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Abstract

Given the ubiquity of camera systems, there is an ever growing need for the automatic in-
terpretation of unannotated video recordings. Among the various contents of video streams,
actions are of course the most interesting. They represent spatio-temporal events that can-
not be spatially interpreted without additional knowledge about the respective camera system,
since information about perspective is not directly encoded in the video images. Using domain
knowledge, however, it is possible to reconstruct the mapping characteristics of a camera from
a recorded image sequence alone. This dissertation investigates the automatic estimation of
camera parameters in television broadcasts of sports games played on courts or fields.

We present a system that is capable of automatically initializing and tracking the camera
parameters of rotating and zooming cameras. An initial calibration of constant parameters of
a particular camera of interest is supported using minimal manual effort. The system can then
identify sequences recorded by this camera and differentiate them from slow-motion replays or
intercuts of other cameras. The reinitialization after cuts or cross-fades is performed automat-
ically using visible field lines. The dynamic camera parameters of the sequence that follows
are then continuously determined through optimization techniques, drawing upon motion es-
timation and field line detection. Our approach is characterized by a high degree of robustness
and efficiency.

We empirically evaluated the reliability of the system by applying it to several full-length
recordings of soccer games, which were mainly taken from the FIFA World Cup 2006 in Ger-
many. The system was able to correctly track the main camera from the final game throughout
a full 90 minutes without manual intervention. The information collected by the system pre-
sented in this work builds the very foundation of the comprehensive sports analysis software
ASPOGAMO , which illustrates the practical applicability of the system.





Kurzfassung

Mit steigendem Einsatz von Kamerasystemen wächst der Bedarf nach automatischer Inter-
pretation von nicht annotierten Videoaufzeichnungen. Aktionen als interessante Inhalte von
Videos repräsentieren spatio-temporale Zusammenhänge und sind ohne zusätzliches Wissen
über die Kamera räumlich nicht interpretierbar, da im Videobild die Perspektive der auf-
zeichnenden Kamera nicht kodiert ist. Mit Hilfe von Hintergrundwissen können die Abbil-
dungseigenschaften einer Kamera allein aus aufgezeichneten Bildfolgen rekonstruiert werden.
Diese Dissertation untersucht die automatische Schätzung von Kameraparametern in Fernseh-
übertragungen von Feldsportarten.

Wir stellen ein System vor, das in der Lage ist, die Kameraparameter von schwenkbaren
Fernsehkameras mit Zoom aus Sportübertragungen automatisch zu initialisieren und nach-
zuführen. Das System ermöglicht die Kalibrierung konstanter Parameter einer Kamera mit
minimalem manuellen Aufwand. Videosequenzen von dieser Kamera werden zwischen Zeit-
lupenwiederholung und Aufnahmen anderer Kameras im Videostrom identifiziert. Die Ini-
tialisierung der Kameraparameter nach Schnitten oder Überblendungen erfolgt automatisch
anhand sichtbarer Feldlinien. Die dynamischen Kameraparameter des folgenden Videoseg-
ments werden kontinuierlich mit Hilfe von Optimierungsverfahren aus Bewegungsschätzung
und Feldlinienerkennung ermittelt. Das Verfahren zeichnet sich durch hohe Robustheit und
Effizienz aus.

Die Zuverlässigkeit des Systems wurde empirisch an Aufzeichnungen von Fußballspielen,
hauptsächlich von der FIFA Weltmeisterschaft 2006 in Deutschland, evaluiert. Das System
war in der Lage ohne manuelle Eingriffe die Hauptkamera der Fernsehübertragung über 90
Minuten des Finalspiels hinweg zu verfolgen. Die gewonnenen Informationen aus der praktis-
chen Anwendung bilden die Grundlage für Sportanalyse im ASPOGAMO -System.
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Chapter 1 Introduction

With the availability of huge amounts of video material, e.g. in the world wide web, there is
a growing need for the automatic understanding of video content, in particular actions of peo-
ple. Understanding the actions of people, that are performed at different places, often requires
the recognition of their movements relative to the environment they are acting in. Inferring
the movement of people and their positions in the environment from video streams requires
the knowledge about the mapping characteristics of the recording camera. In this disserta-
tion we investigate this computational problem in a particular application domain: the visual
interpretation of sports games played on courts or fields.

We present a system that is capable of automatically initializing and tracking the camera
parameters of dynamic cameras from sports broadcasts, particularly of soccer games. We show
how such a tracking system can be fully initialized with minimal human help and without
access to the recording cameras. Furthermore, the presented system can automatically process
video streams taken from TV broadcasts in spite of interruptions of the stream by scenes of
other cameras, slow-motion replays, advertisements and special effects like cross-fading and
chroma-keying. Scenes that enables the system to estimate player positions are automatically
identified, initialized and tracked for usually as long as they last. The robustness and reliability
of the system has been extensively evaluated on several full-length recordings of soccer games,
mainly taken from World Cup 2006 in Germany [BBG+06, BGB+07, GBvHH+07, BBG+08].
This and the near real-time performance of our camera tracking show the general applicability
of the proposed approach to real world applications.

1.1 Motivation

The automatic observation of team sports is gaining increased attention for several reasons.
As most sports games, and soccer in particular, are watched by millions, it is a highly com-
petitive and promising market for broadcasting companies. In order to gain new audiences,
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they are continuously searching for ways of improving the viewers’ experience. For instance,
during the last FIFA World Cup 2006 in Germany, highlights and crucial scenes were virtually
reenacted after the game, accompanied by expert discussions and analyses. Unprecedented
visualizations, particularly for critical scenes, gave the spectators a deep insight into the game
and a better understanding of questionable decisions of the referees.

Animations of selected scenes, e.g. goals, from arbitrary virtual camera positions were made
available on the Internet a few hours after the game. Such reenactions are done mostly man-
ually and require a massive amount of human intervention for determining the 3D positions
of the players and the ball. An automatic estimation of the required data would drastically
speed up the process while cutting down costs. The acquired data could also be used to save
bandwidth when broadcasting games to mobile devices, where scenes could be animated using
game-like computer graphics.

Coaches and major sports clubs are interested in statistics and analyses of their own team
as well as opposing teams. A detailed representation of games in the form of a game model
enables the study of team-mate interaction and tactics and helps to reveal weaknesses. Teams
could improve their interplay and adapt their tactics to the opposing team beforehand. So far,
game models are obtained from data gathered by human scouts and therefore are inaccurate,
incomplete and subjective. A system gathering the required data automatically could increase
the quality of the game models as well as enhance the model with respect to different aspects.
Furthermore, this information could be provided by such a system almost in real-time.

Abstract and symbolic representations of games allow sports as well as computer scientists
to analyze games and human activities in unprecedented ways. For instance, the huge amount
of position data representing real-world multi-agent activities, which lacks the artificial pat-
terns usually found in simulated data, provides interesting opportunities for AI research.

Figure 1.1 Example Applications: Virtual reenaction (left), Statistical Analysis (center) and
Tactical Analysis (right) [GBvHH+07] .
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One of the major design decisions when planning an automatic system for the observation
of team sports games is the choice of sensory input (see [Set03]). We will now discuss the
available options, examine the benefits and drawbacks and motivate the choices made that
have led to this thesis.

Choice of Sensory Input

The automated interpretation of soccer games requires knowledge about the positions of the
players and the ball. However, this data can be obtained using different techniques and sensing
devices.

One approach followed by the companies CAIROS R© and TRAKUS R© [Cai, Tra] uses small
radio beacons (HF transmitters) mounted on the objects to be tracked in combination with sev-
eral receiving stations around the field. These systems provide highly accurate measurements
at a high time resolution as well as complete datasets for all objects. Nevertheless, the down-
side is that such systems are invasive and very expensive in hardware, setup and operation.
Restricting these systems to a single stadium would reduce the costs in setup, but the utility of
such a stationary system is very low. Furthermore, the international football association FIFA
(Fédération Internationale de Football Association) has decided on multiple occasions not to
allow such invasive systems during official games.

An alternative non-intrusive approach is to use cameras, as they are passive sensors. The com-
mon approach is to use multiple static cameras for the observation [FLB+04, IS03, KCM03,
THF96, XOJ04]. Such systems have the huge benefit that camera parameters stay constant
during the whole game, as does the mapping between image and real world coordinates. In
particular, player and ball segmentation can be reduced to an efficient background subtraction
and the data association problem can be easily solved in the image plane for most cases. Us-
ing an adequate number of cameras, this approach can achieve high accuracy and can provide
almost complete observations. However, even if such systems are non-invasive, they are still
expensive in hardware, setup and operation. A stationary system bound to a single stadium is
unacceptable for the same reasons as mentioned above.

The approach proposed in this thesis does not share the downsides of the systems mentioned
above. First, we directly use the dynamic cameras that are being installed by broadcasting
companies for live coverage of the games on television. Such cameras are available in any
stadium during all relevant national and international games. However, access to the video
streams or to the recordings is restricted. Therefore, we go even further by proposing to di-
rectly use the video streams from TV broadcasts as they are easily obtainable for everyone

3
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without the need of additional infrastructure. Despite the many difficulties that arise with this
method, several reasons make it more attractive than the methods mentioned above. Live video
streams of all important games can be received almost everywhere for free. Almost no hard-
ware costs arise, as high-quality semi-professional video equipment is available at low prices.
Another crucial advantage is that a vast number of old important games (e.g. past World Cups)
is only available on video tapings from TV-broadcasts. Using the proposed method, this pool
of interesting historical data can be made available for interpretation and statistical analysis.
For example, the DFL (Deutsche Fußball Liga) digitizes all games from the german league
from the last 40 years; all in all more than 24000 hours of playing time. Using the proposed
system could reduce the costs while increasing the quality of the recovered data.
Figure 1.2 shows an example of an old but very famous game.

Figure 1.2 Camera Tracking Example: Final of World Cup 1954 in Bern (Switzerland)

Given these considerations, we believe that the proposed method is the most generally ap-
plicable solution for most applications, as it can recognize and process video streams from
rotating and zooming cameras.

1.2 Problem Description

We will first describe the desired functionality of the proposed system using a specific example
taken from the broadcast of the final game of the FIFA World Cup 2006, and then we will point
out the problems which have to be overcome by the system.

Figure 1.3 depicts the processing from the 10th to the 12th minute of the game. The video
stream contains several video segments that are taken from different perspectives (cameras).
They are represented by their first frames in the film strip. The system first has to find the video
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Figure 1.3 Example: The relevant video segments are determined and the camera parameters
for these segments are estimated. From these parameters, the player positions and hence
their trajectories within the video segments can be obtained.
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segments by partitioning the video stream at shot boundaries. In our example, the detected
video segments are labeled with the capital letters A to K, and the shot boundary types are
depicted above the film strip between two adjacent segments. Each segment is then classified
to decide whether the shot was taken by the camera of interest (usually the main camera)
and therefore may contain valuable information. The classification results are printed below
the corresponding segments. For each relevant segment (A, E, I and K in our example) the
camera parameters are estimated. This is visualized by the overlayed field model on the start
and end frame of the segments A and K. In a further step, which is out of the scope of this
thesis, the estimated camera parameters are then used to obtain the player trajectories on the
playing field for each visible player within the considered video segment.

The example above illustrates the following requirements which are satisfied by the proposed
camera tracking system.

• As in soccer, several types of shot boundaries are used, the system has to reliably detect
all types of shot boundaries (see figure 1.4). This is fundamental, as missing a shot
boundary possibly means to miss a relevant segment.

• Furthermore, the system has to robustly classify all the detected segments, which is
essential if we are to decide whether a segment is relevant. The segment types used in
soccer broadcastings are normal field views, out of field views and close up views. Slow
motion replays are a special case, as they may contain information about the camera of
interest. However, this information is out of the time line and therefore without value
for the tracking task. Only field views are considered for further processing.

• Finally, the system has to initialize the tracking task, which robustly estimates the cam-
era parameters for the whole segment until a shot boundary is detected. Since the cam-
eras are not accessible or controlable and therefore neither partial camera calibration nor
active localization is possible, the design of this step is important for the robustness and
accuracy of the whole tracking system.

(a) (b) (c) (d)
Figure 1.4 Shot Boundary Types: (a) Dissolve, (b) Effect and (c,d) Cut.
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Besides these difficulties, there are a number of additional issues concerning broadcasted video
streams and the characteristics of soccer in general that have not been discussed in the example
above. These can mostly be attributed to the fact that broadcasted videos are produced for
entertainment purposes, and neither the hardware infrastructure nor the camera configuration
or camera work are optimized for computer vision applications.

• The illumination conditions produce spatial and temporal inhomogeneities due to the
large field size (∼ 105m × 68m) and the fact that soccer is played outside. Day and
night-time recordings result in different appearances of the field and the players due
to shadows or sunlight reflections (see figure 1.5(a)). This leads to high variances and
mixtures in object color distributions.

• According to FIFA regulations [FIF07], the field size in soccer may vary from stadium
to stadium, which leads to two additional unknown parameters to be estimated.

• Field lines can be occluded by players, which complicates camera localization due to
missing or even wrong features (see figure 1.5(b)).

• Due to the fast nature of soccer, rapid camera motion and zooming leads to blurry images
and diffuse edges (see figure 1.5(c)).

• The television broadcasting norms for analog broadcasting, namely PAL, SECAM and
NTSC, as well as digital broadcasting, DVB-T, DVB-C and DVB-S, are all using slightly
modified versions of the YUV colormodel. As the human eye is more sensitive to
changes in luminance (Y) than to changes in color or chrominance (UV), color infor-
mation is reduced considerably to compress the data. Together with the effects caused
by inhomogeneous illumination, the use of standard color segmentation becomes unre-
liable.

• Television broadcasting norms use interlaced frames with low resolutions (PAL: 720×
576 and NTSC: 720× 480). To reduce imprecise edges, only one of the two fields (even
or odd lines) can be used per frame, which halves the image height and further reduces
the image resolution. High definition videos are becoming more popular; older video
tapings, however, are only available at these low resolutions.

A practically applicable system must be able to overcome these issues. Furthermore, the
system must be able to run reliably with minimal operator interaction. It must be able to detect
failures and reinitialize itself. Above all, it must be able to run near real-time, as a full length
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soccer game consists of at least 90 minutes of video footage that has to be processed in a
reasonable amount of time.

(a) (b) (c)

Figure 1.5 Difficult scenes: Inhomogene illumination due to (a) hard shadows, (b) almost no
visible line features and (c) blurry images due to fast camera motion.

1.3 Our Approach

The main task to be solved is the camera tracking, i.e. the estimation of the intrinsic and extrin-
sic parameters of the camera model that is needed to describe the mapping between the world
and the physical camera. Estimating all parameters simultaneously for all frames is infeasible,
inefficient and unnecessary, as most camera parameters stay constant throughout the game.
The positions of cameras in soccer broadcasts are fixed during the game as they are attached
to tripods around the field. Their orientation and zoom factor (focal length) on the other hand
are constantly changing to track the game. Considering this configuration and making some
reasonable assumptions, the parameters are divided into two groups. The unknown constant

parameters, that are determined beforehand in a mostly automated process, and the varying
(dynamic) parameters, that have to be estimated in each frame during the tracking process.

Before being able to start the camera tracking, we first have to identify scenes in the video
stream that originate from the camera of interest. We will now provide an overview of the
process of the camera parameter estimation. The task has been divided into two stages that
involve the interaction of several modules as depicted in figure 1.6.
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Video Stream Parameter
Camera

Camera Tracker

During the game

Pre−Game

scene
new

rejected
scene

Color Calibration
Constant Parameter

Estimation

parameters

Camera Tracker

Scene Iterator

Initial Parameter Estimation Iterative Camera Calibration

slow−motion detection

shot−cut detection

shot−cut detection

Figure 1.6 The Camera Tracker module

• In the Pre-game stage, the Constant Parameter Estimation determines all necessary pa-
rameters and the field color using multiple views from the respective camera. The user
has to select several images from the camera of interest and provide point correspon-
dences for each image. This is the only necessary interaction between the user and the
system. The constant parameters, including their uncertainties, are then estimated auto-
matically.

• During the game, the Camera Tracker iterates through all sequences that correspond to
the camera of interest, and starts the Iterative Camera Calibration process.

To do so, the Scene Iterator module segments the video-stream at shot boundaries into
small sequences, the video segments. It iterates successively through all video segments
and skips out of field views, close up views and slow motion replays. The remaining
segments are potentially from the camera of interest and are therefore passed on to the
Initial Parameter Estimator.

The Initial Parameter Estimator searches for the initial dynamic parameters (pan, tilt
and zoom) of a segment by using extracted image lines. This is repeated until consistent
parameters are found. If no parameters are found, i.e. the image lines are inconsistent
with the expected projections of the model lines, the video segment is either not from
the camera of interest or does not contain scenes of the penalty or goal area. In this
case, the segment is rejected and the Scene Iterator searches for the next potential video
segment from the camera of interest. If initial parameters could be found, the Iterative

Camera Calibration is initiated, which successively estimates the camera parameters
for the sequence until a shot boundary is detected.
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Camera Parameter Estimation

Since the image formation process maps 3D world coordinates to 2D image coordinates, in-
formation is lost and the inverse transformation can not be uniquely determined from a single
image without a priori knowledge. In standard calibration methods, this a priori knowledge is
usually provided by a 3D model of an object mapped in the image. However, in TV broadcasts
of soccer games, the cameras are neither accessible nor controllable. Therefore, no calibra-
tion device can be used to obtain the camera parameters by identifying the corresponding 2D
projections of known real world features in the image. Thus, standard calibration methods are
infeasible.

In the case of soccer, the field provides a set of field markings specified by the official soccer
rules [FIF07] that can serve as good features to carry out camera calibration. The camera
calibration is done using a field model that describes the appearance of the field with respect
to the camera of interest. Therefore, the field can be seen as a large calibration device. As
mentioned earlier, the field size in soccer is not completely specified by the official rules, and
therefore has to be provided by the user or estimated beforehand in the Constant Parameter

Estimation module.
As depicted in figure 1.7, the basic idea of camera parameter estimation is to find the param-

eters (right) leading to the best match (center) between the environment model (left bottom)
and the image (left top).

y

z

x

zoom

t
i
l
t

pa
n

Figure 1.7 Model-based camera parameter estimation

Altough, this seems to be a straight foreward approach, the main challenge is to design an
estimator that can robustly and accurately track the camera parameters, despite the challenges
described in section 1.2 and the possibility of temporarily absent line features in the image.
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1.4 Main Contributions

The achievements of this thesis are twofold and contribute to the camera calibration and track-
ing of sports games from TV broadcasts with a special focus on soccer.

First, this thesis presents a fast and robust camera tracking method that is capable of tracking
the camera over long periods of time for uncut video streams. The tracking task is integrated
into the Kalman Filter framework, and uses the following methods to cope with noisy and
erroneous measurements, that are common in natural and highly dynamic environments:

• Parameters are predicted using the optical flow information between two subsequent
images by exploiting domain knowledge about the camera configuration. This allows
the tracking task to bridge gaps, where no field lines are visible, by providing an accurate
prediction for short periods of time.

• The parameter update which uses detected field line features in the image, is performed
by the so-called robust M-Estimators that are integrated into the commonly used Gauss-
Newton estimator. Furthermore, we propose a new weight function that leads to an ac-
curate final estimate by changing the shape of the weight function in addition to the
clipping threshold in every iteration.

Second, we present a vision framework that is capable of handling raw video streams of
soccer games from TV broadcasts. The system automatically segments and classifies the video
stream into scenes corresponding to the camera of interest and scenes corresponding to other
cameras or slow motion replays. The camera parameters for relevant segments are initialized
and tracked as long as they last.

Combining the automated scene segmentation with the automated camera initialization and
the robust camera tracking method, we provide a fast, reliable and accurate system that can
be used by subsequent processes to obtain real world measurements from image observations,
e.g. for estimating the player and ball trajectories on the field plane. The only requirements
are cameras with fixed positions and a structured environment that can be described by a 3D
model.

The camera tracking system is an essential part of the ASPOGAMO system (Automated
SPOrts Game Analysis MOdel), which is capable of extracting player trajectories from soccer
broadcasts [BBG+06, BGB+07, GBvHH+07, BBG+08]. ASPOGAMO has been presented to
the public during RoboCup 2006 in Bremen, showing the practical applicability of the camera
tracking system on live broadcasts of games from the FIFA World Cup 2006.
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1.5 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2 introduces some fundamental preliminaries and the used notation. The discussion
includes point representations in 3D, homogeneous coordinates, elementary transformations,
the Gaussian Normal distribution and its linear and non-linear propagation.

Chapter 3 introduces the pinhole camera model used, which is a fundamental block of this
thesis. The whole transformation pipeline from image to world coordinates and vice versa is
explained in detail, and the pinhole camera model is presented as a linear transformation in
projective space.

Chapter 4 introduces important state estimation methods for linear and nonlinear systems.
The differences and similarities between several estimation methods are presented. Further-
more, several common robust estimators are explained. This chapter provides the foundation
for the recursive camera calibration process proposed in the next chapter.

Chapter 5 is the main part of this thesis and presents the camera tracking framework, that
is capable to process raw videos of soccer games from TV-broadcasts. All modules and their
interaction are explained in detail.

Chapter 6 summarizes the main contributions of this thesis and points out possible future
directions.
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Chapter 2 Preliminaries

This chapter introduces some fundamental preliminaries. Particular point representation in
3D, elementary Transformations, Gaussian normal distribution and its linear and nonlinear
propagation.

2.1 Points and Transformations in 3D

Points in Euclidean 3-space are represented by a three dimensional column vector p̆ = (x, y, z)T .
Several transformations can be represented as 3× 3 matrices, so that the transformation itself
becomes a matrix-vector multiplication.

x′

y′

z′

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ·


x

y

z


With this representation for example, it is possible to write rotations, scaling, shearing and
arbitrary combinations of these entities as matrices. Successive transformations can easily be
composed into a single matrix by simple matrix-matrix multiplication. For example:

p̆′ = A1 · p̆

p̆′′ = A2 · p̆′

p̆′′ can be written as:

p̆′′ = A2 · (A1 · p̆) = (A2 · A1)︸ ︷︷ ︸
=A

·p̆

= A · p̆

13



Chapter 2 Preliminaries

However there exist a major disadvantage of this representation. Neither translations nor
projections in 3D can be written as 3 × 3 matrices. This disadvantage can be eliminated by
embedding the Euclidean 3-space R3 into the corresponding Projective Space P3 by introduc-
ing a fourth coordinate; the homogeneous coordinate. A brief description of this concept is
given in the next section.

2.2 Homogeneous Coordinates

A homogeneous point in P3 is represented by a four dimensional column vector (x, y, z, w)T .
The homogeneous point p = (x, y, z, w)T represents the Euclidean point p̆ =

(
x
w
, y

w
, z

w

)T .

λ ·



x

y

z

w


≡


x
w

y
w

z
w

 , λ 6= 0 (2.1)

The scale factor λ indicates that homogeneous points are invariant to non-zero scale. The
rule for converting homogeneous points into Euclidean points and vice versa can directly be
derived from equation (2.1), aside from homogeneous points with w = 0. Those points have
no Euclidean counterpart and are called ideal points. They represent points lying at infinity
(or lying on the plane at infinity). Since ideal points are invariant to translations, they can be
seen intuitively as vectors.

2.2.1 Transformations in 3D

As mentioned above rigid transformations can be achieved now by multiplying points with
4× 4 matrices. This section shows some fundamental transformations.

14



Section 2.2 Homogeneous Coordinates

Translation

The translation of a point by a vector t̆ = (tx, ty, tz)
T is given by the following matrix:

T
(
t̆
)

=



1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1


(2.2)

Rotation

The basis rotations around the three axis of the coordinate frame are given by:

Rx (α) =



1 0 0 0

0 cos (α) − sin (α) 0

0 sin (α) cos (α) 0

0 0 0 1


(2.3)

Ry (β) =



cos (β) 0 sin (β) 0

0 1 0 0

− sin (β) 0 cos (β) 0

0 0 0 1


(2.4)

Rz (γ) =



cos (γ) − sin (γ) 0 0

sin (γ) cos (γ) 0 0

0 0 1 0

0 0 0 1


(2.5)
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A general rotation (rotating around an arbitrary axis by an arbitrary angle) can be achieved by
joining these three basis rotations to a general rotation. The three rotation angles α, β and γ,
which are the parameters of the general rotation, depend on the order of the basis rotations. In
this thesis a general rotation is achieved as following: After a rotation around the z-axis with
an angle of γ followed by a rotation around the y-axis with an angle of β a rotation around the
x-axis with an angle of α is performed. The compiled rotation matrix is given as follows:

R (α, β, γ) = Rx (α) ·Ry (β) ·Rz (γ)

=



r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1


r11 = cos (β) cos (γ)

r12 = − cos (β) sin (γ)

r13 = sin (β)

r21 = sin (α) sin (β) cos (γ) + cos (α) sin (γ)

r22 = − sin (α) sin (β) sin (γ) + cos (α) cos (γ)

r23 = − sin (α) cos (β)

r31 = − cos (α) sin (β) cos (γ) + sin (α) sin (γ)

r32 = cos (α) sin (β) sin (γ) + sin (α) cos (γ)

r33 = cos (α) cos (β) (2.6)

The rotation angles (α, β, γ) can be derived from R by following equations:

cos (β) =
√
r2
11 + r2

12

α = atan2

(
− r23

cos (β)
,

r33
cos (β)

)
β = atan2 (r13, cos (β))

γ = atan2

(
− r12

cos (β)
,

r11
cos (β)

)
(2.7)
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Where atan2 (y, x) is similar to arctan
(

y
x

)
, but considers the signs of x and y to determine the

correct quadrant. The problem cannot be solved uniquely ([Sla99]), for the case cos (β) 6= 0

two solutions exists. For the special case of cos (β) = 0 an infinite number of solutions exist.
In this case the same rotation can be achieved with different combinations of α and γ.

2.3 Gaussian Normal Distribution

As sensor data are usually afflicted with measurement errors, these errors must be taken into
account by the estimation process to achieve high accuracy and robustness. To do so the error
distribution is described by a stochastic model.

As measurement errors are a summation of several error sources, which itself are randomly
distributed according to an unique but unknown stochastic distribution, and according to the
central limit theorem it is reasonable to assume an overall Gaussian normal distribution.

Univariate Gaussian pdf

-3 -2 -1  0  1  2  3  0

 0

 0.1

 0.2
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 0.4

 0.5
Multivariate Gaussian pdf

-3 -2 -1  0
-2

-1
 0

 1
 2

 3

 0

 0.05

 0.1

 0.15

 0.2

(a) (b)
Figure 2.1 Gaussian normal distribution: (a) univariate and (b) bivariate

The univariate Gaussian normal distribution is uniquely specified by its mean x̄ = E [x] and
variance σ2

x = E
[
(x− x̄)2], where E [·] represents the expected value. Its probability density

function (pdf ) p (x) is defined by:

p (x) = N
(
x; x̄, σ2

x

)
=

1√
2πσx

e−
1
2(

x−x̄
σx

)
2

(2.8)

In most cases measurement and model parameters are multidimensional and therefore are
described by multivariate Gaussian normal distributions. In the multivariate case x and x̄ are
n-dimensional vectors and Σxx is a symmetric positive semidefinite n× n matrix. The pdf for
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a multivariate Gaussian normal distribution is defined by:

p (x) = N (x; x̄,Σxx) =
1√
|2πΣxx|

e−
1
2(x−x̄)

T
Σ−1

xx (x−x̄) (2.9)

The notation x ∼ N (x̄,Σxx) describes an n-dimensional Gaussian normal distributed ran-
dom variable x with mean x̄ = E [x] and covariance matrix Σxx = E

[
(x− x̄) (x− x̄)T

]
.

The covariance matrix Σxx is a n×n symmetric and positive semidefinite matrix with follow-
ing structure:

Σxx =



Cov (x1, x1) Cov (x1, x2) . . . Cov (x1, xn)

Cov (x2, x1) Cov (x2, x2) . . . Cov (x2, xn)

...
... . . . ...

Cov (xn, x1) Cov (xn, x2) . . . Cov (xn, xn)


Cov (xi, xi) = σ2

i = E
[
(xi − x̄i)

2]
Cov (xi, xj) = Cov (j, i) = E [(xi − x̄i) (xj − x̄j)] (2.10)

where Cov (xi, xj) is the covariance of component xi with component xj .
Note, that the covariance matrix can be written as:

Σxx = E
[
(x− x̄) (x− x̄)T

]
= E

[
xxT − xx̄T − x̄xT + x̄x̄T

]
= E

[
xxT

]
− E [x] x̄T − x̄TE [x] + x̄x̄T

= E
[
xxT

]
− x̄x̄T (2.11)

For the univariate case it follows:

σ2
x = E

[
x2
]
− E [x]2 (2.12)

This representation, for example, is important for the efficient determination of the variance
images (see section 5.1.2.1).
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Section 2.3 Gaussian Normal Distribution

2.3.1 Propagation of Gaussian pdfs

Parameter estimation algorithms are usually fitting a model to a set of measurements, by min-
imizing a cost function. As the measurements are usually in a different coordinate system than
the parameters, the fitting process has to transform the measurements from the observation

space into the parameter space or vice versa, to take their uncertainties into account. As both,
the parameters and measurements are usually described by Gaussian pdfs, it is necessary to
transform the whole pdf to a new pdf in the other coordinate frame.

Formally, this problem can be described as follows: Given a n-dimensional random variable
x ∼ N (x̄,Σxx) and a function h : Rn → Rm, the parameters z̄ and Σzz of them-dimensional
random variable z ∼ N (z̄,Σzz) with z = h (x) are to be determined.

2.3.1.1 Linear Transformation

If the transformation function h is linear, it can be written as: h (x) = Hx+b, withH ∈ Rm×n

and b ∈ Rm. The parameters z̄ and Σzz of the transformed pdf can be derived as follows:

z̄ = E [z]

= E [h (x)]

= E [Hx + b]

= HE [x] + b

= Hx̄ + b (2.13)

Σzz = E
[
(z − z̄) (z − z̄)T

]
= E

[
(Hx + b− (Hx̄ + b)) (Hx + b− (Hx̄ + b))T

]
= E

[
(Hx−Hx̄) (Hx−Hx̄)T

]
= E

[
(H (x− x̄)) (H (x− x̄))T

]
= HE

[
(x− x̄) (x− x̄)T

]
HT

= HΣxxH
T (2.14)

2.3.1.2 Nonlinear Transformation

In practice transformation functions are rarely linear and therefore the transformed pdf is not
Gaussian. In this case the transformed pdf has to be approximated by a Gaussian pdf. The
most common methods for nonlinear propagation are shown below.
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Linearization using first order Taylor series

Each derivable function can be approximated by a Taylor series about a given seed point.
Neglecting all non-linear terms leads to the first order Taylor approximation, which can be
geometrically interpreted as the tangent of the function at the seed point (see figure 2.2(a)).

h (x) ≈ h (x0) + Jh (x− x0) (2.15)

Jh is a m × n matrix containing the partial derivatives of h at the point x0 and is called the
Jacobian or Jacobi matrix of h.

