaches and review some of the existing
schemes against this background. Then, a very general algorithm is presented that provides
a solution to the general allocation problem of both linear and successive-encoding-based
decomposition approaches. In the context of successive-encoding-based schemes, this algo-
rithm includes all other state-of-the-art decomposition algorithms as particular cases. In the
context of linear decomposition schemes, the new algorithm represents a holistic approach
to the subchannel allocation problem comprising user selection, assignment of spatial di-
mensions and choice of receive filters. This is in contrast to state-of-the-art algorithms that
address these different aspects of the problem separately, following somehow disconnected
approaches. The algorithm is specialized to solve each of the problems discussed in Chapter
2 and its performance is evaluated by means of simulations. Performance of the successive-
encoding-based decomposition scheme turns out to be almost optimum in all considered
scenarios. The performance loss of the linear decomposition scheme, though noticeable, is
surprisingly smaller than generally assumed. This result raises some questions regarding
the practical relevance of successive encoding approaches, which are notably more difficult
to implement. The last section of Chapter 3 deals with a novel non-iterative algorithmic
approach to the sum-rate and weighted sum-rate maximization problems that contrary to
decomposition approaches results in subchannels with a certain degree of crosstalk. This
approach is also based on successive encoding and its performance is observed to be similar
to that of the novel successive-encoding-based decomposition algorithm.

Chapter 4 has a different focus than the rest of chapters in this work. It namely deals
with the problem of feeding back channel state information (CSI) from the receivers to the
transmitter. Different from most of the literature on the topic, which assumes a noiseless
or error-free feedback link and considers a constraint on the amount of bits fed back, we
adopt a delay-limited paradigm according to which the channel is noisy and the feedback
link can be only used a finite number of times in order to transmit CSI. While the rate-
limited paradigm can be claimed to be realistic for simple systems where only few bits
are needed in order to approach optimality, we find the delay-limited paradigm more
convenient for MIMO-OFDM systems. In these systems, due to the relative large amount
of information that must be fed back in order to approach optimum performance, nearly
error-free transmission is only possible at the cost of significant delay, which might cause
the CSI to become obsolete, depending on the rate of variation of the channel. The rate-
limited paradigm is also problematic if the feedback channel fades. In such case, regardless
delay due to transmission and depending on the amount of diversity in the feedback link,
the probability of occurrence of transmission errors might be non-negligible. Sticking to the
delay-limited paradigm, first, a SISO-OFDM Rayleigh-fading feedback link is considered
and, using mean squared error (MSE) as a figure of merit, some analysis is performed.
In particular, upper bounds on performance of transmission over the feedback link are
derived based on rate-distortion theory. The tightest bound reveals that, for such a model,
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performance is limited either by the degree of diversity available in the feedback link or by
the bandwidth expansion of the system, given by the ratio between the dimensionality of
the feedback channel and the number of channel coefficients to be fed back. Besides, the
optimum linear analog transmission scheme is derived for a case of practical relevance and
optimality of linear analog transmission is shown in the low SNR regime. In the high SNR
regime, by contrast, linear analog approaches are shown to be unable of leveraging either
bandwidth expansion or diversity in terms of distortion decay rate (DDR), which is defined
as the asymptotic slope of the function relating MSE and SNR in dB. Based on random
codes and a suboptimum maximum-likelihood receiver, we also derive a lower bound on the
DDR of digital transmission schemes. This bound reveals that, contrary to linear analog
approaches, digital schemes have the potential to exploit both bandwidth expansion and
diversity in the high SNR regime. Considering multiple antennas at the receiver of the
feedback link we are able to extend some of the results obtained for the SISO-OFDM
feedback link and to gain some interesting insights related to the use of multiple antennas.
For instance, it is shown that, for a fixed number of subcarriers in the feedback link, a given
degree of spectral diversity and under the assumption of uncorrelated antennas, there is
an optimum number of antennas that represents the best trade-off between diversity and
antenna gain on the one hand, which increase as new antennas are added to the system, and
the bandwidth expansion factor, which decreases as new antennas are added to the system
due to the increased number of channel coefficients that must be fed back, on the other.
This result, which is shown by resorting to theoretical upper bounds on performance,
contrasts with the behavior of linear analog transmission whose performance is shown
to improve for increasing antenna numbers. That is, linear analog transmission benefits
from the increase in antenna gain and diversity to a larger extent than it suffers from
the additional burden of channel coefficients to be fed back. The chapter finishes with a
discussion on performance measures that are usually utilized in the forward link in order to
evaluate the quality of feedback approaches. After questioning the use of ergodic measures
in combination with successive-encoding schemes and identifying average throughput as
a more suitable measure, simulation results are presented for a simple broadcast channel
that suggest that, in spite of its fundamental limitations, a simple linear analog feedback
scheme might be good enough to reach a performance close to that achievable when having
perfect CSI at the transmitter.

1.2 Notation

Throughout this work, vectors and matrices are denoted by lower case bold and capital
bold letters, respectively. Random variables are represented by sans-serif characters. Sets
are usually denoted by calligraphic characters. In order to denote a set of indexed elements
such as {Ai|i = 1, . . . , I}, we frequently use the shortcut A1,...,I . For two Hermitian matrices
A and B, A ≥ B indicates that A−B is positive semidefinite. A list of frequently used
symbols and operators is given in Table 1.1.
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δ(x) Dirac’s delta
δ[n] Kronecker’s delta
Id Identity matrix of dimension d× d

CN (µ,R) Circularly-symmetric complex Gaussian distribution
R+ Set of non-negative real numbers

Hn×n Set of Hermitian matrices of dimension n× n
| • | Absolute value of a real or complex number
| • | Determinant of a matrix
| • | Cardinality of a set
‖ • ‖1 Manhattan norm
‖ • ‖2 Euclidean norm
[•]i,j Entry in row i and column j of a matrix

diag[•] Diagonal matrix with main diagonal defined by the argument
Tr{•} Trace operator
E{•} Expectation operator
O(•) Big-O of Landau
o(•) Little-o of Landau

Table 1.1: List of frequently used operators and symbols.

1.3 The MIMO OFDM system model

In this work, the channel over which signals propagate from the transmitter to the receiver
of a communication link is modeled as a tapped delay line. Assuming L delay taps, t
transmit antennas and r receive antennas, this model can be mathematically expressed as

H̃(τ) = H̃1δ(τ − τ1) + H̃2δ(τ − τ2) + · · ·+ H̃Lδ(τ − τL), (1.1)

where H̃ℓ ∈ C
r×t is the channel matrix corresponding to the ℓth tap and τℓ is its associ-

ated propagation delay. This channel is memoryless if L = 1, i.e., the received signal at
a particular time instant is just a transformed and possibly delayed version of a signal
transmitted at a specific time instant. On the contrary, if L > 1, the received signal is, in
general, a superposition of signals transmitted at different time instants, i.e., the channel
has memory. Such a channel is called time-dispersive. In order to transmit information
over this channel, we will consider an orthogonal frequency division multiplexing (OFDM)
transmission scheme. At the transmitter, the OFDM symbol has the form

x(ξ) =

N∑

n=1

xnej2πfnξrect

(
ξ

T

)

. (1.2)

Here, transmission is performed over N subcarriers. The frequency of subcarrier n is fn

and on this subcarrier a vector xn ∈ C
t is transmitted. The pulse shape, which applies to

all transmit antennas, is given by

rect

(
ξ

T

)

=







1, ξ ∈ [0, T ]

0, ξ 6∈ [0, T ]
,
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where T is the symbol interval. The subcarrier frequencies are chosen such that |fi− fj | =
z/T , with z ∈ {0, 1, . . . , N−1}. This choice of frequencies makes the subcarriers orthogonal
to each other. Using this property, the power of an OFDM symbol can be computed as

1

T

∫ T

0

‖x(ξ)‖22dt =
N∑

n=1

‖xn‖22.

In order to avoid intersymbol interference, prior to transmission, a so-called cyclic prefix
is appended at the beginning of the symbol. It consists of a replica of a signal block taken
from the end of the symbol (cf. Fig. 1.1). After appending the cyclic prefix, Eq. 1.2 becomes

CP

ξ

Figure 1.1: Cyclic prefix.

xCP(ξ) =

N∑

n=1

xnej2πfnξrect

(
ξ + TCP

T + TCP

)

, (1.3)

where TCP is the duration of the cyclic prefix. The convolution of Eq. 1.1 and Eq. 1.3 yields
the expression for the received signal prior to the removal of the cyclic prefix,

ỹCP(ξ) =

L∑

ℓ=1

H̃ℓ

N∑

n=1

xnej2πfn(ξ−τℓ)rect

(
ξ − τℓ + TCP

T + TCP

)

+ ñCP(ξ).

Here, ñCP(ξ) ∈ C
r is a realization of a multivariate Gaussian stationary stochastic process

representing additive noise with zero mean defined in the interval ξ ∈ [−TCP + τ1,−TCP +
τL + T ]. As already mentioned, the purpose of the cyclic prefix is to avoid intersymbol
interference (ISI) that arises in a multipath channel due to the different delays of the single
paths. In order to completely eliminate ISI, its duration must exceed the difference between
the shortest and the longest delay in the channel, i.e., TCP ≥ τL − τ1. If this condition
is fulfilled, interference due to the previous symbol remains confined within the interval
[−TCP + τ1, τ1]. That is, it only affects the portion of the symbol corresponding to the
cyclic prefix. This also holds for the interference caused by the symbol under consideration
on the subsequent symbol. In this case, the interference is confined within the interval
[τ1 + T, τL + T ] which is comprised by the interval [τ1 + T, τ1 + T + TCP] corresponding to
the cyclic prefix of the subsequent symbol. In order to eliminate intersymbol interference,
the cyclic prefix is removed upon reception. The following expression holds for the received
symbol after removal of the own cyclic prefix and the cyclic prefix of the subsequent symbol,

ỹ(ξ) =

L∑

ℓ=1

H̃ℓ

N∑

n=1

xnej2πfn(ξ−τℓ)rect

(
ξ − τ1
T

)

+ ñ(ξ),
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where the additive noise is now defined in the interval [τ1, τ1+T ]. If this symbol is uniformly
sampled at a rate N/T starting at ξ = τ1 we obtain

ỹm = ỹ(τ1 + (m− 1)T/N) =

=

L∑

ℓ=1

H̃ℓ

N∑

n=1

xne
j2πfn(τ1+(m−1)T/N−τℓ) + ñ(τ1 + (m− 1)T/N),

where m = 1, . . . , N . In order to compute the signal received on a particular subcarrier
the discrete Fourier transform is applied to these samples as follows,

yk =
1

N

N∑

m=1

ỹme−j2πfk(m−1)T/N =

=
L∑

ℓ=1

H̃ℓ

N∑

n=1

xnej2πfn(τ1−τℓ)
1

N

N∑

m=1

ej2π(fn−fk)(m−1)T/N +
1

N

N∑

m=1

ñmej2πfk(m−1)T/N ,

where ñm = ñ(τ1 + (m− 1)T/N) and k = 1, . . . , N . Now, noting that

1

N

N∑

m=1

ej2π(fn−fk)(m−1)T/N =







1, n = k

0, n 6= k
(1.4)

and defining nk = 1
N

∑N
m=1 ñme−j2πfk(m−1)T/N , we can write,

yk = Hkxk + nk, k = 1, . . . , N, (1.5)

where Hk =
∑L

ℓ=1 H̃ℓe
j2πfk(τ1−τℓ) is the channel matrix corresponding to the kth subcarrier.

Since the noise vector in the frequency domain is a linear combination of N Gaussian
distributed noise vectors in the time domain, Gaussianity is preserved. That is, nk is a
realization of a multivariate Gaussian distribution, which is also zero-mean. The covariance
matrix of this noise is given by

R = E
{
nkn

H
k

}
=

1

N
R̃,

where R̃ = E
{
ñmñH

m

}
is the covariance matrix of the noise samples in the time domain

and it has been assumed that these samples are mutually uncorrelated, i.e., E
{
ñmñH

n

}
=

0, m 6= n. For most of the discussion in the following chapters, we shall assume R =
I. Using the assumption of uncorrelated samples in the time domain and Eq. 1.4, it is
straightforward to show that noise vectors are also mutually uncorrelated in the frequency
domain. Summarizing, as it can be observed in Eq. 1.5, the OFDM transmission scheme
transforms the original time-dispersive MIMO channel (cf. Eq. 1.1) into a set of N parallel,
memoryless MIMO channels over which information is effectively transmitted.





2 Information Theoretic Fundamentals

2.1 The general broadcast channel

From an information theoretical point of view a system consisting of a transmitter that
tries to simultaneously communicate with a number of receivers is a broadcast channel
(BC). Broadcast channels were first introduced in [38] and have been extensively discussed
in the literature ever since. In this section an overview of key definitions and results on
general broadcast channels is given. As it is common use in the literature about the topic,
only the two-user case is considered. In general, extensions of definitions and results to
broadcast channels with more than two users are trivial. In order to provide the reader
with some insight on the theoretical coding schemes that achieve the best performance
in some cases and the best known performance in others, the outline of the achievability
proofs is given below the corresponding results. These proofs are generally based on the
concept of joint typicality and properties of jointly typical sequences. Some background on
this topic is given in Appendix A.2.

2.1.1 Definitions

A broadcast channel is a triple (X , p(y1, y2|x),Y1×Y2) consisting of an input alphabet X ,
two output alphabets Y1 and Y2, and a probability transition function p(y1, y2|x). Let xn,
yn

1 and yn
2 denote sequences of letters of length n from the alphabets X , Y1 and Y2, respec-

tively. The broadcast channel is said to be memoryless if p(yn
1 , y

n
2 |xn) =

∏n
i=1 p(y1,i, y2,i|xi)

for any sequence xn. Given this definition the problem is to know how much information
can be sent to both users simultaneously. The transmitter might try to send to both users
the same information, like in broadcast television or radio, or might wish to transmit inde-
pendent information items to each user, as it typically occurs in mobile cellular networks.
Simultaneous transmission of independent messages for each user and a common message
for both users might also be considered. In the following, we restrict the discussion to the
class of memoryless broadcast channels and transmission of independent information.

(w1,w2) xn p(yn
1 , y

n
2 |xn)

yn
1

yn
2

ŵ1 = g1(y
n
1 )

ŵ2 = g2(y
n
2 )

Figure 2.1: Broadcast channel.

For any block length n, a code Cn ≡ ((2nR1, 2nR2), n) for the broadcast channel with
independent information for each user consists of a codebook of 2n(R1+R2) codewords xn ∈

23
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X n, an encoding function φ mapping a pair of message indices (w1, w2) ∈ {1, . . . , 2nR1} ×
{1, . . . , 2nR2} onto the codewords,

φ : {1, . . . , 2nR1} × {1, . . . , 2nR2} → X n,

and two decoding functions g1 and g2 mapping output sequences onto transmitted messages
(see Fig. 2.1),

g1 : Yn
1 → {1, . . . , 2nR1},

g2 : Yn
2 → {1, . . . , 2nR2}.

Let (w1,w2) ∈ {1, . . . , 2nR1} × {1, . . . , 2nR2} be a pair of uniformly distributed random
variables. We define the average probability of error as the probability that the decoded
messages are not equal to the transmitted messages, i.e.,

P (n)
e = P (g1(y

n
1 ) 6= w1 or g1(y

n
2 ) 6= w2).

Given this definition of error probability, a rate pair (R1, R2) is said to be achievable
for the broadcast channel if there exists a sequence of codes Cn ≡ ((2nR1, 2nR2), n) such

that P
(n)
e → 0 as n → ∞. The capacity region is then defined as the closure of the set of

achievable rates. This region is for general broadcast channels still unknown. However, the
following theorem can be stated.

Theorem 2.1.1. The capacity region of the broadcast channel is completely characterized
by the conditional marginal distributions p(y1|x) and p(y2|x) [40].

This theorem can be proved by noting that

max{P (n)
e,1 , P

(n)
e,2 } ≤ P (n)

e ≤ P
(n)
e,1 + P

(n)
e,2 ,

where P
(n)
e,1 = P (g1(y

n
1 ) 6= w1) and P

(n)
e,2 = P (g2(y

n
2 ) 6= w2) are the individual error prob-

abilities of both users. That is, achievability of a certain pair of rates implies that both
P

(n)
e,1 → 0 and P

(n)
e,2 → 0 as n→∞. On the other hand, if both individual error probabilities

tend to zero for a given sequence of codes, P
(n)
e → 0 and, therefore, the corresponding rates

are achievable. Thus, we see that the individual error probabilities completely determine
whether a certain pair of rates is achievable or not. Now, the theorem follows from the
fact that for a particular sequence of codes the individual error probabilities exclusively
depend on the respective conditional marginal distributions.

2.1.2 The degraded broadcast channel

A broadcast channel is said to be physically degraded if x , y1 and y2 form a Markov
chain x → y1 → y2, i.e., p(y1, y2|x) = p(y2|y1)p(y1|x). As an example, we could think
of a transmitter sending information over a wired connection to a receiver that, in turn,
relays the received signal to a second receiver which is placed farther away in the wired
communication path. This second receiver will receive a degraded replica of the signal
received by the first. This definition of "degraded" does, in general, not apply to wireless
broadcast channels. Indeed, the transmitted signal will, in general, propagate over different
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physical paths to reach each of the users, and, hence, no received signal will be a degraded
replica of any other. However, still a weaker notion of degraded can be defined that applies
to some wireless channels.

A broadcast channel with probability transition function p(y1, y2|x) is said to be stochas-
tically degraded if there exists a physically degraded channel with marginal probability
transition functions p(y1|x) and p(y2|x). Mathematically, this is tantamount to saying
that a conditional probability density function p′(y2|y1) must exist such that p(y2|x) =
∑

y1
p′(y2|y1)p(y1|x). Note that if a stochastically degraded channel is not physically de-

graded then p(y2|y1, x) 6= p(y2|y1).

The capacity region of this kind of broadcast channels is known. It is defined as the
convex closure of all rate pairs (R1, R2) satisfying

R2 ≤ I(u; y2),

R1 ≤ I(x ; y1|u),

for some input distribution p(u)p(x|u). Here, I(u; y2) is the mutual information of the
random variables u and y2, and I(x ; y1|u) is the mutual information of x and y1 conditioned
on u [40]. A brief summary of results and curious anecdotes related to this region and the
direct and converse proofs can be found in [39]. In the following, the achievability (direct)
proof is sketched, which builds upon the interesting concept of superimposed coding.

For given p(u) and p(x|u) a codebook of block length n can be randomly generated
as follows. First, generate 2nR2 independent sequences un(w2), w2 ∈ {1, 2, . . . , 2nR2},
according to

∏n
i=1 p(ui). Then, for each sequence un(w2) generate 2nR1 independent se-

quences xn(w1, w2), w1 ∈ {1, 2, . . . , 2nR1}, according to
∏n

i=1 p(xi|ui(w2)). Before any
message is transmitted, the 2nR2 generated un(w2) sequences with their respective indexes
are revealed to user 2. These indexed sequences are also revealed to user 1 together with
the 2n(R2+R1) indexed sequences xn(w1, w2).

In order to transmit a message w1 to user 1 and a message w2 to user 2, the encoder
selects the corresponding sequence xn(w1, w2), which is transmitted over the channel. Let
yn

2 be the sequence received by user 2. In order to find out the message w2 that was
transmitted, this user looks for a codeword un in the codebook so that this sequence and
yn

2 are jointly typical. For large n, such a sequence will exist almost surely and it will
be unique, with high probability, provided that R2 ≤ I(u; y2) − ǫ, ǫ > 0. In the limit
n → ∞, this condition allows user 2 to reliably retrieve the transmitted message w2 out
of the received sequence. Let yn

1 be the sequence received by user 1. Due to the degraded
quality of the channel I(u; y1) ≥ I(u; y2 )1 and, therefore, user 1 is in a position to also
identify the transmitted w2 reliably. Once this is done, this user looks among the 2nR1

codewords xn associated with w2 for a sequence that is jointly typical with yn
1 . In this

case, reliable detection of the transmitted message w1 is possible for n → ∞ provided
that R1 ≤ I(x ; y1 |u). Thus, capacity is achieved by coding information in two layers. A
coarse layer represented by the sequences un that can be detected by both users and a
second layer of finer information upon the first layer that is represented by the sequences
xn and can be only perceived by the best user. Note that sequences un are not explicitly

1Data processing inequality [40].
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transmitted. However, any transmitted signal xn reveals the identity of the sequence un

from which it was generated.

2.1.3 The non-degraded broadcast channel

The capacity region of the general non-degraded broadcast channel is still unknown. Excep-
tions are broadcast channels with deterministic components and the Gaussian broadcast
channel. For the latter, the capacity region has been recently found and will be discussed
in Section 2.2. The capacity region of deterministic broadcast channels was found in the
late seventies (see [39] and references therein). A generalization of this result to arbitrary
broadcast channels gave rise to the largest achievability region for general broadcast chan-
nels known so far, which turns out to be the capacity region if the broadcast channel has
a deterministic component [80].

2.1.3.1 Marton’s achievability region

According to Marton’s result in [80], for the case in which only independent information
is transmitted to the users, the rates (R1, R2) are achievable for the broadcast channel
(X , p(y1, y2|x),Y1 × Y2) if

R1 ≤ I(u1; y1), (2.1)

R2 ≤ I(u2; y2), (2.2)

R1 +R2 ≤ I(u1; y1) + I(u2; y2)− I(u1; u2), (2.3)

for some p(x, u1, u2) on X × U1 × U2.
A simple proof of the achievability of this region given in [45] goes as follows (see Fig. 2.2).

In the first step, 2nI(u1;y1) sequences un
1 and 2nI(u2;y2) sequences un

2 are generated according
to distributions p(u1) and p(u2), respectively. Sequences un

1 are uniformly distributed over
2nR1 bins and sequences un

2 are uniformly distributed over 2nR2 bins. Each pair of message
indices (w1, w2) identifies a bin in the grid of 2nR1×2nR2 bins. The correspondence between
message index w1 and the 2nR1 bins containing sequences un

1 is known to receiver 1 and
the correspondence between message index w2 and the 2nR2 bins containing sequences un

2

is known to receiver 2.
In the second step, given a pair of message indices (w1, w2), a pair of jointly typical

sequences (un
1 , u

n
2 ) is taken from the corresponding bin. The probability that two sequences

un
1 and un

2 taken at random are jointly typical is given by 2−nI(u1;u2). Hence, at least 2nI(u1;u2)

pairs of sequences (un
1 , u

n
2) per bin are needed so that the existence of jointly typical pairs

is guaranteed with probability of almost 1 for large n. From this and from the fact that
there are a number of 2n(I(u1;y1)+I(u2;y2)−R1−R2) pairs of sequences per bin, the condition

R1 +R2 ≤ I(u1; y1) + I(u2; y2)− I(u2; u1)

results that must be satisfied in order to assure the integrity of the encoding procedure.
In the third encoding step the sequence xn of transmit signals is drawn according to

the distribution given by p(xn|un
1 , u

n
2 ). Upon receiving the sequence yn

1 , receiver 1 looks for
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a sequence un
1 in the codebook which is jointly typical with the received sequence. This

sequence will be unique with probability of almost 1 provided that

R1 ≤ I(u1; y1).

In a similar way receiver 2 requires

R2 ≤ I(u2; y2)

in order to be able to detect the transmitted sequence un
2 reliably. Finally, the receivers

map the bins containing the detected sequences un
1 and un

2 to the corresponding message
indices ŵ1 and ŵ2.

(w1,w2) xn p(yn
1 , y

n
2 |xn)p(xn|un

1 , u
n
2)

yn
1

un
1

un
2 yn

2

ŵ1

ŵ2

Figure 2.2: Broadcast coding.

In the description above, encoding of both messages happens simultaneously. Alterna-
tively, these rates can also be achieved by encoding the messages to be transmitted not
simultaneously but successively. While the first message is encoded without considering
information intended for the second user, the encoding of the second message regards the
already encoded message for the first user as interference, which, of course, is known at the
transmitter. In fact, this is basically the approach taken in [80] in order to prove achiev-
ability. This was already observed by Gelfand and Pinsker in [54], where they derived the
capacity of a general discrete memoryless channel with non-causally known interference at
the transmitter.

2.1.3.2 Coding with known interference and Marton’s region

Let (S, p(y|s, u),Y) be a discrete memoryless channel for which the probability of a certain
output sequence yn depends not only on the particular input sequence sn but also on an
interfering sequence un that is known to the transmitter but unknown to the receiver. For
some fixed p(u, v, s) defined on U ×V ×S, the maximum rate achievable over this channel
is given by

R = I(v ; y)− I(v ; u),

where v is an auxiliary random variable selected from a finite alphabet V [54]. Capacity
can be achieved by coding as follows (see Fig. 2.3).

First, 2nI(v ;y) sequences vn are drawn according to p(v) and are uniformly distributed
over 2nR bins. Every bin is assigned a message index w ∈ {1, . . . , 2nR}. The mapping of
message indices to bins and the correspondence between sequences vn and bins are known
to the receiver.

Secondly, given an interfering sequence un and a message index to be transmitted, in the
corresponding bin a sequence vn is looked for that is jointly typical with the given sequence
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un. Using similar arguments as in the previous section, it can be shown that the existence
of a jointly typical vn in each bin given a typical interference sequence un requires

R ≤ I(v ; y)− I(v ; u).

In the final step of the encoding procedure the input sequence sn is generated according to
p(sn|vn, un). Upon receiving a sequence yn, the receiver looks in the codebook for a jointly
typical sequence vn which, for large n, will be unique with probability of almost 1 provided
that the number of sequences vn in the codebook is not larger than 2nI(v ;y). Finally, the
message index ŵ is identified that corresponds to the bin containing the detected sequence
vn.

Note that the interference has an impact on the output of the channel and is taken into
account during generation of the codebook and the transmit signal. This is indicated by
the three arrows departing from un in Fig. 2.3.

w sn p(yn|sn, un)p(sn|vn, un) yn

un

vn ŵ

Figure 2.3: Coding with known interference.

As already mentioned, the described coding strategy with known interference can be
applied to broadcast channels if a successive encoding approach is chosen (see Fig. 2.4).

Given a broadcast channel (X , p(y1, y2|x),Y1 × Y2) and a distribution p(x, s, u1, u2) de-
fined on X × S × U1 × U2 we can proceed by coding information for user 1 first without
considering user 2 at all. In this case, a transmission free of errors for user 1 can only be
achieved if the corresponding codebook contains less than 2nI(u1;y1) sequences un

1 , i.e., Eq.
2.1 must be satisfied.

For user 2, coding can be done according to the strategy described above considering
any coded sequence un

1 for user 1 as interference in the transmission channel to user 2.
Correspondingly, an error-free transmission for user 2 can only be achieved if

R2 ≤ I(u2; y2)− I(u2; u1).

This inequality together with the rate limit for user 1 results in the inequality for the
sum of rates given by Eq. 2.3. If the coding steps are inverted, i.e., we first code information
for user 2 and then information for user 1, considering the signal transmitted to user 2 as
known interference, Eq. 2.2 holds for R2 and

R1 ≤ I(u1; y1)− I(u1; u2),

which together with Eq. 2.2 results in Eq. 2.3. Thus, we observe that the limits of Marton’s
region can also be achieved by applying a successive encoding approach.
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Figure 2.4: Successive coding in broadcast channels.

Fig. 2.4 shows the relationship between the different signals involved in the encoding
process. In contrast to the simultaneous encoding approach illustrated in Fig. 2.2, the
successive encoding scheme requires the introduction of a variable s that represents the
signal which is sent by user 2 and that is used together with signal u1, issued by user 1,
for the generation of signal x , which is actually transmitted over the channel.

2.1.3.3 Marton’s region and degraded channels

If applied to a degraded broadcast channel, Marton’s region must lie within the boundaries
of the capacity region discussed in Section 2.1.2. However, the question arises whether the
capacity region is strictly larger than Marton’s region in this case. The answer is yes unless
some properties hold for the signals involved in the encoding process.

Assume that the degraded broadcast channel (X , p(y1, y2|x),Y1 × Y2), x → y1 → y2,
is given and the codebook of signals intended for user 2 is generated from an alphabet
U2 according to a distribution p(u2). The transmitted signals are generated according to
a distribution p(x|u2). We recall that the capacity region for this setting is given by the
following inequalities,

R2 ≤ I(u2; y2),

R1 ≤ I(x ; y1|u2).

Fix p(x, u2) and consider an alphabet U1 of signals intended for the first user and the joint
probability density function p(x, u2, u1). According to Marton’s result, the following rates
are achievable

R2 ≤ I(u2; y2),

R1 ≤ I(u1; y1)− I(u1; u2).
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While the achievable rate for user 2 is bounded by the same limit in both regions, the
limits for user 1 are different. Indeed, the following relations hold,

I(x ; y1|u2) ≥ I(u1; y1|u2) (2.4)

= I(u1; y1, u2)− I(u1; u2)

= I(u1; y1) + I(u1; u2|y1)− I(u1; u2)

≥ I(u1; y1)− I(u1; u2).

The first inequality is obtained by observing that the variables u1, x and y1 form a Markov
chain u1 → x → y1 and applying the data-processing inequality [40]. The last inequality
results from the fact that mutual information is always non-negative. The equalities are
simple applications of the chain rule for mutual information. As we expected the capacity
region is larger or equal to Marton’s region. Still, equality can be achieved in the above
inequalities if it is possible to choose the variable u1 such that the transmitted signal x

is a deterministic function of u2 and u1, i.e., x = f(u1, u2), and I(u1; y1|u2) = I(u1; y1) −
I(u1; u2). The first condition leads to equality in Eq. 2.4. The second condition implies that
the rate achieved over a channel where the interference is only known at the transmitter
must be the same as that achieved when the interference is known at the receiver. We shall
see that both conditions can be fulfilled if the broadcast channel is Gaussian.

2.1.3.4 Sato bound

Marton’s achievability region represents an inner bound to the capacity region of arbitrary
broadcast channels. A well known outer bound to the capacity region of arbitrary broadcast
channels was presented by Sato in [99]. This result states that for a broadcast channel
(X , p(y1, y2|x),Y1 × Y2) the capacity region for a given choice of p(x) is confined within
the following region,

R1 ≤ I(x ; y1),

R2 ≤ I(x ; y2),

R1 +R2 ≤ min
p(y1,y2|x)

{I(x ; y1, y2)} , subject to given p(y1|x) and p(y2|x). (2.5)

The bounds for the individual rates are trivial and were already noted by Cover in [38]. The
bound on the sum rate relies on two simple facts. The first is that I(x ; y1, y2) represents
the maximum throughput achievable over the channel if the two users can cooperate. If
the users can not cooperate the throughput will be necessarily less or equal. Indeed, users
with cooperation capability might always choose not to cooperate should this strategy
increase the sum rate. The second fact is that the capacity region of the broadcast channel
does not depend on the joint transition probability function p(y1, y2|x) but only on the
marginal distributions p(y1|x) and p(y2|x) (see Theorem 2.1.1). As I(x ; y1, y2) does depend
on p(y1, y2|x) the tightness of the cooperative bound can be maximized by minimizing over
the joint transition probability function while keeping the marginals fixed.
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2.2 The Gaussian broadcast channel

Having reviewed basic information theoretic results on general broadcast channels,
we now turn our attention to Gaussian broadcast channels. A broadcast channel
(X , p(y1, y2, . . . , yK|x),Y1×Y2× · · ·×YK) is said to be Gaussian if the probability transi-
tion function has the form of a multivariate Gaussian probability density function, being
the input and the output alphabets real Euclidean spaces. Alternatively, if the physical
medium permits transmission of in-phase and quadrature components, complex Euclidean
spaces can be considered as input and output alphabets and the probability transition
function adopts the form of a multivariate circularly symmetric complex Gaussian proba-
bility density function [119]. In the following, this last class of Gaussian broadcast channels
will be considered.

Assume a t-dimensional complex-valued input alphabet, i.e., X = Ct, and rk-dimensional
complex-valued output alphabets, Yk = Crk . Gaussian broadcast channels admit the fol-
lowing algebraic representation,

y = Hx + n (2.6)

with

y =






y1
...

yK




 , n =






n1
...

nK




 , H =






H1
...

HK




 .

In this model, Hk ∈ Crk×t, which is called the channel matrix of user k, describes the
transformation that the transmitted signal x ∈ Ct experiences while propagating from
the transmitter to receiver k. The resulting signal is corrupted by an additive circularly
symmetric complex Gaussian noise vector nk ∈ Crk giving rise to the received signal
yk ∈ Crk . Usually, the noise is assumed to be zero-mean and a constraint is considered
that limits the average power of the transmitted signal, i.e., E{‖x‖22} ≤ P .

2.2.1 The single-input Gaussian broadcast channel

In this section we examine the single-input, t = 1, Gaussian broadcast channel. A physical
scenario corresponding to this model is the downlink of a cellular communication system
with a single antenna at the transmitter (see Fig. 2.5). For the two user case, i.e., K=2,
the channel is given by a pair of equations,

y1 = h1x+ n1,

y2 = h2x+ n2.

In the following, it is shown that this is a degraded broadcast channel. To this end, first,
consider the broadcast channel obtained by applying matched filters at the receivers,

ỹ1 = x+ ñ1, (2.7)

ỹ2 = x+ ñ2, (2.8)

where ỹk = α−1
k hH

k R−1
k yk, being Rk the covariance matrix of the noise process affecting

user k and αk = hH
k R−1

k hk.
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It can be shown that this processing at the receivers preserves capacity and, therefore,
Eqs. 2.7, 2.8 constitute an alternative model for the original channel. In order to see that
this is true, consider a family of codes Cn ≡ ((2nR1 , 2nR2), n) such that transmission errors
tend to zero as n→∞ for an achievable pair of rates (R1, R2). Without loss of optimality,
the decoders can be assumed to be maximum-likelihood estimators,

gk(y
n
k) = arg max

1≤wk≤2nRk

{p(yn
k |wk)} = ŵk.

Note that error-free transmission implies that the receivers are able to recognize unam-
biguously the message that originated the received sequence and, therefore, as n → ∞,
p(yn

k |wk) → 0 for all except for the transmitted message. Now, we shall show that
p(yn

k |wk) = f(yn
k)p(ỹn

k |wk), i.e., the maximizer of p(yn
k |wk) is also the maximizer of p(ỹn

k |wk)
and, therefore, ỹn

k is a sufficient statistic for detection of the transmitted message [67]. The
likelihood function p(yn

k |wk) can be written in terms of the transmitted sequence xn as
follows,

p(yn
k |wk) =

∫

Cn

p(yn
k |xn, wk)p(x

n|wk)dx
n,

=

∫

Cn

p(yn
k |xn)p(xn|wk)dx

n, (2.9)

where the second equality is due to the fact that wk → x → yk form a Markov chain. In
turn, using the fact that the channel is memoryless and some algebra, we can write

p(yn
k |xn) =

n∏

i=1

p(yk,i|xi),

=
n∏

i=1

1

πrk |Rk|
exp−(yk,i − hkxi)

HR−1
k (yk,i − hkxi),

=

n∏

i=1

1

πrk |Rk|
exp−

(
yH

k,iR
−1
k yk,i − αk|ỹk,i|2

)
exp−αk|ỹk,i − xi|2,

= f(yn
k)

n∏

i=1

αk

π
exp−αk|ỹk,i − xi|2,

= f(yn
k)p(ỹn

k |xn).

Now, plugging this result into Eq. 2.9 we finally obtain

p(yn
k |wk) = f(yn

k)

∫

Cn

p(ỹn
k |xn)p(xn|wk)dx

n,

= f(yn
k)

∫

Cn

p(ỹn
k |xn, wk)p(x

n|wk)dx
n,

= f(yn
k)p(ỹn

k |wk).

Let σ2
1 and σ2

2 be the variances of the zero-mean Gaussian variables ~n1 and ~n2, respec-
tively, and assume that σ2

2 ≥ σ2
1 , without loss of generality. Then, the following physically
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Figure 2.5: Gaussian broadcast channel with single transmit antenna.

degraded broadcast channel can be defined

ȳ1 = x+ ñ1,

ȳ2 = x+ ñ1 + n̄2,

with E{|n̄2|2} = σ2
2 − σ2

1. While in general p(ȳ1, ȳ2|x) 6= p(ỹ1, ỹ2|x), it is easy to see that
p(ȳ1|x) = p(ỹ1|x) and p(ȳ2|x) = p(ỹ2|x). Thus, we note that for every Gaussian broadcast
channel with a single transmit antenna an equivalent physically degraded broadcast channel
can be found, which proves that these channels are themselves degraded.

In [5], Bergmans showed that, under an average power constraint, all achievable rate
pairs can be reached by using a Gaussian distribution for the generation of the codebook.
Using the notation employed in Section 2.1.2, the signals intended for user 2 are generated
according to u ∼ CN (0, (1− α)P ) and

p(x|u) =
1

παP
exp−|x− u|

2

αP

for 0 ≤ α ≤ 1.2 Equivalently, we can denote the signal intended for user 2 by u2 = u and
define a signal u1 that is intended for the first user, statistically independent with respect
to u2 and generated according to u1 ∼ CN (0, αP ). The transmitted signal is given by

2In [5] a broadcast channel with real-valued inputs and outputs is assumed. The results obtained under
this assumption immediately apply to the case of complex-valued inputs and outputs by noting that,
due to the circularly symmetric noise, the channel given by Eqs. 2.7 and 2.8 can be viewed as a
superposition of two parallel real-valued broadcast channels.
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x = u1 +u2. Using this notation, we can see that the pairs of achievable rates are given by

R1 = log

(

1 +
αP

σ2
1

)

, (2.10)

R2 = log

(

1 +
(1− α)P

σ2
2 + αP

)

. (2.11)

The boundary of the capacity region, defined by these equations and parameterized by α,
can be visualized in Fig. 2.6 for a broadcast channel with P = 10, σ2

1 = 1/2 and σ2
2 = 1.

A salient property of degraded Gaussian broadcast channels is that the sum capacity is
always achieved by assigning all power to the best user. This is easily shown by adding
Eqs. 2.10 and 2.11 and rewriting the resulting expression as

R1 +R2 = log
(
σ2

1 + αP
)
− log

(
σ2

2 + αP
)

+ log

(
σ2

2 + P

σ2
1

)

. (2.12)

This expression reaches its maximum at α = 1.
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Figure 2.6: Capacity region for a degraded Gaussian broadcast channel with P = 10 dB,
σ2

1 = 1/2 and σ2
2 = 1.

2.2.2 The multiple-input Gaussian broadcast channel

In contrast to single-input Gaussian broadcast channels, multiple-input Gaussian broadcast
channels are, in general, non-degraded. In order to illustrate this fact consider the two-user
channel given by

y1 = H1x + n1,

y2 = H2x + n2,
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with x ∈ Ct, t > 1, and assume that there exists x0 6= 0 such that x0 ∈ Null{H1} and
x0 6∈ Null{H2}. If this channel were degraded, a conditional probability density function
p′(y2|y1) would exist such that

p(y2|x) =

∫

Cr1

p′(y2|y1)p(y1|x)dy1 (2.13)

for all values of x. For any input αx0, we observe that p(y1|αx0) = p(n1) and, therefore,
for any fixed p′(y2|y1) the right-hand side of Eq. 2.13 is not a function of the scalar α.
However, the left-hand side clearly depends on α. Thus, no p′(y2|y1) can be found that
satisfies Eq. 2.13 for all possible inputs and, therefore, the channel is not degraded.

Even if Null{H1} = Null{H2} the multiple-input channel is generally non-degraded.
This is due to the fact that, in general, a ranking of vector channels can not be established.
As an example, consider two users with H1 = H2 = Id, d > 1, and noise vectors n1

and n2 such that E{n1n
H
1 } = diag[σ2

1 , · · · , σ2
d] and E{n2n

H
2 } = diag[σ2

d, · · · , σ2
1], with

σ2
1 > · · · > σ2

d. By no means can a physically degraded model be found according to which
the signal received by one user is a degraded replica of the signal that the other user
receives. This happens because it is impossible to establish an order between the noise
vectors experienced by the users.

In the next sections, first, a particular instance of the Marton region is discussed for this
kind of channels. This region is based on successive encoding and a particularization of
the coding scheme presented in [54] to Gaussian channels called dirty paper coding (DPC)
[37]. Then, we will describe some of the most important properties of this region such as
the duality with the capacity region of the multiple access channel (MAC). Finally, we will
conclude with a brief review of the work that led to the finding that this region is actually
the capacity region of the Gaussian channel with multiple inputs.

2.2.2.1 Writing on Dirty Paper

The title of this section is the same as the title of the famous paper by Costa [37]. It
emphasizes the analogy between writing on a paper with spots or dirt and coding on a
channel with known interference at the transmitter. The writer, who intends to cipher a
message for the reader, knows where the spots are placed on the paper and uses this knowl-
edge to counteract any adverse effect of these on the communication process. Similarly, the
encoder knows the interference and applies such knowledge so as to counteract its negative
effects. Both reader and receiver can perfectly ignore the interference while being able to
decode the message. That means that the receiver does not need to know the interference
in order to recover the transmitted message.

Essentially, in [37], Costa applies the result presented in [54] and discussed in Section
2.2.2.2 to the scalar Gaussian channel and derives the optimum distribution for the input
parameters.3

For the channel
y = s+ u+ z

3Note that, though derived for discrete alphabets, the result presented in [54] and discussed in Section
2.2.2.2 can be readily extended to continuous alphabets by using the methods employed in [52] in order
to prove the channel coding theorem for continuous alphabets.
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with noise z ∼ CN (0, σ2
z), interference u ∼ CN (0, σ2

u) and transmit power constraint
E{|s|2} ≤ P , Costa showed that optimality is achieved by choosing a Gaussian probability
density function p(v, u, s) with zero mean and covariance matrix4

R = E











v

u

s




[

v ∗ u∗ s∗
]






=





P + α2σ2
u ασ2

u P
ασ2

u σ2
u 0

P 0 P



 ,

with

α =
P

P + σ2
z

.

Furthermore, the capacity thus achieved was shown to be the same as that of the Gaussian
channel without the known interference, i.e.,

I(s; y|u) = I(v; y)− I(v; u). (2.14)

Thus, in such a channel interference does not diminish capacity as long as it is known at
the transmitter. Note that this optimum coding scheme results in transmit signals and
interference being mutually uncorrelated.

In [140], this result was extended to vector channels,

y = s + u + z, (2.15)

with noise z ∼ CN (0,Rz), interference u ∼ CN (0,Ru) and transmit power constraint
E{‖s‖22} ≤ P . Optimality is also achieved by choosing the transmit signal s to be statisti-
cally independent of the interference u and v = s + Γu with Γ = Rs (Rs + Rz)

−1, where
Rs = E{ssH}. The resulting rate is the same as that achievable over the channel y = s+z

with transmit covariance matrix Rs.
In recent years there have been further extensions of this result in several directions. In

[148] the authors show that the known interference can also be completely neutralized even
if the interference and noise processes are not stationary or ergodic. In [35] the authors show
that this result also holds for an ergodic known interference with arbitrary distribution
provided that the noise is Gaussian distributed. Finally, in [46] it is shown that the result
also holds for an arbitrarily varying known interference provided that common randomness
is shared by transmitter and receiver.

2.2.2.2 Dirty paper coding region

Given a Gaussian broadcast channel as represented by Eq. 2.6 and considering the Marton
achievability region discussed in cf. Section 2.1.3.1, the question arises about how to choose
the joint probability density function p(x,u1, · · · ,uK) of the auxiliary variables uk, k ∈
{1, . . . , K}, and the transmit signal x in order to maximize the extension of the achievable
region for this kind of channels. A reasonable choice for p(x,u1, · · · ,uK) can be made that
is based on a successive encoding scheme (cf. Section 2.2.2.2) and dirty paper coding in

4In [37] real-valued noise and interference were assumed. However, the result straightforwardly extends
to circularly symmetric complex-valued noise and interference.
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order to suppress interference caused by previously encoded users. This choice of statistics
was first proposed by Caire et al. [23] for the case of single antenna receivers. Yu et al.
[145] first characterized the set of rates that are achievable with this choice of statistics in
a broadcast channel with an arbitrary number of antennas at the receivers. Here, a precise
description is given of all variables involved in the encoding process, how these variables
are related and all choices and assumptions that must be made on all signals in order to
arrive at a joint probability function p(x,u1, · · · ,uK) that is based on dirty paper coding.

For the general successive encoding approach, the relation between the signals involved
in the encoding process is illustrated in Fig. 2.7. As already pointed out in Section 2.2.2.2,
successive encoding requires the introduction of variables sk, k ∈ {1, . . . , K}, representing
the signals actually sent by the users. As can be observed in Fig. 2.7, assuming that the
encoding order is given by the user index, i.e., user 1 is encoded first and user K is the
last encoded user, the joint probability density function of all these signals factorizes as
follows,

p(x, s1, · · · , sK ,u1, · · · ,uK) =

= p(x|s1, · · · , sK)
K∏

k=1

p(sk|uk, s1, · · · , sk−1)p(u1, · · · ,uK). (2.16)
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Figure 2.7: Successive coding for the Gaussian MIMO broadcast channel.

In order to simplify matters all signals can be chosen to be jointly Gaussian. It makes
sense to chose x to be a deterministic function of the signals s1,...,K as otherwise information
would be already lost before transmission. If the chosen function is linear, we can write
p(x|s1, . . . , sK) = δ(x −∑K

k=1 Bksk). Correspondingly, the signal received by user k′ is
given by

yk′ = Hk′Bk′sk′ + Hk′

∑

k<k′

Bksk + Hk′

∑

k>k′

Bksk + nk′.

Signals s1,...,K are chosen to be mutually uncorrelated with covariance matrix E
{
sks

H
k

}
=

Imk
and mk = Rank {Hk}. Choosing these signals to be mutually uncorrelated is perfectly

consistent with the dirty paper coding scheme, which delivers transmit signals that are
uncorrelated with the known interference. Choosing these signals to be white does not
represent any restriction as any wished correlation can be enforced by a convenient choice
of the matrices B1,...,K . Finally, choosing the dimension of these vectors to be equal to
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the rank of the respective channel matrix is without loss of optimality as this constitutes
the maximum number of dimensions over which information can be transmitted. As a
consequence of these assumptions, the transmit power constraint can be written in terms
of the beamforming matrices as

K∑

k=1

Tr
{
BkB

H
k

}
≤ P. (2.17)

Once these choices have been made, all other statistical relations between signals follow
from the successive application of the dirty paper coding scheme. For the first user, the
received signal is given by

y1 = H1B1s1 + H1

∑

k>1

Bksk + nk.

