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Abstract

The modeling of magnetic hysteresis in the context of electromagnetic field sim-
ulations is a challenging problem that has not yet been resolved to full satisfaction.
This dissertation investigates a new vectorial hysteresis operator which represents an
extension of the generally accepted scalar Preisach operator. A number of properties
of the operator are mathematically shown. They turn out to be in good qualita-
tive correspondence to basic characteristics of magnetic hysteresis. The results of
first electromagnetic field simulations with the hysteresis operator reproduce the
expected hysteresis effects and give insight in the field configurations forming due
to hysteresis.

Zusammenfassung

Die Modellierung magnetischer Hysterese im Rahmen elektromagnetischer Feld-
simulationen ist ein Problem, welches bisher noch nicht zur vollen Zufriedenheit
gelöst werden konnte. Die vorliegende Dissertation untersucht einen neuen vekto-
riellen Hystereseoperator, der eine Erweiterung des allgemein anerkannten skalaren
Preisach-Operators darstellt. Verschiedene Eigenschaften des Operators werden
mathematisch hergeleitet. Sie zeigen eine gute qualitative Übereinstimmung mit
grundlegenden Charakteristiken magnetischer Hysterese. Die Ergebnisse erster elek-
tromagnetischer Feldsimulationen reproduzieren erwartete Hystereseeffekte und ge-
ben einen Einblick in die hysteresebedingten Feldkonfigurationen.
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Introduction

Magnetic hysteresis is a topic of wide relevance in the design of electromagnetic
components. In some applications, such as magnetic recording, hysteresis is speci-
fically used as the basic functioning principle of the device. In other cases, such as
magnetic valves or sensors, it represents an unwanted effect with negative impact
on the device operation. The demand for better and more powerful yet econom-
ically competitive products gives rise to the need for adequate models that allow
for more accurate computer simulation early on in the product development cycle.
Even though much research has been done on the modeling of magnetic hysteresis,
it remains a challenging subject which has not yet been resolved to full satisfac-
tion. This dissertation investigates a new promising vector hysteresis operator and
presents first simulations of electromagnetic devices with hysteresis modeled in terms
of this operator.

Physically, hysteresis is a micromagnetic phenomenon. It results from the pres-
ence of magnetic dipol moments at the atomic level, which are induced both by the
motion of electrons about the atomic nucleus and from the spin of each electron
about its own axis [55]. Depending on the substance, an atom may or may not
have a permanent magnetic moment. In any case, in magnetic materials, an am-
bient magnetic field H interacts with the electron motion and results in magnetic
moments. The magnetization vector M is defined as the average of the magnetic
moments over small volumes.∗ When subjected to a varying magnetic field, the
magnetic moments arrange themselves in equilibrium states which may depend not
only on the present field H but also on the preceeding magnetization state. As a
consequence, such a material can exhibit a different magnetization M at the same
current magnetic field H , owing to a differing anterior variation of H . This is the
memory effect known as magnetic hysteresis. Figure 0.1 shows a typical uniaxial
hysteresis curve measured for a ferromagnetic material.

Its microscopic nature makes the modeling of magnetic hysteresis a challeng-
ing subject. Micromagnetic modeling, which is an active field of current research,
aims at reproducing the correct magnetization patterns at the microscopic level [32].
However, the scale of micromagnetic modeling is significantly smaller than the mod-
eling scale in the electromagnetic field simulation of real life electromagnetic compo-
nents like magnetic valves or electric drives. Due to computational limits, it is not

∗This averaging process must, in fact, be applied to all fields involved in Maxwell’s equations to
obtain their macroscopic formulation as introduced in Chapter 3. This is because microscopically,
the fields are the result of localized charges [40].
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Figure 0.1. Hysteresis curve of a ferromagnetic material, measured uniaxially.

feasible at the present time to consider the micromagnetic models in the framework
of the macroscopic Maxwell’s equations for such applications.

Macroscopic hysteresis models aim at giving a good representation of the hys-
teretic behaviour of a material at the macroscopic level. In the past decades, scalar
hysteresis models have been investigated intensively [43, 51, 67, 16, 44, 22]. They
model the scalar dependence of the magnetization M on the magnetic field H ob-
served under uniaxial input, like the curve shown in Figure 0.1. Here, the scalar
Preisach model [58, 51] has been particularly successful. It consists of a set of relay
operators with simple input-output behaviour, whose states represent the hysteresis
memory. The output arises as a superposition of the relays subject to a weight-
ing function. This weighting function can be parametrized to fit a given hysteresis
by providing a full set of first order reversal curves [51, 16]. One reason for the
extraordinary success of the Preisach model is undoubtedly its clear mathemati-
cal structure, which makes its memory evolution transparent and permits efficient
representation of the internal memory state. It renders the model accessible for
extensions adapting its properties, like the moving model or Preisach models with
accommodation or rate-dependence [51, 22]. There is even a physical interpretation
of the model by associating the relays with the magnetic moments and the position
of each relay with the interaction field that a magnetic moment experiences from
the surrounding magnetic moments in the material (see e.g. [73]).

Since hysteresis by nature is a vector valued process, a scalar representation is of-
ten not sufficient. In applications like electromagnetic field simulation, one requires
a model that is able to reflect the fully vectorial character of the magnetization
processes. The Stoner-Wohlfarth model [64] has been available for a long time and
was successfully used in the field of magnetic recording, but it can only represent
symmetric hysteresis loops and is computationally involved. Thus, when Mayergoyz
published his vector Preisach model [50, 51], which is a generalization of the scalar
Preisach operator and enables arbitrary vectorial input paths, it quickly enjoyed
great popularity in the engineering community (e.g. [1, 4, 27, 9, 60]). Mayergoyz’
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idea was to construct a hysteresis operator in Rn by overlaying scalar Preisach oper-
ators in each vectorial direction. This vectorization concept is, in fact, independent
of the scalar hysteresis operator employed.

In this dissertation, we investigate a new vector Preisach model of hysteresis,
which was recently introduced by Della Torre, Pinzaglia and Cardelli [24, 25]. It
constitutes an interesting new approach to vector Preisach modeling by extending
the notion of the relay to n dimensions, then adopting the weighted relay superposi-
tion in complete analogy to the scalar formulation. The operator might represent a
promising new method in the vectorial modeling of magnetic hysteresis, because it
intrinsically reproduces some of the properties observed in the hysteresis of magnetic
materials, as we will show in this dissertation. For example, under rotating input,
it gives the typical shape of the hysteresis loss curves obtained in measurements for
real magnetic materials. It shows a realistic saturation behaviour where the mag-
netization is fully aligned with the magnetic field in the isotropic model, and has
an inherent reversible component. Another appeal lies in the fact that the physical
interpretation of the scalar Preisach operator in terms of magnetic moments and
interaction fields carries over directly to this vector model [24].

The published work on this new vector Preisach operator consists of a sequence
of articles by Della Torre, Cardelli and Pinzaglia [24, 25, 17, 18]. They introduce
the hysteresis model for general relay shapes and discuss extensions like the moving
model or the DOK model. They computer implement the operator and deduce
from numerical experiments some of the properties that are mathematically proven
in this dissertation, e.g. the congruency of vectorial loops or the shifted circular
magnetization path for rotating input in the isotropic model. The hysteretic energy
is discussed for rectangular input paths and is concluded to be dissipative.

Our goal here is to present a rigorous, extensive mathematical investigation
of this new hysteresis model. We give a formal mathematical definition of the
operator, focussing on spherical relays, and introduce a geometric representation
of its memory evolution. We examine its properties such as isotropy, saturation,
congruency and periodic behaviour, lag and dissipation, and show that it reduces to
a scalar Preisach operator with reversible component for uniaxial input. Further, we
examine its infinitesimal properties to show that its output is always continuous and
give a formula for the right-hand derivative of the output to exhibit how its evolution
depends on the input variation. In view of hysteresis loss computations for general
paths, we suggest a possible hysteresis potential. Finally, we are the first to present
electromagnetic field simulations with hysteresis modeled in terms of this new vector
Preisach operator. We have simulated three two-dimensional model problems. The
first one constitutes a simple magnetic ring core enclosing a conductor. Here, it
is possible to compute the solution analytically and thereby verify the obtained
simulation results. The second model represents a simple position sensor, which
we had built and measured in the laboratory. In our simulations, we reproduce the
hysteresis effect in the position signal observed in the measurements and numerically
compute the hysteretic field distribution in the material. Our final model is that
of a simple magnetic valve. In practice, materials that show too much hysteresis
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are known to hamper the rapid switching of such a valve, forcing the industrial
manufacturer to use more expensive materials with better magnetic characteristics.
We simulate the effect of hysteresis on the switching times and numerically confirm
an empirical result on how to decrease the hysteresis lag by a simple modification of
the valve geometry. The simulation results render it possible to analyze the origin
of this behavioural change by giving insight into the field configurations.

This dissertation is structured as follows: In Chapter 1, we summarize the math-
ematical background deployed in the course of this work. Aside from introducing
basic definitions and notation, the chapter contains some theory regarding the dif-
ferentiation and integration of vector valued functions, such as differentiation under
the integral sign, the notion of bounded variation, Riemann-Stieltjes integrals and
change of coordinates. Also, we briefly discuss the isometries of Rn, and give some
estimates for later reference. In Chapter 2, the vector Preisach operator and its
properties are discussed. We start by giving a general mathematical introduction
to hysteresis operators. We then formally define and examine the vector relay op-
erator. The remainder of the chapter focuses on the vector Preisach operator and
presents our results regarding its properties. Chapter 3 addresses electromagnetic
field simulation with hysteresis. After giving a short overview of Maxwell’s equa-
tions and formulating the numerical problem with hysteresis, our implementation of
the vector Preisach operator is described. Finally, we present the electromagnetic
field problems which we have simulated.



CHAPTER 1

Mathematical Tools

In this chapter, we have collected the mathematical tools used in the course of
this thesis. This includes basic definitions and notation, some theory of differentia-
tion and integration, an overview of the isometries of Rn and some estimates.

1.1. Basic definitions and notation

We denote the set of real numbers by R, and the set {r ∈ R | r > 0} of positive
real numbers by R+. For any integer n, the space Rn consists of all real n-vectors
x = (x1, . . . , xn). Rn forms a Euclidean space with the inner product

x · y =
n∑
i=1

xiyi,

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, and a Banach space with the corre-
sponding norm

‖x‖ = (x · x)
1
2 .

For y ∈ Rn and r ∈ R+, we denote the n-dimensional open ball of radius r
centered at y by

By,r := {x ∈ Rn | ‖x− y‖ < r},
and its boundary by ∂By,r. The volume of By,r is given by [35]

V
(n)
B (r) =

πn/2

Γ(n
2

+ 1)
rn.

The cone of height R centered at y ∈ Rn is defined by

(1.1) Cy,R := {(x, r) ∈ Rn × [0, R] | ‖x− y‖ < r} ⊂ Rn × R+,

and its volume is [35]

(1.2) V
(n)
C (R) =

R

n+ 1
V

(n)
B (R).

For R = ∞, we write

Cy := {(x, r) ∈ Rn × R+ | ‖y − x‖ < r}.
We denote the set of all maps from X into Y by Map(X;Y ). The graph of

a map f ∈ Map(X, Y ) is the set {(x,y) ∈ X × Y | y = f(x)}. The space
of continuous functions from X to Y is denoted C(X;Y ), and the space of right-
continuous functions Cr(X;Y ). For a function f ∈ Map([0, T ],Rn) : t 7→ f(t), we
write

lim
t→τ−

f(t) and lim
t→τ+

f(t)

5



6 1. MATHEMATICAL TOOLS

for the left and right hand limits at τ ∈ (0, T ), respectively.
For the derivative of a function of one variable, we use the standard notation

f ′(t) or ∂tf . The one-sided derivatives are given by

∂t+f(t) = lim
h→0+

f(t+ h)− f(t)

h
and ∂t−f(t) = lim

h→0−

f(t+ h)− f(t)

h
.

A function is called continuously differentiable on the closed interval [t1, t2] if the
derivative exists and is continuous everywhere in (t1, t2) and the left and right hand
derivatives exist and are continuous in [t1, t2) and (t1, t2], respectively. In the case
of a multivariate function ϕ : Rn → Rm, y = (y1, . . . , yn) 7→ ϕ(y), we write ∂yi

ϕ(y)

to denote the partial derivative ∂ϕ(y)
∂yi

, and ∂yϕ(y) for the Jacobian matrix ∂ϕ(y)
∂y

.

A function f : Rn → Rn is called monotonic on Ω ⊆ Rn if and only if

(f(x)− f(y)) · (x− y) ≥ 0 for all x,y ∈ Ω,

and strictly monotonic if the inequality holds strictly.
Further, the closure of a set X is denoted by X and its boundary by ∂X. Bold

symbols indicate vector-valued variables and functions. All integrals are to be in-
terpreted as Lebesgue integrals unless explicitly stated otherwise.

1.2. Differentiation and integration

1.2.1. Differentiation under the integral sign. In this dissertation, we con-
sider an operator defined in terms of an integral. We will make use of the theorems
on differentiation under the integral sign presented below. The first one is a multidi-
mensional version of the Leibniz rule, which deals with constant integration bounds.
The second theorem extends the result to function valued integration bounds. The
subsequent theorems generalize these statements to the multivariate setting and
consider additional factors that do not depend on the variable with respect to which
we differentiate. The proofs extend those presented in [31, Chapter XIV] from two
variables on boxes to the higher dimensional case on more general sets.

Theorem 1.2.1 (Leibniz rule). Let the function f(x1, . . . , xn, y) be continuous on
U × [c, d], where U = [a1, b1]× · · · × [an, bn] ⊂ Rn.

(a) Then

F (x2, . . . , xn, y) :=

∫ b1

a1

f(x1, . . . , xn, y) dx1

is continuous on [a2, b2]× · · · × [an, bn]× [c, d].
(b) Assume further that ∂yf(x1, . . . , xn, y) exists and is continuous in U×(c, d).

Then ∂yF exists in all of [a2, b2]× · · · × [an, bn]× (c, d) and is given by

∂yF (x2, . . . , xn, y) =

∫ b1

a1

∂yf(x1, . . . , xn, y) dx1.

Proof. (a) Let (x0
2, . . . , x

0
n, y

0) ∈ U × [c, d]. Since f(x1, . . . , xn, y) is uniformly con-
tinuous on U × [c, d], f(x1, x2, . . . , xn, y) converges to f(x1, x

0
2, . . . , x

0
n, y

0) uniformly
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with respect to x1 as (x2, . . . , xn, y) → (x0
2, . . . , x

0
n, y

0). Therefore, limit and integral
can be interchanged and we have

lim
(x2,...,xn,y)→(x0

2,...,x
0
n,y

0)

∫ b1

a1

f(x1, x2, . . . , xn, y) dx1 =

∫ b1

a1

f(x1, x
0
2, . . . , x

0
n, y

0) dx1.

(b) Fix (x2, . . . , xn, y) and let ∆y be an increment. By definition,

∂yF (x2, . . . , xn, y) = lim
∆y→0

F (x2, . . . , xn, y + ∆y)− F (x2, . . . , xn, y)

∆y

= lim
∆y→0

∫ b1

a1

f(x1, x2, . . . , xn, y + ∆y)− f(x1, x2, . . . , xn, y)

∆y
dx1

=

∫ b1

a1

lim
∆y→0

f(x1, x2, . . . , xn, y + ∆y)− f(x1, x2, . . . , xn, y)

∆y
dx1

=

∫ b1

a1

∂yf(x1, x2, . . . , xn, y) dx1.

To justify interchanging limit and integral, we will show that the integrand converges
towards fy(x1, x2, . . . , xn, y) uniformly with respect to x1. By the Mean Value The-
orem, there exists θ ∈ (0, 1) such that

f(x1, x2, . . . , xn, y + ∆y)− f(x1, x2, . . . , xn, y)

∆y
= fy(x1, x2, . . . , xn, y + θ∆y).

Since fy(x1, x2, . . . , xn, y) is uniformly continuous on [a1, b1] × {x2} × · · · × {xn} ×
[y, y + δ̄] for some δ̄ > 0, for any ε > 0 there is a δ > 0 such that ∆y < δ implies∣∣∣∣f(x1, x2, . . . , xn, y

0 + ∆y)− f(x1, x2, . . . , xn, y
0)

∆y
− fy(x1, x2, . . . , xn, y

0)

∣∣∣∣ < ε.

Thus the integrand is uniformly continuous with respect to x1. �

Theorem 1.2.2 (Function valued integration bounds). Assume that the function
f(x1, . . . , xn, y) is continuous on U × [c, d], where

U = {(x1, . . . , xn) | x1 ∈ [A(x2, . . . , xn), B(x2, . . . , xn)],

xi ∈ [ai, bi], i = 2, . . . , n} ⊂ Rn

with continuous functions A,B : Rn−1 → R, A < B. Assume ϕ(x2, . . . , xn, y) and
ψ(x2, . . . , xn, y) are continuous and, fixing y ∈ [c, d], for xi ∈ [ai, bi], i = 2, . . . , n,
the graphs of x1 = ϕ(x2, . . . , xn, y) and x1 = ψ(x2, . . . , xn, y) are in U .

(a) Then

F (x2, . . . , xn, y) :=

∫ ψ(x2,...,xn,y)

ϕ(x2,...,xn,y)

f(x1, . . . , xn, y) dx1

is continuous on [a2, b2]× · · · × [an, bn]× [c, d].
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(b) Assume further that ∂yf(x1, . . . , xn, y) exists and is continuous in U ×
(c, d), and ∂yϕ and ∂yψ exist a.e. in [a2, b2] × · · · × [an, bn] × (c, d). If
∂yϕ(x2, . . . , xn, y) and ∂yψ(x2, . . . , xn, y) exist at (x2, . . . , xn, y) ∈ [a2, b2]×
· · · × [an, bn]× (c, d), then ∂yF (x2, . . . , xn, y) exists and is given by

∂yF (x2, . . . , xn, y) =

∫ ψ(x2,...,xn,y)

ϕ(x2,...,xn,y)

∂yf(x1, . . . , xn, y) dx1

+ ∂yψ(x2, . . . , xn, y)f(ψ(x2, . . . , xn, y), x2, . . . , y)

− ∂yϕ(x2, . . . , xn, y)f(ϕ(x2, . . . , xn, y), x2, . . . , y).

Proof. (a) Given (x0
2, . . . , x

0
n, y

0), write

F (x2, . . . , xn, y) =

∫ ψ(x0
2,...,x

0
n,y

0)

ϕ(x0
2,...,x

0
n,y

0)

f(x1, . . . , xn, y) dx1

+

∫ ψ(x2,...,xn,y)

ψ(x0
2,...,x

0
n,y

0)

f(x1, . . . , xn, y) dx1(1.3)

−
∫ ϕ(x2,...,xn,y)

ϕ(x0
2,...,x

0
n,y

0)

f(x1, . . . , xn, y) dx1.

Setting M = maxU×[c,d] |f(x1, . . . , xn, y)|, the second term can be estimated by

∫ ψ(x2,...,xn,y)

ψ(x0
2,...,x

0
n,y

0)

f(x1, . . . , xn, y) dx1 ≤M |ψ(x2, . . . , xn, y)− ψ(x0
2, . . . , x

0
n, y

0)|,

which goes to 0 as (x2, . . . , xn, y) approaches (x0
2, . . . , x

0
n, y

0). The same estimate
can be used on the last term. For the first term, as U is a closed set, f is uniformly
continuous on U × [c, d]. With the same argument as in the proof of Theorem 1(a),
we can exchange limit and integral and get

lim
(x2,...,xn,y)→(x0

2,...,x
0
n,y

0)
F (x2, . . . , xn, y) = F (x0

2, . . . , x
0
n, y

0).

(b) Suppose that ∂yϕ and ∂yψ exist at the point (x0
2, . . . , x

0
n, y

0). To obtain the
derivative of F with respect to y at (x0

2, . . . , x
0
n, y

0), write F as in Equation (1.3).
The derivative of the first term can be shown to be∫ ψ(x0

2,...,x
0
n,y

0)

ϕ(x0
2,...,x

0
n,y

0)

∂yf(x1, x
0
2, . . . , x

0
n, y

0) dx1

by copying the proof of Theorem 1.2.1(b) with a1 = ϕ(x0
2, . . . , x

0
n, y

0) and b1 =
ψ(x0

2, . . . , x
0
n, y

0).
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To differentiate the second term, we apply the definition of the derivative to the
integral expression and, since ∂yψ exists at (x0

2, . . . , x
0
n, y

0), obtain

lim
∆y→0

1

∆y

∫ ψ(x0
2,...,x

0
n,y

0+∆y)

ψ(x0
2,...,x

0
n,y

0)

f(x1, x
0
2 . . . , x

0
n, y

0 + ∆y) dx1

= lim
∆y→0

ψ(x0
2, . . . , x

0
n, y

0 + ∆y)− ψ(x0
2, . . . , x

0
n, y

0)

∆y
f(x̄1, x

0
2 . . . , x

0
n, y

0 + ∆y)

=∂yψ(x0
2, . . . , x

0
n, y

0)f(ψ(x0
2, . . . , x

0
n, y

0), x0
2 . . . , x

0
n, y

0).

We have applied the Mean Value Theorem for integrals, so

ψ(x0
2, . . . , x

0
n, y

0) ≤ x̄1 ≤ ψ(x0
2, . . . , x

0
n, y

0 + ∆y).

Differentiating the third term in the same way concludes the proof. �

We can now derive a statement on the derivative of functions of the form

(1.4) F (y) :=

∫ bn

an

· · ·
∫ b2

a2

∫ ψ(x2,...,xn,y)

ϕ(x2,...,xn,y)

f(x1, . . . , xn, y) dx1 dx2 · · · dxn

by iteratively applying Theorems 1.2.1 and 1.2.2.

Corollary 1.2.3. Suppose f satisfies the assumptions of Theorem 1.2.2(a).

(a) Then F (y) in Equation (1.4) is continuous on [c, d].
(b) With the additional assumptions of Theorem 1.2.2(b), ∂yF exists in (c, d)

and is given by

∂yF (y) =

∫ bn

an

· · ·
∫ b2

a2

[

∫ ψ(x2,...,xn,y)

ϕ(x2,...,xn,y)

∂yf(x1, . . . , xn, y) dx1

+ ∂yψ(x2, . . . , xn, y)f(ψ(x2, . . . , xn, y), x2, . . . , y)

− ∂yϕ(x2, . . . , xn, y)f(ϕ(x2, . . . , xn, y), x2, . . . , y)] dx2 · · · dxn,

assuming these integrals exist.

In analogy with Theorem 1.2.2(a), we now extend the continuity statement to
the case that F in (1.4) is a multivariable function.

Theorem 1.2.4 (Continuity for multivariable function). Let V ⊂ Rm be an open
bounded set, m ≥ 1. Assume the function f(x1, . . . , xn,y) is continuous on U × V ,
where U is given in Theorem 1.2.2. Assume ϕ(x2, . . . , xn,y) and ψ(x2, . . . , xn,y)
are continuous, and for any y ∈ V the graphs of x1 = ϕ(x2, . . . , xn,y) and x1 =
ψ(x2, . . . , xn,y), xi ∈ [ai, bi], i = 2, . . . , n, are in U .

Then

F (x2, . . . , xn,y) :=

∫ ψ(x2,...,xn,y)

ϕ(x2,...,xn,y)

f(x1, . . . , xn,y) dx1

is continuous on [a2, b2]× · · · × [an, bn]× V .