Jh =
∂h

∂x
|x0 =



∂h1

∂x1
(x0)

∂h1

∂x2
(x0) . . . ∂h1

∂xn
(x0)

∂h2

∂x1
(x0)

∂h2

∂x2
(x0) . . . ∂h2

∂xn
(x0)

...
... . . . ...

∂hm

∂x1
(x0)

∂hm

∂x2
(x0) . . . ∂hm

∂xn
(x0)


(2.16)

Converting equation (2.15) leads to following representation:

h (x) = h (x0) + Jh (x− x0)

= Jh︸︷︷︸
H

x + h (x0)− Jhx0︸ ︷︷ ︸
b

= Hx + b (2.17)

and finally linear propagation (2.13) and (2.14) can be used.

z

x

h(x)

x
_

z
_

h(x)

z

x

z

x

h(x)

x-σ x+σ

(a) (b) (c)

Figure 2.2 Nonlinear propagation of Gaussian pdfs: (a) linearization method, (b) Monte Carlo
method and (c) Unscented Transformation

As can be seen in figure 2.2(a), it is reasonable to select the mean x̄ of the original pdf as the
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seedpoint, which leads to following parameters using equation (2.17):

z̄ = Hx̄ + b

= Jhx̄ + h (x̄)− Jhx̄

= h (x̄) (2.18)

Σzz = HΣxxH
T

= JhΣxxJ
T
h (2.19)

The drawback of this method is its inaccuracy since the transformed pdf is not approximated
by a Gaussian, but the transformation function is approximated by a linear function and linear
propagation is used. Transformation functions with high curvature at the seed point lead to
considerably large errors making this method less capable.

Monte Carlo Method

The Monte Carlo method is a derivative free method which uses the true transformation func-
tion h for propagation. Unlike the linearization method, this method approximates the trans-
formed non-Gaussian pdf by a Gaussian one.
First a big (> 1000) sample set is drawn from the original distribution xi ∼ N (x; x̄,Σxx),
then each point xi is transformed using the transformation function into a new set zi (see fig-
ure 2.2(b)).

zi = h(xi) (2.20)

Depending on the number of samples, the transformed points zi represent the transformed
pdf more or less accurate. Finally the searched Gaussian is given by the sample mean z̄ and
sample variance Σzz.

z̄ =
1

n

n∑
i=1

zi

Σzz =
1

n− 1

n∑
i=1

(zi − z̄) (zi − z̄)T (2.21)

Unfortunately, the transformation has to be evaluated for each sample, and therefore the major
drawback of this method is its inefficiency.
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Unscented Transformation

Another derivative free method which makes a good tradeoff between accuracy and efficiency
is the Unscented Transformation. It was proposed by Julier and Uhlmann ([JU97]). The idea
is similar to the Monte Carlo method, except the selection and the number of sample points.
Only a small number of certain selected points, the sigma points, are used making this method
more efficient than the Monte Carlo method and more accurate than the linearization method.
First 2n sigma points are calculated from the original pdf, where n denotes the dimension of
the pdf.

xi = σi + x̄

xn+i = σi − x̄ 1 ≤ i ≤ n (2.22)

where σi is the i-th row or column of
√
nΣxx. The matrix square root can be computed using

the Cholesky-decomposition or the eigenvalue-decomposition [PTVF92]. The latter delivers
the scaled eigenvectors of the covariance matrix with the square roots of the corresponding
eigenvalues.

Then the sigma points are transformed using the transformation function to a new sample
set, and the transformed Gaussian is obtained by the sample mean and sample variance of this
new sample set (see figure 2.2(c)).

The unscented transformation is superior compared to the linearization method for all con-
tinuous nonlinear transformations and does not need the derivatives of the transformation func-
tion.

In the context of this thesis the unscented transformation is used to propagate uncertainties
through several nonlinear transformations. e.g. the position uncertainty from image points in
pixel coordinate system to points on the field in world coordinate system.

2.3.2 Variance along a given direction

The variance along a direction, given by the vector n with unit length, referring to the multi-
variate Gaussian normal distribution x ∼ N (x̄,Σxx), is given by following equation:

σ2
n = nT Σxxn (2.23)

This can be seen after reinterpreting the problem as the problem of finding the variance of the
distance dx of points x drawn from the distribution N (x̄,Σxx), to the plane going through x̄
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and perpendicular to n. The distance is given by:

dx = nT (x− x̄)

= nT x− nT x̄ (2.24)

Since the last term nT x̄ is constant, applying (2.14) leads to above equation (2.23).
Rewriting equation (2.23) by using the Eigenvalue decomposition [PTVF92] leads to the

following equation:

σ2
n = nT Σxxn

= nTUDUT n︸︷︷︸
n′

= n′TDn′

=
n∑

i=1

n′
2
i · λi (2.25)

Where U is an n × n orthonormal matrix containing the Eigenvectors of Σxx in the columns,
and D is a diagonal n× n matrix containing the corresponding Eigenvalues.

Since the matrix U is orthonormal, vector n′ has also unit length. The variance σ2
n is a

weighted average of the eigenvalues of Σxx, thus lying between the smallest and largest eigen-
value. It can be seen, that the eigenvalues are the variances along their corresponding eigenvec-
tors, which are the principal axis of the distribution. This property is exploited in the so-called
Principle Component Analysis or PCA (see [DHS00]).

2.3.3 Mahalanobis Distance

A commonly used normalized distance of a given point y relative to a normal distribution
N (x̄,Σxx) is the Mahalanobis Distance. The squared Mahalanobis Distance is defined as
follows:

d2
M (y; x̄,Σxx) = (y − x̄)T Σ−1

xx (y − x̄) (2.26)

In the one-dimensional case it can be seen, that the squared Mahalanobis distance is the
squared distance to the mean in units of the variance σ2

x.

d2
M

(
y; x̄, σ2

x

)
=

(
y − x̄
σx

)2

(2.27)
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In multidimensions, this interpretation can not be hold. Instead, it can be interpreted as the
sum of the squared distance components in units of variances along the principal axis.

d2
M (y; x̄,Σxx) =

n∑
i=1

y′2i
λi

(2.28)

with y′ = U (y − x̄) and U containing the principal axis (eigenvectors) of Σxx as mentioned
in section 2.3.2.

The set of all points with the same squared Mahalanobis distance c2 satisfy

(y − x̄)T Σ−1
xx (y − x̄) = c2 (2.29)

which is the general equation of an ellipsoid centred at the point x̄. The direction and length
of the semi axis of the ellipsoid are the eigenvectors and the square roots of the corresponding
eigenvalues of the covariance matrix respectively.

For the univariate case the equation becomes a standard quadratic equation and has one
or two solutions. In the multivariate case all points lie on the surface of a hyperellipsoid.
Figure 2.1 (a) shows the univariate case with dM = 1, where both equidistant points are drawn
as two parallel lines 1. Figure 2.1 (b) shows the bivariate (two-dimensional) case with dM = 1,
where the equidistant points form an ellipse which is displayed on the ground plane.

Mahalanobis Distance of two Gaussians

So far the Mahalanobis distance of an undisturbed point y to a Gaussian distribution was
considered. But in practice y can also be disturbed by normally distributed noise. i.e. ȳ = y

and Σyy 6= 0. If both distributions are independent, the squared Mahalanobis distance between
both is defined as follows:

d2
M (x,y; x̄, ȳ,Σxx,Σyy) = (x̄− ȳ)T (Σxx + Σyy)

−1 (x̄− ȳ) (2.30)

It can be seen that the Mahalanobis distance of two Gaussians is the generalization of the
Mahalanobis distance as defined previously. As undisturbed points y have a covariance matrix
of Σyy = 0, the above equation reduces to (2.26).

1Both points are displayed as lines, because of the 3D plot of a 2D function.
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Hypothesis Testing

Hypothesis testing provides a formal way to decide, to a certain level of confidence α, whether
an assumption should be accepted or rejected. A common way to decide, whether a measure-
ment corresponds to a given normal distribution or not, is the use its Mahalanobis distance to
the distribution [BSF88].

The squared Mahalanobis distance d2
M of a n dimensional random variable x ∼ N (x̄,Σxx)

is chi-square (χ2) distributed with n degrees of freedom. This can be derived as follows:
Suppose the square root of the Covariance matrix2 Σxx is given by C with Σxx = CCT .

Then, the Mahalanobis distance can be rewritten as:

d2
M (x; x̄,Σxx) = (x− x̄)T (CCT

)−1
(x− x̄)

= (x− x̄)T (C−TC−1
)
(x− x̄)

=
(
(x− x̄)T C−T

) (
C−1 (x− x̄)

)︸ ︷︷ ︸
=y

= yT y (2.31)

Using (2.13) and (2.14) leads to following mean and covariance matrix of y:

ȳ = E
[
C−1 (x− x̄)

]
= C−1E [(x− x̄)] = 0

Σyy = C−1ΣxxC
−T

= C−1
(
CCT

)
C−T

=
(
C−1C

) (
CTC−T

)
= In (2.32)

It can be seen, that the components yi with i ∈ [1;n] of y are now uncorrelated and have
unit variance, i.e. yi ∼ N (0, 1). yT y is the sum of n uncorrelated squared standard normal
distributed random variables, thus d2

M (x; x̄,Σxx) ∼ χ2
n.

The hypothesis H0 that a point x belongs to a given normal distribution N (x̄,Σxx) can be
tested with a given level of confidence α (probability of error) as follows:

d2
M (x, x̄,Σxx) < χ2

n;α (2.33)

The hypothesis H0 is accepted if the test criteria is true. The values for χ2
n;αcan be found in

2C can be obtained using the Cholesky factorization or the Eigenvalue decomposition [PTVF92].
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χ2 distribution tables. Commonly used values for α are 0.1, 0.05 or 0.01. This test is used as
the so-called validation gate in tracking [BSF88] or as termination criteria in MAP estimation
(see chapter 4).

As all points with the same squared Mahalanobis distance describe an hyperellipsoid, the
test can interpreted geometrically as following: All points satisfying the test are lying inside
the ellipsoid described by equation (2.29) with c2 = χ2

n;α.

2.4 Conclusion

In this chapter we introduced transformations in Euclidean and projective space along with
fundamental preliminaries for sensor processing algorithms. In particular, we introduced the
multivariate Gaussian normal distribution, a commonly used distance measure based on it (i.e.
the Mahalanobis distance) and the linear and several variants of the nonlinear transformation
of normally distributed random variables.

In the next chapter, we will present the pinhole camera model with radial distortion, which
is a fundamental part of this thesis.
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Chapter 3 Camera Model

A camera maps continuous points from 3D world coordinates to discrete 2D points on the
image: the pixels. As this mapping produces a two-dimensional image representing a three-
dimensional scene, information gets lost and the mapping is called projection. Understanding
this mapping is essential for vision based localization and state estimation.

A camera model describes this mapping mathematically more or less accurate, depending
on the complexity of the used camera system and the underlying camera model. Depending
on the application, a camera model has to compromise with the opposing goals of accuracy
and efficiency.

As multiple camera types and systems are available, each type/system is described best
through an appropriate camera model. For example, cameras with telecentric objectives are
best described in most cases through parallel projection. Whereas for omnivision camera sys-
tems, which are using convex mirrors for grabbing 360◦ panoramic views, more complex
camera models dealing with joint distortions caused by the objectives as well as by the mir-
rors are used. In this thesis, where video streams from standard TV broadcasting cameras are
used, the best choice is a pinhole camera model with radial distortion, which is described in
the next section.

3.1 Pinhole Camera Model with Radial Distortion

The pinhole camera model is the mostly used camera model for standard camera systems,
since it makes a good tradeoff between accuracy and efficiency. It is based on the central

projection, which assumes, that all light-rays building the image go through one single point,
called the central point, camera center, focus, focal point, combustion point or pinhole1, and
are mapped to single points on the image. Both assumptions can not hold for most real camera
systems making this model to a more or less accurate approximation of the real mapping. The

1All these terms are interchangeable and will be used alternated throughout this thesis
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effects caused by construction conditions and limited production accuracies are lens distor-
tions, color abberations, wrong focus, etc. Except the lens distortion, which can cause con-
siderable pixel displacements on the image, most of the remaining effects are very small and
negligible for most applications. The first camera model dealing with lens distortion is the
pinhole camera model with radial distortion and was described by Lenz [LT88].
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f
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Cy
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u

v Zw
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WCSPCS

Xp
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S
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SxICS
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Figure 3.1 Pinhole camera model with radial distortion

This model can be described completely by 13 parameters which are divided into two groups.
The first group, containing the external or extrinsic parameters, describes the rigid transfor-
mation of the camera coordinate system (CCS) with respect to the world coordinate system
(WCS). Since a rigid transformation is a combination of a general rotation R and a translation
T , as described in section 2.2.1, it has six parameters, three for the general rotation (α, β, γ)
and three for the translation (tx, ty, tz). The second group contains the intrinsic parameters,
which describe the perspective projection of points from the camera coordinate system (CCS)
into points in the pixel coordinate system (PCS) and are listed below

f : The Focal Length is the distance of the image plane to the center of projection.

(Cx,Cy)T: The Principal Point is the intersection point of the ray perpendicular to the image
plane and passing through the camera center (the principal ray or principal axis).

Sx,Sy: Metric size of a sensor element on the image plane.

κ: The radial distortion coefficient describes the mapping between the ideal projected point u

and the displaced true point v in image coordinate system (ICS).

s: The skew parameter describes the rectangularity of the sensor elements (pixels) and is a
function of the angle between the sensor axes.

28



Section 3.1 Pinhole Camera Model with Radial Distortion

The transformation pipeline describing the mapping of three dimensional points in WCS into
two dimensional discrete points in PCS is decomposed into 4 steps and described in following
subsections.

3.1.1 Rigid Transformation in Camera Coordinate Frame

As only the relative position of a point to the camera is important for its projection, a point
w̆ = (wx, wy, wz)

T in WCS has to be transformed first to a point c̆ = (cx, cy, cz)
T in CCS by

the rigid transformation described by the extrinsic parameters of the camera.

R̆c = R̆(α, β, γ) =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , t̆c =


tx

ty

tz


c̆ = R̆c(w̆ − t̆c) (3.1)

where t̆c and R̆c represent the position and orientation of the CCS in respect to the WCS. The
above equation can be written more elegantly in homogeneous Coordinates as follows:

c = R · T︸ ︷︷ ︸
=Rt

·w

with

Rt =

R̆c −R̆c · t̆c

0T
3 1

 (3.2)

3.1.2 Perspective Projection

The perspective projection of a point c̆ in CCS to the corresponding point ŭ in Image Coordi-
nate System (ICS) is performed as follows:ux

uy

 =

 cxf
cz

cyf

cz

 (3.3)

The corresponding transformation in homogeneous coordinates, mapping homogeneous points
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in P3 to homogeneous points in P2, is given by:

u =


f 0 0 0

0 f 0 0

0 0 1 0

 · c (3.4)

3.1.2.1 Radial distortion

The distortion caused by lens aberrations is described by a radial distortion model with one co-
efficient. Albeit camera models exists, describing the lens distortion more complex [WCH92]
(e.g. several radial and tangential distortion coefficient), one coefficient is sufficiently ac-
curate in the context of this thesis, as it describes about 90% of the total lens distortion
([Zha00, Tsa87, MT96]).

vx

vy

 =


2ux

1+
√

1−4κ(u2
x+u2

y)

2uy

1+
√

1−4κ(u2
x+u2

y)

 (3.5)

Negative values for κ lead to pincushion distortions, whereas positive values lead to barrel
distortions (see figure 3.2).

Figure 3.2 Radial distortion effects: pincushion κ > 0 (left), undistorted κ = 0 (center) and
barrel distortion κ < 0 (right)
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The above description of the radial distortion allows a simple inverse mapping.ux

uy

 =

 vx

1+κ(v2
x+v2

y)

vy

1+κ(v2
x+v2

y)

 (3.6)

3.1.2.2 Transformation from Image Coordinates to Pixel Coordinates

Finally the image point has to be transformed into the pixel coordinate system (PCS).px

py

 =

 vx

Sx
+ svy

Sx
+ Cx

vy

Sy
+ Cy

 (3.7)

where the parameter s describes the skew of the pixel and depends on the tangent of the angle
between the x and y axes of the sensor.

s = − 1

tan(α)
= − cot(α) (3.8)

As sensors are manufactured with high precision, it is usually assumed that the pixels are
rectangular and s is set to zero.
The corresponding homogeneous representation of above transformation is given by

p =


1

Sx

s
Sx

Cx

0 1
Sy

Cy

0 0 1

 · v (3.9)

3.1.3 Perspective Projection in Homogeneous Coordinates

Apart from the radial distortion, the whole projection pipeline can be described by a linear
transformation in projective space.

p = Pw (3.10)

The 3 × 4 matrix P mapping points w from P3 (homogeneous points in WCS) to point p in
P2 (homogeneous points in PCS) is called the camera projection matrix and is a composition
of equations (3.2), (3.4) and (3.9).
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This matrix is usually decomposed into a 3×3 upper triangular matrixK, called the camera

matrix, and a 3×4 matrix describing the rigid transformation of the CCS in respect to the WCS.

P = K · R̃t

=


f
Sx

fs
Sx

Cx

0 f
Sy

Cy

0 0 1

 ·
(
R̆c −R̆c · t̆c

)
(3.11)

It can be seen that the absolute values of f, Sx and Sy are not important and the ratios
fx = f

Sx
and fy = f

Sy
are uniquely defining the camera matrix.

In practical applications the skew parameter is set to 0 and Sy is selected to an arbitrary non-
zero value or obtained from the camera specifications. Thus the camera matrix can be com-
pletely specified by only 4 parameters.

K =


fx 0 Cx

0 fy Cy

0 0 1

 (3.12)

Alternatively fx can be replaced by θ · fy, with θ := Sy

Sx
being the aspect ratio of the sensor

elements.

For cameras with varying focal length, it is usually assumed that all other intrinsic param-
eters stay constant and are known beforehand. Albeit this is not true, as changing the focal
length causes a change in the radial distortion as well as a displacement of the principal point,
the effects in the context of this thesis are small and can be neglected. For a camera with known
pixel size, principal point and zero skew, the camera matrix can be written as the product of
two matrices as follows:

K = Ka ·Kp

=


1

Sx
0 Cx

0 1
Sy

Cy

0 0 1

 ·

f 0 0

0 f 0

0 0 1

 (3.13)
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This representation is important, since image features can be transformed beforehand with the
inverse of the affine transformation matrix Ka, and the further processing has to deal with the
simplified camera matrix Kp. In this case we will refer Kp as the camera matrix and use the
term K instead of Kp.

3.1.4 Camera Motion in Soccer Broadcasts

In soccer broadcasts, cameras are usually mounted on a tripod and therefore are fixed in their
positions, while their orientation and zoom factor changes.

Assuming that the camera center does not change while rotating and zooming, and that the
axes of the tripod (rotation) and the axes of the camera coordinate system coincides, and in
the neutral position are parallel to the axes of the world coordinate system, the pan and tilt

rotation results in the change of the γ and α angles of the camera respectively.
Figure 3.3 shows the supposed camera motion in soccer bradcasts, except the roll angle which
is usually assumed to be constant.

Pan

Tilt

zoom

Roll

Figure 3.3 Camera motion in soccer broadcasts

However, figure 3.3 shows the pan, tilt and roll rotation in an intuitive way. As the cam-
era coordinate frame coincides in the neutral position with the world coordinate frame, and
the order of the basis rotations are selected as described in section 2.2.1, the real rotation is
performed as shown in figure 3.4

Roll

Tilt

Pan

z
x

y

Figure 3.4 Camera rotation axes
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Chapter 4 State Estimation

State estimation is a fundamental problem of sensor-based applications, as reliable analysis
and decisions can only be made with the knowledge of the current system state.

The system state is described by the n-dimensional state vector xt and consists of a set
of parameters for the internal used model(s) of the system at time t. The task is to estimate
the state vector xt from noisy observations z1:t gathered by sensors at discrete time steps. In
robotic applications, for example, the pose of the robot and the parameters of its actuators are
important to fulfill complex jobs and therefore are described by internal models and are part
of the state vector. In the context of this thesis, the state vector for the camera tracking task
contains the varying parameters of the camera.

The subscript 1 : t denotes the set of observations, gathered between time 1 and time t, or
more generally:

at1:t2 = {at|t1 ≤ t ≤ t2}

Variables without a subscript, such as x or z, stand for arbitrary timepoints, the whole data set
or the true system state, depending on the context.

The estimation process is called smoothing, if the time of interest for the system state lies
in the past (i.e. newer measurements are available), filtering if the time of interest coincides
with the time of the latest measurement and prediction, if an estimate for a future time point
is determined. This thesis will focus on recursive filtering.

Static systems have unknown but constant state vectors xt = xt−1, whereas dynamic sys-
tems change their state over time according to some possibly nonlinear function g, called
system process or motion model. As most systems are non-passive, they interact with the envi-
ronment through a control process and influence the system state. This interaction is described
by the l-dimensional control vector ut and is considered in the system process. Even if the con-
trol vectors are obtained by sensor readings, they are not treated in the same ways as regular
measurements, since they express the effects of a control action.
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Chapter 4 State Estimation

In the context of self-localization in robotics for example, ut is usually the odometry read-
ing, which reflects the relative motion of the robot from time t − 1 to time t. In the context
of this thesis, the control vector represents the relative motion of the camera between two
subsequent frames.

It is obvious that the system process is also affected by noise. Therefore, state estimation has
to deal with process noise v and observation noise w. Assuming an accurate system model
(including the sensors), the noise is not caused by systematic errors and therefore has zero
mean and is independent of the state vector.

E [v] = 0 E [w] = 0

E
[
vvT

]
= Σvv E

[
wwT

]
= Σww

E [v|x] = E [v] , E [w|x] = E [w]

Furthermore, it is supposed that the observation and the process noise are uncorrelated.

E
[
vwT

]
= Σvw = 0

In most applications the direct observation of the state vector is not possible. Therefore,
the relation between observations and the state vector is described by some possibly nonlin-
ear function h, the observation model or measurement model. Measurements in the image,
for example, correspond to features of real-world objects, and therefore are described by the
nonlinear projective mapping of the camera with respect to its parameters.

The Markov assumption or complete state assumption states that future and past data are
independent, if the current state xt is known. Thus the previous state is the best predictor for
the current time step, given the control vector ut. Following the Markov assumption in both
the observation and the motion model leads to following parameterization:

zt = h(xt,wt) (4.1)

xt = g(xt−1,ut,vt) (4.2)

vt and wt denote the unobservable process noise and observation noise at time t respectively.
In most applications h(xt,wt) and g(xt−1,ut,vt) are nonlinear. However, the linear case is
extremely important, as it provides the general method for the nonlinear case and therefore
will be introduced first.

If the motion model and the observation model are linear, equations (4.1) and (4.2) can be
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Section 4.1 Linear Least Squares Estimator

written as follows:

zt = Hxt + wt (4.3)

xt = Axt−1 +But + vt (4.4)

where H is an m× n matrix, A an n× n matrix and B an n× l matrix.1

As the concrete errors wt, vt are unknown, possibly no unique solution exists and the task
becomes to determine an optimal estimate x̂t for time t. Since optimal can be interpreted in
different ways, various approaches exist for estimating x̂t. This chapter will introduce some
important estimators and show their advantages, differences and particular similarities.

4.1 Linear Least Squares Estimator

One commonly used approach for estimating the state vector or parameter vector is the least
squares method. This method is widely used throughout the computer vision research commu-
nity [Low91]. It was first described by the German mathematician Carl Friedrich Gauß around
the end of the 18th century [Sor70].

We will first introduce least squares estimation for a constant and deterministic state vector
x, i.e. all observations gathered at different points in time describe the same state, and will be
denoted in a single observation vector z. Since the error w is unobservable and displays the
error in the measurements, it can be removed from the equation.

Σzz = V ar (Hx + w)

= HΣxxH
T + Σww

= Σww

The task then becomes: find an estimate x̂ that solves the following equation:

z = Hx (4.5)

The following cases can be distinguished:

rank (H) < n This occurs if fewer observations are available than are required (m < n). I.e.
more than m − n rows of H are linear dependent. In this case the equation system

1In many applications zt does not contain the raw measurements and H depends also on the measurements.
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is underdetermined and an infinite number of solutions exists. This ambiguity can be
solved if x is supposed to be a stochastic variable and a priori knowledge is available.

rank (H) = n = m In this special case, H is a regular matrix and the unique solution is given
by x = H−1z. Although a unique solution exists, the estimate can diverge considerably
from the true state because of noise and possible outliers in the measurements.

rank (H) = n, n < m In this case, the equation system is overdetermined and possibly has no
solution. The problem becomes to find the (in some sense) optimal estimate.

This section will first introduce the latter two cases, then extend the method to stochastic
quantities with given a priori knowledge to also handle the first case. Finally, a recursive least
squares estimator for linear dynamic systems will be introduced and compared with different
approaches.

4.1.1 Ordinary Least Squares

rank (H) = n (4.6)

As the observations are afflicted with noise, possibly no estimate exists that solves the equation
system uniquely, i.e. the residual vector for any estimator x̃ will have a length ≥ 0.

r = Hx̃− z (4.7)

rT r ≥ 0 (4.8)

Note that r is called residual and not error, since the error is defined to be the difference
between the measurement and the true (expected) value, whereas the residual is defined to be
the difference between the measurement and the estimated value. Nevertheless, we will use
the term sum of squared errors (SSE) instead of sum of squared residuals to coincide with
popular literature.

The ordinary least squares estimator (OLS) finds the estimate x̂ by minimizing the sum of
squared errors (SSE) (4.8).

x̂ = arg min
x

f (x)
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with

f (x) =
1

2
rT r

=
1

2
(Hx− z)T (Hx− z) (4.9)

This function is called cost function or error function2. The parameter vector x̂ of the cost
function, which gives the smallest cost value, is called minimizer, whereas the corresponding
cost value is called minimum.
Necessary and sufficient conditions for a minimizer of f are given by:

∂f

∂x
(x̂) = 0 (4.10)

∂2f

∂x2
(x̂) > 0 (4.11)

where equation (4.11) states that the second derivative of f , which is a symmetric matrix, has
to be positive definite (see section 4.2).

∂f

∂x
= HT (Hx− z) (4.12)

∂2f

∂x2
= HTH (4.13)

From equations (4.10) and (4.12) the normal equation can be derived as:

HTHx = HT z (4.14)

From equations (4.13) and (4.6), it can be seen that HTH is positive definite, thus the unique
solution is a minimizer of f and is given by:

x̂ =
(
HTH

)−1
HT z (4.15)

The matrix
(
HTH

)−1
HT = H† is called pseudoinverse of H . Note, that H†H = In, but

HH† 6= Im in general.

2All these terms are interchangeable and will be used alternated throughout this thesis
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Geometric interpretation of OLS

Let R (H) be the column space of H . Then R (H) is a n dimensional subspace of the m
dimensional Euclidean space Rm. For each estimator x̃, the vector z̃ = Hx̃ is the linear
combination of the column vectors of H and lies in R (H), whereas the measurement vector
z lies in Rm. For the special case where m = n or w = 0 (noise-free data), z lies also
in R (H) and there exists a linear combination x̂ of the column vectors uniquely describing
z, i.e. z = Hx̂. However, in the general case z does not lie in R (H) and therefore can
only be described by x̃ and an additional m-dimensional residual vector r̃, i.e. z = Hx̃ + r̃

(see figure 4.1(a)).

R(H)

z=Hx~    ~

z

r~

z

z=Hx^     ^

.R(H)

r̂

(a) (b)

Figure 4.1 Geometric interpretation of OLS: (a) arbitrary estimate with corresponding resid-
ual, and (b) OLS estimate with smallest residual

The OLS estimate x̂ is the vector with the smallest difference to the measurement vector z,
i.e. the length of the residual vector r is minimal. The residual vector with minimal length r̂

is perpendicular on R (H) (see figure 4.1(b)), thus the scalar product of all columns of H with
r̂ is 0. Then the solution is given by:

HT r̂ = 0

HT (Hx̂− z) = 0

HTHx̂ = HT z

which results again in the normal equation (4.14).

4.1.2 Best Linear Unbiased Estimators

This section will introduce the class of linear unbiased estimators and in particular best linear
unbiased estimators (BLUE).
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Section 4.1 Linear Least Squares Estimator

The class of linear estimators are given by:

x̃ = Az + a (4.16)

All unbiased linear estimators have to conform:

x = E [x̃]

= E [Az + a]

= E [A (Hx + w) + a]

= A (HE [x] + E [w]) + E [a]

= AHx + a (4.17)

Since the matrix A has to be independent of z [Bar74], all linear unbiased estimators have to
satisfy following conditions:

AH = In (4.18)

a = 0 (4.19)

equation (4.16) then becomes:

x̃ = Az (4.20)

with the following covariance matrix (see section 2.3.1.1):

Σx̃x̃ = AΣzzA
T (4.21)

The best linear unbiased estimator (BLUE) x̂ is the estimate in the class of linear unbiased
estimators with minimum variance.

Σx̃x̃ ≥ Σx̂x̂ (4.22)

As the variance of the estimate depends on the variance of the measurement, we will distin-
guish the two cases described below.
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Homoscedastic Case

If the components of the observation vector are independent and identical distributed (iid or
homoscedastic), or the covariance matrix Σzz is unknown and it is reasonable to assume iid,
Σzz has the following structure:

Σzz = Σww = σ2
wIm (4.23)

σ2
w > 0 (4.24)

In this case, the Gauß-Markov theorem states [Wer97, KS79, Koc00], that the best linear
unbiased estimator (BLUE) is given by the OLS solution (4.15).
The covariance matrix of x̂ is given by:

Σx̂x̂ =
(
HTH

)−1
HT ΣzzH

(
HTH

)−T

=
(
HTH

)−1
HT

(
σ2

wIm
)
H
(
HTH

)−1

= σ2
w

(
HTH

)−1
(4.25)

It can easily be shown that the estimator is unbiased.

