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Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing., Dr. h.c. R. Rummel
2. Univ.-Prof. Dr.-Ing. N. Sneeuw, Universität Stuttgart

Die Dissertation wurde am 04.03.2008 bei der Technischen Universität München eingereicht und durch
die Fakultät für Bauingenieur- und Vermessungswesen am 04.07.2008 angenommen.





Zusammenfassung

In dieser Arbeit ist die Bestimmung von globalen Schwerefeldmodellen aus Beobachtungen der Satelliten-
missionen CHAMP und GOCE beschrieben. Im Fall von CHAMP wird die sogenannte Energieerhaltungs-
Methode auf GPS Beobachtungen des tief fliegenden CHAMP Satelliten angewandt. Im Fall von GOCE
ist Gradiometrie die wichtigste Beobachtungsgröße. Die Erfahrung die bei der Verarbeitung von Echt-
daten der CHAMP Mission gewonnen wurde, fließt in die Entwicklung einer operationellen Quick-look
Software für die GOCE Mission ein. Die Aufgabe globaler Schwerefeldbestimmung ist es, aus Beobach-
tungen entlang einer Satellitenbahn ein Model des Gravitationsfeldes der Erde abzuleiten, das auf der
Erdoberfläche in sphärisch-harmonischen Koeffizienten beschrieben wird. Die theoretischen Grundla-
gen, die nötig sind um die Beobachtungen mit dem Schwerefeld in Bezug zu setzen und ein globales
Schwerefeld aus Satellitenbeobachtungen zu berechnen sind werden ausführlich erklärt.

Die CHAMP Mission wurde im Jahr 2000 gestartet. Sie ist die erste Schwerefeldmission mit einem GPS
Empfänger an Bord. Die Hauptbeobachtungsgrößen sind die GPS Bahn-Beobachtungen zu CHAMP, das
sogenannte ”satellite-to-satellite tracking” (SST). Ein Schwerefeldmodell wird mit der Energieerhaltungs-
Methode unter Verwendung von kinematischen Bahnen berechnet. Die Methode beruht auf dem En-
ergieerhaltungssatz, der besagt, dass die Summe aus kinetischer und potenzieller Energie in einem
konservativen Kraftfeld konstant bleibt. Die kinetische Energie kann aus den Positionen der Satel-
litenbahn über die Geschwindigkeiten berechnet werden. Die unbekannte Energiekonstante kann aus
den Beobachtungen geschätzt werden und damit das Schwerepotenzial berechnet werden. Der Satellit
ist nicht-konservativen Kräften ausgesetzt, deren Einfluss berücksichtigt werden muss. Diese Kräfte
können zum Teil mit dem an Bord befindlichen Beschleunigungsmesser erfasst werden und zum Teil aus
Modellen berechnet werden. Die sphärisch-harmonischen Koeffizienten werden dann aus den Potenzial-
werten, die entlang der Bahn gegeben sind in einer Ausgleichung nach kleinsten Quadraten bestimmt.
Die Lösung wird mit Hilfe von Daten aus GPS-Nivellements validiert und mit anderen globalen Schw-
erefeldlösungen verglichen.

Der Start der GOCE Mission ist für Anfang 2009 geplant. Sie ist die erste Mission bei der Gradiome-
trie im All verwendet wird. Die bandbgrenzten ”satellite gravity gradiometry” (SGG) Beobachtungen
werden von SST komplementiert. Aufgrund der komplexen Datenauswertung werden die endgültigen
Resultate erst mehrere Wochen nach Ende der Mission verfügbar sein. Da es aber nötig ist, die Daten
parallel zur Mission zu analysieren wurde eine Quick-look Schwerefeldanalyse entwickelt. Sie benützt
den semi-analytischen Ansatz, der auf der vereinfachenden Annahme einer kreisförmigen Bahn beruht.
Diese Vereinfachung ermöglicht die Verwendung von schnellen Fourier-Transformationen (FFT) bei der
Aufstellung der Normalgleichungen. Die Normalgleichungen werden blockdiagonal und können sehr
effizient gelöst werden. Der Geschwindigkeitsgewinn wird allerdings durch eine schlechtere Genauigkeit
erkauft. Die Methode kann in zwei verschiedene Ansätze unterteilt werden: den 1D-FFT Ansatz und den
2D-FFT Ansatz - auch als Torus-Ansatz bekannt. Die beiden Ansätze werden auf echte CHAMP-Daten
und simulierte GOCE-Daten angewandt um ihre Vor- und Nachteile zu bewerten.



Abstract

This work describes global gravity field modeling from observations of the CHAMP and the GOCE
satellite mission. In the case of CHAMP the so-called Energy Balance Approach is applied to measure-
ments of GPS high-low tracking of the low orbiting CHAMP spacecraft. In the case of GOCE gravity
gradiometry is the main observable. The experience gained processing real data of the CHAMP satellite
mission is incorporated in the development of operational quick-look software for the GOCE mission.
The task of global gravity field analysis is to derive from measurements along the satellite orbit a model
of the Earth’s gravitational field expressed in spherical harmonic coefficients on the Earth’s surface.
The theoretical background needed to relate the observations to the gravity field and compute a global
model from satellite observations is explained in detail.

The CHAMP mission has been launched in 2000. It is the first dedicated gravity field mission to carry a
GPS receiver in space. The main observables are the observations from the GPS satellites to CHAMP,
the so-called satellite-to-satellite tracking (SST). A gravity field model is computed with the Energy
Balance Approach using kinematic orbit positions. It is based on the law of energy conservation,
which states, that the sum of potential and kinetic energy is constant in a conservative force field.
The kinetic energy is computed from the orbit positions via the orbit velocities. The unknown energy
constant can be estimated which allows for the computation of the potential. The satellite is subject
to non-conservative forces which are corrected for. These forces are partly measured by the onboard
accelerometer and partly computed by models. The spherical harmonic coefficients are then derived
from the potential values along the orbit in a least squares adjustment. The solution is validated using
GPS-leveling data and compared to other global gravity field solutions.

The GOCE mission is scheduled for launch in early 2009. It is the first gravity gradiometer in space.
The bandlimited satellite gravity gradiometry (SGG) observations are supported by SST. Due to the
complexity of the mission and the data processing final results will only be available several weeks after
the end of the mission. As there is a need for an analysis of the data in parallel to the mission, a quick-
look gravity field analysis has been developed and implemented. It uses the semi-analytical approach
which is based on the simplifying assumption of a circular orbit. This simplification allows to set up
normal equations using fast Fourier transform (FFT) techniques. The normal equation matrix becomes
block-diagonal and the least squares adjustment can be solved very efficiently. The gain in speed comes
at the cost of accuracy. The method can be divided in two sub-approaches: the 1D-FFT approach and
the 2D-FFT or (torus-) approach. Both approaches are applied to real CHAMP data and simulated
GOCE data in order to asses their possibilities and limitations.
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1 Introduction

In the period between 2000 and 2010 three dedicated gravity missions CHAMP, GRACE and GOCE
have been or will be launched. They will improve global gravity models by several orders of magnitude.
They benefit from the possibility of continuous and precise orbit determination with onboard GPS
receivers and the development of highly accurate accelerometers. Combined with terrestrial, airborne
and seaborne gravity observations, which are available in some regions with higher resolution but lack
global coverage, they will form a new generation of gravity field models. However the global gravity
field analysis poses challenges as the computation of global gravity field models poses high requirements
to computer resources.

The purpose of this work is to describe gravity field analysis from CHAMP and GOCE in detail. As the
GOCE mission has not yet been launched, only simulation data is available to prepare the processing
software. Hence real data from the CHAMP mission is used here to get a more realistic insight into
possible error sources for satellite data. The necessary theoretical background to compute a global
model from satellite observations is explained in detail.

A brief description of the satellites and their instrumentation is given below.

CHAMP: The Challenging Minisatellite Payload (CHAMP) (cf. Reigber et al. (1998)) was launched
in 2000. It was initiated by the GeoForschungsZentrum Potsdam (GFZ) and is operated by the German
Aerospace Center (DLR). Although being a relatively economical mission, it has significantly improved
the gravity field models for wavelengths above 550 km. Furthermore it has helped to test new technology
which has since then been further developed and is used on GRACE and GOCE as well.

It is the first low Earth orbiter (LEO) dedicated to gravity field analysis with a GPS receiver on board.
This allows for a continuous and accurate orbit tracking, referred to as high-low satellite-to-satellite
tracking (hl-SST). The GPS-observations are the main observable of the mission. The orbit can be
related to the gravity field as shown in chapter 2 and used for gravity field analysis. The GPS receiver
is complemented by an accelerometer which measures all non-gravitational forces acting on the satellite
and by a star tracker which determines the orientation of the satellite in space. The orientation is
needed for the rotation of the measured accelerations to the reference frame in which the orbits are
given. The accelerations are used to correct the observations for non-gravitational effects.

In addition to gravity field determination, the CHAMP satellite has two further scientific goals: first
it is equipped with two magnetometers for the determination of the Earth magnetic field, and second
with GPS receivers for atmosphere sounding by the method of radio occultation.

GRACE: The Gravity Recovery and Climate Experiment (GRACE) (cf. Tapley and Reigber (2001))
was launched in 2002 and is operated by the National American Space Agency (NASA), the German
Aerospace Center (DLR), the University of Texas, Center for Space Research (CSR) and the Geo-
ForschungsZentrum Potsdam (GFZ).

The mission consists of two almost identical satellites, which follow each other on the same orbit in
about 220 km distance. They are connected via a K-band microwave link which measures their distance
with high accuracy at the µm-level. This measurement technique called low-low satellite-to-satellite
tracking (ll-SST) allows for a much higher gravity resolution than hl-SST, and gravity field models
for wavelengths down to 300 km could be determined. Due to the high accuracy and the continuous



8 1 Introduction

Figure 1.1: The CHAMP satellite and its instruments (source: GFZ Potsdam).

tracking over several years, temporal variations of the gravity field caused by large scale mass-variations
(e.g. seasonal hydrological effects or melting of ice masses) can be detected. As shown in figure 1.2,
the design of the GRACE satellites is similar to the CHAMP satellite. They contain a GPS receiver,
an accelerometer and star tracker cameras. In addition, each of the GRACE satellites carries a K-band
horn directed at the other satellite, which is the main instrument of the mission.

Figure 1.2: One of the GRACE satellites and its instruments (source: Astrium).

The GRACE mission is not subject of this work, but it is mentioned here as it complements the other
missions. It is focused on the determination of temporal variations of the gravity field, while GOCE
will determine the static part with high resolution and accuracy.

GOCE: The Gravity field and steady-state Ocean Circulation Explorer (GOCE) (cf. ESA (1999))
is scheduled for launch in early 2009. It has been selected as the first Earth Explorer Core Mission



9

of ESA’s Living Planet Programme. It will combine hl-SST with a new measurement type: satellite
gravity gradiometry (SGG). The GOCE mission will be the first to fly a gradiometer in space.

The gradiometer will consist of six accelerometers, similar to those of CHAMP and GRACE, but with
an increased accuracy (see tab. 1.1). They will be arranged pairwise along the three axes of the satellite
and symmetric to the satellite’s center of mass (see fig. 2.5). The x-axis will nominally point in flight
direction, the z-axis radially outward and the y-axis will complement an orthogonal right-hand triad.
By differential measurements between the pairs of accelerometers it is possible to derive the matrix of
second derivatives of the gravity potential field (see sec. 2.3). Second derivatives measured along the
orbit with low altitude allow for a global gravity field solution with higher resolution than for CHAMP
and GRACE. Wavelengths down to 100 km will be resolved.

Due to the limited measurement bandwidth of the gradiometer from 5 - 100 mHz, wavelengths roughly
above 1500 km cannot be resolved by SGG and have to be derived from hl-SST observations measured
by the onboard GPS receiver. Similar to CHAMP and GRACE, the GOCE-satellite is equipped with
star trackers to determine the orientation of the satellite and the gradiometer in space.

Figure 1.3: The GOCE satellite and its instruments (source ESA).

Several features of the GOCE mission design pose special challenges to the gravity field analysis. They
will be discussed in section 4.1. In order to increase the sensitivity, the satellite will fly at the low
altitude of about 250 km. At this altitude, there is considerable air drag from the Earth’s atmosphere.
The air drag has to be compensated by thrusters in order to keep the satellite in orbit. At the same time
this removes external accelerations acting on the satellite to a large extent. The range of the observed
accelerations becomes smaller and the sensitivity of the gradiometer to small differences in gravity is
increased. This is done by the drag-free and attitude control system (DFACS). It only compensates
drag within the measurement bandwidth allowing small long-term variations in orbit height (see fig
4.9). Fuel consumption of the continuous drag compensation limits the mission duration to two years
at most.

In order to provide a continuous power supply, the solar panels of the satellite will always point in
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direction of the sun and a sun-synchronous orbit is required. This is achieved by by choosing the orbit
parameters such, that the precession of the orbital plane caused by the oblateness of the Earth will
perform exactly one revolution per year. At an orbit altitude of about 250 km, an inclination of 96.6◦

is required. The non polar orbit leaves two small polar gaps which are not covered with observations.
This leads to an ill-posed system of equations in the gravity field determination process(cf. sec. 4.1). In
addition, due to the orbit design, the satellite will experience seasons of eclipses, where it will enter the
Earth’s shadow during each revolution. The power supply is interrupted during those eclipses and the
satellite brought into a hibernation mode. The mission profile is divided into two or three observation
phases of about six months.

The spacecraft attitude is controlled by three orthogonal magnetic torquers. They are coils which use
the magnetic field of the Earth to induce a torque on the satellite. As only forces can be induced which
are perpendicular to the lines of magnetic flux, the satellite cannot be rotated around all three axes
at any given time. If the satellite is for example crossing the polar region, where the lines of magnetic
flux are almost pointing in radial (z-) direction, no torque around the z-axis can be induced. As a
consequence, the attitude of the satellite will deviate by up to 3◦ from the nominal attitude in flight
direction. The implications of this deviation will be discussed in section 4.1.

CHAMP GRACE GOCE

launch date 2000 2002 2009

number of satellites 1 2 1

orbit altitude 450-350 km 450-300 km 250 km

weight 400 kg 432 kg 250 km

orbit inclination 87.3◦ 89.5◦ 96.6◦

accelerometer accuracy (sensitive axes in MBW) 3 · 10−9 m/s2 1 · 10−10 m/s2 1 · 10−12 m/s2

Table 1.1: Comparison of the CHAMP, GRACE and GOCE satellite missions.

Accelerometers: The accelerometers are among the core instruments of all three missions. The GOCE
gradiometer is composed by six of them. Although having different accuracies (cf. table 1.1), they are
all based on the same principle. A proof mass is kept levitating in an electric field inside a cage
of electrodes. If external forces act on the satellite the proof mass has the tendency to move inside
the cage due to inertia. Any motion or rotation of the proof mass will be detected by a capacitive
sensor, as the capacity between the electrodes will change. The voltage applied to the electrodes will be
immediately corrected by a so-called force feedback system in order to keep the proof mass in its original
location. The voltage which is necessary to keep the proof mass in place is the actual observation and
can be converted to acceleration by a transfer function.

The accelerometers all have only two highly sensitive axes and one less sensitive axes. During the
calibration before launch one axis cannot be calibrated with the highest sensitivity as the gravitational
force of the Earth has to be compensated. For CHAMP this axis will point radially outward, for GRACE
in cross-track direction. The six accelerometers forming the GOCE gradiometer are aligned such (see
fig. 2.5), that only the less important xy- and yz-components of the gravity tensor will have degraded
accuracy. A view of the proof-masses and electrodes of an accelerometer are shown in figure 1.4. A
drawing of the assembled gradiometer in a thermic cage is shown in figure 1.5.
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Figure 1.4: Test mass and electrodes of one accelerometer
(source: ESA).

Figure 1.5: GOCE-gradiometer with double-layered ther-
mic cage (source: ESA).





2 Theory of Gravity Field Analysis From Satellite
Measurements

The goal of global gravity field analysis is to derive a potential model expressed in spherical harmonic
coefficients on the Earth’s surface from measurements along the satellite orbit. The analysis can be
divided in two steps. For both steps several alternative methods have been developed which are displayed
in figure 2.1. The theory for some of these methods (the ones in green boxes) is explained in detail
in this chapter. In the first step a linear relation between the observations and functionals of the
potential is derived. In case of high-low satellite-to-satellite tracking (hl SST) the main observation
is the GPS tracking from a low-Earth-orbiting (LEO) satellite. They can be transformed via orbit
positions and velocities to potential values along the orbit with the Energy Balance Approach (see sec.
2.2). Satellite Gravity Gradiometry (SGG) observes components of the tensor of second derivatives
of the gravity potential in the satellite fixed coordinate frame. They are already functionals of the
potential and do not need to be linearized. Nevertheless they are subject to several data processing
steps and a frame transformation which are explained in section 2.3. In the second step the point
values along the orbit have to be transformed into a global model on the Earth’s surface. This is the
solution of an over-determined and ill-posed system of equations. The Direct Solution shown in section
2.4 is a strict least-squares adjustment. As this often poses large requirements on computer resources,
several iterative solution strategies have been developed and one of them, the semi-analytic Approach
is presented in section 2.5. The connection between both steps is the series expansion of the potential
and its derivatives which is derived in section 2.1.
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Figure 2.1: Overview of gravity field analysis methods for CHAMP, GRACE, and GOCE. The methods in green are subject
of this thesis.

Most of the methods for gravity field analysis from satellite orbits in use were already derived about
40 years ago, but they only became feasible with the continuous GPS tracking on the CHAMP and
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GRACE satellites. The methods in the red boxes of figure 2.1 are not subject of this work but are
mentioned for completeness. The classical approach of gravity field analysis from satellite orbits is
derived from perturbation theory (e.g. Kaula (1966)). The energy balance approach (e.g. Reigber
(1969)) which is used to derive potential values from the CHAMP and GOCE orbits in this work can
as well be applied to derive potential differences between the two GRACE satellites (cf. Jekeli (1999)).
The integral equation approach (e.g. Schneider (1968), Reigber (1969)) has been successfully applied
to CHAMP and GRACE data and produced good results (cf. Mayer-Gürr (2006)). Differentiating
the CHAMP orbit twice leads to accelerations, which are a functional of the gravity field (Austen and
Reubelt (2000)). This method can be applied to the GRACE satellites as well, leading to a one axis
gradiometer in space (Sharifi and Keller (2005)).

Apart from the direct least-squares solution and the semi-analytic approach (e.g. Sneeuw (2000)),
which are discussed in this work, there are several alternative iterative approaches for the solution of
potential coefficients from satellite observations, like the spacewise approach (e.g. Migliaccio (2004)), a
least squares method based on a QR factorization (LSQR) (e.g. Baur (2007)) and the preconditioned
conjugate gradient multiple adjustment approach (PCGMA) (cf. Schuh (1996)).

2.1 The Gravity Field and its Derivatives

2.1.1 Solution of the First Geodetic Boundary Value Problem

The gravitational potential is a harmonic function outside the gravitating masses, which is expressed
by the Laplace equation:

∆V = ∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0 . (2.1)

This equation can also be written as

∆V = r2 ∂2V

∂r2
+ 2r

∂V

∂r
+

∂2V

∂θ2
+ cot θ

∂V

∂θ
+

1
sin2 θ

∂2V

∂λ2
= 0 (2.2)

in spherical coordinates (θ, λ, r), where θ = 90◦ − φ denotes the so-called co-latitude, λ the longitude
and r the geocentric distance. This partial differential equation can be solved by a separation approach,
which separates the three arguments in different terms. So each of the terms must be constant and
the partial differential equation can be solved as three second-order ordinary differential equations (cf.
Kaula (1966)):

V (θ, λ, r) =
∞∑

l

r−(l+1)
l∑
m

Plm(cos θ) [alm cosmλ + blm sinmλ]

+
∞∑

l

rl
l∑
m

Plm(cos θ)
[
a′lm cosmλ + b′lm sinmλ

]
, (2.3)

with alm, blm, a′lm and b′lm as constant coefficients, and the associated Legendre functions Plm(cos θ):

Plm(cos θ) =
1

2ll!
(1− cos2 θ)m/2 dl+m(cos2 θ − 1)l

d(cos θ)l+m
. (2.4)

The coefficients are determined by means of two boundary conditions:
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lim
r→∞V (θ, λ, r) = 0 (2.5)

V (θ, λ, r = R) = f(θ, λ) . (2.6)

Condition (2.5) leads to a′lm = 0 and b′lm = 0. Condition (2.6) is resolved by a coefficient comparison
between the coefficients of the new solution Alm and Blm and the coefficients of the boundary function:

Alm = R−(l+1)alm and Blm = R−(l+1)blm . (2.7)

The coefficients Alm and Blm have the same unit as the potential
[
m2

s2

]
. Therefore a second substitution

yields then dimensionless coefficients

Clm =
R

GM
Alm and Slm =

R

GM
Blm . (2.8)

For numerical reasons it is suitable to use the normalized associated Legendre functions P̄lm(cos θ) =
HlmPlm(cos θ). Hence a third substitution is applied:

C̄lm = H−1
lm Clm and S̄lm = H−1

lm Slm , (2.9)

where

Hlm =

{ √
2l + 1 for m = 0√
2(2l + 1) (l−m)!

(l+m)! for m 6= 0
. (2.10)

Finally the gravitational potential on the Earth’s surface and in the outer space reads as:

V (θ, λ, r) =
GM

R

∞∑

l=0

(
R

r

)l+1 l∑

m=0

P̄lm(cos θ)
[
C̄lm cosmλ + S̄lm sinmλ

]
. (2.11)

C̄lm and S̄lm are the potential coefficients, which are used to describe a gravity potential model. If r
is constant, the potential becomes a function on a spherical surface (e.g the Earth’s sphere for r = R).
Equation (2.11) corresponds to a two-dimensional Fourier series on a spherical surface. The function is
periodic in the direction of the longitude λ and the base functions are sines and cosines. In the direction
of the co-latitude θ the function is aperiodic and the argument θ runs from 0 to π with the P̄lm(cos θ) as
base functions. Both sets of base functions together form an infinite set of orthogonal functions and are
ordered by degree l and order m. As in practise the series expansion cannot be calculated to infinity,
one has to truncate the computation at a maximum degree L, inducing an omission error. As m ≤ l
and all S̄l0 - coefficients can be neglected because of sin(0λ) = 0, the number of coefficients is (L + 1)2.
The closed analytical form of the Legendre functions given in equation (2.4) is unsuitable for numerical
computations. The functions and their derivatives can be easily computed by a recurrence relation (see
A.2.1).
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2.1.2 First and Second Order Derivatives

The potential and its first and second order derivatives w.r.t. the spherical coordinates (r, θ, λ) can be
expressed in a similar way by substituting the symbols λij , p, α and β with the corresponding expression
from table 2.1:

Vij =
GM

R

lmax∑

l=0

λij

(
R

r

)(l+1) l∑

m=0

p (α cos(mλ) + β sin(mλ)) . (2.12)

differentiation w.r.t. λij p α β

- 1 P̄lm C̄lm S̄lm

r − (l+1)
r P̄lm C̄lm S̄lm

θ 1 P̄ ′
lm C̄lm S̄lm

λ 1 mP̄lm S̄lm −C̄lm

rr (l+1)(l+2)
r2 P̄lm C̄lm S̄lm

rθ − (l+1)
r P̄ ′

lm C̄lm S̄lm

rλ − (l+1)
r mP̄lm S̄lm −C̄lm

θθ 1 P̄ ′′
lm C̄lm S̄lm

θλ 1 mP̄ ′
lm S̄lm −C̄lm

λλ -1 m2P̄lm C̄lm S̄lm

Table 2.1: Substitutes for the symbols λij , p, α and β in equation (2.12).