We observe that the second and third terms on the right-hand side correspond to unknown
interference and noise. Correspondingly, if u1 = s1, i.e., p(s1|u1) = δ(s1 − u1), is chosen,
the following rate can be achieved that is optimum given a fixed beamforming matrix B1,

R1 = log2

(

|Ir1 + H1

∑K
k=1 ΣkH

H
1 |

|Ir1 + H1

∑K
k=2 ΣkH

H
1 |

)

.

In the above expression Σk = BkB
H
k represents the transmit covariance matrix for user

k. For notational convenience, the noise vector has been assumed to be white with unit-
variance entries. Note that this assumption is without loss of generality as noise whitening
is, for all practical purposes, an invertible operation that can always be reversed by the
decoder. That is, from a broadcast channel with colored noise an equivalent broadcast
channel with white noise can be obtained by whitening the noise at each receiver and
regarding the products of each of the original channel matrices and the corresponding
noise whitening filters as the channel matrices of the new "whitened" broadcast channel.
Therefore, the white noise assumption shall hold by default for the rest of the discussion
unless otherwise stated.

For the second user, the received signal is given by

y2 = H2B2s2 + H2B1s1 + H2

K∑

k=3

Bksk + nk.

Here, the second term on the right-hand side represents the interference known at the
transmitter. The third and fourth are the terms corresponding to unknown interference
and noise. Now, we can identify these terms with the corresponding terms in Eq. 2.15, i.e.,

s = H2B2s2, u = H2B1s1, z = H2

K∑

k=3

Bksk + nk.
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As pointed out in the previous section, in this case, optimality is achieved if the codebook
is generated according to a random variable

v = s + Γu

= H2B2s2 + H2B2B
H
2 HH

2

(

Ir2 + H2

K∑

k=2

BkB
H
k HH

2

)−1

H2B1s1.

This random variable can be viewed as the actual codebook associated to the random
variable u2 transformed by the product of the corresponding beamforming matrix and the
channel, i.e., v = H2B2u2. In fact, if H2B2 is invertible5 we immediately conclude.

I(s2; y2|s1) = I(v ; y2)− I(v ; s1) = I(u2; y2)− I(u2; s1),

which confirms that by choosing

u2 = s2 + BH
2 HH

2

(

Ir2 + H2

K∑

k=2

BkB
H
k HH

2

)−1

H2B1s1, (2.18)

the rate

R2 = I(s2; y2|s1) = log2

(

|Ir2 + H2

∑K
k=2 ΣkH

H
2 |

|Ir2 + H2

∑K
k=3 ΣkH

H
2 |

)

is achievable for user 2. Proceeding in the same way for the rest of successive encoding
steps, the maximum achievable rate for user k′ can be written as

Rk′ = I(sk′; yk′|s1, · · · , sk′−1) = log2

(

|Irk′
+ Hk′

∑K
k=k′ ΣkH

H
k′|

|Irk′
+ Hk′

∑K
k=k′+1 ΣkH

H
k′|

)

, (2.19)

which can be attained by using a codebook generated according to the random variable

uk′ = sk′ + BH
k′H

H
k′

(

Irk′
+ Hk′

K∑

k=k′

BkB
H
k HH

k′

)−1

Hk′

k′−1∑

k=1

Bksk. (2.20)

At this point we come back to Fig. 2.7 and recall Eq. 2.16. Due to the fact that uk′ is
obtained by adding sk′ and linear transformations of s1,...,k′−1, sk′ is a deterministic function
of uk′ and s1,...,k′−1, i.e., sk′ = f(uk′, s1, · · · , sk′−1) and, therefore, p(sk′|uk′, s1, · · · , sk′−1) =
δ(sk′ − f(uk′, s1, · · · , sk′−1)). In turn, the joint probability density function p(u1, · · · ,uK)
is completely characterized by Eq. 2.20 and the distribution initially assumed for the signals
s1,...,K . Thus, we observe that p(x,u1, · · · ,uK) is the result of assuming a certain encoding
order, Gaussian distribution for all variables, the choice of beamforming matrices, certain

5Due to the fact that the number of columns in B2 is equal to the rank of H2, H2B2 is always invertible
unless the columns of B2 are linearly dependent or some of these columns lie in the nullspace of H2.
In the first case the number of columns could be reduced in order to obtain a full-rank matrix B2

without loss in performance. The second case means that resources are wasted by transmitting signals
over directions that will never reach the receiver. This does not make sense and should be avoided.
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assumptions made on the statistics of the signals s1,...,K and application of the dirty paper
coding scheme. For a particular choice of statistics the achievable region is given by

RMarton =
{

ρ ∈ R+ :
∑

i∈S

Ri ≤
∑

i∈S

(I(ui; yi)− h(ui)) + h(ui∈S), ∀S ⊆ {1, . . . , K}
}

, (2.21)

where ρ = [R1, · · · , RK ]T, h(ui) is the differential entropy of ui and h(ui∈S) represents the
joint entropy of all variables with indexes in S. This is a generalization of the Marton region
for the two-user case discussed in Section 2.1.3.1. Observe that this region has the form of a
convex polytope in a K-dimensional space since it is defined as the intersection of a number
of half-spaces. The rates given by Eq. 2.19 represent only a vertex of this region. The other
vertices are achieved by varying the encoding order while keeping p(x,u1, · · · ,uK) fixed.
Points on the facets can also be achieved by performing simultaneous encoding (cf. Section
2.1.3.1). The following example shall illustrate some of these details.

Assume a two-user Gaussian broadcast channel with channel matrices

H1 =

[
1 1/2 2
−1 2 1/4

]

, H2 =

[
1/2 3 1/3

1 −1 −2

]

. (2.22)

If we choose

B1 =





1 −1
1 2
2 1/2



 , B2 =





−1 1/3
1 −1/3

−1/2 −1





to be the respective beamforming matrices, the auxiliary signals s1 and s2 are chosen to
be uncorrelated and white, as discussed above, and apply dirty paper coding under the
assumption that user 1 is encoded first, the resulting statistics p(x,u1,u2) give rise to the
Marton region whose boundary is depicted by the solid line in Fig. 2.8. There, the vertex
surrounded by the circle is reached if for these statistics user 1 is actually coded first. In
this case, the rates are given by

R1 = I(u1; y1) = log2

( |I2 + H1Σ1H
H
1 + H1Σ2H

H
1 |

|I2 + H1Σ2H
H
1 |

)

,

R2 = I(u2; y2)− I(u1;u2) = I(u2; y2|u1) = log2

(
|I2 + H2Σ2H

H
2 |
)
,

which are those obtained from application of the dirty paper coding scheme. Alternatively,
for these statistics, we could choose to code user 2 first (cf. Section ). In that case we would
obtain the vertex marked by the square. Now, the resulting rates are given by

R1 = I(u1; y1)− I(u1;u2) =

= log2

( |I2 + H1Σ1H
H
1 + H1Σ2H

H
1 |

|I2 + H1Σ2H
H
1 |

)

−

− log2

(

|I2 + H2Σ2H
H
2

(
I2 + H2Σ2H

H
2

)−1
H2Σ1H

H
2

(
I2 + H2Σ2H

H
2

)−1 |
)

,

R2 = I(u2; y2) = log2

(

|I2 + H2Σ2H
H
2 + H2Σ2H

H
2

(
I2 + H2Σ2H

H
2

)−1
H2Σ1H

H
2 |
)

.
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Taking into account that x = B1s1 + B2s2 and Eq. 2.18, we can write x in terms of u1

and u2 as

x = B1u1 + B2u2 −B2B
H
2 HH

2

(
I2 + H2B2B

H
2 HH

2

)−1
H2B1u1.

This expression holds for both encoding orders. If user 1 is encoded first, the signal intended
for this user is x1 = B1u1 = B1s1, and that intended for user 2 is

x2 = B2

(

u2 −BH
2 HH

2

(
I2 + H2B2B

H
2 HH

2

)−1
H2B1u1

)

= B2s2.

By construction, these signals are uncorrelated. If user 2 is encoded first, the signal intended
for user 1 is

x1 =
(

B1 −B2B
H
2 HH

2

(
I2 + H2B2B

H
2 HH

2

)−1
H2B1

)

u1,

and that intended for user 2 is x2 = B2u2. These two signals are correlated.
If, now, the statistics of the transmit signals are determined by assuming that user 2 is

encoded first, the corresponding region is given by the dashed line in Fig. 2.8. Again, once
the statistics are established, we can choose to code in the order assumed for the choice
of the statistics, which leads to the vertex marked by the circle, or modify the encoding
order, which leads to the vertex marked by the square. Points between the vertices can
be theoretically attained in both regions by performing simultaneous encoding with the
respective statistics.

Coming back to the general Gaussian broadcast channel with K users, let us define a
permutation function π : {1, . . . , K} → {1, . . . , K} defining the order that is considered in
order to determine p(x,u1, · · · ,uK), i.e., user π(1) is encoded in the first place, user π(2) in
the second place, and so on. Besides, let RMarton(π,Σ1,...,K) be the Marton region obtained
from the statistics induced by the permutation π and beamforming matrices B1,...,K such
that BkB

H
k = Σk.

6 For a given transmit power limit P the dirty paper coding region can
be now formally defined as

RDPC(P ) = Co
⋃

π,Σ1,...,K

RMarton (π,Σ1,...,K) , (2.23)

where Co represents the convex hull operator and the transmit covariance matrices Σ1,...,K

satisfy the transmit power constraint (cf. Eq. 2.17). Thus, the dirty paper region is given
by the convex hull of the union of Marton regions corresponding to all possible statistics
that can be defined by application of the dirty paper coding scheme under a given power
constraint. Eq. 2.23 represents the conceptual link between the dirty paper region, which
has been extensively discussed in the literature in recent years (e.g., [23, 144, 128]), and
the Marton achievability region introduced in [80]. Even though this connection has been
noted in most of these recent works (cf. [23, 144, 132, 122]), none of these publications
makes it explicit. Actually, in the literature, the DPC region is not defined as the convex
hull of unions of Marton regions associated with statistics obtained from a DPC-based

6The statistics depend on the transmit covariance matrices and not on the particular choice of beam-
forming matrices.
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Figure 2.8: Marton regions for two different statistics of the transmit signals obtained
by application of dirty paper coding with different orderings and equal beamforming
matrices.

successive encoding scheme. Instead, it is defined as the convex hull of all rates that can
be achieved by only considering DPC-based successive encoding as transmission scheme,

RDPC(P ) =

Co
⋃

π,Σ1,...,K

{

ρ ∈ R
K
+ : Rπ(k′) ≤ log2

(

|Irπ(k′)
+ Hπ(k′)

∑

k≥k′ Σπ(k)H
H
π(k′)|

|Irπ(k′)
+ Hπ(k′)

∑

k>k′ Σπ(k)H
H
π(k′)|

)}

. (2.24)

In other words, for a given ordering and choice of beamforming matrices only the vertex
that corresponds to that ordering is considered in the definition of the dirty paper cod-
ing region. All other vertices are ignored. Thus, the dirty paper region as defined in the
literature is included in the dirty paper region as defined by Eq. 2.23. Indeed, Eq. 2.23
considers all vertices of the Marton region associated with each choice of statistics and not
just one. However, due to the fact that the dirty paper region as defined in Eq. 2.24 has
been shown to be the actual capacity region, both definitions turn out to be equivalent.
The only difference between both definitions is subtle but theoretically interesting. While
the definition given by Eq. 2.24 implies the existence of points that can only be achieved
by switching among different transmit strategies (time sharing), the definition given by
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Eq. 2.23 suggests that, at least for some of these time-sharing points, coding schemes exist
that render these points also achievable by just using a unique transmit strategy. This will
be further discussed in the next section.

2.2.2.3 The dual multiple access channel

Recall the model for the broadcast channel given by Eq. 2.6 and assume that every user
experiences a white noise with unit-variance components, i.e., E{nkn

H
k } = Irk

, ∀k. For
this broadcast channel, the dual multiple access channel is defined as

r =
K∑

k=1

HH
k wk + z, (2.25)

where r ∈ Ct is the vector of received signals, wk ∈ Crk denotes the vector of transmitted
signals corresponding to user k and z ∈ Ct is a realization of a random variable z ∼
CN (0, I) representing noise.

The channel just defined is a Gaussian multiple access channel. In general, a multiple ac-
cess channel is a triple (W1 × · · · ×WK , p(r|w1, · · · , wk),R) formed by a cartesian product
of input alphabets Wk, k ∈ {1, . . . , K}, a probability transition function p(r|w1, · · · , wk)
and an output alphabet R. In contrast to general broadcast channels, the capacity region
of general multiple access channels is known [2]. For a fixed distribution of the inputs
p(w1)p(w2) · · · p(wK) the capacity region is given by

RMAC(p(w1)p(w2) · · ·p(wK)) =
{

ρ ∈ R
K
+ :
∑

k∈S

Rk ≤ I(wk∈S ; r |wk∈S̄), ∀S ⊆ {1, . . . , K})
}

, (2.26)

where S̄ = {1, . . . , K} \ S and I(wk∈S ; r |wk∈S̄) is the mutual information between the
input variables with indexes in S and the output variable r conditioned on knowledge of
the input variables with indexes in S̄. This region is a convex polytope in a K-dimensional
space since it is defined as an intersection of half-spaces. Furthermore, it turns out that for
each inequality in the definition there always exists, at least, one point in the region that
achieves equality. Due to this property, this region is a polymatroid [121]. As we shall see in
the next chapter, this polymatroidal structure turns out to be very useful for solving certain
optimization problems defined on the elements of this region.7 All points of the MAC region
can be achieved by performing joint detection at the receiver. Alternatively, one can achieve
just the vertices by performing successive decoding and rely on time sharing in order to
achieve all other points on the facets and ridges of the region [40]. In order to illustrate this
let us look at Fig. 2.9. This figure represents the capacity region of a two-user channel with
fixed inputs. Vertex A can be achieved by first decoding information proceeding from user
1 and then, under knowledge of the signal received from this user, decoding the information
sent by user 2. In turn, vertex B can be achieved by reversing the decoding order. That is,

7This property of the multiple access capacity region is not shared by the Marton region given by Eq.
2.21. For the Marton region there might be inequalities that are loose for all points in the region.



44 2 Information Theoretic Fundamentals

first, user 2 is decoded under the influence of the signal coming from user 1, which acts as
interference. Then, information from user 1 is decoded by using the knowledge of the signal
received from user 2. In order to achieve the points between vertex A and B the receiver
must perform joint detection, i.e., it must search in the codebooks for a pair of transmit
signals (wn

1 , w
n
2 ) that is jointly typical with the received sequence yn. Alternatively, the

receiver can perform successive decoding and switch between both decoding orders (time
sharing) in order to reach any point on this segment.

I(w2; r |w1)

I(w1; r |w2)

I(w2; r)

I(w1; r) R1

R2

A

B

Figure 2.9: Capacity region of a two-user multiple access channel with fixed input distri-
butions.

Hence, joint detection is not strictly necessary for attaining all points of the MAC capac-
ity region. Elaborating on this idea an alternative definition ofRMAC(p(w1)p(w2) · · · p(wK))
can be given that is completely based on successive decoding and time sharing,

RMAC(p(w1)p(w2) · · ·p(wK)) =

Co
⋃

π̄

{
ρ ∈ R

K
+ : Rπ̄(k) ≤ I

(
wπ̄(k); r |wπ̄(1), . . . ,wπ̄(k−1)

)
, k = 1, . . . , K

}
. (2.27)

In this definition, π̄ : {1, . . . , K} → {1, . . . , K} is a permutation function that determines
the order in which users are decoded, i.e., user π̄(1) is decoded first, user π̄(2) second, and
so on. The union operation is over all possible permutations and the convex hull operation
is needed in order to achieve those points for which a time-sharing strategy is required.
Mathematically speaking, Eq. 2.26 defines a convex polytope in terms of supporting hy-
perplanes while Eq. 2.27 defines the same polytope as the convex hull of a given set of
points, namely, the vertices.

For the Gaussian multiple access channel it is easily shown that optimum inputs are
Gaussian distributed [40]. Thus, choosing the inputs in Eq. 2.25 to be zero-mean Gaussian
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distributed and fixing the transmit covariance matrices of these inputs, Eq. 2.27 can be
rewritten as

RMAC
(
Q1,...,K

)
= (2.28)

Co
⋃

π̄

{

ρ ∈ R
K
+ : Rπ̄(k′) ≤ log2

(

|I t +
∑

k≥k′ H
H
π̄(k)Qπ̄(k)H π̄(k)|

|I t +
∑

k>k′ H
H
π̄(k)Qπ̄(k)H π̄(k)|

)

, k = 1, . . . , K

}

,

where Qk = E
{
wkw

H
k

}
is the transmit covariance matrix of user k.

Once some of the basic properties of multiple access channels have been discussed, two
theorems follow that establish the link between a Gaussian broadcast channel and its dual
multiple access channel [128].

Theorem 2.2.1. In the dual multiple access channel of a given broadcast channel, assume
a decoding order π̄ and a set of transmit covariance matrices Q1,...,K and let ρMAC be the
vector of achievable rates with this order and these matrices, i.e.,

RMAC
π̄(k′) = log2

(

|I t +
∑

k≥k′ H
H
π̄(k)Qπ̄(k)H π̄(k)|

|I t +
∑

k>k′ H
H
π̄(k)Qπ̄(k)H π̄(k)|

)

, ∀k′ ∈ {1, . . . , K}.

Then, there exists a set of transmit covariance matrices Σ1,...,K in the original broadcast
channel such that, for the encoding order π(k) = π̄(K − k + 1), ρDPC = ρMAC, where

RDPC
π(k′) = log2

(

|Irπ(k′)
+ Hπ(k′)

∑

k≥k′ Σπ(k)H
H
π(k′)|

|Irπ(k′)
+ Hπ(k′)

∑

k>k′ Σπ(k)H
H
π(k′)|

)

, ∀k′ ∈ {1, . . . , K}.

Furthermore, Tr
{
∑K

k=1 Σk

}

≤ Tr
{
∑K

k=1 Qk

}

.

According to this theorem, for a given constraint on the overall transmitted power, every
rate vector that is achievable in the dual MAC by performing successive detection is also
achievable in the original BC by performing successive encoding based on the dirty paper
coding scheme. This is possible by setting the encoding order in the BC to be the reversed
of the decoding order in the MAC. The next theorem states the converse, namely, if a
certain rate vector can be achieved in the BC by applying DPC, that same vector can also
be achieved in the dual MAC by performing successive detection with reversed ordering.

Theorem 2.2.2. Given a Gaussian broadcast channel, assume an encoding order π and a
set of transmit covariance matrices Σ1,...,K and let ρDPC be the vector of rates that can be
achieved with this order and these matrices using dirty paper coding, i.e.,

RDPC
π(k′) = log2

(

|Irπ(k′)
+ Hπ(k′)

∑

k≥k′ Σπ(k)H
H
π(k′)|

|Irπ(k′)
+ Hπ(k′)

∑

k>k′ Σπ(k)H
H
π(k′)|

)

, ∀k′ ∈ {1, . . . , K}.

Then, there exists a set of transmit covariance matrices Q1,...,K in the dual multiple access
channel such that, for the decoding order π̄(k) = π(K − k + 1), ρMAC = ρDPC, where

RMAC
π̄(k′) = log2

(

|I t +
∑

k≥k′ H
H
π̄(k)Qπ̄(k)H π̄(k)|

|I t +
∑

k>k′ H
H
π̄(k)Qπ̄(k)H π̄(k)|

)

, ∀k′ ∈ {1, . . . , K}.
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Furthermore, Tr
{
∑K

k=1 Qk

}

≤ Tr
{
∑K

k=1 Σk

}

.

In [128] an specific algorithm is given in order to transform transmit covariance matrices
achieving a certain rate vector in the dual MAC into transmit covariance matrices achieving
that vector in the broadcast channel and vice versa. As a consequence of the first theorem
we can write

RMAC(P ) =
⋃

Q1,...,K

RMAC
(
Q1,...,K

)
⊆ RDPC(P ) with Tr

{
K∑

k=1

Qk

}

≤ P. (2.29)

By contrast, even if we use Eq. 2.24 as the definition of the DPC region, Theorem 2.2.2
alone does not imply the inclusion in the inverse direction. This is due to the convex
hull operator in Eq. 2.24, which might incorporate rate vectors that lie outside RMAC(P ).
However, this possibility can be discarded by proving that RMAC(P ) is a convex set. To
this end, assume that ρ and ρ̄ are two rate vectors that belong to RMAC(P ). Making use
of Eq. 2.26, this implies that there are matrices Q1,...,K and Q̄1,...,K such that

∑

k∈S

Rk ≤ log2

(

|It +
∑

k∈S

HH
k QkHk|

)

,
∑

k∈S

R̄k ≤ log2

(

|It +
∑

k∈S

HH
k Q̄kHk|

)

,

∀S ⊆ {1, . . . , K}. Now, consider the rate vector ρ̂ = µρ+(1−µ)ρ̄ with 0 ≤ µ ≤ 1. Due to
concavity of log2 | • | (cf. [40, Theorem 17.9.1]) we can apply Jensen’s inequality to obtain,

∑

k∈S

R̂k ≤ µ log2

(

|It +
∑

k∈S

HH
k QkHk|

)

+ (1− µ) log2

(

|It +
∑

k∈S

HH
k Q̄kHk|

)

≤ log2

(

|I t +
∑

k∈S

HH
k

(
µQk + (1− µ)Q̄k

)
Hk|

)

= log2

(

|I t +
∑

k∈S

HH
k Q̂kHk|

)

.

Since Tr
{
∑K

k=1 Q̂k

}

= µTr
{
∑K

k=1 Qk

}

+ (1 − µ)Tr
{
∑K

k=1 Q̄k

}

≤ P , we conclude that

ρ̂ is also in RMAC(P ), from which the convexity of RMAC(P ) follows. As a consequence
of this property and Theorem 2.2.2 we can write RDPC(P ) ⊆ RMAC(P ) and, therefore,
RDPC(P ) = RMAC(P ), at least for the definition of RDPC(P ) given by Eq. 2.24. Note that
this might not hold if RDPC(P ) is given by Eq. 2.23, as this definition incorporates points
that, are not attained by direct application of the dirty paper coding scheme. Only as a
result of the fact that RDPC(P ) as defined in Eq. 2.24 is the actual capacity region of the
BC, we can state that both definitions are equivalent.

As it has been already mentioned, fixing the transmit covariance matrices in the multiple
access channel a polymatroidal region RMAC

(
Q1,...,K

)
is obtained. In addition, due to

Theorem 2.2.1 the vertices of this polymatroid can also be achieved in the broadcast
channel. More precisely, given the vertex in the MAC region corresponding to a decoding
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order π̄, that vertex can be achieved in the BC by computing the transmit covariance
matrices Σ1,...,K according to the transformations given in [128] and successively encoding
the users according to a DPC scheme with reversed order π̄. While in the MAC all vertices
are achieved with the same statistics, in the BC, every vertex requires a different set
of transmit covariance matrices. Furthermore, if transmission is based on successive DPC
coding and only the statistics associated with the vertices are available, points between the
vertices are only achievable by performing time sharing. Alternatively, given the statistics
of each of the vertices, simultaneous encoding or general successive encoding might be
considered. Before concluding this section, let us take a closer look at the relationship
between RMAC

(
Q1,...,K

)
and the Marton regions RMarton (π,Σ1,...,K) that are obtained

from the statistics of each of the vertices in the broadcast channel. To this end, we shall
first show some numerical examples and we will finish by stating an interesting conjecture
that we will be able to prove for a simple case. Consider the broadcast channel with channel
matrices given by

H1 =

[
0.7812 −1.1878
0.5690 −2.2023

]

, H2 =

[
−0.8217 0.9863
−0.2656 −0.5186

]

.

In Fig. 2.10 regions are plotted for two different choices of statistics in the dual MAC. The
regions labeled as "Example 1" correspond to the following choice of covariance matrices,

QEx1
1 =

[
0.2276 0.1165
0.1165 2.2472

]

, QEx1
2 =

[
4.8710 3.3979
3.3979 2.6542

]

.

Performing successive detection with ordering π̄(1) = 1, π̄(2) = 2 the point A1 is achieved.
This point is achieved in the BC by successively encoding users in the order π(1) = 2,
π(2) = 1 according to the DPC scheme with covariance matrices

ΣA1
1 =

[
0.5510 0.8851
0.8851 1.5270

]

, ΣA1
2 =

[
7.2116 −1.4692
−1.4692 0.7104

]

.

Keeping these statistics fixed all points of the Marton region delimited by the solid line
passing through A1 can be achieved by using simultaneous coding or successive encoding in
reversed order, i.e., no time sharing is needed. If the order π̄(1) = 2, π̄(2) = 1 is considered
in the MAC, point B1 is attained. The same point is achieved in the BC with DPC, reversed
ordering and transmit matrices

ΣB1
1 =

[
0.6796 −0.4894
−0.4894 2.5536

]

, ΣB1
2 =

[
6.4447 1.4068
1.4068 0.3220

]

.

The Marton region corresponding to these statistics is delimited by the dotted line passing
through point B1. Note that if we limit ourselves to use a successive DPC scheme in the BC,
only points A1 and B1 are directly achievable on the sum-rate segment. For all other points
time sharing is required. However, considering all points in the Marton region associated to
the statistics of any vertex, at least, some fraction of this segment can be achieved directly
or, as this example shows, it might even occur that the DPC region is actually enlarged.
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In "Example 1" the sum of the traces of the transmit covariance matrices amount to
10. In "Example 2" the covariance matrices are considered that maximize the sum rate for
this power, i.e.,

{
QEx2

1 ,QEx2
2

}
= max

{Q1,Q2}
log2

(
|I2 + HH

1 Q1H1 + HH
2 Q2H2|

)
,

subject to Tr {Q1 + Q2} ≤ 10. Solving this convex optimization problem we obtain

QEx2
1 =

[
1.1655 2.4087
2.4087 4.9781

]

, QEx2
2 =

[
2.2671 1.8981
1.8981 1.5894

]

.

Now, computation of the transmit covariance matrices for the vertices A2 and B2 in the
broadcast channel yields

ΣA2
1 =

[
0.2834 1.1744
1.1744 4.8661

]

, ΣA2
2 =

[
3.7903 −2.0040
−2.0040 1.0602

]

,

and

ΣB2
1 =

[
0.6498 −1.9055
−1.9055 5.5883

]

, ΣB2
2 =

[
3.4239 1.0758
1.0758 0.3380

]

.

Surprisingly, as we see in Fig. 2.10, the Marton regions corresponding to these two different
statistics are equal and exactly as large as the MAC region. This suggests the following
conjecture.

Conjecture 2.2.3. Given a Gaussian broadcast channel, let Q1,...,K be the set of covariance
matrices that maximize the sum rate in the dual MAC for a given transmit power constraint
and let Σ1,...,K be a set of transmit covariance matrices achieving any of the vertices of
the polymatroid RMAC

(
Q1,...,K

)
in the BC by encoding users successively with order π

according to the DPC scheme. Then,

RMarton (π,Σ1,...,K) = RMAC
(
Q1,...,K

)
.

For reasons that will become apparent in the next chapter, some of the time-sharing
regions on the boundary of RDPC (P ) as defined in Eq. 2.24 coincide with sum-rate max-
imizing statistics for all users or groups of users. Thus, the most significant consequence
of Conjecture 2.2.3, should it be true, is that all points on these regions can be achieved
directly. A similar result will be presented for the rest of time-sharing points of RDPC (P )
in the next chapter, whose validity will be shown for a tractable setting. As a consequence,
we conjecture that no time-sharing is needed in order to achieve any point in RDPC (P )
or, in other words, the operator Co can be removed from the definition of RDPC (P ) if Eq.
2.23 is used instead of Eq. 2.24.

In the following we demonstrate the validity of Conjecture 2.2.3 for broadcast channels
with two users and single receive antennas. In this proof we make use of the duality
transformations between MAC and BC and of the matrix inversion lemma. Both results
are summarized in Appendix A.1. Let us consider the BC given by

y1 = hH
1 x + n1,

y2 = hH
2 x + n2,



2.2 The Gaussian broadcast channel 49

0 1 2 3 4 5 6
0

1

2

3

4

5

6

R
1
 (bits/channel use)

R
2 (

bi
ts

/c
ha

nn
el

 u
se

)

MAC−DPC region
Marton region (user 2 first)
Marton region (user 1 first)

A1

A2B1

B2

Example 1

Example 2

Figure 2.10: MAC capacity regions and associated Marton regions.

with unit-variance noises processes n1 and n2. The dual MAC for this channel reads

r = h1w1 + h2w2 + z.

For a given power constraint P let q1 and q2 be maximizers of

log2

(
|It + q1h1h

H
1 + q2h2h

H
2 |
)
.

Solving the Karush-Kuhn-Tucker (KKT) conditions [13] for the sum-rate optimization
problem we obtain,

hH
1

(
It + q1h1h

H
1 + q2h2h

H
2

)−1
h1 = hH

2

(
I t + q1h1h

H
1 + q2h2h

H
2

)−1
h2, (2.30)

as a necessary condition for the optimality of q1 and q2 provided that both are greater than
zero.8 Now, applying the matrix inversion lemma [58] to both sides of the equation we get

hH
1

(
I t + q2h2h

H
2

)−1
h1

1 + q1h
H
1

(
I t + q2h2h

H
2

)−1
h1

=
hH

2

(
I t + q1h1h

H
1

)−1
h2

1 + q2h
H
2

(
I t + q1h1h

H
1

)−1
h2

.

This expression can be further simplified by applying the matrix inversion lemma again
on (It + q2h2h

H
2 )−1 and (I t + q1h1h

H
1 )−1. Doing so, after some algebra we finally obtain

‖h1‖22
(
1 + q2‖h2‖22

)
− q2|hH

1 h2|2 = ‖h2‖22
(
1 + q1‖h1‖22

)
− q1|hH

1 h2|2. (2.31)

8If one of the powers is zero the polymatroid collapses to a segment on one of the axes. This case is
trivial.
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Assume that in the MAC successive detection is performed and that user 1 is detected
first. The corresponding rate vector would be point A in Fig. 2.9. In particular, the rate
achieved by user 1 at this point is given by

RA
1 = log2

(
|It + q1h1h

H
1 + q2h2h

H
2 |
)
− log2

(
|I t + q2h2h

H
2 |
)
. (2.32)

Considering the duality transformations given in [128] and summarized in Appendix A.1,
the transmit covariance matrices that would achieve this point in the BC provided that
DPC is used for transmission can be written as

Σ1 = q1

(
It + q2h2h

H
2

)−1
h1h

H
1

(
I t + q2h2h

H
2

)−1

hH
1

(
It + q2h2h

H
2

)−1
h1

, Σ2 = q2
h2h

H
2

‖h2‖22
(1 + hH

2 Σ1h2). (2.33)

Recalling the discussion in Section 2.2.2.2 and considering that at point A user 1 is the
last encoded user we can write

RA
1 = I(u1; y1)− I(u1; u2) = I(s1; y1) = log2(1 + hH

1 Σ1h1) (2.34)

where u2 = s2 and
u1 = s1 + bH

1 h1(1 + hH
1 Σ1h1)

−1hH
1 b2s2.

There, b1 and b2 are two transmit beamformers such that Σ1 = b1b
H
1 and Σ2 = b2b

H
2 ,

and s1 and s2 are two uncorrelated unit-variance random variables. Coming back to the
dual MAC, point B is achieved by detecting user 2 first, the rate achieved by user 1 at this
point is given by

RB
1 = log2

(
|I t + q1h1h

H
1 |
)
. (2.35)

Now, consider the point in the Marton region RMarton (π,Σ1,Σ2), with statistics deter-
mined by the ordering π(1) = 2, π(2) = 1, that is achieved by encoding user 1 in the first
place, i.e., choosing the inverse ordering for the actual encoding of users. The rate for user
1 at this point is given by R̄B

1 = I(u1; y1). We want to show that R̄B
1 = RB

1 or, equivalently,
RB

1 −RA
1 = I(u1; u2). R

B
1 −RA

1 is easily computed from Eq. 2.32 and Eq. 2.35 and

I(u1; u2) = log2

(

1 +
hH

1 Σ1h1h
H
1 Σ2h1

(
1 + hH

1 Σ1h1

)2

)

.

Thus, we must show that

log2

(
|It + q1h1h

H
1 ||It + q2h2h

H
2 ||It +q1h1h

H
1 + q2h2h

H
2 |−1

)
=

= log2

(

1 +
hH

1 Σ1h1h
H
1 Σ2h1

(
1 + hH

1 Σ1h1

)2

)

(2.36)

holds under the condition given by Eq. 2.31. Removing logarithms and multiplying by
(1 + hH

1 Σ1h1)
2 on both sides of the equality we get

|It + q1h1h
H
1 |
(
1 + hH

1 Σ1h1

)
=
(
1 + hH

1 Σ1h1

)2
+ hH

1 Σ1h1h
H
1 Σ2h1, (2.37)
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where we have used the fact that the rates given by Eq. 2.32 and Eq. 2.34 are equal and,
therefore,

1 + hH
1 Σ1h1 = |I t + q2h2h

H
2 |−1|It + q1h1h

H
1 + q2h2h

H
2 |.

Now, substituting Eqs. 2.33 in Eq. 2.37 and after some algebra we obtain

‖h2‖22
(
1 + q1‖h1‖22

) (

1 + q1h
H
1

(
I t + q2h2h

H
2

)−1
h1

)

=

q1q2|hH
1 h2|2

(

hH
1

(
It + q2h2h

H
2

)−1
h1 + q1|hH

2

(
I t + q2h2h

H
2

)−1
h1|2

)

+

+ ‖h2‖22
(

1 + q1h
H
1

(
It + q2h2h

H
2

)−1
h1

)2

.

Application of the matrix inversion lemma on the factors
(
It + q2h2h

H
2

)−1
and multiplica-

tion on both sides of the equality with (1 + q2‖h2‖22)2 yields

‖h2‖22
(
1 + q2‖h2‖22

) (
1 + q1‖h1‖22

) ((
1 + q2‖h2‖22

) (
1 + q1‖h1‖22

)
+ q1q2|hH

1 h2|2
)

=

‖h2‖22
((

1 + q2‖h2‖22
) (

1 + q1‖h1‖22
)

+ q1q2|hH
1 h2|2

)2
+

+ q1q2|hH
1 h2|2

((

‖h1‖22
(
1 + q2‖h2‖22

)
− q2|hH

1 h2|2
︸ ︷︷ ︸

)
(
1 + q2‖h2‖22

)
+ q1|hH

1 h2|2
)

.

From here, the result follows immediately after replacing the factor marked by the brace in
the second term on the right-hand side by the right-hand side of the optimality condition
given by Eq. 2.31.

2.2.2.4 The capacity region

In this last section of the chapter we give a brief account of some of the most significant
results on the information theoretical analysis of the Gaussian broadcast channel, which,
eventually, led to the finding that the dirty paper coding region as defined by Eq. 2.24 is
in fact the capacity region of the general Gaussian broadcast channel.

The idea of applying dirty paper coding to the broadcast channel with single receive
antennas by successively encoding the users in the network is due to Caire et al. [23, 21, 22].
These authors also proved that for the two-user channel with single receive antennas,
this transmission scheme is able to achieve the sum capacity. In order to prove that,
they showed that the optimum sum rate achievable by using the DPC scheme is equal
to the Sato upper bound on sum capacity given by Eq. 2.5. In [145] Yu et al. presented
achievable rates for the general Gaussian broadcast channel based on DPC. Independent
work by Viswanath et al. [132], Vishwanath et al. [128, 127] and Yu et al. [144, 143]
showed that DPC achieves the sum capacity of the Gaussian broadcast channel with an
arbitrary number of users and antennas. The first two authors based their proofs on duality
between downlink and uplink and showed that maximization of the sum rate in the uplink
is equivalent to the minimization problem that must be solved in order to compute the Sato
bound. Yu et al. considered a point to point channel with a minimum mean squared error
(MMSE) decision-feedback equalizer at the receiver. They first proved that, if statistically
independent signals are transmitted, the feedback part of the filter can be moved to the
transmitter by considering dirty paper coding without incurring any performance loss.
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Then, they showed that for the worst case noise, i.e., the noise that achieves the Sato
bound, the forward filter decomposes into a set of filters, one for each signal, and, therefore,
cooperation becomes immaterial.

Independent work by Vishwanath et al. [129] and Tse et al. [122] showed that, conditioned
on the use of Gaussian alphabets, the dirty paper coding region is optimum. In both
works, this was proved by considering the degraded Gaussian vector channels that can be
obtained by assuming a certain ordering of the users and providing a certain user with the
outputs of all preceding users. Assuming Gaussian inputs, the capacity region of a degraded
channel constructed in this way depends on the particular ordering of the users and on
the correlation between noise processes of different users. However, for any choice of these
parameters, it is obvious that the resulting region comprises the capacity region that can
be achieved on the original channel with Gaussian alphabets. In order to tighten this outer
bound the authors in [129], [122] considered the intersection of the capacity regions of all
degraded channels that can be defined with arbitrary choices of noise correlations and user
orderings. Based on BC-MAC duality, they were able to show that the resulting region is
included in the dirty paper coding region of the original channel. However, optimality of
Gaussian inputs could not be demonstrated in these works. Note that, as mentioned in
Section 2.2.1, optimality of Gaussian inputs for the Gaussian scalar degraded broadcast
channel was shown by Bergmans in [5], however, his proof does not easily extend to vector
channels. In [134] Weingarten et al. gave a proof for the optimality of Gaussian inputs
for degraded Gaussian vector channels, which combined with the results from [129], [122],
finally proved that the DPC region is actually the capacity region of the Gaussian broadcast
channel. The same authors gave a more direct proof of the optimality of the DPC region
in [135] that does not rely on the tools employed in [129] and [122].



3 Optimization criteria and optimum

approaches

In this chapter three design criteria are analyzed that represent different ways of selecting
the operational point of a point to multipoint network out of the set of achievable rates.
The derivation of the algorithms that achieve optimality for each of these criteria requires
the understanding of basic optimization theoretic concepts such as Lagrangian duality or
subgradients. A brief summary of the most important definitions and results is given in
Appendix A.3.

3.1 Sum-rate maximization

The first design criterion that we shall discuss in this chapter is sum-rate maximization.
The goal is to maximize the total amount of information per channel use that the trans-
mitter sends to the receivers in the network. This criterion entirely neglects quality of
service requirements that users might have. Instead, it will generally favor users with good
channels against users with bad channels for the sake of overall throughput. However, there
are certain scenarios where this criterion might be of practical interest. For instance, for
symmetric broadcast channels, where the sum-rate maximization criterion generally leads
to operational points at which all users get a similar amount of resources. But also in
scenarios where the set of active users strongly fluctuates, this criterion might be a good
choice for delay insensitive applications. In such scenarios, every user requesting transmis-
sion rate will be served in relatively short time with high probability due to the strong
fluctuation in the set of competing users. Hotspots delivering internet services to a large
number of users that intermittently request access to content might be one example of this
kind of scenarios.

Assume a Gaussian broadcast channel as given by Eq. 2.6. As we have seen in the
previous chapter, for the Gaussian broadcast channel, successive encoding based on dirty
paper coding is optimum in the sense that all rates in the capacity region can be achieved
with this scheme and time-sharing. Let π be a permutation function defining the order in
which information for the different users in the network is encoded. Mathematically, we
can state the sum-rate maximization problem as follows,

max
π,Σ1,...,K

K∑

k=1

Rk (π,Σ1,...,K) ,

subject to
∑K

k=1 Tr {Σk} ≤ P and Σk ≥ 0, ∀k, where (cf. Eqn 2.19)

Rπ(k′) (π,Σ1,...,K) = log2

(

|Irπ(k′)
+ Hπ(k′)

∑

k≥k′ Σπ(k)H
H
π(k′)|

|Irπ(k′)
+ Hπ(k′)

∑

k>k′ Σπ(k)H
H
π(k′)|

)

. (3.1)

53
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For a fixed π, Rk (π,Σ1,...,K) is, in general, neither a concave nor a convex function of the
matrices Σ1,...,K and the same holds for the sum of these rates. Thus, the sum-rate maxi-
mization problem stated in this way does not qualify as a convex optimization problem.
The significance of convex optimization problems resides in the possibility of finding the
global optimum by iteratively performing local searches. Fortunately, it turns out that, in
this case, the apparent non-convexity is not an impediment for a successful computation
of the global optimum based on local search algorithms. In fact, invoking the duality result
between BC and MAC discussed in the last chapter, an equivalent convex optimization
problem can be formulated as follows,

max
π̄,Q1,...,K

K∑

k=1

Rk

(
π̄,Q1,...,K

)
, (3.2)

subject to
∑K

k=1 Tr {Qk} ≤ P and Qk ≥ 0, ∀k, where π̄ is a permutation function indicat-
ing the order in which users are decoded and

Rπ̄(k′)

(
π̄,Q1,...,K

)
= log2

(

|It +
∑

k≥k′ H
H
π̄(k)Qπ̄(k)H π̄(k)|

|It +
∑

k>k′ H π̄(k)Qπ̄(k)H
H
π̄(k)|

)

. (3.3)

By substituting Eq. 3.3 in Eq. 3.2, the objective function of this optimization problem can
explicitly be written as

K∑

k=1

Rk

(
π̄,Q1,...,K

)
= log2

(∣
∣
∣
∣
∣
It +

K∑

k=1

HH
k QkHk

∣
∣
∣
∣
∣

)

. (3.4)

We observe that even though the rate of each particular user does depend on the decoding
order π̄, the sum of rates is independent of π̄. Furthermore, the sum of rates is a strictly
convex function of the transmit covariance matrices Q1,...,K even if the individual rates
are not. Thus, in the dual MAC the sum-rate maximization problem under an overall
transmit power constraint is a convex optimization problem. In addition, the optimum can
be achieved with any decoding order. Of course, in the broadcast channel the optimum is
achieved by any set of transmit covariance matrices computed from the optimum Q1,...,K by
fixing a decoding order and using the duality transformations given in [128]. The optimum
encoding order is obtained by reversing the decoding order fixed in the dual MAC for
computation of the BC transmit covariance matrices. Due to the strict concavity of log | • |
there is a unique set of transmit covariance matrices that maximize the sum rate in the
MAC. However, due to the polymatroid structure of the MAC region corresponding to fixed
statistics, optimality is shared by the set of rate vectors comprised by the convex polytope
whose vertices are determined by the K! possible decoding orders. Following the discussion
in Section 2.2.2.3, in the BC, each of these vertices is achieved by a different set of transmit
covariance matrices and DPC-based successive encoding. Conjecture 2.2.3 suggests that,
in the BC, these vertices might also be achievable with just one set of covariance matrices
by employing non-DPC-based successive encoding schemes.
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3.1.1 Memoryless channels

In this section we present an overview of the algorithmic approaches that have been pro-
posed in the literature in order to solve Problem 3.2 efficiently. In the next section we
will specialize some of these approaches to channels with block diagonal structure, which
typically arise when using OFDM as a transmission scheme in order to combat multipath
in time-dispersive channels.

Before starting the discussion on algorithmic schemes that solve Problem 3.2, let us
consider the sum-rate optimization problem in the MAC with individual power constraints,
i.e.,

max
Q1,...,K

log2

(∣
∣
∣
∣
∣
It +

K∑

k=1

HH
k QkHk

∣
∣
∣
∣
∣

)

, (3.5)

subject to Qk ≥ 0 and Tr {Qk} ≤ Pk, ∀k. For this optimization problem, Yu et al. presented
an algorithmic solution in [146, 147] that was named iterative waterfilling. This algorithm
is the base upon which two of the most significant algorithmic solutions to Problem 3.2 are
built. The iterative waterfilling algorithm, which solves Problem 3.5 iteratively, is based
on the following observation. Assume that after the ℓth iteration we have matrices Q

(ℓ)
1,...,K .

Increase of the objective function in the ℓ+1 iteration is guaranteed by selecting a user, say
j, letting the covariance matrices of all other users unchanged, i.e., Q

(ℓ+1)
k = Q

(ℓ)
k , k 6= j,

and computing the new covariance matrix for user j as

Q
(ℓ+1)
j = arg max

Qj

log2
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∣
∣
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j QjHj

∣
∣
∣
∣
∣

)

,

subject to Qj ≥ 0 and Tr
{
Qj

}
≤ Pj . That this step necessarily leads to an improvement

becomes apparent if the objective function is rewritten as

log2
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 .

Being user j the first encoded user, the first term on the right-hand side of this expression
represents the sum rate achieved by all other users. This term is independent of the covari-
ance matrix of user j. The second term is the rate achieved by user j. Certainly, choosing
Qj such that the second term is maximized leads to an improvement of the total sum-rate.
The KKT optimality conditions corresponding to this maximization yield

Ĥj

(

It + Ĥ
H

j QjĤj

)−1

Ĥ
H

j + Φj − µjIrj
= 0, (3.6)

where

Ĥj = Hj

(

I t +
∑

k 6=j

HH
k Q

(ℓ)
k Hk

)−1/2
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is the effective channel seen by user j, Φj ≥ 0 is the Lagrange multiplier associated with
the constraint Qj ≥ 0 and µj ≥ 0 is the Lagrange multiplier corresponding to the transmit

power constraint Tr
{
Qj

}
≤ Pj. It can be easily shown that the matrix Qj that fulfills this

condition has the same eigenvectors as ĤjĤ
H

j and eigenvalues according to a waterfilling
power distribution on the eigenvalues of this matrix [119]. In each iteration, the matrix of
a different user is updated by keeping the matrices of all other users fixed. In this way, the
value of the objective function is increased until a fixed point is achieved in which every
user waterfills its power over the effective channel determined by its own channel and the
interference from all other users. The pseudocode for this approach is given in Algorithm
3.1.