Proof. The proof of Theorem 1.2.2(a) can be copied verbatim, just replacing y ∈ R
by y ∈ Rm and U × [c, d] by U × V . �

By repeated application of Theorem 1.2.4, we get:
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Corollary 1.2.5. Let f satisfy the assumptions of Theorem 1.2.4. Then

F (y) :=

∫ bn

an

· · ·
∫ b2

a2

∫ ψ(x2,...,xn,y)

ϕ(x2,...,xn,y)

f(x1, . . . , xn,y) dx1 dx2 · · · dxn

is continuous on V .

We now consider the case that the integrand contains a y-independent factor
ω(x1, . . . , xn).

Theorem 1.2.6 (Continuity for y-indepent factor). Assume ω(x1, . . . , xn) is abso-
lutely integrable on U . Under the hypotheses of Theorem 1.2.4, the function

F (y) :=

∫ bn

an

· · ·
∫ b2

a2

∫ ψ(x2,...,xn,y)

ϕ(x2,...,xn,y)

ω(x1, . . . , xn)f(x1, . . . , xn,y) dx1 dx2 · · · dxn

is continuous on V .

Proof. Let y0 be given. In analogy to the proof of Theorem 1.2.2(a), write

F (y) =

∫ bn

an

· · ·
∫ b2

a2

∫ ψ(x2,...,xn,y0)

ϕ(x2,...,xn,y0)

ω(x1, . . . , xn)f(x1, . . . , xn,y) dx1 dx2 · · · dxn

+

∫ bn

an

· · ·
∫ b2

a2

∫ ψ(x2,...,xn,y)

ψ(x2,...,xn,y0)

ω(x1, . . . , xn)f(x1, . . . , xn,y) dx1 dx2 · · · dxn(1.5)

−
∫ bn

an

· · ·
∫ b2

a2

∫ ϕ(x2,...,xn,y)

ϕ(x2,...,xn,y0)

ω(x1, . . . , xn)f(x1, . . . , xn,y) dx1 dx2 · · · dxn.

Setting M = maxU×V |f(x1, . . . , xn,y)|, the second term can be bounded by∫ bn

an

· · ·
∫ b2

a2

∫ ψ(x2,...,xn,y)

ψ(x2,...,xn,y0)

ω(x1, . . . , xn)f(x1, . . . , xn,y) dx1 dx2 · · · dxn

≤M

∣∣∣∣∣
∫ bn

an

· · ·
∫ b2

a2

∫ ψ(x2,...,xn,y)

ψ(x2,...,xn,y0)

ω(x1, . . . , xn) dx1 dx2 · · · dxn

∣∣∣∣∣ ,
which goes to 0 as y → y0. Again, the same estimate can be used on the last term.

For the first term, since f is uniformly continuous on U ×V , for any ε > 0 there
is a δ > 0 such that for |y − y0| < δ we have∣∣∣∣∣

∫ bn

an

· · ·
∫ b2

a2

∫ ψ(x2,...,xn,y0)

ϕ(x2,...,xn,y0)

ω(x1, . . . , xn)f(x1, . . . , xn,y) dx1 dx2 · · · dxn

−
∫ bn

an

· · ·
∫ b2

a2

∫ ψ(x2,...,xn,y0)

ϕ(x2,...,xn,y0)

ω(x1, . . . , xn)f(x1, . . . , xn,y0) dx1 dx2 · · · dxn

∣∣∣∣∣
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≤
∫ bn

an

· · ·
∫ b2

a2

∫ ψ(x2,...,xn,y0)

ϕ(x2,...,xn,y0)

|ω(x1, . . . , xn)||f(x1, . . . , xn,y)− f(x1, . . . , xn,y0)|

dx1 dx2 · · · dxn

< ε

∫ bn

an

· · ·
∫ b2

a2

∫ ψ(x2,...,xn,y0)

ϕ(x2,...,xn,y0)

|ω(x1, . . . , xn)| dx1 dx2 · · · dxn

Since the last integral is bounded from above by the integral of |ω| over U , this goes
to 0 as ε→ 0. �

1.2.2. Exchanging differentiation and limit. The following statement is proved
in [31, Nr. 436, Satz 8].

Lemma 1.2.7. Let the functions fm(x) be differentiable in the interval (c, d), and
suppose the sequence of derivatives f ′m(x) converges uniformly with respect to x in
this interval. If the sequence {fm(x)} converges at least in one point x ∈ [c, d], then
the sequence converges in all of [c, d]. The convergence is uniform, and the limit
function is differentiable and satisfies

f ′(x) = lim
m→∞

f ′m(x).

1.2.3. Change of variables in a Lebesgue integral. The subsequent theorems
can be found, for example, in [75].

Theorem 1.2.8. Let Q be a non-singular linear transformation in Rn, and let J =
|det(Q)|. Then, if f(x) is Lebesgue integrable over Rn, we have∫

Rn

f(x) dx =

∫
Rn

f(Qx)J dx.

Proof. See e.g. [75, Chapter 9, § 39, Theorem 2]. �

Theorem 1.2.9. Assume that the real function ϕ(x) = (ϕ1(x), . . . , ϕn(x)) is de-
fined on the open set V1 ⊂ Rn, and that all partial derivatives ∂xj

ϕi(x) exist and
are continuous in V1. Let V2 = ϕ(V1) be the image of V1 under ϕ, and J(x) =
|det ∂xϕ(x)| be the Jacobian determinant of ϕ.

The function f(y) is Lebesgue integrable over V2 if and only if f (ϕ(x)) J(x) is
Lebesgue integrable over V1, and then∫

V2

f(y) dy =

∫
V1

f (ϕ(x)) J(x) dx.

Proof. See e.g. [75, Chapter 9, § 40, Theorem 1]. �
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1.2.4. Bounded variation and Riemann-Stieltjes integrals. Given a function
u : [0, T ] → Rn, let

Γ = {t0, . . . , tM}
be a partition of [0, T ], that is, a finite set of points tk in [0, T ] satisfying 0 = t0 <
. . . < tM = T . With any partition Γ, we associate the sum

(1.6) S(u; Γ) =
M∑
i=k

‖u(tk)− u(tk−1)‖.

Denote by Ψ(0, T ) the set of all partitions of the interval [0, T ]. We can define the
total variation, or length, of u by

(1.7) Var
[0,T ]

(u) := sup
Γ∈Ψ(0,T )

S(u; Γ).

We say that u is of bounded variation if the total variation of u is finite.

Lemma 1.2.10. The function u = (u1, . . . , un) is of bounded variation if and only if
the component functions ui are of bounded variation.

Proof. Straightforward. �

We now introduce the Riemann-Stieltjes integral. Let two functions u,w :
[0, T ] → R be given, where w is of bounded variation and continuous from the
right. Let Γ = {t0, . . . , tM} be a partition of [0, T ], and τk an arbitrary point in the
subinterval [tk−1, tk]. Consider the sum

R(u,w; Γ) =
M∑
k=1

u(τk)[w(tk)− w(tk−1)].

Suppose that as the partition is refined, i.e., |Γ| := maxk=1,...,M(tk − tk−1) → 0, the
sum approaches a limit independent of the choice of the points tk and τk. Recall [72,
66, 70] that this limit is then called the Riemann-Stieltjes integral of u with respect
to w, written ∫ T

0

u dw = lim
|Γ|→0

R(u,w; Γ).

More generally, for vector-valued functions u,w : [0, T ] → Rn, we can define the
Riemann-Stieltjes integral ∫ T

0

u · dw = lim
|Γ|→0

R(u,w; Γ)

of u with respect to w for the standard scalar product in Rn by the corresponding
limit of sums∗

R(u,w; Γ) =
M∑
k=1

u(τk) · (w(tk)−w(tk−1)).

For the proofs of the following standard statements on vector-valued Riemann-
Stieltjes integrals, we refer e.g. to [70].

∗This corresponds to definition (II) of the Riemann-Stieltjes integral in [70].
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Proposition 1.2.11. Suppose
∫ T

0
u1 · dw and

∫ T
0

u2 · dw exists. Then for any
scalars λ1 and λ2,∫ T

0

(λ1u1 + λ2u2) · dw = λ1

∫ T

0

u1 · dw + λ2

∫ T

0

u2 · dw

and the left-hand side integral exists. The corresponding statement holds for
∫ T

0
u ·

dw1 and
∫ T

0
u · dw2.

Proposition 1.2.12. If
∫ T

0
u · dw exists, then for any 0 < t̃ < T , the equality∫ T

0

u · dw =

∫ t̃

0

u · dw +

∫ T

t̃

u · dw

holds and both right-hand side integrals exist.

Theorem 1.2.13 (Integration by parts). If
∫ T

0
u· dw exists, then so does

∫ T
0

w · du,
and their values are related by∫ T

0

u · dw +

∫ T

0

w · du = u(T ) ·w(T )− u(0) ·w(0).

For later reference, we add the following statement:

Lemma 1.2.14. Let x ∈ Rn. Then∫ T

0

x · dw = x · (w(T )−w(0)).

In particular, if w(T ) = w(0), then this is equal to 0.

Proof. For any Γ,

R(x,w; Γ) = x ·
M∑
k=1

(w(tk)−w(tk−1)) = x · (w(T )−w(0)). �

Theorem 1.2.15 (Existence). If u is continuous on [0, T ] and w is of bounded

variation, then
∫ T

0
u · dw exists.

The last theorem is the vector valued version of the corresponding statement
in [39, Stieltjes integral]:

Theorem 1.2.16. Suppose u is Riemann-integrable and there is an absolutely inte-
grable function v on [0, T ] such that

w(t) = C +

∫ t

0

v(τ) dτ.

Then

(1.8)

∫ T

0

u · dw =

∫ T

0

u(t) · v(t) dt.

In particular, (1.8) holds if w has a bounded and Riemann-integrable derivative w′

on [0, T ]; in this case v = w′.
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1.2.5. Hyperspherical coordinates. Hyperspherical coordinates are the exten-
sion of spherical coordinates to Rn. In terms of cartesian coordinates, the transfor-
mation is given by

x1 = ρ sin θ0 sin θ1 sin θ2 · · · sin θn−2,

x2 = ρ cos θ0 sin θ1 sin θ2 · · · sin θn−2,

x3 = ρ cos θ1 sin θ2 · · · sin θn−2,

x4 = ρ cos θ2 · · · sin θn−2,

...

xn = ρ cos θn−2

with 0 ≤ ρ, 0 ≤ θ0 ≤ 2π, and 0 ≤ θi ≤ π for i = 2, . . . , n − 2. The Jacobian
determinant of the transformation is∣∣∣∣det

∂(x1, . . . , xn)

∂(ρ, θ0, . . . , θn−2)

∣∣∣∣ = ρn−1 sin θ1 sin2 θ2 · · · sinn−2 θn−2.

Hyperspherical coordinates are useful in proving the following statements.

Lemma 1.2.17. Suppose x = (x1, . . . , xn) ∈ Rn, n ≥ 2, and R̃ ∈ R, R̃ > 0. The
integrals

(a)

∫
‖x‖≤R̃

x2
1 + · · ·+ x2

j−1 + x2
j+1 + · · ·+ x2

n

‖x‖3
dx, j = 1, . . . , n,

(b)

∫
‖x‖≤R̃

xixj
‖x‖3

dx, i, j = 1, . . . , n, i 6= j,

exist.

Proof. (a) Assume without loss of generality that j = n. Conducting a change of
variables into hyperspherical coordinates, note that

x2
1 + x2

2 = ρ2 sin2 θ1 sin2 θ2 · · · sin2 θn−2,

...

x2
1 + · · ·+ x2

n−1 = ρ2 sin2 θn−2,

and

‖x‖3 = ρ3.

Thus, integral (a) is equal to∫ R̃

0

∫ 2π

0

∫ π

0

· · ·
∫ π

0

ρn−2 sin θ1 sin2 θ2 · · · sinn−3 θn−3 sinn θn−2 dθn−2 · · · dθ1 dθ0 dρ.

This is a bounded function on a bounded box and thus exists.
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(b) Assume now, without loss of generality, that i = n−1 and j = n. By change
of variables into hyperspherical coordinates, integral (b) is equal to∫ R̃

0

∫ 2π

0

∫ π

0

· · ·
∫ π

0

ρn−2 sin θ1 sin2 θ2 · · · sinn−3 θn−3 sinn−2 θn−2

cos θn−3 cos θn−2 sin θn−2 dθn−2 · · · dθ1 dθ0 dρ.

and therefore again exists. �

1.3. Isometries of Rn

1.3.1. Rotations and reflections. The orthogonal group of degree n, O(n), rep-
resents the symmetry group of the n-dimensional spheres with origin 0 in Rn. It
consists of the orthonormal n× n-matrices,

O(n) := {Q ∈ Rn×n | QTQ = Id},

and forms a group under matrix multiplication. It acts on the elements of Rn in the
obvious way.

The elements of O(n) are isometries of Rn: For all x,y ∈ Rn and Q ∈ O(n),

‖Qx−Qy‖ = ((x− y)TQTQ(x− y))
1
2 = ‖x− y‖.(1.9)

Any Q ∈ O(n) has determinant ±1, as

1 = det(QTQ) = (detQ)2.

For n ≤ 3, O(n) can be visualized as the group of all rotations and reflections of Rn

preserving the origin [2].
The subgroup of O(n) preserving orientation is the group of rotations of Rn or

special orthogonal group [2],

SO(n) := {Q ∈ O(n) | detQ = 1}.

We will later make use of the following two lemmas.

Lemma 1.3.1. The following are equivalent:

(a) x1,x2 ∈ Rn satisfy ‖x1‖ = ‖x2‖.
(b) There exists a Q ∈ O(n) such that x1 = Qx2.
(c) There exists a Q ∈ SO(n) such that x1 = Qx2.

Proof. “(a)⇒(b)” We show that this is true for ‖x1‖ = ‖x2‖ = 1. Note that xi,
i = 1, 2, forms the orthonormal basis of a 1-dimensional subspace of Rn, which can
be extended to an orthonormal basis {xi,yi,2, . . . ,yi,n} of Rn. Define the matrix

Qi such that its columns are this basis, Qi = (xi,yi,2, . . . ,yi,n). Then QT
i Qi = Id ,

so Qi ∈ O(n), and xi = Qi(1, 0, . . . , 0)T gives x2 = Qx1 with Q = Q2Q
T
1 ∈ O(n).

For arbitrary x1, x2, use linearity.
“(a)⇒(c)” If detQi = −1 in the preceeding construction, replace yi,n by −yi,n

to obtain a corresponding Q̃i ∈ SO(n) and subsequently Q = Q̃2Q̃
T
1 ∈ SO(n).

“(b)⇒(a)”, “(c)⇒(a)” See Equation (1.9). �
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Lemma 1.3.2. Define the subgroup O1(n) ⊂ O(n) consisting of all matrices of the
form

Q =


1 yT

0
... Q̃
0

 , y ∈ Rn−1, Q ∈ O(n).

Then Qx = x for all Q ∈ O1(n) if and only if x = (λ, 0, . . . , 0)T , λ ∈ R.

Proof. Assume first that x satisfies Qx = x for all Q ∈ O1(n). By the rules

for computing determinants, det Q̃ = detQ, and thus Q̃ ∈ O(n − 1). Therefore,

Lemma 1.3.1 implies that for any x̃ 6= 0 there exists a Q̃ ∈ O(n − 1) such that

Q̃x̃ 6= x̃. Consequently, x̃ = 0. The converse is trivial. �

The action of O(n) on Rn induces obvious actions on different sets of functions
involving Rn in image or preimage which will come up later. Let Q ∈ O(n). The
actions are defined as follows:

u ∈Map([0, T ]; Rn) : (Qu)(t) = Q(u(t)),

ω ∈Map(Rn × R+; R) : (Qω)(x, r) = ω(Q−1x, r),

ξ ∈Map(Rn × R+; ∂B0,1) : (Qξ)(x,r) = Q(ξ(Q−1x,r)).

1.3.2. Translations. The group of translations of Rn consists of all maps Tv, v ∈
Rn, defined by

Tv : Rn → Rn,

x 7→ x + v,

together with addition,

Tv1 + Tv2 = Tv1+v2 .

The inverse element is given by

T−1
v = T−v.

Obviously, the group is isomorphic to Rn under addition.
Similar to O(n), the group of translations of Rn acts on the above mentioned

function sets in the obvious way:

u ∈Map([0, T ]; Rn) : (Tvu)(t) = Tv(u(t)),

ω ∈Map(Rn × R+; R) : (Tvω)(x, r) = ω(T−1
v x, r),

ξ ∈Map(Rn × R+; ∂B0,1) : (Tvξ)(x,r) = ξ(T−1
v x,r). ,

where v ∈ Rn.
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1.4. Some estimates

Lemma 1.4.1. Assume v1, v2 ∈ Rn and ‖v1‖, ‖v2‖ ≥ L > 0. Then

∥∥∥∥ v2

‖v2‖
− v1

‖v1‖

∥∥∥∥ ≤ min

(
‖v2 − v1‖

L
, 2

)
.

Proof. Assume without loss of generality that ‖v1‖ ≥ ‖v2‖. Then

∥∥∥∥ v2

‖v2‖
− v1

‖v1‖

∥∥∥∥2

=

(
v2

‖v2‖
− v1

‖v1‖

)
·
(

v2

‖v2‖
− v1

‖v1‖

)
= 1− 2

v1

‖v1‖
· v2

‖v2‖
+ 1

=

(
1− v1

‖v1‖
· v2

‖v2‖

)2

+ 1−
(

v1

‖v1‖
· v2

‖v2‖

)2

≤
(
‖v1‖
‖v2‖

− v1

‖v1‖
· v2

‖v2‖

)2

+ 1−
(

v1

‖v1‖
· v2

‖v2‖

)2

=

(
v2

‖v2‖
− v1

‖v2‖

)
·
(

v2

‖v2‖
− v1

‖v2‖

)
≤
(
‖v2 − v1‖

L

)2

.

In the first estimate we used ‖v1‖
‖v2‖ ≥ 1 ≥ v1

‖v1‖ ·
v2

‖v2‖ . Upper bound 2 is clear by the

triangle inequality. �

Lemma 1.4.2. Assume v1, v2 ∈ Rn and ‖v2‖ ≥ L ≥ ‖v1‖. Then

‖v2 − v1‖ ≥
∥∥∥∥ L

‖v2‖
v2 − v1

∥∥∥∥ .
Proof. Because both terms are nonnegative, it suffices to show that the difference
of the squares of these terms is nonnegative. We make use of the identities

‖v2 − v1‖2 =

∥∥∥∥(v2 −
v1 · v2

v2 · v2

v2

)
−
(

v1 −
v1 · v2

v2 · v2

v2

)∥∥∥∥2

∥∥∥∥ L

‖v2‖
v2 − v1

∥∥∥∥2

=

∥∥∥∥( L

‖v2‖
v2 −

v1 · v2

v2 · v2

v2

)
−
(

v1 −
v1 · v2

v2 · v2

v2

)∥∥∥∥2
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Applying ‖v‖2 = v · v and multiplying out both scalar products, the mixed terms
are quickly shown to both be 0. We obtain

‖v2 − v1‖2 −
∥∥∥∥ L

‖v2‖
v2 − v1

∥∥∥∥2

=

(
v2 −

v1 · v2

v2 · v2

v2

)
·
(

v2 −
v1 · v2

v2 · v2

v2

)
−
(

L

‖v2‖
v2 −

v1 · v2

v2 · v2

v2

)
·
(

L

‖v2‖
v2 −

v1 · v2

v2 · v2

v2

)
=

(
‖v2‖ −

v1 · v2

‖v2‖

)2

−
(
L− v1 · v2

‖v2‖

)2

≥0.

The inequality holds because

0 ≤ L− ‖v1‖
v1

‖v1‖
· v2

‖v2‖
= L− v1 · v2

‖v2‖
≤ ‖v2‖ −

v1 · v2

‖v2‖
. �



CHAPTER 2

Vector Preisach Hysteresis Modeling

This chapter investigates the vector Preisach operator recently introduced by
Della Torre, Pinzaglia and Cardelli [24, 25]. It starts with a short overview of the
general mathematical notion of hysteresis, where we extend the definition of scalar
hysteresis operators from [16] to the vectorial setting. Then, we present a formal
definition of the vector relay operator, which forms the elementary memory of the
new vector Preisach operator, and work out some of its properties. In the third
section, we investigate the new vector Preisach operator in detail. We consider
its fundamental properties such as isotropy, saturation, periodic and congruency
behaviour, lag and dissipation. The subsequent section shows that it reduces to
a scalar Preisach operator under uniaxial input. Finally, the last section focuses
on various infinitesimal properties of the operator, namely output continuity, the
output derivative and a possible hysteresis potential.

2.1. General hysteresis operators

From a mathematical perspective, the characterizing features of hysteresis are
rate-independence and memory. In their book, Brokate and Sprekels [16] give a for-
mal definition of scalar hysteresis operators, i.e. hysteresis operators mapping scalar
functions to scalar functions. The definition relies on rate-independent functionals
and extends readily to the vector-valued case. We will follow part of the exposition
in [16] to obtain the corresponding definitions for vectorial hysteresis.

Note that in [16], a strong focus is put on the correspondence between input
functions and input strings in the context of scalar hysteresis. This correspondence
arises from rate-independence, due to which scalar input is uniquely determined
by its local minima and maxima. These concepts do not carry over to the general
vectorial setup, where there exists no equivalent definition of an arbitrary curve in Rn

in terms of discrete data. The correspondence is also the reason why scalar hysteresis
operators are implicitly well-defined in the presence of jump discontinuities [16],
whereas here in the vectorial context we will only consider inputs in the space
C([0, T ]; Rn) of continuous vector-valued functions.

2.1.1. Definition. Vectorial hysteresis can be represented by an operator W map-
ping an input function u : [0, T ] → Rn to an output function w : [0, T ] → Rn,

w(t) = W [u](t), t ∈ [0, T ].

Definition 2.1.1 (rate-independent operator, admissible time transformation).
The operator W is called rate-independent if and only if

W [u ◦ ϕ] = W [u] ◦ ϕ
19
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holds for all admissible time transformations, that is, all continuous non-decreasing
functions ϕ : [0, T ] → [0, T ] satisfying ϕ(0) = 0 and ϕ(T ) = T .

As remarked earlier, aside from rate-independence, the second characteristic of
a hysteresis operator W is its memory. This notion is represented by the Volterra
property. Let ut denote the truncation of u at t:

ut(τ) :=

{
u(τ) for 0 ≤ τ ≤ t,

u(t) for t < τ ≤ T.

Definition 2.1.2 (Volterra property). We say that W satisfies the Volterra prop-
erty if and only if ut = ut implies (W [u])t = (W [u])t for all u,u ∈ C([0, T ]; Rn)
and t ∈ [0, T ].

In view of this property, the definition of hysteresis operators will be based on
rate-independent functionals.

Definition 2.1.3 (Rate-independent functionals). A functional H : C([0, T ]; Rn)→
Rn is called rate-independent if and only if

H[u ◦ ϕ] = H[u]

holds for all u ∈ C([0, T ]; Rn) and all admissible time transformations ϕ.

We now have everything necessary to define general hysteresis operators.

Definition 2.1.4 (Hysteresis operator). We call an operator W : C([0, T ]; Rn) →
Map([0, T ]; Rn) a hysteresis operator if and only if there exists a rate-independent
functional H such that

W [u](t) = H[ut] for all t ∈ [0, T ] and all u ∈ C([0, T ]; Rn).

