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Abstract

Auditory signal processing already starts outside the head. The external sound field
has to couple into the ear canals. The relative positions of the two ear canals and
the sound source lead to a coupling that is strongly dependent on frequency. In
this context, not only the two pinnae but also the whole head have an important
functional role, which is best described as a spatial filtering process. This linear
filtering is usually quantified in terms of so-called head-related transfer functions
(HRTFs), which can also be interpreted as the directivity characteristics of the ears.

Motivated by the role of the pinnae to direct, focus, and amplify sound, we
present a binaural method for localizing sound sources in a three dimensional space
to be deployed in telepresence systems. The method is designed to allow robots
to localize sound sources using only two microphones placed inside the ear canals
of a humanoid head equipped with artificial ears and mounted on a torso. The
algorithm relies on extracting important cues of the human binaural auditory sys-
tem, primarily encapsulated within the HRTF. While existing 3D sound source
localization techniques use microphone arrays, the presented method employs two
microphones only and is based on a simple correlation mechanism using a generic set
of HRTFs.The localization performance is demonstrated through simulation and is
further tested in a household environment. While common binaural sound localiza-
tion methods using only two microphones fail to localize sound accurately in three
dimensions without becoming impractically complex, or without using computer vi-
sion to augment the acoustic modality, our new localization system demonstrated
high precision 3D sound tracking using only two microphones and enabled a low
complexity implementation on the humanoid DSP platform.

Based on our new approach, we tackle the challenging task of sound localization
in highly reverberant environments as well as the task of sound localization and
separation for the underdetermined case where the present sound sources outnumber
the available microphones. Simulation and experimental results proved the method
to be very noise-tolerant and able to localize sound sources in free space with high
precision and low computational complexity, thus suggesting a cost-effective real-
time implementation for robotic platforms.

XV
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Chapter 1

Introduction

1.1 Telepresence Framework

Telepresence systems aim at supplying the senses of a human operator with stimuli
which are perceptually plausible to an extent that the operator develops a persis-
tent experience of actually being somewhere else, a so-called sense of ”presence”.
The most important stimuli are vision, audio, and haptics. The generic model of
telepresence and teleaction is depicted in Figure [1.1. The perceptual world that
the operator is experiencing is built up of sensory data provided by a teleoperator,
e.g. a tele-robot, located at a remote site. At the local operator site, a human
operator is interacting with a multi-modal human-machine interface that renders
the sensory data. The human operator manipulates the teleoperator through the
interface, which generates the corresponding control signals to be transmitted to
the remote site. The integration of audio with other modalities, like vision and
haptic not only enhances immersion, but also creates a sense of time-flow within the
telepresence operation. In a comparison of auditory and visual perception, Handel
[42] arrived at the notion of vision as the generator of the concept of space and
the auditory system as a time-keeper. The integration of the auditory and haptic
modalities has the potential of mutually enforcing each other [11]. Furthermore, the
fact that hearing is an undirected sense is of valuable importance, particularly in
case of multiple teleoperators acting at the remote site, since it enables the operator
to receive warnings and cues of activities outside his field of view.
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Figure 1.1: A multi-modal telepresence system.

1.1.1 Acoustic Telepresence

In a general acoustic teleoperation, we distinguish between two tasks, spatial sound
synthesis at the operator site, and binaural source localization at the teleopera-
tor site. In this context, teleoperators are equipped with microphones inserted in
their artificial ear canals. These microphones are used to record incoming sound
signals which are then analyzed in order to identify the sound source location in
the surrounding environment. A typical acoustic telepresence scenario is shown in
Figure [1.2. The information about the source location along with a corresponding
sound texture is transmitted from the teleoperator site to the operator. There, the
incoming sound information along with the direction of arrival information are re-
combined, using dynamic binaural synthesis of spatial sound, to create an immersive
sound impression via headphones. The operator perceives the 3D sound impression
of the exact sound source direction as located at the teleoperator site. It should
be noted that instead of the original sound texture, it is also possible to use any
other natural or synthetic sound texture, which can be positioned in the virtual 3D
auditory scene indicated by the direction of arrival information. In the present work,
we will focus on the auditory modality at the teleoperator site.

1.1.2 Teleoperator Sound Localization

In our acoustic teleoperation, the teleoperator is a humanoid equipped with two
small microphones inserted in the ear canals of its artificial head which is mounted



1.1 Telepresence Framework

Teleoperator Operator
( Sound Localization A ) ( 3D Sound Synthesis )
)
: 4
Nz e D))
<A t ‘v’
=
= Ry
Sound Direction
Texture of Arrival
Teleoperators ‘
N P J L L Y,

Figure 1.2: Acoustic telepresence scenario.

on a torso. Using two microphones, the teleoperator should localize and track the
azimuth and elevation of the sound sources moving in its environment. It is a difficult
challenge to use only one pair of microphones on a robot to mimic the hearing
capabilities of humans [126]. This task is made even more challenging by the fact
that the listening environment is dynamic: sound sources appear, disappear, move
and interfere with each other. Until recently, in the fields of robotics and artificial
intelligence, the most explored sensory modality is vision. However, unlike eyes
(cameras), ears (microphones) do not directly receive spatial information from the
surroundings, and rely more on the processing of sensory data to extract auditory
cues [53]. Being omnidirectional, human and robot hearing does not require direct
line of sight with the sound source. Unlike the human hearing organ, robotic hearing
using only two microphones has so far lacked the ability to localize sounds in a three-
dimensional environment without becoming impractically complex.

It is known that the incoming sound wave is transformed by the pinnae into
sound-pressure signals at the two ear drums. Inspired by the directivity charac-
teristics of the human pinnae and its ability to amplify and focus the sound, this
dissertation focuses on building a binaural sound localization system for estimating
the three-dimensional position of the sound sources, i.e. the azimuth and elevation
angles, while maintaining the low-complexity and real-time implementation require-
ments for humanoid robots operating in a telepresence environment. A survey of
the most frequently used sound localization techniques is presented in the following
section.



CHAPTER 1. INTRODUCTION

1.2 State-of-the-Art Sound Localization
Techniques

The interest in accurate sound localization has rapidly grown in the past few years,
mainly due to the fastly increasing necessity of realistic solutions in numerous fields
related to audio and acoustics, e.g. 3D sound synthesis, hearing-aid technology,
and acoustically-based surveillance and navigation. A large number of localization
models have been proposed, most of them are based on microphone arrays, requiring
exhaustive processing power in many situations. However, fewer work has dealt
with binaural localization where only two microphones are deployed to pinpoint the
three dimensional position of a sound, and to allow satisfying real-time localization
in acoustically adverse environments.

1.2.1 Sound Localization in General

In many everyday listening situations, human beings benefit from having two ears,
naturally evolved to analyze concurrent sound sources in various listening environ-
ments. For more than a century, research has been conducted to understand which
acoustic cues are resolved by the auditory system to localize and separate concur-
rent sounds. The term binaural hearing refers to the mode of functioning of the
auditory system of humans or animals using two ears. These ear organs serve as
a preprocessor and signal conditioner, they segregate the acoustic cues to help the
brain solve tasks related to auditory localization, detection, or recognition.

In humans, the term cocktail-party effect denotes the fact that listeners with
healthy binaural hearing capabilities are able to concentrate on one talker in a
crowd of concurrent talkers and discriminate the speech of this talker from the rest.
Also, binaural hearing is able to suppress noise, reverberance, and sound coloration
to a certain extent. One of the key features of the human auditory system is its
nearly constant omni-directional sensitivity, e.g., the system reacts to alerting signals
coming from a direction differing from the sight of focused visual attention. In
many surveillance situations where vision completely fails as the human eyes, or the
humanoid cameras, have no direct line of sight with the sound sources, the ability to
estimate the direction of the sources of danger relying on the acoustic information
becomes of crucial importance.

The process the auditory system undergoes in combining the single cues of the
impinging sound waves at the ear drums to a single, or multiple auditory event is not
trivial. This holds true, in particular since many psycho-acoustical and neurophys-
iological details are still unknown, e.g., how the single cues have to be weighted in
general. The question of what primitive mammals like bats experience and how they
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process sound with only two ears and a pea-sized brain remains a major mystery
[46).

For the problem of localizing the spatial position of a sound source, a number
of models have already been proposed [44]. Most of them are based on using more
than two microphones to detect and track sound in a real environment. Mathemat-
ical models of sound wave propagation were found to significantly depend on the
specific characteristics of the sources and the environment, and are therefore com-
plex and hard to optimize [35]. Adaptive neural network structures have also been
proposed to self-adjust a sound localization model to particular environments [104].
These structures disregard the head and pinnae, and create a sort of scanning or
beamforming system which can focus on the main source and attenuate reflections
as well as other sources. While these networks have been intended to work in specif-
ically controlled milieus, they become very complex in handling multiple sources in
reverberant environments. Other methods are designed to mimic the human bio-
logical sound localization mechanism by building models of the outer, middle and
inner ear, using knowledge of how acoustic events are transduced and transformed
by biological auditory systems [41]. Obviously, the difficulty with this approach is
that neurophysiologists do not completely understand how living organisms localize
sounds.

The human hearing organ is a signal preprocessor stimulating the central ner-
vous system, and providing outstanding signal processing capabilites. It consists of
mechanic, acoustic, hydroacoustic, and electric components, which, in total, realize
a sensitive receiver and high-resolution spectral analyzer. Binaural hearing does not
only have the abilities to focus and discriminate between different sound sources in
a host of concurrent sources, but is also able to suppress noise, reverberations, and
sound colouration to a certain extent [19].

From a signal processing perspective, the underlying physical principles and
a too-detailed description of a very complex system, like the ear organ of many
species, are of little interest and rather undesired, because computing times are dra-
matically increased. Many specialized cells in the auditory pathway contribute to
the highly complex signal processing, which by far exceeds the performance of mod-
ern computers. Hence, a minimal-complexity sound localization system is needed.
Most of the available sound systems today deploy microphone arrays for efficient
localization. Those systems which rely on using only two microphones for binaural
sound localization are either limited to azimuthal localization only, or they require
extensive training sets becoming thus heavily complex and therefore unsuitable for
real-time implementation over a robotic platform.
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1.2.2 Sound Localization Using Two Microphones

The arrival times of the sound wave emitted from a certain source are not exactly the
same at the left and right eardrums, due to the different path lengths to both ears
as illustrated in Figure 1.3l This arrival-time difference between the left and right
ear is called Interaural Time Difference (ITD). The maximal I'TD is measured when
the sound wave arrives from the side along the axis which intersects both eardrums.
In this case, the I'TD can be estimated as the distance between the eardrums, ~ 18

Figure 1.3: Interaural Time/Intensity Difference (ITD/IID).

cm, divided by the speed of sound, &~ 340 m/s, to a value of 529 us. However, larger
ITDs than those are observed in nature. Because of shadowing effects of the head,
the measured I'TDs can be, depending on the head size, as large as 800 us. A model
which estimates the ITD in the azimuthal plane for all frequencies throughout the
human hearing range has been proposed in [89]. The first physiology-related model
for inter-aural time difference computation was proposed by L. A. Jeffress back in
1948. The model consists of two delay lines that are connected by several coincidence
detectors. A signal arriving at the left ear has to pass the first delay line from left to
right. A signal arriving at the right ear travels on the other delay line in the opposite
direction. A coincidence detector is activated when it receives simultaneous inputs
from both delay lines at the positions that it is connected to. Each of the coincidence
detectors is adjusted to a different I'TD, due to the limited velocity of propagation of
the signals on the delay line. For more details about the Jeffress Model, the reader
is advised to refer to [54].

The existence of the head between both ears does not only determine the detour
the traveling sound wave has to follow, but also causes attenuation of the sound wave
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at the contra-lateral eardrum, which leads to Interaural Intensity Differences (I1Ds)
which are frequently referred to as Interaural Level Differences (ILDs). In contrast
to the I'TDs, the IIDs are strongly frequency dependent. In the low-frequency range,
the human head is small in comparison to the wave length and, therefore, diffraction
has only a minor effect on the sound wave. In the high-frequency range, however, the
wave length is short as compared to the to the dimensions of the head, and much
larger IIDs than in the low-frequency range can be observed. In this frequency
region, the IIDs are not only determined by the shape of the head, but are also
greatly influenced by the shape of the outer ears. Already in 1877, a geometric
model was established to estimate IIDs for various sound-source positions [120].

The Interaural Phase Difference (IPD) refers to the difference in the phase
of a wave that reaches each ear, and is dependent on the frequency of the sound
wave and on the ITD. For a 1000Hz tone that reaches the left ear 0.5ms before
the right. As the wavelength reaches the right ear, it will be 180 degrees out of
phase with the wave at the left ear. IPDs are extremely useful as the human ear
has the ability to detect differences as small as 3 degrees, and the combination of
IPD and ITD, not only aids the listener in determining where the sound stimuli
originated from, but also helps identify the frequency of the sound. Once the brain
has analyzed IID, ITD, and IID the location of a stationary sound source can be
determined with relative accuracy. For fast moving sound sources, however, the
human binaural system is slow and less accurate in localization. In this context,
the minimum audible movement angle plays an important role in evaluating the
localization capability of a given biological or electro-mechanical auditory system.
This is defined as the angle through which a sound source has to move in order to
be distinguished from a stationary source. A number of investigators have studied
this angle subjectively and have reported the maximum ability of humans to follow
changes in the location of stimuli over time, i.e., to perceive movements of a sound
source [32), [17]. For low rates of movement (15°/s), this angle is about 5°, but as
the rate of movement increases, the angle increases progressively to about 21° for a
rate of 90°/s [40]. Thus, the binaural system was found to be relatively insensitive
to movements at high rates.

One common method for determining the time delay D between the two mi-
crophone signals x; and x5 of Figure (1.3 is the standard cross-correlation function

Rey\0, (1) = Elay (t)a(t — 7)) (1.1)

where E denotes expectation. The argument 7 that maximizes (1.1) provides an
estimate of delay. Because of the finite observation time, however, R,,,,(7) can only
be estimated. For example, for ergodic processes, an estimate of the cross correlation
is given by

R 1 T

Ryywy(T) = T x1(t)xo(t — 7)dt (1.2)

T
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where T' represents the observation time. In order to improve the accuracy of the
delay estimate D, it is desirable to pre-filter a1 (¢) and 24 (t) prior to cross correlation
in 1.4, As shown in Figure 1.4, x; may be filtered through H; to yield y; for i =1, 2.
The resultant y; are multiplied, integrated, and squared for a range of time shifts,
7, until the peak is obtained. The time shift causing the peak is an estimate of the
true delay D. When the filters H,(f) = Hy(f) = 1, Vf, the estimate D is imply the
abscissa value at which the cross-correlation function peaks. For properly selected
filters Hi(f) and Hy(f), the estimation of delay is considerably facilitated. This
process is known as the generalized cross correlation [56].

x(t) —— | H,(f)
| Y, Cross R
Correlator D
-
56
I Y. RYl)’z(r)
X,(t) — H, ()

Figure 1.4: Generalized cross-correlation (GCC) process.

The cross correlation between x1(t) and xo(t) is related to the cross power
spectral density function by a Fourier transform relationship

Rmm (7‘) = /+Oo G$1$2(f> exijWfT df (1.3)

o

After x,(t) and z5(t) have been filtered as depicted in Figure 1.4, the cross power
spectrum between the filter outputs is given by

Gy (f) = Hi(N)Hy () Garas (f) (1.4)

where * denotes the complex conjugate. Hence, the generalized correlation between
x1(t) and z5(t) could be written as

+oo
Ry, (1) = W ()G (f) exp”I7 df (1.5)
where W (f) = H,(f)H;(f), denotes the general frequency weighting. In practice,
only an estimate G, ., (f) of G4, ., can be obtained from finite observations of x;(¢)

and x4 (t). Consequently, the integral

—+00

By = | W()Gayen(f) exp7 df (1.6)
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is evaluated and used for estimating the time delay D,

D= arggmaz (RG (1)). (1.7)

Y1Yy2

Indeed, depending on the particular form of W ( f) and prior information avail-
able, it may also be necessary to estimate the generalized weighting. For example,
when the role of the pre-filters is to accentuate the signal passed to the correlator at
those frequencies at which the coherence or signal-to-noise ration(SNR) is highest,
when W(f) can be expected to be a function of the coherence or signal-and-noise
spectra which must either be known or estimated. Table 1.1 illustrates some com-
mon generalized cross correlation weightings [88]. The Phase Transform (PHAT)
defines a weighting function which is the inverse of the cross power spectral den-
sity of the signals. In this technique no individual frequency dominates allowing
thus the effects of reverberation to average out. Ideally this scheme does not suf-
fer spreading. However since it is an inverse of the cross power spectral density,
it causes an increase in errors where the signal power is low. On the other hand,
the Smooth Coherence Transform (SCOT) defines a weighting function which is
the inverse square root of the individual power spectral densities of each received
signal. Thereby including contributions from the correlation functions of both left
and right signals. The Maximum Likelihood (ML)weighting function minimizes the
variance of the time delay estimation [64]. We will use these functions to evaluate
the performance of our new localization algorithm in chapter 4.

Using the generalized correlation method described above, several binaural
models have been put forward to simulate the localization of a sound source in
the presence or absence of further, incoherent sound sources, e.g. [23]. However,
a complete model, i.e. a model able to describe all types of binaural phenomena,
does not exist yet. This is due to the fact that the human hearing organ is complex

Table 1.1: Various generalized cross correlation weighting functions.

Window Weighting functions W(f)Scope
KORR 1 direct correlation without
a window
SCOT (Smoothed 1 | fracti
Coherence Transform) Gryor (DGagas () suppresses tonal fractions
PHAT (PHAse 1 uses only the phase of the
Transform) |G cross spectrum
ML 12 - Gayay minimizes the variance of
(Maximum-Likelihood) |“=1=2t=m2l’ V G121 Gases |the time delay estimation
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by nature. Sound source separation and localization using only two microphones,
has so far lacked the ability to localize sounds in a three-dimensional environment.
Methods based on measuring the binaural auditory cues, ITD and IID, resulted in
high performance only in the azimuthal plane and except for a slight bias toward
the front for sources in the lateral positions. In such methods, the source is assumed
to be far enough so that the impinging wavefront is planar. IID and ITD are
regarded as frequency dependant; with I'TD being more significant at low frequencies
while IID is more significant at high frequencies. Reflectors can be placed around
the microphones to augment the usual time difference information with intensity
difference [90)].

From another perspective, average binaural level (ABL), or single-ear spectral
energy could be added to the combination of I'TD and IID information, to enhance
the localization performance [41]. With a pair of microphones, localization is lim-
ited to two dimensions, and only up to a front-back ambiguity. Methods based on
the robots movement are able to resolve this ambiguity, with high angular acuity
(£2°) [9]. Such methods, however, still lack the ability to localize sound in 3D, and
are impractical for sounds of short duration. It is worth noting that such a setup
is also subject to mechanical failures due to movement of the robot. The existing
algorithms perform poorly in reverberant environments, and techniques trying to
compensate for the reverberation by learning a dereverberating filter showed to be
very sensitive to even small changes in the acoustic environment [111]. An encour-
aging and practical method for improving audio source localization by making use
of the precedence effect * was explored in [137], again adding to the complexity of
the system.

Lately, a biologically-based binaural technique based on a probabilistic model
was proposed [136]. The technique applies a probabilistic evaluation of a two-
dimensional map containing frequency versus time-delay representation of binaural
cues, also called activity map. However, the technique is limited to the frontal az-
imuthal half-plane. As for sound localization based on monaural cues, little work
has been done on the subject, and few systems were able to localize sound in 3D,
without becoming very complex [61]. The localization model in [29] is based on
a neuromorphic microphone taking advantage of the biologically-based monaural
spectral cues to localize sound sources in a plane. The microphone depends on a
specially shaped reflecting structure that allows echo-time processing to localize the
sound source.

A biomimetic algorithm was recently proposed which determines the direction

IThe precedence effect (PE) describes an illusion produced when two similar sounds are delivered
in quick succession (interclick delays of 2-8 msec) from sound sources at different locations so that
only a single sound is perceived. The localization of the perceived sound is dominated by the
location of the leading sound.
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of arrival of sound by devising two curves, the acoustical phase difference and the
intensity level difference between two microphones as functions of the measured fre-
quency. These curves are then weighted against a table of theoretically generated
curves in order to determine the direction of arrival of the impinging sound waves.
However, due to the symmetrical geometry of the front and back hemispheres, the
algorithm applies time-consuming routines to distinguish between the two hemi-
spheres. The algorithm can localize sound source in the horizontal plane only and
is limited to the bandwidth of the source and its performance deteriorates in the
presence of acoustic and electronic noise [44].

A binaural localization approach based on audio-visual integration was pro-
posed in [107]. The localization method implemented hierarchical integration of
visual and auditory processing with hypothetical reasoning on IPD and IID for each
subband. In creating hypotheses, the reference data of IPD and IID is calculated by
the auditory epipolar geometry on demand. The resulting performance of auditory
localization varies according to the relative sound source position. The resolution
of the center of the robot is much higher than that of peripherals, indicating simi-
lar property of visual fovea (high resolution in the center of human eye). To make
the best use of this property, an active direction-pass filter (ADPF), that sepa-
rates sounds originating from the specified direction by using a pair of microphones,
controls the direction of a head by motor movement. In order to recognize sound
streams separated by the ADPF, a Hidden Markov Model (HMM) based automatic
speech recognition is built with multiple acoustic models trained by the output of
the ADPF under different conditions. The method is able to localize sound only in
the azimuthal plane and is prone to front/back confusion.

Another method for estimating the location of a sound source using two ears
and vision was suggested in [48]. The method is based on extracting localization
cues such as ITD, IID, and spectral notches. The authors used a spherical head,
having a diameter of 14 cm, and two spiral formed ears of slightly different sizes and
with different inclinations to make the extraction of spectral notches possible. Theses
notches are supposed to change position linearly as the elevation angle increases. The
spiral form of the ears provided a simplified mathematical derivation of the HRTF
for the spherical head. The robot was made to learn the HRTF either by supervised
learning or by using vision. Audio-motor maps are used to associate sound features
to the corresponding location of the sound source and to move the robot to that
location. Theses maps are learned using an online vision-based algorithm and are
used to provide the appropriate pan and tilt angles for the robot camera. The
suggested method has a good accuracy within the possible movements of the head
used in the experiments, i.e. -20 to 20 degrees. We will use this method in chapter
4] for comparison purposes with our binaural sound localization technique.

A binaural sound localization method for elevation estimation using a special

11
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pinnae geometry has been suggested in [117]. The pinna has a logarithmic-shaped
reflector made of aluminum with a depth of 6 cm and thickness of 0.5 mm. The
proposed localization algorithm extracts the spectral cues of the pinnae and esti-
mates an elevation angle accordingly. The spectral cues were identified as those
peaks and notches where constructive and destructive interference occur. Based on
this approach, sound sources were accurately localized for high elevation angles. for
low elevations, however, the performance degraded considerably. The method uses
white noise in experimentations and is limited to elevation estimation only.

An artificial human-like dummy head has been introduced in [125] for binaural
hearing in telepresence operations. The human-like head is mounted on a humanoid
torso and is equipped with artificial ears and two small microphones. The humanoid
should operate in a remote environment and its movements are synchronized with
the operators head movement. Experimental results show that the listener who is
the model for the proposed dummy head can correctly localize sound sources when
the head is stationary or synchronized, but that the localization is more precise in
the synchronized situation. They also show that in case a listener is not the model
of the dummy head, he can still localize in the horizontal plane in the synchronized
situation with a good precision. In a further study, the relationship among head
shape, head movement, and auditory perception is clarified [124]. In addition, it
has been suggested that there is a possibility of building an acoustical telepresence
robot with a dummy head of a general shape.