Algorithm 3.1 Iterative waterfilling

1: Q
(0)
k ← 0, k = 1, . . . , K, ℓ = 0

2: Rnew ← 0
3: repeat

4: Rold ← Rnew

5: for j = 1 to K do

6: Z ← I t +
∑

k 6=j HH
k Q

(ℓ)
k Hk

7: Q
(ℓ+1)
j ← arg max

Qj

log2

(∣
∣Z + HH

j QjHj

∣
∣
)

subject to Qj ≥ 0 and Tr
{
Qj

}
≤ Pj

8: Q
(ℓ+1)
k ← Q

(ℓ)
k , k 6= j

9: ℓ← ℓ+ 1
10: end for

11: Rnew ← log2

(∣
∣
∣I t +

∑K
k=1 HH

k Q
(ℓ)
k Hk

∣
∣
∣

)

12: until Rnew −Rold < ǫ

3.1.1.1 Sum-power iterative waterfilling

If the individual power constraints in Problem 3.5 are replaced by a total power constraint,
convergence of Algorithm 3.1 can no longer be guaranteed. In this case, users are coupled
by the power constraint and, hence, optimizing the transmit strategy of a particular user
at a time does not necessarily lead to an increase of the objective function. The algorithmic
approach taken in [65, 130] in order to find a solution consists of restating Problem 3.2 in an
equivalent form but with decoupled constraints. This allows a straightforward application
of the basic principles behind Algorithm 3.1.

Consider the following optimization problem

max
Q1,...,K

1,...,K

K∑

j=1

1

K
log2

(∣
∣
∣
∣
∣
I t +

K∑

k=1

HH
k Qj,kHk

∣
∣
∣
∣
∣

)

, (3.7)

subject to Qj,k ≥ 0, ∀j, k , and
∑K

k=1 Tr
{
Q[j+k]K ,k

}
≤ P , j = 1, . . . , K, where [x]K =

mod ((x − 1), K) + 1. It is obvious that any value achievable by the objective function
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of Problem 3.2 can also be reached by the objective function of this problem by choosing
Q1,k = · · · = QK,k = Qk, ∀k. On the other hand, due to concavity of log | • |,

K∑

j=1

1

K
log2

(∣
∣
∣
∣
∣
I t +

K∑
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HH
k Qj,kHk
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∣
∣
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≤ log2

(∣
∣
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∣
∣
I t +

K∑

k=1

HH
k Q̂kHk

∣
∣
∣
∣
∣

)

, (3.8)

where Q̂k =
∑K

j=1 Qj,k/K. Thus, any value achievable by the objective function of Problem
3.7 is also reachable by the objective function of 3.2, which shows the equivalence of these
two problems. Note that in Problem 3.7, for any 1 ≤ i ≤ K, the transmit covariance
matrices Q[i+k]K ,k, k = 1, ..., K, are decoupled of matrices Q[j+k]K ,k, k = 1, ..., K, j 6= i,
as they are subject to different power constraints. Therefore, an iterative algorithm can
be applied that increases the objective function in each iteration by optimizing over a set
of covariance matrices Q[i+k]K ,k, k = 1, ..., K, while keeping all other covariance matrices
Q[j+k]K,k, k = 1, ..., K, j 6= i, fixed. Iterations are repeated until a fixed point is reached
(see Algorithm 3.2). Due to Eq. 3.8, Q1,k = · · · = QK,k = Qk, ∀k, must hold at this point.

Algorithm 3.2 Sum-power iterative waterfilling (cyclic coordinate ascent)

1: Qj,k ← 0, k = 1, . . . , K, j = 1, . . . , K, i = 1
2: Rnew ← 0
3: repeat

4: Rold ← Rnew

5: for m = 1 to K do

6: Z [i+m]K ← I t +
∑

k 6=m HH
k Q[i+m]K ,kHk

7: end for

8:
{
Q[i+k]K ,k|k = 1, . . .K

}
← arg max

Q1,...,K

1
K

∑K
k=1 log2

(∣
∣Z [i+k]K + HH

k QkHk

∣
∣
)

subject to Qk ≥ 0, ∀k, and
∑K

k=1 Tr {Qk} ≤ P

9: i← [i+ 1]K

10: Rnew ← 1
K

∑K
j=1 log2

(∣
∣
∣I t +

∑K
k=1 HH

k Qj,kHk

∣
∣
∣

)

11: until Rnew − Rold < ǫ

A drawback of Algorithm 3.2 is that K(K − 1) covariance matrices need to be stored
in memory for the execution of one iteration. A reduction of storage can be achieved by
including the following averaging step after line 8,

Qm,k ←
1

K

K∑

j=1

Qj,k, k = 1, . . . , K, m = 1, . . . , K.

Due to Eq. 3.8, this step leads to an improvement of the objective function. Furthermore,
the transmit covariance matrices are no longer a function of index m and, therefore, only
K matrices need to be stored. However, a negative side effect of the averaging step is a
reduced convergence rate. A compact pseudocode for this modified algorithm is given in
Algorithm 3.3.
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Algorithm 3.3 Sum-power iterative waterfilling

1: Q
(0)
k ← 0, k = 1, . . . , K, ℓ = 0

2: Rnew ← 0
3: repeat

4: Rold ← Rnew

5: for m = 1 to K do

6: Zm ← It +
∑

k 6=m HH
k Q

(ℓ)
k Hk

7: end for

8: M 1,...,K ← arg max
Q1,...,K

1
K

∑K
k=1 log2

(∣
∣Zk + HH

k QkHk

∣
∣
)

subject to Qk ≥ 0, ∀k, and
∑K

k=1 Tr {Qk} ≤ P

9: Q
(ℓ+1)
k ← 1

K

(

M k + (K − 1)Q
(ℓ)
k

)

10: ℓ← ℓ + 1

11: Rnew ← log2

(∣
∣
∣I t +

∑K
k=1 HH

k Q
(ℓ)
k Hk

∣
∣
∣

)

12: until Rnew −Rold < ǫ

3.1.1.2 Dual decomposition

A second approach to the computation of sum-rate maximizing transmit covariance matri-
ces is due to Yu and was presented in [141, 142]. In this approach, auxiliary power variables
are introduced for each user in order to restate Problem 3.2 as follows,

max
Q1,...,K ,P1,...,K

log2

(∣
∣
∣
∣
∣
It +

K∑

k=1

HH
k QkHk

∣
∣
∣
∣
∣

)

, (3.9)

subject to Qk ≥ 0, Tr {Qk} ≤ Pk, ∀k, and
∑K

k=1 Pk ≤ P . The Lagrangian function of this
optimization problem with respect to the last constraint can be written as

L
(
Q1,...,K , P1,...,K , λ

)
= log2

(∣
∣
∣
∣
∣
It +

K∑

k=1

HH
k QkHk

∣
∣
∣
∣
∣

)

+ λ

(

P −
K∑

k=1

Pk

)

.

In turn, the corresponding Lagrangian dual function is defined as

g(λ) = max
Q1,...,K ,P1,...,K

L
(
Q1,...,K , P1,...,K , λ

)
, (3.10)

subject to Qk ≥ 0, Tr {Qk} ≤ Pk, ∀k. The dual problem itself reads

min
λ

g(λ), (3.11)

subject to λ ≥ 0. Problem 3.9 is convex. Furthermore, the set of feasible transmit covariance
matrices and individual powers has a non-empty interior. Therefore, Slater’s constraint
qualification is satisfied and strong duality holds [13], i.e., the maximum of Problem 3.9
coincides with the minimum of Problem 3.11. This property allows for an algorithmic
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approach that iteratively searches for the solution to Problem 3.11 instead of directly
solving Problem 3.9. Due to the fact that g(λ) is generally non-differentiable the search is
done relying on a subgradient method.

Assume λ(ℓ) to be the value obtained for λ after the ℓth iteration. Computation of g(λ(ℓ))
is done by solving Problem 3.10. The KKT conditions of this problem yield

Ĥj

(

I t + Ĥ
H

j QjĤj

)−1

Ĥ
H

j + Φj − λ(ℓ)Irj
= 0, ∀j (3.12)

where

Ĥj = Hj

(

It +
∑

k 6=j

HH
k QkHk

)−1/2

is the effective channel seen by user j and Φj ≥ 0 is the Lagrange multiplier associated
with the constraint Qj ≥ 0. Note that the conditions given by Eqs. 3.12 are identical to the
condition given by Eq. 3.6. Thus, as in Problem 3.5, here optimality is also achieved when
all users transmit their signals aligned with the eigenvectors of their respective effective
channels with a waterfilling distribution of the powers. While in Problem 3.5 the water level,
determined by µk, is different for every user, in this problem the water level, determined
by λ(ℓ), is the same for every user. As in Problem 3.5, this fixed point can be achieved
by updating the covariance matrix of one user at a time while keeping the covariance
matrices of all other users fixed. That is, Algorithm 3.1 can be readily used in order to find
the solution to Problem 3.10. The only difference is that in line 7 maximization must be
performed subject to the water level dictated by λ(ℓ) rather than to an individual power
constraint.

Once g(λ(ℓ)) has been evaluated, a subgradient of this function at λ(ℓ) must be found,
which gives an appropriate direction for computation of λ(ℓ+1). Recalling the definition of
subgradient in Eq. A.11, it can be easily shown that a subgradient of g(λ) at λ(ℓ) is given
by

s(ℓ) =

(

P −
K∑

k=1

P
(ℓ)
k

)

,

where P
(ℓ)
1,...,K are maximizers of Problem 3.10 for λ = λ(ℓ). Indeed,

g(λ(ℓ) +∆λ) − g(λ(ℓ)) =

= max
Q1,...,K ,P1,...,K

L
(
Q1,...,K , P1,...,K , λ

(ℓ) +∆λ
)
− L

(

Q
(ℓ)
1,...,K , P

(ℓ)
1,...,K , λ

(ℓ)
)

≥ L
(

Q
(ℓ)
1,...,K , P

(ℓ)
1,...,K , λ

(ℓ) +∆λ
)

− L
(

Q
(ℓ)
1,...,K , P

(ℓ)
1,...,K , λ

(ℓ)
)

= ∆λ

(

P −
K∑

k=1

P
(ℓ)
k

)

,

where Q
(ℓ)
1,...,K , P

(ℓ)
1,...,K are maximizers of Problem 3.10 for λ = λ(ℓ). Thus, a convenient

search direction is given by −s(ℓ), i.e., if the constraint is violated, λ(ℓ) should be increased.
Otherwise, λ(ℓ) should be decreased. Due to the monotonicity of the constraint with respect
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to λ, a bisection method can be used in order to choose the step size of each update until
the constraint is fulfilled with equality within a certain precision. Once the optimum λ is
found, the maximizers of Problem 3.10 turn out to be the maximizers of Problem 3.9. This
can be easily shown by observing,

log2

(∣
∣
∣
∣
∣
I t +

K∑

k=1

HH
k Q̄kHk

∣
∣
∣
∣
∣

)

= g(λ̄)

≥ L
(
Q̄1,...,K , P̄1,...,K , λ̄

)

≥ log2

(∣
∣
∣
∣
∣
I t +

K∑

k=1

HH
k Q̄kHk

∣
∣
∣
∣
∣

)

,

where Q̄1,...,K , P̄1,...,K and λ̄ are maximizers of the primal and the dual problems, respec-
tively. The first equation is due to strong duality. The first inequality is due to the definition
of g(λ̄) as the maximum of L

(
Q1,...,K , P1,...,K , λ̄

)
. Finally, the second inequality is due to

the fact that the Lagrangian function with non-negative multipliers is always greater than
the corresponding objective function with feasible arguments. The pseudocode for this pro-
cedure is given in Algorithm 3.4. The term dual decomposition alludes to the fact that the
link between the transmit covariance matrices, established by the total power constraint
in Problem 3.2, is effectively "decomposed" if we consider the dual problem in order to
find the solution.

Algorithm 3.4 Sum-rate maximization via dual decomposition

1: Initialize λmin and λmax

2: λ(0) = (λmax + λmin)/2, ℓ← 0
3: repeat

4: Compute g(λ(ℓ)) using Algorithm 3.1

5: if
(

P −∑K
k=1 P

(ℓ)
k

)

> 0 then

6: λ(ℓ+1) ← λ(ℓ)+λmin

2

7: λmax ← λ(ℓ)

8: else

9: λ(ℓ+1) ← λ(ℓ)+λmax

2

10: λmin ← λ(ℓ)

11: end if

12: ℓ← ℓ + 1
13: until λmax − λmin < ǫ

3.1.1.3 Further work

A number of algorithms have been proposed in recent years in order to speed up con-
vergence or reduce complexity of both the sum-power iterative waterfilling and the dual
decomposition algorithm reviewed in previous sections. In [11] the authors present a pro-
cedure to speed up the convergence of Algorithm 3.3 by optimizing the weights of the
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averaging step in line 9. In [33] the authors report reduction in complexity and improve-
ment in convergence speed with respect to Algorithm 3.3 by just selecting two users at
random in order to update their covariance matrices while keeping the matrices of all other
users fixed in each iteration. The issue of how precise g(λ) must be computed in line 4 of
Algorithm 3.4 in order to reduce the number of iterations but still guarantee convergence is
addressed in [34]. Adopting a completely different approach, in [63], the authors proposed
an algorithm that finds optimum precoding matrices rather than transmit covariance ma-
trices. This algorithm is based on a projected gradient search and has the advantageous
property that no eigenvalue decompositions are needed.

3.1.2 Time-dispersive channels

As discussed in Section 1.3, OFDM can be employed for transmission over time-dispersive
channels in order to effectively transform the multipath channel into a set of decoupled,
non-dispersive channels. In a point to multipoint transmission setting, the model given by
Eq. 2.6 applies to each of the channels of the MIMO OFDM model given by Eq. 1.5. In
particular, the signal received by user k ∈ {1, . . . , K} on subcarrier n ∈ {1, . . . , N} can be
written as

yk,n = Hk,nxn + nk,n.

This system model can be reduced to a memoryless multiuser MIMO model by writing

yk = Hkx + nk, k = 1, . . . , K, (3.13)

where yk = [ yT
k,1 · · · yT

k,N ]T, nk = [ nT
k,1 · · · nT

k,N ]T, x = [ xT
1 · · · xT

N ]T and

Hk =








Hk,1 0 · · · 0

0 Hk,2 · · · 0

...
...

. . .
...

0 0 · · · Hk,N







. (3.14)

The essential difference between this system model and the model for general memory-
less MIMO broadcast channels (cf. Eqn 2.6) resides in the fact that the channel matrices
Hk ∈ C

Nrk×Nt are block diagonal in this case. Nevertheless, from a theoretical point of
view, the multiuser MIMO OFDM channel can be viewed as a high dimensional mem-
oryless broadcast channel for which all results discussed in Section 2.2 apply. Also, the
sum-rate maximization problem statement in Eq. 3.2 directly applies to this setting. An
obvious approach to the computation of the sum-rate optimum transmit strategy for this
model is the direct application of the algorithms discussed in the previous section. Al-
though theoretically sound, this approach shows a crucial disadvantage. The search space
is given by the Cartesian product of K Hermitian matrices of dimensions Nrk × Nrk,
k = 1, . . . , K. Taking into account that all the known algorithms have a cubic order of
complexity in the number of rows or columns of the covariance matrices per iteration [63],
we observe that the direct application of the sum-rate maximizing algorithms for memory-
less channels to the MIMO OFDM setting yields a cubic complexity order in the number
of subcarriers. Due to this fact, the computational power required to compute optimum
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covariance matrices in this setting becomes already prohibitive for numbers of subcarriers
far below those commonly used in practice. Fortunately, in the following we show that the
optimum covariance matrices inherit the block diagonal structure of the channel matrices.
As we shall see, this allows to design extensions of the algorithms discussed in the previous
section that have linear complexity in the number of subcarriers.

To begin with, we rewrite the sum-rate maximization problem statement by replacing
Eq. 3.4 in Eq. 3.2, i.e.,

max
Q1,...,K

log2

(∣
∣
∣
∣
∣
It +

K∑

k=1

HH
k QkHk

∣
∣
∣
∣
∣

)

, (3.15)

subject to Qk ≥ 0, ∀k, and
∑K

k=1 Tr {Qk} ≤ P . Let Q̄1,...,K be the set of optimum covari-

ance matrices for this problem and let Q̄
b
k be a block diagonal matrix obtained out of Q̄k

by setting the off-diagonal elements to zero, i.e.,

[

Q̄
b
k

]

i,j
=







[
Q̄k

]

i,j
,
⌊

i
rk

⌋

=
⌊

j
rk

⌋

0,
⌊

i
rk

⌋

6=
⌊

j
rk

⌋
,

where ⌊•⌋ returns the largest integer strictly below the argument. Due to the block diagonal
structure of the channel we can write

It +
K∑

k=1

HH
k Q̄

b
kHk =

(

I t +
K∑

k=1

HH
k Q̄kHk

)b

, (3.16)

where the matrix on the right-hand side is obtained by keeping the blocks of dimension
t× t in the main diagonal of It +

∑K
k=1 HH

k Q̄kHk and setting the off-diagonal elements to

zero. Note also that the matrices Q̄
b
1,...,K satisfy both the power constraint and the positive

semidefinite constraint of Problem 3.15. In the following, we show that given a matrix
A ∈ HM×M , A ≥ 0,

log2 (|A|) ≤ log2

(∣
∣Ab

∣
∣
)
, (3.17)

where Ab is a block diagonal matrix obtained by keeping blocks of any dimensions on main
diagonal of A and setting the off-diagonal entries to zero. To this end, let a1,...,S be a set
of random vectors with as ∼ CN (0,As), s = 1, . . . , S. In addition, let a ∼ CN (0,A) be
the random vector defined as a = [ a

T
1 · · · a

T
S ]T. It holds

S log πe+ log |A| = h(a1, . . . , aS) =
S∑

s=1

h(as|a1, . . . , as−1)

≤
N∑

s=1

h(as) = S log πe+ log

S∏

s=1

|As| = S log πe + log |Ab|,
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where the inequality follows from the fact that conditioning reduces entropy and

Ab =








A1 0 · · · 0

0 A2 · · · 0

...
...

. . .
...

0 0 · · · AS







.

This shows the validity of Eq. 3.17, which is a trivial generalization of the Hadamard
inequality to block diagonal matrices [40]. Combining Eq. 3.17 and Eq. 3.16 we can write

log2
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≤ log2
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)

from which it follows that optimum covariance matrices are block diagonal. Hence, without
loss of optimality, Problem 3.15 can be stated as

max
Q1,...,K

1,...,N

N∑

n=1

log2

∣
∣
∣
∣
∣
I t +

K∑

k=1

HH
k,nQk,nHk,n

∣
∣
∣
∣
∣
, (3.18)

subject to
∑K,N

k=1,n=1 Tr{Qk,n} ≤ P and Qk,n ≥ 0, ∀k, n. Here, Qk,n ∈ Hrk×rk is
the transmit covariance matrix corresponding to user k on subcarrier n. The matrices
Qk,n, n = 1, . . . , N , are nothing else than the blocks on the diagonal of matrix Qk in
Problem 3.15. The off-diagonal blocks of this matrix disappear from the problem formula-
tion as we know that they can be set to zero without loss of optimality. That is, the search
space reduces to the Cartesian product of KN Hermitian matrices of dimension rk×rk. Us-
ing the duality transformations given in [128] it can be shown that block diagonal matrices
Q1,...,K in the MAC correspond to block diagonal matrices Σ1,...,K in the BC. Furthermore,
the transmit covariance matrices Σk,n, k = 1, . . . , K, corresponding to subcarrier n in the
BC are exclusively determined by the transmit covariance matrices Qk,n, k = 1, . . . , K,
corresponding to that subcarrier in the MAC, i.e., these matrices are independent of the
MAC covariance matrices corresponding to any other subcarrier. Recalling the discussion
preceding Section 3.1.1 for general MAC channels, sum-capacity can be achieved by any
of the K! possible decoding orders, which yields the K! vertices of the polymatroid cor-
responding to the sum-rate optimum covariance matrices. In the general MAC, all other
points within the polytope defined by these vertices can be achieved either by time-sharing
or joint decoding (cf. Section 2.2.2.3). A special feature of the MIMO OFDM multiple ac-
cess channel is that, apart from the vertices, there are other points within this polytope
that are also achievable by performing successive decoding. These are all the rate vectors
that are achieved by varying the decoding order across subcarriers. This is possible due
to the fact that sum-capacity for this channel is achieved by transmitting statistically in-
dependent signals across subcarriers. Therefore, separate detection on each subcarrier is
optimum. That is, on each subcarrier the detector can choose a decoding order without
considering the detection order on any other subcarrier. Thus, the total number of sum-
rate optimum rate vectors that can be achieved by performing successive decoding on the
MIMO OFDM MAC amounts to (K!)N . Correspondingly, assuming DPC-based successive
encoding, there are (K!)N different transmission statistics that achieve sum-capacity in
the dual MIMO OFDM BC.
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3.1.2.1 Sum-power iterative waterfilling

The algorithmic approach followed in Section 3.1.1.1 to arrive at a solution for Problem
3.2 will be also taken here in order to find an algorithmic solution to Problem 3.18. To this
end, this problem is restated as

max
Q1,...,K

1,...,K
1,...,N

N∑

n=1

K∑

j=1

1

K
log2

(∣
∣
∣
∣
∣
I t +

K∑

k=1

HH
k Qj,k,nHk

∣
∣
∣
∣
∣

)

,

subject to Qj,k,n ≥ 0, ∀j, k, n, and
∑N

n=1

∑K
k=1 Tr

{
Q[j+k]K ,k,n

}
≤ P , j = 1, . . . , K.

The equivalence between this problem and Problem 3.18 can be shown along the lines
of the arguments provided in Section 3.1.1.1 to show the equivalence between Prob-
lem 3.7 and Problem 3.2. This formulation of the problem with decoupled matrix sets
Sj = {Q[j+k]K ,k,n|k = 1, . . . , K, n = 1, . . . , N}, j = 1, . . . , K, lends itself to a coordi-
nate ascent algorithmic solution where at each step the objective function is increased by
optimizing over the matrices of a certain set while keeping the matrices of all other sets
fixed (see Algorithm 3.5). As in Algorithm 3.2, here also, due to concavity of the objec-
tive function, equality of all sets Sj , j = 1, . . . , K, must hold at the final fixed point, i.e.,
Q1,k,n = · · · = QK,k,n = Qk,n, ∀k, n. As mentioned in Section 3.1.1.1, a drawback of this

Algorithm 3.5 OFDM sum-power iterative waterfilling (cyclic coordinate ascent)

1: Qj,k,n← 0, k = 1, . . . , K, j = 1, . . . , K, n = 1, . . . , N, i = 1
2: Rnew ← 0
3: repeat

4: Rold ← Rnew

5: for n = 1 to N do

6: for m = 1 to K do

7: Z [i+m]K ,n ← I t +
∑

k 6=m HH
k,nQ[i+m]K ,k,nHk,n

8: end for

9: end for

10: Si ← arg max
Q1,...,K

1,...,N

∑N
n=1

1
K

∑K
k=1 log2

(∣
∣Z [i+k]K ,n + HH

k,nQk,nHk,n

∣
∣
)

subject to
∑K,N

k=1,n=1 Tr{Qk,n} ≤ P and Qk,n ≥ 0, ∀k, n
11: i← [i+ 1]K

12: Rnew ←∑N
n=1

1
K

∑K
j=1 log2

(∣
∣
∣I t +

∑K
k=1 HH

k,nQj,k,nHk,n

∣
∣
∣

)

13: until Rnew −Rold < ǫ

kind of algorithms is storage capacity. In particular, this algorithm must keep a total of
NK(K − 1) matrices in memory during execution. As we already saw, storage capacity
can be reduced by introducing an averaging step at the end of each iteration, which, due
to concavity, necessarily leads to an increase of the objective function. The resulting pseu-
docode is along the lines of Algorithm 3.3 and is given in Algorithm 3.6. This algorithm
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has been previously reported in [115, 117]. Note that the complexity per iteration of both
Algorithm 3.5 and Algorithm 3.6 is linear in the number of subcarriers. This is in contrast
to the cubic complexity order resulting from a direct application of Algorithms 3.2 and 3.3
to the compact multiuser MIMO OFDM model in Eq. 3.13 without consideration of the
underlying block diagonal structure.

Algorithm 3.6 OFDM sum-power iterative waterfilling

1: Q
(0)
k,n ← 0, k = 1, . . . , K, n = 1, . . . , N, ℓ = 0

2: Rnew ← 0
3: repeat

4: Rold ← Rnew

5: for n = 1 to N do

6: for m = 1 to K do

7: Zm,n ← I t +
∑

k 6=m HH
k,nQ

(ℓ)
k,nHk,n

8: end for

9: end for

10: M 1,...,K
1,...,N

← arg max
Q1,...,K

1,...,N

∑N
n=1

1
K

∑K
k=1 log2

(∣
∣Zk,n + HH

k,nQk,nHk,n

∣
∣
)

subject to
∑K,N

k=1,n=1 Tr{Qk,n} ≤ P and Qk,n ≥ 0, ∀k, n

11: Q
(ℓ+1)
k,n ← 1

K

(

M k,n + (K − 1)Q
(ℓ)
k,n

)

, ∀k, n
12: ℓ← ℓ+ 1

13: Rnew ←∑N
n=1 log2

(∣
∣
∣It +

∑K
k=1 HH

k,nQ
(ℓ)
k,nHk,n

∣
∣
∣

)

14: until Rnew − Rold < ǫ

3.1.2.2 Dual decomposition

In the previous section we have seen how the sum-power iterative waterfilling algorithm
can be extended to a MIMO OFDM broadcast channel. In this section, we apply the dual
decomposition technique to Problem 3.18. To this end, we rewrite Problem 3.18 as

max
Q1,...,K

1,...,N

N∑

n=1

log2
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I t +
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∣
, (3.19)

subject to
∑K

k=1 Tr{Qk,n} ≤ Pn, ∀n, Qk,n ≥ 0, ∀k, n and
∑N

n=1 Pn ≤ P . Here, P1,...,N are
auxiliary variables that represent the transmit power employed on each subcarrier. The
Lagrange function of this problem with respect to the last constraint is given by

L
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1,...,N

, P1,...,N , λ

)
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+ λ

(

P −
N∑

n=1

Pn

)

,

and the corresponding Lagrangian dual function reads
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g(λ) = max
Q1,...,K

1,...,N

,P1,...,N

L

(

Q1,...,K
1,...,N

, P1,...,N , λ

)

, (3.20)

subject to
∑K

k=1 Tr{Qk,n} ≤ Pn, ∀n, Qk,n ≥ 0, ∀k, n. Since the primal problem is convex
and strictly feasible arguments exist, strong duality holds. That is, the minimum of the
dual problem

min
λ

g(λ),

subject to λ ≥ 0, coincides with the maximum of Problem 3.19. Thus, an algorithmic
approach can be followed that iteratively searches the minimum of the dual problem instead
of trying to solve the primal problem directly.

Assume λ(ℓ) to be the value obtained for λ after the ℓth iteration. Computation of g(λ(ℓ))
is done by solving Problem 3.20. By noting that

max
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− λ(ℓ)Pn

)

,

subject to
∑K

k=1 Tr{Qk,n} ≤ Pn, ∀n, Qk,n ≥ 0, ∀k, n, we observe that this problem decom-
poses into N separate maximization problems, each problem corresponding to a different
subcarrier. For any subcarrier n, the KKT conditions of the corresponding subproblem
yield

Ĥj,n

(

I t + Ĥ
H

j,nQjĤj,n

)−1

Ĥ
H

j,n + Φj,n − λ(ℓ)Irj
= 0, ∀j (3.21)

where

Ĥj,n = Hj,n

(

I t +
∑

k 6=j

HH
k,nQk,nHk,n

)−1/2

is the effective channel seen by user j at subcarrier n and Φj,n ≥ 0 is the Lagrange multiplier
associated with the constraint Qj,n ≥ 0. Note that Eq. 3.21 has the form of the optimality
conditions given in Eqs. 3.12 and 3.6. Therefore, we can proceed, as described in Section
3.1.1.2, by using Algorithm 3.1 in order to find a solution to each of the N subproblems,
which immediately leads to a solution for the composite Problem 3.20. Note that here, the
same as in Section 3.1.1.2, the power constraint is implicitly replaced by the multiplier
λ(ℓ), which determines the water level and is constant across users and subcarriers.

Once g(λ(ℓ)) has been evaluated, a subgradient of this function at λ(ℓ) must be found,

which gives an appropriate direction for the computation of λ(ℓ+1). Assume that Q
(ℓ)
k,n,

k = 1, . . . , K, n = 1, . . . , N , and P
(ℓ)
1,...,N are maximizers of 3.20. From the definition of
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subgradient in Eq. A.11 and the inequalities

g(λ(ℓ) +∆λ) − g(λ(ℓ)) =

= max
Q1,...,K

1,...,N

,P1,...,N

L

(

Q1,...,K
1,...,N

, P1,...,N , λ
(ℓ) +∆λ

)

− L
(

Q
(ℓ)
1,...,K
1,...,N

, P
(ℓ)
1,...,N , λ

(ℓ)

)

≥ L

(

Q
(ℓ)
1,...,K
1,...,N

, P
(ℓ)
1,...,N , λ

(ℓ) +∆λ

)

− L
(

Q
(ℓ)
1,...,K
1,...,N

, P
(ℓ)
1,...,N , λ

(ℓ)

)

= ∆λ

(

P −
N∑

n=1

P (ℓ)
n

)

,

it becomes clear that

s(ℓ) =

(

P −
N∑

n=1

P (ℓ)
n

)

is a subgradient of g(λ) at λ(ℓ). A convenient search direction is given by −s(ℓ), i.e., if the
constraint is violated λ(ℓ) should be increased. Otherwise, λ(ℓ) should be decreased. Here,
as in Section 3.1.1.2, due to the monotonicity of the constraint with respect to λ, bisection
can be used in order to choose the step size of each update. As shown in Section 3.1.1.2
and Appendix A.3, given the optimum multiplier λ, the maximizers in the definition of
the Lagrangian dual function, i.e., Problem 3.20, turn out to be the maximizers of the
primal, i.e., Problem 3.19. This property can be used in order to compute the optimum
covariance matrices once the optimum λ has been found. The pseudocode of this algorithm
is given in Algorithm 3.7. Note that the complexity per iteration of this algorithm is linear
in the number of subcarriers. Indeed, each iteration essentially has the complexity of N
sum-rate maximization problems for which the input parameters do not depend on N .
A similar approach has been followed in [68] in order to extend a weighted sum-rate
maximizing algorithm for memoryless broadcast channels with single receive antennas [69]
to a multicarrier setting.

In these last two sections we have extended the, probably, two most significant algorithms
for sum-rate maximization in memoryless MIMO broadcast channels to a MIMO OFDM
broadcast setting by applying a cyclic expansion technique of the original problem in
Section 3.1.2.1 and using dual decomposition in this section. An alternative and general
way to extend sum-rate maximizing algorithms for memoryless channels to time-dispersive
OFDM channels was presented in [83] and is based on a factorization of the input covariance
matrices. This technique will be used in the next chapter to extend weighted sum-rate
maximization algorithms for memoryless channels to time-dispersive channels.

3.2 Weighted sum rate

While for specific scenarios sum-rate maximization might be satisfactory, in most scenar-
ios this criterion results in an uneven distribution of rates that might be unwished. For
instance, it might happen that, for a given network, some users with weak channels are
not served at all and, at the same time, some other users obtain far too high rates for the
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Algorithm 3.7 Sum-rate maximization in MIMO OFDM based on dual decomposition

1: Initialize λmin and λmax

2: λ(0) = (λmax + λmin)/2, ℓ← 0
3: repeat

4: Compute g(λ(ℓ)) by applying Algorithm 3.1 to each subcarrier

5: if
(

P −∑N
n=1 P

(ℓ)
n

)

> 0 then

6: λ(ℓ+1) ← λ(ℓ)+λmin

2

7: λmax ← λ(ℓ)

8: else

9: λ(ℓ+1) ← λ(ℓ)+λmax

2

10: λmin ← λ(ℓ)

11: end if

12: ℓ← ℓ + 1
13: until λmax − λmin < ǫ

service that they requested. In order to prevent such outcomes, it is advisable to choose
transmission parameters according to criteria that include some mechanism to control the
final distribution of resources among users. A first approach that allows some control on
the quality of service finally obtained by the users in the network is weighted sum-rate
maximization. In this approach, the rates of the users are weighted with so-called priori-
ties, which, as the name indicates, establish a ranking among users according to the quality
of service that they should be provided with.

Assume a Gaussian broadcast channel as given by Eq. 2.6, a DPC-based successive en-
coding scheme and let π be a permutation function defining the order in which information
for the different users in the network is encoded. Mathematically, we can state the weighted
sum-rate maximization problem as follows,

max
π,Σ1,...,K

K∑

k=1

µkRk (π,Σ1,...,K) ,

subject to
∑K

k=1 Tr {Σk} ≤ P and Σk ≥ 0, ∀k. Here µk ∈ R+, k = 1, . . . , K, are the
priorities or weights and, for any user π(k′), the rate Rπ(k′) is given by Eq. 3.1. As we have
already mentioned in the discussion of the sum-rate maximization problem, for a fixed
π, Rk (π,Σ1,...,K) is, in general, neither a concave nor a convex function of the matrices
Σ1,...,K. As a consequence, the same holds for the weighted sum of these rates. That is,
the same as the sum-rate maximization problem, the weighted sum-rate maximization
problem stated in this way does not qualify as a convex optimization problem either.
Fortunately, also in this case, we can resort to duality in order to restate the original
problem so that convexity eventually holds. Doing so, the following equivalent weighted
sum-rate maximization problem can be written,

max
π̄,Q1,...,K

K∑

k=1

µkRk

(
π̄,Q1,...,K

)
, (3.22)
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subject to
∑K

k=1 Tr {Qk} ≤ P and Qk ≥ 0, ∀k. Here, π̄ is a permutation function indicating
the order in which users are decoded and, for any user π̄(k′), the corresponding rate is
given by Eq. 3.3. From the fact that RMAC(Q1,...,K) is a polymatroid and the polymatroid
characterization in terms of a weighted sum-rate maximization problem given in [121,
Lemma 3.2], it immediately follows that for any set of covariance matrices Q1,...,K the
optimum decoding order is such that µπ̄(K) ≥ µπ̄(K−1) ≥ · · · ≥ µπ̄(1). That is, optimally,
users with higher priority are decoded last and users with lower priority first. Considering
this optimum order and substituting Eq. 3.3 in Problem 3.22 we obtain the following
formulation for the weighted sum-rate maximization problem

max
Q1,...,K

K∑

k=1

ηπ̄(k) log2

(∣
∣
∣
∣
∣
I t +

∑

j≥k

HH
π̄(j)Qπ̄(j)H π̄(j)

∣
∣
∣
∣
∣

)

, (3.23)

subject to
∑K

k=1 Tr {Qk} ≤ P and Qk ≥ 0, ∀k, where ηπ̄(k) = µπ̄(k) − µπ̄(k−1), for k =
2, . . . , K, and ηπ̄(1) = µπ̄(1). Observe that ηk ≥ 0, ∀k. Thus, the objective function of
Problem 3.23 is obtained by adding K concave functions of the input covariance matrices
and, therefore, it is concave. Since the feasible set is convex, the global optimum can be
achieved by employing iterative local search algorithms. Before we describe some of the
most significant algorithmical approaches to solve Problem 3.23 in the next section, let
us conclude this section by discussing the relationship between the weighted sum-rate
maximization problem and the geometry of the capacity region of the Gaussian MIMO
broadcast channel.

In the last chapter we saw that the capacity region of the Gaussian MIMO broadcast
channel is equal to the capacity region of the Gaussian MIMO multiple access channel
RMAC(P ). This region is defined as the union of polymatroids that result from all possible
transmit statistics satisfying a transmit power constraint jointly imposed on all users of the
network (cf. Eq. 2.29). Thus, any point on the boundary of RMAC(P ) is either a vertex or
lies on an edge or face of a particular polymatroid corresponding to certain statistics. While
points on the boundary of RMAC(P ) corresponding to vertices are obtained as solutions
to Problem 3.22, points on the boundary of RMAC(P ) corresponding to edges or faces of
polymatroids can not be characterized as solutions to this problem. This is due to the fact
that in the formulation of Problem 3.22 we have implicitly restricted ourselves to those
rate vectors that are achievable by successive decoding (cf. Section 2.2.2.3).

Consider Problem 3.23 with the optimum decoding order for the weights µ1 ≤ · · · ≤
µk̄ ≤ µk̄+1 = · · · = µk̄+J ≤ · · · ≤ µK . Rewriting the objective function of this problem
using priorities µ1,...,K rather than η1,...,K we obtain

k̄∑

k=1

µk log2

(

|It +
∑

j≥k HH
j QjHj|

|It +
∑

j>k HH
j QjHj|

)

+ µ log2

(

|It +
∑

j≥k̄+1 HH
j QjHj |

|It +
∑

j≥k̄+J+1 HH
j QjHj|

)

+

+
K∑

k=k̄+J+1

µk log2

(

|I t +
∑

j≥k HH
j QjHj |

|I t +
∑

j>k HH
j QjHj |

)

,

where µ = µk̄+1 = · · · = µk̄+J . Observe that this function does not depend on the individual
rates of users k̄ + 1, . . . , k̄ + J , but only on the sum rate achieved by these users, which is
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given by the second term in the above expression. Due to strict concavity of the objective
function, there is a unique set of covariance matrices Q1,...,K that achieve the optimum
value of this function. However, there are at least J ! rate vectors that can be achieved by
performing successive decoding and are optimum.1 Each of these vectors corresponds to a
different decoding order within the group of users k̄ + 1, . . . , k̄ + J . In terms of geometry,
we can say that, in this case, the polymatroid RMAC(Q1,...,K) defined by the optimum
covariance matrices has a face with J ! vertices whose points all represent optimum rate
vectors for the weighted sum-rate maximization problem. All points on this face lie on the
boundary of RMAC(P ) as points lying in the interior of RMAC(P ) can never be weighted
sum-rate maximizers. As it has been already discussed (cf. Section 2.2.2.3), the vertices
are achieved by successive decoding in the MAC or DPC-based successive encoding in the
BC. All other points on this face can be reached by time sharing. Hence, we observe that
weighted sum-rate maximization with equality in the priorities of certain users give rise to
statistics that are associated with time-sharing regions on the boundary of RMAC(P ) or,
equivalently, RDPC(P ). In the previous chapter, Conjecture 2.2.3 states that all points on
the dominant face of the sum-rate maximizing polymatroid, i.e., all weights equal, might
be achievable in the BC without resorting to time-sharing. Here, Conjecture 3.2.1 extends
this hypothesis to all other time-sharing regions on the boundary of the capacity region.

Conjecture 3.2.1. Given a Gaussian broadcast channel, let Q1,...,K be the set of covariance
matrices that maximize

∑K
k=1 µkRk with µ1 ≤ · · · ≤ µk̄ ≤ µk̄+1 = · · · = µk̄+J ≤ · · · ≤ µK

for a given transmit power constraint in the dual MAC. Additionally, let Σk̄+1,...,k̄+J be
a set of transmit covariance matrices achieving any of the vertices of the polymatroid
RMAC

(
Qk̄+1,...,k̄+J

)
in the BC by encoding users k̄+ 1, . . . , k̄+ J successively with order π

according to the DPC scheme. Then,

RMarton
(
π,Σk̄+1,...,k̄+J

)
= RMAC

(
Qk̄+1,...,k̄+J

)
.

In the following, the validity of this conjecture will be shown for K = 3, J = 2 and
rk = 1. Consider the BC given by

yk = hH
k x + nk, k = 1, 2, 3.

Let us start assuming µ1 = µ2 ≤ µ3. The objective function for the weighted sum-rate
maximization problem in the dual MAC is given by

3∑

k=1

µkRk =µ1 log2

(∣
∣I + h1h

H
1 q1 + h2h

H
2 q2 + h3h

H
3 q3
∣
∣
)

− µ1 log2

(∣
∣I + h3h

H
3 q3
∣
∣
)

+ µ3 log2

(∣
∣I + h3h

H
3 q3
∣
∣
)
. (3.24)

Note that users 1 and 2 are decoded before user 3. That is, the signal transmitted by user 3
is viewed as interference while detecting the signals from users 1 and 2. Define the effective
channels of these users as

ĥk =
(
I + h3h

H
3 q3
)−1

hk, k = 1, 2.

1This number becomes larger if equality also holds for the weights of some other users different from
k̄ + 1, . . . , k̄ + J .
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Using this definition Eq. 3.24 can be written as

3∑

k=1

µkRk = µ1 log2

(∣
∣
∣I + ĥ1ĥ

H

1 q1 + ĥ2ĥ
H

2 q2

∣
∣
∣

)

+ µ3 log2

(∣
∣I + h3h

H
3 q3
∣
∣
)
.

Considering the transmit power constraint q1 + q2 + q3 ≤ P , the KKT conditions for
optimality of q1 and q2 yield

ĥ
H

1

(

I + ĥ1ĥ
H

1 q1 + ĥ2ĥ
H

2 q2

)−1

ĥ1 = ĥ
H

2

(

I + ĥ1ĥ
H

1 q1 + ĥ2ĥ
H

2 q2

)−1

ĥ2.

This is exactly the result given by Eq. 2.30 in Section 2.2.2.3 as necessary condition for
sum-rate optimality. That is, optimality requires that users 1 and 2 achieve maximum sum
rate with the power left by user 3. As we already saw, a consequence of this condition is
RMarton (π,Σ1,Σ2) = RMAC (q1, q2).

Now, let us assume µ1 ≤ µ2 = µ3. Different to the previous case, the two users with
equal weights do not suffer interference from the other user. Rather, these two users cause
interference to the third one and, therefore, sum-rate maximization of these users is not
necessarily optimum. That is, the optimization of q2 and q3 can not be reduced to a sum-
rate maximization problem, which calls for a more elaborated proof. The objective function
is now given by

3∑

k=1

µkRk = µ1 log2

(∣
∣I + h1h

H
1 q1 + h2h

H
2 q2 + h3h

H
3 q3
∣
∣
)

+ η log2

(∣
∣I + h2h

H
2 q2 + h3h

H
3 q3
∣
∣
)
.

where η = µ2 − µ1. In this case, the KKT optimality conditions yield

λ = µ1h
H
1

(
I + h1h

H
1 q1 + h2h

H
2 q2 + h3h

H
3 q3
)−1

h1,

λ = hH
2

(

µ1

(
I + h1h

H
1 q1 + h2h

H
2 q2 + h3h

H
3 q3
)−1

+ η
(
I + h2h

H
2 q2 + h3h

H
3 q3
)−1
)

h2,

λ = hH
3

(

µ1

(
I + h1h

H
1 q1 + h2h

H
2 q2 + h3h

H
3 q3
)−1

+ η
(
I + h2h

H
2 q2 + h3h

H
3 q3
)−1
)

h3,

where λ is the Lagrangian multiplier associated with the transmit power constraint. To be
strict, these are the optimality conditions under the assumption that all users receive some
power. If switching off user 1 turns out to be optimum, the problem degenerates into a sum-
rate maximization problem for users 2 and 3 for which we know that RMarton (π,Σ2,Σ3) =
RMAC (q2, q3) obtains. Coming back to the general case, in which all users are on, optimally,
user 1 is decoded first, while the decoding order of users 2 and 3 can be arbitrarily chosen.
Let us assume that user 2 is the second decoded user and user 3 the third. Under this
decoding order, the transmit covariance matrices in the BC channel corresponding to the
optimum powers q1, q2 and q3 in the dual MAC can be computed as [128]

Σ1 =

(
I + h2h

H
2 q2 + h3h

H
3 q3
)−1

h1q1h
H
1

(
I + h2h

H
2 q2 + h3h

H
3 q3
)−1

hH
1

(
I + h2h

H
2 q2 + h3h

H
3 q3
)−1

h1

, (3.25)

Σ2 =

(
I + h3h

H
3 q3
)−1

h2q2h
H
2

(
I + h3h

H
3 q3
)−1

hH
2

(
I + h3h

H
3 q3
)−1

h2

(
1 + hH

2 Σ1h2

)
, (3.26)

Σ3 =
h3q3h

H
3

hH
3 h3

(
1 + hH

3 Σ1h3 + hH
3 Σ2h3

)
. (3.27)
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In order to prove that RMarton (π,Σ2,Σ3) = RMAC (q2, q3), with π(1) = 3 and π(2) = 2,
we show that the rate increase experienced by user 2 when reversing π and maintaining the
statistics in the broadcast channel is the same as the rate increase experienced by this user
in the dual MAC if it is decoded after user 3. Recalling the discussion in Section 2.2.2.3
concerning the proof of conjecture 2.2.3 for a particular case, this is equivalent to showing

log2

(
|It + q2h2h

H
2 ||It + q3h3h

H
3 ||It +q2h2h

H
2 + q3h3h

H
3 |−1

)
=

= log2

(

1 +
hH

2 Σ2h2h
H
2 Σ3h2

(
1 + hH

2 Σ1h2 + hH
2 Σ2h2

)2

)

. (3.28)

Note that, apart from the indexes, the only change in this expression with respect to Eq.
2.36 is the inclusion in the denominator on the right-hand side of an interference term
caused by user 1.

Applying the matrix inversion lemma to the factors
(
I + h1h

H
1 q1 + h2h

H
2 q2 + h3h

H
3 q3
)−1

,
the optimality conditions given above can be rewritten as

λ = µ1

hH
1

(
I + h2h
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From Eq. 3.25 and the two first conditions we obtain

1 + hH
2 Σ1h2 = µhH

2

(
I + h2h

H
2 q2 + h3h

H
3 q3
)−1

h2, (3.29)

where µ = µ2/λ. Similarly, from the first and the third condition we get

1 + hH
3 Σ1h3 = µhH

3

(
I + h2h

H
2 q2 + h3h

H
3 q3
)−1

h3. (3.30)

Using these expressions we shall first simplify the right-hand side of Eq. 3.28. From sub-
stitution of Eq. 3.26 in the right-hand side of Eq. 3.28 we have
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(3.31)



3.2 Weighted sum rate 73

where the matrix inversion lemma has been applied in order to obtain the second equality.
From Eqs. 3.26, 3.27, 3.29, 3.30 and application of the matrix inversion lemma we compute

hH
2 Σ3h2 = µq3

|hH
2 h3|2
‖h3‖22

hH
3

(
I + h3h

H
3 q3
)−1

h3. (3.32)

Using Eqs. 3.26 and 3.29 we compute

1 + hH
2 Σ1h2+hH
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=µhH
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H
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H
3 q3
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)

. (3.33)

Finally, substituting Eqs. 3.32 and 3.33 in Eq. 3.31 and after some trivial algebra we obtain

log2
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= log2
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)

.