E [x̂] = E
[(
HTH

)−1
HT z

]
= E

[(
HTH

)−1
HT (Hx + w)

]
= x +

(
HTH

)−1
HTE [w]

= x (4.26)

The BLUE (minimum variance) property of the OLS estimator can be shown as follows:
Let x̃ be an arbitrary linear unbiased estimator given by equation (4.20). Its covariance matrix
according to (4.21) and (4.23) is given by:

Σx̃x̃ = A
(
σ2

wIm
)
AT

= σ2
wAA

T (4.27)

Let D be the difference between A and
(
HTH

)−1
HT

D = A−
(
HTH

)−1
HT

A = D +
(
HTH

)−1
HT (4.28)
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Then, the covariance matrix for the estimate x̃ is given by equation (4.27).

Σx̃x̃ = σ2
wAA

T

AAT =
(
D +

(
HTH

)−1
HT
)(

D +
(
HTH

)−1
HT
)T

= DDT +
(
HTH

)−1
HTDT +DH

(
HTH

)−1
+
(
HTH

)−1

= DDT +
(
HTH

)−1
(4.29)

since DH = 0, which can be shown by using equation (4.18)

DH =
(
A−

(
HTH

)−1
HT
)
H

= AH −
(
HTH

)−1
HTH

= AH − In = 0 (4.30)

As the matrixDDT is positive semidefinite by construction, the covariance matrix of any other
linear unbiased estimator is greater. And the estimator with least variance is given if D = 0,
thus by the OLS estimate. A more intuitive way of revealing the least variance property of the
OLS estimate is to show that for all D 6= 0:

1. there is no direction with smaller variance:

∀y ∈ Rn,yT y 6= 0 : yT Σx̃x̃y ≥ yT Σx̂x̂y (4.31)

2. there exists at least one direction with higher variance:

∃y ∈ Rn,yT y 6= 0 : yT Σx̃x̃y > yT Σx̂x̂y (4.32)

To show (4.31) we apply equation (4.29) to equation (2.23), and by considering (4.24) we get:

yT Σx̃x̃y ≥ yT Σx̂x̂y

yT (Σx̃x̃ − Σx̂x̂) y ≥ 0

yT
(
σ2

w

(
DDT +

(
HTH

)−1
)
− σ2

w

(
HTH

)−1
)

y ≥ 0

yT
(
DDT

)
y ≥ 0

which is true ∀y : yT y 6= 0, as DDT is positive semidefinite by construction. No direction
with smaller variance exists.
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To show (4.32), we look at the diagonal elements (cii) of DDT , which are defined as

cii =
m∑

j=1

d2
ij 1 ≤ i ≤ n (4.33)

with D = (dij). Thus, for all D 6= 0, at least one diagonal element is greater than zero.

∀D : (D 6= 0⇔ ∃i : 1 ≤ i ≤ n ∧ cii > 0) (4.34)

Without loss of generality, we suppose, that c11 > 0. Then, at least the vector y = (1, 0, . . . , 0)T

has greater variance.

Estimating the Unknown Measurement Variance

If the measurement variance σ2
w is unknown, it can be estimated using the following unbiased

estimator:

σ̂2
w =

(z −Hx̂)T (z −Hx̂)

m− n
(4.35)

Proof: Let G = Im −H
(
HTH

)−1
HT with following properties:

G is symmetric:

GT =
(
Im −H

(
HTH

)−1
HT
)T

= Im −H
(
HTH

)−1
HT = G (4.36)

G is idempotent:

GTG =
(
Im −H

(
HTH

)−1
HT
)(

Im −H
(
HTH

)−1
HT
)

= Im − 2H
(
HTH

)−1
HT +H

(
HTH

)−1
HTH︸ ︷︷ ︸

In

(
HTH

)−1
HT

=
(
Im −H

(
HTH

)−1
HT
)

= G (4.37)

and the trace of G satisfies:

tr (G) = tr (Im)− tr
(
H
(
HTH

)−1
HT
)

= tr (Im)− tr
(
HTH

(
HTH

)−1
)

= tr (Im)− tr (In) = m− n (4.38)
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Then

z −Hx̂ = z −H
(
HTH

)−1
HT z

= Gz = G (Hx + w)

= Gw (4.39)

since GH = 0

GH =
(
Im −H

(
HTH

)−1
HT
)
H

= H −H = 0 (4.40)

The expected value E [σ̂2
w] then becomes:

E
[
σ̂2

w

]
=

1

m− n
E
[
wTGTGw

]
=

1

m− n
E
[
wTGw

]
=

1

m− n
tr
(
E
[
GwwT

])
=

1

m− n
tr
(
GE

[
wwT

])
=

1

m− n
tr
(
Gσ2

wIm
)

=
σ2

w

m− n
tr (G) = σ2

w (4.41)

The unbiased covariance matrix Σ̂x̂x̂ of the estimate x̂ is given by:

Σ̂x̂x̂ = σ̂2
w

(
HTH

)−1
(4.42)

Note: for n = 1 the OLS estimate results in the sample mean and σ̂2
w results in the sample

variance.

General Least Squares

In multisensor systems some sensors usually provide more accurate measurements than others
and measurements can be autocorrelated. For example, laser measurements are more accurate
than sonar measurements and measurements in images have usually a strong correlation be-
tween the x and y value. This leads to a covariance matrix which does not satisfy the above
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condition (4.23), and the OLS solution is not BLUE.

It is obvious that multiplying an arbitrary k × m matrix W with rank (W ) = m on both
sides of the equation system (4.5) does not violate the equation, but changes its OLS solution.

Wz︸︷︷︸
z′

= WH︸︷︷︸
H′

x

x̂′ =
(
H ′TH ′)−1

H ′T z′ (4.43)

The OLS solution remains unbiased.

E
[
x̂′] =

(
H ′TH ′)−1

H ′TE [z′]

=
(
HTW TWH

)−1
HTW TWHE [x]

= E [x] = x (4.44)

with its covariance matrix:

Σx̂′x̂′ =
(
HTW TWH

)−1
HTW TWΣzzW

TWH
(
HTW TWH

)−1
(4.45)

Known Covariance Matrix

This leads to the following consideration: If the covariance matrix is known or at least its
structure up to a constant multiplier σ2

w is known

Σ̃zz = σ2
wΣzz (4.46)

the equation system can be transformed so that z′ becomes iid, by selecting a suitable weight
matrix. Let C be the square root of the covariance matrix with Σ̃zz = CCT , then the weight
matrix is selected as W = C−1. The transformed observation vector becomes:

z′ = Wz = C−1z (4.47)

with its covariance matrix:

Σz′z′ = C−1ΣzzC
−T

= C−1
(
σ2

wCC
T
)
C−T

= σ2
wIm (4.48)
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Then the OLS estimate of the transformed equation system becomes BLUE [FHT96, Str90,
Lue91, Wer97], and is given by:

x̂ =
(
H ′TH ′)−1

H ′T z′

=
(
HTC−TC−1H

)−1
HTC−TC−1z

=
(
HT Σ̃−1

zz H
)−1

HT Σ̃−1
zz z (4.49)

Its covariance matrix is given by:

Σx̂x̂ =
(
HT Σ̃−1

zz H
)−1

(4.50)

Unlike the OLS estimate, which minimizes the squared Euclidean distance rT r, general least
squares minimizes the squared Σ−1

zz norm rT Σ−1
zz r (squared Mahalanobis distance of the resid-

ual). This estimator is also called Gauss-Markov Estimator, and a detailed discussion of this
estimator can be found in [BS89, BSF88].
The special case where the measurement errors are independent but not identically distributed,
i.e. Σzz = diag (σ2

1, . . . , σ
2
m), is called Weighted Least Squares (WLS).

Estimating the Measurement Variance

If the measurement variance σ2
w is unknown, its unbiased estimator is given by:

σ̂2
w =

(z −Hx̂)T Σ̃−1
zz (z −Hx̂)

m− n
(4.51)

4.1.3 Least Squares Estimation with Given Prior Knowledge

If prior knowledge (or a priori knowledge), about the system state is given by some linear
equation:

z̃ = Bx + w̃ (4.52)

where B is supposed to have full rank and w̃ is a random variable with zero-mean and covari-
ance matrix Σw̃w̃, denoting the noise or accuracy of the prior information.
According to the notation of equation (4.5) it can be rewritten as

z̃ = Bx (4.53)
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with Σz̃z̃ = Σw̃w̃.
The Minimum Variance Estimator [BSF88, BS89] can be determined by composing the mea-
surement equation (4.5) with the prior knowledge to a new equation system.

y = Dx (4.54)

with

y =

z

z̃

 D =

H
B

 Σyy =

Σzz Σzz̃

Σz̃z Σz̃z̃


Assuming that the prior knowledge and the new measurement are uncorrelated leads to Σzz̃ =

ΣT
z̃z = 0, and the minimum variance estimate is given by:

x̂ =
(
HT Σ−1

zz H +BT Σ−1
z̃z̃ B

)−1 (
HT Σ−1

zz z +BT Σ−1
z̃z̃ z̃
)

(4.55)

Σx̂x̂ =
(
HT Σ−1

zz H +BT Σ−1
z̃z̃ B

)−1
(4.56)

Usually the prior knowledge is given directly by x̃ with covariance Σx̃x̃, and is determined
from a prediction step; thus we will call it prediction in the following. In this case, the mini-
mum variance estimate becomes:

x̂ =
(
HT Σ−1

zz H + Σ−1
x̃x̃

)−1 (
HT Σ−1

zz z + Σ−1
x̃x̃ x̃

)
(4.57)

Σx̂x̂ =
(
HT Σ−1

zz H + Σ−1
x̃x̃

)−1
(4.58)

A useful side effect of the latter case is, that, regardless of the number of observations made,
the composed equation system is never underdetermined, and therefore an optimal solution
can always be obtained. This estimator is discussed in more detail in ([BS89, BSF88]). It can
be seen that if Σx̃x̃ → ∞, i.e. the a priori knowledge is non-informative, we get the Gauss-

Markov estimator as described in section 4.1.2.

4.1.4 Recursive Least Squares Estimation

Almost all applications for time-varying system states, and some applications for constant
system states require an estimate in each time step. In the context of this thesis, estimating
the camera parameters for each frame is important for further processing. E.g. determining the
player and ball trajectories.

Regardless of dynamic or static systems, storing all observations up to the current time
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step and determining the best estimate from all these observations for each time step can be
very inefficient. Both the computational and memory inefficiency can be resolved by using
a recursive method, which provides a sequential rather than a batch processing. The clou of
recursive methods is that they update an estimate for newly available measurements without
the need to store and reprocess all past measurements.

4.1.4.1 Static Systems

In the previous section we considered a priori information of the form:

Bx = z̃

For a static system, this equation can be interpreted as the composition of all measurements
gathered in the past (up to time t− 1).

B =
(
HT

1 , H
T
2 , . . . , H

T
t−1

)T
(4.59)

z̃ =
(
zT

1 , z
T
2 , . . . ,z

T
t−1

)T
(4.60)

Σz̃z̃ = diag
(
Σz1z1 ,Σz2z2 , . . . ,Σzt−1zt−1

)
(4.61)

whereas equation (4.5) presents the current measurements for time t (i.e. z = zt).

However, matrix B, vector z̃ and its covariance matrix Σz̃z̃ can get very large for long time
periods, and the latter case (4.57) is more favorable as only x̃ and Σx̃x̃ are stored. Both x̃ and
Σx̃x̃ can be determined from equation (4.52) by the Gauß-Markov estimate.

x̃ =
(
BT Σ−1

z̃z̃ B
)−1

BT Σ−1
z̃z̃ z̃ (4.62)

Σx̃x̃ =
(
BT Σ−1

z̃z̃ B
)−1

(4.63)

Using this result in equations (4.57) and (4.58) again delivers (4.55) and (4.56) respectively,
and the recursive minimum variance estimator for static systems can easily be derived as:

x̃t = x̂t−1 (4.64)

P̃t = P̂t−1 (4.65)

x̂t =
(
HT

t Q
−1
t Ht + P̃−1

t

)−1 (
HT

t Q
−1
t zt + P̃−1

t x̃t

)
(4.66)

P̂t =
(
HT

t Q
−1
t Ht + P̃−1

t

)−1

(4.67)
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To avoid double indexing, the following substitutions have been made:

Σx̂x̂ =: P̂

Σx̃x̃ =: P̃

Σzz = Σww =: Q

By converting equation (4.66) to

x̂t = x̃t +Kt (zt −Htx̃t) (4.68)

we get a more intuitive representation. The n × m weight matrix Kt is called Kalman Gain

and can be derived from equation (4.66) as follows:

x̂t =
(
HT

t Q
−1
t Ht + P̃−1

t

)−1 (
HT

t Q
−1
t z + P̃−1

t x̃t

)
=
(
HT

t Q
−1
t Ht + P̃−1

t

)−1 (
HT

t Q
−1
t zt + P̃−1

t x̃t +HT
t Q

−1
t Htx̃t −HT

t Q
−1
t Htx̃t

)
=
(
HT

t Q
−1
t Ht + P̃−1

t

)−1 ((
HT

t Q
−1
t Ht + P̃−1

t

)
x̃t +HT

t Q
−1
t (zt −Htx̃t)

)
= x̃t +

(
HT

t Q
−1
t Ht + P̃−1

t

)−1

HT
t Q

−1
t︸ ︷︷ ︸

Kt

(zt −Htx̃t)

The residual (zt −Htx̃t) in the above equation (4.68) is called innovation, and reflects the
difference between the current measurement zt and its prediction Htx̃t. The Kalman gain is
used to get the weighted average between the predicted state x̃t and the innovation, which
minimizes the a posteriori error covariance.

A more favorable representation of the Kalman gain with only one matrix inversion can be
derived as follows:

Kt =
(
HT

t Q
−1
t Ht + P̃−1

t

)−1

HT
t Q

−1
t

=
(
HT

t Q
−1
t Ht + P̃−1

t

)−1

HT
t Q

−1
t

(
HtP̃tH

T
t +Qt

)(
HtP̃tH

T
t +Qt

)−1

=
(
HT

t Q
−1
t Ht + P̃−1

t

)−1 (
HT

t Q
−1
t HtP̃tH

T
t +HT

t

)(
HtP̃tH

T
t +Qt

)−1

=
(
HT

t Q
−1
t Ht + P̃−1

t

)−1 (
HT

t Q
−1
t Ht + P̃−1

t

)
P̃tH

T
t

(
HtP̃tH

T
t +Qt

)−1

= P̃tH
T
t

(
HtP̃tH

T
t +Qt

)−1
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The covariance matrix of the estimate (4.67) can also be specified in terms of the Kalman gain.

P̂t =
(
HT

t Q
−1
t Ht + P̃−1

t

)−1

=
(
HT

t Q
−1
t Ht + P̃−1

t

)−1

P̃−1
t P̃t

=

(
In − In +

(
HT

t Q
−1
t Ht + P̃−1

t

)−1

P̃−1
t

)
P̃t

=

(
In −

(
HT

t Q
−1
t Ht + P̃−1

t

)−1 (
HT

t Q
−1
t Ht + P̃−1

t

)
+
(
HT

t Q
−1
t Ht + P̃−1

t

)−1

P̃−1
t

)
P̃t

=

(
In −

(
HT

t Q
−1
t Ht + P̃−1

t

)−1

HT
t Q

−1
t Ht

)
P̃t

= (In −KtHt) P̃t (4.69)

Using the Kalman gain Kt, the recursive minimum variance estimator for static systems can
be rewritten to:

x̃t = x̂t−1 (4.70)

P̃t = P̂t−1 (4.71)

Kt = P̃tH
T
t

(
HtP̃tH

T
t +Qt

)−1

(4.72)

x̂t = x̃t +Kt (zt −Htx̃t) (4.73)

P̂t = (In −KtHt) P̃t (4.74)

4.1.4.2 Linear Systems

The recursive form of the Minimum Variance estimator for linear process and observation
models is given by the following equations:

x̃t = Atx̂t−1 +Btut (4.75)

P̃t = AtP̂t−1A
T
t +Rt (4.76)

Kt = P̃tH
T
t

(
HtP̃tH

T
t +Qt

)−1

(4.77)

x̂t = x̃t +Kt (zt −Htx̃t) (4.78)

P̂t = (In −KtHt) P̃t (4.79)

To avoid double indexing, we substitute Σvv by R.

Equations (4.75) and (4.76) are called the prediction or time update stage, and equations
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(4.77) - (4.79) are called update or measurement update stage. The method differs only in the
time update stage from the static case. As can be seen, the prediction is determined by applying
the system process (4.4) to the previous estimate x̂t−1 using the current control vector ut.

These equations are equivalent to the well known Kalman Filter, and a detailed derivation
(based on least squares) of these equations can be found in [BSF88, BS89, Fau93, BP99,
Sor80].

At time t = 1, a priori information x̂0 and P̂0 is required. If no prior knowledge is avail-
able, the first reliable estimate can be made after n linear independent observations and is the
recursive form of the Gauss-Markov estimator.

The Kalman Filter can also be derived as the Gaussian case of the Bayes Filter and will be
discussed in section 4.5.

4.2 Non-Linear Least Squares Estimation

So far we have discussed state estimation based on linear motion models and observation
models. In real-world applications, however, these assumptions are hardly true and linear es-
timation methods are infeasible.

This section will introduce the problem of finding the least squares solution of nonlinear
observation models, which is a special variant of the more general nonlinear optimization

problem: Given a function f : Rm 7→ R, find an estimate that minimizes the value of this
so-called objective function or cost function.

x+ = arg min
x

f (x)

with x+ being the global minimizer of f .
Least squares estimates consider cost functions of the following form:

f (x) =
1

2
(h(x)− z)T (h(x)− z)

=
1

2
rT (x) r (x) (4.80)

The problem of finding the global minimizer x+ of f is very hard to solve in general. Therefore
only methods for finding a local minimizer x∗ will be presented in this section. Since a closed
form solution, unlike in the linear case, in general does not exist or is hard to determine, all
nonlinear methods presented in this section are iterated starting at an initial estimate x0. In
each iteration k the estimate is refined by moving along a descending direction lk with a step
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width ρk.

xk = xk−1 + ρklk (4.81)

A sequence of vectors x1,x2, . . . is produced, which in most cases converges to x∗.

xk → x∗ k →∞ (4.82)

The iteration is stopped if a termination condition is satisfied. Usually the termination condi-
tion is met if a sufficient accuracy in the estimated parameters or a given maximum iteration
kmax is reached, and the estimate (iterate) from the last iteration is accepted as an approxima-
tion of x∗.
If the given function has several local minimizers, the result is highly dependent on the initial
point x0. In general convergence is not necessarily guaranteed, and if convergence occurs, the
estimate is not necessarily the closest local minimizer to the initial point. To enforce conver-
gence, most methods require the so-called descending condition:

f (xk) < f (xk−1) (4.83)

Usually the descending condition is satisfied by selecting a suitable step size ρk in each itera-
tion.

All methods discussed in this section differ only in the selection of the descending direction
lk and the step size ρk. Their main difference is the determination of the descending direction,
which is given for all methods by:.

lk = −H̃−1
k JT

k (4.84)

where H̃k is an approximation of the Hessian of f and Jk is the Jacobian of the residual vector
r in iteration k. Therefore, the main difference between all methods is the approximation of
the Hessian.

Convergence rate

The convergence rate indicates the expected improvement in each iteration. Methods with
small convergence rates, in general, need more iterations to achieve a given accuracy in the
estimated parameters than methods with a high convergence rate. We distinguish between the
following convergence rates:
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Linear convergence

‖xk − x∗‖ ≤ a‖xk−1 − x∗‖ 0 < a < 1 (4.85)

Superlinear convergence

‖xk − x∗‖
‖xk−1 − x∗‖

→ 0 k →∞ (4.86)

Quadratic convergence

‖xk − x∗‖ ≤ a‖xk−1 − x∗‖2 0 < a (4.87)

with ‖ · ‖ being the 2-norm (or L2 norm, Euclidean norm).

Necessary and Sufficient Conditions

The necessary and sufficient conditions for a local minimum are given by (4.10) and (4.11)
respectively. Points satisfying the necessary condition (4.10) are called stationary points. Sta-
tionary points can be local minima, local maxima or saddle points. The type of a stationary
point can be determined by the definiteness of the Hessian, which is a symmetric matrix con-
taining the second partial derivatives of f . Since we are only interested in local minima, the
Hessian of f has to be positive definite (4.11).

First and second derivatives

The gradient ∇f = JT
f can be derived from equation (4.80)

∇f (x) =

(
m∑

j=1

∂rj

∂x1

(x) rj (x) ,
m∑

j=1

∂rj

∂x2

(x) rj (x) , . . . ,
m∑

j=1

∂rj

∂xn

(x) rj (x)

)T

= JT
r (x) r (x) (4.88)
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where the Jacobian Jr is defined as:

Jr (x) =
∂r

∂x
(x) =

∂l

∂x
(x) =



∂r1

∂x1
(x) ∂r1

∂x2
(x) . . . ∂r1

∂xn
(x)

∂r2

∂x1
(x) ∂r2

∂x2
(x) . . . ∂r2

∂xn
(x)

...
... . . . ...

∂rm

∂x1
(x) ∂rm

∂x2
(x) . . . ∂rm

∂xn
(x)


(4.89)

The Hessian ∇2f is given by:

∇2f =


∑m

i=1

(
∂2ri

∂x1∂x1
ri + ∂ri∂ri

∂x1∂x1

)
. . .

∑m
i=1

(
∂2ri

∂x1∂xn
ri + ∂ri∂ri

∂x1∂xn

)
... . . . ...∑m

i=1

(
∂2ri

∂xn∂x1
ri + ∂ri∂ri

∂xn∂x1

)
. . .

∑m
i=1

(
∂2ri

∂xn∂xn
ri + ∂ri∂ri

∂xn∂xn

)

 (4.90)

= JT
r (x) Jr (x) +

m∑
i=1

ri (x)∇2ri (x) (4.91)

with ∇2ri being the Hessian of function ri (x).

∇2ri (x) =
∂2ri

∂x∂x
(x) =


∂2ri

∂x1∂x1
(x) . . . ∂2ri

∂x1∂xn
(x)

... . . . ...

∂2ri

∂xn∂x1
(x) . . . ∂2ri

∂xn∂xn
(x)

 (4.92)

In the following, J will denote the Jacobian of the residual Jr.

Termination Criteria

It is necessary to provide a criterion to terminate the iterative search for a local minimizer of f .
Since we suppose that the produced sequence of estimates xk converges towards a stationary
point x∗, the iterations should be stopped if the last estimate xk is close to x∗. However, as the
stationary points are unknown, it is hard to decide whether an estimate xk is close or far from
a stationary point. Therefore, most termination criterion use following consideration. If the
created sequence converges towards a stationary point, the improvement reduces from iteration
to iteration, and the iterative search can be stopped if the improvement falls below a given
threshold. Since the improvement of an estimate can be measured in different ways, several
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termination conditions exists, and we will present the most common ones in the following.

For methods satisfying the descending condition (4.83), the iteration can be stopped if the
decrease in the cost value f (xk) gets too small and no considerable improvements of the cost
value can be achieved with further iterations. The threshold for the decrease can be selected
absolute or relative to the current costs.

|f (xk−1)− f (xk) | ≤ µ1 µ1 > 0 (4.93)

|f (xk−1)− f (xk) | ≤ µ2|f (xk−1) | µ2 > 0 (4.94)

The above termination criteria have the disadvantage that for flat cost functions, the parameters
can change considerably while the cost value changes slightly. As we are interested in the
accuracy of the parameters (minimizer) and not in the accuracy in the cost value (minimum),
the above idea can be applied to the change in the parameters.

‖ρklk‖ ≤ δ1 δ1 > 0 (4.95)

‖ρklk‖ ≤ δ2‖xk−1‖ δ2 > 0 (4.96)

The most widely used termination condition can be derived from the necessary condition for
a local minimum (4.10). If the current estimate xk is sufficiently close to the local minimizer
x∗, the first derivative must be very close to zero and the iterations can be stopped if it is below
a given threshold.

‖∇f (xk) ‖ ≤ ε ε > 0 (4.97)

Another termination criterion is given, if the covariance matrix of the measurements is known,
and the cost function is replaced by the weighted cost function (see section 4.2.3.1). In this
case, the cost value is χ2 distributed, and the iterations can be terminated if the cost value falls
below a threshold obtained by the χ2 distribution table.

In practice, a combination of the above conditions and a maximum iteration threshold kmax

is used.

Covariance Matrix of the Estimated Parameters

The covariance matrix of the estimated parameters for all the methods presented in this section
is determined from the last iteration.
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Let ρk′lk′ be the the correction step in the last iteration k′. The final estimate is then given by:

x̂ = xk′

= xk′−1 + ρk′lk′ (4.98)

Since the quality of the final estimate does not depend on the intermediate estimates x1, . . . ,xk−1,
i.e. the path is not important for the quality of the local minimizer, the covariance matrix co-
incides with the covariance matrix of the last correction step.

Σx̂x̂ = ρ2
k′−1Σlk′−1lk′−1

(4.99)

As the covariance matrix of the direction vector depends on the covariance matrix of the
measurement vector Σzz, and if Σzz is only known up to an unknown scale σw, this scale can
analogously to equation (4.51) be determined as:

σ̂2
w =

(h (x̂)− z)T Σ−1
zz (h (x̂)− z)

m− n
(4.100)

In the following, we will not consider this case explicitly. It is assumed that the unknown scale
factor is determined and considered if necessary.

4.2.1 Gradient Descent

The Gradient Descent or Steepest Descent method is one of the simplest methods.

As the negative gradient is the direction of the steepest descent, i.e. f locally decreases
fastest in the direction of the negative gradient, the gradient descent method selects the neg-
ative gradient of the current estimate as the descending direction lk. In the following, Jk, fk

and rk will denote respectively the Jacobian, cost value and residual vector from the current
iteration k, i.e. obtained at the previous estimate xk−1:

Jk = J (xk−1) rk = r (xk−1) fk = f (xk−1) (4.101)

The descending direction and its covariance matrix [JEDGW81] are then given by:

lk = −∇f (xk−1) = −JT
k rk (4.102)

Σx̂x̂ = JT
k ΣzzJk (4.103)

By comparing this result with equation (4.84), we can see, that the Hessian is approximated
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by the identity matrix.

The selection of the step size ρk is extremely important for this method. Too small values
for ρk lead to very slow convergence, whereas too large values can lead to possibly no conver-
gence. However, a necessary condition for a valid step size ρk is given by equation (4.83).

Usually the step size is found by the line-search method [Sca85, MNO04, NW99]. The
line-search method finds a step width along the descending direction, which minimizes the
value of the cost function, and therefore can be described as a one-dimensional optimization
problem.

ρk = lineSearch (xk−1, lk)

= arg min
ρ>0

f (xk−1 + ρlk) (4.104)

Algorithm 4.1 Gradient Descent Method
Require: x0 , ε > 0 , kmax > 0

1: k ← 0
2: repeat
3: k ← k + 1
4: lk ← −JT

k rk

5: ρk ← lineSearch (xk−1, lk)
6: xk ← xk−1 + ρklk
7: Σk ← ρ2

kJ
T
k ΣzzJk

8: until ‖lk‖ ≤ ε ∨ k ≥ kmax

9: x̂← xk

10: Σx̂x̂ ← Σk

In general, it is too expensive and unnecessary to determine the exact step size, and an
inexact solution which achieves an adequate enhancement is preferred. Usually, a couple of
step widths are evaluated and the best one is selected.

The convergence rate for this method is in general linear and therefore too slow for most
vision-based applications. Algorithm 4.1 provides pseudocode for the gradient descent method.

4.2.2 Newton Method

The Newton Method can be derived by the necessary condition for a local minimum (4.10).
The idea is to determine the new estimate xk by linearizing the left hand side around the
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previous estimate xk−1 and to solve the equation system for the descending direction lk.

∇f (x∗) = ∇f (xk−1 + lk) = 0 (4.105)

The truncated Taylor expansion around the current estimate of the left hand side delivers

∇f (x∗) ≈ ∇f (xk−1) +∇2f (xk−1) lk (4.106)

and we get

∇f (xk−1) +∇2f (xk−1) lk = 0 (4.107)

If ∇2f is positive definite, the unique solution is given by:

lk = −
(
∇2f (xk−1)

)−1∇f (xk−1)

= −

(
JT

k Jk +
m∑

i=1

rk,i∇2rk,i

)−1

JT
k rk (4.108)

Usually the step size is selected as ρk = 1 and the new estimate is given by:

xk = xk−1 −
(
∇2f (xk−1)

)−1∇f (xk−1) (4.109)

with following covariance matrix [JEDGW81] of the final estimate:

Σx̂x̂ =

(
JT

k Jk +
m∑

i=1

rk,i · ∇2rk,i

)−1

JT
k ΣzzJk

(
JT

k Jk +
m∑

i=1

rk,i · ∇2rk,i

)−1

(4.110)

Up to quadratic cost functions, the Newton method finds the exact solution in just one iteration.
The Newton method is well defined as long as the Hessian is not singular. If the Hessian

is positive definite in every step and the initial point x0 is sufficiently close to the local min-
imizer x∗, the adjustment vectors lk are descending directions, and the method converges
quadratically towards x∗. Nevertheless, the classical Newton method has a couple of crucial
drawbacks.

• If the initial point is far from the solution, the Hessian may not be positive definite, and
the method may converge towards a maximum or saddle point.

• The Hessian may be singular or ill-conditioned and the equation system can not be
solved at all or only with considerable errors in the adjustment term lk.
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• Second derivatives of f are required, which makes this method inefficient for real time
applications.

Algorithm 4.2 Classical Newton Method
Require: x0 , ε > 0 , kmax > 0

1: k ← 0
2: repeat
3: k ← k + 1
4: lk ← − (∇2f (xk−1))

−1∇f (xk−1)
5: xk ← xk−1 + lk
6: Σk ← (∇2f (xk−1))

−1
JT

k ΣzzJk (∇2f (xk−1))
−T

7: until ‖∇f (xk) ‖ ≤ ε ∨ k ≥ kmax

8: x̂← xk

9: Σx̂x̂ ← Σk

Besides the calculation efforts for the second derivatives, some modifications exist to over-
come the drawbacks mentioned above.

