
Lehrstuhl für Integrierte Systeme

der Technischen Universität München

Development of a fast DRAM Analyzer and

Measurement of Typical and Critical Memory

Access Sequences in Applications

Simon Albert

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Information-
stechnik der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. Dr. rer. nat. Doris Schmitt-Landsiedel

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Ing. Ingolf Ruge (em.)

2. Univ.-Prof. Dr. Ing. Klaus Diepold

Die Dissertation wurde am 25.02.2008 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
23.07.2008 angenommen.

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über
http://dnb.d-nb.de abrufbar.

ISBN 978-3-89963-888-2

© Verlag Dr. Hut, München 2008
Sternstr. 18, 80538 München
Tel.: 089/66060798
www.dr.hut-verlag.de

Die Informationen in diesem Buch wurden mit großer Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen
werden. Verlag, Autoren und ggf. Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für eventuell
verbliebene fehlerhafte Angaben und deren Folgen.

Alle Rechte, auch die des auszugsweisen Nachdrucks, der Vervielfältigung und Verbreitung in besonderen Verfahren wie
fotomechanischer Nachdruck, Fotokopie, Mikrokopie, elektronische Datenaufzeichnung einschließlich Speicherung und
Übertragung auf weitere Datenträger sowie Übersetzung in andere Sprachen, behält sich der Autor vor.

1. Auflage 2008

Contents

1 Introduction 1
1.1 Evolution of Computer Systems . 1
1.2 Outline . 2

2 Memory Systems 5
2.1 Memory Hierarchies . 5
2.2 Random Access electrically rewritable Memory 5

2.2.1 SRAM . 7
2.2.2 Flash Memory . 7
2.2.3 SDRAM . 8

2.3 Hitting the Memory Wall . 8
2.4 Computer System Architecture . 9

2.4.1 Modern Computer Systems 9
2.4.2 Operation Modes of DDR-SDRAM 13
2.4.3 Options for SDRAM Controllers 20

3 Evaluation of Memory Access Sequences 25
3.1 Execution driven Simulation . 26
3.2 Trace driven Simulation . 28
3.3 Measurement . 30

4 Measurement Hardware 33
4.1 Overview . 33

4.1.1 Probe Head . 33
4.1.2 FPGA Board . 33
4.1.3 PC Backend . 41
4.1.4 External Triggering . 43

4.2 Verification . 43

5 DRAM Performance Analysis 45
5.1 Critical DRAM Timings . 45

i

ii CONTENTS

5.1.1 Methodology . 46

5.1.2 Results . 48

5.1.3 Performance Limitations of future Memory Systems 52

5.2 Statistical Modelling of SDRAM Parameter Changes 53

5.2.1 Changing SDRAM Timings 53

5.2.2 Changing the SDRAM Operation Frequency 62

5.2.3 Estimating Intercommand Spacing 71

6 Reproducibility 79

6.1 Deviation of Key Figures . 81

6.2 Local Distribution of Accesses . 85

6.3 Reproducibility and SDRAM Timings 90

7 Conclusion 95

7.1 Summary . 95

7.2 Limitations . 97

7.3 Related Work . 98

7.4 Extensions and Future Work . 99

A DRAM Timings 103

A.1 Intra Bank Timings . 103

A.1.1 RAS to CAS delay (tRCD) 103

A.1.2 CAS Latency (CL) . 103

A.1.3 Row Active Strobe (tRAS) 105

A.1.4 Row Precharge Time (tRP) 105

A.1.5 Row Cycle Time (tRC) . 105

A.1.6 Write to Read Delay (tWTR) 105

A.1.7 Write Recovery Time (tWR) 105

A.1.8 Refresh Cycle Time (tRFC) 105

A.2 Inter Bank Timings . 105

A.2.1 CAS to CAS Delay (tCCD) 106

A.2.2 RAS to RAS Delay (tRRD) 106

A.2.3 Four Activate Window (tFAW) 106

B Configurations 107

B.1 PC System Configuration . 107

B.2 SDRAM Configuration . 108

B.3 Benchmarks . 108

B.3.1 3D–Benchmarks . 108

B.3.2 SPEC 2000 Suite . 109

CONTENTS iii

C Calculations 111

List of Figures

1.1 Worldwide DRAM Component Sales by Generation 2

2.1 Memory Hierarchy . 6
2.2 Primary Memory . 6
2.3 SRAM Cell . 7
2.4 Von Neumann vs. Harvard Architecture 10
2.5 Personal Computer System . 11
2.6 DRAM Cell Array . 14
2.7 1 Gibit DDR2 SDRAM . 15
2.8 Typical Read Sequence (worst case) 17
2.9 Interleaved Read Access to different Banks 17
2.10 DDR2 Finite State Machine . 19
2.11 DRAM Modules, Ranks, Channels 20
2.12 Address Translation from virtual Addresses to DRAM Addresses . . 21
2.13 Latency Reduction by Transaction Splitting 21

3.1 Trace driven versus execution driven Simulation 26
3.2 Asynchronous Timing . 29
3.3 Traditional Measurement of Memory Access Sequences 31

4.1 Trace Acquisition Hardware . 34
4.2 Probe Head . 34
4.3 32 bit Sample . 35
4.4 High Speed Sampling Frontend . 36
4.5 Clock Distribution Network . 38
4.6 Virtual Endpoints . 39
4.7 Ethernet Frame . 40
4.8 Ethernet Frames within Superblock 42
4.9 Distribution of Superblocks to Hard Disk Drives 42

5.1 CA-Bus Utilization . 47
5.2 Pulling in of non-ND-Commands in Place of Deselects 48

iv

LIST OF FIGURES v

5.3 CA-bus Utilization of selected SPEC 2000 Benchmarks 49
5.4 CA-bus Utilization of selected 3D Benchmarks 50
5.5 Variation of CA-bus Utilization of SPEC 2000 Benchmarks 51
5.6 Variation of CA-bus Utilization of selected 3D Benchmarks 51
5.7 Average shortest execution Sequence of selected 3D-Benchmarks . . 52
5.8 Temporal Spacing of Command Pairs belonging to a particular

SDRAM Timing . 56
5.9 Histogram Changes caused by Changes of SDRAM Timings 56
5.10 Performance Impact of SDRAM Parameter Changes 59
5.11 Fraction of Time spent on different SDRAM Timings 60
5.12 Changing SDRAM Operation Frequency: Methodology 62
5.13 Discrete and continuous Probability Density Function of Accesses

at different Clock Frequencies . 65
5.14 Performance Impact of SDRAM Operating Frequency Changes . . . 66
5.15 Performance Impact of SDRAM Operating Frequency Changes with

normalized Access Pairs . 69
5.16 Performance Impact of SDRAM Operating Frequency Changes es-

timated using an exponential Distribution 76

6.1 Deviation of Key Figures from Mean Value: 171.swim 80
6.2 Deviation of Key Figures from Mean Value: 181.mcf 81
6.3 Deviation of Key Figures from Mean Value: 183.equake 82
6.4 Deviation of Key Figures from Mean Value: 189.lucas 83
6.5 Number of closed Banks per precharge all Command 84
6.6 Page and Row Utilization of 171.swim 86
6.7 Page and Row Utilization of 181.mcf 86
6.8 Page and Row Utilization of 183.equake 86
6.9 Page and Row Utilization of 189.lucas 87
6.10 SDRAM Row Sharing of virtual Memory Pages 89
6.11 Lorenz Curves of selected SPEC 2000 Benchmarks 92
6.12 CA-Bus Utilization . 93

List of Tables

2.1 SDR / DDR SDRAM Data Rates and Frequencies 16

4.1 Supported Capturing Modes depending on used Hardware Resources 36

5.1 Benchmark Set . 48

5.2 Impact of 2T Rule on System Performance 50

5.3 Accounting of Command Pairs to SDRAM Timings 54

5.4 Performance Impact of SDRAM Timing Changes 61

5.5 Performance Impact of SDRAM Frequency Changes 70

5.6 Optimal values for the parameter b of the Exponential Distribution 75

A.1 Timings to be fulfilled between Commands 104

vi

List of Acronyms

AIO Asynchronous Input Output
AMB Advanced Memory Buffer
AGP Advanced Graphics Port
BL Burst Length
CA-Bus Command and Address Bus
CAS Column Address Strobe
CBR CAS before RAS refresh
CL CAS Read Latency
CPU Central Processing Unit
CSA Communication Streaming Architecture
DDR Double Data Rate
DIMM Dual Inline Memory Module
DMA Direct Memory Access
DQ Data Query (Data Bus)
DRAM Dynamic Random Access Memory
DSL Digital Subscriber Line
DVD Digital Versatile Disk
EDO Extended Data Output
FB-DIMM Fully Buffered DIMM
FSB Fronside Bus
FPGA Field Programmable Gate Array
FPM Fast Page Mode
GPU Graphics Processing Unit
HD hard disk
ICH IO Controller Hub
IEC International Electrotechnical Commission
IP Internet Protocol
ISI Intersymbol Interference
Ki... Kibi... (= 210) Prefix specified in IEC 60027-2
LAN Local Area Network

vii

viii LIST OF TABLES

LCD Liquid Crystal Display
LSB Least Significant Bit
LVPECL Low Voltage Positive Emitter Coupled Logic
MAC Media Access Control
MCH Memory Controller Hub
Mi... Mebi... (= 220) Prefix specified in IEC 60027-2
MMU Memory Management Unit
NFS Network File System
OS Operating System
PABX Private Automatic Branch Exchange
PCB Printed Circuit Board
PCI Peripheral Component Interconnect
PCIe PCI Express
PDA Personal Digital Assistant
PEG PCI Express for Graphics
PLL Phase Locked Loop
PXE Preboot Execution Environment
RAS Row Address Strobe
SDR Single Data Rate
SDRAM Synchronous Dynamic Random Access Memory
SMP Symmetric Multiprocessing
SRAM Static Random Access Memory
TLB Translation Lookaside Buffer
UDP User Datagram Protocol
USB Universal Serial Bus

Chapter 1

Introduction

1.1 Evolution of Computer Systems

Since the early eighties computer system performance has increased dramatically.
Starting from some few megahertz, CPUs operating frequencies reach multiple
gigahertz today. Similarly DRAM sizes have increased from some few kilobytes to
multiple gigabytes even in cheap desktop PCs.

In addition, penetration of daily life with digital electronic has increased sub-
stantially. Today DRAM memory is no longer used in personal computers, work-
stations or servers only, but can be found in a wide range of applications from per-
sonal digital assistants (PDA), mobile phones, graphics cards, networking equip-
ment (switches, routers, ...), entertainment devices (game consoles, digital TV
sets, DVD players, set top boxes, ...), or peripheral components like printers or
scanners. All these systems have different requirements to the memory system:
Portable equipment enforces low power consumption as devices are usually pow-
ered by (rechargeable) batteries. Graphic cards require large bandwidth, while
personal computers also profit from low latencies.

The increase in overall system performance also facilitates more demanding
applications like audio and video (de)coding, image processing, web servers or
multitasking and multiuser environments.

These performance improvements result not only from improvements in semi-
conductor manufacturing technology like smaller feature sizes and new materials
but also from the implementation of even more complex architectures. Systems us-
ing bus master direct memory access (DMA), symmetric multiprocessing (SMP),
out-of-order and speculative execution or providing multiple execution units on
one chip (superscalarity) are no longer limited to the domain of supercomputers
but can be bought off-the-shelf in every computer store.

Product cycles which are often even shorter than two years impose new chal-

1

2 CHAPTER 1. INTRODUCTION

0

1.000

2.000

3.000

4.000

5.000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

16M16M

256M256M

M
ill

io
n

s
o

f
U

n
it

s
1G1G

128M

512M

64M64M

2G2G

Figure 1.1: Worldwide DRAM Component Sales by Generation
(2004–2007 values are estimated) [28]

lenges to system developers and test engineers in order to keep pace with the
upcoming technology changes (see figure 1.1).

The results of many traditional techniques which currently support system
design engineers decisions regarding memory systems performance and power re-
quirements have to be challenged or are no longer applicable for designing highly
complex systems: Former researchers using system simulation either had the op-
tion to analyze only short program runs due to excessive simulation times of their
simulation models or to extensively reduce the complexity of their simulation mod-
els making them less realistic. Researchers using measurements for memory system
research also faced short measurement times due to low capturing bandwidth/low
memory of their measurement equipment. The measurement setup which was de-
veloped during the thesis overcomes this severe limitation. It allows the capturing
of long undisturbed command and address bus sequences from the DDR2 memory
bus on real computer systems even over multiple hours.

Those memory traces provide system designers with a new and efficient way to
gain new insights for the development of future SDRAM memory systems.

1.2 Outline

Chapter 2 provides a review of current microcomputer architectures, SDRAM
memories and alternate primary memory technologies which might be used as
a replacement for SDRAMs.

1.2. OUTLINE 3

Chapter 3 compares the two methods used for computer architecture evalua-
tion: simulations and measurements for its pros and cons.

Chapter 4 explains the measurement setup developed during the thesis work
for capturing trace sequences at the SDRAM bus.

From the gathered access sequences, those SDRAM parameters are determined
which limit the system performance most significantly. A simple statistical model
is derived to estimate the effect of changes of these SDRAM parameters on the
system performance. The estimates of the statistical model are then compared
with real measurements.

As all measurements have been done using a multitasking operating system,
the reproducability of the measurements is a concern. Chapter 6 investigates the
impact of an unknown computer system starting state and limited control of task
scheduling and memory assignment.

Chapter 7 summarizes the findings of the thesis and concludes with an out-
look to future SDRAM research activities, which are supported by the developed
measurement hardware.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Memory Systems

2.1 Memory Hierarchies

Traditionally, computer storage is integrated in a hierarchical memory system con-
sisting of different memory types with different access times and cost profiles.

This concept turned out to be effective, as usually accesses to instruction and
data memory are not distributed equally over the available memory but memory
access sequences comprise spatial and temporal locality. Temporal locality denotes
the effect that memory locations which have been recently accessed will be accessed
in the near future again. Spatial locality means that accesses to memory locations
adjacent to memory locations which have been recently accessed are more probable
than accesses to memory locations which are far away [26, p.47].

Therefore, it is a good idea to store data items which are used frequently in
fast cache memory ”near” the CPU or even in processor registers, while data items
which are rarely used can reside in cheaper DRAM memory or can even be held
in secondary or even tertiary storage. The transmission of data items between
different levels in the memory hierarchy is done by dedicated logic or may require
support from the operating system or even user mode applications depending on
the level in the hierarchy (see figure 2.1).

2.2 Random Access electrically rewritable Mem-

ory

For the design of a primary memory system different types of memory can be taken
into account. These memory technologies are either volatile (they loose the stored
information when the power is shut off) or non-volatile (the information is kept
even if no power is applied to the device).

5

6 CHAPTER 2. MEMORY SYSTEMS

CPU
Registers

L1 Cache

L2 Cache

Primary Memory
(DRAM)

Secondary Storage
(Harddisks)

Tertiary Storage
(Tape Drives, ...)

S
peed

S
ize

P
rice/M

B

Operating
System

Dedicated
Logic

Application

Figure 2.1: Memory Hierarchy

Electrically Rewritable
Memory

Volatile Non-Volatile

SRAM SDRAM Flash EEPROM

DDR
DDR-2
DDR-3

NAND
NOR

Figure 2.2: Primary Memory

2.2. RANDOM ACCESS ELECTRICALLY REWRITABLE MEMORY 7

WL

WL

BL BL

Vcc

Figure 2.3: SRAM Cell
[27]

2.2.1 SRAM

The SRAM cell is a RS-flipflop consisting of four transistors plus two transistors
for selecting the addressed flipflop [27, p.362]. This six transistor topology provides
low access times and does not need any periodic refreshment of the SRAM cell
due to the regenerative feedback of the transistors (see figure 2.3) . Unfortunately,
having six transistors for one single SRAM cell leads to extremely high silicon area
requirements. Today the use of SRAM memory arrays in the Gigabit range seems
to be not acceptable from the cost to performance point of view. Therefore, SRAM
is mostly used as cache memory only. In this application it is today almost allways
implemented directly on the CPU die.

2.2.2 Flash Memory

Flash memory is an electrically erasable and programmable non volatile memory.
The information is stored in an array of floating gate transistors. A NOR Flash
cell consists of a single field effect transistor with two gate electrodes (control gate
and floating gate). The NOR flash cell is programmed by setting a high voltage to
the control gate. The electric field between gate and the drain/source path leads to
a hot-electron injection onto the floating gate. To erase the cell, a negative voltage
is set at the control gate, which allows a tunneling of electrons from the floating
gate to the source electrode.

The captured charge on the insulated floating gate leads to a shift of the drain-
source-current over gate-voltage curve, which can be detected and evaluated as
either ”1” or ”0” by a sensing circuit. Todays flash memories even store multiple
bits in one single cell by detecting small changes of the UI-Curve.

The charge on the floating gate remains even if the power is turned off (non

8 CHAPTER 2. MEMORY SYSTEMS

volatile memory). Manufacturers often guarantee a data retention of multiple
years. As programming and erasing is done by the tunnel effect, write access times
are high (in the range of some µs [27, p.347]). Furthermore, programming and
erasing cycles cause permanent damage to the cell. Typically after around 106

program erase cycles the cells content can no longer be determined reliably [27,
p.348]. Therefore, some mechanisms have been invented in order to equalize the
number of reprogramming cycles across the memory array by changing the address
mapping of memory dynamically [39]. This mechanism is called wear leveling.

In addition, if erasing of single memory cells within the cell area is desired, a
second transistor is required for each cell. In order to keep silicon size requirements
low, most flash memory devices allow only an erase operation on multiple cells
(sector erase).

This makes flash memory usable as non volatile data storage (e.g. in portable
devices like digital cameras, MP3 players or USB sticks) but unusable as the only
primary memory system due to the limited number of write cycles and the sector
erase function.

2.2.3 SDRAM

The SDRAM cell consists of a single capacitor and a select transistor. The in-
formation is stored as charge within the capacitor. Due to leakage currents the
capacitors need periodic refreshment of the SDRAM cell’s contents. Access times
are higher than for SRAM memories, but the single transistor/capacitor cell pro-
vides significant savings in silicon area size compared to SRAMs. These savings
allow the manufacturing of SDRAM components currently containing up to 231

SDRAM cells per chip. Thus, SDRAM memory currently is the prefered choice for
primary memory systems.

2.3 Hitting the Memory Wall

Unlike improvements in CPU design, improvements in DRAM memory design are
mostly driven by an increase in memory size but not by an increase in memory
speed [31].

While the architecture of the processor to DRAM interface was modified several
times within the last years evolving from ”traditional” DRAM over fast page mode
(FPM) and extended data output (EDO) DRAM to single and double data rate
synchronous DRAM focusing on improvements in DRAM bandwidth, the internal
memory cell array remained mostly unchanged.

While improvements in bandwidth can easily be achieved by an increase in
parallelism, meaning that multiple bits are read at the same time and are then

2.4. COMPUTER SYSTEM ARCHITECTURE 9

forwarded to the CPU, the duration of one single read or write access was not
significantly decreased. Unfortunately, an improvement in bandwidth does not
necessarily mean that CPUs execution time decreases significantly (e.g. when the
access locality is poor) [31].

This leads to the situation that the memory system becomes a bottleneck in
future computers and programs execution speed will be mostly determined by the
performance of the memory system and not by the processors operating frequency
[57].

Moreover, with the introduction of fast page mode memory current DRAMs are
no longer true ”random access” memories, in the sense that the access time of all
data elements is always the same. Instead, the DRAM device can handle multiple
transactions at the same time and access times depend on the current DRAMs
state. Therefore, the memory controller has some degree of freedom regarding the
scheduling of commands sent to the DRAM device.

Furthermore, DRAM market is driven by price. Although most manufacturers
sell memory products with reduced latency and higher throughput, the application
of these memory types is limited to specific applications like graphics cards as most
performance boosts are correlated with higher pricing due to larger die sizes or
increased packaging costs due to higher pin counts. In addition, computer system
manufacturers often prefer highly standardized commodity products to reduce
their economic dependency on specific DRAM manufacturers.

Thus, DRAM manufacturers have to evaluate proposals of DRAM interface
improvements thoroughly to evaluate if the increase in system performance justifies
an increase in pricing.

2.4 Computer System Architecture

2.4.1 Modern Computer Systems

Harvard vs. von Neumann Architecture

The Harvard architecture implements physically separate storage and signal paths
for instructions and data, enabling the transmission of both at the same time:
Systems using the Harvard architecture can be found mostly in the area of digital
signal processing. Furthermore, it is used for on chip busses within the CPU. As
the memory has to be allocated to the separate busses in advance, the Harvard
architecture is less suitable for versatile computer systems which shall be used
in a large variety of applications. By contrast, the von Neumann1 architecture

1John von Neumann, Hungarian-American mathematician, 1903–1957.

10 CHAPTER 2. MEMORY SYSTEMS

CPU
CPU

Data Bus
Bus

Instruction Bus

Instruction
Memory

Data
Memory

Memory

a) Harvard Architecture b) von Neumann Architecture

Figure 2.4: Von Neumann vs. Harvard Architecture

handles instructions and data equally and transfers both from main memory over
one common databus.

Most modern computer systems are a mixture of both architectures. Within
the CPU core instructions and data are handled separately up to the level 1 cache
while transactions from the L1 to the L2 cache and main memory are handled over
the same system bus.

Personal Computer System

Figure 2.5 shows a typical modern personal computer system. On top the CPU
including L1 and L2 cache, which is connected via the frontside bus to the memory
controller, is shown. The memory controller is also called north bridge2. Newest
processor generations like the AMD Opteron include the memory controller on
the CPU as well. The north bridge handles all memory transactions between the
CPU (or multiple CPUs on multiprocessor main boards) and the DRAM memory.
Additionally, it provides a link to the graphics card (AGP) and to the south bridge.
On latest chipsets the AGP port is replaced by a more general point to point
high speed interconnect called PCI Express (PCIe), which can be used either for
communication with the graphics card (PCI Express for Graphics, PEG) or other
peripheral components with high bandwidth requirements like Gigabit Ethernet
network adapters or hard disk controllers. Some north bridges also provide an
integrated graphics card, which uses the main memory as graphics DRAM (shared

2The company Intel uses the abbreviation memory controller hub (MCH).

2.4. COMPUTER SYSTEM ARCHITECTURE 11

Southbridge LinkSouthbridge Link

Memory BusMemory Bus
EPROM

Memory BusMemory Bus

CPU
&

CACHE

South
Bridge

Serial

Parallel

Floppy

Mouse

Keyboard

Ethernet

FSBFSB

PCI BusPCI Bus

S
A

T
A

S
A

T
A

P
A

T
A

P
A

T
A

Memory Channel IMemory Channel I

Memory Channel IIMemory Channel II

U
S

B
 2

.0
U

S
B

 2
.0

S
ou

nd
S

ou
nd

VGAVGA

North
Bridge

PCIe/PEGPCIe/PEG

Southbridge LinkSouthbridge Link

Memory BusMemory Bus
EPROM

Memory BusMemory Bus

CPU
&

CACHE

CPU
&

CACHE

CPU
&

CACHE

South
Bridge
South
Bridge
South
Bridge

Serial

Parallel

Floppy

Mouse

Keyboard

Ethernet

FSBFSB

PCI BusPCI Bus

S
A

T
A

S
A

T
A

P
A

T
A

P
A

T
A

Memory Channel IMemory Channel I

Memory Channel IIMemory Channel II

U
S

B
 2

.0
U

S
B

 2
.0

S
ou

nd
S

ou
nd

VGAVGA

North
Bridge
North
Bridge
North
Bridge

PCIe/PEGPCIe/PEG

Figure 2.5: Personal Computer System

memory graphics). Some north bridges may also provide additional (proprietary)
interfaces e.g. for network controllers3.

The south bridge4 is connected to the north bridge and contains most periph-
eral components found in typical PCs: the hard disk and floppy controller, USB,
FireWire and PCI bus connections, (wireless) LAN, interfaces for mouse, keyboard
or legacy IO (serial and parallel ports) or integrated sound. The north bridge/south
bridge pair is also referred to as the PCs chipset.

Embedded Systems

While the concept of most embedded systems is similar to that of standard PCs,
size and power requirements are a concern. Unlike PCs, the embedded CPU does
not only include the processor core and the cache, but also integrates the func-
tionality of the memory controller and peripheral components required for the
particular application: LC-display, touchscreen, flash disk controller, sound, etc.
for PDAs and mobile phones, various interfaces for networking or telecommunica-
tion equipment like DSL modems or PABX systems.

3e.g. Intel CSA (Communication Streaming Architecture).
4Intel also uses the term IO Controller Hub (ICH) when referring to the south bridge.

12 CHAPTER 2. MEMORY SYSTEMS

Caching

Caching provides a mechanism to hold a copy of frequently used data items in a
fast static random access memory (SRAM) memory nearer to the CPU, providing
data faster than standard DRAM memory. CPU references to memory for which
a copy in the cache exist are served by the fast cache while references to memory
locations which are currently not located in the cache are forwarded to the memory
controller and reloaded from primary memory. A copy of the loaded data is placed
in the cache, evicting some other data which is hopefully no longer required in the
near future.

While up to the mid nineties cache memory was implemented using an external
SRAM device on the computer’s main board, increasing processor speeds forced L1
and L2 cache memories to be included on the processor die5. In addition, smaller
feature sizes today easily allow the integration of cache sizes up some few Megabyte
on the CPU die and can reduce system fabrication costs as well as the system size
(as required by handheld equipment).

Most processors provide two separate L1 caches one for instructions and one
for data items. This prevents eviction of needed instructions from the cache when
large amounts of data are transferred by the CPU.

By contrast, in most systems the level 2 cache does not distinguish between
instructions and data.

L1 and L2 cache operation is transparent to the user. Dedicated logic handles
all transactions from the CPU to the memory controller.

In order to simplify cache design and to exploit spatial locality, the cache mem-
ory is managed on a cache line granularity. This means that the cache is divided
into multiple equally sized blocks called cache lines which hold the requested data
items and all data members in the direct neighborhood. Therefore, only complete
cache lines are transferred from the CPU to the memory controller and vice versa6.

If the CPU reads data, a lookup in the cache has to take place to check whether
the requested memory location is in the cache or if it has to be reloaded from
memory. In order to reduce the search time, the number of cache locations to which
a specific address range in primary memory can be mapped has to be reduced. This
number is called cache associativity7.

Many publications have been released which investigated optimal cache replace-
ment policies, the impact of variations in cache size, cache line size, or associativity
on system performance, or which make proposals regarding cache aware design of
software algorithms (e.g. [1, 43, 37, 35, 5, 24]).