Accelerations: To obtain the gravitational accelerations in cartesian coordinates in the Earth-fixed
frame, the first order derivatives in spherical coordinates have to be transformed using the chain rule:

ẍe =
∂V

∂x
=

∂V

∂r

∂r

∂x
+

∂V

∂θ

∂θ

∂x
+

∂V

∂λ

∂λ

∂x
, (2.13a)

ÿe =
∂V

∂y
=

∂V

∂r

∂r

∂y
+

∂V

∂θ

∂θ

∂y
+

∂V

∂λ

∂λ

∂y
, (2.13b)

z̈e =
∂V

∂z
=

∂V

∂r

∂r

∂z
+

∂V

∂θ

∂θ

∂z
+

∂V

∂λ

∂λ

∂z
, (2.13c)

where the partial derivatives can be simply derived from geometry:

∂r/∂x = sin θ · cosλ (2.14a)
∂r/∂y = sin θ · sinλ (2.14b)
∂r/∂z = cos θ (2.14c)
∂θ/∂x = cos θ · cosλ/r (2.14d)
∂θ/∂y = cos θ · sinλ/r (2.14e)
∂θ/∂z = − sin θ/r (2.14f)
∂λ/∂x = − sinλ/(r · sin θ) (2.14g)
∂λ/∂y = cosλ/(r · sin θ) (2.14h)
∂λ/∂z = 0. (2.14i)
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Gravity Tensor: Similarly, the Gravity Tensor can be transformed to cartesian coordinates. As it is
normally required in an orbit-related frame, it is first computed in a topocentric auxiliary frame (often
referred to as local north-oriented frame (LNOF)), with the z-axis pointing radially away from the
Earth’s center, the x-axis pointing north, and the y-axis pointing east. It can then be rotated to the
frame of interest, e.g. a local orbit reference frame (LORF), which is oriented along the nominal orbit
or the gradiometer reference frame (GRF) which represents the actual orientation of the satellite and
the gradiometer (cf. section 2.3). For convenience Vij is written for ∂2V

∂i∂j , the components in LNOF are:

Vxx =
1
r
Vr +

1
r2

Vθθ (2.15a)

Vxy =
cos θ

r2 sin2 θ
Vλ − 1

r2 sin θ
Vλθ (2.15b)

Vxz =
1
r2

Vθ − 1
r
Vrθ (2.15c)

Vyy =
1
r
Vr +

1
r2 tan θ

Vθ +
1

r2 sin2 θ
Vλλ (2.15d)

Vyz =
1

r sin θ
Vrλ − 1

r2 sin θ
Vλ (2.15e)

Vxx = Vrr (2.15f)

2.1.3 The Potential in Orbital Coordinates

Equation (2.11) is often referred to as ”Space-Wise” representation of the gravity field. Alternatively
it is expressed as function of Keplerian elements along the orbit. This was first introduced by Kaula
(1966) and modified by Sneeuw (2000), and is referred to as ”Time-Wise” representation:

perigee

geocenter

satellite

orbit

r

n

w

IW

z

yx

ascending node

L
qg

u

Greenwich
meridian

a

Figure 2.2: Orbit elements.
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V (r, I, u,Λ) =
GM

R

∞∑

l=0

(
R

r

)l+1 l∑

m=0

l∑

k=−l,2

F̄lmk(I)

[αlm cos(ku + mΛ) + βlm sin(ku + mΛ)] , (2.16)

with

αlm =
[

C̄lm

−S̄lm

]l−m=even

l−m=odd

and βlm =
[

S̄lm

C̄lm

]l−m=even

l−m=odd

. (2.17)

The Keplerian elements I, Ω and ω shown in figure 2.2 define the orbital plane. The inclination I is the
angle between the orbit plane and the equatorial plane. The angle ω defines the perigee of the ellipse
and Ω the right ascension of the ascending node. The true anomaly is the angle between the direction
of the perigee and the current position of the satellite. The Greenwich apparent sidereal time (GAST)
or Greenwich hour angle is denoted by θg.

The expression above only holds for circular orbits. As the perigee in an almost circular orbit is not
well defined, the argument of latitude u = ω + ν is introduced as the sum of the perigee and the true
anomaly. In addition the substitution Λ = Ω− θg is made in order to relate the ascending node to the
Greenwich meridian and the Earth-fixed frame.

The F̄lmk(I) are called Inclination Functions, and the F̄ ∗
lmk(I) Cross-track Inclination Functions, which

occur by differentiation of the potential in cross-track direction. For their computation cf. Kaula
(1966) or Sneeuw (1991); an efficient algorithm is given in A.2.2. The first and second derivatives of
the potential are derived in Sneeuw (2000) and can be written in analogy to equation (2.12):

Vij =
GM

R

∞∑

l=0

(
R

r

)l+1 l∑

m=0

∑

k

λijf (a cos(ψmk) + b sin(ψmk)) , (2.18)

with ψmk = ku + mΛ. The expressions for λij , f , a and b are given in Table 2.2.

differentiation w.r.t. λij f a b

- 1 F̄lmk(I) αlm βlm

x k
r F̄lmk(I) βlm −αlm

y 1
r F̄ ∗

lmk(I) αlm βlm

z −(l+1)
r F̄lmk(I) αlm βlm

xx −(k2+l+1)
r2 F̄lmk(I) αlm βlm

yy k2−(l+1)2

r2 F̄lmk(I) αlm βlm

zz (l+1)(l+2)
r2 F̄lmk(I) αlm βlm

xy k
r2 F̄ ∗

lmk(I) βlm −αlm

xz −k(l+2)
r2 F̄lmk(I) βlm −αlm

yz −(l+2)
r2 F̄ ∗

lmk(I) αlm βlm

Table 2.2: Expressions for the symbols λij , f , a and b in equation 2.18
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2.2 The Energy Balance Approach

The main observable of hl-SST is the GPS tracking of the LEO, which is used to determine the orbit
of the satellite. Because there is no linear relation of the orbit to the spherical harmonic gravity field
coefficients, the observation equations have to be linearized. The Energy Balance Approach is a method
to derive a time series of disturbing potential values from the satellite orbit based on the Law of Energy
Conservation. The law states, that in a conservative force field, the sum of kinetic and potential energy
of a body is constant:

Wkin + Wpot =
1
2
mṙ2 −mV = H , (2.19)

where H is the Hamiltonian – the constant total energy in the system. This equation creates a relation
between the observed orbit, expressed by the position vector r (resp. its time derivative ṙ) and the
gravity potential V . It should be noted that the sign of the potential changes, as potential and potential
energy are defined with opposite signs in physics (as used in equ. (2.19)) and geodesy (as defined by
equ. (2.5)).

As the orbit positions do not enter the computation directly – but their first time-derivatives, the
components of ṙ – their derivation is essential for the method and discussed in detail in section 2.2.1.
The Law of Energy Conservation is valid for a conservative potential field in an inertial frame. Both
conditions are not fulfilled as the Earth’s gravity potential field is rotating and the satellite is affected
by non-conservative forces. It will be shown in section 2.2.2 how those effects have to be taken into
account. For this purpose two equivalent representations for the computation of the disturbing potential
– in the inertial frame and in the Earth-fixed frame – are presented. Finally in section 2.2.3 a consistent
error model is derived by error propagation for all processing steps.

2.2.1 Velocity Determination

As the squared velocities enter into the computation – and so do their errors – they play a central role
in the Energy Balance Approach, and the determination of orbits and velocities has to be considered
thoroughly. Precise orbit determination (POD) is not part of this work (for details cf. Švehla and
Rothacher (2004)), but a short overview of orbit determination methods is given in order to put the
velocity determination into context.

The classic orbit determination method is dynamic POD. It is based on the integration of accelerations
(or more precisely specific forces acting on the satellite) which are computed from physical models (e.g.
gravity model, atmospheric drag model, solar radiation pressure model etc.). Various parameters like
the initial state vector or improvements to the employed physical models are estimated in a least-squares
adjustment using the GPS-tracking as observations. This orbit determination method is closely related
to the classical method for gravity field analysis, as it is possible to solve – among other model parameters
– for the gravity field coefficients. The orbit velocities are a by-product of the orbit integration.

Due to the deficiencies of physical models, the dynamic orbits deviate from the measurements already
after a short period of time. In order to improve orbit determination the reduced dynamic POD was
developed (cf. Yunck et. al (1990) and Wu et al. (1991)). The deterministic model of the dynamic
POD is extended by statistical parameters. This gives the integrated orbit more degrees of freedom
for a better fit to the data. The resulting orbits have a high accuracy, are very smooth and are less
affected by short data gaps, as the orbit integration smoothes measurement noise and bridges data
gaps. However the velocities are strongly correlated with the employed models (especially the a priori
gravity model), as they are basically obtained by the integration of accelerations determined by these
models. It has been shown by Gerlach et al. (2003a) that no significant improvement of the a priori
gravity model can be achieved by the Energy Balance Approach using reduced dynamic orbits.
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In contrast to the model based methods kinematic POD was developed. It is a geometric technique
which is purely based on observations (mainly GPS) and uses no a priory models to describe the
motion of the satellite. Thus the orbits are better suited to be used with the Energy Balance Approach.
Nevertheless they have some disadvantages: they contain more high frequency errors and more data-
gaps than reduced dynamic orbits. As each point is computed independently using only the observations
of the given epoch, kinematic POD can not provide velocities. Thus velocities have to be derived by
numerical differentiation.

Numerical differentiation has the disadvantage that high frequency errors are amplified, which is shown
by a spectral analysis of the orbit and its errors: in figure 2.3 the blue curve shows the power spectral
density (PSD) of a typical LEO orbit (which was obtained by the simulation of 1 week at 375 km
orbit height with 1 s sampling, using only gravitational forces), and the red curve shows the PSD of
a white noise orbit error with σ0 of 1.5 cm, which is a typical error for LEOs (although in reality it
is not exactly white). Figure 2.4 shows the PDSs for the derivatives of signal and noise of figure 2.3,
namely the velocities (blue curve) and their errors (red curve). The dominant frequency in both the
orbit and the velocities (blue curves), is the orbit frequency of ∼ 1.81 · 10−4 Hz (which corresponds
to a revolution period of ∼ 5523 s) and its multiples. The signal power decreases towards the higher
frequencies. It can be recognized, that the error PSD of the orbit, which is constant over the whole
spectrum (fig. 2.3) is amplified proportional to the frequency, which amplifies the high frequent errors
w.r.t. the velocity signal. In fact the time derivative in the time domain corresponds to a multiplication
of the spectrum with iω, where ω denotes the angular velocity ω = 2πf . The observed signal is the
sum of both – signal and error. The signal to noise ratio becomes 1 at the intersection of the curves
(≈ 1.29 · 10−2 Hz in this example). All higher frequencies should be filtered out with a low-pass filter
as there the noise dominates the signal. In section A.1 several numerical differentiation methods are
derived which also can be considered as filters. The choice of the optimal differentiation method depends
on mission parameters like orbit height, sampling interval and the orbit error and will be discussed using
real CHAMP data in section 3.1.
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Figure 2.3: Power spectral density of orbit signal and errors.

2.2.2 Energy Integral

The Law of Energy Conservation is valid for a conservative field in an inertial system. As the Earth’s
potential field is rotating one can either compute it in the Earth-fixed frame and has to account for the
rotation of the frame, or one can compute it in an inertial system and has to account for the rotation of
the potential. Both alternatives are equivalent and can be derived by an integration of the equation of
motion. In addition the satellite is subject to non-conservative forces, which have to be corrected for.
This problem is connected to the frame rotation problem, as these corrections are treated differently
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Figure 2.4: Power spectral density of velocity signal and errors.

depending on the frame in which the computation is performed, and can as well be explained by the
following derivation.

Newton’s second law states (Newton (1687)), that the rate of change of momentum of a body is propor-
tional to the resultant force acting on the body and is in the same direction:

F =
d(mṙ)

dt
. (2.20)

Multiplying this equation by ṙ and integrating over time leads to the energy integral of the satellite’s
motion (under the assumption that the satellite mass is constant):

∫
F · ṙdt =

1
2
mṙ2 . (2.21)

The right hand side of this equation is the kinetic energy while the expression on the left hand side
describes the work W done by the force F, which equals the integral of the force over the path dr:

W =
∫

F · dr =
∫

F · ṙ dt . (2.22)

The energy integral is generally path-dependent, but not in a conservative force field, where the work
equals the negative difference in potential energy between end and starting point of the motion, or
respectively the potential energy in the end point plus an unknown integration constant.:

W = −∆Wpot = −Wpot + H . (2.23)

The minus sign indicates that the potential energy is being expended and converted to some other
form of energy (kinetic energy in this case). If the satellite would move in a conservative gravity field,
inserting this in equation 2.21 would lead to the law of energy conservation (equ. 2.19):

H = Wkin + Wpot , (2.24)

or respectively for unit mass (again applying the sign convention for the gravitational potential V as
used in geodesy):



22 2 Theory of Gravity Field Analysis From Satellite Measurements

C =
1
2
ṙ2 − V =

1
2
ṙ2 −

∫
a · dr =

1
2
ṙ2 −

∫
r̈ · ṙ dt , (2.25)

where C is the Hamiltonian for unit mass and V is the integral of the accelerations a along the orbit.
But as other forces act on the satellite as well, the law of energy conservation is no longer valid, and the
additional forces have to be integrated along the orbit. The forces and their corresponding accelerations,
can be classified into four categories depending on their source and treatment in the energy balance
approach:

• Static gravity: The static gravity field of the Earth, which is defined as the mean field over a
certain period of time or at a certain reference epoch, is a conservative potential and the integral
of the corresponding accelerations ag along the orbit is path independent.

• Surface forces: The satellite is subject to external forces like air-drag or solar radiation pressure
and internal forces from the satellite’s propulsion system. All these forces act on the satellite’s
surface and are non-conservative, which means that they either drain energy from the system by
friction or add energy by thrust. In order to maintain the energy balance, the accelerations caused
by surface forces as, which are measured by the onboard accelerometer have to be integrated along
the orbit and the resulting quantity has to be used as correction.

• Temporal variations and tides: All mass transports in the Earth system (including oceans and
atmosphere) cause temporal variations in the Earth’s gravity field. Also the direct attraction from
other celestial bodies as the moon, the sun and other planets is time variable due to the motion
of the bodies w.r.t. the Earth. In addition they cause indirect tidal effects due to the deformation
of the Earth. These gravitational effects cannot be considered conservative as the integral along
the orbit is path dependent due to the movement of the gravitating masses and have to be teated
like the non-conservative surface forces. The accelerations due to temporal variations and tides
at can be computed from models as explained in appendix A.4.

• Fictitious forces: If the computation is done in the Earth fixed frame, fictitious forces which occur
only in the rotating frame have to be considered. They can be easily explained by the chain rule
of differentiation:

re = Ri
eri , (2.26)

ṙe = Ri
eṙi + Ṙi

eri = Ri
eṙi − ω ×Ri

eri , (2.27)
r̈e = Ri

er̈i + 2 Ṙi
eṙi + R̈i

eri = Ri
er̈i − 2ω ×Ri

eṙi − ω̇ ×Ri
eri + ω × (

ω ×Ri
eri

)
,(2.28)

where Ri
e is the rotation matrix from the inertial frame (denoted by the index i) to the Earth-fixed

frame (denoted by the index e). Its computation at any given epoch is explained in section A.3.
While the first term of equation (2.28) just describes the sum of all accelerations in the inertial
frame rotated at any instant to the earth-fixed frame, the other terms describe the fictitious forces
which are only observed in the rotating earth-fixed frame. The second term is the Coriolis force
acting perpendicular to the velocity, the third term is the Euler force, which is caused by the
changes in Earth rotation ω̇ and the fourth term is the centrifugal force acting perpendicular to
a plane which is spanned by the rotation axis and the position vector.

If the potential is computed in the earth fixed frame, the sum of all accelerations expressed in Earth-
fixed coordinates (we denote ae = Ri

er̈i for not considering the fictitious forces twice) has to be entered
in equation (2.25) which leads to:

∫
r̈e · dre = (2.29)

∫
age · dre +

∫
(ase + ate) · dre − 2

∫ (
ω ×Ri

eṙi

) · dre −
∫

(ω̇ × re) · dre +
∫

ω × (ω × re) · dre



2.2 The Energy Balance Approach 23

Substituting dr = dr
dt

dt and Ri
eṙi = ṙe + ω ×Ri

eri (cf. equ. 2.27) in the third integral term leads to:

∫
r̈e · dre = (2.30)

∫
age · dre +

∫
(ase + ate) · dre − 2

∫
(ω × ṙe) · ṙedt−

∫
(ω̇ × re) · dre −

∫
ω × (ω × re) · dre

The first integral term on the right hand side is the gravity potential V . The second integral containing
the surface forces as and the time variable effects at cannot be solved analytically and has to be
computed by numerical integration. The third integral terms becomes zero, as the Coriolis acceleration
is perpendicular to the velocity vector. The fourth term contains the Euler accelerations. The changes
of the Earth rotation ω̇ are very small and the term can be neglected. Only the centrifugal accelerations
need to be integrated analytically along the orbit, which leads to the centrifugal potential:

∫
ω × (ω × re) · dre = −1

2
(ω × re)

2 + Cc . (2.31)

If all these forces are considered, equation (2.25) ist extended by three terms which account for non-
conservative forces:

C =
1
2
ṙ2
e − V − 1

2
(ω × re)

2 −
∫

ase · dre −
∫

ate · dre . (2.32)

The integration constant Cc from equation (2.31) has been included in the global unknown constant.
The potential V can be split up in the normal potential U , which is the potential of a reference ellipsoid
and the disturbing potential T , which represents the deviations from the reference ellipsoid. It is
numerically more stable to use the disturbing potential T for the gravity field determination instead of
the full potential V as the values are several orders of magnitude smaller, therefore (2.33) is rewritten
as:

T =
1
2
ṙ2
e − U − 1

2
(ω × re)

2 −
∫

ase · dre −
∫

ate · dre − C . (2.33)

The disturbing potential T is a linear functional of the gravity field coefficients and now enters the
gravity field estimation as pseudo-observable. The unknown energy constant can be estimated as an
additional parameter in a least squares solution (cf. section 2.4) or has to be determined by using a
priori information (cf. Földváry et al. (2004)).

Computation in the Inertial Frame: The entire computation can also be carried out in the inertial
frame, using all quantities expressed in inertial coordinates. The advantage is that some of the involved
measurements and models are given in the inertial frame (e.g. the orientation of the satellite or the
direct tides). In order to derive the disturbing potential in the inertial system, equation (2.27) has to
be substituted into equation (2.33) to replace all expressions in the Earth-fixed frame:

1
2
ṙ2
e =

1
2

(
Ri

eṙi − ω ×Ri
eri

)2
=

1
2
ṙ2
i − ṙi · (ω × ri) +

1
2

(ω × re)
2 , (2.34)

∫
ae · dre =

∫
ae · ṙedt =

∫
ae ·

(
Ri

eṙi − ω ×Ri
eri

)
dt =

∫
ai · ṙidt +

∫
ai · (ω × ri) dt . (2.35)
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Inserted into equation 2.33 one obtains:

T =
1
2
ṙ2
i − U + ṙi · (ω × ri)−

∫
(asi + ati) · ṙidt−

∫
(asi + ati) · (ω × ri) dt− C , (2.36)

where the centrifugal potential has been replaced by the term ṙi (ω × ri). vr = (ω × ri) is the velocity
the point r would have in the inertial frame if it was fixed in the rotating frame. As the product of
two velocities ṙivr has the form of kinetic energy, the term can be regarded as a contribution of Earth
rotation to the overall energy. The same is applied to the non-conservative accelerations, which leads
to an additional integral term.

2.2.3 Error Propagation

The disturbing potential values along the orbit – derived from kinematic positions – cannot be regarded
as independent in-situ measurements. Already kinematic orbit positions are correlated even though
they are estimated independently. Neighboring points use a similar GPS constellation and contain
similar systematic effects. If one regards a full variance/covariance matrix of GPS positions (cf. fig.
3.16), it is apparent, that there are correlations larger than 0.5 over long arcs. The correlations only get
weaker if there are significant changes in the GPS satellite constellation (e.g one satellite descends and
another one is taken into the computation), or vanish in case of data gaps. In addition, colored noise is
introduced by the velocity derivation, which can be regarded as FIR-filter. This should be considered
in an error propagation.

If Σxx is the full variance/covariance matrix of a vector of statistical quantities x, the error information
can be propagated to another vector of statistical quantities y by the relation (cf. Niemeier (2002)):

Σyy = AΣxxAT , (2.37)

where A is the Jacobi matrix of partial derivatives of the elements of y w.r.t. the elements of x.

The disturbing potential T is derived from the orbit positions r via the velocities ṙ. Hence the error
propagation from positions to potential values consists of two steps:

P−1
TT = ΣTT = AWAṙΣrrAT

ṙ AT
W . (2.38)

The variance/covariance matrix of the potential values ΣTT is the inverse of the weight matrix PTT

that enters the adjustment as described in section 2.4.

The variance/covariance matrix of the positions Σrr is a result of the orbit determination. It is the
inverse of the normal matrix of the orbit adjustment scaled with a variance factor. The dimension of
the full matrix of an arc of n samples is 3n× 3n, as each orbit position consists of 3 components.

In a first step, the variance/covariance matrix of the velocities is computed. Therefore the Jacobi matrix
of partial derivatives of the velocity w.r.t. the positions Aṙ has to be applied. If a FIR-filter described
in section A.1 is used, the partial derivatives correspond to the filter coefficients. If for example the
5-point differentiation (equ. A.6)

ẋi =
xi−2 − 8xi−1 + 8xi+1 − xi+2

12h
, (2.39)

is used, the matrix reads:
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Aṙ =
1

12h




1 0 0 −8 0 0 0 0 0 8 0 0 −1 · · · 0 0 0 0 0
0 1 0 0 −8 0 0 0 0 0 8 0 0 · · · 0 0 0 0 0
0 0 1 0 0 −8 0 0 0 0 0 8 0 · · · 0 0 0 0 0
0 0 0 1 0 0 −8 0 0 0 0 0 8 · · · 0 0 0 0 0
0 0 0 0 1 0 0 −8 0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 1 0 0 −8 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −8 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 −8 0 0 · · · 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 0 0 0 · · · −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 8 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 8 0 0 −1




(2.40)

The dimension of the matrix is (3n − 12) × 3n, as the first and last two positions of an arc have to
be truncated. In a second step the Jacobi matrix of partial derivatives of the kinetic energy w.r.t. the
velocity has to be applied:

AW =
1

12h




ẋ3 ẏ3 ż3 0 0 0 0 0 0 · · · 0 0 0
0 0 0 ẋ4 ẏ4 ż4 0 0 0 · · · 0 0 0
0 0 0 0 0 0 ẋ5 ẏ5 ż5 · · · 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 0 0 0 · · · ẋn−2 ẏn−2 żn−2




. (2.41)

The dimension of this matrix is (n− 4)× (3n− 12). The resulting variance/covariance matrix has the
dimension (n− 4)× (n− 4). As both the Aṙ an the AW matrices are sparse, they can be handled very
efficiently.