In [108, 106], auditory epipolar geometry was introduced to tackle the sound
source localization problem using two microphones. In stereo vision, epipolar ge-
ometry [36] is one of the most common methods for extracting depth maps of the
observed environment. Depth maps contain information about the azimuth, ele-
vation and distance of objects lying in the field of view of the stereo camera and
are used to construct a three dimensional model of the surrounding space. The
proposed auditory epipolar geometry in [108] uses ITD and IID cues to compute
the azimuth of arrival of sound sources, without providing distance and elevation
information. To localize sound sources using two microphones, a set of peaks are
first extracted for the left and right channels of the two microphones. Then, the
same or similar peaks of the left and right channels are identified as a pair and each
pair is used to calculate the I'TD and IID cues. Using this piece of information an
azimuth of arrival is computed and the sound source is localized. This technique
was enhanced in [105] by modeling the humanoid head using the scattering theory in
physics [92] to take into consideration the diffraction of sounds around the head for
a better approximation of IID and ITD. In this study, the sound source localization
module extracts local peaks from the left and right power spectrums and clusters a
harmonic sound according to harmonic relationships. Then it calculates I'TD and
IID of the peaks included in the extracted harmonic sound and calculates distances

12
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between the results and I'TD and IID hypotheses created by the scattering theory
for each sound direction. The calculated distances are transferred to belief factors
on ITD and IID. The belief factors on IID and IPD are integrated to get robust
sound localization in the real world. As a result of the integration, a direction with
maximum value is regarded as that of the sound source. The resulting system is
efficient for localization and extraction of sound at higher frequency and from side
directions. However, the system is limited to azimuthal localization in the frontal
plane only.

Many models have been put forward to simulate the localization of a sound
source in the presence of further, incoherent sound sources, e.g. [23]. For cer-
tain conditions these specialized models reach human localization ability, while the
localization results of most other computational models are strongly degraded by
concurrent sound sources. Another promising approach, [26], achieves robust local-
ization in complex listening scenarios by focusing the analysis of the binaural cues
on time instants and frequencies with high inter-aural coherence.

Very recently, we have presented a robotic binaural sound localization method
based on hierarchical fuzzy neural networks and a generic set of Head Related Trans-
fer Functions (HRTFs). The robot is a humanoid equipped with the KEMAR? ar-
tificial head and torso. Inside the ear canals, two small microphones play the role
of the eardrums in collecting the impinging sound waves. The incoming signals at
both ears are then filtered with a cochlea filter bank built of Dirac deltas. The
center frequencies of the filter bank are distributed in a similar way as in the hu-
man cochlea [31]. The neural networks are trained using synthesized sound sources
placed every 5° in azimuth and elevation, covering elevation angles from —45° to
80°. To improve generalization, the training data was corrupted with noise. Due
to fuzzy logic, the method is able to interpolate at its output, locating with high
accuracy sound sources at positions which were not used for training, even in pres-
ence of strong distortion. In order to achieve high localization accuracy, two different
binaural cues are combined, namely, the IIDs and ITDs. As opposed to microphone-
array methods, the presented technique uses only two microphones to localize sound
sources in a real-time 3D environment [58]. The advantage of this procedure is that
often very good results are achieved for stimuli that are similar to the test material.
The disadvantages are, however, the long time needed to train the neural network
and the fact that the involved processing cannot easily be described analytically.
The reader is encouraged to refer to [78], [77], and [71] for more details about the
topic. The neural network-based sound localization techniques are beyond the scope
of this thesis.

2The Knowles Electronics Mannequin for Acoustic Research (KEMAR) is an acoustic research tool
which permits reproducible measurements of hearing instrument performance on the head, and
of stereophonic sound recordings as heard by human listeners.
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1.2.3 Microphone Array Based Sound Localization

Getting instantaneous localization of sound in 3D from ITD and IID cues only is
a difficult task. For a better performance, today’s research focuses on the usage
of microphone arrays for a three-dimensional localization under real environmental
conditions. While beamforming allows for a localization of multiple sound sources
in real time, multiple Kalman filters can be used to exploit temporal information in
tracking multiple sources. Such filters with different history lengths can reduce the
errors in tracking multiple moving speakers under noisy and echoic environments
[103]. Since Kalman filters assume that the state transition is linear, which does not
hold in real world, the performance deteriorates severely for moving speakers. For
arrays having more than one pair of sensors, two different approaches exist: 1-time
difference of arrival (1I-TDOA) and 2-time difference of arrival (2-TDOA). While
2-TDOA is a well-studied area and has a low computational complexity, it makes
premature decision on an intermediate TDOA, thus discarding useful information.
The 1-TDOA approach uses either Phase Transform (PHAT) or maximum likelihood
(ML) as the weighting functions. While PHAT works well only when the ambient
noise is low, ML works well only when reverberation is small.

In the same context, the Steered Beam (SB) algorithm selects the location
in space which maximizes the sum of the delayed received signals. When the SB
algorithm is used along with the 1-TDOA, they result in a more robust localization,
but their weighting function choices are not well explored yet [116]. An azimuth
prediction with accuracy exceeding the one for global extrema detection methods
can be achieved by considering the entire cross-correlation waveform [16].

A microphone array of 8 elements using the geometric source separation (GSS)
algorithm and a post-filter was studied in [127], resulting in better detection accu-
racy. Other methods using 6 or more elements per array have been explored [2], [1],
[43]. Those methods can be useful in localizing sound in large environments such as
airports, but are of small interest in humanoid applications, where simplicity and
computational efficiency are crucial.

A robotic spatial sound localization system using 4 microphones arranged on
the surface of a spherical robot head was suggested in [49]. The time difference and
intensity difference from a sound source to different microphones are analyzed by
measuring the HRTFs around the spherical head in an anechoic chamber. While
sound arrival time differences were shown to easily be approximated by a theoretical
equation, the intensity differences were proven to be more complicated and difficult
to be approximated. Hence, only time difference cues were used by the sound local-
ization method at hand. The arrival time differences are calculated from the sound
waves of different microphones by the cross-correlation method. By choosing differ-
ence microphone pairs, a total of six arrival time differences exists. These differences
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are compared with the theoretically pre-calculated arrival time differences which are
saved in a database. The distance d between the theoretical and actual arrival time
differences is computed. The azimuth and elevation of sound source is then com-
puted as those angles which minimize the error distance d. The measurement errors
of arrival time difference were shown to become large when the sound source was
positioned behind the sphere from the view point of the microphones. Therefore,
it was suggested to choose microphone pairs in the front side to the sound source,
i.e. to choose the microphone pairs with smaller time difference. We will use this
method in chapter 4 for comparison purposes with our localization technique.

A model-based method for sound localization of concurrent and continuous
speech sources in a reverberant environment was proposed in [51]. The method ap-
plies an algorithm adopted from the echo-avoidance model of the precedence effect
to detect the echo-free onsets by specifying a generalized impulse response pattern.
An echo-avoidance model assumes that the precedence effect is caused by the neural
inhibition of sound localization which depends on the estimated sound-to-echo ratio
[50]. This model has two unique properties. First, it uses a generalized pattern
of impulse response, which has delay and decay features. Second, the inhibition
of sound localization created by this model is a relative one which depends on
the sound-to-echo ratio. By using an algorithm adopted from the echo-avoidance
model, echoes can be estimated as the maximum effects of their preceding sound
by the generalized pattern of impulse response, regardless of the type of sound and
the condition of environment. Echo-free onsets can be detected as onsets which
have high estimated ratios of sound to echo. The advantages of the model-based
onset detection are its flexibility with respect to sound level and its insensitivity to
nontransient noise. This method detects onsets after band-pass filtering. Hence,
the overlap of a sound component with different sound components of other sound
sources is significantly decreased. Three microphones arranged in a triangular form
were available for sound localization. Fine structure time differences were calcu-
lated from the zero-crossing points between different microphone pairs. They were
integrated into an azimuth histogram by the restrictions between them. Two sound
sources were localized in both an anechoic chamber and a normal reverberant room.
The time segment needed for localization was 0.52 s and the accuracy was a few
degrees in both environments. We shall use this method in chapter 5 for comparison
purposes with our concurrent sound localization technique.

An algorithm for multiple moving speaker tracking using a microphone array
of 8 sensors installed on a mobile robot was introduced in [102]. The localization is
based on time delay of arrival estimation, and multiple Kalman filters. The time de-
lay estimation localizes multiple sound sources based on beamforming in real time.
Non-linear movements are tracked using a set of Kalman filters with different history
lengths in order to reduce errors in tracking multiple moving speakers under noisy

15



CHAPTER 1. INTRODUCTION

and echoic environments. For quantitative evaluation of the tracking, motion refer-
ences of sound sources and a mobile robot were measured accurately by ultrasonic
3D tag sensors. The system tracked three simultaneous sound sources in a room
exhibiting large reverberation. We will use this method in chapter 5/ for comparison
purposes with our localization technique.

An accurate sound localization method using 8 microphones and applying the
simple TDOA algorithm to localize sound sources in three dimensions was introduced
in [128]. Using cross-correlation, this method determines the delay between the
signals captured by the different microphones. A major limitation of this approach
is that the correlation is strongly dependent on the statistical properties of the source
signal. Since most signals, including voice, are generally low-pass, the correlation
between adjacent samples is high and generates cross-correlation peaks that can be
very wide. The problem of wide cross-correlation peaks is solved by whitening the
spectrum of the signals prior to computing the cross-correlation. However, after
applying the whitened cross-correlation method, each frequency bin of the spectrum
is forced to contribute the same amount to the final correlation, even if the signal at
that frequency is dominated by noise. This makes the system less robust to noise,
while making detection of voice (which has a narrow bandwidth) more difficult. In
order to counter the problem, a weighting function of the spectrum was introduced
which gives more weight to regions in the spectrum where the local signal-to-noise
ratio (SNR) is the highest. The overall system is able to perform localization even on
short-duration sounds and does not require the use of any noise cancelation method.
The precision of the localization is 3° over 3 meters. We will use this method in
chapter (6 for comparison purposes with our localization technique.

As an alternative to microphone arrays, much psychoacoustic research has
been performed on human beings and animals to isolate the individual cues of sound
localization [30]. One novel approach is sound localization based on HRTFs, which
are also called anatomical transfer functions (ATFs). These functions describe the
filtering of sound on its way to the inner ear. The HRTFs will be the main focus of
the next chapter.

1.3 Main Contributions and Overview

1.3.1 Main Contributions

We have addressed the challenging task of binaural sound localization using a pair
of microphones inserted in the ear canals of a humanoid head mounted on a torso
and operating in a general telepresence environment. This task is made even more
challenging by the fact that the listening environment is dynamic: sound sources
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appear, disappear, move and interfere with each other. The today existing sound
localization models fail to localize sound in both azimuth and elevation using only
two microphones. Common binaural methods are limited to localizing sound sources
in either azimuth or elevation. Those methods which try to achieve three dimensional
localization, using only two sensors, become impractically complex by relying heavily
on training sets for every environment, or by using computer vision to augment the
acoustic modality. Hence, successful sound localization techniques are based on
microphone arrays to detect and track sound in a real environment. Microphone
arrays require exhaustive processing powers and are therefore not suited for our
simple hardware setup deploying two artificial ears.

We have proposed a unifying framework for novel three-dimensional sound lo-
calization methods to be implemented on a humanoid robot. The initial proposal is
based on dividing the ear signals with the left and right HRTFs and subsequently
taking the maximum correlation coefficient as a pointer to the source location. this
method is enhanced using proper state-space HRTF inversion. In addition, a new
algorithm called cross convolution was developed to further decrease the computa-
tional requirements of the initial method. Nevertheless, with the help of a simple
properly tuned Kalman filter, a ROI was introduced to account for fast moving
sound sources. The efficiency of the new algorithm suggests a cost-effective imple-
mentation for robot platforms and allows fast localization of moving sound sources.

Using the presented methods, we have addressed the challenging task of binau-
ral concurrent sound source localization and separation in reverberant environments.
We presented a new algorithm for binaural localization of concurrent sound sources
in both azimuth and elevation. Compared to existing techniques using microphone
arrays for the same purpose, our algorithm is less complex and very accurate. Beside
localization, we have proposed a sound source separation algorithm which proved
to be outperforming compared to other blind source separation methods solving the
same determined problem under the same conditions.

For highly reverberant environments, a new algorithm using four microphones
is presented. Bayesian information fusion is then used to increase the localization
resolution in a three-dimensional reverberant environment. Compared to existing
techniques, the method is able to localize sound sources in three dimensions, under
high reverberation conditions, with fewer sensors and higher accuracy.

1.3.2 Overview and Organization of the Thesis

Chapter 2: Binaural Techniques

In chapter 2, we summarize all important aspects of HRTFs, ranging from their
measurement procedure, their time and frequency domain visualization, to their
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recent deployment in our sound localization system. In section 2.7, we introduce
three methods for HRTF order reduction, namely the Balanced Model Truncation
(BMT), Diffuse-Field Equalization (DFE), and the Principal Component Analysis
(PCA). These techniques are used in the following chapters to help reducing the
localization processing time of a HRTF-based sound localization system. In contrast
to conventional methods utilizing HRTFs to synthesize sound for virtual reality, we
use the HRTFs for real-life sound detection.

Chapter 3: Binaural Sound Source Localization Based on HRTF's

A novel sound localization technique based on HRTFs and matched filtering is
proposed in section 3.1 of this chapter. As opposed to sound localization methods
based on microphones arrays, the method localizes sound in azimuth and elevation
by using only two small microphones placed inside the ear canal of a humanoid head
mounted on a torso.

In section 3.2/ two novel techniques for accurate HRTF interpolation and robust
inversion are presented. In section!3.2.2, an accurate HRTF state-space interpolation
technique is introduced to ensure the availability of sufficient HRTFs for higher
precision localization performance. In section 3.3, a stable inverse of the HRTFs
is computed using state-space inversion based on inner-outer factorization. This
inversion technique is deployed in chapter 4/ to stabilize the localization of a novel
humanoid binaural sound system.

Chapter 4: Enhanced Sound Source Localization Techniques

In this chapter, we have considerably improved the initial matched filtering
approach to sound localization using the reduced and inverted HRTF's, as in chapters
2l and 3. This set up proved to be able to localize sound sources up to a very
high precision in free space. In addition, a cross convolution algorithm for real
time localization and tracking is proposed. Applying HRTF's for sound localization
together with extended Kalman filtering, we are able to accurately track moving
sound sources in real time in a highly reverberant environment. This algorithm uses
only two microphones and requires no prior knowledge of the sound signals.

Chapter [5: Concurrent Sound Source Localization and Separation

In chapter 5, we combine blind source separation and binaural localization
for tracking concurrent sound sources using only two microphones. Section [5.2 de-
scribes an algorithm for two sound sources that iteratively adapts the coefficients
of a Multiple Input Multiple Output (MIMO) system and provides the two statisti-
cally independent source signals. This well-known separation method exploiting the
non-stationarity of the sources is used to retrieve two speakers from two convolutive
mixtures in real-time. By using a simple relation between blind source separation
and system identification, the HRTFs that filtered the sound sources can be de-
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termined under the condition of an anechoic environment. The second algorithm,
presented in section 5.3, applies Short-Time Fourier Transform (STFT) to the ear
signals and makes use of the sparseness of the sources in a time-frequency domain.
As in each frequency band the normalized time-frequency patterns of speech sig-
nals cluster around the HRTF values, the interaural HRTFs can be retrieved. The
positions of the sources are finally determined by a database lookup. With the re-
spective HRTF's of the database, the sources can be separated by inversion of the
HRTF-system in case of two concurrent sound sources or by L1-norm minimization
in case of more than two sources.

Chapter 6: Sound Localization in Highly Reverberant Environments

In this chapter, a novel monaural 3D sound localization technique is presented.
The proposed system, an upgrade of monaural-based localization techniques, uses
two microphones: one inserted within the ear canal of a humanoid head equipped
with an artificial ear, and the second held outside the ear. The outer microphone is
small enough to avoid reflections that might contribute to localization errors. The
system exploits the spectral information of the signals from the two microphones
in such a way that a simple correlation mechanism, using a generic set of HRTFs,
is used to localize the sound sources. The main focus of this chapter is on the
detection of sound events under severe acoustic conditions, i.e. high reverberation
and background noise. The location of the sound source obtained from monaural
and binaural observation sensors is fused using a properly tuned Bayesian network
in order to increase the localization resolution in a three-dimensional reverberant
environment.
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Chapter 2

Binaural Techniques

2.1 The Head Related Transfer Function

Within the framework of human sound localization, it is generally accepted that the
head pinnae modify the spectra of incoming sounds in a way that depends on the
angle of incidence of the sound relative to the head. The spectral changes produced
by the head and pinna can be used to estimate the localization of a sound source.
This has been confirmed by measurements in the ear canal of human observers
and by measurements using realistic models of the human head [19], [133]. The
head and pinnae together form a complex direction-dependent filter. The filtering
action is often characterized by measuring the spectrum of the sound source and
the spectrum of the sound reaching the eardrum. The ratio of these two is called
the HRTF or equivalently, the head related impulse response (HRIR). The HRTFs
capture the diffraction of sound waves by the human or humanoid torso, shoulders,
head, and outer ears and hence vary in a complex way with azimuth, elevation and
frequency. In addition, the HRTFs depend on the morphology of the listener’s body,
and therefore vary significantly from person to person. The HRTF for a particular
individual is called his or her individualized HRTF.

Binaural sound reproduction builds on the concept that our auditory percepts
are primarily formed on the basis of only two inputs, specifically the sound pressure
signals formed at our two eardrums. If these are recorded using small microphones
inserted inside the ears of listeners, and reproduced authentically when played back,
then all acoustic cues and all spatial aspects are accessible to the listeners for pro-
ducing authentic replicas of the original auditory percepts.
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The main application area for HRTF's is the reproduction of binaural hearing
for virtual reality application. In this context, instead of being picked up inside the
ears of the listener, the signals to the two ears, called binaural signals, are generated
electronically by the use of filters representing HRTFs. In this case the method
will be denoted binaural synthesis. In binaural synthesis, a virtual sound source is
created by simply convolving a sound signal with a pair of HRTFs [67]. The success
of binaural synthesis strongly depends on details of the procedures applied for deter-
mining and realizing HRTF's, such as physical aspects of the measurement situation,
post-processing of data, and implementation as digital filters. If the full spatial in-
formation is maintained in the resulting binaural signals, we say that the HRTFs
contain all properties of the sound transmission and all descriptors of localization
cues.

2.2 HRTF Cues

The acoustic cues for sound localization have been studied for over a century [19].
The most reliable cues used in the localization of sounds, some of them depending
upon a comparison of the signals reaching the two ears, could be generally divided
into five main categories: 1) ITD, 2) IID/ILD, 3) monaural cues, 4) head rotation
and 5) Interaural Coherence (IC). While ITDs and IIDs are the most commonly
used for modeling sound localization systems, monaural cues, resulting from the
complex topographic shape of the pinnae, play a very important role in decoding the
elevation information of the impinging sound sources. Head rotation is commonly
used to resolve front /back ambiguity as well as the cone of confusion problem®. The
IC cues are mainly used by acousticians to extract the auditory spatial properties
of a certain environment [21]. The limits to the auditory system localization ability
are determined by the limits of detecting and analyzing the above mentioned cues.

The HRTF can be interpreted as the directivity characteristics of the two ears
and shows a complex pattern of peaks and dips which varies systematically with the
direction of the sound source relative to the head and which is unique for each three
dimensional direction. Recently, a method to robustly extract the frequencies of the
pinna spectral notches from the measured HRIR, distinguishing them from other
confounding features, has been properly devised [112]. Scientific study of HRTFs
has focused on two questions: what acoustic cues do people use to localize sound
sources, and what parts of the body are responsible for generating those cues. This

'For a given interaural spectrum, there exists a surface or a locus of points corresponding to sound
source locations for which ITDs and ILDs are identical. A cone (whose axis is a line drawn between
the ears and whose origin is the center of the head) is a fair approximation of this surface. Using
only ITDs/ILDs there are no cues available to resolve positional ambiguity on such a cone.
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Figure 2.1: Measured right-ear Head Related Impulse Responses (HRIRs) for source
locations in the horizontal plane (Elevation = 0°).

research is presented systematically in [19], and several useful reviews are available
[98, 100].

2.3 HRTF Properties

Because size and shape of the external ear vary greatly between persons, the task
of relating the anthropometry of the pinna to the localization cues it creates is
cumbersome. It remains unclear how macroscopic features of HRTFs correspond
to perceptually meaningful directional cues. It stays difficult to exactly pinpoint
which peaks and notches in HRTF magnitude frequency responses correspond to
the specific azimuths and elevations of the sound source locations.

Many methods have been trying to uncover structure in HRTF data by visually
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comparing subsets of HRTFs sharing the same azimuth, elevation, and frequency in
the time or frequency domain. It was shown in [27] how the location of a spectral
notch near 7 kHz changes as a function of elevation. In [4], the authors show how
diffraction effects due to the head and shoulder can be seen as secondary echoes in
time domain versions of HRTFs. Within this framework, it was suggested in [28] how
peaks in plots of spatial location vs. HRTF for a fixed frequency could correspond to
perceptually preferred directions in space. The method in [5] shows that a composite
model combining independent contributions of the pinna and of the head and torso
considered as a unit results in a good HRTF approximation. This model isolates
the pinna by treating it as if it were mounted on an infinite plane, and leads to a
significant simplification in the pinna response, the so-called Pinna-Related Transfer
Function (PRTF). In the following, we shall distinguish between two visualizations
of the HRTF, the time domain impulse response and the frequency domain transfer
function.

2.3.1 Time Domain Impulse Responses

The measurements shown in Figure 2.1 are taken for the KEMAR right ear and are
plotted as a function of azimuth in the horizontal plane (elevation = 0°). Looking
at this figure, one can observe the relatively large amplitude of the initial peaks in
the impulse responses corresponding to azimuth +90°, i.e. to the location where the
source is directly facing the right ear. While the source is moving towards the left
ear, the HRIR peaks fade down slowly due to increased head shadowing, and reach
a minimum at the contralateral location where the source is directly facing the left
ear.

Figure 2.2 shows measured HRIRs as a function of elevation in the median
plane (azimuth 0°) and in the vertical plane corresponding to azimuth 90°. One can
also see elevation-related effects as there is a slight difference in arrival times for
positive and negative elevations. From Figures 2.1 and 2.2, we can observe that, in
addition to the initial peak, the measured HRIRs contain many secondary peaks.
This is caused by the numerous spatial cues as well as by the complex morphological
structure of the outer ear, although these effects could also be related to the inherent
noise in the measurement process.

Figure 2.3 is the image representation of the KEMAR’s HRIRs. The figure
shows the responses of the left and right ear to an impulsive source in the horizontal
and median plane. The strength of the response is represented using different levels
of brightness. Looking at the left ear data, we can see that when the sound source
is moving in the horizontal plane, the strongest response is reached at an azimuth
angle of 270° or equivalently -90°, the weakest and mostly delayed response occurs
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Figure 2.2: Measured right-ear Head Related Impulse Responses (HRIRs) for source
locations in the two vertical planes: Azimuth 0° and Azimuth 90°.

at azimuth = 90°. The right ear response shows a directly opposite behavior. In a
nutshell, we observe a pronounced variation of the impulse response in the horizontal
plane as a function of azimuth. However, this is not the case for the median plane.