From

W [u](T ) = H[uT ] = H[u] for all u ∈ C([0, T ]; Rn),

we see that each hysteresis operator determines its underlying rate-independent
functional uniquely. In correspondence to [16], we call this the generating functional
of W and denote it by Wf , so

Wf [u] = W [u](T ).

The vectorial definition of hysteresis operators allows us to draw the same con-
clusions as found for scalar hysteresis operators in [16]:

• If u is constant on a subinterval of [0, T ], then W [u] is also constant on that
interval.

• W is completely determined by the vectors W [u](T ) for all u ∈ C([0, T ]; Rn).

Proposition 2.1.5 (Characterization of hysteresis operators). The operator W :
C([0, T ]; Rn) → Map([0, T ]; Rn) is a hysteresis operator if and only if W is rate-
independent and satisfies the Volterra property.
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(a)

u

h(x,r)[u]

−1

1

xx−r x+r

(b)

u

Fr[u]

−r r

Figure 2.1. (a) Scalar relay operator h(x,r), (b) scalar play operator Fr.

Proof. To prove that a hysteresis operator is rate-independent and satisfies the
Volterra property, just apply the definitions. For rate-independence, this gives

W [u ◦ ϕ](t) = Wf [(u ◦ ϕ)t] = Wf [uϕ(t) ◦ ϕ] = Wf [uϕ(t)] = W [u](ϕ(t)),

as in Equation (2.22) in [16].
The converse follows in full analogy to the proof of Proposition 2.2.9 in [16]. �

2.1.2. Examples. In the following, some standard examples of hysteresis operators
will be introduced for later reference.

Example 2.1.6 (Scalar Relay Operator). The scalar relay operator [58, 51, 16,
67, 22] (Figure 2.1(a)), here denoted h(x,r), represents a delayed switch and is a
very simple example of a scalar hysteresis operator. It is characterized by its mean
value x ∈ R and radius r ∈ R+ and maps a function u : [0, T ] → R to a function
w : [0, T ] → {−1, 1}. The relay state will be undetermined if u(0) ∈ (x− r, x+ r),
so it is necessary to provide an initial state ξ ∈ {−1, 1}. The output function

w = h(x,r)[u, ξ]

is defined as follows: If u(t) is not in the open interval (x− r, x+ r), then w(t) is 1
for u(t) − x ≥ r and −1 for u(t) − x ≤ −r. If u(t) is in the interval (x − r, x + r),
then w(t) is “frozen” in the state it had when u(t) last crossed one of the threshold
values x− r or x+ r. Adopting the notation of [67] and setting

Xt := {τ ∈ [0, t] | |u(τ)− x| ≥ r},

this results in the formal definition

(2.1) h(x,r)[u, ξ](t) =


u(t)−x
|u(t)−x| if |u(t)− x| ≥ r,

h(x,r)[u, ξ](maxXt) if |u(t)− x| < r and Xt 6= ∅,
ξ otherwise.

We have chosen this uncommon formulation of the definition to emphasize the cor-
respondence to the later definition of the vector relay operator.

Visintin [67] gives a list of mathematical properties of the scalar relay operator.
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Example 2.1.7 (Scalar Play Operator). The play operator [43, 16, 44] (Fig-
ure 2.1(b)), denoted Fr, reproduces the input-output relation of a mechanical play.
It is characterized by its half-diameter r ∈ R+. For a piecewise monotone in-
put function u : [0, T ] → R and a given initial state a ∈ R, the output function
w ∈Map([0, T ]; R),

w = Fr[u, a],
is inductively defined by [16]

w(0) = fr(u(0), a),

w(t) = fr(u(t), w(ti)), for ti < t ≤ ti+1, 0 ≤ i ≤ N − 1.

Here, fr : R× R → R is given by

fr(x, y) = max{x− r,min{x+ r, y}}
and {t0, · · · , tN} is a partition of [0, T ] such that the function u is monotone on each
of the subintervals [ti, ti+1].

In fact, the play operator can be obtained as a linear superposition of scalar
relays [16]:

(2.2) Fr[u](t) =
1

2

∫ ∞

−∞
h(x,r)[u, ξ(x,r)](t) dx.

Here, ξ(x,r) ∈ {−1, 1} specifies the initial value of relay h(x,r). The improper integral
is interpreted as a principal value integral:∫ ∞

−∞
h(x,r)[u, ξ(x,r)](t) dx = lim

M→∞

∫ M

−M
h(x,r)[u, ξ(x,r)](t) dx.

Example 2.1.8 (Scalar Preisach Operator). The Preisach operator P [58, 51, 16]
arises as a linear weighted superposition of scalar relay operators h(x,r). The pairs
(x, r) form the Preisach half plane R × R+. We write ξ : R × R+ → {−1, 1} to
denote the initial state, whose value at (x, r) is denoted ξ(x,r). For u : [0, T ] → R,
the scalar Preisach operator P with density function ω : R× R+ → R is given by

(2.3) P [u, ξ](t) :=

∫
R+

∫
R
ω(x, r)h(x,r)[u, ξ(x,r)] dx dr,

where t ∈ [0, T ].
The beauty of the scalar Preisach operator lies in its tangible mathematical

structure, which allows to represent the memory evolution of the relays in a simple
geometric way. For this, view h(x,r)[u, ξ(x,r)](t) as a function in (x, r) mapping the
Preisach half plane R×R+ to {−1, 1}. Fixing ξ such that ξ(x,r) = 1 where x < 0 and
ξ(x,r) = −1 where x ≥ 0, it turns out that the attainable states can all be expressed
in terms of a curve x = ψ(r) separating the subdomain on which all relays take the
state 1 from that with state −1 [16, 51]. Because of its shape it is often refered to
as “staircase curve”. It results from an input function u as follows: at any time t,
all the relays h(x,r) such that x ≤ u(t) − r take state 1, all those relays such that
x ≥ u(t) + r take state −1. The remaining relays stay constant. Thus, the memory
evolution can be represented in terms of the cone Cu(t) = {(x, r) | |x−u(t)| < r}. As
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u0 u2 u3 u1 x

r

ϕ(r)
−11

Figure 2.2. Memory evolution of the scalar Preisach operator:
The staircase function ψ(r) is the result of the piecewise linear input
function interpolating u(t0) = u0, u(t1) = u1, u(t2) = u2, and u(t3) =
u3 with 0 = t0 < t1 < t2 < t3 = T . The cone Cu(t3) is drawn shaded.

u(t) increases and Cu(t) moves to the right, the relays leaving Cu(t) on the left switch
to 1; conversely, as u(t) decreases and Cu(t) moves to the left, the relays leaving Cu(t)
on the right switch to −1. This is illustrated on an example in Figure 2.2.

The set of Preisach memory curves [16], that is, attainable staircase curves, is
given by

Ψ0 := {ψ | ψ : R+ → R, |ψ(r)− ψ(r̃)| ≤ |r − r̃| for all r, r̃ ≥ 0,

sup{r | r ≥ 0, ψ(r) 6= 0} ≤ +∞}.

Given an initial memory state ψ−1 ∈ Ψ0, the memory evolution can be represented
in terms of memory curves and the play operator by

ψ(t)(r) = Fr[u, ψ−1(r)](t), t ∈ [0, T ].

With this, we can give an alternative formulation of the scalar Preisach operator
P using the play operator Fr, which is discussed in detail in [16]. It is a result
of Equation (2.2) relating relay and play operator and holds advantages regarding
the mathematical investigation of the Preisach operator because Fr, unlike h(x,r),
is continuous. In terms of the play operator, the scalar Preisach operator can be
expressed as

(2.4) P [u](t) =

∫ ∞

0

q(r,Fr[u](t)) dr + w00,

where

q(r, s) = 2

∫ s

0

ω(x, r) dx,

w00 =

∫ ∞

0

∫ 0

−∞
ω(x, r) dx dr −

∫ ∞

0

∫ ∞

0

ω(x, r) dx dr.

Example 2.1.9 (Mayergoyz’ vector Preisach model). This vector Preisach opera-
tor, independently suggested by Mayergoyz [50] and Damlamian and Visintin [21],
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applies the scalar Preisach operator to construct a vectorial hysteresis operator
W : C([0, T ]; Rn) → C([0, T ]; Rn). This is done by allocating a scalar Preisach
operator Pe for each vectorial direction e ∈ ∂B0,1. The input function u is pro-
jected onto each e, the respective scalar Preisach operator Pe is evaluated and all
the outcomes are superposed:

W [u](t) =

∫
∂B0,1

Pe[u · e](t)e dµ(e),

where µ is the measure on the unit sphere ∂B0,1 induced by parametrization in
hyperspherical coordinates. The operator is investigated extensively for example
in [51, 36].

2.2. Vector Relay Operator

We will now discuss the vector relay operator and its basic properties. This new
vectorial generalization of the scalar relay operator (Example 2.1.6) was recently
introduced by Della Torre, Pinzaglia and Cardelli [24, 25]. It constitutes the ele-
mentary memory of the vector Preisach operator discussed in the next section. The
vector relay operator is conceptually related to the rotating model by Damlamian
and Visintin [21, 67] through the idea of projecting the input function onto a convex
set representing the relay, but the definition of the output differs.

In this section, we will present a formal definition of the vector relay operator.
In particular, the definition exhibits the correspondence between scalar relay and
vector relay. Then, we discuss the properties of the relay operator. This comprises
basic facts like the semigroup property, normalization and behaviour subject to the
isometries of Rn. We will further give an affine bound on the operator output and
show that it satisfies a dissipation property on cyclic inputs.

We have gathered a few additional facts which are of no immediate relevance in
the framework of this dissertation in Appendix B.

2.2.1. Definition. The n-dimensional vector relay h(x,r) associated with a tuple
(x, r) ∈ Rn × R+ is represented by the open ball Bx,r. It maps a continuous input
function u : [0, T ] → Rn to an output function w : [0, T ] → ∂B0,1 taking values
on the unit sphere. The output function w = h(x,r)[u], which we will also refer to
as relay state, is defined as follows: If ||u(t) − x|| ≥ r then w(t) is the unit vector
based at x pointing at u(t). As u enters the relay and ||u(t)− x|| < r, the output
“freezes” the moment u crosses the relay boundary and does not vary until u leaves
the relay again. For an illustration, see Figure 2.3. Like for the scalar relay, an
initial value ξ ∈ ∂B0,1 must be given, in case u(0) lies inside Bx,r and thus leaves
w(0) undetermined. Setting

Xt := {τ ∈ [0, t] | ‖u(τ)− x‖ ≥ r},
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x r

h(x,r)[u](t)

x1

x2

u(t)

Figure 2.3. Vector relay operator h(x,r).

this gives the formal definition

(2.5) h(x,r)[u, ξ](t) =


u(t)−x
‖u(t)−x‖ if ‖u(t)− x‖ ≥ r,

h(x,r)[u, ξ](maxXt) if ‖u(t)− x‖ < r and Xt 6= ∅,
ξ otherwise.

Note that the definition of the vector relay operator h(x,r), Equation (2.5), is the
exact analogue of that of the scalar relay operator h(x,r), Equation (2.1).

For ease of notation, when ξ is clear from context, we will omit it and just write
h(x,r)[u].

Proposition 2.2.1. The vector relay operator h(x,r) is a hysteresis operator.

Proof. From Equation (2.5), h(x,r)[u](t) = h(x,r)[ut](T ) follows immediately for
any t ∈ [0, T ]. It remains to show that the generating functional h(x,r),f [·] =
h(x,r)[·](T ) is rate-independent, i.e. that h(x,r)[u](T ) = h(x,r)[u ◦ ϕ](T ) for all ad-
missible time transformations ϕ. As u(T ) = u ◦ϕ(T ), this is clear for u(T ) /∈ Bx,r.
If u(T ) ∈ Bx,r, then applying the definition in Equation (2.5) together with the fact
that ϕ is continuous and non-decreasing gives

h(x,r)[u](T ) =
u(τ)− x

‖u(τ)− x‖
, where τ = max{t ∈ [0, T ] | ‖u(t)− x‖ ≥ r}

=
u ◦ ϕ(τ)− x

‖u ◦ ϕ(τ)− x‖
, where τ = max{t ∈ [0, T ] | ‖u ◦ ϕ(t)− x‖ ≥ r}

= h(x,r)[u ◦ ϕ](T ). �

2.2.2. Basic properties. The output function w = h(x,r)[u] has jump discontinu-
ities when u leaves the relay at another point than where it entered the relay. Since
the relay represents an open set, w is a right-continuous function:

h(x,r) : C([0, T ]; Rn)× ∂B0,1 → Cr([0, T ]; ∂B0,1).

For τ ∈ [0, T ], define the shift uτ of a function u : [0, T ] → Rn by

uτ (t) = u(t+ τ), t ∈ [0, T − τ ].
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Lemma 2.2.2 (Semigroup property). For any (x, r) ∈ Rn × R+, the vectorial relay
operator h(x,r) satisfies the semigroup property, that is, for any t1, t2 ∈ [0, T ] such
that t1 ≤ t2 the following holds true:

h(x,r)[u, ξ](t2) = h(x,r)[u
t1 ,h(x,r)[u, ξ](t1)](t2 − t1).

Proof. Straightforward. �

It is possible to associate the input-output behaviour of an arbitrary vector relay
operator h(x,r) to that of the unit relay h(0,1), by subjecting the input funtion to the
appropriate transformation. For any (x, r) ∈ Rn ×R+, this transformation is given
by γ(x,r) : C([0, T ]; Rn) → C([0, T ]; Rn),

γ(x,r) ◦ u(t) :=
1

r
(u(t)− x) ∀t ∈ [0, T ].

Lemma 2.2.3 (Normalization). Let u ∈ C([0, T ]; Rn) and ξ ∈ ∂B0,1. For any
(x, r) ∈ Rn × R+, the relay operator satisfies

h(x,r)[u, ξ] = h(0,1)[γ(x,r) ◦ u, ξ].

Proof. By definition of γ(x,r), u(t) ∈ Bx,r if and only if γ(x,r) ◦ u(t) ∈ B0,1. With

1
r
(u(t)− x)

‖1
r
(u(t)− x)‖

=
u(t)− x

‖u(t)− x‖
,

the statement is quickly verified from the definition of h(x,r). �

Lemma 2.2.4 (Rotation and reflection). For all Q ∈ O(n), the relay operator satis-
fies

Qh(x,r)[u, ξ] = h(Qx,r)[Qu, Qξ].

Proof. Equation (1.9) implies for any binary relation ∗ ∈ {<,=, >} that

(2.6) ‖Qu(t)−Qx‖ ∗ r if and only if ‖u(t)− x‖ ∗ r.
Assume u(t) satisfies ‖u(t)− x‖ ≥ r. Then

h(Qx,r)[Qu, Qξ](t) =
Qu(t)−Qx

‖Qu(t)−Qx‖
=
Q(u(t)− x)

‖u(t)− x‖
= Qh(x,r)[u, ξ](t).

Using (2.6) and (1.9) to show the statement for ‖u(t)−x‖ < r is straightforward.
�

Lemma 2.2.5 (Translation). For any translation Tv, v ∈ Rn, the relay operator
satisfies

h(x,r)[u, ξ] = h(Tvx,r)[Tvu, ξ].

Proof. Trivially, for any ∗ ∈ {<,=, >},
‖u(t)− x‖ ∗ r if and only if ‖Tvu(t)− Tvx‖ ∗ r.

If ‖u(t)− x‖ ≥ r, then

h(x,r)[u, ξ](t) =
u(t)− x

‖u(t)− x‖
=

(u(t) + v)− (x + v)

‖(u(t) + v)− (x + v)‖
= h(Tvx,r)[Tvu, ξ](t).
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If ‖u(t)− x‖ < r, then either ‖u(τ)− x‖ < r for all τ ∈ [0, t] and

h(x,r)[u, ξ](t) = ξ = h(Tvx,r)[Tvu, ξ](t),

or τ̃ = max{τ | ‖u(t)− x‖ = r} = max{τ | ‖(u(t) + v)− (x + v)‖ = r} exists and

h(x,r)[u, ξ](t) = h(x,r)[u, ξ](τ̃) = h(x+v,r)[u + v, ξ](τ̃) = h(Tvx,r)[Tvu, ξ](t). �

2.2.3. Output variation and dissipation. We now show that even though the
variation of h(x,r)[u, ξ] can be unbounded, it is affinely bounded by that of u. Sub-
sequently, we prove that h(x,r) is dissipative on closed input loops, even though it
does not need to be on arbitrary paths.

Let u ∈ C([0, T ]; Rn) and w = h(x,r)[u, ξ], ξ ∈ ∂B0,1. In the case of the scalar
relay, w = h(x;r)[u] is of bounded variation for all u ∈ C([0, T ]; R) [67]. This is not
true in the vectorial case. To construct a counterexample, due to the subsequent
lemma we need to look at functions u that are not of bounded variation themselves.
For example, consider u(t) = t sin 1

t
, t ∈ [0, π], and define u ∈ C([0, π]; R2) by

u(t) :=

(√
1− (u(t))2

u(t)

)
to vary on the unit circle. Let w = h(0,1)[u, ξ]. As u ∈ ∂B0,1 for all t ∈ [0, π], we
have w = u. The total variation of a vectorial function is bounded from below by
the total variations of its component functions, so Var

[0,π]
(w) ≥ Var

[0,π]
(u) = ∞.

We have, however, that the variation of w is affinely bounded by that of u:

Lemma 2.2.6 (Affine bound on Var(h(x,r)[u, ξ])). For any u ∈ C([0, T ]; Rn) and
w = h(x,r)[u, ξ], ξ ∈ ∂B0,1,

(2.7) Var
[0,T ]

(w) ≤ 1

r
Var
[0,T ]

(u) + 2.

Proof. First, we apply Lemma 2.2.3 to restate (2.7) in terms of the unit relay, so
w = h(0,1)[γ(x,r) ◦ u, ξ]. With(1.6) and (1.7), it is quickly verified that

Var
[0,T ]

(γ(x,r) ◦ u) =
1

r
Var
[0,T ]

(u).

As γ(x,r) is a bijection of C([0, T ]; Rn), the statement of the Lemma is equivalent
to: For any u ∈ C([0, T ]; Rn) and w0 := h(0,1)[u, ξ], ξ ∈ ∂B0,1,

(2.8) Var
[0,T ]

(w0) ≤ Var
[0,T ]

(u) + 2.

To show (2.8), we reformulate Equation (1.7) to be able to consider the jumps
in w0 appropriately. For a given u and partition Γ := (t1, . . . , tM) ∈ Ψ([0, T ]), we
construct a corresponding partition Γu := (t̃1, . . . , t̃fM) by adding additional elements
to Γ. For each i ∈ {2, . . . ,M}:
• If u(ti) ∈ B0,1 and there exists some τ ∈ [ti−1, ti) such that u(τ) /∈ B0,1, then add
τi := max{τ ∈ [ti−1, ti] | u(τ) /∈ B0,1} to the partition, unless τi = ti−1.

• If u(ti−1) ∈ B0,1 and u(ti) /∈ B0,1, then there exists some τi ∈ (ti−1, ti] such that
u(τi) ∈ ∂B0,1. Add τi into the partition, unless τi = ti.
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By the first rule, we have added the last point in time at which u on ∂B0,1 and w
took its current value at ti. By the second rule, we ensure that any pair (ti−1, ti)
in the partition lies fully inside B0,1 or fully outside B0,1. The resulting partition
Γu has at most 2M + 1 entries. Define the set consisting of all refined partitions
Ψu([0, T ]) := {Γu | Γ ∈ Ψ([0, T ])} ⊂ Ψ([0, T ]). Because S(u; Γ) ≤ S(u; Γu), we
can rewrite definition (1.7) as

Var(w) = sup
Ψu([0,T ])

fM∑
j=1

‖w(t̃i)−w(t̃i−1)‖.

We will now prove Equation (2.8) by showing that for any partition Γu =
(t̃1, . . . , t̃fM) ∈ Ψu([0, T ]), the corresponding sums satisfy

(2.9)

fM∑
j=1

‖w(t̃i)−w(t̃i−1)‖ ≤
fM∑
j=1

‖u(t̃i)− u(t̃i−1)‖+ 2.

Assume first t̃i−1, t̃i /∈ B0,1. Then w(t̃i−1) = u(t̃i−1)

‖u(t̃i−1)‖ and w(t̃i) = u(t̃i)

‖u(t̃i)‖
, so

‖w(t̃i)−w(t̃i−1)‖ ≤ ‖u(t̃i)− u(t̃i−1)‖
holds by Lemma 1.4.1 with L = 1.

Now assume t̃i−1, t̃i ∈ B0,1. Then by construction of Ψu, there exist j1, j2 ∈ N,
j1 ≤ i− 1 < i ≤ j2, such that u(t̃j) ∈ B0,1 and w(t̃j) = w(t̃j1) for all j, j1 < j < j2,
satisfying one of

• u(t̃j1),u(t̃j2) ∈ ∂B0,1),
• j1 = 1 and u(0) ∈ B0,1, or

• j2 = M̃ and u(T ) ∈ B0,1.

In the first case, w(t̃j1) = u(t̃j1) and w(t̃j2) = u(t̃j2), and thus

j2∑
j=j1+1

‖w(t̃j)−w(t̃j−1)‖ = ‖u(t̃j2)− u(t̃j1)‖ ≤
j2∑

j=j1+1

‖u(t̃j)− u(t̃j−1)‖

by the triangle inequality.
In the second case, w(t̃j1) = ξ and w(t̃j2) = u(t̃j2). Thus, as both u(t̃j2) and ξ

are unit vectors,

j2∑
j=2

‖w(t̃j)−w(t̃j−1)‖ = ‖u(t̃j2)− ξ‖ ≤ 2,

giving the constant term in (2.8).
In the third case, w(t̃j1) = w(t̃j2) = u(t̃j1), so

0 =

fM∑
j=j1+1

‖w(t̃j)−w(t̃j−1)‖ ≤
j2∑

j=j1+1

‖u(t̃j)− u(t̃j−1)‖.

Thus, (2.9) holds, which finishes the proof of (2.8). �



2.2. VECTOR RELAY OPERATOR 29

Corollary 2.2.7. If u is of bounded variation, then so is w.

Further, we can show that each relay satisfies a dissipation condition on closed
paths that have the finite switching property. We say that a function u ∈ C([0, T ]; Rn)
satisfies the finite switching property if, for any (x, r), the set u([0, T ]) ∩ ∂Bx,r is
finite. The input functions of interest to us (e.g. piecewise linear functions) all have
the finite switching property. Related investigations were done in [17] considering an
elliptic relay and rectangular sample paths. For simplicity, we confine the statement
to piecewise differentiable inputs. Note that for u of bounded variation, the exis-
tence of integral (2.10) as Riemann-Stieltjes integral is guaranteed as a consequence
of Corollary 2.2.7 and Theorem 1.2.15.

Lemma 2.2.8 (Dissipation). Assume u ∈ C([0, T ]; Rn) is piecewise differentiable
and has the finite switching property. Let w = h(x,r)[u, ξ]. If u(0) = u(T ) and
w(0) = w(T ), then h(x,r) satisfies the dissipation property

(2.10)

∫ T

0

u · dw ≥ 0.

Proof. Set ũ = u− x. By Lemma 1.2.14,∫ T

0

u · dw =

∫ T

0

x · dw +

∫ T

0

ũ · dw =

∫ T

0

ũ · dw.