5Chip internal interconnects are faster than external connections.
6 During write operations, the cache controller could shorten the transfer size in order to write

only data items which have been modified to the memory.
7Current processors provide a cache associativity of 8 to 16 [4].

2.4. COMPUTER SYSTEM ARCHITECTURE 13

Virtual Memory / Paging

Virtual memory denotes the possibility to address more primary memory than is
installed physically in the computer system, by moving infrequently used data to
secondary storage (swapping) and reloading it when it is used by the CPU. Paging
divides the physical memory into equally sized pages8. The memory management
unit (MMU) which is part of the CPU core maps these pages to the CPUs virtual
address space. If the CPU addresses memory locations which are not mapped
to physical memory, the MMU signals a trap condition to the CPU. The CPU
interrupts the running process and executes an operating system procedure which
is responsible for acquiring a new physical memory page (e.g. by saving the content
of an infrequently used page on disk) and mapping it to the requested memory
location [46, 7]. The table which is used to translate virtual addresses to physical
addresses is stored in physical memory as well. In order to eliminate the need of
looking up the translation rules for every memory access, the CPU memorizes the
last references to memory locations in a translation lookaside buffer (TLB) [42].

Locality analysis of memory accesses has to consider that memory locations in
the physical address space which are not located on the same memory page are
not necessarily related to each other (e.g. belong to the same process).

The top section of Figure 2.12 shows how the MMU translates memory refer-
ences to virtual memory to linear physical addresses.

2.4.2 Operation Modes of DDR-SDRAM

The Cell Array

Every SDRAM cell comprises a capacitor and a MOSFET as switching device
(see figure 2.6). Information is stored by charging the capacitor9. All capaci-
tor/MOSFET pairs are arranged in a matrix called SDRAM bank. The gate elec-
trodes of all MOSFETs within one row are connected. This connection is called
wordline. The sources of all MOSFETs within one column are also connected. This
connection is called bitline.

Reading of memory contents is done by activating a single wordline. The mos-
fets build a conductive path between the capacitors belonging to that wordline
and the bitlines so that the capacitors share their charge with the capacitance of
the connected bitline10.

8 Typically 4 KiB to 16 MiB in modern CPUs / operating systems [46, p.383].
9A one can be represented by a fully charged capacitor, a zero may be represented by a

discharged capacitor.
10In modern SDRAMs the storage capacitor is in the range of 20 to 40 fF, thus the load

capacitance of the bitlines has to be taken into account which can be nearly an order of magnitude
larger than the capacitance of the storage capacitor and coupling between adjacent bitlines has

14 CHAPTER 2. MEMORY SYSTEMS

Sense
Amplifier

Sense
Amplifier

Wordline 1

Wordline 2

Bitline 1 Bitline 2

Figure 2.6: DRAM Cell Array

Depending on the previous voltage level of the capacitor, the bitline voltage
increases or decreases. The cells information content is determined by sensing the
voltages on the bitlines and comparing them to some mid reference voltage within
the sense amplifier.

This is done for all bitlines of the SDRAM bank at the same time. The time
required for activation and sensing determines the RAS latency or RAS to CAS
delay (tRCD).

The sense amplifier provides a positive feedback path to the cell array, refresh-
ing the cells content while determining the voltage level on the bitline. The time
required to recharge the SDRAM cells is called minimum bank activation time
(tRAS).

In a second step the read command selects some of the bitlines and provokes
that their information is passed to the output pins. In order to enable the high
throughput of modern SDRAMs, data is transferred in burst mode. This means
that not only the requested data item is transferred but a complete burst of suc-
cessive memory locations within the current row. DDR2 memory performs a by
4 prefetching. This means that each read command acquires the information of
four consecutive addresses at the same time. The data is then time multiplexed to
the output pins. Therefore, the minimum number of data items to be transferred
is four (minimum burst length). Double data rate means that data is shifted out

to be considered as well [36].

2.4. COMPUTER SYSTEM ARCHITECTURE 15

Column
DecoderColumn

DecoderColumn
DecoderColumn

DecoderColumn
DecoderColumn

DecoderColumn
DecoderColumn

Decoder

Control Logic

R
ow

-A
ddress M

U
X

16384

I/O Gating
DM Mask Logic

8192R
efresh C

ounter

14

3

3

Column-Address
Counter/Latch

8

2
COL0,1

A
ddress R

egister

1
0

14

17

Mode
Registers

Command
Decode

RAS

CAS

WE

CS

CK

CK

CKE

A0 -
A13,
BA0,
BA2

32

8

8

1

8

4

32

Data

Mask

Write
FIFO

&
Drivers

32

COL0,1CK,
CK

R
eceivers

Input
Register

MU
X

COL0,1

DQS
Generator

D
rivers

8

2

Data

 DQS,
DQS

R
ead Latch

32

DLL

CK, CK

17

14

8

8

8

8

1

1

1

1

8

8

1

1

1

1
8

8

DQS,DQS

DQ0- DQ7

O
D

T
 C

ontrol

DM

RDQS, RDQS

ODT
8

8

8

8

Bank 0
Bank 1

Row-
Address
Latch &
Decoder

Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7

256 (x32)

Bank 7
Bank 6

Bank 5
Bank 4

Bank 3
Bank 2

Bank 1

Memory
Array

(16384 x 256 x 32)

Sense Amplifier

Bank 0

Bank
Control
Logic

Read Path

Write Path

Address Logic

Cell Array

Figure 2.7: 1 Gibit DDR2 SDRAM
8 banks, 128 Mibit each, by 8 organization (16384 rows, 8192 columns) [29]

16 CHAPTER 2. MEMORY SYSTEMS

Name Clock Frequency Data Rate/Pin Core Frequency Prefetch

SDR-133 133,0 MHz 133 MBit/s 133,0 MHz 1
DDR1-266 133,0 MHz 266 MBit/s 133,0 MHz 2
DDR1-333 166,5 MHz 333 MBit/s 166,5 MHz 2
DDR1-400 200,0 MHz 400 MBit/s 200,0 MHz 2
DDR2-400 200,0 MHz 400 MBit/s 100,00 MHz 4
DDR2-533 266,5 MHz 533 MBit/s 133,25 MHz 4
DDR2-667 333,5 MHz 667 MBit/s 166,75 MHz 4
DDR2-800 400,0 MHz 800 MBit/s 200,00 MHz 4
DDR3-800 400,0 MHz 800 MBit/s 100,000 MHz 8
DDR3-1066 533,0 MHz 1066 MBit/s 133,250 MHz 8
DDR3-1333 666,5 MHz 1333 MBit/s 166,625 MHz 8
DDR3-1600 800,0 MHz 1600 MBit/s 200,000 MHz 8

Table 2.1: SDR / DDR SDRAM Data Rates and Frequencies
[11, 33]

synchronously with every rising and falling edge of the external clock line.
The SDRAM component shown in figure 2.7 provides a by 8 organization. This

means the component has eight data lines each delivering a single bit at a time.
Thus, the number of bits acquired during each read command is 32 (= 8× 4).

The prefetching concept makes it possible to operate the SDRAM core four
times slower than the bus interface. Table 2.4.2 gives an overview of SDRAM pin
bandwidth, operating frequencies, internal core frequencies, and the number of
prefetched bits. As one can see, improvements in pin bandwidth over DDR1 and
even single data rate SDRAM result mostly from an increase in the number of bits
which are prefetched, i.e. from an increase in parallelism within the SDRAM.

The time required from issuing the read or write command to the delivery of
the first data item is called CAS latency (CL).

Before another row can be activated, the wordline has to be deasserted and the
bitlines have to be biased to a mid voltage level. This process is called precharg-
ing and requires some more clock cycles11 (tRP) until the new bank activation
command can be issued. Figure 2.8 shows a typical activate-read-precharge cycle.

This leads to the situation that, depending on the current SDRAM state, three
different ”types” of memory accesses can occur:

If a memory access goes to a row which is already active, the read/write com-
mand can be issued directly. If the bank is not active, a new activation command
has to be issued first. If the bank is active, but the wrong wordline is selected, the

11Currently around 15 ns.

2.4. COMPUTER SYSTEM ARCHITECTURE 17

CLK
nCLK

ACT RD PRE

tRAS=3*tCK

ROW COL

CL=3*tCK

D0 D1 D2 D3

tRP

COMMAND

ADDRESS

DQ

ACT

ROW

BL/2+tRTP

Figure 2.8: Typical Read Sequence (worst case)
CAS latency=3 cycles, RAS latency=3 cycles, burst length=4

CLK
nCLK

ACT 0 RD 0

ROW 10 COL 4

COMMAND

ADDRESS

DQ

ACT 1

ROW 33

RD 1 PRE 0 PRE 1DSEL

COL 16

D4 D5 D6 D7 D16 D17 D18 D19

Figure 2.9: Interleaved Read Access to different Banks
CAS latency=2 cycles, RAS latency=2 cycles, burst length=4

bank has to be precharged, the new row has to be activated, and the read/write
command can be issued afterwards.

Thus, modern SDRAMs expose some cache functionality: Accesses going to
a row which is already open (activated) can be served fast while accesses going
to different rows require more time for activating the new row and probably for
precharging the old one. In some systems where space, power, or cost are a concern
(e.g. PDAs) modern SDRAMs may replace the level 2 cache.

Current DDR2 SDRAMs contain multiple banks (usually 4 to 8), sharing the
same address and databus (CA-bus). From the system developers point of view
they can be regarded as multiple chips within one single package. Having multiple
SDRAM banks within one chip and the clock synchronous SDRAM interface pro-
vide the possibility to perform multiple concurrent commands on different banks
at the same time (as long as there is no conflict using shared resources) in order
to hide SDRAM access latencies.

Figure 2.9 provides an example of an interleaved read access sequence to two

18 CHAPTER 2. MEMORY SYSTEMS

different banks.

As the storage capacitors discharge over time due to leakage currents, the
SDRAM content has to be refreshed periodically (in DDR2 every cell has to be
refreshed every 64 ms) by activating the corresponding row. To simplify memory
controller design, this can be done by issuing a refresh command (traditionally
called CBR). A row address counter included in the SDRAM logic ensures that
each refresh command refreshes a succeeding SDRAM row. The SDRAM refresh
takes place on the same row of all SDRAM banks within the SDRAM component.
It is mandatory that all banks are in a precharged state before a refresh command
may be issued.

An additional power down operation mode is implemented called self refresh,
which is used to retain the DRAMs content while the system is powered down.
The self refresh entry command shuts down internal chip functions to reduce power
consumption and ensures that the memory content is refreshed periodically using
internal timers.

Figure 2.10 provides an overview of all DDR2 DRAM chips states and transi-
tions between states. In addition to the commands described above, read and write
commands can be combined with the precharge command so that the row is closed
automatically after the data burst has been transmitted (Read AP, Write AP in
figure 2.10). This simplifies memory controller design as no separate precharge
command has to be issued and keeps the CA-bus unused for an additional clock
cycle which would normally have been used for issuing the precharge command.
Furthermore, when using auto precharging, the SDRAM’s internal circuitry en-
sures that the SDRAM timings (tRAS and tRTP) are fulfilled before executing the
precharge operation internally.

DRAM Modules

In order to increase the data bus width, in many applications (e.g. PCs and work-
stations) multiple SDRAM components are soldered on a printed circuit board
(called SDRAM module). Sharing the same command and address bus, they are
equally addressed at the same time and each component connects to a subset of
system data bus lanes. This topology is called a DRAM rank.

Multiple SDRAM ranks share the same CA-bus and data bus. The memory
controller addresses the ranks (and distinguishes between different ranks) by as-
serting chip select lines which are unique for every rank.

Modern computer systems may even include multiple CA and data busses
called memory channels. Multiple channels do not share any resources and can
be operated independently in parallel or are operated equally in order to simply
increase the memory bus width (lock step operation).

2.4. COMPUTER SYSTEM ARCHITECTURE 19

Bank
Active

Reading
AP

Reading

Writing
AP

W
ri

te
_A

P

Writing

Activating

Idle

RL + BL/2 + tRTP

Setting
MRS or
EMRS

Self
Refresh

REFS

Precharge
PD

Initialization
Sequence

Automatic Sequence

Command SequenceActive PD

CKEL

PD_entry

CKEH

Write

Write

Read

Read

R
ea

d
_A

P

Prechar-
ging

P
R

E

R
ea

d _
A

P

W
rit e_A

P

tRP

P
R

E

tRCD
WL + BL/2 + WR

A
C

T

tMRD

MRSPD_entry

CKEH

CKEL

CKEL

Auto
Refreshing

tRFC

R
E

F
A

REFSX

Figure 2.10: DDR2 Finite State Machine
[30]

20 CHAPTER 2. MEMORY SYSTEMS

x8 x8 x8 x8 x8 x8 x8 x8

DQ0..7 DQ8..15 DQ16..23 DQ24..31 CA DQ32..39 DQ40..47 DQ48..55 DQ56..63

x8 x8 x8 x8 x8 x8 x8 x8

CS0 CS1 CS2

Dual sided
module

(2 ranks)

Single sided
module
(1 rank)

Memory Controller

Figure 2.11: DRAM Modules, Ranks, Channels

2.4.3 Options for SDRAM Controllers

As seen in chapter 2.4.2 accessing SDRAM contents requires issuing a sequence
of multiple commands. Additionally, multiple bank and rank topologies allow the
execution of multiple concurrent memory requests at the same time. This leads to
a large degree of freedom regarding the development of memory controllers and
widens the design space for computer system developers.

Address Translation

The most obvious task for the memory controller is the address translation from a
physical address to a ”SDRAM compliant” addressing scheme by means of ranks,
banks, rows and columns. Usually this is done by assigning specific bits of the
linear physical address to the address components of the SDRAM (see figure 2.12
for an example of the address translation accomplished by the Intel 845 chipsets
north bridge). As the address translation determines how consecutive addresses in
the physical address space are mapped to the installed SDRAM memory devices,
banks, and rows, it has significant influence on the row hit and miss rate of the
memory system.

Cache Line Splitting

In systems using caching, only complete cache lines are exchanged between
SDRAM memory and the cache. As the burst length does not necessarily have
to match with the cache line size, splitting the cache line transfer into multiple

2.4. COMPUTER SYSTEM ARCHITECTURE 21

Page Table 2

8 7 6 5 4 3 2 1 01 012 11 10 9 8 7 6 5 4 3 2 1 00

Rank Row Address Bank Address Column Address

Memory Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

Physical Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSBVirtual Address / Linear Address

bus width

burst bits
(BL=4)

Memory
Controller
(Intel i845)

MMU
x86

processor
(4k pages)

CR0
Register

Page Table 1
Page Table 2

Figure 2.12: Address Translation from virtual Addresses to DRAM Addresses

CLK
nCLK

SEQUENTIAL

SPLIT

DQ

D4 D5 D6 D7

D22 D23 D16 D17

D0 D1 D2 D3DQ

Read 4
Read 22

D4 D5 D6 D7 D0 D1 D2 D3 D18 D19 D20 D21

D22 D23 D16 D17 D18 D19 D20 D21

cache line size = 8
critical word first
sequential burst

t(r4)

t(r22)

t(r4)

t(r22*)

burst length = 4

burst length = 8

Figure 2.13: Latency Reduction by Transaction Splitting

22 CHAPTER 2. MEMORY SYSTEMS

shorter SDRAM bursts may reduce the average SDRAM latency. The arrows in
Figure 2.13 show the latency of two SDRAM read requests arriving at the same
time at the SDRAM controller. In the top half of the diagram the SDRAM re-
quests are executed with a burst length of eight, which is equal to the cache line
size. In the bottom half the same two requests are shown as split transaction with
a burst length size of four. In both cases the critical word is transferred first.

As nothing comes for free, issuing more read or write commands with shorter
burst lengths occupies the command and address bus more frequently and may
stall other pending requests on other SDRAM banks.

Furthermore, the memory controller can select whether to pass the cache line
content in order or to pass critical data (the one which was originally requested
by the CPU) first.

Temporal Access Ordering

As the time required to access DRAM memory depends whether the corresponding
row is already open or closed, it may be advisable to collect and merge multiple
accesses hitting the same row and schedule them appropriately. Additionally, trans-
actions can be priortized, e.g. read transactions have high priority as the processor
core has to wait for required data while write commands may be delayed [44].

Precharge Policy

The memory controller can select between an open page and a close page policy.
Open page policy means that the memory row within one bank is kept open as
long as possible. The idea is to exploit temporal and spatial locality as in most
applications there is a significant probability that consecutive accesses will go to
the same row again, making it unnecessary to issue a new activate command. The
trade-off is that, if the next request addresses another row, the bank has to be
precharged first, which takes additional time until the new row may be activated.

The close page policy automatically closes every bank after one transfer. This
may reduce latency in applications where consecutive requests mostly go to differ-
ent rows.

In addition, memory controllers may dynamically select an appropriate
precharge policy by performing estimations whether they expect future references
to the same row or not (dynamic page policy). The integration of memory con-
trollers within the CPU core simplifies this task, as the memory controller may
peek at the processors state (e.g. register contents, processor pipelines, cache) to
support the estimation.

2.4. COMPUTER SYSTEM ARCHITECTURE 23

Power Awareness

In some applications (e.g. mobile devices) power consumption is a concern. The
memory controller may put the memory devices in a power down state in order to
reduce their power consumption. In return the memory access latency increases, if
the device has to be waken up from power down to fulfill a memory request. It is
the memory controllers responsibility to detect phases of low SDRAM utilization
and to schedule power down phases accordingly.

Refresh Policy

SDRAM rows which are not accessed have to be refreshed from time to time.
During these refresh periods no further requests can be handled by the SDRAM
component. Therefore, it is advisable to schedule SDRAM refreshing cycles to
times when there are no memory requests pending. Estimating points in times,
where SDRAM components usage will be low will be one of the goals for future
memory controller designers.

Prefetching

Similarly to processors performing speculative execution, the memory controller
may also try to estimate future memory accesses and perform prefetching. This
mechanism may reduce latency, as data items are moved to the cache before they
are referenced by the processor. Unfortunately, it also increases bus bandwidth
requirements as not all prefetched data items will be used. In fact wrong guesses
may even decrease system performance [12]:

• High priority requests may have to be stalled in order to complete an already
running prefetching operation.

• Prefetching may crowd out vital cache line from the cache, which will be
referenced soon and therefore have to be reloaded again (while the prefetched
data may not be used at all).

• Prefetched data may be prefetched too early so that it may be evicted from
the cache before it has been used.

Scatter Gather Operations

Some applications have inefficient access patterns, e.g. algorithms which access
every n-th element within a data array12. Accessing only few elements of a cache

12 One example is the vertical filtering of images (e.g. for deinterlacing of video frames).

24 CHAPTER 2. MEMORY SYSTEMS

line wastes memory bus bandwidth as most data items are not referenced. In
addition, cache performance suffers as the cache gets filled with useless data.

Future memory controllers may map the memory content to the physical ad-
dress space multiple times providing a different view of the memory array [59, 14].
Read accesses to this shadow address space will trigger the memory controller to
assemble a cache line which may consist of data items located on different rows,
banks or devices (gather operation). Similarly write accesses are distributed along
the different DRAM memory locations (scatter operation).

This concept reduces bus bandwidth requirements as only used data is trans-
ferred and improves cache utilization.

Chapter 3

Evaluation of Memory Access
Sequences

In order to study the behavior of a computer system, some software is executed on
the device under test. At best the software should be selected for system evaluation,
which will later run on the final target platform. Nevertheless, this approach is
often not feasible:

1. The software is not yet available during the development phase of the target
platform.

2. The hardware requirements of the software may be too high in order to be
fully used in a simulator (e.g. large database applications).

3. The type of used application is not clear during the development phase (e.g.
target applications of a personal computer may be text processing, computer
gaming or numerical scientific computation all having different requirements
on the hardware).

Therefore, studies are typically conducted with software which shall resemble
the target application [34]. This software is called workload or benchmark. Many
publications have been written on finding appropriate workloads for different ap-
plications and ways to determine metrics for the similarity and dissimilarity of
different workloads and applications (e.g. [48, 38, 10, 15, 19, 51]). Nevertheless,
even today determining appropriate workloads for system evaluation comes close
to black magic and is often a source for dispute between different researchers.

Two types of benchmarks can be distinguished:

• The benchmark has a fixed task to be fulfilled (e.g. execution of an algo-
rithm of a scientific application). A typical performance metric is the total
benchmarks runtime.

25

26 CHAPTER 3. EVALUATION OF MEMORY ACCESS SEQUENCES

Trace Driven
SimulationExecution Driven

Simulation

Input
Stimulus

Memory
Model

CPU+MemCtrl+Periphery
Model Measurement

Performance
(e.g. Bandwidth,

Latency),
Power-Dissipation,

etc.

Access
Stream

Memory
Trace

Figure 3.1: Trace driven versus execution driven Simulation

• The workload is variable. This type of workload can be found mostly in com-
puter games. While the execution time of the workload is fixed, the system
tries to perform as much computation of intermediate results as possible (e.g.
in the case of a computer game the system renders as many frames on the
computers screen as possible during the given time). A typical performance
metric for this class of application is the number of rendered frames per unit
time.

Traditionally, three techniques have been applied to study computer system
behavior regarding the transactions between CPU, caches and primary memory:
execution driven simulation, trace driven simulation and the measurement of access
sequences (see figure 3.1).

3.1 Execution driven Simulation

Execution driven simulation tries to model the simulated computer systems com-
ponents (CPU, cache, memory controller, buses, etc.) in software on a host systems.
The applications binary is then run on the simulated target. Several simulation
environments have been implemented during the last years and have been used

3.1. EXECUTION DRIVEN SIMULATION 27

for research purposes: The SimpleScalar Toolset [6], SimOS [45], DRAMsim1 [53],
Rascas [2], POPeye [58], or Virtutech Simics [40] just to name some few.

The main advantage of execution driven simulation is that the state of all
components is accessible to the engineer as the components are only software
modules running on the host computer.

In addition, it is also possible to simulate hardware which is not yet existing or
to run simulations which are based on unrealistic assumptions (e.g. unlimited bus
width or no memory latency) to obtain critical values regarding system behavior.
This makes execution driven simulation extremely useful during the design phase of
new computer systems not only for performance estimation but also for functional
verification of the components.

Unfortunately, as modern computer systems complexity increases, more and
more hardware features have to be rebuilt in software. For the CPU side this
includes the emulation of larger instruction sets, prefetching, pipelining, specula-
tive execution, etc. . Processor manufacturers sell different processor variants for
different market segments (server, workstations, notebooks) and the processor ar-
chitecture/instruction set of different manufacturers may be completely different
(e.g. x86-based, ARM, PowerPC, MIPS, Coldfire, 68k) extensively increasing the
implementation effort for the simulator developer when different computer systems
shall be compared.

The same holds for other parts of the computer system like the memory con-
troller or peripheral components.

Additionally, the exact functionality of the components belongs to the intel-
lectual property of the respective manufacturer and is usually not made public.
So timing accurate modeling of these components becomes difficult if not even
impossible.

Thus, severe simplifications of the computer system under investigation have to
be imposed. Many simulators emulate only the processor and memory controller
system and are therefore restricted to the execution of user mode applications,
which do not rely on peripheral hardware and on the operating system which
usually handles accesses to these peripheral components. Operating system calls
exercised by the application are intercepted by the simulator and replaced by a
functional equivalent routine on the host system. The result is returned to the ap-
plication. Thus the application can use typical operating system calls (e.g. in order
to communicate with the user), although these calls do not affect the simulation
results.

More elaborate simulators try to emulate peripheral components like hard disk
drives and graphics cards as well. The improved hardware support enables system
designers to run the desired operating system on the simulated target platform,

1DRAM model for other simulators like Sim-alpha [17] or GEMS [41].

28 CHAPTER 3. EVALUATION OF MEMORY ACCESS SEQUENCES

enabling the simulation of operating system influences on the systems behavior.
Recent studies [13] found out that omitting accesses from the OS may lead to an
error in the cache miss rate of up to 100 percent even in simulations which do not
use operating system calls excessively.

Unfortunately, emulation also means that tasks, which are usually handled by
fast hardware on the target platform, have to be simulated by executing multiple
instructions on the host platform, making execution driven simulation extremely
slow. Depending on the simulations level of detail, typical factors are 10 to 10000
compared to the original system.

Therefore, system engineers have to bear programs execution time in mind
and can run only short program sequences on the emulated hardware. Variations
of simulation parameters (e.g. changes of the virtual computer hardware) require
that the complete simulation has to be rerun.

3.2 Trace driven Simulation

Trace driven simulation tries to eliminate the need to simulate the entire target
platform by acquiring a complete memory trace from the frontside bus. This can
be done by measuring access sequences on a real computer system, or by logging
all memory requests during an execution driven simulation. The logged memory
accesses are then exercised on the simulation model of the memory system under
investigation. In [52] Uhlig provides an overview of various software and hardware
based approaches for acquiring and processing of memory traces.

This approach decouples the simulation of the CPU from the simulation of the
memory system under investigation. It may reduce simulation times, as the CPU
model has to be run only once and the gathered access sequence may be used as
input stimulus for multiple memory models. Unfortunately, the memory system
and the remaining computer parts are mutual interdependent. This means that
parameter changes in either of them (e.g. changes in CPU frequency or the num-
ber of DRAM banks) render the memory trace invalid. Thus, some workarounds
have to be applied in order to estimate the effect of memory system changes on
the resulting access sequence. Chapter 5.2 tries to estimate the effect of SDRAM
system changes on the SDRAM access sequence and thus the memory systems
performance.

The significant interdependence of CPU and memory subsystem shall be clari-
fied by looking at asynchronous events. Modern computer systems consist of multi-
ple timing domains which run asynchronously to the CPU clock (e.g. the motor of
the hard drive or the frame drawing of the graphics card) or are heavily influenced
by user activity (movement of the mouse, reception of network packages), which
determine the execution order of program sequences.

3.2. TRACE DRIVEN SIMULATION 29

1
2

4 13

1
2

4 13

1*
3*

1*
3*

2
3*

2
4

1
4

1*
3*

1*
2

3
2

3
4

1
4

WR 3 RD 2 WR 1 RD 3 RD 4 RD1

WR 1 RD 2 WR 3 RD 4 RD1

t

t

Cache

Cache

Task 1
Task 2

Task 1
Task 2

Memory Transactions

Memory Transactions * dirty cachelines

Figure 3.2: Asynchronous Timing
(Dirty cachelines are marked with an asterisk)

Even worse, the memory systems performance determines not only how fast
accesses are performed and how long the CPU is stalled due to memory latency,
but also what accesses are performed.