It remains to be shown that the left-hand side of Eq. 3.28 is equal to this expression. Using
the identity |I + AB| = |I + BA| we get

|It + qkhkh
H
k | = 1 + ‖hk‖22qk, k = 1, 2. (3.34)

Using this identity after successive application of the matrix inversion lemma to
(
It + q2h2h

H
2 + q3h3h

H
3

)−1
and

(
I t + q3hkh

H
k

)−1
with k = 2 or k = 3 it is easy to show

that

∣
∣It + q2h2h

H
2 + q3h3h
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3

∣
∣
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=
(
(1 + ‖h3‖22q3)(1 + ‖h2‖22q2)− q2q3|hH

2 h3|2
)−1

.

Substituting this equation and Eqs. 3.34 in the left-hand side of Eq. 3.28 the proof follows.

3.2.1 Memoryless channels

The first algorithm proposed in the literature to specifically solve Problem 3.23 was pre-
sented in [133]. This algorithm performs in each iteration a line search within the feasible
region by moving along the direction of the principal eigenvalue of the gradient of the
objective function. The main drawback of this algorithm is the high sensitivity of the con-
vergence rate with respect to the dimensionality of the input space. In part motivated
by this flaw, a number of algorithmic approaches to the weighted sum-rate maximization
problem have appeared of late, which exhibit faster convergence. In [69] an algorithm is
presented for the particular case of single-antenna receivers that builds upon the iterative
waterfilling principle discussed in Section 3.1.1.1. A conjugate gradient projection algo-
rithm for the general case is proposed in [75]. In [10] an algorithm has been presented
that is based on a projected conjugate gradient approach and operates on the precoding
filters. Finally, a gradient ascent projection algorithm is proposed in [62]. Here, we will first
briefly review the initial algorithm proposed in [133], which has so far been the algorithm
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of reference for weighted sum-rate maximization, and, then, we briefly expose the basic
principles of the gradient ascent projection algorithm presented in [62], which shares some
of its basics elements with the algorithms presented in [75] and [10].

Without loss of generality and for purposes of notational convenience, in the next two
sections weights µ1 ≤ µ2 ≤ . . . ≤ µK are assumed.

3.2.1.1 Rank-one gradient ascent

This algorithm, proposed in [133], computes in each iteration a new set of covariance
matrices within the feasible region by moving along the direction of the principal eigenvalue
of the gradient of the objective function. To be more specific, consider the objective function
of Problem 3.23 under the assumption on the weights made above,

f(Q1,...,K) =

K∑
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ηk log2

(∣
∣
∣
∣
∣
I t +

∑

j≥k

HH
j QjHj

∣
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∣
∣

)

,

where ηk = µk−µk−1, k = 2, . . . , K and η1 = µ1. The gradient of this function with respect
to Qi is given by

Gi =

i∑

k=1

ηkH i

(

I t +
∑

j≥k

HH
j QjHj

)−1

HH
i . (3.35)

Now, consider the vector resulting from

u = arg max
v

{
vHGkv|k = 1, . . . , K

}
, (3.36)

subject to ‖v‖ = 1. This vector is the eigenvector associated with the largest principal

eigenvalue of all gradient matrices. Let Q
(ℓ)
1,...,K be the set of covariance matrices obtained

at the ℓth iteration of the algorithm and u(ℓ) the maximizer of Problem 3.36 for these
matrices. Assume that u(ℓ) is the principal eigenvector of Gi, i.e., the maximum in Problem
3.36 is reached for index k = i. The update rule for the covariance matrices is given by

Q
(ℓ+1)
k = (1− α)Q

(ℓ)
k + Pαu(ℓ)u(ℓ),H, k = i,

Q
(ℓ+1)
k = (1− α)Q

(ℓ)
k , k 6= i,

where α ∈ (0, 1) is the step size that can be optimized for each update. On the one hand,
this update preserves the positive semidefinite property of the covariance matrices. On the
other hand, it can be easily verified that if matrices Q

(ℓ)
1,...,K satisfy the transmit power

constraint, Q
(ℓ+1)
1,...,K also satisfy this constraint. That there is always a step size for which

this update yields an increase of the objective function can be shown by analyzing the
linear approximation of f(Q

(ℓ+1)
1,...,K) around Q

(ℓ)
1,...,K , i.e.,

f(Q
(ℓ+1)
1,...,K) ≈ f(Q

(ℓ)
1,...,K)− α

K∑

k=1

Tr
{

GkQ
(ℓ)
k

}

+ PαTr
{
Giu

(ℓ)u(ℓ),H
}
. (3.37)
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The third term on the right-hand side is equal to αPλ, where λ is the eigenvalue associated
to u(ℓ). The second term is upper bounded by αPλ. This can be easily shown by noting

K∑

k=1

Tr
{

GkQ
(ℓ)
k

}

=
K∑

k=1

Tr
{

ΛkQ̂
(ℓ)

k

}

=
K∑

k=1

J∑

j=1

[Λk]j,j

[

Q̂
(ℓ)

k

]

j,j
≤ λ

K∑

k=1

Tr
{

Q̂
(ℓ)

k

}

≤ λP,

where Λk is the matrix of eigenvalues of Gk, Gk = U kΛkU
H
k and Q̂

(ℓ)

k = UH
k Q

(ℓ)
k U k.

Thus, the right-hand side of Eq. 3.37 is never smaller than f(Q
(ℓ)
1,...,K). Choosing α small

enough the linear approximation can be done arbitrarily accurate and, hence, at least for
some of α > 0, f(Q

(ℓ+1)
1,...,K) will necessarily be greater than f(Q

(ℓ)
1,...,K). The pseudocode

corresponding to this approach is given in Algorithm 3.8. A major flaw of this algorithm
is that only the structure of the covariance matrix of one user is updated in each iteration.
As a result, the convergence speed of the algorithm strongly depends on the number of
users in the system or, more precisely, on the number of users that are eventually served
(cf. [69]).

Algorithm 3.8 Rank-one gradient ascent

1: Q
(0)
k ← P

Krk
Irk

, k = 1, . . . , K, ℓ← 0
2: Rnew ← 0
3: repeat

4: Rold ← Rnew

5: for m = 1 to K do

6: G
(ℓ)
i ←

∑i
k=1 ηkH i

(

I t +
∑

j≥k HH
j Q

(ℓ)
j H j

)−1

HH
i , i = 1, . . . , K

7: end for

8: {u(ℓ), j} ← arg max
v,k=1,...,K

vHG
(ℓ)
k v, subject to ‖v‖ = 1.

9: Q
(ℓ+1)
k = (1− α)Q

(ℓ)
k + δ[k − j]Pαu(ℓ)u(ℓ),H, k = 1, . . . , K

10: ℓ← ℓ+ 1
11: Rnew ← f(Q

(ℓ)
1,...,K)

12: until Rnew − Rold < ǫ

3.2.1.2 Projected gradient ascent

In each iteration, this algorithm, which has been proposed in [62], moves along the direction
indicated by the gradient of the objective function in order to search for an update of the
covariance matrices. In contrast to the rank-one gradient ascent algorithm discussed in
the previous section, here, the feasible region might be abandoned during the update
operation. Therefore, a projection step is needed that maps the updated set of matrices
onto a set of new feasible covariance matrices. The principle is rather general. However, the
implementation specifics for this particular application exhibit some interesting features.

Assume that, after the ℓth iteration, covariance matrices Q
(ℓ)
1,...,K are obtained. In order

to compute an improved set of covariance matrices, first, the gradients of the objective
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function are computed as indicated in Eq. 3.35. Then, an update of the covariance matrices
is done according to the following rule

Q̂
(ℓ+1)

k = Q
(ℓ)
k + αGk, k = 1, . . . , K.

where α > 0 is the step size. Contrary to the update rule of Algorithm 3.8, this update rule
modifies the structure of all covariance matrices in the direction of the gradient. This is
basically the reason for the superior convergence performance of this approach. However,
now, the total power constraint might be violated after such an update.2 In order to obtain

a feasible set of covariance matrices out of Q̂
(ℓ+1)

1,...,K a projection must be performed onto
the feasibility region. Convergence is guaranteed if an orthogonal projection is chosen, i.e.,

if for a given set of matrices Q̂
(ℓ+1)

1,...,K , the set of feasible matrices is computed that lying

within the feasible region are closest to the matrices Q̂
(ℓ+1)

1,...,K according to a certain norm.
Using the Frobenius norm the set of covariance matrices that fulfil the power constraint

and are closest to Q̂
(ℓ+1)

1,...,K can be computed as [75, 62]

Q
(ℓ+1)
k = [Q̂

(ℓ+1)

k − ξIrk
]+, k = 1, . . . , K

where ξ ≥ 0 is chosen so that the power constraint is fulfilled and [•]+ is an operator
that sets negative eigenvalues equal to zero. In the same way as the rate maximizing power
distribution over parallel channels can be visualized as waterfilling a recipient with different
levels, this solution admits an waterspilling interpretation, according to which water is let
out from a recipient as long as the total volume of water contained in the recipient exceeds
a desired value [62]. A sketch of this procedure is given in Algorithm 3.9.

Algorithm 3.9 Projected gradient ascent

1: Q
(0)
k ← P

Krk
Irk

, k = 1, . . . , K, ℓ← 0
2: Rnew ← 0
3: repeat

4: Rold ← Rnew

5: for m = 1 to K do

6: G
(ℓ)
i ←

∑i
k=1 ηkH i

(

I t +
∑

j≥k HH
j Q

(ℓ)
j Hj

)−1

HH
i , i = 1, . . . , K

7: end for

8: Q̂
(ℓ+1)

k ← Q
(ℓ)
k + αG

(ℓ)
k , k = 1, . . . , K

9: Q
(ℓ+1)
k ← [Q̂

(ℓ+1)

k − ξIrk
]+, k = 1, . . . , K

10: ℓ← ℓ + 1
11: Rnew ← f(Q

(ℓ)
1,...,K)

12: until Rnew −Rold < ǫ

2Note that due to the fact that Gk ≥ 0, the positive semidefinite constraint can never be violated by this
update rule.
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3.2.2 Time-dispersive channels

The algorithms reviewed in the last section can be straightforwardly applied to the MIMO
OFDM multiuser model given by Eqs. 3.13. As already discussed in Section 3.1.2, without
consideration of the block diagonal structure of the channels, this trivial extension has the
shortcoming of a cubic complexity order in the number of subcarriers. Nevertheless, along
the lines of the discussion in Section 3.1.2, it can be shown that also for the weighted
sum-rate optimization problem a block diagonal structure of the covariance matrix of each
user is optimum [116]. As a result, for the MIMO OFDM broadcast channel, Problem 3.23
can be restated as

max
Q1,...,K

1,...,N

N∑

n=1

K∑

k=1

ηk log2

(∣
∣
∣
∣
∣
I t +

K∑

j=k

HH
j,nQj,nHj,n

∣
∣
∣
∣
∣

)

, (3.38)

subject to
∑K,N

k=1,n=1 Tr{Qk,n} ≤ P and Qk,n ≥ 0, ∀k, n. Here, Qk,n denotes the covari-
ance matrix of user k on subcarrier n. In the next section a decomposition approach is
presented that makes possible the application of any weighted sum-rate maximizing ap-
proach for memoryless channels to Problem 3.38 with linear complexity in the number of
subcarriers. This procedure is based on the factorization of the covariance matrices as the
product of a normalized covariance matrix and a scalar representing the power used on
the corresponding subcarrier.

3.2.2.1 Factorization-based decomposition approach

This algorithm was introduced in [115, 116] in order to circumvent the dramatic slowdown
in convergence speed experienced by Algorithm 3.8 for increasing number of subcarriers
when directly applied to solve Problem 3.38. The main merit of the algorithm is that
if applied in combination with Algorithm 3.8 the number of required iterations to reach
convergence becomes independent of the number of subcarriers. The recently appeared
approaches in [75, 10, 62] admit simple extensions that solve Problem 3.38 in linear time
in the number of subcarriers and have a convergence behavior that is essentially insensitive
to the number of subcarriers in the system. This somehow undermines the significance of
the method described in the sequel. Nonetheless, this approach has a universal character
regarding the kind of algorithms it can be combined with. Furthermore, the general way of
proceeding might be of interest in contexts other than weighted sum-rate maximization.

For each subcarrier, we factorize Qk,n = PnQ̂k,n such that
∑K

k=1 Tr{Q̂k,n} ≤ 1 and
∑N

n=1 Pn ≤ P . Taking this factorization into account, optimum covariance matrices are
found iterating the following two steps. First, for given p = [ P1 · · · PN ]T, solve

max
Q̂1,...,K,n

K∑

k=1

ηk log2

(∣
∣
∣
∣
∣
I t + Pn

K∑

j=k

HH
j,nQ̂j,nHj,n

∣
∣
∣
∣
∣

)

,

subject to
∑K

k=1 Tr{Q̂k,n} ≤ 1 and Q̂k,n ≥ 0, ∀k, for every n. Second, for a given set of
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covariance matrices Q̂k,n, k = 1, . . . , K, n = 1, . . . , N , solve

max
p

N∑

n=1

K∑

k=1

ηk log2

(∣
∣
∣
∣
∣
It + Pn

K∑

j=k

HH
j,nQ̂j,nHj,n

∣
∣
∣
∣
∣

)

, (3.39)

subject to
∑N

n=1 Pn ≤ P and Pn ≥ 0. Both problems are convex. In the second step,
an optimum power allocation over subcarriers p is found for a given set of normalized
covariance matrices. In the first, given the optimum power allocation p obtained in the
previous iteration, an optimum set of normalized covariance matrices is found for every
subcarrier. It is clear that each step improves the value of the objective function in Eq.
3.38 and, hence, convergence is guaranteed.

In the first step, optimization of normalized covariance matrices can be done applying
any of the existing weighted sum-rate maximizing algorithms for memoryless channels. In
the second step, the KKT conditions of Problem 3.39 yield the following set of equations,

K∑

k=1

ηkTr
{
(I t + PnAk,n)

−1
Ak,n

}
− ν + ξn = 0, ∀n, (3.40)

P −
N∑

n=1

Pn ≥ 0, ν ≥ 0, Pn ≥ 0, ξn ≥ 0, ∀n,

ν

(

P −
N∑

n=1

Pn

)

= 0, ξnPn = 0, ∀n,

where Ak,n =
∑K

j=k HH
j,nQ̂j,nHj,n. Considering the eigenvalues λs

k,n, s = 1, . . . , t, of matrix
Ak,n, Eq. 3.40 can be rewritten as

K∑

k=1

t∑

s=1

ηkλ
s
k,n

1 + Pnλs
k,n

− ν + ξn = 0, ∀n.

An efficient algorithm can be implemented that computes the power allocation p satisfying
these conditions based on the following two observations.

Observation 1. For a given ν, Pn 6= 0 if and only if
∑K

k=1

∑t
s=1 ηkλ

s
k,n > ν. In that case,

ξn = 0 and
K∑

k=1

t∑

s=1

ηkλ
s
k,n

1 + Pnλs
k,n

− ν

is a monotonically decreasing function of the transmit power Pn.

Observation 2. The optimum ν is a monotonically decreasing function of the transmit
power P . In addition,

ν < max
n

{
K∑

k=1

t∑

s=1

ηkλ
s
k,n

}

,

i.e., at least one subcarrier gets some power.
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From Observation 1 it becomes clear that for a given ν there is a unique power allocation
p which can be efficiently computed. On the other hand, according to Observation 2, if this
power allocation exceeds the available transmit power, ν should be increased, otherwise it
should be decreased. In this way, bisection can be used in order to compute ν correspond-
ing to the particular transmit power constraint. The pseudocode for this decomposition
approach is given in Algorithm 3.10. The complexity order per iteration is linear in the
number of subcarriers as the weighted sum-rate maximization problem in line 7 must be
solved once per subcarrier. This can be done by applying any of the existing approaches for
weighted sum-rate maximization in memoryless channels. Note that the complexity order
involved in the computation of the optimum power allocation in line 9 is also linear in the
number of subcarriers.

Algorithm 3.10 Factorization-based decomposition approach

1: Q̂
(0)

k,n ← 1
Krk

Irk
, k = 1, . . . , K, n = 1, . . . , N

2: P
(0)
n = P/N, n = 1, . . . , N, ℓ← 0

3: Rnew ← 0
4: repeat

5: Rold ← Rnew

6: for n = 1 to N do

7: Q̂
(ℓ+1)

1,...,K,n ← arg max
Q̂1,...,K,n

K∑

k=1

ηk log

(∣
∣
∣
∣
∣
It + P (ℓ)

n

K∑

j=k

HH
j,nQ̂j,nHj,n

∣
∣
∣
∣
∣

)

subject to
∑K

k=1 Tr{Q̄k,n} ≤ 1, Q̂k,n ≥ 0, ∀k
8: end for

9: p(ℓ+1) ← arg max
p

N∑

n=1

K∑

k=1

ηk log

(∣
∣
∣
∣
∣
I t + Pn

K∑

j=k

HH
j,nQ̂

(ℓ+1)

j,n Hj,n

∣
∣
∣
∣
∣

)

subject to
∑N

n=1 Pn ≤ P , Pn ≥ 0

10: ℓ← ℓ+ 1

11: Rnew ←∑N
n=1

∑K
k=1 ηk log

(∣
∣
∣I t + P

(ℓ)
n

∑K
j=k HH

j,nQ̂
(ℓ)

j,nHj,n

∣
∣
∣

)

12: until Rnew − Rold < ǫ

3.3 Rate balancing

Weighted sum-rate maximization is a suitable policy in the context of communication
systems with stationary random arrival of information and buffering capability [8, 9]. In
such systems, if, at each time slot, the priorities are chosen to be proportional to the length
of the queue corresponding to each user, the system can be stabilized, i.e., the average delay
is bounded for all users. However, in the case of very stringent delay constraints and limited
mobility, assigning priorities to users and optimizing weighted sum rate does not guarantee
that the final ranking of the users, as given by the rates they obtain, corresponds to the
intended prioritization. For instance, it may happen that a high priority user obtains far a
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lower rate than a low priority user. This is generally the case if the channel of the latter is
good enough as compared to the channel of the former. Sometimes, it might be desirable to
have a stronger control upon the relative performance achieved by the users in the network
with respect to each other. Here is where the rate balancing problem formulation becomes
relevant. Now, the users are assigned relative rates qk, k = 1, . . . , K, rather than priorities.
A relative rate expresses the share that each user should get out of the total transmitted
rate. Mathematically, the optimization problem can be written as

max
γ,ρ

γ subject to γq ≤ ρ, ∀k, (3.41)

ρ ∈ RDPC(P ),

where RDPC(P ) is the BC capacity region for a particular channel realization as defined in
Eq. 2.23 or Eq. 2.24, ρ = [ R1 · · · RK ]T and q = [ q1 · · · qK ]T. Obviously, due to
duality,RDPC(P ) may be replaced byRMAC(P ) in the problem statement. Due to convexity
of the capacity region, the maximum of Problem 3.41 can be achieved with equality in the
constraints. That is, this problem is equivalent to finding the intersection between the
straight line defined by the constraint γq = ρ and the boundary of the capacity region.

As the capacity region is a convex set, Problem 3.41 is also convex. Furthermore, the
feasibility region has always a non-empty interior and, therefore, strong duality holds [13].
Consequently, a solution to the rate-balancing problem can be found by solving the dual
minimization problem. The Lagrangian dual function of Problem 3.41 with respect to the
constraint γq ≤ ρ can be written as

g(µ) = sup
γ,ρ

γ +
K∑

k=1

µk

(
Rk

qk
− γ
)

, (3.42)

subject to µk ≥ 0, ∀k, and ρ ∈ RDPC(P ), where µ = [ µ1 · · · µK ]T. This function is
equal to ∞ unless µ1 + · · ·+ µK = 1. As a result, the dual problem can be written as

min
µ

max
ρ

K∑

k=1

µk
Rk

qk
,

subject to ‖µ‖1 = 1, µk ≥ 0, ∀k and ρ ∈ RDPC(P ). Alternatively, the first constraint can
be incorporated into the objective function in order to obtain [71]

min
µ̃

max
ρ

RK

qK
+

K−1∑

k=1

µk

(
Rk

qk
− RK

qK

)

, (3.43)

subject to ‖µ̃‖1 ≤ 1, µk ≥ 0, ∀k and ρ ∈ RDPC(P ), where µ̃ = [ µ1 · · · µK−1 ]T. Let
ρ̄ = [ R̄1 · · · R̄K ]T be a maximizer of

g(µ̃) = max
ρ

RK

qK
+

K−1∑

k=1

µk

(
Rk

qk
− RK

qK

)

, (3.44)
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subject to ρ ∈ RDPC(P ), for given µ̃. From this definition of g(µ̃) it immediately follows

g(µ̃ +∆µ̃)− g(µ̃) ≥
K−1∑

k=1

(
R̄k

qk
− R̄K

qK

)

∆µk,

i.e., the vector s = [ S1 · · · SK−1 ]T with

Sk =
R̄k

qk
− R̄K

qK

is a subgradient of g(µ̃) at the given µ̃. Different from some of the algorithms based on
Lagrangian duality discussed so far, where bisection could be applied to find the optimum
in the one-dimensional dual input space, now, the dual variable µ̃ is, in general, multidi-
mensional. This calls for some more sophisticated subgradient-based methods. In the next
sections we briefly discuss two of them. The ellipsoid method, applied to this problem in
[71], and a projected subgradient method.

3.3.1 Ellipsoid method

The ellipsoid method was introduced in the late seventies. Its theoretical relevance was soon
revealed as, shortly after its introduction, it made possible to show that linear programs
are solvable in polynomial time, which had been a long-standing open question until then
(cf. [86] and references therein). This algorithm can be classified as a localization method,
to which cutting-plane methods also belong [12]. Starting from an initial point, at each
step these methods make use of a gradient or subgradient in order to discard part of the
search space from consideration in all future steps. In this way the search space reduces at
each step until the optimum point is localized within a set whose dimensions do not exceed
the desired accuracy. Compared to other localization methods, the ellipsoid method shows
a slow convergence but iterations are very simple. This algorithm was applied to the rate
balancing problem in [71].

An ellipsoid in RK−1 can be written as

E(µ̃(0),E(0)) =
{

z|(z − µ̃(0))T(E(0))−1(z − µ̃(0)) ≤ 1
}

,

where z ∈ RK−1 and E(0) is a symmetric K − 1 ×K − 1 matrix with real entries whose
eigenvalues represent the square of the lengths of the semi-axes of the ellipsoid. The center
of the ellipsoid is given by µ̃(0). In the first step, an ellipsoid must be computed that
comprises all the feasible region, e.g., E(0) = (1 − 1/K)IK−1, µ

(0)
1 = · · · = µ

(0)
K−1 = 1/K.

Obviously, the search can be restricted to points within this first ellipsoid as the optimum
point is certain to be a feasible point. Assume that after ℓ iterations, we know that the
optimum is in an ellipsoid E(µ̃(ℓ),E(ℓ)). If the point µ̃(ℓ) is feasible and we let s(ℓ) be the
subgradient of g(µ̃) at µ̃(ℓ), using the definition of subgradient, it can be easily shown that
the optimum necessarily lies in the set

E(µ̃(ℓ),E(ℓ)) ∩ {z|s(ℓ),T(z − µ̃(ℓ)) ≤ 0}.
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In the next iteration the algorithm computes the ellipsoid E(µ̃(ℓ+1),E(ℓ+1)) of minimum
volume enclosing this set as [12]

µ̃(ℓ+1) = µ̃(ℓ) − 1

K
E(ℓ)s̃(ℓ), (3.45)

E(ℓ+1) =
(K − 1)2

(K − 1)2 − 1

(

E(ℓ) − 2

K
E(ℓ)s̃(ℓ)s̃(ℓ),TE(ℓ)

)

, (3.46)

where s̃(ℓ) = s(ℓ)/
√

s(ℓ),TE(ℓ)s(ℓ). A case that was somehow neglected in [71] is the occur-

rence of an infeasible µ̃(ℓ) at the end of an iteration. Let s
(ℓ)
k , k = 1, . . . , K−1, be the gradi-

ents3 of the constraints fk(µ̃) = −µk ≤ 0, k = 1, . . . , K−1, and fK(µ̃) = µ1+ · · ·+µK−1 ≤
1, and assume that constraint fk(µ̃) ≤ 0 is violated by µ̃(ℓ), i.e., fk(µ̃

(ℓ)) > 0. From the
definition of subgradient, it can be shown that, under these assumptions, the optimum
necessarily lies in

E(µ̃(ℓ),E(ℓ)) ∩ {z|fk(µ̃
(ℓ)) + s

(ℓ),T
k (z − µ̃(ℓ)) ≤ 0}.

In this case the center and matrix of the ellipsoid of minimum volume enclosing this set is
given by [12]

µ̃(ℓ+1) = µ̃(ℓ) − 1 + α(K − 1)

K
E(ℓ)s̃

(ℓ)
k , (3.47)

E(ℓ+1) =
(K − 1)2(1− α2)

(K − 1)2 − 1

(

E(ℓ) − 2(1 + α(K − 1))

(1 + α)K
E(ℓ)s̃

(ℓ)
k s̃

(ℓ),T
k E(ℓ)

)

, (3.48)

where s̃
(ℓ)
k = s

(ℓ)
k /

√

s
(ℓ),T
k E(ℓ)s

(ℓ)
k and α = fk(µ̃

(ℓ))/

√

s
(ℓ),T
k E(ℓ)s

(ℓ)
k . A sketch of the pseu-

docode corresponding to this method is given in Algorithm 3.11.

3.3.2 Projected subgradient method

This method is a generalization of the gradient descent projection method to convex non-
differentiable functions. Given a subgradient s(ℓ) of g(µ̃) at µ̃(ℓ), the update rule is given
by

ˆ̃µ(ℓ+1) = µ̃(ℓ) − αℓs
(ℓ),

where αℓ is the step size at the ℓth iteration. Of course, this update might result in a new
ˆ̃µ(ℓ+1) that is not feasible. In this case, in order to restore feasibility this new point must
be projected back onto the feasibility region. The minimum Euclidean distance projection
of ˆ̃µ(ℓ+1) onto the feasibility region can be computed by solving

min ‖d‖22, subject to ‖ˆ̃µ(ℓ+1) + d‖1 ≤ 1, (3.49)

µ̂k + dk ≥ 0, k = 1, . . . , K − 1

3Due to the fact that the constraint functions are differentiable the concepts of subgradient and gradient
are equivalent.
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Algorithm 3.11 Ellipsoid method

1: µ
(0)
k ← 1

K
, k = 1, . . . , K − 1, E(0) ← (1− 1/K)IK−1, ℓ← 0

2: Compute g(µ̃(0))
3: repeat

4: if fk(µ̃
(ℓ)) ≤ 0, ∀k then

5: Compute µ̃(ℓ+1) as in Eq. 3.45
6: Compute E(ℓ+1) as in Eq. 3.46
7: else

8: Select violated constraint
9: Compute µ̃(ℓ+1) as in Eq. 3.47

10: Compute E(ℓ+1) as in Eq. 3.48
11: end if

12: ℓ← ℓ+ 1
13: Compute g(µ̃(ℓ))
14: until |g(µ̃(ℓ))− g(µ̃(ℓ−1))| < ǫ

The projected update is then given by µ̃(ℓ+1) = ˆ̃µ(ℓ+1) + d. Solving the KKT conditions
for Problem 3.49 the following projection rule can be derived

µ
(ℓ+1)
k =

[[

µ̂
(ℓ+1)
k

]+

− η
]+

, k = 1, . . . , K − 1

where [•]+ is an operation that sets negative values to zero. The parameter η is equal to

0 if
∑K−1

k=1 [µ̂k]
+ ≤ 1 and chosen such that

∑K−1
k=1 µ

(ℓ+1)
k = 1, otherwise. In contrast to the

projected gradient descent method, which delivers a sequence of decreasing values, this
method might yield an increase of the objective function in some iterations. Nevertheless,
the method provably converges to the optimum if the step size is chosen such that [14]

∞∑

ℓ=1

αℓ =∞, αℓ → 0, ℓ→∞.

This algorithm is summarized in Algorithm 3.12.

Algorithm 3.12 Projected subgradient method

1: µ
(0)
k ← 1

K
, k = 1, . . . , K − 1, ℓ← 0

2: Compute g(µ̃(0))
3: repeat

4: ˆ̃µ(ℓ+1) = µ̃(ℓ) − αℓs
(ℓ)

5: µ
(ℓ+1)
k =

[[

µ̂
(ℓ+1)
k

]+

− η
]+

, k = 1, . . . , K − 1

6: ℓ← ℓ+ 1
7: Compute g(µ̃(ℓ))
8: until |g(µ̃(ℓ))− g(µ̃(ℓ−1))| < ǫ
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3.3.3 Implementation issues

Once a solution for Problem 3.43 has been found, it remains to compute the variables γ and
ρ that achieve optimality in Problem 3.41, i.e., the primal problem. Due to strong duality
γ̄ = g(¯̃µ) where γ̄ is the solution of the rate-balancing problem and ¯̃µ the minimizer of the
dual problem. Obviously, the optimum rate vector is given by ρ̄ = γ̄q. However, it remains
to find out what is the transmission strategy that leads to ρ̄. To this end, consider the
following relationship (cf. Eqn A.8).

γ̄(ρ̄) ≤ R̄K

qK
+

K−1∑

k=1

µ̄k

(
R̄k

qk
− R̄K

qK

)

≤ g(¯̃µ) = γ̄(ρ̄).

Since for all inequalities, equality must hold, it becomes clear that ρ̄ is a maximizer of Eq.
3.44. That is, the optimum rate vector is a maximizer of the weighted sum-rate maximiza-
tion problem with weights wk = µ̄k/qk, k = 1, . . . , K − 1 and wK = (1−∑K−1

k=1 µ̄k)/qK . If
all these weights are different from each other, there is only a rate vector that maximizes
the weighted sum-rate and the corresponding transmit statistics can be computed by solv-
ing Problem 3.22. This vector is ρ̄. The subgradient of g(µ̃) at ¯̃µ is in this case zero. If
some of the weights are equal, the optimum transmit covariance matrices in the MAC are
still unique, but the optimum rate vectors are not (cf. Section 3.2). As discussed in Sec-
tion 3.2, all these weighted sum-rate optimum rate vectors define a time-sharing region on
the boundary of RDPC(P ) or, equivalently, RMAC(P ). The rate balancing optimum point
is, in this case, just one of these vectors. If, for practical reasons, only successive encod-
ing/decoding is considered, the problem consists in identifying the rate vectors achievable
with successive encoding/decoding between which time-sharing should be performed in
order to reach ρ̄. Besides, the time share corresponding to each of these vectors must be
determined.

Assume that after solving the dual problem, M sets of users can be identified, all users
of each set having identical weights. Let Jm be the cardinality of the mth set. Under this
assumption, there is, in general, at least4 J = J1!J2! · · ·JM ! different rate vectors ρ1,...,J

that can be achieved with successive decoding in the dual MAC and are weighted sum-rate
maximizers. Each of these vectors corresponds to a different decoding order. As all these
vectors lie on the same hyperplane of dimension K−1, Carathéodory’s theorem on convex
sets [40] can be invoked in order to show that the point of intersection of the constraint
ρ = γq and this hyperplane lies in the convex hull of at most K of the J different vertices
of the convex polytope defined by the weighted sum-rate maximizing rate vectors. That is,
at most, time-sharing between K different orderings is required. If J ≤ K the time shares
θ1,...,J corresponding to each of these vector can be computed by solving ρ̄ =

∑J
j=1 ρjθj ,

which has a unique solution. On the contrary, if J > K the resulting linear system is
underdetermined and a solution has to be found that satisfies the constraints θj ≥ 0, i.e.,

no negative time shares are allowed, and
∑J

j=1 θj = 1, i.e., the optimum is within the convex
hull of the given rate vectors. A possible approach consists of sequentially considering each
of the

(
J
K

)
possible combinations of rate vectors until a combination is found that yields

4If the underlying transmission strategy is OFDM the number of possible rate vectors is larger as decoding
order can be varied across carriers.
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a linear system of equations such that the solution fulfils the constraints. In this case the
time shares of all other non-selected rate vectors are set to zero. Alternatively, a feasible
solution to the constrained linear system

ρ̄ =

J∑

j=1

ρjθj ,

subject to θj ≥ 0 and
∑J

j=1 θj = 1 can be found by applying phase 1 of the simplex method
[92].

The discussion above is somehow idealistic in that it assumes that the optimum of the
dual problem is perfectly known. In practice, however, all what we have after a finite
number of iterations is an estimate of the dual optimum and, based on this approximation,
an estimate of the primal optimum must be computed. The general issue of estimating
primal optima from approximate dual solutions is a current topic of research (see [85, 15]
and references therein). For our particular problem, given the sequence of dual variables
µ̃(1), . . . , µ̃(L) obtained after L iterations, the sequence of primal variables γ(1), . . . , γ(L),
ρ(1), . . . ,ρ(L) can be considered, where ρ(ℓ) is a maximizer of Eq. 3.44 for µ̃ = µ̃(ℓ) and

γ(ℓ) = min
k

R
(ℓ)
k

qk
.

Let γ̄L = max{γ(ℓ)|ℓ = 1, . . . , L} and ḡL = min{g(µ̃(ℓ))|ℓ = 1, . . . , L}. If after L iterations

ḡL − γ̄L < ǫ,

for a desired accuracy ǫ the search can be terminated. Any desired accuracy will always
be reached if the optimum weights w1,...,K are all unequal (see Fig. 3.1). Unfortunately, if
the primal optimum rate vector lies on a time-sharing region a gap will remain between
ḡ and γ̄ no matter how many iterations are carried out (see Fig. 3.2). That is, even if
convergence is achieved in the dual, in the primal, no convergence is reached. This is due
to the fact that in Eq. 3.44 only maximizers ρ(ℓ) are considered that are achievable with
successive decoding. These vectors will, in general, not be maximizers of the primal. In this
case, let w(1), . . . ,w(L) be the sequence of weight vectors with w

(ℓ)
k = µ

(ℓ)
k /qk, k = 1, . . . , K.

Recalling that the relative order of the entries of these vectors indicates the order in which
the users are optimally decoded, we can check where the last changes in the decoding order
of the users occur in this sequence (cf. [50]). Assume that C changes in the decoding order
are found in the last elements5 of the sequence w(1), . . . ,w(L) and let ρ1, . . . ,ρC be the rate
vectors corresponding to those weight vectors that represent a change in the decoding order
with respect to a previous weight vector. A good approximation of the primal solution can

5The last elements of the sequence can be defined as those in which the entries of the vectors w(ℓ) do
not significantly change.
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be found by solving

max
θ1,...,C

γ subject to γq =

C∑

c=1

ρcθc,

C∑

c=1

θc = 1, θc ≥ 0, c = 1, . . . , C.

Beside these subtleties concerning the practical implementation, a general problem of
subgradient-based optimum approaches is the relatively slow convergence rate, which ap-
pears to be sensitive to the amount of users in the system (see Fig. 3.3). In addition, each
iteration involves execution of an iterative weighted sum-rate algorithm. Although these
algorithms have been empirically observed to have a good convergence behavior [62], their
iterative character represents a further source of non-deterministic complexity in the com-
putation of the optimum rate-balancing solution. These facts motivate the introduction and
discussion of simple non-iterative approaches in the next chapter that can achieve a large
fraction of the performance achieved by optimum iterative approaches with a complexity
which can be determined beforehand independently of particular system parameters.
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Figure 3.1: Dual values g(ℓ) and corresponding primal values γ(ℓ) during the first 30 iter-
ations of the ellipsoid algorithm for a MIMO OFDM broadcast channel with N = 16,
K = 3, t = 4 and rk = 2, ∀k, SNR = 20 dB. The vector of relative rates is given
by q = [1, 3, 6]T and the optimum weights w = [0.0214, 0.0400, 0.1431]T, i.e., no time-
sharing is required to achieve the rate-balancing solution.
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Figure 3.2: Dual values g(ℓ) and corresponding primal values γ(ℓ) during the first 30 iter-
ations of the ellipsoid algorithm for a MIMO OFDM broadcast channel with N = 16,
K = 3, t = 4, rk = 2, ∀k, SNR = 20 dB. The vector of relative rates is given by
q = [1, 3, 3]T and the optimum weights w = [0.0775, 0.1537, 0.1537]T, i.e., time-sharing
between users 2 and 3 is required to achieve the rate balancing solution.
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Figure 3.3: Convergence of the ellipsoid method applied to the dual of the rate-balancing
problem. Averaged curves over 100 channel realizations. N = 16, t = 4, rk = 2, SNR = 10
dB, q = [1, . . . , 1]T.





4 Non-iterative approaches for the broadcast

channel

Finding the optimum solutions of the three problems discussed in the previous chapter
requires the application of iterative algorithms. While for the weighted sum-rate maxi-
mization problem, and the sum-rate maximization problem as an especial case, recently
proposed algorithms are observed to require few iterations to reach convergence, for the
rate balancing problem, existing subgradient-based algorithms exhibit a poor convergence
behavior. In any case, for any of the algorithms described in the previous chapter, the
number of iterations required in order to achieve convergence is a function of the system
parameters that can not be predicted beforehand and, therefore, constitutes a source of
uncertainty regarding the computational complexity needed to compute the optimum so-
lution. In some applications where delay is an issue, such as wireless communications with
fast time-varying channels, this feature of optimum approaches might become a problem.

In this chapter, a number of suboptimum approaches are discussed that deliver solutions
that require a closed number of computations. Most of the chapter deals with decomposi-
tion approaches that transform the original broadcast channel into a set of scalar decoupled
subchannels. The resulting subchannels are decoupled in the sense that transmission in any
subchannel does not cause interference on all other subchannels. First, we present a gen-
eral framework that encloses all decomposition approaches discussed in the literature so
far and a general successive subchannel allocation method that can be applied to both
linear schemes and schemes based on successive encoding. Then, we consider optimization
of the subchannel and power allocation policies for each of the design problems discussed
in the previous chapter. In the last section of the chapter, a novel successive subchannel
allocation approach based on successive encoding is introduced that allows for cross-talk
between the resulting scalar subchannels.

4.1 Broadcast channel decomposition schemes

Without loss of optimality the transmit signal for the general Gaussian broadcast channel
given by Eq. 2.6 can be written as

x =
K∑

k=1

V kP
1/2
k sk,

where V k ∈ Ct×mk is a matrix with orthonormal column vectors, P k ∈ Rmk×mk is a
diagonal power matrix and sk ∈ Cmk×1 is the vector of signals intended for user k, which
is assumed to be a realization of a zero-mean, circularly symmetric complex Gaussian
distributed vector sk with covariance E{sks

H
k } = Imk

. Signals intended for different users

89
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are assumed to be statistically independent. The number of spatial dimensions mk is less
than or equal to min{t, rk} and

K∑

k=1

Tr{P k} ≤ P.

That this structure of the transmit signal is optimum is a simple consequence of the fact
that every transmit covariance matrix admits an eigenvalue decomposition. There also
exist matrices of orthonormal columns U k ∈ Crk×mk , k = 1, . . . , K, that can be applied at
the receivers without capacity loss, i.e., I(sk, yk) = I(sk,U

H
k yk). For any user k, one such

matrix is the matrix of right singular vectors of the corresponding matched filter matrix
(cf. [115]).

In this section, we are concerned with the choice of precoding matrices V k and receive
filter matrices U k. However, rather than optimality our goal is simplicity. In particular, we
aim at finding precoding and receive filter matrices that decompose the broadcast channel
into a set of decoupled subchannels. This can easily be done by using elementary tools such
as zero-forcing constraints or the singular value decomposition (SVD). Obviously, there is
not a unique way of decomposing a broadcast channel. This degree of freedom can be
exploited in order to optimize the performance measure of interest. A further optimization
step can be carried out subsequently by choosing an adequate power allocation policy for
the set of resulting non-interfering subchannels. In the following, we distinguish between
linear decomposition approaches and successive-encoding-based decompostion approaches.
In the latter, part of the interference is eliminated by resorting to dirty paper coding. In
the former, the choice of beamforming vectors is made such that interference is completely
suppressed.

4.1.1 Linear decomposition

A linear decomposition of the broadcast channel is achieved if the following two conditions
hold

UH
k HkV k = Dk, k = 1, . . . , K, (4.1)

UH
j HjV k = 0, k = 1, . . . , K, ∀j 6= k, (4.2)

where Dk ∈ R
mk×mk
+ is diagonal. That is, information for any user k is transmitted over

a set of mk decoupled channels and the signals transmitted to this user do not cause
interference to signals received by any other user j. The first condition is not restrictive
in terms of achievable capacity. In fact, for any matrix Ṽ k of orthonormal columns that
satisfies the second condition and a matrix Ũ k of orthonormal columns that filters out

interference from other users, we can compute the SVD of the product Ũ
H

k HkṼ k. Let
Ū k ∈ Cmk×mk be the resulting unitary matrix of left singular vectors and V̄ k ∈ Cmk×mk

the corresponding unitary matrix of right singular vectors. The matrix V k = Ṽ kV̄ k has
orthonormal columns and satisfies the second condition. The matrix U k = Ũ kŪ k has
orthonormal columns and suppresses interference from all other users. Together, U k and
V k satisfy the first condition and the resulting channel matrix Dk supports the same

transmission rate as the initial Ũ
H

k HkṼ k matrix. The second condition demands that the
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number of subchannels in the system be non-larger than the number of transmit antennas,
i.e.,

∑K
k=1mk ≤ t.

Given a performance measure of interest, optimization can be carried out over the choice
of mk, k = 1, . . . , K. But even fixing the number of subchannels per user, in general, there
are additional degrees of freedom in the choice of precoding and receive filter matrices.
In order to see this, consider arbitrarily chosen receive filter matrices Ũ k of orthonormal
columns and dimension rk × mk, k = 1, . . . , K, where

∑K
k=1mk ≤ t. For each user k,

consider the matrix

H̄k = [ HT
1 Ũ

∗

1 · · · HT
k−1Ũ

∗

k−1 HT
k+1Ũ

∗

k+1 · · · HT
KŨ

∗

K ]T, (4.3)

and the projector associated with the null space of this matrix T⊥
k = I t −

H̄
H
k (H̄kH̄

H
k )−1H̄k. Let Ū k ∈ Cmk×mk be the matrix of mk dominant left singular vec-

tors and V k ∈ C
t×mk the corresponding matrix of right singular vectors obtained from

performing a SVD on the product Ũ
H

k HkT
⊥
k . Obviously, T⊥

k V k = V k. Using this and the
property H̄kT

⊥
k = 0, it can easily be shown that V k satisfies Eq. 4.2 with U j = Ũ jŪ j,

∀j 6= k. Further, U k = Ũ kŪ k and V k satisfy Eq. 4.1. That is, starting from any arbitrary
choice of matrices Ũ 1,...,K a set of precoding matrices and receive filter matrices can be
found. In general, the resulting subchannels, whose gains are given by the diagonal entries
of D1,...,K , will be different for different choices of matrices Ũ 1,...,K . Optimization of the
number of subchannels for each user and the choice of precoding and receiver filter matri-
ces can be viewed as a general subchannel allocation problem. This is in general difficult
to solve even for very elemental performance measures such as sum rate mostly due to its
combinatorial nature. However, a simple suboptimum subchannel allocation scheme will be
presented in Section 4.1.3.1 that, as we shall see, delivers very good performance. Before
that, in the following, we review some of the known linear decomposition schemes and
existing partial solutions to this subchannel allocation problem.

If r1 = · · · = rK = 1, the subchannel allocation problem reduces to a user selection
problem. The objective is to select a group of users U of cardinality |U| ≤ t such that
the performance measure of interest is maximized.1 Let U ≤ t be the number of selected
users and hi ∈ Ct×1, i = 1, . . . , U , their corresponding vector channels. The beamforming
transmit vector for user i can optimally2 be computed as vi = T⊥

i hi/‖T⊥
i hi‖2, where

T⊥
i = It − H̄

H
i (H̄ iH̄

H
i )−1H̄ i and3

H̄ i = [ h1 · · · hi−1 hi+1 · · · hU ]H.

Equivalently, if we define H(U) ∈ Ct×U as the matrix whose column i is given by hi, the
transmit beamforming vectors can be obtained by computing the scaled Moore-Penrose
pseudoinverse of H(U)H as

V = H(U)(H(U)H
H(U))−1S,

1If QoS constraints are considered as in the rate-balancing optimization problem, the feasible set might
be empty, for instance, if K > t and qk > 0, ∀k (cf. Section 3.3). In order to circumvent this problem,
subchannel allocation on different subcarriers or time-slots should be considered.

2Other choices of vi are possible if U < t, however the resulting channel gains are smaller.
3For single-antenna receivers the channel matrix becomes a row vector. Since in this work vectors are

column vectors, the channel matrix of a single-antenna user is denoted by a conjugate transposed
column vector. In particular, for user k, Hk = hH

k .
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where the ith column of V is vi and S is a diagonal scaling matrix with entries

si,i =

(√

[(H(U)H
H(U))−1]i,i

)−1

.

This scheme is commonly known as zero-forcing beamforming and has been considered in
numerous recent publications, e.g., [42, 139, 22, 18, 110]. Several works have addressed
the problem of user selection in the context of sum-rate maximization [42, 139], where
asymptotic optimality of zero-forcing has been shown for a large number of users [139]. In
[110] this problem has also been discussed in a rate-balancing context.