When the sound moves around the head in the median plane, as shown in
the right subplots of Figure 2.3, it reaches the left and right ears at almost the
same time. There is no apparent difference for the strength of the impulse response
among all of the elevation angles, and the arrival time is more or less the same. The
main changes are in the relative arrival times and strengths of the pinna reflections.
This explains why people have trouble distinguishing front from back when sounds
are located in the median plane. This phenomenon is well-known as the front/back
confusion problem and people often resolve it by head motion.
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Figure 2.3: Left two plots: HRIRs in the horizontal plane (elevation=0°). Right two
plots: HRIRs in the median plane (azimuth=0°).

2.3.2 Frequency Domain Transfer Functions

In the frequency domain, the HRTFs exhibit a complex pattern. Several secondary
peaks and notches show up in the magnitude spectra, as depicted in Figure 2.4.
These features are due to the filtering of the pinna, head, and torso. The visual-
ization of the HRTF's in the frequency domain allows us to distinguish between two
structural effects: diffraction effects due to the head and elevation effects due to the
pinna.

For some frequencies and incident angles, the head has an amplifying effect on
an incident plane wave impinging on it at certain points. This magnification is due
to diffraction. There are some locations on the contralateral side of the head where
this effect occurs, even though the head directly blocks or shadows the contralateral
ear.

Diffraction effects in the left ear HRTFs are highlighted in Figure 2.4. In the
right subplot, the HRTFs corresponding to azimuths 80° to 65° contain a low
frequency main lobe that attains its greatest width at azimuths 80°. This main lobe
is representative of an amplification effect the head has on lower frequencies due
to diffraction on the contralateral side, i.e. on the side where the sound source is
totally shadowed by the head. High-frequency amplification effects can also be seen
in the ipsilateral HRTFs, i.e. the HRTFs corresponding to those positions where the
sound source is directly facing the ear. This effect is mainly due to reflections caused
by the outer ear’s proximity to the head. The amplification regions are pinpointed
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Figure 2.4: Head-Related Transfer Functions (HRTFs). Left: variations in the me-
dian plane (azimuth = 0° ). Right: variations in the horizontal plane
(elevation = 0° ).

in Figure 2.4.

The HRTF spectral shaping related to elevation is believed to be directly
associated to the external ear |34]. Hence, frequencies around 6-8 kHz (A = 4.1 —
5.5cm) play an essential role in the elevation decoding process, since these frequencies
have wavelengths similar to the anthropomorphic lengths of the pinna, and therefore
strongly interact with the pinna. As seen in Figure 2.4, noticeable patterns appear
around these frequencies which have been proved psychoacoustically to be associated
to the sound elevation perception [19)].

Further elevation effects can be seen in Figure 2.4. At low frequencies, a first
main notch appears around 7 kHz and slowly migrates upwards in frequency as
elevation increases. At high frequencies, a narrow peak appears around 12 kHz for
lower elevations in the median plane, and gradually flattens out for higher elevations.
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Several scientific studies have tried to disclose the relationship between peaks,
notches and spectral shapes of certain HRTF databases, as well as their systemati-
cal contribution to the perception of azimuth and elevation. Consequently, several
frequency-domain based signal processing techniques attempted to parameterize or
compute HRTFs models. For example, frequency-domain HRTF interpolation, as
well as frequency based PCA and pole-zero modeling have been repeatedly studied
[45].

2.4 HRTF Measurements

Until today, almost all available HRTF data has been obtained from direct acoustic
measurements [114) 47, 130, 134,39]. A conventional HRTF measurement procedure
consists of placing an artificial humanoid head and torso on a motorized turntable
which can be rotated accurately to any required azimuth. A speaker mounted on a
boom stand enables accurate positioning of the speaker to any elevation with respect
to the humanoid. Thus, the measurements can be made one elevation at a time, by
setting the speaker to the proper elevation and then rotating the humanoid to each
azimuth. Such a conventional HRTF measurement procedure is tedious and require
expensive specialized equipment. Normally, only a sparse spatial grid of HRTF's is
measured.

Several HRTF databases have been made publicly available [122, 93, 91 6].
In addition, commercial products are available for measuring individualized HRTFs
[13]. Although various methods for speeding up the measurement process have been
proposed [141], 38|, the acoustic measurement of accurate, high-resolution HRTF's
remains a time-consuming process that requires special equipment that is not widely
available. This presents a serious obstacle to the widespread usage of HRTFs.
Hence, as an alternative to the measurement process, numerous investigations of
signal processing methods for approximating and modeling the HRTFs have been
conducted [118]. For example, physical HRTF modeling techniques allowed indi-
vidualized HRTF's to be reproduced by adjusting the parameters of such models in
order to fit the anthropometry of the pinnae, head, and torso for a certain individual.

2.5 First Binaural Localization Model

The celebrated duplex theory proposed [113] is known to be the very first binaural
hearing model. The theory is based on the idea that humans use the I'TD at low
frequencies and the ILD at high frequencies to judge the lateral (azimuthal) angle,
the angle between a ray to the sound source and the median plane. These difference

28



2.6 HRTFs and Sound Localization

cues have the important property that they are independent of the source spectrum.
Moreover, by approximating the head by a rigid sphere, Rayleigh gave a quantitative
explanation of how the I'TD and ILD are produced by diffraction and scattering of
the incident waves by the listener’s head.

Although the spherical-head model is obviously only a first approximation to
a real head, it continues to be a source of insight into HRTF behavior [4, 119, 135].
Rayleigh understood that interaural difference cues vanish on the median plane, and
thus cannot resolve front/back confusion. In general, the ITD and ILD constrain
the ray to the source to lie on a cone called the ”cone of confusion”. It is common
experience that when we are not sure if a source is in front of us or in our back, we
turn our heads, which works well unless the sounds are very brief. In a study of the
effects of head motion, it was speculated that to resolve front/back confusion for
brief sounds, the auditory system somehow uses the selective sound shadow of the
outer ears or pinnae. For longer duration sounds, it was shown that head motion
cues dominate other cues [131]. The role of the pinnae in resolving the front/back
confusion problem was subsequently confirmed by other researchers [37, [110]. All
culminated to the undisputed fact that the pinnae are perceptually important and
have a major effect on the HRTF.

2.6 HRTFs and Sound Localization

In our telepresence scenario, a robot placed at a remote site is supposed to detect
the location, in terms of azimuth and elevation, of the sound sources randomly
partitioned in a certain environment. This angle information along with the sound
signals are sent through the wireless channel to the remote human operator site,
where sound synthesis using HRTFs takes place for 3D virtual reproduction of the
robots auditory space.

To date, the usage of HRTFs basically revolved around binaural sound syn-
thesis, e.g. surround sound by headphones, 3D auditory displays, binaural mixing
consoles. As opposed to virtual reality sound synthesis using HRTFs, the present
thesis aims at using the HRTFs for real-life robotic sound localization. Our tar-
get is to build a robotic sound source localizer using the cues encapsulated within
generic HRTF measurements, and then use these measurements and develop a low-
complexity model for azimuth and elevation estimation. Towards this end, we inter-
polate, truncate, and invert the HRTF's. Interpolation is used to avoid the complex
and time-consuming measurement process. Truncation of the HRTF database is
needed for faster signal processing, and stable inversion ensures better sound local-
ization results.
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Experiments have shown that measured individualized HRTFs can undergo
a great deal of distortion (i.e. smoothing, reduction, etc.) and still be relatively
effective at generating spatialized sound [19]. This implies that the reduced HRTF
still contains all the necessary descriptors of localization cues and is able to uniquely
represent the transfer of sound from a particular point in the 3D space. We can take
advantage of this fact to greatly simplify the task of sound source localization by
using approximations of an individual’s HRTFs, thus shortening the length of each
HRTF and consequently reducing the overall localization processing time.

The research group at MIT Media Lab has made extensive measurements using
KEMAR. They provide a data set consisting of 710 measurements taken over a broad
range of spatial locations, with each HRTF having a length of 512 samples. The
KEMAR HRTFs can be modeled as a set of linear time-invariant digital filters, being
represented either as Finite Impulse Response (FIR) filters or as Infinite Impulse
Response (IIR) filters. Note that audio professionals consider the length of 512
samples for the measured HRTFs as rather short. When it is necessary to use longer
filters the computational burden increases accordingly. Therefore, we investigate
three techniques for reducing the length of the HRTF, two FIR and one IIR, which
are applied to the KEMAR dataset, and which lead to a significant reduction in
the size of the measured HRTF dataset. The original HRTFs containing the 512
coefficients of the FIR filter will be denoted as HELE. Using the reduced dataset,
we present a novel approach in chapter 4 to localize sound sources using only two
microphones in a real environment.

2.7 HRTFs Reduction Techniques

2.7.1 Diffuse-Field Equalization

In order to reduce the computational burden for convolution, we aim at shortening
the length of the FIR filter representation of the originally measured HRTFs. This
needs to be done while preserving the main characteristics of the measured impulse
responses. We adopt the algorithm proposed by [101] for a Diffuse-Field Equalization
(DFE). In DFE, a reference spectrum is derived by computing a power-average over
all HRTF's for each ear and taking the square root of this average spectrum. Diffuse-
field equalized HRTFs are obtained by de-convolving the original transfer function
by the diffuse-field reference HRTF of that ear. This leads to the result that the
factors that are not dependent on the incident-angle, such as the ear canal resonance,
are removed. The DFE is achieved according to a four step procedure:

1. Remove the initial time delay from the beginning of the measured impulse
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responses, which typically has a duration of about 10-15 samples.

2. Remove features from modeling that are independent of the incident angle,
e.g. ear canal resonance, loudspeaker and microphone responses [101].

3. Smooth the magnitude response using a critical-band auditory smoothing tech-
nique [95].

This way we shorten the length of the FIR representation of the original
KEMAR HRTFs, HILE from 512 to 128 coefficients. The resulting DFE HRTF
database is denoted as HEEE. Figure 2.5 shows one example of a diffuse-field equal-
ized HRTF filter response H{,LE in comparison to the originally measured HRTF
HELR. The reduced HRTF follows the general trend of the original one with some

deviation at high frequencies.

To quantify the accuracy of the DFE process, spectral signal-to-error power
ratios (SER) have been computed for the difference between both models. For the
710 impulse modeled impulse responses, the SER values were in the range of 20-37
dB with an average of 30 dB.

Magnitude Response in dB

Magnitude (dB)

Normalized Frequency (xr rad/sample)

Figure 2.5: Magnitude response of the original 512-FIR (solid) and the reduced 128-
FIR (dashed) of an HRTF (left ear, 0° azimuth)
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2.7.2 Balanced Model Truncation

In order to examine to which extent the HRTF can be reduced while still pre-
serving the characteristic information making it unique, we reduce the previously
derived diffused-field HRTF dataset further by adopting the balanced model trun-
cation (BMT) technique to design a low-order IIR filter model of the HRTF from a
high-order FIR filter response H{k. A detailed description of the BMT technique
is given in [15]. However, a brief outline will be presented here. For applying BMT,
we determine a linear time-invariant state-space system, which realizes the filter.
We start using the 128-coefficient FIR filter HELE. The transfer function of this
filter can be written as: F(z) =co+c¢1- 2+ ¢+ 22+ ... +cp2", where n = 127. Note
that we follow the notation of positive exponents for the z-transform. This filter can
be represented as state-space difference equations:

x(k+1) = A-z(k)+ B-u(k) (2.1)
y(k) = C-x(k)+ D -u(k)

Then, a transformation matrix 7" is found such that the controllability and observ-
ability Grammians are equal and diagonal. This is the characteristic feature of a
balanced system. The corresponding system states are ordered according to their
contribution to the system response. The order of the states is reflected in the Han-
kel Singular Values (HSV) of the system. Thus, the balanced system can be divided
into two sub-systems: the truncated system of order m < n, where the first m HSVs
are used to model the filter, and the rejected system of order (n — m). Figure 2.6
shows the BMT-reduced IIR filter representation (m = 25) in comparison to the
FIR (n = 128) for one example of a HRTF. The transfer function of the IIR filter
follows the general trend of the FIR filter with small deviation at high frequencies.
Quantitative SER ratios have been computed for the difference between the FIR
and IIR models. For all the 710 impulse responses that we modeled, SERs were in
the range of 24-36 dB, with an average of 29 dB.

2.7.3 Principal Component Analysis

In order to examine to which extent the HRTF can be further reduced while still
preserving the characteristic information which makes it unique, we reduce the pre-
viously derived diffused-field HRTF data set, H{L®, by applying a Principal Com-
ponent Analysis (PCA).

PCA has already been applied to HRTFs [96, 99, 87]. All the applications
pointed out substantial data reduction, as this method allows the description of all
HRTF data with merely 4-7 basic functions and their corresponding weights. The

32



2.7 HRTFs Reduction Techniques

Magpnitude Response in dB
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Figure 2.6: Magnitude response of the 128-FIR (solid line) and the reduced 25-1IR
(dashed line) of a HRTF (left ear, 0° azimuth).

PCA of personalized HRTFs efficiently pointed out some common properties and
some main differences in HRTFs for various test subjects.

The first step in PCA is the computation of a p X p covariance matrix S,
which corresponds to the ky, HRTF Hj, with £ = 1,2,...,710. The entries of this
matrix are given by

1 o
Sij = N ZH’W “Hyj, 1,7=1,2,...p, (2.2)
K

where p is the total number of frequency samples (512 in this case), and Hj; is the
magnitude of the kth HRTF at the ¢th frequency. The Sy matrix provides a measure
of similarity across the HRTFs for each pair of frequencies.

A basis-function matrix BF}, is then derived from the eigenvectors of the co-
variance matrix S,. This matrix contains ¢ basis functions. The basis functions are
chosen to be those eigenvectors of S; which correspond to the ¢ largest eigenvalues.

BF, = [EVy EV, --- EV] (2.3)

where BFj, is px q, and E'V denotes an eigenvector. The HRTF can then be modeled
as a linear combination of several weighted basis functions. For a given HRTF, the
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Magnitude Response in dB

Magnitude (dB)
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Figure 2.7: Magnitude response of the 128-FIR (solid line) and the reduced 35-FIR
(dashed line) of a HRTF (left ear, 5° azimuth).

weights representing the contribution of each basis function to that HRTF are given
by
wi(0,0) = BF x H,(0,¢) k=1,2,...,710, (2.4)

where wy, is ¢ X 1, and Hy is p x 1. Note that if the terms are rearranged, the HRTF
magnitude vector is equal to a weighted sum of the basis vectors:

However, this equality holds if and only if ¢ = p, or the maximum possible number
of eigenvectors and basis vectors is retained. In practice, ¢ << p, here we take
g = 5,10,15,20,25,50. We found that 91.337% of the total variance in the data
is captured by taking the first 20 basis functions only. Taking more basis func-
tions can further reduce the error between the measured and approximated HRTFs,
however more calculation time and storing space are required. Once the reduced
basis functions are selected, the weighting matrix is calculated. These two matrices
(correlation matrix and weighting matrix) are stored e.g. in DSP memory, for a
fast computation of reduced HRTFs. A thorough description of the PCA technique
in modeling HRTFs is available in [87]. We shall denote the PCA-reduced HRTF's
by HEI where every HRTF has a length of m samples, and for every value of m,
we have a truncated HRTF data set. Figure 2.7/ plots the difference between both
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FIR models. The SER values were found to fall in the range of 23-37 dB, with an
average of 30 dB.

In the following chapter, we will introduce two novel HRTF inversion and inter-
polation techniques which help stabilizing and increasing the localization accuracy
of our new sound localization system.
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Chapter 3

Binaural Sound Source
Localization Based on HRTF's

In this chapter, we propose a new binaural sound source localization technique based
on using only two small microphones placed inside the ear canal of a robot’s head.
The head is equipped with artificial ears and is mounted on a torso. In contrast to
existing sound source localization methods, we employ a matched filtering approach
using the HRTFs applied to the signals collected by the two microphones. This
set-up proves to be able to localize sound sources in free space with high precision.
Note that, so far, HRTF's have mainly been used for synthesis of spatial sound, while
we are using them here for sound source localization.

Furthermore, this chapter introduces two novel approaches for inverting and
spatially interpolating the HRTFs to be used later in our sound localization algo-
rithm. Using HRTF data, we create proper matrix transfer functions or equivalently
appropriate state-space realizations. We base our method on the factorization of a
block Loewner matrix into a product of generalized observability and controllability
matrices. We recollect certain properties to be satisfied by the Loewner matrix,
and use it to construct a minimal state-space realization of an interpolating matrix
transfer function.

3.1 A Novel Approach To Sound Localization

The new algorithm for binaural sound source localization relies on a simple corre-
lation approach [82]. We assume that we receive a signal originating from a sound
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source located at a certain position. The signal is recorded using a left and a right mi-
crophone, both microphones being placed inside the canals of artificial ears mounted
on a manikin. The signal received by each ear can be modeled as the original signal
filtered with the HRTF corresponding to the given ear and to the specific direction
of the sound source.

If the two received signals (left and right) were to be filtered with the inverse of
the correct HRTFs, then both output signals should be identical to the original mono
signal of the sound source. However, the system does not have information about
the sound source position. Nevertheless, the result of filtering the signal received by
the left ear with the correct inverse left Hy, should be identical to the signal received
by the right ear filtered by the correct inverse right Hg.

In order to determine the direction from which the sound is arriving, the two
signals must be filtered by the inverse of all HRTF's. The pair of inverse HRTFs that
produces a pair of filtered signals resembling each other the most should correspond
to the direction of the sound source. The resemblance of the filtered signal pair is
determined using a simple correlation function. The direction of the sound source
is assumed to correspond to the HRTF pair with the highest correlation. There-
fore, we base our localization on the obtained maximum for the correlation factor c.
Moreover, to insure an accurate localization decision, the minimum distance mea-
sure, d, is also calculated. Theoretically, the distance between the two signals (left
and right) should yield a minimum value since the two signals are supposed to be
almost equal. The flow of this algorithm is shown in Table 3.1l

Table 3.1: Initial Sound localization algorithm.

S,(t)=Received signal inside left ear
S.(t)=Received signal inside right ear
n = Number of HRTFs

for i=1:n
x,(t)=8,(t)eH, "
x,(t)=Se(t)oH "
" =corr(x,"(t), x,"(1))

d"' =3xS (1)- xS (1))

end

® = Convolution
m = HRTF length
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3.2 Efficient State-Space HRTF Interpolation

The filtering in time domain yields a significant computational complexity.
Hence, the algorithm is applied in the frequency domain to allow the use of fast
correlation and convolution techniques. The signals along with the reduced HRTFs
are converted into the frequency domain using the Fast Fourier Transform (FFT).
Doing this, all the filtering and correlation operations are changed to simple array
multiplications and divisions [63]. This method is illustrated in Figure [3.1.

We assume that the reduced HRTFs have been computed before using DFE
and PCA and the results are stored in memory. Once a block of 128 audio samples
are recorded by the left and right microphones, each of them is transformed into
frequency domain using an FFT of length 128. Subsequently, the transformed signal
is divided (or multiplied by a pre-calculated inverse) by each of the HRTFs. Finally,
the correlation of each pair from the left and right is calculated. There are 1420
array multiplications, 1420 inverse Fourier transforms of length 128, and 710 corre-
lation operations necessary. After all the correlations are computed, the maximum
correlation value is taken to provide the direction from which the sound is arriving.
The block-oriented processing of 128 samples recorded at a sampling frequency of
44.1kHz produces a minimum processing delay of about 22usec, which is well below
the allowable processing delay.

The above-mentioned sound localization technique depends on finding the in-
verse filters of every HRTF, and saving it for later use in localization. The inverse
filter was directly made available by simply exchanging the values of the numerator
and denominator using FF'T. However, the inverted HRTF filters obtained using the
FFT method are unstable, especially that all HRTFs include a linear-phase com-
ponent, i.e. pure delay, which is vital for maintaining the correct inter-aural time
difference.

A very efficient method which handles this problem, and ensures stability, by
simply translating the unstable inverse into an anti-causal yet bounded inverse, is
the state-space inversion method we will introduce in the following section. We have
used this inversion technique to considerably stabilize our sound localizer [72].

3.2 Efficient State-Space HRTF Interpolation

The efficiency of our sound localization approach is directly dependent on the quality
and availability of the HRTFs. The quality of the HRTFs strongly depends on
details of the procedures applied for realizing HRTF's, such as physical aspects of
the measurement process, post-processing of data, and the implementation as digital
filters. Since these procedures are complex, time-consuming, and require expensive
specialized equipment, only a discrete grid of spatially sampled HRTFs is available.
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Figure 3.1: Flowchart of the sound localization algorithm.

Spatial interpolation techniques can be employed to increase the resolution of the
grid by computing HRTFs corresponding to 3D positions which are located between
the recorded functions.

The lowest directional resolution for sampling HRTFs in order to ensure that
interpolations between them do not introduce audible errors has recently been prop-
erly devised [109].

Our aim is to construct a rational interpolation method which, given two
neighboring angles, could correctly interpolate a good number of HRTFs in between.
Towards this end, we recollect some of the existing interpolation techniques, and use
them to study the performance of the rational interpolation presented here.
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3.2 Efficient State-Space HRTF Interpolation

3.2.1 Previous Interpolation Methods

The bilinear method [14] is a simple and direct way used to perform HRTF interpo-
lation. It consists of computing the binaural response corresponding to a given point
on the horizontal circle as weighted mean of the measured binaural responses and
associated with the two adjacent points to the desired point. The discrete Fourier
Transform (DFT) [97] is used to interpolate binaural impulse responses in the time
domain. The method inserts all HRTFs column-wise in one common H matrix.
It then computes the DFT of every row and appends it with zeros before apply-
ing inverse DF'T to obtain an oversampled matrix, where the oversampled columns
correspond to the interpolated HRTFs. The plenacoustic function [121] and the
mathematical spline function [I15] have also been used to interpolate HRTFs.

In [97], the authors investigated the effect of arrival time correction (initial
time-delay equalization) on the accuracy of the three interpolation methods, namely,
bilinear interpolation, discrete Fourier transform and third-order spline function.
The initial time-delay equalization was demonstrated to increase the accuracy of
all proposed interpolation techniques. In this chapter, we use the outcome of their
experiments to compare and evaluate the performance of the rational HRTF inter-
polation we are presenting. Before we present the framework in which we applied
rational interpolation, we will have a brief review of the scalar and matrix rational
interpolation methods.

3.2.2 Formulation of the Rational Interpolation Problem

The rational interpolation problem was first solved for the scalar transfer function
case [10]. Due to its frequent occurrences in linear system theory, a transfer-function
matrix solution rather than the scalar representation was basically of more relevance,
hence a state-space description of the problem was later devised in [§]. We will
recapitulate some of the key properties of the scalar rational interpolation problem,
before tackling the state-space rational interpolation problem.