Figure 3.2 shall clarify this issue. We assume a CPU using a very small fully
associative cache of two cache lines. The replacement policy is least recently used,
so that the cache line which has not been referenced for the longer period of
time is replaced. We assume that the CPUs execution context is switched due
to an external event (e.g. an interrupt due to user interaction). Figure 3.2 shows
the caches content at each point in time, the referenced memory locations (read
request), and the bus transactions issued due to the replacement of cache lines.
Depending on the point in time when the first task is interrupted, the transaction
sequence is completely different, although the processor executed the same two
instruction sequences and although in the end the cache contents are completely
equal in both versions.

Literature studies [22, 23] found out that context switches due to exception and
interrupt execution account for a significant rise of the cache miss rate, leading to
an increase in data transfers from main memory to the cache and vice versa.

While one could argue that context switches may be infrequently enough so that
they do not influence access sequence statistics seriously, the situation becomes
even more difficult with CPUs performing speculative execution. In this case the
memory systems speed determines the number of execution paths the CPU core is
able to follow while DRAM memory content is acquired. The different execution
paths may touch different cache locations and therefore determine the cache lines
which will be replaced next.

30 CHAPTER 3. EVALUATION OF MEMORY ACCESS SEQUENCES

Although trace driven simulations which do not care about this fact have to
be regarded suspiciously, trace driven simulation is used frequently in the research
community where execution driven simulation is not applicable due to performance
or complexity limitations.

But the missing feedback path also provides some benefits for the system de-
veloper. It guarantees that the input stimulus to the memory is always the same
and thus eliminates the mutual interdependence of CPU and memory system. This
simplifies the evaluation of different memory systems significantly, as the memory
system does not affect its own input stimulus and allows the system designer to
distinguish between effects which are caused by changes of the memory system
and effects which are imposed by the CPU/memory interdependence [54, pp.137].

Literature studies also tried to evaluate the possibility to build artificial ac-
cess patterns by combining short access sequences acquired by execution driven
simulations or measurements in order to reproduce the behavior of multitasking
environments or the impact of operating system calls while simplifying the design
of the simulator [22].

3.3 Measurement

The most evident approach to determine system behavior is the direct measure-
ment of memory accesses on the real hardware platform. The results obtained
from these measurements are accurate, as no simplified hardware models have to
be used. Additionally, one can generate memory traces from even most demanding
software on highly complex multiprocessor computer systems on the fly.

Unfortunately, also the direct measurement of access sequences has serious
drawbacks:

Firstly, the hardware platform must exist and changes in the hardware platform
are limited to available and compatible hardware combinations.

Secondly, data acquisition by measuring provides only a limited view on the
computer system at the point where signals are probed. Correlation of the acquired
data with other components states (e.g. within the CPU or cache) are impossible
unless accurate software models exist for the component and the complete stimulus
has been recorded.

Thirdly, the repeatability of experiments is difficult to achieve. While it is
very easy to save the starting state of the computer system in a simulator, the
components of the real hardware platform cannot be stopped and probed to save
the state of all components (CPU, cache, etc.). The typical solution to that problem
is to use long access sequences, so that the startup phase of the benchmark is not
statistically relevant.

Fourthly, the effort building appropriate acquisition hardware is extremely

3.3. MEASUREMENT 31

SAMPLE

WAIT WAIT

SAMPLE

IGNORE

SAMPLE SAMPLE

IGNORE

CPU program execution time

SAMPLE

SAMPLE

time

time

non intrusive
sampling:

intrusive
sampling:

STORE DATA STORE DATA

STORE DATA STORE DATA

LA Operation

Figure 3.3: Traditional Measurement of Memory Access Sequences

high. Acquiring memory access sequences requires recording the CA-bus content
(and in some applications the data bus as well) on other secondary storage types
like hard disks in realtime, which provide significantly lower bandwidth than the
CA-bus, is an extremely demanding task. Currently DDR2-800 memory controllers
may exercise up to 400 · 106 commands per second on the DRAM component. Han-
dling signals in this frequency domain does not only imposes a high complexity
regarding signal integrity and processing, but also requires large storage capacities
in order to sample longer periods of time.

Traditional measurement equipment like logic analyzers provide only very lim-
ited storage for sampling CA bus sequences. Current products available on the
market provide a memory depth of up to 64 Megasamples [50]. The interface to
store the sample buffer data to secondary storage usually provides very limited
bandwidth and is therefore not suitable to transfer large amounts of memory trace
data.

Most hardware probe solutions used in academia (e.g. [56, 55]) require to stop
the tested target system periodically in order to be able to move the acquired
data to secondary storage (intrusive sampling). Other solutions keep the system
running and acquire only short sequences periodically, unloading the collected data
while no acquisition is performed [52] (non intrusive sampling), and thus create
discontinuities in the trace sequence (see figure 3.3).

Therefore, a high performance data acquisition system was implemented, which
provides enough bandwidth to collect complete very large DRAM access sequences
(of at least 960 Gigasamples) without altering the system behavior.

Unfortunately, the fact that data acquisition can be done on the fly does not
necessarily mean that processing and evaluation of the acquired data afterwards
can be done on the fly also. Therefore, a PC cluster is used, not only to store
the acquired memory traces, but also for processing the acquired data, taking
advantage of the computational power of the PC cluster.

32 CHAPTER 3. EVALUATION OF MEMORY ACCESS SEQUENCES

Chapter 4

Measurement Hardware

4.1 Overview

The trace acquisition hardware mainly consists of three parts: the probe head, the
FPGA platform, and the PC backend.

4.1.1 Probe Head

The SDRAM probe head consists of a six layer printed circuit board, which is
placed in between the SDRAM module under test and the SDRAM component (see
figure 4.2). Double ended pogo-pins, which are mounted in the PCB, form the con-
tact between the SDRAM modules solder pads and the desoldered SDRAM compo-
nent. All SDRAM signals are sent to high speed comparators (Micrel SY55857L)
on the probe heads PCB, which compare them against the SDRAM’s reference
voltage VREF and convert them to LVPECL levels, which can be transmitted over
multiple centimeters of twisted pair cables to the FPGA board even at frequencies
of multiple hundred Megahertz. All SDRAM lanes are length matched to minimize
the skew of the CA-bus and data bus signals on the way to the FPGA.

4.1.2 FPGA Board

The FPGA platform basically consists of a ten layer printed circuit board with
two high speed FPGAs (Xilinx XC2V1000), a 16 bit microcontroller with USB
interface to download the FPGAs firmware and configuration data, a clock dis-
tribution network to propagate time shifted copies of the SDRAM clock signal to
all FPGAs, and some power supply and monitoring logic to facilitate reference
voltage generation and temperature sensing. Two additional eight layer PCBs are
connected, containing an external SerDes chip, in order to provide 2 fibre optical
channels of 10 Gigabit Ethernet per PCB.

33

34 CHAPTER 4. MEASUREMENT HARDWARE

WireFibre OpticPCB

156.25x64 MBit/s byte/s/channel
�

 4000*106 byte/s

Wire

CA: <1600*106 byte/s
DQ: <1600*106 byte/s

Mainboard

DDR-2
SDRAM

Commands

Addresses

Data

FPGA A
(XC2V1000)

FPGA B
(XC2V1000)

XGMII

XGMII

XGMII

XGMII

SerDes
(VSC8270)

+
Fibre Tranc.

SerDes
(VSC8270)

+
Fibre Tranc.

10G
Ethernet

10G
Ethernet

10G
Ethernet

10G
Ethernet

2x 10GbE
24x 1GbE

Switch

2x 10GbE
24x1GbE

Switch

PC

PC

PC

PC

PC

PC

.

.

.

.

/24

/24

1GbE

1GbE

Figure 4.1: Trace Acquisition Hardware

Lid

Component

Plastic Spacer

Socket

Foam

Backplate

Line Driver
SSTL18
LVPECL
Converter

Connector
& Cable
Assembly

Module PCB

Measurement PCB

Glue

Solder

Pogo Pin

Figure 4.2: Probe Head

4.1. OVERVIEW 35

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LSBMSB

A
(15..0)

B
A

(2..0)

O
D

T

/W
E

/C
S

/C
A

S

/R
A

SD
eselect C

ounter

C
K

E

oldC
K

E
(= C

K
E

 of previous clock cycle)

„0"

E
m

bedded D
ata S

tring from
 P

C
I/U

S
B

 T
rigger

Figure 4.3: 32 bit Sample

FPGA A

The first FPGA (A in figure 4.1) latches the LVPECL signals of the SDRAM’s
command and address bus from the probe head. It counts the number of deselect
commands between successive ”useful” commands to provide information about
the temporal spacing between commands, and may optionally remove the deselect
commands from the captured data stream to provide a reduction of the required
bandwidth for data transmission and storage.

The FPGA packages time slices of 256 samples of non deselect commands and
stores them in SRAM memory within the FPGA. One single sample consists of
16 bit of address bus data, four bank addresses, the four signals of the command
bus (RAS#, CAS#, CS#, WE#), ODT, CKE the value of CKE of the previous
clock cycle1, and the number of deselect cycles occurring before the command. This
number is encoded in four bits. If a larger number of deselect commands occurred,
deselect cycles are stored as samples within the trace file; so at least every 16th

SDRAM clock cycle has to be stored. Furthermore, a serial data stream consisting
of six user definable bits can be embedded in the trace file. This 6 bit value can
be set by the device under test via the external triggering hardware (see below) to
facilitate the detection of different program execution phases. The sample vector
is padded with zeros to a 32 bit value (see figure 4.3).

Ethernet, IP, and UDP headers are prepended to each time slice in order to
build an Ethernet frame. These Ethernet frames are transmitted together with
a CRC-32 checksum via one or two 32 bit × 156.25 MHz DDR interfaces called

1This simplifies analysis, as all commands can be decoded by looking at one single sample
only.

36 CHAPTER 4. MEASUREMENT HARDWARE

single channel dual channel
raw-data compressed raw-data compressed

DDR2-400 × × × ×
DDR2-533 × × ×
DDR2-667 × × ×

Table 4.1: Supported Capturing Modes depending on used Hardware Resources

EN

>

D Q

EN

>

D Q

EN

>

D Q

EN

>

D Q

EN

>

D Q

EN

>

D Q

EN

>

D Q

CKE oldCKE

RUN

Deselect
Counter

CA_VECTOR CA_VECTOR_L2

SDRCLK

1:4

Ethernet Engine

>

D Q

>

D Q

>

D Q

M
S

R
_

E
N

A
B

L
E

D
E

S
E

L
_

C
O

U
N

T
E

R

C
L

K
_

M
E

M
_

B

P
C

I_
E

M
B

S
T

R

>

D Q

15 bit Serial Shift Register for
Trace File Annotation>

D Q

EN

CA

Figure 4.4: High Speed Sampling Frontend

XGMII to the external SerDes-Chip (Vitesse VSC8270). The SerDes is respon-
sible for 8B/10B encoding, introduction of lane resynchronization symbols, and
serialization of the data to 4 differential signal pairs, which are operated at 4 ×
1.5625 GHz (3.125 Gbit/s). This serial interface is called XAUI.

The XAUI signals are fed into a fibre optical transceiver module, which sends
them over a fibre optical link to the 10 Gigabit Ethernet uplink port of a 24 port
1 Gigabit Ethernet switch. Depending on the destination MAC address of the
Ethernet frames, the Ethernet switch distributes the Ethernet frames to a cluster
of PCs.

Starting with SDRAM frequencies of DDR2-533 (267 MHz), the required raw
bandwidth of the CA-bus content becomes larger than the available bandwidth
of one single 10GbE link, requiring the second 10GbE link. It turned out that
the applied compression scheme (deselect removal) is sufficient to facilitate mea-
surements of the CA-bus using only one single 10GbE port even at frequencies of
DDR2-667 memory (see table 4.1).

Figure 4.4 shows a simplified block diagram of the high speed sampling logic
implemented within FPGA A. As this part of the design has to be operated with
the SDRAM’s clock frequency of up to 400 MHz, it imposes the highest restrictions

4.1. OVERVIEW 37

regarding the design complexity of the implemented logic. Furthermore, placement
and routing of the logic within the high speed path becomes a demanding task in
order to fulfill all timing requirements.

If the system is capturing data (RUN=1), the content of the entire CA bus (i.e.
the 25 LSBs of the 32 bit sample shown in 4.3) is sampled with every rising clock
edge. The CKE value of the previous clock cycle (oldCKE) is added to the vector.
This ensures that power down entries end exits can be recognized during trace
file analysis even when deselect removal is active. The first register stage is placed
directly in the IO blocks within the FPGA. This guarantees that the routing delay
is almost equal for all CA bus members (minimizing the skew between the CA bus
signals).

The deselect counter evaluates the command bus signals (i.e. RAS#, CAS#,
CS#, WE#) to detect deselect cycles which can be removed from the trace file.
The counter appends the number of deselects to the four MSBs of the sample
vector (DESEL COUNTER). It also decides whether a sample is passed to the
four stage shift register shown on the right side of figure 4.4. MSR ENABLE is
high when sampling is in progress (RUN=1) and deselect removal is disabled (i.e.
all sample vectors are propagated to the shift register) or the command is not a
deselect command or the deselect counter is 15 (i.e. the deselect is the sixteenth
command in a continuous sequence of deselects). The annotation data is also added
to the sample vector (bit 27) in the high speed domain.

Whenever four sample vectors have been propagated to the shift register, data
is transferred to a set of latches. From there it is forwarded to the Ethernet engine.
The Ethernet part of the design always handles four sample vectors at a time in
a 128 bit vector. Demultiplexing the data stream by a factor of four reduces the
clock frequency to at most 100 MHz (and even less if deselect removal is active),
simplifying placement and routing of logic within the FPGA. Furthermore, demul-
tiplexing is required in order not to exceed the maximum write rate of the FPGAs
internal static RAM.

In an early design stage a set of counters was implemented to count the number
of commands of every command type (activate, read, write, precharge, etc.). The
counter which had to be enabled to count the particular clock cycle was deter-
mined by evaluating CA VECTOR. The SDRAM analysis conducted in [3] used
the results obtained by these counters. Although the counters were implemented
using a carry-look-ahead strategy to facilitate counting at these high clock rates,
they limited the performance of the FPGA acquisition hardware to frequencies of
at most 267 MHz. Therefore, the counters were removed in a later design stage2.

2 If counting of commands is desired (e.g. for verification of recorded trace files), it is highly
recommended to implement the counters in the ”low speed domain” behind the 1 to 4 demulti-
plexer.

38 CHAPTER 4. MEASUREMENT HARDWARE

MAX9175

DDR2
SDRAM Clock

MAX9312

1:2 Driver

1:4 Driver

1:4 Driver

MC100EP195

MC100EP195

Delay Line

Delay Line

0°/180°

90°/270°

F
P

G
A

 A
F

P
G

A
 B

Figure 4.5: Clock Distribution Network

FPGA B

The second FPGA (B in figure 4.1) is intended to capture the data bus content of
a SDRAM component with a data bus width of up to 16 bit. As there is currently
no application for analyzing the transmitted data, the second FPGA was not
programmed and equipped with a SerDes backend during the creation of this
thesis.

Clock Distribution Network

In clock synchronous digital systems the incoming data (in this case the CA-
bus and data bus information) has to be latched with the rising/falling edge of
the global SDRAM clock. In this case a copy of the global clock signal has to be
propagated to two FPGAs. Furthermore, phase shifted copies have to be generated
to facilitate capturing of the data bus content.

Typically, designers of digital systems replicate the external clock and phase
shifted copies of it via a phase locked loop (PLL) within the FPGA. This ap-
proach was not applicable here. The SDRAM specification allows entering power
down states during which the memory controller does not necessarily has to pro-
vide external clocking. These power down states are rarely used in desktop systems
but may occur in mobile applications (notebooks, PDAs). In periods during which
no external clocking is provided the internal PLL may loose synchronization. Fur-
thermore, the time required to lock in the PLL of the FPGA again exceeded the
time allowed by the SDRAM specification.

Therefore, an external clock distribution network was implemented (see figure
4.5). On the FPGA board the SDRAM clock was replicated two times (Maxim
MAX9175). The two copies are fed to two delay lines, which provide a user
settable delay of the clock signals with a resoultion of 10 ps (OnSemiconductor
MC100EP195) [47]. Each of the two phase shifted clock signals is then replicated
four times (Maxim MAX9312). Each FPGA gets the original signal and an inverted

4.1. OVERVIEW 39

Switch A

Switch B

FPGA
SerDes

10GbE

10GbE

PC 1

PC 2

1G Ethernet Physical Channel

Virtual Channel Endpoint 1

Endpoint 4

Endpoint 2

Virtual Channel

Virtual Channel

Virtual Channel Endpoint 3

N
W

-C
a

rd
N

W
-C

ar
d

Figure 4.6: Virtual Endpoints

copy (as differential signaling is used, the inversion can be done by crossing the
positive and negative signals of the differential pair) of the two delayed SDRAM
clocks3.

So each FPGA has in total four different SDRAM clock phases available. De-
pending on the SDRAM’s speed grade under test, the delay line settings are ad-
justed manually by the 16 bit microcontroller.

Virtual Endpoints

For the distribution of the Ethernet frames to PCs an additional abstraction layer
was introduced. All Ethernet frames are sent to ”virtual endpoints” (see figure
4.6). A virtual endpoint is mainly the destination MAC and IP address of a net-
work adapter receiving the Ethernet frames. All frames are sent over a ”virtual
channel” to this endpoint. These endpoints are enumerated. The FPGA maintains
a list of virtual endpoints, which are served with successive Ethernet frames of
trace data in a round robin fashion. Every PC of the PC cluster is responsible
for storing the measured data of one or more virtual channels. This concept pro-
vides an abstraction of the data distribution from the underlying physical network
hardware. By doing so, it is possible to handle multiple virtual channels by one
single network adapter, providing some simple mechanism of traffic shaping and
load balancing (the same network adapter can occur in the list multiple times).

3 The inverted copies have to be generated externally, as an additional inverter in the clock
path within the FPGA would introduce a significant delay (phase shift) to the inverted clock.

40 CHAPTER 4. MEASUREMENT HARDWARE

Start
Preamble
(8 Byte)

Header
(64 Byte)

256 Samples
Data

(1k Byte)

CRC32
(2 Byte)

Terminate
(1 Byte)

Idle
(variable)

32 bit
PackageNumber

(4 Byte)

48 bit
Global Time

(4 Byte)

Dest.
MAC

Src.
MAC

Pack.
Type

MAC

Div.
Config

Src.
IP

Dest.
IP

IP

Src.
Port

Dest.
Port

CRC

UDP

EP

Endpoint Info

EP
per

Channel

Total
EP

Figure 4.7: Ethernet Frame

Ethernet Framing

The sampled data is sent as UDP frames over the Ethernet network. In general
UDP does not guarantee a reliable transmission over Ethernet. Nevertheless, the
used Ethernet switch provides enough bandwidth for non blocking operation and,
thus, no Ethernet frames are dropped in this small scale LAN application, neither
by the switch, nor by the network adapters of the PC mainboards.

The complete Ethernet frame as shown in figure 4.7 starts with a MAC header
containing the source and destination MAC address of the Ethernet frame. The
Ethernet switch routes the frame depending on this data link layer MAC address
to the desired network adapter. It is followed by an IP header containing the
IP address of the FPGA platform as source and the IP address of the PC as
destination. The UDP header specifies the destination port on the PC at which
the capturing software is waiting for incoming Ethernet frames.

The UDP header is followed by the destination virtual channel/endpoint num-
ber, the number of virtual channels being transmitted over the respective 10G
Ethernet interface, and the total number of virtual channels within the FPGAs
virtual endpoint list.

A 48 bit free running clock counter operated at the Ethernet XGMII frequency
(156.25 MHz) provides a timestamp, indicating the point in time, when the first
sample of the Ethernet frame was captured by the FPGA.

During power down phases the DDR2 memory controller is allowed to shutdown
the SDRAM clock. The missing SDRAM clock prevents the FPGA from capturing
additional samples, which would allow the calculation of the total runtime. The
Ethernet clock timestamps allow an estimation of the length of power down periods
even when no SDRAM clock is available at the SDRAM component.

All frames sent on a 10G Ethernet interface are enumerated to allow the re-
ordering of the Ethernet frames on the PC cluster.

The Ethernet frame is ended with the 256 samples of 32 bit trace data (1 KiB)
and a CRC-32 checksum of the entire Ethernet frame.

4.1. OVERVIEW 41

4.1.3 PC Backend

The PC backend consists of a cluster of six PCs, which are connected to the 1G
Ethernet switch over two 1G Ethernet links per PC. Special emphasize had to be
put on a proper selection of the used PC mainboards, in order to make sure that
both Gigabit Ethernet ports are connected to the north bridge via PCIe4. Each
PC is equipped with four 160 GB hard disks, which are responsible for storing the
incoming trace data (24 hard disk drives / 3.84 TB in total).

The PCs are operated using the Knoppix 4.0 Linux distribution as operating
system. Knoppix usually runs directly from a bootable CD and, thus, does not need
any write access to system directories. Writing to directories is enabled by holding
modified or newly created files on a RAM disk within the PCs internal memory.
This makes it possible to boot the same operating system on multiple PCs at the
same time. Furthermore, Knoppix provides a sophisticated hardware autodetection
mechanism, making it usable on a large variety of hardware configurations.

The Knoppix distribution is provided by a centralized server. The PCs are
booted directly over the network via the PXE boot mechanism and get the linux
distribution via NFS (network file system).

After bootup a program is run in the background, which listens on all UDP
ports of the particular PC for incoming UDP frames from the FPGA platform
and stores them on the hard disk drives in a round robin fashion. The hard disk
drives are used without any partitions or file systems. This approach provides
higher throughput as the system does not have to care about journaling or record
keeping and, in addition, simplifies maintenance as one does not have to care about
file naming conventions and proper partitioning.

In order to minimize the number of read and write commands being sent to the
hard drives, every PC captures 1024 Ethernet frames before issuing a write/read
command for all 1024 Ethernet frames (called ”superblock”) to the operating sys-
tem (see figure 4.8). The write operation runs asynchronously to the capturing
task with the Linux asynchronous IO (AIO) mechanism introduced in Linux ker-
nel 2.6. Using AIO is required in order to ensure that multiple write operations to
different hard disk drives can take place simultaneously (normal write operations
would block the calling task until the write operation to the HD has finished).
As capturing of Ethernet frames and writing to hard disk drives takes place in
parallel, two sets of memory buffers have to be used (double buffering). While one
set is written to hard disk drives, the memory of the other set is filled up with
captured Ethernet frames (see figure 4.9).

The entire setup is capable to record around 900 MB/s of trace data on the fly

4 Many mainboard manufacturers try to save money by connecting cheap Ethernet chipsets to
the much slower PCI bus of the south bridge. Unlike the traditional PCI bus, only PCIe provides
enough bandwidth to enable full loading of both Ethernet links.

42 CHAPTER 4. MEASUREMENT HARDWARE

Superblock

Header Section

Data Section

Package Number
Global Time

Endpoint Info

Payload - Trace Data
256 Samples, 1kByte

Header Information taken from
Ethernet Frame

Payload taken from Ethernet Frame

Multiple of
512 byte

Figure 4.8: Ethernet Frames within Superblock

HD 0

SB 0 A

SB 0 B

HD 1

SB 1 A

SB 1 B

HD 2

SB 2 A

SB 2 B

HD 3

SB 3 A

SB 3 B

Currently stored to hard disk

Currently capturing network traffic

Figure 4.9: Distribution of Superblocks to Hard Disk Drives
(Example with four hard disks / 8 superblocks)

4.2. VERIFICATION 43

without loss of Ethernet frames.
After the measurement the trace data, which is distributed across the hard

disks, is merged together over the 1G Ethernet network to build one single con-
tinuous trace file for further analysis. If the deselect removal is enabled, the time
required to reconstruct a continuous trace file from the Ethernet frames distributed
across the hard drives is typically 6 to 10 times longer than the recording time
itself and is mostly limited by the network or hard disc bandwidth of the computer
performing the collection.

4.1.4 External Triggering

Beside the possibility to start and stop measurements manually via the USB in-
terface of the 16 bit microcontroller, FPGA A was equiped with an external serial
interface. This serial interface allows the starting and stopping of measurements
by external hardware. This feature is extremely useful as it allows the device under
test to start and stop the measurements by itself (e.g. measurements can be started
shortly prior to running a specific benchmark and stopped when the benchmark
ends) without requiring any user interaction. Furthermore, it provides the func-
tionality of trace file annotation: As mentioned before, a 6 bit value can be sent to
FPGA A. This 6 bit value is embedded in the trace file and can be used to detect
different program execution phases.

Two external interfaces have been implemented for triggering the tracer plat-
form. One is a PCI card, which can be connected to a PCI slot of the PC under test.
The PCI card is equiped with a FPGA, which serializes accesses to PCI registers
in the CPUs IO address space on the card and sends them to FPGA A.

The other interface is a USB device, equipped with a chip which provides
conversion functionality of USB to a variety of several different serial protocols
(Future Technology Devices International Ltd. FTDI2232). It is programmed to
provide the serial data stream for FPGA A.

4.2 Verification

Two methods have been applied to verify the correctness of the captured access
sequences.

In order to prove the correct distribution of the Ethernet frames to the PC
cluster and the reordering of the frames (and thus time slices) in the trace file,
all captured access sequence were executed on a SDRAM software model which
checked:

• The fulfillment of all SDRAM timings

44 CHAPTER 4. MEASUREMENT HARDWARE

• Possible data bus contention and fulfillment of data bus turnaround times

• Correctness of access sequences (e.g. no reads or writes to closed banks,
refreshes while banks are open, etc.)

The hardware setup was capable to record even sequences in the range of
1.5 · 1011 clock cycles without any errors.

In order to ensure the correct connection of the address bus from the SDRAM
to the FPGA platform, a defined access sequence was executed on the device under
test by a dedicated SDRAM test system (CST Inc. SP3000 DDR2-SDRAM-Tester)
which has been compared with the measured access sequence. Further analysis has
been done by executing SDRAM test software on a standard PC platform.

Chapter 5

DRAM Performance Analysis

5.1 Critical DRAM Timings

During the execution of a sequence of memory requests the memory controller has
to insert deselect cycles due to different reasons:

1. The SDRAM specification contains ten SDRAM timings, which have to be
fulfilled by the memory controller while executing a sequence of commands
to a SDRAM component. A detailed description of all timings can be found
in appendix A.

2. The data bus has to be free for data transmission during the data transfer
phase of a read or write transaction.

3. Additional turnaround times between accesses going to different DRAM
ranks and between reads and writes have to be fulfilled due to the reversal
of the data bus transmission direction or in order to change the termination
of the DRAM bus.

4. Many PC mainboards use a 2T rule. This means that consecutive commands
are at least two clock cycles apart from each other. This allows the memory
controller to reduce the switching frequency of all signals of the CA-bus but
the chip select line by a factor of two, reducing the effect of signal reflections
(inter symbol interference, ISI) significantly.