For the case of multiple receive antennas, decomposition algorithms were independently
proposed in [107, 31, 93]. In all these works, no decision is made a priori regarding the num-
ber of dimensions assigned to the users. Instead, using the notation employed in Eq. 4.3,
the receive filter matrices are initially chosen to be Ũ k = Irk

, k = 1, . . . , K. Subsequently,
after computing the matrices H̄k and T⊥

k for each user, a SVD of the products HkT
⊥
k is

performed. The resulting matrices of left singular vectors U k ∈ C
rk×mk and right singular

vectors V k ∈ Ct×mk satisfy Eqs. 4.2 and 4.1. For each user, the number of dimensions
mk corresponds to the number of non-zero singular values. A necessary condition for the
applicability of this scheme is

t >
∑

j 6=k

rj , k = 1, . . . , K. (4.4)

In order to make the applicability of this algorithm possible when this condition is vio-
lated, user selection schemes have been proposed in [104, 49, 106] among others. Fixing
a priori the number of subchannels mk that each user should get allocated, an iterative
algorithm has been proposed in [30] in order to optimize the choice of receive filter and

precoding matrices. The algorithm starts with matrices Ũ
(0)

k ∈ Crk×mk being the matrices
of mk dominant left singular vectors of matrices Hk. Then, after computing the matrices

H̄k and T⊥
k for each user, a SVD of the products Ũ

(0),H

k HkT
⊥
k is performed. Denoting with

Ū
(0)
k the resulting matrices of left singular vectors, the new receive filter matrices are given

by Ũ
(1)

k = Ũ
(0)

k Ū
(0)
k . The same computations are repeated using these new matrices and

so on until convergence is reached. While no analytical proof of convergence is provided,
empirical evidence suggests that this algorithm has a reliable convergence behavior. The
problem of choosing the number of subchannels assigned to each user has been addressed
in two different forms. The authors in [106, 139] propose to use the matrices of left singu-
lar vectors U k of the channel matrices Hk as receive filter matrices and treat the rows of
UH

k Hk as non-cooperative channels. This allows to employ user grouping algorithms pro-
posed for the MISO setting in order to solve the subchannel allocation problem. In [137],
a greedy antenna selection algorithm has been proposed based on a sum-rate criterion.
This short overview reveals that the different aspects of this general subchannel allocation
problem for linear decomposition schemes have been separately treated following somehow
disconnected approaches. In Section 4.1.3.1 a general and compact successive allocation
scheme is presented that allows for a joint optimization of precoding and receive filter
matrices and the number of subchannels to be allocated to each user.
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4.1.2 Successive-encoding-based decomposition

If the broadcast channel is linearly decomposed, the precoding vectors of any user k must
satisfy

∑

j 6=k mj orthogonality constraints. A way of increasing the number of degrees of
freedom in the choice of precoding vectors consists of performing a successive encoding of
the information streams transmitted over the assigned subchannels and applying a dirty
paper coding scheme to each stream in order to fully neutralize interference caused by
previously encoded streams. In this way, the precoding vector corresponding to a certain
subchannel must only satisfy orthogonality constraints with respect to the subchannels
whose information streams are encoded at an earlier stage but no constraints are imposed
by those subchannels whose information streams are encoded later. The resulting sub-
channels are physically coupled in the sense that any subchannel causes interference to
the subchannels where information is subsequently encoded. However, this interference
does not have any impact on the achievable information rate over these subchannels and,
therefore, we can say that subchannels are virtually decoupled.

Let π : {1, . . . , t} → {1, . . . , K} be a subchannel allocation function that assigns a
subchannel to the user to which this subchannel belongs. Also, let the domain of this
function indicate the order in which the subchannels are encoded. A virtual decomposition
of the broadcast channel is achieved if

uH
i Hπ(i)vj = 0, j > i, i, j ∈ {1, . . . , t} .

Here, vi ∈ Ct×1 and ui ∈ Crk×1 are, respectively, the unit-norm transmit and receive
beamforming vectors corresponding to subchannel i. Note that, as in the linear approaches,
a maximum of t dimensions can be allocated as no more than t−1 orthogonality constraints
can be satisfied in a space of dimension t. Beside the number of dimensions allocated to
each user and the particular choice of transmit and receive beamforming vectors, the choice
of encoding order is a further degree of freedom that can be exploited in order to optimize
a performance measure of interest.

For r1 = · · · = rK = 1 and a given subchannel allocation function, the transmit
beamforming vectors can be optimally computed as vi = T ⊥

i hπ(i)/‖T⊥
i hπ(i)‖2, where

T⊥
i = It − H̄

H
i (H̄ iH̄

H
i )−1H̄ i and

H̄ i = [ hπ(1) · · · hπ(i−1) ]H.

Equivalently, if we define H(π) ∈ Ct×U as the matrix whose column i is given by hπ(i)

with U = min{t,K}, the transmit beamforming vectors can be obtained by performing a
QR factorization of H(π). That is, the transmit beamforming vector vi is the ith column
of V , where H(π) = V R and R is an upper triangular matrix whose entries on the
main diagonal represent the channel gains of the resulting subchannels. This approach is
commonly known as zero-forcing dirty-paper coding and has been discussed in [23, 97, 123]
and previously in combination with Tomlinson-Harashima precoding in [56]. Since, for a
given number of allocated subchannels, the allocation of additional subchannels encoded at
a later stage is not detrimental, U = min{t,K} dimensions can always be allocated without
loss of optimality. This is in contrast to the zero-forcing beamforming approach, for which
U < min{t,K} may yield a better performance in some cases. If K ≤ t, optimization of
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any performance measure of interest can be performed over the choice of encoding order.
If K > t, both user selection and encoding order are the degrees of freedom that can be
exploited in order to optimize performance. In [136, 123] greedy algorithms are presented
that optimize encoding order using sum-rate as a figure of merit. While the algorithm in
[136] is only applicable to systems with K ≤ t, the algorithm in [123] can be applied to
systems with K > t. In that case, the algorithm performs user selection and optimization
of the encoding order at the same time.

For multiple receive antennas, decomposition algorithms have been presented in [108, 41,
79]. In both [108, 41] a block-wise decomposition approach is proposed along the lines of
the linear decomposition approaches presented in [107, 31, 93]. Assuming that the streams
of information for a certain user are encoded in the order indicated by the user index, i.e.,
streams of information for user 1 are encoded in first place, those for user 2 in the second
place and so on, the transmit and receive beamforming vectors for user k are obtained as
follows. First,

H̄k = [ HT
1 · · · HT

k−1 ]T

is defined and the null-space projector of this matrix T ⊥
k = It − H̄

H
k (H̄kH̄

H
k )−1H̄k is

computed. Then, a SVD of the product HkT
⊥
k is performed. The matrix V k of right sin-

gular vectors becomes the precoding matrix for user k and the matrix U k of corresponding
left singular vectors becomes the receive filter matrix for user k. Since the columns of V k

lie in the subspace associated with T ⊥
k , V k = T⊥

k V k holds, and, as a result, U k and V k

diagonalize Hk. That is, the subchannels corresponding to a particular user are completely
decoupled and, hence, they can be independently encoded. The subchannels of user k do
not cause interference on subchannels of users 1, . . . , k− 1. By contrast, these subchannels
cause interference on the subchannels of user k, which can be neutralized by using dirty
paper coding. For a given group of users satisfying Eq. 4.4, a heuristic encoding order is
proposed in [108]. Important issues such as user selection and optimization of the number
of dimensions allocated to each user are not considered in these works. In [79] a successive
allocation algorithm is proposed where each user, if served, is allocated just one spatial
dimension. At each step, the user is selected that can transmit over a subchannel with
maximum channel gain among those that satisfy orthogonality constraints with previously
established subchannels. Correspondingly, the encoding order coincides with the order in
which subchannels are allocated. This algorithm has been shown to have an optimum
behavior in terms of sum-rate for large number of users.

In the following section an algorithm is presented that comprises all these state-of-the-
art decomposition approaches as particular cases and incorporates mechanisms in order to
perform user selection, optimization of the number of dimensions allocated to each user
and optimization of the encoding order for any performance measure of interest. Different
aspects of this general decomposition algorithm have been discussed in [113, 115, 118, 115,
16, 116, 114].

4.1.3 Successive subchannel allocation method

The decomposition algorithm that we present in this section proceeds successively assigning
a new spatial dimension to a particular user in each step. The set of eligible dimensions
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in each step is given by the set of singular values of all users in the network within the
orthogonal subspace to that spanned by previously assigned dimensions. Constraining the
set of candidate subchannels to be orthogonal to the set of established subchannels, we
make sure that the dimension allocated in a certain step does not cause interference on
previously assigned subchannels. Choosing the encoding order to be the same as the order
in which subchannels are allocated makes possible to neutralize the interference caused by
previously established subchannels on new ones by means of coding. Selection of the spatial
dimension that is assigned at a given step is made according to a rule that can be defined
in accordance with some performance measure of interest. In this way, the users served,
the number of dimensions assigned to each user, the transmit and receive beamforming
vectors corresponding to a certain dimension and the encoding order become all parameters
that are implicitly determined by the performance measure of interest via the associated
channel allocation rule.

Specifically, the algorithm works as follows. After having established the first j−1 spatial
subchannels, the projection matrix T j is computed as

T j = T j−1 − vj−1v
H
j−1,

where T 1 = I t and vj−1 is the transmit beamforming vector corresponding to the dimen-
sion just allocated in the previous step. As it will become clear later, matrix T j represents
the projector of the subspace defined by the intersection of the kernels of the j − 1 previ-
ously established subchannels. Then, channel matrices of all users are projected into this
subspace,

H
j
k = HkT j, k = 1, . . . , K,

and singular value decompositions of all projected channel matrices are performed,

H
j
k = U

j
kΛ

j
kV

j,H
k , k = 1, . . . , K.

At this stage, among the set of potential subchannels one is selected according to any
particular rule. Denoting by R the rule that selects one out of all possible subchannels we
can mathematically write

(k̄, s̄) = R
({
λj

k,s|k = 1, . . . , K, s = 1, . . . , ρj
k

})
, π(j) = k̄,

vj = V
j

k̄
es̄, uj = U

j

k̄
es̄,

where λj
k,s is the sth eigenvalue in the main diagonal of matrix Λ

j
k, ρ

j
k = Rank

{
H

j
k

}

and es is a column vector with a 1 in the sth row and zeros elsewhere. The rule R can
be viewed as a function that takes the set of singular values in the remaining spatial
subspace and returns an ordered pair of indexes that identify the selected dimension.
Internally, R might also make use of further system parameters such as quality-of-service
constraints or scheduling statistics. In order to allocate the (j+1)th spatial subchannel the
same procedure is repeated. This allocation method is summarized in Algorithm 4.1. For
convenience, henceforth, we will refer to this algorithm as successive encoding successive
allocation method (SESAM).
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Algorithm 4.1 Successive encoding successive subchannel allocation method
1: j ← 1, T 1 ← It

2: repeat

3: H
j
k ←HkT j , k = 1, . . . , K

4: H
j
k ← U

j
kΛ

j
kV

j,H
k , k = 1, . . . , K

5: (k̄, s̄)←R
({
λj

k,s|k = 1, . . . , K, s = 1, . . . , ρj
k

})
, π(j)← k̄,

vj ← V
j

k̄
es̄, uj ← U

j

k̄
es̄

6: T j+1 ← T j − vjv
H
j , j ← j + 1

7: until j >
∑

k

rk or T j = 0

For subchannel j, interference caused by subchannels i > j is forced to zero, i.e.,

uH
j Hπ(j)vi>j = 0.

In order to see this consider the following equations,

uH
j Hπ(j)vi>j =

uH
j Hπ(j)T i>jvi>j = (4.5)

uH
j Hπ(j)T jT i>jvi>j = (4.6)

λj

k̄,s̄
vH

j T i>jvi>j = 0. (4.7)

In Eq. 4.5, we make use of the fact that v(i>j) lies within the subspace spanned by T i>j.
In Eq. 4.6, we consider the fact that the image of T i>j is within the subspace spanned
by T j . Finally, in Eq. 4.7, we note that uj is a left singular vector of Hπ(j)T j with vj as
corresponding right singular vector, which, by construction, happens to be perpendicular
to the subspace spanned by T i>j. By contrast, interference caused by subchannels i < j
is, in general, not eliminated by the choice of beamforming vectors. Note that in this case
T jT i<j = T j and, therefore, Eq. 4.6 does not hold. This interference can be neutralized
by coding. An exception occurs when π(i) = π(j) with i 6= j, i.e., when a same user gets
allocated two different subchannels. In such case, it can be shown that subchannels j and
i are entirely decoupled as follows. Assume i > j, then,

0 = uH
j Hπ(j)vi

= uH
j Hπ(j)T ivi

= uH
j uiλ

i
k̄,s̄,

which shows that ui and uj are necessarily orthogonal. On the other hand, interference
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caused by subchannel j on subchannel i is given by

uH
i Hπ(i)vj =

uH
i Hπ(i)T jvj =

uH
i Hπ(j)T jvj =

uH
i ujλ

j

k̄,s̄
= 0,

which is, as it has been shown, equal to zero due to orthogonality of the receive beamform-
ing vectors. Effective transmission of information occurs over each of the allocated scalar
subchannels whose gain is given by

gj = uH
j Hπ(j)vj , ∀j.

Over this set of virtually decoupled channels allocation of transmit power can be chosen
in order to optimize performance.

If applied to a single-user MIMO channel, this algorithm performs a singular value de-
composition of the channel matrix independently of R and, therefore, preserves capacity.
If applied to a broadcast channel with single-antenna receivers, this algorithm is equivalent
to the zero-forcing dirty-paper coding algorithm discussed in [23, 97, 123]. If applied to a
general broadcast channel with multiple antennas at the receivers and each user systemat-
ically gets allocated as many dimensions as it can support in consecutive steps, we obtain
the block-wise decomposition approach proposed in [108, 41]. Finally, if we restrict the
number of dimensions assigned to each user to one, the algorithm proposed in [79] results.

4.1.3.1 Successive subchannel allocation method for linear approaches

The beamforming vectors delivered by SESAM do not suppress interference completely.
Rather, the impact of the remaining interference must be eliminated by resorting to a dirty-
paper coding scheme, whose efficient implementation is still subject of ongoing research
[46, 149, 145, 151, 124]. If, due to practical reasons, independent coding of information
streams is preferred, SESAM can still be used as a means of finding a good solution to
the general subchannel allocation problem of linear decomposition approaches. To be more
specific, SESAM can be used in order to obtain a convenient set of initial receive filter
matrices Ũ k, k = 1, . . . , K, based on which linear decomposition can be performed in a
subsequent step. Thus, in this case, SESAM is not used to determine the beamforming
vectors in an explicit way. Rather, SESAM provides a means to determine which users
are served and over how many spatial dimensions, and to conveniently pre-condition the
choice of beamforming vectors. The resulting algorithm is given in Algorithm 4.2. In line
7 the new computed receive beamforming vector is incorporated as an additional column
to the receive filter matrix of the corresponding user. Different to Algorithm 4.1, where
allocation of a new dimension does not have any impact on the previously allocated sub-
channels, now, a new dimension represents an additional constraint that previously allo-
cated subchannels must fulfil. That is, allocation of a new dimension might be detrimental
in terms of performance. Therefore, after assigning a new dimension performance must
be evaluated and compared to that obtained after allocation of the previous dimensions.
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If performance increases, allocation of a new dimension is considered. If performance de-
creases, the just computed receive beamforming vector is removed from the corresponding
receive filter matrix and no further allocation steps are carried out. Once the allocation
process is completed, the broadcast channel is linearly decomposed by first computing ma-
trices H̄k for every user with the resulting matrices Ũ k (cf. Eq. 4.3). Then the projectors

T ⊥
k = I t − H̄

H
k (H̄kH̄

H
k )−1H̄k associated to the null space of each of these matrices are

computed and, finally, singular value decompositions of the products Ũ
H

k HkT
⊥
k are per-

formed (cf. Section 4.1.1). This algorithm allows a joint treatment of the different aspects
of the subchannel allocation problem in the context of linear decomposition approaches
such as user selection, number of dimensions assigned to each user and determination of
beamforming vectors. The choice of these parameters can be influenced by the performance
measure of interest through the selection rule R. Of course, now, the link between the se-
lection rule and the final performance is weaker than in Algorithm 4.1. This is due to the
fact that the singular values computed in line 5 do not correspond any more to actual
channel gains of potentially allocated subchannels. However, in general, the singular val-
ues will still be good estimates of the final channel gains. This is somehow ensured by the
performance evaluation carried out within the repeat loop, which prevents from too tough
constraints being imposed on already allocated spatial dimensions.

Algorithm 4.2 SESAM-based subchannel allocation for linear decomposition approaches
1: j ← 1, T 1 ← It

2: Ũ k = [], k = 1, . . . , K, Receive filter matrices are initialized as empty matrices
3: repeat

4: H
j
k ←HkT j , k = 1, . . . , K

5: H
j
k ← U

j
kΛ

j
kV

j,H
k , k = 1, . . . , K

6: (k̄, s̄)←R
({
λj

k,s|k = 1, . . . , K, s = 1, . . . , ρj
k

})
, vj ← V

j

k̄
es̄, uj ← U

j

k̄
es̄

7: Ũ k̄ = [Ũ k̄|uj]
8: Perform linear decomposition based on Ũ k, k = 1, . . . , K (cf. Section 4.1.1)
9: Evaluate performance

10: if performance decreases then

11: Remove uj from Ũ k̄

12: Break repeat loop
13: end if

14: T j+1 ← T j − vjv
H
j , j ← j + 1

15: until j >
∑

k

rk or T j = 0

16: Perform linear decomposition based on Ũ k, k = 1, . . . , K

In the next sections, adequate selection rules are proposed for the three optimization
problems discussed in Chapter 3. Discussion will focus on Algorithm 4.1. However, numer-
ical results will also include performance curves of Algorithm 4.2. In each case the selection
rule applied will be the same as that used for the SESAM algorithm.
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4.1.4 Sum-rate maximization

4.1.4.1 Selection rule

Aiming at the maximization of the sum-rate, it seems convenient to perform allocation so
that at each step the spatial subchannel is selected that being orthogonal to all previously
established subchannels exhibits the largest channel gain. Mathematically, the selection
rule can be defined as

R
({
λj

k,s|k = 1, . . . , K, s = 1, . . . , ρj
k

})
=

= arg max
k,s

{
λj

k,s|k = 1, . . . , K, s = 1, . . . , ρj
k

}
. (4.8)

The following theorem provides some rationale for this ordering.

Theorem 4.1.1. Let gi, i = 1, . . . , j be the channel gains corresponding to the j first
allocated subchannels and let Cj be the sum-rate achieved over these subchannels. Selecting
the next subchannel according to the rule proposed in Eq. 4.8 yields the maximum rate
increment ∆C = Cj+1 − Cj.

Proof. Let ḡj+1 = max
{
λj+1

k,s |k = 1, . . . , K, s = 1, . . . , ρj
k

}
be the channel gain resulting

from application of the proposed rule in the j + 1 allocation step and let gj+1 be the
subchannel gain resulting from the application of any other rule. Let Ḡ = {gi|i = 1, . . . , j}∪
{ḡj+1} and G = {gi|i = 1, . . . , j} ∪ {gj+1}

Assume that the optimum waterfilling allocation for the set G yields the waterfilling
level η (cf. Section 4.1.4.2). For the set Ḡ, consider a suboptimum power allocation where
subchannels i ≤ j are waterfilled to the level η and subchannel j+1 receives the same power
as subchannel j+ 1 in G. Obviously, the first j subchannels achieve the same transmission
rate in both sets. Transmission rate achieved over subchannel j+1 in Ḡ will be larger than
or equal to that achieved over subchannel j+1 in G as ḡj+1 ≥ gj+1. Waterfilling allocation
of power over the subchannels of set Ḡ can only lead to an even larger transmission rate
for this set. �

Note that ḡj+1 in the proof above can be characterized as

ḡ2
j+1 = max

k
max

v
vHH

j+1,H
k H

j+1
k v,

subject to ‖v‖1 = 1. That is, limiting the canditate subchannels to be eigenmodes of the
projected channel matrices, as SESAM does, is without loss of optimality in terms of the
rate increment that can be attained in one allocation step.

If only single-antenna receivers are considered, SESAM with the allocation rule given
in Eq. 4.8 coincides with the algorithm presented in [123]. If for the general setting the
number of allocated dimensions per user is restricted to one, the SESAM algorithm with
this selection rule coincides with the algorithm proposed in [79]. Of course, the analytical
results presented in these works concerning the asymptotic performance behavior at high
SNR and for a large number of users immediately apply to SESAM.

In a multicarrier setting, the SESAM algorithm with the selection rule given in Eq.
4.8 can be independently executed on each subcarrier without incurring performance loss
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with respect to a direct application of the algorithm using the compact representation of
multicarrier channels as block diagonal channel matrices (see Eq. 3.14). This allows for a
parallel implementation of the algorithm across subcarriers.

4.1.4.2 Power allocation policy

Let gj, j = 1, . . . , J be the channel gains of the subchannels resulting from application of
SESAM to a Gaussian broadcast channel. The optimum power allocation policy in terms
of sum rate is obtained by solving

arg
P1,...,J

max

J∑

j=1

log2(1 + g2
jPj), (4.9)

subject to P1+. . .+PJ ≤ P and Pj ≥ 0, ∀j. The resulting optimum policy is the well-known
waterfilling power allocation [40], which reads

Pj = max

{

η − 1

g2
j

, 0

}

,

where η is the waterfilling level, which is chosen to fulfil the transmit power constraint
with equality.

4.1.4.3 Numerical results

In this section simulation results are shown corresponding to a multicarrier transmission
system with N = 16 uncorrelated subcarriers. The basic difference between this setting and
a system with N = 1 is basically the additional degrees of freedom that the multicarrier
system offers for allocation of power over the spectral components. Average performance
of both systems would be identical if a uniform allocation of power were applied across
subcarriers.

Fig. 4.1 shows average sum capacity curves for a Rayleigh distributed channel with t = 4
transmit antennas, K = 2 users and r1 = r2 = 2 antennas at each receiver. The entries
in the channel matrix corresponding to a particular user on a particular subcarrier have
been assumed to be mutually independent with variance equal to one. The horizontal axis
represents the ratio between transmit power per subcarrier and the noise variance at any
receive antenna in decibels. The performance gap between SESAM and the optimum ap-
proach is for all practical purposes inexistent. In this case, using the fact that the composite
broadcast channel matrix H will in general have full row rank, convergence of SESAM and
the optimum approach at high SNR can be analytically shown along the lines of [23, The-
orem 4] and [41, Theorem 1]4. At low SNR values, SESAM just serves one of the users

4The proof relies on the fact that the product of the eigenvalues of HHH is equal to the square of the
product of the diagonal entries of UHHV , where V is a matrix whose columns are an orthonormal
base of the space spanned by the columns of HH, U is a unitary matrix and UHHV has a triangular
structure. The result follows by noting that the transmit and receive weighting vectors computed by
SESAM yield such matrices and, at high SNR, capacity is essentially determined by the product of
eigenvalues of HHH in the single user link and the square of the product of the diagonal entries of
UHHV in the broadcast channel.
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over the strongest dimension available in the system. The linear decomposition technique
behaves exactly as SESAM in the low SNR regime, just transmitting information over the
strongest subchannel. Therefore, performance of both suboptimum approaches coincide.
Although difficult to show analytically, apparently, the optimum solution adopts the same
transmission strategy at low SNR. The performance gap between the linear decomposition
approach and the other two curves at high SNR amounts to approximately 2.5 bits. Note
that in this case the shaping loss incurred if the popular Tomlinson-Harashima precoding
is applied in order to mitigate known interference amounts to 2.03 bits.5 That is, imple-
mentation of successive encoding based on this simple and practical technique for canceling
known interference would not provide any significant gain with respect to a plain linear
scheme.
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Figure 4.1: Average sum rate for a Gaussian broadcast channel with spatially uncorrelated
Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 2.

In Fig. 4.2 average sum capacity curves are shown for a scenario as described by the
settings used in Fig. 4.1 but where spatial correlation has been introduced on the trans-
mit side. A transmit correlation matrix RTx = E{HHH} has been considered with the
following eigenvalue profile,

Λ = diag[ 15, 1, 0, 0 ]. (4.10)

The practical case of two users being in locations few meters apart from each other that
are reached by the base station through quite a narrow bundle of angles of departure
matches the setting proposed here. The asymptotic slope of all curves is just half of that

5The shaping loss per real dimension amounts to 0.254 bits [46]. This number must be multiplied by 2
in order to get the shaping loss per complex dimension. The resulting number must be multiplied by
the number of dimensions allocated in order to get the total loss per channel use.
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corresponding to the curves displayed in Fig. 4.1. This is due to the reduced rank of
the channel, which is now 2 rather than 4. As before, almost no gap can be seen between
SESAM and the optimum approach. Note, however, that now the composite channel matrix
is not full row rank. Therefore, analyses based on this assumption as those carried out in
[23, 41] are not applicable. The performance gap between the successive encoding schemes
and the linear decomposition approach can be only observed at high SNR values and, even
there, it is rather small.
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Figure 4.2: Average sum rate for a Gaussian broadcast channel with spatially correlated
Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 2.

Fig. 4.3 shows average sum capacity curves for a Rayleigh distributed channel with
t = 4 transmit antennas, K = 10 users and rk = 2 antennas at each receiver. Entries in the
composite channel matrix of each subcarrier are assumed to be mutually independent and
with covariance equal to one. Different from the settings of Figs. 4.1 and 4.2, now, the total
number of receive antennas in the system is larger than the number of transmit antennas.
This calls for a decision regarding the users to be served and the number of subchannels
to be assigned to these users on a particular subcarrier. This additional degree of freedom,
commonly known as multiuser diversity, is exploited by all the simulated schemes and
results in improved performance as compared to previous figures (cf. [79]). The gap between
the linear decomposition approach and successive encoding approaches becomes smaller.
That is, linear schemes benefit from multiuser-diversity more than successive-encoding-
based decomposition approaches. This is due to the fact that as the number of users
increases, it is easier to find a set of t quasi-orthogonal spatial dimensions to allocate.

Fig. 4.4 shows average sum capacity curves for a scenario as described by the settings
used in Fig. 4.3 but where correlation has been introduced between transmit antenna
elements. For these simulations, an eigenvalue profile of the transmit covariance matrix
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Figure 4.3: Average sum rate for a Gaussian broadcast channel with spatially uncorrelated
Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 10.

has been considered proportional to

Λ = diag[ 10, 5, 1, 0 ]. (4.11)

This profile may very well match a scenario in which a group of users located in a same
certain area, such as a square or street, are reached from the base station over the same
moderately broad bundle of angles of departure. Again, the rank deficiency of the channel
causes a decay of the asymptotic growth of all approaches. As in previous figures SESAM
shows an insignificant performance loss with respect to the optimum solution. Also a mild
gap can be appreciated between the optimum approach and the linear scheme at moderate
and high SNR values.

SNR (dB) -14 -10 -6 -2 2 6 10 14 18 22 26
Uncorrelated, K = 2 1.2 1.1 1.1 1.1 1.4 1.7 1.6 1.4 1.2 1.0 1.0
Uncorrelated, K = 10 1.1 1.1 1.1 1.3 2.0 2.7 3.9 5.2 6.1 6.3 6.4

Correlated, K = 2 46.0 51.0 55.3 12.5 3.8 3.0 3.6 5.1 6.8 8.1 9.0
Correlated, K = 10 3.3 2.6 2.7 3.2 3.0 3.5 4.5 5.7 6.6 7.3 7.6

Table 4.1: Average number of iterations needed by Algorithm 3.6 to achieve 0.999RSESAM.

Table 4.1 shows the average number of iterations required by the optimum iterative
Algorithm 3.6 in order to reach 99.9% of the sum rate achieved by SESAM (RSESAM).
Numbers range between almost one iteration for uncorrelated scenarios at low SNR and
more than 55 iterations at -6 dB, K = 2 and correlated channels. This indicates that the
additional computational complexity of optimal iterative approaches relative to SESAM
strongly depends on the particular setting.
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Figure 4.4: Average sum rate for a Gaussian broadcast channel with spatially correlated
Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 10.

4.1.5 Weighted sum-rate maximization

4.1.5.1 Selection rule

Given a set of weights µk ∈ R+, k = 1, . . . , K, these can easily be incorporated into the
selection rule in order to perform a priority-sensitive subchannel allocation as follows,

R
({
λj

k,s|k = 1, . . . , K, s = 1, . . . , ρj
k

})
=

= arg max
k,s

{
µkλ

j
k,s|k = 1, . . . , K, s = 1, . . . , ρj

k

}
. (4.12)

If all weights are equal this rule is identical to the sum-rate maximizing rule in Eq. 4.8.
Setting all but the weight of a particular user equal to zero, this rule allocates all dimensions
to the only user whose weight is different from zero. In this case the SESAM algorithm
performs a SVD of the single user channel, which is capacity preserving. In all intermediate
cases, this rule increases the probability of those users getting dimensions allocated that
have a higher priority. This is done by performing a kind of trade-off between priorities
on the one hand and channel strength on the other. In a multicarrier setting, the SESAM
algorithm with the selection rule given in Eq. 4.12 can be independently executed on
each subcarrier without incurring performance loss with respect to a direct application of
the algorithm using the compact representation of multicarrier channels as block diagonal
channel matrices (see Eq. 3.14). This allows for a parallel implementation of the algorithm
across subcarriers.
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4.1.5.2 Power allocation policy

Let gj, j = 1, . . . , J be the channel gains of the subchannels resulting from application of
SESAM to a Gaussian broadcast channel. The optimum power allocation policy in terms
of weighted sum-rate is obtained by solving

arg
P1,...,J

max
J∑

j=1

µπ(j) log(1 + g2
jPj), (4.13)

subject to P1+. . .+PJ ≤ P and Pj ≥ 0, ∀j. Choosing all priorities equal, i.e. µ1 = . . . = µK ,
Problem 4.13 reduces to Problem 4.9, for which the solution is the well-known waterfilling
power allocation. In the general case, the solution can be derived by solving the KKT
conditions, which are in this case sufficient due to the concavity of the objective function
and the convexity of the feasible set. The Lagrangian of Problem 4.13 is given by

L(P1, . . . , PJ , ν0, . . . , νJ) =
J∑

j=1

µπ(j) log(1 + g2
jPj) +

J∑

j=1

νjPj + ν0

(

P −
J∑

j=1

Pj

)

.

The corresponding KKT conditions can be written as follows,

∂L

∂Pj
=

µπ(j)g
2
j

1 + Pjg2
j

− ν0 + νj = 0, j = 1, . . . , J, (4.14)

J∑

j=1

Pj ≤ P, ν0 ≥ 0, Pj ≥ 0, νj ≥ 0, j = 1, . . . , J,

ν0

(

P −
J∑

j=1

Pj

)

= 0, νjPj = 0, j = 1, . . . , J. (4.15)

From Eq. 4.14 follows

Pj =
µπ(j)

ν0 − νj
− 1

g2
j

, j = 1, . . . , J. (4.16)

If P > 0, there will optimally be at least a subchannel j that gets some power allocated,
i.e., Pj > 0 for at least one subchannel. Considering Eq. 4.16, this necessarily implies that
ν0 > 0, from which, due to the first slackness condition in Eqs. 4.15, equality in the total
power constraint follows, i.e.,

q
∑

j=1

Pj = P. (4.17)

Let S be a set of indices j such that Pj > 0 if j ∈ S and Pj = 0 if j 6∈ S. From the
second slackness condition in Eqs. 4.15, it follows that νj = 0 for j ∈ S. Now, defining
the waterlevel η = 1/ν0, and using Eq. 4.16 the optimum power allocation can finally be
written as

Pj = max

{

ηµj −
1

g2
j

, 0

}

, j = 1, . . . , J,

where η must be chosen to satisfy Eq. 4.17. This solution can be viewed as a kind of
generalized waterfilling [90].
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4.1.5.3 Numerical results

In this section numerical results are presented that correspond to a multicarrier transmis-
sion system with N = 16 uncorrelated subcarriers. Again, the four different settings of
Section 4.1.4.3 are considered, which differ in the number of users and the spatial correla-
tion properties. For given weights, we plot the average rates obtained by the users in the
network, where averaging takes place over a number of different channel realizations. In
order to compute optimum rate vectors, Algorithm 3.10 has been applied in conjunction
with Algorithm 3.9. In order to save simulation time the number of iterations of Algorithm
3.10 has been limited to 100. For Algorithm 3.9 the stop criterion parameter ǫ has been
chosen to be 10−5.

In Fig. 4.5 average rate pairs are shown for a Rayleigh distributed broadcast channel with
t = 4 transmit antennas,K = 2 users and r1 = r2 = 2 antennas at each receiver. The entries
in the channel matrix corresponding to a particular user on a particular subcarrier have
been assumed to be mutually independent with variance equal to one. Average rate pairs
have been plotted for three different SNR values and weight pairs (µ1, µ2) with µ2 = 1−µ1,
µ1 = n/10 and n ∈ {1, 2, . . . , 9}. Both the rate pairs corresponding to the optimum solution
and the rate pairs achieved by SESAM seem to lie on the same curved line that may be
viewed as the boundary of the averaged capacity region. That is, SESAM is able not only
of practically achieving sum capacity but also of closely approximating any other points
on the boundary of the capacity region. In terms of weighted sum rate, the maximum
gap between SESAM and the solution achieved by the optimum algorithm amounts to
1.44% of the optimum value at 15 dB for the weight pairs (0.4, 0.6) and (0.6, 0.4). Despite
this insignificant difference in terms of weighted sum-rate, for a given weight pair, the
distribution of rates among users remarkably differs, being the points attained by SESAM
more evenly spaced over the boundary of the region than those delivered by the optimum
algorithm. The gap between the linear SESAM scheme and the other two approaches
is especially visible at 15 and 25 dB. The points resulting from this scheme describe a
curve that is strictly in the interior of the region delimited by the points of the other two
approaches. However, the gap in terms of weighted sum-rate is surprisingly small reaching
a maximum of 9% with respect to the optimum at 25 dB for the weight pairs (0.4, 0.6) and
(0.6, 0.4).

Table 4.2 shows the average number of iterations required to reach 99.9% of the weighted
sum rate attained by SESAM. Outer iterations refer to the number of iterations performed
by Algorithm 3.10. Inner iterations refer to the average number of iterations performed
by Algorithm 3.9 per subcarrier in each iteration of Algorithm 3.10. As mentioned before,
the maximum number of outer iterations has been limited to 100, therefore, some of these
numbers would be much larger if this limitation had not been imposed. In fact, due to this
limitation in the number of iterations, in some of the settings the 99.9% of the SESAM
performance is not reached by the iterative algorithms. For instance, the weighted sum
rate achieved by the iterative algorithm at 5 dB for µ1 = 0.5 is just 98.3% of the value
achieved by SESAM. All in all, the values displayed in Table 4.2 clearly confirm that the
number of iterations, and, therefore, the computational complexity, required to compute
the optimum solution is extremely dependent on the particular system parameters in a
way that is virtually impossible to discern beforehand.
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Figure 4.5: Average rate tuples for a Gaussian broadcast channel with spatially uncorrelated
Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 2.

µ1 0.1 0.2 0.3 0.4 0.5
inner iterations 1.1/2.0/7.5 1.2/4.1/6.1 2.3/11.7/5.4 3.2/10.8/5.6 1.4/6.0/4.3

outer iterations 98.0/96.2/45.9 98.6/82.0/5.3 89.9/3.6/1.0 80.5/1.0/1.0 95.7/6.6/1.8

Table 4.2: Average numbers of iterations involved in the computation of the optimum
solution in order to reach 99.9% of the weighted sum rate achieved by SESAM in a
spatially uncorrelated broadcast channel with t = 4, rk = 2, N = 16, K = 2 and
SNR = 5/15/25 dB.

In Fig. 4.6 average rate pairs are shown for a Rayleigh distributed broadcast channel
with t = 4 transmit antennas, K = 2 users and r1 = r2 = 2 antennas at each receiver. The
entries in the channel matrix corresponding to a particular user on a particular subcarrier
are still assumed to be mutually independent with variance equal to one but channel
coefficients corresponding to different transmit antennas are now correlated. The transmit
covariance matrix exhibits an eigenvalue profile as given by Eq. 4.10. The SNR values
and the weight pairs for which average rate pairs have been computed are the same as
in Fig. 4.5. Due to the effect of correlation, all rates are in this case lower than in the
previous figure. Due to the limitation in the number of iterations to 100, the iterative
algorithm yields a solution that is visibly outperformed by SESAM for µ1 = 0.5. To be
precise, for these weights the iterative algorithm only reaches 90.1% of the weighted sum
rate achieved by SESAM at 5 dB. At 15 and 25 dB these numbers are 94.8% and 96.7%,
respectively. The maximum performance gap in terms of weighted sum rate between the
iterative algorithm and SESAM is observed at 25 dB for the weight pairs (0.3, 0.7) and
(0.7, 0.3). For these parameters, SESAM performs 2.53% below the weighted sum rate
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achieved by the iterative algorithm. The maximum performance gap between the iterative
algorithm and the linear SESAM scheme is observed at 25 dB for the weight pairs (0.4, 0.6)
and (0.6, 0.4) and amounts to 10.47% of the weighted sum rate achieved by the optimum
algorithm. Particularly remarkable is the even distribution of the points corresponding to
SESAM and the linear scheme over the boundary of the respective regions. This is in sharp
contrast to the high concentration of optimum points close to the axes.
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Figure 4.6: Average rate tuples for a Gaussian broadcast channel with spatially correlated
Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 2.

For completeness we include Table 4.3, which shows the average number of iterations
required to reach 99.9% of the weighted sum rate attained by SESAM. As mentioned before,
due to the limitation in the number of iterations, performance of the iterative approach
does actually not reach this value in some cases. In these cases, the actual number of
iterations required to reach it would be significantly larger. As we already observed in
Table 4.1 correlations apparently lead to an increase in the number of iterations required
by optimum iterative approaches in order to reach convergence.

µ1 0.1 0.2 0.3 0.4 0.5
inner iterations 1.0/1.2/6.7 1.1/1.7/9.5 1.1/4.2/24.8 1.1/4.5/22.7 1.1/1.2/1.7

outer iterations 99.7/95.8/35.0 99.7/93.1/14.0 99.8/78.8/1.8 100/74.2/3.1 100/100/100

Table 4.3: Average numbers of iterations involved in the computation of the optimum
solution in order to reach 99.9% of the weighted sum rate achieved by SESAM in a
spatially correlated broadcast channel with t = 4, rk = 2, N = 16, K = 2 and SNR =
5/15/25 dB.

Fig. 4.7 shows average rates obtained by the K = 10 users of a Rayleigh distributed
broadcast channel with t = 4 transmit antennas and rk = 2 antennas at each receiver
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when weighted sum-rate maximization is performed with weights µk = k, k = 1, . . . , K at
SNR = 15 dB. The entries in the channel matrices are assumed to be uncorrelated and
with variance 1.The weighted sum rate achieved by SESAM is solely 2.1% below the value
achieved by the optimum algorithm. In turn, the gap between the linear approach and the
optimum algorithm amounts to just 10.2% of the optimum weighted sum rate. In order to
reach 99.9% of the weighted sum rate achieved by SESAM the optimum iterative algorithm
requires 1.32 outer iterations in average and 12.54 inner iterations per subcarrier and outer
iteration. Again we observe that even if the difference between SESAM and the optimum
solution is very small in terms of weighted sum rate, the resulting distributions of rates
among users are quite different. In Fig. 4.8 the same broadcast channel is considered as in
Fig. 4.7 but with channel coefficients corresponding to different transmit antennas being
correlated. The transmit correlation matrix has an eigenvalue profile proportional to that
given by Eq. 4.11. The weights are as defined above and average rates achieved by each
user are represented for a SNR = 15 dB. Due to correlations the rates are lower than in
Fig. 4.7. SESAM achieves a weighted sum rate that is just 1.43% below that delivered by
the optimum iterative algorithm. The performance loss of the linear decomposition scheme
with respect to the optimum algorithm amounts to 12.87%. In order to reach 99.9% of
the weighted sum rate achieved by SESAM the optimum iterative algorithm requires 10.87
outer iterations in average and 11.92 inner iterations per subcarrier and outer iteration,
which again confirms the fact that correlations cause an increase in the number of iterations
required to reach convergence.
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Figure 4.7: Average rate tuple for a Gaussian broadcast channel with spatially uncorrelated
Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 10, SNR = 15 dB.
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Figure 4.8: Average rate tuple for a Gaussian broadcast channel with spatially correlated
Rayleigh-fading channel coefficients. t = 4, rk = 2, N = 16, K = 10, SNR = 15 dB.

4.1.6 Rate balancing

There is an important qualitative difference between the rate balancing problem and the
sum-rate or weighted sum-rate problems discussed in previous sections. While the latter
do not impose any constraint with respect to the number of users that get served in the
network, the former requires that all users whose relative rate requirements qk (cf. Section
3.3) are larger than zero be necessarily served. Obviously, if decomposition approaches
are considered, this is only possible provided that the total amount of dimensions in the
system exceeds the number of users with positive rate requirements in the network. To
ensure this, beyond spatial dimensions additional time and frequency dimensions might
have to be considered. In the following, we consider a MIMO OFDM broadcast channel
and we assume that the number of subcarriers is larger than the number of users with
positive rate requirements in the network.

4.1.6.1 Selection rule

As in the treatment of the sum-rate and weighted sum-rate problems, SESAM is applied
separately on each subcarrier. However, now, rather than applying a selection rule to each
subcarrier independently, allocation on a particular subcarrier takes into account allocation
on all other subcarriers. That is, we have a selection rule that coordinates the allocation
of new spatial dimensions across subcarriers. This is needed so as to enforce that at each
allocation step of the SESAM algorithm users get a share of resources according to their
rate requirements. Correspondingly, the selection rule is not any more a simple operator on
the set of singular values obtained on each particular subcarrier but a more sophisticated
procedure that takes into account all singular values across the spectrum and the relative
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rate requirements of the users in the network. Aiming at the allocation of the jth spatial
component on every subcarrier, the first and second steps of the SESAM algorithm6 are
independently executed on all frequency dimensions. Let Λ

j
n,k be the matrix of singular

values of user k, on subcarrier n, obtained during the jth execution of the repeat loop
of SESAM (cf. Algorithms 4.1 and 4.2),7 and let λj

n,k,s be the sth singular value of this
matrix. The selection procedure that we propose consists of three basic steps.

First, for each user, the largest singular value on each subcarrier is selected, i.e.,

λj
n,k = max

s
{λj

n,k,s} ∀n, k,

and only these subchannels are considered in the following steps of the allocation rule.
Second, the number of frequency components is determined that shall be assigned to

each user taking into account a given vector q of relative rate requirements. To this end,
first, the capacity is computed that each user could achieve in this allocation layer should
all frequency components be assigned to that user. For example, capacity of user k is
computed as

Cj
k =

1

N

N∑

n=1

log
(
1 + Pn,k(λ

j
n,k)

2
)
,

where Pn,k is obtained from a waterfilling power allocation over the singular values λj
n,k. In

order to compute capacities at layer j, it is assumed that the power is limited to P/j. This
is merely a heuristic that permits computation of capacity in a particular layer without
considering subchannels assigned in previous or subsequent allocation steps. The reason
for the division by j is that channel gains become smaller in each layer and so does the
power finally allocated to each layer. Then, we consider the affine space defined by the
rate vectors ρk = Cj

kek, ∀k, where ek is a column vector of dimension K with a 1 on
its kth row and zeros elsewhere, and compute the intersection point of this space and the
straight line defined by the given vector of relative rate requirements q. The equation of
the affine space is given by ρ =

∑K
k=1 βkρk with

∑K
k=1 βk = 1, and that of the straight

line by ρ = γq. The intersection point is obtained solving the following linear system of
equations,

γq = β1ρ1 + β2ρ2 + . . .+ βKρK

1 = β1 + β2 + . . .+ βK .

The resulting weight βk is seen as the fraction of subcarriers that should be allocated to user
k at layer j in order to comply with the QoS constraint represented by q. Correspondingly,
the number of subcarriers assigned to that user in that layer is given by Nk = βkN , which
can be rounded and readjusted to obtain a set of integral values adding up to the total
number of subcarriers. This procedure and interpretation of the parameters βk is optimum
if there is only one spatial dimension, e.g., t = 1, the channels are non-frequency-selective,
each subcarrier is exclusively assigned to a unique user and the same amount of power is

6These are steps 3 and 4 in Algorithm 4.1 and steps 4 and 5 in Algorithm 4.2.
7In the following, the jth execution of the repeat loop of SESAM will be occasionally referred to as layer

j.
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allocated on every subcarrier. Only in such a case the afore mentioned space represents the
boundary of the set of achievable rates and the intersection of this space and the straight
line defined by vector q is the optimum operational point. Even though in all other cases
this method is suboptimum, it shall be seen that it delivers excellent results.

In the third step, allocation of subcarriers to users is performed such that compliance
with the subcarrier numbers obtained in the previous step is guaranteed. To this end, first,
on each subcarrier the subchannel is selected with largest gain, i.e.,

λj
n = max

k

{
λj

n,k

}
∀n. (4.18)

This selection is optimum with respect to sum capacity but it might not be in agreement
with the numbers of subcarriers computed in the previous step. If this is the case the
selection must be modified in order to match these numbers. This can be done as follows.
Let Ñk be the number of subchannels of user k selected according to Eq. 4.18 and define
the following sets:

R = {k|Nk − Ñk > 0},
D = {k|Nk − Ñk < 0},
C = {n|λj

n = λj
n,k, k ∈ D}.

R is the set of users to which additional subchannels should be assigned. D is the set of
users from which subchannels should be removed. C is the set of subcarriers on which a
user of set D has been assigned a subchannel. Additionally, we define a set including the
difference between gains of selected subchannels and gains of non-selected subchannels,
S = {∆λn,k|k ∈ R, n ∈ C}, where ∆λn,k = λj

n − λj
n,k. With these definitions the following

procedure is repeated until the sets D andR are empty, i.e., until the number of subcarriers
assigned to each user coincides with the number Nk previously computed.

1. Find the user of setR and carrier of set C corresponding to the smallest gain difference
with respect to a selected subchannel,

(n′, k′) = argmin
n,k

{∆λn,k} , ∆λn,k ∈ S.