Practical Considerations: Using a variance/covariance matrix for a complete satellite mission with
several million observations would use too much memory. It has to be simplified in a reasonable way.
The memory use has to be reduced to a manageable level while as much as possible of the covariance
information has to be preserved. Possible alternatives to a full Σrr matrix are:

• Σrr = I : All correlations between the positions and components are neglected. This requires no
memory at all.

• Σrr = Σ33 : Only the 3 × 3 matrices for the components of one position are used. Correlations
between different positions are neglected.

• Σrr = Σband : Only a small diagonal band of the full matrix is saved. This seems logic, as
the velocity derivation will amplify the band structure of the variance covariance matrix. But
artificially cutting out a band will destroy the semi-positive definiteness of the variance/covariance
matrix.

• Σrr = Σblock : The orbit data is cut into several short arcs. All correlations between those
arcs will be neglected but all information within one arc will be preserved. This is probably
the best compromise between memory usage and preservation of information. In average a GPS
constellation is observed 20 min before the constellation changes. Storing full blocks of 20 min
length up to an hour would result in a manageable data volume (which is dependent on the
sampling rate). Using data gaps as natural separation between arcs is useful, as the correlation is
lost anyway.
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2.3 Satellite Gravity Gradiometry

The GOCE-mission will be the first satellite mission to carry a gravity gradiometer to space. The
gradiometer will consist of 6 accelerometers which are pairwise arranged on 3 axes orthogonal at the
center of mass of the satellite. The axes of the single accelerometers will be (in the ideal case) aligned
with the gradiometer axes, which define the gradiometer reference frame (GRF). Each accelerometer
has one axis with reduced accuracy, due to the calibration on Earth, which is displayed in figure 2.5 by
a shorter sidelength.
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Figure 2.5: Gradiometer configuration.

The acceleration observed by a single accelerometer is given by

a = −∇2V · r + ω̇ × r + ω × (ω × r) + anon , (2.42)

where r is the position vector of the accelerometer origin in the GRF. a is not only influenced by
gravitational forces, but also by the fictitious Euler and centrifugal forces caused by the rotation of the
satellite and by external non-conservative forces anon like air drag and solar radiation pressure. These
external forces are determined by averaging the accelerations of the two accelerometers of one pair.
Basically there is some redundancy, as each component is measured by each pair, so that altogether
9 so-called common mode accelerations are measured, but 3 of them are measured by the weaker
accelerometer axes and should not be used. The common mode accelerations are computed in real
time on-board and serve as input for the drag-free-control system (DFACS) to compensate in flight
direction the external forces in the measurement bandwidth with ion-thrusters. Residual accelerations
are eliminated when taking the differential mode accelerations:

1
L




ax1 − ax4 ay1 − ay4 az1 − az4

ax2 − ax5 ay2 − ay5 az2 − az5

ax3 − ax6 ay3 − ay6 az3 − az6



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=




Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz


 +




0 ω̇z −ω̇y

−ω̇z 0 ω̇x

ω̇y −ω̇x 0


 +



−ω2

y − ω2
z ωxωy ωxωz

ωxωy −ω2
x − ω2

z ωyωz

ωxωz ωyωz −ω2
x − ω2

y


 , (2.43)

or in matrix form:

Γ = V + Ω̇ + ΩΩ . (2.44)

This is the fundamental equation of satellite gradiometry. It contains three terms, the tensor of second
derivatives of the gravity potential V, the permutation tensor Ω̇ of the angular accelerations and a
product of the permutation tensor Ω of the angular velocities with itself. As V and ΩΩ are symmetric
and Ω̇ is anti-symmetric, the latter can easily be isolated by: Ω̇ = 1

2

(
Γ + ΓT

)
, which yields the

angular rates of the satellites motion. The angular velocities cannot be obtained directly and have
to be computed by integration of the angular accelerations together with attitude data from the star
trackers in a Kalman filter process. This angular rate reconstruction is done by the GOCE payload
data segment (PDS), and the level 1B data which is available for gravity field determination contains
the tensor of second derivatives of the gravitational potential V.

The expected accuracy of the observed gravity gradients is below 10−2 E (1 E = 10−9 s−2) in the mea-
surement bandwidth (MBW: 5 mHz – 100 mHz). Due to the configuration of the accelerometers as
shown in figure 2.5 only the Vxx, Vyy, Vzz and the Vxz = Vzx components of the gravity tensor will
achieve this level of accuracy. The accuracy of the other components is expected to be one order of
magnitude less.

Figure 2.6 shows the power spectral density (PSD) of the expected errors of the diagonal components.
The precision of below 10−2 E is only achievable inside the MBW. Towards the low frequencies (below
5mHz) the error behavior increases proportional with the inverse frequency. In this spectral domain
support from the SST observations is necessary. The error increases towards high frequencies (above
100mHz). This spectral behavior of the observation noise has to be taken into account by filtering (e.g.
Schuh (1996)). Using the semi-analytical approach, the filtering can be applied in the spectral domain
(see sec. 2.5).

Temporal Gravity Field Changes: The measured gradients do not only contain the static part of the
gravity field – whose determination is the primary goal of GOCE – but also the time variable part.
Hence for the determination of the static part the gradients have to be corrected for those effects. The
effects that have to be considered – namely tides and changes due to mass variations in the Earth system
– are basically the same as for the accelerations mentioned in section 2.2.2, with the difference, that
some of the small effects which can be neglected on acceleration level, like mass variations in atmosphere
and ocean, become more important on gradient level. Their exact computation is described in section
A.4.

Frame Transformation of the Gravity Tensor: The equations to compute the elements of the gravity
tensor by spherical harmonic synthesis given in section 2.1, as well as the observation equations to be
discussed in section 2.4 are defined in the topocentric frame LNOF, while the measured gradients are
given in the gradiometer reference frame (GRF). Hence the measured gradients should be transformed
to the LNOF for gravity field computation. As some of the tensor components have reduced accuracy
(see below), they would also deteriorate the components with high accuracy. Thus the observation
equations have to be rotated to the system, where the measurement is taking place. The orientation
of the satellite w.r.t. the inertial reference frame (IRF) is measured by star trackers and given by
quaternions. As the LNOF is connected to an earth-fixed frame (ERF) via the geographic coordinates
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Figure 2.6: Power spectral density of the expected gradiometer errors.

θ and λ, the tensor can be rotated to the ERF first, then to the IRF and finally to the GRF. Note that
in order to rotate a tensor, the rotation matrix has to be applied from left, and its transpose from right.

VGRF = RLNOF
GRF VLNOF RGRF

LNOF , (2.45)

where

RLNOF
GRF = RIRF

GRF RERF
IRF RLNOF

ERF . (2.46)

The transformation between the topocentric and the geocentric frame can be computed by

RLNOF
ERF = P1 R2(90◦ − φ) R3(−λ) =



− cos θ cosλ − cos θ sinλ sin θ
− sinλ cosλ 0

sin θ cosλ sin θ sinλ cos θ


 , (2.47)

where P1 is the reflection about the x-axis, as the LNOF is a left hand system. The transformation
between ERF and IRF consists of the transformations due to the motion of the celestial pole (precession
and nutation) Q(t), the Earth rotation R(t) and polar motion W(t):

RERF
IRF = Q(t) R(t) W(t) . (2.48)

The details of the computation are listed in section A.3. The rotation from the IRF to the satellite
fixed GRF is derived from the orientation which is observed by the on-board star sensors and given in
quaternions:

RIRF
GRF =




q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3


 . (2.49)
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Quaternions are an extension to complex numbers which are often used to describe rotations (e.g. Wertz
(1988)). They consist of only 4 elements in contrast to the 9 elements of a rotation matrix (actually
only 3 elements are independent, as the norm of a rotation quaternion is defined as 1). Compared to
Euler or Cardan rotation angles they have the advantage of being free of singularities.

2.4 Direct Solution

2.4.1 Least-Squares Adjustment

In order to derive u unknown parameters x from a set of n observations l containing measurement
errors, which form an overdetermined system (n > u), the method of least squares adjustment is used.
A functional model of observation equations has to be set up expressing the measurements as functions
of the unknown parameters: l = f(x)+ ε, where ε is the vector of measurement errors. The model can
then be linearized and written as a single vector equation:

l + v = Ax, (2.50)

where

l is the vector of observations,
x is the vector of unknown parameters and
v are the corrections making the system of equations consistent.

The linearization is done by deriving the observation equations w.r.t. the unknown parameters. So the
design-matrix A is the Jacobi-matrix of the system of equations with n observations and u unknowns :

A =
∂f(x)

∂x
=




∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xu

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xu

...
...

. . .
...

∂fn(x)
∂x1

∂fn(x)
∂x2

· · · ∂fn(x)
∂xu




. (2.51)

As the measurements may also be correlated the full variance/covariance information has to be taken
into account by the variance/covariance matrix of the observations Σll:

Σll =




σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ1n

...
...

. . .
...

σn1 σn2 · · · σ2
n


 . (2.52)

The aim of the least squares adjustment is to estimate the parameters x such, that the sum of squares
of the corrections weighted by P = Σ−1

ll , is minimized:

vTPv = (Ax− l)T P (Ax− l) = min . (2.53)

The solution for the estimated parameters x̂ is (cf. Niemeier (2002)):

x̂ =
(
ATPA

)−1
ATPl = N−1n , (2.54)

where N = ATPA is called normal equation matrix, and n = ATPl the right hand side of the normal
equation Nx̂ = n.
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In the case of gravity field analysis the unknown parameters are the spherical harmonic potential co-
efficients C̄lm and S̄lm. Using functionals of the potential as (pseudo-)observations, like the disturbing
potential from the energy balance method, accelerations from the acceleration approach or the compo-
nents of the gravity tensor from SGG, the observation equations are already linear and the elements of
A can be derived using the quantities from table 2.1:

∂Vij

∂α
∂Vij

∂β

}
=

GM

R
λij

(
R

r

)l+1

p

{
cos(mλ)
sin(mλ)

. (2.55)

Quality Assessment: In order to asses the quality of the observations and the solution, the residuals
after adjustment

v̂ = Ax̂− l (2.56)

have to be computed. The residuals can be used to detect outliers in the observations, and a PSD of the
residuals can give conclusions about the spectral error behavior of the observations. The a posteriori
variance factor is computed by:

σ̂2
0 =

v̂TPv̂
n− u

. (2.57)

For large data sets the Jacobi-matrix A can be very large and may no longer be available in memory
after the adjustment. To avoid a recomputation, the a posteriori variance factor can alternatively be
estimated by:

σ̂2
0 =

lTPl− nTx̂
n− u

. (2.58)

As the normal equation matrix N is only determined by the inner geometry of the data distribution
(but not by the observations themselves which only enter on the right hand side of the system of
normal equations n), its inverse can be used to determine, whether the data distribution is well suited
or ill-posed for the estimation of the potential coefficients. The variance factor is used to scale the
variance/covariance matrix of the coefficients:

Σx̂x̂ = σ̂2
0N

−1 . (2.59)

The square root of the diagonal of Σx̂x̂ contains the standard deviation of the potential coefficients
σ(C̄lm) and σ(S̄lm), which are the formal error measures. By normalizing the inverse of the normal
equation matrix, one obtains the correlation matrix C of the potential coefficients:

Cij =
N−1

ij√
N−1

ii N−1
jj

. (2.60)

The correlation between two coefficients Cij , is computed by dividing the covariance by the square root
of the corresponding variances of those coefficients. Hence the correlation matrix should ideally be I.
Otherwise coefficients are correlated and cannot be estimated independently.

In order to obtain a global image of the quality of the solution, a variance/covariance propagation to
geoid heights, vertical deflections or other functionals of the potential, on a global grid can be computed
using:
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M = BΣx̂x̂BT , (2.61)

where the diagonal of M contains the formal propagated error variances of the functional at the grid
points, and the off-diagonal elements contain the error covariance between these points. The Jacobi
matrix B contains in this case the partial derivatives of the functional at the grid points w.r.t. the
potential coefficients. For geoid heights this reads:

∂N(θ,λ,r)

∂C̄lm
∂N(θ,λ,r)

∂S̄lm



 = R

(
R

r

)l+1

P̄lm(cos θ)
{

cos(mλ)
sin(mλ)

. (2.62)

2.4.2 Computational Aspects

Parallelization: The Jacobi matrix A can become too large to fit into the computer memory at once.
Its number of rows equals the number of samples, which can reach several millions for satellite missions
of several months or years with a sampling rate of down to one second and several observation types.
The number of columns equals the number of potential coefficients, which is (L + 1)2. One method
to deal with a matrix of this size is to cut the satellite orbit in smaller arcs, as proposed by Wermuth
(2001) – at the cost of losing all covariance information between the arcs. This method is ideal for
parallelization, as the arcs and the computational workload can be distributed over several computer
nodes. Each node can independently process an arc and set up the corresponding contribution to the
normal equations, requiring only a minimum of communication between the nodes. Finally the partial
systems of normal equations have to be collected and solved on a single node. The normal matrix
becomes:

N = ATPA =
(

AT
1 AT

2 ... AT
n

)



P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
0 0 · · · Pn







A1

A2
...

An




= AT
1 P1A1 + AT

2 P2A2 + ... + AT
nPnAn = N1 + N2 + ... + Nn , (2.63)

and similarly:

n = ATPl =
(

AT
1 AT

2 ... AT
n

)



P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
0 0 · · · Pn







l1
l2
...
ln




= AT
1 P1l1 + AT

2 P2l2 + ... + AT
nPnln = n1 + n2 + ... + nn . (2.64)

If also the memory requirements of the normal matrix N exceed the available memory of one node, it
has to be distributed over several nodes – at the cost that parts of the A-matrix have to be computed
by several nodes. This is described in detail in Plank (2004).
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Regularization: In gravity field analysis from satellite missions, the normal matrix is often ill-posed.
This implies that the solution is weakly determined because of the downward continuation and the
lack of data in the polar region for satellites with low inclination. The system of equations can be
stabilized by introducing a priori information. A common method used in mathematics is the Tikhonov
Regularization, which tries to find a compromise between minimizing the error vTPv and minimizing
the parameter norm xTx:

vTPv + α2xTx = (Ax− l)T P (Ax− l) + α2xTx = min . (2.65)

This can be interpreted as adding one observation equation per unknown parameter to the system of
equations. They are constrained to their expectation value of E{x} = 0 and given the freedom to obtain
values around the expectation value with the dispersion σx. This additional equations are weighted with
the standard deviation of the observations σb, which leads to the extended equation:

x̂ =
(
ATPA + α2I

)−1
ATPl = N−1n , (2.66)

with the Tikhonov parameter α = σb/σx. In order to determine the standard deviation of the unknown
parameters σx a priori information is necessary. Equation (2.65) is based on the assumption, that
all unknown parameters have the same statistical attributes. This is not true for the gravity field
coefficients. Kaula’s rule of thumb (Kaula (1966)) states, that the coefficients of the same degree l have
an expectation value E{xl} = 0 and a degree variance of σ2

l ≈ 160 · 10−12/l3. The degree variance is
defined as

σ2
l =

l∑

m=0

(
C̄lm

2 + S̄lm
2
)

. (2.67)

The standard deviation of coefficients of a certain degree l is:

σx(l) =

√
σ2

l

2l + 1
≈ ±10−5

l2
. (2.68)

Using this a priori information equation 2.66 reads as:

x̂ =
(
ATPA + α2R

)−1
ATPl , (2.69)

where α = σb. The standard deviation of the coefficients has been incorporated into the regularization
matrix. R is a diagonal matrix with 1/σ2

x(l) of the corresponding coefficient on its diagonal.

This method is often referred to as Kaula Regularization. Alternatively the degree variances from
an a priori model instead of Kaula’s rule of thumb may be used. If one wants to derive a solution
which is completely independent of a priori knowledge, an alternative algorithm like the Spherical Cap
Regularization introduced in Metzler (2007) should be employed.

Elimination of Additional Parameters Sometimes it is necessary to estimate additional parameters
together with the gravity field coefficients, like the unknown energy constant described in section 2.2
or accelerometer and gradiometer instrument parameters. If many of those additional parameters are
needed, like an energy constant for each of the small arcs described above, the system of normal equations
can become too large to be solved efficiently. Instead the arc-specific parameters can be eliminated from
the normal equations before the inversion. If one divides the solution vector x into the parameters x1
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which should be solved for and the parameters x2 which should be eliminated, the normal matrix N
and the right hand-side of the system of normal equations n can be written as:

N =
(

AT
1

AT
2

)
P

(
A1 A2

)
=

(
AT

1 PA1 AT
1 PA2

AT
2 PA1 AT

2 PA2

)
=

(
N11 N12

N21 N22

)
, (2.70)

n =
(

AT
1

AT
2

)
Pl =

(
AT

1 Pl AT
2 Pl

)
=

(
n1

n2

)
. (2.71)

So the normal equations read (cf. Niemeier (2002)):

(
N11 N12

N21 N22

)(
x̂1

x̂2

)
=

(
n1

n2

)
. (2.72)

If one solves the second equation of the system (2.72) for x̂2:

x̂2 = N−1
22 n2 −N−1

22 N21x̂1, (2.73)

substitutes it into the first equation of (2.72) and solves for x̂1 one obtains a version of the adjustment
model described by equation 2.54 where the additional parameters have been eliminated:

x̂1 =
(
N11 −N12N−1

22 N21

)−1 (
n1 −N12N−1

22 n2

)
. (2.74)

The eliminated parameters x̂2 can be reconstructed by a back-substitution of the parameters x̂1 into
equation 2.73.

Contribution Analysis and Variance Component Estimation: As shown above, the normal matrix
can be composed as sum of several independent normal matrices from different sets of measurements:
N = N1 + N2 + · · · + Nn. These sets can stem from different observation types, like disturbing
potential from the energy balance approach or different components of the tensor, or just different arcs
of one observation type as described above. They can have different statistical properties and different
influence on the potential coefficients. The regularization matrix α2R can also be considered as one
of the contributions. The influence of a partial data set can be determined by a contribution analysis
proposed by Schwintzer (1990). The products of the inverse normal matrix with the partial normal
matrices sum up to a unit matrix:

N−1N =
n∑

i=1

N−1Ni = I . (2.75)

The diagonal of N−1Ni contains values between 0 and 1, which show the relative contribution of the
partial data set to the coefficients. Here again the normal matrix is only determined by the geometry
of the data distribution, but not the actual data. Thus the contribution analysis can only tell, whether
a component is well suited for the determination of certain coefficients, and how big the influence of
a priori information is. In order to derive weighting factors σi, a variance component analysis has to
be carried out. Similar to equation (2.57), the variance factor is the weighted norm of the residuals
of the partial data set, divided by the redundancy. Koch and Kusche (2001) define the redundancy of
a partial data set as difference between the number of observations of that data set ni and the trace
of the contribution matrix N−1Ni. This (non-integer) number can be interpreted in the way, that the
number of parameters that are solved by a partial data set is the sum of all partial contributions on the
diagonal of the contribution matrix. Hence the variance factor for one component reads:
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σ̂2
i =

v̂T
i Piv̂i

ni −N−1Ni
. (2.76)

These variance factors can now be used to improve the weighting between the partial data sets in an
iterative process like proposed in Niemeier (2002). Variance factors will be estimated after each iteration
and replace the previous variance factors in the next iteration until convergence is achieved.

2.5 Semi-Analytical Solution

As the direct solution described in section 2.4 requires large computer resources it may for certain con-
siderations be advisable to make simplifications to reduce the computational effort and the computation
time. The Semi-Analytical approach is based on simplifying assumptions which speed up the whole
process of gravity field analysis at the cost of accuracy of the solution (e.g. Sneeuw (2000)). It is often
used in pre-mission analysis and will be used as quick-look tool for the processing of GOCE data (see
ch. 4).

Based on the assumption of a circular orbit (r = const.) with constant inclination I, equation (2.18)
can be rewritten as a two dimensional Fourier series:

Vij(u,Λ) =
L∑

m=0

L∑

k=−L

Aij
mk cos(ψmk) + Bij

mk sin(ψmk) , (2.77)

with ψmk = ku + mΛ. The Fourier coefficients Aij
mk and Bij

mk are the so-called lumped-coefficients Aij
mk

and Bij
mk, which are linear combinations of the potential coefficients:

Aij
mk

Bij
mk

}
=

L∑

l=0

GM

R

(
R

r

)l+1

λij
lk f

{
aij

lm

bij
lm

, (2.78)

where the auxiliary symbols aij
lm and bij

lm contain the potential coefficients C̄lm and S̄lm depending on
observation type and the parity of (l − m) according to table 2.2 and equation (2.17). Similarly f
stands for the inclination function or the cross-track inclination function. The link between the lumped
coefficients and the potential coefficients are the constant transfer coefficients H ij

lmk:

H ij
lmk =

GM

R

(
R

r

)l+1

λij
lk f

{
aij

lm

bij
lm

. (2.79)

The semi-analytical solution consists of two steps. The first step is the computation of the lumped-
coefficients Aij

mk and Bij
mk by FFT-techniques. They can be obtained again by two different approaches:

the 1D-FFT approach (see sec. 2.5.2) and the 2D-FFT approach (see sec. 2.5.1), which is also known
as Torus-Approach.

The second step is the adjustment of potential coefficients from the lumped-coefficients as pseudo-
observables, which leads to a block-diagonal system of normal equations, that can be solved very
efficiently. This step is independent of the way the lumped coefficients were obtained (cf. sec. 2.5.3).

The assumption of a circular orbit introduces errors, as a real orbit is perturbed by gravitational and
external forces. This will lead to a degraded solution compared to a direct solution. The degradation
can be to some extent overcome by an iterative processing strategy, which is explained in section 2.5.4.
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2.5.1 2D-FFT Approach

In equation (2.77) the orbit is only dependent on two variables u and Λ. The argument of latitude
u = ω + ν is the angle between the ascending node and the satellite position in the orbital plane,
Λ = Ω− θg is the longitude of the ascending node (cf. fig. 2.2). They both range periodically from 0◦

to 360◦ forming a torus, which is the spatial domain of the 2D-Fourier Transform. The orbit can be
transformed to the (u,Λ) domain via the Keplerian elements. It can be imagined to be wrapped around
a torus. The measurement values can then be interpolated to a regular grid on the torus surface, as
shown in Fig. 2.7.

Figure 2.7: Interpolation on a torus.

In addition to the problem, that a real orbit does not have a constant orbit height and observations
are evaluated at a wrong location, the interpolation from irregular distributed data to a regular grid
is an additional error source as well. Hence it is important to choose an interpolation method which
minimizes the interpolation error. The method will be chosen by means of results with real data from
the CHAMP mission in section 3.3 and with simulated GOCE data in section 4.2.

Furthermore following this approach the GOCE-SGG observations are implicitly assumed to be in the
local orbit reference frame (LORF), which means that the x-axis is pointing in flight direction, the
z-axis radially outwards and the y-axis is completing the triad. Due to the GOCE-mission design, the
actual orientation of satellite and gradiometer – and thus the observed gravity tensor – will differ from
the nominal orientation by several degrees (cf. fig. 4.5). It is not possible to simply rotate the tensor to
the LORF as the tensor elements with lower accuracy would dilute the more precise ones. As a result,
the observations are assumed to be in a slightly different frame, which enters another small error.