In this chapter the reasons are determined, for which the memory controller
inserted additional deselect commands and which therefore limit the system per-
formance most significantly.

These most limiting timings should be the target for optimization by SDRAM
manufacturers, as a reduction of theses timings has the highest impact on the
memory systems performance.

45

46 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

But even if SDRAM development is currently mostly driven by an increase
in memory density and not by performance optimizations, SDRAM timings have
to be regarded thoroughly, as changes in SDRAM sizes affect SDRAM timing
parameters.

If for example the capacity of a SDRAM component is doubled, the SDRAM
designer has multiple options:

Firstly, he can double the number of columns. This would lead to an increase
in the current consumption of the component during bank activations and refresh
cycles and would result in an increase in current consumption related timing pa-
rameters like tRRD or tFAW .

Secondly, he can think of doubling the number of rows. If the number of rows is
doubled, the SDRAM designer has two choices: He may either double the number
of sense amplifiers, which requires additional space on the chip, or he has to cope
with longer bitlines. The larger capacity of longer bitlines would lead to an increase
in access time and refresh time and would therefore affect tRCD, tRAS and tRFC .

Thirdly, he may think of doubling the number of banks. This would have the
least effect on SDRAM timings but requires additional chip space for signal routing
and chip access logic [54].

5.1.1 Methodology

In order to determine the most critical timings in a SDRAM system, different types
of applications were executed on a personal computer. The resulting memory access
sequences (trace files) were recorded with the measurement setup of chapter 4.

Afterwards, the CA-bus utilization was determined: In clock synchronous
SDRAM systems, like DDR2, one command per clock cycle is issued on the
SDRAM component. This command can be either a ”useful” command like a
read or write request or a ND1-command, which does not have an effect on the
SDRAM component.

In the analysis the utilization of the SDRAM’s command and address bus was
determined. While the CA-bus utilization for the ”useful” non-ND-commands is
obvious, the deselect commands may be required either in order to fulfill one of
the memory system limitations of chapter 5.1 or are just introduced as no further
memory requests have to be executed on behalf of the CPU (see figure 5.1).

The deselect commands within the measured sequence are then accounted to
reasons why they have to be in the trace file. This is done by trying to pull in the
next non-ND-command in place of the deselect (similar to the approach of [8]).
It is determined whether the command could have been executed in place of the
deselect command. If this would have been possible, the deselect command is not

1NOP and DESELECT.

5.1. CRITICAL DRAM TIMINGS 47

SDRAM Command

ND-Command

Required NOP Idle NOP

Non-ND-Command

DQ-Bus used
DQ-Bus turnaround
t(RCD)
t(RP)
t(RAS)
t(RC)
t(WR)
t(WTR)
t(CCD)
t(RTP)
t(RRD)
t(FAW)
2T-Rule

READ
WRITE
ACTIVATE
PRECHARGE
REFRESH
READ_AP
WRITE_AP

Figure 5.1: CA-Bus Utilization

required (”idle”-NOP) and may have been safely removed. Otherwise the deselect
is accounted to the reasons stated above (SDRAM timings, DQ bus occupation,
2T rule violations), which would prevent a safe execution at this position.

Figure 5.2 shows an access sequence of SDRAM commands, which are issued
on a single SDRAM bank. The SDRAM timings which have to be fulfilled are
indicated in the Gantt2 chart below. It is tried whether it would be possible to
execute the next ND-command in place of the respective deselect (indicated by
the arrows on top). The timings which would be violated by executing the non-
ND-command in place of the deselect are shown on top of the time axis.

For the analysis only single rank memory systems were investigated. However,
the methodology could also be applied to multi rank memory systems3.

2Henry Laurence Gantt, American mechanical engineer and management consultant, 1861–
1919.

3It shall be noted that there is a single CS# line going to each rank (refer to figure 2.11). As
a result, non-ND-commands going to one rank will be seen as deselect commands by all other
ranks.

48 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

ACT 1COMMAND RD1NOP NOP PRE1

t(RCD)=3

t(RC)=11

t(RRD)=2
t(RP)=3t(RAS)=7

NOP NOP NOP NOP NOP

DQ bus used

time
[clock cycles]

LOCKOUT-
TIMES

NOP

t(RCD) t(RCD) idle
Non-
ND

Non-
ND idle

t(RAS)
t(RTP) t(RAS)

Non-
ND

ACT 1

t(RP)
t(RC)

t(RP)
t(RC)

t(CCD)=2
t(RTP)=2

Figure 5.2: Pulling in of non-ND-Commands in Place of Deselects

Set Benchmark DQ-Util. CA-Util. WR-Ratio Row Hit-Rate Runtime

3D Mark03 48.03% 18.73% 31.68% 70.63% 346.30 s
1 AquaMark 57.40% 21.80% 27.08% 72.86% 532.78 s

CCBMPro 58.85% 21.51% 26.22% 74.59% 251.41 s

183.equake 39.58% 15.31% 13.29% 72.75% 132.04 s
181.mcf 48.06% 19.45% 15.91% 69.06% 225.20 s

2 189.lucas 53.09% 24.55% 31.19% 57.40% 139.02 s
171.swim 53.67% 23.88% 29.92% 60.94% 215.61 s
179.art 69.79% 22.62% 8.04% 85.07% 609.02 s

Table 5.1: Benchmark Set

5.1.2 Results

Two sets of applications were executed on the PC platform (see table 5.1). The
first set consists of three 3D benchmarks, which were executed on platform Bb4

(see appendix B for a detailed list of investigated systems). The second set consists
of the five benchmarks of the SPEC suite, which exercise the SDRAM data bus
most significantly (clusters 4, 5 and 6 in [3]). These benchmarks were executed on
platform Ab.

Although the used chipset applies a 2T rule, CA-bus limitations related to
this rule were ignored. The reason for this approach is that the 2T rule is not a
limitation of the SDRAM itself but from the used chipset and can therefore not

4The nomenclation will be used in the following to refer to the pair of computer system and
SDRAM device which was used for the analysis. The capital letter denotes the computer system,
the small letter refers to the used memory SDRAM timings.

5.1. CRITICAL DRAM TIMINGS 49

Average CA-Bus Utilization selected SPEC-Benchmarks

non-ND-Commands 21,16%

idle nops 21,81%

DQ 17,77%

tRCD 10,00%
DQ tCCD 8,59%

tRP 5,79% tRTP tRAS 2,66%

tWR 2,44%

tRP tRC 2,00%

tWR tRAS 1,54%

tRFC 1,30%

tWTR 1,23%

tRTP 1,12%

others 2,58%

14,87%

Figure 5.3: CA-bus Utilization of selected SPEC 2000 Benchmarks

be influenced by the SDRAM manufacturer. Moreover, the XT-Rule limitation
affects all commands equally and, thus, its consideration would only lead to an in-
crease in complexity due to a significant increase of timing parameter combinations
occurring at the same time.

In order to weight all benchmarks equally, the CA-bus utilization was calculated
for each benchmark individually. Figures 5.3 and 5.4 show the average CA-bus
utilization over all benchmarks within one benchmark set.

In both cases around 20–22% of all clock cycles are spent for issuing non-ND-
commands, 19–21% are ND-commands which could have been safely removed from
a SDRAM point of view (”idle”-NOPs). 26–29% of all deselect commands have to
be inserted due to the occupation of the data bus (sometimes overlapped with a
limitation due to tCCD). The remaining deselects have to be introduced due to (in
order of decreasing significance):

tRCD =⇒ tRP =⇒ tRTP =⇒ tWR =⇒ tRFC =⇒ tWTR

Around 10% of all deselects can be accounted for tRCD, another 6% for tRP

(8% if the tRP tRC pair is added as well). The write recovery time tWR accounts
for another 3%. The remaining deselects account for more exotic combinations of
SDRAM timings. Timings which are related to bank activation sequences (tFAW ,
tRRD, tRAS) or activate/precharge pairs (tRC) play only a minor role on the system
performance. Also the turnaround times of the data bus between read and write
accesses can be neglected. However, bus turnaround times may become more im-

50 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

Average CA-Bus Utilization 3D-Benchmarks

non-ND-Commands 20,68%
DQ 19,40%

DQ tCCD 9,35%

tRCD 9,25%

tRP 6,39%

tWR 3,35%

tRTP tRAS 1,55%

tRP tRC 1,40%

tRAS 1,33%

tWR tRAS 1,30%

tRFC 1,30%

tWTR 1,29%

tRTP 1,10%

others 3,17%

idle nops 19,14%

12,45%

Figure 5.4: CA-bus Utilization of selected 3D Benchmarks

BM-Set cycles affected by 2T rule cycles affected by 2T rule only
1 (3D) 23.55% 2.87%
2 (SPEC) 21.16% 3.42%

Table 5.2: Impact of 2T Rule on System Performance

portant if the analysis would be extended to memory systems consisting of multiple
SDRAM ranks.

Figures 5.3 and 5.4 show that an increase in data bus bandwidth can provide
significant improvements in memory system performance. On the other hand, even
if it would be possible to reduce all SDRAM timing parameters to zero, only one
third of all clock cycles could be saved.

Figures 5.5 and 5.6 show the CA-bus utilization for the different bench-
marks. One can see that the three 3D-benchmarks have similar behavior. For the
SPEC 2000 benchmarks the CA-bus utilization depends significantly on the type
of application. The cluster 6 (see [3]) benchmark 179.art produces the most traffic
of all SPEC 2000 benchmarks on the data bus at a high page hit-rate. Thus, it is
mostly affected by data bus limitations (DQ and DQ tCCD). The benchmarks of
cluster 5 (189.lucas, 171.swim) suffer from a low locality, leading to an increasing
importance of SDRAM timings related to bank activations and precharge oper-
ations (tRCD, tRP). 189.lucas has the highest write ratio of all benchmarks and
is therefore affected more seriously by write recovery (tWR) and write to read
turnaround times (tWTR) than any other benchmark.

5.1. CRITICAL DRAM TIMINGS 51

0%

5%

10%

15%

20%

25%

30%

DQ tRCD DQ tCCD tRP tRTP tRAS tWR tRP tRC tWR tRAS tRFC tWTR tRTP

C
A

-B
u

s-
U

ti
li

za
ti

o
n

183.equake 181.mcf 189.lucas 171.swim 179.art

Figure 5.5: Variation of CA-bus Utilization of SPEC 2000 Benchmarks

0%

5%

10%

15%

20%

25%

DQ DQ tCCD tRCD tRP tWR tRTP tRAS tRP tRC tRAS tWR tRAS tRFC tWTR tRTP

C
A

-B
u

s-
U

ti
li

za
ti

o
n

3dmark03-sgfx-DDR533 amark-sgfx-DDR533 ccbmpro-sgfx-DDR533

Figure 5.6: Variation of CA-bus Utilization of selected 3D Benchmarks

52 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

Average CA-Bus Utilization 3D-Benchmarks Shortest Execution Sequence

removed NOPs (lseq) 18,11%non-ND-Commands 20,68%

DQ 19,89%

DQ tCCD 9,35% tRCD 8,24%

tRP 6,25%

tWR 3,38%
tRTP tRAS 1,57%

DQ tRCD 1,57%

tRP tRC 1,48%

tWR tRAS 1,37%

tWTR 1,35%

tRAS 1,34%

tRFC 1,30%

tRTP 1,12%

others 3,00%

14,10%

Figure 5.7: Average shortest execution Sequence of selected 3D-Benchmarks

In a second run, the same analysis was performed while applying a 2T rule.
The additional 2T rule further limits the execution of SDRAM commands. As a
result, some of the deselects within the access sequence can be accounted to the
fulfillment of 2T rule requirements. These deselects are either taken from the pool
of formerly not required deselects (”idle”-NOPs) or are from the pool of deselects
which are already required to fulfill other timing restrictions.

While the first lead to an additional reduction of the memory systems perfor-
mance, the latter don’t limit the memory system performance as they are over-
lapped by other SDRAM timings.

Table 5.2 shows that nearly one quart of all clock cycles are deselects which are
affected by the 2T rule. Nevertheless, less than 4% of all clock cycles contribute to
the 2T rule only. The remaining deselect cycles overlap with other SDRAM timing
restrictions.

5.1.3 Performance Limitations of future Memory Systems

As many publications have been created, addressing the long access times of
SDRAM as limiting factor of future computer systems [57, 52], this chapter es-
timates the SDRAM timings, limiting the memory system performance in future
computer systems.

For this approach the shortest execution sequence was determined by removing
the unnecessary deselects (”idle”-NOPs) from the memory trace file during analy-
sis. This approach can be interpreted as having an arbitrarily fast CPU (no time

5.2. STATISTICAL MODELLING OF SDRAM PARAMETER CHANGES 53

needed to process the requested data) and not having to wait for the data com-
ing from the SDRAM (no impact of the CAS latency on the executed sequence).
Thus, there must be no data dependency between consecutive memory accesses.
Although both assumptions won’t be fulfilled on a real system, the estimation can
provide an upper bound for the memory systems performance. This methodology
is similar to the one chosen by Wang [54]. While in the previous chapter it was
only checked whether a deselect is required to fulfill timing limitations or not, now
the ”idle”-NOPs are removed from the access sequence. Squeezing the memory
access sequence together to the shortest allowed sequence which can be executed,
may lead to an increasing importance of SDRAM timings which are related to
command pairs which are not consecutive (especially tRAS, tRC , tFAW).

Figure 5.7 shows that it would have been possible to execute the memory
access sequence around 18% faster. The number of removed deselect cycles is
almost identical to the number of deselect commands which have been classified
as unnecessary in figure 5.4.

Hence, the number of limiting SDRAM factors does not increase significantly
if the CPU clock frequency is increased. This observation is supported by the
relatively high row hit rate of the 3D-benchmarks (see table 5.1). As multiple
requests go to the same row before a miss occurs, most timings related to non
consecutive commands (e.g. tRAS, tRC) are already fulfilled, so that no further
deselect cycles have to be introduced.

5.2 Statistical Modelling of SDRAM Parameter

Changes

5.2.1 Changing SDRAM Timings

A statistical model has been derived to estimate the impact of SDRAM parameter
changes on the system performance (i.e. benchmarks total runtime). The key con-
cept of the model is that commands, which have been executed with the shortest
temporal spacing which is allowed by the SDRAM specification, are limited by
the memory system. A reduction of the SDRAM timing will therefore lead to a
reduction of the execution time. Commands which are spaced further apart are
limited by other parts of the computer system (CPU, cache, etc.) and, thus, will
not be affected by changes of the SDRAM timing parameters. The shortest allowed
temporal spacing of commands will be referred to as critical timing.

Based on the trace files generated with the measurement setup of chapter 4,
the histogram of the temporal spacing between consecutive commands was created
for every command pair in the command sequence of the CA-bus.

54 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

RD → RD any bank

RD → WR any bank

WR → WR any bank

RD → RD AP any bank

k = 1 DQ-Bus RD → WR AP any bank

RD AP → RD other bank

RD AP → WR other bank

WR AP → WR other bank

RD AP → WR AP other bank

ACT → RD same bank

k = 2 tRCD ACT → WR same bank

ACT → RD AP same bank

ACT → WR AP same bank

k = 3 tWTR WR → RD any bank

k = 4 tWR WR → PRE same bank

WR → PRE A
k = 5 tRTP RD → PRE same bank

RD → PRE A
PRE → ACT same bank

k = 6 tRP PRE → REF
PRE A → ACT
PRE A → REF

k = 7 tRFC REF → ACT
REF → REF

k = 8 others

Table 5.3: Accounting of Command Pairs to SDRAM Timings

5.2. STATISTICAL MODELLING OF SDRAM PARAMETER CHANGES 55

The minimum temporal spacing between most command pairs can be at-
tributed to a specific SDRAM timing (e.g. the time between the bank activation
to the first read command has to be at least tRCD) or to data bus occupation. In
the previous section it was shown that SDRAM timings which affect commands
which are not their direct successors (i.e. tRAS, tRC , tFAW) don’t have significant
impact on the system performance. Therefore, it is sufficient to look on consecutive
command pairs only. Table 5.3 shows all command pairs and their relationship to
a single SDRAM timing parameter.

The histograms of all command pairs contributing to one of the five most im-
portant timings which have been found in chapter 5.1 have been summed up,
leading to five histograms related to SDRAM timings (k ∈ [2 . . . 7]). In addition,
one histogram containing command pairs which are limited by the data bus occu-
pancy, like read to read command pairs (k = 1), and another histogram containing
all command pairs which cannot be attributed to one of the five most important
SDRAM timings (k = 8) can be created. In the following sections the reduced set
of histograms will be refered to as ”compressed” histograms.

From this reduced set of histograms the contribution of a single SDRAM timing
to the programs execution time can be calculated.

TO
k =

∞∑
i=1

hO
k (i) · tOCK · i (5.1)

In equation 5.1 hO
k (i) denotes the histogram value in the kth histogram at the

ith clock cycle in the original system on which the trace file was recorded; tOCK is
the clock cycle time in the original system.

The total runtime TO of the program in seconds can be calculated by adding
up the contributions of all eight histograms:

TO =
8∑

k=1

TO
k =

8∑

k=1

∞∑
i=1

hO
k (i) · tOCK · i (5.2)

As an example, figure 5.8 shows the fraction of the overall runtime TO
k /TO

spent on one of the SDRAM limitations of table 5.3 for one benchmark run of one
of the SPEC benchmarks (181.mcf) measured on platform Ad. Where applicable
each bar is split up into two sections. The left (blue) section shows the fraction of
the used runtime during which the SDRAM timing is fulfilled critically. The right
(green) section denotes the runtime during which the SDRAM timing is fulfilled
non-critically (i.e. the commands were spaced further apart from each other than
necessary).

When a SDRAM parameter is changed, two cases can occur:

56 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

0 5 10 15 20 25 30

DQ-Bus

t(RCD)

t(WTR)

t(WR)

t(RTP)

t(RP)

t(RFC)

remaining

181mcf-i945-x800-DDR533-lt

Fraction of overall runtime [%]

critical
non-critical
any

Figure 5.8: Temporal Spacing of Command Pairs belonging to a particular SDRAM
Timing

New crit. timing is shorter

New crit. timing is longer

spacing [t]

spacing [t]

spacing [t]

occur.

occur.

occur.

Critically fulfilled commad pair

Critically fulfilled command pair due to timing change
Non-critically fulfilled command pair

Figure 5.9: Histogram Changes caused by Changes of SDRAM Timings

5.2. STATISTICAL MODELLING OF SDRAM PARAMETER CHANGES 57

• The new timing is shorter than the original timing. All accesses which
have been performed critically (shortest allowed timing) will be performed
critically in the new system also. All accesses which have a longer than min-
imal temporal spacing are executed with the same timing as in the original
system.

• The new timing is longer than the original timing. All accesses which
were executed with a shorter temporal spacing in the original system have
to be postponed to fulfill the new SDRAM timing and are fulfilled critically
in the new system.

Figure 5.9 illustrates the histogram changes caused by changes of SDRAM
timings for both cases.

The contribution of the SDRAM timing tk to the total runtime Tk can be
estimated by the equation:

TE
k =

hO
k

(⌈
tOk
tOCK

⌉)
·
⌈

tEk
tOCK

⌉
· tOCK

︸ ︷︷ ︸
advanced critical timing

+
∞∑

i=

�
tO
k

tO
CK

�
+1

hO
k (i) · i · tOCK

︸ ︷︷ ︸
tail of distribution

if tEk ≤ tOk

�
tEk

tO
CK

�
∑
i=1

hO
k (i) ·

⌈
tEk
tOCK

⌉
· tOCK

︸ ︷︷ ︸
accesses to be delayed

+
∞∑

i=

�
tE
k

tO
CK

�
+1

hO
k (i) · i · tOCK

︸ ︷︷ ︸
tail of distribution

if tEk > tOk

(5.3)

In the equation above tk denotes the analog SDRAM timing from the SDRAM
specification. This time is rounded up to the next clock cycle in the original clock
domain. In case of data bus related stalls tDQ denotes the time required for trans-
ferring a complete burst of data (tDQ = tk=1 = BL/2 · tOCK). As before, the total
runtime can be estimated by summing up the contributions of all single SDRAM
timings.

Results

Taking the measurements of four benchmarks of the SPEC benchmark suite
recorded on system Ad as given, an estimation of the benchmarks runtime us-
ing equation 5.3 was performed. The SDRAM timings were varied by ±4 clock
cycles with regard to their original settings.

58 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

In figure 5.10 the estimated increase and decrease of the benchmarks runtime
in percent is plotted when the SDRAM timings are changed for the four bench-
marks under investigation (colored bars). As the individual contributions of the
SDRAM timings are independent from each other, the overall runtime change can
be calculated by summing up the individual contributions of all SDRAM timing
parameters.

It can be seen that the overall performance impact is mostly a linear function of
the SDRAM timing. This is due to the fact that the set of ”compressed” histograms
has a significant peak at the critical timing (see figure 5.8) for almost all SDRAM
timings while the histogram values in vicinity of the critical timing only play a
minor role for the overall execution time. Accordingly, the overall runtime depends
almost linearly on shifting the position of the dominating histogram peak at the
critical timing.

In order to check the quality of the estimation, the estimated results were com-
pared with benchmark runs taken on the same system but with reduced SDRAM
timings (system Ab). From these measurements the ”compressed” histograms of
consecutive commands belonging to a particular SDRAM timing were determined
as in figure 5.8. Building the ”compressed” histograms allows an attribution of the
overall number of saved clock cycles between the two different memory systems to
the different SDRAM timings.

The performance gain/loss for each SDRAM timing due to different SDRAM
timing parameters is determined by the equation:

∆TMO
k =

∞∑
i=1

(
hM

k (i)− hO
k (i)

) · tOCK · i (5.4)

∆TMO
k denotes the time difference between the measured system and the orig-

inal system. The relative impact of the particular SDRAM timing on the overall
execution time can be determined by normalizing ∆TMO

k to the execution time of
the original benchmark TO. The resulting points were also plotted in figure 5.10.
The measurements on system Ab were conducted several times as they were reused
in chapter 6.

Figure 5.10 shows that the estimation accuracy heavily depends on the partic-
ular SDRAM timing. The best estimation results are obtained for the tRCD timing.
Also the estimation for tWR closely matches the measured values.

By contrast, the estimations of tRTP and tRP are far away from the measured
results. At first glance it seems that the model of chapter 5.2 heavily underesti-
mates the effect of SDRAM timing changes. The reason why the model performs
poorly on these timings is that the command sequence is not fixed for the differ-
ent benchmark runs. The reduction of SDRAM timings by some few clock cycles
changes the executed command sequence significantly. The shorter SDRAM access

5.2. STATISTICAL MODELLING OF SDRAM PARAMETER CHANGES 59

-2
0

-1
5

-1
0

-5
0

5
1

0
1

5
2

0

t(
R

C
D

)

t(
W

T
R

)

t(
W

R
)

t(
R

T
P

)

t(
R

P
)

t(
R

F
C

)

1
7

1
s

w
im

-i
9

4
5

-x
8

0
0

-D
D

R
5

3
3

C
h

a
n

g
e

 o
f

e
x

e
c

u
ti

o
n

 t
im

e
 [

%
]

ru
n

1
ru

n
2

ru
n

4
ru

n
5

ru
n

6
ru

n
7

-4
 t

(C
K

)
-3

 t
(C

K
)

-2
 t

(C
K

)
-1

 t
(C

K
)

+
0

 t
(C

K
)

+
1

 t
(C

K
)

+
2

 t
(C

K
)

+
3

 t
(C

K
)

+
4

 t
(C

K
)

-1
5

-1
0

-5
0

5
1

0
1

5

t(
R

C
D

)

t(
W

T
R

)

t(
W

R
)

t(
R

T
P

)

t(
R

P
)

t(
R

F
C

)

1
8

1
m

c
f-

i9
4

5
-x

8
0

0
-D

D
R

5
3

3

C
h

a
n

g
e

 o
f

e
x

e
c

u
ti

o
n

 t
im

e
 [

%
]

ru
n

1
ru

n
2

ru
n

3
ru

n
4

ru
n

5
ru

n
6

ru
n

7
-4

 t
(C

K
)

-3
 t

(C
K

)
-2

 t
(C

K
)

-1
 t

(C
K

)
+

0
 t

(C
K

)
+

1
 t

(C
K

)
+

2
 t

(C
K

)
+

3
 t

(C
K

)
+

4
 t

(C
K

)

-2
0

-1
5

-1
0

-5
0

5
1

0
1

5

t(
R

C
D

)

t(
W

T
R

)

t(
W

R
)

t(
R

T
P

)

t(
R

P
)

t(
R

F
C

)

1
8

3
e

q
u

a
k

e
-i

9
4

5
-x

8
0

0
-D

D
R

5
3

3

C
h

a
n

g
e

 o
f

e
x

e
c

u
ti

o
n

 t
im

e
 [

%
]

ru
n

1
ru

n
2

ru
n

3
ru

n
4

ru
n

5
ru

n
6

ru
n

7
-4

 t
(C

K
)

-3
 t

(C
K

)
-2

 t
(C

K
)

-1
 t

(C
K

)
+

0
 t

(C
K

)
+

1
 t

(C
K

)
+

2
 t

(C
K

)
+

3
 t

(C
K

)
+

4
 t

(C
K

)

-2
0

-1
5

-1
0

-5
0

5
1

0
1

5
2

0

t(
R

C
D

)

t(
W

T
R

)

t(
W

R
)

t(
R

T
P

)

t(
R

P
)

t(
R

F
C

)

1
8

9
lu

c
a

s
-i

9
4

5
-x

8
0

0
-D

D
R

5
3

3

C
h

a
n

g
e

 o
f

e
x

e
c

u
ti

o
n

 t
im

e
 [

%
]

ru
n

1
ru

n
2

ru
n

3
ru

n
4

ru
n

5
ru

n
6

ru
n

7
-4

 t
(C

K
)

-3
 t

(C
K

)
-2

 t
(C

K
)

-1
 t

(C
K

)
+

0
 t

(C
K

)
+

1
 t

(C
K

)
+

2
 t

(C
K

)
+

3
 t

(C
K

)
+

4
 t

(C
K

)

F
ig

u
re

5.
10

:
P
er

fo
rm

an
ce

Im
p
ac

t
of

S
D

R
A

M
P
ar

am
et

er
C

h
an

ge
s

60 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

0 5 10 15 20 25 30 35 40

DQ-Bus

t(RCD)

t(WTR)

t(WR)

t(RTP)

t(RP)

t(RFC)

remaining

183equake-i945-x800-DDR533-lt

Fraction of overall runtime [%]

critical
non-critical
any

0 5 10 15 20 25 30

DQ-Bus

t(RCD)

t(WTR)

t(WR)

t(RTP)

t(RP)

t(RFC)

remaining

183equake-i945-x800-DDR533-run4

Fraction of overall runtime [%]

Figure 5.11: Fraction of Time spent on different SDRAM Timings

times lead to an increase in access interleaving between accesses going to different
banks. The time between those accesses to different banks can no longer be at-
tributed to one of the five most important SDRAM timings. Figure 5.11 illustrates
this effect. On the left side the fraction of the benchmarks runtime spent on the
different SDRAM timings is shown for 183.equake on system Ad (long SDRAM
timings). On the right side the data is presented for one of the runs of the same
benchmark but on system Ab. One can see that on the system using long SDRAM
timings around 36% of all clock cycles are accounted to tRP . When executing the
same benchmark on the system with short SDRAM timings this fraction goes down
to less than 20%. By contrast, the amount of clock cycles spent on command pairs
which do not contribute to one of the selected SDRAM timings (these are mostly
command pairs with commands going to different banks and, thus, do not impose
SDRAM performance limitations) increases significantly (from 8% to over 25%).
Therefore, the model does not underestimate the performance impact of particu-
lar SDRAM parameters like tRP , but changing SDRAM timing parameters may
change the access sequence significantly in a way that clock cycles are attributed
to different histograms within the ”compressed” histogram set.