Damped Newton Method

Like in the Gradient Descent method, the line-search method can be used to determine the
step size ρk (see equation (4.104)). However, this method does not prevent ill-conditioned or
singular Hessians, so in some cases, it is not possible to determine the direction lk.

Trust Region Newton Method

The line-search method determines, for a given descending direction, a step size that reduces
the value of f . Trust region methods, however, first select a step size, then determine a direc-
tion. In a sense, both methods differ in the order in which they determine the direction and
step size.

Trust region methods approximate the objective function f locally in each iteration by a
model function mk, by using the local informations about f at the previous estimate xk−1.
The new estimate is determined as the minimizer of this model. Because the model function
may not be a good approximation for any x far away from xk−1, trust region methods restrict
the possible values of the new estimate to a region ∆k, the trust region, around the previous
estimate xk−1.

lk = arg min
‖l‖≤∆k

mk (l) (4.111)
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If the new cost value f (xk−1 + lk) is greater than the previous value f (xk−1), the step is re-
jected, the trust region radius ∆k is scaled down and a new estimate is determined. If, however,
the new estimate could reduce the cost value, it is accepted and the trust region radius ∆k is
increased for the next iteration.

4.2.3 Gauss-Newton

The Gauss-Newton method is a very efficient method that uses only the first derivatives of f .
In special cases, it provides quadratic convergence as the Newton method.

The Gauss-Newton method first linearizes r, then determines the adjustment vector by set-
ting the derivative of the new cost function f to zero.

r (xk−1 + lk) ≈ rk + JT
k lk (4.112)

the cost function then becomes:

f (xk−1 + lk) ≈
1

2

(
rT

k rk + 2lTk J
T
k rk + lTk J

T
k Jklk

)
≈ fk + lTk J

T
k rk +

1

2
lTk J

T
k Jklk (4.113)

The first and second derivatives of the approximated f with respect to lk are given by:

∂f

∂lk
= JT

k rk + JT
k Jklk (4.114)

∂2f

(∂lk)
2 = JT

k Jk (4.115)

Since the second derivative is symmetric, the unique minimizer can be determined by the
normal equation if Jk has full rank. The normal equation is given by:

JT
k Jklk = −JT

k rk (4.116)

The unique minimizer is obtained by:

lk = −
(
JT

k Jk

)−1
JT

k rk (4.117)

It can be seen that the Hessian is approximated by neglecting the higher order terms in equa-
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tion (4.91). Thus, the Gauss-Newton method is an approximation of the Newton method and
coincides with it if r (x∗) = 0.
If |ri (x

∗) | are small, we can expect superlinear convergence, but in general we will have just
linear convergence.
The covariance matrix of the final estimate is given by:

Σx̂x̂ =
(
JT

k Jk

)−1
JT

k ΣzzJk

(
JT

k Jk

)−1
(4.118)

If the covariance matrix of the measurement vector is homoscedastic (see section 4.1.2), the
covariance matrix of the estimate reduces to:

Σx̂x̂ =
(
JT

k Jk

)−1
JT

k σ
2
zImJk

(
JT

k Jk

)−1

= σ2
z

(
JT

k Jk

)−1
JT

k Jk

(
JT

k Jk

)−1

= σ2
z

(
JT

k Jk

)−1
(4.119)

However, for the general case ri (x
∗) 6= 0 follows:

∇f (x∗) = 0

JT (x∗) r (x∗) = 0

Thus, in the vicinity of x∗, JT
k Jk is singular as Jk does not have full rank, and no descending

direction can be determined. A solution similar to the Trust Region Newton method is the
Levenberg-Marquardt method, which is introduced in section 4.2.4. The algorithm for the
classical Gauss Newton method is given by Algorithm 4.3.

Algorithm 4.3 Classical Gauss Newton Method
Require: x0 , ε > 0 , kmax > 0

1: k ← 0
2: repeat
3: k ← k + 1
4: lk ← −

(
JT

k Jk

)−1
JT

k rk

5: xk ← xk−1 + lk
6: Σk ← σ2

z

(
JT

k Jk

)−1

7: until ‖∇f (xk) ‖ ≤ ε ∨ k ≥ kmax

8: x̂← xk

9: Σx̂x̂ ← Σk
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4.2.3.1 Weighted Gauss-Newton

The above estimate (4.117) is the OLS estimate of the following equation:

Jklk = −rk (4.120)

It is the OLS estimate of the linearized observation model (4.1).

h (xk−1 + lk) = z

Truncated Taylor expansion leads to:

h (xk−1) + Jklk = z

Jklk = z − h (xk−1) = −rk

If the covariance matrix Σzz of the observation vector z is given and does not satisfy (4.23),
the OLS estimate is not BLUE and the GLS solution is more favorable.
The weighted normal equation becomes:

(
JT

k Σ−1
zz Jk

)
lk = −JT

k Σ−1
zz rk (4.121)

with the correction step:

lk = −
(
JT

k Σ−1
zz Jk

)−1
JT

k Σ−1
zz rk (4.122)

This estimator is the nonlinear counterpart to the Gauss-Markov estimator described in sec-
tion 4.1.2. The covariance matrix of the final estimate is given by:

Σx̂x̂ =
(
JT

k Σ−1
zz Jk

)−1
(4.123)

The solution is equivalent to the OLS estimate of the following cost function:

f (x) =
1

2
(h(x)− z)T Σ−1

zz (h(x)− z)

=
1

2
rT (x) Σ−1

zz r (x) (4.124)

If additional a priori knowledge x̃ and Σx̃x̃ is available, the nonlinear counterpart to the
Minimum Variance estimator (see section 4.1.3) can be used in each iteration.
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Equation (4.120) is extended to: Jk

In

 lk =

−rk

dk

 (4.125)

with the desired change dk = x̃− xk−1.
And the normal Equation becomes:

(
JT

k Σ−1
zz Jk + Σ−1

x̃x̃

)
lk = −JT

k Σ−1
zz rk + Σ−1

x̃x̃ d (4.126)

with the covariance matrix of the final parameters

Σx̂x̂ =
(
JT

k Σ−1
zz Jk + Σ−1

x̃x̃

)−1
(4.127)

The algorithm for the weighted Gauss-Newton method with prior knowledge is depicted in
algorithm 4.4.

Algorithm 4.4 Weighted Gauss Newton Method with Prior Knowledge
Require: x̃, Σx̃x̃, Σzz , ε > 0 , kmax > 0

1: k ← 0
2: x0 ← x̃
3: repeat
4: k ← k + 1
5: dk ← x̃− xk−1

6: lk ←
(
JT

k Σ−1
zz Jk + Σ−1

x̃x̃

)−1 (−JT
k Σ−1

zz rk + Σ−1
x̃x̃ dk

)
7: xk ← xk−1 + lk
8: Σk ← σ2

z

(
JT

k Σ−1
zz Jk + Σ−1

x̃x̃

)−1

9: until ‖∇f (xk) ‖ ≤ ε ∨ k ≥ kmax

10: x̂← xk

11: Σx̂x̂ ← Σk

4.2.4 Levenberg-Marquardt

As mentioned above, the Levenberg-Marquardt method is similar to the Trust Region Newton
method and is more robust than the Gauss-Newton method [Mar63]. In fact, the Levenberg-
Marquardt method is the progenitor of the Trust Region method for general optimization
[NW99].

The restriction of the step size is not explicitly formulated as in equation (4.111), but it is
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implicitly contained in the scalar λk, which is added to the diagonal elements of the Hessian.
The magnitude of λk is selected in each iteration to enforce positive definiteness of the so
modified Hessian. The augmented normal equation then becomes:

(
JT

k Jk + λkIn
)
lk = −JT

k rk (4.128)

In each iteration this scalar varies, so that the Hessian becomes positive definite and a unique
correction step lk can be determined. A typical initial value for λ is λ1 = 10−3 [HZ03]. If
the current iteration satisfies some descending condition (e.g. equation (4.83)), the correction
vector lk is accepted and λk is divided by 10 for the next iteration. Otherwise, if the correction
vector increases the error, it is rejected, λk is multiplied by 10, and the equation is solved again
for the new λk. This process is repeated until a suitable λk is found that decreases the error,
or λk reaches an upper bound λmax. The reason of varying λk in each iteration is to enforce
convergence for this method, while getting a high convergence rate.

This method switches smoothly between the Gauss-Newton method and the Gradient-Descent
method, and benefits from the advantages of both: large radius of convergence and high con-
vergence rate.

If λk is close to zero the method coincides with the Gauss-Newton method and has quadratic
or superlinear convergence. On the other hand, if λk is sufficiently large, the diagonal elements
of the Hessian dominate the Hessian, and the direction of the correction vector is close to the
Gradient Descent method, which has a larger radius of convergence.

The covariance matrix of the estimated parameters are given by equation (4.119), as in
practice, it makes no sense to consider the stabilization terms λk.

A different implementation is applied by Lowe et al. [Low91]. Given a weight matrix W
and a desired correction vector d, equation (4.120) is extended to: Jk

µW

 lk =

−rk

d

 (4.129)

The normal equation becomes:

(
JT

k Jk + µ2W TW
)
lk = −JT

k rk + µW T d (4.130)

Lowe proposes a diagonal matrix for W with Wii = 1
σii

. σii is the standard deviation of
parameter vector xi, which is determined from the covariance matrix of the previous iteration.
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Algorithm 4.5 Levenberg-Marquardt Method
Require: x0 , ε > 0 , kmax > 0, λmax ≥ 106

1: k ← 0
2: λ1 = 10−3

3: sse = f (x0)
4: repeat
5: k ← k + 1
6: lk ← −

(
JT

k Jk + λkIn
)−1

JT
k rk

7: xk ← xk−1 + lk
8: if f (xk) > sse then
9: λk ← λk · 10

10: k ← k − 1
11: else
12: sse← f (xk)
13: λk+1 ← λk ÷ 10

14: Σk ← σ2
z

(
JT

k Jk

)−1

15: end if
16: until ‖∇f (xk) ‖ ≤ ε ∨ k ≥ kmax ∨ λk ≥ λmax

17: x̂← xk

18: Σx̂x̂ ← Σk

4.2.4.1 Weighted Levenberg Marquardt

If the covariance matrix Σzz of the observation vector z is given and does not satisfy equa-
tion (4.23), the normal equation can be replaced by the weighted normal equation (4.121),
while the rest of the algorithm stays unchanged, except for the covariance matrix, which is
given by equation (4.123), and the evaluation of the new cost value, which is given by equa-
tion (4.124).

4.2.5 Outlier Treatment

Least squares estimation methods are very sensitive to outliers. Outliers are defined to be
measurements that do not fit to the observation model.

Methods that are capable of determining reliable estimates in the presence of outliers in the
measurements are called robust. Robust methods are often characterized by a measure called
the breakdown point [Hub81]. The breakdown point is defined as the smallest percentage of
outliers that can cause the estimate to an arbitrarily large error. Least squares methods, for
example, are very sensitive to outliers and even one outlier can lead to considerable errors in
the estimates. The breakdown point for least squares estimators is 1

m
, m being the number of

observations, which leads to an asymptotic breakdown point of 0%.
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Another measure for robustness is the so-called influence function, which reflects the change
of an estimate caused by inserting an outlier as a function of the distance of the data from the
outlier-free estimate. The influence function of the least squares estimate is simply propor-
tional to the distance of the point from the estimate (see section M-Estimator).

4.2.5.1 RANSAC

A very effective method for robust estimation, with the highest possible breakdown point of
50%, is the RAndom SAmple Consensus (RANSAC) introduced by Fischler et al. [FB81],
which is widely used in the field of computer vision. The key idea is simple but powerful.

First, an estimate is determined from a minimal subset of randomly selected measurements,
which is called the minimal solution. Then the quality of the minimal solution is determined
from the fit of all measurements to the observation model using a utility function. Usually, the
number of inliers is used, where an inlier is defined to be a measurement whose residual does
not exceed a given threshold. This process is repeated until the likelihood of finding a better
subset becomes low, and the estimate leading to the best fit is returned. Usually, the estimated
parameters are used as initial values for a further least squares refinement using all inliers.

In this thesis, we will use RANSAC for robust Homography estimation [HZ03].

4.2.5.2 LMS

Another very robust method is the least median of squares (LMS) estimator [Rou84, Rou87],
as the median is insensible to outlier (breakdown point of 50%). As the name indicates, LMS
determines the estimate which delivers the smallest median of the squared residuals over all
observations. This can be done only in a combinatorial way which usually leads to high com-
putational costs [EHPM04]. However, the convergence speed can be increased by several
methods. One is to carry out random samples of measurement subsets in a way similar to
RANSAC. In this case, the main difference to RANSAC is the rating of an estimate. The ad-
vantage of the LMS method compared to RANSAC is that the LMS method does not require
a priori knowledge about the measurement variance (threshold values)[TM97].

4.2.5.3 Hough Transform

A very popular method in computer vision is the Hough Transformation [Hou62]. The param-
eter space is discretized and represented by an accumulator field. For each measurement all
possible parameters are determined that confirm the current measurement. The entries of the
accumulator field where the determined parameters fall in are then incremented. The optimal
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estimate is expected to be one of the peaks (local maxima) in the accumulator field. Usually,
the peaks are found via clustering techniques [Zha95]. The breakdown point of the Hough
transformation depends on the discretization level, and can almost reach 50% [GZ05].

Nevertheless, the determination of all parameters for each measurement, confirming the
current measurement, is not trivial for complex or high-dimensional models. And even the
straightforward method of iterating through all entries of the accumulator field is insufficient
for high-dimensional models. Another drawback is that this method requires discretization in
the parameter space, which usually leads to limited accuracy.

However, this method is very efficient for low-dimensional parameter spaces and simple
models. In the context of this thesis, Hough transformation is used for robust line detection
(see section 5.5.1.1)..

4.2.5.4 M-Estimators

The main method used in this thesis for outlier treatment is the class of the so-called maximum

likelihood type estimators or M-Estimators [Hub81], as it can be integrated into a least squares
estimation. In general, M-Estimator have a breakdown point of 0%. In practical applications,
however, where a good initial guess is given or the outlier rate is moderate, M-Estimators
provide a good trade-off between robustness and efficiency.

As the residuals of most outliers are large compared to the residuals of correct measure-
ments, M-Estimator suppress measurements with large residuals.
The cost function (4.80)

f (x) =
1

2

m∑
i=1

r2
i

is replaced by another function of the residuals to limit the impact of outliers.

f (x) =
m∑

i=1

ϕ(ri) (4.131)

where ϕ is a symmetric positive definite function with an unique minimum at 0 and is less
increasing than square. The minimum of the new cost function is determined by setting its
first derivative to 0.

∑m
i=1 ψ(ri)

∂ri

∂xj
= 0 for j = 1, . . . , n (4.132)
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The derivative ψ (r) = ∂ϕ(r)
∂r

is called influence function.
By defining the weight function as

w (r) =
ψ (r)

r
(4.133)

above equation (4.132) becomes:

∑m
i=1w

(
r
(k−1)
i

)
ri

∂ri

∂xj
= 0 for j = 1, . . . , n (4.134)

This can be formulated as an iterated reweighted least squares problem with following cost
function:

f (x) =
1

2

m∑
i=1

w
(
r
(k−1)
i

)
r2
i (4.135)

The weights w
(
r
(k−1)
i

)
are calculated from the residuals of the previous iteration k − 1.

Writing this in matrix form with the diagonal weight matrix W
(
Wii = w

(
r
(k−1)
i

))
, the cost

function can be written as:

f (x) =
1

2
rTWr (4.136)

and the estimate can be found using one of the nonlinear weighted least squares method de-
scribed in previous sections.

Weight Functions

A variety of weight functions are designed and tested for different purposes [Zha95]. In the
computer vision community, the M-Estimators by Tukey [FW77] and Huber [Hub81] are used
commonly and will be introduced in this section. Further on, we will present a new weight
function, that changes its shape in each iteration.
Tukey uses the following function:

ϕ (x) =


a2

6

(
1−

[
1−

(
x
a

)2]3) for |x| ≤ a

a2

6
for |x| > a

(4.137)

69



Chapter 4 State Estimation

with corresponding weight function:

w (x) =


[
1−

(
x
a

)2]2 for |x| ≤ a

0 for |x| > a

(4.138)

Measurements whose residuals exceed the threshold value a are completely eliminated. A less
restrictive function is proposed by Huber [Hub81].

ϕ (x) =


x2

2
for |x| ≤ a

a
(
|x| − a

2

)
for |x| > a

(4.139)

The corresponding weight function is given by:

w (x) =


1 for |x| ≤ a

a
|x| for |x| > a

(4.140)

Huber’s weight function does not eliminate the influence of outliers completely, but reduces
their impact from a quadratic influence to a linear one. However, the disadvantage of this
weight function is that the final estimate is still corrupted by the outliers, even if their influence
is limited.
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Figure 4.2 Commonly used weight functions: ϕ (x) and weight function w (x) for least
squares (left), Tukey (center) and Huber (right)

70



Section 4.2 Non-Linear Least Squares Estimation

Proposed weight function

We propose a weight function which has been used successfully in the update stage of the
Incremental Camera Calibration module. It has been shown to generate very reliable results
in our experimental evaluations.
The function is specified by the parameters a and b.

w (x) =
1(

|x|
a

)b

+ 1
(4.141)

Parameter a specifies the value of x where the weight function becomes 0.5 and is comparable
to the parameters of above weight functions, whereas parameter b indicates the gradient of the
curve at x = a. For b = 2, above weight function is equivalent with Cauchy’s weight function
(see [Zha95]).
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Figure 4.3 Proposed weight function for different parameters a and b: from left to right b = 2,
b = 4, b = 10; from top to bottom a = 1, a = 2, a = 4

The main idea is to select a small b at the beginning and to increase it in each iteration. In
the first iterations the weight function is less restrictive and is comparable to Huber’s function.
I.e. measurements with large residuals are not eliminated completely. Since the state vector is
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estimated more and more accurately in each iteration, the weight function gets more and more
restrictive. In the final iterations, the influence of outliers is almost completely eliminated,
while all inliers are weighted almost equally. The initial value and the increment of b can
be selected dependent on the application. In the update stage of the camera tracking task, an
initial value of 2 and an increment by 2 provided robust results.

The rows in figure 4.3, for example, show the weight function for the first, second and 5th
iteration for different clipping factors a.

Clipping factor a

The above weight functions need to be parameterized with a clipping factor a, which leads to
another problem: How should a be selected?

An intuitive way of selecting a is to scale it with the standard deviation σr of the residuals.
For example, a is selected to be a = 4.6851 ·σr for Tukey’s weight function and a = 1.345 ·σr

for Huber’s weight function [Zha95]. For the proposed weight function, the clipping factor
was selected to be 2σr , which worked reliably in the context of this thesis.

The scale σr must be provided a priori from the analysis of the sensor or the process from
which the measurements were obtained. In most cases, however, σr is unknown and must
be estimated from the measurements. Determining σr by the empirical variance is infeasible,
since outlier have a strong impact on σ̂r. Thus, the estimate of σr must be robust as well.

Robust Estimation of σr

A robust estimate for σr is given by

σ̂r = 1.4826 ·median (|ri|) (4.142)

Intuitively, this can be explained as follows: Since the residuals ri are assumed to be normally
distributed, r2

i

σ2
r

are supposed to be χ2
1 distributed with one degree of freedom. Like the 50%

quantile of the χ2
1 distribution, the median separates the residuals into two parts with equal

size. And since the median is very robust against outliers, this equality is used to obtain a
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robust estimation of σr.

median

(
r2
i

σ2
r

)
= χ2

1;0.5

median (r2
i )

σ2
r

= 0.454936

σ2
r =

median (r2
i )

0.454936

σ̂r =
median (|ri|)

0.67449
= 1.4826 ·median (|ri|) (4.143)

The following robust estimate compensates for the effects caused by small data sets [Rou87]:

σ̂r = 1.4826 ·
(

1 +
5

m− n

)
·median (|ri|) (4.144)

4.3 Maximum Likelihood Estimator

The above methods define the optimal estimate as the one which minimizes the variance of
the estimate. The Maximum Likelihood or ML estimator defines the optimal estimate as the
one which maximizes the likelihood of the observations.

Let p (z|x) denote the likelihood of the observations, then the ML estimate is given by:

x̂ = arg max
x

p (z|x) (4.145)

Assuming Gaussian measurement errors in z with covariance matrix Σzz the likelihood func-
tion is given by:

p (z|x) =
1√
|2πΣzz|

e−
1
2
(Hx−z)T Σ−1

zz (Hx−z) (4.146)

Since the natural logarithm is a strictly monotonic increasing function, the maximizer of the
likelihood function is identical to the maximizer of the log likelihood and therefore identical
to the minimizer of the negative log likelihood.

x̂ = arg max
x
−1

2
(Hx− z)T Σ−1

zz (Hx− z)− 1

2
ln |2πΣzz|

= arg min
x

1

2
(Hx− z)T Σ−1

zz (Hx− z) +
1

2
ln |2πΣzz|

The factor 1
2

and the term ln (|2πΣzz|) are independent of x, thus have no influence on the
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minimizer3, and can be removed.

x̂ = arg min
x

(Hx− z)T Σ−1
zz (Hx− z)

The resulting estimator minimizes the Mahalanobis distance of the residual vector and is the
same problem as described in section 4.1.2. Thus the Maximum Likelihood estimate for Gaus-
sian measurement errors is equivalent to the Gauss-Markov estimate for arbitrary distributions.

4.4 Maximum A Posteriori Estimator

If a priori information about the system state in form of a pdf p (x) is available, the posterior
distribution of x can be determined by applying Bayes’ Rule.

p (x|z) =
p (z|x) p (x)

p (z)
(4.147)

The Maximum A Posteriori or MAP estimation estimates the mode of this posterior distri-
bution. As the denominator on the right hand side is independent of x, it can be removed from
the equation and the MAP estimation is given by

x̂ = arg max
x

p (z|x) p (x) (4.148)

If the a priori density p (x) is assumed to be uniform, thus infinitesimally small but constant,
the above estimate is independent of p (x) and the estimator coincides with the Maximum
Likelihood estimator (see section 4.3).
If all quantities are assumed to be Gaussian, the equation can be explicitly written as:

x̂ = arg max
x

1√
|2πΣzz|

e−
1
2
(Hx−z)T Σ−1

zz (Hx−z) 1√
|2πΣx̃x̃|

e−
1
2(x−x̃)

T
Σ−1

x̃x̃ (x−x̃) (4.149)

Using the negative log likelihood and removing constants leads to the following estimator:

x̂ = arg min
x

f (x) (4.150)

with

f (x) =
1

2
(Hx− z)T Σ−1

zz (Hx− z) +
1

2
(x− x̃)T Σ−1

x̃x̃ (x− x̃)

3but they influence to the minimum
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Another advantage of using the negative log likelihood is that the product of probabilities,
which can get close to zero, becomes a sum and therefore is numerically more stable.

The necessary conditions for a minimum of the above term are given by equations (4.10)
and (4.11).

∂f

∂x
= HT Σ−1

zz (Hx− z) + Σ−1
x̃x̃ (x− x̃) = 0

=
(
HT Σ−1

zz H + Σ−1
x̃x̃

)
x +HT Σ−1

zz z + Σ−1
x̃x̃ x̃ = 0 (4.151)

∂2f

∂x2
= HT Σ−1

zz H + Σ−1
x̃x̃ > 0 (4.152)

Assuming that we have positive definite covariance matrices and that H has full rank, the
sufficient condition (4.11) is met.

Thus the MAP estimate for Gaussian quantities is equivalent to the Minimum Variance esti-
mator for arbitrary distributions as described in section 4.1.3. Therefore, the relation between
Gauss-Markov estimator and Minimum Variance estimator also holds between the Maximum

Likelihood estimator and the MAP estimator: The MAP estimate coincides with the Maximum

Likelihood estimate, if the prior is non-informative (i.e. Σx̃x̃ →∞).

4.5 Bayesian Filters for Gaussian Quantities

In section 4.4 we have used Bayes’ Theorem to derive the MAP estimator. Bayesian Filters

are a general class of recursive estimators based on Bayes’ Theorem that will be introduced in
this section. The main idea is to estimate the posterior probability density over the state space,
given all measurement data [Ast65].

Let the posterior pdf of current estimate x̂t be denoted by

Bel(x̂t) = p (x̂t|z1:t,u1:t)

= p (x̂t|zt, z1:t−1,u1:t) (4.153)

By applying Bayes’ Theorem, we obtain:

Bel(x̂t) =
p (zt|x̂t, z1:t−1,u1:t) p (x̂t|z1:t−1,u1:t)

p (zt|z1:t−1,u1:t)
(4.154)
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Using the Markov or Complete World assumption (4.1), we get:

Bel(x̂t) =
p (zt|x̂t) p (x̂t|z1:t−1,u1:t)

p (zt|z1:t−1,u1:t)
(4.155)

The pdf p (x̂t|z1:t−1,u1:t) on the right hand side is the predictor for the current state and is
called the time evolution or time update stage. As no new measurements are available for this
step, this must be done with the system or motion model (4.2), which is denoted by:

p (x̂t|x̂t−1,ut) (4.156)

and we get:

p (x̂t|z1:t−1,u1:t) =

∫
p (x̂t|x̂t−1, z1:t−1,u1:t) p (x̂t−1|z1:t−1,u1:t) dx̂t−1 (4.157)

which is known as the Chapman-Kolmogorov equation. Intuitively, it can be understood as
the sum of the probabilities of all paths from the last estimate to the current estimate over the
motion model.

As the Markov assumption also states that the best predictor of the current state is given by
the previous estimate x̂t−1 and current control ut, we get the final recursive form:

Bel (x̂t) =
p (zt|x̂t)

p (zt|z1:t−1,u1:t)

∫
p (x̂t|x̂t−1,ut) p (x̂t−1|z1:t−1,u1:t) dx̂t−1

= ηp (zt|x̂t)

∫
p (x̂t|x̂t−1,ut) p (x̂t−1|z1:t−1,u1:t) dx̂t−1

= ηp (zt|x̂t)

∫
p (x̂t|x̂t−1,ut)Bel (x̂t−1) dx̂t−1 (4.158)

with η being a normalizing constant.

Given the recursive character of the Bayes Filter, it is obvious that a prior distribution
Bel (x̂0) is required. If no such initial guess is available, one can provide an arbitrary esti-
mate with a very large uncertainty (covariance matrix). In this case, however, the first reliable
estimate can be determined after n independent measurements, n being the dimension of the
state vector.

4.5.1 Linear Kalman Filter

Gaussian Bayes Filters assume that all quantities are normally distributed and can be rep-
resented by their mean and covariance matrix. The Kalman Filter belongs to the class of
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Gaussian Bayes Filters.

Bel(x̂t) = N (x̂t; x̄t,Σx̂tx̂t) (4.159)

Since the convolution and product of two Gaussians is again a Gaussian, the time update and
measurement update deliver normally distributed random variables [Pri].

Assuming linear motion and observation models, (4.3) and (4.4), the prediction stage is
given by equations (4.75) and (4.76), whereas the measurement update stage is given by equa-
tions (4.77)-(4.79).

The Linear Kalman Filter algorithm is given by algorithm 4.6.

Algorithm 4.6 Linear Kalman Filter

Require: < x̂, P̂ > % prior distribution
1: loop
2: if time update then
3: x̃← Ax̂ +Bu
4: P̃ ← AP̂AT +R
5: else if measurement update then
6: K ← P̃HT

(
HP̃HT +Q

)−1

7: x̂← x̃ +K (z −Hx̃)
8: P̂ ← (In −KH) P̃
9: end if

10: end loop

4.5.2 Extended Kalman Filter

The classical Kalman Filter (LKF) assumes linear motion and observation models. However,
in most applications, neither the motion model nor the observation model are linear. For ex-
ample, in the context of this thesis, where camera parameters have to be estimated by using
images taken from a camera, the mapping of measurements from the image to the parameter
space is obviously not linear.

To overcome this problem, Jazwinski proposed the Extended Kalman Filter (EKF) [Jaz70].
Nonlinear mappings are approximated by the truncated Taylor expansion as described in (2.15)
to propagate uncertainties.
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The time update stage becomes:

x̃t = g(x̂t−1,ut) (4.160)

P̃t = Gtx̂t−1G
T
t +R (4.161)

and the measurement update stage becomes:

Kt = P̃tH
T
t

(
HtP̃tH

T
t +Qt

)−1

(4.162)

x̂t = x̃ +Kt (zt − h(x̃t)) (4.163)

P̂t = (In −KtHt) P̃t (4.164)

with G and H being the Jacobian of the motion model and observation model respectively.

As mentioned in section 2.3.1.2, the quality of the approximation strongly depends on the
linearity of the transformation function around the seed value. If the function has high cur-
vature at the seedpoint, the propagation is inaccurate and therefore the estimate can be far
from the true state. By using second or higher order terms in the Taylor expansion, more
accurate estimates can be achieved. These Kalman Filters are called second order or higher
order Kalman Filter (HKF) [BSF88]. Since the computational costs compared to the accuracy
increase inadequately with the use of higher order terms, HKFs are used rarely [LBS01].

4.5.3 Iterative Extended Kalman Filter

The EKF gets inaccurate, if the transformation functions have high curvature. This drawback
can partly be removed by the Iterative Extended Kalman Filter, which makes a better tradeoff
between accuracy and efficiency than HKFs. The key idea is the same as for nonlinear least
squares methods, described in section 4.2. Unlike the EKF, which linearizes and determines
the estimate in the update stage only once, the IEKF repeats the update stage several times.
In each iteration, the observation model is linearized around the previous estimate and a new
estimate is determined.

As the measurement update stage coincides with a nonlinear MAP estimation [BSF88,
Jaz70, Gel74], the updated state vector can be determined by a nonlinear least squares method
as described in section 4.2.

In the context of this thesis, the IEKF is used to track the camera parameters during a soccer
game. The MAP estimation is determined by an extended version of the weighted Gauss-
Newton method to overcome outliers in the measurements.
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4.6 Conclusion

In this chapter we provided a survey about commonly used parameter estimation techniques.
Particularly, we introduced several linear and nonlinear least squares estimator, and compared
them to other approaches. It was shown, that the minimum variance estimator for arbitrary
distributions is equivalent to the MAP estimator for gaussian distributions. Hence, the Kalman
filter can be derived as the recursive linear least squares estimator [BS89, Fau93, Sor70, Sor80]
for arbitrarily distributed errors, or as a gaussian Bayes filter [BSF88, BP99, TBF05] for nor-
mally distributed errors. Therefore, if the errors are normally distributed, the Kalman filter
gives the MAP estimate, but at least the minimum variance estimate if the errors are not nor-
mally distributed.