Scalar Rational Interpolation

Consider the array of points P := {(z;,y;),i = 1,..., N}, with x; # z;, and z;,y; €
C. The fundamental rational interpolation problem [§] is to parameterize all rational
functions y(x) = Zg—i) having minimal Smith-McMillan degree, which interpolate the
above points. If x; # x; for ¢ # j, then the desired rational function must satisfy

y(x;) = y;, for ¢ = 1,...,n. For this purpose, the rational interpolating function
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Chapter 3 Binaural Sound Source Localization Based on HRTF's

y(x) could be selected such that
- y(z) — i o
YL o0, 0. (3.1)
- Tt

The function y(z) is the desired interpolation function, for which we clearly have
y(x;) = y;, if ¢; # 0. The goal is to minimize the degree of the adopted y. One way
to do this is to consider a summation as in (3.1) containing only ¢ < n summands,
for any set of non-zero coefficients ¢;, then the rational function y, of degree ¢ — 1,
interpolates the first ¢ points. Making use of the freedom in selecting the ¢;, we then
try to interpolate the remaining n — ¢ points. Let ¢ := [¢1...¢,|7; in order for the
remaining n — ¢ points to be interpolated, ¢ must satisfy

q
Gl Y g i =1,2,...,n—q. (3.2)
iz g T

or in matrix form

L-c=0, (3.3)

where L is a Loewner or divided-differences matrix of dimensions (n—q) x ¢, derived
from the given pairs of points. This Loewner matrix is a major instrument for the
rational interpolation problem. The key property of this matrix is that its rank
is directly related to the degree of the corresponding minimal-degree interpolating
function. More about the Loewner matrix characteristics is found in [8].

The interpolation problem now reduces to determining the ¢ vector such that
(3.3) is satisfied. Once c is obtained, we can compute the rational interpolation

function y(z,c) = 2((22)) where
b(xz,c) = Z Cili H(m —z;), a(z,c) = Z Ci H(:p — ;). (3.4)
i i i A

For the proof of (3.4) refer to [10]. After having reviewed what we need on Loewner
matrices associated with the interpolation of scalar transfer functions, we turn our
attention to the matrix transfer functions, and how their minimal state-space real-
izations are computed.

State-Space Rational Interpolation
Let Y'(x) be a matrix transfer-function with a minimal state-space realization {A, B, C, D}

of the form
Y(z)=C*(xl — A)"'B+D. (3.5)
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3.2 Efficient State-Space HRTF Interpolation

Consider the array of points P := {(z;,v;),% = 1,...,n}, with z; # x;, and z;,y;
€ C. Suppose now we partition the vector x = {xy,...,x,} into two nonempty sets
R and T called the row set and column set respectively. Let R = {ry,rs,..., 7},
with r; # r; for ¢ # j, be the row set, and let T' = {t1,ts,..., s}, with ¢; # ¢, for
i # j, be the column set such that RNT = @.

If Y(x) is given in terms of a causal transfer-function matrix with minimal
state-space dimension ¢, the Loewner matrix L associated with the transfer-function
matrix Y (z) is factored into a product of two matrices M and N with column and
row rank q respectively,

C*(r I — A)™1
|Gl AT (B - A) B, (I — A)7'B,
: . (ts —A)'B (3.6)
C*(r I — A7t
= MN

This is a state-space representation of the Loewner matrix [§]. Similar to the Hankel
matrix, the Loewner matrix is divided into generalized controllability and observ-
ability matrices.

The main strategy now is to find the Loewner matrix L, i.e. to compute
{A, B,C, D} such that M and N are the generalized observability and controllability
matrices. Appendix (C recapitulates the major steps involved in computing the L
matrix as detailed in [8]. We will now formulate the rational interpolation problem
to fit our aim of interpolating the HRTFs.

3.2.3 Experimental Setup

In our investigation, we use KEMAR HRTFs of length 512 samples measured at 44.1
KHz every 5° in the horizontal plane (0° azimuth) as well as in four other planes
at elevations £10°, £20°. For every plane, a total of 72 HRTF's were available. The
interpolation is done for one plane at a time. Figure 3.2 illustrates the interpolation
procedure. After inserting all binaural responses (time-domain) into the rows of a
common matrix H, the interpolation algorithm reads the matrix column-wise one
column at a time. Every column contains a number of 72 sample values taken from
every binaural impulse response. Every column in the H matrix can be written as
Y(2)=co+ci-2t+ep 2724 ...+ ¢, - 27" where n = 71. This filter possesses a
minimal state-space realization {A, B, C, D} having the form of (3.5).

We follow section 13.2.2/ to evaluate the matrices A, B,C, and D for a given
column in H, we use them to compute the Loewner matrix according to (3.6). We
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Figure 3.2: The interpolation process.

then use (3.3) to compute the vector ¢ of interpolating coefficients which we insert
into (3.4) to obtain the desired interpolation function y(z,c). Using this function
for non-integer values of & we are able to interpolate new angles between every two
adjacent points for a given column of the HRTF matrix H. The same process is
repeated for all other columns of H. After running through all the 512 columns,
the resulting matrix H is composed of rows that include the interpolated binaural
responses.

Similar to the DF'T method, in the rational interpolation method, the response
to be interpolated depends on the responses at all azimuths. In the linear method,
however, the binaural response to be interpolated is determined based only on two
adjacent responses.
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3.2 Efficient State-Space HRTF Interpolation

3.2.4 Discussion of Results

To verify the performance of the rational interpolation, we use 72 measurements for
the left ear. The HRTF to be interpolated is omitted from HRTF measurements.
This process is repeated for five elevation angles 0°, +£10°, +20°. The interpolation
result is compared with the corresponding available measurement and the Signal-
to-Distortion Ratio (SDR) is computed,

> oato ()
>t Th(n) = h(n)]?
where h(n) denotes a measured HRTF at a certain angle for the left ear, h(n)

denotes an interpolated HRTF at the same angle, and N}, is the HRTF length, e.g.,
N, = 512.

SDR = 10log

50 I I I I I ! !
| | | | | —e— Bilinear
B I o I
U7 R S — SRS SR SR AN
! ! ! ! ! —+— State-Space

SDR (dB)
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Figure 3.3: Interpolation accuracy.

Figure 3.3/ shows the interpolation efficiency averaged over the five elevation
planes tested. Compared with bilinear, DFT, and spline interpolation methods
using time correction, the state-space rational interpolation shows comparable per-
formance from 0° to 45° azimuths and from 345° to 360°. Over all the remaining
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azimuth range the SDR for the rational method is higher than that for the other
three methods. The mean SDR value for the state-space method is 28.3 dB com-
pared to 12.07 dB, 9.46 dB and 10.44 dB for the bilinear, DFT, and spline methods,
respectively.

Compared with existing interpolation techniques, the state-space method we
have introduced allowed very precise reconstruction of HRTFs and proved to have
higher performance for a wide range of azimuths [66], [59], [62]. Nevertheless, it
should be noted that more gain can be achieved if we use the time correction method
along with the presented rational interpolation method. We will use this inter-
polation method to increase the accuracy of a novel sound localization algorithm
presented in chapter 6.

3.2.5 Subjective Analysis

In order to verify the theoretical results, we carried out headphone listening exper-
iments. The goal was to study the performance of the state-of-the-art interpolation
techniques as compared to our RSS method. A total of 20 male test subjects partici-
pated in the listening experiment with ages ranging between 23 and 35. The hearing
of all test subjects was tested using standard audiometry. None of the subjects had
reportable hearing loss that could effect the test results.

Test Methods

In the first test method, the subjects were asked to determine the angle of arrival of
the synthesized test tones. In each trial the same test signal was repeated two times
with 0.5s silence between each play. The HRTF used to synthesize the test tones
was randomly chosen from 12 Kemar HRTFs measured every 30° in the horizontal
plane. This type of subjective tests, however, is prone to localization errors such as
in-head localization and front back confusions, therefore, a second listening test was
implemented.

In this test, an A/B paired comparison hidden reference paradigm was em-
ployed. The subjects were asked to grade localization impairment against the hid-
den reference on a continuous 1.0 to 5.0 scale (1- very different, 2- Slightly different,
3- Slightly similar, 4- Relatively similar, 5- No difference). The hidden reference in
each case was randomly chosen from the 72 measured Kemar HRTFs of the hori-
zontal plane. The other test signal was synthesized using interpolated HRTF's. The
four above-mentioned interpolation methods were tested. In each trial two test se-
quences were presented with 0.5s between each sequence, i.e. A/B-0.5s - B/A. Two
different random orders of presentation were used to minimize bias. Listeners were
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Figure 3.4: Predicted localization accuracy averaged for 20 test subjects every 30°
from 0° to 330°.

given written and oral instructions

Test Stimuli

A pink noise! sample with a length of one second was used in the final experiment.
The level of the stimuli was adjusted so that the peak A-weighted SPL did not
exceed 70 dB at any point. This has been done in order to avoid level adaptation.
No gain adjusting of the test sequences calculated for one person was carried out,
since the only variability in level was introduced by the used HRTF filters.

3.2.6 Performance Results

The test stimuli were presented over headphones. A computer keyboard was placed
in front of the test person. Each test person was individually familiarized and

!Pink noise or 1/f noise is a signal whose power spectral density is proportional to the reciprocal
of the frequency. The name arises from being intermediate between white noise (1/f0) and red
noise (1/f2), more commonly known as Brownian noise.
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Figure 3.5: Listening test results averaged over 20 subjects: perceived angle versus
target angle.

instructed to grade the localization scales for each test signal pair. The results of
the listening tests were gathered automatically by a program and transferred into a
statistical software package where analysis was performed.

For the first test, every subject was asked to predict an angle of arrival for each
of the 12 test tones synthesized using HRTFs interpolated every 30° in the horizon-
tal plane. The HRTFs were interpolated using the above mentioned interpolation
techniques.For every synthesized test tone, i.e. for every target angle, the predicted
values were averaged over 20 subjects. Figure 3.4/ summarizes the average predicted
angle of arrival vs. the target angle. The HRTFs used in tone synthesis where inter-
polated using the RSS and Spline; the linear and DFT methods performed similar
to Spline and were therefore not included in Figure 3.4/ for clarity. One can observe
that the average localization accuracy has a wider confidence interval for HRTF's ob-
tained using Spline interpolation as compared to the RSS method. Furthermore, for
the interval 240° to 310°, the subjects reported highest localization accuracy when
the RSS method was deployed. This result is conforming with Figure 3.2/ where
for the same angular interval, the interpolated HRTF has SDR values above 40dB.
In addition, the front back confusion problem is clearly noticeable at both 0° and
180°, i.e. at those locations where the sound source is directly in front or behind
the listener.
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3.3 Efficient State-Space HRTF Inversion

Table 3.2: Performance comparison in terms of million instructions per second

(MIPS).
Interpolation Convolution MIPS
RSS 4,722,135 5,564,146 10.28
Linear 906,217 5,564,146 6.47
DFT 2,116,354 5,564,146 7.68
Spline 1,348,091 5,564,146 6.91

In the second test, the subjects were not asked to determine the angle of arrival
of the test tones. This rules out the possibility of checking for localization errors
such as in-head localization or front back confusions, especially that we are using
Kemar HRTFs, i.e. non individualized HRTFs. Therefore we made the assumption
that the reference HRTF is "perfect” and the quality degradation is always related
to that reference. Figure 3.5 summarizes the average localization accuracy for every
test person. Complying with the theoretical results, the RSS interpolation method
yields better localization results than the state-of-the-art methods and consequently
insures high-fidelity reproduction of the HRTFs.

Finally, for the verification of real-time implementation, a comparison of meth-
ods in terms of CPU usage, e.g. million instructions per second (MIPS), is shown in
Table [6.1. The table displays the number of instructions used for processing 1 sec-
ond of input data. The kernel of suggested RSS algorithm requires 10.28 MIPS for
the input data sampled at 44.1kHz. While this value exceeds the processing power
of the other interpolation methods, it remains well below the real-time processing
bound of our 32-bit Pentium IV, 1.4 GHz platform s [69)].

3.3 Efficient State-Space HRTF Inversion

Our approach for sound localization depends on finding the inverse filters of the
HRTFs, and saving them for later use. The inverse filter was made available by
simply exchanging the values of the numerator and the denominator, i.e., for the
FIR filter FI(2) = co+c1- 2t + ey 27+ ... + ¢,27", the inverse filter would be
G(z) = ﬁ Similarly, this concept applies for the IIR filter.

However, direct methods to invert FIR filter transfer functions may produce
unstable filters. This is the case with the inverted HRTF filters, using the FF'T
method, especially because all HRTFs include a linear-phase component, i.e. pure
delay, which is vital for maintaining the correct inter-aural time difference. The
task is then to take the non minimum-phase filter and determine a corresponding
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minimum-phase filter, which can then be safely inverted to produce a stable inverse
filter. The resulting filter may be non-causal but serves as an approximation to
the original unstable filter. Non-causality is a small price to pay if magnitude and
phase information are critical to performance, which is the case in our situation.
The following section will provide details of the inversion process we have adopted
in this work using an inner-outer factorization approach.

One method which handles the previously mentioned inversion problem ensur-
ing stability is to replace the unstable inverse by an anti-causal yet bounded inverse.
This can be done efficiently using the state-space inversion method with inner-outer
factorization. According to this method, the inner factor captures the part of the
transfer function that causes the instability in the inverse, while the outer part can
be straightforwardly inverted.

3.3.1 Problem Formulation

There are a variety of reasons why a state-space representation of the HRTFs is
beneficial. While transfer functions only deal with input/output behavior or the
system, state-space forms provide an easy access to the internal features and response
of the system. General system properties, for example, the system controllability
or observability can be defined and determined. One of the main advantages of
the state-space modeling is the possibility of ordering the system states based on
their significance to the representation of the system characteristics. This is a very
important feature that allows model simplification, e.g. HRTF order reduction, by
direct truncation, i.e., by discarding its ”less important” states.

For rational time-invariant single-input single-output systems, the inner-outer
factorization is a factorization of an analytical (causal) transfer function H(z) into
the product of an inner and an outer transfer function according to

H(z) = Hy(2)V(2). (3.7)

The inner factor V(2) has its poles outside the unit disc and has modulus 1 on the
unit circle, whereas the outer factor H,(z) and its inverse are analytical in the open
unit disc. Before deriving these inner and outer factors, we will review the steps
involved in inverting a given transfer function given a state-space representation
thereof.

Let H(z) = D + Cz(I — Az)"'B be a minimal state-space representation of a
given HRTF, with D being square and non-singular. This transfer function can also
be represented by the state-space equations,

Tpp1 = Axy + Buy,

3.8
yr = Cxy, + Duy, (3:8)
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where z is the n-dimensional state vector, u is the scalar system input, y its output,
with the matrix A, vectors B and C, and scalar D fully defining the system.

Starting with the transfer function of the general state-space model, H(z) =
D+Cz(I— Az)"' B, we may first observe that the poles of H(z) are either the same
as or some subset of the poles of H,(z) = z(I — Az)™' (They are the same when
all modes are controllable and observable). By Cramer’s rule for matrix inversion,
the denominator polynomial for H,(z) is given by the determinant D(z) = |(Iz7! —
A)71|, where |.| denotes the determinant of a square matrix. In linear algebra,
the polynomial D(z) = |(Iz~! — A)7!| is called the characteristic polynomial for
the matrix A. The roots of the characteristic polynomial are the eigenvalues of A.
Thus, the eigenvalues of the state transition matrix are the poles of the corresponding
linear time-invariant system. In particular, note that the poles of the system do not
depend on the matrices B, C, and D, although these matrices, by placing system
zeros, can cause pole-zero cancelations (unobservable or uncontrollable modes).

The direct way of inverting the transfer function H(z) results in an unstable
system, knowing that H(z) represents a non minimum-phase transfer function. This
unstable inverse could be, in state-space, directly derived. We first take the second
part of (3.8) and solve for u:

up = D7y — D1 Cuy.. (3.9)
Inserting this in the first part of (3.8)
Tpp1 = Az + B(D 'y — D™'Cxy), (3.10)
leads to the inversion in the state-space, which can be written as

Lht1 = (A — BD_lC)xk + BD_lyk 311
U = —D_lka + D_lyk ( ' )
We denote the quadruple {4, B,C', D}, where A= A — BD"'C, B=BD™ ', C =
—D'C, and D = D, as the state-space realization of the unstable inverse transfer
function, H~!(z), corresponding to the inverse HRTF. The state-space realization
A has its poles outside the unit circle and, therefore, drives the system unstable. To
ensure stability, we implement the inner-outer factorization theorem stated below.

3.3.2 Inner-Outer Factorization

Given a minimal state-space realization of the transfer function H(z), we would like
to find the factors V' (z) and H,(z), as in (3.7), where V(z) is unitary and H,(z) is
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an outer function, that is to say it is minimum phase, and hence H,!(z) is bounded
but not causal.

Equation (3.7) can be expressed in a state-space form:

D+ Cz(I—A2)'B= (3.12)

[Dy + Coz(I — A2)'B] [D, + Cy2(I — Ayz) B, ] (3.13)

where {A,, By, C,, D, } is a realization for V (z), and {A, B,Cy, Dy} is a realization
for H,(2).

Expansion of the quadratic term in (3.12), and equating members leads to

{g g} POZ ﬂ N P(; gﬂ {é gﬂ (3.14)

where the diagonal matrix Y satisfies the Lyapunov-Stein equation

Y = BB + AV A” (3.15)

To get the inner and outer factors we are looking for, Eq. (3.15) must be
solvable, and the kernel and maximality requirements on Y and D, must indeed
produce an outer factor H,(z).

Theorem: Let W be a unitary matrix, and Y be a uniformly bounded matrix
which satisfies the following equality,

[g lB?} P(; (I)] - K gj W (3.16)

such that Y has a maximal dimension and ker(Y.) = 0. Let

w-[h 8]

o b (3.17)

Then {A,, B,,Cy, D,} is an isometric realization for the sought inner factor V'(z),
and {A, B, Cy, Dy} is a realization for the outer factor H,(z). The proof of the above
theorem is detailed in [33]. In appendix |A| we recapitulate the main steps of this
theorem.

We shall use the above-mentioned state-space inversion algorithm to consider-
ably stabilize and enhance the performance of our new sound localization techniques
presented in the following chapter.

52



Chapter 4

Enhanced Sound Source
Localization Techniques

In this chapter, we have considerably improved the initial matched filtering approach
to sound localization in order to achieve low-complexity tracking of moving sound.
the humanoid detects the current location of the sound source using a number of
correlation operations between the input signals at the microphones and a generic
set of transfer functions. Using a properly tuned Kalman filter, a Region Of Interest
(ROI) is automatically extracted within the HRTFs, leading to a faster detection,
due to less correlation operations and low processing power requirements. The
proposed method is demonstrated through simulations and is further tested in a
household environment. In contrast to microphone-array methods, using only two
microphones, the new system demonstrated high precision 3D sound tracking and
enabled a low-complexity implementation on the humanoid DSP platform [66].

4.1 Source Cancelation Algorithm

In the previous algorithm, the main goal was to pass the received signal through
all possible inverse filters. The set of filters from the correct direction would result
in canceling the effects of the HRTF and extracting the original signal from both
sides [60]. However, a more direct approach can be taken to localize a sound source.
Instead of attempting to retrieve it, discarding the original signal from the received
inputs, so that only the HRTFs are left, may be possible. Such an approach is
denoted as the Source Cancelation Algorithm (SCA) and is illustrated in Figure
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Figure 4.1: Flow chart of the Source Cancelation Algorithm (SCA).

4. 1.

Basically, the received signals at the microphones inside the ear canals could
be reasonably modeled as the original sound source signal convolved by the HRTF.
Looking at the signals in frequency domain, we see that if we divide the left and
right transformed signals, we are left with the left and right HRTFs divided by
each other. The sound source is canceled out. Like this, the SCA depends only
on the correlation factor between incoming and saved HRTF's ratios. Hence, the
SCA outperforms the previously proposed method as it is independent from the
characteristics of the impinging sound sources on the artificial ears and torso, which
ensures more stability and more tolerability to noise and reverberations.

With two Fourier transforms and one array division operation, the original
signal is removed and the HRTFs are isolated. The resulting ratio can then be
compared to the ratios of HRTFs which are stored in the system. These ratios are
assumed to be pre-calculated offline and saved in the system database, since they
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do not change. Additionally, the correlation operation is performed in the frequency
domain to eliminate the need for inverse Fourier transforms.

In a hardware-based application, using the SCA would greatly reduce hardware
complexity as well as speed up processing. Compared to the original algorithm,
this new approach eliminates 1420 array multiplications and 1420 inverse Fourier
transforms, and replaces them with one single array multiplication.

4.1.1 Kalman Filtering and ROI Extraction

Although applying appropriate reduction techniques, as in chapter 2, the length of
the impulse responses can be reduced to a hundred or even fewer samples, thus
reducing the overall localization time, the HRTF database could be very dense, and
the convolution with all possible HRTFs in the database becomes computationally
exhaustive. To solve this problem, especially for moving sound sources, a Kalman
filter is tailored to predict a ROI, the sound source might be heading to, according
to some movement models. Therefore, a quick search for the correct HRTF pair
within a small ROI is now ensured, and, consequently, a very fast tracking of the
moving sound trajectory [74]. The workflow of the SCA attached to a Kalman filter
is depicted in Figure 4.2.

The sound localization algorithm initializes by making a search in the whole
HRTF dataset looking for the starting position of the sound source. Once the
initial position is pinpointed, an initial ROI is localized around this initial position.
Then, the source starts moving, and a new ROI is identified and automatically
updated into the system. The Kalman filter used for the ROI updating consists of
a set of mathematical recursive algorithms computationally capable of predicting
the future state of a process by minimizing a mean of the squared error between
the measurements and the predictions of the moving sound locations. A detailed
description can be found in [132].

The Kalman filter we are utilizing [65], applies to a linear dynamical system,
the state space model of which consists of two equations:

Tpr1 = Axp+ Bup+w (4.1)
Ukt1 = Crpptw (4.2)

Equations /4.1 and /4.2 are called the process and the measurement equations respec-
tively. The variable x € R" is the state of the discrete-time system and y € R™ is
the system’s output such as positions or angles depending on the movement model.
The variable u models the sound source velocity. The random variable w and v rep-
resent the white gaussian process and measurement noise, respectively. The n x n
matrix A relates the state at the current time step k£ to the state at the future step
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Figure 4.2: Flowchart of the Source Cancelation Algorithm using a Region of Interest
(ROI).

k + 1. The n x [ matrix B relates the optional control input u € R to the state z.
The m x n matrix C' relates the state to the measurement y;.

The linear model we have adopted corresponds to a sound source moving with
constant velocity. This velocity is incorporated within the state vector, x(k) =
(x, yzlz,x', 1,2)T, by taking the derivative with respect to time, & = fl—f, = Cfl—i{ and
z = 2. According to the movement equations, based on Newton, the sampling time

T for each coordinate A € {x,y, z} is calculated for the transition from T} to Ty ;:
Api1 = Ap + TA, (4.3)
Ay = Ay, (4.4)

The cartesian coordinates, provided by the Kalman filter using the above-
mentioned model, are transformed to spherical coordinates to stay compatible with
the SCA azimuth and elevation coordinates.

The above mentioned localization techniques are simulated and further tested
in a real-life environment. A KEMAR head mounted on an artificial torso and
equipped with two small microhpones and silicon outer ears is available for the tests.
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Figure 4.3: Percentage of correct localization using DFE, PCA and BMT reduced
HRTFs.

Beside the normal testing procedure, a case study is presented for the situation where
the humanoid is to detect sound without using its pinnae, i.e. the silicon outer ears
are taken away.