2. Find the user to which initially the subchannel on subcarrier n′ has been assigned,

k′′ = argmax
k
{λj

n′,k}, k ∈ D.

3. Change the assignment on the selected subcarrier, i.e. λj
n′ = λj

n′,k′.

4. Update subchannel counters, Ñk′′ = Ñk′′ − 1, Ñk′ = Ñk′ + 1, and redefine sets
accordingly.

Though suboptimal, this procedure yields a good performance and has a clear rationale.
It departs from the sum capacity optimum subchannel selection and modifies at each step
the allocation so that the incurred channel gain loss is minimized.

Once allocation at step j has been completed, projectors are correspondingly updated on
each subcarrier (line 6 of Algorithm 4.1) and allocation of the (j + 1)th spatial dimension
starts. A summary of the steps involved in this allocation rule is given in Algorithm 4.3.
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Algorithm 4.3 Rate balancing allocation rule at layer j

1: λj
n,k ← max

s
{λj

n,k,s}, ∀n, k

2: Cj
k ←

1

N

N∑

n=1

log
(
1 + Pn,k(λ

j
n,k)

2
)
, ∀k

3: ρk ← Cj
kek, ∀k

4: Solve γq = β1ρ1 + β2ρ2 + . . .+ βKρK , 1 = β1 + β2 + . . .+ βK

5: Nk ← βkN, ∀k
6: Adjust Nk, k = 1, . . . , K, to obtain integer numbers adding to N
7: λj

n ← max
k

{
λj

n,k

}
, ∀n

8: Ñk ← Number of subcarriers for which λj
n = λj

n,k

9: Define R = {k|Nk − Ñk > 0}, D = {k|Nk − Ñk < 0}, C = {n|λj
n = λj

n,k, k ∈ D}
10: Define S = {∆λn,k|k ∈ R, n ∈ C} with ∆λn,k = λj

n − λj
n,k

11: while R 6= ∅ and D 6= ∅ do

12: (n′, k′)← argmin
n,k

{∆λn,k} , ∆λn,k ∈ S

13: k′′ ← argmax
k
{λj

n′,k}, k ∈ D
14: λj

n′ ← λj
n′,k′

15: Ñk′′ ← Ñk′′ − 1
16: Ñk′ ← Ñk′ + 1
17: end while
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4.1.6.2 Power allocation policy

After the allocation process has been concluded, for each user, a set of scalar mutually
decoupled subchannels is obtained over which power loading can be applied so as to max-
imize sum rate under consideration of the given QoS constraint. A suboptimum algorithm
for this problem has been previously proposed in [103]. An optimum algorithm is derived
in this section. Let gk,ℓ represent the channel gain of the ℓth subchannel assigned to user k
and Lk the total number of subchannels assigned to that user. The optimization problem
to be solved in order to find the power loading that maximizes sum rate subject to a QoS
constraint q can be stated as follows,8

max
pk=1,...,K

1

q1

L1∑

ℓ=1

log(1 + P1,ℓg
2
1,ℓ),

subject to

1

qk

Lk∑

ℓ=1

log(1 + Pk,ℓg
2
k,ℓ)−

1

q1

L1∑

ℓ=1

log(1 + P1,ℓg
2
1,ℓ) = 0, ∀k > 1,

Pk,ℓ ≥ 0, ∀k, ℓ and P −∑K
k=1

∑Lk

ℓ=1 Pk,ℓ ≥ 0, where pk = [ Pk,1 . . . Pk,Lk
]T and Pk,ℓ is

the power allocated to the ℓth subchannel of user k. The Lagrangian of this optimization
problem can be written as

L

(

P 1,...,K
1,...,Lk

, η, µ 1,...,K
1,...,Lk

, ν1,...,K

)

=

=
K∑

k=1

νk

qk

Lk∑

ℓ=1

log(1 + Pk,ℓg
2
k,ℓ) + η

(

P −
K∑

k=1

Lk∑

ℓ=1

Pk,ℓ

)

+
K∑

k=1

Lk∑

ℓ=1

µk,ℓPk,ℓ,

where ν1 = 1−∑K
k=2 νk. The corresponding KKT conditions read

νk

qk

g2
k,ℓ

1 + Pk,ℓg2
k,ℓ

− η + µk,ℓ = 0, ∀k, (4.19)

1

qk

Lk∑

ℓ=1

log(1 + Pk,ℓg
2
k,ℓ)−

1

q1

L1∑

ℓ=1

log(1 + P1,ℓg
2
1,ℓ) = 0, ∀k > 1, (4.20)

P −
K∑

k=1

Lk∑

ℓ=1

Pk,ℓ ≥ 0, Pk,ℓ ≥ 0, ∀k, ℓ, η ≥ 0, µk,ℓ ≥ 0, ∀k, ℓ, (4.21)

η

(

P −
K∑

k=1

Lk∑

ℓ=1

Pk,ℓ

)

= 0, µk,ℓPk,ℓ = 0, ∀k, ℓ. (4.22)

Eq. 4.19 can be rewritten as

Pk,ℓ =
νk

qk(η − µk,ℓ)
− 1

g2
k,ℓ

, ∀k, ℓ. (4.23)

8Without loss of generality the rate of user 1 is taken as a reference.
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As soon as P > 0, optimality implies that at least some subchannels get some power
allocated, i.e., Pk,ℓ > 0 for at least some subchannels. From Eq. 4.23 we observe that this
forces η > 0. From this, due to the first slackness condition in Eqs. 4.22,

P −
K∑

k=1

Lk∑

ℓ=1

Pk,ℓ = 0 (4.24)

follows. That is, the total power constraint must be satisfied with equality. Now, taking
Pk,ℓ ≥ 0 and µk,ℓPk,ℓ = 0, ∀k, ℓ, into account we can write

Pk,ℓ = max

{

ξk −
1

g2
k,ℓ

, 0

}

, ∀k, ℓ, (4.25)

where ξk = νk/qkη. This result has the form of a waterfilling solution with a user dependent
water level ξk. These levels must be determined so that the K − 1 equalities in Eqs. 4.20
hold and Eq. 4.24 is satisfied with equality. Fortunately, it turns out that there is a unique
set of parameters ξk, k = 1, . . . , K that satisfy these conditions and, therefore, even though
the optimization problem is non-convex, the KKT conditions are sufficient. This can be
seen as follows. Let Sk(ξk) be a set including all indexes ℓ ∈ {1, . . . , Lk} of subchannels of
user k such that Pk,ℓ > 0. Fixing ξ1, considering Eq. 4.25 and writing the sum of logarithms
as the logarithm of a product in Eqs. 4.20 we obtain

∏

ℓ∈Sk(ξk)

(
ξkg

2
k,ℓ

)1/qk =
∏

ℓ∈S1(ξ1)

(
ξ1g

2
1,ℓ

)1/q1
, ∀k. (4.26)

Considering these equations and Eq. 4.25, ξk, k = 1, . . . , K, can be viewed as monotonically
increasing functions of ξ1. In the light of Eq. 4.25, this necessarily implies that powers
Pk,ℓ are monotonically increasing functions of ξ1. As a consequence, for a fixed maximum
transmit power P the function

f(ξ1) = P −
K∑

k=1

Lk∑

ℓ=1

Pk,ℓ (4.27)

is monotonically decreasing in ξ1. Clearly, f(ξ1 = 0) = P and there exists a number M
for which f(ξ1 = M) < 0. As this function is continuous, there must exist ξ̄1 ∈ [0,M ]
such that f(ξ1 = M) = 0. Since the function decreases monotonically, this value must
be unique. Once found, this value univocally determines the water level of all other users
through Eqs. 4.26. Based on these monotonicity properties, a bisection procedure can be
used to determine water levels in the following way. First, the water level of a certain user
is arbitrarily chosen, e.g., ξ1. The water levels of all other users are then determined so
that Eqs. 4.26 are satisfied. The total power is subsequently computed using Eqs. 4.25.
If the resulting total power is smaller than the available transmit power P the level ξ1 is
increased. Otherwise, the level ξ1 is decreased. These computations are repeated until the
required power is approximately equal to the available power.
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4.1.6.3 Numerical results

In this section numerical results are presented that correspond to a multicarrier transmis-
sion system with N = 16 uncorrelated subcarriers. Fig. 4.9 shows average rate pairs for
a spatially uncorrelated Rayleigh distributed broadcast channel with unit-variance chan-
nel coefficients. The system parameters are K = 2, t = 4 and rk = 2. Relative rate
requirements have been considered such that R1/R2 = 0.1× n and R2/R1 = 0.1× n with
n ∈ {1, 3, . . . , 9}. Rate vectors have been plotted for three different SNR values. It can be
observed that SESAM almost achieves the performance of the optimum solution in both
plots. This is specially true for the range of points achieving the maximum sum rate as
well as for points close to the axes. For points in between some rate loss can be noticed.
However, in any case this loss is observed to be below 3 % of the optimum rate per user.
More noticeable is the gap between the successive encoding approaches and the linear de-
composition scheme. Nonetheless, the performance loss due to purely linear interference
suppression keeps below 15% of the optimum rates for all simulated points. For the same
system parameters but for a spatially correlated channel average rate pairs are shown in
Fig. 4.10. The correlation is modeled by a covariance matrix with an eigenvalue profile as
given by Eq. 4.10. As in previous sections, we observe the general decrease in achievable
rate due to correlation. The performance loss of SESAM with respect to the optimum
solution is in this case 4.16% for a constraint R1/R2 = 0.1 at 25 dB. The gap between the
linear scheme and the optimum approaches now reaches a maximum of 17.23% at 15 dB
for a constraint R1/R2 = 0.9.
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Figure 4.9: Average optimum and suboptimum rate balancing points for an uncorrelated
channel with K = 2, t = 4, rk = 2 and N = 16.

Fig. 4.11 shows average rate per user obtained in a broadcast channel with t = 4, rk = 2
and a "maximum" fairness constraint, i.e., q1 = q2 = · · · = qK , for K = 2, K = 5 and
K = 10 users. On each subcarrier the entries of channel matrices have been indepen-
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Figure 4.10: Average optimum and suboptimum rate balancing points for a correlated
channel with K = 2, t = 4, rk = 2 and N = 16.

dently drawn from a zero-mean complex-valued Gaussian distribution with unit variance.
SESAM practically achieves the performance of the optimum solution for 2 and 5 users.
By contrast, for the case of 10 users the gap between the optimum solution and SESAM
is noticeable. The reason for that might be the high number of users per subcarrier in the
system. As the number of users per subcarrier increases, the optimum solution tends to
split the users in groups that are served in separate OFDM symbols as part of a time-
sharing strategy. By contrast, SESAM tries to comply with the QoS constraint by serving
all users simultaneously in each single OFDM symbol. This strategy becomes increasingly
inefficient for growing number of users. Although this argument also applies to the linear
decomposition scheme, the gap with respect to SESAM narrows as the number of users
increases. This is due to the fact that in a system with a large number of users, the proba-
bility of allocating nearly orthogonal subchannels on the same subcarrier becomes higher.
If subchannels allocated on every subcarrier are mutually orthogonal the gap between
the successive-encoding-based decomposition scheme and the linear decomposition scheme
disappears.

In Table 4.4 average numbers are given concerning computation and implementation of
the optimum solution in Fig. 4.11. In order to compute the optimum solution, the ellipsoid
method given in Algorithm 3.11 has been used. In order to solve the weighted sum-rate
maximization problem required to update the subgradient of the dual problem at each
iteration, Algorithm 3.10 has been applied in conjunction with Algorithm 3.8. As stop
condition for the ellipsoid method we require that the maximum radius of the ellipsoid at
a certain iteration become smaller than ǫ = 0.01 or, alternatively, that

max
k
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Figure 4.11: Average optimum and suboptimum rates per user with equal rate requirements,
i.e., qk = 1, ∀k. N = 16, t = 4 and rk = 2.

i.e., the vector of rates obtained at a certain iteration ℓ is almost parallel to the constraint
vector q. As stop conditions for Algorithms 3.10 and 3.8, we require that the increment in
the value of the respective objective function at a certain iteration to be smaller than 1%
and 0.1% of the value achieved in the previous iteration, respectively. Outer iterations refers
now to the number of iterations performed by Algorithm 3.11. Inner iterations refers to
the average number of iterations performed by Algorithm 3.8 per subcarrier and iteration
of Algorithm 3.10. Specially significant is the degradation in convergence speed of the
ellipsoid method as the number of users increases (cf. Fig. 3.3). Beside this computational
complexity time-sharing poses an additional difficulty to practical implementation. Indeed,
having to switch between different transmission strategies increases signaling overhead and
the time needed to effectively realize nearly error-free transmission at the desired rates. In
Table 4.4 we observe that, for a "maximum" fairness constraint, the average number of
necessary time-sharing points approaches the actual number of users.

SNR (dB) 0 5 10 15 20

inner iterations 11.3/17.8/19.9 9.9/19.2/21.7 7.0/17.8/20.3 4.0/15.3/18.0 2.5/13.2/16.0

outer iterations 6.4/85.7/440.6 6.8/85.1/437.4 7.0/84.3/422.2 7.0/83.8/418.4 7.0/83.3/411.6

time-sharing points 1.4/3.1/7.9 1.6/4.4/7.9 1.9/4.5/8.1 2.0/4.7/8.4 2.0/4.7/8.8

Table 4.4: Average numbers involved in the computation and implementation of the op-
timum rate balancing with fairness QoS constraint for N = 16, t = 4, rk = 2 and
K = 2/5/10.
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4.2 SINR-based successive subchannel allocation

method

In this section an algorithm is presented that, as SESAM, performs a successive alloca-
tion of subchannels, but, different from SESAM and all other decomposition methods for
that matter, does not impose any zero-forcing constraints on the selection of subchannels.
Rather than using channel gains as criterion for the assignment of new subchannels, the
algorithm establishes at each step a new subchannel based on an SINR criterion. Note that
this is only possible if the allocation of power and dimensions is done in parallel. This is
in contrast to the decomposition approaches described above, where dimensions are first
allocated and power allocation is carried out in a second stage. A further difference of this
algorithm with respect to decomposition approaches consists in the fact that it is applied
to the dual MAC of a given broadcast channel rather than to the broadcast channel itself.
Subsequently, streamwise duality (cf. Section A.4) can be used in order to find the stream-
wise strategy that achieves the same stream rates in the broadcast channel. If applied to
MIMO OFDM channels, the algorithm can be run in parallel on each of the subcarriers
by assuming a uniform power allocation across subcarriers. For this reason and in order to
simplify notation, in the sequel, the general MIMO broadcast channel model given in Eq.
2.6 and, in particular, its dual MAC given in Eq. 2.25 are considered. In the next sections
we discuss the application of this approach to the sum-rate and the weighted sum-rate
maximization problems. Due to the fact that the resulting subchannels are coupled, subse-
quent optimization of the power allocation in order to enforce a rate balancing constraint
(cf. Section 4.1.6.2) is a hardly tractable task. This somehow compromises applicability of
this approach to the rate balancing problem.

4.2.1 Sum-rate maximization

Consider allocation of the first subchannel in the MAC and assume that information sent
over this subchannel is to be decoded last.9 Let the first subchannel be allocated to user
k. The maximum achievable SINR that can be achieved can be computed as

SINRk = max
b

PbHHkH
H
k b, (4.28)

subject to ‖b‖1 = 1, where P is the total transmit power available. SINRk is achieved
by transmitting with all the available power over the stream defined by the beamforming
vector bk that maximizes Problem 4.28. At the receiver, the matched filter or scaled MMSE
filter vector ak = αkH

H
k bk is applied, where α is an arbitrary scaling factor. This receive

filter is an SINR maximizer. Since the maximum SINR achievable on a first allocated
subchannel is determined by the beamforming vector bk and the power P , we can write
SINRk(bk, P ). The transmit beamforming vector characterizing the stream with highest
SINRk among all users is chosen to represent the first allocated subchannel, i.e.,

u1 = arg
bk

max
k

SINRk(bk, P ).

9Due to duality, the corresponding stream in the BC will be encoded in the first place (cf. Section A.4.2).
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The maximum achievable rate after allocation of the first subchannel is given by

R(1) = log2

(
1 + SINRπ(1)(u1, P )

)
.

Aiming at the allocation of the second subchannel, which will be decoded immediately
before the first allocated subchannel, we first divide the power in two equal parts. P/2
is assigned to the already established subchannel and P/2 is reserved for the subchannel
to be assigned in the next step. Now, the maximum SINR achieved by any user k can be
written as

SINRk(bk, P/2) = max
b

P

2
bHHk

(

I t +
P

2
HH

π(1)u1u
H
1 Hπ(1)

)−1

HH
k b,

subject to ‖b‖1 = 1. In order to achieve SINRk(bk, P/2), bk must be used as beamforming
vector at transmitter k. At the receiver, the scaled MMSE filter

ak = αk

(

I t +
P

2
HH

π(1)u1u
H
1 Hπ(1)

)−1

HH
k bk,

must be applied. The transmit beamforming vector characterizing the stream with highest
SINRk is chosen to represent the second allocated subchannel, i.e.,

u2 = arg
bk

max
k

SINRk(bk, P/2).

The rate obtained after allocation of the two first subchannels can be computed as

R(2) = log2

(
1 + SINRπ(1)(u1, P/2)

)
+ log2

(
1 + SINRπ(2)(u2, P/2)

)
,

where SINRπ(1)(u1, P/2) is the SINR value obtained over the first allocated subchannel
after allocation of the first two subchannels. At this point, we compare R(2) and R(1). If
R(1) is larger than R(2) the last allocated subchannel is dismissed and allocation is de-
clared completed. If R(2) is larger than R(1) allocation of a third subchannel is pursued.
In such case, the total power is divided into three equal parts. Two parts are allocated to
the established subchannels and the third part is reserved for the new subchannel. The
allocation process proceeds along the lines of the procedure followed for the allocation of
the first two subchannels. The pseudocode of this allocation method is given in Algorithm
4.4. Assume that the algorithm terminates as allocation of the (L + 1)th subchannel re-
sults in a decrease of sum rate. In such case, the output of the algorithm consists of the
L first allocated subchannels over which the power is uniformly distributed. A streamwise
approach achieving the same sum-rate in the dual BC can easily be found by consider-
ing DPC-based successive encoding of the streams in the order in which the respective
subchannels were allocated. As receive beamforming vector for the ℓth stream, uℓ should
be used. As transmit beamforming vector, the unit-norm scaled MMSE filter achieving
SINRπ(ℓ)(uℓ, P/L) should be applied. The power allocation can be obtained by solving the
linear system of equations given in Eq. A.12.

It is interesting to observe that, if applied to a single-user setting, this algorithm also
chooses the singular vectors of the channel as beamforming vectors and performs a kind
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Algorithm 4.4 Successive maximum SINR subchannel allocation

1: SINRk(bk, P )← max
b

PbHHkH
H
k b, k = 1, . . . , K

subject to ‖b‖1 = 1

2: u1 ← arg
bk

max
k

SINRk(bk, P )

3: R(1) ← log2

(
1 + SINRπ(1)(u1, P )

)

4: ℓ← 1
5: repeat

6: ℓ← ℓ+ 1

7: SINRk(bk, P/ℓ)← max
b

P
ℓ
uHHk

(

It +
∑ℓ−1

i=1
P
ℓ
HH

π(i)uiu
H
i Hπ(i)

)−1

HH
k b,

k = 1, . . . , K, subject to ‖b‖1 = 1

8: uℓ ← arg
bk

max
k

SINRk(bk, P/ℓ)

9: R(ℓ) ←∑ℓ
i=1 log2

(
1 + SINRπ(i)(ui, P/ℓ)

)

10: until R(ℓ) < R(ℓ−1)

of quantized waterfilling power loading. This can be seen as follows. Letting H be the
channel matrix of the single-user channel and λj, j = 1, . . . ,Rank{H}, the singular values
of this matrix ordered such that λj ≥ λj+1, the first allocation step delivers SINR1 = Pλ2

1

and the left singular vector associated with λ2
1 as vector u1. The matrix

H

(

I t +
P

2
HHu1u

H
1 H

)−1

HH

used in order to determine allocation of the second subchannel is easily shown to have
the same eigenvectors as HHH and eigenvalues µ1 = λ2

1/(1 + Pλ2
1/2), µj = λ2

j ,
j = 2, . . . ,Rank{H}. Correspondingly, the beamforming vector selected in this second
step is again a left singular vector of H . This, in turn, implies that the vectors eligible as
beamforming vectors in the next round are again the left singular vectors of H and so on. If
µ1 > µ2, u2 = u1, i.e., the algorithm chooses to transmit two information streams over the
same physical spatial dimension. Otherwise, u2 is chosen to be the eigenvector associated
with λ2

2. In the first case, the eigenvalues of the matrix used in order to determine the allo-
cation of the third subchannel are µ1 = λ2

1/(1+2Pλ2
1/3), µj = λ2

j , j = 2, . . . ,Rank{H}. In
the second case, µ1 = λ2

1/(1+Pλ2
1/3), µ2 = λ2

1/(1+Pλ2
1/3), µj = λ2

j , j = 3, . . . ,Rank{H}.
Following this process, it can be easily verified that after allocation of the ℓth subchannel,
the total power allocated for transmission over the spatial dimension corresponding to the
singular value λj is given by Pj = njP/ℓ where nj ∈ {0, . . . , ℓ} corresponds to the num-
ber of streams assigned for transmission over that dimension. It can also be shown that
n1 ≥ n2 ≥ . . . ≥ nJ , where J = Rank{H}. This example also makes clear an essential dif-
ference between subchannels allocated by decomposition approaches and the subchannels
allocated by this algorithm. In the first case, subchannels can be identified with spatial
dimensions. In fact, the number of subchannels that can be allocated by decomposition
approaches is limited to the spatial rank of the system as a whole. By contrast, in the
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context of this algorithm, subchannel is synonym of the term information stream. In fact,
as we have seen several subchannels or streams can be transmitted over the same spatial
dimension. That is, the number of streams or subchannels allocated is not constrained
by the dimensionality of the system. Of course, for the single-user setting, in a practical
implementation, all streams assigned to one particular dimension can be merged into a
single stream, thus simplifying detection.

Fig. 4.12 shows average sum-rate curves for the settings used in Figs. 4.1 and 4.2. Though
numerically, it is observed that the SINR-based successive subchannel allocation outper-
forms SESAM, this is certainly not visible in this plot. Fig. 4.13 compares the performance
of SESAM and the SINR-based successive subchannel allocation scheme for the settings
used in Figs. 4.3 and 4.4. Only a negligible gap can be appreciated between the curves
corresponding to both approaches. This gap seems to be actually larger than that between
the optimum approach and SESAM in Figs. 4.3 and 4.4. This is surely due to the numeri-
cal error incurred by stopping the search in the iterative optimum algorithm after a finite
number of iterations.
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Figure 4.12: Comparison of SINR-based and SESAM sum-rate maximizing allocation for
spatially uncorrelated (solid lines) and spatially correlated (dashed lines) channels. K =
2, t = 4, rk = 2 and N = 16.

4.2.2 Weighted sum-rate maximization

Algorithm 4.4 can be readily endowed with a mechanism that considers priorities assigned
to users in the allocation process. Surely the easiest way of doing this consists in weighting
the SINR values in step 8 with the priorities of the respective users. The pseudocode of
the resulting allocation method is given in Algorithm 4.5. If all weights are equal, i.e.,
µ1 = · · · = µK , both Algorithm 4.4 and Algorithm 4.5 yield the same result. If there is
only one user with a weight different from zero, the algorithm simply performs an SVD
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Figure 4.13: Comparison of SINR-based and SESAM sum-rate maximizing allocation for
spatially uncorrelated (solid lines) and spatially correlated (dashed lines) channels. K =
10, t = 4, rk = 2 and N = 16.

of the corresponding single-user channel and a quantized waterfilling power allocation as
discussed above.

While the weighted sum-rate maximizing SESAM algorithm delivers a set of subchannels
over which a priority-sensitive power allocation can be subsequently performed, Algorithm
4.5 delivers a set of coupled subchannels with a power allocation that does not consider
priorities in an explicit way. This is a qualitative difference between these two approaches.
Figs. 4.14 and 4.15 show a quantitative comparison between both schemes for the same
settings used in Figs. 4.5 and 4.6, respectively. In general, the points obtained from the
SINR-based approach lie on the same curved line as those of SESAM, however the distri-
bution is different. Points corresponding to the SINR-based scheme are, at least for the
uncorrelated channel, not as evenly distributed as those of the SESAM scheme. For the
correlated channel, performance loss of the SINR-based scheme with respect to SESAM
is especially visible for the points close to the axes at SNR = 25 dB. At these points, for
most of the channel realizations only the user with priority 0.9 is served. However, due to
the strong correlation this user has two uneven dimensions. While the waterfilling power
allocation performed on the top of SESAM adapts to this channel structure optimally,
the somehow more rigid quantized power allocation of the SINR-based algorithm turns
out to be quite inefficient for some channel realizations. Figs. 4.16 and 4.17 compare both
approaches for the settings of Figs. 4.7 and 4.8. While the different in distribution is vis-
ible, the SINR-based allocation scheme reaches a weighted sum rate that is 2.70 % below
the value achieved by SESAM in Fig. 4.16 and 2.63 % below the value achieved by this
approach in Fig. 4.17.
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Algorithm 4.5 Successive maximum weighted SINR subchannel allocation

1: SINRk(bk, P )← max
b

PbHHkH
H
k b, k = 1, . . . , K

subject to ‖b‖1 = 1

2: u1 ← arg
bk

max
k

µkSINRk(bk, P )

3: R(1) ← µπ(1) log2

(
1 + SINRπ(1)(u1, P )

)

4: ℓ← 1
5: repeat

6: ℓ← ℓ + 1

7: SINRk(bk, P/ℓ)← max
b

P
ℓ
uHHk

(

It +
∑ℓ−1

i=1
P
ℓ
HH

π(i)uiu
H
i Hπ(i)

)−1

HH
k b,

k = 1, . . . , K, subject to ‖b‖1 = 1

8: uℓ ← arg
bk

max
k

µkSINRk(bk, P/ℓ)

9: R(ℓ) ←∑ℓ
i=1 µπ(ℓ) log2

(
1 + SINRπ(i)(ui, P/ℓ)

)

10: until R(ℓ) < R(ℓ−1)
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Figure 4.14: Comparison of SINR-based and SESAM weighted sum-rate maximizing allo-
cation for a spatially uncorrelated broadcast channel with K = 2, t = 4, rk = 2 and
N = 16.
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Figure 4.15: Comparison of SINR-based and SESAM weighted sum-rate maximizing al-
location for a spatially correlated broadcast channel with K = 2, t = 4, rk = 2 and
N = 16.
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Figure 4.16: Comparison of SINR-based and SESAM weighted sum-rate maximizing allo-
cation for a spatially uncorrelated broadcast channel with K = 10, t = 4, rk = 2 and
N = 16. SNR = 15 dB.
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Figure 4.17: Comparison of SINR-based and SESAM weighted sum-rate maximizing al-
location for a spatially correlated broadcast channel with K = 10, t = 4, rk = 2 and
N = 16. SNR = 15 dB.



5 Feedback of channel state information

5.1 Delay-limited and rate-limited feedback paradigms

Recently, feedback of channel state information has attracted the interest of many re-
searchers in the communications area. Most of the work done so far follows an approach
that can be called the rate-limited feedback paradigm. This approach is based on the
assumption of an error-free feedback channel over which a limited number of bits is trans-
mitted that convey channel state information from a receiver to the transmitter (e.g.,
[84, 78, 154, 64]). A comprehensive overview on this body of research can be found in [77].
Typically, a major goal of these publications consists of analyzing the impact of the quan-
tization error on a performance measure in the forward link, such as capacity or outage
probability. Due to the error-free assumption, transmission of the quantization bits in the
feedback link is not an issue. From a theoretical point of view, zero error probability is
strictly impossible if transmission is carried out over a finite number of channel uses in the
feedback link, i.e., zero error probability requires an unbounded transmission delay. From a
practical point of view, however, the probability of error can realistically be neglected if the
the number of admissible channel uses is large enough relative to the number of transmitted
feedback bits, and enough diversity is available in the feedback link. In simple communica-
tion systems, such as single-user, single-carrier MISO or MIMO links, a few feedback bits
have been shown to be enough to closely approximate perfect CSIT performance [78, 95].
By contrast, the number of feedback bits required to approximate full channel knowledge
performance appears to be considerable larger in single-user MIMO-OFDM systems (cf.
[29, 88]) and can become even larger in multiuser systems, where it must be scaled by
the number of transmit antennas and the transmit power in order to maintain an SNR-
independent performance loss [64, 91]. Obviously, almost error-free transmission of a large
number of feedback bits can only be assumed at the cost of considerable delays. Depending
on the rate of change of the forward channel, these delays might render the CSI obsolete
or become an unaffordable overhead for the communication system. Besides, fading feed-
back channels with a low degree of spatial and frequency diversity make the occurrence
of transmission errors unavoidable as, due to delay limitations, time diversity will gener-
ally be impossible to leverage. As a consequence, at least in multiuser systems with time
dispersive forward channels and fading feedback channels, it seems appropriate to shift in
the way of addressing the CSI feedback problem from the rate-limited paradigm followed
so far to a more realistic delay-limited paradigm, where parameters such as the number of
feedback bits are left open and, instead, a strict delay limitation is imposed [111, 112].

While feedback of channel state information under the rate-limited paradigm can be
viewed as a source coding problem [154], under the delay-limited paradigm it can be
viewed as a joint source and channel coding problem, which is notably more complex. The
source is represented by the channel coefficients of the forward link that must be adequately

127
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encoded in order to be transmitted over a given number of channel uses in the feedback
link. The goal is to minimize a distortion measure related to performance in the forward
link. For this problem, optimality of digital transmission is stated by the joint source and
channel coding theorem [101, Theorem 21], also known as separation theorem, provided
that the lengths of the codewords tend to infinity. However, under a strict delay limitation
there is not theoretical evidence of the optimality of digital transmission. Lately, linear
analog approaches have been proposed by several authors [81, 96, 120, 131] for feedback
purposes. These schemes are appealing due to their simplicity, the transmitter and receiver
consisting of a linear precoder and a linear filter, respectively. This is a significant advantage
with respect to high-performance digital approaches including vector quantizers, channel
coding and detection algorithms. Due to the complexity of the issue, this chapter pursues
the humble but non-trivial goal of providing a basic understanding of the fundamental
difference between linear analog approaches and delay-limited digital approaches when
employed for feedback of channel state information in wireless communication systems.
To this end, first, a simple SISO OFDM fading feedback link model is assumed in the
next section. Based on this model and considering a mean squared error (MSE) distortion
measure, some analysis will be carried out concerning the performance of analog and digital
approaches and theoretical bounds. In Section 5.3, part of this analysis will be extended to
a feedback link with multiple antennas. Finally, in Section 5.4, performance in the forward
link is considered and numerical results are shown that illustrate the impact of both analog
and digital feedback transmission schemes. For a specific single-carrier multiuser setting,
there has been some recent work on the comparison of digital and linear analog transmission
approaches reported in [19, 20].

5.2 Single-input single-output time-dispersive fading

feedback channel

5.2.1 Feedback link model

The block diagram of the feedback link that will be considered in this section is given
in Fig. 5.1. At regular time intervals the source delivers a vector h ∈ CL as an output,
whose entries are assumed to be statistically independent and distributed according to
a zero-mean circularly symmetric Gaussian distribution with unit variance. The source is
assumed to be memoryless, meaning that outputs at different time instants are statistically
independent. The encoder is a function that maps a source output into a multivariate signal
w ∈ CN . Here, we assume that the dimensionality of the source output is equal to or smaller
than the dimensionality of the signal space, i.e., L ≤ N . To the vector of transmit signals
an average power constraint applies, i.e.,

E
{
‖w‖22

}
≤ P. (5.1)

The transmit signal is transformed by a diagonal channel matrix G ∈ C
N×N and to the

resulting signal the noise vector n ∈ CN is added, i.e.,

r = Gw + n.
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Entries gn, n = 1, . . . , N , on the main diagonal of G are assumed to be realizations of a
zero-mean circularly symmetric Gaussian distribution with unit variance. For purposes of
analysis, a block-fading model is considered. The channel coefficients g1,...,N are divided
in M blocks comprising N/M consecutive coefficients. Coefficients of different blocks are
statistically independent. Coefficients in the same block are fully correlated, i.e., their
realizations are identical. The additive noise vector is assumed to be zero-mean, white,
circularly symmetric Gaussian with unit variance per complex dimension. It is assumed
that the encoder does not know matrix G but only its statistics. The decoder is a function
that maps the received signal r ∈ CN into an estimate of the source output ĥ ∈ CL. The
decoder is assumed to know matrix G.

Source Encoder Decoder
h ĥ

G n

rw

Figure 5.1: Feedback link model.

At a given time, the output of the source represents information about the instantaneous
state of the channel in the forward link. Several kinds of channels can be thought of that
suit the assumptions made for the source. If we assume that the channel state is fed back
once per coherence time and the forward link is a Rayleigh-fading time-dispersive channel
with L uncorrelated taps and a flat power delay profile, the entries hℓ, ℓ = 1, . . . , L, of the
source output h might represent each of the forward channel delay taps. Alternatively, these
coefficients might represent the coefficients of a MIMO matrix with L entries corresponding
to a non-dispersive Rayleigh-fading uncorrelated MIMO forward channel. Any combination
of these two models with uncorrelated antennas and taps, and flat power delay profiles can
be accommodated into this source model. If feedback is performed at intervals shorter than
the coherence time of the forward channel, correlations would exist between the channel
states observed in two consecutive channel measurements. In this case, the outputs of the
source could be interpreted as the innovations of the new estimate with respect to previous
estimates, which do not exhibit any temporal correlation (cf. [131]). The feedback channel
model also accepts several interpretations. For instance, it can be viewed to represent a
SISO OFDM channel, being gn the complex-valued channel gain of the nth subcarrier.
Alternatively, it can be viewed as a sequence of N uses of a non-dispersive SISO channel.
A more general way to look at this model is as a sequence of uses of a SISO OFDM channel
with the product of channel uses and the number of subcarriers being N .

While the source and the channel in the above model are assumed to be given and
fixed, the encoder and decoder are the blocks that can be designed in order to optimize a
performance measure of interest. Here, as already suggested by Fig. 5.1 and in the above
description, the goal is to reproduce the source output as faithfully as possible at the output
of the decoder. To this end, we choose the mathematically convenient mean squared error
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(MSE) as a figure of merit,

ǫ =
1

L
E{‖h − ĥ‖22}. (5.2)

Setting this as a goal, fully decouples the design of the feedback link from the design of the
transmission strategy in the forward link. On the one hand, the results obtained using this
figure of merit have a general character since they are independent of the particularities of
the forward link. On the other hand, for a particular forward link, a feedback link designed
according to the MSE figure of merit will, in general, provide suboptimum results in terms
of performance achievable in the forward link. Indeed, the feedback link (encoder and
decoder) should be ideally designed so that at the output of the decoder some parameters
are delivered that define the best transmission strategy for the forward link according
to a performance measure of interest. However, even for simple forward channels, the
resulting design problem turns out extraordinarily difficult. By contrast, an MSE figure of
merit, though suboptimum in terms of forward link performance, seems to be correlated
with any of the usual performance measures in the forward link and, at the same time,
allows the analysis of some fundamental questions concerning transmission of channel state
information over the feedback link.

5.2.2 Theoretical upper bounds

5.2.2.1 Optimum performance theoretically achievable

There are two kinds of temporal constraints that apply to the feedback link model de-
scribed in the previous section. The first is due to the finite dimensionality of matrix G,
whose entries represent the channel gains of a finite number of channel uses. The second
is that the estimate at the output of the decoder at a given time instant depends causally
on the sequence of source outputs. That is, if ĥ[1], ĥ[2], . . . is the sequence of estimates
at the output of the decoder and h[1],h[2], . . . is the sequence of source outputs, ĥ[k]
depends at most on h[k] and the preceding source outputs but not on subsequent source
outputs. In practical terms, this constraint means that, at every time instant, the output
of the feedback link contains as much information as possible about the last channel state
measured at the receiver of the forward link and not about previously measured channel
states. That is, there is no delay caused by buffering of information and the only delay is
due to the number of channel uses and duration of the transmit symbols. Ignoring this de-
lay constraint due to causality, in the following, we derive an upper bound on performance
for the feedback link that is based on rate-distortion theory. In accordance with exist-
ing joint source and channel coding literature, we call this bound optimum performance
theoretically achievable (OPTA).

The rate-distortion function of a random variable h with probability density function
p(h) is defined as

R(ǫ) = min
p(ĥ|h)
{I(h, ĥ)} subject to

1

L
E{‖h − ĥ‖22} ≤ ǫ, (5.3)

where I(h, ĥ) is the mutual information of variables h and ĥ, p(ĥ|h) is the conditional

probability density function of ĥ given h and an MSE distortion function has been consid-
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ered. The rate-distortion function indicates the minimum rate that is necessary in order
to encode the source with a distortion no larger than ǫ. For k → ∞, this rate can be
approximated as tightly as we want by generating a codebook consisting of 2kR sequences
of length k drawn at random according to p(ĥ) and selecting for each source sequence
h[1],h[2], ...,h[k] a jointly typical code vector ĥ[1], ĥ[2], ..., ĥ[k]. Roughly speaking, the

existence of such a typical code vector is guaranteed by the fact that R > I(h, ĥ) (see Ap-
pendix A.2). As the source sequence and the corresponding code vector are jointly typical,
by the law of large numbers, the distortion constraint is also satisfied [40].

According to the channel coding theorem, assigning an index i ∈ {1, 2, . . . , 2kR} to every
code vector, these can be transmitted without error over a channel with capacity C > R
provided that k →∞. At the receiver, an index can be mapped back to the corresponding
code vector that represents the original source sequence with a distortion smaller or equal
to ǫ. By contrast, if C < R, no error-free transmission is possible. As a consequence, original
source sequences and eventually detected code vectors are not any more necessarily jointly
typical, thereby causing distortion to increase. Thus, we observe that any distortion ǫ is
achievable over a channel with capacity C if R(ǫ) < C and, conversely, if a distortion
ǫ is achievable over a channel with capacity C, then R(ǫ) < C must hold. This result
[101, Theorem 21] is known as joint source-channel coding theorem or separation theorem.
The name separation theorem comes from the fact that source coding and channel coding
can be performed separately. Indeed, source code vectors can be represented by indexes
and these can be arbitrarily mapped to codewords of an optimum channel code book, the
design of the source and channel codebooks being done independently of each other. Thus,
separation of source and channel coding is a way to achieve minimum distortion. However,
as we shall soon see, at least in some cases, this is not the only way. As a consequence of this
theorem and the fact that R(ǫ) is a non-increasing function of ǫ, the minimum distortion
achievable over a channel with capacity C can be computed by solving R(ǫ) = C.

For h ∼ CN (0, IL) the rate-distortion function can be derived by noting the following
inequalities:

I(h, ĥ) = h(h)− h(h|ĥ)

= L log(πe)− h(h − ĥ|ĥ) (5.4)

≥ L log(πe)− h(h − ĥ) (5.5)

≥ L log(πe)− h(CN (0,Rǫ)) (5.6)

≥ L log(πe)− L log(πeǫ) (5.7)

= L log

(
1

ǫ

)

.

Eq. 5.4 is a consequence of the fact that translation does not change differential entropy.
Eq. 5.5 follows from the fact that conditioning reduces entropy. In Eq. 5.6, Rǫ is the error
covariance matrix, which must fulfil Tr{Rǫ} ≤ Lǫ. This inequality follows from the fact that
circularly symmetric Gaussian distributed variables are entropy maximizers [119]. Finally,
Eq. 5.7 is obtained by noting that Tr{Rǫ}/L is the arithmetic mean of the eigenvalues
of Rǫ and |Rǫ|1/L is the geometric mean of these eigenvalues. Using the geometric and
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arithmetic mean inequality we can write

h(CN (0,Rǫ)) = L log
(
πe|Rǫ|1/L

)
≤ L log (πeTr{Rǫ}/L) ≤ L log(πeǫ).

If ǫ < 1, choosing p(ĥ|h) such that h = ĥ + n with ĥ ∼ CN (0, (1− ǫ)IL) and n ∼
CN (0, ǫIL), all inequalities become equalities. If ǫ ≥ 1, ĥ can be chosen to be equal to 0
with probability 1. The distortion achieved in this case equals 1 and the required rate is
0. Summing up, for h ∼ CN (0, IL) the rate-distortion function is given by

R(ǫ) =

{
L log

(
1
ǫ

)
if ǫ < 1

0 if ǫ ≥ 1
. (5.8)

This is a trivial extension to multivariate circularly symmetric Gaussian variables of the
computation of the rate distortion function for Gaussian variables described in [40].

The capacity of the feedback channel is given by

C =

N∑

n=1

E

{

log

(

1 +
|gn|2P
N

)}

=
N

loge 2
E1

(
N

P

)

exp

(
N

P

)

, (5.9)

where E1(·) is an exponential integral function.1 That a uniform power allocation is opti-
mum can be shown by considering the following problem,

max
P1,...,N

N∑

n=1

E
{
log
(
1 + |gn|2Pn

)}
subject to

N∑

n=1

Pn ≤ P,

and noticing that Pn = P/N , ∀n, satisfies the KKT conditions, which are sufficient due to
convexity in this case.

Equating Eqs. 5.8 and 5.9 and solving for ǫ, we obtain the OPTA as

ǫOPTA = exp

(

−N
L

E1

(
N

P

)

exp

(
N

P

))

. (5.10)

This distortion could be approximated by providing the encoder depicted in Fig. 5.1 with
buffering capability in order to store long sequences of source outputs and letting it quantize
these sequences and map the reproduction values to codewords of a channel code stretching
over many different realizations of the channel matrix G in order to transmit at a rate
close to C with negligible error probability.

5.2.2.2 Optimum performance theoretically achievable with limited diversity

An alternative upper bound to the OPTA derived in the previous section is obtained
as follows. As a lower bound on the number of bits required to represent ocurrences of

1En(x) =
∫
∞

x
e−t

tn dt.
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the source outputs with an average distortion smaller than ǫ, we still consider the rate-
distortion function in Eq. 5.8. Given a fixed feedback channel realization G, the maximum
number of bits that can be reliably transmitted with uniform power allocation2 reads

C(q1,...,N) =
N∑

n=1

log2 (1 + qnP/N) , (5.11)

where qn = |gn|2, n = 1, . . . , N . Correspondingly, the minimum distortion that could
possibly be achieved over a particular channel realization can be computed by considering
Eqs. 5.8 and 5.11 and yields

ǫ(q1,...,N) =
1

∏N
n=1 (1 + qnP/N)

1
L

. (5.12)

This represents a lower bound on the distortion that can be achieved on the feedback
link for the specific feedback channel realization. Thus, averaging this expression over
channel realizations gives a lower bound on the average distortion achievable over the
fading feedback channel. That the resulting bound is tighter than the OPTA derived in
the previous section can be shown by noting

ǫOPTA−LD = E{ǫ(q1,...,N)} = E{ǫ(C(q1,...,N))} ≥ ǫ(E{C(q1,...,N)}) = ǫOPTA,

where the inequality is due to the fact that the distortion-rate function ǫ(R) is convex. Note
that ǫOPTA is obtained by transmitting codewords over all possible channel realizations,
thereby profiting from an unbounded source of diversity. In the new bound, however, the
amount of diversity exploited during transmission is that available in just one channel
realization. For this reason, we call this bound OPTA with limited diversity (OPTA-LD).
Using the block fading assumption on the statistics of the coefficients of the feedback
channel matrix G, we can write

ǫOPTA−LD =

(

E

{

1

(1 + qP/N)
N

ML

})M

, (5.13)

where q is exponentially distributed with mean value 1. Making use of the identity [87]

∫ ∞

0

1

(a+ t)ν
e−ptdt = pν−1eapΓ (−ν + 1, ap),

the expected value in Eq. 5.13 can be computed as

ǫ
1

M

OPTA−LD =

(
N

P

) N
ML

exp

(
N

P

)

Γ

(

− N

ML
+ 1,

N

P

)

, (5.14)

where Γ (a, x) =
∫∞

x
ta−1e−tdt is the upper incomplete gamma function.

2Recall that the transmitter does not have knowledge of G
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5.2.2.3 Asymptotical analysis

Using the inequalities [1]

1

2
loge(1 + 2x) ≤ E1

(
1

x

)

exp

(
1

x

)

≤ loge(1 + x), (5.15)

the following asymptotical behavior can be observed for ǫOPTA,

ǫOPTA(dB) = −ηN
L
P (dB) +O(1), P →∞,

with 1/2 ≤ η ≤ 1. That is, the asymptotic distortion decay rate (DDR), defined as

DDR = lim
P→∞

− log ǫ

logP
, (5.16)

is proportional to the bandwidth expansion factor defined as the ratio between the di-
mension of the channel and the dimension of the source output. In the low SNR regime,
substitution of any of the bounds of Eq. 5.15 in Eq. 5.10 and a Taylor expansion around
zero yield

ǫOPTA = 1− P/L+ o(P ). (5.17)

That is, the behavior of ǫOPTA in the low SNR regime does not depend on the dimensionality
of the channel but only on the transmit power and the dimensionality of the source outputs.

In order to analyze the asymptotical behavior of Eq. 5.14 at high SNR values, it is
convenient to write Γ (a, x) as a power series [1],

Γ (1− ν, x) = Γ (1− ν)− x1−ν

1− ν + x1−ν
∞∑

n=1

(−x)n

(1− ν + n)n!
ν 6= 1, 2, 3, . . . (5.18)

Substituting this expression into Eq. 5.14 with ν = N/ML and x = N/P we obtain

ǫ
1
M

OPTA−LD =







Γ (1− N
ML

)N
N

ML

P
N

ML

exp
(

N
P

)
+ o

((
1
P

) N
ML

)

, N
ML

< 1

N

( N
ML

−1)P
exp

(
N
P

)
+ o

(
1
P

)
, N

ML
> 1

, P →∞.