As the minimum allowed refresh cycle time is equal for the original system (Ad)
and the system used for comparison (Ab), the model states that the same time is
spent for tRFC on the fast as well as on the slow system. As the timings before, the
time spent for tRFC is a victim of the changes and the reordering of the commands
within the execution sequence due to the changed SDRAM access times.

• Refreshing takes place periodically at a fixed rate (on average every 7.8 µs)
and happens asynchronously to the program execution. When the system
runs faster, the overall execution time of the benchmark decreases, and thus,
the number of required periodic refreshes decreases as well. Hence, the time

5.2. STATISTICAL MODELLING OF SDRAM PARAMETER CHANGES 61

Original
System Ab compared to Ad

runtime change deviation
estimate real [perc.pt.]

171.swim -14.93% -19.31% (run 2) 4.38%
181.mcf -10.40% -13.65% (run 2) 3.25%

183.equake -8.18% -8.06% (run 2) -0.12%
189.lucas -17.80% -19.12% (run 4) 1.32%

Table 5.4: Performance Impact of SDRAM Timing Changes

used for SDRAM refreshing is lower than expected in the model when the
access times decrease.

• In the model the time from refreshing the SDRAM device to the first bank
activation is accounted to tRFC as well as the time between two consecutive
refresh cycles with no other accesses in between consecutive refresh com-
mands.

If access times are decreased, access bursts which were formerly executed
within multiple refresh intervals on the slow system may be compressed, so
that they are executed within one single refresh interval. Hence, more time is
accounted to a limitation of the refresh cycle time (tRFC) on the fast system
than on the slow system. This effect can be observed for the 183.equake
benchmark (see the tRFC bar in figure 5.11)5.

The total effect of the different contributions depends on the particular bench-
mark. For most benchmarks the time spent on refreshes is reduced when the access
times become shorter.

Table 5.4 summarizes the estimated runtime change when switching from the
slow memory system Ad to the faster system Ab. In addition, the actual change of
the benchmarks runtime is shown for the measurements taken on system Ab. While
in figure 5.10 it was shown that the estimation performs poorly on some SDRAM
timings like tRP or tRTP , the estimation accuracy of the overall runtime including
all SDRAM timings (see table 5.4) is higher than the individual contributions of
some SDRAM timings. The reason is that wrong guesses caused by reordering of
the command sequence (see figure 5.11) are largely compensated when looking at
the overall benchmarks runtime.

5 In 183.equake more than 32000 intervals of refresh to refresh pairs spaced tREFI apart were
measured on the fast system while only one of these pairs was found on the slow memory system.

62 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

Original Clock Domain (O) Continuous System (C) Estimation Clock Domain (E)
tCK

O > tCK
E

tCK
O tCK

E

E
kpC

kρO
kp

t tt

Figure 5.12: Changing SDRAM Operation Frequency: Methodology

However, for most benchmarks the model underestimated the performance gain
when switching to faster SDRAM timings by up to 4.38 percentage points.

5.2.2 Changing the SDRAM Operation Frequency

Typically performance improvements of the SDRAM memory system are not re-
stricted to single SDRAM timings. More often the operating frequency of the
SDRAM interface is increased while the analog SDRAM timings remain mostly
the same.

By contrast to the previous section, two additional effects can be observed
when the SDRAM’s operating frequency is changed:

1. As the transfer of a data burst requires a fixed number of clock cycles, the
time required to transfer a memory burst is directly proportional to the clock
cycle time of the memory interface and will change with the clock frequency.

2. The SDRAM memory system is a synchronous system. Changing the clock
frequency leads to the situation that commands will be executed on the
original system and the system for which the estimation is done at different
clock cycles. The estimation of the memory systems behavior may suffer
from these sampling effects. Equation 5.3 provides a simple estimation of
the programs execution time in the clock domain of the source sequence.
Although it can also provide an estimation of the execution time when the
clock frequency of the estimation target is different from the source, rounding
effects may make this estimation inaccurate.

Therefore, the algorithm of section 5.2.1 was modified in order to estimate the
execution time in the clock domain of the target.

A two step approach was used. First the discrete distribution of the temporal
spacing of consecutive accesses is transformed to a continuous distribution. In
the second step the continuous distribution is converted back to a new discrete

5.2. STATISTICAL MODELLING OF SDRAM PARAMETER CHANGES 63

distribution which fits to the target clock domain. The transformation flow is
depicted in figure 5.12.

For converting the formerly discrete distribution to a continuous one, it is as-
sumed that memory requests from the CPU may occur at any time on a continuous
time scale. This assumption is reasonable if the operating frequency of the CPU
and cache subsystem is significantly higher that the operating frequency of the
SDRAM subsystem (which it typically is in the world of multi GHz CPUs). Mem-
ory requests arriving at the memory subsystem have to be postponed up to the
next clock cycle and until the critical SDRAM timing has been fulfilled before they
are executed.

The probability pO
k (m) that the second access of an an access pair related to

SDRAM timing k is executed on the original system with a temporal spacing of
m clock cycles is given by the equation:

pO
k (m) =

hO
k (m)

Hk

=
hO

k (m)
∞∑
i=1

hO
k (i)

(5.5)

Hk denotes the overall number of access pairs accounted to SDRAM timing k.
The function pO

k (m) provides an empirical estimation of the probability density
function of the temporal spacing of consecutive accesses during the benchmark
run. This estimation is derived by looking at the respective histograms of the long
access sequences which were recorded on the computer system under test.

As the measurement reveals only the discrete distribution of the temporal spac-
ing between consecutive commands on the device under test, an equal distribution
of the command spacing of the requests arriving from the CPU between consec-
utive clock cycles is assumed. Consequently, in the continuous time domain the
discrete probabilities (pO

k) are distributed equally between consecutive clock cy-
cles. Assuming an equal distribution of the temporal spacing between consecutive
commands does not necessarily reflect the real distribution on the system under
investigation. Nevertheless, it can be regarded as a good approximation for the
real distribution if the SDRAM operating frequency is high, i.e. if the temporal
spacing between consecutive samples of the discrete distribution is small.

The probability density function of the continuous distribution is given by the
equation:

ρC
k (t) =

pO
k

��
t

tO
CK

��
tOCK

, if t >
⌈

tOk
tOCK

⌉
· tOCK

pO
k

��
tOk

tO
CK

��
�

tO
k

tO
CK

�
· tOCK

, if t ≤
⌈

tOk
tOCK

⌉
· tOCK

(5.6)

64 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

The equation on top distributes the accesses of the discrete source system equally
across the time between the particular clock cycle and its predecessor. The equation
below is an exception for the critical timing. Accesses which had to be postponed
to fulfill the critical timing k in the source system are distributed equally on
the time axis between 0 and the first clock cycle in which the second access of
the command pair may take place, as its critical timing is fulfilled on the source
system (0 < t ≤ ⌈

tOk /tOCK

⌉ · tOCK).
In the second step the continuous distribution of equation 5.6 is transformed

to a discrete distribution in the clock domain of the target system. All accesses
which would happen at time t in the continuous time domain are postponed to be
executed on the the next clock cycle of the target system. Thus, the probability
that an access takes place in clock cycle n in the target system is given by:

pE
k (i) =

i · tECK∫
(i−1) · tECK

ρC
k (t)dt , if i >

⌈
tEk /tECK

⌉

i · tECK∫
0

ρC
k (t)dt , if i =

⌈
tEk /tECK

⌉

0 , if i <
⌈
tEk /tECK

⌉

(5.7)

The first equation assigns all accesses to the next possible clock cycle in the target
clock domain during which they can be executed. The two equations below take
care of the fact that the critical timing has to be fulfilled on the target system
also. From the discrete probability density function in the target clock domain the
time spent for a particular timing can be determined:

TE
k =

∞∑
i=1

pE
k (i) · tECK · i ·Hk (5.8)

Equation 5.8 is a generalization of equation 5.3 for tECK 6= tOCK . In the case of tECK =
tOCK , both equations produce the same results if tEk ≥ tOk . For tEk < tOk the results are
different: In equation 5.3 it is assumed that all accesses which have been performed
critically in the original system will be executed earlier and are thus shifted in the
histogram. Instead, in equation 5.6 an equal distribution of accesses along the
interval [0 . . . dtOk /tOCKe · tOCK] is assumed in the continuous system consisting of
the accesses executed critically in the original system. Accordingly, if the critical
timing of the estimation becomes shorter with respect to the original settings, not
all accesses are executed at the new critical timing. A detailed proof can be found
in appendix C.

Figure 5.13 shows an example of the probability density functions in the dif-
ferent clock domains. On the positive y-axis the discrete probability density func-
tion of the original system normalized by tOCK is plotted as vertical red bars. The

5.2. STATISTICAL MODELLING OF SDRAM PARAMETER CHANGES 65

t

O
CK

E
k

C
k

O
CK

O
k

ttp

t

ttp

/)(

)(

/)(

−

ρ

O
CK

E
CK tt <

O
CK

E
CK tt >

Figure 5.13: Discrete and continuous Probability Density Function of Accesses at
different Clock Frequencies

SDRAM timing is executed critically in the fourth clock cycle. From the discrete
probability density function the continuous probability density function is deter-
mined as described by equation 5.6 (ρC

k (t)). The area between the probability
density function of the continuous system and the x-axis is plotted as light red
area in the first quadrant of figure 5.13. On the negative y-axis the estimations of
the discrete probability density functions are shown for higher (tECK < tOCK , shown
as green bars) and lower (tECK > tOCK , shown as blue bars) clock frequencies. In
order to maintain the scaling, both functions are also plotted normalized to tOCK .
At the higher frequency, the first accesses are performed in clock cycle 5. Never-
theless, due to the higher clock frequency, accesses are executed earlier compared
to the original system. At the lower frequency the critical timing is at clock cycle
3. Due to the lower operation frequency, accesses have to be delayed. The blue and
green stripes at the bottom of figure 5.13 indicate the integration intervals which
are used to determine the discrete probability density function in the different
target clock domains: All accesses which occur within one single colored stripe are
postponed and executed in the next clock cycle (i.e. at the time which limits the
integration interval on the right side).

66 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

-20
-15

-10
-5

0
5

10
15

20
25

30

to
tal

D
Q

-B
u

s

t(R
C

D
)

t(W
T

R
)

t(W
R

)

t(R
T

P
)

t(R
P

)

t(R
F

C
)

re
m

ain
in

g

1
7

1
s

w
im

-i9
4

5
-x

8
0

0
-D

D
R

5
3

3
-ru

n
2

C
h

a
n

g
e

 o
f e

x
e

c
u

tio
n

 tim
e

 [%
]

D
D

R
2-400-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-533-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-533-3-3-3

D
D

R
2-667-5-5-5

D
D

R
2-667-4-4-4

D
D

R
2-800-6-6-6

D
D

R
2-800-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-667-4-4-4

-15
-10

-5
0

5
10

15
20

25

to
tal

D
Q

-B
u

s

t(R
C

D
)

t(W
T

R
)

t(W
R

)

t(R
T

P
)

t(R
P

)

t(R
F

C
)

re
m

ain
in

g

1
8

1
m

c
f-i9

4
5

-x
8

0
0

-D
D

R
5

3
3

-ru
n

2

C
h

a
n

g
e

 o
f e

x
e

c
u

tio
n

 tim
e

 [%
]

D
D

R
2-400-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-533-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-533-3-3-3

D
D

R
2-667-5-5-5

D
D

R
2-667-4-4-4

D
D

R
2-800-6-6-6

D
D

R
2-800-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-667-4-4-4

-15
-10

-5
0

5
10

15

to
tal

D
Q

-B
u

s

t(R
C

D
)

t(W
T

R
)

t(W
R

)

t(R
T

P
)

t(R
P

)

t(R
F

C
)

re
m

ain
in

g

1
8

3
e

q
u

a
k

e
-i9

4
5

-x
8

0
0

-D
D

R
5

3
3

-ru
n

2

C
h

a
n

g
e

 o
f e

x
e

c
u

tio
n

 tim
e

 [%
]

D
D

R
2-400-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-533-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-533-3-3-3

D
D

R
2-667-5-5-5

D
D

R
2-667-4-4-4

D
D

R
2-800-6-6-6

D
D

R
2-800-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-667-4-4-4

-20
-15

-10
-5

0
5

10
15

20
25

30

to
tal

D
Q

-B
u

s

t(R
C

D
)

t(W
T

R
)

t(W
R

)

t(R
T

P
)

t(R
P

)

t(R
F

C
)

re
m

ain
in

g

1
8

9
lu

c
a

s
-i9

4
5

-x
8

0
0

-D
D

R
5

3
3

-ru
n

4

C
h

a
n

g
e

 o
f e

x
e

c
u

tio
n

 tim
e

 [%
]

D
D

R
2-400-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-533-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-533-3-3-3

D
D

R
2-667-5-5-5

D
D

R
2-667-4-4-4

D
D

R
2-800-6-6-6

D
D

R
2-800-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-667-4-4-4

F
igu

re
5.14:

P
erform

an
ce

Im
p
act

of
S
D

R
A

M
O

p
eratin

g
F
req

u
en

cy
C

h
an

ges

5.2. STATISTICAL MODELLING OF SDRAM PARAMETER CHANGES 67

Results

Using the measured access sequences of the same four benchmarks of the SPEC
benchmark suite as in the previous section, an estimation of the time used for the
different SDRAM timings was performed. The benchmarks were recorded with a
SDRAM running at speed grade DDR2-533-444 (system Ab). As multiple runs
of the benchmark were recorded at this speed grade for the repeatability study
of chapter 6, benchmark runs were selected as starting point of the estimation
which closely resemble the mean values of chapter 6. All speed grade/SDRAM
timing combinations which are specified in the SDRAM specification [32] or are
commercially available were chosen as target for the estimation. From the difference
in execution time between the estimation and the measurement in the original
system, the speedup of the benchmarks execution time which can be attributed to
a particular SDRAM timing was calculated:

sE
k =

TE
k − TO

k

TO
(5.9)

In figure 5.14 the estimated benchmarks speedup for the different SDRAM
timings compared to the original system on which the access sequence was recorded
is plotted (colored bars).

It can be seen that changing the SDRAM operation frequency mostly affects
the data bus operation: Increasing the clock frequency while keeping the burst
length equal reduces the time required for transferring a data burst and increases
the memory systems bandwidth. The shorter transfer time reduces the time the
system has to wait due to data bus occupation.

The second most important timing is tRCD. It can also be seen that none of
the remaining SDRAM timings can provide a speedup of more than 5%. This
result is not surprising. As the analog SDRAM timings are mostly the same across
all SDRAM speed grades, changing the clock frequency doesn’t affect the system
performance for these timings at all. This holds true for tWR, tRTP , tRFC and also
for tWTR. The tWR goes down from 10 ns at DDR2-400 to 7.5 ns for all remaining
speed grades. Nevertheless, as the following read access has to be postponed up
to the next clock cycle, the performance benefit is less than 2.5 ns per command
pair at speed grades DDR2-533 and DDR2-667. The reduced clock cycle time at
higher speed grades may slightly reduce penalties induced by the requirement of
rounding the analog SDRAM timing up to the next clock cycle.

As in the previous chapter the estimation results were verified by taking mea-
surements of the investigated benchmarks at the SDRAM target frequency of the
estimation (200 MHz/DDR2-400 and 333.5 MHz/DDR2-667). The speedup of the
measured system compared to the original system can be determined by the equa-
tion:

68 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

sM
k =

TM
k − TO

k

TO
(5.10)

with

TM
k =

∞∑
i=1

hM
k (i) · tMCK · i (5.11)

hM
k denotes the histogram of the temporal spacing of the command pair k while

tMCK is the SDRAM’s clock cycle time on the system used for verification.
The impact on the execution time for each SDRAM timing is shown in figure

5.14 also.
Comparing the estimation with the measurements reveals that the estimation

only loosely fits to the measured results. Unlike the previous section, in which only
particular SDRAM timings were changed, changing the clock frequency leads to a
remarkable reordering of the access sequence. Furthermore, even the overall num-
ber of memory requests executed by the benchmark at different clock frequencies
is at least dissimilar enough to mask the minor performance changes induced by
changes of the SDRAM’s operating frequency.

In order to distinguish errors of the performance estimation from errors induced
by the different workloads (i.e. different command count and command pairs), the
histogram of the command pairs was normalized, so that the overall number of
executed command pairs on the system used for verification is equal to the number
of command pairs occurring on the original system and in the estimation.

˜TM
k = TM

k ·

∞∑
i=1

hO
k (i)

∞∑
i=1

hM
k (i)

(5.12)

The results after normalization can be found in figure 5.15. Table 5.5 summa-
rizes the estimated and measured impact on the overall system performance for
the normalized results and without applying normalization.

When estimating the system performance of slower SDRAM speed grades, three
out of four benchmarks ran slower than predicted (i.e. the model underestimated
the penalty induced by the slower access times). When normalization is applied,
the estimation accuracy slightly decreases. This result shows, that on the slow
system the overall number of SDRAM accesses is smaller than on the fast system.

When estimating the system performance of higher SDRAM speed grades, the
model significantly overestimates the performance improvement for three out of
four benchmarks. The reason is that the fast system performs more accesses during
the benchmarks runtime. Thus, the measurement results have to be normalized to
the same number of accesses to be comparable.

5.2. STATISTICAL MODELLING OF SDRAM PARAMETER CHANGES 69

-2
0

-1
5

-1
0

-5
0

5
10

15
20

25
30

to
ta

l

D
Q

-B
u

s

t(
R

C
D

)

t(
W

T
R

)

t(
W

R
)

t(
R

T
P

)

t(
R

P
)

t(
R

F
C

)

re
m

ai
n

in
g

1
7

1
s

w
im

-i
9

4
5

-x
8

0
0

-D
D

R
5

3
3

-r
u

n
2

C
h

a
n

g
e

 o
f

e
x

e
c

u
ti

o
n

 t
im

e
 [

%
]

D
D

R
2-

40
0-

4-
4-

4
D

D
R

2-
40

0-
3-

3-
3

D
D

R
2-

53
3-

5-
5-

5
D

D
R

2-
53

3-
4-

4-
4

D
D

R
2-

53
3-

3-
3-

3
D

D
R

2-
66

7-
5-

5-
5

D
D

R
2-

66
7-

4-
4-

4
D

D
R

2-
80

0-
6-

6-
6

D
D

R
2-

80
0-

5-
5-

5
D

D
R

2-
53

3-
4-

4-
4

D
D

R
2-

40
0-

3-
3-

3
D

D
R

2-
66

7-
4-

4-
4

-1
5

-1
0

-5
0

5
10

15
20

25

to
ta

l

D
Q

-B
u

s

t(
R

C
D

)

t(
W

T
R

)

t(
W

R
)

t(
R

T
P

)

t(
R

P
)

t(
R

F
C

)

re
m

ai
n

in
g

1
8

1
m

c
f-

i9
4

5
-x

8
0

0
-D

D
R

5
3

3
-r

u
n

2

C
h

a
n

g
e

 o
f

e
x

e
c

u
ti

o
n

 t
im

e
 [

%
]

D
D

R
2-

40
0-

4-
4-

4
D

D
R

2-
40

0-
3-

3-
3

D
D

R
2-

53
3-

5-
5-

5
D

D
R

2-
53

3-
4-

4-
4

D
D

R
2-

53
3-

3-
3-

3
D

D
R

2-
66

7-
5-

5-
5

D
D

R
2-

66
7-

4-
4-

4
D

D
R

2-
80

0-
6-

6-
6

D
D

R
2-

80
0-

5-
5-

5
D

D
R

2-
53

3-
4-

4-
4

D
D

R
2-

40
0-

3-
3-

3
D

D
R

2-
66

7-
4-

4-
4

-1
5

-1
0

-5
0

5
10

15

to
ta

l

D
Q

-B
u

s

t(
R

C
D

)

t(
W

T
R

)

t(
W

R
)

t(
R

T
P

)

t(
R

P
)

t(
R

F
C

)

re
m

ai
n

in
g

1
8

3
e

q
u

a
k

e
-i

9
4

5
-x

8
0

0
-D

D
R

5
3

3
-r

u
n

2

C
h

a
n

g
e

 o
f

e
x

e
c

u
ti

o
n

 t
im

e
 [

%
]

D
D

R
2-

40
0-

4-
4-

4
D

D
R

2-
40

0-
3-

3-
3

D
D

R
2-

53
3-

5-
5-

5
D

D
R

2-
53

3-
4-

4-
4

D
D

R
2-

53
3-

3-
3-

3
D

D
R

2-
66

7-
5-

5-
5

D
D

R
2-

66
7-

4-
4-

4
D

D
R

2-
80

0-
6-

6-
6

D
D

R
2-

80
0-

5-
5-

5
D

D
R

2-
53

3-
4-

4-
4

D
D

R
2-

40
0-

3-
3-

3
D

D
R

2-
66

7-
4-

4-
4

-2
0

-1
5

-1
0

-5
0

5
10

15
20

25
30

to
ta

l

D
Q

-B
u

s

t(
R

C
D

)

t(
W

T
R

)

t(
W

R
)

t(
R

T
P

)

t(
R

P
)

t(
R

F
C

)

re
m

ai
n

in
g

1
8

9
lu

c
a

s
-i

9
4

5
-x

8
0

0
-D

D
R

5
3

3
-r

u
n

4

C
h

a
n

g
e

 o
f

e
x

e
c

u
ti

o
n

 t
im

e
 [

%
]

D
D

R
2-

40
0-

4-
4-

4
D

D
R

2-
40

0-
3-

3-
3

D
D

R
2-

53
3-

5-
5-

5
D

D
R

2-
53

3-
4-

4-
4

D
D

R
2-

53
3-

3-
3-

3
D

D
R

2-
66

7-
5-

5-
5

D
D

R
2-

66
7-

4-
4-

4
D

D
R

2-
80

0-
6-

6-
6

D
D

R
2-

80
0-

5-
5-

5
D

D
R

2-
53

3-
4-

4-
4

D
D

R
2-

40
0-

3-
3-

3
D

D
R

2-
66

7-
4-

4-
4

F
ig

u
re

5.
15

:
P
er

fo
rm

an
ce

Im
p
ac

t
of

S
D

R
A

M
O

p
er

at
in

g
F
re

q
u
en

cy
C

h
an

ge
s

w
it

h
n
or

m
al

iz
ed

A
cc

es
s

P
ai

rs

70 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

Original
System Aa (DDR2-400-333) Ac (DDR2-667-444)

runtime change deviation runtime change deviation
estimate real estimate real

171.swim 15.31% 18.17% -2.86% -11.84% -13.13% 1.29%
181.mcf 13.83% 14.68% -0.85% -10.10% -4.49% -5.61%

183.equake 9.53% 8.93% 0.60% -8.08% -1.23% -6.85%
189.lucas 15.03% 15.57% -0.54% -12.36% -6.59% -5.77%

Normalized
System Aa (DDR2-400-333) Ac (DDR2-667-444)

runtime change deviation runtime change deviation
estimate real estimate real

171.swim 15.31% 19.60% -4.29% -11.84% -13.38% 1.54%
181.mcf 13.83% 15.63% -1.80% -10.10% -7.10% -3.00%

183.equake 9.53% 8.92% 0.61% -8.08% -8.49% 0.51%
189.lucas 15.03% 15.63% -0.60% -12.36% -12.39% 0.03%

Table 5.5: Performance Impact of SDRAM Frequency Changes

Anyway, table 5.5 shows that with normalization the estimation of the system
performance deviates less than five percentage points from the measurements. In
two out of four cases the estimation diverges from the measurements by less than
one percentage point.

But even without normalization the runtime can be estimated with an error
of less than three percentage points when estimating the performance of a lower
speed grade. For three out of four benchmarks the error was even less than one
percentage point. Even though the estimation of single SDRAM timings may be
significantly erroneous, the overall system performance is dominated by the DQ bus
utilization and tRCD. For these two SDRAM limitations the estimation accuracy
is high even without normalization.

However, in the unnormalized case the estimation accuracy is poor when es-
timating the performance of higher speed grades. Without normalization to the
same number of command pairs being executed in the estimation and the system
used for verification the model frequently overestimates the speedup caused by
improvements of the SDRAM’s access times significantly.

5.2. STATISTICAL MODELLING OF SDRAM PARAMETER CHANGES 71

5.2.3 Estimating Intercommand Spacing

In the previous two sections it was shown that estimating the performance increase
or decrease across different SDRAM speed grades can be done by looking at the
histograms of the temporal spacing of consecutive commands. It was shown that
these estimations are quite accurate compared to measurements on real computer
systems.

Nevertheless, the models derived there suffer from the fact that the experi-
menter has to be aware of the intercommand spacing of all command pairs during
the entire benchmark run in order to build the required histograms. These his-
tograms can be created by analyzing access sequences either of recorded memory
accesses on a real computer system as it was done for this theses or of access se-
quences obtained by simulations. In both cases long access sequences have to be
analyzed.

As already shown in section 5.2.2, pO
k (m) denotes the discrete probability den-

sity function of the spacing between consecutive commands belonging to a par-
ticular SDRAM timing k in the original system. Similarly to the methodology
of section 5.2.2 this discrete probability density function shall be replaced by a
continuous probability density function representing the arrival of commands at
the SDRAM controller. This continuous probability density function will be dis-
cretized again afterwards to match the clock domain of the system for which the
performance estimation shall be performed. Opposed to the previous chapter, the
continuous system is not generated by assuming a piecewise equal distribution be-
tween consecutive clock cycles. Instead an appropriate global analytical function
is fitted to the points of pO

k (m) in order to obtain the continuous distribution with
the probability density function ρC

k (t). The advantage of the described approach
is that the access behavior of an entire benchmark can be fully characterized by
the parameters of eight analytical probability density functions.