By the finite switching property, u intersects the relay boundary only finitely many
times. For any interval [t1, t2] ⊆ [0, T ] on which ‖u(t) − x‖ ≥ r, the relay out-
put w(t) = ũ(t)/‖ũ(t)‖ is continuous and piecewise differentiable. Verifying that

ũT [∂(ũ/‖ũ‖)/∂ũ] = 0, we obtain∫ t2

t1

ũ · dw =

∫ t2

t1

ũ(t) ·w′(t) dt =

∫ t2

t1

ũ(t)T [∂w/∂ũ] ũ′(t) dt = 0.

As well, for any interval [t1, t2] ⊆ [0, T ] on which ‖u(t)−x‖ < r, w is constant and
thus implies ∫ t2

t1

ũ · dw = 0.

The only case where a non-zero contribution to the integral is made is when ũ
touches the relay boundary and leaves the relay, i.e. ‖u(t)−x‖ = r and ‖u(t− δ)−
x‖ < r for some ε > 0 and all 0 < δ < ε. That contribution is

ũ(t) ·
(

w(t)− lim
τ→t−

w(τ)

)
= ũ(t) ·

(
ũ(t)

‖ũ(t)‖
− lim

τ→t−

ũ(τ)

‖ũ(τ)‖

)
≥ 0. �

The proof exposes the significance of the closed loop assumption u(0) = u(T )
and w(0) = w(T ). If it is not satisfied, the term∫ T

0

x · dw = x · (w(T )−w(0))

may be negative and thus make the dissipation expression (2.10) negative.
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2.3. Vector Preisach Operator

The scalar Preisach operator (Example 2.1.8) has been established in the model-
ing of scalar hysteresis for a long time. In the 1980s, the Mayergoyz vector Preisach
model (Example 2.1.9) was proposed as a vectorial extension of the scalar oper-
ator. It remained the only dimension-independent vectorial generalization of the
Preisach operator until recently, when in 2006 a new vector Preisach operator based
on the vector relay operator h(x,r) was introduced by Della Torre, Pinzaglia and
Cardelli [24]. We will denote this operator by P . It represents the basis of all
further investigations in this work.

After giving a formal definition of the vector Preisach operator P and presenting
a geometric visualization of its memory evolution in low dimension, the remainder of
this chapter discusses its properties. We start with basic properties, in particular the
action of rotations, reflections and translations on P . Then we investigate isotropy
and anisotropy, state a sufficient isotropy condition and suggest a neutral memory
state. We analyze saturation and find that, if the Preisach distribution is of bounded
support, there is a saturation state with complete memory deletion, alignment of
input and output in the isotropic case, asymptotic alignment in the anisotropic case,
and an asymptotic output limit which is independent of the direction. Thus, the
saturation behaviour of P is found to be in good qualitative correspondence to that
observed in magnetic hysteresis. We further show that periodic input results in
periodic output, and, in particular, uniformly rotating input results in uniformly
rotating output in R2. We prove that P satisfies the congruency of vectorial loops
property. Finally, we discuss the lag and dissipation behaviour. We show that P
satisfies the thermodynamic dissipation condition on closed input cycles, and we
find the shape of lag angle and loss curves for uniformly rotating input to be in
good agreement with those measured for magnetic materials.

2.3.1. Definition. The scalar Preisach operator arises as a weighted superposition
of scalar relay operators h(x,r), Equation (2.3). The n-dimensional vector Preisach
operator P : C([0, T ]; Rn)×Map(Rn×R+; ∂B0,1) →Map([0, T ]; Rn) is constructed
in exact analogy as superposition of vector relays h(x,r) with (x, r) ∈ Rn×R+. The
initial states of the relays are given by a measurable function ξ : Rn ×R+ → ∂B0,1,
the evaluation of ξ in a point (x, r) is denoted ξ(x,r). The vector Preisach operator
P is defined by

(2.11) w(t) = P [u, ξ](t) :=

∫ ∞

0

∫
Rn

ω(x, r)h(x,r)[u, ξ(x,r)](t) dx dr,

with a Lebesgue-integrable Preisach density function ω : Rn × R+ → R.

Remark. A more general definition of P is in terms of a finite Borel measure µ:

(2.12) P [u, ξ](t) :=

∫
Rn×R+

h(x,r)[u, ξ(x,r)](t) dµ(x, r).

If µ is absolutely continuous with respect to the Lebesgue measure, then (2.12)
is equivalent to (2.11) and ω(x, r) is the Radon-Nikodym derivative of µ. In this
dissertation, we restrict our investigations to formulation (2.11).
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x2

x1

r

u(t)

Figure 2.4. Geometric representation of the 2D vector Preisach operator.

Remark. Note that, since P is invariant under changes of ω on sets of measure 0,
in all subsequent statements any assumption on ω will suffice to be satisfied for a
function ω such that

ω = ω a.e. on Rn × R+.

Proposition 2.3.1. The vector Preisach operator P is a hysteresis operator.

Proof. As P is a linear superposition of relays, the result follows immediately from
Proposition 2.2.1. �

Figure 2.2 illustrated the geometric representation of the memory evolution of
the scalar Preisach operator. It is also possible to visualize the memory evolution
of the 2D vector Preisach operator. For this, note that by (2.5) at current input
u(t), exactly those relays h(x,r) are in a “frozen” state for which ‖u(t) − x‖ < r.
Therefore, these relays form the cone Cu(t), whose position varies with u(t). By (2.5),
the relay states outside Cu(t) are the unit vectors pointing at u(t). As u(t) varies,
the relays on the boundary of Cu(t) “freeze” in their current state as the cone moves
and takes them in. They switch as they leave the cone. Fig. 2.4 shows the resulting
geometric visualization with discrete relay states depicted in one plane r = constant
and u linearly increasing along the x1-axis. Each vector represents the state h(x,r)

of the relay at its base point (x, r). The cone Cu(t) is drawn shaded.
For n = 3, the same technique can be used to visualize the memory state for each

hyperplane r = constant in R3. The intersection of Cu(t) with such a hyperplane
forms the ball Bu(t),r ⊂ R3.

2.3.2. Basic properties.

Lemma 2.3.2 (Generalized semigroup property). Given t1, t2 ∈ [0, T ], t1 ≤ t2, define
ξ(t) by ξ(x,r)(t) = h(x,r)[u, ξ(x,r)](t). Then the following holds true:

P [u, ξ](t2) = P [ut1 , ξ(t1)](t2 − t1).
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Proof. By Lemma 2.2.2, at t2 all the relay states are equal, so the statement
follows. �

In Chapter 1 we have introduced the group of rotations and reflections of Rn

about the origin, O(n). We now investigate the behaviour of P when these isometries
are applied to the input function u. As this involves transformations of ω, we will
index P with ω where necessary and write Pω. The following Lemma states that
applying Q ∈ O(n) to the output function w = Pω[u] gives the same result as first
applying Q to u, ω and ξ and then evaluating P .

Lemma 2.3.3 (Rotation and reflection). For Q ∈ O(n), the vector Preisach operator
satisfies

QPω[u, ξ] = PQω[Qu, Qξ].

Proof. Applying Lemma 2.2.4, we get

QPω[u, ξ](t) =

∫ ∞

0

∫
Rn

ω(x, r)Qh(x,r)[u, ξ(x,r)](t) dx dr

=

∫ ∞

0

∫
Rn

ω(x, r)h(Qx,r)[Qu, Q(ξ(x,r))](t) dx dr

=

∫ ∞

0

∫
Rn

ω(Q−1x, r)h(x,r)[Qu, Q(ξ(Q−1x,r))](t) dx dr

=

∫ ∞

0

∫
Rn

Qω(x, r)h(x,r)[Qu, (Qξ)(x,r))](t) dx dr.

The third equality is obtained by conducting a change of variables along Theo-
rem 1.2.8 from x to Qx with Jacobian determinant J = | detQ| = 1. �

The next lemma explores the translation invariance of P .

Lemma 2.3.4 (Translation). For any translation Tv, v ∈ Rn,

Pω[u, ξ](t) = PTvω[Tvu, Tvξ](t).

Proof. Applying Lemma 2.2.5, we get

Pω[u, ξ](t) =

∫
Rn×R+

ω(x, r)h(Tvx,r)[Tvu, ξ(x,r)](t) d(x, r)

=

∫
Rn×R+

ω(T−vx, r)h(x,r)[u + v, ξ(T−vx,r)](t) d(x, r)

= PTvω[Tvu, Tvξ](t).

In the second step, we have applied a change of variables along Theorem 1.2.9 with
transformation T−v and J = | detT−v| = 1. �

2.3.3. Isotropy and neutral memory state. A vectorial hysteresis operator W
is called isotropic if its input-output behaviour is the same independent of the direc-
tion. Mathematically, this means that for any u ∈ C([0, T ]; Rn) and any isometry
Q ∈ O(n), W satisfies

W [Qu] = QW [u].
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The vector Preisach operator P does not only depend on u, but also on the
initial state ξ. We thus need to extend the notion of isotropy to take the effect of ξ
into consideration. We have

(2.13) P [Qu, ξ](t) =

∫ ∞

0

∫
Rn

ω(x, r)h(x,r)[Qu, ξ(x,r)](t) dx dr

and, by Lemma 2.3.3,

(2.14) QP [u, ξ](t) =

∫ ∞

0

∫
Rn

Qω(x, r)h(x,r)[Qu, (Qξ)(x,r))](t) dx dr.

Assume ω satisfies ω = Qω. Then obviously ξ can cause these integrals to differ
if for some u and t we have that (Qξ)(x,r) 6= ξ(x,r) and h(x,r)[Qu, ξ(x,r)](t) = ξ(x,r)

hold on some subset of Rn × R+ of non-zero measure. Thus, defining the set

Ξ = {ξ | ξ = Qξ for all Q ∈ O(n)},

the natural definition of isotropy seems to be:

Definition 2.3.5 (Isotropy). We call the vector Preisach operator P isotropic if
and only if for any u ∈ C([0, T ]; Rn) and any rotation Q ∈ O(n), it satisfies

(2.15) P [Qu, ξ] = QP [u, ξ] for all ξ ∈ Ξ.

We have the following:

Lemma 2.3.6 (Sufficient isotropy condition). If there exists a ω̃ : R+ × R+ → R
such that ω(x, r) = ω̃(||x||, r), then P is isotropic.

Proof. As

ω(x, r) = ω̃(||x||, r) = ω̃(||Q−1x||, r) = ω(Q−1x, r) = Qω(x, r)

for any Q ∈ O(n), this is obvious from comparing Equations (2.13) and (2.14). �

For ease of reference, we will call ω : Rn × R+ → R isotropic if and only if it
satisfies the assumption of Lemma 2.3.6.

Lemma 2.3.7. We have that ω is isotropic if and only if ω(x, r) = Qω(x, r) for all
Q ∈ O(n).

Proof. Using Lemma 1.3.1, it is quickly shown that {Qx | Q ∈ O(n)} = {y |
‖y‖ = ‖x‖}. Since Qω(x, r) = ω(Q−1x, r), the statement follows. �

Remark (Visualization of isotropic ω). In other words, ω is isotropic exactly if it
is invariant under rotation and reflection about the r-axis.

Remark (Anisotropy). In magnetism, many materials show anisotropic behaviour,
i.e. their hysteresis differs with direction. However, under uniaxial input u(t) =
u(t)e with scalar function u(t) and constant unit vector e, the hysteresis of the
uniaxially measured output w(t) = P [u](t) · e is always observed to be symmetric
about 0, up to initial state effects. We can conclude that in general

P [−u, ξ](t) = −P [u, ξ](t) for all ξ ∈ Ξ
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should hold in the modeling of magnetic hysteresis. It is quickly seen that this is
satisfied if

(2.16) ω(x, r) = ω(−x, r)

holds. Thus, we suggest using arbitrary ω satisfying (2.16) for the modeling of
anisotropic magnetic hysteresis.

Another approach to represent anisotropy by means of this vector Preisach con-
cept is to modify the relay definition. Della Torre, Pinzaglia, and Cardelli [24, 25]
suggest an anisotropic vector Preisach operator by using general relay shapes, in
particular elliptical relays, instead of the spherical h(x,r). A relay is represented
by an open bounded set K ⊂ Rn together with a point x ∈ K, for example an

ellipse and its center. They define the output state of this general relay h̃(K,x) :
C([0, T ]; Rn) →Map([0, T ]; Rn) as

(2.17) h̃(K,x)[u, ξ](t) =


u(t)−x
‖u(t)−x‖ if u(t) /∈ K,
h̃(K,x)[u, ξ](maxXt) if u(t) ∈ K and Xt 6= ∅,
ξ otherwise.

Here, Xt := {τ ∈ [0, t] | u(τ) /∈ K} and ξ ∈ ∂B0,1 is an initial state.
We suggest a similar idea, which does not require to distinguish a point in K. It

uses projection onto convex sets as previously suggested by Damlamian and Visintin
in their rotating model [21, 67], but defines the relay output in analogy to the vector
relay h(x,r) (2.5). For this, we replace the spherical relays by other families {K} of
open convex sets, for example ellipses, and generalize (2.5) to

(2.18) hK [u, ξ](t) =


u(t)−projK u(t)
‖u(t)−projK u(t)‖ if u(t) /∈ K,
hK [u, ξ](maxXt) if u(t) ∈ K and Xt 6= ∅,
ξ otherwise,

with Xt := {τ ∈ [0, t] | u(τ) /∈ K}. Here, projK y is the projection of u(t) onto K,
that is, the point y ∈ K minimizing ‖y − y‖.

For both h̃(K,x) and hK , the corresponding Preisach operator can be obtained
as weighted superposition of all relays.

In view of the modeling of magnetic hysteresis, it would be desirable to compare
the properties of the three approaches listed to those observed in measurements of
anisotropic hysteretic materials. However, anisotropy shall not be in the focus of
this dissertation.

Assume ω is isotropic. An interesting question that so far remains unaddressed
is that of an appropriate neutral memory state, or, in the terminology of magnetic
hysteresis, a “demagnetized state” of P . In the case of scalar hysteresis, such a
neutral state ξ0 is characterized by giving Preisach output 0 for input u = 0,

(2.19) P [0, ξ0] = 0,

and symmetry with respect to input reflections,

(2.20) P [−u, ξ0](t) = −P[u, ξ0](t)
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for all u ∈ C([0, T ]; R). It is quickly seen the scalar Preisach operator P meets
these conditions for arbitrary ω only if ξ(x,r) = −ξ(−x,r) a.e. The only staircase curve
satisfying this condition is ψ(r) ≡ 0, so the neutral state is equal to [51]

(2.21) ξ0
(x,r) =

{
1 if x < 0,

−1 if x ≥ 0.

In the vectorial case, we seem to be looking for those ξ from Definition 2.3.5 that
do not affect isotropy, that is, ξ ∈ Ξ. If ω is isotropic, ξ ∈ Ξ immediately implies
the vectorial counterparts of (2.19) and (2.20),

P [0, ξ] = 0

and

P [Qu, ξ] = QP [u, ξ] for all Q ∈ O(n).

It turns out that the elements of Ξ have a very specific form:

Lemma 2.3.8. A measurable ξ ∈ Map(Rn × R+; ∂B0,1) is in Ξ if and only if, for

some function α : R+ → {1,−1}, we have ξ(x,r) = α(‖x‖) x

‖x‖
for all (x, r) ∈

Rn \ {0} × R+.

Proof. Assume first that ξ ∈ Ξ. Let x = (λ, 0, . . . , 0)T . Lemma 1.3.2 states that
Qx = x holds exactly for all Q ∈ O1(n). Because of ξ ∈ Ξ, Qx = x implies

ξ(x,r) = (Qξ)(x,r) = Q(ξ(Q−1x,r)) = Q(ξ(x,r))

for all Q ∈ O1(n). Therefore,

ξ(x,r) = (β, 0, . . . , 0)T , β = ±1.

For arbitrary x 6= 0, by Lemma 1.3.1, there exists a Q ∈ O(n) such that x =
Q(‖x‖, 0, . . . , 0)T , so

ξ(x,r) = Qξ((‖x‖,0,...,0)T ,r) = Q(β, 0, . . . , 0)T = β
x

‖x‖
.

Set α(‖x‖) = β.
Conversely, ξ = α(‖x‖)x/‖x‖ is in Ξ because for all Q ∈ O(n)

(Qξ)(x,r) = Q

(
α(‖x‖) Q−1x

‖Q−1x‖

)
= α(‖x‖) x

‖x‖
= ξ(x,r). �

The fact that all relays outside Cu(0) at u(0) = 0 are in this state and that it

represents the vectorial analogue of (2.21) suggests that ξ0,

ξ0
(x,r) := − x

‖x‖
,

i.e. all relays pointing at 0, is the neutral initial state of P .
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In fact, for n = 2 it can be shown that ξ0 results asymptotically from a “demagne-
tization” process via a rotating field of decreasing amplitude. Define ũk : [0, 1] → R2

to be the spiral curve

ũk(t) = R(1− t)

(
cos(2kπt)
sin(2kπt)

)
starting at ũk(0) = (R, 0) and rotating with uniformly decreasing amplitude to
ũk(1) = (0, 0). Parameter k ∈ N equals the number of rotations of the spiral.

Lemma 2.3.9. For all (x, r) ∈ Rn × R+ such that r < R and x 6= 0,

lim
k→∞

h(x,r)[ũk](1) = ξ0
(x,r).

Proof. Note that any ring B0,d+R
k
\ B0,d around 0 contains exacty one revolution

of the spiral.
If ||x|| ≥ r, the statement is obviously true as (x, r) is not in the freeze cone at

t = 1. Assume ||x|| < r < R. For d < r, the circle ∂B0,d intersects the boundary of
the relay ∂Bx,r not at all for d < r − ||x||, exactly once for d = r − ||x||, and twice
for d > r − ||x||. Let P denote the intersection point for d = r − ||x||. It is quickly
geometrically verified that (P − x)/‖P − x‖ = −x/‖x‖. Let Qk be the point at
which ũk(t) last intersects ∂Bx,r. This implies that

(2.22) h(x,r)[ũk](t) |t=1=
Qk − x

‖Qk − x‖
.

With the remark in the beginning and k large enough so R
k
< ‖x‖, the point Qk lies

in the intersection of the ring B0,r−||x||+R
k
\ B0,r−||x|| with ∂Bx,r. As k → ∞, this

intersection lies inside an arbitrarily small neighbourhood of P , so we have Qk → P .
Then (2.22) results in the claim. �

This is the two-dimensional analogue of the standard uniaxial demagnetization
process by an alternating field of decreasing amplitude, which results in ξ0 [51].

2.3.4. Saturation. Suppose ω has bounded support, and let K := {(x, r) | ||x||+
r ≤ R} be the minimal cone such that ω(x, r) = 0 a.e. outside K. For any u(t)
such that ||u(t)|| > R, the assumption (x, r) ∈ K implies

r ≤ R− ‖x‖ ≤ ‖u(t)‖ − ‖x‖ ≤ ‖u(t)− x‖.

Therefore,

(2.23) Cu(t) ∩ K = ∅.

In other words, all hysteresis memory is erased:

Lemma 2.3.10 (Memory deletion). Assume u1,u2 ∈ C([0, T ]; Rn) satisfy ut
1 = ut

2

for some t ∈ [0, T ]. If ‖u1(t)‖ ≥ R, then for arbitrary initial states ξ1, ξ2,

P [u1, ξ1](τ) = P [u2, ξ2](τ) for all t ≤ τ ≤ T.
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Proof. For all (x, r) ∈ K, by (2.23) we have that

h(x,r)[u1, ξ1](t) =
u1(t)− x

‖u1(t)− x‖
= h(x,r)[u2, ξ2](t).

Thus, the semigroup property for vector relays at t results in

h(x,r)[u1, ξ1](τ) = h(x,r)[u2, ξ2](τ) for all t ≤ τ ≤ T

for all (x, r) ∈ K, and the statement follows. �

From the semigroup property of P , we obtain the following corollary:

Corollary 2.3.11. If ‖u(t)‖ ≥ R, then for arbitrary initial states ξ, ξ,

P [u, ξ](τ) = P [ut, ξ](τ − t) for all t ≤ τ ≤ T.

In particular, w(t) = P [u, ξ](t) is fully determined by u(t).

In other words, there is a function p : Rn → Rn such that P [u, ξ](t) = p(u(t))
for any initial state ξ if ‖u(t)‖ ≥ R. It is given by

p(v) =

∫
K
ω(x, r)

v − x

‖v − x‖
d(x, r), v ∈ Rn.

That is, the hysteresis output for any u(t) satisfying ‖u(t)‖ ≥ R is not multivalued.
As a consequence of Lemma 2.3.10, the initial state and u in [0, t) are completely
deleted from the memory.

In addition, if ω is isotropic, then u(t) and w(t) are aligned:

Lemma 2.3.12. Assume ω is isotropic. If ‖u(t)‖ ≥ R, then there exists a λ ∈ R,
which depends on ‖u(t)‖, such that

(2.24) P [u](t) = λu(t).

Proof. Assume u(t) = (u(t), 0, . . . , 0). Lemma 1.3.2 states the group O1(n) ⊂
O(n) fixing u. Since ‖u(t)‖ > R, by Lemma 2.3.10 we can assume initial state ξ0.
With ω(x, r) = Qω(x, r) for all Q ∈ O1(n), we have by Lemma 2.3.3

(2.25) P [u](t) = P [Qu](t) = QP [u](t) for all Q ∈ O1(n).

Thus, P [u](t) must be equal to 0 in all but the first component,

P [u](t) = (λ, 0, . . . , 0).

For an arbitrary u(t), there is a Q ∈ O(n) such that u(t) = Q(‖u(t)‖, 0, . . . , 0).
As the second equality in (2.25) by Lemma 2.3.3 holds for all Q ∈ O(n), there is a
λ such that

P [u](t) = Q(λ, 0, . . . , 0). �

In general, independent of the symmetry properties of ω, the Preisach output
P [u](t) asymptotically aligns with large u(t):

(2.26) lim
‖v‖→∞

p(v) = lim
‖v‖→∞

∫
K
ω(x, r)

v − x

‖v − x‖
d(x, r) =

∫
K
ω(x, r) d(x, r)

v

‖v‖
.

In any case, the relays inside K keep varying while ||u(t)|| ≥ R. Thus, for large
u(t), ‖P [u](t)‖ is not constant but varies. In this, the vector Preisach operator P
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differs from the scalar Preisach operator, which gives constant output as soon as
|u(t)| > Rscal, where Kscal := {(x, r) | |x|+ r ≤ Rscal} ⊂ R×R+ is the minimal cone
outside which ω(x, r) = 0 a.e.

It is obvious from (2.26) that the saturation limit

(2.27)

∫ ∞

0

∫
Rn

ω(x, r) dx dr

that p(v) attains as ‖v‖ → ∞ is independent of the direction v
‖v‖ .

Using that ‖h(x,r)[u](t)‖ = 1, we can further derive the following bound on the
Preisach output:

‖P [u](t)‖ ≤
∫ ∞

0

∫
Rn

‖ω(x, r)h(x,r)[u](t)‖ dx dr ≤
∫ ∞

0

∫
Rn

|ω(x, r)| dx dr.

Therefore, if ω ≥ 0, the saturation limit (2.27) represents an upper bound on
‖P [u](t)‖.
Example 2.3.13. We will illustrate the saturation behaviour for n = 2 and an
isotropic linear ω defined by

ω(x, r) :=

{
1− ‖x‖ − r if ‖x‖+ r ≤ 1,

0 otherwise.