A 2D-FFT of the torus grid yields the complex coefficients Cij
km (where the indices ij denote the

functional which is used). They can be converted to the lumped coefficients Aij
mk and Bij

mk with the
following transformation:
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Vij(u,Λ) =
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It follows, that Aij
mk = 2<Cij

mk and Bij
mk = −2=Cij

mk. According to the Nyquist theorem, which states
that the highest frequency which can be accurately represented is less than half of the sampling rate,
the number of grid points must be at least (2L× 2L) or the maximum spacing between the grid points
be 2 · 360◦

L in order to have a sufficient resolution for a gravity field analysis up to degree/order L.

2.5.2 1D-FFT Approach

As an alternative to the 2D-FFT it is also possible to obtain the lumped coefficients by a 1D-FFT of
the measurement series along the orbit. From signal processing theory it is known, that in order to
obtain a discrete spectrum it is necessary to have a periodic signal and the line spacing is ∆f = 1/T ,
where T is the period. To obtain a periodic measurement series, the orbit must be periodic, which
means that its groundtrack must close in itself after β revolutions in α nodal days. A nodal day is the
interval between two meridian passes of the ascending node. This implies that the ratio of the rates of
the orbital coordinates (u,Λ) must match the ratio of revolutions per nodal day:

− u̇

Λ̇
=

β

α
, (2.81)

where (cf. Kaula (1966)):

u̇ = ω̇ + ν̇ = n +
3
2
nJ2

(
R

r

)2 [
4 cos2 I − 1

]
, (2.82)

and

Λ̇ = Ω̇− θ̇g = −3
2
nJ2

(
R

r

)2

cos I − ωE . (2.83)

The angular velocity u̇ can be interpreted as the mean motion of the satellite n =
√

GM/r3 corrected
for a small J2 perturbation, while Λ̇ is simply the combined effect of the Earth rotation ωE and the
J2-induced precession of the ascending node. It is always negative as the Earth rotation is in any case
faster than the nodal precession – hence the negative sign in equation 2.81.

A 1D-FFT of the observation time series produces the one-dimensional Fourier coefficients An and Bn,
which can be mapped to the two-dimensional lumped coefficients Amk and Bmk. According to Sneeuw
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(2000), the gravitational potential up to degree and order L creates a signal along the orbit, which has
the spectral lines ψ̇mk = ku̇+mΛ̇ with the spectral resolution ∆ψ̇ = u̇/β and the frequency of a certain
spectral line as defined by ψ̇n = n∆ψ̇. Using the relation in equation 2.81 the 1D and 2D spectra can
be related to each other:

ψ̇mk = ku̇ + mΛ̇ = u̇

(
k + m

Λ̇
u̇

)
= u̇

(
k −m

α

β

)
=

u̇

β
(kβ −mα) = ∆ψ̇ (kβ −mα) . (2.84)

So the mapping between the two spectra is defined by the relation:

n = kβ −mα , (2.85)

which is only unique if α and β have no common denominator. A perfect repeat orbit with a constant
repeat-ratio β/α is of course unrealistic and an imperfection of the periodicity condition is an additional
error source compared to the 2D-FFT approach. Nevertheless it was shown in Pail and Wermuth (2003)
that a non-closure of up to one degree at the equator and data-gaps of up to 30% do not degrade the
final solution seriously but are primarily slowing down the rate of convergence of an iterative solution.

2.5.3 Block-Wise Adjustment

Once the lumped coefficients Aij
mk and Bij

mk are obtained – either by the 1D-FFT or the 2D-FFT
approach – they can be converted to the potential coefficients C̄lm and S̄lm by a transformation which
is basically an inversion of equation 2.78. It can be regarded as a spectral mapping from the torus-
domain to the spherical domain and can be written as least-squares adjustment:

[
C̄lm

S̄lm

]
=

(
HT

lmkPψHlmk + α2R
)−1

HT
lmkPψ

[
Amk

Bmk

]
, (2.86)

where the potential coefficients are the unknown parameters and the lumped coefficients enter as pseudo-
observations. The regularization matrix R is obtained the same way as described in section 2.4. The
design matrix Hlmk is composed of the corresponding transfer coefficients. As can be seen in equation
2.78 only lumped coefficients and potential coefficients of the same order m are connected by the transfer
coefficients Hlmk. Hence the normal matrix becomes block-diagonal and the whole adjustment resolves
into independent and much smaller systems of normal equations. Furthermore in each m-block only
coefficients with the same parity of l are connected as by definition all Hlmk = 0 where (l − k) is odd
(see definition of inclination functions F̄lmk(I) in section A.2.2). So by using the appropriate ordering
of coefficients each m-blocks resolves again into two blocks, where the normal matrix contains at most
(L + 1)/2× (L + 1)/2 elements. This can be solved very efficiently.

A further advantage of the semi-analytical approach compared to a direct solution is, that filters can
be applied in the spectral domain. The residuals after the adjustment (see below) can be taken as
approximation for the the true errors of the observations. Hence the power spectral density (PSD) of
the residuals is an approximation for the true error PSD. Using the mapping n = kβ −mα, an error
estimate for the lumped coefficients Aij

mk and Bij
mk can be easily found. The data is implicitly filtered

by simply entering the reciprocal value of the PSD of the corresponding frequency ψmk to the diagonal
of the weight matrix Pψ. It was shown by Pail et al. (2004) in a simulation study, that the estimate for
the true error PSD improves with every iteration and the final estimate deviates by only a few percent.
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2.5.4 Iterative Quick-Look Processing

As mentioned above, all deviations from the assumed perfect circular orbit – variations in orbit height
and inclination, misalignment of the gravity tensor, non-closure of the repeat orbit and data gaps in
case of the 1D-FFT approach – will lead to a degraded solution. This degradation can be overcome to
a certain extent – depending on the deviations – by an iterative strategy as shown in figure 2.8.

T Observations Vij

Transformation to spectral domain

via 1D-FFT or 2D-FFT

Block-diagonal least squares Analysis

Potential coefficients

Variance/Covariance information

Noise PSD

Weighting

VCE

Residuals

strict synthesis

?T

?Vij

Filter

FFT

Regularizationa priori noise model

Figure 2.8: Iterative processing scheme.

The set of potential coefficients C̄lm and S̄lm from the initial solution is entered into a strict spherical
harmonic synthesis. This means that theoretical values for the observations T and Vij are computed by
equation 2.12 at the exact location of the orbit and in case of SGG-observations, the tensor is rotated
to its true alignment in the GRF. The residuals ∆T and ∆Vij , which are the difference between the
original observations and the theoretical values, enter the whole process again. First they are converted
to lumped coefficients ∆Aij

mk and ∆Bij
mk and then changes to the potential coefficients ∆C̄lm and ∆S̄lm

are estimated. They are added to the coefficients obtained in the previous iteration, and the iteration
is repeated until convergence is achieved, which means that the ∆C̄lm and ∆S̄lm stay below a certain
threshold, where their impact on the solution can be neglected. Examples will be shown in sections 3.3
and 4.1.



3 CHAMP Gravity Field Analysis

The CHAMP gravity field analysis consists of the two main parts pointed out in chapter 2, namely a
linearization step and a solution step. In this work the linearization is done by computing a time series
of disturbing potential values along the orbit using the energy balance approach, which is described
in section 3.1. The solution, namely the computation of spherical harmonic potential coefficients from
this time series can be done either in a direct least squares adjustment as described in section 3.2 or
by an iterative approach. Although the disadvantages of the direct solution, like large requirements in
computation time and computer memory, are not as severe as for the GOCE-mission (due to the lower
resolution and lower sampling rate), the application of the semi-analytical approach on CHAMP-data
is realized in section 3.3, as valuable conclusions can be drawn for the preparation of the GOCE gravity
field analysis. To assess the quality of the gravity field solution, the results are validated in section 3.4
by a comparison with other gravity field solutions and with external data.

3.1 Energy Balance Approach

3.1.1 Data Preparation

For this study 2 years of CHAMP data from day 70/2002 to day 70/2004 have been used. The main
data sets are the orbits and the onboard instrument data. Reduced-dynamic and kinematic orbit
solutions computed by Švehla and Rothacher (2004) have been used at the given sampling rate of 30 s.
The instrument data in the CH-OG-2-ACC+ product provided by GFZ (cf. Förste (2002)) contains
accelerations from the onboard accelerometer in the satellite fixed frame and quaternions measured by
the star-trackers, which describe the rotation from the satellite fixed frame to the inertial frame. Both
data sets are given at a 10 s sampling; thus they have to be downsampled to 30 s to match the orbit
data.

The orbit altitude varies between 420 km and 370 km at the beginning of the data period and slowly
descends (see fig. 3.1). The band structure in the figure is caused by the height variation during each
revolution due to the eccentricity. Two maneuvers lifted the satellite and during the second maneuver
the eccentricity was modified, which results in a smaller height variation during each revolution. At the
end of the two-years period, the satellite descended to about 370 km orbit height.

Figure 3.2 shows the differences between the two orbit types for DOY 198/2002. It can be seen, that
the difference contains many jumps, outliers and short data gaps which have their origin mainly in the
kinematic orbit. The reduced-dynamic orbit is much smoother and contains no data-gaps except for 21
days of data which are completely missing (which is about 2.9% of the data), while the kinematic orbit
contains many short and various longer gaps (which is about 5.9% of the data). This is due to the fact,
that during periods with bad GPS observations or even complete signal losses, the reduced-dynamic
orbit is simply continued by the integration of modeled forces (c.f. sec. 2.2). Therefore the reduced-
dynamic orbit can be used as a reference orbit for outlier detection in the kinematic orbit. Whenever the
difference between those orbits exceeds a certain threshold (e.g. 3σ), the kinematic position is flagged
as outlier. In case of a phase break a jump in the difference of the two orbits occurs. The kinematic
orbit is consistent before and after the jump, but the velocity must not be derived over the jump, as it
would get a wrong value. So the jump has to be flagged, and the orbit is cut into two arcs. This strict
outlier detection results in 38.3% of the kinematic orbit being flagged. This is a large loss of redundancy
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Figure 3.1: Orbit height.
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Figure 3.2: Difference between reduced-dynamic and kinematic orbit (x-component) for DOY 198/2002.

and continuity, which could possibly be avoided by a manual outlier detection, but this procedure was
designed to work automated on large data sets.

The star-tracker and accelerometer data are given at 10 s sampling and contain about 4.8% of gaps.
The specified accuracy for the accelerations is 3 · 10−9 m/s2 for the along-track and cross-track axis
and 3 · 10−8 m/s2 for the radial axis. When the accelerations are rotated to the inertial system using
the quaternions obtained by the star-trackers, the component with lower accuracy will impair the good
ones. The accelerations are downsampled to 30 s to match the orbit sampling rate using a lowpass
FIR filter. Downsampling by simply taking every third value would correspond to a multiplication of
the data with a series of Dirac impulses, and thus to a convolution of the spectrum with a series of
Dirac-impulses, which could lead to undesired aliasing effects. So a fourth-order lowpass FIR filter with
a cutoff frequency of 30s was designed using the MATLAB function fir1:

ai = 0.01688334ai−2 + 0.227925079ai−1 + 0.51038316ai + 0.227925079ai+1 + 0.01688334ai+2 . (3.1)

As a negative side-effect the percentage of data gaps would increase to about 7.2% due to the warm-up
phase of the filter. To compensate this, the short gaps of up to 100 s are closed by a Newton-Gregory
interpolation (cf. sec. A.1) before the filter is applied. This reduces the gaps to about 4.5% of the data,
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mainly eliminating the majority of very short gaps which are responsible for a strong fragmentation of
the data set. It was found out in an empirical test that for a gap length of 100s the interpolation error
using a 8-point Newton-Gregory interpolation with 4 points on each side of the gap, is well below the
3 · 10−8 m/s2 accuracy of the radial accelerometer axis.

The nominal orientation of the satellite is along the flight path, which means that the spacecraft-fixed
reference frame coincides with the local orbit reference frame (LORF), and its x-axis points in the
direction of the velocity vector. In reality the spacecraft fixed frame deviates from the nominal orbit
frame, as external forces also cause angular accelerations on the satellite. The attitude control tries
to keep the deviation below a certain threshold by firing thrusters to keep the satellite aligned. The
thrusters are placed in six pairs to generate positive and negative rotational accelerations around all
three axes, and thus allow for a quite precise attitude control. It can be seen in figure 3.3 that the
deviation from the nominal attitude rarely exceeds 2◦. It becomes also clear, that many thruster pulses
coincide with the peaks in the deviation angle, which shows, that thrusters are fired to align the satellite
back closer to its nominal orientation.
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Figure 3.3: Deviation from nominal attitude (blue) and thruster pulses (stars) for DoY 198/2002.

3.1.2 Velocity Computation

In order to asses which of the velocity computation methods described in section A.1 is best suited for the
derivation of velocities from kinematic CHAMP orbits, they are tested on a simulated orbit, for which
velocities are exactly known. The simulation is done for a one-day CHAMP-like orbit, containing only
gravitational forces from an a priori field up to degree and order 360. The positions and velocities are
error free. The tested differentiation methods are the FIR-filters, which are derived from interpolating
polynomials over an odd number of samples in section A.1. As discussed in section A.1 a polynomial of
the order (n-1) is necessary to describe n samples. Due to the symmetry of the problem all even orders
are canceled out and a polynomial of the order (n-2) is sufficient. If the order of the polynomial is lower
than n-2, it is over-determined and the derived filter starts smoothing the signal. In tables 3.1, 3.2 and
3.3 the results for non-smoothing filters are listed on the diagonal, the smoothing ones are listed below.

The derived velocities can be compared to the simulated velocities to determine the error of the deriva-
tion. In a rough approximation one can state, that the velocities should have an RMS error of 0.5mm/s
or better to meet the pre-mission requirement of a geoid error of several decimeters. Error propagation
yields the potential error δT = ṙ0 · δṙ. Assuming a mean velocity ṙ0 of 7650m/s and a velocity error
δṙ of 0.5mm/s, the error of the disturbing potential δT is 3.825m2s2, which corresponds to a geoid
error of about 40 cm at satellite height. Therefore velocity computation methods which cannot meet
the requirement of 0.5 mm/s should be ruled out.
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The errors from the non-smoothing methods are shown in figure 3.4, and the RMS error for all tested
methods is displayed in table 3.1. It can be seen, that first-order filters are not suitable for velocity
derivations, as the error is way above the required 0.5mm/s. Obviously a first-order polynomial is not
suited to approximate the orbit over 30s during which the satellite moves more than 200 km. The error
for the third-order polynomial is already below 0.1 mm/s but the error curve shows a strong periodic
signal with the orbit revolution frequency. This shows, that also a third-order polynomial is not good
enough to approximate the dominant oscillation in the orbit. So at least a polynomial of fifth-order is
necessary for the velocity derivation. As can be seen in table 3.1 the accuracy of the non-smoothing
methods (which are on the diagonal of the table) is increasing with polynomial order. The smoothing
methods (which can be found below the diagonal) perform the worse, the stronger the applied smoothing
is.
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Figure 3.4: Size of errors of several non-smoothing velocity computation methods (error-free orbits).

Table 3.1: RMS errors [mm/s] of the derived velocities. Non-smoothing methods are on the diagonal, smoothing methods
below.

points order 1st 3rd 5th 7th 9th 11th

3 224.244

5 762.318 0.050

7 1569.119 0.312 0.0009

9 2644.267 0.993 0.0046 0.0005

11 3987.249 2.380 0.0119 0.0026 0.0004

13 5597.425 4.826 0.0234 0.0067 0.0017 0.0003

It can be seen that for an error-free simulation no smoothing is required. Therefore the test was repeated
taking a white noise error of σ = 1.5 cm per component added to the positions, which is assumed to be
the error-level of the kinematic orbit obtained by comparisons with other orbit types (cf. Švehla and
Rothacher (2004)). The result, which can be seen in table 3.2 and for some selected methods in figure
3.5, shows that for the case with noise, the smoothing methods perform better than the non-smoothing
ones, and the one which uses a fifth-order polynomial over 11 points performs best.

Of course white noise does not really reflect the true error behavior of kinematic orbits. Thus a third
test was carried out, in which kinematic positions of one selected day of the real CHAMP-data are
derived and compared to the velocities of the reduced dynamic orbit, which serves as a reference as
it is considered less noisy. However it should be kept in mind, that the reduced dynamic velocities
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Figure 3.5: Errors of several fifth-order velocity derivation methods (white noise case).

Table 3.2: RMS errors [mm/s] of the derived velocities with white noise added to the positions.

points order 1st 3rd 5th 7th 9th 11th

3 224.245

5 762.318 0.475

7 1569.120 0.404 0.536

9 2644.267 1.008 0.324 0.577

11 3987.250 2.382 0.229 0.374 0.606

13 5597.425 4.827 0.175 0.274 0.413 0.627

from numerical integration are as well based on polynomials which are fitted to the observations. The
resulting errors are displayed in table 3.3. Also in this test the smoothing methods perform better than
the non-smoothing ones, and again the fifth-order polynomials perform best.

Table 3.3: RMS differences [mm/s] of the derived kinematic velocities with reduced dynamic velocities.

points order 1st 3rd 5th 7th 9th 11th

3 746.758

5 2538.885 0.257

7 5226.486 1.138 0.195

9 8808.545 3.600 0.148 0.205

11 13283.592 8.619 0.127 0.160 0.212

13 18649.695 17.475 0.125 0.137 0.169 0.218

But the RMS error is not a conclusive criterion as it is only one number for the whole error spectrum.
It was mentioned above, that the velocity derivation with polynomials corresponds to a convolution
of a filter expression with the orbit time series in the time domain. In the frequency domain it is
a multiplication of the spectrum of the filter with the spectrum of the orbit. Thus the magnitude
frequency response – which specifies the amplitude gain that the filter provides at each frequency – of
different filters is compared in figure 3.6. It can be seen, that the magnitude frequency response of all
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polynomial filters is very close to the i ω-line for low frequencies, but it starts to drop rapidly at a certain
cut-off frequency. The non-smoothing filters have a higher cut-off frequency and the transition to the
stop-band is steeper. The higher the polynomial degree is, the higher is the cut-off frequency and the
closer the filter gets to an i ω-behavior. The over-determined polynomial methods have a much lower
cut-off frequency and a slower drop. After the first drop there are some oscillations in the frequency
response, which are called stop-band ripple. The larger the over-determination is, the lower is the cut-off
frequency and the more oscillations can be counted in the stop band.
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Figure 3.6: Magnitude frequency response of polynomial differentiators.

In order to determine the optimal cut-off frequency the PSDs of the kinematic orbit and their error
should be compared. But as the true orbit is unknown, the orbit error and the error PSD cannot
be computed. According to Švehla and Rothacher (2004) and Jäggi et al. (2006), kinematic positions
are not independent but show correlations of up to 30 – 40 minutes, which is the time that CHAMP
tracks a single GPS satellite and estimated phase ambiguities are valid. Adjacent epochs share the same
systematic effects, as a similar GPS constellation is observed. So the best empirical estimate of an error
PSD of the kinematic orbit, for wavelengths of 30 minutes and shorter, can be obtained by comparing
it to the reduced-dynamic orbit and computing the PSD from the difference between the two orbits, as
the reduced-dynamic orbit is considered to have a very small error in these high frequencies.

Figure 3.7 shows the signal of an error-free simulated CHAMP-like orbit (blue curve) and an empirical
estimate of the error of the kinematic orbit (red curve). The intersection of the two curves, which marks
the frequency, where the signal-to-noise ratio becomes 1 is at about 9 · 10−3 Hz. So the aim should be
to have a cut-off close to this frequency in order to preserve the signal on the one hand and to filter out
the noise on the other hand. If this is compared to the magnitude frequency response of the different
filters in figure 3.6, one can clearly see, that the cut-off frequency of the over-determined methods is
too low and orbit signal is filtered out, which will result in a loss of high-frequency gravity field signal.
So the non-smoothing methods seem to be better suited for gravity field determination - even though
the RMS error is larger – as the spectral distribution of the error is better. Thus judging from both
criteria the fifth-order polynomial derivation over 7 points is chosen for velocity derivation. This will be
confirmed by the results of the gravity field analysis in section 3.2 but is only valid for this particular
mission scenario. A variation in orbit height (and thus signal strength), orbit error level or sampling
interval will shift the optimal cut-off frequency and may lead to a different conclusion.

3.1.3 Modeling of Disturbing Potential

The potential of the kinetic energy Wkin = 1/2 ṙ2 is computed from the velocities and displayed in
figure 3.8 (blue curve). For comparison, also the normal potential U computed from the parameters
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Figure 3.7: PSD of simulated kinematic orbits and their estimated errors.

of the WGS84 ellipsoid is displayed (red curve). Both show a similar behavior but with an apparently
different slope. In addition, they are strongly anti-correlated to the orbit height (cf. fig. 3.1), as both
the normal potential and kinetic energy increase when the satellite loses height and potential energy.
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Figure 3.8: Kinetic potential (blue) and normal potential (red).

If one computes the difference between the two potentials, the slope becomes clear, which is super-
imposed by an oscillation with orbit frequency (cf. fig. 3.9 (blue curve)). This oscillation of about
1.2 · 105 m2/s2 comes from the centrifugal potential, which is displayed by the red curve.

The equation:

T =
1
2
ṙ2
e − U − 1

2
(ω × re)

2 − C (3.2)

would be valid for a rotating conservative potential without external or non-conservative forces. The
disturbing potential T displayed in figure 3.10 (blue curve) clearly shows a loss of energy. Comparing
the red curve, which shows the measured accelerations integrated along the orbit, the loss of energy
can be explained to a large extent. Due to the non-conservative surface forces as (like atmospheric
friction) the satellite is slowed down and kinetic energy is converted to heat. Although the curves are
very similar, the two orbit maneuvers, which add energy to the system by lifting the satellite to a higher
altitude, are not modeled correctly (probably due to the accelerations caused by the thrusters exceeding
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Figure 3.9: T = 1/2 ṙ2
e − U (blue) and Wcent = 1/2(ω × re)

2 (red).

the usual measurement range). In addition, the slope of the two curves differs slightly especially during
the second half of the displayed period.
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Figure 3.10: T = 1/2ṙ2
e − U − 1/2(ω × re)

2 (blue) and Ws =
∫

ase · dre (red).

After subtracting the integrated measured accelerations from the disturbing potential, one can see that
the remaining time series is (apart from jumps and drifts) superimposed by a signal of two frequencies
(see fig. 3.11 blue curve). This signal can be identified as the integrated tidal accelerations displayed
in the red curve. The signal with shorter wavelength (∼ 12 days) is caused by the direct tides of the
moon and the longer one (∼ 120 days) is caused by the direct tides of the sun. The frequencies do not
match the revolution periods of the celestial bodies, which is due to the fact, that the resulting signal
is a superposition of the revolution period, Earth rotation and satellite revolution period.

Now that all model effects have been accounted for the disturbing potential time series still contains
jumps and drifts, as can be seen in figure 3.12. The jumps occur basically after each data gap. When
either the information about the satellites position or the external accelerations is missing (or both),
the loss of energy due to friction cannot be computed and a new energy constant C has to be introduced
for each segment of continuous data.