For many SDRAM timings an exponential distribution is a reasonable assump-
tion to describe the access behavior. The exponential distribution is typically used
to describe the probability of the first occurrence of a particular event (in this
case the second command of the respective command pair). The exponential dis-
tribution can be seen as continuous counterpart to the geometric distribution [20,
p.279].

The exponential distribution can be applied to describe the inter command
spacing of consecutive read or write requests (i.e. DQ bus limitation, tWTR). Fur-
thermore, it can be used for read/write requests which have to be initiated by a
bank activation or a row replacement on the same bank (i.e. tRTP , tWR). As most
memory systems issue a bank activation as response to a memory read/write re-
quest of the CPU or other bus master in the system, a bank activation is in most
cases concluded directly with a read or write transaction to the freshly opened

72 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

row. Thus, the distribution of the tRCD distribution does not follow an exponen-
tial distribution, but the majority of accesses are directly initiated with the critical
timing after the bank activation. Nevertheless, for the estimation of small changes
of tRCD an exponential distribution can be used. The optimization algorithm pre-
sented in equation 5.17 will find a relatively large coefficient for b, which will lead to
an extremely steep exponential distribution, which resembles the real probability
distribution of tRCD.

Similarly, an exponential distribution cannot be simply applied to tRFC (k =
7). As shown in table 5.3 both the refresh to refresh and the refresh to activate
command pairs contribute to tRFC .

For tRFC two cases have to be investigated: For the refresh to refresh command
pair most memory controllers will schedule refreshes with the time of the average
periodic refresh interval (tREFI) if possible. This ensures that the latency of ac-
cesses is minimal6 while also minimizing power consumption. ”If possible” means
that there must be no accesses to the SDRAM rank between the two refresh cy-
cles. Otherwise the command pair would be attributed to the refresh to activate
command pair instead. For the refresh to refresh pair, the probability density func-
tion of the tRFC intercommand spacing follows more likely a normal distribution
with its center around the average periodic refresh interval (tREFI). For this type
of refreshes changing the minimum refresh interval (tRFC) will not have any sig-
nificant impact on the system performance. However, for benchmarks exercising
the memory system significantly as those benchmarks investigated in this thesis,
the number of intervals of tREFI during which no memory accesses take place is
negligible.

The second type of accesses which are attributed to tRFC are refresh to acti-
vate pairs. For these accesses assuming an exponential distribution is reasonable.
Furthermore, there may be refresh to refresh pairs which are executed with shorter
temporal spacing. The memory controller may concentrate refresh cycles, e.g. be-
cause some memory refreshes had to be postponed to fulfill memory read write
requests earlier.

Lastly, the exponential distribution does not fit to the histogram of temporal
spacings which cannot be attributed to a particular SDRAM timing (i.e. k = 8).
However, the results were also included in table 5.6 and figure 5.16 to demonstrate
this effect. Instead of approximating this class with an exponential distribution, the
overall time spent on executing those command pairs which cannot be attributed
to a particular SDRAM timing should be kept constant for the performance esti-
mation of the target system.

6Refreshing requires that all SDRAM banks have to be closed beforehand, so that accesses
occurring after a refresh will always require a bank activation (row miss). Furthermore, memory
requests arriving at the memory controller during refresh have to be postponed until refreshing
has been completed.

5.2. STATISTICAL MODELLING OF SDRAM PARAMETER CHANGES 73

Fitting an exponential Distribution

The probability density function of an exponential distribution is given by equation
5.13:

ρC
k (t) = b e−b t (5.13)

As in the previous chapter it is assumed that commands may arrive at the
SDRAM controller at any time and will be postponed until the next clock cycle of
the SDRAM clock. Thus, the probability that a command to the memory is issued
at a particular clock cycle is given by integrating the continuous probability density
function for the time between the particular clock cycle and its predecessor. One
exception to this rule is the critical timing. As all accesses are postponed to fulfill

the critical timing, the integration bounds for i =
⌈

tOk
tOCK

⌉
have to be extended to

the interval from [0 . . .
⌈

tOk
tOCK

⌉
· tOCK].

Least square fitting is applied in order to find the parameter b of the exponential
distribution which matches to the discrete distribution of the original system best.
The difference between a point pO

k (i) in the discrete probability density function
of the original system and the estimated continuous probability density function
is given by equation 5.14:

δ(i) =

i tOCK∫
(i−1) tOCK

b e−btdt− hk(i)
Hk

, if i >
⌈

tOk
tOCK

⌉

i tOCK∫
0

b e−btdt− hk(i)
Hk

, if i =
⌈

tOk
tOCK

⌉

0 , if i <
⌈

tOk
tOCK

⌉
(5.14)

Furthermore, δ(i) is zero for all i <
⌈

tOk
tOCK

⌉
.

The total difference ∆ between the continuous distribution and the discrete dis-
tribution of the original system if given by the sum of the squares of all differences
from equation 5.14.

74 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

∆(b) =
∞∑
i=1

δ(i)2 (5.15)

=

�
tOk

tO
CK

�
· tOCK∫

0

b e−btdt−
hk

(⌈
tOk

tOCK

⌉)

Hk

2

(5.16)

+
∞∑

i=

�
tO
k

tO
CK

�
+1

i tOCK∫

(i−1) tOCK

b e−btdt− hk(i)

Hk

2

= min (5.17)

Finding the minimum of ∆(b) delivers the optimal value of the parameter b
for which the estimated exponential distribution fits best to the discrete proba-
bility density function of the original system. The optimal value of b has to be
determined numerically. Most methods which can be used to determine the local
minimum of a function numerically require an initial guess for the value of b or an
interval in which the local minimum shall be searched. The value of the parame-
ter b of the exponential distribution is mostly determined by the accesses issued
with the critical timing. At the critical timing the exponential function does not
only have it’s maximum but also has an extended integration interval during curve
fitting. An initial estimation b̌ of the optimal parameter of the exponential distri-
bution function can therefore be obtained by looking only at the critical timing.
Disregarding the remaining points of the discrete distribution leads to:

�
tOk

tO
CK

�
· tOCK∫

0

b̌e−b̌tdt =
hk

(⌈
tOk

tOCK

⌉)

Hk

(5.18)

b̌ =

−ln

1−

hk

(⌈
tOk

tOCK

⌉)

Hk

⌈
tOk

tOCK

⌉
· tOCK

(5.19)

The initial guess b̌ can be used as starting value for a numerical approximation
of the distribution’s exponent b.

After determining the optimal value for b which minimizes ∆, the discrete prob-
ability density function in the target clock domain can be determined as already

5.2. STATISTICAL MODELLING OF SDRAM PARAMETER CHANGES 75

Benchmark
171.swim 181.mcf 183.equake 189.lucas

k bopt εk(bopt) bopt εk(bopt) bopt εk(bopt) bopt εk(bopt)
[· 108] [%] [· 108] [%] [· 108] [%] [· 108] [%]

DQ 3.587 0.8068 3.029 0.7102 2.437 1.6086 3.054 1.2066
tRCD 1.776 7.6038 1.405 7.5506 1.649 6.0281 1.360 9.3081
tWTR 2.488 0.0153 2.984 0.0029 2.604 0.0108 3.138 0.0019
tWR 1.897 0.0256 1.476 0.0686 0.704 0.5559 1.539 0.0983
tRTP 1.943 5.6175 1.972 4.1382 0.525 4.9499 2.001 5.5092
tRP 2.549 1.5697 1.359 5.0565 1.102 6.3746 2.269 1.9505
tRFC 0.279 0.4181 0.210 1.3331 0.113 2.9670 0.425 0.3104
oth. 4.380 3.0962 2.256 8.6393 1.938 10.4156 3.668 4.1712

Table 5.6: Optimal values for the parameter b of the Exponential Distribution

shown in equation 5.7. εk denotes the goodness of fit and is given by the root of
the sum of the squared differences for the different SDRAM timings.

εk(bopt) =
√

∆(bopt) =

√√√√
∞∑
i=1

δ(i)2 (5.20)

Results

The performance estimation conducted in the previous section with the results
shown in figure 5.15 was repeated using exponential distributions in order to es-
timate the histograms of all SDRAM timings. Table 5.6 shows the optimal values
of the parameter b for the different SDRAM timings.

The estimation results were compared to measurements on the real system. As
in the previous section, the number of accesses measured for the different SDRAM
speed grades were normalized to the number of accesses executed on the origi-
nal system (see equation 5.12) to make them comparable. Figure 5.16 shows the
performance change for different SDRAM speed grades compared to the original
system (Ab).

For performance limitations induced by DQ bus utilization the estimation pro-
vides accurate results. Nevertheless, for SDRAM speed grade DDR2-667 the perfor-
mance gain is overestimated for two out of four benchmarks (181.mcf, 183.equake).

For the second most important SDRAM timing tRCD the estimation also pro-
vides accurate results. For two of the benchmarks (181.mcf, 189.lucas) the perfor-
mance gain is slightly underestimated compared to the real system.

76 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

-15
-10

-5
0

5
10

D
Q

-B
u

s

t(R
C

D
)

t(W
T

R
)

t(W
R

)

t(R
T

P
)

t(R
P

)

t(R
F

C
)

re
m

ain
in

g

1
7

1
s

w
im

-i9
4

5
-x

8
0

0
-D

D
R

5
3

3
-ru

n
2

C
h

a
n

g
e

 o
f e

x
e

c
u

tio
n

 tim
e

 [%
]

D
D

R
2-400-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-533-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-533-3-3-3

D
D

R
2-667-5-5-5

D
D

R
2-667-4-4-4

D
D

R
2-800-6-6-6

D
D

R
2-800-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-667-4-4-4

-20
-15

-10
-5

0
5

10
15

D
Q

-B
u

s

t(R
C

D
)

t(W
T

R
)

t(W
R

)

t(R
T

P
)

t(R
P

)

t(R
F

C
)

re
m

ain
in

g

1
8

1
m

c
f-i9

4
5

-x
8

0
0

-D
D

R
5

3
3

-ru
n

2

C
h

a
n

g
e

 o
f e

x
e

c
u

tio
n

 tim
e

 [%
]

D
D

R
2-400-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-533-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-533-3-3-3

D
D

R
2-667-5-5-5

D
D

R
2-667-4-4-4

D
D

R
2-800-6-6-6

D
D

R
2-800-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-667-4-4-4

-25
-20

-15
-10

-5
0

5
10

D
Q

-B
u

s

t(R
C

D
)

t(W
T

R
)

t(W
R

)

t(R
T

P
)

t(R
P

)

t(R
F

C
)

re
m

ain
in

g

1
8

3
e

q
u

a
k

e
-i9

4
5

-x
8

0
0

-D
D

R
5

3
3

-ru
n

2

C
h

a
n

g
e

 o
f e

x
e

c
u

tio
n

 tim
e

 [%
]

D
D

R
2-400-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-533-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-533-3-3-3

D
D

R
2-667-5-5-5

D
D

R
2-667-4-4-4

D
D

R
2-800-6-6-6

D
D

R
2-800-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-667-4-4-4

-10
-8

-6
-4

-2
0

2
4

6
8

10

D
Q

-B
u

s

t(R
C

D
)

t(W
T

R
)

t(W
R

)

t(R
T

P
)

t(R
P

)

t(R
F

C
)

re
m

ain
in

g

1
8

9
lu

c
a

s
-i9

4
5

-x
8

0
0

-D
D

R
5

3
3

-ru
n

4

C
h

a
n

g
e

 o
f e

x
e

c
u

tio
n

 tim
e

 [%
]

D
D

R
2-400-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-533-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-533-3-3-3

D
D

R
2-667-5-5-5

D
D

R
2-667-4-4-4

D
D

R
2-800-6-6-6

D
D

R
2-800-5-5-5

D
D

R
2-533-4-4-4

D
D

R
2-400-3-3-3

D
D

R
2-667-4-4-4

F
igu

re
5.16:

P
erform

an
ce

Im
p
act

of
S
D

R
A

M
O

p
eratin

g
F
req

u
en

cy
C

h
an

ges
estim

ated
u
sin

g
an

ex
p
on

en
tial

D
istri-

b
u
tion

5.2. STATISTICAL MODELLING OF SDRAM PARAMETER CHANGES 77

The exponential distribution can also be used to model the benchmarks overall
runtime accounted to tWTR, tWR. The estimation of tRTP is accurate for lower
SDRAM speed grades (i.e. DDR2-400). However, for higher SDRAM speed grades
like DDR2-667 the system spends even more time with tRTP than on systems using
slower SDRAM memory.

For tRP and tRFC the estimated results do not fit to the measured results.
Unlike most other timings, the discrete probability density function for tRP and
tRFC decays slowly in the original system. Thus, the tail of the respective distribu-
tion has significant impact on the benchmarks runtime. This holds true especially
for benchmarks which have a relative low SDRAM utilization (like 181.mcf or
183.equake). This slow decay makes it difficult to fit a single exponential function
to all points of the histogram. Instead, for these timings a piecewise approxima-
tion of the histogram by two or more analytical functions is highly recommended7.
Unfortunately, a piecewise approximation of the histograms introduces the prob-
lem of finding optimal interval boundaries for the sub-functions. Even worse, the
solution lacks the benefit of having a small set of very simple analytical functions
to describe the access behavior of an entire benchmark run.

The estimation of chapter 5.2.2 constitutes the other extreme: Here the con-
tinuous probability density function was constructed by piecewise interpolation
of neighboring points of the discrete probability density function of the original
system.

Figure 5.16 shows that even though the probability density functions were
approximated by very simple exponential distributions, the impact of SDRAM
parameter changes can be estimated with sufficient accuracy for the most impor-
tant SDRAM timings. The results also show that memory performance estimation
doesn’t necessarily require complex models for simulating the behavior of mem-
ory access performance. Even assuming simple exponential distributions between
consecutive SDRAM accesses may provide sufficient accuracy for estimating the
system performance of future SDRAM systems.

7Looking at the respective histograms reveals that the histograms should be approximated
by at least two exponential functions.

78 CHAPTER 5. DRAM PERFORMANCE ANALYSIS

Chapter 6

Reproducibility

System simulators can start workloads from a given system state, which can be
saved and restored for every simulation run. Thus, running the same benchmark
multiple times in the simulation environment leads to exactly the same perfor-
mance results.

Most of today’s operating systems support virtual memory management. The
operating system provides the user with more primary memory (virtual memory)
than physically installed in the system. The operating system takes care of map-
ping the CPUs address space to physical memory. If an application requests more
primary memory than physically available, the OS has to write currently unused
memory to secondary storage (and has to load it back from there to physical mem-
ory dynamically when needed again) in order to fulfill the request. This leads to
the situation that the memory map seen at the beginning of a measurement de-
pends on the memory allocations in the past (i.e. memory requests of tasks which
have been executed earlier). Furthermore, the operating systems memory alloca-
tion algorithm typically evaluates former accesses on memory pages to determine
a replacement strategy for less frequently used pages. Thus, also the future assign-
ment of primary memory to the benchmark under investigation depends on events
which occurred in the past.

Unfortunately, the experimenter has limited control over this mapping of log-
ical addresses to physical memory1. In addition, multitasking operating systems
may run several other (system) tasks asynchronously in the background which
may produce additional memory requests. These additional requests influence the
memory allocation algorithm and, thus, the assignment of physical memory to the
different tasks during the benchmarks execution time.

This leads to the situation that the memory map may vary between consecutive
runs of the same benchmark significantly. Therefore, the impact of the unknown

1at least, if the operating system shall be left unmodified.

79

80 CHAPTER 6. REPRODUCIBILITY

-40 -30 -20 -10 0 10 20 30 40

#RD
#WR

#ACT
#PRE

#PRE_A
#REF

#NOP

runtime

Bank Open Time
1
2
3
4

avg.

PageHitRate

DQ-Bus
#UNUSED

#RD
#WR

#PREAM

Deviation from mean [%]

171.swim i945 Chipset DDR 533

run 1
run 2
run 3
run 4
run 5
run 6
run 7

Figure 6.1: Deviation of Key Figures from Mean Value: 171.swim

starting state and the – from the experimenters point of view – random allocation
of physical memory pages to the logical address space on the measured performance
metrics of chapter 3 has to be determined to ensure that the measurements are
representative for the workload under investigation.

Four benchmarks of the SPEC 2000 suite were executed and recorded on the
same hardware setup multiple times. In order to obtain a different memory map
for the different runs, other tasks were executed in between consecutive runs such
as system reboots, computer games, text processing or hard disk defragmentation.
Afterwards, the deviation of several key figures (number of commands, data bus
utilization, bank open times) from the arithmetic mean values of all benchmark
runs were determined. The distribution of the accesses across the physical address
space was compared between the consecutive benchmark runs. Finally, the CA-
bus utilization for the different SDRAM timings of all benchmark repetitions was
evaluated as in chapter 5.1.1.

6.1. DEVIATION OF KEY FIGURES 81

-10 -8 -6 -4 -2 0 2 4 6 8

#RD
#WR

#ACT
#PRE

#PRE_A
#REF

#NOP

runtime

Bank Open Time
1
2
3
4

avg.

PageHitRate

DQ-Bus
#UNUSED

#RD
#WR

#PREAM

Deviation from mean [%]

181.mcf i945 Chipset DDR 533

run 1
run 2
run 3
run 4
run 5
run 6
run 7

Figure 6.2: Deviation of Key Figures from Mean Value: 181.mcf

6.1 Deviation of Key Figures

In figures 6.1, 6.2, 6.3, and 6.4 the deviation of several key figures from their
mean value is plotted for four memory intensive benchmarks of the SPEC 2000
benchmark suite (cluster 4 and 5 in [3]). The list of key figures consists of the
number of issued commands, the benchmarks overall runtime, the bank open time
for all four banks and their average, the page hit rate, and the data bus utilization.

For all key figures it is assumed that they follow a normal distribution. From
the measurements the confidence interval for the mean value to a confidence level of
90% was calculated and is shown in the background of the graph (lower yellow bar).
Furthermore, the confidence interval for a single benchmark run also calculated for
a confidence level of 90% is shown (upper yellow bar).

For the four benchmarks the numbers of read, write, activation, and precharge
commands are well within a band of ±6% around the arithmetic mean values.
For 189.lucas and 181.mcf the deviation is even less than ±2%. For the 171.swim
and 183.equake benchmarks the number of precharge all commands may vary
up to 30% from their average for some few benchmark runs. At first glance the
random assignment of physical memory leads to different memory maps for the
benchmarks, which makes closing more than one bank at the same time look more

82 CHAPTER 6. REPRODUCIBILITY

-30 -20 -10 0 10 20 30 40

#RD
#WR

#ACT
#PRE

#PRE_A
#REF

#NOP

runtime

Bank Open Time
1
2
3
4

avg.

PageHitRate

DQ-Bus
#UNUSED

#RD
#WR

#PREAM

Deviation from mean [%]

183.equake i945 Chipset DDR 533

run 1
run 2
run 3
run 4
run 5
run 6
run 7

Figure 6.3: Deviation of Key Figures from Mean Value: 183.equake

beneficial to the memory controller for some benchmark runs. Nevertheless, this
result shouldn’t be overemphasized. Firstly, the number of precharge operations
going to one single bank only is one order of magnitude larger than the number of
precharge all commands. Therefore, small changes of the total number of precharge
all commands lead to a large relative deviation from the average while the impact
on system performance is minimal. Secondly, at least 40% of all precharge all com-
mands close only one single bank (see figure 6.5). For three out of four benchmarks
under investigation this number is even above 75%. So most of the precharge all
operations could have been safely replaced by precharge commands going to one
bank only.

The deviation of the DQ-bus utilization is in the same range as the CA-bus
utilization. As every read and write transaction uses the data bus for transferring
a single burst, an equal number of read and write requests per time also leads to
an equal DQ-bus utilization.

By contrast, the deviation of the bank open times of the four benchmarks from
the average is larger and is in the range of up to ±8%. Due to the random map-
ping of virtual memory to physical pages the bank open times may vary between
different benchmark runs significantly.

An example can be found in figure 6.2. While in run 2 the banks are used

6.1. DEVIATION OF KEY FIGURES 83

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

#RD
#WR

#ACT
#PRE

#PRE_A
#REF

#NOP

runtime

Bank Open Time
1
2
3
4

avg.

PageHitRate

DQ-Bus
#UNUSED

#RD
#WR

#PREAM

Deviation from mean [%]

189.lucas i945 Chipset DDR 533

run 1
run 2
run 3
run 4
run 5
run 6
run 7

Figure 6.4: Deviation of Key Figures from Mean Value: 189.lucas

equally, benchmark runs 3 and 4 keep mostly two banks open.

On the other hand, the measured deviation of the average bank open times over
all four banks is surprisingly low. This shows that despite the unawareness of the
memory allocation algorithm of the hardware topology, the mapping of physical
addresses to SDRAM ranks, banks, rows, and columns by the memory controller
(address split) does a good job in distributing accesses equally across the four
banks.

An interesting effect can be found for the 181.mcf benchmark in figure 6.2.
The benchmark run 3 uses only two banks, while during run 2 SDRAM accesses
are distributed equally over all banks. Although the lower number of used banks
during run 3 should lead to more conflict misses (the row has to be closed in order
to access another) than on runs using all four banks equally, the opposite can be
observed. The number of activate and precharge commands is lower for run 2 and,
thus, the page hit rate is higher. The higher locality of accesses leads to a decrease
of the overall runtime and increases the memory systems performance.

The reason for this surprising result is that the page size of a virtual memory
page of the x86 CPU is 4 KiB while a single row of the used SDRAM module spans
8 KiB. Therefore, one single SDRAM row contains two virtual memory pages. In
the runs with a lower number of used banks the operating system allocated con-

84 CHAPTER 6. REPRODUCIBILITY

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

171swim_i945_x800_DDR533_run1

171swim_i945_x800_DDR533_run2

171swim_i945_x800_DDR533_run3

171swim_i945_x800_DDR533_run4

171swim_i945_x800_DDR533_run5

171swim_i945_x800_DDR533_run6

171swim_i945_x800_DDR533_run7

181mcf_i945_x800_DDR533_run1

181mcf_i945_x800_DDR533_run2

181mcf_i945_x800_DDR533_run3

181mcf_i945_x800_DDR533_run4

181mcf_i945_x800_DDR533_run5

181mcf_i945_x800_DDR533_run6

181mcf_i945_x800_DDR533_run7

183equake_i945_x800_DDR533_run1

183equake_i945_x800_DDR533_run2

183equake_i945_x800_DDR533_run3

183equake_i945_x800_DDR533_run4

183equake_i945_x800_DDR533_run5

183equake_i945_x800_DDR533_run6

183equake_i945_x800_DDR533_run7

189lucas_i945_x800_DDR533_run1

189lucas_i945_x800_DDR533_run2

189lucas_i945_x800_DDR533_run3

189lucas_i945_x800_DDR533_run4

189lucas_i945_x800_DDR533_run5

189lucas_i945_x800_DDR533_run6

189lucas_i945_x800_DDR533_run7

1 Bank 2 Banks 3 Banks 4 Banks

Figure 6.5: Number of closed Banks per precharge all Command

6.2. LOCAL DISTRIBUTION OF ACCESSES 85

secutive virtual memory pages to the same row, increasing the locality of SDRAM
accesses.

This result shows that in memory systems the size of a virtual memory page
should be less or equal to the SDRAM row size of the SDRAM module. Further-
more, larger virtual pages may exploit access locality further.

6.2 Local Distribution of Accesses

In order to determine the reproducibility and, thus, the relevance of the results, not
only the deviation of key figures has to be considered, but also the local distribution
of accesses across the memory array. Furthermore, the distribution of the physical
memory along SDRAM rows and banks has an impact on the system performance.
From the performance point of view, the memory controller benefits from long
SDRAM rows and a large number of banks. Both properties of a SDRAM system
ensure that the memory controller may keep large chunks of memory available
for direct access by the CPU wihout having to issue precharge/activate cycles for
switching between different SDRAM rows.

As memory allocation algorithms of current operating systems like Microsoft
Windows or Linux typically don’t take the assignment of physical addresses to
SDRAM ranks and banks into account, there is no explicit mechanism implemented
in the operating system to distribute memory accesses to different banks equally
in order to exploit temporal interleaving of SDRAM accesses [25, 46].

The system under investigation used one single rank 512 MiB SDRAM module
consisting of eight 512 Mibit devices. The eight devices cover 8 KiB of physical
address space per row while the page size of the Intel x86 CPU is 4 KiB. Thus,
one row of SDRAM memory covers two virtual memory pages2.

In a first step the number of virtual memory pages used by the benchmark runs
was compared. The number of read or write accesses (burst transfers from or to
memory) going to memory locations belonging to one single virtual memory page
were counted. The resulting list was sorted by decreasing frequency of occurence.
The left side of figures 6.6 to 6.9 show the distribution of accesses to virtual
memory pages for all benchmark runs. For most benchmark runs the distribution
of accesses across virtual memory pages is almost equal for all benchmark runs.

Opposed to this, the number of accesses memory rows may vary significantly
between consecutive runs (shown on the right side of each figure).

Thus, there are benchmark runs during which the operating system assigns
mostly only one single virtual memory page to a row and there are other runs,
during which two pages are mapped to a single row by the operating system.

2 In general one single memory row may cover two or more virtual memory pages, depending
on the CPU and primary memory system.