Figure 2.5 shows scalar hysteresis curves computed with P for uniaxial input.
The curves merge into a single saturation curve at R = 1 and asymptotically ap-
proach their saturation limit∫ ∞

0

∫
R2

ω(x, r) dx dr =
π

12
.
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Figure 2.5. Uniaxial hysteresis curves of Example 2.3.13: enlarged
on the interval [−1.5, 1.5] (left), zoomed out to highlight the assymp-
totic behaviour (right).
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Figure 2.6. Input u (left) and output w (right) of Example 2.3.13:
The input points marked for u along the horizontal and vertical axes
correspond to the respective output points marked for w.

Figure 2.6 shows w(t) = P [u](t) = (w1(t), w2(t)) for counter-clockwise rotating
input u(t) = (u1(t), u2(t)) of increasing amplitude. For ‖u(t)‖ < 1, the marked
points of w are tilted out of the axis on which the corresponding inputs lie and thus
show the rotational lag effect due to hysteresis well. However, for ‖u(t)‖ ≥ 1, the
points are aligned with the input as an effect of saturation.

The derived behaviour of P agrees with that observed in measurements for
hysteretic materials. In saturation, magnetic field H and M are aligned for the
isotropic case [22], and align asymptotically for the anisotropic case [57]. In either
case the saturation limit is independent of the direction [10]. Curves reported from
measurements (e.g. [74, 20, 41]) show the merging of the uniaxial M(H) hysteresis
loop into a single curve before zero slope, or slope µ0 in the case of B(H) curves
(cf. Chapter 3, Equation (3.6)), is attained. The latter property is related to
the existence of a reversible component in P , which we explore in more detail in
Section 2.4. The lack of a reversible contribution is one of the shortcomings of the
classical scalar Preisach model frequently addressed by model extensions [23, 22].

Remark (Distinction from Mayergoyz’ vector Preisach model). If ω is isotropic and
has bounded support K, then P is not equal to a Mayergoyz’ vector Preisach model.
This is seen comparing the output behaviour of both operators for large uniformly
rotating input u. For P , as shown in Lemma 2.3.12, the output P [u](t) aligns with
u(t) as soon as ‖u(t)‖ > R. For any Mayergoyz’ vector Preisach model W , the
output will always follow the input at a non-zero lag angle. This is demonstrated
in [51, Chapter 3] for n = 2 in the proof of the “Rotational Symmetry Property”,
where it is derived that the tangent of the lag angle is positive.
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2.3.5. Congruency and periodic behaviour. This section investigates the out-
put congruency, lag and dissipation properties of P .

In the first set of lemmas, we will show that the Preisach output is periodic
and satisfies the congruency of vectorial loops. That is, if after an arbitrary initial
variation, two functions u1 and u2 are equal and periodic, then from the second
cycle onwards the outputs are periodic and congruent. Here, congruency of two
curves in Rn means that they are equal up to translation.

Then we will show that for isotropic ω, uniformly rotating input results in uni-
formly rotating output.

Lemma 2.3.14 (Periodicity of P , congruency for differing initial states). Suppose
u ∈ C([0, T ]; Rn) is periodic, i.e. there is a λ < T such that u(t+λ) = u(t) for any
t ∈ [0, T − λ]. Then for any ξ1, ξ2 : Rn × R+ → ∂B0,1, the following holds:

(a) P [u, ξ1] is periodic with period λ on [λ, T ], i.e.

P [u, ξ1](t+ λ) = P [u, ξ1](t) for all t : λ ≤ t ≤ T − λ.

(b) There exists a v ∈ Rn such that

P [u, ξ1](t) = P [u, ξ2](t) + v for all t : λ ≤ t ≤ T.

Proof. (a) It is quickly verified that h(x,r)[u, ξ1](t + λ) = h(x,r)[u, ξ1](t) for t≥λ
is satisfied by each relay. The periodicity carries over to P in the obvious way.

(b) Clearly, h(x,r)[u, ξ1](t) = ξ1 as well as h(x,r)[u, ξ2](t) = ξ2 for all t if and
only if ‖u(t)− x‖ < r for all t ∈ [0, λ). Otherwise, h(x,r)[u, ξ1](t) = h(x,r)[u, ξ2](t)
for any t ∈ [λ, T ]. Therefore,

P [u, ξ1](t)−P [u, ξ2](t) =

∫
{(x,r)|‖u(t)−x‖<r∀t∈[0,λ)}

ω(x, r)(ξ1 − ξ2) dx dr =: v

for all t ∈ [λ, T ]. �

Lemma 2.3.15 (Congruency of vectorial loops). Suppose u1,u2 ∈ C([0, T ]; Rn) sat-
isfy u1(t) = u2(t) for all t ∈ [t0, T ], 0 ≤ t0 ≤ T . Suppose further there exists a λ > 0
such that u1 and u2 are periodic on [t0, T ], i.e. u1(t+λ) = u1(t) for all t ∈ [t0, T−λ].
Set w1 = P [u1, ξ1] and w2 = P [u2, ξ2], where ξ1, ξ2 : Rn × R+ → ∂B0,1. Then:

(a) w1 and w2 are periodic with period λ on [t0 + λ, T ], i.e.

wi(t+ λ) = wi(t) for all t : t0 + λ ≤ t ≤ T − λ and i = 1, 2.

(b) There exists a v ∈ Rn such that

w1(t) = w2(t) + v for all t : t0 + λ ≤ t ≤ T.

Proof. Define ξi(t0) as ξi,(x,r)(t0) = h(x,r)[ui, ξi,(x,r)]. By the generalized semi-
group property, Lemma 2.3.2, we have

P [ui, ξi](t) = P [ut0
i , ξi(t0)](t− t0) for all t ∈ [t0, T ], i = 1, 2.

As ut0
1 and ut0

2 are periodic on [t0, T ] and ut0
1 = ut0

2 , statements (a) and (b) follow
directly from Lemma 2.3.14 (a) and (b), respectively, for P [ut0

i , ξi(t0)](t− t0). �
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We see that the transient phase in the first period is a result of the deletion of
differing relay states during this period. The congruency property of P has been
previously observed in computer simulations [18].

We now investigate the behaviour of w = P [u] in the case n = 2 for uniformly
rotating u. Assume u rotates clockwise. Due to the rate-independence of P , it
suffices to investigate P [urot] for

urot(t) = Q(t)u0, u0 ∈ R2, t ∈ [0, T ],(2.28)

Q(t) :=

(
cos t sin t
− sin t cos t

)
.

The function urot rotates uniformly about 0 at magnitude ‖urot(t)‖ = ‖u0‖ and
period 2π. Note that we have [33]

(2.29) {Q(t) | t ∈ [t0, t0 + 2π)} = SO(2)

for arbitrary t0 ∈ R.
The statement of the following Lemma has been experimentally confirmed in [25].

Lemma 2.3.16 (Uniformly rotating input). Assume ω is isotropic. For all t ≥ 2π,
the curve w = P [urot, ξ] describes a circle, i.e. there exist constant vectors v,w0 ∈
R2 such that

w(t) = v +Q(t)w0.

In particular, if ξ(x,r) = ξ0
(x,r) for all (x, r) such that ‖x‖ < r − ‖u0‖, then v = 0

and the circle is centered at 0.

For the proof of Lemma 2.3.16, we apply the following two lemmas:

Lemma 2.3.17. The following statements are equivalent:

(a) ‖x‖ < r − ‖u0‖,
(b) ‖urot(t)− x‖ < r for all t ∈ [t0, t0 + 2π).

Proof. To show that (a) implies (b), assume ‖x‖ < r − ‖u0‖. Then

‖urot(t)− x‖ ≤ ‖Q(t)u0‖+ ‖x‖ ≤ r.

To show the converse, assume ‖x‖ ≥ r−‖u0‖. By (2.29) and Lemma 1.3.1 there
exists a τ ∈ [t0, t0 + 2π) such that −x/‖x‖ = Q(τ)u0/‖u0‖. Thus,

‖Q(τ)u0 − x‖ =

∥∥∥∥Q(τ)u0 +
‖x‖
‖u0‖

Q(τ)u0

∥∥∥∥ = ‖x‖+ ‖u0‖ ≥ r

negates (b). �

Lemma 2.3.18. If ‖x‖ ≥ r − ‖u0‖, then

h(Q(t)x,r)[urot](t) = Q(t)h(x,r)[urot](2π) for all t ≥ 2π.

Proof. For any t ≥ 0, we have

(2.30) ‖urot(t)−Q(t)x‖ = ‖Q(t)u0 −Q(t)x‖ = ‖u0 − x‖.
To prove the statement of the lemma, we have to consider two cases: ‖u(2π)−

x‖ ≥ r and ‖u(2π)− x‖ < r.
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First, assume ‖u(2π)−x‖ ≥ r. Then by Equation (2.30), ‖urot(t)−Q(t)x‖ ≥ r,
and thus for t ≥ 2π,
(2.31)

h(Q(t)x,r)[u](t) =
urot(t)−Q(t)x

‖urot(t)−Q(t)x‖
=
Q(t)(urot(2π)− x)

‖urot(2π)− x‖
= Q(t)h(x,r)[urot](2π).

Second, assume ‖urot(2π)−x‖ < r. Set τt = max{τ ∈ [0, t] | ‖urot(t)−Q(t)x‖ ≥
r}. Then because of Lemma 2.3.17, the assumption ‖x‖ ≥ r− ‖u0‖ implies that τt
exists for all t ≥ 2π. By (2.30), we have that t− τt = 2π − τ2π. Thus,

h(Q(t)x,r)[u](t) =
urot(τt)−Q(t)x

‖urot(τt)−Q(t)x‖
=
Q(t)(urot(τ2π)− x)

‖urot(τ2π)− x‖
= Q(t)h(x,r)[urot](2π).

�

Proof of Lemma 2.3.16. Lemma 2.3.17 implies that h(x,r)[urot] = ξ(x,r) if and
only if ‖x‖ < r−‖u0‖. Otherwise, h(x,r)[urot] is given by Lemma 2.3.18. Therefore,
we have

w(t) =

∫
‖x‖<r−‖u0‖

ω(x, r)ξ(x,r) d(x, r)

+Q(t)

∫
‖x‖≥r−‖u0‖

ω(x, r)h(x,r)[urot](2π) d(x, r).

The first integral gives v, the second integral w0.
To show the second statement, set ξ(x,r) = ξ0

(x,r). By Lemma 1.3.1, v = 0 if and
only if Q(t)v = v for all t ∈ [0, 2π). This is quickly verified:

Q(t)v = −
∫ ∞

0

∫
Rn

χ‖x‖<r−‖u0‖ω(x, r)
Q(t)x

‖x‖
dx dr

= −
∫ ∞

0

∫
Rn

χ‖Q(t)x‖<r−‖u0‖ω(Q(t)x, r)
Q(t)x

‖Q(t)x‖
dx dr

= −
∫ ∞

0

∫
Rn

χ‖x‖<r−‖u0‖ω(x, r)
x

‖x‖
dx dr

= v

where the second equality uses ‖Q(t)x‖ = ‖x‖ and that ω is isotropic, and χ is the
characteristic function. For the third equality, a coordinate transformation along
Lemma 1.2.8 is carried out. �

Note that the proof provides a formula for v and w0.

2.3.6. Lag angles and dissipation. Two questions that are closely related are
those of the hysteretic lag between u and P [u] and the dissipative properties of
P . In the following, we will investigate the lag for uniformly rotating input in R2

and dissipation under periodic input in general and uniformly rotating input in R2

in particular. On a few examples, we will demonstrate that in these properties,
P shows good qualitative correspondence to the behaviour of magnetic hysteresis
observed in measurements.
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Suppose u ∈ C([0, T ]; R2). The lag angle αlag(t) = ](u(t),w(t)), that is, the
oriented angle between u(t) and w(t) = P [u](t), is given by

cosαlag(t) =
u1(t)w1(t) + u2(t)w2(t)

‖u(t)‖‖w(t)‖
,(2.32)

sinαlag(t) =
u1(t)w2(t)− u2(t)w1(t)

‖u(t)‖‖w(t)‖
.(2.33)

In simulations [25], it has been observed that the lag angle varies periodically for
uniformly rotating input urot, and is 0 for the isotropic model and sufficiently large
input u(t). Mathematically, the first property is a consequence of Lemma 2.3.14,
which states that w = P [urot] is periodic with the same period as urot. Regarding
isotropic ω and neutral initial state, we can now add the mathematical proof for the
second fact:

Lemma 2.3.19 (Lag angle for uniformly rotating input). Assume ω is isotropic. Let
w(t) = P [urot, ξ

0](t). Then αlag(t) is constant for all t ≥ 2π and equal to ](u0,w0),
where w0 is as in Lemma 2.3.16.

Proof. Obviously, as by Lemma 2.3.16 we have w = Q(t)w0,

cosαlag(t) =
urot(t) ·w(t)

‖urot(t)‖‖w(t)‖
=

(Q(t)u0) · (Q(t)w0)

‖u0‖‖w0‖
=

u0 ·w0

‖u0‖‖w0‖
.

Defining the (2, 2)-matrices M(t) = (u(t),w(t)), so M(0) = (u0,w0), and using
that detQ(t) = 1 by (2.29), gives

sinαlag(t) =
detM(t)

‖urot(t)‖‖w(t)‖
=

det (Q(t)M(0))

‖u0‖‖w0‖
=

detM(0)

‖u0‖‖w0‖
.

Therefore, αlag(t) = ](u0,w0) is constant. �

Thus, we can compute a curve αlag(‖u0‖) = ](urot(t),w(t)) in dependence of the
amplitude ‖u0‖ at which urot rotates. If ω is isotropic and has bounded support K,
as introduced in Section 2.3.4, then the alignment of urot(t) and w(t) in saturation
by Lemma 2.3.12 implies that

αlag(‖u0‖) = 0 for all ‖u0‖ ≥ R.

If in addition we have ω ≥ 0, then

(2.34) 0 ≤ αlag(‖u0‖) ≤ π,

that is, w(t) always lags behind urot(t). To outline why (2.34) is true, consider
without loss of generality u0 = (‖u0‖, 0) and t = 4π, so urot(4π) = u0. Fig-
ure 2.7 illustrates the corresponding memory state in the plane r = const. For
x = Q(t)(‖x‖, 0)T , we have

h(x,r)[u](4π) =


ξ0

(x,r) if ‖x‖ < r − ‖u0‖,
Q(t)h((‖x‖,0)T ,r)[urot](2π) if ‖x‖ ≥ r − ‖u0‖ and ‖x− u0‖ < r,

x−u0

‖x−u0‖ if ‖x‖ ≥ r − ‖u0‖ and ‖x− u0‖ ≥ r.
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x1

x2

r‖u0‖

urot

Cu0

‖x‖ < r − ‖u0‖

Figure 2.7. Memory state in the plane R2 × {r} at t = 4π for
urot with u0 = (‖u0‖, 0): The relay states are depicted along two
circles ‖x‖ = const. The freeze cone is drawn light shaded, the set
‖x‖ < r − ‖u0‖ dark shaded.

The relays such that ‖x‖ < r − ‖u0‖ contribute 0 to P [urot], as discussed in the
proof of Lemma 2.3.16. The relays satisfying ‖x‖ ≥ r − ‖u0‖ and ‖x − u0‖ ≥ r
contribute λu0, λ ∈ R, because ω, relay states and domain are symmetric about the
x1-axis. For the remaining relays inside Cu0 , it is quickly verified geometrically that
h((‖x‖,0)T ,r)[urot](2π) has a nonnegative second vector component. Since the freeze
cone is symmetric about the x1-axis, the integral over the relay states along any
circle segment ‖x‖ = const inside the freeze cone gives∫ ϕ(‖x‖)

−ϕ(‖x‖)
Q(t)h((‖x‖,0)T ,r)[urot](2π) dt = 2 sinϕ(‖x‖) h((‖x‖,0)T ,r)[urot](2π)

with some ϕ(‖x‖) ∈ [0, π], so sinϕ(‖x‖) ≥ 0. Therefore, if ω ≥ 0, these relays
contribute a vector with nonnegative second component to P [urot]. Together with
the other contributions, we obtain w = (w1, w2)

T , w2 ≥ 0, and thus with Equa-
tion (2.33) that sinαlag(4π) ≥ 0. This results in (2.34).

If ω is reasonable, it seems to be an inherent property of the vector Preisach
operator P that the resulting lag angle curves look like those observed for real mag-
netic materials [10],[52, Fig. 4]. Figure 2.8 shows a few lag angle curves computed
for exemplary Preisach distributions.

Remark (Distinction from the Mròz model). The vector Preisach operator P is not
equal to a Mròz model [56, 14]. This can be seen because for uniformly rotating
input urot, the output of the Mròz model is aligned with the input (see e.g. [15, Ex-
ample 5.1]), whereas P results in a non-zero lag for small u(t), compare Figure 2.8.
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Figure 2.8. Different isotropic Preisach distributions ω (left) and
the corresponding lag angle curves (right): (a) linear ω, (b) constant
ω, (c) ω used in the applications in Sections 3.3 and 3.4, (d) ω of the
armature material in the magnetic valve application in Section 3.5.



46 2. VECTOR PREISACH HYSTERESIS MODELING

The remainder of this section shall address the question of hysteresis dissipation
under periodic input. This is of interest regarding our ultimate goal in Chapter 3
to use P to represent the hysteresis relationship between the physical quantities
magnetic field H , magnetization M and magnetic flux B, given by (cf. Section 3.1)

(2.35) B = µ0H + M

where µ0 is the magnetic field constant, via

(2.36) M = P [H ].

The energy injected in the time interval [t1, t2] of a magnetization process is given
by the integral [5, 48]

(2.37)

∫ t2

t1

H · dB.

In a periodic process, the internal states at the beginning and the end of one period
are equal. Thus, the energy dissipated in the course of each period equals the integral
over that period. Say a period length is λ. To be consistent with the principles of
thermodynamics, the dissipated energy must satisfy:

(2.38)

∫ t+λ

t

H · dB ≥ 0.

The following lemma rephrases (2.38) in terms of H and M , that is, with (2.36),
H and P [H ].

Lemma 2.3.20. Assume H(t+λ) = H(t) and M(t+λ) = M(t). Then the following
holds: ∫ t+λ

t

H · dB =

∫ t+λ

t

H · dM .

Proof. Applying the material equation (2.35), the statements on the Riemann-

Stieltjes integral in Section 1.2.4 and
∫ t+λ
t

H · dH = 0 give∫ t+λ

t

H · dB = −
∫ t+λ

t

(µ0H + M) · dH = −
∫ t+λ

t

M · dH =

∫ t+λ

t

H · dM .

�

With Lemma 2.3.20 and (2.36), the energy balance (2.38) is satisfied exactly if
P satisfies

(2.39)

∫ t+λ

t

u · dw ≥ 0

for all u with period λ, w = P [u] and t ≥ λ.
The total loss of P results as weighted superposition of the losses of the single

relays h(x,r). Therefore, the following proposition is an immediate consequence of
Lemma 2.2.8.

Proposition 2.3.21 (Dissipation). If ω ≥ 0 and u is piecewise differentiable and
has the finite switching property, then P satisfies the energy balance (2.39).
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In particular, we again want to look at uniformly rotating input, urot. For
this case, dissipation has been the subject of measurements early in the history of
magnetism research and results in a typical curve shape [3, 71, 10]. If ω is isotropic,
w = P [urot] is continuously differentiable and we have∫ t2

t1

u · dw =

∫ t2

t1

u(t) ·w′(t) dt.

Thus, the dissipation rate is given by u(t) ·w′(t).

Lemma 2.3.22. Assume ω is isotropic. Then for all t > 2π, the dissipation rate
urot(t) ·w′(t) is constant.

Proof. Applying Lemma 2.3.16, for t > 2π we have

urot(t) ·w′(t) = Q(t)u0 · ∂t(v +Q(t)w0) = uT
0Q(t)TQ′(t)w0.

This is constant as

Q(t)TQ′(t) =

(
cos t − sin t
sin t cos t

)(
− sin t cos t
− cos t − sin t

)
=

(
0 1

−1 0

)
. �

Investigating the dissipation term (2.39) in dependence of ‖u0‖, we obtain:

Lemma 2.3.23. For uniformly rotating input urot and ω ≥ 0, the dissipation rate
urot(t) ·w′(t) is nonnegative and 0 if ||u0|| = 0 or ||u0|| ≥ R.

Proof. Nonnegativity is a consequence of Proposition 2.3.21 and Lemma 2.3.22.
If ||u0|| = 0, then urot = 0 and obviously

∫
urot · dw = 0. If ||u0|| ≥ R, then the

alignment of urot(t) and w(t) implies w0 = λu0 for some λ ≥ 0. Plugging this into
the computations in the preceeding proof gives urot(t) ·w′(t) = 0. �

In fact, using Lemma 2.3.22 and the computations in its proof, for t ≥ 2π we
obtain an explicit formula for the hysteresis losses, namely∫ t+2π

t

urot · dw =

∫ t+2π

t

urot(τ) ·w′(τ) dτ = 2π det(u0,w0).

Applying this formula, Figure 2.9 shows the resulting loss curves corresponding to
the Preisach distributions and lag angles computed in Figure 2.8. We can see that
for the more well-behaved ω’s in (a), (b), and (c), the resulting loss curves ressemble
those measured in [3], [71] and more recent work [38].

A more general approach to the question of the energy dissipated and the energy
stored in the magnetic field will be presented later in Section 2.5.3, because the
discussion of hysteresis potentials requires differentiation of P [u], which is the topic
of Section 2.5.2.

2.4. Reduction from vector to scalar Preisach operator

In this section, we will show that under uniaxial input, the isotropic vector
Preisach operator P reduces to a scalar Preisach operator, at least after all effects
due to the initial state have been erased. Mayergoyz [49, 51] discovered that the
defining features of the scalar Preisach operator are the typical memory deletion
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Figure 2.9. Loss curves corresponding to the respective Preisach
distributions in Figure 2.8.

properties that he called the “congruency” and the “wiping out” property. Sub-
sequently, Brokate [12] developed a formal mathematical characterization of scalar
Preisach operators, on which the following discussion relies.

Brokate’s characterization proceeds in two steps [16]: First, the notion of oper-
ators of Preisach type is introduced. These are exactly those hysteresis operators
showing the typical memory deletion properties represented by Mayergoyz’ congru-
ency and wiping out properties. Second, the subclass of Preisach operators within
this class is defined to be those operators whose output map results as integral of
the relay states over the Preisach plane subject to a density function, as defined in
Example 2.1.8, Equation (2.3). To show the reduction, we adopt these two steps,
for each summarizing the theoretical background from [16] and following it up with
our own exposition.

By uniaxial input, we mean input that varies along one vector direction only,
that is,

u(t) = u(t) e,
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with u : [0, T ] → R and constant e ∈ Rn. Due to Lemma 2.3.3, without loss of
generality we can assume this direction to be the first vector component, i.e.

(2.40) u(t) = (u(t), 0, . . . , 0)T ∈ C([0, T ]; Rn).

We require that the Preisach distribution ω be of bounded support, that is, there
exists an R ∈ R such that ω(x, r) = 0 a.e. outside K, where

K := {(x, r) ∈ Rn × R+ | ‖x‖+ r ≤ R}.

This is a necessary prerequisite because initial states will, in general, impede the
characteristic memory deletion. We guarantee all initial states to be erased from
the significant part K of the memory of P by assuming

(2.41) u(0) ≥ R.

In this way, any relay h(x,r), (x, r) ∈ K, has “forgotten” its initial state ξ(x,r).