4.1.2 Simulation Results

The simulation test consisted of having a broadband sound signal filtered out by the
effect of the 512-sample HRTF at a certain azimuth and elevation. Thus, the test
signal was virtually synthesized using the original HRTF set. For the test signal
synthesis, a total of 100 random HRTFs were used corresponding to 100 different
random source locations in the 3D space. In order to insure rapid localization of
multiple sources, small parts of the filtered left and right signals are considered (350
msecs). These left and right signal parts are then correlated with the available 710
reduced and state-space inverted HRTFs. See chapter 3, section 3.3/ for more details
about the state-space HRTF inversion. Basically, the correlation should yield a
maximum value when the saved HRTF ratio corresponds to the location from which
the simulated sound source is originating. Therefore, we base our localization on
the obtained maximum correlation factor. The reduction techniques, namely DFE;,
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Figure 4.4: Percentage of correct localization using SCA compared to the state-space
inversion, and to the original method in [66].

PCA and BMT were used to create two different reduced models of the original
HRTFs. The performance of each of these models is illustrated in Figure i4.3.

To simulate the reverberation in our room environment, the image method for
room acoustics was used [7]. A reverberation time of RT = 0.21s was chosen. The
simulation setup and room dimensions were defined to match the experimental room
environment. The data received at each microphone was obtained by convolving the
broadband source signal with the corresponding transfer functions resulting from the
image method between the source’s and microphone’s positions. After recombining
the convolution results, random Gaussian noise was finally added to each microphone
signal yielding an SNR level of 20dB.

Using the diffuse-field equalized HRTF set, the simulated percentage of correct
localization was around 96%, whereas using the BMT-reduced set, the localization
percentage was between 53% to 92% with the HRTF being within 10 to 45 samples.
Moreover, the PCA-reduced set yielded a correct localization of 42% to 91% with the
HRTF dataset being represented by 10 to 80 filter coefficients. Most significantly, it
was observed that, up to order 30 PCA-reduced and order 35 BMT-reduced HRTFs,
all the falsely localized angles fall within the very close vicinity of the original sound
locations.

58



4.1 Source Cancelation Algorithm

70 T T T T T T
65— —- (R I i ,,,,,,,,,,,,, —— Original Method i
60 | —©— State-Space Inversion

Average Distance in [°] from the Target Angles

HRIR Filter Coefficients (Filter Order)

Figure 4.5: The falsely localized sound sources: average distance to their target
positions, for every HRIR length.

The performance of the original method and the enhanced one, i.e. SCA
algorithm, with state-space inversion is illustrated in Figure 4.4. The solid line with
square markers, as well as the dot at the top right side of the figure, show the SCA
percentage of correct localization versus the length of the HRTF in samples. The
solid line with circle markers, as well as the plus sign, show the state-space inversion
percentage of correct localization. The solid line with triangle markers, and the
multiplication sign, refer to the previous FFT method performance [82) 66].

Using the diffuse-field equalized 128-sample HRTFs, HEEE, the SCA percentage
of correct localization is 100 %, this means that all the 100 locations where perfectly
detected at their target 3D location. The state-space inversion algorithm correctly
locate 99% of the sources, compared to 96% for the previous method using FFT
inversion.

Using the PCA-reduced set, HE7% the SCA percentage of correct localization
falls between 58% to 98%. The state-space inversion localization percentage is lower
and falls between 55% to 97% compared to 42% and 91% for the previous FFT
method, with the HRTF being within 10 to 45 samples, i.e. 10 < m < 45. It
should be noted that, while using 35 PCA-reduced HRTF's, all of the falsely localized
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angles fall within the close neighborhood of the simulated sound source locations.
A plot reporting how far, on average, are the falsely localized angles from their
target location, can be seen in Figure 4.5, Intuitively, with more HRIR samples,
the average distance to the target sound source location decreases. Note that the
minimum distance to the target position is 5°, and this is due to the fact that the
minimum angle between the HRTF's of the database we are using is 5°. Obviously, if
we use a densely sampled database, e.g. with a HRTF every 1°, the average distance
to the target sound locations is expected to notably decrease.

4.1.3 Experimental Results

In our household experimental setup, 100 binaural different recordings of a broad-
band sound signal, placed at different angles around a artificial head, were obtained
using a artificial head and torso with two artificial ears in a reverberant room. Our
hardware setup is illustrated in Figure 4.6.

The speaker was held at a constant distance of 1.3 meters from the head. The
recording environment was a laboratory room measuring where the walls, ceiling,
and Floor are made of unpainted concrete. One wall has a 5m x 2m glass window
and is facing the dummy head. The dummy head and torso are placed on a rotating
table in the middle of the room. The dummy head artificial ears and microphones
are held at a constant height of 1.5 meters from the floor. The room contains objects
like tables, chairs, and computer screens.

The level of reverberation in the room was experimentally measured by means
of a loudspeaker emitting a high level white noise signal. Measuring the 60dB decay
period of the sound pressure level after the source signal is switched off, for a number
of speaker and microphone positions, provided the frequency-averaged reverberation
time RT = 0.21s.

Figure 4.6: The laboratory hardware setup.
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To keep a fair comparison with the simulation setup, each of the recordings was
350 msecs long. The microphones were placed at a distance of 26 mm away from the
ear’s opening. The recorded sound signals, also containing external and electronic
noise, were used as inputs to the SCA, the state-space inversion algorithm, and the
original algorithm. A HRTF database reduced using the DFE method, HIE, was
available for the test.

Using the original method, 80% of the estimated angles are correctly localized,
compared to 97% for the simulated case. This difference is mainly due to the external
reverberation, and internal equipment noise, and due to the differences between the
artificial manikin model used in the experiment and the KEMAR model used to
obtain the HRTF dataset. The 20% falsely localized sound sources are located at
an average angular distance of 27.5° from the target angle.

Using state-space inversion, 88% of the estimated angles are found at the cor-
rect location, compared with the 99% obtained from the theoretical simulation. The
14% falsely localized sources are found at an average angular distance of 11.45° of
the target sound source location. This is a remarkable improvement, compared to
the repartition of the falsely localized angles in the case of the original method using
the FFT inversion.

Using the SCA, 94% of the estimated azimuth and elevation angles turned out
to be exactly at the target location, compared to 100% obtained from the simulation.
The other falsely localized 6% were identified at the near vicinity of the target
angles, with an average distance of 5.85°. Again, this is a notable observation,
and a considerable improvement compared to the original as well as the state-space
inversion algorithms. As foreseen in our theoretical study, the SCA outperforms, in
simulations as well as in real life, the previously proposed methods. This is due to
the fact that SCA is canceling the sound source signals, and thus the accompanying
noise, making it, thus, less dependent on the characteristics of the sound sources,
and consequently more stable and more tolerable to noise and reverberations.

4.1.4 A Case Study

Finally, a case study is performed to test the SCA algorithm in the special case
where the two pinnae of the artificial head are taken away. The microphones are
placed at a distance of 26 mm away from the ear canal opening. The performance
in this case is depicted in Figure 5.8. For comparison purposes, the SCA theoretical
and experimental performance for the artificial head deployed with two pinnae are
also shown. The line with circle markers represents the theoretical performance of
the SCA using PCA-reduced HRTFs, and the plus sign represents the performance
using 128-sample long DFE-reduced HRTFs. The line with circle markers, and
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the plus sign, correspond to the experimental setup, where the artificial head is
equipped with two artificial pinnae. The line at the bottom of the figure, and the
multiplication sign, represent the performance of the SCA in the no-pinnae case.

The degraded performance of the SCA in the no-pinnae case is obvious. The
pinnae consist of asymmetrical grooves and notches which accentuate or suppress
the mid and high frequency energy content of the sound spectrum to a certain
degree, depending very much on both the location and frequency content of the
sound source. These filtering effects are embedded within the HRTF's. Essentially,
the HRTF modifies the spectrum and timing of a sound signal reaching the ears
in a location dependent manner which is recognized by the listener and used as a
localization cue. When the pinnae are taken away, the incoming signal lacks the
HRTTF filtering effects and the SCA fails.

If the HRTFs were initially measured using a artificial head without pinnae,
the localization accuracy would be expected to increase, but only to some extent,
since without pinnae, many problems will emerge, especially the famous front-back
confusion ambiguity. As early as 1967, the filtering effects introduced by the pinnae
were given great importance, especially in the work of Bateau [12]. This work
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Figure 4.7: Case study: The SCA theoretical and experimental performance using
a artificial head with or without pinnae.
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demonstrated that the duplex theory, which was prevailing at that time, and which
explains the human hearing localization based solely on the two I'TD and ILD cues,
is insufficient in explaining the human spatial hearing, and in resolving ambiguous
situations such as the front-back confusion problem.

4.1.5 Performance Comparison

We evaluate the performance of our SCA algorithm in comparison to the well-known
generalized correlation method described in chapter 1. The method applies Fourier
transform to both microphone signals and uses weighting functions to accentuate
the signal passed to a correlator for those frequencies at which the coherence or
signal-to-noise ration(SNR) is highest. In our experimental setup, 100 binaural
different recordings of a broadband sound signal, placed at different angles around a
artificial head, were obtained using KEMAR. Table 4.1 shows different correlation-
based localization methods and their average deviation to the target sound source
location.

The table shows that the localization error for the direct correlation method
without a weighting function is the highest. This is obvious in our reverberant
environment. The localization error decreases when applying SCOT, PHAT, or ML
and reaches a minimum with the SCA algorithm. It should be noted that the above
mentioned correlation methods using only two microphones fail to detect sound in
three dimensions and suffer from the front/back confusion problem. Conversely,
using two microphones, the SCA method is not restricted to azimuthal localization,
it covers all the three dimensional space.

Moreover, it should be noted that the HRTF dataset is measured on the hori-
zontal planes from 0° to 360° with a minimum of 5° increments and on the vertical
plane from -40° to 90° with 10° increments. Therefore, the results indicate that
we can localize the sound source with an accuracy of about 5°. If we construct
the HRTF dataset with smaller increments, the resolution of estimation will be
increased.

Hence, we have applied the new HRTF interpolation method [66] proposed in
chapter |3 to obtain a high-spatial-resolution HRTF database with one HRTF every
1° azimuth, spanning an elevation range from -20° to 60°. Using this database,
we compare our method with the 3D robotic sound localization system proposed in
[48].

This method uses a spherical robot head with spiral-formed ears of slightly
different sizes. The spiral form makes it easy to mathematically derive the IID, I'TD
and spectral cues used for localization. The robot was made to learn these cues by
supervised learning or by using vision. A total of 132 sound recordings were taken
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Table 4.1: Performance comparison with generalized cross correlation methods.

Mean Localization

Window Scope Error

direct correlation

KORR without a window 158
SCOT (Smoothed

Coherence Transform) suppresses tonal fractions 11.4°
PHAT (PHAse uses only the phase 0.0°
Transform) of the cross spectrum '

ML minimizes the variance of 850

(Maximum-Likelihood) |the time delay estimation

SCA (Source
Cancelation Algorithm)

HRTF-based localization 5°

in a silent room with a white-noise sound source located 1.5 meters from the robot.
Each of the recordings had a duration of 1 second. These recordings were used
to extract a database of features consisting of I'TDs and notch information. This
database was later used in a localization experiment done in a real environment.

In this case a speech signal is played at different angles and at a distance of 1.5
meters from the robot head. Within the range of head movements happening in the
experiment, i.e. from -30 to 30 degrees, the average error in the estimated azimuths
and elevations is 5.7 degrees. Outside this range, however, the method undergoes
front-back ambiguities and the localization errors increase considerably. Compared
to this method, our SCA localization algorithm exhibits an average angular error of
2.5° for speech signals and does not require any supervised learning or vision.

4.1.6 Region of Interest

In our second experimental setup, several binaural recordings of a broadband sound
source were taken. In every recording, the source is moving at 10°/sec, in the
zero-elevation plain, and is following a circular trajectory 2 meters away from the
humanoid head located in the center. The recorded sound signals, also containing ex-
ternal and electronic noise, were used as inputs to our sound localization algorithm.
The sound localization algorithm depicted in Figure 4.1 initializes by searching the
710 HRTF's, looking for the starting position of the sound source. Once the initial
position is pinpointed, an initial ROI is localized around this position. Next, the
source starts moving, and a new ROI is identified and automatically updated using
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Figure 4.8: SCA processing time for different ROI intervals.

a Kalman filter. This way, the sound localization operation, particularly the correla-
tion process, proceeds only in this ROI instead of searching the whole HRTF dataset.
Thus, a considerable and dispensable computation time is avoided. The size of the
generated ROI depends on the sound source’s velocity and acceleration and on the
model’s sampling time. Obviously, the faster the source moves, and the greater the
sampling time is, the bigger the ROI area becomes. To evaluate the performance of
the new sound tracking setup, we set the SCA algorithm to work with BMT-reduced
HRTFs of order 45. We measured the total time taken by the tracking algorithm to
localize the source at one instant in time, for several ROI lengths. Without a ROI,
the SCA runs through all 710 HRTFs and requires an average processing time of
0.741 sec to detect the location of a sound at a certain location. This localization
time dropped down to 0.052 sec on average by using a ROI 50° long in azimuth.
Further processing-time results, corresponding to diverse ROI lengths, are depicted
in Figure 4.8. The algorithm was implemented in Matlab and runs on a pentium IV
1.4 Ghz processor. Using a simple Kalman filter for predicting appropriate ROIs,
we attained a processing-time reduction of more than 90% as a result of less con-
volution and correlation operations. These computation reductions ensure a very
quick tracking behavior [75].
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4.2 Cross Convolution Approach

The matched filtering approach and SCA algorithm require the availability of the
inverse HRTFs. The problem arises when the inverted filter is an unstable one.
This is the case with the inverted HRTF filters especially that all HRTFs include a
linear-phase component, i.e. pure delay, which is vital for maintaining the correct
inter-aural time difference. Furthermore, both SCA and matched filtering assume
a non-reverberant environment. Hence, we propose an algorithm which is robust
to environmental noise and reverberations and which do not involve calculation of
inverse HRTFs [85].

The flowchart for the convolution based HRTF algorithm is shown in Fig. [4.9.
The ® symbol in the figure indicates the convolution operator. The total number
of HRTF pairs are assumed to be N. The left and right received signals could be
modeled as the original signal convolved with the left and right HRTF's correspond-
ing to the direction of the sound source. If we convolve the left and right received
signals with the right and left HRTFs corresponding to the source direction, the
convolution results should closely match. Mathematically,this can be expressed as:

S, ®Hgr=(S®H,) @ Hg (4.5)

Sp@H, = (S®Hg) @ H, (4.6)

where ® indicates the convolution operator. The term S is the original signal coming
from a specific direction, and Sy and Sg are the signals received at left and right
microphones respectively. The two terms Hy and Hp are the left and right HRTFs
respectively. Fast Fourier transform is used to reduce the computational complexity
of convolution in time domain.

The convolution based algorithm operates as follows: In order to determine
the direction of arrival of sound, the left and right microphone signals, Sy, and Sy
must be filtered by all N right and left HRTFs. The HRTFs that result in a pair
of signals that closely resemble each other should correspond to the direction of the
sound source. The direction of the sound source is assumed to be the HRTF pair
with the highest correlation [86].

In order to compare the performance of SCA and convolution based HRTF
algorithm in a reverberant simulated environments, a total of 100 KEMAR HRTFs
corresponding to different locations in 3D space were randomly chosen and test
signals were synthesized by convolving a broadband speech signal with these HRTF's.
For each test signal, we processed 512 samples of the speech signal and we performed
two types of tests. In the first case, we considered the reflections of the source signal
to be the major factor affecting the binaural signals. For this purpose, to simulate
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Figure 4.9: Flow chart of the convolution based algorithm.

the reverberation in our room environment, the image method for room acoustics
was used [7]. In the second case, broadband noise was the major affecting factor.
The top subplot in Fig. 4.10/ shows the percentage of correct localization versus the
reflection to signal ratio for both convolution based and SCA methods. The bottom
subplot depicts the noise to signal ratio behavior. Both methods share a similar
performance for reflection to signal ratio less than 0.3 and for a noise to signal
power ratio less than 0.15. However, for higher noise and reverberation levels, the
convolution based method outperforms the SCA algorithm. This is due to the fact
that the inverse filtering operation in SCA causes the inverses to explode since the
HRTFs are not minimum-phase filters.

The cross convolution algorithm, however, have to run through the correlation
process for N = 710 HRTF pairs every time a sound source is to be localized. This
increases the computational complexity and prohibits real time performance. In
real environments, there are several effects such as noise and reverberations due to
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Figure 4.10: Comparison of cross convolution method and SCA in presence of re-
flections and noise.

which front-back reversals in the azimuthal plane increase and the rate of erroneous
detections increases. To correct these false localization errors and decrease the
computational complexity, we shall apply an extended Kalman filtering to the output
of the convolution based localizer.

4.2.1 Extended Kalman Filtering

The cross convolution based algorithm described in the previous section yields a
unique azimuth and elevation corresponding to a specific HRTF pair. This azimuth
will constitute the input to the extended Kalman filter [18] properly tuned to mini-
mize the front-back reversals in the azimuthal plane. The Kalman filter will update
and track the sound source on a 'per scan’ basis where ’scan’” means an interval
of time after which an azimuth estimate is produced by the convolution based al-
gorithm. In order to remove front-back azimuth reversals and false detections in
the azimuthal plane,we have used horizontal turn model which can track the sound
source in the azimuthal plane. The state vector x is defined as x = [z, v, y,v,]7,
where x and y are the sound source coordinates,v, and v, are the corresponding
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velocities [18]. The turning rate w of the sound source is updated in every scan. If
the difference of azimuths, estimated using the convolution based localization algo-
rithm, in the current and previous scans is beyond an allowable maximum value of
100°, we do not update the turning rate and we check for a possible occurrence of
front-back reversal. In case we have an erroneous detection without azimuth rever-
sal, we keep the turning rate unchanged and ignore the azimuth in the current scan.
The azimuth estimated by the Kalman filter will be equal to azimuth predicted in
the last scan. For horizontal turn model, the state transition matrix ® is defined as,

1 sinwT Jw 0 —(1—coswT)/w
0 coswT 0 —sinwT’
¢ = 0 (1—coswT)/w 1 sinwT Jw (4.7)
0 stnwT 0 coswT
where T is the scan time.
The process noise covariance is given as
T4 T3/2 0 0
T3/2 T* 0 0
Q = 0g2 0 0 T4/4 T3/2 (48)

0 0 T2 T?

where 0,2 is the random acceleration variance. The matrix Q represents random
motion entering the system between sampling intervals.
We have defined our measurement vector as

z(k) = [rcosf(k)cosp(k), rsind(k)cosp(k)]* (4.9)
where 1,6 and ¢ are the source range,azimuth and elevation.The measurement matrix
is given as,

100 o] (4.10)

Hx(k):{o 010

Since the sound source dynamics are difficult to be predicted with single model, we
use an interactive multiple model scheme [18] to track sound in the azimuthal plane.

4.2.2 Implementation

Figure4.11/shows the block diagram for real time implementation of HRTF-Kalman
algorithm. Using two microphones inserted in the ear canals of a humanoid head,
the data acquisition module acquires 10000 samples per second from a moving sound
source. A moving average filter is used to smooth the acquired data. The convolution
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Figure 4.11: Block diagram of the HRTF-Kalman algorithm.

based HRTF algorithm acquires the data from the microphones inside the ear canal
of the humanoid head as explained in previous sections, and estimates the azimuth
and elevation of the sound source. The estimated azimuth constitutes the input to
the extended Kalman filter which is responsible for correcting azimuthal localization
error caused by front-back reversal. The estimated azimuth and elevation are sent
out to a 3D display. In the first scan, the convolution based HRTF algorithm has to
run over all possible azimuths to check for maximum correlation. Depending on the
association of the sound source dynamics in the current and previous scans, a track
will be initiated. After a track is initiated, a region of interest is created and the
localization algorithm has access to a selected set of HRTF pairs corresponding to
indices of azimuths in the vicinity of the azimuth that was predicted in the last scan.
Thus, the computational burden of convolving with all HRTF pairs is considerably
minimized and the localization speed increased by a factor of 85% on average.

4.2.3 Performance Analysis

In our experimental setup, we have placed a KEMAR artificial torso and head
equiped with two silicon ears in a highly reverberant room exhibiting reflections
and background noise like computer fans and people walking. The different pa-
rameters for the extended Kalman filter are set to the following numerical values,
0,=0.1 m/sec? ,=0.1 m, T =0.5sec, where o, and o, are the random acceleration
and measurement standard deviations, 7" is the scan time. Different audio signals
including male and female speech signals as well as broadband clicks were moved
simultaneously around the humanoid head at different elevation angles. Both con-
volution based and HRTF-Kalman algorithms are set to process the data collected
by the two microphones inside the ear canals of the humanoid. Using the convo-
lution based method without Kalman processing, the front-back reversal problem
emerges and 74% of the estimated azimuth and elevation are detected correctly at
there target location. Nevertheless, deploying the HRTF-Kalman approach under
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Figure 4.12: Localization performance averaged over different speech and broadband
sound signals moving clockwise around the head.

the same high reverberation condition, the average percentage of correct localization
improved to 91% and the front-back reversal problem is resolved. Figure!4.12 shows
the results of both algorithms for a male speech source moving around the head
from 0° to 360° in azimuth. Using only convolution based HRTF localization algo-
rithm, several front-back azimuth reversals occur along with occasional erroneous
detections. For example, a front-back reversal error is observed when the convolu-
tion based localization algorithm yields azimuth values of 70° and 305° for sound
source actually located at 110° and 235°, where azimuth 0° is defined as the location
directly facing the humanoid. This problem is completely resolved with the help of
extended Kalman filter and the overall performance increases from 73% to 94% of
correctly localized sound sources. The remaining 6% deviate 1.7° on average from
their target location. This is due to the differences between the dummy manikin
model used in the experiment and the KEMAR model used to obtain the HRTF
dataset.

Furthermore, we compare our method with the robotic sound localization sys-
tem proposed in [49]. Within this framework, 4 microphones are appropriately
arranged on the surface of a spherical head, three at the side and one on the top.
The microphones were placed 15 cm apart, i.e. about 1.5 times the interaural dis-
tance of humans. A sphere-shaped head was used to simplify the formulation of the
time difference calculation. By using the top-mounted microphone, the elevation
of sound sources based on the time difference can be localized without using the
relatively uncertain spectral difference cue.

Similar to [49], we have conducted sound localization experiments with testing
sounds including coin-dropping, glass-broken and a piece of classic music were used.
The sampling frequency was 44,1kHz. The distance of the sound source was set
to 1.0m. Elevation testing was performed for -15, 0, 15, 30, 60 and 90 degrees,
with the azimuth set to 0 degree. Azimuth testing was performed for -90, -45, 0,
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Table 4.2: Performance comparison with the arrival time difference method [49].

N}lmber of . 6 5 4 3 9 Cross (.jon-
microphone pairs volution
Azimuth 2.1° 2.1° 2.4° 1.5° 2.6° 1.9°
Elevation 2.9° 2.9° 2.7° 2.6° 2.7° 2.3°

45, 90 degrees with the elevation set to low (-15 degrees), mid (0 degree) and high
(60 degrees) for all cases. The average localization errors using different number of
microphone pairs are shown in Table 4.2. It is shown that choosing three microphone
pairs with smallest arrival time difference achieved the best performance.