86 CHAPTER 6. REPRODUCIBILITY

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8
Page Utilization

Memory Size [MiB]

lo
g

10
(#

A
cc

es
se

s+
1)

171swim-i945-x800-DDR533-run1
171swim-i945-x800-DDR533-run2
171swim-i945-x800-DDR533-run3
171swim-i945-x800-DDR533-run4
171swim-i945-x800-DDR533-run5
171swim-i945-x800-DDR533-run6
171swim-i945-x800-DDR533-run7

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8
Row Utilization

Memory Size [MiB]

lo
g

10
(#

A
cc

es
se

s+
1)

171swim-i945-x800-DDR533-run1
171swim-i945-x800-DDR533-run2
171swim-i945-x800-DDR533-run3
171swim-i945-x800-DDR533-run4
171swim-i945-x800-DDR533-run5
171swim-i945-x800-DDR533-run6
171swim-i945-x800-DDR533-run7

Figure 6.6: Page and Row Utilization of 171.swim

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8
Page Utilization

Memory Size [MiB]

lo
g

10
(#

A
cc

es
se

s+
1)

181mcf-i945-x800-DDR533-run1
181mcf-i945-x800-DDR533-run2
181mcf-i945-x800-DDR533-run3
181mcf-i945-x800-DDR533-run4
181mcf-i945-x800-DDR533-run5
181mcf-i945-x800-DDR533-run6
181mcf-i945-x800-DDR533-run7

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8
Row Utilization

Memory Size [MiB]

lo
g

10
(#

A
cc

es
se

s+
1)

181mcf-i945-x800-DDR533-run1
181mcf-i945-x800-DDR533-run2
181mcf-i945-x800-DDR533-run3
181mcf-i945-x800-DDR533-run4
181mcf-i945-x800-DDR533-run5
181mcf-i945-x800-DDR533-run6
181mcf-i945-x800-DDR533-run7

Figure 6.7: Page and Row Utilization of 181.mcf

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8
Page Utilization

Memory Size [MiB]

lo
g

10
(#

A
cc

es
se

s+
1)

183equake-i945-x800-DDR533-run1
183equake-i945-x800-DDR533-run2
183equake-i945-x800-DDR533-run3
183equake-i945-x800-DDR533-run4
183equake-i945-x800-DDR533-run5
183equake-i945-x800-DDR533-run6
183equake-i945-x800-DDR533-run7

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8
Row Utilization

Memory Size [MiB]

lo
g

10
(#

A
cc

es
se

s+
1)

183equake-i945-x800-DDR533-run1
183equake-i945-x800-DDR533-run2
183equake-i945-x800-DDR533-run3
183equake-i945-x800-DDR533-run4
183equake-i945-x800-DDR533-run5
183equake-i945-x800-DDR533-run6
183equake-i945-x800-DDR533-run7

Figure 6.8: Page and Row Utilization of 183.equake

6.2. LOCAL DISTRIBUTION OF ACCESSES 87

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8
Page Utilization

Memory Size [MiB]

lo
g

10
(#

A
cc

es
se

s+
1)

189lucas-i945-x800-DDR533-run1
189lucas-i945-x800-DDR533-run2
189lucas-i945-x800-DDR533-run3
189lucas-i945-x800-DDR533-run4
189lucas-i945-x800-DDR533-run5
189lucas-i945-x800-DDR533-run6
189lucas-i945-x800-DDR533-run7

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8
Row Utilization

Memory Size [MiB]

lo
g

10
(#

A
cc

es
se

s+
1)

189lucas-i945-x800-DDR533-run1
189lucas-i945-x800-DDR533-run2
189lucas-i945-x800-DDR533-run3
189lucas-i945-x800-DDR533-run4
189lucas-i945-x800-DDR533-run5
189lucas-i945-x800-DDR533-run6
189lucas-i945-x800-DDR533-run7

Figure 6.9: Page and Row Utilization of 189.lucas

It shall be noted, that it is assumed that each virtual memory page is mapped
to a unique location in physical memory for the entire benchmark run. In effect
the operating system may map multiple different virtual memory pages to the
same physical memory location during the benchmarks runtime. This can happen,
either because the memory utilization is not static during the benchmark run (i.e.
the benchmark dynamically allocates and frees memory), or because the amount
of installed physical memory is too small to hold all used virtual memory pages
(working set) and, thus, forces the operating system to evict less used memory
pages to secondary storage (disk swapping). While the first is hard to control and
even to detect with the used measurement method, the latter can be controlled
by installing sufficently large amounts of physical memory, so that the operating
system does not have to swap memory contents to secondary storage. Figures 6.6
to 6.9 show that all benchmarks of the used SPEC benchmark suite use at most
half of the installed physical memory. Thus, the swapping activity of the operating
system is minimal.

Increasing the packing density of the used memory across fewer rows may
reduce the number of activate/precharge cycles. In order to benefit from the higher
packing density, the concept of spatial access locality must apply. So it is necessary
that the two virtual memory pages mapped to a single row are to some extent
correlated to each other (e.g. consecutive virtual memory pages in the processor’s
address space are mapped to a single row). In order to determine the correlation
between the memory pages mapped to one single row, the read/write accesses going
to one single virtual memory page were classified into groups and the numbers of
their occurences were counted for all virtual memory pages:

1. The access is the first access going to the memory page. It required a row
activation before (miss).

88 CHAPTER 6. REPRODUCIBILITY

2. The access is the first access going to the memory page, but the row was
already activated before due to an access to another virtual memory page
mapped to that row.

3. The access is not the first on the memory page and, thus, the row was already
activated before (hit).

Classifying the memory accesses for each memory page allows to determine the
degree of correlation between memory pages mapped to a single SDRAM row. By
looking at the first two types of accesses, three different classes of accessed memory
pages can be determined:

1. There are read/write accesses of type 2 on the page. Thus, there are also
accesses on another page located on the same memory row and there is
a correlation between the virtual memory pages which allows the memory
system to reduce the number of activate commands.

2. There are accesses on more than one virtual memory page located on that
row (in this case: there are also accesses on the other page located on the
same row), but no accesses on the page are of type 2. There is no correlation
between the two pages on that row, and therefore no benefit results from
holding them on the same memory row.

3. There are accesses on the page, but not on any other page located on that
row (i.e. only one out of the two pages on the SDRAM component are used
on the system under investigation).

Figure 6.10 shows the assignment of the accessed memory pages to their re-
spective classes with respect to the overall number of accessed memory pages. It
can be seen that during each benchmark run, the assignment of virtual memory
pages to physical memory is completely different. During some benchmark runs
up to 37% of all virtual memory pages share a memory row with another row
and there is correlation between the two pages (i.e. there are accesses to a virtual
memory page, which benefit from the fact that the respective SDRAM row has
been already opened due to an access to another page on the same row). Nev-
ertheless, on average only 12% of all virtual memory pages share a SDRAM row
with another page in a way that the number of activate requests can be reduced.
By contrast, on average 53% of all virtual memory pages share their SDRAM row
with pages, with which they are completly uncorrelated (i.e. there are no bank
activations saved at all). On average 35% of all memory pages don’t share a row
with another memory page.

The results clearly show that as long as the operating system is unaware of the
address split (i.e. the assignment of physical addresses to SDRAM banks and rows),

6.2. LOCAL DISTRIBUTION OF ACCESSES 89

0 10 20 30 40 50 60 70 80 90 100

171swim-run1
171swim-run2
171swim-run3
171swim-run4
171swim-run5
171swim-run6
171swim-run7
181mcf-run1
181mcf-run2
181mcf-run3
181mcf-run4
181mcf-run5
181mcf-run6
181mcf-run7

183equake-run1
183equake-run2
183equake-run3
183equake-run4
183equake-run5
183equake-run6
183equake-run7

189lucas-run1
189lucas-run2
189lucas-run3
189lucas-run4
189lucas-run5
189lucas-run6
189lucas-run7

Virtual Memory Pages and SDRAM rows

fraction of pages [%]

both pages on row used
both pages used but no benefit
only one page of row used

Figure 6.10: SDRAM Row Sharing of virtual Memory Pages

90 CHAPTER 6. REPRODUCIBILITY

one cannot expect any significant benefit from placing multiple virtual memory
pages on a single SDRAM row.

Designers of future memory systems should therefore make sure that either
the operating systems takes the memory split into account when assigning virtual
memory pages to physical memory, or the page size of the memory system should
be made equal to the SDRAM row size.

Furthermore, figures 6.6 to 6.9 show that accesses to memory pages and rows
are not distributed uniformly. The number of accesses going to different virtual
memory pages may vary by several orders of magnitude. This result shows that
even today caching mechanisms implemented in current microprocessors do not
exploit locality to a large extent. In order to quantify this effect the Lorenz curve3

is plotted for all benchmark runs. The curve shows the percentage of memory
accesses as a function of the percentage of accessed virtual memory pages.

It is assumed that the number of burst transfers per virtual memory page
is a random variable. Let ~x = (x0, . . . , xn) denote the vector of the number of
accesses going to a virtual memory page during a benchmark run with xi being
the number of read or write transfers going to the ith least frequently accessed
virtual memory page with x > 0. So the vectors elements are sorted in ascending
order with respect to the number of accesses. In order to avoid a dependency of
the Lorenz curve on the amount of available physical memory, only memory pages
are taken into account which are accessed at least once during the execution of the
benchmark. The Lorenz curve L is than given by the equation:

L

(
k

n

)
=

∑k
i=0 xi∑n
i=0 xi

(6.1)

Figure 6.11 shows that while for the 171.swim benchmark accesses are dis-
tributed equally, for the remaining benchmarks the distribution of accesses is ex-
tremely non uniform: During their execution 90% of all accesses take place on less
than 30% of all virtual memory pages.

6.3 Reproducibility and SDRAM Timings

For the benchmarks of the SPEC CPU2000 suite the analysis of chapter 5.1.1 was
performed on multiple runs of the same benchmark.

Figure 6.12 shows the fraction of time spent on particular SDRAM timings
(as in figures 5.5 and 5.6) for consecutive runs of 171.swim. The variance between
different runs of the same benchmark is less than 1% with respect to the overall
benchmarks runtime.

3Max O. Lorenz, American economist. The Lorenz curve is typically used in economics to
describe income inequalities.

6.3. REPRODUCIBILITY AND SDRAM TIMINGS 91

The graphs for the remaining three benchmarks under investigation of the
SPEC CPU2000 suite have been omitted here, as they are similar and thus do not
provide additional insights.

92 CHAPTER 6. REPRODUCIBILITY

0
10

20
3

0
40

50
6

0
70

80
9

0
10

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

10
0

L
o

re
n

z
 c

u
rv

e

A
c

c
e

s
s

e
d

 M
e

m
o

ry
 L

o
c

a
tio

n
s

 [%
]

#Accesses/#Total Accesses [%]

1
71s

w
im

-i945
-x

800
-D

D
R

533
-run

1
1

71s
w

im
-i945

-x
800

-D
D

R
533

-run
2

1
71s

w
im

-i945
-x

800
-D

D
R

533
-run

3
1

71s
w

im
-i945

-x
800

-D
D

R
533

-run
4

1
71s

w
im

-i945
-x

800
-D

D
R

533
-run

5
1

71s
w

im
-i945

-x
800

-D
D

R
533

-run
6

1
71s

w
im

-i945
-x

800
-D

D
R

533
-run

7

0
10

20
3

0
40

50
6

0
70

80
9

0
10

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

10
0

L
o

re
n

z
 c

u
rv

e

A
c

c
e

s
s

e
d

 M
e

m
o

ry
 L

o
c

a
tio

n
s

 [%
]

#Accesses/#Total Accesses [%]

1
81m

c
f-i945

-x
800

-D
D

R
533

-run1
1

81m
c

f-i945
-x

800
-D

D
R

533
-run2

1
81m

c
f-i945

-x
800

-D
D

R
533

-run3
1

81m
c

f-i945
-x

800
-D

D
R

533
-run4

1
81m

c
f-i945

-x
800

-D
D

R
533

-run5
1

81m
c

f-i945
-x

800
-D

D
R

533
-run6

1
81m

c
f-i945

-x
800

-D
D

R
533

-run7

0
10

20
3

0
40

50
6

0
70

80
9

0
10

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

10
0

L
o

re
n

z
 c

u
rv

e

A
c

c
e

s
s

e
d

 M
e

m
o

ry
 L

o
c

a
tio

n
s

 [%
]

#Accesses/#Total Accesses [%]

1
83e

qua
ke-i945

-x
800

-D
D

R
533

-run1
1

83e
qua

ke-i945
-x

800
-D

D
R

533
-run2

1
83e

qua
ke-i945

-x
800

-D
D

R
533

-run3
1

83e
qua

ke-i945
-x

800
-D

D
R

533
-run4

1
83e

qua
ke-i945

-x
800

-D
D

R
533

-run5
1

83e
qua

ke-i945
-x

800
-D

D
R

533
-run6

1
83e

qua
ke-i945

-x
800

-D
D

R
533

-run7

0
10

20
3

0
40

50
6

0
70

80
9

0
10

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

10
0

L
o

re
n

z
 c

u
rv

e

A
c

c
e

s
s

e
d

 M
e

m
o

ry
 L

o
c

a
tio

n
s

 [%
]

#Accesses/#Total Accesses [%]

1
89luc

as-i945
-x

800
-D

D
R

533
-run

1
1

89luc
as-i945

-x
800

-D
D

R
533

-run
2

1
89luc

as-i945
-x

800
-D

D
R

533
-run

3
1

89luc
as-i945

-x
800

-D
D

R
533

-run
4

1
89luc

as-i945
-x

800
-D

D
R

533
-run

5
1

89luc
as-i945

-x
800

-D
D

R
533

-run
6

1
89luc

as-i945
-x

800
-D

D
R

533
-run

7

F
igu

re
6.11:

L
oren

z
C

u
rves

of
selected

S
P

E
C

2000
B

en
ch

m
ark

s

6.3. REPRODUCIBILITY AND SDRAM TIMINGS 93

S
D

R
A

M
 T

im
in

g
 S

p
re

ad

0,
00

%

2,
00

%

4,
00

%

6,
00

%

8,
00

%

10
,0

0%

12
,0

0%

14
,0

0%

16
,0

0%

18
,0

0%

D
Q

tR

C
D

tR

P

D
Q

 tC
C

D
tR

T
P

tR
A

S
tR

P
 tR

C
tW

R
tR

F
C

tW
T

R

D
Q

 t
R

C
D

D
Q

_T
A

tW

T
R

tR

C
D

tR
T

P
tW

R
tR

A
S

S
D

R
A

M
 T

im
in

g

Cycles / Total Cyles

17
1.

sw
im

_1
17

1.
sw

im
_2

17
1.

sw
im

_3
17

1.
sw

im
_4

17
1.

sw
im

_5

F
ig

u
re

6.
12

:
C

A
-B

u
s

U
ti

li
za

ti
on

94 CHAPTER 6. REPRODUCIBILITY

Chapter 7

Conclusion

7.1 Summary

While in former times research on primary computer memory systems was mostly
done using simulations, for this work a novel approach was chosen: Instead of
simulating an entire computer system including CPU, memory controller, and
IO devices, a measurement platform was developed. Using current FPGA and
computer technology (24 hard disk drives, 6 PCs, 10 Gigabit Ethernet technology),
the setup is capable to record access sequences of almost arbitrary length from a
DDR2 SDRAM command and address bus on the fly without affecting program
execution.

For the very first time it is possible to compare the results obtained by simu-
lations with measurements on the real computer system.

The approach of measuring access sequences has several advantages over sim-
ulations. The most important is that no (over)simplified models of the computer
system have to be used for evaluation, but evaluation of the system performance
takes place on real hardware. Thus, the results obtained by measurements never
suffer from unrealistic assumptions. Furthermore, it is possible to evaluate long se-
quences, which are much more representative, than doing only small spot checks,
as it frequently has to be done in simulations due to excessive simulation times.

In order to evaluate the SDRAMs system performance, in this work new algo-
rithms had to be developed to analyze the obtained memory access sequences. The
performance of DDR2 SDRAM components is limited by a dozen SDRAM timing
parameters, which have to be fulfilled between consecutive accesses. In this thesis a
new method is introduced to account the time between consecutive SDRAM com-
mands to the SDRAM timings which limit the system performance at that point
in time. This approach allows a classification and prioritization of all SDRAM
timings with decreasing significance regarding memory system performance. The

95

96 CHAPTER 7. CONCLUSION

analysis revealed, that from the bunch of SDRAM timing parameters which have
to be fulfilled to operate the SDRAM within its operational range, only very few
have significant impact on the system performance while the effect of most others
on the system performance is negligible. The subset of relevant SDRAM timings
contains only SDRAM timings which affect consecutive SDRAM commands (i.e.
the SDRAM command limits the execution of its direct successor).

From the temporal distance of consecutive SDRAM commands statistical mod-
els were derived. These models allow the estimation of the memory system perfor-
mance if either SDRAM timing parameters and/or the memory systems operating
frequency is changed.

Estimating the performance impact of changed SDRAM timing parameters
is vital for memory system designers, as it allows estimating the memory system
performance of future memory systems which may not yet exist and which therefore
cannot be subject of measurements.

SDRAM timing parameters may change as a side effect of the increasing ca-
pacity of SDRAM devices, changes of manufacturing technology, or may be inten-
tionally applied by design changes. As most improvements of SDRAM timings are
accompanied by increases of manufacturing costs, it is essential to estimate the
impact of SDRAM timing changes on the memory systems performance prior to
manufacturing.

The framework derived in the thesis provides memory system engineers with a
convenient way to evaluate the increases in memory system performance of future
SDRAM systems in advance. This knowledge may support their decision whether
the estimated performance gain is large enough to justify an increase in manufac-
turing costs and/or can achieve a price premium on the SDRAM market.

Furthermore, the measurements on real personal computers delivered some
unexpected results:

• Many publications claim that the memory system is the limiting factor for
current and future computer systems performance due to the increasing gap
between CPU and SDRAM operating frequency (e.g. [57, 31]). The measure-
ments revealed that currently the memory system is not the limiting factor
for system performance:

The SPEC 2000 benchmark suite, which is frequently used for evaluation of
computer system performance, consists of 26 benchmarks. Only a very small
subset of these benchmarks exercises the memory system significantly. Four of
them were selected to be worth analyzing the memory systems performance.
The remaining benchmarks are still heavily CPU bound.

The graphics benchmarks used for performance evaluation show similar re-
sults. If a graphics card is installed in the PC, most graphics rendering take

7.2. LIMITATIONS 97

place in the GPU (and the memory on the graphic adapter) while the main
system memory is of minor importance for the overall system performance.
In order to evaluate the memory system performance of graphic benchmarks,
they had to be run on an inferior architecture with shared memory graphics
(i.e. graphics rendering, displaying and computation is done entirely on the
computers main memory).

Benchmarks which try to emulate typical office applications were completely
unusable for memory system analysis, as the SDRAM utilization for this
type of benchmark was far too low in order to identify the impact of SDRAM
timing changes on the system performance.

• All benchmark runs were executed on a commercially available multitask-
ing operating system, which manages the assignment of available physical
memory to the different processes, switches between them, and handles in-
terrupt requests from the IO systems. As the operator has very limited con-
trol over memory assignment and scheduling of processes, a large spread of
performance related figures was expected when the same benchmark is run
multiple times. Nevertheless, the memory system performance was still de-
termined by the benchmark. The additional accesses to the SDRAM memory
initiated by the multitasking operating system had only minor influence on
the performance of the benchmark.

This result has significant impact on system performance estimation. It shows
that, if an appropriate workload is chosen for evaluation, memory system per-
formance is determined by the used benchmark. Influences of the underlying
operating system are of minor importance.

• Assigning multiple virtual memory pages to the same SDRAM row can be
beneficial in terms of a reduction of time consuming activate and precharge
operations. Nevertheless, as most commercial operating systems are unaware
of the address split of the memory controller this effect is currently not
systematically exploited.

7.2 Limitations

Although measuring access sequences on real computer systems has several advan-
tages over simulations, there are also some drawbacks.

The most evident is that in order to measure access sequences, the hardware
must already exist. Typically the performance shall not be estimated for computer
systems which are already well-established, but for systems which will be built in
the future. The estimation model uses data of current systems and extrapolates

98 CHAPTER 7. CONCLUSION

it to future memory systems. The accuracy of the model has been verified with
measurements on similar memory systems which are currently available. However,
significant architectural changes of the SDRAM memory system may render the
model invalid. Fortunately in recent times SDRAM manufacturers focus more and
more on some few highly standardized interface types, which are similar to each
other while more exotic interfaces (e.g. RAMBUS) have disappeared from the
market.

The framework introduced in the thesis strictly follows a SDRAM manufac-
turer’s point of view. The model takes the access sequence of the CPU as given
and evaluates the SDRAM manufacturer’s options to improve system performance
under these circumstances.

In reality not only the SDRAM manufacturer decides about improvements of
the memory system. Many improvements of future memory system performance
can be attributed to design changes of the memory controller (e.g. page policy,
address split, power down policies, command scheduling, etc.). Unfortunately, as
the memory traces are not taken from the frontside bus but from the memory bus,
the view is limited to the results of the memory controllers job. The limited view
makes it difficult to provide proposals for future memory controller designs. While
SDRAM devices are commodity products and provide a standardized interface,
in current computer systems north bridge and CPU are tightly coupled and the
interface between them is proprietary to the CPU/chipset manufacturer. Capturing
access sequences from the frontside bus would therefore limit the application of
the measurement setup to some few processor designs.

The model provides only a very limited feedback path from the SDRAM mem-
ory to the CPU. Especially in the model the CAS latency (i.e. the time from issuing
a read command to the final delivery of the data to the CPU) has no impact on
the system performance. In reality, some of the accesses may be executed with
non critical timing only due to the fact that required data requires significant time
until it is delivered to the CPU for further processing. However, the estimation
results show that the weak feedback path has only minor effect on the quality of
the estimation.

7.3 Related Work

The measurement setup and the developed algorithms provide a novel and unique
solution for capturing and analyzing long memory access sequences gathered on
current computer systems.

In the early nineties, several attempts were undertaken to capture memory ac-
cess sequences from the frontside bus of particular CPUs (see [52] for details) with
additional hardware. None of the designs provided enough bandwidth for trans-

7.4. EXTENSIONS AND FUTURE WORK 99

ferring full undisturbed memory traces of arbitrary length to secondary storage in
realtime. The sequences were taken at the frontside bus as DRAM performance
research was not popular: At that time DRAMs did not provide paging. Accord-
ingly, accesses to the DRAM array took always the same amount of time, making
memory controller research worthless. Most of the investigated CPUs are outdated
today and have already been replaced by their successors.

Analysis of SDRAM access behavior is a relatively new discipline in computer
architecture research and so far only very few publications have been released.

In [54] Wang presents a simulation framework for analyzing SDRAM access
sequences based on ”request access distances”, which are to some extent compa-
rable to the critical SDRAM timings of this thesis. In his work, he sticks to the
assumption that the speed of the benchmarks execution is completely limited by
the SDRAM memory system (infinitely fast CPU without any data dependencies).
Starting from memory access sequences of a processor front side bus, he tries to
execute the given access sequence as fast as possible on the given SDRAM memory
while applying different memory controller scheduling strategies. Consequently, all
memory accesses are performed critically.

Unlike this work, in which the memory controller is taken as given and the
SDRAM memory is subject to optimizations (memory manufacturer’s point of
view), he takes the SDRAM memory as given while optimizing the memory con-
troller side (memory controller manufacturer’s point of view).

7.4 Extensions and Future Work

Power Estimation

While this thesis focuses on performance issues of current SDRAM technologies,
power concerns become more and more vital to future computer systems. Three
reasons can be pointed out:

1. The increase in operating frequency and integration density of CMOS devices
increases their power consumption [16]. This leads to more heat dissipation
within the devices and increases the effort of cooling the device.

In addition, the increasing processing power due to the higher integration
density facilitates more demanding applications which are handled by large
server farms (e.g. web search engines, web servers, scientific computing, movie
rendering, databases) [9, 21]. In these applications, heat dissipation is not
just an adverse side effect, but becomes a serious issue.

2. Daily life is increasingly penetrated with mobile equipment. The number of
mobile devices has increased significantly over the last years. Mobile phones

100 CHAPTER 7. CONCLUSION

became a commodity product for almost anyone over the last years. As mo-
bile equipment is powered from (rechargeable) batteries, low power consump-
tion is mandatory to fulfill customers expectations of long runtimes of their
gear.

3. Environmental protection concerns come to the focus of public perception.
While the power consumption of a single SDRAM component might appear
negligible at first glance, the vast number of devices integrated in electronic
products sums up to a significant power consumption related to the use of
SDRAM devices. In the future governmental regulations may enforce man-
ufacturers of electronic equipment to keep the power consumption of their
products below certain power limits.

While metrics for system performance exist as well as metrics of power con-
sumption, new metrics have to be invented to specify the trade-off between system
performance and power consumption [49].

Future memory controller will no longer only have to decide about the used
page policy and whether to close opened SDRAM banks or not. New strategies
have to be developed which enable the memory controller to find optimal points
for entering and exiting power down states while minimizing the impact on the
system performance.

In order to support power related research, new measurement probes are de-
veloped which shall cover measurements on mobile devices. As mobile devices are
designed with an extremely high integration density (space is a major concern for
mobile equipment), physical probing of the SDRAM signals at the SDRAM device
becomes challenging.

Furthermore, there are different SDRAM variants on the market (e.g. mobile
RAM) which use different SDRAM protocols compared to standard DDR2 com-
ponents.

New SDRAM Type DDR3

In chapter 1.1 it was shown, that SDRAM product cycles are extremely short1.
During the time this ph.d. thesis was created, the next SDRAM technology DDR3
was already in the development phase. The increased SDRAM frequency of DDR3
(see table 2.4.2) imposes new challenges on the development of measurement hard-
ware regarding signal integrity and skew. Fortunately, modern FPGA technology
tries to cope with the increase in operating frequency (e.g. latest FPGAs include
technologies for single lane deskewing).

1 The time from the specification of the DDR2 standard to the succeeding SDRAM technology
DDR3 was around five years [32] [33].

7.4. EXTENSIONS AND FUTURE WORK 101

Thus, a redesign of the measurement hardware is planed, using the latest FPGA
technology, to enable capturing of DDR3 memory sequences. As SDRAM opera-
tion, most commands, and most SDRAM timings of DDR3 are comparable to
DDR2, there will be a remarkable reuse of the measurement concept, the cap-
turing hardware as well as the software for recording, processing, and analysis of
SDRAM trace files.

Data Tracing

The measurement system cannot only be used for capturing command and address
bus access sequences but could also be used for capturing data bus contents if this
functionality is implemented in FPGA B. While data bus content may be of lim-
ited value for performance research, it can be useful for the verification of SDRAM
devices. Read/write errors which occur only sporadically are hard to track down
with traditional measurement equipment. Capturing the entire communication be-
tween the memory controller and the SDRAM device may help test engineers to
track down communication errors between memory controller and SDRAM device
more easily.

Reliability

SDRAM wordline drivers and address decoder have a limited lifetime (i.e. the
number of read and write cycles is limited). As the lifetime of SDRAM devices is
typically specified in terms of years and not in terms of the number of read/write
cycles, the capturing of long access sequences may support the modelling of realistic
utilization scenarios of the SDRAMs internal circuitry during memory operation
in a computer system. This model may support SDRAM manufacturers to align
their terms of warranty.

Workload Analysis

While single processor, single tasking execution of program code has been studied
extensively, limited research has been conducted regarding the impact of the latest
architectural changes like multiprocessing and multitasking environments. This is
extremely important as latest personal computers are frequently delivered with
multicore CPUs which are capable of running multiple tasks at the same time.