That is, if L > N/M , the distortion decay rate is equal to N/L and independent of the
amount of statistically independent variables (diversity degree) in the feedback channel.
On the other hand, if L ≤ N/M the decay rate is equal to M , i.e., it is limited by the
amount of diversity available in the channel and independent of the bandwidth expansion
factor N/L. In particular, if M = 1, i.e., the feedback channel is flat fading, the decay
rate of any feedback transmission approach is lower bounded by 1 no matter how large
the bandwidth available is or how many uses of the feedback link are made in order to
transmit the outputs of the source. If N

ML
= 1, 2, 3, . . ., the series expansion in Eq. 5.18
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does not hold. However, the conclusions drawn above are still valid. Indeed, in this case,
the expressions

Γ (1− ν, x) = x1−νEν(x), (5.19)

1

x+ ν
< exEν(x) <

1

x+ ν − 1
, (5.20)

ν = 1, 2, 3, . . ., can be used in order to show

ǫ
1
M

OPTA−LD =







N
P

E1

(
N
P

)
exp

(
N
P

)
, ν = 1

Nξ(P,ν)
P

, ν = 2, 3, . . .

where ξ(P, ν) is a function that tends to a constant value greater than zero as P → ∞.
Note that the asymptotic distortion decay rate is in any case equal to M .

In order to analyze the behavior of the normalized distortion at low SNR values, we use
the continued fraction representation of the incomplete gamma function given by [1]

Γ (1− ν, x) = e−xx1−ν 1

x+
ν

1 +
1

x+
1 + ν

1 +
2

x+ · · ·

.

Substituting this expression in Eq. 5.14 we obtain

ǫOPTA−LD =

(
1

1 + ξ(P )P

)M

,

where ξ(P ) is a function of P that tends linearly to 1/ML as P → 0. Correspondingly, a
Taylor expansion around 0 yields

ǫ̃ = 1− P/L+ o(P ).

Note that this expression coincides with Eq. 5.17. That is, in the low SNR regime, both
bounds behave identically.

5.2.3 Analog transmission

We say that the transmission over the feedback link is analog if the encoder is a function
that maps the outputs of the source to a non-discrete signal space, which is generally
uncountable. Here, we focus on linear analog schemes, which are particularly appealing due
to their simplicity.3 In these kind of schemes, the encoder is a linear mapping represented

3For work on analog non-linear mappings see [17, 28, 102].
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by a matrix T ∈ CN×L. In order to comply with the transmit power constraint given by
Eq. 5.1, for this matrix,

Tr
{
TT H

}
≤ P (5.21)

must hold. The signal at the input of the decoder can be written as a function of the source
output as

r = GTh + n.

Due to joint Gaussianity of this signal and the source output h, the estimator that achieves
the minimum distortion is the linear minimum mean squared error (MMSE) filter, which
reads

W =
(
I + T HGHGT

)−1
T HGH,

Accordingly, the estimate is given by

ĥ = Wr.

Substituting this estimate in Eq. 5.2 the distortion incurred by this optimum receiver can
be written as

ǫ = Tr
{

E
{(

I + T HQT
)−1
}}

, (5.22)

where Q = GHG and the expected value is taken with respect to this matrix. Minimization
of the distortion can be carried out over the choice of T subject to the constraint given in
Eq. 5.21, i.e.,

min
T

Tr
{

E
{(

I + T HQT
)−1
}}

s. t. Tr
{
TT H

}
≤ P. (5.23)

Even with a model as simple as the one assumed here, a general solution to this problem
is difficult to obtain. We next analyze some particular interesting cases which will provide
us with some valuable insights into the problem.

5.2.3.1 Flat Fading Feedback Channel (M = 1)

For this particular case, Q = qIN×N and problem (5.23) simplifies to

min
T

E
{

Tr
{(

I + qT HT
)−1
}}

s. t. Tr
{
TT H

}
≤ P.

Let τ1,...,L be the eigenvalues of the product T HT . In terms of these eigenvalues, the opti-
mization problem can be now rewritten as

min
τ1,...,L

E

{
L∑

ℓ=1

(1 + qτℓ)
−1

}

s. t.
L∑

ℓ=1

τℓ ≤ P. (5.24)

That is, the solution does exclusively depend on the singular values of the precoder T and
not on its singular vectors. In other words, the singular vectors can be arbitrarily chosen.
For a particular realization of q the solution of

min
τ1,...,L

L∑

ℓ=1

(1 + qτℓ)
−1 s. t.

L∑

ℓ=1

τℓ ≤ P,
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is easily shown to be reached at τℓ = P
L
, ∀ℓ. This solution is independent of the realization

of q and, therefore, it also minimizes Problem 5.24. According to this result, the general
form of the optimum precoder in this case reads

T =

√

P

L
U ,

where U ∈ C
N×L can be any matrix with orthonormal columns. Computing the average

distortion for this choice of precoder we obtain

ǫ =
L

P
E1

(
L

P

)

exp

(
L

P

)

. (5.25)

Summing up, the optimum approach in this setting consists of allocating the same
amount of power to all coefficients hℓ, ℓ = 1, . . . , L, and transmitting these coefficients
over orthogonal precoders, which might or might not overlap in the frequency domain.4

The minimum distortion does not depend on the dimensionality of the feedback channel
but only on the transmit power and the dimension of the source outputs.

5.2.3.2 Flat Fading Forward Channel (L = 1)

In this case, the precoder reads T =
√
Pu with ‖u‖ ≤ 1. Define wm =

∑mN/M
n=(m−1)N/M+1 |un|2. We next demonstrate that any precoder such that wm = 1/M ,

m = 1, . . . ,M , is optimum. Using the block fading assumption, Problem 5.23 simplifies to

min
ω1,...,M

E

{

1

1 + P
∑M

m=1 ωmzm

}

s. t.

M∑

m=1

ωm ≤ 1, ωm ≥ 0 ∀m, (5.26)

where zm is the exponentially distributed fading coefficient corresponding to the mth block.
This optimization problem is convex and, as a result, the KKT conditions are sufficient.
The Lagrangian function of problem (5.26) reads

L(λ, µ1, . . . , µM , ω1, . . . , ωM) =

=

∫

z1,...,zM

1

1 + P
∑M

m=1 ωmzm

p(z1, . . . , zM)dz1 · · · dzM + λ

(
M∑

m=1

ωm − 1

)

−
M∑

m=1

µmωm.

4Also in the case that the entries of the source output hℓ, ℓ = 1, . . . , L, have unequal variance, it can be
shown that optimum transmission is achieved by transmitting over orthogonal vectors. To prove this,
first, the inequality Tr{A−1} ≥ Tr{diag{A}−1} must be proved, where diag{A} is the diagonal matrix
built with the diagonal entries of A. This inequality can be shown by noticing

∑

i a−1
ii ≤

∑

i λ−1
i ,

where {aii} denote the diagonal entries in A and {λi} denote the eigenvalues of this matrix. This last
result follows directly from [61, Lemma 3.3.8]. Optimality of orthogonal precoding vectors follows by
observing that, in particular,

Tr

{(

I + qT HT
)
−1
}

≥ Tr

{(

I + qdiag
{

T HT
})

−1
}

.
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Using the Leibniz rule to shift the derivative into the integral, the following optimality
conditions can be computed,

−
∫

z1,...,zM

Pzj

(1 + P
∑M

m=1 ωmzm)2
p(z1, . . . , zM)dz1 · · · dzM + λ− µj = 0, ∀j, (5.27)

λ ≥ 0, µm ≥ 0 ∀m, λ

(
M∑

m=1

ωm − 1

)

= 0, µmωm = 0 ∀m.

Choosing ωm = 1/M, ∀m, implies µm = 0, ∀m. Now, noting that the integral in Eq. 5.27
is independent of index j, we observe that the condition represented by this equation is
satisfied for all j = 1, . . . ,M by appropriately choosing λ ≥ 0.

Substituting ωm = 1/M, ∀m, in the objective function of Problem 5.26, for the minimum
distortion, we obtain

ǫ =

∫ ∞

0

p(θ)

1 + Pθ
dθ, (5.28)

where j = 1
M

∑M
m=1 zm is a chi-square random variable with 2M degrees of freedom and

mean equal to 1. This integral can be expanded as a sum of exponential integral functions
yielding

ǫ =
MM exp

(
M
P

)

(M − 1)!PM

(
M−2∑

m=0

(
M − 1

m

)

(−1)mαM−2−m

(
M

P

)

+ (−1)M−1E1

(
M

P

))

, (5.29)

where αn(x) =
∫∞

1
tne−xtdt, n = 0, 1, 2, . . .. Note that Eqs. 5.29 and 5.25 coincide if M = 1

and L = 1. Note also that distortion only depends of the transmit power and the diversity
of the channel and is, as well as in the previous section, independent of the dimension of
the feedback channel.

5.2.3.3 Moderately time-dispersive channels LM ≤ N

In the previous section we have seen that, for L = 1, optimality is achieved by any precoder
T =

√
Pu such that wm =

∑mN/M
n=(m−1)N/M+1 |un|2 = 1/M . In particular, it can be observed

that in order to achieve optimality no more than M carriers are needed. If, now, 1 <
L ≤ N/M , we can think of the following transmission strategy. Each coefficient hℓ can
be transmitted over subcarriers ℓ +mN/M , m ∈ {0, . . . ,M − 1}, with power Pℓ. That is,
for each coefficient a set of M uncorrelated subcarriers is chosen for transmission, being
the sets of subcarriers selected for transmission of different coefficients non-overlapping.
Obviously, for a given fixed power allocation, P1,...,L, transmission is optimum as each
coefficient is optimally transmitted.

In order to show optimality of the uniform power allocation we proceed as follows. Let
P1,...,L be any power allocation such that

∑

ℓ Pℓ = P . The resulting minimum distortion
for this allocation is given by

ǫ =
1

L

L∑

ℓ=1

ψ(Pℓ) with ψ(Pℓ) = E

{
1

1 + Pℓj} .
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Noting that ψ(Pℓ) is a convex function of Pℓ, Jensens’s inequality can be applied to obtain

ǫ =
1

L

L−1∑

ℓ=0

ψ(Pℓ) ≥ ψ(P/L).

Equality is achieved if the power allocation is uniform. In this case, the minimum distortion
is in this case given by

ǫ =
exp

(
ML
P

)

(M − 1)!

(
ML

P

)M

×

×
(

M−2∑

m=0

(
M − 1

m

)

(−1)mαM−2−m

(
ML

P

)

+ (−1)M−1E1

(
ML

P

))

. (5.30)

Using Eq. 5.19, we note that for L = N and M = 1 the distortion of the optimum ana-
log approach is equal to the distortion of the upper bound given by Eq. 5.14, i.e., if the
bandwidth expansion factor is 1 and the feedback channel is flat-fading, linear analog
transmission performs optimally for all possible SNR values. This is the version for fading
channels of the well-known result that linear analog transmission of a Gaussian source is
optimum over the AWGN channel if the bandwidth expansion factor is 1 (cf. [57, 53]).
Even though the model assumed here is very idealized, the following conclusions can be
drawn that shall be useful for application in more realistic scenarios. First, in order to
leverage diversity, each coefficient should be transmitted over the maximum possible num-
ber of statistically independent feedback channel coefficients, i.e., if the entries of matrix
G represent the channel gains viewed on the different subcarriers of the feedback link,
subcarriers used for transmission of a forward link channel coefficient should be separated
by at least one coherence bandwidth. Second, transmission of a coefficient over different
strongly correlated subchannels is likely to yield almost no gains in terms of performance.
Note that in our model, for which subchannels in each block are fully correlated, ML
subcarriers are enough to achieve optimality.

5.2.3.4 Asymptotical analysis

If M = 1, from Eqs. 5.15 and 5.29 we obtain

ǫ(dB) = −P (dB) +O(log(P (dB))), P →∞. (5.31)

For M > 1, using the identity [1]

αn(x) = n!x−n−1e−x

(

1 + x+
x2

2!
+ · · ·+ xn

n!

)

,

it can be shown that distortion asymptotically behaves as

ǫ =
M

(M − 1)

L

P
+ o

(
1

P

)
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at high SNR values. That is, contrary to the theoretical upper bounds derived in Section
5.2.2, the optimum linear analog transmission scheme is not able to profit from the available
diversity or the bandwidth expansion factor in terms of asymptotical distortion decay rate.

In the following we want to look at the asymptotic behavior of the distortion in the low
SNR regime. Substituting y = P/ML in Eq. 5.30, distortion can be written as

ǫ =
exp (1/y)

(M − 1)!yM

(
M−2∑

m=0

(
M − 1

m

)

(−1)mαM−2−m (1/y) + (−1)M−1E1 (1/y)

)

. (5.32)

This expression can be expanded as a power series by using the expansions [1]

exp(1/y)αn (1/y) =
n!

0!
yn+1 +

n!

1!
yn +

n!

2!
yn−1 + . . .+

n!

n!
y, (5.33)

exp(1/y)E1 (1/y) = 0!y − 1!y2 + . . .+ (−1)n−1(n− 1)!yn + . . . . (5.34)

Substituting Eqs. 5.33 and 5.34 in Eq. 5.32 we obtain

ǫ =
1

(M − 1)!yM

(

(−1)M−1

∞∑

m=M

(−1)m−1(m− 1)!ym

)

.

Finally, shifting the quotient 1
(M−1)!yM into the parenthesis and back substituting y =

P/ML the following expression results,

ǫ = 1− P/L+ o(P ), P → 0.

That is, normalized distortion tends linearly to 1 as SNR → 0 with slope 1/L. This is
exactly the same behavior as that of the theoretical upper bounds derived in Section
5.2.2. As a consequence, we conclude that linear analog transmission delivers optimum
performance in the low SNR regime.

5.2.4 Delay-constrained digital transmission

Different from analog transmission approaches, digital transmission schemes employ a dis-
crete and usually finite set of signals for transmission at the output of the encoder. Thus,
the encoder is in this case a non-injective mapping that maps a set of values in the source
space onto a single point or codeword in the signal space. As already discussed in Section
5.2.2, if no delay constraint is imposed, digital transmission achieves optimality. This is
a consequence of the potential of digital transmission approaches of performing error-free
transmission if delay is unbounded. Another consequence of error-free transmission is the
separability of source and channel coding. Certainly, if no errors occur over the channel
it does not matter how the mapping between source and channel codewords is made. As
long as the mapping is bijective, it can be perfectly reversed at the receiver. That means
that the source encoder needs not know the channel codebook and the channel encoder
needs not know the source codebook. However, if delay is strictly limited, the probability
of error is strictly larger than zero. In such case, it is convenient that channel codewords
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being frequently mistaken for each other represent source values being close to each other
in order to minimize distortion if transmission errors occur. Conversely, codewords that are
unlikely to be mutually mistaken could represent very distant source values. That is, for
delay limited digital transmission, the separation principle may lead to poor performance
and, thus, care must be taken on how to map source values onto channel codewords. A
theoretical framework for the analysis of digital systems with constrained delay and com-
plexity is so far missing. An attempt to elaborate a general framework in [51] ended up with
more questions than answers despite the simplifying assumption of a noiseless transmission
channel. This lack of theoretical foundation has given rise to a heterogeneous landscape of
approaches specifically tailored for particular settings and applications that are commonly
referred to as joint source and channel coding schemes [59, 150].

Coming back to our model of Fig. 5.1, if digital transmission is considered, the encoder
becomes a map from the source space onto a signal set S = {si ∈ CN |i = 1, . . . , S},
i.e., for each output h ∈ C

L of the source, the encoder chooses one of the S elements
of the alphabet S for transmission. Based on the received signal, the decoder computes
an estimate ĥ ∈ CL of the original source value h. The goal is still the minimization
of average MSE. However, now, rather than just having a transmit matrix to optimize
over, optimization can be performed over the choice of map, size S of the constellation
of transmit signals, and the choice of signals themselves subject to the transmit power
constraint

S∑

i=1

‖si‖22P (si) ≤ P, (5.35)

where P (si) is the probability that si is transmitted. A similar model has been extensively
investigated in the literature considering a discrete memoryless channel (DMC) or binary
symmetric channel (BSC) rather than an AWGN or fading channel [70, 47, 153, 152, 60].
This is equivalent to fixing the signal set in Fig. 5.1 and employing a hard decision detector
as a first stage of the decoder. The AWGN channel has been considered in [125] where opti-
mization of the encoder, decoder and signal set is performed assuming a linear decoder and
a given constellation size. It turns out that, under the linearity assumption, average distor-
tion achieved by the digital approach is bounded from below by that achieved by the linear
analog approach. Performance of the analog approach is reached by the digital scheme as
the constellation size approaches infinity. Therefore, recalling the asymptotic behavior of
linear analog approaches, we conclude that under a linearity assumption at the receiver,
the optimum delay constrained digital approach is incapable to profit from the bandwidth
expansion factor in terms of distortion decay rate. In this respect, an interesting question
is to know whether delay limited digital schemes may exhibit the asymptotic behavior of
the theoretical upper bounds based on rate-distortion theory in case the linearity assump-
tion is dropped. In [73] and [74] algorithms are proposed to optimize encoder, decoder and
constellation for a given constellation size without any assumption on the structure of the
decoder over AWGN and Rayleigh fading channels, respectively. The algorithms consist of
the iterative alternating optimization of encoder and signal constellation and their execu-
tion relies on very expensive Monte Carlo methods. None of these works provide insights
regarding fundamental performance of the resulting digital approaches. In the next sec-
tions, first, some details about the architecture of delay-constrained digital schemes are
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discussed and the optimum decoder is derived. Then, a lower bound on the asymptotical
decay rate of delay-constrained digital schemes is derived. Finally, two different paradigms
for the design of the encoder are presented and discussed.

5.2.4.1 Arquitecture and optimum decoder

In the previous section, a memoryless encoder has implicitly been assumed in our delay-
constrained digital model, i.e., the encoder is a map Φ : CL → S mapping the output of the
source h[k] at instant k to one of the signals of the alphabet S. Without loss of optimality,
this map can be split in two blocks as illustrated in Fig. 5.2. A quantizer comprising S
quantization cells Ωi, i = 1, . . . , S, which maps a source output onto the reproduction
value ci of the corresponding partition cell Ωi, and a function φ : {ci|i = 1, . . . , S} → S
assigning one of the transmit signals to each of the reproduction values.

Q(·) mapping

h ∈ CL si ∈ C
Nci ∈ CL

Figure 5.2: Encoder.

For fixed encoder, the decoder, which is assumed to be memoryless, takes the received
signal r[k] at instant k and, using this observation, computes a minimum variance estimate
of h[k] as follows,

ĥ = E {h|r}
=

∫

hp(h|r)dh

=

∫

h
p(r|h)p(h)

p(r)
dh

=
1

p(r)

∫

h

S∑

i=1

p(r|h, si)p(h, si)dh

=
1

p(r)

∫

h

S∑

i=1

p(r|si)P (si|h)p(h)dh

=
1

p(r)

S∑

i=1

p(r|si)

∫

Ωi

hp(h)dh (5.36)

=
1

p(r)

S∑

i=1

p(r|si)P (si)ci. (5.37)

Without loss of generality it has been assumed that the reproduction values c1,...,S of the
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quantizer in Fig. 5.2 are the centroids of the quantization cells, which are defined as

ci =

∫

Ωi

hp(h|si)dh.

Eq. 5.36 follows by noting

P (si|h) =

{
1 h ∈ Ωi

0 h 6∈ Ωi

and Eq. 5.37 follows by noting p(h) = p(h|si)P (si) for h ∈ Ωi.

While in the context of digital transmission over noiseless channels, no gain can be
achieved from inserting memory in the encoder or decoder if the source is memoryless
[51, 72], it is unclear whether this result also holds if transmission takes place over a noise
channel. That is, it is unclear that our assumption of memoryless encoder and decoder
is without loss of optimality. If only the decoder is allowed to have memory, i.e., the
decoder uses observations r[k − 1], r[k − 2], . . . in order to estimate h[k], while r[k] only
depends on h[k], it is clear that an improvement with respect to an estimate exclusively
based on r[k] is not possible as r[k − 1], r[k − 2], . . . are statistically independent with
respect to h[k]. Also in the case of a memoryless decoder and an encoder with memory,
i.e., h[k] is estimated based on r[k] and r[k] corresponds to a transmit signal selected
having into account h[k],h[k − 1],h[k − 2], . . ., no improvement can be expected. In this
case h[k − 1],h[k − 2], . . . are nothing but randomizers of the map represented by the
encoder, thus, acting as a source of noise from the point of view of the memoryless decoder.
If both encoder and decoder have memory, the question becomes really interesting and
challenging. In such case, observations r[k − 1], r[k − 2], . . . can help to better discern the
signal transmitted by the encoder at time k, which also depends of h[k − 1],h[k − 2], . . .
and this fact might help to improve the estimate of h[k]. The cost of this is that at time
k part of the resources are dedicated to carry information about h[k − 1],h[k − 2], . . .,
thereby deviating from the primary objective of reporting information about h[k].

5.2.4.2 Lower bound on asymptotic decay rate

In this section we derived a lower bound on the asymptotic decay rate of delay-constrained
digital approaches by assuming suboptimum, though tractable, structures for the encoder
and decoder. In the encoder, the quantizer is assumed to be an optimum MSE scalar
quantizer, i.e., each real dimension is quantized independently using b bits. Denote the re-
production values by q = [ q1 · · · q2L ]T with qℓ ∈ {cj|j = 1, . . . , 2b}. Here, a real-valued
representation of the reproduction values has been chosen for notational convenience. For
each transmission a set of S = 22Lb signals si ∈ CN is randomly generated. Each com-
ponent of the signal vectors is independently drawn according to a circularly symmetric
Gaussian distribution CN (0, P/N). The mapping block in Fig. 5.2 randomly maps the
set of reproduction values onto set of randomly generated transmit signals. The decoder
performs a maximum likelihood detection and reverses the random mapping in order to
retrieve the transmitted quantizer output.5

5Note that for this scheme common randomness at encoder and decoder is a prerequisite.
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Let q̂ be the reproduction value obtained at the receiver upon detection and mapping
reversal being q the output of the quantizer. If no transmission errors occur q̂ = q and
distortion is entirely caused by the quantizer. At high resolution, i.e., high b, the distortion
per complex dimension is well approximated by [55]

ǫne =
1

22b12

{(∫ ∞

−∞

p(hr)
1/3dhr

)3

+

(∫ ∞

−∞

p(hi)
1/3dhi

)3
}

=
2π33/2

22b12
.

where hr, hi represent the real and imaginary parts of any of the entries of the source
output. Consistently with the distribution of these entries, these variables are identically
distributed as N (0, 1/2). If transmission errors occur, q̂ 6= q. Furthermore, due to the
random mapping of reproduction values to signals at the encoder, q̂ is uniformly distributed
among all reproduction values different from q. That is, conditioned on the occurrence of
a transmission error, all reproduction values different from q have the same probability
to become the output of the decoder. Taking into account that distortion will in this
case depend on the number of components of the original reproduction value that are
erroneously detected, we can write

ǫ = ǫne(1− Pe) +

2L∑

ℓ=1

Peℓǫeℓ. (5.38)

There, ǫeℓ is the average distortion per complex dimension conditioned on the erroneous
detection of ℓ of the 2L components of the transmitted reproduction value. The probability
that this happens can be computed as

Peℓ =

(
2L

ℓ

)
(2b − 1)ℓ

22bL − 1
Pe,

where Pe is the probability of transmission error. Substituting this expression into Eq. 5.38,
we obtain an expression of the distortion of the system as a function of the transmission
error probability as follows,

ǫ = ǫne(1− Pe) + ǭePe, (5.39)

where

ǭe =

2L∑

ℓ=1

(
2L

ℓ

)
(2b − 1)ℓ

22bL − 1
ǫeℓ

can be viewed as the average distortion per complex dimension conditioned on the occur-
rence of a transmission error.

In the following, the derivation of an upper bound for Pe follows along the lines of
[66]. The only difference is that we allow codewords to violate the power constraint as
long as this constraint is fulfilled in average. This somehow simplifies the analysis and the
resulting expressions, and is consistent with common practice. Let z = [z1, z2, · · · , zM ]
represent the state of the block fading feedback channel at a particular time instant with
zm ∼ CN (0, 1). Pe = E{Pe(z)}, where Pe(z) is the error probability conditioned on the
state z. This probability can be shown to be upper bounded by

Pe(z) ≤
M∏

m=1

2−NEr(R|zm)/M (5.40)
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where R = 2bL/N is the transmission rate and Er(R|zm) is the random coding exponent
corresponding to the mth chunk conditioned on the state zm [66]. This exponent can be
written as

Er(R|zm) = max
0≤ρ≤1

{E0(ρ, γ|zm)− ρR} ,

where

E0(ρ, γ|zm) = − log2

∫

C

(∫

C

γ(s)p(r|s, zm)
1

1+ρds

)1+ρ

dr, (5.41)

and γ(s) is the input distribution according to which transmit signals are generated [52].
Substituting γ(s) = (πP/N)−1 exp−N |s|2/P and p(y|s, zm) = π−1 exp−|y − zms|2 in Eq.
5.41 and computing the integrals we obtain

Er(R|zm) = ρ

(

log2

(

1 +
|zm|2P/K

1 + ρ

)

− R
)

, (5.42)

with 0 ≤ ρ ≤ 1. If now Eq. 5.42 is substituted in Eq. 5.40 and the expectation is computed
over the channel states, we get Pe ≤ 2−MĒr(R), where

Ēr(R) = max
0≤ρ≤1

{
− log2

(
aNρ/M

ρ eaρΓ (1− ρN/M, aρ)
)
− ρNR/M

}

and aρ = (1 + ρ)N/P . Choosing ρ = 1 and using the identity Γ (a, x) = xaE1−a(x) and
the inequalities exEn(x) ≤ (x + n − 1)−1 and exE1(x) ≤ loge(1 + x−1), we can write
Pe ≤ 2−M(R̄0−NR/M) with

R̄0 =







log2

(

1 + (N/M−1)P
2N

)

, N/M > 1

log2

(
P

2N loge(1+P/2N)

)

, N/M = 1
. (5.43)

This bound on the transmission error probability allows to upper bound Eq. 5.39 as

ǫ ≤ K(1− Pe)2
−NR/L + ǭe2

−M(R̄0−NR/M),

where K = 2π33/2/12. Now, choosing b =
⌊

MR̄0

2(L+1)

⌋

and noting (1− Pe) ≤ 1 the following

upper bound results,

ǫ ≤ (K + ǭe)2
−2
⌊

MR̄0
2(L+1)

⌋

.

Assume that the average distortion conditioned on transmission errors ǭe is bounded. In
that case, considering Eqs. 5.43, it is easily shown that for the derived upper bound on
distortion

DDR =
M

L+ 1

holds (cf. Eq. 5.16). That is, the distortion decay rate of the optimum delay constrained
digital approach is lower bounded by M/(L + 1). This shows that, different from linear
analog approaches, delay-constrained digital approaches have the potential to profit from
the diversity degree available in the feedback link in terms of distortion decay rate.

The boundedness assumption on ǭe is key for the validity of this result. ǭe is bounded if
all ǫeℓ, ℓ = 1, . . . , 2L, are bounded. Obviously, among these average distortion values, the
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largest is ǫe2L. Thus, it is enough to show that ǫe2L is bounded. Let h = [ h1 . . . h2L ]T

be the source output, which for notational convenience we represent as a vector of 2L real
dimensions. Let Inℓ

be the quantization interval corresponding to the ℓth component of
the source output and cnℓ

the corresponding reproduction value. If this source output is
transmitted the average distortion per complex dimension at the receiver conditioned on
the occurrence of 2L errors is given by

ǫe2L(h) =
1

L

2L∑

ℓ=1

1

2b − 1

2b
∑

j=1
j 6=nℓ

(hℓ − cj)2, (5.44)

where we have taken into account the fact that, conditioned on a detection error, all
reproduction values apart from transmitted one are equally likely. Averaging this expression
over all possible outputs of the source we obtain

ǫe2L =
2

2b − 1

2b
∑

n=1

∫

In

2b
∑

j=1
j 6=n

(h− cj)2p(h)dh (5.45)

where the fact has been used that all 2L terms in Eq. 5.44 are identically distributed and,
as a result, index ℓ has been dropped. Expanding the square in Eq. 5.45 and after some
simple manipulations we obtain

ǫe2L = 1 +
2

2b − 1

2b
∑

j=1

c2j +
2

2b − 1



2
2b
∑

j=1

∫

Ij

cjhp(h)dh−
2b
∑

j=1

∫

Ij

c2jp(h)dh



 .

In order to prove boundedness it is enough to prove convergence of ǫe2L as b → ∞. This
is a consequence of the well known mathematical result that every convergent sequence is
bounded. As b→∞, cj → h in the integrals of the third term. As a result,

2b
∑

j=1

∫

Ij

cjhp(h)dh→ 1/2,

2b
∑

j=1

∫

Ij

c2jp(h)dh→ 1/2,

and the third term converges to zero. As for the second term, boundedness is proved as
follows. First, we can write

1

2b

2b
∑

j=1

c2j =
1

2b

2b
∑

j=1

c2j
∆j

∆j (5.46)

where ∆j is the length of Ij. If b→∞, in the numerator, we substitute ∆j by dh. In the
denominator, we apply the approximation [55]

∆j ≈
1

2bλ(cj)

where λ(h) is the point density function of the optimum scalar quantizer at high resolution6.

6λ(h) = p(h)1/3

∫
p(h)1/3dh
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Proceeding this way we observe7

1

2b

2b
∑

j=1

h2
j →

∫

h2λ(h)dh <∞, b→∞.

5.2.4.3 Encoder design paradigms

To find the optimum encoder for delay-limited digital transmission is by all means a very
hard problem. Nevertheless, meaningful design solutions can be found that yield acceptable
performance. In particular, given a fixed quantizer, in this section we discuss two different
design paradigms for the mapping block of Fig. 5.2. The first paradigm will be referred
to as topological and aims at mapping reproduction values onto transmit signals so that
the neighborhood relations are preserved over the map. The rationale of this approach is
simple. Transmit signals which are close to each other are likely to be mutually mistaken.
However, since they represent reproduction values that are close to each other, distortion
resulting from mistaking neighboring signals remains moderate. A second paradigm, which
we call non-topological, aims at maximizing the distance between any two transmit signals
in the image of the map while meeting the transmit power constraint. In this way, transmit
signals can be more clearly distinguish at the receiver, thus, reducing distortion arising from
the noisy channel. Ideally, the combination of both paradigms should deliver a design close
to optimum where communication is reliable and mistaking neighboring signals has a mild
impact. Unfortunately, maximizing the minimum distance between any two points of the
transmit signal set in a space of dimension N > L seems to inevitable lead to an increase in
the number of neighboring points to any other given, thereby destroying the neighborhood
relations of the original set of reproduction values. As stated in [102], any system which
attempts to use the capacities of an increase in dimensions to the full possible extent seems
to be bound to suffer from the threshold effect.8

The difference between both mappings is illustrated in Fig. 5.3. There, every quantizer
reproduction value is represented by a different marker. A quantizer point is mapped to
the point in the signal space represented by the same marker. Points in the signal space
have two complex dimensions. Let us pay attention to the point represented by the dot
on the upper left corner of the quantizer. In the image obtained through the topological
mapping the points represented by the circle and the plus sign are still the ones with
minimum distance to the dot. As in the original domain, the distance to any other point
is strictly larger. Being d the minimum distance between two points in one of the complex
dimensions, the distance between the dot and any of its two neighbors is given by

√
2d. If

the non topological mapping is applied, the minimum distance between the dot and any

7In the derivation of this result there is a shortcoming that has been here ignored for clarity of exposition.
In Eq. 5.46 two of the intervals have infinite length. In order to overcome this technical difficulty a
truncated Gaussian distribution can be used, for which the derivation is technically accurate. Noting
convergence of the truncated Gaussian distribution towards a Gaussian distribution when the trunca-
tion interval tends to infinity the result follows.

8The threshold effect is the typical abrupt performance degradation of coded transmission when the SNRs
decreases below a certain value. This degradation is due to the high number of neighboring points in
packings of signals with good distance properties [36].
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Quantizer

Non topological mapping Topological mapping

Signal space

Figure 5.3: Topological and non topological mappings for L = 1, S = 16 and N = 2.

other point in the image of this mapping increases to
√

6d. However, instead of two, now
the number of neighbors increases to four, viz., plus sign, circle, diamond and triangle.
That is, the neighborhood relations in the domain are not preserved in the image. There
are even points that become closer to a certain point in the range relative to other that
were closer to that point in the domain. This is, for instance, the case of the asterisk and
the diamond with respect to the dot.

While non-topological mappings can be obtained by using standard coded modulation
schemes in order to generate signal sets with good distance properties, a simple way of
obtaining topological mappings consists of linearly transforming the reproduction values
employing a scaled matrix with orthonormal columns, i.e.,

sj = αUcj, j = 1, . . . , S,

where U ∈ CN×L and α = P/
∑

j ‖cj‖22P (cj) is a scaling factor that guarantees fulfillment
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of the transmit power constraint. This transformation preserves the distance relations of
the points in the domain. However, in the following we shall see that the maximum DDR
achievable by this mapping is 1.

Recall Eq. 5.37 and note that

p(r) =

S∑

i=1

p(r|si)P (si). (5.47)

Substituting Eq. 5.47 in Eq. 5.37 we obtain

ĥ(r) =

∑S
i=1 p(r|si)P (si)cj
∑S

i=1 p(r|si)P (si)
. (5.48)

Further,

p(r|si) =
1

πN
exp−‖r −Gsi‖22,

and the norm of the exponent can be expressed as

‖r −Gsi‖22 = ‖r‖22 + α2cH
i UHGHGUci − αcH

i UHGHr − αrHGUci

= ‖r̃ − αΛV ci‖22 + ‖r‖22 − ‖r̃‖22
= ‖r̃ − αMci‖22 + f(r). (5.49)

There, WΛV is the singular value decomposition of GU , with Λ ∈ RL×L, r̃ = Wr ∈ CL

and M = ΛV ∈ CL×L. Finally, substituting Eq. 5.49 in Eq. 5.48 we get

ĥ(r) = ĥ(r̃) =

∑S
i=1 p(r̃|ci)P (ci)ci
∑S

i=1 p(r̃|ci)P (ci)
(5.50)

where

p(r̃|ci) =
1

πL
exp−‖r̃ − αMci‖22.

According to Eq. 5.50, r̃ is a sufficient statistic of vector r for estimation of the source h.
In addition, r̃ may be viewed as the received signal of an equivalent system with channel
matrix M . For a particular realization of M the capacity of this system is given by

C(M) = log2

(∣
∣IL + Λ2P/L

∣
∣
)
.

Equating this expression and Eq. 5.8 and solving for ǫ we obtain the minimum achievable
distortion over that particular channel realization as

ǫ(M ) =
1

∣
∣IL + Λ2P/L

∣
∣
1/L

.

If P > 1,

ǫ(M) ≥ 1

P
∣
∣IL + Λ2/L

∣
∣
1/L

.

From this expression we observe that the distortion decay rate for a particular channel
realization is upper bounded by 1. As this upper bound is independent of the channel
realization, we conclude that 1 is also an upper bound for the decay rate of the average
distortion over all possible realizations of matrix M .
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5.2.5 Numerical results

In order to illustrate the difference between topological and non-topological mappings
we consider a simple setting with L = 1, N = 4 and M = 1. The source is coded
with a scalar MMSE quantizer. The topological mapping is a linear map defined by
u = [1/

√
4, . . . , 1/

√
4]T and a scalar factor α that guarantees fulfillment of the power

constraint. Simulations have been carried out with b = 1, 2, 3, 4, 5, 6 resolution bits per
real dimension. The non-topological mapping uses rate 1/2 block codes in order to code
the binary labels corresponding to the quantizer reproduction values. Then, the resulting
coded bits are segmented and mapped onto signal points of QAM constellations of suitable
size. For b = 1, a (4, 2)2 block code9 with generator matrix

(
1 0 1 1
0 1 0 1

)

has been employed. For b = 2, the (7, 4)3 Hamming code has been extended to a (8, 4)4

code by adding an additional parity check bit to every code word [48]. For b = 3, 4, 5, block
codes (12, 6)4, (16, 8)4 and (20, 10)6 have been chosen with generator matrices











1 0 0 0 0 0 1 0 1 0 0 1
0 1 0 0 0 0 0 1 1 1 1 0
0 0 1 0 0 0 1 0 0 0 1 1
0 0 0 1 0 0 1 1 0 0 0 1
0 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 1 1 0 1 1 1 0











,















1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1
0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1
0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0
0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1
0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1















,



















1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1
0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1



















,

9A code word of a (n, k)d block code has k information bits and is n bits long. The minimum Hamming
distance between any two code words is given by d.
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respectively. For b = 6 the Golay code (23, 12)7 has been extended to a (24, 12)8 by adding
a parity check bit to every code word [48]. At the receiver an optimum MMSE estimator
has been applied.
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Figure 5.4: Performance of delay-constrained digital transmission. L = 1, N = 4, M = 1.

In Fig. 5.4 distortion curves are shown for both topological and non-topological map-
pings. The theoretical upperbounds derived in Section 5.2.2 and the curve corresponding
to the linear analog scheme are also plotted. In the x-axis, SNR = P/N . As indicated by
our analysis of Section 5.2.2 the asymptotic slope of the curve corresponding to OPTA is
proportional to the bandwidth expansion factor, which is 4 in this case. By contrast, the
slope of the curve corresponding to the theoretical upper bound with limited diversity is
just 1. The slope of the analog approach is less than 1 (cf. Eq. 5.31) but tends to 1 asymp-
totically. In the low SNR regime, the curve of the analog scheme converges to the OPTA
curves. For this setting, delay constrained digital approaches are in all cases outperformed
by the analog transmission scheme. Performance of the topological approach is tightly up-
per bounded by performance of the analog scheme. At least in this setting, more bits lead
to a uniform performance improvement of the topological scheme for all SNR values. This
is not the case for the non-topological mapping, where curves corresponding to different
resolutions exhibit crossover points. The non-topological mapping is clearly outperformed
by the topological mapping. An explanation for this poor performance can be found in the
threshold effect and the fact that for a given transmission rate good performance obtained
with good channel realizations is gambled away by disastrous performance obtained with
poor channel realizations.
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Figure 5.5: Performance of delay constrained digital transmission over an AWGN feedback
channel. L = 1, N = 4.

For comparison purposes, Fig. 5.5 shows performance for the same setting when trans-
mission takes place over an AWGN channel, i.e., the coefficients on the diagonal of G are
fixed and equal to 1. As the channel does not fade, OPTA is the only applicable upper
bound, which grows with slope 4. The threshold effect of the non-topological mapping be-
comes now very visible with performance breaking down abruptly within a few dBs. The
topological mapping, by contrast, shows gracefully degradation, thereby outperforming the
non-topological mapping at low SNR values. However, performance of the non-topological
mapping seems to improve with increasing SNR as fast as OPTA, i.e., non-topological
mappings are able to benefit from the bandwidth expansion factor, whereas the decay rate
of the topological scheme is upper bounded by 1.

Fig. 5.6 shows simulation results for a setting with L = 2 and N = 16. The feedback
channel is considered to be a time-dispersive channel with two taps and flat power delay
profile. The coefficients of matrix G are the channel gains resulting from employing an
OFDM transmission scheme over this channel with N = 16 subcarriers. As expected, the
behavior of the simulated curves matches the analytical results obtained based on a block-
fading model with M = 2. The OPTA curve grows with a slope that is between 4 and 8.
By contrast, the asymptotic slope of the OPTA upper bound with limited diversity is just
2. The linear analog scheme has been applied by transmitting each coefficient over two
subchannels being one coherence-bandwidth apart from each other. The resulting slope
is equal to 1. At low SNR, the curve corresponding to the analog scheme converges to
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Figure 5.6: Performance over a fading feedback link with L = 2, N = 16, M = 2.

the upper bounds. For the delay-constrained digital transmission curves, a scalar MMSE
quantizer has been considered with b resolution bits. Even in this simple setting, use of
an optimum estimator at the receiver becomes extraordinarily complex for resolutions as
low as b = 4 bits per real dimension. For this reason, a suboptimum decoder structure
has been considered that first performs detection of transmitted bits and then maps the
detected bits to reproduction values. The mapping at the encoder is performed according
to a non-topological paradigm. The binary labels provided by the quantizer are encoded
by using two convolutional codes concatenated in parallel as described in [6]. The resulting
bits are randomly interleaved and mapped to points of QAM constellations of suitable sizes
according to a bit interleaved coded modulation scheme [25]. Detection in the first stage
of the decoder is performed iteratively as described in [6]. Due to the suboptimum decoder
the curves disappear below the x-axis at low SNR values, i.e., distortion can be larger
than 1. Nonetheless, increase in performance parallels that of the tighter upper bound in
the high SNR regime. Increasing the number of taps in the feedback channel to M = 4
and keeping all other parameters, the curves plotted in Fig. 5.7 result. OPTA does not
change as it does not depend on the diversity degree of the channel (cf. Eq. 5.10). Now, the
curve corresponding to OPTA without temporal diversity exhibits an asymptotical slope
equal to 4. The delay-constrained digital curves seem to parallel this growth before they
reach saturation. However, due to the large offset between this curves and the tighter upper
bound, the analog scheme exhibits better performance for almost all simulated SNR values.
Note that some improvement in performance of the delay-constrained digital schemes can
be attained if the scalar quantizer is replaced by a vector quantizer at the cost of additional
complexity. However, due to the fact that the source outputs are statistically independent,
only a modest gain of around 2 dBs is expected in this case [76].
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Figure 5.7: Performance over a fading feedback link with L = 2, N = 16, M = 4.

5.3 Extension to feedback channels with multiple

antennas

In this section we extend some of the results obtained in the previous section to feedback
channels with multiple antennas. The feeback link model remains as depicted in Fig. 5.1.
The channel matrix G is no longer a diagonal matrix but a block diagonal matrix. The
dimensions of the blocks on the diagonal are determined by the number of antennas at both
ends of the feedback link. The dimensions of all other signals in the model are modified
accordingly. In the following we shall study a feedback link which has one single antenna
at the transmitter side and more than one antenna at the receiver side. The corresponding
forward link may consist of a transmitter having multiple antennas and single-antenna
receivers. The general MIMO setting with multiple antennas at both ends and the MISO
setting with multiple antennas at the transmit end of the feedback link and a single-
antenna receiver will not be treated. The former is hardly tractable requiring perhaps
more sophisticated mathematical tools. The latter, though tractable, corresponds to a
forward link with one transmit antenna and several receive antennas and, therefore, lacks
practical interest. For the SIMO feedback link that we will investigate here, the channel
matrix becomes an Nt × N block diagonal matrix with blocks gn ∈ Ct×1, n = 1, . . . , N .
In order to denote the number of antennas at the receive end of the feedback link we have
chosen t. This is consistent with notation used in the other chapters of this work as here we
shall assume that this variable also represents the number of antennas at the transmitter
of the corresponding forward link. The source outputs are now assumed to be vectors
of dimension Lt and uncorrelated zero-mean circularly symmetric Gaussian distributed
entries with unit variance. As in the initial feedback link model, source outputs at different
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time instants are uncorrelated. Here, we will consider that a source output represents the
channel state of a time-dispersive forward channel with flat power delay profile, L taps, t
transmit antennas and no spatial correlation.

5.3.1 Theoretical upper bounds

The rate-distortion function of the source is now given by

R(ǫ) =

{
Lt log

(
1
ǫ

)
if ǫ < 1

0 if ǫ ≥ 1
. (5.51)

The capacity of the feedback channel can be computed as [105]

C =

N∑

n=1

E

{

log

(

1 +
‖gn‖22P
N

)}

=
N

loge 2
exp

(
N

P

) t∑

i=1

Ei

(
N

P

)

. (5.52)

Equating Eqs. 5.51 and 5.52 and solving for ǫ we obtain the OPTA as

ǫOPTA = exp

(

−N
Lt

exp

(
N

P

) t∑

i=1

Ei

(
N

P

))

. (5.53)

In the high SNR regime, using Eqs. 5.15 and 5.20, it can be easily shown that

ǫOPTA(dB) = −η N
Lt
P (dB) +O(1), P →∞,

with 1/2 ≤ η ≤ 1. In the low SNR regime, substituting the bounds given in Eqs. 5.15 and
5.20 in Eq. 5.53 and computing a linear approximation of the resulting expressions around
P = 0, we obtain

ǫOPTA = 1− P/L+ o(P ). (5.54)

We note that in the high SNR regime, performance degrades as the number of receive
antennas increases, i.e., the advantage due to an increase in number of antennas in the
feedback link does not compensate for the increase in the number of channel coefficients
that must be fed back. In the low SNR regime, by contrast, performance is independent
of the number of receive antennas.

As explained in Section 5.2.2.2, this bound can be tightened by limiting the amount of
diversity to that available in just one use of the feedback link. The resulting OPTA without
time diversity is computed by first considering the minimum distortion achievable for a
particular realization of the feedback channel,

ǫ(g1,...,N) =
1

∏N
n=1 (1 + ‖gn‖22P/N)

1
Lt

.

and then averaging this expression over all possible channel realizations. Using the block
fading assumption, the average distortion can be written as

ǫOPTA−LD =

(

E

{

1

(1 + qP/N)
N

MLt

})M

, (5.55)
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where q has the same distribution as ‖gn‖22, ∀n. Unfortunately, analytical computation of
this expectation is very difficult, if possible at all. However, in the following, two lower
bounds on distortion will be used that reveal the different behavior of this bound as
compared to OPTA. In order to derive the first of these bounds, we note that q can be
viewed as a sum of t statistically independent, exponentially distributed random variables.
Let qi, i = 1, . . . , t, denote each of these variables. We can write

ǫOPTA−LD ≥
(

E

{

1
∏t

i=1 (1 + qiP/N)
N

MLt

})M

=

(

E

{

1

(1 + zP/N)
N

MLt

})Mt

,

where z is exponentially distributed with mean equal to 1. Computation of the expected
value in the last expression can be done as described in Section 5.2.2.2. Doing so, we obtain

ǫ
1

Mt

OPTA−LD ≥
(
N

P

) N
MLt

exp

(
N

P

)

Γ

(

− N

MLt
+ 1,

N

P

)

.