Compared to the method in [49], our cross convolution algorithm deploys two,
instead of four, microphones and is outperforming in elevation while exhibiting a
similar localization performance in azimuth. It should be noted, however, that the
average errors revealed by the arrival time difference method in Table 4.2 are for
sound sources located in the frontal hemisphere with respect to the spherical head,
i.e. for azimuths between -90 and 90 degrees. The performance of the method
degrades considerably for sound sources coming from behind the spherical robot
head, while this is not the case for the SCA algorithm.

Applying the presented sound localization methods, chapter 5/ addresses the
challenging task of the concurrent sound source localization and separation in re-
verberant environments, using only two microphones.
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Chapter 5

Concurrent Sound Source
Localization and Separation

We combine binaural sound-source localization and separation techniques for an
effective deployment in telerobotics. Relying on the concept of binaural hearing,
where the human auditory 3D percepts are predominantly formed on the basis of
the sound-pressure signals at the two eardrums, our robotic 3D localization system
uses only two microphones placed inside the ear canals of a robot head equipped
with artificial ears and mounted on a torso. The challenging task of using only two
microphones for 3D localization is made more intriguing by allowing more sources
to coexist and randomly move within the robot’s environment. The proposed lo-
calization algorithm exploits all the binaural cues encapsulated within the HRTFs.
Taking advantage of the sparse representations of the ear input signals, the 3D posi-
tions of three concurrent sound sources are extracted. The location of the sources is
extracted after identifying which HRTF's they have been filtered with using a well-
known self-splitting competitive learning clustering algorithm. Once the locations
of the sources are identified, they are separated using a generic HRTF dataset. Sim-
ulation results demonstrated highly accurate 3D localization of the two concurrent
sound sources, and a very high Signal-to-Interference Ratio (SIR) for the separated
sound signals.
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5.1 Motivation

One of the most challenging characteristics of human spatial hearing, is the cocktail
party phenomenon, where attention pertains to the ability of a listener to focus
on one channel while ignoring other irrelevant channels. In robotics, on the other
hand, efficient and accurate binaural 3D localization of several sound sources is
quite a challenging task. In recent years, a good number of algorithms have been
proposed to tackle this problem. Basically, most of the detection methods used rely
on microphone arrays, where the number of microphones is more or equal to the
number of sound sources to be localized concurrently in 3D [52]. Among them, some
approaches deal with simultaneous localization and separation of sound sources [123].
However, a more intriguing, and naturally more demanding scenario, is localization
of sound sources that outnumber the available number of microphones. Very few
approaches were able to estimate the position of the sound sources, while only
providing azimuth angles [94]. Humans and most mammals, however, are capable
of detecting multiple concurrent sound sources with two ears by assessing monaural
cues and binaural cues like ILD and ITD, in several frequency bands.

Recent investigations on the auditory space map of the barn owl, a predator
with an astonishing ability to localize sound, revealed that the ILD/ITD cues cluster
around two positions in the auditory map when two uncorrelated sound sources are
simultaneously present. These clusters stem from time-frequency instances when
one source predominates the other, i.e. has a stronger intensity [57]. Using this fact
we present two new approaches for separating and localizing two or more concurrent
sound sources in 3D using only two small microphones placed inside the KEMAR
artificial ears.

Section 5.2l describes an algorithm for two sound sources that iteratively adapts
the coefficients of a MIMO system and provides the two statistically independent
source signals. This well-known separation method which exploits the non-stationarity
of the sources is used to retrieve two speakers from two convolutive mixtures. By
using a simple relation between blind source separation and system identification,
the HRTFs that filtered the sound sources can be determined under the condition
of an anechoic environment.

The second algorithm, presented in section 5.3, applies Short-Time Fourier
Transform (STFT) to the ear signals and makes use of the sparseness of the sources
in time-frequency domain. If the concurrent signals are sparse, which is naturally
the case with speech signals, there must exist many instances when one source
predominates the other. In such cases, the ear signals cluster around the actual
HRTF, corresponding to the correct source location, in the single frequency bands.
The positions of the sources are finally determined by a database lookup. With the
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respective HRTF's of the database, the sources can be separated by inversion of the
HRTF system in case of two concurrent sound sources or by L1-norm minimization
in case of more than two sources. The CIPIC HRTF database containing HRIRs for
1250 positions in 3D space was used for the database lookup [6]. Its HRIRs were
measured at the CIPIC Interface Laboratory at the university of California, Davis.
The simulation results in section 5.5/ show that both algorithms localize two and
more concurrent sound sources with a high accuracy and separate them with little
cross-talk in the output signals [70].

5.2 Source Separation and Localization Using
Adaptive MIMO-Filtering

5.2.1 Source Separation

One can consider the space between the sound sources and the microphones of the
artificial head with its different transmission paths as a multiple-input multiple-
output (MIMO) system, with the two sound sources as the input signals and the
two ear signals as the output signals [19]. This system can be described by

x1 =hy1 - 51+ hoy - 52 (5.1)
T :h12 - 81 + hgz + SS9 (52)

where s; and sy represent the two concurrent sound sources, hi; and hyy correspond
to the HRTFs for the direct paths from the two sources to the head, hio and ho;
represent the crossing channels, and x;, x5 model the mixed signals collected by
the microphones at the end of the ear canals. Figure 5.1/ illustrates the differing
transmission paths from the two sound sources to the eardrums. These paths may
be regarded as linear, time-invariant systems and are represented by the HRTF's in
(5.1) and (5.2). The aim is now to find out the HRTF's the source signals were filtered
with on their way to the microphones. This is normally done by multichannel blind
deconvolution (MCBD) methods. However, the problem with traditional MCBD
methods is that the output signals are temporally whitened. To avoid this, we use a
convolutive blind source separation (BSS) algorithm proposed in [24] which prevents
such whitening effects. Its major advantage is that, if it is implemented in an efficient
way, it can be used for real-time applications. We perform BSS in the time-domain in
order to avoid the permutation problem which arises in combination with frequency-
domain convolutive independent component analysis in each frequency bin. Figure
5.2l shows the demixing filter system forcing its output signals y;(k) and yo(k) to
be mutually statistically independent. In order to achieve this, we use second-
order statistics which exploit the following two properties of the source signals: 1)
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$2

Figure 5.1: Differing transmission paths between sound sources and artificial head
microphones modeled as a HRTF MIMO system.

Non-whiteness, by simultaneous diagonalization of output correlation matrices over
multiple time-lags, 2) Non-stationarity, by simultaneous diagonalization of short-
time output correlation matrices at different time intervals. The proposed algorithm
is a block-online algorithm, i.e. it processes subsequent blocks from the microphone
mixture signals over a certain number of iterations in the off-line mode in order to
train the demixing filters. In [24] the cost function

m

J(m) = Z B(i, m){log det bdiagY ™ (i)Y (i) — log det Y (i)Y (i)} (5.3)

=0

is proposed for source separation, where (3 is a window function that is normalized
according to > ;" 3(i,m) = 1. This is meant to allow tracking in time-varying
environments (moving sound sources). The bdiag operation applied on a partitioned
block matrix consisting of several sub-matrices sets all sub-matrices on the off-
diagonals to zero. The parameter m is a block time index. The output signal
matrix Y can be written as

Y(m) = [Yilm) Ya(m)] (5.4
Y,(mL) oo Yy(mL—L+1)

Ymy= | B ik o b (55)
Y, mL+N—1) ... Yy(mL—L+N)

where L denotes here the length of the demixing filters and N is the block length.
The N x L matrix Y,(m) incorporates L time-lags in the correlation matrices into the
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Figure 5.2: Demixing system with filters wi1, w2, we; and wey which are adapted by
simultaneous diagonalization of short-time correlation matrices of output
signals y; (k) and yo(k) in order to separate the sound sources.

cost function in (5.3), which is necessary for the exploitation of the non-whiteness
property. Applying the natural gradient algorithm the updates

m 0 ... R,,R;}
AW (m) =4 B(i,m)W - L e ey (5.6)
=0 R?ﬂyl Ry1y1 o 0

are obtained for the coefficients of the demixing filters [24], where W is a 4L x 2L
matrix containing the filter coefficients of wy1, wis, we; and wqs. The matrix W has
the Sylvester structure

Wi Wig
W = 5.7
[Wm WQJ (5.7)
i Wpq,0 0 ce 0
Wpq,1 Wpq,0
: wpq,l e 0
Wpg(m) = | Wrai=t E o Wpgo (5.8)
0 Wpgi—1 "+ Wpg
0 c. 0 Wpq,i—1
) 0 0
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Note that the update matrix AW is also a 4L x 2L matrix. It should also be
noted that if, for every iteration of the algorithm, the whole matrix AW were to be
calculated, the computational complexity of the algorithm would become very high.
Observing that all the coefficients of the demixing filters are in the first columns of
the matrices W, it is not necessary to compute all the column entries to update
the filters. Thus, only the first column entries of the cross-correlation matrices R, ,,
and R,,,, denoted by the following column vectors have to be calculated.

corry . = |1y, (m,0) ry, (m,—=1) ... 1, (m,—L+ 1)}T (5.9)

T
Py (k) = | S5 g+ Ry ()| k<0 (5.10)

The computation of the inverses of the autocorrelation matrices R, ,, (m) can also
be simplified. As the separated signals y; (k) and y2(k) are assumed to be stationary
within each block, we can approximate the autocorrelation matrices by
mL+N—k—1
quyq (m) ~ (Zn:JL yt? (n)) [ = O.;q(m)l (511)
which leads to an element-wise division of the correlation vectors corr, , (m) by
the output signal energy. Hence, the updates for the demixing filters result in

m . 0 COI:'leyz
AW’Y(m) = 4Zﬁ(z,m)W ’ C°r2y2y1 62 (512)

Y1

As W has Sylvester structure, the matrix product in (5.12) can be implemented
as a convolution of the cross-correlation vectors with the impulse responses of the
demixing filters. The new filter coefficients are finally calculated with the update
equation

W, = W,(m — 1) — uAW,(m) (5.13)

where ;1 denotes the stepsize. The index r refers to the reduced 2L x 2 matrices.
As already mentioned, the algorithm we are using is a block-online algorithm which
acquires KL + N samples from the two microphone mixture signals (k) and z(k)
and divides them into K off-line blocks which are simultaneously processed for a
certain number of iterations. The microphone signals of each off-line block are
convolved with the demixing filters w,, of the previous iteration in order to get the
output signals yi(k) and yy(k). After calculating the signal energies o7, and the
cross-correlation vectors corr,,, (m) of each off-line block, the matrix product in
(5.12)) is calculated. Afterwards, the K matrix products are averaged and the filters
are updated for the next iteration using (5.13). At the end of all iterations, the
off-line part is finished and the overall update is calculated, taking into account the
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window function 3. Finally, the new demixing filters are used to process the next
on-line block that consists of KL + N new samples. A detailed pseudo-code of this
algorithm can be found in [3].

In order to ensure robust convergence, an appropriate choice of the stepsize u
is important. According to [25], we employed an adaptive stepsize that is calculated
before each coefficient update by

L1-pu(m) J(m) < J(m—1)
pim+1) =905 u(m) J(m)>13-J(m—1) (5.14)

wu(m) otherwise

Furthermore, to avoid instabilities, the range of the stepsize has to be restricted to
[mins maz). According to (5.14), the cost function J(m) has to be evaluated in each
iteration step. This, however, would result in a high computational complexity since
the matrix product YY is required, see (5.3). In order to increase efficiency, we
just take the Ly-norm of the cross-correlation vectors corr,,, (m) that were already
calculated in a previous step and consider it as an appropriate substitute for J(m).

5.2.2 System Identification

After source separation and in order to determine the positions of the two sound
sources in azimuth and elevation, we have to identify the HRTFs with our adaptive
demixing filters wy, wis, wo; and wes. The overall MIMO system of Figure 5.2/ with
the two source signals s1(k) and so(k) as inputs and the separated signals y; (k) and
y2(k) as outputs is the concatenation of the HRTF system and the MIMO system
containing the demixing filters. Its direct paths and cross paths are illustrated in
Figure 5.3. Obviously, to ideally separate the sources, its cross-channels from the
first source to the second ear and from the second source to the first ear, denoted
as ¢ and co1, must be forced to zero. This can be expressed by

c12 = ha1 - wiz + g - wee =0 (5.15)
Co1 = hay - w11 + hag - wyn =0 (5.16)

The correct HRTF's are found similarly to the method described in chapter 4, i.e. all
possible HRTF's of the KEMAR database for elevation angles between -40 and 90 and
azimuth angles between (0 and 355 are convolved with the corresponding demixing
filters according to (5.15) and (5.15). The pairs that yield minimum norms of the
vectors ¢ and cop are considered to be the correct HRTFs that originally filtered
the sound sources. In practice, the two equations can be evaluated independently of
each other. Equations (5.15) and (5.16) provide the position of the two concurrent
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Figure 5.3: The combination of HRTF system and MIMO system for blind source
separation can be divided into four SIMO-MISO systems.

sources. The combination of the two processes of blind source separation and system
identification is done in parallel for fast tracking of moving sound sources as shown
in Figure 5.4, Once the source separation algorithm has converged, the system
identification process can use the adapted filters to determine the correct HRTFs.
Meanwhile, the source separation process can take new on-line blocks for further
coefficient updates. After the identification process has finished it can take the
updated filters to determine the new positions and so forth [79)].

5.3 Localization and Separation by Clustering in
Time-Frequency Domain

5.3.1 Blind System Identification Framework

A second approach to binaural sound localization is based on finding the HRTFs, the
sound sources were filtered with, on their way to the robot’s microphones, which, in
our case, play the role of the human eardrums. Applying Short-Time Fourier Trans-
form (STFT), we can describe the ear input signals with the following equations:

Xl(faT) :ZHU(f)SJ(fvT) (517)
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Figure 5.4: Simultaneously running processes: BSS and HRTF lookup. The HRTF
lookup process takes the adapted filters wqq, wia, we; and wqs from the
BSS process and finds the azimuth and elevation positions of the first
source (azl, elevl) and of the second source (az2, elev2).

Xo(f,7) = Zsz(f)Sj(f, 7) (5.18)

where 7 denotes the time frame. The term M is the number of sound sources,
and S;(f,7) are windowed sound source signals in frequency-domain. It is known
that speech signals are very sparse in time-frequency domain, more than in time-
domain [138]. However, frequency domain Independent Component Analysis (ICA)
introduces the inherent permutation problem in each frequency bin, to which we will
later present a solution. Since a sparse signal is almost zero in most time-frequency
instances, there are a many instances when only one source is active. Hence, the ear
input signals can be rewritten as:

Xo(f,m) = His(f)Ss(f,7) (5.19)

Xg(f, 7') = HQJ(f)SJ(f, 7') J € {1, ... ,M} (520)

Assuming stationary source positions, the HRTFs Hy;(f) and Hsy,(f) are constant
for all time instances 7. Since they are related to the source positions they are
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Figure 5.5: Samples from the two ear microphones after STFT. The two subplots
depict the real part of X; and the real part of X, versus the imaginary
part of Xy, respectively. The data was gathered from 400 time-frames
at a frequency of 538 Hz and normalized according to (5.21)) and (5.22).
The clusters show that there are two speakers present. Furthermore,
the prototypes determined by Self-Splitting Competitive Learning are
depicted in the cluster centers.

different for each source. This means ideally, that the time-frequency samples of the
ear input signals, X;(f,7) and Xs(f,7) , that originate from the J-th source, cluster
at each frequency f around the corresponding complex HRTFs values. Additionally,
the Fourier transforms of the ear input signals are phase and amplitude normalized:

— X, 7) exp ¥m
ARG 7 e ey R 540

X2(f7 T) — oy
NS i (5:22)

XQ(f> T) —

where ¢, is the phase corresponding to the input signal of the left ear microphone,
which is chosen as a reference sensor. Figure 5.5/ illustrates the clustering of the
normalized data in the feature space.
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Figure 5.6: Left: Learning process of the first prototype. Step 1 shows the ini-
tialization of the second component of P, and the APV A;. Step
2 shows their positions after 100 iterations. In step 3 the dis-
tance between 131 and ffl has fallen to 0.01 and learning stops.
Right: Learning of prototype P, created after P, has settled in the
center of the topmost cluster. It is initialized together with an APV A,
at a certain distance from the first prototype (step 1), and is led to the
center of the cluster at the bottom after some 100 iterations (step 2).

5.3.2 Self-Splitting Competitive Learning

As pointed out earlier, the source separation problem needs to be solved in each
frequency bin. This means that, our algorithm clusters the data in all frequency
bins over several time frames separately. For further data analysis we use the
clustering algorithm proposed in [140] which is based on self-splitting competitive
learning (SSCL). In the following, we will briefly describe its principle. The key
issue in SSCL is the One-Prototype-Take-One-Cluster paradigm (OPTOC). this
means that one prototype represents only one cluster. At first, a single prototype
P, = [Pl PQ}T , (P, Py € C) is initialized randomly in the feature space. At the
same time an asymptotic property vector (APV), A = [A1 AQ}T (A1, Ay € C), is
created far away from the prototype. Its task is to guide the learning of the proto-
type making sure that, after some iterations, the prototype has settled in the center
of a cluster (Figure [5.0).

The update of A; in each iteration is calculated as

— — 1 — — — —

T A+ — 6 - (X —A)-®(P, AL X) (5.23)
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(P,
(P1, 44 0 otherwise

7X>:{ 1Py = Al = || - X
where || - || is the Euclidean norm. The elements of X = (X, XQ}T, (X1,X, € C)
are randomly chosen patterns of the normalized data in (5.21) and (5.22) at a certain
time-frequency instant. The term d; can be set constant or it can be calculated as

51:( P A) )2 (5.24)

[|[PL—X ||+ P1—Ax]|

The winning counter n 4, is updated as

—

na, =na, + 01 - ®(P, Ay, X) (5.25)

The APV A; thus defines a neighborhood around the prototype P. If a
randomly taken pattern, X = (X, X2:|T, obtained using (5.21) and (5.22) lies

within this neighborhood, it contributes to learning Aj. Tt is observed that in the
course of iterations, A1 moves towards P1 Learning stops when the Euclidean norm
|| P, — Ay||| falls below a constant €.

Now, in order to classify other clusters that may be present in the feature
space, further prototypes have to be initialized. Hence, the following split validity
criterion is introduced. If ||| P — Ay ||| is smaller than a constant e, a new prototype
and a new APV are created in the feature space which are to lead to the center
of another cluster (Figure [5.6). The learning process starts anew. The term C, is
called the Center Property Vector (CPV) and determines the arithmetic mean of the
input data points which have contributed to learning the prototype P, . In order to
avoid unnecessary competition between the first and the new prototype, a distant
property vector P:l, adapted during the learning process, makes sure that the new
prototype P, is initialized far away from the first one. A detailed pseudo-code of
the SSCL algorithm and update equations are given in [140].

Finally, the adaptation of the i-th prototype proceeds according to the follow-
ing equation

Pr=PF+a; (X~ F) (5.26)
where 2
— || P — A
&= <|‘E*X||+||E*gi||) (5.27)
5. 2
L — PRl
b (||Pi—X||+||P¢—RiH) (5.28)

The equations (5.23) - (5.28)) also hold for the learning of the i-th APV and prototype
if the index 1 is changed to i. A detailed pseudo code of the self-splitting competitive
learning algorithm is given in [140].
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A crucial key directly affecting the performance of the clustering algorithm is
the choice of the two constants €; and 5. As opposed to an adaptive choice, proposed
in [138], that depends on the variances and number of elements of the clusters, we
set and to a constant value, 0.01 in our case, and we confine the maximum number
of prototypes to the number of present sound sources plus two. On the one hand,
this has the disadvantage that the algorithm does not work completely blindly as
the number of present sources has to be known but, on the other hand, it results in
a robust classification of the clusters. The maximum number of clusters is chosen a
little bit larger than the actual number of sources, since there are many data points,
in the feature space, resulting from non-sparse time-frequency instances, see Figure
5.0. These data points should not be represented by the prototypes in the center of
the clusters, but by other prototypes. Of course, there has to be a criterion in order
to choose the "right” prototypes that represent the HRTFs at a certain frequency.

A criterion that proved to be appropriate goes as follows:

K, 1 K; .
If —> qux(—) Vi = 1,...,number of prototypes,
V; 2 (5
then the i-th prototype represents a HRTF at a certain frequency. Hereby, K;
denotes the number of data points that have been assigned to the ¢-th prototype,
and v; is the variance of the cluster S; which is a-posteriori determined by

1 Lo
o > IIX - B (5.29)
XeS;

Figure 5.7 shows five prototypes at the end of the learning process in case of three
concurrent speakers. Note that the prototypes Py and Ps do not fulfill the criterion
above and are therefore discarded.

5.3.3 Solving the Permutation Problem

As mentioned earlier, we have to tackle the permutation problem introduced by
frequency-domain independent component analysis. Once the clusters in the fea-
ture space in all frequency bins have been classified, one has to determine which
of the clusters in the frequency bins belong to the same HRTF. Our approach is
based on the assumption that the position of the clusters does not move a lot be-
tween adjacent frequency bins. The prototypes that remain, after applying the
above-mentioned criterion, in the frequency bin f can be arranged in a matrix
H(f) = []Sl(f)ﬁl(f) . P];Pr(f)] € C?*Npr The variable Np, denotes the number
of remaining prototypes that represent the HRTFs. Let ¥ = {II;, Iy, ..., I/} be a
group of permutation matrices of dimension M x M. Then, the correct permutation
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Figure 5.7: Five prototypes at the end of the learning process with three concurrent
sound sources. This figure shows imaginary and real parts of the second
component of the prototypes. In this frequency bin, only Pl, b, and P,
represent the HRTFs which filtered the sound sources. P4 and P5 are
discarded.

can be described by

[da din ... din, | =H(f)-II] —H(f-1) VIL €W (5.30)
Npy

=11 - min »_ ||dy]] (5.31)
j=1

where d;; € C? denote the difference between the j-th prototype of the previous
frequency bin and a prototype in the current bin. The permutation problem is thus
solved starting with low frequencies and ending up with high frequencies. The term
I1 assigns the prototypes of the current frequency bin to their correspondent HRTF
values in the previous bin such that the distance between them is minimum. Figure
5.8 illustrates the assignment of prototypes in adjacent frequency bins.

The problem may arise that, due to little sparseness of the sound sources at a
certain frequency, there are less clusters than sound sources present. The number of
prototypes Np, is consequently smaller than M. Then, in order to avoid a mismatch
of the dimensions of H(f) and II;, (M — Np,) HRTF values of the previous frequency
bin are copied to the current bin. these values are supposed to be a good guess for
the missing clusters.
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Figure 5.8: In adjacent frequency bins the position of the clusters in the feature space

hardly changes. Hence, one searches for the prototype in the previous
frequency bin which has minimum distance to a prototype in the current
frequency bin. The arrows match two prototypes which belong to the
same HRTF.

5.3.4 HRTF Database Lookup

In order to determine the azimuth and elevation angles of the concurrent sound
sources, we have to find the HRTF's for the left and right ears, inside the KEMAR
database, which correspond to our estimated HRTFs. We can calculate, for each
sound source, the interaural HRTF A.4(f) by dividing our estimated HRTF of the
right ear by the HRTF of the left ear. The ILD and IPD are calculated using the
expressions ALqq(f) = 20log|Acsi(f)]| and bes (f) = LAesi(f), respectively. The in-
teraural HRTF, of the KEMAR database, denoted by Ac; prc(f), that best matches
Aesi(f), is determined as follows:

AC’IPIC(f) =
Ai(f)min (me?iamALest(f) — AL A mec}ian|best(f) — bz(f)|>

(5.32)
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Equation (5.32)) is evaluated for frequencies within the range 200 Hz to 11 kHz, since
in this region binaural cues are very distinct. Having found the correct interaural
HRTFs from the database one can determine the azimuth and elevation angles of
the sound sources because each HRTF is unique for a certain position in 3D space.
Figure 5.9 shows the estimated ILD and IPD that result from the interaural HRTF
if a sound source is placed at 30 azimuth and 0 elevation. In order to illustrate the
database lookup, the corresponding database ILD and IPD are shown in the right
subplots.