Furthermore, we presented several robust methods and proposed a new weight function for
the so-called M-Estimators, which has shown to work reliable in the context of this thesis.
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Chapter 5 Camera Tracking

The main subject of this thesis is the automatic initialization and robust tracking of camera
parameters (camera calibration) in soccer video streams from TV broadcasting cameras.

Camera calibration determines the parameters of a camera model that best describe the
mapping of a physical camera. As the image formation process maps the 3-D world to a 2-D
image, information is lost and the inverse transformation can not be uniquely determined from
a single image without a priori knowledge. In camera calibration this a priori knowledge
is usually provided by the model of a mapped object in the image. To obtain the camera
parameters, a set of known real world features and corresponding projections in the image
have to be identified. However, in TV broadcasts the cameras are not accessible or controlable
and the only available data is the video stream captured by the camera of interest, which makes
standard calibration methods infeasible.

In the case of soccer, the field provides a set of markings, which are specified by the official
soccer rules [FIF07] and provide a good feature to carry out camera calibration. Unfortunately,
the field size may vary from stadium to stadium, as it is not completely specified by the official
FIFA regulations [FIF07] and must be estimated also.

Estimating all parameters repeatedly for every frame is unreliable, inefficient and unnec-
essary, as most parameters stay almost constant throughout the whole game. TV cameras are
usually attached on tripods around the field at a height of 8m − 20m and are fixed in their
position, while they are actively rotating and zooming to track the game. The main camera is
placed on the center of the main stands, whereas the other two major cameras are shifted along
the main stands to cover the goal areas. In some cases, the so-called Tactical cameras are used
to cover large areas of the field and are placed behind the goals at a large height.

In the context of this thesis, we will consider only the above described camera configura-
tions. This allows to make reasonable assumptions to break down the complex task of camera
calibration into smaller and easier manageable subproblems. This assumptions and simplifi-
cations are described in the following.

The camera is approximated by a pinhole camera model with radial distortion described by
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only one coefficient and has rectangular pixel elements. Furthermore, it is assumed that the
only changing parameters during the game are the camera’s pan and tilt angles and its focal
length, which will be called dynamic parameters from now on. All other unknown parameters,
called constant parameters, are assumed to be constant during the whole game and can be
determined once beforehand. These simplifications are reasonable, as the effects caused by
them are negligibly small.

For example, it is not guaranteed that the camera center lies on both rotation axes. A rotation
would cause a displacement of the camera center, and considering the size of typical TV
cameras, this displacement could be up to 70cm for a 180◦ rotation. However, as the mapped
objects (field and player) have a large distance to the camera compared to its focal length,
the parallax effects caused by the displacement are negligibly small. Also the principal point
and the radial distortion may change while zooming. However, since the principal point has
a small impact to the parameter estimation [KH90, KH94], and the radial distortion of TV
cameras are usually very small, we can also neglect these effects.

By using the above assumptions the problem is divided in two stages consisting of interact-
ing modules. In the first or the pre-game stage, all constant parameters and color information
are determined by a mostly automatic process before the game. These information are pro-
vided to the modules in the second stage, where the dynamic parameters are estimated during
the game. Due to this breakdown, the tracking task achieves high efficiency as well as high
reliability, as its state space is reduced considerably.

The modules and their interactions between each other are depicted in figure 5.1.

Video Stream Parameter
Camera

Camera Tracker

During the game

Pre−Game

scene
new

rejected
scene

Color Calibration
Constant Parameter

Estimation

parameters

Camera Tracker

Scene Iterator

Initial Parameter Estimation Iterative Camera Calibration

slow−motion detection

shot−cut detection

shot−cut detection

Figure 5.1 The camera tracking system

• The Color Calibration module is executed during initialization and therefore belongs to
the pre-game stage. It determines automatically the color of the field and provides this
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information to the other modules.

• The Constant Parameter Estimation determines all necessary parameters, which stay
constant during the game and is also performed beforehand. The estimated parameters
are: the principal point, pixel size, position and roll angle of the camera, and field size.

• The Scene Iterator segments the video stream into small sequences or video segments

at shot boundaries. It iterates successively through all video segments and filters out of

field views, close up views and slow motion replays. Segments which are classified as
fieldview, excluding slow motion replays, are passed to the Initial Parameter Estimator.

• The Initial Parameter Estimator estimates the initial dynamic parameters (pan, tilt,
zoom) for each new video segment from extracted image lines. If the image lines are
inconsistent with the expected projections of the model lines, the video segment is re-
jected and the Scene Iterator searches for the next suitable sequence. Otherwise, the
initial parameters are passed to the Iterative Camera Calibration, which successively
estimates the camera parameters for the whole sequence.

• The Iterative Camera Calibration estimates successively the dynamic parameters until
a shot boundary is detected. This is efficiently done by using a modified version of the
Iterated Extended Kalman Filter. After a shot boundary is detected, this module returns
the control to the Scene Iterator, which searches for the next suitable sequence.

5.1 Environment Model

The environment model is essential for the camera calibration and tracking tasks, as it de-
scribes the only reliable features in real world coordinates.

It describes the soccer field and consists of 2D curves separating regions which differ in
color distribution. A field curve is characterized by a two-dimensional curve function describ-
ing the shape of the curve, and a color transition describing the color distributions on both
sides of the curve.
We distinguish between the following three types of field curves.

• Field lines represent the white markings which are completely specified by the official
FIFA regulations [FIF07] and therefore are the most reliable features. They are described
by two parallel edges at a distance of 12cm (line width) and separate the line color
between both edges from the field color.
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• Field edges describe the outer boundary of the field and separate the field from the
banner; thus they usually separates field color from non-field color.

• Lawn lines do not belong to the official regulations, but are used in most games as
supporting lines for the referees. They are purposely caused by the lawn mower, have
usually a distance of 3 − 6m to each other and separate brighter regions from darker
ones.

The necessary features used by all modules are the field lines, whereas the latter two features
are optional and are used only by the Iterative Camera Calibration module if specified by the
user. As the visibility of Lawn Lines depends on the perspective, each camera is associated to
an own field model.

The field model with its known metrics is depicted in figure 5.3. Projections from different
perspectives of the field model are shown in figure 5.2, where Field edges are displayed as
blue lines, Lawn lines as green lines and Field lines are depicted as black lines. Red lines
show features which are important for the Constant Parameter Estimation module, but are not
used during the tracking task.

The world coordinate system is right-handed and defined as follows.

• The origin coincides with the center mark of the field.

• The z-axis is parallel to the normal of the play ground, and is faced upwards.

• The y-axis is parallel to the center line (or halfway line), and is directed away from the
main camera.

Straight lines, which are parallel to the y-axis are referred as vertical model lines, whereas
straight lines which are parallel to the x-axis are called horizontal model lines.

Figure 5.2 Projections of the used field model.
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Figure 5.3 Field model with its known metrics. Taken from [Pro06]

5.1.1 Curve Model

All field curves are described by the parametric functions w (s) ,n (s) and d (s) with the
parameter 0 ≤ s ≤ 1, where the start of the curve is given by s = 0 and the end by s = 1.
For a given value of s the corresponding homogeneous 2D-point on the field plane w (s),
its normal n (s) and direction d (s) can be obtained in world coordinate system (WCS). The
normal is always directed to the left side of the curve (direction).

w(s=0)
w(s=1)

w(s=0.5)

n(s=0.5) d(s=0.5)

Figure 5.4 Model curve defined by the parametric functions w (s) ,n (s) and d (s): The scalar
s specifies an individual point, its direction and its normal on this curve.

Straight Lines

A straight line is specified by its startpoint wb and its endpoint we. The position of an inter-
mediate point can be simply determined by linear interpolation between both endpoints.

w (s) = we · s+ (1− s) ·ws (5.1)
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The direction d and normal n of the curve at point w (s) are independent of s and are given
by:

d =
we −ws

‖we −ws‖
n =


−dy

dx

0

 (5.2)

Arcs

The circle in the center of the field and the arcs at the penalty areas are described by circular
arcs. A circular arc is specified by its center point wc, radius r, start angle τ and opening angle
δ. Intermediate points on the arc are determined by linear interpolation of the angle.

w (s) = wc + r ·


cos (τ + s · δ)

sin (τ + s · δ)

0

 (5.3)

The normal and direction to the corresponding intermediate point w (s) are given by:

n (s) =


− cos (τ + s · δ)

− sin (τ + s · δ)

0

 d (s) =


− sin (τ + s · δ)

cos (τ + s · δ)

0

 (5.4)

5.1.2 Color Model

Color information is necessary for reliable feature detection. In the context of this thesis only
the field color is of interest, which is used to segment image regions which belong to the field
(color segmentation) and for reliable correspondence search.

For efficiency reasons, color classes are represented by a mixture of Gaussian (MoG) in
the RGB161 colorspace and are completely specified by a set of mean values and corre-
sponding covariance matrices. This reduces the number of entries in the lookup table from
224 = 16777216 to 216 = 65536. A pixel can be classified to belong to the field color with a

1The RGB16 colorspace uses 6 bits for the green channel and 5 bits for the blue and red channel respectively.
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given level of confidence by considering its Mahalanobis distance to the color class (see sec-
tion 2.3.3). For multimodal distributions the Mahalanobis distance is defined to be the mini-
mum Mahalanobis distance to all Gaussians in the color class.

In most cases the field color can be approximated with sufficient accuracy by just one Gaus-
sian, and therefore can be determined automatically. Examples where the field color can not be
represented by one Gaussian are given in figure 5.5. In these cases automatic color calibration
is infeasible and must be done manually.

For efficiency reasons lookup tables for the Mahalanobis distance and the probability den-
sity are precalculated for all 65536 possible colors values. As the appearance of colors may be
different for each camera, each camera is associated with its own lookup table.

Figure 5.5 Multimodal color distribution: high contrast (left) and cast shadows (right)

5.1.2.1 Automatic Color Calibration

If the field color can be represented accurately enough by one Gaussian, it can be detected
automatically from multiple images. For uncut video streams arbitrary images can be used,
but in case of video streams of TV broadcasts the user must ensure that the images are from
the camera of interest, as the appearance of the color may be different for each camera.

In soccer a large area of the image is covered by the field. And as the field is almost un-
textured (i.e. the field is almost homogeneous), we suppose that large homogeneous regions
belong to the field.
The automatic color calibration is performed by following steps:

• Regions with homogeneous gray values are detected.

• Regions connected by small links are separated by morphological opening.
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• Smaller regions, or regions which appear only on the image border are eliminated.

• The color values of all pixels within the remaining regions are used to determine the
field color.

Detecting homogeneous regions

A pixel belongs to a homogeneous region if an inhomogeneity measure is below a threshold.
In the context of this thesis, the inhomogeneity measure of a pixel is defined to be the variance
of the gray values of its neighborhood. The neighborhood of a pixel is defined to be a 11 ×
11 rectangular area (window) around the pixel. Figure 5.6 depicts the original image with
corresponding variance image.

Figure 5.6 Variance image: original image (left) and variance image for a 11 × 11 neighbor-
hood (right)

The variance image is determined very efficiently by using the integral images from the
gray values and squared gray values. The integral images are recursively defined by:

Ii (x, y) = Ii (x− 1, y) + Ii (x, y − 1)− Ii (x− 1, y − 1) + I (x, y)

Is (x, y) = Is (x− 1, y) + Is (x, y − 1)− Is (x− 1, y − 1) + (I (x, y))2 (5.5)

where I (x, y) denotes the gray value of the picture element at position (x, y) in the original
image. Ii (x, y) and Is (x, y) denote the according entry of the integral of the gray values and
integral of the squared gray values respectively. The intensity values for all pixels beyond the
image border are supposed to be 0.

Using equation (2.12) to determine the variance of a pixel p at (x, y), the calculation reduces
to a couple of additions, subtractions and one multiplication, as the integral images are scaled
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p = p̄2 − p̄2 (5.6)

Note that p̄ and p̄2 indicate the mean of all gray values and squared gray values within the
window respectively. σ̂2

p is simply the sample variance of the gray values within the window
(see equation (2.12)).

To identify pixels with homogeneous neighboorhood, the variance image is binary thresh-
olded. Empirically, we discovered that a threshold value of 3σ, with σ being the standard
deviation of the inhomogeneity values, works reliable to segment homogeneous regions. To
estimate σ we select randomly 1000 entries from the variance image and determine their vari-
ance according to equation (4.143).

In the next step, a morphological erosion is performed to separate regions that are connected
by small links. Then all regions which appear only on the border of the image or their areas are
below a threshold are filtered out. The threshold value for the minimum area is set to 10% of
the total image size. A region is defined to be at the border, if it does not intersect a rectangle
of half size of the image, placed at the image center.

Figure 5.7 Homogeneous regions: homogeneous regions (left) and thresholded (right)

2w denotes the window size and is in our case 11
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Finally, the color values of all pixels within the remaining regions are used as samples to
determine the field color class. Figure 5.8 shows the point cloud, representing the sample color
values in the RGB16 space of above example.

Figure 5.8 Field color samples in the RGB16 color space: red-green plane (left), blue-red
plane (center) and blue-green plane (right)

Figure 5.9 shows the ellipsoid, representing the color values classified as field color in the
RGB16 color space with a maximum Mahalanobis distance of 4 (confidence level of 99.9%) 3

The colored points in the point cloud indicate the occurrence of these colors in the sample set
which was used to generate the color class.

Figure 5.9 Classified colors as field color in the RGB16 color with Mahalanobis distance of
4: red-green plane (left), blue-red plane (center) blue-green plane (right)

The classification result for Mahalanobis distance of 2 (confidence level of 74.9%) can be
seen in figure 5.10.

3This value means, that 99.9% of all colors belonging to the field color class are within this ellipsoid.
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Figure 5.10 Color classified image with Mahalanobis distance of 2.

5.2 Objective Functions

Model-based state estimation determines the parameters of the model that best fits to the ob-
servation (the image). The fitness of an estimate is obtained by the objective or cost function
that returns an error e. Some objective functions based on correspondences between image
points and model points/lines will be presented in this section.

A correspondence D is a three tuple containing the model point/line, the corresponding
image point and its uncertainty (i.e. 2× 2 covariance matrix).

D =< w,p,Σpp > (5.7)

The methods for finding the actual correspondences are described in the according sections in
detail (see sections 5.4.1.2 and 5.6.2).

5.2.1 Objective Functions from Point-Point Correspondences

This is the only objective function providing two error values per correspondence. These are
the x- and y- differences between the projected model point and the corresponding image point
(see figure 5.11(a) ). For each model point w = (wx, wy, wz, 1)T with proper projection q =

(qx, qy, 1)T and corresponding image point p = (px, py, 1)T , both error values are evaluated as
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the x and y differences of p and q.

ept =

px − qx

py − qy

 (5.8)

Alternatively, the distance of the 3D-model point in camera coordinate system c to the line of
sight of p can be used (see figure 5.11(b) ). The line of sight of a point p in camera coordinate
system (CCS) is defined to be:

K−1p (5.9)

with K being the camera matrix (see section 3.1.3) and the distance can be determined by the
cross product

e =
(K−1p)× c

‖K−1p‖
(5.10)

with c = R̃t ·w (see section 3.1.1).

However, this error function provides just one error value per correspondence and therefore
the minimum number of necessary correspondences increases. In the context of this thesis,
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Figure 5.11 Objective functions: (a) error value of point-point correspondence in 2D, (b) error
value of point-point correspondence in 3D and (c) error value of point-line correspondence
in 2D.

the cost function ept is used in the Constant Parameter Estimation module and in the predic-

tion stage of the Iterative Camera Calibration module. The advantages of ept compared to e
are twofold. First, as mentioned above ept provides 2 error values per correspondence. This
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halves the number of required correspondences. Secondly, the uncertainties are obtained from
the image and given in pixel coordinate system. Therefore, they can be directly used as the
uncertainties of the corresponding error values.

5.2.2 Objective Functions based on 3D model lines

Two types of lines are considered in the context of this thesis, model edges and model lines.
As model lines are reduced to their medial axis, the differentiation between both line types is
only important for the determination of the corresponding image point and its uncertainty (see
section 5.5.1).

Each model line and image point correspondence provides only one error value. Let w be a
model point and q its projection on the image. Furthermore, let d be the normalized projection
of the direction of the curve at the model point w. The error value is given by the distance of
the image point p to the tangent defined by q and d (see figure 5.11(c) ).

eln = ‖d× (p− q) ‖ (5.11)

As d and (p− q) are vectors and their homogeneous components equal 0, their cross product
is perpendicular to the image plane and its length is equivalent to its z component. So, the
above equation can also be written as:

eln = dx · (py − qy)− dy · (px − qx) (5.12)

For straight lines, the tangent coincides with the projection of the line itself, but the determi-
nation of the tangent is necessary for arcs.

Alternatively, the distance can be determined by the use of the homogeneous representation
of the tangent l′. As the direction vector d is also the vanishing point of the tangent, both d

and q lie on the tangent and uniquely define it. The tangent l′ is obtained by a simple cross
product as follows:

l′ = d× q

=


dy

−dx

dx · qy − dy · qx

 (5.13)
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The error value is then given by the scalar product

eln = l′T p (5.14)

which again results in equation (5.12). Note, that the error value is the distance of point p

to the tangent l′ scaled by the normal length of the tangent, which is given by its first two
components. As we suppose to have a normalized direction vector d, the normal of the tangent
has unit length, and the error value eln is given by the distance.

5.3 Constant Parameter Estimation

Constant parameter estimation is done once at the beginning of each game. All relevant param-
eters which are assumed to be constant during the game are determined using multiple images
taken from the camera of interest. Constant parameters are camera position t̆c, roll angle β,
principal point (Cx, Cy), aspect ratio4 θ, radial distortion coefficient κ and field size (Fl, Fw).
The best results are achieved by using multiple images of both penalty areas and the center
circle with different focal lengths (particularly all corners of the field should be visible).

The user must provide correspondences between image points and model points. Supported
model points are the intersection points of field markings, the endpoints of the posts of the
goals, and the tips of the corner flags. All supported model points are printed as red dots in
figure 5.3.

Additionally, the user can provide a covariance matrix for the image points of the cor-
respondences. This is visually done by defining the uncertainty ellipse around the selected
image point. The resulting covariance matrices are determined from these ellipses [Pro06]. In
example depicted in figure 5.12, the uncertainty ellipses are specified as the red circles with
same radius, thus the overall covariance matrix is homoscedastic.

The actual calibration process for given point correspondences is two-staged. In the first
stage, closed form solutions for most parameters are determined by making some reasonable
assumptions. Finally, these parameters are used as an initial estimate for the nonlinear least
squares solution using the weighted Levenberg-Marquardt method as described in sections
4.2.4 and 4.2.4.1.

The idea is very similar to standard calibration methods, but the determined parameter sets
differ. Standard methods use a calibration pattern with known metrics and determine the con-

4Actually the pixel width is estimated. However, since the pixel height is provided by the user, we will present
the results in terms of the aspect ratio.
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stant but unknown intrinsic parameters of the camera. They assume, that the extrinsic parame-
ters are dynamic, so the multiple views of the pattern are taken from different poses. However,
we split the parameters into two different sets where some of the intrinsic and some of the
extrinsic are supposed to be constant. Additionally, we use the markings of the field instead of
the calibration pattern and have to estimate additionally some model parameters (field size) as
well.

5.3.1 Initial Estimation

The Levenberg-Marquardt estimation is a nonlinear iterative method and requires an initial
estimate, which is determined by a closed-form solution in projective space [Zha00].

As model points depend on the estimated parameters (field size) and can not be estimated
simultaneously in this initial stage, the field size is fixed to the mean value of 105m× 68.5m

[FIF07]. If the field size differs considerably from this mean value, it has to be provided by
the user.

The initial parameters are estimated in two steps. First, all views with a sufficient number
of correspondences are used to determine the camera’s position and its roll angle. Then the
dynamic camera parameters (pan, tilt and zoom) are determined for all views, by using the
estimated parameters from previous step.

5.3.1.1 Camera Position and Roll Angle Estimation

The camera projection matrix (see equation (3.11)) describes the transformation of points in
the world coordinate system (WCS) to points in the pixel coordinate system (PCS). As all
points lying on the field have a zero z component, the transformation is independent of the
third column of the rotation matrix and can be written in homogeneous coordinates as:

p ' K (r1, r2, t)︸ ︷︷ ︸
H

w′ (5.15)

with t = −R̆ct̆c, r1 and r2 being the first and second column vector of the camera rotation
matrix R̆c respectively and w′ = (wx, wy, 1)T . Note, that above equation is defined up to a
non zero scale factor λ, indicated by the projective equality'. The resulting projection matrix
H maps homogeneous points on the field plane to homogeneous points on the image and is
called planar Homography.

(h1,h2,h3) = λK (r1, r2, t) ; (5.16)
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with h1,h2,h3 being the three column vectors of H .

Given at least four non-collinear5 point correspondences of field points for each image, the
planar homography can be determined as described in [HZ03].

From each homography, two constraints on the intrinsic camera parameters can be derived
by the orthonormality property of the rotation matrix.

By multiplying K−1 on the left side, we get the following first and second column vectors:

K−1h1 = λr1 (5.17)

K−1h2 = λr2 (5.18)

Taking the square on both sides results in:

hT
1 ωh1 = λ2rT

1 r1 = λ2 (5.19)

hT
2 ωh2 = λ2rT

2 r2 = λ2 (5.20)

The matrix ω = K−TK−1 is called Image of the Absolute Conic (IAC) [HZ03] and has the
following structure for zero skew.

ω =


1
f2

x
0 − cx

f2
x

0 1
f2

y
− cy

f2
y

− cx

f2
x
− cy

f2
y

c2x
f2

x
+

c2y
f2

y
+ 1

 (5.21)

Since the scaling factor λ is unknown, we can derive the following two equations:

hT
1 ωh1 = hT

2 ωh2 (5.22)

h1ωh2 = 0 (5.23)

At least two planar homographies are required to determine all entries of ω and thus to deter-
mine the missing intrinsic parameters of the camera [Zha00].

Unfortunately, the focal length of the camera may be different for each image. This leads
to only two linear equations and we need additional constraints to reduce the number of un-
knowns. Naturally, we set the principal point to the image center as this is its expected position
and has the least impact on the projection [KH90, KH94]. Theoretically, this should be suf-
ficient to determine fx and fy, but the equation system is ill-conditioned, and the determined

5non-collinear means, that none three of them lie on a line, thus are not collinear

96



Section 5.3 Constant Parameter Estimation

results are infeasible in most cases. By additionally providing the aspect ratio (e.g. using the
camera specification, or setting the aspect ratio to 1, i.e. Sx = Sy (see equation (3.13))), leads
to an overdetermined equation system, and a reliable estimate of the last unknown intrinsic
parameter, the focal length f , can be determined by least squares.

Since the only remaining unknown is now the focal length f , the camera matrix can be
represented by equation (3.13) and all point features are transformed beforehand by the inverse
of Ka. All homographies are determined by these new point features and the camera matrix
simplifies to K := Kp. This leads to the following IAC:

ω =


1
f2 0 0

0 1
f2 0

0 0 1

 (5.24)

and equations (5.22) and (5.23) respectively become:

h2
11 + h2

21

f 2
+ h2

31 =
h2

12 + h2
22

f 2
+ h2

32 (5.25)

h11 · h12 + h21 · h22

f 2
+ h31 · h32 = 0 (5.26)

leading to the following least square solution:

f =

√
(h2

11 + h2
21 − h2

12 − h2
22)

2
+ (h11 · h12 + h21 · h22)

2

(h2
11 + h2

21 − h2
12 − h2

22) · (h2
32 − h2

31) + (h11 · h12 + h21 · h22) · (−h31 · h32)
(5.27)

After determining the focal length, the unknown scaling factor λ is simply found by the geo-
metric mean as follows:

λ =
√
λ1 · λ2 (5.28)

λ1 =
‖K−1h1‖
‖r1‖

= ‖K−1h1‖

λ2 =
‖K−1h2‖
‖r2‖

= ‖K−1h2‖

The rotation matrix is determined as:

R = (r1, r2, r3) ; (5.29)
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with

r1 =
K−1h1

λ1

r2 =
K−1h2

λ2

r3 = r1 × r2

Due to noise, R may not satisfy the orthogonality property of a rotation matrix. In a further
step, the final rotation matrix R̆c is obtained by the best orthonormal matrix in terms of the
smallest Frobenius norm to R [Zha00].

Finally, the rotation angles α, β and γ are determined using equation (2.7) and the transla-
tion vector is given by:

t̆c = −1

λ
R̆

T

c K
−1h3 (5.30)

If more than one view with sufficient correspondences is given, the initial values for the camera
position t̆c and roll angle β are determined by the average.
The average of angles δi, i = 1 . . . j̃ is obtained by:

δ̄ = atan2

 j̃∑
i=1

cos (δi) ,
n∑

i=1

sin (δi)

 (5.31)

with j̃ being the number of views with sufficient point correspondences. However, taking the
average of the position and the roll angle makes the dynamic parameters become inconsistent
with the so obtained position and roll angle. Therefore, the dynamic parameters are estimated
again in the next step.

5.3.1.2 Dynamic Parameters Estimation

Knowing the camera position t̆c and the roll angle β, the dynamic parameters can be estimated
by just two point correspondences. However, if more than two correspondences are available,
we use all combinations to calculate the parameters and take the average. First we determine
the focal length as the geometric mean of all combinations of two point correspondences.
After the focal length is determined, one point correspondence is sufficient to determine the
tilt and the pan angle of the camera. As at least two point correspondences are available, we
determine the angles for all point correspondences and take the average by (5.31).
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Estimating Focal Length from Two Point Correspondences

The focal length is determined from two point correspondences as follows. Let w1 and w2 be
two model points in world coordinate system (WCS) and p1 and p2 their corresponding image
points in pixel coordinate system (PCS) respectively.
Then

v̆1 =
w̆1 − t̆c

‖w̆1 − t̆c‖

v̆2 =
w̆2 − t̆c

‖w̆2 − t̆c‖
(5.32)

are the normalized vectors from the camera center to w1 and w2 respectively. The points w̆1

and w̆2 are the Euclidean counterparts of the homogeneous points w1 and w2 respectively.
The angle ϕ between both vectors is then given by:

cos (ϕ) = v̆T
1 v̆2 (5.33)

For a given image point p, the vector in camera coordinate system (CCS) describing the line
of sight for this point can be determined by:

q = K−1p (5.34)

Thus, if the camera matrix is known, the angle ϕ can also be obtained from the corresponding
image points as follows:

cos (ϕ) =
qT

1 q2

‖q1‖‖q2‖

=
pT

1K
−TK−1p2√

pT
1K

−TK−1p1

√
pT

2K
−TK−1p2

=
pT

1 ωp2√
pT

1 ωp1p
T
2 ωp2

(5.35)

Setting equations (5.35) and (5.33) equal, the focal length can be obtained as the solution of:

pT
1 ωp2√

pT
1 ωp1p

T
2 ωp2

= v̆T
1 v̆2 (5.36)
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The solution is given by:

f 2 =
2 · (d2 · a · b− c2)

2 · c− d2 · (a+ b) +
√

(d2 · (a+ b)− 2 · c)2 − 4 · (d2 · a · b− c2) (d2 − 1)
(5.37)

with

a = pT
1 p1 b = pT

2 p2

c = pT
1 p2 d = v̆T

1 v̆2

Estimating Pan and Tilt Angle from Single Point Correspondence

After the focal length is determined, the camera matrix is known and the projection can be
written as:

p = λKR̆cv̆

K−1p = λR̆cv̆

q = λR̆cv̆

The unknown scale factor λ can be removed by normalizing the left hand side, as the rotation
on the right hand side does not affect the length of v̆.

q′ = R̆cv̆ with q′ =
q

‖q‖

As q′, v̆ and the roll angle β are known, the pan angle γ can be determined using the first row
of the rotation matrix R̆c (see section 2.2.1) as follows:

cos (β) · cos (γ) · vx − cos (β) · sin (γ) · vy + sin (β) · vz = q′x

− cos (β) · vy︸ ︷︷ ︸
a

· sin (γ) + cos (β) · vx︸ ︷︷ ︸
b

· cos (γ) + sin (β) · vz − q′x︸ ︷︷ ︸
c

= 0 (5.38)

Reordering the terms and taking the square on both sides result in a quadratic equation.

−a · sin (γ) = b · cos (γ) + c

a2 ·
(
1− cos2 (γ)

)
= b2 · cos2 (γ) + 2 · b · c · cos (γ) + c2

0 =
(
a2 + b2

)
· cos2 (γ) + 2 · b · c · cos (γ) + c2 − a2 (5.39)
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Both solutions for cos (γ) are given by:

cos1,2 (γ) =
−b · c± a ·

√
a2 + b2 − c2

a2 + b2
(5.40)

and the four solutions for γ are given by:

γ1 = arccos (cos1 (γ)) γ2 = 2 · π − γ1

γ3 = arccos (cos2 (γ)) γ4 = 2 · π − γ3 (5.41)

As only two solutions meet the above equation (5.38), the remaining two solutions can be
eliminated. However, equation (5.38) just considers the x-coordinate of the rotated vector v̆.
By considering the z-coordinate as well, we can eliminate the last wrong solution as it lies
behind the camera, i.e. its z-coordinate is negative.

To determine z, we suppose that the roll angle is 0 and the tilt angle is π
2
, i.e. the horizon

goes through the image center and is parallel to the x-axis of the image. This reduces the
calculation efforts for the z-coordinate, and the constraint is given by:

sin (γ) · vx + cos (γ) · vy > 0 (5.42)

The angle satisfying above constraint is the unique solution for the pan angle γ.

The tilt angle α is determined in an analogous manner, by the use of the second row of the
rotation matrix. Both solutions for cos (α) are also given analogously to (5.40) with

a = sin (β) · cos (γ) · vx − sin (β) · sin (γ) · vy − cos (β) · vz

b = sin (γ) · vx + cos (γ) · vy

c = −q′y (5.43)

The three wrong solutions are eliminated in the same manner by determining the y and the
z-coordinates of the rotated vector v.