But architectural changes are not limited to the CPU side only. The increasing
amount of memory implemented in new computer systems leads to more com-
plex memory systems: Memory is no longer only distributed across multiple banks
within one component but may be spread along multiple devices (SDRAM ranks)
or may be even connected to separate SDRAM channels. Up to now, few research

102 CHAPTER 7. CONCLUSION

has been done to classify the goodness of memory distribution along different
SDRAM banks, ranks, and channels.

A set of connector footprints has been connected to FPGA B. Instead of cap-
turing the data bus contents, it would be possible to sample the command bus of
up to three additional SDRAM ranks.

Benchmark classification

Research is ongoing to characterize access beahavior of different benchmarks. Often
it is still unclear whether the benchmarks used to evaluate the performance of a
computer system resemble the target application [49].

The tracing hardware provides the possibility to record access sequences not
only of benchmarks but also of real (large scale) applications running on the com-
puter system under test. Hence, it provides the opportunity to compare the mem-
ory access behavior of the application with its potential representative (bench-
mark).

Appendix A

DRAM Timings

A.1 Intra Bank Timings

Intra bank timings denote the minimum required temporal spacing between com-
mands going to the same bank.

A.1.1 RAS to CAS delay (tRCD)

The RAS to CAS delay is the minimum time required between the activation
command and the first read or write operation on that bank. During this time the
transistors of one single wordline connect the capacitors to the bitlines. Charge is
flowing from or to the capacitor plates, increasing or decreasing the voltage of the
bitlines. The voltage change of the bitlines is then evaluated by the sense amplifiers
connected to the bitlines.

A.1.2 CAS Latency (CL)

The CAS latency is the time from the read command to the output of the first
data word at the DQ bus. This time is required to select the desired bitlines and
to propagate the selected data to the secondary sense amplifier and the IO pins of
the SDRAM device.

The CAS latency also denotes the time from issuing a write command until
the memory controller may place the respective data on the data bus. For DDR2
memory devices the minimum CAS write latency is one clock cycle smaller than
the CAS read latency.

103

104 APPENDIX A. DRAM TIMINGS

Source Destination on Same Bank
ACT RD WR PRE PALL REF

ACT tRC tRCD tRCD tRAS tRAS tRC

RD tCCD tCCD tRTP tRTP

WR tWTR tCCD tWR tWR

PRE tRP tRP

PALL tRP tRP

REF tRFC tRFC

Source Destination on Different Bank
ACT RD WR PRE PALL REF

ACT tRRD tRAS tRC

tFAW

RD tCCD tCCD tRTP

WR tCCD tCCD tWR

PRE tRP

PALL tRP tRP

REF tRFC tRFC

Table A.1: Timings to be fulfilled between Commands
[8, p.24]

A.2. INTER BANK TIMINGS 105

A.1.3 Row Active Strobe (tRAS)

The row active strobe is the minimum time a bank has to be kept open after
activation. tRAS is required to allow the sense amplifier to refresh the SDRAMs
cells content after activation.

A.1.4 Row Precharge Time (tRP)

The row precharge time is the minimum time required to perform the precharge
operation. tRP denotes the time from the precharge command to the next activa-
tion or refresh operation on the SDRAM bank. During the tRP time interval the
capacitance of the bitlines is charged to an intermediate voltage level.

A.1.5 Row Cycle Time (tRC)

The row cycle time is the minimum temporal spacing of two bank activations of
the same bank. It is the sum of tRAS and tRP .

A.1.6 Write to Read Delay (tWTR)

The write to read delay is the minimum time from a write command (to be precise:
from the end of the associated write data burst) to the next read command. tWTR

is the time required to transfer the data of one single prefetch of write data from
the input buffer to the sense amplifiers in the array [32, p.31].

A.1.7 Write Recovery Time (tWR)

The write recovery time is the minimum time from writing to a bank to its
precharge operation. It is calculated from the end of the data burst of the write
command.

A.1.8 Refresh Cycle Time (tRFC)

The refresh cycle time is the time required for a single row refresh on all SDRAM
banks. The next refresh or activation command must not be issued to an affected
bank until tRFC has elapsed.

A.2 Inter Bank Timings

Inter bank timings denote the minimum required temporal spacing between com-
mands going to different banks on the same SDRAM rank.

106 APPENDIX A. DRAM TIMINGS

A.2.1 CAS to CAS Delay (tCCD)

The CAS to CAS delay is the minimum time between two read or write commands
going to a single SDRAM rank.

A.2.2 RAS to RAS Delay (tRRD)

The RAS to RAS delay is the minimum time between two activate commands
going to the same SDRAM rank. As activation commands impose the largest
energy requirements of all SDRAM commands, the tRRD limitation is required
in order to allow internal power generators to recover from the previous activate
command.

A.2.3 Four Activate Window (tFAW)

Due to current consumption constraints, on DRAM devices having eight or more
banks no more than four activate commands must be issued within a floating time
window of tFAW .

Appendix B

Configurations

B.1 PC System Configuration

Configuration A B

CPU Intel P4 Intel P4
CPU Frequency [MHz] 2800 2800

Chipset Intel 945G Intel 945G
Graphics Card ATI x800 internal

Operating System WinXP Prof. SP2 WinXP Prof. SP2
Module Size 512 MiB 512 MiB
Nr. of Ranks 1 1
Burst Length 8 8

107

108 APPENDIX B. CONFIGURATIONS

B.2 SDRAM Configuration

SpeedGrade a b c d

SDRAM [Transfers per sec.] 400 533 667 533
CL [Cycles] 3 4 4 6

tRCD [Cycles] 3 4 4 6
tRAS [Cycles] 3 4 4 4
rRC [Cycles] 11 16 19 16
tRP [Cycles] 3 4 4 6
tWR [Cycles] 3 4 5 6
tWTR [Cycles] 2 2 3 4
tRTP [Cycles] 2 2 3 2
tRFC [Cycles] 21 28 35 28
tRRD [Cycles] 2 2 3 2
tCCD [Cycles] 2 2 2 2
tFAW [Cycles] 8 10 13 10

B.3 Benchmarks

B.3.1 3D–Benchmarks

• Aquamark 3

Aquamark is a 3D graphics benchmark which was developed by Massive
Development in the year 2003. It is based on the game engine used in the
computer games Aquanox 1 and Aquanox 2. The benchmark renders several
scenes on screen using features of DirectX 7, 8 and 9. It renders a fixed
number of images. Thus, the benchmarks runtime depends on the system
configuration (frame-based rendering).

• 3D-Mark03

3D-Mark03 is a collection of 3D benchmarks developed by Futuremark Corp.
in 2003. These include a set of four game tests. The benchmark also includes
a set of CPU, feature, image quality, and sound tests [18].

For the analysis in this thesis only the four game tests were used:

– Wings of Fury

Wings of Fury represents a flight simulator type of game. It renders
several scenes using DirectX 7 having low requirements regarding the
used graphics hardware.

B.3. BENCHMARKS 109

– Battle of Proxycon

Battle of Proxycon represents a first person shooter game (FPS). It
renders several scene using DirectX 8 (medium requirements on graphics
hardware).

– Trolls Lair

Trolls Lair represents a typical role playing game (RPG). It renders
several scene using DirectX 8 (medium requirements on graphics hard-
ware).

– Mother Nature

Mother Nature uses DirectX 9 technology for rendering a fotorealistic
animation of a natural landscape (high requirements on graphics hard-
ware).

All benchmarks use time-based rendering. This means that the benchmarks
total runtime is equal on all systems. The computer systems performance
determines how many frames a rendered per second. Thus, a faster system
leads to a smoother animation and results in a higher 3D Mark score which
is calculated as a weighted average of the sub tests frame rates.

• Codecreatures Benchmark Pro

Codecreatures Benchmark Pro is a 3D graphics rendering benchmark de-
veloped by Codecreatures1 in 2002. Codecreatures developed a 3D games
development system. The benchmark constitutes a sample application of
their system. It renders several fotorealistic scenes on the computer display
consisting of hills, trees, clouds, water (including light reflections of the sur-
roundings on the surface), and birds. Contrary to most other 3D benchmarks,
Codecreatures Benchmark Pro draws a fixed number of frames on the screen,
so that the system performance determines the overall runtime of the bench-
mark.

B.3.2 SPEC 2000 Suite

• 171.swim

This benchmark is a simulator for weather prediction. The used model
is based on the paper, ”The Dynamics of Finite-Difference Models of the
Shallow-Water Equations”, by Robert Sadourny, J. ATM. SCIENCES, VOL
32, NO 4, APRIL 1975.

1Today the company Codecreatures is part of H2Labs Creative Research GmbH.

110 APPENDIX B. CONFIGURATIONS

• 179.art

Art is a neural network algorithm for recognizing objects in a thermal image.
On the first stage the network is trained with two objects (an airplane and
a helicopter). Afterwards the objects are searched in an image.

• 181.mcf

The benchmark is derived from a program which is used for single-depot ve-
hicle scheduling in public mass transportation. This benchmark is the only
benchmark of the SPEC suite using mostly integer arithmetics which exer-
cises the SDRAM memory system significantly.

• 183.equake

Equake simulates the propagation of elastic waves on an unstructured mesh
using a finite element method.

• 189.lucas

Performs the Lucas-Lehmer2 test to check primality of Mersenne numbers
2p − 1, using arbitrary-precision (array-integer) arithmetic.

2François Édouard Anatole Lucas, French mathematican, 1842–1891; Derrick Henry ”Dick”
Lehmer, American mathematician, 1905–1991.

Appendix C

Calculations

In this section it is proven, that equation 5.8 is equal to equation 5.3 for tECK = tOCK .
If tEk ≥ tOk the results are different.

Below some abbreviations are used: τE and τO denote the critical analog tim-
ings when the second command of a particular command pair can be executed for
the first time in the original system and in the sytem for which the estimation is
done. This value is equal to the analog SDRAM timing rounded up to the next
clock cycle.

tOCK = tECK = tCK

τE
k =

⌈
tEk
tCK

⌉
· tCK

τO
k =

⌈
tOk
tCK

⌉
· tCK

For τE ≤ τO :

111

112 APPENDIX C. CALCULATIONS

TE
k =

∞∑
i=1

pE
k (i) · tCK · i ·Hk

= pE
k

(
τE
k

tCK

)
· τE

k ·Hk +
∞∑

i=
τE
k

tCK
+1

pE
k (i) · i · tCK ·Hk

=

τE
k∫

0

ρC
k

(
τO
k

tCK

)

τO
k

dt · τE
k ·Hk +

∞∑

i=
τE
k

tCK
+1

i · tCK∫

(i−1) · tCK

ρC
k (t)dt · i · tCK ·Hk

=

pO

k

(
τO
k

tCK

)
τE
k

τO
k

· τE
k +

τO
k

tCK∑

i=
τE
k

tCK
+1

pO
k

(
τO
k

tCK

)
· tCK

τO
k

· i · tCK +
∞∑

i=
τO
k

tCK
+1

pO
k (i) · i · tCK

 ·Hk

= hO
k

(⌈
tOk
tCK

⌉)
τE
k

τO
k

· τE
k + hO

k

(⌈
tOk
tCK

⌉)
· tCK

τO
k

· tCK ·
τO
k

tCK∑

i=
τE
k

tCK
+1

i +
∞∑

i=
τO
k

tCK
+1

hO
k (i) · i · tCK

= hO
k

(⌈
tOk
tCK

⌉)
τE
k

τO
k

· τE
k + hO

k

(⌈
tOk
tCK

⌉)
· t

2
CK

τO
k

· 1
2

(
τO 2
k

t2CK

+
τO
k

tCK

− τE 2
k

t2CK

− τE
k

tCK

)
+

∞∑

i=

�
tO
k

tCK

�
+1

hO
k (i) · i · tCK

= hO
k

(⌈
tOk
tCK

⌉)
τE
k

τO
k

·
⌈

tEk
tCK

⌉
· tCK +

1

2
hO

k

(⌈
tOk
tCK

⌉)
·
[
τO
k − τE 2

k

τO
k

+ tCK − τE
k

τO
k

tCK

]
+

∞∑

i=

�
tO
k

tCK

�
+1

hO
k (i) · i · tCK

= hO
k

(⌈
tOk
tCK

⌉)
τE
k

τO
k

·
⌈

tEk
tCK

⌉
· tCK + hO

k

(⌈
tOk
tCK

⌉)
·
(

1− τE
k

τO
k

)(
τO
k + τE

k + tCK

2

)
+

∞∑

i=

�
tO
k

tCK

�
+1

hO
k (i) · i · tCK

Opposed to equation 5.8 not all accesses which are executed with the critical
timing in the original system are executed critically in the estimation as well,

113

but only the fraction τE
k /τO

k . The remaining fraction of accesses (1 − τE
k /τO

k) are
executed later. This fraction of accesses is distributed equally across the remaining
time between the new and the old critical timing. The time required to execute this
remaining part, is the number of remaining accessess multiplied by the average of
τO
k and τE

k + tCK .
Starting from equation 5.8 with τE > τO it is

TE
k =

∞∑
i=1

pE
k (i) · tCK · i ·Hk

=

τE
k∫

0

ρC
k (t)dt · τE

k ·Hk +
∞∑

i=
τE
k

tCK
+1

i · tCK∫

(i−1) · tCK

ρC
k (t)dt · i · tCK ·Hk

=

τO
k∫

0

ρC
k (t)dt +

τE
k∫

τO
k

ρC
k (t)dt

 · τE

k ·Hk +
∞∑

i=
τE
k

tCK
+1

pO
k (i) · i · tCK ·Hk

=

pO

k

(
τO

tCK

)
+

τE
k

tCK∑

i=
τO
k

tCK
+1

pO
k (i)

 · τE

k ·Hk +
∞∑

i=
τE
k

tCK
+1

pO
k (i) · i · tCK ·Hk

=

τE
k

tCK∑

i=
τO
k

tCK

pO
k (i) · τE

k ·Hk +
∞∑

i=
τE
k

tCK
+1

pO
k (i) · i · tCK ·Hk

=

τE
k

tCK∑
i=1

pO
k (i) · τE

k ·Hk +
∞∑

i=
τE
k

tCK
+1

pO
k (i) · i · tCK ·Hk

=

τE
k

tCK∑
i=1

hO
k (i) · τE

k +
∞∑

i=
τE
k

tCK
+1

hO
k (i) · i · tCK

=

�
tEk

tCK

�
∑
i=1

hO
k (i) ·

⌈
tEk
tCK

⌉
· tCK +

∞∑

i=

�
tE
k

tCK

�
+1

hO
k (i) · i · tCK

Bibliography

[1] Anant Agarwal, John Hennessy, and Mark Horowitz. Cache performance of
operating system and multiprogramming workloads. ACM Transactions on
Computer Systems, 6(4):393–431, 1988.

[2] Juha Alakarhu and Jarkko Niittylahti. DRAM simulator for design and analy-
sis of digital systems. Microprocessors and Microsystems, 26(4):189–198, May
2002.

[3] Simon Albert, Sven Kalms, Christian Weiss, and Achim Schramm. Acquisition
and evaluation of long DDR2-SDRAM access sequences. In Proceedings of
the IEEE International Symposium on Performance Analysis of Systems and
Software 2006, pages 242–250, Austin, Texas, United States, March 2006.

[4] AMD Inc. AMD Athlon 64, Product Data Sheet, 3.07 edition, June 2004.

[5] Josep Torrellas anmd Chun Xia and Russell L. Daigle. Optimizing the in-
struction cache performance of the operating system. IEEE Transactions on
Computers, 47(12):1363–1381, December 1998.

[6] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure
for computer system modeling. Computer, 35(2):59–67, 2002.

[7] Art Baker. Windows 2000 Device Driver Book. Prentice Hall International,
second edition, November 2000.

[8] Soumya Banerjee. Memory performance estimation by analysis of SDRAM
system states. Master’s thesis, Department of Computer Science, Technical
University of Dresden, 2005.

[9] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web search for a planet:
The google cluster architecture. IEEE Micro, 23, 2003.

[10] Luiz André Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Memory
system characterization of commercial workloads. In ISCA ’98: Proceedings

114

BIBLIOGRAPHY 115

of the 25th annual international symposium on Computer architecture, pages
3–14, Washington, DC, USA, 1998. IEEE Computer Society.

[11] Georg Braun. DDR3 introduction and overview. Internal presentation, Infi-
neon Technologies AG, 2004.

[12] Douglas Burger, James Goodman, and Alain Kägi. The declining effectiveness
of dynamic caching for general-purpose microprocessors. In Proceedings of the
23rd annual international symposium on Computer architecture, pages 78–89,
Philadelphia, Pennsylvania, United States, May 1996.

[13] Harold Cain, Kevin Lepak, Brandon Schwartz, and Mikko Lipasti. Precise
and accurate processor simulation. In Proceedings of the Fifth Workshop on
Computer, pages 13–22, Feb. 2002.

[14] John B. Carter, Wilson C. Hsieh, Leigh Stoller, Mark R. Swanson, Lixin
Zhang, Erik Brunvand, Al Davis, Chen-Chi Kuo, Ravindra Kuramkote,
Michael Parker, Lambert Schaelicke, and Terry Tateyama. Impulse: Building
a smarter memory controller. In HPCA ’99: Proceedings of the 5th Interna-
tional Symposium on High Performance Computer Architecture, pages 70–79,
Washington, DC, USA, 1999. IEEE Computer Society.

[15] Jason P. Casmira, David P. Hunter, and David R. Kaeli. Tracing and charac-
terization of windows nt-based system workloads. Digital Technical Journal,
10(1):6–21, 1998.

[16] Anantha P. Chandrakasan and Robert W. Brodersen. Minimizing power con-
sumption in digital CMOS circuits. In Proceedings of the IEEE, volume 83/4,
pages 498–523. IEEE Computer Society, April 1995.

[17] Rajagopalan Desikan, Doug Burger, Stephen Keckler, and Todd Austin. Sim-
alpha: a validated execution driven alpha 21264 simulator. Technical Report
TR-01-23, Department of Computer Sciences, University of Texas at Austin,
2001.

[18] Maneesh Dhagat. 3DMark03. Next generation 3D benchmarking. Futuremark
Corporation, Feburary 2003.

[19] Lieven Eeckhout, Hans Vandierendonck, and Koenraad De Bosschere. Work-
load design: Selecting representative program-input pairs. In PACT ’02: Pro-
ceedings of the 2002 International Conference on Parallel Architectures and
Compilation Techniques, pages 83–94, Washington, DC, USA, 2002. IEEE
Computer Society.

116 BIBLIOGRAPHY

[20] Ludwig Fahrmeir, Rita Kunstler, Iris Pigeot, and Gerhard Tutz. Statistik.
Springer, Berlin, 5th edition, May 2004.

[21] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz André Barroso. Power provision-
ing for a warehouse-sized computer. In ISCA ’07: Proceedings of the ACM
International Symposium on Computer Architecture, San Diego, CA. IEEE
Computer Society, June 2007.

[22] J. Kelly Flanagan, Brent E. Nelson, James K. Archibald, and Knut Grim-
srud. Incomplete trace data and trace driven simulation. In MASCOTS ’93:
Proceedings of the International Workshop on Modeling, Analysis, and Simu-
lation On Computer and Telecommunication Systems, pages 203–209. Society
for Computer Simulation, 1993.

[23] J. Kelly Flanagan, Brent E. Nelson, James K. Archibald, and Greg Thomp-
son. The inaccuracy of trace-driven simulation using incomplete multipro-
gramming trace data. In MASCOTS ’96: Proceedings of the 4th International
Workshop on Modeling, Analysis, and Simulation of Computer and Telecom-
munications Systems, pages 37–43, Washington, DC, USA, 1996. IEEE Com-
puter Society.

[24] Arijit Ghosh and Tony Givargis. Cache optimization for embedded processor
cores: An analytical approach. ACM Transactions on Design Automation of
Electronic Systems, 9(4):419–440, 2004.

[25] Mel Gorman. Understanding the Linux Virtual Memory Manager. Bruce
Perens’ open source series. Prentice Hall, 2004.

[26] John Hennessy and David Patterson. Computer Architecture. A quantitative
approach. Morgan Kaufmann, 3 edition, 2003.

[27] Kurt Hoffman. System Integration. John Wiley & Sons, Ltd., 2004.

[28] Infineon Technologies AG. DRAM Market Update, October 2004.

[29] Infineon Technologies AG. HYB18T1G400AF, HYB18T1G800AF,
HYB18T1G160AF. 1-Gbit DDR2 SDRAM, Data Sheet, 1.1 edition,
March 2005.

[30] Infineon Technologies AG. HYB18T512400AF, HYB18T512800AF,
HYB18T512160AF. 512-Mbit DDR2 SDRAM, Data Sheet, 1.3 edition, Jan-
uary 2005.

[31] Bruce Jacob. A case for studying DRAM issues at the system level. IEEE
Micro, 23(4):44–56, 2003.

BIBLIOGRAPHY 117

[32] JEDEC Solid State Technology Association. DDR2 SDRAM Specification,
JESD79-2A edition, January 2002.

[33] JEDEC Solid State Technology Association. DDR3 SDRAM Specification,
JESD79-3A edition, September 2007.

[34] Lizy Kurian John, Purnima Vasudevan, and Jyotsna Sabarinathan. Workload
characterization: Motivation, goals and methodology. In WWC ’98: Proceed-
ings of the Workload Characterization: Methodology and Case Studies, page 3,
Washington, DC, USA, 1998. IEEE Computer Society.

[35] Norman P. Jouppi. Improving direct-mapped cache performance by the addi-
tion of a small fully-associative cache and prefetch buffers. SIGARCH Com-
puter Architecture News, 18(3a):364–373, 1990.

[36] Bernd Klehn and Martin Brox. A comparison of current SDRAM types: SDR,
DDR, and RDRAM. Advances in Radio Science, 1:265–271, 2003.

[37] L. I. Kontothanassis, R. A. Sugumar, G. J. Faanes, J. E. Smith, and M. L.
Scott. Cache performance in vector supercomputers. In Supercomputing ’94:
Proceedings of the 1994 ACM/IEEE conference on Supercomputing, pages
255–264, New York, NY, USA, 1994. ACM Press.

[38] Dennis C. Lee, Patrick J. Crowley, Jean-Loup Baer, Thomas E. Anderson,
and Brian N. Bershad. Execution characteristics of desktop applications on
Windows NT. In ISCA ’98: Proceedings of the 25th annual international
symposium on Computer architecture, pages 27–38, Washington, DC, USA,
1998. IEEE Computer Society.

[39] Karl M. J. Lofgren, Robert D. Norman, Gregory B. Thelin, and Anil Gupta.
Wear leveling techniques for flash EEPROM systems, February 2005. United
States Patent 6,850,443.

[40] Peter Magnusson and Bengt Werner. Efficient memory simulation in simics.
In SS ’95: Proceedings of the 28th Annual Simulation Symposium, page 62,
Washington, DC, USA, 1995. IEEE Computer Society.

[41] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R.
Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and
David A. Wood. Multifacet’s general execution-driven multiprocessor simu-
lator (GEMS) toolset. SIGARCH Computer Architecture News, 33(4):92–99,
2005.

118 BIBLIOGRAPHY

[42] Hans-Peter Messmer. PC-Hardwarebuch: Aufbau Funktionsweise Program-
mierung: ein Handbuch nicht nur für Profis. Addison-Wesley, 1992.

[43] Ulrich Meyer, Peter Sanders, and Jop Sibeyn. Algorithms for Memory Hierar-
chies: Advanced Lectures, volume 2625 of Lecture Notes in Computer Science.
Springer Verlag, 2003.

[44] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D.
Owens. Memory access scheduling. In ISCA ’00: Proceedings of the 27th
annual international symposium on Computer architecture, pages 128–138,
New York, NY, USA, 2000. ACM Press.

[45] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen A. Herrod.
Using the simos machine simulator to study complex computer systems. ACM
Transactions on Modeling and Computer Simulation, 7(1):78–103, 1997.

[46] Mark E. Russinovich and David A. Solomon. Microsoft Windows Inter-
nals, Fourth Edition: Microsoft Windows Server(TM) 2003, Windows XP,
and Windows 2000 (Pro-Developer). Microsoft Press, December 2004.

[47] Semiconductor Components Industries, LLC. MC100EP195B: 3.3V ECL Pro-
grammable Delay Chip, July 2006. Rev.0, MC100EP195B/D.

[48] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Au-
tomatically characterizing large scale program behavior. In Proceedings of
the 10th international conference on Architectural support for programming
languages and operating systems, pages 45–57. ACM Press, 2002.

[49] Kevin Skadron, Margaret Martonosi, David I. August, Mark D. Hill, David J.
Lilja, and Vijay S. Pai. Challenges in computer architecture evaluation. IEEE
Computer, 36(8):30–36, 2003.

[50] Tektronix Inc. Tektronix Logic Analyzers. Family Selection Guide, August
2004.

[51] Niki C. Thornock and J. Kelly Flanagan. Using the BACH trace collection
mechanism to characterize the SPEC 2000 integer benchmarks. In Proceedings
of the Third IEEE Annual Workshop on Workload Characterization, pages
121–143, 2000.

[52] Richard A. Uhlig and Trevor N. Mudge. Trace-driven memory simulation: a
survey. ACM Computer Survey, 29(2):128–170, 1997.

BIBLIOGRAPHY 119

[53] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen Baynes,
Aamer Jaleel, and Bruce Jacob. DRAMsim: a memory system simulator.
SIGARCH Computer Architecture News, 33(4):100–107, 2005.

[54] David T. Wang. Moden DRAM Memory Systems: Performance Analysis and
a high performance, power-constrained DRAM scheduling algorithm. PhD
thesis, University of Maryland, 2005.

[55] Myles G. Watson. Does the halting necessary for hardware trace collection
inordinately perturb the results ? Master’s thesis, Department of Computer
Science, Brigham Young University, December 2004.

[56] Myles G. Watson and J. Kelly Flanagan. Does halting make trace collec-
tion inaccurate? a case study using Pentium 4 performance counters and
SPEC 2000. In Proceedings of the 7th IEEE Annual Workshop on Workload
Characterization, October 2004.

[57] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of
the obvious. SIGARCH Computer Architecture News, 23(1):20–24, 1995.

[58] Im Yon-Kyun, Yoon Chi-Weon, and Jung Tae-Sung. POPeye: a system analy-
sis tool for DRAM performance measurement. In ICVC99: Proceedings of the
6th International Conference on VLSI and CAD, pages 590–592. IEEE Com-
puter Society, October 1999.

[59] Lixin Zhang, Zhen Fang, Mide Parker, Binu K. Mathew, Lambert Schaelicke,
John B. Carter, Wilson C. Hsieh, and Sally A. McKee. The impulse memory
controller. IEEE Trans. Comput., 50(11):1117–1132, 2001.