In the high SNR regime, an analysis of this expression along the lines of that carried out
in Section 5.2.2.3 yields

DDR ≤







N
L
, N

MLt
≤ 1

Mt, N
MLt
≥ 1

.

In order to derive the second bound, we note that the argument of the expectation operator
in Eq. 5.55 is a convex function of q. Hence, applying Jensen’s inequality we can write

ǫOPTA−LD ≥
(

1

(1 + E{q}P/N)
N

MLt

)M

=

(

1

(1 + tP/N)
N

MLt

)M

.

Using this bound, we can easily verify that DDR ≤ N
Lt

holds. If we select the most restrictive
of these two bounds for each choice of parameters, the following bound results,

DDR ≤







N
Lt
, N

Lt
≤Mt

Mt, N
Lt
≥Mt

.

That is, the asymptotic distortion decay rate is limited by either the bandwidth expansion
factor N

Lt
or the diversity degree Mt of the feedback channel. This bound also suggests

an interesting trade-off on the number of antennas. If t grows, diversity increases but the
bandwidth expansion factor decreases. Conversely, if t decreases, the bandwidth expansion
factor increases but performance limitation may be due to diversity, which decreases in this
case. Obviously, the least restrictive condition is achieved if bandwidth expansion factor
and diversity degree are both equal, i.e., t =

√

N/LM .

5.3.2 Analog transmission

Assuming LMt ≤ N , the results obtained in Section 5.2.3 can easily be extended to the
multiple receive antennas setting considered in this section. In order to derive the optimum
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transmission strategy, we can proceed according to the steps followed in Section 5.2.3.2.
Using the block fading model and under the assumption that only one channel coefficient
is transmitted, Problem 5.23 can be written as Problem 5.26, where, now, the variables zm

are chi-square distributed with 2t degrees of freedom and mean value t. Noting that in the
subsequent derivation of the optimum transmission strategy the specific distribution of zm

is not used, we conclude that choosing any precoder such as wm = 1/M , m = 1, . . . ,M ,
is optimum also in this setting. Now, if transmission of the Lt coefficients of the source
output is considered and LMt ≤ N , the reasoning of Section 5.2.3.3 can be applied in
order to find that optimality is achieved if coefficients are transmitted over disjoint sets of
M uncorrelated subchannels with a uniform power distribution. In order to compute the
distortion incurred by the optimum approach, Eq. 5.28 can be used replacing P by P/Lt
and noting that j is now a chi-square random variable with 2Mt and mean value t. Doing
so, we obtain

ǫ =
exp

(
MLt

P

)

(Mt− 1)!

(
MLt

P

)Mt

×

×
(

Mt−2∑

m=0

(
Mt− 1

m

)

(−1)mαMt−2−m

(
MLt

P

)

+ (−1)Mt−1E1

(
MLt

P

))

.

To this expression the asymptotical analysis of Section 5.2.3.4 can be applied. In the high
SNR regime, we obtain,

ǫ =
Mt

(Mt − 1)

L

P
+ o

(
1

P

)

. (5.56)

Note that the distortion decay rate is 1, thus, confirming that linear analog approaches can
not profit from either bandwidth expansion or diversity in terms of DDR. More interesting
is the factor that precedes L/P in the first term on the right-hand side. This factor is a
monotonically decreasing function of t, i.e., the benefit obtained from adding antennas at
the receiver of the feedback link exceeds the disadvantage derived from having to feed back
more channel coefficients.10 This property of analog transmission has been pointed out in
[81] in a different setting. In the low SNR regime, distortion behaves as

ǫOPTA = 1− P/L+ o(P ).

This expression is the same as that given in Eq. 5.54 for the behavior of OPTA at low
SNR values. Thus, also for this setting, linear analog transmission is optimum in the low
SNR regime.

5.3.3 Numerical results

In this section we show numerical performance results of feedback links with multiple
antennas at the receive end. The feedback channel is considered to be a time-dispersive
channel with M = 2 delay taps and flat power delay profile. The coefficients of matrix G

are the channel gains resulting from employing an OFDM transmission scheme over this

10Recall that derivation of this result has been done under the assumption LMt ≤ N .
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channel with N = 16 subcarriers. Fig. 5.8 shows curves for t = 2 antennas at the receive
end of the feedback link. The slope of the OPTA curve at high SNR seems to be equal to 4,
which is the bandwidth expansion factor in this setting. Elimination of time diversity results
in an upper bound that seems to approach a slope of 4 at high SNR values. This indicates
that the upper bounds on DDR derived in Section 5.3.1 might be tight. Comparing Figs.
5.6 and 5.8, we note that an additional antenna results in improvement of the theoretical
upper bound without time diversity, the analog scheme and the digital schemes. Concerning
the digital schemes, improvement can be noticed by observing that saturation is reached
at lower SNR values. This improvement, predicted by our analysis in previous sections,
is due to the increased diversity in the feedback link provided by the additional antenna.
This is so despite the fact that, with one additional antenna, the number of coefficients
that must be fed back in each use of the feedback link doubles from 2 to 4. Fig. 5.9 shows
curves for the same setting with t = 4. Now, the bandwidth expansion factor decreases
to 2. This is exactly the slope exhibited by the theoretical upper bounds at high SNR,
which confirms that our upper bounds on DDR might be tight. The increase in diversity
resulting from doubling the number of antennas yields some performance improvement
for the analog scheme as predicted by Eq. 5.56. For the theoretical upper bounds and the
digital schemes, the increase in diversity does not provide any benefit as, in this case, this is
done at the cost of a reduced bandwidth expansion factor, which now becomes the limiting
factor. As a consequence, a significant degradation of these curves can be observed.
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Figure 5.8: Performance over a fading feedback link with L = 2, N = 16, M = 2, t = 2.
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Figure 5.9: Performance over a fading feedback link with L = 2, N = 16, M = 2, t = 4.

5.4 Forward link performance under delay limited

feedback

In this section, we consider performance of a broadcast channel in which receivers trans-
mit information about the state of their respective channels back to the transmitter. A
temporal block fading model is assumed according to which the channel state in the for-
ward link changes abruptly from block to block and remains constant during the duration
of one block. The receivers feed back CSI once per block. The transmitter processes the
information received from all users and sets up the transmission parameters accordingly.
No robust approach is considered. Instead, the transmitter uses the received CSI as if it
were perfect. First, we shall briefly comment on the shortcomings of using ergodic rates as
a performance measure when dirty paper coding is employed as a transmission scheme in
the forward link. After identifying average throughput as a more appropriate measure, we
present some numerical results.

5.4.1 Information theoretic measures

Most of the work on feedback schemes done so far uses ergodic capacity or ergodic capacity
loss in the forward link as a performance measure, e.g., [78, 64, 20, 95]. A fundamental
question that is largely neglected in the existing literature is how can the numerically com-
puted ergodic capacity be effectively achieved. A closely related question is how does the
transmitter know the maximum rate at which reliable transmission is possible. If a single-
user forward link is considered, under the common error-free assumption on the feedback
link, the receiver has the knowledge about both the real channel state and the imperfect
information available at the transmitter. Thus, in such setting the receiver might compute
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the maximum achievable rate and communicate it to the transmitter. If the time interval in
which the channel state remains unchanged is long enough, the transmitter should be able
to transmit at this rate reliably. In this case the ergodic capacity is achieved by employing
different code books for different channel states and CSI. Obviously, if the assumption of
error-free transmission on the feedback link is dropped, the receiver can not be sure about
the CSI that the transmitter possesses any longer. Thus, neither the transmitter nor the
receiver have enough information to compute the maximum rate achievable for a given
channel state. However, even in this case, the ergodic capacity is achievable by transmit-
ting with a unique code book over a large number of channel states with corresponding
CSI. This can be shown by the following general reasoning from [24]. Let p(y|x, u, T (u)) be
the probability transition function of the forward channel with output y and input x. Let
u represent the state of the channel and T (u) the transmit strategy, which is a function of
the channel state. If u and T (u) are viewed as additional channel outputs, the maximum
achievable rate for an input with distribution p(x) is given by I(x ; y , u, T (u)), which can
be achieved by a code book Cn of typical sequences xn as n→∞. Using the chain rule for
mutual information we can write

I(x ; y , u, T (u)) = I(x ; y |u, T (u)) + I(x ; u, T (u)) (5.57)

=
∑

u

I(x ; y |u = u, T (u = u))p(u),

where it has been assumed that both the channel state and the transmit strategy are inde-
pendent of the channel input and therefore I(x ; u, T (u)) = 0. Note that the last expression
is nothing else than the ergodic capacity for the given input statistics and transmit strat-
egy. Thus, this capacity is achievable with a unique code book Cn, n→∞. The transmitter
can compute this rate provided that it has knowledge about the distribution of the channel
states. Knowledge about the instantaneous channel states is not needed.

If a multiuser forward channel is considered, even under the assumption of a noiseless
feedback link, the transmitter can not obtain information about the achievable rates from
the receivers. This is due to the fact that the transmit strategy, and thus, the rates, will
generally depend on the states of all single-user channels in the forward link and each
receive terminal has only access to the own channel but not to the channels of other users.
As in the single-user forward link, ergodic rates can be also achieved on the multiuser
forward link provided that the input signals are independent of the channel states and
the transmit strategy. This is true for linear approaches. To illustrate this, consider the
two-user Gaussian broadcast channel given by

y1 = H1x + n1,

y2 = H2x + n2,

with x = B1s1 + B2s2. Using the CSI fed back by the users, the transmitter computes
beamforming matrices B1 and B2, which represent the transmit strategy. For user 1, the
effective channel can be written as

y1 = H1B1s1 + H1B2s2 + n1.
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Assuming Gaussian inputs s1, s2 with the identity matrix as covariance matrix, the capac-
ity of this channel can be written as I(s1; y1,H1B1,H1B2B

H
2 HH

1 ), where the product H1B1

and the covariance matrix H1B2B
H
2 HH

1 are viewed as channel outputs that the receiver
has access to. There exist a code that allows reliable transmission at rates arbitrarily close
to this mutual information as the length of the codewords approach to infinity. Further-
more, taking into account that the input s1 is independent of the channel matrices and
the beamforming matrices, it can be shown as in Eq. 5.57 that this mutual information is
equal to the ergodic capacity of this channel for the particular choice of input statistics and
transmit strategy. The same reasoning applies to the rate achievable by user 2. In order
to compute these rates, the transmitter only requires statistical knowledge of the channel
states and transmit strategy, represented by the beamforming matrices.

Assume now that the users are encoded successively and a dirty paper coding scheme is
employed based on the available CSI. Let Ĥ1 and Ĥ2 represent the CSI available at the
transmitter. If user 2 is encoded first and H1B1 is invertible, the code book for user 1 is
generated according to the random variable (cf. Section 2.2.2.2)

u1 = s1 + BH
1 Ĥ

H

1

(

Ir1 + Ĥ1B1B
H
1 Ĥ

H

1

)−1

Ĥ1B2s2,

which obviously depends on the instantaneous channel state through the estimate Ĥ1 and
the beamforming matrices. That is, the code book is modified every time there is a change
in the CSI. For particular channel states and particular channel estimates, the maximum
rate achievable by user 1 can be computed as (cf. Sect 2.2.2.2)

R1(H1,H2) = I(u1; y1)− I(u1; s2).

Averaging over all possible channel realizations an average rate can be computed. Different
from the linear approaches, now, this rate is not achievable with a unique code book with
codewords spanning a large number of different channel states. Furthermore, it is impossible
for the transmitter to know the maximum rate achievable for instantaneous channel states
and, therefore, this rate can neither be achieved by using different code books for different
channel states and transmitting at the corresponding maximum instantaneous rate. Thus,
if dirty paper coding is applied, the computed average rate does not have any theoretical
meaning in the sense that it is actually unachievable. This seems to have been overlooked
by recent publications on the topic, e.g., [43].

In this case, instead of ergodic rate, average throughput can be chosen as a figure of
merit for the forward link. This figure is obtained by letting the transmitter fix a trans-
mission rate for each single-user channel based on the CSI it receives from the users. If the
actual rate supported by a particular single-user channel is larger than the transmission
rate over that channel, transmission is declared successful and the instantaneous through-
put is equal to the transmission rate. If the transmission rate is larger than the actual
rate supported by the channel, the instantaneous throughput is considered to be zero.
The average throughput is obtained by averaging instantaneous throughput over a large
number of channel realizations. This figure captures the trade-off between the transmis-
sion rate guessed by the transmitter and the probability of this guess being too optimistic.
The average throughput computed in this way can be effectively reached as long as the
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time interval during which the channel state remains constant is long enough so that the
probability of error becomes negligible at rates below the instantaneous capacity.

5.4.2 Numerical results

In this section, numerical results are presented for a broadcast channel with K = 2 users,
t = 2 transmit antennas and single-antenna receivers. The forward and feedback channels
of both users are assumed two be time-dispersive with two uncorrelated taps and a flat
power delay profile, i.e., L = M = 2. In both forward and feedback links, an OFDM trans-
mission scheme with N = 16 subcarriers is used. After perfect estimation of the state of the
single-user channels, the receivers feed the channel coefficients back to the transmitter in
a time-division multiple access fashion. Each user utilizes one OFDM symbol, i.e., N = 16
subcarriers, for the transmission of the 4 channel coefficients representing the estimated
channel state. Upon reception of the channel coefficients of both users, the transmitter ex-
ecutes the sum-rate maximizing SESAM algorithm (cf. Section 4.1.4) and transmission is
carried out by using the resulting beamforming vectors and power loading. For both foward
and feedback links SNR = P/N is assumed to be equal. In Fig. 5.10 average throughput
curves are shown that are obtained if the transmitter fully relies on the received CSI in
order to determine the transmission rate on each subchannel. If the CSI information is
perfect, the average sum-throughput coincides with the average sum-rate measure. In such
case, the transmitter perfectly knows the maximum rate supported by the different sub-
channels and no transmission failures occur. If the CSI is obtained from a noisy feedback
link and the transmission rate is chosen to be that computed based on this information,
performance degrades dramatically. The reason for this degradation is that the estimated
maximum achievable rate on a particular subchannel frequently exceeds the actual trans-
mission rate supported by that subchannel resulting in failed transmissions. As a simple
countermeasure, on each subchannel the transmission rate can be set a certain margin
below the rate computed based on the imperfect CSI. Fig. 5.11 shows performance curves
obtained when the transmitter sets the transmission rate on each subchannel 0.5 bits per
channel use below the estimated maximum achievable rate. The performance improvement
is notorious. The gap between the average throughput obtained with perfect CSI and that
resulting from CSI fed back using a simple linear analog approach is slightly above 1 bit.
In all the range of simulated SNR values and for all practical purposes, digital schemes do
at best perform as well as the analog scheme. The gap between perfect CSI and analog
feedback CSI being so narrow, it is difficult to imagine how to turn parameters so that a
clear superiority of delay-limited digital schemes becomes visible. Keeping the forward link
fixed, if the bandwidth expansion factor and the diversity degree in the feedback link are
increased, performance of the digital schemes is expected to improve. However, if not in
terms of DDR, the analog scheme will also profit from such a change, which would make
the performance gap with respect to the perfect CSI curve narrower. On the other hand, if
both diversity and bandwidth expansion factor decrease in the feedback link, performance
of digital schemes will degrade more significantly than performance of the analog scheme,
making digital approaches less competitive.

Linear analog transmission is a very simple scheme that, as we have seen in previous
sections, has important performance limitations. However, in the light of these numerical
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Figure 5.10: Achievable sum throughput in a broadcast forward link with N = 16 subcar-
riers, K = 2 users, t = 2 transmit antennas and single-antenna receivers. Transmitter
fixes the transmission rate as if the CSI were perfect.

results, we may conjecture that this scheme is good enough for purposes of feedback of
CSI. As we have seen, in general, digital schemes have the theoretical potential to perform
better. However, even if digital schemes are found that at affordable complexity yield a
better performance in terms of MSE at SNR values of interest, when translated into forward
link performance, the resulting gains might be insignificant.
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Figure 5.11: Achievable sum throughput in a broadcast forward link with N = 16 subcar-
riers, K = 2 users, t = 2 transmit antennas and single-antenna receivers. Transmitter
allows for a rate margin of 0.5 bits per subchannel.



A Appendix

A.1 Duality transformations and the matrix inversion

lemma

A.1.1 Duality transformations

Recall the model for the broadcast channel given by Eq. 2.6 and its dual multiple access
channel given in Eq. 2.25. Without loss of generality, assume that, in the MAC, users are
decoded in the order indicated by their indexes, and, for this channel, let Q1,...,K be a set
of transmit covariance matrices. Define

Bj = I t +

K∑

k=j+1

HH
k QkHk, j = 1, . . . , K,

and

Aj = Irj
+ Hj

(
j−1
∑

k=1

Σk

)

HH
j , j = 1, . . . , K,

and consider the singular value decomposition (SVD)

B
−1/2
k HH

k A
−1/2
k = F kΛkG

H
k , k = 1, . . . , K.

The transformations

Σk = B
−1/2
k F kG

H
k A

1/2
k QkA

1/2
k GkF

H
k B

−1/2
k , k = 1, . . . , K

provide a set Σ1,...,K of transmit covariance matrices for the BC that reach the same rate
vector as the matrices Q1,...,K in the MAC, provided that the encoding order in the BC
corresponds to the reversed decoding order in the MAC, i.e., user K is encoded first and
user 1 last.

A.1.2 Matrix inversion lemma

Let A and C be invertible square matrices of dimensions N ×N and L× L, respectively.
Further, let V be an L×N matrix and U an N ×L matrix. The following equality holds,

(A + UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

165
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A.2 Asymptotic equipartition property and typical

sequences

In this appendix an overview on the subject of typical sequences and their properties is
given. This introduction is intended to help the reader to better understand the arguments
used in the achievability proofs of some of the results presented in Chapter 2. For clarity
of exposition we assume discrete alphabets. However, all definitions and theorems can be
trivially extended to the case of continuous alphabets by replacing entropies with differ-
ential entropies and cardinalities of typical sets with volumes of these sets. For a more
detailed discussion on the topic the reader is referred to [40].

Theorem A.2.1 (Asymptotic Equipartition Property). If x1, x2, . . . , xn are independent
and identically distributed random variables drawn according to a distribution p(x), then
for n→∞

−1

n
log p(x1, x2, . . . , xn)→ H(x),

where H(x) = −E{log p(x)} is the entropy of x .

Proof. Functions of independent random variables are also independent random variables.
In particular, since x1, x2, . . . , xn are i.i.d., log p(x1), log p(x2), . . . , log p(xn) are also i.i.d.. As
a result, the weak law of large numbers [89] can be applied in order to show

−1

n
log p(x1, x2, . . . , xn) = −1

n

n∑

i=1

log p(xi)→ −E{log p(x)} = H(x),

for n→∞. �

The typical set A
(n)
ǫ with respect to p(x) is defined as the set of sequences xn ∈ X n with

the property
2−n(H(x)+ǫ) < p(x1, x2, . . . , xn) < 2−n(H(x)−ǫ).

The sequences that belong to this set are said to be typical. The typical set has the following
properties.

Theorem A.2.2 (Properties of the typical set).

1. Pr
{

A
(n)
ǫ

}

> 1− ǫ for sufficiently large n.

2.
∣
∣
∣A

(n)
ǫ

∣
∣
∣ ≤ 2n(H(x)+ǫ).

3.
∣
∣
∣A

(n)
ǫ

∣
∣
∣ ≥ (1− ǫ)2n(H(x)−ǫ) for sufficiently large n.

Proof. Let xn be a sequence generated according to p(x), then

Pr
{
A(n)

ǫ

}
= Pr

{
xn ∈ A(n)

ǫ

}
= Pr

{∣
∣
∣
∣
−1

n
log p(x1, x2, . . . , xn)−H(x)

∣
∣
∣
∣
< ǫ

}
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which due to the asymptotic equipartition property tends to 1 as n→∞. This proves the
first property. In order to prove the second property consider the inequalities,

1 ≥
∑

xn∈A
(n)
ǫ

p(xn) ≥
∑

xn∈A
(n)
ǫ

2−n(H(x)+ǫ) =
∣
∣A(n)

ǫ

∣
∣ 2−n(H(x)+ǫ),

from which
∣
∣
∣A

(n)
ǫ

∣
∣
∣ ≤ 2n(H(x)+ǫ) follows. Similarly, invoking property 1, for sufficiently large

n we can write

1− ǫ <
∑

xn∈A
(n)
ǫ

p(xn) ≤
∑

xn∈A
(n)
ǫ

2−n(H(x)−ǫ) =
∣
∣A(n)

ǫ

∣
∣ 2−n(H(x)−ǫ),

which proves the third property. �

The first property tells us that in the limit n → ∞ all sequences generated according
to a distribution p(x) are typical with respect to that distribution. The second and third
property tell us that as n→∞ the number of typical sequences approaches to 2nH(x).

The asymptotic equipartition property and the concept of typicality can be extended
to distributions of multiple variables. Consider two random variables x and y that are
distributed according to p(x, y). The set A

(n)
ǫ of jointly typical sequences (xn, yn) with

respect to this distribution is defined as

A(n)
ǫ = {(xn, yn) ∈ X n × Yn :

∣
∣
∣
∣
−1

n
log p(xn)−H(x)

∣
∣
∣
∣
< ǫ,

∣
∣
∣
∣
−1

n
log p(yn)−H(y)

∣
∣
∣
∣
< ǫ,

∣
∣
∣
∣
−1

n
log p(xn, yn)−H(x , y)

∣
∣
∣
∣
< ǫ

}

.

That is, a pair of sequences (xn, yn) is jointly typical if each sequence individually is typical
and they also behave typically with respect to each other. Jointly typical sequences have
the following properties.

Theorem A.2.3 (Properties of jointly typical sequences). Let (xn, yn) be sequences of
length n drawn according to p(xn, yn) =

∏n
i=1 p(xi, yi). Then

1. Pr
{

(xn, yn) ∈ A(n)
ǫ

}

> 1− ǫ for sufficiently large n.

2.
∣
∣
∣A

(n)
ǫ

∣
∣
∣ ≤ 2n(H(x ,y)+ǫ).

3.
∣
∣
∣A

(n)
ǫ

∣
∣
∣ ≥ (1− ǫ)2n(H(x ,y)−ǫ) for sufficiently large n.

4. If (x̃n, ỹn) are generated according to p(x)p(y), i.e., the sequences are independently
generated according to the marginals of p(x, y), then

Pr
{
(x̃n, ỹn) ∈ A(n)

ǫ

}
≤ 2−n(I(x ,y)−3ǫ).

Also, for sufficiently large n,

Pr
{
(x̃n, ỹn) ∈ A(n)

ǫ

}
≥ (1− ǫ)2−n(I(x ,y)+3ǫ).
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Proof. The proof of the first three properties can be conducted along the lines of the proof
of Theorem A.2.2. In order to prove the first part in property 4, we consider the following
inequalities

Pr
{
(x̃n, ỹn) ∈ A(n)

ǫ

}
=

∑

(xn,yn)∈A
(n)
ǫ

p(xn)p(yn) ≤
∑

(xn,yn)∈A
(n)
ǫ

2−n(H(x)−ǫ)2−n(H(y)−ǫ)

=
∣
∣A(n)

ǫ

∣
∣ 2−n(H(x)−ǫ)2−n(H(y)−ǫ) ≤ 2n(H(x ,y)+ǫ)2−n(H(x)−ǫ)2−n(H(y)−ǫ)

= 2−n(I(x ,y)−3ǫ).

Similarly, we can prove the second part by writing

Pr
{
(x̃n, ỹn) ∈ A(n)

ǫ

}
=

∑

(xn,yn)∈A
(n)
ǫ

p(xn)p(yn) ≥
∑

(xn,yn)∈A
(n)
ǫ

2−n(H(x)+ǫ)2−n(H(y)+ǫ)

=
∣
∣A(n)

ǫ

∣
∣ 2−n(H(x)−ǫ)2−n(H(y)−ǫ) ≥ (1− ǫ)2n(H(x ,y)+ǫ)2−n(H(x)−ǫ)2−n(H(y)−ǫ)

= (1− ǫ)2−n(I(x ,y)+3ǫ).

Note that property 3 has been invoked in the last inequality and this property only holds
for sufficiently large n. �

All the achievability proofs discussed in Chapter 2 assume receivers that perform detec-
tion based on joint typicality. Given a received sequence of signals, the receiver looks for a
sequence in the code book that is jointly typical with that received sequence. Detection is
successful if the solution exists, i.e., a codeword can be found that is jointly typical with
the received sequence, and this solution is unique, i.e., there is only one such sequence.
Property 1 in Theorem A.2.3 guarantees that if the typical sequence xn is transmitted
over a channel with transition probability p(y|x) the received sequence yn is jointly typical
with xn with probability tending to one as n→∞. That is, the first property guarantees
that, for large n, at least the transmitted codeword will be jointly typical with the received
signal. Uniqueness holds if the probability that xn and yn be jointly typical is zero when xn

is not the codeword that gave rise to the received sequence yn, i.e., when xn and yn where
independently generated. Assume a code book Cn consisting of 2nR typical sequences xn

and that transmission of the sequence xn
1 leads to the received sequence yn. Using the first

part of property 4 in Theorem A.2.3 we can bound the probability of any other xn
i6=1 being

jointly typical with yn as follows,

Pr
{
∃ xn

i6=1 : (xn
i , y

n) ∈ A(n)
ǫ

}
≤

2nR
∑

i=2

Pr
{
(xn

i , y
n) ∈ A(n)

ǫ

}
≤ 2nR2−n(I(x ,y)−3ǫ).

Thus, if transmission rate is chosen such that R < I(x , y) the probability that uniqueness
does not hold tends to zero as n→∞.

In some of the proofs, in order to assure typicality of the transmitted signals it is required
that pairs of jointly typical sequences exist within a set that was created by generating
sequences independently. For instance, this is needed in the achievability proof of the
Marton’s region for both the simultaneous and the successive encoding schemes (cf. Sections
2.1.3.1, 2.2.2.2). Assume that 2nR1 sequences un and 2nR2 sequences vn are independently
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generated according to distributions p(u) and p(v), respectively. Given a joint probability
density function p(u, v), the probability that a jointly typical pair can be found among the
set of 2n(R1+R2) pairs of sequences (un, vn) can be, for sufficiently large n, lower bounded
as follows

Pr {∃ (i, j) ∈ {1, . . . , 2nR1} × {1, . . . , 2nR2} : (un
i , v

n
j ) ∈ A(n)

ǫ

}

= 1− Pr
{
∀ (i, j) ∈ {1, . . . , 2nR1} × {1, . . . , 2nR2} : (un

i , v
n
j ) 6∈ A(n)

ǫ

}

= 1−
∏

i,j

Pr
{
(un

i , v
n
j ) 6∈ A(n)

ǫ

}

≥ 1−
(
1− (1− ǫ)2−n(I(u,v)+3ǫ)

)2n(R1+R2)

≥ 1− exp−(1− ǫ)2n(R1+R2)2−n(I(u,v)+3ǫ)

The first inequality is due to the second part of property 4 in Theorem A.2.3. In order to
obtain the second inequality the relation (1− x)n ≤ exp−nx, for x < 1, n ≥ 0, has been
used. Thus, we note that if R1 + R2 > I(u, v) the probability that a jointly typical pair
can be found tends to 1 as n→∞.

A.3 Langrangian duality and subgradients

In this appendix a brief overview on basic optimization theoretic results, mostly used in
Chapter 3, is given. To a large extend, the exposition is based on [13]. In some parts of the
text, additional references have also been included to sources that exhibit complementary
points of view in the treatment of these contents.

Consider the following optimization problem

max
Q

f(Q), (A.1)

subject to Q ≥ 0, h(Q) ≥ 0,

where Q ∈ Hn×n, f : Hn×n → R and h : Hn×n → R. In the following, unless otherwise
stated, the discussion will be based on this example. While keeping the treatment at a
general level, this will allow us to capitalize on particular details of the theory relevant to
the specific problems analyzed in Chapter 3. One such detail is the fact that optimization
is performed over the set of Hermitian matrices with a positive semidefinite constraint.
Henceforth, problem A.1 will be referred to as primal problem.

A.3.1 Lagrangian duality

For problem A.1 the Lagrangian function is given by

L(Q, λ,Φ) = f(Q) + λh(Q) + Tr {QΦ} ,

where λ ∈ R and Φ ∈ Hn×n are called the Lagrangian multipliers associated with con-
straints h(Q) ≥ 0 and Q ≥ 0, respectively. A major property of this function is that

f(Q) ≤ L(Q, λ,Φ), ∀ λ ≥ 0, ∀ Φ ≥ 0, (A.2)
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for every feasible Q, i.e., for every Q that satisfies the constraints in problem A.1. That
is, if the multipliers are nonnegative, the Lagrangian function upper bounds the objective
function for all points of the feasibility region. Based on the Lagrangian function, the
Lagrangian dual function is defined as

g(λ,Φ) = sup
{
L(Q, λ,Φ) | Q ∈ H

n×n
}
.

As a result of Eq. A.2,

f(Q) ≤ g(λ,Φ), ∀ λ ≥ 0, ∀ Φ ≥ 0, (A.3)

for every feasible Q. Furthermore, for µ1, µ2 ≥ 0, µ1 + µ2 = 1,

µ1g(λ1,Φ1) + µ2g(λ2,Φ2) =

= sup
{
µ1L(Q, λ1,Φ1) | Q ∈ H

n×n
}

+ sup
{
µ2L(Q, λ2,Φ2) | Q ∈ H

n×n
}

≥ sup
{
µ1L(Q, λ1,Φ1) + µ2L(Q, λ2,Φ2) | Q ∈ H

n×n
}

= sup
{
L(Q, µ1λ1 + µ2λ2, µ1Φ1 + µ2Φ2) | Q ∈ H

n×n
}

= g(µ1λ1 + µ2λ2, µ1Φ1 + µ2Φ2),

i.e., g(λ,Φ) is convex. So far the Lagrangian function and the Lagrangian dual function
have been defined with respect to both constraints in the primal problem. Sometimes, it is
useful to define these function with respect to a subset of constraints (cf. Section 3.1.1.2).
For instance, we could have defined

L(Q, λ) = f(Q) + λh(Q), (A.4)

g(λ) = sup
{
L(Q, λ) | Q ∈ H

n×n, Q ≥ 0
}
. (A.5)

It can be easily shown that g(λ) is convex and both functions upper bound f(Q) in the
feasible domain as long as λ ≥ 0.

If all constraints are considered in the definition of the Lagrangian and the Lagrangian
dual functions, the dual problem corresponding to the primal problem A.1 can be stated
as

min
Φ,λ

g(λ,Φ), (A.6)

subject to λ ≥ 0, Φ ≥ 0.

If the definitions given by Eqs. A.4 and A.5 are considered, the dual problem simplifies to

min
λ

g(λ), (A.7)

subject to λ ≥ 0.

Note that due to convexity of the objective functions and constraints in Eqs. A.6 and A.7,
both dual problems are convex. Let f̄ and ḡ denote the solutions of the primal and any
of the dual problems, respectively. Due to Eq. A.3, which also holds for g(λ), f̄ ≤ ḡ. This
result is known as weak duality and states that the solutions of the dual problems upper
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bound the solution of the primal problem. Strong duality holds if f̄ = ḡ. It can be easily
shown that the solution to problem A.6 upper bounds the solution to problem A.7. Thus,
if strong duality holds for the dual problem defined with respect to all constraints, it also
holds for the dual problem defined with respect to a reduced number of constraints. For a
primal optimization problem with inequality constraints, as the one considered here, strong
duality holds if the problem is convex and there exists a feasible point that satisfies all the
constraints with strict inequality. This sufficient condition is related to Slater’s constraint
qualification [13, 4].

A.3.2 Optimality conditions

Assume that strong duality holds for problem A.1 and let λ̄, Φ̄ be the minimizers of problem
A.6 and Q̄ the maximizer of problem A.1. The following holds

f(Q̄) = g(λ̄, Φ̄) ≥ L(Q̄, λ̄, Φ̄) ≥ f(Q̄). (A.8)

Thus, it can be observed that the inequalities in this expression must be satisfied with
equality. In order to achieve equality in the second inequality we need

λh(Q) = 0, Tr {QΦ} = 0. (A.9)

These conditions are known as complementary slackness. Achieving equality in the first
inequality of Eq. A.8 requires that Q̄ be a maximizer of L(Q, λ̄, Φ̄). Assuming differentia-
bility of both f(Q) and h(Q) at Q̄, this implies

∇QL(Q̄, λ̄, Φ̄) = 0. (A.10)

Eqs. A.10 and A.9 together with the constraints in the primal and dual problems form
a set of necessary optimality conditions for a wide range of problems with differentiable
objective and constraint functions. These conditions are frequently referred to as Karush-
Kuhn-Tucker (KKT) conditions. If the primal problem is convex, these conditions are
sufficient. Note that the above derivation of Eqs. A.10 and A.9 assumes strong duality.
This assumption is not necessary for the derivation of the KKT conditions. For alternative
derivations that do not assume strong duality see for instance [4, 7, 94].

A.3.3 Subgradients

Lagrangian duality offers the possibility to find the solution to a given problem or a bound
of that solution by stating and solving its corresponding dual. As we have seen, dual
problems are always convex. However, due to the way it is defined, the objective func-
tion of a dual problem might not be differentiable. In that case, algorithmic solutions are
based on the notion of subgradient rather than that of gradient. Consider a possibly non-
differentiable function g : R

n → R. A subgradient for this function at λ is a vector s that
satisfies

g(λ + ∆λ) ≥ g(λ) + sT∆λ, ∀∆λ. (A.11)

If the function g(λ) is differentiable at a particular point, the only vector s that satisfies Eq.
A.11 is the gradient of this function at that point. In other words, if differentiability holds,
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the concepts of gradient and subgradient are equivalent. The definition of subgradient
given above can be generalized in order to include functions with Hermitian matrices as
arguments (cf. Eq. A.6). Here, we omit this definition as it shall not find application in
this work. Subgradients of Lagrangian dual functions can be straightforwardly found. In
general, these are given by the constraint functions of the primal problem with respect
to which the dual function is defined evaluated at the Lagrangian maximizing primal
variables. As an example, consider problem A.7. A subgradient for the objective function
at λ is simply h(Q̄), where Q̄ is a maximizer of L(Q, λ) subject to Q ≥ 0. An introduction
to subgradient-based optimization methods can be found in [14, 7].

A.4 Duality of streamwise multiuser strategies

This appendix describes the duality relationship between approaches in the broadcast
channel and the multiple access channel that are based on streamwise transmission. By
streamwise, we refer to strategies that decompose the MIMO broadcast channel into a
set of scalar subchannels over which streams of information can be transmitted that are
independently encoded and decoded. This is in contrast to non-streamwise approaches,
where the information intended for a particular user is conveyed by a vector of signals
whose components are encoded and decoded jointly. In the first section of this appendix,
it is shown that streamwise transmission does not incur loss of optimality in the MAC,
i.e., streamwise approaches achieve all points of the capacity region. In the second section
we will show a streamwise duality between BC and MAC. On the one hand, this duality
underlies the derivation of the streamwise SINR-based successive approach presented in
Section 4.2. On the other hand, it constitutes the proof for the optimality of streamwise
transmission in the broadcast channel.

A.4.1 Optimality of streamwise strategies

Recall the Gaussian multiple access channel definition in Eq. 2.25, i.e.,

r =
K∑

k=1

HH
k wk + z.

Further, let Qk be the covariance matrix corresponding to user k and Qk = F kF
H
k be

a factorization of this matrix. Denote by fk,j the jth column of F k. According to these
definitions, the signal transmitted by user k can be written as

wk =

mk∑

j=1

f k,jsk,j,

where mk can be viewed as the number of streams transmitted by user k and sk,j is the
signal transmitted on the jth stream of user k. Signals sk,j, k = 1, . . . , K, j = 1, . . . , mk,
are considered to be realizations of mutually independent zero-mean and unit-variance cir-
cularly symmetric complex Gaussian random variables. Thus, we see that, for any given
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statistics, the vector of transmit signals corresponding to any particular user can be de-
composed into a superposition of independent scalar transmit signals or streams that are
transmitted by employing corresponding beamforming vectors. In the following, we shall
see than independent detection of these streams based on a minimum mean squared er-
ror decision-feedback equalizer (MMSE-DFE) preserves capacity. To this end, assume that
users are successively decoded in the order indicated by their indexes, i.e., π̄(k) = k, and
consider detection of the signals corresponding to user k. Provided that the streams of users
1, . . . , k− 1 are detected without errors, the contributions of these streams to the received
signal can be removed before detecting the streams of user k. The resulting received signal
is given by

r
(1)
k = HH

k

mk∑

j=1

fk,jsk,j + ẑ,

where ẑ is a term of interference plus noise including the received signals corresponding
to users k + 1, . . . , K. Let Rẑ be the covariance matrix of this term. The maximum rate
achievable by user k can be written as

I(sk,1, . . . , sk,mk
; r

(1)
k ) = log2

( |Rẑ + HH
k QkHk|

|Rẑ|

)

.

Applying the chain rule for mutual information, we can write

I(sk,1, . . . , sk,mk
; r

(1)
k ) = I(sk,1; r

(1)
k ) + I(sk,2, . . . , sk,mk

; r
(1)
k |sk,1).

The first term can be computed as

I(sk,1; r
(1)
k ) = h(sk,1)− h(sk,1|r (1)

k ) = log2




1

σ2

sk,1|r
(1)
k



 ,

where σ2

sk,1|r
(1)
k

is the variance of the distribution p(sk,1|r (1)
k ). This variance is independent of

r
(1)
k and represents the minimum mean squared error that can be achieved if the estimation

of sk,1 is based on r
(1)
k (cf. [144]). Let ŝk,1 be the MMSE estimate of sk,1. Noting that

sk,1 = ŝk,1 + ek,1 and that the error ek,1 is independent of ŝk,1 we can write

I(sk,1; ŝk,1) = h(sk,1)− h(sk,1|ŝk,1) = h(sk,1)− h(ek,1) = log2




1

σ2

sk,1|r
(1)
k



 ,

i.e., I(sk,1; r
(1)
k ) = I(sk,1; ŝk,1). For the second term we can write

I(sk,2, . . . , sk,mk
; r

(1)
k |sk,1) = h(r

(1)
k |sk,1)− h(r (1)

k |sk,1, sk,2, . . . , sk,mk
)

= h(r
(2)
k )− h(r (2)

k |sk,2, . . . , sk,mk
)

= I(sk,2, . . . , sk,mk
; r

(2)
k ),

where r
(2)
k = HH

k

∑mk

j=2 f k,jsk,j + ẑ. The first term can be viewed as the maximum rate
that can be transmitted over the stream sk,1 if an MMSE estimate of this stream is taken
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at the receiver. The second term represents the information rate of all other streams when
the contribution of the first stream is removed from the received signal. The second term,
in turn, can be split into a rate achieved by MMSE detection of the second stream and a
rate corresponding to all other streams. Proceeding recursively in this way, we obtain,

I(sk,1, . . . , sk,mk
; r

(1)
k ) =

K∑

j=1

I(sk,j; r
(j)
k ) =

K∑

j=1

I(sk,j; ŝk,j),

where r
(j)
k =

∑mk

i=j f k,isk,i and ŝk,j is the MMSE estimate of sk,j based on the observation

r
(j)
k . That is, for the given input statistics, the maximum achievable rate for user k can

be expanded as a sum of rates corresponding to each of the individual streams. The rate
corresponding to a particular stream can be achieved by applying an MMSE estimator to
the received signal without the contributions of previously detected streams and decoding
information based on this estimate. Note that in this exposition the streams have been
decoded in the order indicated by their indexes. This has been done in order to simplify
notation. Choosing a different ordering would change the rates corresponding to the par-
ticular streams but not the total rate resulting from the addition of the individual stream
rates.

Thus, we conclude that, at the transmitter, the transmit signal can be decomposed
into a set of statistically independent streams and, at the receiver, these streams can be
independently decoded, using the outputs of an MMSE-DFE, without loss of optimality.
That is, given any input statistics for the MAC, there is always a streamwise transmission
strategy that achieves the rates that are achievable with those statistics. In the context
of time-dispersive single-input single-output channels, optimality of the MMSE-DFE in
terms of capacity was first shown in [32]. This result was also shown in [126] applied to
multiple access channels.

A.4.2 Streamwise duality

Consider a streamwise strategy in the MAC for which the transmit signals are given by

wk =

mk∑

j=1

uk,jq
1/2
k,j sk,j, k = 1, . . . , K.

Here, uk,j is a unit-norm beamforming vector corresponding to the stream j of user k
and qk,j is the power assigned to this stream. As in the previous section, the signals sk,j,
k = 1, . . . , K, j = 1, . . . , mk, are statistically independent and Gaussian with zero mean
and unit variance. Assume that the streams are successively decoded in the order indicated
by the user index and the stream index, i.e., first, the first stream of user 1 is decoded,
second, the second stream of this user, then, after all streams of user 1 have been decoded,
the first stream of user 2 is decoded, and so on. Correspondingly, before stream sk,j is
decoded, interference caused by the streams of users 1, . . . , k−1 and the streams 1, . . . , j−1
of user k can be removed from the received signal. On the resulting effective received signal
a unit-norm linear filter vk,j is applied and detection of sk,j is done based on the output
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ŝk,j of this filter, which reads

ŝk,j = vH
k,jH

H
k uk,jq

1/2
k,j sk,j + vH

k,jH
H
k

mk∑

ℓ=j+1

uk,ℓq
1/2
k,ℓ sk,ℓ + vH

k,j

K∑

i=k+1

mk∑

ℓ=1

HH
i ui,ℓq

1/2
i,ℓ si,ℓ + vH

k,jz.

The maximum rate achievable on this stream is given by Rk,j = log2(1+SINRMAC
k,j ), where

the signal-to-interference-plus-noise ratio SINRMAC
k,j is defined as

SINRMAC
k,j =

qk,j|vH
k,jH

H
k uk,j|2

1 +
∑mk

ℓ=j+1 |vH
k,jH

H
k uk,ℓ|2qk,ℓ +

∑K
i=k+1

∑mk

ℓ=1 |vH
k,jH

H
i ui,ℓ|2qi,ℓ

.

The following dual streamwise strategy could be employed for transmission over the dual
BC. The transmitted signal is given by

x =

K∑

k=1

mk∑

j=1

vk,jp
1/2
k,j sk,j,

where pk,j is the power assigned to the jth stream intended for user k. These streams are
successively encoded using a dirty paper coding strategy in order to neutralize interference
caused by previously encoded streams (cf. Section 2.2.2.1). Assume that the encoding order
is the reverse of the decoding order assumed above, i.e., the stream mK of user K is first
encoded, second, stream mK − 1 of this user is encoded, then, once all streams of user K
have been encoded, the stream mK−1 of user K− 1 is encoded and so on. At the receivers,
detection of a specific stream is based on the output of a linear filter. In particular, for the
jth stream of user k we have

ŝk,j = uH
k,jHkvk,jp

1/2
k,j sk,j + uH

k,jHk

j−1
∑

ℓ=1

vk,ℓp
1/2
k,ℓ sk,ℓ + uH

k,jHk

k−1∑

i=1

mk∑

ℓ=1

vi,ℓp
1/2
i,ℓ si,ℓ + uH

k,jn.

As in the MAC, here also, the rate achievable on a stream is characterized by the signal-
to-interference-plus-noise ratio of that stream defined as

SINRBC
k,j =

pk,j|vH
k,jH

H
k uk,j|2

1 +
∑j−1

ℓ=1 |vH
k,ℓH

H
k uk,j|2pk,ℓ +

∑k−1
i=1

∑mk

ℓ=1 |vH
i,ℓH

H
k uk,j|2pi,ℓ

.

In order to show that the rates achievable on the streams of the MAC are also achievable on
the streams of the BC, or vice versa, we proceed along the lines of the proof of the MMSE-
based BC-MAC duality given in [82]. Assume that the stream powers qk,j, k = 1, . . . , K,
j = 1, . . . , mk are given that achieve certain SINR values in the MAC. We want to find out
whether there is a set of powers pk,j, k = 1, . . . , K, j = 1, . . . , mk, that achieve the same

SINR values for the streams in the BC and such that
∑K

k=1

∑mk

j=1 pk,j =
∑K

k=1

∑mk

j=1 qk,j.

To this end, consider the linear system of M =
∑K

k=1mk equations with the M unknowns
pk,j, k = 1, . . . , K, j = 1, . . . , mk, that is obtained by setting SINRBC

k,j = SINRMAC
k,j , k =

1, . . . , K, j = 1, . . . , mk. That is,
Ap = q, (A.12)
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where p = [ pT
1 · · · pT

K ]T, pk = [ pk,1 · · · pk,mk
]T, k = 1, . . . , K, and q is defined

similarly. Matrix A is an M ×M lower triangular matrix. The column
∑k−1

i=1 mk + j of this
matrix is given by

ak,j = [ 0 · · · 0 dk,j iT
k iT

k+1 · · · iT
K ]T,

where

dk,j = 1 +

mk∑

ℓ=j+1

|vH
k,jH

H
k uk,ℓ|2qk,ℓ +

K∑

i=k+1

mk∑

ℓ=1

|vH
k,jH

H
i ui,ℓ|2qi,ℓ

is the entry on the main diagonal,

ik = [ −qk,j+1|vH
k,jH

H
k uk,j+1|2 · · · −qk,mk

|vH
k,jH

H
k uk,mk

|2 ]T

and

ii = [ −qi,1|vH
k,jH

H
i ui,1|2 · · · −qi,mi

|vH
k,jH

H
i ui,mi

|2 ]T, i = k + 1, . . . , K.

Using the fact that dk,j >
∑K

i=k ‖ii‖1 and that all off-diagonal entries are negative, it
is straightforward to show that the inverse of A has positive entries. This ensures the
existence of a power vector p that achieves in the BC the same performance as that
achieved by q in the MAC. Furthermore, since for every column of matrix A we have
1

Tak,j = 1, multiplying the left- and the right-hand sides of Eq. A.12 by 1
T, ‖p‖1 = ‖q‖1

immediately follows. Similar duality results have been shown in [122, 132, 100] resorting
to Perron-Frobenius theory.
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