Figure 5.12 shows the initial estimates for four images with used correspondences (red
circles). The projected field models depicted in figure 5.12 show the accuracy of the initial
estimates.
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Figure 5.12 Constant Parameter Estimation: Initial estimates determined from point corre-
spondences (red dots)

5.3.2 Final Estimation Using Least Squares

After finding the initial estimate, the final parameters are found by the weighted Levenberg
Marquardt method by using the objective function from equation (5.8) (see section 4.2.4).

The parameter vector x can be split into two groups. The first group are the constant
parameters, which are shared by all views, and the second group contains the dynamic pa-
rameters, which are view specific. The constant parameters are the position of the camera
t̆c = (tx, ty, tz), the roll angle β, the aspect ratio θ, the principal point (Cx, Cy), the radial
distorion coefficient κ and the field size (Fl, Fw). The dynamic or view specific parameters
are the pan angle γ, the tilt angle α and the focal length f . Thus, for j views the state vector x

has the dimension n = 3j + 10.

It is possible to manually fix some constant parameters to predefined values and exclude
them from the estimation process. In this case we get less unknowns and the estimation of the
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remaining parameters gets more robust. This is sometimes done for the principal point or the
field size, if the estimation process is performed with a moderate number of views.

The accuracy and robustness can be improved by specifying also correspondences which
do not lie on the field plane. The only known model points which do not lie on the field plane
are the corners of the posts of the goals. The tips of the corner flags can be used as well, but as
their height is not specified completely by the official regulations [FIF07], these are not very
reliable features.

Although the order of the parameters in the parameter vector is not important, we separate
them for better understanding as shown below.

x =
(
ΦT

0 |ΦT
1 , . . . ,Φ

T
j

)T
(5.44)

with

Φ0 = (tx, ty, tz, β, θ, Cx, Cy, κ, Fl, Fw)T

Φi = (αi, γi, fi)
T for 1 ≤ i ≤ j

Let suppose the view i contains mi point correspondences. Then the measurement vector zi

is 2mi dimensional containing the coordinates of the image points p̆i. As the measurements
within a view are supposed to be independent, the 2mi × 2mi covariance matrices Σi have a
diagonal block structure, containing the 2× 2 covariance matrices of the image points.

The measurements of each view are independent as well, and the covariance matrix of the
stacked measurement vector

z =
(
zT

1 , z
T
2 , . . . ,z

T
j

)T ∈ Rm (5.45)

has also a diagonal structure containing 2× 2 matrices.

Σzz = diag (Σ1,Σ2, . . . ,Σj) ∈ Rm×m (5.46)

with m =
∑j

i=1 2mi

The task is now to find the nonlinear least squares solution x̂ given the measurement vector
z, its covariance matrix Σzz and the observation model h.

z = h (x) (5.47)

h (x) contains the projections of the model points for the parameters x and the entries of z

contain the corresponding image points. Note that if the field size is estimated simultaneously,
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the model points depend on the field size and h (x) is not just the projection of a constant
model point.

The final estimate x̂ is determined using algorithm 4.5 with the modification as described in
section 4.2.4.1, and the initial estimate x0 is provided by the previous step (see section 5.3.1)

In the lines 6 and 14 of algorithm 4.5, the Jacobian of h is required. We determine the
partial derivatives from the Jacobian by the difference quotient as described in [Pro06]. Using
the difference quotient leads in general to slower convergence, but as this method is applied in
the pre-game stage it is not time critical.

The structure of the m× n Jacobian is depicted in (5.48).

J =



∂h1

∂Φ0

∂h1

∂Φ1

∂h2

∂Φ0

∂h2

∂Φ2

... . . .

∂hj

∂Φ0

∂hj

∂Φj


(5.48)

The mi × 3 matrices ∂hi

∂Φi
denote a block in the Jacobian for view i, that depends only on

the dynamic parameters Φi. The block of size mi× 10 matrices ∂hi

∂Φ0
represents view i, which

depends on the constant parameters Φ0. From the structure of the Jacobian one can see the
connection between all views over the constant parameters, and it is obvious that the more
views available the more accurate the constant parameters can be estimated. The structure
of the Jacobian is comparable to the Jacobian obtained by bundle adjustment problems (see
[HZ03, TMHF00]).

Figure 5.13 shows the resulting final estimates of the example shown in figure 5.12. The
estimated parameters are given in table 5.1.

tx(m) ty(m) tz(m) β(rad) θ Cx(px) Cy(px) κ( 1
m2 ) Fl(m) Fw(m)

-1.23 -72.44 17.53 0.00169 1.0679 370.06 225.32 -111.20 105.07 68.29

Table 5.1 Results for the constant parameter estimation example
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Figure 5.13 Constant Parameter Estimation: Final estimates determined from point correspon-
dences (red dots) using the initial estimate ( see figure 5.12).

5.3.2.1 Quality of the Estimated Parameters

The covariance matrix of the estimated parameters is determined by the last iteration of the
Levenberg-Marquardt method and is given by equation (4.123).

The required covariance matrices for the image points can be specified by the user by pro-
viding the uncertainty ellipses for these points. However, as this is an intuitive way to specify
a covariance matrix, we assume that the overall covariance matrix Σzz is known only up to an
unknown scale factor σ2

w, which is estimated by equation (4.100). The covariance matrix of
the estimate is given by

Σx̂x̂ = σ̂2
w

(
JT Σ−1

zz J
)−1

(5.49)
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5.3.3 Experimental Results

The method described in this section was evaluated successfully in a game between Germany
and Switzerland, where 9 calibrated cameras covering the whole field (see figure 5.14) were
used to evaluate our method by comparing it with ground truth data.

Figure 5.14 Camera configuration for the game Germany vs. Switzerland. Taken from [Pro06]

The distances of all corner points and the center point of the field to all other points, in-
cluding the camera locations, were obtained by a laser measuring device with a centimeter
class accuracy. The field size could be obtained directly from these measurements, whereas
the position of the cameras were determined by trilateration [Tor02].

The ground truth data for the intrinsic camera parameters was determined by a standard
calibration method using multiple images of a calibration pattern. For control purpose, this
was done before and after the game. However, no ground truth data was available for the ori-
entation of the cameras. While the pan and tilt angle are varying parameters, the only constant
parameter without any groundtruth data was the roll angle β. Furthermore, all the measure-
ments were obtained at the same height (approx. 1.7m above the field) resulting in unreliable
outcomes of the trilateration problem in terms of z coordinates of the cameras. In order to
determine the precise ground truth values, z-coordinates and the roll angles were adjusted
manually from the captured video streams.

Camera Configurations

All the cameras had fixed intrinsic parameters and since the calibration process could not
consider the non-zooming cameras, the geometric mean of all the focal lengths from each
view was devised to find the focal length.

Besides rotating cameras, we have also used several stationary cameras (4 and 6 − 9). For
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the stationary cameras the estimation of the field size was not possible as only a small portion
of the field was visible. Furthermore, the simultaneous estimation of the principal point and
the radial distortion coefficient was not reliable, as only one view was available. Therefore, we
have fixed the principal point to the image center and estimated only the remaining parameters.

Another special configuration were the cameras [6− 9]. As they did not considerably differ
in their position (just a few centimeters), we treated all four cameras as an additional virtual
camera. The views from each of the four cameras were supposed to be captured by the vir-
tual camera with different focal length and orientation. As their intrinsic parameters were not
identical, we have compared just the estimated position and field size for this virtual camera.

Tables 5.2-5.11 present the results for all configurations, where bold entries in the ground
truth data indicate manually adjusted and possibly unreliable ground truth data and bold entries
in the estimated parameters indicate fixed values during the estimation.

The position and field size are given in meters, whereas the focal length is given in millime-
ters, and the distortion coefficient κ is given in 1

m2 .

Camera 1 tx ty tz f θ Cx Cy κ Fl Fw

Ground Truth 4.4 -76.6 8.6 21.56 1.0798 343.2 274.7 1054 104.3 68.0

known fields. 4.5 -76.5 8.6 19.81 1.0569 355.7 93.0 2966 104.3 68.0

unkn.fields. 4.3 -72.6 8.2 18.66 1.0490 354.9 201.2 2261 100.0 68.5
Table 5.2 Experimental results for camera 1 (rotating)

Camera 2 tx ty tz f θ Cx Cy κ Fl Fw

Ground Truth -98.9 -20.1 7.5 20.58 1.0951 355.1 288.6 420 104.3 68.0

known fields. -99.5 -20.0 7.3 20.72 1.0934 373.7 290.7 1307 104.3 68.0

unkn.fields. -97.2 -20.0 7.3 20.335 1.0961 377.8 294.7 1268 102.0 68.2

Table 5.3 Experimental results for camera 2 (rotating)

Camera 3 tx ty tz f θ Cx Cy κ Fl Fw

Ground Truth -56.8 67.9 7.3 25.03 1.0823 417.4 328.1 54 104.3 68.0

known fields. -56.8 66.0 6.7 23.76 1.0501 288.2 240.9 263 104.3 68.0

unkn.fields. -57.8 66.2 6.7 23.87 1.0520 295.8 249.6 258 106.3 68.2
Table 5.4 Experimental results for camera 3 (rotating)
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Camera 5 tx ty tz f θ Cx Cy κ Fl Fw

Ground Truth 91.0 -34.9 7.3 18.76 1.0830 364.9 294.2 635 104.3 68.0

known fields. 90.4 -35.3 7.3 18.85 1.0881 374.5 273.4 1193 104.3 68.0

unkn.fields. 90.9 -35.4 7.3 18.83 1.0894 374.3 274.4 1163 104.8 68.2

Table 5.5 Experimental results for camera 5 (rotating)

Camera 4 tx ty tz f θ κ Cx Cy

Ground Truth 54.5 67.7 7.3 18.63 1.1028 549 363.1 283.9

Estimated 57.1 65.7 6.9 17.90 1.0784 67 359.5 287.5
Table 5.6 Experimental results for camera 4 (stationary)

Camera 6 tx ty tz f θ κ Cx Cy

Ground Truth 33.8 -72.3 12.4 12.80 1.1055 617 349.3 288.0

Estimated 34.1 -67.3 11.3 12.31 1.1036 1844 359.5 287.5
Table 5.7 Experimental results for camera 6 (stationary)

Camera 7 tx ty tz f θ κ Cx Cy

Ground Truth 33.5 -72.3 12.4 9.22 1.1050 -583 355.7 314.6

Estimated 33.7 -71.1 11.9 9.37 1.1315 -2430 359.5 287.5
Table 5.8 Experimental results for camera 7 (stationary)

Camera 8 tx ty tz f θ κ Cx Cy

Ground Truth 33.3 -72.3 12.4 12.44 1.1096 1789 342.4 293.6

Estimated 33.9 -71.7 12.3 12.95 1.1255 1099 359.5 287.5
Table 5.9 Experimental results for camera 8 (stationary)

Camera 9 tx ty tz f θ κ Cx Cy

Ground Truth 33.0 -72.3 12.4 17.39 1.0858 1110 361.9 302.5

Estimated 31.4 -69.3 12.0 17.04 1.0847 413 359.5 287.5
Table 5.10 Experimental results for camera 9 (stationary)
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Virtual Camera 10 tx ty tz Fl Fw

Ground Truth 33.4 -72.3 12.4 104.3 68.0

Estimated (known field size) 33.6 -70.8 12.3 104.3 68.0

Estimated (unknown field size) 34.0 -71.6 12.3 105.2 67.8
Table 5.11 Experimental results for the virtual camera (quasi-rotating)

5.4 Scene Iterator

The Scene Iterator module successively searches for sequences, which are captured from the
camera of interest, by iterating through all sequences. This is done by iterating over the video
stream, and identifying new video segments at shot boundaries. Each video segment is then
classified with two independent classifiers to fieldview or non fieldview and to slow motion

replay or non slow motion replay. All video segments, which are classified as non fieldview or
slow motion replay are skipped, as they have no value for the tracking task. The former do not
contain any suitable information for the tracker and the latter contains sequences which are
out of time line.

All other sequences are potentially from the camera of interest and are passed to the Ini-

tial Parameter Estimation module, which determines initial values for the dynamic camera
parameters using extracted image lines.

The task of the Scene Iterator module is to detect the beginning of each sequence and to
identify fieldviews and slow motion replays. The methods used are discussed in the proceeding
subsections.

5.4.1 Shot Boundary Detection

A shot is an uninterrupted sequence of frames from one camera and shot boundaries are the
transitions between two subsequent shots.

In soccer broadcasts, one can differentiate between three types of shot boundaries: cuts,
dissolves and effects.
A Cut is an abrupt transition, i.e. within two subsequent frames.
A Dissolve appears, when the frames from the previous shot fade out, while the frames from
the next shot fade in. In soccer broadcasts, a dissolve takes usually 15− 20 frames and frames
within the transition show one image from the previous shot superimposed on another image
of the next shot.
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Effects wipe out one shot by another shot and are usually used in soccer broadcasts at the
beginning and end of replay blocks.

Figure 5.15 shows samples for shot cuts, dissolves and effects from the final game of the
FIFA World Cup 2006.

Figure 5.15 Shot boundary examples: first row shows two shot cuts, second row shows a
dissolve and last row shows an effect

The most important shot boundary in the context of this thesis is the cut, as it is the only
shot boundary used during the active game, i.e. if the game is not interrupted or no replays are
shown.

5.4.1.1 Related Work

Shot boundary detection methods usually determine some quantity that describes the degree
of dissimilarity between two subsequent frames or frames within a range. The majority of the
methods use pixel differences, statistical differences, histogram comparisons, edge compar-
isons, compression differences and motion vectors.

The simplest method to detect a shot boundary between two frames is to determine the num-
ber of pixels which differ in their gray values considerably [ZKS01]. Usually, this is done
after smoothing the images to suppress the effects of noise and small camera motions. A pixel
is supposed to be different if a measure is above a threshold, and a shot boundary between
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both frames is detected if the number of differing pixels is above a second threshold. Ham-
papur et al. [HWJ94] use the ratio between the change of the gray values and the gray values
of the second image, which is called chromatic image. Unfortunately methods based on pixel
differences are very sensitive to camera and object motion and therefore infeasible for soccer
broadcasts.

Another approach is to compare statistical measures which are determined from color values,
instead of the color values directly. Katsuri et al. [KJ91] partition the image in several regions
and compare a statistical measure which is based on the mean and standard deviation of the
gray values within these regions. Nagasaka et al. [NT92] also divide the image into several
regions, but use hypothesis testing on the color histograms of these regions. The images are
divided into 16 equal parts and only the 8 best matching regions are used to overcome camera
and object motion and noise.

The most common method is the Histogram Comparison. The idea behind histogram com-
parison is, that the histograms of subsequent frames within one shot probably are almost the
same, while the histograms of frames in two different shots probably differ considerably. Small
camera and object motions have in most cases only a small influence to the histogram. Swan-
berg et al. [SSJ93] use the difference in the gray level histogram, whereas Ueda et al. [UMY91]
use the difference in the color histogram change rate to detect shot boundaries.

Compression Difference methods use the change in the size of JPEG compressed images or
in MPEG compressed videos as an indicator for shot boundaries [LAF+93, AHC94]. How-
ever, JPEG compression requires too much computational time and the use of precomputed
information in MPEG video streams is only advantageous if using MPEG compressed video
streams.

Feature-based methods compare the number and the position of extracted image features in
both frames [ZMM95]. These methods are relatively robust against camera and object motion
and achieve a better detection rate than histogram methods. However, these methods are slow
as usually edges and corners are used, and therefore have to be extracted in each image.

Motion-based methods [NPZ02, UMY91, ZKS01, Sha95] determine motion vectors by block
matching techniques to identify camera and object motion. They are usually used in combina-
tion with pixel-based methods to reduce false positives caused by camera and object motion.

Good surveys and comparisons of shot boundary detection are given in [YCK98, BR96,
JHEJ98].
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5.4.1.2 Our Approach

In the context of this thesis, a hybrid method combining two different techniques is used to
detect shot cuts as well as effects and dissolves. They are designed to detect shot boundaries in
sport broadcasting reliably, in particular in soccer, but are also tested successfully for movies
and commercials.

We use a feature-based method to detect shot cuts, and color histogram comparison to detect
dissolves and effects. After a shot boundary is detected, we disable shot boundary detection
for the next 20 frames to suppress multiple detections.

Detecting Shot Cuts

As mentioned above, we detect shot cuts from image features. The main idea is, that within a
shot most image features stay visible and only disappear because of object motion or camera
motion. After a shot cut however, almost all features disappear. A shot cut is found if the
detection rate of image features between two subsequent images drops rapidly.

Unlike other feature-based methods, we do not consider the position, orientation or shape
of features, thus we do not limit the camera or object motion. As long as sufficient features
can be tracked between two subsequent images, i.e. the images are neither too blurry nor the
camera or object motion is so fast that two subsequent images show different views of a scene,
the shot cut detection works reliably.

As mentioned above, feature-based shot boundary detection are slow if features have to be
extracted in both images and compared to each other. However, we follow another idea which
is much faster. Instead of using corners or edges, we use randomly selected point features
in the previous frame It−1. To decide whether the points are visible in the current frame It,
we track these points using the Lucas Kanade tracker [LK81], which uses a block matching
method. This is efficiently done using search at different scales with the help of Pyramid

Images [Bou00].

However, tracking points in one direction can cause high outlier rates and we use the idea
suggested by Hartley et al. [Har97], which will be explained in the following.

First a set of points are tracked from frame It−1 to frame It. Let St−1 be the subset of
successful tracked points q from frame It−1, and St be the corresponding set of points p from
frame It. Then the points p from St are back tracked to points q′ in frame It−1. Let the set
of successfully back tracked points be denoted by S ′t−1. Finally, points in St−1 with a larger
than 2 pixels offset distance with respect to their back tracked correspondence in S ′t−1 are
eliminated, since these feature points are not reliable.
Figure 5.16 shows the tracking process of a single point.
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It-1 It

distance

1. track to next frame

2.track to previous frame

q p

q’

Figure 5.16 Point feature detection

The problem of wrong point correspondences still exists, particularly in image regions with
similar texture, but this method improves the results considerably by eliminating most outliers.

After finding point correspondences, we determine the ratio ξt =
|S′

t−1|
|St−1| which is called point

tracking rate hereafter. It is the ratio between the number of found correspondences |S ′t−1| and
the total number of initial points |St−1|. Figure 5.17 shows the point tracking rate for the
corresponding sequences of both shot cuts shown in the first row of figure 5.15. The spikes
indicate the shot boundary for these sequences.
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Figure 5.17 Point tracking rates for both shot cuts from the first row of figure 5.15. Spikes
indicate shot cuts.

A shot cut is detected, if the point tracking rate falls below a given threshold, while it is
above a second dynamic threshold before or after the current time step. The rule for shot cut
detection is given by following heuristic:

cut =


true if ξt < 0.16 ∧

(
ξt−1

ξt
> 6 ∨ ξt+1

ξt
> 6
)

false otherwise

(5.50)

This rule has been proven to provide reliable results during our empirical evaluation.
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Detecting Dissolves and Effects

Dissolves and Effects are detected using a color histogram comparison. Unlike a shot cut the
transition of dissolves and effects are not abrupt, but usually take about 15 − 20 frames in
soccer broadcasts. As the histograms of two subsequent images within a dissolve or effect
differ little, we compare the histograms of the current frame It at time t with the histogram of
frame It−10 from time t− 10. Using a distance of 10 frames is reasonable, as no smaller shot
exists, thus can not be missed, while most dissolves considerably differ in their histograms
within 10 frames.

However, fast camera motion or object motion can also cause a fast change in the his-
tograms. For this reason, we buffer the last 20 histogram comparison results, and assume a
shot cut if within these 20 values at least 16 values lower than a given threshold exist.

For efficiency reasons, we use the color histogram of a considerably reduced colorspace.
We use only an 8 bit representation of colors in the RGB color space, where the green channel
takes 4 bits while the red and blue channel take 2 bits each.

Since normalized histograms (sum of all entries is one) are statistical distributions of color
values, they can be compared by the so-called Bhattacharyya distance [Bha43]. The Bhat-
tacharyya distance is given by:

dB =
256∑
i=0

√
h1(i) · h2(i) (5.51)

with h1 and h2 being the normalized histograms of two images. It can be interpreted as the
scalar product of two vectors having as components the square roots of the probability of the
color values. Geometrically it is the cosine of the angle between these two vectors.
Figure 5.18 shows the histograms for the second and the third row of figure 5.15 respectively.

Figure 5.18 Histograms for the second and the third row of figure 5.15 respectively.
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Figure 5.19 shows, the histogram similarity measure for the two sequences of figure 5.15.
Intervals with small values indicate shot boundaries.
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Figure 5.19 Histograms similarity measure over both sequences of the second (left) and third
(right) row of figure 5.15 respectively.

5.4.1.3 Experimental Results

We have successfully applied our method to several TV broadcasts of soccer games.

For evaluation, we ran our method on the first 38000 frames (∼ 25 minutes) of the final
game of the FIFA World Cup 2006 and compared the results with manually obtained data. We
have manually identified 155 shot cuts and 72 dissolves and effects.

The evaluation results are given in recall and precision rates, which is common in the con-
text of shot boundary detection [BR96, PS97]. Let nc, nf and nm be the number of correct,
false (false positives) and missed boundaries (false negatives) respectively. Then recall and
precision rates are defined as:

recall =
nc

nc + nm

(5.52)

precision =
nc

nc + nf

(5.53)

The precision and recall rates for the test case are given in table 5.12

The algorithm was tested on an AMD Athlon 64 machine with 2GB RAM running at
2200 MHz, and needed 11.7 milliseconds on average, which is equivalent to 85.5 frames
per second. However, due to overhead in the image capturing (≈ 15 milliseconds) the overall
method runs at a speed of 37 frames per second on average, which is still realtime.
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# false positives false negatives precision recall

shot cuts 155 1 0 99.36% 100.00%

dissolves & effects 72 4 9 94.03% 87.50%

overall 227 5 9 97.76% 96.04%
Table 5.12 Precision and recall rates for shot boundary detection

5.4.2 Fieldview Detection

Out of field views as well as close up views have no value for the tracking task and are skipped.
The Fieldview Detection determines therefore whether a sequence shows the field and thus
probably contains valuable information or not.

It analyzes 10 frames by taking every fifth image at the beginning of a video segment. If at
least 8 fieldviews are detected within these 10 selected frames, the sequence is classified as a
fieldview sequence. Otherwise the video segment is rejected and the Scene Iterator searches
for the next video segment.

To decide if a given image shows the field or not, the number of pixels classified as field
color is counted within a specific region in the image: the region of interest (ROI). The upper
and lower part of the image are not reliable indicators for fieldviews, as for example the upper
part of the image contains in most cases the stands. Therefore, we do not use the upper third
and lower fifth of the image.

Even if the number of pixels classified as field color is sufficient to detect out of field views,
the detection of close up views is unreliable. Therefore, the proposed method has two stages.
In the first stage, the number of pixels within the ROI which are classified as field color is
determined. If this number is below 67% of the total ROI size, the image is classified as non-
fieldview.

Otherwise, the second stage determines the field region from the classified pixels as de-
scribed in section 5.5.1.1. Then the ratio between the field region size and the number of not
classified pixels within the field region is calculated, i.e. the relative size of holes in the field
region. If this second ratio is above 20%, the image is probably a close up view and is therefore
rejected. Above threshold values are obtained by empirical evaluation and have shown to work
reliable. Figure 5.20 shows some examples for field view frames (including a false positive),
whereas figure 5.21 shows examples for non-fieldviews (including a false negative).
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Figure 5.20 Examples for fieldviews. From top to bottom: original image, color classified
image, extracted field region and holes within field region. Right column shows a sample
for a false positive
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Figure 5.21 Non-Fieldviews: Examples for close up view (left), out of field view (right) and
false negative (right).

5.4.2.1 Experimental Results

We have tested the field view detection on sequences of several soccer games from the FIFA
World Cup 2006. We determined the precision and recall rates for single frames as well as
for sequences after shot boundaries with manually obtained ground truth data. The results are
shown in tables 5.13 and 5.14 respectively.

game frames false positives false negatives precision recall

Italy - France 12000 402 16 96.75% 99.87%

Germany - Costa Rica 6000 133 65 97.81% 98.92%

Czech Republic - Ghana 6000 139 26 97.73% 99.57%
Table 5.13 Precision and recall rates for field view detection in a single frame

game frames seq. fieldviews false pos. false neg. precision recall

Italy - France 14000 102 41 1 2 99.01% 98.04%

Germany - C.Rica 12000 71 26 1 1 98.59% 98.59%

Cz. Rep. - Ghana 12000 72 26 3 0 96.00% 100.00%

Table 5.14 Precision and recall rates for field view detection for sequences
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Most false positives came from close up views or sequences captured behind the goals,
where most false negatives were sequences showing corner kicks. Former cases occur due to
wrong field segmentation results or due to the large areas being visible through the nets of the
goals.

5.4.3 Slow Motion Detection

In soccer broadcasts, crucial events are often shown in a replay block immediately after they
occur, or during smaller breaks. These replay blocks consist of several video segments, which
show the event from different perspectives and often include slow motion sequences from the
camera of interest. As slow motion replays are out of time line, these sequences are of no value
for the tracker and are filtered out.

Slow motion sequences are generated from recordings of standard cameras by repeating
several frames to reduce the framerate, or from highspeed cameras. As recordings of highspeed
cameras are mainly used for slow motion replays, we do not consider these cameras and limit
our method to standard cameras.

5.4.3.1 Related Work

Several approaches for slow motion replay detection exist that are working in the compressed
and spatial domain.

Kobla et al. [KDD99] use the bitrate information and macroblock motion in the compressed
domain of MPEG videos to identify slow motion replays. However, we deal with general video
sources, thus we do not want to constrain ourselves to a specific video format.

Pan et al. [PBS01] use a Hidden Markov Model (HMM) to detect the whole replay block,
containing editing effects and multiple slow motion sequences. They use the fact that impor-
tant events are replayed from several perspectives and thus, in most cases multiple sequences
occur during these replays including at least one slow motion sequence. Furthermore, they
assume that each replay begins and ends with an editing effect (see figure 5.15). The fea-
tures which are used for the HMM are determined from the image difference and histogram
comparison of subsequent frames.

However in our case, where the Fieldview detection and the following Initial Parameter

Estimation reject most sequences which do not match the camera of interest, it is sufficient to
identify single sequences as slow motion segments rather than to identify whole replay blocks.
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5.4.3.2 Slow Motion Sequence Detection

We use a modified version of the so-called zero crossing measure which was proposed in
[PBS01], as it makes a good trade-off between efficiency and reliability.

Unlike sequences showing static scenes, slow motion sequences have strong fluctuations
in differences between subsequent frames. These fluctuations arise from the repeated frames.
Unlike the frame differences of two non-repeated frames which are mainly caused by object
and camera motion, the frame differences of two repeated frames have their origin in noise
which is caused by transmission or recording. Thus, the frame differences during a slow mo-
tion sequence have strong spikes which indicate repeated frames.

Let It−1 and It be two subsequent monochrome images andDt (x, y) = It (x, y)−It−1 (x, y)

their elementwise difference. Then, the difference measure dt is given by the standard devia-
tion of all intensity values of Dt.
Figure 5.22 shows frame differences for slow motion and non-slow motion sequences.
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(a) (b)
Figure 5.22 Frame difference for (a) slow motion and (b) non slow motion sequences.

It can be seen in figure 5.22(b), that the absolute values of the interimage differences are not
good indicators. The step in the right diagram indicates a shot cut from a dynamic sequence
to a highly static sequence.

To differentiate between slow motion replays and static scenes, we do not only consider
the frame difference d, but also take the absolute gradient of this measure into account. The
absolute gradient g is defined to be:

gt = |dt−1 − dt| (5.54)
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Figure 5.23 shows the absolute gradient of the examples in 5.22 respectively.
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Figure 5.23 Absolute Gradient of Frame Difference for Slow Motion and Non Slow Motion
sequences for above example 5.22

One would expect two peaks in the gradient diagram for a corresponding peak in the differ-
ence diagram. However, the peaks in the difference diagram have a width of only one frame,
thus both peaks in the corresponding gradient diagram fuse to a single peak of width 2.

Repeated frames can be detected as frames where the absolute gradient value is above a
given threshold δ1, while the difference measure is below a second threshold δ2. A slow motion
replay is detected if at least three repeated frames within a sliding window are found. In the
context of this thesis, a window size of 50 frames and the threshold values δ1 = 4.8 and
δ2 = 4.0 have been shown to generate reliable results.

5.4.3.3 Experimental Results

The slow motion detector was tested for the whole final game of the FIFA World Cup 2006
including the overtime. We have manually classified 33 slow motion replays for the regular
playing time and 9 for overtime.

Table 5.15 shows the evaluation of the slow motion detector.

# frames seq. false positives false negatives precision recall

202587 1148 0 3 100% 99.74%
Table 5.15 Precision and recall rates for slow motion detection
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5.5 Initial Parameter Estimation

The Initial Parameter Estimation module determines the initial dynamic parameters of the
camera of interest at the beginning of each new sequence. These are needed as an entry point
for the automated tracking of the camera as described in section 5.6. The beginning of a
sequence is specified by the user or it is obtained by the Scene Iterator module.

The parameters are determined from extracted field lines without the need to identify the
corresponding model lines, using only the knowledge of the camera position. This means that
if the sequence is from the camera of interest, an initial estimate can be determined without
knowing which model line corresponds to a given image line. However, it is necessary that
a sufficient number of field lines are visible in the image. Therefore, the initial parameter
estimates can only be determined if the goal or penalty areas are visible.

Even if enough field lines could be detected, problems may still arise due to noise, and the
estimated parameters may be out of the convergence range6 of the tracker.

Furthermore, it is not assured that the sequence is originated from the camera of interest.
Such cases will result in wrong parameters due to the false assumption about the camera
position. For these reasons, the image lines are used to confirm the determined parameters or
to reject the current image.

For example, critical goal scenes are usually replayed from different perspectives immedi-
ately after they happen. In such a case, a sufficient number of field lines is visible, and the
parameters can probably be determined. However, as the sequence is from a different camera,
the obtained parameters are inconsistent to the observed image lines, and the image is rejected.

To summarize, an image is rejected if it is from a video segment which was taken from a
different camera, or if the determined parameters are far from the true state. To overcome the
latter case, the parameter determination is repeated for different frames until a valid parameter
set could be found, or we obtained 20 invalid parameter sets. In such a case we suppose that
the scene is captured by a different camera and reject it. Based on our experiences we argue
that it is usually sufficient to ensure that the invalid parameters do not originate from noisy
data. If a valid parameter set could be found within the 20 tested frames, the parameters are
passed to the Iterative Camera Calibration (ICC) to start the tracking of the camera. If the
detected parameters are from a frame other than the first in the sequence, the ICC tracks the
camera in both directions starting at that frame.