Table 3.4 summarizes the signal sizes of the various quantities. If the signals are compared to the
residuals after adjustment (cf. sec. 3.2), one can see that starting from a potential signal of 2.9·107 m2/s2

the gravity signal could be extracted with an accuracy of σ = 1.1 m2/s2.
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Figure 3.11: T = 1/2 ṙ2
e − U − 1/2(ω × re)

2 − ∫
ase · dre (blue) and Wt =

∫
ate · dre (red).
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Figure 3.12: T = 1/2 ṙe
2 − U − 1/2(ω × re)

2 − ∫
(ase + ate) · dre.

Table 3.4: Potential sizes of various effects.

effect signal

kinetic energy 1/2ṙ2 2.9 · 107 ± 3 · 105 m2/s2

normal potential U 5.8 · 107 ± 3 · 105 m2/s2

unknown constant C 2.9 · 107 m2/s2

centrifugal potential (ω × re)2 ±5 · 104 m2/s2

surface forces
∫

ase · dre ±1 · 105 m2/s2

temporal variations
∫

ate · dre 400m2/s2

systematic instr. errors 8000m2/s2

disturbing potential T 1000m2/s2

residuals σ0 1.1m2/s2

3.1.4 Treatment of Systematic Effects

As can be seen in figure 3.12 there are not only jumps in the energy constant after data gaps, but
also drifts in the potential time series, which change after data gaps. This points to uncompensated
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accelerometer errors which sum up by integration. It is also likely that some of the events which cause a
data gap (like software updates or reboots) change the accelerometer characteristics and are responsible
for a changing drift behavior. Two different calibration methods are discussed here. One possibility is to
use an a priori model in order to determine the long wavelength error signal in the disturbing potential
and to correct for it. If the goal is to derive a gravity field without any a priori gravity field information,
an alternative is to estimate additional accelerometer calibration parameters in the adjustment.

Long Wavelength Errors: The idea behind this method is a remove restore technique. From a known
gravity model (e.g. EGM96) a disturbing potential time series is computed along the orbit by spherical
harmonic synthesis (equ. 2.11) and subtracted from the actual potential time series derived by the
energy balance approach. Then the long wavelength signal is removed from the difference either by
filtering or by estimating a long wavelength polynomial. After that the potential from the a priori series
is added back. It should be noted, that this procedure is carried out for each segment of continuous data
separately and has to be interrupted at data gaps. But by relating the potential time series to a known
gravity field, the unknown energy constant H and the unknown jumps after data gaps are implicitly
removed. Additionally the potential is constrained to the reference frame of the a priori model, as the
coefficients of degrees l = 0 and l = 1 obtain values close to zero.
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Figure 3.13: Disturbing potential T .

It was determined empirically, that the best solution is obtained, when a polynomial of seventh order
is fit to a moving window of about 300 samples (∼ 2.5 hours). Unfortunately using a polynomial of
this order will influence wavelengths that are shorter than one orbit revolution (∼ 1.5 hours) an thus
the solution of gravity field coefficients of low degree and order. The fact that the disturbing potential
will be influenced by the choice of the a priori model (regardless whether this effect is desired or not) is
best shown by comparing the resulting disturbing potential time series in case different a priori models
were used. The difference between using EGM96 and EIGEN-GL04C, both up to degree and order 360
is shown in Figure 3.14.

Additional Parameters: In order to estimate accelerometer parameters, a separate bias b and scale
factor s is assumed for each accelerometer axis:

asc =




s1

s2

s3


 +




b1a1

b2a2

b3a3


 . (3.3)

If this is rotated from the spacecraft system (denoted by the index ”sc”) to the inertial frame and
entered into equation 2.36:
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Figure 3.14: Potential difference when using different a priori models for removal of long wavelength errors for DOY
198/2002.

Vnon =
∫

t
Rsc

iasc · ṙidt +
∫

t
Rsc

iasc · (ω × ri) dt . (3.4)

one can derive the partial derivatives of the disturbing potential w.r.t. the accelerometer parameters:

∂T

∂bi
=

∫
(R1,iẋ + R2,iẋ + R3,iẋ) dt +

∫
(R1,i(ω2z − ω3y) + R2,i(ω3x− ω1z) + R3,i(ω1y − ω2x)) dt

(3.5)

and

∂T

∂si
=

∫
(R1,iẋ + R2,iẋ + R3,iẋ) asc,idt+

∫
(R1,i(ω2z − ω3y) + R2,i(ω3x− ω1z) + R3,i(ω1y − ω2x)) asc,idt .

(3.6)

In both equations the first term is the dominant part. The partial derivatives w.r.t. the bias are basically
the integral over a scalar product between the unit vectors of the accelerometer axes with the satellites
velocity vector. As mentioned before, the x-axis of the accelerometer is aligned close to the velocity
vector (cf. fig. 3.3), the norm of the velocity is multiplied with a number close to 1 for the x-bias and
a small number for the y- and z- biases. This is reflected in figure 3.15, which shows that the partial
derivative w.r.t. the x-bias is almost linear over continuous arcs, and the other components are smaller.
This leads to the conclusion, that on the one hand the energy balance approach is not very sensitive
to the y- and z-axes of the accelerometer and their errors. This is positive as the z-axis, which has
already degraded accuracy, is known to have a hardware problem and delivers even more inaccurate
measurements (cf. Förste (2002)). On the other hand the biases of those two components are hard
to determine in a least squares adjustment as they are weakly defined, and they obtain unrealistically
large values as they compensate other unknown effects.

If one looks at the correlation matrix of the 3 biases and the 3 scale factors in table 3.5, it becomes
apparent, that like in many other geodetic applications, bias and scale factor are highly correlated (or
anti-correlated) and thus not easily separable. The system of normal equations becomes ill-conditioned
if one tries to estimate all six parameters. As the x-bias is the only parameter, which can be estimated
in a meaningful way – and its influence on the disturbing potential is almost linear over short arcs –
the following strategy has proven to be practicable. The orbit is cut into short arcs (meaning shorter
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Figure 3.15: Partial derivative of disturbing potential T w.r.t. the accelerometer biases.

than one orbit revolution) and an offset and a linear drift parameter in the disturbing potential are
estimated. The offset compensates the unknown jumps in the energy constant after data gaps, the
linear drift parameter compensates integrated errors form the x-axis of the accelerometer.

Table 3.5: Correlation matrix of bias and scale factor parameters.

x-bias y-bias z-bias x-scale y-scale z-scale

x-bias 1.00 0.68 0.17 -0.99 0.78 -0.92

y-bias 0.68 1.00 0.34 -0.70 0.98 -0.44

z-bias 0.17 0.34 1.00 -0.22 0.32 0.16

x-scale -0.99 -0.70 -0.22 1.00 -0.79 0.90

x-scale 0.78 0.98 0.32 -0.79 1.00 -0.55

z-scale -0.92 -0.44 0.16 0.90 -0.55 1.00

3.2 Direct Solution

The second part of the CHAMP gravity field analysis is the estimation of spherical harmonic gravity
field coefficients from the disturbing potential values computed in the previous section by a least-squares
adjustment. The adjustment process was discussed in section 2.4 and expressed as (cf. equ. 2.69):

x̂ =
(
ATPA + α2R

)−1
ATPl , (3.7)

where the time series of disturbing potential values T enters as vector of (pseudo-) observations l, and
the vector of unknowns x̂ contains the potential coefficients which are to be estimated.

System of Normal-Equations: The assembly and solution of the normal equations results in large
requirements on computation time and memory due to the large number of observations, o, and un-
knowns, u, but is manageable on a standard PC by employing highly optimized algebraic routines. The
computation is done on a standard PC with a 3GHz CPU and 1 GByte of main memory in reasonable
time. The design-matrix A has o · u, with o ≈ 1.2 million and u = (Lmax + 1)2, elements which occupy
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8 bytes of memory each. For a maximum degree of Lmax = 100 the matrix would require more than 90
GByte which by far exceeds the available main memory. This means, that the design matrix cannot be
kept completely in memory and has to be divided into blocks as described in section 2.4.2. The normal
equation matrix N has (Lmax + 1)4 elements. As it is advantageous to completely keep it in the mem-
ory, the maximum degree is limited to about Lmax = 100, which is fairly sufficient for a CHAMP-only
gravity field analysis as will be shown.

The largest requirement in terms of computation time is the assembly of the matrix of normal equations
N = ATPA. The multiplication of a matrix with its transposed can very efficiently be carried out by
the BLAS (binary linear algebraic subroutines (Lawson et al. (1979))) routine dsyrk. In order to make
use of the routine, the weight matrix P has to be Cholesky factorized with the BLAS routine dpotrf:
P = UTU, and the system of normal equations can be transformed:

x̂ =
(
ATUTUA + α2R

)−1
ATUTUl =

(
ÃTÃ + α2R

)−1
ÃTl̃ . (3.8)

In case additional accelerometer parameters are estimated (cf. sec. 3.1), 2 additional parameters have
to be estimated per arc. It has been found out empirically, that short arcs of at most one hour (or resp.
120 samples) should be used. Hence more than 46000 additional parameters for the more than 23000
arcs are added to the unknown parameters. The normal equation matrix N would become too large
to be completely kept in memory. Therefore the additional parameters have to be eliminated from the
system as described in section 2.4.2. As the design matrix A has to be divided into blocks anyway,
it is very convenient to set up one block for each of the short arcs, with exactly 2 parameters to be
eliminated.

Weight-Matrix P (Stochastic Model): As described in section 2.2.3 the variance/covariance informa-
tion has to be propagated from the orbit positions to the disturbing potential values using equation 2.38.
The orbit used for this work only contains the 3×3 variance/covariance matrices Σ33, which describe the
variance/covariance between the 3 components of each position. As a test the full variance/covariance
information Qblock is included exemplarily for one week in half-daily blocks with one hour of overlap.
The variance/covariance matrix for the first half of day 198/2002 is shown in figure 3.16. It can be seen,
that two parts of this data set are completely independent, as there are two quadratic sub-matrices on
the diagonal and the rectangular off-diagonal blocks only contain zeros. The larger of the two again is
separated in two blocks with a low correlation between them. Those new blocks always occur when a
new arc is set up in the POD or some discontinuity happens like a signal break or a change in the GPS
constellation. A look at the correlation matrix in figure 3.17 (here only for the x-axis) shows an even
more block-like structure. There are blocks of considerable correlation (> 0.5) over half an hour with
almost no correlation to adjacent blocks. This is about the average time, that the satellite observes the
same constellation of GPS satellites. These correlations should be considered and would give a very
good tool to select short arcs reasonably well if the information was available for the whole data set.
But as the variance/covariance information of the orbits has not been available for the whole time span,
the full error propagation could not be performed. The use of the Σ33 information did deteriorate the
solution, which has to be further investigated. Hence the error propagation was neglected and a unit
matrix was assumed as weight matrix: P = I.

Solution: As a first test to find out the optimal maximum degree Lmax, several solutions were computed
for Lmax = 20, 40, 60, 80 and 100. The requirements of computer resources are displayed in table 3.6.
The results are compared to the EIGEN-GL04C model (cf. Förste et al. (2006)) as reference and the
degree RMS differences between the solutions and the reference model are shown in figure 3.18. This test
is of course not an absolute quality measure. But as the EIGEN-GL04C model – which is a combination
of GRACE and surface data – is supposed to be more accurate than any CHAMP-only solution over
all wavelengths, it can be considered as an independent tool for a quick quality check (in contrast to a
full external validation given in section 3.4).
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Figure 3.16: Full variance/covariance matrix for 12h Or-
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Table 3.6: Requirements to computation time and memory.

Lmax 20 40 60 80 100

computation time t [s] 389 1918 6928 19356 34855

memory usage of N [MByte] 1.4 22 105 328 794

From this plot several conclusions can be drawn. First of all it is apparent, that the degree RMS
difference intersects Kaula’s rule of thumb, which gives a degree RMS value for the coefficients of the
same degree, at about degree 70. The difference between the solution and the reference model becomes
larger than the standard deviation at this point. As the reference model is supposed to be much more
accurate, one can draw the conclusion, that the signal to noise ratio of the solution becomes larger
than one, and the estimated coefficients do – on average – not hold meaningful gravity field information
above degree 70.

It is also apparent, that solutions with lower maximum degree show larger differences to the reference
model than solutions with higher maximum degree. The highest two degrees of each solution show
especially large differences. This indicates, that the signal which is omitted by truncating the series
expansion leaks into the lower coefficients and deteriorates the solution.
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Figure 3.18: Degree RMS difference to reference model for different solutions.
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From these two observations the somehow contradictory conditions arise, that on the one hand the
solution should be limited to degree 70 and on the other hand the maximum degree Lmax should be
as high as possible to minimize the effect of leakage. As a compromise, it was chosen as strategy for
all following computations, that the adjustment is solved for coefficients up to degree Lmax = 80 but
only coefficients up to degree 70 are used for comparisons, validation and geoid computation. It is in
theory possible to truncate a gravity field solution at any degree, as the base functions of the spherical
harmonic series expansion are orthogonal in case of a regular data distribution. In order to prove that
this is also a valid strategy in this particular case a look on the system of normal equations is necessary,
which reflects the geometry of the data distribution. Figure 3.19 shows the inverse of the normal matrix
Σx̂x̂ = N−1 of the solution with Lmax = 80.
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Figure 3.19: Variance/Covariance matrix of the gravity field solution.

The inverse normal matrix shows, apart from a dominant diagonal, only correlations in the mid degrees,
which reflect orbit resonances at around degree and order 32. After normalizing the matrix according
to equation 2.60 it becomes apparent, that those correlations do not play an important role. Figure
3.20 shows three zoomed parts of the correlation matrix C: the coefficients of low orders m= 0 and 1,
the middle part of the matrix with orders from m= 30 to 33 and the high orders between m = 60 and
80. Apart from a few exceptions the correlations off the diagonal stay below ∓ 0.1, which shows that
the coefficients can be determined almost independently. As there are no especially strong correlations
at around degree 70, the solution can be truncated without problems. The exceptions are, that the
zonal coefficients of order m=0 are correlated, any coefficient is anti-correlated to its direct neighbor
(≈ −0.3) and coefficients of the highest two degrees of the same order are also weakly correlated (≈ 0.2).
The latter explains the weak determination of the highest two degrees, as apparently they are not well
determined. But this problem is avoided by truncating the solution.

Comparison of the Results: As mentioned in section 3.1, the remaining systematic effects in the
disturbing potential have been treated with two alternative approaches: one tries to calibrate long
wavelength errors by the use of an a priori model, the other estimates bias and drift parameters over
short arcs. Figure 3.21 shows, that the approach to estimate additional parameters performs worse than
the long wavelength approach, if compared to the EIGEN-GL04C model. The differences are largest
between spherical harmonic degree l = 5 and l = 40. Both solutions show large errors in the very
low degrees with l < 5. Especially the C̄20 and C̄40 show very large errors which neither of the two
approaches can compensate. These errors cannot be explained and should be further investigated. As
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the general performance of the model using the long wavelength error compensation is better, it will be
used in all further comparisons.
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Figure 3.21: Degree RMS difference to reference model using different calibration methods.

It was derived in section 3.1, that non-smoothing methods for velocity derivation should theoretically
perform better for the CHAMP data set. In order to validate this, five different solutions were computed,
and the comparison to the reference model shows substantial differences (see fig. 3.22). The non-
smoothing methods (blue and red curve) produce better results than the smoothing ones – although
the residuals after adjustment are smaller for smoothing methods. This seems like a contradiction but
can be explained: the smoothing methods produce a potential series along the orbit for which the
adjustment finds a better fitting solution but is obviously further from reality, as gravity field signal
has been smoothed out. This empirical test perfectly confirms the theoretical reflections in section 3.1.

Formal Error Analysis and Error Propagation: In order to perform a formal error analysis, the a
posteriori variance factor σ2

0 has to be computed from the residuals using equation 2.57 and the inverse
normal equation matrix has to be scaled with σ2

0 to obtain the variance/covariance matrix. The residuals
are shown in figure 3.23. The resulting a posteriori variance factor is σ2

0 = 1.205m4/s4. Respectively
the standard deviation of the disturbing potential values at satellite altitude is σ0 = 1.098m2/s2. This
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Figure 3.22: Degree RMS difference to reference model using different velocity derivation methods.

can be converted to an estimate of the velocity error by error propagation. Using σṙ = σT /ṙ0 one
obtains a velocity error of σṙ = 1.4mm/s.
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Figure 3.23: Residuals after adjustment.

The diagonal of the variance/covariance matrix holds the formal variances of the coefficients. The
corresponding standard deviations of the coefficients are shown in figure 3.24. The error is rising
towards coefficients of higher degree and order. The error distribution is very regular. The standard
deviation per degree is shown in figure 3.25 and compared to Kaulas rule of thumb. It can be seen,
that the formal error is slightly more optimistic than the comparison to the reference model shows
– especially for the low degrees. Nevertheless, also the formal error curve intersects the Kaula curve
at about degree 70. It is common to calibrate the errors by comparison of sub-set solutions (cf. e.g.
Reigber et al. (2005)). This means, that several solutions are computed from different partial data sets,
and the variation of the resulting coefficients is used to derive a scale factor for the errors per spherical
harmonic degree. It should be noted that this is not an absolute method to determine the coefficient
error but more an empirical guess. The green curve in figure 3.24 shows that the calibrated errors
match the difference to the reference quite well – except for degrees 2 and 4, which has to be further
investigated.

The formal errors can be displayed to cumulative geoid errors as shown in figure 3.26. Here again
the difference to the reference model is slightly larger than the formal errors, which can mainly be
attributed to the C̄20 and C̄40 coefficients. The cumulative geoid height error is 27 cm at degree 70.
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The comparison with the EGM96 model (which is considered the best pre-CHAMP model) shows an
improvement of up to degree l = 60. Above that the terrestrial gravity information which is included
in EGM96 dominates.
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Figure 3.24: Formal coefficient errors.
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Figure 3.25: Formal coefficient errors per degree.

Finally the variance/covariance matrix up to degree 70 is used to compute a full error propagation to
determine formal geoid height errors on a global grid, which is displayed in figure 3.27. Apparently the
quality of the solution is better at higher latitudes (∼ 10 cm) than at the equator (∼ 33 cm) (except for
a very small polar gap), as the data density is much higher near the poles due to the inclination of the
satellite orbit of almost 90. The error plot shows a strong pattern of stripes in North-South alignment,
which reflect the satellite tracks.

Variance Component Estimation: For the short arc approach a variance component estimation can
be performed in order to improve the results of the global solution. Each of the 23000 short arcs can
be regarded as a partial data set. A variance factor σi is computed for each arc to give it its individual
weight according to the quality of the partial data. These variance factors are used in an iterative
procedure and improved during each iteration until convergence is achieved.

The strict computation of the variance factors would be a very demanding task, as it involves the
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Figure 3.26: Cumulative geoid height errors [m].
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Figure 3.27: Propagated geoid height errors [m].

computation of the trace of the product of two matrices with (Lmax +1)4 elements for each of the 23000
arcs. This can be simplified by the assumption, that all the arcs solve for an equal share of the unknown
coefficients. Equation 2.76 is simplified to:

σ̂2
i =

v̂T
i Piv̂i

ni − u/a
. (3.9)

where a is the number of arcs.

The variance factors which were found after the 2nd iteration are shown in figure 3.28. It can be
seen, that only few outliers were found, which exceed 3σ ≈ 3.3m2/s2. However the overall quality
of the first 750 arcs seems to be slightly worse than the rest of the data, which might be explained
by an improvement in the processing of GPS data. The overall quality of the solution could only be
marginally improved from a global geoid height difference to the reference model of X to Y. This shows,
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that the strict data preprocessing did not leave many arcs of particularly bad quality which had to be
down-weighted.
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Figure 3.28: Formal coefficient errors.

Regularization: Another attempt to improve the solution and to extend the range of meaningful
potential coefficients beyond degree 70 is to regularize the system of normal equations with a priori
information. As the standard deviation of the coefficients above degree 70 becomes larger than their
expected standard deviation determined by Kaula’s rule of thumb, it suggests itself to constrain the
coefficients. This is done by adding an additional observation equation for each coefficient with an
expected value of 0 and the standard deviation taken from Kaula’s rule of thumb. This leads to the
so-called Kaula regularization (cf. sec. 2.4.2). As a result, the diagonal regularization matrix R is
added to the normal equation matrix weighted by the factor σ2

0 = 1.205m4/s4. The result is displayed
again as degree RMS difference between the solution and the reference model in figure 3.29. It can be
seen, that the degree RMS difference now follows Kaula’s rule of thumb closer above degree 70. But
this actually shows, that nothing was gained, as the coefficients now just obtain random values within
the range of freedom that was defined by the a priori standard deviation.
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Figure 3.29: Regularized solution.

A contribution analysis of the regularization matrix (cf. 3.30) shows, that the influence of the a priori
information dominates above degree 70, and is almost negligible below degree 60. Thus it is decided,
that no regularization is employed.
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Figure 3.30: Contribution of the regularization matrix to the solution.

3.3 Semi-Analytical Solution

Although the direct gravity field analysis worked well and in a reasonable time for the whole 2 years
of data, the semi-analytic approach is applied to the same data to show its potential and limitations in
perspective of the GOCE and future missions. The preprocessing sequence to derive disturbing potential
values T along the orbit is exactly the same as for the direct solution. As the semi-analytical approach
does not provide the possibility to solve for additional parameters like accelerometer biases, they have
to be removed from the observations beforehand according to (cf. sec. 3.1). Both the 1D-FFT and
2D-FFT approaches are applied to the data.

3.3.1 1D-FFT Approach

It was shown in section 2.5 that the one-dimensional spectrum of a time series along the orbit can be
mapped to spherical harmonic functions if several conditions are – at least approximately – fulfilled.
The orbit should be circular – which implies a constant orbit radius r and inclination I – and the
orbit should close after β revolutions in α nodal days to meet the periodicity condition for a Fourier
transform. It was also stated, that deviations from these requirements can be overcome to a certain
extent by iteration.

A look at the orbit height in figure 3.1 shows that the requirement of a constant semi-major axis is
obviously not met as the satellite is constantly sinking. In addition the two orbit maneuvers cause large
discontinuities, which may result in difficulties in a spectral analysis.

As an effect of the varying orbit height and small variations in the inclinations I, the ratio between β
and α (cf. equ. 2.81) is varying too. Figure 3.31 shows the (smoothed) fluctuations in the ratio β/α,
where high frequency signals with sub-revolution period have been removed for clarity.

Despite the fact that many repeat patterns could be found – meaning that the ground-track of an orbit
passes very close to where it had passed an integer number β of revolutions before – it was not possible
to find one where the number of nodal days α is integer as well and the number of revolutions β > 140,
which is necessary for a solution up to degree 70.

As an example the average ratio β/α is at about 15.734729 in the period before the first orbit maneuver.
This would come close enough to a repeat cycle of β = 771 revolutions in α = 49 nodal days. But the
real orbit is too far away from the theoretical circular orbit, so that the spectral mapping fails. In this
case an iterative solution cannot overcome the deviations and does not converge.
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Figure 3.31: Revolutions per day β/α.