5.4 Source Separation Process

5.4.1 Determined System

Using matrix-vector notation, we can express the windowed and Fourier-transformed
ear signals in (5.17) and (5.18)) for the case of two concurrent sound sources in a

compact form,
] = [y ) Ja ]

Obviously, this system is mathematically determined, as the number of equations
equals the number of unknowns, which are in this case Si(f,7) and Sa(f, 7). The
HRTFs in the matrix are the database HRTFs found by the HRTF database lookup
described in the previous section. Consequently, in order to retrieve the source
signals in the time-frequency domain, the matrix in (5.34) simply has to be inverted,
whereby we assume that it has full rank due to distinct positions of the two sources
in 3D space. So, the sound sources are obtained by

[ R it I e

This inversion is done in each frequency bin which yields the Fourier spectrum of
a time frame of the separated speech signals. Afterwards, applying inverse Fourier
transform and assembling all time frames with the overlap-add method, we get the
separated sources in time-domain. Figure [5.10/is a block diagram illustration of the
overall concurrent sound localization system.

(5.33)

5.4.2 Underdetermined System

Both equations (5.17) and (5.18)) can be further expressed in compact matrix-vector

notation as follows:
X:[hl ho ... hm}S:HS (5.35)
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Figure 5.9: Estimated interaural HRTF (left) and corresponding interaural HRTF
from database (right). In this case the sound source is placed at 30
azimuth and 0 elevation. In each frequency bin the absolute difference
between the estimated ILD/IPD and the database ILD/IPD is calcu-
lated. The HRTF from the database which yields minimum difference in
ILD and IPD is assumed to be the one that actually filtered the source
signal.

where X = [X(f,7) Xa(/, T)}T, h; = [Hp(f) H; (f)}T and the sources matrix

S = [Sl(f, T) Sof, T)]T with X, h; € C and S € CM . If this system of equations
was determined in the case that only two sound sources are present, matrix H
including the HRTFs could simply be inverted in each frequency bin. However,
with three or more sound sources, a more sophisticated method is required since
the system of equations is underdetermined and the matrix H is not invertible. The
sources can only be retrieved if some more properties of the sound sources are known.
With concurrent speech signals, we can assume that their spectral components have
statistically independent phases and have amplitudes that are Laplacian distributed.
If we follow a Bayesian approach which maximizes the a-posteriori P(S, H/X), we
get in the noise-free case and with known HRTFs the cost function [13§]

maxP(S) st. X =HS (5.36)
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Figure 5.10: After STFT of the ear-input signals, the self-splitting competitive learn-
ing algorithm finds the prototypes that represent the HRTF's in each
frequency bin. By looking for the HRTFs that match best the esti-
mated ones, the azimuth and elevation positions of the M sources are
determined. With the aid of these database HRTFs the sound sources
are separated.

With Laplacian distributed components S;, this cost function yields

min» [Si|, i=1,....M st. X =HS (5.37)

for each time instance 7. In the case, using the L1-norm minimization of real-valued
problems, we obtain the sound sources by shortest path decomposition as proposed
in [22]. In our particular case with two microphones, the shortest path from the
origin to the data point X is obtained by choosing the two HRTF vectors h; and ho
whose directions are the closest from below and from above to the direction 6. In
the example of Figure [5.11 these HRTF vectors are illustrated. The solution Sy,

is then obtained by:
-1
Spath = {[}“ hg} X} (5.38)

However, the source signals and the HRTF's in frequency domain are in general not
real-valued, so that the shortest path decomposition does not necessarily yield the
minimum Ll-norm. Hence, we add a vector S € CM to our solution Sspatn, that is
element of the nullspace of H and thus fulfills:

X = HSgporn + HS = H(Ssparn + S) (5.39)
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X,

Figure 5.11: The shortest path from the origin O to the data point X is O-A-
X. Hence, X decomposes as O-A along direction h;, as A-X along
direction hy and zero along direction hz. The vectors hy and hy enclose
f from above and from below.

For the special case that three concurrent sound sources are to be separated, the
nullspace N(H) of [hl ha hg] is expressed by:

[hi ha] ™" g

N(H):a[ :

} =aa, aeC (5.40)

with the complex scaling factor o and the base vector a of the nullspace. The vector
of the separated sound sources in time-frequency domain is then obtained by:

Ssep = MIN|Ssparn, + aal (5.41)

where |.|; denotes the Ll-norm of a vector. The separation algorithm described
in this section is performed in all time frames in each single frequency bin. After
applying inverse Fourier transform to the time frames, they are assembled with
the overlap-add method, which yields the sought separated sound sources in time-
domain.
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Figure 5.12: Estimated azimuth (top) and elevation (bottom) angles obtained from
50 simulation runs with two male speakers randomly positioned in the
horizontal plane and the whole 3D space.

5.5 Simulation Results

5.5.1 Localization With Adaptive MIMO Systems

In order to assess the performance of localization and separation of two sound sources
with an adaptive MIMO system, 50 simulation runs were performed. In the first
20 simulations, the positions of two sound sources were all chosen in the horizontal
plane (zero-elevation plane) with random azimuth angles. In the remaining 30 runs,
the sources were placed at randomly determined positions in the whole 3D space.
The simulation results are depicted in Figure 5.12. The top two subplots show
the azimuth values estimated by the algorithm versus the actual azimuth angles of
the sources. At the bottom, the corresponding elevation angles are shown. The
two sound sources were always positioned in two different hemispheres surrounding
KEMAR, i.e. one sound source was on the left and the other one on the right-
hand side. If the two sound sources had been placed in the same hemisphere, the
algorithm would not have been able to separate, and thus localize them neatly since
only causal demixing filters can be trained. In order to localize sources which are in
the same hemisphere, noncausal demixing impulse responses would be necessary.
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5.5 Simulation Results

The parameters of the algorithm were chosen as follows. The length of the
impulse responses of the demixing MIMO system L was 512 samples. Each of the
offline blocks contained 1024 samples, which corresponds to a time frame of 23 mil-
liseconds at a sampling rate of 44.1 kHz. The maximum number of iterations j,,qz
in the offline mode was 10 and during one iteration 8 offline blocks were simulta-
neously processed for decorrelation of the output signals of the MIMO system. For
proper adaptation of the demixing filters, 150 online blocks were read in, which is
equal to a length of 17 seconds of the microphone signals. Moreover, samples of
two male speakers were used as sound sources to evaluate the algorithm. In 74%
of all simulation runs, both sound sources were correctly detected with a tolerance
of 5° in azimuth and 10° in elevation [79]. As Figure [5.12 shows, the algorithm
estimated azimuth values at 180° when the source actually was at 0°, a phenomenon
which is well-known as front /back confusion by psychophysical hearing experiments
with humans. In nature, mammals tackle this problem by head movements. The
algorithm determined the elevation angles quite reliably; only near the horizontal
plane (azimuth 0° and 180°), there is a slight deviation from the actual values in
some cases. However, humans also exhibit localization difficulties in these regions

[19].

5.5.2 Localization by Clustering in Time-Frequency Domain
Two Concurrent Sound Sources

We tested our new sound localization algorithm by performing 100 simulation runs
with two concurrent sound sources located in free space. In 40 simulations, we
positioned the sources in the horizontal plane (zero-elevation plane). In half of all
the tests, both sounds were situated near each other in the same hemisphere around
the KEMAR head. The concurrent sound sources were speech signals of two male
speakers sampled at a rate of 44.1 kHz and 16 bit. For binaural synthesis, these
mono signals were convolved with the different HRTFs of the KEMAR database,
simulating thus different locations in space.

The ear input signals were windowed with a Hamming window of 1024 samples
and an overlap of 50% used for properly calculating the STFTs. For clustering, 400
time-frames of the ear input signals were acquired by the algorithm. This resulted
in a signal length of approximately 4.7 seconds. Figure 5.13 shows the results of the
100 simulation runs. The left subplot depicts the estimated azimuth (above) and
elevation (below) angles versus the actual ones for the first speaker (left) and the
second speaker (right). Notably, the observed localization rate was 100%. For all the
simulation runs, both concurrent sound sources were located exactly at their target
azimuth and elevation angles. The algorithm showed the same 100% localization
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performance in the case of both sound sources located close to each other in the
same hemisphere around the KEMAR head.
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Figure 5.13: Left:  Estimated azimuth (top) and elevation (bottom) an-
gles obtained from 100 simulation runs with randomly cho-
sen two concurrent speaker positions in the whole 3D space.
Right: Estimated azimuth (top) and elevation (bottom) angles for
three concurrent speakers.

In further 50 simulation runs, a stationary noise source (computer fan) was
introduced. This noise source was constantly located at 0 azimuth and 0 elevation.
The mean SNR, i.e. the ratio of the mean power of the speech signals to the noise
power was chosen to be 20 dB. Under these conditions, the localization percentage
fell to 90%. For 25 dB SNR, the algorithm is quite robust to the stationary noise
since the localization accuracy rises to 97% [81].

Three Concurrent Sound Sources

A total of 50 runs with three concurrent, randomly positioned sound sources were
simulated. In 20 simulations, we positioned the sources in the horizontal plane
(zero-elevation plane). The azimuth angles were always chosen in such a way that
two of the sound sources were virtually placed in the same hemisphere (both to
the left or to right of the humanoid), and the third one in the other hemisphere.
The concurrent sound sources were speech signals of two male speakers and one
female speaker sampled at a rate of 44.1 kHz and 16 bit. The ear input signals
were windowed by the same Hamming window as before. For clustering, 400 time-
frames of the ear input signals were acquired. Figure 5.13 shows the results of the
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50 simulation runs. The right subplots depict the estimated azimuth (top) and
elevation (bottom) angles versus the actual ones for the first (left), second (middle)
and third (right) speaker. The simulations yielded an overall correct localization
rate of 78%, a remarkable result, especially that two of the three concurrent sources
are always perfectly located at their target location [80].

Table 5.1: Signal to Interference Ratio (SIR) for determined and underdetermined
sound source separation.

Mean SIR SIR 4 SIRg
Adaptive MIMO (determined) 25.2 dB 19.2 dB 33.5 dB
Clustering with 2 sources 37.2 dB 36.5 dB 379 dB
Clustering with 3 sources 21 dB 13.1 dB 31.1 dB

5.5.3 Separation Performance

The quality of separation was also assessed in several simulations. An appropriate
measure for the separation performance is the signal-to-interference ratio (SIR) of
the output signals of the algorithm. As proposed in [129], the SIR is calculated as
follows:

h _ <¥i)s5;>s; o <Y;,8;0>5;1 ) )
where s; = =5 and e; = Zj,#j T Equation (5.42) represents the ratio

between the power of the desired separated signal s;, to the power of the interfering
signal e;, in the j-th output channel. The term < -,- > denotes the inner product
of two signals. The variables y; and s; denote the time signal of the i-th output
signal of the separation system and the j-th sound source, respectively. The index
j" denotes the other source signals which contribute to the interference signal e;.

The median SIR value obtained after running 100 simulations is 37.2 dB.
In statistical terms, 50 % of the SIR values lay between 36.5 dB and 37.9 dB.
Compared to other blind source separation methods, e.g. [57], trying to solve the
same determined problem, our separation algorithm yields an average SIR that is
more than 10 dB higher.

Finally, we investigated the performance of source separation described above
in the noise-free case. Towards this end, we used the above-defined SIR ratio. Cal-
culating the median of the SIR values for all 50 simulations, we observed an SIR
value of 21 dB. In statistical terms, 50% of the SIR values lay in the acceptable
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interval of 13.1 dB to 31.2 dB. These values are notably higher than SIR values
provided by other underdetermined separation algorithms, trying to solve the prob-
lem of more sources than observations under the same conditions [25]. The sound
source separation performance bounds for the determined and underdeterined cases
are summarized in Table 5.1

The interval between STR 4 and SIRp encloses 50% of the SIR values around
the median value. In case of three sound sources, the obtained values are higher
than SIR values provided by other underdetermined separation algorithms, trying
to solve the problem of more sources than observations, e.g. [20], since the measured
database HRTF's and not the estimated HRTF's are used for source separation [70].

5.5.4 Localization Performance

We have compared our method with the concurrent detection method based on the
echo-avoidance model [51] introduced in chapter [I. Sound localization experiments
were conducted in an anechoic chamber and a normal room. Three microphones
arranged in a triangular form were available for sound recording. Two sound sources
were played concurrently. The sources were set in two fixed positions each distanced
1 meter from the wall. The azimuth of the first sound source was 0 degree facing
direction one of the three microphones and the second sound source was about 38
degrees to that microphone. The distance from the sound sources to the center of
the microphone set was about 2.9 m and the distance between sound sources was
about 1.9 m. Sound data were recorded by a multi-channel analog data recorder
with a sampling frequency of 9600 Hz.

The azimuth histograms for the anechoic chamber and the normal room were
computed. The contribution of each sound/echo was added to the sum azimuth
histogram. The histogram peaks are pronounced around 0 and 38 degrees over all
time segments in the histograms of the anechoic chamber. These two rows of peaks
correspond to the first and the second sound source, respectively. The positions of
major peaks are in the regions of [0, 4] and [35, 39] degrees, i.e., the first sound source
was localized in 2(42) degrees and the second sound source in 37(£2) degrees. The
maximum absolute error is 4 degrees. The histograms of the normal room, however,
show more disorder comparing to the anechoic chamber. The scores are smaller
and the size of the peaks is not consistent. After smoothing the histograms by a
two-dimension Gaussian function, the time resolution decreased to about 2 s, but
the peak positions became more consistent. The positions of major peaks are in the
regions of [-2, 2] and [33, 37| degrees, i.e., the first sound source was localized in
0(£2) degrees and the second sound source was localized in 35(£2) degrees. The
maximum absolute errors is 5 degrees. All the results are similar to the results
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obtained in the anechoic chamber except that 2 seconds are now needed to obtain
an accurate localization, compared with 0.5 second for the anechoic room. Using
our SSCL-based localization method in the anechoic room, the first sound source
located at 0 degree was detected in the region [0, 5] degrees. The second source
located at 38 degrees was detected in the region [35, 40] degrees. The maximum
absolute error is 5 degrees and the overall processing time is 4.7s. In the normal
room, the first sound source located at 0 degree was detected in the region [-5, 0]
degrees, and the second source located at 38 degrees was detected in the region [30,
35] degrees. The maximum absolute error is 5 degrees for and overall processing time
of 11.5s. It should be noted that, on the expense of increased computational power,
the 5-degree absolute error could be reduced to 1 degree if we use a HRTF database
sampled every one degree in the azimuthal plane. In addition, the SSCL-based
method is not limited to azimuthal localization and uses only two microphones.

Furthermore, we compare our method with the beamforming technique [102]
introduced in chapter 1. This method utilizes a microphone array of 8 sensors and
deploys time delay of arrival estimation, and multiple Kalman filters for concurrent
sound source tracking in azimuth. A steered beamformer was used for the sound
source localization. The basic idea of this method is to direct a beamformer in
all possible directions and look for maximal output. The beamformer searches a
spherical space around the microphone array which is divided into 5,120 triangle
grids with 2,562 vertices. The beamformer energy is computed for each vertex by
incremental refinements from a large triangle to smaller ones. The direction of a
sound source is estimated as that of the region with the maximal energy. This
method localized sound source accurately for stationary and moving sound sources.
Although the method provided directional information at each time frame, a tempo-
ral grouping of the same sound source was not attained. Therefore, it was difficult
to track multiple moving sound sources. This ambiguity was clarified by feeding
the temporal information to a multiple Kalman filter with different history lengths.
Multiple Kalman filters with different history length predict next states in parallel,
and provides a set of estimates. The current estimate is obtained by the filter which
predicted the state with the minimal error in the previous frame. The continuity of
localization for each speaker is forced by using acoustic features of separated speech
signals. For this purpose, the power spectrum was computed in each frame, in order
to reduce the ambiguities in tracking moving speakers. The observed value whose
power spectrum is similar to the past one of a speaker is selected as the observed
value of the speaker. The power spectrum of a separated sound is calculated by
using a delay-and-sum beamformer, which uses a localization angle as a clue. If the
separated speech of each moving speaker is available, the fundamental frequency of
the speech is used for the accurate selection of the observed value.

The algorithm processes loudspeaker signals using 8 channel sound recorded
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with a sampling rate of 48kHz. The accuracy of the multiple Kalman filter method,
for two concurrent sound sources placed at 0 and 30 degrees in front of the robot,
yielded a mean square angular error of 26, compared to a mean square error of 20 for
our SSCL-based technique. For three concurrent sound sources located at 0, 80 and
110 degrees, the multiple Kalman filter method undergoes a mean square angular
error of 28, compared to a mean square error of 25 for the SSCL-based technique.
The increased accuracy of the SSCL-based technique comes at the expense of a 4.7s
processing time compared to 2.4s for the multiple filter method. While the multiple
Kalman filter method covers only azimuthal localization, our SSCL-based method
covers the whole 3D space surrounding the robot head, and deploys two instead of
8 microphones.

Summing up, we have used only two microphones in combination with a generic
HRTF database to localize and separate two concurrent moving sources in a 3D
space. The simplicity of the proposed sound source separation and localization al-
gorithm suggests a cost-effective implementation for robot platforms. While the
detection of sound in elevation was similar to the human ability, our results demon-
strated very precise localization of the sound sources in the azimuth angles. Since
the HRTF dataset used was measured on the horizontal plane from 0° to 360° with
5° increment and on the vertical plane from -40° to 90° with 10° increment, we
can localize the sound source with an accuracy of about 5° to 10°. Obviously, an
HRTF dataset with smaller increments increases the resolution of estimation. In
the following chapter, the HRTF interpolation method presented in chapter [3 will
be used to enhance the accuracy of a localizer operating in a highly-reverberant
environment.
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Chapter 6

Sound Localization in Highly
Reverberant Environments

In this chapter, we introduce a robust sound localization algorithm, which uses
Bayesian information fusion to increase the localization resolution in a three-dimensional
reverberant environment. The main focus is the detection of sound events under se-
vere acoustic conditions, i.e. high reverberation and background noise. The location

of the sound source obtained from a number of observation sensors is fused using a
properly tuned Bayesian network so that an accurate three-dimensional direction of
arrival estimation, in terms of both azimuth and elevation, is guaranteed.

6.1 New Hardware Setup

The new sound localization setup takes two sound signals as input: 1) the spatial
sound signal measured inside the ear canal of KEMAR humanoid’s artificial ear,
and 2) the sound signal measured outside the artificial ear, placed 5 cm away from
the inner microphone. This hardware configuration is illustrated in Figure 6.2l

After data acquisition, both inner and outer signals are divided, in the spectral
domain, in an attempt to exclude the incoming sound signal and, thus, isolate the
effect of the pinna, head, and torso. Consequently, the appropriate HRTF which
has shaped the incoming sound signal is extracted. Using simple correlation, the
extracted HRTF is then compared with a database of HRTFs, [6], and the maximum
correlation coefficient is taken to be corresponding to the 3D sound source location.
The HRTFs were measured every 5° in elevation and azimuth. An accurate, recently
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proposed HRTF interpolation method [66], see chapter [3, is then used to obtain a
high-spatial-resolution HRTF database with one HRTF every 1° azimuth, spanning
an elevation range from -20° to 60°. Each of the 28800 HRTF's is 512-samples long
and can be directly considered as the coefficients of a Finite Impulse Response (FIR)
filter. However, for real-time processing, FIR filters of this order are computation-
ally expensive. Applying Principal Component Analysis (PCA), the length of the
HRIR was reduced to a hundred or fewer samples, considerably reducing the overall
localization time and complexity.

6.2 Monaural System

Our proposed monaural sound localization system receives two input signals col-
lected at two small microphones, one inserted inside and one placed outside the
artificial humanoid ear. The left and right blocks of Figure 6.2/ illustrate the monau-
ral localization at both ears.

The spatially-shaped acoustic signal inside the ear can be modeled as the
original sound signal convolved with the HRTF corresponding to the target sound
location. To simulate a real environment, echoes and noise are added. Hence, the
signal at one of the inner microphones, the left one for instance, can be written as:

N
Sint.(f) = Seu(f) - Hos + > Eins(f).Hi+n (6.1)
=1

where S;,_1(f) is the signal received at the microphone inside the ear, S¢,,(f) is the
clean sound signal arriving at the ear canal, H,, is the correct frequency shaping
response corresponding to the location of the source, and Ej,;(f) is the i echo
inside the ear arriving from some position in space. The variable N represents the
total number of echoes. In our case, every echo is assigned values in the interval
[-20dB, -60dB]. The term H; denotes the HRTF shaping echo E;, ;(f). The variable

n represents the noise introduced by the space and electric components.

The sound signal recorded by the microphone outside the ear, which is free of
the pinnae effects, can be written as:

N

Sout_1.(f) = Sgui_r,(f) + Z Eouri(f) +ns (6.2)

=1

where S,,¢_1, is the signal received at the microphone outside the ear, S, ; (f) is the

clean sound signal arriving at the outer microphone, and E,,;(f) is the i echo
hitting the outside microphone. The term ng is the noise introduced by the space.
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Figure 6.1: Proposed localization mechanism: After data acquisition, both inner and
outer microphone signals are divided.

Dividing both Equations 6.1/ and 6.2, and assuming that the echo signals received
are attenuated considerably, the term H,s dominates the division operation result.
Theoretically speaking, in a noise-free anechoic environment, the division operation
would result only in Hg,.

The next step is to make a decision about the position of the sound in 3D. This
is simply done by identifying the filter response that shaped the signals collected
inside the ear canal. The division operation result is sent to a bank of 28800 corre-
lators, where it is compared at the i correlator with the i** HRTF available from
an already processed lookup table. The lookup table contains the HRTF's sorted ac-
cording to their azimuthal and elevation characteristics. The maximum correlation
coefficient resulting from the cross-correlation between the division result and all the
HRTFs is chosen to be the best estimate of the sound location. This localization
mechanism is illustrated in Figure 6.1. The same procedure is repeated for the right
ear [84].

6.3 Combined System

In the binaural localization case, we use the cross convolution system introduced in
chapter 4. In this context, the received signals at the microphones inside the ear
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Figure 6.2: Block diagram of the overall localization system.

canals are modeled as the original sound source signal convolved with appropriate
HRTFs. The left and right microphone signals are multiplied by the right and
left HRTFs, respectively. The sound source location is estimated by finding the
maximum correlation coefficient between incoming and saved HRTFs.

Towards achieving a better estimate of the target sound source azimuth and
elevation, the 3D locations provided by both left and right monaural systems are
combined with the 3D estimate given by the binaural system. In case two or three
estimates are not more than 5° away from each other, their average is taken as
the target location, and the angular error is calculated as the distance between this
average and the real location. Otherwise, the angular error is calculated as the
distance from the real location to the worst of the three estimates [83]. This is
however a lossy method to combine monaural and binaural estimations since we are
discarding a useful part which could otherwise contribute to train the system. The
localization method could be made intelligent by learning a-priori information from
training data, and thus minimizing the uncertainty of the online localization. For
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Left observation Center observation  Right observation
nodes nodes nodes

Figure 6.3: Proposed Bayesian network for the monaural and binaural information
fusion.

this purpose, a Bayesian network is deployed.