The Initial Parameters Estimation uses the two vanishing points extracted from visible im-
age lines corresponding to horizontal and vertical model lines for a geometric determination

6see section 5.6
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of the camera’s focal length as well as pan and tilt angle.

5.5.1 Field Line Extraction

As mentioned above, the initial parameters are estimated from extracted image lines. Since
the radial distortion is known beforehand, the images are first rectified to get straight image
lines and to remove the effects of lens distortion. The field line extraction can be summarized
by the following steps

• First, the field region is determined by the use of field color information.

• All possible line candidate pixels are segmented as brighter pixels within the field re-
gion.

• A Hough transformation on the line candidate pixels is performed, resulting in line
segments.

• Line segments which are close to each other are merged to a single line segment, by a
weighted least squares.

• The merged line segments are grouped into two groups by clustering lines according to
their common intersections, the vanishing points.

5.5.1.1 Extracting Line Segments

In a first step, a binary image is determined from color classification with Mahalanobis dis-
tance of 2, noise is removed by morphological erosion and the field region is determined by
the convex hull (see figure 5.24 and figure 5.25(a)).

Then, field line candidates are segmented as brighter pixels within the field region (see fig-
ure 5.25(b)). A pixel is used as a line pixel candidate if its gray value is above ḡ+3 ·σg, where
ḡ and σg are the mean and standard deviation of the gray values of the field color respectively7.

7Confidence level of 99.9%
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Figure 5.24 Color classified with Mahalanobis distance 2 (left), after removing noise with
morphological erosion (right).

(a) (b)
Figure 5.25 Line segmentation: (a) convex fieldregion and (b) field line candidates

Finally, line segments are obtained by the Hough transformation and are given by their
endpoints. Figure 5.26 shows 36 line segments obtained by the Hough transformation.

5.5.1.2 Merging Line Segments

The accuracy of the Hough transformation depends highly on the discretization levels of the
state space. The state space used in the Hough transformation is the angle between the line and
the x-axis, and the line’s distance to the origin of the image. To obtain accurate line segments,
we use one degree resolution for the angle and one pixel for the distance.
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Figure 5.26 Extracted line segments by the Hough transformation (36 line segments).

However, the width of a field line in the image is typically between 1 and 35 pixels and
therefore the Hough transformation detects multiple line segments for each field line.

Image lines that are close to each other and that are likely to belong to the same model line
are merged into a single image line. The distance of two line segments is determined by their
distance in the parameter space of the Hough transformation, as well as by their endpoints.

Two lines are assumed to belong to the same model line if the following constraints are met.

• The angle between both lines is less than 2◦.

• The difference in their distances to the origin is less than 15 pixels.

• The distance between both line segments is less than 30 pixels.

The former two constraints ensure that both lines are almost collinear, i.e. both lines lie al-
most on the each other’s medial axis. The latter constraint is required to ignore collinear line
segments which are far from each other.

For efficiency reasons, we order the line segment array according to the angle to the x-
axis of the image. The search for almost parallel line segments to a given line segment then
reduces to a bidirectional search in the array and is stopped if the maximum angle difference
is exceeded. In doing so, the number of pairwise line segment comparisons is reduced.

The minimum distance of a line segment l1 to a line segment l2 is the smallest distance
between a point p1 lying on line l1 and another point p2 lying on line l2. Fortunately, one of
these two points has to be an endpoint of one of the line segments, and the smallest distance
can be found by only considering all endpoints. The smallest distance of an endpoint to a line
segment is the minimum distance to its projection on the other line and the distances to the
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endpoints of the other line segment. If the projection of an endpoint does not lie within the
endpoints of the other line segment, the calculated distance is not considered.

Figure 5.27 shows two examples. Line segments and their medial axes are printed as black
lines and thin dashed lines respectively. Blue lines indicate valid and red lines denote invalid
distance measures, whereas the green lines show the minimum distance between the line seg-
ments.
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e2

s1 e1 (p1)
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l1

l2

s1 e1 (p1)

e1’

e2’

e2

s2’

s2 (p2)

s1’

Figure 5.27 Line distance

After finding matching line segments, these are used to determine a new line segment by
weighted least squares estimation. For this, we only consider the endpoints of all initial line
segments weighted by the corresponding line segment lengths. These are then used to deter-
mine a new line by minimizing the weighted sum of squared distances between the line and
the endpoints.

Using the homogeneous representation, the line is estimated as the least squares solution of
the following equation.

Al = 0 (5.55)

with

A = (s1, e1, . . . , sn, en)T

where l is the homogeneous representation of the new line and the rows of A contain the
weighted coordinates of the endpoints of all matching (n) initial line segments.

As can be seen in equation (5.55), the homogeneous line l is defined up to a non-zero scale
factor λ and the equation system can be solved with the OLS method by setting the last compo-
nent of l to 1 (see section 4.1.1). As the last component of a homogeneous line is proportional
to its distance to the origin, above method would fail for all lines going through the origin
and we therefore use the eigenvalue decomposition to determine the new line. The solution of
above equation is given by the unit eigenvector of ATA corresponding to the smallest eigen-
value [HZ03, PTVF92]. Alternatively, one can use the Singular Value Decomposition of A.

126



Section 5.5 Initial Parameter Estimation

Then, the solution is given by the unit singular vector corresponding to the smallest singular
value of A [HZ03, PTVF92].
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Figure 5.28 Merging line segments: Determining the endpoints of the new line segment.

After the new line is found, the endpoints of the new line segment are determined by pro-
jecting the endpoints of all initial line segments to the new line and selecting the two points
with the largest distance to each other (see figure 5.28). This is done efficiently by selecting
an arbitrary projected point, and calculating the signed distances to all projected endpoints
(including the selected point). The signed distance dpq of point p to point q is given by

dpq =


qx−px

vx
for vx 6= 0

qy−py

vy
for vx = 0

(5.56)

where v is the normalized direction of the new line l. The points with minimum and maximum
signed distance to the selected point are used as the endpoints of the new line segment.

Figure 5.29 shows the resulting 11 line segments, which are merged from initially 36 line
segments from figure 5.26.

Figure 5.29 Merged line segments
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5.5.1.3 Grouping of Parallel Line Segments

For further processing it is important to reduce the number of line segments, and to group line
segments which belong to parallel field markings.

However, the mapping of model lines to image lines is a general projective transformation.
And as a general projective transformation does not preserve parallelism, the angle between
two image lines is not a good indicator for corresponding parallel model lines.

We determine image lines corresponding to parallel model lines by the following consider-
ation. In projective plane P2, all parallel lines meet in a single ideal point, the vanishing point

and all ideal points lie on the line at infinity l∞

l∞ '


0

0

1

 (5.57)

A general projective transformation can map ideal points to finite points and vice versa. If
ideal points are transformed into finite points, these points lie on the horizon or vanishing

line8.

If the vanishing points lie at infinity, the vanishing line stays at infinity, thus no (finite)
horizon exists. This special case does not occur in the camera configuration that we consider,
as the camera would have to point perpendicular towards the field plane from either above or
below.

Nevertheless, one of the vanishing points can lie at infinity, in the case that the camera
is directed perpendicular to the horizontal or vertical field lines. But as the roll angle of the
cameras are usually close to 0, the direction of such an ideal point is then almost parallel to
the x-axis of the image9.

In the context of soccer broadcasts, the following constraints can be derived for the vanish-
ing points.

• All image lines, which belong to the straight field markings, go through either one of
the two vanishing points.

• At least one of these vanishing points is finite.

8a projective transformation preserves linearity
9This special case must not be handled in a different way, as the presented method uses points and lines in

projective space
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• Finite vanishing points have negative image y-coordinates, as the cameras are mounted
above the field and the horizon is not visible.

• The direction of infinite vanishing points are almost parallel to the x-axis of the image.

It can be concluded from the above constrains that the vanishing line must be finite and almost
horizontal, but beyond the image border.

We need to determine the two vanishing points meeting above constraints that have the
highest support among the detected line segments.

Determining Vanishing Points

The determination of vanishing points is two staged. In the first stage we determine the inter-
section points of each two lines. All finite intersection points with positive y values and all
infinite intersection points where the angles between line directions and image x-axis exceeds
10◦ are rejected. Otherwise, the number of supporting line segments (inliers) is determined
for each intersection point. Intersection points with at least 3 inliers are refined by a weighted
least squares using all inliers and are used as potential vanishing points.

Due to the duality of points and lines in projective plane P2, equation (5.55) is used to de-
termine the least squares solution by interchanging lines and points [HZ03], where the entries
of A contain the line parameters which are scaled to the line segments lengths.

In the next stage, we iterate over all combinations of two vanishing points, and determine
the corresponding vanishing line. If the angle between the vanishing line and the x-axis of the
image is greater than 10◦, the combination is rejected, otherwise the combination is accepted.
Within all accepted combinations, we select the combination with the most inliers where the
sum of inliers of both vanishing points is maximal.

Finally all lines are assigned to two groups given by the obtained vanishing points. Lines,
which do not either belong to one of the two groups are marked as outlier and are not consid-
ered in the further processing.

Determining Inliers

Inlying line segments for a calculated intersection point are determined by the maximum angle
of the line segment to the direction vectors from the intersection point to their endpoints. If the
maximum angle is below a given threshold (7◦), the line is directed towards the intersection
point, and is marked as an inlier. For intersection points lying at infinity, the direction vector
is given by its first two components. For general case, the direction vector d defined by the
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intersection point p and one of the endpoints s of the line l can be determined as follows.

d =


sx · pz − px

sy · pz − py

0

 (5.58)

Figure 5.30 shows the intersection point p1,2 of the lines l1 and l2. The angles between
l3 and the direction vectors defined by the endpoints s, e and the intersection point p1,2 are
given by δ1 and δ2 respectively. The line segment l3 is tested for support of the calculated
intersection point by looking at the angles δ2 and δ1 between the direction vectors defined by
the endpoints s, e and the intersection point p1,2. As the maximal angle δ1 in this example
exceeds the threshold, the line segment l3 is treated as an outlier.

δ2
δ1

p12

s

e

l2

l1

l3

Figure 5.30 Determining vanishing points from line segments

Figure 5.31 shows grouped image lines. The lines that are deemed to belong to horizontal
and vertical model lines are printed in red and blue respectively. Black lines show image
lines which are neither assigned to horizontal nor to vertical field lines. The vanishing points

Figure 5.31 Grouped image lines
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for the red and blue image lines are both finite and were estimated as the image coordinates
(−4151.69,−439.94, 1)T and (1789.62,−464.23, 1)T respectively for the given example in
figure 5.31.

5.5.2 Estimating Initial Parameters from Field Lines

As mentioned above, initial estimates for the focal length and the pan and tilt orientation in
a new scene can be determined from extracted image lines without the need to identify the
corresponding model lines. In fact, we determine these parameters from the vanishing points
extracted from the image lines as described in section 5.5.1.

Due to the fact, that lines were extracted from rectified images (see section 5.5.1.1), we do
not need to consider lens distortions in the following calculations any more. Furthermore, the
lines and thus the vanishing points are transformed beforehand by the inverse of Ka and the
camera matrix reduces to Kp (see equation (3.13)).

5.5.2.1 Determining the Focal Length

Let p and q be both vanishing points for horizontal and vertical model lines, and therefore the
projections of the two ideal points (±1, 0, 0)T and (0,±1, 0)T . As the vectors from the camera
center to the ideal points are perpendicular, we can use the method described in section 5.3.1.2
to determine the focal length.

Equation (5.36) can be rewritten to

pTωq√
pTωpqTωq

= 0

pTωq = 0 (5.59)

with ω being the Image of the Absolute Conic (IAC) (see equation (5.24)). The focal length
can be determined as:

f =

√
−px · qx + py · qy

pz · qz
(5.60)

It can be seen in the denominator of the right hand side, that the focal length can only be
determined if both vanishing points are finite.
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5.5.2.2 Determining the Tilt Angle

Let nw = (0, 0, 1, 0)T be the normal of the soccer field in world coordinate system (WCS).
The transformed normal nc in camera coordinate system only depends on the rotation matrix
R̆c of the camera, and is given by

nc = R̃t · nw (5.61)

which is the last column of R̆c (see equation (3.11)).

However, nc can also be determined using the horizon of the soccer field in the image. The
horizon or vanishing line l is specified given the two vanishing points p and q and can be
determined by their cross product.

l = p× q (5.62)

The normal nc is then given by:

KT l = nc (5.63)

Setting equations (5.61) and (5.63) to equal results in
f · lx

f · ly

lz

 =


sin (β)

− sin (α) · cos (β)

cos (α) · cos (β)

 (5.64)

and the tilt angle α can be obtained from the last two rows:

α = atan2 (−f · ly, lz) (5.65)

Since the roll angle β is close to 0, the cosine of the roll angle is positive and the tilt angle can
be determined uniquely.

5.5.2.3 Determining the Pan Angle

At this point, the focal length f and the tilt angle α have already been determined. The only
remaining unknown parameter, the pan angle γ, depends on the assignment of the vanish-
ing points to the ideal points (±1, 0, 0)T and (0,±1, 0)T . Therefore it can not be determined
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uniquely without additional information.

As both vanishing points correspond to perpendicular field lines, one of the points is re-
dundant and does not provide additional information. This means that all pan angles that are
consistent with one of the vanishing points, are automatically consistent with the other van-
ishing point too. The selected vanishing point can be assigned to both ideal points, and as the
sign of the ideal points are unknown, four solutions exists.

Since the camera position is known, it can be used to eliminate two of the false solutions,
as for these solutions the field lies behind the camera. By additionally supporting a valid
pan range for the specific camera, the last wrong solution can be removed in most cases.
Fortunately, the valid range for the pan angle can be obtained automatically by the camera
position as well. Thus, the camera position is sufficient to determine the pan angle uniquely in
most cases.

From the camera position, the sign of at least one vanishing point can be obtained. For
example, for the main camera placed on the main stands, it is obvious that the vanishing point
for vertical model lines corresponds to the ideal point in positive direction (0, 1, 0)T . Whereas
for a camera placed behind the right goal (e.g. the tactical camera with positive y-coordinate),
the vanishing point for the horizontal model lines corresponds to the ideal point (−1, 0, 0)T . A
special case occurs for cameras placed “behind“ a corner. In this case, the signs of both ideal
points can be fixed. With this consideration, we select an ideal point with known sign and
assign it alternately to both vanishing points. From each assignment, we obtain one solution
for the pan angle and accept the one which lies within the valid pan range, as the other one is
shifted by 90◦.

Suppose, the ideal point for the horizontal model lines is given by (ς, 0, 0)T , where ς ∈
{+1,−1} is the known direction of the ideal point. Both solutions for the pan angle γ can
then be obtained by the following two equations

p ' KR̆c ·


ς

0

0

 q ' KR̆c ·


ς

0

0

 (5.66)

Note, that the translation has no effect on ideal points, as they have a homogeneous coordinate
of 0 and are independent with respect to the position of the camera.

We will now show how to derive the pan angle from the vanishing point p. The second
solution is similarly obtained by interchanging p by q.
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Thanks to the orthonormality property of the rotation matrix, we can eliminate the unknown
scale factor in equation (5.66) by first multiplying with the inverse camera matrix, and then
normalizing left hand side.

p̃ =
K−1p

‖K−1p‖
= R̆c ·


ς

0

0

 (5.67)

By decomposing the rotation matrix into three basis rotations (see section 2.2.1), we get:

p̃ = RxRyRz


ς

0

0

 (5.68)

Now we can multiply with the inverse of the already known basis rotations and get:

RT
z R

T
yR

T
x p̃︸ ︷︷ ︸

=p′

=


ς

0

0

 (5.69)

which is explicitly given by following equation:
cos (γ) sin (γ) 0

− sin (γ) cos (γ) 0

0 0 1

 ·

p′x

p′y

p′z

 =


ς

0

0

 (5.70)

It can be seen that p′ has to be perpendicular to the second row of the rotation matrix. By
additionally considering the sign of the ideal point, the solution is obtained as:

γ1 = atan2
(
ςp′y, ςp

′
x

)
(5.71)

As mentioned above, the second solution for the pan angle is similarly obtained by replacing
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p with q

γ2 = atan2
(
ςq′y, ςq

′
x

)
(5.72)

The last row of Equation (5.70) implies that p′
z has to be 0. That means that we can obtain

an estimate for the accuracy of the determined focal length and tilt angle by looking at the
resulting z value. In fact, this shows how good the vanishing points could be determined.

The method above requires that the sign of the horizontal ideal point could be fixed. How-
ever, if the sign of the ideal point corresponding to the vertical model lines is known, equa-
tion (5.70) becomes: 

cos (γ) sin (γ) 0

− sin (γ) cos (γ) 0

0 0 1

 ·

p′x

p′y

p′z

 =


0

ς

0

 (5.73)

and the two solutions are given by:

γ1 = atan2
(
−ςp′x, ςp′y

)
γ2 = atan2

(
−ςq′x, ςq′y

)
To eliminate the wrong solution, we determine the valid pan range of the specific camera using
the knowledge of the field size and the camera position. TV cameras are usually placed 30m-
50m from the next field line, so that the field is only visible in a small range of the pan angle.
As the wrong solution is shifted by 90◦, it can be eliminated if the valid range is smaller than
90◦. In TV broadcasts, the valid range is usually smaller than 70◦, so that the pan angle can be
identified uniquely.

The valid pan range is determined by the camera position and the field size as the range
between the minimum and maximum angle, where at least one corner point is visible in the
horizontal image center.

5.5.3 Validating the Estimated Parameters

At this stage, the parameter set (pan, tilt, zoom) has been determined without the need to
identify the image lines. However, due to noise and the fact that the video segment may be
captured by a camera other than from the camera of interest, the determined parameters may
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be out of the convergence range of the tracker or even completely wrong.

For this reason, it is required to confirm or reject the parameters by comparing the expected
projections of the model lines with the extracted image lines. For each projected model line,
the nearest neighbor is determined and is counted as an outlier, if this distance is beyond a
given threshold. If more than one outlier is detected, the determined parameters are rejected,
and the next image in the video sequence with sufficient image lines is processed. On the other
hand, if the projected model lines are consistent with the image lines, the estimated parameters
are provided to the Iterative Camera Calibration module (ICC) as the initial estimate.

The distance of a projected model line to an image line is determined as described in sec-
tion 5.5.1.2 except for the threshold values. The threshold value for the line orientation is
chosen to be 5◦, the maximal distance difference to the origin by 30 pixels, and the maxi-
mum line distance is selected to be 30 pixels. Additionally, we determine the ratio of overlap
between image and model lines by endpoint projection.

The above constraints ensure, that the chosen parameters are within the convergence range
of the tracker.

Figure 5.32 Results for the Initial Parameters Estimation: determined parameters are within
(left) or out of (right) the convergence range of the tracker (ICC).
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Figure 5.32 depicts the results for two different camera configurations with two selected
images each. The field model is projected into the image to show the accuracy of the described
method. The results for the example given by figures 5.24-5.29 and 5.31 is shown in the top
left image. Parameters, that are out of the convergence range of the tracker are depicted in the
second column. In these cases other frames can be selected for the initial parameter estimation,
or they can be estimated by human intervention.

5.5.4 Covariance Matrix of the Initial Estimate

If valid parameters could be determined, then these are composed to the state vector x̃0 as
follows:

x̃0 =


f

α

γ

 (5.74)

Since the focal length is given in millimeters and the angles in radians, the covariance matrix
of the initial estimate is selected as:

P̃0 =


3.0 0 0

0 0.1 0

0 0 0.1

 (5.75)

From the diagonal structure of the covariance matrix, it can be seen that the parameters are
supposed to be uncorrelated, and from the large diagonal elements it can be seen that the state
vector is supposed to be very uncertain. The reason for this is, that a sufficient number of
field lines are visible and the initial guess is within the convergence rate of the tracker. This
means, that for the first frame the MAP estimation can converge in almost all cases towards
the true system state without the need of the stabilizing effect of the predicted parameters
(initial guess). Unlike the predicted parameters, the initial guess is imprecise, and therefore
is only required to obtain line correspondences and as the initial estimate for the nonlinear
optimization (see next section). In fact, using a smaller covariance matrix would lead to a
worse final estimate for the first frame.
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5.6 Iterative Camera Calibration

The Iterative Camera Calibration module (ICC) successively estimates the dynamic parame-
ters for a video sequence until a shot cut is detected.

The ICC is integrated into the Kalman Filter (KF) framework and uses a modified version
of the weighted Gauss-Newton approach with prior knowledge to robustly obtain the MAP
estimation in the measurement update stage. The KF is commonly used for solving parameter
estimation problems in the computer vision community [Fau93] mostly because it is the linear,
recursive and optimal filter (see chapter 4).

The tracking task is depicted in figure 5.33.
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Figure 5.33 The Iterative Camera Calibration module
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In each time step, an initial guess including uncertainties for the parameters to be estimated
is required. At the beginning of a sequence, this a priori information is usually provided by the
user or is obtained from the Initial Parameter Estimation module as described in section 5.5.
During the tracking task, however, parameters that have been obtained by the optical flow
information between two subsequent images are used for prediction. If the optical flow is
inconsistent with the expected camera motion (pan, tilt and zoom), a shot cut is assumed and
the ICC returns the control to the Scene Iterator.

In the update stage, correspondences between the model and image lines are sought in the
vicinity of their expected positions. The expected positions for the image lines are given by
the projections of the corresponding model lines using the initial guess. To speed up corre-
spondence search, we use line-point correspondences instead of line-line correspondences.
This means, that we search for correspondences between the several selected points on each
model line and their matching points in the image along the projected line normals in both
directions. Compared to the extraction of image lines, this method reduces the effort to deter-
mine the expected color transitions along several lines. Furthermore, we restrict the search of
corresponding image points to the vicinity of the projected model line/point. The vicinity of a
model line/point is defined by a search width, which is selected to be at least the confidence
interval of 99.7%. The interval value is obtained from the uncertainty of the initial guess. The
final estimate is then robustly determined by minimizing the distances of the image points to
the projected model lines considering the initial parameters. The used cost function, eln, is
described in section 5.2.2.

Unfortunately, using image points instead of image lines leads to a loss in accuracy and
robustness, as the image lines are very robust features. To compensate for the so-caused lim-
ited accuracy, multiple image points for each model line are used. The required robustness is
achieved by integrating the robust M-Estimators (see section 4.2.5.4) into the weighted Gauss-
Newton method (see section 4.2.3.1), which we call the reweighted Gauss-Newton method for
the remainder.

The robustness and accuracy of the update stage and thus of the whole tracker highly de-
pends on the quality of the initial guess. If the initial parameters are substantially far from
the true state, the number of correct line correspondences found is low while the number of
outliers increases, which makes the accurate estimation of the parameters difficult. In such a
case, the monitoring process running during the update stage invokes the Initial Parameter

Estimation to reinitialize the tracking task. If also this fails, the control is returned to the Scene

Iterator, which searches for the next suitable sequence. The range for the initial parameters
leading to a valid estimate is called the convergence range of the tracker.
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5.6.1 Parameter Prediction

The time update stage of the Kalman Filter predicts the state vector for the next time step by
using the motion model (see equation (4.2)). In the camera tracking task, the motion model
can be simplified by only adding an input control vector ut to the last estimate x̂t−1.

x̃t = x̂t−1 + ut (5.76)

The control vector ut governs the relative motion of the camera from time t − 1 to time t.
Above representation suits to the motion model given in chapter 4. But instead of obtaining
the control vector, we directly estimate the predicted state using the reweighted Gauss-Newton
method.

This is efficiently done using optical flow between two subsequent images. 100 randomly
selected points around the image border are tracked between both images as described in
section 5.4.1.2. The processed points are depicted as blue dots in figure 5.34.

As the considered camera configurations suppose fixed camera centers, the transformation
between two images taken by the same camera with different orientation and/or focal lengths
can be described by a projective transformation. Let w be a point in the world coordinate
system, qt−1 its projection in image It−1 and pt the projection of the same point in image It.
Furthermore, let Kt−1, Rt−1, Kt and Rt be the corresponding camera and rotation matrices for
both images. The projection of both points can then be written as:

qt−1 ' Kt−1Rt−1Tw (5.77)

pt ' KtRtTw (5.78)

As the camera position is supposed to be fixed, the translation given by T is the same for
both views. Thereby we can transform w by T beforehand. Let wc = Tw, then wc can be
determined (up to scale) by equation (5.77) as follows:

wc ' RT
t−1K

−1
t−1qt−1

(5.79)

Integrating this result into equation (5.78) yields:

pt ' KtRtR
T
t−1K

−1
t−1︸ ︷︷ ︸

H

qt−1 (5.80)
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The 3×3 matrixH is called Homography, and is defined up to a non-zero scale factor λ. Thus,
H has 8 degrees of freedom and can be determined using at least four known and non-collinear
point correspondences (see section 5.3.1).

Point correspondences are found by using the method described in section 5.4.1.2 and trans-
formed by the inverse of Ka beforehand. Both camera matrices reduce to the form of Kp (see
equation (3.13)) with their corresponding focal lengths ft−1 and ft.

The homography is robustly estimated using RANSAC [HZ03] and refined by a least squares
solution using all inliers.

5.6.1.1 Calculating the Predicted Parameters

The predicted parameters can be determined by two different approaches. One is the closed
form solution, and is obtained by using the above representation of the homography. The other
method uses a nonlinear least squares estimation that makes it possible to consider several
constraints (e.g. constant roll angle). In the context of this thesis, the least squares estimation
is used, but we will present both methods, as the closed form solution is used for the initial
estimate for the least squares solution.

Closed Form Solution

The closed form solution is obtained using the above representation of the Homography (see
equation (5.80)). Since the camera and rotation matrices for the previous time step are already
known, equation (5.80) can be rewritten to:

Rt−1Kt−1H︸ ︷︷ ︸
=H′

= λKtRt (5.81)

or in the row representation: 
h′T

1

h′T
2

h′T
3

 =


λftr

T
1

λftr
T
2

λrT
3

 (5.82)

with h′T
1 , h′T

1 and h′T
1 being the rows of matrix H ′, and rT

1 , rT
1 and rT

1 being the rows of
the rotation matrix Rt. From the orthonormality property of the rotation matrix, the unknown
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scale factor λ is obtained as the length of the last row of matrix H ′.

λ =

√
h′T

3 h′
3

H ′′ =
1

λ
H ′ (5.83)

Then the focal length can be obtained as the length of one of the first rows of matrix H ′′.

f1 =

√
h′′T

1 h′′
1

f2 =

√
h′′T

2 h′′
2

Due to noise, both lengths may be different, and so we use the geometric mean of both to
obtain the final focal length.

ft =
√
f1 · f2 (5.84)

After the camera matrix is determined, the rotation matrix can be obtained by

K−1
t H ′′ = Rt (5.85)

Since it is not assured that the obtained rotation matrix is orthonormal, the final rotation matrix
is determined by the best orthonormal matrix in terms of the smallest Frobenius norm [Zha00].
The pan and tilt angles are then extracted from the obtained rotation matrix as denoted in
equation (2.7).

Least Squares Solution

The least squares estimate uses the reweighted Gauss-Newton method to determine the final
parameters. The results from the closed form solution presented in previous section, are used
in several ways. First, the closed form solution is used as the required initial guess for the
nonlinear least squares method. Secondly, all outliers obtained by RANSAC from previous
step are eliminated beforehand. Finally, the determined homography is used to estimate the
variances for the point correspondences.

The covariance matrices for the points pi are assumed to be homoscedastic, i.e. Σi = σ2
i I,

and the variances σ2
i are estimated by following heuristic. Let qi be the point in image It−1 and

pi their corresponding points in image It. Furthermore, let H be the inter image homography
describing the transformation between two subsequent images from time t− 1 to time t. The
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variance is then given by the squared residual distances as follows:

σ2
i = (pi −Hqi)

T (pi −Hqi) (5.86)

where the homogeneous points pi and Hqi are normalized, so that the homogeneous compo-
nent is equal to 1. The variance is simply the squared distance of the corresponding points in
pixel coordinate system plus 1.

The cost function for the least squares solution can be inferred by following consideration.
The direction of the ray from the camera center through the point qi in world coordinate
system is given by:

wi = RT
t−1K

−1
t−1qi (5.87)

By interpreting this direction as an ideal model point in world coordinate system, the cost
function ept can be used (see section 5.2.1).

The resulting parameters and the corresponding covariance matrix are obtained similarly as
described in section 5.6.3 using the reweighted Gauss-Newton method. The difference is that
no prior knowledge is available, and that the measurement variance is obtained additionally.

Let xk′ be the estimated parameter vector and Σk′ its covariance matrix from the last itera-
tion k′. Then, the predicted parameter vector and its covariance matrix are given by:

x̃t = xk′

P̃t = P̂t−1 + Σk′ (5.88)

The unknown measurement variance σ̂2 is estimated from the last iteration and incorporated
into Σk′ . It is given by equation (4.100), where the covariance matrix of the measurements is
replaced by the corrected covariance matrix Σ′

zz (see equation (5.95)).

5.6.1.2 Experimental Results

We have tested the parameter prediction method separately on several uncut video streams.
The method was able to track the parameters for 1091 frames on average until the estimated
parameters drifted out of the convergence range of the tracker. This means that the parameter
prediction method could track the parameters without getting lost and without using the image
lines for approximately 43 seconds 10 on average. The maximum time period for the prediction

10PAL: 25fps
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without getting lost was 3303 frames (132 seconds 10 ), which is more than two minutes of
playing time.

Figure 5.34 shows the parameter prediction over 600 frames. It can be seen, that the pre-
dicted parameters for the last frame are still within the convergence range.

t t+ 100 t+ 200

t+ 300 t+ 400 t+ 600

Figure 5.34 Parameter prediction over 600 frames. Established point correspondences are
displayed as blue dots. The predicted parameters after 600 frames are still within the con-
vergence range of the tracker.

For the scenes with zooming but only slow camera motion, the predicted parameters stay
within the convergence range for more than 2200 frames (88 seconds 10 ), whereas for scenes
with zooming and very fast camera motion this rate goes down to only 10 − 20 frames. The
main reason for this is that in sequences with fast camera motion or zooming, the images are
very blurry, and therefore the number of found point correspondences drops rapidly. Thus the
parameters start drifting away from the true state.