After the second orbit maneuver the satellite passes several times the resonance band, where β/α = 15.5
and the orbit repeats after 2 days and 31 revolutions. While that might be interesting for resonance
analysis, 31 revolutions are clearly not enough for a gravity field solution up to degree and order 70.

In conclusion one can say, that the 1D-FFT approach is not suited for a missions like CHAMP, which
has no orbit control that maintains a constant orbit height. It may very well be suited for mission
like GOCE, where the drag-free control maintains a constant orbit height and certain repeat-cycles are
planned.

3.3.2 2D-FFT Approach

In contrast to the 1D-FFT approach, the 2D-FFT approach is not dependent on a constant repeat-ratio
as the observations are interpolated to the (u, Λ)-torus. However the problem of a non-constant orbit
radius r and inclination I remains, as the torus is based on the assumption of these two parameters
being constant and an error is introduced by using the observations at a wrong height. The real height
differs from the mean up to ±30 km. An additional error is introduced by the interpolation itself, as
the disturbing potential values T which are irregularly distributed and afflicted by an error have to be
interpolated to a regular grid. Hence the interpolation method has to be regarded thoroughly.

Interpolation on the Torus: A basic and commonly applied method for the interpolation of irregular
2D data is to define a certain area around each interpolation point and to compute a weighted average
of all values within the area, where the weight is an isotropic function of the distance di between
interpolation point P and data point Pi. The interpolated value of the disturbing potential T at point
P becomes:

TP =
∑

i Tif(di)∑
i f(di)

, (3.10)

with Ti being the disturbing potential at point Pi. The distance between point P and Pi is defined
by d2

i =
√

(ui − uP )2 + (Λi − ΛP )2, which is a simplification as the metric of the (u,Λ)-system is non-
Euclidian. But as only data points in the vicinity of the interpolation point are considered, this can be
neglected.

For example weighting functions like inverse distance f(d) = 1/d, inverse squared distance f(d) = 1/d2

or the Gauss-function f(d) = e−σd2
can be used. The steepness of the weighting function and the
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maximum distance define the characteristics of the interpolation. A Gauss-function with a small σ is
smoothing as also farther points get a high weight, while the inverse quadratic distance is quite rough.
Nevertheless the choice of the weighting function is quite arbitrary and the quality of the interpolation
or respectively the interpolation error can only be judged empirically. Out of the tested functions, the
inverse square distance performed best leaving residuals with an RMS of 1.34m2/s2 over all grid points,
which is quite good but worse than the residual RMS of 1.01 m2/s2 over all data points of the direct
solution (cf. sec. 3.2 ).

A less arbitrary approach is to estimate the values on the interpolation points. Figure 3.32 shows the
vicinity of a selected interpolation point (u = 21◦, Λ = 216◦). It can be imagined, that the measurement
values form a two-dimensional surface. Hence the surface can be approximated by a 2D-polynomial of
second order:

f(x, y) = a5x
2 + a4xy + a3y

2 + a2x + a1y + a0 , (3.11)

where x = Λ−ΛP and y = u−uP . The polynomial coefficients can now be estimated by a least-squares
adjustment using all data points within a certain distance from the interpolation point:

a =
(
ATA

)−1
ATl , (3.12)

where a is the vector of polynomial coefficients, l the vector of observed values and A the design matrix
with partial derivatives. It was found out, that with this data set using a higher order polynomial than
second order does not improve the solution as well as taking points which are farther than d = 2◦ into
the computation. As for the interpolation point P x = 0 and y = 0 only the coefficient a0 needs to
be determined, as f(0, 0) = a0. Hence equation 3.12 can be reduced to the dot-product of the first
line of

(
ATA

)−1 AT with the vector of observations l. The elements of the first line of
(
ATA

)−1 AT

sum up to exactly one. This can be interpreted as weighting as well, as the interpolated value is the
weighted average of the observations. The weights which are shown in figure 3.33 show a dependence
on the radial distance di to the interpolation point but is not completely isotropic. This interpolation
method accommodates better to the point distribution than those mentioned above. As a result this
interpolation method reduces residuals to 1.03m2/s2 and thus performs much better than the other
methods. As a drawback it takes much longer to compute as a least squares adjustment has to be
solved for each point. It can be accelerated to a level which is acceptable for a quick-look solution
by doing all the indexing of which data point is used for which interpolation point before the actual
computation of the first iteration, which as a drawback uses much memory.

Solution: The solution of the block-diagonal system is very fast compared to the direct solution. The
overall computation time is 4 min per iteration at Lmax = 80. The iteration converges very quickly after
only few iterations, which is shown in figure 3.34 in form of degree RMS differences to the EIGEN-GL04C
reference model. It can be seen, that already after the second iteration no significant improvements
can be achieved. The final semi-analytic solution (black curve) comes very close to that of the direct
solution (green curve). Only below degree l = 30 the errors are slightly larger.

The interpolated values on the torus are displayed in figure 3.35. From the solution, the a posteriori
potential values were computed on the torus grid by synthesis (equ. 2.16). The residuals which are the
difference between a posteriori values and interpolated values are displayed in figure 3.36. As mentioned
above, the overall RMS of the residuals on the torus is 1.03m2/s2, which is very small – but they shows
a systematic behavior, which reflects the orbit tracks on the satellite. This pattern can be attributed
to the deviations in orbit height and is most likely responsible for the slightly decreased accuracy of the
semi-analytical solution. The possibility of a height dependent correction of the potential values should
be further investigated.
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Figure 3.32: Observations T [m2/s2] in the vicinity of a
grid point (black) at (u = 21◦, Λ = 216◦).
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Figure 3.33: Weight-factors for data points (sum=1) con-
tributing to the grid point (black) at (u = 21◦, Λ = 216◦).
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Figure 3.34: Comparison of the semi-analytic and direct solutions.

3.4 Validation

In order to asses the quality of the gravity field solution it has to be validated with external data and
compared to other gravity field models. This is done by a test procedure described by Gruber (2004).
The model derived in section 3.2 is referred to as TUM-2Sb. It is based on the same data as the TUM-2S
model (Wermuth et al. (2005)) but includes some improvements in processing. The model derived in
section 3.3 using the semi-analytical approach will be labeled TUM-2Ss.

The external data that is used for validation here are six national and regional GPS-leveling data-
sets. They contain geoid heights obtained by GPS-leveling on irregularly distributed points. Geoid
heights computed from a global gravity model are compared to the GPS-leveling points. The RMS
difference around their mean serves as quality measure. In order to be comparable, all tested global
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Figure 3.35: Interpolated disturbing potential values T
[m2/s2] on the torus grid.
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Figure 3.36: Residuals [m2/s2] on the torus grid.

models are truncated at degree/order 60. As the GPS-leveling points contain the information of the
full gravity field, the information above degree 60 has to be filtered out. This is done by computing the
corresponding geoid heights from degree 61 to 720 using the high degree geopotential model GMP98A
(cf. Wenzel (1999)) and removing them from the GPS-leveling data. Figure 3.37 shows the difference
between geoid heights computed from the TUM-2Sb model and the GPS-leveling data set of the USA
containing 5168 points. The difference for most of the points is within ±1m - only few outliers have a
difference of up to 1.5m. The RMS difference around mean is 0.364 m.
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Figure 3.37: Geoid height differences [m] between the TUM-2Sb model and GPS-leveling points in the USA.
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Next to the TUM-2Sb and TUM-2Ss models, which are derived from CHAMP-data only, five other
global gravity models are included for comparison. Three of them are CHAMP-only models as well.
The EGM96 model (Lemoine et al. (1998)) is considered the best pre-CHAMP model. The EIGEN-
GL04C model (Förste et al. (2006)) is a combination of GRACE and terrestrial data and supposed to
be more accurate than any CHAMP-only model. The CHAMP-only models are EIGEN-2S (Reigber et
al. (2003)) computed from two years of CHAMP data using perturbation theory, EIGEN-3P (Reigber et
al. (2005)) using 3 years of CHAMP data as well as an improved processing compared to EIGEN-2S and
the ITG CHAMP01S model (Mayer-Gürr et al. (2005)). It is based on the integral equation approach
and uses one year of the same kinematic orbits (computed by Švehla and Rothacher (2004)) as the
TUM-2Sb model. The results are shown in table 3.7.

The GPS-leveling data set used here are from six different regions (Australia, Canada, Europe, Germany,
Japan and the USA) and have different characteristics. The USA data spreads over the largest area
and contains the most points (5168). The Germany data set contains the most dense data distribution
(675 points in a relatively small area) while the data distribution over Australia and Europe is very
sparse (less than 200 points distributed over a relatively large area).

data set points TUM-2Sb TUM-2Ss EGM96 EIGEN-2S EIGEN-3P ITG-CH.01S E.-GL04C

Australia 197 0.293 0.303 0.269 0.497 0.273 0.310 0.240

Canada 1443 0.253 0.254 0.303 0.312 0.235 0.241 0.197

Europe 180 0.266 0.260 0.386 0.579 0.251 0.259 0.230

Germany 675 0.073 0.076 0.345 0.484 0.120 0.135 0.035

Japan 837 0.136 0.141 0.251 0.550 0.128 0.178 0.116

USA 5168 0.364 0.364 0.370 0.521 0.348 0.375 0.332

Table 3.7: Geoid model validation using GPS-leveling. RMS Errors around mean [m].

As expected, the EIGEN-GL04C model fits best to all data sets. Out of the CHAMP-only models,
which are – apart from EIGEN-2S – all on a similar level of accuracy, the EIGEN-3P fits best. The
direct solution TUM-2Sb fits to most data sets slightly better than the semi-analytical solution TUM-
2Ss. This confirms the results of the previous section. Only for the European data set, the TUM-2Ss
solution fits slightly better. This is still within statistical boundaries of the statement, that the accuracy
of the TUM-2Sb model is slightly higher, considering that the GPS-leveling data sets have errors, too.
Table 3.7 shows, that the data sets which are spread over larger areas like USA or Europe fit less well
to the satellite data than the data sets of relatively small areas like Germany or Japan. Hence the test
results should be rather seen as a relative comparison than as an absolute error measure.

As a further test geoid height slopes are compared to analyze wavelength dependent errors. Geoid
height slopes are computed – by taking the differences – between all possible points of a GPS-leveling
data set. The same is done for the global models and the slopes are compared. The slopes are grouped
in classes depending on their distance. For each class the standard deviation can be computed leading
to a wavelength dependent error curve. The results are shown in figure 3.38 for the USA data set
and in 3.39 for Germany. Here again the TUM-2Sb model is slightly better than TUM-2Ss. Both are
roughly on the same level of accuracy than the other CHAMP-only models. They seem to fit less well
to USA data in the very short wavelength below 500 km but better to the Germany data than the other
CHAMP models.
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Figure 3.38: Geoid height differences [m] for USA GPS-leveling data set and geoid models.
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Figure 3.39: Geoid height differences [m] for Germany GPS-leveling dataset and geoid models.
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A direct gravity field solution from GOCE-data is only possible with a computer cluster or a super-
computer with many nodes. Due to the complexity of the complete processing procedure, the results
will only be available several weeks after the end of the mission. As it is necessary to evaluate mission
performance already in parallel to the mission, a quick-look processing chain has been implemented
for the processing of GOCE data (e.g. Pail et al. (2006b)). The work presented in this chapter has
contributed to the development of the operational software.

The purpose of the quick-look gravity field processing is to provide an analysis of the observations with
a short latency of only a few days after they are acquired. Quick-look gravity fields will be computed
on a regular basis from partial data sets. In addition an estimate of the spectral noise behavior will be
provided in order to design filters for the final high-quality gravity field solution (see Pail et al. (2006a)).

The fast gravity field analysis will be achieved by using the semi-analytical approach (see sec. 2.5). As
mentioned above, the semi-analytical approach is based on simplifying assumptions, which allow for a
very efficient solution – at the cost of accuracy. In section 4.1, the performance of the semi-analytic
approach will be analyzed using error-free simulations. This allows to separate the errors caused by the
simplifications of the method from the influence of true measurement errors.

In section 4.2 the semi-analytic approach is applied to a simulated data set in the course of the mission
preparations. Let us denote this data set SIM. This simulation uses a realistic mission scenario and
includes a realistic instrument noise model.

4.1 Error-free Simulation

This simulation study consists of four test cases in order to evaluate the effect of three different error-
sources. The first one will show a proof of concept with a perfectly circular polar orbit. In the sequel
one more error source will be added per test case. The second one will use a circular orbit with a
GOCE-like inclination of I = 96.6◦ in order to show the effect of the polar gap, which is the area around
the poles left without observations. The third one will use the realistic orbit from the simulation but
keep the satellite perfectly oriented in the orbit system, in order to show the effect of the deviations
from a theoretical circular orbit (which is a requirement for the semi-analytical theory). Finally the
fourth test case will use the simulated realistic orientation. The satellites orientation will deviate from
a nominal orientation in flight direction. This test will asses the effect of this deviation on the solution.

All four cases will use a repeat orbit with 403 revolutions in 25 nodal days to be in line with the
simulation. A disturbing potential series T and tensor of second derivatives of the disturbing potential
Tij were simulated error-free using the EGM96 model up to degree and order 200 with the GRS80
normal field subtracted. The goal is to reproduce the input model as good as possible. Differences
between the coefficients of the solution and the input model can be seen as errors.

Proof of Concept (test case 1) : For a proof of concept a perfectly circular and polar repeat orbit
with only the central term of the Earth’s gravity field was created. The simulated SGG-observations
are perfectly oriented in the LORF.

Using only the central term of the Earth’s potential (J2 = 0) and a constant Earth rotation (ωe =
2π/86164 s), equation 2.82 leads to u̇ = n =

√
GM/r3 and equation (2.83) to (Λ̇ = −ωe). In order to
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match the repeat cycle that is used in section 4.2 with the simulation data, the parameters are chosen
as α = 25 and β = 403. This results in a constant radius r = 6607439.914 m or respectively an orbit
height of about 229 km. The duration is 25 · 86164 s = 2154100 s. With a sampling rate of 1 s there are
2154100 samples.

Figure 4.1 (left graph) shows, that the 1D-FFT solution converges very fast. After 6 iterations the
differences between the solution and the input model reaches numerical accuracy, which is the proof,
that the methods works perfectly if all preconditions are fulfilled.
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Figure 4.1: Degree-RMS-errors obtained by the 1D-FFT (left) and 2D-FFT approach (right) with a perfect simulation.

For the 2D-FFT approach things look different. As can be seen in figure 4.1 (right graph), the numerical
accuracy can only be reached after 33 iterations. The reason is, that the interpolation on the torus adds
an error to the error-free simulated observations, which is reflected in the solution of the first iteration.
The errors can finally be overcome, but the convergence rate is much slower than that of the 1D-FFT.

Effect of the Polar Gap: The second test uses basically the same circular repeat orbit which is now
tilted with an inclination of 96.6◦ leaving a gap of 6.6◦ at both poles without observations. This
leads to a severe degradation of the system of normal equations. As the semi-analytic approach has a
block-diagonal system of normal equations, the systems of normal equations corresponding to a certain
order m can be analyzed separately. Figure 4.2 shows the condition numbers of the systems of normal
equations per order for a polar orbit (green curve) and an inclined orbit(blue curve). It is evident that
below order m = 16 towards order m = 0 there is a strong increase in the condition number, which
shows that the zonal and near-zonal harmonics are ill-defined. As the relative numerical precision using
64-bit variables is about 10−16, a condition number of 1016 would mean that the normal equation matrix
is singular w.r.t. the numerical accuracy. The highest condition number for the system with order m = 0
is about 1010, which means that the largest coefficients can only be determined with 6 significant digits.
As the range of coefficients up to degree and order 200 (with the normal field removed) spans over four
orders of magnitude (cf. Kaula’s rule), the smallest coefficients can hardly be resolved. It should be
noted, that a direct solution is affected by the polar gap in a similar way.

The 1D-FFT solution converges after 15 iterations (cf. fig. 4.3). The degree-RMS-error shows a zigzag
pattern as the degree-RMS-error of the even degrees is much higher than that of the odd degrees.
Within one order m, only coefficients of the same parity of (l −m) are correlated (cf. equ. 2.86). The
symmetry of the polar gap effects the blocks of the normal equations corresponding to even functions
more than those corresponding to odd functions. The representation of the error as degree-RMS-errors
is misleading, as only the coefficients with low harmonic orders are ill-determined. Therefore it is
common to display a degree median error (showing only the median error of all coefficients within one
degree) which is displayed by the green curve in figure 4.3. This is as well misleading as it hides the
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Figure 4.2: Condition numbers of the system of normal
equations per order m.
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Figure 4.3: Degree-RMS-Errors obtained by the 1D-FFT
approach with an inclined orbit.

large errors of zonal coefficients and it is more clear to display the errors of each coefficient as its done
in figure 4.4 for all four test cases. The 2D-FFT solution reaches a similar result but again needs more
than 30 iterations to converge.

If the coefficient errors are converted to the spatial domain, e.g. geoid height errors, only geoid heights
located directly inside the polar gap areas obtain errors of up to 15 cm, while for the largest part of the
Earth, errors stay well below the mm-level.

Effect of a Realistic Orbit and Orientation (test case 3): For the third test a part of the orbit from
the SIM-data will be used with simulated error-free observations along this orbit. The tensor Tij is
still perfectly oriented in the LORF. The orbit is no longer circular as a realistic force model has been
used to simulate the orbit. However a repeat-cycle with β = 403 revolutions in α = 25 days could be
found. The duration of this cycle is not exactly 25 nodal days but it is about 6000 seconds longer,
which indicates, that all orbit parameters will differ slightly from the theoretical orbit, which is defined
by α and β.

Figure 4.4 shows, that the coefficient errors of both the 1D-FFT and 2D-FFT solution are much larger
than those of test case 2 but apparently the 2D-FFT solution has been affected less. Especially a wedge
of near-zonal coefficients obtained large errors. The 1D-FFT solution did not converge at all unless
regularization was applied.

The deviation of the real orbit from the theoretical circular orbit introduces an error in the measure-
ments, as the measurements are observed at a slightly different location than they are assumed to
be. This error prevents, that the solution converges with numerical accuracy and the solution has
significant errors despite the error-free observations. The error is amplified by the ill-posedness of the
normal equations. An ill-posed system of linear equations corresponds in the two-dimensional case to
the intersection of two straight lines under a very small angle. If these lines are well defined (error
free), the point of intersection is still well defined. But if the lines contain an uncertainty, the point of
intersection becomes very weakly defined. This explains, why the error of the near-zonal coefficients is
so much larger than for test case 2.

Effect of the Satellite’s Misorientation (test case 4): In addition to test case 3, the simulated
orientation of the satellite is used which differs from the nominal along-track orientation by up to
∼ 3◦ as shown in figure 4.5. This poses a problem for the semi-analytic approach, as the gradiometer
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Figure 4.4: Coefficient errors of the four test cases. 1D-FFT left column, 2D-FFT right column.
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measurements cannot be rotated to the nominal orientation in the LORF without loss of precision.
Due to the lower accuracy of the xy and yz tensor components, a rotation will degrade the other
components. The observation equations cannot be rotated to the real orientation – like it is possible
for a direct solution – as the semi-analytic approach is defined in the nominal orbit frame and the
SGG-observations have to be used as they are.

Figure 4.5: Deviation of the satellite’s orientation from the flight direction in roll, pitch and yaw (source:ESA).

Figure 4.4 shows that the results have further deteriorated for both approaches, and the 2D-FFT
approach is again less affected. Especially the sectorial coefficients have been affected. In conclusion
one can state that both approaches are affected by the deviations from the requirements of the semi-
analytical approach. The accuracy of the solution can not reach reach that of direct solution. The error
introduced by the deviations is amplified in the solution by the ill-condition of the normal equations.
The 1D-FFT approach is affected most by the orbit configuration, while the 2D-FFT solution is more
effected by the misorientation of the satellite. In general, the 2D-FFT approach seems to perform better
in this error-free test.

Contribution Analysis: Figure 4.6 shows the contribution of the SST component, the six tensor ele-
ments and the regularization matrix to the coefficients. All contributions sum up exactly to one. It
should be noted, that this only reflects the geometry of the repeat orbit with β = 403 revolutions in
α = 25 days and the orbit inclination I = 96.6 and not the error characteristics of the observations.

The solution below degree 20 is dominated by SST. Above that the influence of SST is declining towards
the higher degrees and above degree 50 SST has almost no influence. Out of the SGG components, the
Vzz-component is the most important with a contribution of up to 36% for all coefficients, that are not
dominated by SST or the polar gap. The wedge of coefficients with low harmonic order m < 16, that
is caused by the orbit inclination is clearly visible. The contributions to coefficients below degree 100
inside this wedge have an irregular distribution. Above degree 100 the regularization matrix seems to
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have a stabilizing influence. It should be noted, that without regularization applied, the contributions
in this wedge show an erratic behavior. Some would even obtain values above 1 or below 0.

One advantage of the semi-analytical approach is, that regularization can be applied more selective. If
the regularization as described in section 2.4 is applied to a full least squares solution, the regularization
would contribute to all coefficients of high spherical harmonic degrees. This is an undesired effect as
coefficients of orders larger than 16 can be estimated well without regularization. Hence here the
regularization is applied only to the blocks of the system of normal equation that correspond to orders
below m = 16.

4.2 Simulation with Realistic Noise

The SIM simulation contains about 60 days of observations covering 957 revolutions. The SGG-
observations are simulated using the EGM96 model up to to degree and order 200 at a sampling rate
of 1s. This leads to 5.1 million samples. The orbits are distributed irregularly as can be seen in figure
4.7. Some ground tracks are clustered, which leaves irregular gaps. This means, that the β/α-ratio is
not constant over the whole period, and a repeat cycle spanning all or most of the simulation cannot
be found. The best-fitting repeat-cycle that could be found in the data set is – as mentioned before
– a period of 25 days containing 403 revolutions. It has a very regular ground track distribution as
shown in figure 4.8. According to the Nyquist-theorem, the minimum number of required revolutions
is N = 2Lmax (cf. Sneeuw (2000)). Hence a solution to degree Lmax = 200 is just possible but the
redundancy in Λ-direction is very low. The repeat-cycle has to be used for a 1D-FFT solution – not
making use of the full data set, while the whole period of 60 days can be used for a 2D-FFT solution.
As both, the SST and SGG observations contain realistic noise and data gaps, they have to undergo a
preprocessing step. The simulation contains no tides and uses only a simplified Earth rotation with a
constant ω.

SST-Preprocessing – Energy Balance: The GPS observations are not synchronized with the gra-
diometer and star tracker observations. For the quick-look analysis a rapid science orbit (RSO) is used,
which is available with a very short latency after the measurement, but reduced accuracy compared to
a precise science orbit (PSO). The rapid science orbit is only available in 10s sampling, while the SGG
observations are available in 1s sampling. Hence the SST and SGG observations have to be synchronized
by interpolating the orbit positions to the gradiometer epochs. This is done using a Newton-Gregory
interpolation (equ. A.9) over seven points. The RSO will be available as either kinematic or reduced
dynamic orbit. Contrary to the CHAMP gravity field solution in chapter 3, and to the high-quality
GOCE solution based on the Energy Balance Approach (cf. Pail et al. (2006a)), it has been chosen to
use the reduced dynamic orbit for the semi-analytic quick-look processing for two reasons: the noise of
the kinematic RSO will be about one order of magnitude larger than that of the PSO (e.g. σx > 10 cm).
This would lead to large velocity errors – even if a smoothing algorithm for velocity derivation would
be applied – which would propagate to the disturbing potential values. The second reason is, that it
is not a requirement for quick-look processing to derive a solution independent of a priori information
(which would make the use of the kinematic orbit necessary). In addition the reduced dynamic orbit
already contains the full state-vector at any epoch. Velocity derivation as discussed in chapter 3 is not
necessary.