Remark. In fact, instead of requiring ω to be of bounded support and condi-
tion (2.41), the subsequent argument will easily carry over to t > t0 if u satisfies
u(t) ∈ [minτ∈[0,t0] u(τ),maxτ∈[0,t0] u(τ)] for all t ∈ [t0, T ], though with an additional
constant vector offset owing to the initial states remaining at t0.

2.4.1. Scalar hysteresis operators of Preisach type. We already mentioned
that for scalar hysteresis operators, it is a consequence of rate-independence that at
any time, the output is completely determined by the local minima and maxima of
the input function. This results in a bijective correspondence between real-valued
mappings on the set of finite real strings and rate-independent functionals on the
set of piecewise monotone functions, which form the generating functionals of scalar
hysteresis operators. Migrating to strings simplifies the description of memory dele-
tion processes and lies at the heart of the exposition in [16]. Thus, we give a
brief introduction to this approach, which forms the basis for the definition and
characterization of hysteresis operators of Preisach type. For details, refer to [16,
Chapter 2.2]. We will adopt the notation from [16] as far as it applies.

Definition 2.4.1 (piecewise monotone function, monotonicity partition). A func-
tion u : [0, T ] → R is called piecewise monotone if there exists a partition Γ =
{ti}0≤i≤N , 0 = t0 < t1 < . . . < tN = T , such that u is monotone on all subintervals
(ti, ti+1). We call Γ a monotonicity partition.

The set of all piecewise monotone functions on [0, T ] is denoted by

Mpm[0, T ] = {u ∈Map([0, T ]; R) | u is piecewise monotone }.

The set of all continuous piecewise monotone functions is denoted by

Cpm[0, T ] = Mpm[0, T ] ∩ C([0, T ]; R).

For any u ∈ Mpm[0, T ], the minimal monotonicity partition t0 = 0, ti+1 =
max{t ∈ [ti, T ] | u is monotone on [ti, t]} if 0 ≤ ti < T , is called the standard
monotonicity partition of u.
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We write

S = {(u0, u1, . . . , uN) | N ∈ N0, ui ∈ R, 0 ≤ i ≤ N},

for the set of all finite strings of real numbers, and

SA = {(u0, u1, . . . , uN) ∈ S | N ≥ 1, (ui+1 − ui)(ui − ui−1) < 0, 1 < i < N − 1}.
for the set of alternating strings.

As described in [16], we can pass from piecewise monotone functions to strings
via the restriction operator ρA : Mpm[0, T ] → SA,

ρA[u] = (u(t0), . . . , u(tN)),

where {ti}0≤i≤N is the standard monotonicity partition of u. Conversely, we can
pass from strings to piecewise monotone functions via the prolongation operator
πA : S → Cpm[0, T ] by setting the function u = πA(u0, . . . , uN) to be the linear
interpolation of the points u( i

N
T ) = ui.

As shown in [16], for any scalar hysteresis operator W on Mpm[0, T ] there is an

equivalent hysteresis operator W̃ : S → S. For s = (u0, . . . , uN) ∈ S, it is given by

W̃(s) = (W̃f (u0), W̃f (u0, u1), . . . , W̃f (u0, u1, . . . , uN))

with the map W̃f : S → R defined in terms of the generating functional of W by

W̃f (s) = Wf ◦ πA(s)(t).

Based on this correspondence, we no longer need to distinguish between functions
and strings as input to scalar hysteresis operators and just write W [u] or W(s) for
both depending on context.

Brokate’s approach to the scalar Preisach operator is based on the representation
of the Preisach memory in terms of the play operator and Preisach memory curves,
which we introduced in Example 2.1.8. Define the mapping Ff : S ×Ψ0 → Ψ0 by

Ff (s;ψ−1)(r) := Fr,f (s;ψ−1) for all r ≥ 0.

It formalizes the Preisach memory evolution described in Example 2.1.8. Operators
of Preisach type are exactly those hysteresis operators that have a memory of this
form:

Definition 2.4.2 (Hysteresis Operators of Preisach Type – [16], Def. 2.4.2). Sup-
pose a mapping Q : Ψ0 → R and an initial state ψ−1 ∈ Ψ0 are given. Then the
hysteresis operator W given by the generating functional

Wf (s;ψ−1) := Q(Ff (s;ψ−1)), s ∈ S,
is called the hysteresis operator of Preisach type associated with the output mapping
Q and the initial memory state ψ−1.

Since this definition in essence is independent of the image of the output mapping
Q, it extends to uniaxial vector-valued input by generalizing Q to be a map from
Ψ0 to Rn.

The characterization of the class of hysteresis operators of Preisach type relies on
its typical memory deletions, which can be described elegantly in terms of strings.
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For this, we introduce orderings on S which are based on string deletions. Deletions
are maps from S to S consisting of deleting entries from s ∈ S subject to a given
set of rules. We define the following deletion rules:

(1) monotone deletion:

(u0, . . . , uN) 7→ (u0, . . . , ui−1, ui+1, . . . , uN), if ui ∈ [ui−1, ui+1]

(2) Madelung deletion:

(u0, . . . , uN) 7→ (u0, . . . , ui−1, ui+2, . . . , uN),

if [ui, ui+1] ⊂ [ui−1, ui+2], ui /∈ [ui−1, ui+1], ui+1 /∈ [ui, ui+2]

for some 1 ≤ i ≤ N − 2

(3) frontal deletion (deletion rule (7.2) in [16]):

(u0, . . . , uN) 7→ (u1, . . . , uN), if u0 ∈ [u1, u2]

(4) initial state dependent deletion (deletion rule (7.6) in [16]):
For any ψ−1 ∈ Ψ0,

(u0, . . . , uN) 7→ (u1, . . . , uN), if RM(u0, ψ−1) ≤ RI(u1, ψ−1),

where

RM(y;ψ−1) := inf {r ∈ R | r ≥ 0, y + r = ψ−1(r) or y − r = ψ−1(r)},
RI(y;ψ−1) := sup{r ∈ R | r ≥ 0, y + r = ψ−1(r) or y − r = ψ−1(r)}

are discussed in more detail in [16].

Note that for the initial memory curve ψ−1 ≡ 0, the initial state dependent
deletion rule (4) takes the form [16]

(2.42) (u0, . . . , uN) 7→ (u1, . . . , uN), if |u0| ≤ |u1|.
We do not elaborate further on the exact definition of deletion rule (4) because

it exclusively takes care of exactly those initial state deletion effects that we exclude
by assumption (2.41).

Definition 2.4.3 (Orderings on S). A set of deletion rules induces an ordering ≤
on S by defining that s′ ≤ s for s′, s ∈ S if and only if s′ results from s by successive
applications of deletion rules from this set. The Preisach ordering ≤P is the ordering
on S induced by deletion rules (1), (2), and (3). The ordering ≤ψ−1 is the ordering
induced by deletion rules (1), (2), (3), and (4).∗

Thus, we have everything necessary for giving a formal definition of memory
deletions of a scalar hysteresis operator.

Definition 2.4.4 (Forgetting – [16], Def. 2.7.1). Let ≤ be an ordering on the set S
of all strings. We say that a hysteresis operator W forgets according to ≤, if s′ ≤ s
implies that Wf (s) = Wf (s

′).

With this, we are now ready to state the characterization.

∗We denote the ordering ≤δ in [16] by ≤ψ−1 for notational convenience.
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Theorem 2.4.5 (Characterization of scalar Operators of Preisach Type – [16],
Theorem 2.7.7). Let ψ−1 ∈ Ψ0 be given such that

|ψ−1(r)− ψ−1(ρ)| < |r − ρ|, if r 6= ρ.

If a hysteresis operator W forgets according to the ordering ≤ψ−1, then W is of
Preisach type.

2.4.2. Reduction to a scalar hysteresis operator of Preisach type. We will
show that the isotropic vector Preisach operator reduces to a scalar hysteresis op-
erator of Preisach type for uniaxial input (2.40). The correspondence between a
scalar function u and the associated string (u0, . . . , uN) carries over to vector-valued
uniaxial input ue in the obvious way. The reduction property is independent of the
image of the output mapping Q associated with a hysteresis operator of Preisach
type. The string corresponding to u in (2.40) is thus s = ρA[u(t)] and the meaning
of W(s) is clear.

Theorem 2.4.5 has provided us with a simple criterion for identifying operators
of Preisach type.

Lemma 2.4.6. Let (x, r) ∈ Rn×R+. Under uniaxial input (2.40), the vectorial relay
operator h(x,r) forgets according to the Preisach ordering.

Proof. The semigroup property, which h(x,r) satisfies by Lemma 2.2.2, in terms of
strings translates to
(2.43)

h(x,r),f ((u0, . . . , uN), ξ(x,r)) = h(x,r),f ((ui, . . . , uN),h(x,r),f ((u0, . . . , ui−1), ξ(x,r)))

for any string (u0, . . . , uN) and any ξ(x,r) ∈ ∂B0,1.
We will first show that h(x,r) forgets according to the monotone deletion rule:

Because of (2.43), it suffices to show that ui ∈ [ui−1, ui+1] implies

h(x,r),f ((ui−1, ui, ui+1), ξ) = h(x,r),f ((ui−1, ui+1), ξ).

If (ui+1, 0, . . . , 0)T lies outside the relay, that is, ‖x−(ui+1, 0, . . . , 0)T‖ ≥ r, this is ob-
viously true. If ‖x−(ui+1, 0, . . . , 0)T‖ < r, assume first that ‖x−(ui−1, 0, . . . , 0)T‖ <
r. In this case, the entire line segment connecting these two point is inside the relay,
so

h(x,r),f ((ui−1, ui, ui+1), ξ) = h(x,r),f ((ui−1, ui+1), ξ) = ξ.

For ‖x − (ui−1, 0, . . . , 0)T‖ ≥ r, on the other hand, there is exacty one ũ such
that (ũ, 0, . . . , 0)T = λ(ui−1, 0, . . . , 0)T + (1 − λ)(ui+1, 0, . . . , 0)T , λ ∈ [0, 1), and
‖(ũ, 0, . . . , 0)T − x‖ = r, and

h(x,r),f ((ui−1, ui, ui+1), ξ) = h(x,r),f ((ui−1, ui+1), ξ) =
1

r
((ũ, 0, . . . , 0)T − x).

Now we will prove that h(x,r) forgets according to the Madelung deletion rule:
Assume the string (u0, . . . ,uN) allows a Madelung deletion at i ∈ {1, . . . , N − 2}.
By (2.43), it suffices to show that

(2.44) h(x,r),f ((ui−1, ui, ui+1, ui+2), ξ) = h(x,r),f ((ui−1, ui+2), ξ).
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If ‖ui+2 − x‖ ≥ r, then (2.44) obviously holds. Assume ‖(ui+2, 0, . . . , 0)T − x‖ < r.
If ‖(ui−1, 0, . . . , 0)T − x‖ < r, then h(x,r) never leaves state ξ and (2.44) holds. If,
on the other hand, ‖(ui−1, 0, . . . , 0)T − x‖ ≥ r, then like for the monotone dele-
tion rule, there is exacty one ũ such that (ũ, 0, . . . , 0)T = λ(ui−1, 0, . . . , 0)T + (1 −
λ)(ui+2, 0, . . . , 0)T , λ ∈ [0, 1), and ‖(ũ, 0, . . . , 0)T − x‖ = r. As the input variations
for both (ui−1, ui, ui+1, ui+2) and (ui−1, ui+2) take place on the entire line segment
connecting (ui−1, 0, . . . , 0)T and (ui+2, 0, . . . , 0)T , we have

h(x,r),f ((ui−1, ui, ui+1, ui+2), ξ) = h(x,r),f ((ui−1, ui+2), ξ) =
1

r
((ũ, 0, . . . , 0)T − x).

To show that h(x,r) forgets according to the frontal deletion rule, i.e. by (2.43),

(2.45) h(x,r),f ((u0, u1, u2), ξ) = h(x,r),f ((u1, u2), ξ)

for u0 ∈ [u1, u2], the same argument as for the Madelung deletion rule works for the
interval [u1, u2]. This concludes the proof. �

Since the memory of the Preisach operator consists entirely of relay operators,
we immediately obtain:

Corollary 2.4.7. Under uniaxial input the vector Preisach operator P forgets
according to the Preisach ordering.

Theorem 2.4.8 (Reduction to an operator of Preisach type). Under uniaxial input
satisfying (2.41), P reduces to an operator of Preisach type with ψ−1 ≡ 0.

Proof. We show that P forgets according to the initial state dependent deletion
rule, which takes the form (2.42). Assume |u0| ≤ |u1|. This implies |u1| ≥ R, and
the formulation of Corollary 2.3.11 in terms of strings results in

Pf (u0, . . . , uN) = Pf (u1, . . . , uN).

Together with Corollary 2.4.7, P therefore forgets according to the ordering ≤ψ−1

and satisfies Theorem 2.4.5. �

Remark. Note that the discussed memory deletion properties of P are independent
of ω. They are satisfied for all vector Preisach operators, if ω is isotropic or not.

Assumption (2.41) is necessary because initial state effects will generally impede
appropriate initial state dependent deletions. As counterexample, consider P with
neutral initial state ξ0. If there was a corresponding scalar Preisach operator, it
would have to satisfy the symmetry condition (2.20). Therefore, its initial state
would have to be ξ0 and the corresponding memory curve ψ−1 ≡ 0. We can show
that h(x,r) does not satisfy the initial state dependent deletion (2.42), because with
u0 = 0 and u1 < R we have

(2.46) h(x,r),f ((u0,−u1, u1), ξ
0
(x,r)) 6= h(x,r),f ((u0, u1), ξ

0
(x,r))

for almost all (x, r) ∈ K such that

‖x‖ < r, ‖(u1, 0, . . . , 0)T − x‖ < r, and ‖(−u1, 0, . . . , 0)T − x‖ ≥ r.(2.47)
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This is because for (x, r) satisfying (2.47),

h(x,r),f ((u0, u1), ξ
0
(x,r)) = ξ0

(x,r).

On the other hand,

h(x,r),f ((u0,−u1, u1), ξ
0
(x,r)) =

(ũ, 0, . . . , 0)T − x

r

where ũ ∈ (−u1, u1) and ‖(ũ, 0, . . . , 0)T − x‖ = r. Solving the latter equality for ũ,
with x = (x1, . . . , xn) we obtain

(2.48) h(x,r)(0,−u1, u1) = ±1

r


√
r2 − (x2

2 + · · ·+ x2
n)

x2
...
xn

 ,

so (2.46) is shown.

2.4.3. Scalar Preisach operators. This section briefly quotes the relevant defi-
nitions and the characterization theorem from [16].

Definition 2.4.9 (Preisach Operators – [16], Definition 2.4.6). Any hysteresis op-
erator P of Preisach type that has an output mapping Q : Ψ0 → R of the form

(2.49) Q(ψ) =

∫ ∞

0

q(r, ψ(r)) dν(r) + w00

is called a Preisach operator. Here, ν denotes a regular σ-finite Borel measure on
R+, w00 ∈ R, and q is given by

(2.50) q(r, s) = 2

∫ s

0

ω(r, x) dx

for a given function ω ∈ L1
loc(R+ × R; ν ⊗ λ).

The space L1
loc(R+×R; ν⊗λ) is the space of functions which are locally integrable

with respect to the product measure ν⊗λ, see [16]. We only consider the case where
ν is the Lebesgue measure and, by Theorem 2.4.8, ψ−1 ≡ 0. From the remarks in
Example 2.1.8 is it clear that then (2.49) represents a scalar Preisach operator of
the form (2.3) plus constant w00 with ξ = ξ0 and ω as in (2.50).

Brokate states that the characterizing feature of scalar Preisach operators is the
existence of a so-called shape function [16].

Definition 2.4.10 (shape function – [16], Definition 2.9.1). We say that a hysteresis
operator W of Preisach type with initial state ψ−1 ∈ Ψ0 has the shape function
` : R2 → R, if

Wf (s) = Wf (v0, . . . , vN−1) + `(vN−1, vN)

for all s = (v0, . . . , vN) ∈ S̄(ψ−1), where

S̄(ψ−1) := {(v0, . . . , vN) | RM(v1;ψ−1)≤RI(v0;ψ−1), vi+1∈ [vi−1, vi] for 1≤ i<N}.
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As a result of Theorem 2.4.8 we only need to consider initial state ψ−1 ≡ 0 in
our investigations. Equation (2.42) implies that S̄(ψ−1) then takes the form

S̄(0) = {(v0, . . . , vN) | |v1| ≤ |v0|, vi+1 ∈ [vi−1, vi] for 1 ≤ i < N}.
In view of the subsequent theorem, define S(ψ−1) to be the set containing all

strings in S that are irreducible with respect to the ordering ≤ψ−1 .

Theorem 2.4.11 (Characterization of scalar Preisach operators – [16], Theorem
2.9.4). Let W be a hysteresis operator of Preisach type having the initial state ψ−1 ∈
Ψ0 and a shape function ` ∈ C(R2)∩C2({(v1, v2) | v1 ≤ v2}). Consider the Preisach
operator P defined by

P [v](t) :=

∫ ∞

0

q(r,Fr[v;ψ−1(r)](t)) dr + q0(v(t)),

where, for r ≥ 0 and s ∈ R,

q(r, s) := 2

∫ s

0

ω̃(r, σ) dσ, ω̃(r, s) := −∂y1y2`(y1, y2) |y1=s−r,y2=s+r,

q0(s) :=
1

2

∫ s

0

(∂y2 − ∂y1)`(y1, y2) |y1=y2=σ dσ.

Then also P has the shape function `, and the final value mappings Wf and Pf
satisfy

Wf (s)− Pf (s) = Wf (v0)− Pf (v0), ∀s = (v0, . . . , vN) ∈ S(ψ−1),

i.e. Wf and Pf coincide except for effects due to initial states.

2.4.4. Reduction to a scalar Preisach operator. In this section, we will show
that if P has an isotropic Preisach density ω, then it has a shape function ` under
uniaxial input. Assuming that ω is continuous, we will differentiate ` to obtain ω̃.

So far, we have not discussed if the output is uniaxial at all. As a matter of fact,
if u satisfies (2.40) and (2.41) and ω is isotropic, then w = P [u] is of the form

(2.51) w(t) = (w(t), 0, . . . , 0)T .

This is a consequence of Lemmas 2.3.3 and 1.3.2, which imply that

Qw(t) = PQω[Qu, Qξ] = Pω[u, Qξ] = w for all Q ∈ O1(n),

since all relays h(x,r) lying in K have left their initial state ξ(x,r).
We will show that u(t) and w(t) are related through a scalar Preisach operator,

which we denote by P ,
w = P [u].

For this, we present the shape function ` characterizing P . We will use ` to derive
an explicit representation of P by Theorem 2.4.11.

Before getting started, however, we must provide a few definitions needed in the
subsequent computations. In the context of uniaxial input functions we will write
Cy as short for the cone based at the input vector (y, 0, . . . , 0)T , that is,

Cy = C(y,0,...,0)T .
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Figure 2.10. Illustration of ϕ−, ϕ+, ∂−Cy and ∂+Cy for n = 2.

Define the functions

ϕ−(x2, . . . , xn, r; y) :=

{
y −

√
r2 − (x2

2 + · · ·+ x2
n), if x2

2 + · · ·+ x2
n < r2,

y otherwise,

ϕ+(x2, . . . , xn, r; y) :=

{
y +

√
r2 − (x2

2 + · · ·+ x2
n), if x2

2 + · · ·+ x2
n < r2,

y otherwise.

The boundary ∂Cy can be represented as disjoint union

∂Cy = ∂−Cy ∪ ∂+Cy
of the two halfshells

∂−Cy := {(x1, . . . , xn, r) | x2
2 + · · ·+ x2

n < r2, x1 = ϕ−(x2, . . . , xn, r; y)},
∂+Cy := {(x1, . . . , xn, r) | x2

2 + · · ·+ x2
n < r2, x1 = ϕ+(x2, . . . , xn, r; y)}.

For an illustration, see Figure 2.10. It will be notationally advantageous to define

∂0Cy := ∅.

By (2.51), it suffices to look at the first vector component of the relay states and
neglect the other dimensions, which cancel out. Define

fout(x1, . . . , xn; y) :=
y − x1√

(y − x1)2 + x2
2 + · · ·+ x2

n

,

which represents the x1-component of the state

(y, 0, . . . , 0)T − x

‖(y, 0, . . . , 0)T − x‖
of all relays outside the freeze cone Cy. The function fout is absolutely bounded by
1, and defined and continuously differentiable everywhere but at (y, 0, . . . , 0), where
it has a jump discontinuity. It varies in y, and where x 6= (y, 0, . . . , 0)T ,

(2.52) ∂yfout(x; y) =
x2

2 + · · ·+ x2
n

((x1 − y)2 + x2
2 + · · ·+ x2

n)
3
2

.



2.4. REDUCTION FROM VECTOR TO SCALAR PREISACH OPERATOR 57

The function

fin(x2, . . . , xn, r) :=

{√
1− x2

2+···+x2
n

r2
, if x2

2 + · · ·+ x2
n ≤ r2,

0 otherwise,

defines the first component of the relay states inside any Cy up to sign as derived in
Equation (2.48), continuously extended with 0 to all of Rn × R+.

Let Πi : Rn × R+ → Rn−1 × R+ be the projection map onto the orthogonal
complement of the xi-axis,

Πi(x1, . . . , xn, r) = (x1, . . . , xi−1, xi+1, . . . , xn, r).

To project out multiple dimensions, define

Πi1...im(x1, . . . , xn, r) = Πi1 · · ·Πim(x1, . . . , xn, r), ij ∈ {1, . . . , n}.
Define the sign function

sign(x) :=


1 if x > 0,

0 if x = 0,

−1 if x < 0.

Lemma 2.4.12 (Shape function). If ω is isotropic and of bounded support, then P
satisfies

(2.53) P(u0, . . . , uN) = P(u0, . . . , uN−1) + `(uN−1, uN)

for all strings (u0, . . . , uN) ∈ S(0) such that |u0| ≥ R. The shape function ` : R2 → R
is given by

`(y1, y2) =

∫
(R+×Rn)\Cy2

ω(x, r)fout(x; y2) d(x, r)

−
∫

(R+×Rn)\Cy1

ω(x, r)fout(x; y1) d(x, r)(2.54)

+ sign(y1 − y2)

∫
(Cy1\Cy2 )∪(Cy2\Cy1 )

ω(x, r)fin(x2, . . . , xn, r) d(x, r).

Proof. It suffices to consider the subdomain K where ω(x, r) 6= 0. We can easily
derive the x1-components of the relay states h(x,r),f (u0, . . . , ui) by induction. For
the string (u0), by assumption |u0| ≥ R, we have that

h(x,r),f (u0) = fout(x;u0) for all (x, r) ∈ K.
For the string (u0, . . . , ui), 0 < i ≤ N ,

h(x,r),f (u0, . . . , ui) =


fout(x;ui) if (x, r) ∈ K \ Cui

,

h(x,r),f (u0, . . . , ui−1) if (x, r) ∈ Cui
∩ Cui−1

,

− sign(ui − ui−1)fin(x2, . . . , xn, r) if (x, r) ∈ Cui
\ Cui−1

.