However, as the prediction step is followed by an update step during tracking, the parameter
prediction alone does not have to track the parameters for more than one frame.
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5.6.2 Searching Line Correspondences

As mentioned before, only correspondences between image points and points lying on model
lines are used during the update stage. The number of correspondences for a model line de-
pends on its type (see section 5.1) and length. Field lines, which are the main features for
the tracking task, provide 10 − 20 correspondences each, depending on their length. For ex-
ample, the center circle provides 20 correspondences, whereas the goal lines provide just 10

correspondences.

Field edges and lawn lines, are not very reliable and therefore provide only 7 and 5 corre-
spondences respectively. They are mainly used to stabilize the scenes with a moderate number
of visible field lines. In such cases, the correspondences from these lines prevent the parame-
ters from drifting away until a sufficient number of field lines becomes visible again. On the
other hand, if enough field lines are visible, the moderate amount of correspondences from
field edges and lawn lines does not strongly influence the estimation results.

To ensure a uniform distribution of the selected model points along the visible line segment,
a predefined sequence of 63 values for the line parameter s is tested until the required number
of correspondences is found. A shortened parameter sequence with just 15 values for s is
depicted in figure 5.35. If less than 3 correspondences for a single line could be found, the line

4 2 5 1
6 3

1413 15

7

98 10 11 12

Figure 5.35 Order of the curve parameters for the correspondence search

is marked as invisible, which indicates that the line is either occluded by players or the initial
parameters are out of the convergence range of the tracker. The latter case is important for the
monitoring process, which is described in section 5.6.5.

The basic algorithm for all line types is described by the following steps.

• First, the model point w and its normal n for a given value for s are obtained from the
corresponding curve (see section 5.1), and projected into the image using the predicted
camera parameters. Additionally, the covariance matrix Σqq of the projected model point
q is determined by using the linearization method as described in section 2.3.1.2.

• The search width ρ is selected as 3σn + 5d, where σ2
n is the variance along the projected

normal determined from Σqq as described in section 2.3.2. The variable d is selected to
be d = max (d′, 5) for all line types, where d′ is the expected line width in pixels at the
given model point.
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• Finally, the corresponding image point (transition point) is sought along the normal in
both directions within the search width. If a suitable point could be found, its variance is
estimated and a correspondence D is built including the model point, found image point
and its variance (see section 5.2).

The search lines for the model points for the example from figure 5.29 are depicted in fig-
ure 5.36. Since the transition along the projected line normal is sought, the variance along

Figure 5.36 Search range for correspondence search

the search direction is estimated instead of the covariance matrix of the transition point. The
main advantage is, that it is not required to propagate the variance of the transition point to the
distance measure given by the used error function eln in the update stage (see section 5.2.2).

5.6.2.1 Searching Field Markings

Point correspondences for field lines are found using a one-dimensional template matching.
The template describes the color transition for a field line, and is specified by the expected line
width d′, d = max (d′, 5), and the color distributions (see figure 5.37).

2d 2d

d’
A

B

C

Figure 5.37 Template for line color transition

The color values within the segments A and C are supposed to belong to the field color,
whereas the gray value in segment B is supposed to be considerably brighter than the gray
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value of the segments A and C. The anchor for the template is in the center of the line (on the
medial axis), and is depicted by the blue circle.

The template is shifted along the search range, and the match for each point (pixel under
the anchor) is determined by a utility function. Points where the gray value of segment B is
not considerably brighter than the gray value of the segments A and C, are rejected. The point
with the best match is used as the corresponding image point, if the match is above a given
threshold.

As the color within the segments A and C is supposed to be the field color, the utility
function determines the number of pixels within both segments, that belong to the field color
class. Instead of a binary assignment of pixels into field color and non-field color pixels, we
assign a weight to each pixel representing the confidence that the pixel belongs to the field
color. Therefore, we first determine the Mahalanobis distance to the field color class for each
pixel color value within the segmentsA andC, and then sum up the values of a weight function
taking the Mahalanobis distances. We use the weight function proposed in section 4.2.5.4 with
the values 3 and 6 for the parameters a and b respectively. The threshold for the utility value
is selected to be 2d, since the perfect match has the utility value of 4d.

The variance is heuristically determined as the distance to the closest point where the utility
value is below 75% of the maximum. Figure 5.38 depicts the matching results for a model
point. The black line shows the rejected utility values along the search range, whereas the red

q

σ 2

100%
75%

Figure 5.38 Template matching results for a line color transition

curve shows the accepted utility values. The dashed blue line shows the point with the best
match, and the horizontal black lines show the peak level and the threshold for the variance
estimation.

To decide, whether the segment B is brighter than segment A and C, we determine the
sample means and sample variances of the gray values within these segments, and use the
Hotellings t-Test [Leh86]. More specific we use the two sample t-Test, which decides whether
the difference of the means of two distributions is larger than a given value g. In our case, g is
the expected gray value difference between the field markings and the field, and has been set
to 25 according to the experiences gathered during experimental evaluation.

Let µA, µB and µC be the sample means of the segments A, B and C respectively, and σ2
A,
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σ2
B and σ2

C their corresponding sample variances. We suppose, that the unknown real variances
for all segments are caused by the same error sources and are therefore equal. The test values
tA and tC are then given by:

tA =
µB − µA − g√

(2d−1)σ2
A+(d′−1)σ2

B

2d+d′−2

(
1
2d

+ 1
d′

)
tC =

µB − µC − g√
(2d−1)σ2

C+(d′−1)σ2
B

2d+d′−2

(
1
2d

+ 1
d′

) (5.89)

As it is possible that the sample variance for a segment can be 0, we use a lower bound of 1 for
all sample variances. For the case d′ = 1, no sample variance for segment B can be obtained
and we set its variance equal to the variance of segment A and C respectively. The degree of
freedom (DoF) is 2d+ d′− 2 and unfortunately depends on the sample sizes. Instead of fixing
the confidence level and obtaining the corresponding threshold t̄, we use a fixed threshold of
t̄ = 2.55. For the smallest line width (1 pixel), the confidence level is 97.5% and for the line
width of 35 pixels for example, the confidence level is 99%11. The segment B is supposed to
be considerably brighter than its neighbooring segments A and C, if both test values tA and
tB are above the threshold t̄.

5.6.2.2 Searching Lawn Lines

Lawn lines are purposely made by the lawn mower as additional auxiliary lines for the referees
and are quite common in the soccer stadiums. Usually, they appear as pattern consisting of
horizontal and vertical stripes, with alternating intensity values. Thus, lawn lines separate
brighter regions from darker regions. The one-dimensional template for lawn lines is depicted
in figure 5.39.

2d2d

A B

Figure 5.39 Template for lawn line color transition

The template is shifted along the search line, and for each point, we determine the sample
mean and sample variance of the intensity values for both segments. Let µA and σ2

A be the
mean and variance of the intensity values for the segment A, and µB and σ2

B for the segment
B.
11The confidence levels can be obtained from the distribution tables.
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To decide, whether one side is brighter or darker than the other side, we again use the
Hotellings t-Test. Because of the fact, that the distributions are given by samples with equal
size, the test criterion is given by:

t =
µA − µB − g√

σ2
A+σ2

B

2d

(5.90)

In case of lawn lines, the intensity difference g between dark and light stripes is set to 8,
again based on our experiences from the experimental evaluation. The degree of freedom is
4d − 2 = 18, since d = 5 is used. The threshold value for the confidence level of 99% is
t̄ = 2.55, and is obtained from the distribution table. Since the brighter side of a lawn line is
given by the field model, we suppose in the following that A belongs to the brighter side.

From all the points fulfilling the above criteria, we select the one with the largest test value
t, since it is the point separating both regions most clearly. The variance for the best match is
obtained from the following heuristics:

σ2 =
10.2

t
+ 1 (5.91)

where t displays the test value for the best match. Therefore, the variance equals to 5 pixels
in the worst case (t = 2.55) and 1 pixel in the best case. In practice, however, the variance
mostly lies between 5 and 2 pixels.

5.6.2.3 Searching Field Borders

The field border along a search line is determined as the point, where the pixels on the one
side belong to the field color, while those on the other side do not. The weights indicating
the similarity between the pixel color and the field color are again obtained by the proposed
weight function. The weight function takes the Mahalanobis distance of the pixel color to the
field color class, and lies between 0 (no match) and 1 (perfect match).

The task is to find the boundary within the search line, where the sum of the weights on
one side is large, while the sum of the weights on the other side is low. In the remainder, the
method will be explained for a horizontal search line, where the field is supposed to be on the
left side, i.e. we search for the transition of the right field border.

We iterate over the search line from left to right, and determine the sum of weights on the
left side of each iterated point. The leftmost point that separates at least 98% of the total sum
is supposed to be a border point. Figure 5.40 depicts this idea.
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98% 99%

σ
2

Figure 5.40 Finding field edges

The variance is again obtained through heuristics. If the border of the field is exact, the
weights should give a rectangular profile within the search line and the variance should be
small. On the other hand, if the border is blurry, the profile has a slope, and the variance
should be larger. The variance is determined as the difference between the point at 98% and
the point at 99%, but is set to at least 1.

Figure 5.41 shows the correspondence search results for all three line types for the example
depicted in figure 5.36.

Figure 5.41 Line correspondences found by the methods described in section 5.6.2.

5.6.3 Parameter Update

The MAP estimation in the update stage is determined by the reweighted Gauss-Newton
method with prior knowledge. The prior knowledge is given by the Parameter Prediction stage
or obtained by the Initial Parameter Estimation module in the first step.

As mentioned earlier, the update stage uses line correspondences, that are found by using
the predicted parameters as described in section 5.6.2. Each line correspondence Di provides
one error value ri with corresponding variance σ2

i . The error values are returned by the cost
function eln as described in section 5.2.2. All error values and variances are stacked into them-
dimensional error vector (residual vector) r and them×m covariance matrix Σzz respectively.
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The covariance matrix Σzz has diagonal form, as we assume that the observations are made
independently.

The algorithm of the reweighted Gauss-Newton is similar to algorithm 4.4. The main dif-
ference is, that the covariance matrix of the measurements is modified to suppress outliers.
We will now present the reweighted Gauss-Newton method with prior knowledge for a single
iteration.

Let rk be the error vector at the current iteration k and the m × 3 matrix Jk the Jaco-
bian of rk. Furthermore, let x̃t be the predicted parameters for the current time step t, and
P̃t their covariance matrix. Note, rk and Jk are obtained at the previous estimate xk−1 (see
equation (4.101)).
According to equation (4.120), the correction step lk for iteration k is obtained by:

Jklk = −rk

Using equation (4.81) with ρk = 1, we can rewrite above equation as:

Jk (xk − xk−1) = −rk

Jkxk = Jkxk−1 − rk (5.92)

Incorporating the predicted parameters into this equation leads to:Jk

In

xk =

Jkxk−1 − rk

x̃t

 (5.93)

Assuming that the predicted parameters are independent from equation (5.92) leads the to
following least squares estimate:

xk =
(
JT

k Σ−1
zz Jk + P̃−1

t

)−1 (
JT

k Σ−1
zz (Jkxk−1 − rk) + P̃−1

t x̃t

)
Σk =

(
JT

k Σ−1
zz Jk + P̃−1

t

)−1

(5.94)

Up to this point the only difference to equation (4.126) is that we now determine the corrected
new state xk instead of the correction vector lk in each iteration.

To get a robust estimator, we intergrate the M-Estimators (see section 4.2.5.4) as follows.
In each iteration, a diagonal weight matrix W is determined from the residuals of the last
iteration. This weight matrix has the same function as the inverse covariance matrix in the
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above equation (5.94). It is providing different weights to the measurements in order to give
more confidence to some measurements than to others.

The inverse covariance matrix Σ−1
zz in above equation is replaced by another weight matrix

Σ′−1
zz , which is determined in each iteration as follows:

Σ′−1
zz = Σ−1

zz W
(k−1) (5.95)

The superscript (k − 1) indicates that W has been determined from the residuals from the
previous step. For the first iteration, the weight matrix is set to the identity matrix W (0) = Im.

Intuitively, Σ′
zz can be seen as the corrected covariance matrix of the measurements. It is

clear that the variances of the correspondences just display the quality of the detected line
feature, but not whether the feature was obtained from the right image feature or not. This
means that the estimated variances are only valid, if they really belong to the right field lines.
The weight matrix displays how good a measurement fits the observation model, i.e. exposes
the confidence that a measurement was obtained by a correct feature.

The diagonal elements of the weight matrix are inferred from the proposed weight function
(see section 4.2.5.4). The parameter a is selected as described in section 4.2.5.4, whereas b is
set to 2 in the second iteration12 and increased by 2 in each iteration.

If the initial estimate is close to the true state and the outlier rate is small, the final estimate
is close to a weighted Gauss-Newton estimate with prior knowledge for outlier-free data. This
means that the influence of the proposed weight function on inliers in the last iteration step is
very small (see figure 4.3), while outliers are almost completely eliminated.

The iterations are terminated after the 3-th iteration or if the length of the gradient of the
cost function (see section 4.2) falls below 10−6. From the last iteration k′, we obtain the final
estimate for the current time t as

x̂t = xk′ (5.96)

P̂t = Σk′ (5.97)

Figure 5.42 shows the first two iterations for the example depicted in figure 5.41.

12The weight matrix for the first iteration is set to identity.
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Figure 5.42 First and second iteration for example shown in figure 5.41.

5.6.4 Shot Boundary Detection

The shot boundary detection during the tracking task is carried out in the parameter prediction
stage. As the sequences are taken from a rotating and zooming camera, we can exploit this
knowledge to get a very robust shot boundary detection. Unlike the more generic methods de-
scribed in section 5.4.1, that have to deal with arbitrary camera and object motion, we suppose
that the transformation of two subsequent images can be described by a homography.

As described earlier, parameter prediction already determines the inter image homography
between two subsequent images. As the initial guess for the homography is obtained using
RANSAC, which also delivers the outlier rate for the best homography found, this information
can be used for shot boundary detection. A shot boundary is detected if the outlier rate is above
80%. This holds for the case when no homography describing the change of two subsequent
images accurately enough could be found.

The proposed method can reliably detect shot cuts as well as effects. Fortunately, during the
active game, where camera tracking is performed, only shot cuts are used, and this method
works very reliably. Besides the robustness, this method is also very efficient as it uses pre-
computed information from RANSAC. Table 5.16 shows the obtained precision and recall
rates for this method. The ground truth data was manually obtained from several games.

# seq. false positives false negatives precision recall

shot cuts 203 0 2 100% 99.01%
Table 5.16 Precision and recall rates for shot cut detection during the tracking task

If a shot boundary is detected, the tracking task returns the control back to the Scene Iterator
module, which searches for the next suitable sequence.
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5.6.5 Monitoring

Even though robust methods are used to overcome outliers in the measurements, and proba-
bilistic methods are used to incorporate multiple uncertain measurements into one consistent
and accurate estimate, camera tracking in natural and highly dynamic environments still stays
a complex and error-prone task. Therefore, it is necessary to recognize if the tracker gets lost,
i.e. the estimated parameters are far from the true state. A monitoring system runs during
the update stage of the tracking task, and reinitializes the tracker if necessary. Three different
methods are used, that complement each other.

The first method uses the initial fitness between the image and the model. For efficiency
reasons and due to the high robustness of the tracking task (see section 5.6.6) no image lines
are extracted, but instead the information gathered by the line correspondence search methods
is used. As mentioned earlier, model lines with less than 3 found correspondences are marked
as invisible. If the rate of “invisible” model lines exceeds 30%, we suppose that the parameters
are wrong or out of the convergence range of the tracker.

The second method uses the final fitness between the model and the measurements, which
is obtained by the weight matrixW (see section 5.6.3). As the diagonal elements of the weight
matrix show the confidence that the corresponding measurement is an inlier, the ”number” of
inliers can be obtained as the sum of all diagonal elements tr (W ) (trace of the weight matrix).
If the inlier rate is below 80%, we suppose that the tracker got lost.

The third method uses the change of the parameters within two subsequent frames. Since
TV broadcasts are meant for entertainment, camera rotation as well as the zooming speed is
limited to obtain a smooth viewing experience. If one of these parameters changes too quickly,
we suppose that the camera tracker gets lost. For the maximum allowed rotation speed we use
25

◦

sec
or 1◦ per frame. The threshold for change in the focal length is set to 1.1 per frame, which

means that within two subsequent frames, the focal length can be increased by a maximum of
10% or decreased by a maximum of 9.1%.

If one of these methods detects the loss of tracking, execution is again passed to the Initial

Parameter Estimator. If the Initial Parameter Estimator fails, the sequence is skipped and the
control is returned to the Scene Iterator module. Otherwise, the tracker is reinitialized and
processes the remaining parts of the video segment.

5.6.6 Experimental Results

The camera tracking was tested on several uncut video streams from TV broadcasting cameras.
The average time (video time) before the tracker gets lost was approximately 19 minutes,
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which is more than 29000 frames 13 .

We have evaluated the robustness and efficiency of the tracking task with the final game of
the FIFA World Cup 2006. The video stream was grabbed by the main camera, which was
placed in the center of the main stands at a height of 18m.

The tracker processed both halftimes of the game without getting lost and, i.e. without any
human intervention. The only two times the tracker gets lost was in the overtime. Both times,
the camera zoomed in very fast and changed its orientation quickly during and after the zoom.
Furthermore, no field markings were visible and a vast number of players in the view led to
high outlier rates.

The camera tracking without player segmentation and player tracking was tested on an
AMD Athlon 64 machine with 2GB RAM and running at 2200Mhz. The processing speed
was about 15 − 20 fps, which is close to real time. As the player regions, provided by the
segmentation, are used to eliminate wrong feature correspondences, the average time until the
tracker gets lost dropped to 14 minutes or 21000 frames 13 .

Furthermore, we have tested the tracker by supressing the update stage of the Kalman filter
in frames where the predicted parameters were sufficiently accurate. The processing speed
increased to 19 to 26 fps, while the accuracy was comparable to the normal method. The
measurement update stage, which uses line correspondences, was only performed if the diag-
onal elements of the covariance matrix of the predicted parameters (their variances), exceeded
some threshold values. By selecting a threshold value of 10−7 (radiant) for the rotation angles
and 10−3mm for the focal length, the measurement update stage was performed every 2nd to
5th frame.

The processing speed with player segmentation and player tracking was about 6 − 12 fps,
which is still very fast.

Additionally we have tested our methods successfully on broadcasted tennis videos, by only
interchanging the field model. Since in tennis broadcasts the field is almost always completely
visible, the number of used correspondences for each model line could be drastically reduced.
We have used only three correspondences for each model line, which led to a higher processing
speed. The robustness of the tracker could not be tested, as no uncut video streams were
available.

Figures 5.43-5.45 show an example sequence for the robustness of the camera tracking
system within the ASPOGAMO framework.

13PAL: 25fps
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frame 21720 frame 22157

frame 22180 frame 22190

frame 22200 frame 22220
Figure 5.43 Successful tracking during fast camera motion.
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frame 0 frame 30

frame 60 frame 90

frame 120 frame 150

Figure 5.44 Successful tracking, even to suboptimal camera position (low height), pallid col-
ors and flickering frames.
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frame 1230 frame 1250

frame 1270 frame 2900

frame 4100 frame 4300
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frame 4400 frame 4430
Figure 5.45 Successful tracking despite strong zooming and almost no visible field lines.

Figure 5.46 Successful tracking for broadcasted tennis videos
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5.7 Related Work

To the best of our knowledge, so far no comparable system exists and therefore we will present
related work integrated into constituent of our proposed system.

Farin et al. [FKEdW04, FHdW05] propose a model-based automatic camera calibration
system for field sports, particularly for tennis. The camera calibration and tracking tasks are
performed using image lines, which are extracted by a RANSAC-like line detector. The initial
parameters are found by a combinatorial search of line correspondences. For efficiency rea-
sons, they use two different methods to find line matches. The second method is slower but
more robust than the first method, and is only carried out if the first one fails. The first method
tests every combination of two parallel image lines with every combination of two parallel
model lines, until a match is found. From each line correspondence, the homography is deter-
mined by using the correspondences defined by the four endpoints of the two line pairs. The
model lines are projected into the image by using the homography, and the fitness is obtained
by heuristics using the pixels classified as line candidates. As the first method is inappropriate
for image lines which are only partly visible, the second matching method using four line cor-
respondences is used. The number of combinations is reduced by selecting two horizontal and
two vertical lines. For each set of line correspondences the homography is determined from
the intersection points of the four lines.

The camera parameters are not determined explicitly, but are included in the homography.
The tracking task predicts the camera parameters for the next time step by linear extrapolation
using the last two time steps. From this prediction, the lines are extracted only in the vicinity
of the expected positions, and the method described above is used to refine the parameters.

Besides the fact that the system can not process raw video streams from TV broadcasts, it
has several other drawbacks. First, it does not exploit the domain knowledge completely. For
example, the planar homography has 8 degrees of freedom and can describe the projection of
the field for arbitrary camera configurations. However, as the camera setups in tennis (as well
as in soccer) have fixed positions, the determination of the full homography is unnecessary
and inefficient. Another drawback is that this method does not use the optical flow informa-
tion for camera prediction and does not provide the uncertainty of the estimated parameters
(homography).

Hayet et al. [HPV04a, HPV04b, HMC+05] propose a framework comparable to ASPOGAMO

[BGB+07, GBvHH+07]. Like the method proposed by Farin et al. (see above), they do not
estimate the camera parameters explicitly, but estimate the homography from the extracted
image lines. However, they use the inter image homography for parameter prediction and pro-
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vide the covariance matrix for the estimated parameters. The evaluation is just given for corner
scenes and the method seems to work efficiently. Yet, it only works reliably on scenes with a
sufficient number of visible field lines.

Yamada et al. [YSM02] propose a system for tracking the ball and the players in soccer and
estimating the camera parameters. By using an initial guess, they project model lines into the
image and search in its vicinity the nearest neighboring line pixel. The initial parameters for
the first frame are obtained by a full search in the parameter space, while the predicted parame-
ters are determined by a search only in the vicinity of the prediction. The predicted parameters
for each time step are obtained from linear extrapolation.

However, the proposed method does not provide the uncertainty of the estimated parame-
ters. Furthermore, a search in the parameter space is inefficient and leads to limited accuracy
in the estimated parameters. Unfortunately, no experimental results were presented.

The camera calibration method proposed by Szenberg et al. [SCG01] uses a tree structure to
find the right line matches. They extract image edges and filter out nonlinear structures by de-
termining the eigenvalues within rectangular regions in the image. From the obtained straight
edges, the field lines are recognized and identified by the so-called interpretation tree, where
each leaf of the tree represents one possible combination of model lines. From the best match,
obtained by the interpretation tree, the homography is determined and used to calculate point
matches between the model and the image. In a succeeding step, these are used as the input
for a standard calibration method to get the final camera parameters.

The method presented works reliably only if a sufficient number of field lines are visible in
the image. Unfortunately, the presented results were obtained by small sequences (27 frames)
displaying the penalty and goal area of the soccer field.

Watanabe et al. [WHK04] present a model-based camera calibration method using color in-
formation of the field and the field lines. Field lines are extracted by the field and line color
information, which has to be provided by the user. The field size is supposed to be known, and
the camera is supposed to be at the center of the main stands. The estimated parameters are
therefore: pan and tilt angle, y and z coordinate of the camera, and focal length. The optimal
parameters are found by a search in the parameter space around the initial guess, where the
fitness of each parameter set is obtained by some heuristic function. The initial guess for each
step is selected to be the estimate of the previous time step.

Bebie et al. [BB98] present a system called SoccerMan, which similarly to our system di-
vides the camera parameters into a set of dynamic and constant parameters. They determine
the constant parameters from the first frame of the video sequence, by manually identifying
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image and model correspondences. The parameters of each frame are determined by tracking
the lines between subsequent images.

Thomas et al. [JN06] partition the problem similar to our proposed framework into three
stages. In the first stage, the position of the camera and its roll angle are determined by using
multiple images. The second stage determines the initial parameters each time the tracking is
initiated by a search of line correspondences in the Hough space. In the third stage, the actual
camera tracking is performed. From a predicted state, which is simply the previous estimate,
line correspondences are sought in the adjacency of the expected line positions, and the final
parameters are estimated by the Levenberg-Marquardt method.

Intille et al. [Int94] present a system, that is capable to track football players from uncut video
streams taken by rotating and zooming cameras. The player positions are obtained by using the
homography between the image and the field, which is found by using at least four point cor-
respondences. The point correspondences for the first frame are obtained manually, whereas
the correspondences for the successing frames are given by intersection points of extracted
field lines. However, as the other homography-based methods described above, this method
lacks in the exploitation of the camera configurations to stabilize the estimated mapping, i.e.
fixed position, no change in the roll angle and some fixed intrinsic parameters.

Ekin et al. [ET03, ETM03, Eki03] present a system, consisting of several low level compo-
nents, that is capable to detect relevant events and summarize soccer games from TV broad-
casts. They present methods for detecting the dominant color, shot boundaries, slow motion
sequences, the referee and the penalty box.

The dominant color is obtained by the mean value of each color component in the HSI
color space, which are determined around their corresponding histogram peaks from multiple
images. Field color pixels are detected by thresholding their distance, which are determined
by the cylindric metric, to the mean color.

The shot boundary detection uses two different features to reliably detect shot cuts as well
as gradual transitions. The first feature is the absolute difference between two frames in their
grass color ratios. The grass color ratio is obtained as the percentage of pixels classified as
grass color. The second feature is the histogram difference between two frames, which is
obtained by the histogram intersection. To reliably detect gradual transitions, the distance
between the compared frames is set to 5 frames.

Video segments (shots) are classified into field view, close up view and out of field view by
determining the grass color ratio within different regions in the frame. A Bayesian classifier
using these features is designed to obtain the class of each frame in the video segment. The
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class of the whole video segment is then chosen as the class of the majority of all frames.
Slow motion sequences are determined by the zero crossing measure (see section 5.4.3) and

the penalty box detection is performed by simply searching three parallel lines within the field
region, where two lines a supposed to be parallel if the angle between them is below a given
threshold.
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Chapter 6 Conclusion

In this thesis, we have investigated methods for an integrated vision system that is capable
to estimate the parameters of dynamic cameras from live video streams of soccer broadcasts
with high reliability. The results hereof are a set of powerful methods incorporated into a vision
system that can perform the calibration and tracking tasks both accurately and reliably. The
presented methods have been designed to overcome the noisy and erroneous measurements
that are common in natural and highly dynamic environments.

The domain of team sport games has been chosen for the design and evaluation of such a
system as it has a challenging yet well defined setting. It is also a promising area of application
with high scientific and commercial potential.

We believe that we have made the following two main contributions to the field of camera
calibration and tracking from TV broadcasts in team sports games:

1. We have presented an Iterative Extended Kalman Filter based approach to reliably track
the camera parameters of rotating and zooming cameras over long periods of time. This
is achieved using two techniques.

First, camera parameters are predicted using optical flow information between subse-
quent images combined with robust estimation techniques. This is achieved without us-
ing any assumptions about the visibility of model features, by exploiting domain knowl-
edge about the considered camera configurations. This allows the tracking task to bridge
gaps, where no field lines are visible, by providing an accurate prediction for short time
periods.

Secondly, the MAP estimation during the update step which uses detected field line
features in the image, is performed by a robust nonlinear least squares method. This is
achieved by integrating the so-called M-Estimators into the commonly used weighted
Gauss-Newton estimate. Furthermore, we use a proposed weight function that leads to
a robust and accurate final estimate. It is achieved, by changing the shape of the weight
function in addition to the clipping threshold in every iteration. In the final iterations,
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outliers are almost completely eliminated, whereas inliers are almost equally weighted,
so that the BLUE condition1 of the estimate is almost unaffected by the weight function.

2. We have presented a vision framework that is able to handle raw video streams of soc-
cer games from live TV broadcasts. It provides methods to determine constant camera
parameters as well as the fieldsize and the field color from multiple views taken by the
camera of interest. It is capable to identify significant sequences from the video stream
by first segmenting the video at shot-boundaries and then classifying each sequence.
Shots showing out of field views, close up views, or slow motion sequences are fil-
tered as they contain no valueable information for the tracking task. For the remaining
shots, the initial parameters of the camera are estimated using extracted image lines and
knowledge about the camera position. The so-estimated parameters are used as an entry
point for the camera tracker. We have showed that all of these methods work reliably
and accurately, making the system applicable with only little human intervention.

The presented methods have been combined into a powerful integrated vision system run-
ning with near real time performance. It has been evaluated using TV-recordings gathered
during the last FIFA World Cup in Germany. The camera tracking was extensively tested on
several uncut video streams from different TV cameras with different perspectives, and the
obtained results approved the accuracy and reliability of the proposed method. Camera pa-
rameters could be tracked for approximately 19 minutes of playing time or 29000 frames in
average. Furthermore, both halves of the final game from FIFA World Cup 2006 in Germany
were tracked without errors and without the need for reinitialization. Using only the initial
prediction step from the camera tracker, the parameters could be predicted with sufficient
accuracy for 2200 frames in average without the need for visible model features. The applica-
bility of our methods for automated scene processing from live TV broadcasts of soccer games
has also been shown. Segments showing slow-motion replays, out of field views or close up
views could all be detected and distinguished with precision and recall rates clearly above
90%.

Despite the current focus on soccer games, we believe that our methods are also applicable
in other and more general scenarios. The only requirements are cameras with a fixed position
and a structured environment that can be described by a 3D model. Our methods would then
be applicable by interchanging the model and incorporating suitable feature detectors. As an
example, our system has been successfully tested on TV broadcasts of tennis matches. It turned
out that camera tracking in tennis matches is easier and could be performed using much fewer

1The BLUE condition is given for linear observation models (see section 4.1).
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correspondences due to the completely specified court sizes and the large amount of field lines
visible in each frame. We are confident that other sports like volleyball or basketball would
also be mastered by the presented methods.

Future research could aim at the automation of the last steps in the presented methods that
require human intervention. As an example, the Constant Parameter Estimation module still
requires some manually obtained point correspondences. These could possibly be extracted
using methods similar to the ones for extracting and grouping image lines in the Initial Pa-

rameter Estimation module.
The Initial Parameter Estimation module itself could be improved to remove the depen-

dencies on the amount of visible field lines. We propose to create a map of the environment
using image mosaicking that would contain all available visual features and could be used for
relocalization by deformable template matching if no line features are visible.
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