The algorithm applied for the derivation of the disturbing potential values from the orbit via the energy
balance is basically the same as described in section 3.1, but has some differences. Due to the drag-
free-control the orbit is not sinking like the CHAMP-orbit (cf. fig. 3.1), but the altitude is not constant
either. In figure 4.9 it can be seen, that the orbit is oscillating between 231 km and 247 km due to the
orbit eccentricity (black curve). With the orbit frequency filtered out (red curve), it becomes apparent,
that the orbit is rising slowly from a mean altitude of 239.9 km to 240.2 km over the 25 days (of the
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Figure 4.6: Contributions of the different components to the solution. Sum of all contribution is 1.
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Figure 4.7: Orbit coverage of the full data set over a se-
lected area.
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Figure 4.8: Orbit coverage of the repeat-cycle over a se-
lected area.

repeat cycle). This means, that the DFACS which is only compensating drag in the measurement
bandwidth is (in this simulation) slightly overcompensating in the long run.

0 5 10 15 20 25
230

235

240

245

250

Time [days]

H
ei

gh
t [

km
]

Figure 4.9: Orbit height.

This overcompensation, which means that the DFACS is adding energy to the system, can be seen as
well in the disturbing potential after normal potential and centrifugal potential have been removed from
the kinetic potential. Figure 4.10 shows the potential T = 1

2 ṙ
2
e−U− 1

2 (ω × re)
2−C (where the constant

C has been approximated by the mean of the time series) is slowly increasing, indicating, that energy
is added to the system. It should be noted comparing figure 4.10 with figure 3.10, that the addition
of energy by the DFACS is about factor 10 smaller than the energy loss of CHAMP during the same
period.

The remaining forces on the satellite, which are not compensated by the DFACS are at least one order
of magnitude smaller, than the uncompensated accelerations would be. Nevertheless, the common mode
accelerations contain an unknown constant bias and long-periodic errors (meaning longer than one day).
Integrated along the orbit, this will lead to a drift and long-periodic errors in the correction term for
external forces. Figure 4.11 shows this correction

∫
asedre, after a linear trend has been removed. It

can be seen, that mainly a daily signal remains, which is smaller than ±10m2/s2. After removing this
short wavelength signal from the disturbing potential, a long wavelength signal of ±500m2/s2 remains.
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Figure 4.10: T = 1/2ṙ2
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2-C.

This signal is caused by unknown accelerometer errors.
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Figure 4.11:
∫

asedre (linear trend removed).

The two methods proposed in section 3.1 for the removal of the uncompensated accelerometer errors
from the CHAMP data are not applicable here. The algorithm to estimate a long-periodic error using
an a priori gravity model, would use too much computation time due to the higher sampling rate.
The estimation of additional unknown parameters like accelerometer biases is not possible with a semi-
analytic solution. Hence it was proposed by Pail et al. (2006b) to estimate the additional parameters in
a smaller least-squares adjustment with a reduced set of unknowns and eliminate their corresponding
signal from the data, before the actual semi-analytic adjustment.

In this case the signal to be eliminated, f(t), is the uncompensated potential due to long-periodic
accelerometer errors. The data is divided in several parts of equal length (e.g. one day). The error
function f(t) is parameterized as a linear combination of Legendre polynomials Pn (which form an
orthogonal set of functions in the domain [-1 1]) over each part:

f(t) =
N∑

n=0

an · Pn(τ) , (4.1)

where τ ∈ [−1; 1] is the normalized time t over one part, ensuring that the argument of the Legendre
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polynomials is in the correct domain. The coefficients an of all parts are then estimated in a least-
squares adjustment together with the zonal coefficients (m = 0) of up to degree l = 20. If two adjacent
orbit parts are not separated by data gaps, a constraint is added to the adjustment to make the function
f(t) continuous. By choosing the maximum series expansion of the Legendre polynomials N and the
length of the parts one can define the characteristics of error function f(t). For the GOCE simulation,
polynomials of oder N = 2 over a period of one day are sufficient to describe the uncorrected signal
due to external forces well enough. The estimated error function is displayed in figure 4.10 (red curve)
and removed from the disturbing potential. By comparing the result – which enters the semi-analytic
adjustment – to a time series of disturbing potential computed by synthesis from the input model, one
obtains an error standard deviation of σT = 1.208m2/s2. This is slightly larger than the a posteriori
error of the CHAMP adjustment, but acceptable considered, that only a RSO with reduced accuracy
was used.

SGG-Preprocessing – Reduction of Systematics: The SGG-observations of the SIM data contain
gravity gradients from the input model with realistic instrument noise. In Figure 4.12 the error PSDs
of the simulated gravity gradients are displayed. For the Vxx, Vyy and Vzz components, the error stays
below the specified accuracy of 10−2 E within the measurement bandwidth between 5 mHz and 100 mHz.
Below the measurement bandwidth, the error rises with 1/f2. The errors of the Vxy and Vyz are about
2 orders of magnitude larger than those of the diagonal tensor components. The Vxz component would
meet the requirement in the band from 10 mHz to 100 mHz but the increase towards the low frequencies
starts already within the specified MBW and is even steeper than for the diagonal tensor components.
Hence it was decided to only use Vxx, Vyy and Vzz for the SGG processing.
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Figure 4.12: Spectral noise behavior of the SGG-observations.

The strong increase of the error spectrum towards the low frequencies generates a random walk in the
time domain, which is several orders of magnitude larger than the signal of the normal gravity field.
Generally, the observation data does not need to be filtered before the adjustment, when using the
semi-analytical approach. The filter will be applied during the adjustment in the spectral domain (see
sec. 2.5). Nevertheless it is necessary to reduce the largest long-periodic errors from the observations
for two reasons. As the systematic errors are several orders of magnitude larger than the signal, it is
numerically more stable to reduce the range of observation values. Especially for the 2D-FFT approach
it is important to remove long-periodic errors before the interpolation on the torus. For the interpolation,
observations are combined which are geographically close to each other but not necessarily in time. If
these observations carry offsets which are larger than the signal itself, the interpolation will completely
fail. The reduction of systematic effects is done with the same pre-elimination method proposed by Pail
et al. (2006b) as is used for SST-derived potential time series described above. For SGG observations
a higher polynomial degree (e.g. N = 3) is necessary.
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Results 1D-FFT: The solution has been computed combining the disturbing potential T derived by
the Energy Balance Approach and the three diagonal components of the tensor Txx, Tyy and Tzz (with
the normal field removed). Filtering in order to account for the spectral noise behavior of the SGG-
observations was applied as described Pail et al. (2004). The normal equations for SST have been set
up to degree LSST = 100, as the contribution of SST to higher degrees is negligible. For the SGG
components normal equations were set up to degree LSGG = 200 to recover the full signal contained in
the simulation. The different observables were combined on the level of normal equations. To show the
influence of the SST observations, separate solutions were computed using SST only and SGG-only. The
degree median errors of the three solutions are compared in figure 4.13. Above degree 20 the solution
is dominated by SGG. Below degree the errors of the SGG-only solution strongly increase towards the
lower degrees. In this band the solution is supported by SST.

The combined SST and SGG solution converges after 11 iterations. The coefficient errors are shown in
figure 4.14. The influence of the polar gap is clearly reflected in the high errors of zonal coefficients.
Apart from that the errors seem reasonable. Geoid height differences to the input model are shown in
figure 4.15. The error is very large (±60m) in the polar areas, which are not covered by observations.
But for the rest of the globe which is below the latitude of φ < ±83◦ the geoid height error stays mostly
below 20 cm, and the RMS error is 7.2 cm. This is more than twice as large than what is expected
from a direct solution using the same data (cf. Pail et al. (2006a)) but well within the requirements the
for quick-look gravity models. The errors are displayed in a Mollweide projection (cf. Snyder (1987))
which is area-accurate. This displays, that the area affected by the polar gap is actually very small.
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Figure 4.14: Coefficient errors of the 1D-FFT combined
SST+SGG solution.

Results 2D-FFT: The solution using the 2D torus approach does not come to a satisfying result. The
coefficient errors displayed in figure 4.16 show large errors apart from the polar gap effect. Whole orders
of coefficients have been effected. Figure 4.17, which displays the interpolated Tzz gradient on the torus
explains the reason. The reduction of long-periodic errors from the SGG-observations did obviously
not remove all systematic effects from the data. This is reflected in a track-pattern in the interpolated
function on the torus. The problem will be further investigated and the reduction of systematic effects
or the interpolation on the torus should be improved.
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Figure 4.15: Geoid height error [m] of the 1D-FFT solution.
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Figure 4.16: Coefficient errors of the 2D-FFT solution.
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5 Conclusions

In the following some of the findings of this work will be summarized.

Energy Balance Approach: It has been demonstrated, that the Energy Balance Approach is a suitable
method for global gravity field determination from hl-SST. The quality of the solution using two years
of CHAMP observations is competitive with solutions using alternative approaches (cf. sec. 3.4). Using
kinematic orbits it is possible to derive a single satellite gravity field solution independent of a priori
models. Therefore the method is suggested for gravity field analysis from future LEO missions which
are equipped with a GPS receiver and an accelerometer. The method will also be used for the SST
analysis of GOCE (cf. Pail et al. (2006a)). It will complement the SGG-analysis for both, the quick-look
and the final (high-quality) solution.

However the method has a weakness in the determination of very low coefficients – especially of the
coefficients C20 and C40. It seems that due to unknown accelerometer errors, which integrate up to
a long-periodic error in the disturbing potential time series, the long-term consistency between the
observations is lost. This could be possibly improved by developing a better modeling of accelerometer
errors enabling the recovery of long wavelength gravity signal.

The variance/covariance propagation did not work successfully, as no suitable covariance information
of the orbits was available. It is recommended to provide covariance information with orbit products
and the variance/covariance propagation should be taken up again.

Semi-Analytic vs. Direct Solution: The Semi-analytic approach is a very efficient method for gravity
field determination with low requirements of computer resources. Using simplified simulations as in
section 4.1 it can provide a quick analysis of the characteristic features of a certain mission design.
However using real data or simulations with realistic error assumptions, it cannot compete with a direct
adjustment in terms of accuracy.

The degree of degradation of the semi-analytic solution is dependent on the deviation of the real mission
data from the theoretical assumptions (e.g. a circular orbit) underlying the semi-analytical approach.
For CHAMP the deviations are relatively small and the semi-analytic solution reaches almost the quality
of the direct one. Only the small eccentricity and the slow decay of the orbit cause deviations from a
circular orbit. Nevertheless it should be noted, that the orbit decay, and the resulting orbit pattern
prevented a solution with the 1D-FFT approach. Due to the stable height of the GOCE orbit finding
a repeat orbit for the 1D-FFT was possible, although not optimal.

The semi-analytic processing of GOCE SGG observations is affected by an additional error source: the
orientation of the satellite. The semi-analytic approach requires observations to be oriented in the local
orbit reference system. As GOCE SGG observations are given in a slightly oscillating frame (and cannot
be rotated without loss of precision) a considerable error is introduced.

In conclusion it can be stated, that the semi-analytic approach is a good quick-look tool for the GOCE
mission, as it will provide a comprehensive and good insight into the performance of the mission. It
will also serve as a tool for pre-mission analysis of future gravity field missions, as the performance of
possible theoretical mission scenarios can be examined efficiently. But it is not an alternative to a direct
full solution for high quality gravity field analysis from real data.
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1D-FFT vs. 2D-FFT Solution: Both the 1D-FFT and 2D-FFT approach have certain advantages and
disadvantages and it cannot be concluded, that one of the two methods would generally be superior.
The choice rather depends on mission characteristics like orbit parameters and observation errors which
are different for each mission.

It has been shown in section 4.1 that if the requirements of a perfect circular orbit are met, the 1D-FFT
approach delivers the best results. But in reality such a requirement is never met perfectly. The more
the real orbit deviates from the theoretical assumptions, the larger the error is. This is due to the fact,
that measurements are observed at a location different from what it is assumed to be. In addition, the
1D-FFT approach relies on a constant orbit height as only then a constant repeat cycle is provided.
This limits the approach to satellite missions with an active orbit maintenance such as GOCE.

The 2D-FFT approach is less sensitive to orbit geometry. Observations enter the interpolation on the
torus at their true location in the (u,Λ) domain. Only deviations from the assumed constant orbit height
introduce an error. But the interpolation itself is an error source – especially if the data distribution is
very inhomogeneous. As shown in section 4.2, long-periodic errors cause difficulties for the interpolation
and are reflected in systematic errors on the torus grid. This is subject to further investigation. It
should be possible to remove the systematic errors from the interpolated SGG observations either by
using statistic properties of the function on the grid, or by using SST observations.
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A Appendix

A.1 Numerical Differentiation

As mentioned in section 2.2, kinematic positions contain considerable high frequent noise, which is
amplified by differentiation, as it corresponds to a multiplication of the spectrum with iω. These high
frequency errors are even squared before they enter the gravity field estimation. So the aim is to smooth
the velocities or filter out the high frequency errors without eliminating the gravity signal, which makes
the choice of an appropriate differentiation algorithm important.

In order to differentiate an orbit, it is sufficient to derive each of the components separately ṙ = dr/dt =
(dx/dt,dy/dt, dz/dt)T. The following derivations are done only for ẋ = dx/dt, representative for all
components. Nevertheless it should be considered, that correlations between the components of the
position vector are propagated to correlations between the components of the velocity vector (cf. sec
2.2).

Polynomial Differentiation: The fundamental principle underlying many differentiation algorithms of
discrete data, is to fit a known analytical function (e.g. an interpolation function) to the sampled values
and determine the derivative by analytically differentiating the function. The most obvious choice to
differentiate a time-series of n samples, is to use a polynomial of (n-1)th order, as there is only one
unique set of n coefficients (a0, a1, ..., an−1) which describes the polynomial containing all n interpolation
points:

x =
n−1∑

i=0

ait
i = a0 + a1t + a2t

2 + ... + an−1t
n−1. (A.1)

The velocities are obtained by differentiation of the polynomial:

ẋ =
n−1∑

i=1

iait
i−1 = a1 + 2a2t + ... + (n− 1)an−1t

n−2 . (A.2)

The coefficients ai are obtained by solving a linear system of equations with n equations and n unknowns:




x1

x2
...

xn


 =




1 t1 t21 · · · tn−1
1

1 t2 t22 · · · tn−1
2

...
...

...
. . .

...
1 tn t2n · · · tn−1

n







a0

a1
...

an−1


 (A.3)

As the linear system of equations becomes ill-posed for high orders and the computational effort rises,
it is advisable to compute the polynomial not over the whole time-series, but only in a short window
which moves over the whole time series, making the differentiation only for the central point of the
window.

The computation can be made even more effective, if the polynomial is restrained to an odd number of
interpolation points n, assuming all points are equidistant, with the sampling rate h and the polynomial
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is evaluated only at the central point. If this central point is defined as x0 at t0 = 0, the moving window
contains the points x−(n−1)/2, ..., x0, ...x(n−1)/2 from t−(n−1)/2 = −(n−1)/2 ·h to t(n−1)/2 = (n−1)/2 ·h,
and equation A.2 simplifies to

ẋ = a1. (A.4)

Thus the solution of the linear system of equations A.3 yields depending on the number of samples
used:

n = 3 => ẋi =
−xi−1 + xi+1

2h
(A.5)

n = 5 => ẋi =
xi−2 − 8xi−1 + 8xi+1 − xi+2

12h
(A.6)

n = 7 => ẋi =
−xi−3 + 9xi−2 − 45xi−1 + 45xi+1 − 9xi+2 + xi+3

60h
(A.7)

n = 9 => ẋi =
xi−4 − 102

3xi−3 + 56xi−2 − 224xi−1 + 224xi+1 − 56xi+2 + 102
3xi+3 − xi+4

280h
(A.8)

So the numerical differentiation by polynomials is basically a convolution of the time-series with an
anti-symmetric set of coefficients, which can be seen as a MA (moving average) or FIR (finite impulse
response) filter (see fig. A.1). It should be noted, that no value can be derived for the first and last
(n−1)/2 samples of a time-series, as the derivation is only computed for the central point of the moving
window. This can be regarded as the warm-up phase of the filter. As a convolution in the time-domain
corresponds to a multiplication of the spectrum in the frequency-domain, the spectrum of the orbit is
multiplied by the spectrum of the filter coefficients. This is analyzed in section 3.1 and 4.2.
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Figure A.1: Polynomial interpolation as convolution over n = 5 samples (left) and n = 7 samples (right).

An alternative representation of equation A.1, which is more efficient in the case of an irregular sample
distribution is the Newton-Gregory interpolation:

x = a0 + a1(t− t1) + a2(t− t1)(t− t2) + ... + an−1(t− t1)(t− t2)...(t− tn−1), (A.9)

where the coefficients (a0, a1, ..., an−1) are computed by successive difference ratios:

a0 = x1; a1 =
x2 − x1

t2 − t1
; a2 =

x3−x2
t3−t2

− x2−x1
t2−t1

t3 − t1
; ... . (A.10)

The derivation is obtained by:
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ẋ = a1 + a2((t− t2) + (t− t1)) + a3((t− t2)(t− t3) + (t− t1)(t− t3) + (t− t1)(t− t2)) + ... . (A.11)

The computation can be efficiently vectorized using a difference table (see fig. A.2), as it is also a
moving window running over the time-series. Note that for the simplicity of the example a constant
sampling rate was used and the differentiation is done for the central point of a 5-point window. This
yields exactly the same result as shown in figure A.1. The advantage of the Newton-Gregory algorithm
lies in interpolating and differentiating time-series with non-constant sampling intervals, as applied in
section 4.2, as the computation of the difference table is more effective than solving a linear system of
equations for each point.
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Figure A.2: 5-point Newton-Gregory differentiation.

Smoothing Polynomial Differentiation: The Polynomials determined in the previous paragraph have
the disadvantage, that they pass exactly through every interpolation point including its error. Addi-
tionally they are overshooting at the edges, so that the (n − 1)/2 points at the begin and end of the
time-series can only be derived with large errors. However if one uses more points for the determination
of the polynomial than necessary (n > o + 1 where n is the number of samples and o the order of the
polynomial), which leads to an overdetermined system of equations, the polynomial becomes a smooth-
ing curve, which no longer passes exactly through each interpolation point. The polynomial coefficients
ai can be estimated in a least squares adjustment:

a =
(
ATA

)−1
ATx, (A.12)

where a is the vector of polynomial coefficients, x the values of the time-series, and A the (n, o + 1)-
matrix containing the partial derivatives of the polynomial (equ. A.1) w.r.t. the polynomial coefficients
ai:

A =




1 t1 t21 · · · to1
1 t2 t22 · · · to2
...

...
...

. . .
...

1 tn t2n · · · ton


 . (A.13)

Also in the overdetermined case filter coefficients, which are referred to as Savitzky-Golay coefficients
(cf. Savitzky and Golay (1964)) can be easily estimated for the central point of an odd number of
points with constant sampling interval. Using equation (A.4) only the second row of (ATA)−1AT,
which contains the filter coefficients needs to be computed.

Here again, the formula can be simplified, if one determines a 2nd-order polynomial at the central point
of an odd number of equidistant points (cf. Lanczos (1956)):



86 A Appendix

ẋ =
∑+k

α=−k αf (x + αh)

2
∑k

α=1 α2h
(A.14)

where k = (n − 1)/2. For k = 1, n = 3 the system is not overdetermined, and the differentiation
becomes:

ẋi =
xi+1 − xi−1

2h
, (A.15)

which is equal to equation (A.5). This is the most simple form of numerical differentiation. For
k = 2, k = 3 and k = 4, the equations become:

k = 2, n = 5 => ẋi =
−2xi−2 − xi−1 + xi+1 + 2xi+2

12h
(A.16)

k = 3, n = 7 => ẋi =
−3xi−3 − 2xi−2 − xi−1 + xi+1 + 2xi+2 + 3xi+3

28h
(A.17)

k = 4, n = 9 => ẋi =
−4xi−4 − 3xi−3 − 2xi−2 − xi−1 + xi+1 + 2xi+2 + 3xi+3 + 4xi+4

60h
(A.18)

A.2 Base Functions

A.2.1 Legendre Functions

The closed analytical form of the fully normalized associated Legendre functions (equ. 2.4) is not suited
for numerical computations. The functions and their first and second order derivatives can easily be
computed by recurrence relations instead (cf. Gerstl (1980)). For convenience the following substitutions

were made: P̄lm = P̄lm(cos θ), P̄ ′
lm = ∂P̄lm(cos θ)

∂θ and P̄ ′′
lm = ∂2P̄lm(cos θ)

∂θ2 . The recursive computation
starts with P̄00 = 1, or P̄ ′

00 = 0 and P̄ ′′
00 = 0 respectively, using equation (A.19) (dashed arrows in

fig. (A.3)) until P̄mm is computed.

P̄ll = Wll sin θP̄l−1,l−1 , (A.19a)
P̄ ′

ll = Wll(cos θP̄l−1,l−1 + sin θP̄ ′
l−1,l−1) , (A.19b)

P̄ ′′
ll = Wll(− sin θP̄l−1,l−1 + 2 cos θP̄ ′

l−1,l−1 + sin θP̄ ′′
l−1,l−1) . (A.19c)

For l > m, the next step is computed by (dotted arrows):

P̄l,l−1 = Wl,l+1 cos θP̄l−1,l−1 , (A.20a)
P̄ ′

l,l−1 = Wl,l+1(− sin θP̄l−1,l−1 + cos θP̄ ′
l−1,l−1) , (A.20b)

P̄ ′′
l,l−1 = Wl,l+1(− cos θP̄l−1,l−1 − 2 sin θP̄ ′

l−1,l−1 + cos θP̄ ′′
l−1,l−1) , (A.20c)

followed by equation (A.21) (solid arrows) up to P̄lm:

P̄lm = Wlm

(
cos θP̄l−1,m −W−1

l−1,mP̄l−2,m

)
, (A.21a)

P̄ ′
lm = Wlm

(
− sin θP̄l−1,m + cos θP̄ ′

l−1,m −W−1
l−1,mP̄ ′

l−2,m

)
, (A.21b)

P̄ ′′
lm = Wlm

(
− cos θP̄l−1,m − 2 sin θP̄ ′

l−1,m + cos θP̄ ′′
l−1,m −W−1

l−1,mP̄ ′′
l−2,m

)
. (A.21c)
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The normalization factors Wlm are computed by

W11 =
√

3 , (A.22a)

Wll =

√
2n + 1

2n
for l > 1 , (A.22b)

Wlm =

√
(2n + 1)(2n− 1)
(n + m)(n−m)

. (A.22c)
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Figure A.3: Recursion scheme for the Legendre functions (from Rummel (1992))

A.2.2 The Inclination Functions

The inclination functions can be very efficiently computed by FFT. This method was introduced by
Goad (1987), and its performance was evaluated by comparison with other algorithms by Wermuth
(2001). An alternative derivation, which regards the inclination functions as Legendre functions along
the orbit and produces the same result, is described in Sneeuw (1991).