At N = 1, Equation (2.54) is quickly confirmed for `(u0, u1). Assume now N ≥ 2.
Split the integral Pf (u0, . . . , uN) into a sum of integrals over the three subdo-
mains K \ CuN

, CuN
∩ CuN−1

, and CuN
\ CuN−1

, and the integral Pf (u0, . . . , uN−1)
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over the subdomains K \ CuN−1
, CuN

∩ CuN−1
, and CuN−1

\ CuN
. By the assumption

uN ∈ [uN−2, uN−1], we have CuN−1
\ CuN

⊆ CuN−1
\ CuN−2

and sign(uN−1 − uN−2) =
− sign(uN − uN−1). Therefore h(x,r),f (u0, . . . , ui) on this subdomain is given by the
last line in the preceeding formula. We then obtain Equation (2.54) for `(uN−1, uN)
by taking the difference of Pf (u0, . . . , uN) and Pf (u0, . . . , uN−1). �

Obviously, the shape function satisfies

`(y1, y2) = −`(y2, y1) for all y1, y2 ∈ R,

and, in particular, `(y, y) = 0 for all y ∈ R, as it should [16].
In view of deriving ω̃, the following lemma explicitly specifies the derivatives

∂y1`(y1, y2), ∂y2`(y1, y2) and ∂y1y2`(y1, y2). In preparation, define the function

ϑ(x3, . . . , xn, r, y1, y2)

:=


√
r2 − x2

3 − · · · − x2
n − 1

4
(y1 − y2)2 if r ≥ |y1−y2|

2
and

x2
3 + · · ·+ x2

n ≤ r2 − 1
4
(y1 − y2)

2,

0 otherwise.

Set

κ = sign(y1 − y2)

and

x̃ = (x2, . . . , xn).

Lemma 2.4.13. Assume that ω is isotropic, continuous and of bounded support K,
and that y1 6= y2. Then the first partial derivatives ∂y1`(y1, y2) and ∂y2`(y1, y2) are
continuous, and

∂y1`(y1, y2) = −
∫
K\Cy1

ω(x, r)∂y1fout(x; y1) d(x, r)

−2

∫
Πx1 (∂−κCy1\Cy2 )

ω(ϕ−κ(x̃, r; y1), x̃, r)fin(x̃) d(x̃, r),

∂y2`(y1, y2) =

∫
K\Cy2

ω(x, r)∂y2fout(x; y2) d(x, r)

+2

∫
Πx1 (∂κCy2\Cy1 )

ω(ϕκ(x̃, r; y2), x̃, r)fin(x̃) d(x̃, r),

∂y1y2`(y1, y2) = κ
(y1 − y2)

2

4

∫
Πx1x2 (∂Cy1∩∂Cy2 )

1

rϑ(x3, . . . , xn, r, y1, y2)[
ω
(
y1+y2

2
,−ϑ(x3, . . . , xn, r, y1, y2), x3, . . . , xn, r

)
+ω
(
y1+y2

2
, ϑ(x3, . . . , xn, r, y1, y2), x3, . . . , xn, r

)]
dx3 · · · dxn dr.

We will proof Lemma 2.4.13 by a sequence of lemmas using differentiation under
the integral sign as introduced in Section 1.2.1. The first lemma is an auxiliary
result on uniform convergence.
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Lemma 2.4.14. Let K be a compact set, and {Fn} a bounded increasing sequence
of continuous functions Fn : K → R converging pointwise to a function F . Then
Fn → F uniformly.

Proof. We will show that for the sequence {fn := F −Fn} → 0 the convergence is
uniform. Let ε > 0 and x ∈ K. There is an open neighbourhood Ux of x such that
there exists N ∈ N satisfying

fn(y) < ε for all y ∈ Ux and for all n > N.

This is because fN is continuous and fn(y) ≤ fN(y) for all y ∈ K and for all
n > N , so fN(x) < ε implies fn(y) ≤ fN(y) < ε in some open neighbourhood of x.
By compactness of K, there exists a finite subcover {Uxi

} of K with respect to ε.
Setting N = maxNi, we have that

fn(y) < ε for all y ∈ K and for all n > N,

and thus uniform convergence. �

Lemma 2.4.15. Assume that ω is continuous and of bounded support K. The func-
tion F : R → R,

F (y) :=

∫
K\C(y)

ω(x, r)fout(x, y) d(x, r).

is continuous. Its derivative exists, is continuous and given by

∂yF (y) =

∫
K\Cy

ω(x, r)∂yfout(x, y) d(x, r)

+

∫
Π1Cy

(ω(ϕ−(x̃, r; y), x̃, r) + ω(ϕ+(x̃, r; y), x̃, r)) fin(x̃, r) d(x̃, r).

(2.55)

Proof. Assume without loss of generality ω ≥ 0. If this does not hold true, write
F (y) in terms of ω+ = max(ω, 0) and ω− = max(−ω, 0). Fix y0. We will show the
statements hold in y0.

To apply Corollary 1.2.3 to F (y), we replace K by the box [0, R] × [−R,R]n

containing it and parametrize the boundary of Cy in terms of the functions ϕ− and
ϕ+, obtaining

(2.56) F (y) = F−(y) + F+(y)

with

F−(y) :=

∫ R

0

∫ R

−R
· · ·
∫ R

−R

∫ ϕ−(x2,...,xn,r,y)

−R
ω(x, r)fout(x, r, y) dx1 dx2 · · · dxn dr,

F+(y) :=

∫ R

0

∫ R

−R
· · ·
∫ R

−R

∫ R

ϕ+(x2,...,xn,r,y)

ω(x, r)fout(x, r, y) dx1 dx2 · · · dxn dr.

The function fout has a jump discontinuity on the boundary of the integration do-
main at (x, r) = (y, 0, . . . , 0, 0), resulting in an essential discontinuity for ∂yfout with
limit ∞ along some paths approaching this point. Because of this, Corollary 1.2.3
cannot be applied directly and we pass to a limit argument. Both F−(y) and F+(y)
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can be dealt with in the exactly same way, so we will only consider F−(y) from now
on.

Define the sequence of functions

F−,m(y) :=

∫ R

1
m

∫ R

−R
· · ·
∫ R

−R

∫ ϕ−(x2,...,xn,r,y)

−R
ω(x, r)fout(x, r, y) dx1 dx2 · · · dxn dr.

and a sequence of sets

Um(y) := {(x, r) | r ∈ [0, R], x1 ∈ [−R, ϕ−(x1, . . . , xn,
1

2m
, y)],

x2, . . . , xn ∈ [−R,R]}.

The sequences are chosen so that for all m, the discontinuity is excluded from
the integral and ωfout satisfies the assumptions of Corollary 1.2.3(a) on Um(y0) ×[
y0 − 1

4m
, y0 + 1

4m

]
. Thus F−,m(y) is continuous in y0. Fixing any a > 0, by the

same line of argument, F−,m(y) is continuous for all y in the interval [y0− a, y0 + a].
Note that by assumption ωfout is nonnegative on the integration domain, so the
sequence F−,m(y) is increasing. Thus, by Lemma 2.4.14, F−(y) is the uniform limit
of continuous functions on this interval, proving the continuity statement in y0.

Further, ωfout satisfies the assumptions of Corollary 1.2.3(b) in Um(y0) × (y0 −
1

4m
, y0 + 1

4m
), and ∂yϕ− ≡ 1. Therefore, ∂yF−,m(y0) exists and is given by

∂yF−,m(y) :=

∫ R

1
m

∫ R

−R
· · ·
∫ R

−R

[ ∫ ϕ−(x2,...,xn,r,y)

−R
ω(x, r)∂yfout(x, r, y) dx1

+ [ω(x, r)fout(x, r)] |x1=ϕ−(x̃,r,y)

]
dx2 · · · dxn dr

(2.57)

evaluated at y = y0.
To show that ∂yF−(y) |y=y0 exists and is equal to

(2.58) lim
m→∞

∂yF−,m(y) |y=y0 ,

we first show the existence of (2.58) and then apply Lemma 1.2.7 to exchange limit
and differentiation.

For the second integrand in (2.57), the existence of the limit integral is clear by
the monotone convergence theorem. For the first integrand with its discontinuity at
(x, r) = (y, 0, . . . , 0, 0), the limit integral exists as a consequence of Lemma 1.2.17,
since ω is bounded.

To exchange limit and differentiation, define the pointwise limit

D(y) := lim
m→∞

∂yF−,m(y).

As for any m and y, all functions involved are continuous on Um(y)×
[
y− 1

4m
, y+ 1

4m

]
,

Corollary 1.2.3(a) gives the continuity of ∂yF−,m(y) on [y0−a, y0 +a]. As ω, fout and
∂yfout are nonnegative, the sequence ∂yF−,m(y) is increasing, so by Lemma 2.4.14
it converges to D(y) uniformly on [y0 − a, y0 + a]. Thus, we have the continuity of
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D(y) on this interval, and by Lemma 1.2.7 we can exchange limit and differentiation
and get

∂yF−(y) |y=y0= D(y0).

Applying the same line of argument to F+(y), we obtain

∂yF (y) =∂yF−(y) + ∂yF+(y)

=

∫ R

0

∫ R

−R
· · ·
∫ R

−R

[ ∫ ϕ−(x2,...,xn,r,y)

−R
ω(x, r)∂yfout(x, r, y) dx1

+ [ω(x, r)fout(x, r)] |x1=ϕ−(x̃,r,y)

+

∫ R

ϕ+(x2,...,xn,r,y)

ω(x, r)∂yfout(x, r, y) dx1

− [ω(x, r)fout(x, r)] |x1=ϕ+(x̃,r,y)

]
dx2 · · · dxn dr.

For (x2, . . . , xn) /∈ Π1Cy, the second and the fourth term cancel:

(2.59) [ω(x, r)fout(x, r)] |x1=ϕ−(x̃,r,y) − [ω(x, r)fout(x, r)] |x1=ϕ+(x̃,r,y)= 0.

If (x2, . . . , xn) ∈ Π1Cy, on the other hand, then for α ∈ {+,−} we have

fout(ϕα(x̃, r, y), x̃, r) = −α
√

1− x2
2+···+x2

n

r2
= −α fin(x̃, r).

This concludes the proof. �

Lemma 2.4.16. The function

G(y1, y2) :=

∫
Cy1\Cy2

ω(x, r)fin(x̃, r) d(x, r).

is continuous. For y1 6= y2, its derivatives are

∂y1G(y1, y2) = κ

[ ∫
Π1Cy1

ω(ϕκ(x̃, r, y1), x̃, r)fin(x̃, r) d(x̃, r)

−
∫

Π1(∂−κCy1\Cy2 )

ω(ϕ−κ(x̃, r, y1), x̃, r)fin(x̃, r) d(x̃, r)

]
and

∂y2G(y1, y2) =−κ
∫

Π1(∂κCy2∩Cy1 )

ω(ϕκ(x̃, r, y2), x̃, r)fin(x̃, r) d(x̃, r).

Proof. Assume first y1 > y2. The approach is the same as in the preceeding proof,
but as the integrand here is continuous everywhere and its derivative with respect
to y1 and y2 is equal to 0, we can apply Corollary 1.2.3 directly. As first step, we
again parametrize the boundaries of the integral. Define the continuous function

ϕo(x̃, r, y1, y2) :=

{
ϕ+(x̃, r, y2), if ϕ+(x̃, r, y2) ≥ ϕ−(x̃, r, y1)

ϕ−(x̃, r, y1), otherwise.
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With this,

G(y1, y2) =

∫ R

0

∫ R

−R
· · ·
∫ R

−R

∫ ϕ+(x̃,r,y1)

ϕo(x̃,r,y1,y2)

ω(x, r)fin(x̃, r) d(x, r).

As ϕo and ϕ+ are continuous, G is continuous by Corollary 1.2.3(a).
To obtain the derivatives as stated, apply Corollary 1.2.3(b) and for ∂y1G(y1, y2)

cancel as in Equation (2.59). The derivatives of the functions involved are

∂yi
fin(x̃, r) = 0, i = 1, 2,

∂y1ϕ+(x̃, r, y1) = 1, ∂y2ϕ+(x̃, r, y1) = 0,

∂y1ϕo(x̃, r, y1, y2) =

{
0, if ϕ+(x̃, r, y2) ≥ ϕ−(x̃, r, y1)

1, otherwise,

∂y2ϕo(x̃, r, y1, y2) =

{
1, if ϕ+(x̃, r, y2) ≥ ϕ−(x̃, r, y1)

0, otherwise.

For y1 < y2, define ϕo by

ϕo(x̃, r, y1, y2) :=

{
ϕ−(x̃, r, y2), if ϕ−(x̃, r, y2) ≥ ϕ+(x̃, r, y1),

ϕ+(x̃, r, y1), otherwise,

so

G(y1, y2) =

∫ R

0

∫ R

−R
· · ·
∫ R

−R

∫ ϕo(x̃,r,y1,y2)

ϕ−(x̃,r,y1)

ω(x, r)fin(x̃, r) d(x, r).

Proceed as for y1 > y2.
Regarding continuity at y1 = y2, it is easily seen that

lim
y1→y2+

G(y1, y2) = 0 = lim
y1→y2−

G(y1, y2). �

Lemma 2.4.17. Assume that ω is continuous and of bounded support K, and y1 6= y2.
Then ∂y1G(y1, y2) and ∂y2G(y1, y2) are continuous, and, if this integral exists,

∂y1y2G(y1, y2) =κ
(y1 − y2)

2

8

∫
Π12(∂Cy1∩∂Cy2 )

1

rϑ(x3, . . . , xn, r, y1, y2)[
ω
(
y1+y2

2
,−ϑ(x3, . . . , xn, r, y1, y2), x3, . . . , xn, r

)
+ ω

(
y1+y2

2
, ϑ(x3, . . . , xn, r, y1, y2), x3, . . . , xn, r

)]
dx3 · · · dxn dr.

Proof. From the components of ∂y1G and ∂y2G in Lemma 2.4.16, define the func-
tions

H1(y1, y2) :=

∫
Π1∂κCy1

ω(ϕ−κ(x̃, r, y1), x̃, r) fin(x̃, r) d(x̃, r),

H2(y1, y2) :=

∫
Π1(∂κCy1\Cy2 )

ω(ϕ−κ(x̃, r; y1), x̃, r) fin(x̃, r) d(x̃, r),

H3(y1, y2) :=

∫
Π1(∂−κCy1∩Cy2 )

ω(ϕκ(x̃, r, y1), x̃, r) fin(x̃, r) d(x̃, r).
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To show the continuity of ∂y1G(y1, y2) and ∂y2G(y1, y2), it suffices to show the con-
tinuity of H1, H2 and H3.

As in the preceeding proofs, we parametrize the integrals on the box [0, R] ×
[−R,R]n. A point (x, r) is in ∂−κCy1 \ Cy2 if and only if

x1 = ϕ−κ(x2, . . . , xn, r, y1),(2.60)

r2 ≥ x2
2 + · · ·+ x2

n,(2.61)

r2 ≤ (x1 − y2)
2 + x2

2 + · · ·+ x2
n.(2.62)

The substitution of Equation (2.60) into (2.62) and evaluation of ϕ−κ assuming that
(x2, . . . , xn) satisfies (2.61) results in

0 ≤ r2 − x2
2 − x2

3 − · · · − x2
n ≤

1

4
(y1 − y2)

2.

Together with (2.61), this gives us a parametrisation of Π1(∂
−κCy1 \ Cy2) and, by

reversing the right-hand inequality, of Π1(∂
−κCy1 ∩ Cy2). For i = 3, . . . , n, define

ϑi(xi, . . . , xn, r) :=

{√
r2 − x2

i − · · · − x2
n, if x2

i + · · ·+ x2
n ≤ r2,

0, otherwise.

Then

H1(y1, y2) =

∫ R

0

∫ r

−r

∫ ϑn(xn,r)

−ϑn(xn,r)

· · ·
∫ ϑ4(x4,...,xn,r)

−ϑ4(x4,...,xn,r)

∫ ϑ3(x3,...,xn,r)

−ϑ3(x3,...,xn,r)

ω(ϕκ(x̃, r; y1), x̃, r)fin(x̃, r) dx2 dx3 · · · dxn−1 dxn dr,

H2(y1, y2) =

∫ R

0

∫ r

−r

∫ ϑn(xn,r)

−ϑn(xn,r)

· · ·
∫ ϑ4(x4,...,xn,r)

−ϑ4(x4,...,xn,r)

[∫ −ϑ(x3,...,xn,r,y1,y2)

−ϑ3(x3,...,xn,r)

+

∫ ϑ3(x3,...,xn,r)

ϑ(x3,...,xn,r,y1,y2)

]
ω(ϕκ(x̃, r; y1), x̃, r)fin(x̃, r) dx2 dx3 · · · dxn−1 dxn dr,

H3(y1, y2) =

∫ R

0

∫ r

−r

∫ ϑn(xn,r)

−ϑn(xn,r)

· · ·
∫ ϑ4(x4,...,xn,r)

−ϑ4(x4,...,xn,r)

∫ ϑ(x3,...,xn,r,y1,y2)

−ϑ(x3,...,xn,r,y1,y2)

ω(ϕκ(x̃, r; y1), x̃, r)fin(x̃, r) dx2 dx3 · · · dxn−1 dxn dr.

As ω(ϕκ(x̃, r; y1), x̃, r) fin(x̃, r) is continuous in [0, R] × [−R,R]n × R2, we get
the continuity of H1(y1, y2), H2(y1, y2) and H3(y1, y2) from Corollary 1.2.5.

To find the double derivative ∂y1y2G(y1, y2), note that

∂y1y2G(y1, y2) = ∂y2H2(y1, y2).

Since the integrand in H2(y1, y2) does not depend on y2, by Corollary 1.2.3 the
derivative will only consist of integrals over boundary components of the integration
domain of H2. The derivative of ϑ with respect to y1 is

∂y1ϑ(x3, . . . , xn, r, y1, y2)

=


− y1−y2

4
√
r2−x2

3−···−x2
n− 1

4
(y1−y2)2

, if r > |y1−y2|
2

and r2 − x2
3 − · · · − x2

n − 1
4
(y1 − y2)

2 > 0,

0, otherwise.
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It is not defined on ∂Cy1 ∩∂Cy2 . The functions fin and ϕκ evaluated at x2 = ±ϑ give

fin(x̃, r) |x2=±ϑ(x3,...,xn,r,y1,y2) =
|y1 − y2|

2r
,

ϕκ(x̃, r; y2) |x2=±ϑ(x3,...,xn,r,y1,y2) =
y1 + y2

2
.

With this, taking in particular into account that ∂y1ϑ is 0 where

r2 − x2
3 − · · · − x2

n − 1
4
(y1 − y2)

2 < 0,

we have

∂y2H2(y1, y2) :=

∫ R

0

∫ r

−r

∫ √r2−x2
n

−
√
r2−x2

n

· · ·
∫ √r2−x2

n−···−x2
4

−
√
r2−x2

n−···−x2
4

∂y2ϑ(x3, . . . , xn, r, y1, y2)[
ω(ϕκ(x̃, r; y1), x̃, r)fin(x̃, r) |x2=ϑ(x3,...,xn,r,y1,y2) +

ω(ϕκ(x̃, r; y1), x̃, r)fin(x̃, r) |x2=−ϑ(x3,...,xn,r,y1,y2)

]
dx3 · · · dxn−1 dxn dr

=κ
(y1 − y2)

2

8

∫ R

1
2
|y1−y2|

∫ √r2−x2
n− 1

4
(y1−y2)2

−
√
r2−x2

n− 1
4
(y1−y2)2

· · ·
∫ √r2−x2

n−···−x2
4−

1
4
(y1−y2)2

−
√
r2−x2

n−···−x2
4−

1
4
(y1−y2)2(

r
√
r2 − x2

3 − · · · − x2
n − 1

4
(y1 − y2)

2

)−1

[
ω
(
y1+y2

2
,−x2, . . . , xn, r

)
+ ω

(
y1+y2

2
, x2, . . . , xn, r

)]
x2=ϑ(x3,...,xn,r,y1,y2)

dx3 · · · dxn−1 dxn dr.

The integration domain is exactly the projection with respect to x1 and x2 of

∂Cy1 ∩ ∂Cy2 =
{
x1 = y1+y2

2
, x2 = ±ϑ(x3, . . . , xn, r, y1, y2),

r2 − x2
3 − · · · − x2

n − 1
4
(y1 − y2)

2 ≥ 0, r ≥ |y1−y2|
2

}
,

which concludes the proof. �

From Lemmas 2.4.15, 2.4.16 and 2.4.17 we can assemble the statements of
Lemma 2.4.13:

Proof of Lemma 2.4.13. We have that

`(y1, y2) = F (y2)− F (y1) + sign(y1 − y2) (G(y1, y2) +G(y2, y1)) .

Assume y1 6= y2. Then

∂y1`(y1, y2) = −∂y1F (y1) + sign(y1 − y2) (∂y1G(y1, y2) + ∂y1G(y2, y1)) .

Plugging in the derivatives of F and G from Lemmas 2.4.15 and 2.4.16 gives the
statement of Lemma 2.4.13 after removing those terms that cancel out. At y1 = y2,

lim
y1→y2+

∂y1`(y1, y2) = −
∫
K\C(y1)

ω(x, r)∂y1fout(x; y1) d(x, r) = lim
y1→y2−

∂y1`(y1, y2).
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For ∂y1y2`(y1, y2), assume again y1 6= y2, so by the symmetry of G(y1, y2) with
respect to y1 and y2

∂y1y2`(y1, y2) = κ (∂y1y2G(y1, y2) + ∂y1y2G(y2, y1)) = 2κ ∂y1y2G(y1, y2).

At y1 = y2,

κ ∂y1y2G(y1, y2) = 0 = ∂y1y2G(y1, y2). �

From Lemma 2.4.13 together with Theorem 2.4.11, we can conclude the follow-
ing:

Theorem 2.4.18 (Reduction to a scalar Preisach operator). Assume the vector
Preisach operator P has a continuous isotropic Preisach density ω of bounded sup-
port. Then for input satisfying Equations (2.40) and (2.41), P reduces to a scalar
Preisach operator P,

P [u](t) :=

∫ ∞

0

∫
R
ω̃(s, ρ)h(s,ρ)[u](t) ds dρ+ q0(u(t)),

with the Preisach density ω̃(s, ρ) : R× R+ → R,

ω̃(ρ, s) = 2ρ2

∫
Π12(∂Cs−ρ∩∂Cs+ρ)

1

r
√
r2 − x2

3 − · · · − x2
n − ρ2

ω

(
s,
√
r2 − x2

3 − · · · − x2
n − ρ2, x̂, r

)
d(x̂, r),

where x̂ = (x3, . . . , xn), and the reversible component

q0(s) =

∫ s

0

∫
K\Cσ

ω(x, r)∂yfout(x; y) |y=σ d(x, r) dσ

=

∫
K\Cs

ω(x, r)fout(x; s) d(x, r)−
∫
K\C0

ω(x, r)fout(x; 0) d(x, r)

−
∫ s

0

∫
Π1C0

(ω(ϕ−(x̃, r;σ), x̃, r) + ω(ϕ+(x̃, r;σ), x̃, r)) fin(x̃, r) d(x̃, r) dσ.

Proof. To get ω̃(s, ρ), plug ∂y1y2`(y1, y2) from Lemma 2.4.13 into the formula given
in Theorem 2.4.11.