6.4 Bayesian Information Fusion

6.4.1 Feature Vectors Extraction

A Bayesian network is employed to detect the 3D direction of the instantaneous
sound event. The Bayesian network is a way of modeling a joint probability dis-
tribution of multiple random variables and is considered to be a powerful tool for
information fusion [55]. Figure 6.3/ shows the topology of the Bayesian network we
have adopted in our work. The network has N = 24 nodes, {4, ..., Ay}, divided
into three sectors: left, center, and right. The left eight nodes, {A;, ..., Ag}, corre-
spond to the left monaural system, and represent the first eight estimated locations
having the first maximum correlation coefficients. The center nodes { Ay, ..., A1}
correspond to the binaural system. Similar to the left nodes, they represent eight
estimated locations which have the maximum correlation coefficients. The remaining
nodes {Ai7, ..., Ags} correspond to the right monaural system.

The left, center, and right sectors are then compared to check which of their
entries match. For every matching node, i.e. if one node of the left monaural set of
nodes is found in the binaural node set, this information is converted to a state of
0/1 (71”7 corresponds to a match being detected). Proceeding this way, the feature
vector a(t) = Aq(t),...,..., Ay(t) is formed. Figure 6.3 shows the Bayesian network
used for fusing the left, center and right observation node sectors depicted above.
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Figure 6.4: A state of the Bayesian network: the connections between the nodes
simply emphasize that the corresponding observation nodes are in the
717 state.

6.4.2 Decision Making

As previously mentioned, the input nodes have the states of {0,1} according to
the occurrence of the corresponding node in more than one node sector. On the
other hand, the output node S has the following N, + 1 = 28800 + 1 states: S =
{S1, ..., Sns, NoEvent}. The state Sy, ..., Sy, corresponds to the 3D sound position
(azimuth, elevation). When S = (10, —20) for example, the speaker is located in the
direction of 410 azimuth and -20 elevation and is speaking. When S = NoFvent,
there are no sound events. For estimating .S from the audio feature vectors described
before, a properly tuned Bayesian network is used. Figure 6.4 shows a state of the
Bayesian network used in this work.

We assume that the value of all A; are conditionally independent when the
value of S is given. Hence, the conditional probability distribution P(S|A1, ..., Ay)
can be factored in the product of local conditional probabilities P(A;|5):

Pmmwﬂm:%maﬂpmw) (6.3)

where Z = [, P(S)[[_, P(4,]S)dS.

The conditional probabilities P(A;|S) can be estimated from training sam-
ples. These probabilities are then saved in a so-called Conditional Probability Table
(CPT). For the training samples, the value of S is given as a label for each feature
vector. In this work, broadband sound signals from a loudspeaker in a reverberant
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laboratory room were used as training samples. The location of the loudspeaker was
varied between —40 and +60 every 5°in azimuth and elevation. Each sample was 30
seconds long. There were no significant noise sources in the laboratory room, there
was however high background noise such as that from a PC fan. These samples were
used as a supervisor for training the CPT.

In the operation phase, the feature vectors are obtained as evidence at every
time block. Using the evidence and the CPTs obtained above, the conditional
probability (6.3) is calculated and the most probable state of S is obtained, i.e. the
most probable sound source location.

6.5 Discussion of Results

6.5.1 Simulation Results

The simulation test consisted of having a 100 broadband sound signals filtered by
512-samples long HRIR at different azimuths and elevations corresponding to 100
different random source locations in the 3D space. White Gaussian noise and high
reverberations, i.e. echoes 20dB below the signal level, were added to the simulated
sound sources. In order to insure rapid localization of multiple sources, small parts
of the filtered left and right signals are considered (350 msecs). These left and right
signal parts are then correlated with the available 28800 reduced HRIRs. Basically,
the correlation should yield a maximum value when the saved HRTF ratio, for the
binaural system, corresponds to the location from which the simulated sound source
is originating. Similarly, for the monaural system, when the saved HRTF ratio
corresponds to the location from which the simulated sound source is coming, the
correlation should yield a maximum value. Therefore, we base our localization on
the obtained maximum correlation factor. The PCA reduction technique was used
to create a truncated model of the original HRTF's.

To simulate the reverberation in our room environment, the image method for
room acoustics was used [7]. The simulation setup and room dimensions were de-
fined to match the experimental room environment. A room size of 9.5m x Tm x 4m
was considered. The simulation setup and room dimensions were defined to match
the experimental room environment. The data received at each microphone was
obtained by convolving the broadband source signal with the corresponding transfer
functions resulting from the image method between the source’s and microphone’s
positions. After recombining the convolution results, random Gaussian noise was
finally added to each microphone signal yielding an SNR level of 20dB. Figure 6.5
shows the sound localization performance for the cross convolution technique, com-
pared to the combined system operating with Bayesian information fusion. The
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Figure 6.5: Percentage of correct localization for the combined system compared to
the cross convolution system. The audio data was simulated with the
image method for room acoustics.

HRTFs used in this case are DFE-reduced, i.e. HELE. As depicted in Figure 6.5,
the combined system is outperforming the stand-alone cross convolution technique
especially for high reflection to signal power ratios.

Under high reverberation conditions, i.e. for a reverb time of RT = 1s. using
the HEI® PCA-reduced dataset, the combined system, without Bayesian fusion,
yielded a percentage of correct localization between 22% to 81% with the HRIR
being within 10 to 45 samples, i.e. 10 < m < 45. With Bayesian fusion the
localization falls between 31% and 90% for 10 < m < 45. For a full-length HRIR
of order 512, the percentage of correct localization reached 97% under the same
reverberation conditions without Bayesian fusion, and 99% with fusion.

Interestingly, for high order HRIRs, the falsely localized sound sources fall
within the close neighborhood of the simulated sound source locations. A plot
reporting how far, on average, the falsely localized angles are from their target
location, can be seen in Figure 6.6. The dashed lines and the rigid lines correspond
to the simulation and experimental results, respectively. The Figure shows the
performance of the localization system with (circles) and without (squares) Bayesian
fusion.
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Figure 6.6: Average distance of the falsely localized angle locations to their target
positions, for every HRIR filter order.

Intuitively, with more intelligence encapsulated within the HRIRs, the local-
ization accuracy increases. Hence, with more HRIR samples, the average distance to
the target sound source location decreases. The combined system, without fusion,
reports a worst angular error of 40.83° with a HRIR order of 10, and a best angular
error of 2.0° with a HRTF order of 100. With Bayesian fusion, the worst angular
error reached 19.33° with a HRIR order of 10, and the best error 1.0° with an
HRTF order of 100.

Finally, we have used the million instructions per second (MIPS) measure
for the verification of real-time implementation in terms of CPU usage. Table 6.1
shows the different processes underlying the combined system with Bayesian fusion.
The algorithm processes 350 msecs of input data sampled at 44.1kHz. The HRTFs
used are PCA-reduced using 45 eigenvectors. The kernel of the suggested combined
algorithm requires a total of 410,758,808 MIPS. For a 32-bit Pentium IV, 1.9 GHz
platform, this corresponds to 220 ms of processing delay. Hence, a real-time sound
localization is ensured.
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Table 6.1: The number of instructions required for processing 350 msecs of audio
input using the combined system.

Process MIPS Percentage
Audio Buffer Handling 361,550 0.20%
Left and right Divisions 86,110,053 20.96%
Correlation 324,287,205 78.84%
Total 410,758,808 100%

6.5.2 Experimental Results

In our household experimental setup, 100 different binaural recordings were obtained
using a broadband sound signal. The speakers were placed 2 meters away at different
angle locations around the KEMAR head equipped with two small artificial ears in
a highly-reverberant room. Our laboratory setup is illustrated in Figure 6.7. The
speaker was held at a constant distance of 1.3 meters from the head. The recording
environment was a laboratory room measuring where the walls, ceiling, and Floor
are made of unpainted concrete. One wall has a 5m x 2m glass window and is facing
the dummy head. The dummy head and torso are placed on a rotating table in the
middle of the room. The dummy head artificial ears and microphones are held at a
constant height of 1.5 meters from the floor. The room contains objects like tables,
chairs, and computer screens.

The level of reverberation in the room was experimentally measured by means
of a loudspeaker emitting a high level white noise signal. Measuring the 60dB decay
period of the sound pressure level after the source signal is switched off, for a number
of speaker and microphone positions, provided the frequency-averaged reverberation
time RT = 1s.

Figure 6.7: The laboratory hardware setup.
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To keep a fair comparison with the simulation setup, each of the recordings
was 350 msecs long, and the noise was kept around 20dB below the signal level.
The microphones were placed inside the ears at a distance of 26 mm away from the
ear’s opening. The outside microphones are placed 5 cm away from the inside ones.
The recorded sound signals, also containing external and electronic noise, were used
as inputs to the system. A HRIR database reduced using the PCA method, HXT®
was available for the test.

The combined system, without Bayesian fusion, yielded a percentage of correct
localization between 6% to 74% with the HRIR being within 10 to 45-samples long,
ie. 10 < m < 45. For a full-length HRIR, i.e. 512-samples long, the percentage
of correct localization reached 81% under the same reverberation conditions. With
Bayesian fusion the localization falls between 19% and 85% for 10 < m < 45. For
a full-length HRIR of order 512, the percentage of correct localization reached 89%
under the same reverberation conditions.

Similar to the simulation results, for high order HRIRs, the falsely localized
angles fall in the vicinity of the target sound source. Figure 6.6/ illustrates the
average distance to the target angles. The combined system yielded a worst angular
error of 45.33° with a HRIR order of 10, and a best angular of 1.6° with a HRIR
order of 128. With Bayesian fusion, the worst angular error reached 24.57° with a
HRIR order of 10, and the best error 1.2° with HRTF order of 100.

It is worth mentioning that common robotic sound localization methods which
use only 4 microphones fail to localize sound accurately in three dimensions without
becoming impractically complex, or without using computer vision to augment the
acoustic modality [56]. We have thus compared our experimental results to the
method in [128], (also see chapter [1). This method uses 8 microphones and applies
the simple TDOA algorithm to localize sound sources in three dimensions. Like in
[128], the sounds we have used have a large bandwidth, e.g. fingers snapping and
percussive noises.

The system was tested with sound sources placed at different locations in the
environment. In each case, the distance and elevation are fixed and recordings are
taken for different horizontal angles. The mean angular error for every arrangement
is computed. Table 6.2/ shows the performance of our system as compared to the
system in [128]. Using only 4 microphones, our system performed more accurately
when localizing the sound sources placed at the same distance, azimuth and elevation
angles as in [128]. It should be noted that part of this error, mainly at short
distances, is due to the difficulty of precisely placing the source and due to the fact
that the speaker employed is not a point source. Other sources of error come from
reverberation on the floor especially for those locations where the source is high.
The angular error is almost the same for sources located in the horizontal plane and
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Table 6.2: Localization mean angular error comparison.

Mean Error Mean Error|Mean Error
Distance Elevation ] (Combined | (Bayesian
as in [128§]
System) System)
3 m _7° 1.7° 1.6° T
3 m 8° 3° 170 Lo
om = 3.1° 1.9° 1.2°
0.9 m 24° 3.3° 2.4° 1.7°

varies only slightly with the elevation, due to the interference from floor and wall
reflections. This is for example an advantage over the system in [107] where the
error is high when the source is located on the sides. Moreover, for the case where
multiple sound sources are concurrently active in the humanoid’s environment, the
SSCL clustering algorithm proposed in chapter 5 could be used for sound source
separation and localization [76].

To conclude, we have presented a sound localization method which is robust
to high reverberation environments and which does not require any noise cancela-
tion schemes. The method was able to accurately localize sound sources in three
dimensions, using monaural and binaural HRTF cues [73, 68]. The precision of the
localization method is simulated and experimentally tested in a highly-reverberant
environment. Compared to other localization algorithms, our system is outperform-
ing in terms of localization accuracy and processing power.
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Conclusion

It is a difficult challenge to use only one pair of microphones on a robot to mimic
the hearing capabilities of humans. This task is made even more challenging by the
fact that the listening environment is dynamic: sound sources appear, disappear,
move and interfere with each other. Most of the proposed localization models today
are based on using more than two microphones to detect and track sound in a real
environment. Mathematical models of sound wave propagation were found to sig-
nificantly depend on the specific characteristics of the sources and the environment,
and are therefore complex and hard to optimize. Adaptive neural network struc-
tures have also been proposed to self-adjust a sound localization model to particular
environments. While these networks have been intended to work in specifically
controlled milieus, they become very complex in handling multiple sources in rever-
berant environments. Other methods are designed to mimic the human biological
sound localization mechanism by building models of the outer, middle and inner ear,
using knowledge of how acoustic events are transduced and transformed by biolog-
ical auditory systems. The difficulty with this approach is that neurophysiologists
do not completely understand how living organisms localize sounds. For instance, It
remains unclear whether the I'TD and ILD cues are combined, in the central nervous
system, before or after they are spatially mapped. Moreover, the question of what
primitive mammals like bats experience and how they process sound with only two
ears and a pea-sized brain remains a major mystery.

We have proposed a unifying framework for three-dimensional sound localiza-
tion methods to be deployed on a humanoid robot operating in a general telepresence
environment. Motivated by the important role of the human pinnae to focus and
amplify sound, and knowing that the HRTFs can also be interpreted as the di-
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rectivity characteristics of the two pinnae, only two microphones in combination
with a generic HRTF database were required to localize sound sources in a three
dimensional space. Common binaural sound localization methods using only two
microphones fail to localize sound accurately in three dimensions without becoming
impractically complex, or without using computer vision to augment the acoustic
modality.

For faster localization performance, the HRTF's are reduced using three dif-
ferent model truncation techniques, namely Diffuse-Field Equalization, Balanced
Model Truncation, and Principle Component Analysis. Furthermore, for a robust
and more accurate localization mechanism, which demonstrates precise azimuth and
elevation estimation, we have introduced a novel state-space solution to the HRTF
inversion and interpolation problems. Beside its application in our sound localiza-
tion system, the stable inversion of transfer functions is of valuable importance for
sound synthesis and channel equalization, not only to compensate from deficiencies
of the transduction chain (amplifiers, loudspeakers, headphones), but also to repro-
duce a spatially coherent sound field. On the other hand, the HRTF interpolation
technique we have introduced for sound localization purposes can also be used in the
immense field of binaural sound synthesis for high-fidelity reconstruction of HRTF's
especially in cases where fast and immersive synthesis of moving sound sources is
needed.

The initially proposed sound localization method is based on dividing the
ear signals with the left and right HRTFs and subsequently taking the maximum
correlation coefficient as a pointer to the source location. This method is enhanced
using proper state-space HRTF inversion. Nevertheless, a new algorithm called cross
convolution was developed to further decrease the computational requirements of the
initial method. In comparison to the previous methods, the cross convolution is able
to achieve remarkable reduction in the processing requirements while increasing the
accuracy of the sound localization. Furthermore, with the help of a simple properly
tuned Kalman filter, a ROI was introduced to account for fast moving sound sources.
Simulation and experimental results showed a real-time tracking performance and a
higher noise-tolerance capacity. The efficiency of the new algorithm suggests a cost-
effective implementation for robot platforms and allows fast localization of moving
sound sources.

Using the presented methods, we have addressed the challenging task of bin-
aural concurrent sound source localization and separation in reverberant environ-
ments. Relying on the concept of binaural hearing, where the human auditory 3D
percepts are predominantly formed on the basis of the sound-pressure signals at
the two eardrums, our robotic localization system uses only two microphones. We
presented a new algorithm for binaural localization of concurrent sound sources in
both azimuth and elevation. By exploiting the ILD and IPD binaural cues that
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are encapsulated within the HRTF's, binaural 3D concurrent sound localization was
made possible using only two microphones placed inside the artificial ears of the
KEMAR head. Compared to existing techniques using microphone arrays for the
same purpose, our algorithm is less complex and very accurate. It was shown that
two concurrent sound sources could be perfectly localized at their intended 3D lo-
cations even in the anti-causal case where both sources share the same hemisphere
around the humanoid’s head. This is a remarkable improvement compared to the
initially proposed adaptive MIMO approach.

The self-splitting competitive learning technique, mainly deployed in image
processing, turned out to be very reliable for acoustical signal processing. It proved
to be an intelligent tool to retrieve the exact cluster centers inside the feature space
of the impinging sound signals, and consequently, to extract the 3D locations of the
concurrent sound sources. After localization, the proposed sound source separation
algorithm proved to be outperforming compared to other blind source separation
methods solving the same determined problem under the same conditions.

For highly reverberant environments, a new algorithm using four microphones
is presented. Bayesian information fusion is then used to increase the localiza-
tion resolution in a three-dimensional reverberant environment. The algorithm was
tested in simulations as well as in a household environment. Compared to existing
techniques, the method is able to localize sound sources in three dimensions, under
high reverberation conditions, with fewer sensors and higher accuracy.

Based on the simplicity of the presented new approach for sound source local-
ization, the integration of audio with other modalities like haptic and vision becomes
promising. This kind of integration will allow the multi-sensory telepresence system
to improve the perceived degree of immersion for the human operator. Inspired
by the human binaural hearing, this development is adding to the solution and
attractiveness of the humanoid hearing technology, as humanoids share many char-
acteristics with the human being, which is, after all, the most interesting object of
scientific research.
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Appendix A

Inner-outer Factorization Theorem
Proof

Theorem: Let W be a unitary matrix, and Y be a uniformly bounded matrix which
satisfies the following equality,

A B||Y O Y B
= ’ (A.1)
C D||0 I 0 Dy
such that Y has a maximal dimension and ker(Y.) = 0. Let
A, B,
= : (A.2)
C’U DU

Then {A,, B,,Cy, D,} is an isometric realization for the sought inner factor V'(z),
and {A, B, Cy, Dy} is a realization for the outer factor H,(z). The proof of the above
theorem is detailed in [33].

Proof: Since the Y sought is such that kern(Y.) = 0, using R@Q-factorization or
SVD, we can always express it as

y=v1"], (A.3)

0

in which ¢ is square non-singular and V' is unitary.
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We now let A be a block Schur eingenspace decomposition for the term A —
BD~1C,

A=A-BD'C=V* (A.4)

521 522

811 612] v

where dq; collects the eigenvalues of A which are strictly outside the unit circle,
thus, causing instability.

Given the state-space realization {A, B, C, D}, and assuming that D is square
invertible, we can write down the following schur factorization
I BD™!
0 I

A B
¢ D

A 0
0 D

I 0
D7C 1

: (A.5)

where A = A — BD7!(C is the Schur complement of D. We can now write (A.1) as

A 0]llY O I BD'||Y B
* = 1. (A.6)
C D||0 I 0 I 0 D,
Looking at the second block column of this equation, we find
A O |Y 0 |Ws Y
Al (A7)
C D||0 I |Wx 0

where W3, = A} and W3, = By,
From the last equation we can write, AY = YW3*, or Wo;* = YTAY, where

y+:pﬂ qva (A.8)

thus

g

Wit = o= o] vav (A.9)

= 0'715110'. (AlO)
It is important, at this point, to observe that since Wy, = A, = 0*§;7"0~*, the

matrix, d;;", must have its eigenvalues strictly inside the unit disc, achieving thus
the sought system stability.
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Multiplying (A.7) with Y+ we get

0'_1(5110' 0 W2*1 _ I . (All)
CcYD W, 0
Introducing
5—1
B=D7Cv [,
we find
Wl _ oot 0 | |I . (A12)
W3, —Bo D7 |0

Finally, setting M = o *c~!, we obtain the Lyapunov-Stein equation
M = 3*B + 6,7 Mo (A.13)

Knowing that ;' has its eigenvalues strictly inside the unit disc of the complex
plane, (A.13) must have a unique solution, and both Wy, = A, and Wy = B, have
also unique solutions,

s Wa| = [aie o], (A.14)

Once we find both A, and B, realizations corresponding to the inner-factor
V(z), we can proceed to compute Y in (A.3) and use it in (A.1) to solve a system
of four equations for the remaining inner-factor realizations C, and D, as well as
the outer-factor, H,(z), realizations Cy and Dy. Finally, the sought stable inverse,
H™'(z) = Hy(2)"'V*(2), is calculated, in which H,(z)"! is singular and causal, and
V*(z) is anticausal and stable.

It should be noted that the outer-inner factorization computed using the
Lyapunov-Stein equation, ensures a linear solution adequate for a fast real-time
implementation, compared with other methods [139] which solve the same outer-
inner factorization problem quadratically using the celebrated Riccati equation, and
needlessly condition a problem which is already well-conditioned.

117



Appendix A Inner-outer Factorization Theorem Proof

118



Appendix B

The State-Space Loewner Matrix

We will recapitulate the major steps involved in computing the L matrix as detailed
in [8]. To begin with, the generalized controllability matrix NN is first partitioned as

N = [Nl NQ] where N; = (t;1 — A)"'B. Define the term

N:NQ_ Nl NlNl]:NJ7 (B]'>
where
-1 -1 —1
I 0
J— B.2
. (B.2)
0 0

Define next

N: Ng diag[tgl,tgl,...,t(gl] —tl Nl,Nl,...,Nl]

(B.3)
— NJt,
where
-t -t ... —t1
tol 0 o 0
J=1"7 (B.4)
0 tsl ... 0
0 0 oo tsl
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Now that N and N are defined, the state-space realizations {A, B,C, D} which
ensures a minimum degree for the interpolation transfer-function matrix Y (z) can
be computed according to the following equations,

A = NN'(NN')™ (B.5)
0

B = (hI-AN | (B.6)
_O_

c = [1 0. o} M(rI — A) (B.7)

D = Y(r)-C(rnl—-A"'B (B.8)

Note that N should have a full row rank for the inverse in (B.5) to exist. This
{A, B,C, D} realization ensures that the transfer-function Y (z) interpolates the
data and has least degree among interpolating transfer-function matrices [8].
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List of Frequently Used Acronyms

Acronym Description

ADPF Active Direction-Pass Filter
APV Asymptotic Property Vector
BSS Blind Source Separationt
CIPIC Center for Image Processing and Integrated Computing
CPT Conditional Probability Table
CPV Center Property Vector

DLOS Direct Line Of Sight

DOA Direction of Arrival

DFT Discrete Fourier Transform
DPV Distant Property Vector

FFT Fast Fourier Transform

FIR Finite Impulse Response

HRIR Head-Related Impulse Response
HRTF Head-Related Transfer Function
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Appendix C' List of Frequently Used Acronyms

Acronym Description

ICA Independent Component Analysis
11D Interaural Intensity Difference

ILD Interaural Level Difference

IPD Interaural Phase Difference

ITD Interaural Time Difference

ICA Independent Component Analysis
KEMAR Knowles Electronics Mannequin for Acoustic Research
MAMA Minimum Audible Movement Angle
MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Multiple-Output
MIT Massachusetts Institute of Technology
OPTMC One-Prototype-Take-Multiclusters
OPTOC One-Prototype-Take-One-Cluster
SCA Source Cancelation Algorithm
PRTF Pinna-Related Transfer Function
SIMO Single-Input Multiple-Output

SDR Signal-to-Distortion Ratio

SIR Signal-to-Interference Ratio

SNR Signal-to-Noise Ratio

STET Short-Time Fourier Transform

3D Three-Dimensional
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