If the equations (2.11) and (2.16) are set equal (V (r, θ, λ) = V (r, I, u,Λ)), one gets after canceling all
constant terms and setting all potential coefficients to one:

P̄lm(cos θ)(cosmλ + sinmλ) =
l∑

k=−l

F̄lmk(I)
([

cosψmk

sinψmk

]e

o

+
[

sinψmk

− cosψmk

]e

o

)
. (A.23)

Where e stands for l −m = even and o stands for l −m = odd. With a sample orbit Ω = Θ = 0, mΛ
becomes 0 and equation (A.23) becomes:

P̄lm(cos θ)(cos mλ + sin mλ) =
l∑

k=−l

F̄lmk(I)
([

cos ku
sin ku

]e

o

+
[

sin ku
− cos ku

]e

o

)
. (A.24)
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A discrete Fourier series has the form:

f(x) = a0 +
K∑

k=1

ak cos kx + bk sin kx , (A.25)

If the left side of equation (A.24) is taken as f , the Fourier coefficients ak and bk can be found by
comparison of coefficients:

a0 =
[

F̄lm0(I)
−F̄lm0(I)

]e

o

, (A.26)

ak =
[

F̄lmk(I) + F̄lm,−k

−F̄lmk(I)− F̄lm,−k

]e

o

, (A.27)

bk = F̄l,m,k(I)− F̄l,m,−k . (A.28)

The Fourier coefficients ak and bk can be computed by a Fourier transformation of the function f =
P̄lm(cos θ)

[
C̄lm cosmλ + S̄lm sinmλ

]
. For computation it is reasonable to use the FFT-algorithm (Fast-

Fourier Transform). The FFT-algorithm works best with a number of samples K which is a power of
two. As k is summed from −l to l, the minimum number of required samples is 2L + 1. So K should
be a power of two higher than 2L + 1. The F̄lmk result in:

F̄lm0(I) =
[

a0

−a0

]e

o

, (A.29)

F̄lmk(I) =
[ ak+bk

2−ak+bk
2

]e

o

, (A.30)

F̄lm,−k(I) =
[ ak−bk

2−ak−bk
2

]e

o

. (A.31)

A.3 Frame Transformation

In order to transform observations and observation equations from the inertial frame to the Earth-fixed
frame with highest accuracy, the IERS Standards 2003 (McCarthy and Petit (2003)) have to be applied.
It should be noted, that the Earth-fixed reference frame, which is abbreviated ERF in all GOCE-related
documents is referred to as TRS (terrestrial reference system) in the IERS Conventions 2003, while the
inertial reference frame is labeled IRF in GOCE-documents and CRS (celestial reference system) in the
conventions.

The transformation given in the IERS Conventions 2003 is consistent with the IAU 2000 Resolution
and consists of three transformations:

ri = Ri
ere = Q(t)R(t)W(t)re . (A.32)

The basic idea is that the first transformation W(t) corrects for the polar motion (e.g. the orientation
of the rotation axis in the Earth-fixed system), the Earth-fixed system is transformed to a conventional
system, where the rotation axis of the Earth is defined by the polar coordinates (xp, yp). The Earth
rotation R(t) is computed in this conventional system and the final transformation Q(t) accounts for
the movement of the rotation axis in the celestial system, which is expressed by the coordinates (X,Y ).
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Time Scales: Several different time-scales are involved in the computation of the transformation: on
the one side, there is the TAI (Temps Atomique International) which defines a uniform time scale
by atomic clocks. On the other side there is the UT1 (Universal Time) which is connected to the
non-uniform rotation of the Earth.

Both are connected via UTC, which has an integer offset to TAI. Always when the difference (UT1-UTC)
approaches 0.6s, a leap-second is inserted by the IERS to keep the difference within ± 0.9s:

TAI−UTC = Ns , where N ∈ N . (A.33)

This happened once during the lifetime of CHAMP – a leap second was introduced on December 31
2005 and N increased from 32 to 33. Satellite measurements are normally given in the GPS time-scale,
which has a constant offset to TAI:

TAI− TGPS = 19 s . (A.34)

At the introduction of TGPS on January 1 1980, the GPS time-scale which is constant was chosen to
coincide with UTC, which had a difference of 19s to TAI at that time, but departed since then. Most of
the parameters of the frame transformation are defined in the TT time scale (Temps Terrestre), which
has another constant offset to TAI:

TT− TAI = 32.184 s . (A.35)

The parameter t, which is used in this section is defined as Julian centuries since J2000 (January 1 2000
12h) in the TT time scale:

t =
JD(TT)− 2 451 545.0

36 525
. (A.36)

Polar Motion: The transformation of the polar motion is defined by:

W(t) = R3(−s′)R2(xp)R1(yp) , (A.37)

where xp and yp are the polar coordinates of the Celestial Intermediate Pole (CIP) in the terrestrial
reference system. The IERS publishes daily values in the EOP-C04 series, which are defined at 0:00
UTC. The main term (x, y)IERS can be obtained by linear interpolation of the neighboring values. The
polar coordinates have to be corrected for sub-daily variations from ocean tides and nutation:

(xp, yp) = (x, y)IERS + (∆x,∆y)tidal + (∆x,∆y)nutation . (A.38)

Both corrections are given as coefficients of a series expansion of 71 tidal frequencies and 10 frequencies
of the nutation (out of 25 nutation terms only the 10 sub-daily terms have to be applied as correction
as the others are already included in the EOP-C04 data):

∆x =
∑

j

xcj cos(ωjt) + xsj sin(ωjt) , ∆y =
∑

j

ycj cos(ωjt) + ysj sin(ωjt) . (A.39)

The amplitudes and frequencies can be taken from tables 5.1 and 8.2 of the IERS-Conventions or the
corrections can be computed by the subroutines ortho eop and PMsdnut provided by the International
Earth rotation and Reference systems Service (IERS). It should be noted, that the polar coordinates
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which are given in arcseconds and the corrections which are given in microarcseconds, have to be
converted before adding them up.

The quantity s′ which provides an exact Greenwich meridian is defined as:

s′(t) =
1
2

∫ t

t0

(xpẏp − ẋpyp) dt . (A.40)

It is only sensitive to the largest variations in polar motion and can be linearly approximated as:

s′(t) = −47µas t . (A.41)

Earth Rotation: The Earth rotation matrix is defined by:

R(t) = R3(−θ) , (A.42)

where θ is the Earth rotation angle. It is defined as a linear function of the observed time UT1:

θ(Tu) = 2π(0.779 057 273 2640 + 1.002 737 811 911 354 48Tu) , (A.43)

where Tu is the number of days since J2000 in the UT1 time-scale: Tu = (Julian UT1 date - 2 451 545.0).
The difference UT1-UTC is published by IERS as daily values in the EOP-C04 time series and can be
linearly interpolated from that table. It should be noted, that the factor 1.00273781191135448 is the
ratio between the duration of a solar day and a sidereal day. Thus the angle θ makes one revolution in
an observed sidereal day.

Motion of the Rotation Axis: Contrary to the historic representation of precession and nutation by
separate transformations P and N, the orientation of the Earth’s rotation axis is now represented by
the transformation based on the celestial coordinates of the CIP X and Y :

Q =




1− aX2 −aXY X
−aXY 1− aY 2 Y
−X −Y 1− a(X2 + Y 2)


 ·R3(s) , (A.44)

where a = 1/(1 + Z) with Z =
√

(1−X2 − Y 2). The expression s can be computed by:

s(t) = −
∫ t

t0

X(t)Ẏ (t)− Y (t)Ẋ(t)
1 + Z(t)

dt− s0 , (A.45)

where s0 = 94µas. The coordinates X and Y can be computed by a polynomial and a series expansion:

X = − 0.016 616 99′′ + 2004.191 742 88′′t− 0.427 219 05′′t2 (A.46)
− 0.198 620 54′′t3 − 0.000 046 05′′t4 + 0.000 005 98′′t5 (A.47)

+
∑

i

[(as,0)i sin(θi) + (ac,0)i cos(θi)] +
∑

i

[(as,1)it sin(θi) + (ac,1)it cos(θi)] (A.48)

+
∑

i

[(as,2)it
2 sin(θi) + (ac,2)it

2 cos(θi)] + δX , (A.49)
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Y = − 0.006 950 78′′ + 0.025 381 99′′t− 22.407 250 99′′t2 (A.50)
− 0.001 842 28′′t3 − 0.001 113 06′′t4 + 0.000 000 99′′t5 (A.51)

+
∑

i

[(bs,0)i sin(θi) + (bc,0)i cos(θi)] +
∑

i

[(bs,1)it sin(θi) + (bc,1)it cos(θi)] (A.52)

+
∑

i

[(bs,2)it
2 sin(θi) + (bc,2)it

2 cos(θi)] + δY . (A.53)

The a and b coefficients and the arguments θi are published in tables by IERS. The quantities X, Y and
s can be computed by the subroutine XYS2000A provided by IERS. The terms δX and δY are corrections
due to free core nutation (FCN). They are a published by IERS and have to be applied additionally.

A.4 Tides and Temporal Variations

The effect of tides and temporal variations of the gravity field on the satellite has to be removed from
the measurements in order to obtain the signal of the Earth’s static gravity field. Therefore these effects
have to be computed from models in the form of accelerations on the satellite for the energy balance
approach (cf. sec. 2.2), and in the form of gravity gradients for the processing of SGG measurements
(cf. sec. 2.3). While for the direct tides there are explicit equations to compute the accelerations and
gradients, a set of supplemental potential coefficients ∆C̄lm and ∆S̄lm defined for a certain epoch has
to be computed for the indirect tidal effects and temporal variations. The accelerations and gravity
gradients have then to be obtained by spherical harmonic synthesis (cf. equ. 2.12).

A.4.1 Direct Tides

Direct tides are the gravitational effect of a celestial body on the satellite in a geocentric system. As
a celestial body attracts both the satellite and the Earth, the difference of both is used to express
the relative attraction of the satellite w.r.t. the center of the Earth (see fig. A.4). This results in a
relatively small acceleration, as the geocentric distance |rj | to the celestial body is much larger, than
the geocentric distance of the satellite |r|:

aj = GMj ·
(

rj − r
|rj − r|3 −

rj

|rj |3
)

= GMj ·
(

l
l3
− rj

r3
j

)
. (A.54)

The index j denotes the body: j = 2 for the moon, j = 3 for the sun and j > 3 for the planets of
the solar system - which are often neglected as their tidal effects are much smaller than that of moon
and sun. For an exact computation, the coordinates of rj for the celestial bodies can be computed by
subroutines provided with the JPL DE405 planetary ephemeris catalogue (Standish (1998)) and the
constants GMj are listed in McCarthy and Petit (2003).

The tidal tensor can be obtained in the geocentric frame by differentiation of the accelerations as given
in equation (A.54):

Γj =
GM

l5




3(xj − x)2 − l2 3(xj − x)(yj − y) 3(xj − x)(zj − z)
3(yj − y)(xj − x) 3(yj − y)2 − l2 3(yj − y)(zj − z)
3(zj − z)(xj − x) 3(zj − z)(yj − y) 3(zj − z)2 − l2


 . (A.55)

In order to compute the tidal potential, the acceleration has to be integrated along the path from the
center of the Earth to the satellite’s position:
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Figure A.4: Relative attraction of the Moon on the Satellite in a geocentric system.

Vj =
∫ r

0
ajdr =

∫ r

0
GMj ·

(
l
l3
− rj

r3
j

)
dr = GMj ·

(
1
l
− 1

rj
− rj r

r3
j

)
. (A.56)

The scalar product rj r can be replaced by rjr cos(ψ), where ψ is the angle between rj and r (cf. fig.
A.4). The inverse distance 1/l may be replaced by a series expansion (cf. Torge (1980)):

1
l

=
1

|rj − r| =
1
rj

∞∑

l=0

(
r

rj

)l

Pl(cosψ) , (A.57)

where Pl(cosψ) are the Legendre Polynomials. The terms of zeroth and first order cancel out when the
the series expansion is substituted to equation A.56 and the potential can be written as:

Vj =
GMj

rj

∞∑

l=2

(
r

rj

)l

Pl(cosψ). (A.58)

Often the series expansion is truncated after the second term as it contains about 98 % of the signal
and a good approximation equation is obtained:

Vj =
3
4
GMj

r2

r3
j

(
cos 2ψ +

1
3

)
. (A.59)

Using the addition theorems for Legendre functions, equation A.58 can be rewritten as:

Vj =
GMj

rj

∞∑

l=2

(
r

rj

)l 1
2l + 1

l∑

m=0

P̄lm(cos θ)P̄lm(cos θj) (cos mλ cosmλj + sinmλ sinmλj). (A.60)

This can now be easily converted to a series expansion of the tidal potential on the Earth’s surface
(r = Re). A set of additional potential coefficients ∆C̄lm and ∆S̄lm which represents the additional
tidal potential obtained by a simple comparison with equation 2.11:

∆C̄lmj

∆S̄lmj

}
=

1
2l + 1

GMj

GMe

(
Re

rj

)l+1

P̄lm(cos θj)
{

cosλj

sinλj
(A.61)
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A.4.2 Solid Earth Tides

The gravitational attraction of moon, sun and other celestial bodies does not only affect the gravity
potential directly but also deforms the Earth. This results in a relocation of masses, which has an
indirect effect on the Earth’s potential field - the solid Earth tides. If the Earth is assumed perfectly
elastic, i.e. responding immediately to the deforming forces, the indirect effect on the potential is
proportional to the direct potential: ∆Vj = k ·Vj , where the Love-number k is the scaling factor. As the
Earth is anelastic and the deformation responds to the attraction with a phase-shift, the Love-number
k is not only different for each degree and order of the spherical harmonic expansion, but also obtains
a small imaginary part and a frequency dependent part.

The IERS Conventions 2003 (McCarthy and Petit (2003)) propose to model the effect of solid Earth
tides as changes to the potential coefficients C̄lm and S̄lm in two steps. In step 1, the contribution using
the frequency independent part of the love numbers klm for degrees 2 and 3 as scaling factors to the
potential given in equation A.60 is computed by:

∆C̄lm − i∆S̄lm =
klm

2l + 1

3∑

j=2

GMj

GM⊕

(Re

rj

)l+1
P̄lm(sin θj)e−imλj . (A.62)

The Love numbers according to McCarthy and Petit (2003) are given in table A.1. Additionally the
tides of degree 2 induce changes in the degree 4 coefficients, which can be computed by:

∆C̄4m − i∆S̄4m =
k

(+)
2m

5

3∑

j=2

GMj

GM⊕

(Re

rj

)3
P̄2m(sinΦj)e−imλj , (m = 0, 1, 2) . (A.63)

n m <knm =knm k+
nm

2 0 0.30190 -0.00000 -0.00089
2 1 0.29830 -0.00144 -0.00080
2 2 0.30102 -0.00130 -0.00057
3 0 0.093
3 1 0.093
3 2 0.093
3 3 0.094

Table A.1: Love numbers for solid Earth tides for an anelastic Earth.

In step 2 frequency dependent corrections are computed for the degree 2 coefficients:

∆C̄2m − i∆S̄2m = ηm

∑

f(2,m)

(
Aip

m + iAop
m

)
eiθf for m = 0, 1, 2, (A.64)

with η0 = 1, η1 = −i and η2 = 1. The in-phase amplitudes Aip
m and out-phase amplitudes Aop

m are given
in tables in McCarthy and Petit (2003). The corresponding frequencies θf can be computed from the
Doodson-numbers given in those tables.

θf = n · β =
6∑

i=1

niβi , (A.65)

where β is the vector of Doodson’s fundamental arguments (τ, s, h, p, N ′, ps), and n is the vector of
integer multipliers, which are encoded in the 6 digit Doodson numbers after Doodson (1921):



94 A Appendix

A = n1(n2 + 5)(n3 + 5).(n4 + 5)(n5 + 5)(n6 + 5) . (A.66)

The βi are linear combinations of the fundamental arguments of nutation theory Fi and the GMST:

β1 = GMST + π − F2 , (A.67a)
β2 = F3 + F5 (A.67b)
β3 = F3 − F4 + F5 , (A.67c)
β4 = −F1 + F3 + F5 , (A.67d)
β5 = −F5 , (A.67e)
β6 = −F2 + F3 − F4 + F5 , (A.67f)

with

F1 = 134.◦963 402 51 + 1 717 915 923.”2178t + 31.”8792t2 + 0.”0516 35t3 − 0.”000 244 70t4 (A.68a)

F2 = 357.◦529 109 18 + 129 596 581.”0481t− 0.”5532t2 + 0.”000 136t3 − 0.”000 011 49t4 (A.68b)

F3 = 93.◦272 090 62 + 1 739 527 262.”8478t− 12.”7512t2 − 0.”001 037t3 + 0.”000 004 17t4 (A.68c)

F4 = 297.◦850 195 47 + 1 602 961 601.”2090t− 6.”3706t2 + 0.”006 593t3 − 0.”000 031 69t4 (A.68d)

F5 = 125.◦044 555 01− 6 962 890.”2665t + 7.”4722t2 + 0.”007 702t3 − 0.”000 059 39t4 . (A.68e)

Solid Earth Pole Tide: The centrifugal effect of polar motion is creating an additional change to the
potential, which can be developed to changes in the coefficients C̄21 and S̄21:

∆C̄21 = −1.333 · 10−9(m1 + 0.0115m2) , (A.69)
∆S̄21 = −1.333 · 10−9(m2 − 0.0115m1) , (A.70)

with the wobble variables (m1,m2) in arc seconds:

m1 = xp − 0′′.054− 0′′.00083ty , (A.71)
m2 = −yp + 0′′.357 + 0′′.00395ty , (A.72)

where xp and yp are the polar coordinates in arc seconds and ty is the number of Julian years since
January 1, 2000 noon. The terms are a correction for the secular drift of the mean pole.

Permanent Tide: The zonal tide potential for degree 2 has a non-zero mean when averaged over time.
If all corrections for direct and indirect tides were applied as mentioned in the previous paragraphs,
this constant part would be added and the tide free potential would be obtained. This represents the
potential field of the Earth without the permanent influence of other celestial bodies.

In order to obtain the full static gravity potential (zero tide potential) and only correct for time variable
signals - which is recommended by McCarthy and Petit (2003) - the constant part of ∆C̄20 has to be
restored again and subtracted from the correction:
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∆C̄20 = ∆C̄∗
20 −

〈
∆C̄20

〉
, (A.73)

where ∆C̄∗
20 is the correction computed according to equation A.64 and

〈
∆C̄20

〉
is the constant part:

〈
∆C̄20

〉
= A0H0k20 = (4.4228 · 10−8) · (−0.31460) · 0.3010 . (A.74)

A.4.3 Ocean Tides

Similar to the solid Earth, the oceans are deformed by the tides and the transport of the water causes
variations in the gravity potential. In order to model these variations, the height of tidal waves is
separated in dominant frequencies θs and each frequency is expanded into a spherical harmonic series,
distinguishing between retrograde (C+

slm, S+
slm) and prograde (C−

slm, S−slm) waves. The effect on the
potential coefficients can be computed by:

∆C̄lm = Flm

∑

s(l,m)

[(
C+

snm + C−
snm

)
cos θs +

(
S+

snm + S−snm

)
sin θs

]
, (A.75a)

∆S̄lm = Flm

∑

s(l,m)

[(
S+

snm − S−snm

)
cos θs −

(
C+

snm − C−
snm

)
sin θs

]
, (A.75b)

with

Flm =
4πGρw

ge

√
(n + m)!

(n−m)!(2n + 1)(2− δlm)

(
1 + k′n
2l + 1

)
, (A.76)

where ge = 9.7803278m/s2 is the mean equatorial gravity, G = 6.673 ·10−11m3kg−1s−2 is the constant of
gravitation, ρw = 1025kgm−3 is the density of seawater and the k′n are the load deformation coefficients.

In this work the FES 2004 ocean tide model (Le Provost (2001)) has been employed. It should be
noted, that values of ocean tides are generally given in cm and have to be divided by 100 when used in
equation A.75.

A.4.4 Temporal Variations due to Geophysical Fluids

Next to the tides, mass transports of geophysical fluids cause temporal variations of the gravity potential.
In order to determine the static part of the gravity field, the temporal mass variations have to be modeled
and the measurements have to be corrected for. This has first been done for the effects of atmosphere
and oceans for the GRACE mission and is often referred to as de-aliasing. This means that the high
frequent signal of the temporal variations which is superimposed to the signal of the static gravity field,
is removed from the measurements to extract the static potential only.

A simplified approach to assess the the influence is to model the mass variations w.r.t. a mean mass
distribution over a certain period and evolve it into a spherical harmonic series expansion using the
classical integration approach (cf. Heiskanen and Moritz (1967)). But instead of integrating over three-
dimensional mass elements, a single layer approximation is applied and one integrates surface pressure
values Ps over the Earth’s surface:



96 A Appendix

∆C̄lm =
R2 (1 + kl)
(2l + 1)Mg

∫∫

Earth

(Ps − P̄s)P̄lm(cos θ) cos mλ dS , (A.77)

∆S̄lm =
R2 (1 + kl)
(2l + 1)Mg

∫∫

Earth

(Ps − P̄s)P̄lm(cos θ) sin mλdS , (A.78)

where P̄s is the mean surface pressure, M the mass of the Earth and g the mean gravitational acceler-
ation. Similar to the ocean tides, the mass variations not only create a direct variation of the gravity
field, but also deform the Earth by loading. This is represented by the term (1 + kl). As kl < 0, the
effect of the gravitating masses is diminished by the load deformation. The load coefficients kn are
given by Dong et al. (1996).

The surface pressure values Ps are derived from meteorological data on a regular grid in intervals of
6 hours (cf. Flechtner (2007)) and the C̄lmand S̄lmvalues are computed at 0h, 6h, 12h and 18h every
day. In order to compute the corrections for accelerations on the satellite or the gravity tensor at a
given epoch, a corresponding set of coefficients is obtained by linear time interpolation from the the
two neighboring sets and using this set in a spherical harmonic synthesis (cf. equ. 2.12).

This simplified approach has the disadvantage, that all mass variations of the atmosphere are assumed
be condensed on the surface of the Earth. A more elaborate approach takes into account several density
layers of the atmosphere, as well as a digital elevation model for a more accurate representation of the
Earth’s surface. A vertical integration step ensures that the masses are taken at their correct position.
For details cf. Flechtner (2007).

The atmosphere models are entered also into the computation of ocean models as the atmosphere is
one of the driving forces of the ocean. The ocean models delivers ocean bottom pressure values which
are interpolated to the same spatial and temporal resolution of the atmospheric surface pressure values.
They are combined with the atmosphere model and used to derive coefficient sets ∆C̄lm and ∆S̄lm

which represent the combined effect of atmosphere and oceans.

The remaining unmodeled mass variations, which include hydrology, ice, model errors from atmosphere
and oceans and other minor effects still create a significant signal in the gravity potential, that can be
detected by GRACE (but not separated), which is represented by the monthly GRACE gravity field
solutions. In order to improve the de-aliasing product for the GOCE mission, these temporal solutions
from GRACE are interpolated to fit the 6-hourly resolution of the atmosphere and ocean product (see
ESA (2005)) and the GOCE observations will be corrected for.
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