For q0(s), the first formula is quickly obtained in the same way. The second
formula is obtained by applying Lemma 2.4.15 to transform the inner integral:

q0(s) =

∫ s

0

∂yF (y) |y=σ dσ

−
∫ s

0

∫
Π1Cσ

(ω(ϕ−(x̃, r;σ), x̃, r) + ω(ϕ+(x̃, r;σ), x̃, r)) fin(x̃, r) d(x̃, r) dσ

= F (s)− F (0)

−
∫ s

0

∫
Π1Cσ

(ω(ϕ−(x̃, r;σ), x̃, r) + ω(ϕ+(x̃, r;σ), x̃, r)) fin(x̃, r) d(x̃, r) dσ.

As the cones Cσ vary only along the x1-axis, Π1Cσ = Π1C0 for all σ ∈ R. �
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The following example presents a pairing P and P computed with the theorem.

Example 2.4.19. Let n = 2 and ω be given by

ω : R2 × R+ → R,

ω(x, r) :=

{
1− ‖x‖ − r if ‖x‖+ r ≤ 1,

0 otherwise,

displayed in Figure 2.11(a). The scalar first order reversal curves (u(t), w(t)) corre-
sponding to this distribution are shown in Figure 2.11(b). By Theorem 2.4.18, the
corresponding scalar Preisach operator has the Preisach distribution

ω̃(ρ, s) = 2ρ2

∫ 1

ρ

1

r
√
r2 − ρ2

ω(s,
√
r2 − ρ2, r) dr.

The integral converges in spite of the discontinuity of the integrand at r = ρ because∫ R

ρ

1

r
√
r2 − ρ2

dr =
1

ρ
arccos

( ρ
R

)

(a) (b)

(c) (d)

Figure 2.11. Example for the reduction from vector to scalar
Preisach operator: (a) Preisach distribution ω(‖x‖, r), (b) scalar first
order reversal curves of P and P , (c) Preisach distribution ω̃(s, ρ),
(d) reversible contribution q0(s).
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and ω is bounded. The distribution ω̃ and the reversible component q0(s) were
evaluated numerically and are shown in Figure 2.11(c) and (d).

2.4.5. Uniaxial monotonicity condition. In the modeling of magnetic hystere-
sis, the monotonicity of the scalar hysteresis curves is of particular interest. From
the preceeding results on the shape function, we can quickly deduce a sufficient con-
dition for the scalar hysteresis operator P to be piecewise increasing in u. According
to definition [16, Def. 2.2.14], P is piecewise increasing if its shape function `(·, ·) is
piecewise increasing with respect to its second variable, cf. (2.53). In other words,
P is piecewise increasing if and only if

∂y2`(y1, y2) ≥ 0.

The derivative was computed in Lemma 2.4.13. Since both ∂yfout(x; y) and fin are
nonnegative, the following sufficient condition for P to be piecewise increasing is an
immediate conclusion:

Proposition 2.4.20. If ω ≥ 0, then P is piecewise increasing.

2.5. Infinitesimal properties of the vector Preisach operator

In this section, we discuss some infinitesimal properties of the operator. In
the first part we show that the operator output w = P [u] is always continuous
for arbitrary ω of bounded support and, in fact, inherits some of the continuity
properties of u. In the second part, we derive the right-hand derivative of w.
This gives insight into the output evolution at a given u(t) and ∂t+u(t), as we will
demonstrate on an example. The arguments deployed there will be again of use in
the last part of this section, where we suggest a possible hysteresis potential for P .

2.5.1. Output continuity. Let 0 < λ ≤ 1. We say that function v : [0, T ] → Rn

is locally λ-Hölder continuous if there exist constants γ, L > 0 such that

|t1 − t2| < γ ⇒ ‖v(t1)− v(t2)‖ < L|t1 − t2|λ.

In particular, if λ = 1, then we call v locally Lipschitz continuous. If γ ≥ T , then v
is called λ-Hölder continuous or Lipschitz continuous, respectively.

Theorem 2.5.1. Assume ω is of bounded support K. Then w = P [u, ξ] is a contin-
uous function. In particular, if ω is absolutely bounded and u is Lipschitz continuous
or λ-Hölder continuous, then w is Lipschitz continuous or locally λ-Hölder contin-
uous, respectively.

Proof. To obtain Lipschitz and Hölder continuity, we will lead a computational
proof. For just continuity, methods similar to those in Section 2.5.2 using the theory
from Section 1.2.1 could also be applied.

Let t0 ∈ [0, T ]. By the continuity of u, for all ε there exists a δ such that
|t− t0| < δ implies

(2.63) ‖u(t)− u(t0)‖ < ε.
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Ω1

Ω3

u(t0)
ε

x1

r

Ω1

Ω3

Ω2

u(t0)
ε

Figure 2.12. Possible variation of the freeze cone on (t0 − δ, t0 + δ).

Assuming (2.63), we will derive an estimate on the variation of w in a δ-neighbour-
hood of t0. AsK is bounded, there exist constantsR1 andR2 such thatK ⊆ {(x, r) ∈
Rn × R+ | r < R1, ‖x‖ < R2}. If ω is absolutely bounded, set ω = max |ω(x, r)|.

Based on Equation (2.63), in (t0 − δ, t0 + δ), the boundary of the freeze cone
varies inside a ε-neighbourhood of ∂Bx,r, as sketched in Figure 2.12. We consider
the relays separately on the following three subdomains of K:

Ω1 := {(x, r) ∈ [0, R1]×Rn | ‖x− u(t0)‖ < r − ε},
Ω2 := {(x, r) ∈ [0, R1]×Rn | ‖x− u(t0)‖ > r + 2ε},
Ω3 := {(x, r) ∈ [0, R1]×Rn | r − ε ≤ ‖x− u(t0)‖ ≤ r + 2ε}.

Set

Qi(ε) :=

∥∥∥∥∫
Ωi

ω(x, r)(h(x,r)[u, ξ(x,r)](t)− h(x,r)[u, ξ(x,r)](t0)) dx dr

∥∥∥∥ .
In Ω1, for any t ∈ (t0 − δ, t0 + δ) the relays are inside Cu(t), so h(x,r)[u, ξ(x,r)](t)

is constant. Therefore

(2.64) Q1(ε) = 0.

In Ω3, the relays can take any state. Therefore, for all t ∈ (t0 − δ, t0 + δ),

Q3(ε) ≤ 2

∫
Ω3

‖ω(x, r)‖ dx dr,

which goes to 0 with ε → 0 because Ω3 has measure 0 in the limit. In view of
Lipschitz/Hölder continuity, for absolutely bounded ω we can bound this expression
by

Q3(ε) ≤ 2ω
π

n
2

(n+ 1)Γ(n
2

+ 1)

(
(R1 + 2ε)n+1 − (R1 − ε)n+1

)
.(2.65)

Here, we have estimated the volume of the domain by the volume difference of the
two cones of heights R1 +2ε and R1− ε, see Equations (1.1) and (1.2). We can now
bound (2.65) by assuming without loss of generality that ε < R1 and using

(2.66) an+1 − bn+1 = (a− b)(an + an−1b+ · · ·+ b) ≤ (n+ 1)(a− b)an
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for 0 ≤ b ≤ a, which gives

(2.67) Q3(ε) ≤ 6ω
π

n
2

Γ(n
2

+ 1)
(R1 + 2ε)nε.

In Ω2, continuity is a consequence of Lemma 2.5.2 proved later. To derive a
Lipschitz/Hölder constant, assume that ω is absolutely bounded. Note that the
relays remain outside the freeze cone at any t, so for all t ∈ (t0 − δ, t0 + δ)

Q2(ε) ≤ ω

∫
Ω2

∥∥∥∥ u(t)− x

‖u(t)− x‖
− u(t0)− x

‖u(t0)− x‖

∥∥∥∥ dx dr.

By Lemma 1.4.1, with min(‖u(t)−x‖, ‖u(t0)−x‖) ≥ ‖u(t0)−x‖−ε, we have that

(2.68) 0 ≤
∥∥∥∥ u(t)− x

‖u(t)− x‖
− u(t0)− x

‖u(t0)− x‖

∥∥∥∥ ≤ ε

‖u(t0)− x‖ − ε
≤ 1

in Ω2. Therefore,

Q2(ε) ≤ ω

∫ R1

0

∫
{x | ‖u(t0)−x‖>2ε,‖x‖<R2}

ε

‖u(t0)− x‖ − ε
dx dr.

If ‖u(t0)‖ ≤ R2, then

B0,R2 ⊆ Bu(t0),2R2 .

Changing coordinates along Theorem 1.2.9 such that y := x− u(t0), we obtain∫ R1

0

∫
{x | ‖u(t0)−x‖>2ε,‖x‖<R2}

ε

‖u(t0)− x‖ − ε
dx dr

=

∫ R1

0

∫
{y | 2ε≤‖y‖<2R2}

ε

‖y‖ − ε
dy dr.(2.69)

If, on the other hand, ‖u(t0)‖ > R2, then

B0,R2 ⊆ B R2
‖u(t0)‖u(t0),2R2

and, by Lemma 1.4.2,

ε

‖u(t0)− x‖ − ε
≤ ε∥∥∥ R2

‖u(t0)‖u(t0)− x
∥∥∥− ε

for all x such that ‖x‖ < R2. Thus, changing coordinates such that y := x −
R2

‖u(t0)‖u(t0), we again obtain (2.69).

To compute a bound for integral (2.69), we evaluate it by transformation into
hyperspherical coordinates, resulting in

ε

∫ R1

0

∫ 2R2

2ε

∫ 2π

0

∫ π

0

· · ·
∫ π

0

ρn−1

ρ− ε
sin θ1 sin2 θ2 · · · sinn−2 θn−2 dθn−2 · · · dθ1 dθ0 dρ dr

= 2πεR1

∫ 2R2

2ε

ρn−1

ρ− ε
dρ

n−2∏
i=1

∫ π

0

sini θ dθ.
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For the subintegral with respect to ρ, via (2.66), we get the following estimate:∫ 2R2

2ε

ρn−1

ρ− ε
dρ

=

∫ 2R2

2ε

(
ρn−1 − εn−1

ρ− ε
+
εn−1

ρ− ε

)
dρ

≤
∫ 2R2

2ε

(n− 1)ρn−2 dρ+ εn−1

∫ 2R2

2ε

1

ρ− ε
dρ

=((2R2)
n−1 − (2ε)n−1) + εn−1(log(2R2 − ε)− log ε).

Note that

lim
ε→0

ε log ε = 0.

Because ∫ π

0

sini θ dθ =
√
π

Γ(i/2 + 1/2)

Γ(i/2 + 1)
,

evaluating the rest of the full integral exactly, on Ω2 we get the upper bound

(2.70) 2ωR1
πn/2

Γ(n/2)

[
(2R2)

n−1 − (2ε)n−1 + εn−1 log(2R2 − ε)− εn−1 log ε
]
ε.

This finishes the argument for Ω2.
In summary, we have shown that

‖u(t)− u(t0)‖ < ε ⇒ ‖w(t)−w(t0)‖ < C(ε)ε,

where C(ε)ε is obtained from adding up the terms (2.67) and (2.70). C(ε) is non-
negative and bounded for ε ∈ [0, R2]. Say C(ε) ≤ C̃. Therefore, in particular,
from Lipschitz/Hölder continuity of u we can conclude local Lipschitz-continuity or

Hölder-continuity for w and |t− t0| < (R2/L)
1
λ :

‖u(t)− u(t0)‖ < L|t− t0|λ ⇒ ‖w(t)−w(t0)‖ < LC̃|t− t0|λ.

With the subsequent remark, we moreover obtain global Lipschitz-continuity. �

Remark. Local Lipschitz-continuity is equivalent to global Lipschitz-continuity.
Assume a function w is locally Lipschitz-continuous, i.e. |t2−t1| < ε implies ‖w(t2)−
w(t1)‖ < L|t2− t1| with Lipschitz-constant L independent of t. Then if |t2− t1| ≥ ε,
pick intermediate values t1 = t1 < t2 < · · · < tk = t2 such that |ti−1 − ti| < ε, so

‖w(t2)−w(t1)‖ ≤ ‖w(tk)−w(tk−1)‖+ · · ·+ ‖w(t2)−w(t1)‖
≤ L

(
|tk − tk−1|+ · · ·+ |t2 − t1|

)
= L|t2 − t1|.
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2.5.2. Output derivative. In Section 2.4 on the reduction of the vectorial opera-
tor to a scalar Preisach operator, we have already differentiated the operator output
w as a scalar function with respect to uniaxial input u. Now, to obtain further
insight into the infinitesimal properties, we will compute the right-hand derivative
∂t+w(t) of w in dependence of the right-hand derivative of u at a given t ∈ [0, T ]
in the general vector setting. The results will be applied to investigate the out-
put behaviour of P for piecewise linear inputs and in the subsequent discussion of
hysteresis potentials.

So far, we have assumed u to be a continuous function. There were no assump-
tions on the differential properties of u. Now, we assume that u is piecewise C2,
that is, there is a partition of [0, T ] such that u′(t) and u′′(t) exist and are con-
tinuous on each subinterval of the partition, and the right-hand derivative ∂t+u(t)
exists everywhere in [0, T ). Then ∂t+w(t) will depend on u in the interval [0, t] and
on ∂t+u(t).

Throughout this subsection, suppose that ω has bounded support K and is con-
tinuous. Like in Section 2.4, we split the integral defining the operator P into
integrals on the freeze cone and its outside to satisfy the conditions of the theorems
about differentiation under the integral sign in Section 1.2.1. Using the rotational
properties of P , Lemma 2.3.3, it will suffice to compute Gâteaux derivates with
respect to ∂t+u(t) = (1, 0, . . . , 0).

The first lemma deals with the derivative obtained from the subdomain outside
the freeze cone. Since the relay states on this domain depend only on the current
input u(t), we can express this component of P in terms of a function F (u(t)). To
parametrize the freeze cone at u(t) ∈ Rn, we generalize some of the definitions from
Section 2.4.4. For y = (y1, . . . , yn) ∈ Rn, the boundary of Cy can be parametrized
with respect to the x1-direction in terms of the functions (Fig. 2.13)

ϕ−(Π1x, r; y) :=

{
y1 − (r2 −

∑n
i=2(xi − yi)

2)
1
2 , if

∑n
i=2(xi − yi)

2 < r2,

y1 otherwise,

ϕ+(Π1x, r; y) :=

{
y1 + (r2 −

∑n
i=2(xi − yi)

2)
1
2 , if

∑n
i=2(xi − yi)

2 < r2,

y1 otherwise.

Then the two half-shells of the cone are given by

∂−Cy :=

{
(x1, . . . , xn, r) |

n∑
i=2

(xi − yi)
2 < r2, x1 = ϕ−(Π1x, r; y)

}
,

∂+Cy :=

{
(x1, . . . , xn, r) |

n∑
i=2

(xi − yi)
2 < r2, x1 = ϕ+(Π1x, r; y)

}
.

Define the function f out = (fout,1, . . . , fout,n) : Rn × Rn → Rn,

f out(x,y) :=
y − x

‖y − x‖
,
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y

y2 + r

y2 − r

x2

x1

ϕ+(x2, r; y)
ee

ϕ−(x2, r; y)
%%

∂+Cy
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Figure 2.13. Illustration of ϕ−, ϕ+, ∂−Cy and ∂+Cy for n = 2 and
y = (y1, y2).

representing the relay states outside the freeze cone Cy, with

∂y1fout,1 =
(y2 − x2)

2 + · · ·+ (yn − xn)
2

‖y − x‖3
,

∂y1fout,i =
(y1 − x1)(yi − xi)

‖y − x‖3
, i = 2, . . . , n.

Let the integral over the outside of Cy be given by F = (F1, . . . , Fn) : Rn → Rn,

(2.71) F (y) :=

∫
K\Cy

ω(x, r)f out(x,y) d(x, r).

The Gâteaux derivative of F in the direction z ∈ Rn is defined by

dzF (y) = lim
λ→0+

F (y + λz)− F (y)

λ
.

Lemma 2.5.2. F is continuous. The derivative dzF (y) is continuous in both y and
z, and

d(1,0,...,0)F (y) =

∫
K\Cy

ω(x, r)∂y1f out(x,y) d(x, r)

+

∫
Π1Cy

(
ω(x, r)f out(x,y) |x1=ϕ−(Π1x,r;y) −(2.72)

ω(x, r)f out(x,y) |x1=ϕ+(Π1x,r;y)

)
d(Π1x, r).

Proof. We will show that ∂y1Fi exists and is continuous. Then the Gâteaux de-
rivative with respect to z = (1, 0, . . . , 0) is equal to the partial derivative ∂y1F . We
have

Fi(y1, . . . , yn) =

∫
K\Cy

ω(x, r)fout,i(x,y) d(x, r)

with

fout,i(x,y) :=
yi − xi
‖y − x‖

.
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The existence and continuity of ∂y1F1 follows directly from the proof of Lemma
2.4.15 after a change of variables x̃ := (x1, . . . , xn)− (0, y2, . . . , yn).

For ∂y1Fi, i 6= 1, we apply the same line of argument as in the proof of Lemma
2.4.15. Assume ω ≥ 0 and fix a point y0 ∈ Rn. Chose R ∈ R+ such that K is fully
contained in the box [−R,R]n × [0, R]. We can parametrize Fi as

Fi(y) =

∫ R

0

∫ R

−R
· · ·
∫ R

−R

[∫ ϕ−(x2,...,xn,r,y)

−R
+

∫ R

ϕ+(x2,...,xn,r,y)

]
ω(x, r)fout,i(x, r,y) dx1 dx2 · · · dxn dr.

Splitting the integral up over the inner sum of integrals into Fi(y) = F−(y)+F+(y)
and defining a corresponding function sequence F−,m(y), the respective formulas for
F−, F+, F−,m and U− carry over from Lemma 2.4.15 with y replaced by y.

The function fout,i satisfies the assumptions of Theorem 1.2.6 on Um(y0)× {y |
‖y − y0‖ ≤ 1

4m
}, so F−,m(y) is continuous in y0. Fixing some a ∈ R, a > 0, by

the same argument, F−,m(y) is continuous for all y such that ‖y − y0‖ ≤ a, so Fm
converges uniformly. Thus Fi(y) and subsequently F (y) are continuous.

Treating y2, . . . , yn as fixed parameters, fout,i satisfies the assumptions of Corol-
lary 1.2.3 as a function of (x, r, y1) on U × ((y0)1 − 1

4m
, (y0)1 + 1

4m
) where (y0)1

denotes the first component of y0. Thus, ∂y1F−,m(y) exists at y0 and is given by

∂y1F−,m(y) :=

∫ R

1
m

∫ R

−R
· · ·
∫ R

−R

[ ∫ ϕ−(x2,...,xn,r,y)

−R
ω(x, r)∂y1fout,i(x,y) dx1

+ [ω(x, r)fout,i(x,y)] |x1=ϕ−(Π1x,r,y)

]
dx2 · · · dxn dr

evaluated at y = y0.
The existence of

D(y) := lim
m→∞

∂y1F−,m(y)

is clear for the second integrand, and the limit for the first integrand exists because
Lemma 1.2.17 implies that ∂y1fout,i(x, r,y) is integrable on bounded domains in
spite of its singularity. Further, as both integrands are continuous in Um(y0)× {y |
‖y − y0‖ ≤ 1

4m
}, the derivative ∂y1F−,m(y) is continuous by Corollary 1.2.3. As

above, this gives uniform convergence ∂y1F−,m(y) → D(y), so by Lemma 1.2.7 we
have

∂y1F−(y0) = D(y0).

We can conclude that ∂y1Fi(y) exists and is continuous for all y ∈ Rn.
By the symmetry of F (y) with respect to the components yi of y, continuity of

F and ∂yi
Fj(y) follow in general. �

Note that by the chain rule, we obtain the derivative with respect to t from the
derivative ∂yF (y) of (2.71) as

(2.73) ∂tF (u(t)) = ∂yF (y)|y=u(t) ∂tu(t).

For the integral over the inside of the freeze cone, the situation is more difficult,
because the relay states do not depend on u(t) only, but on the history of u in [0, t].
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Also, in Cu(t) the relay state h(x,r) does not need to be a continuous function in (x, r).
It is, in fact, easy to find input functions for which it is not continuous: Take for
example the increasing and decreasing uniaxial inputs investigated in Section 2.4.

Denote the operator representing the integral over the freeze cone by

(2.74) G[u](t) :=

∫
Cu(t)

ω(x, r)h(x,r)[u](t) d(x, r).

Given u, as first step we show in Lemmas 2.5.3 and 2.5.4 that if u is twice continu-
ously differentiable from the right in t0, then we can compute ∂t+G[u](t0) from the
right-hand linearization of u in t0. The derivative is computed in Lemma 2.5.5.

Lemma 2.5.3. Let a linear function v : [0, T ] → Rn,

v(t) = v0 + tvd, v0,vd ∈ Rn,

be given. Suppose there exists an interval [t0, t1] ⊆ [0, T ] such that the function
u : [0, T ] → Rn satisfies

(2.75) ‖u(t)− v(t)‖ < ε ∀t ∈ [t0, t1].

Then there exists a function K1(ε) = O(1) as ε→ 0 and a constant K2 ∈ R+ such
that for all t ∈ [t0, t1],

(2.76) ‖G[u](t)−G[v](t)‖ ≤ ‖G[u](t0)−G[v](t0)‖+K1(ε)ε+K2ε
1/2(t− t0).

Proof. Choose t ∈ [t0, t1]. Set ω = max |ω(x, r)| and

Ω := {(x, r) | ‖x− u(t)‖ < r + ε},
so Cv(t), Cu(t) ⊂ Ω. Partition Ω into three subdomains, Ω = Ω1 ∪ Ω2 ∪ Ω3, given by

Ω1 ={(x, r) | ‖x− v(t)‖ < r − ε, ‖x− v(0)‖ < r − ε},
Ω2 ={(x, r) | ‖x− v(t)‖ < r − ε, ‖x− v(0)‖ > r + ε},
Ω3 ={(x, r) | r − ε < ‖x− v(t)‖ < r + ε} ∪

{(x, r) | ‖x− v(t)‖ < r + ε, r − ε < ‖x− v(0)‖ < r + ε},
as shown in Fig. 2.14. As a first estimate, we immediately obtain

‖G[u](t)−G[v](t)‖

=

∥∥∥∥∥
∫
Cu(t)

ω(x, r)h(x,r)[u](t) d(x, r)−
∫
Cv(t)

ω(x, r)h(x,r)[v](t) d(x, r)

∥∥∥∥∥
≤

3∑
i=1

∥∥∥∥∫
Ωi

ω(x, r)
(
h(x,r)[u](t)− h(x,r)[v](t)

)
d(x, r)

∥∥∥∥ .(2.77)

We will compute bounds separately on these domains.
Obviously, since the relays in Ω1 remain fixed at all t ∈ [t0, t1], the error on Ω1

is bounded by the error at t0,∥∥∥∥∫
Ω1

h(x,r)[u](t)− h(x,r)[v](t)

∥∥∥∥ d(x, r) ≤ ‖G[u](t0)−G[v](t0)‖,
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Figure 2.14. Partition of D into the subdomains Ω1, Ω2, and Ω3

for n = 2 in a plane r = const (left) and x2 = const (right).

and gives the first term in (2.76).
For i = 2, 3, we make use of∥∥∥∥∫

Ωi

ω(x, r)
(
h(x,r)[u](t)− h(x,r)[v](t)

)
d(x, r)

∥∥∥∥
≤ω

∫
Ωi

∥∥(h(x,r)[u](t)− h(x,r)[v](t)
)∥∥ d(x, r)

and compute a bound on the second integral.
For Ω3, duplicating the derivation for Ω3 in the proof of Lemma 2.5.1 with the

correct radii, for the full and the half cone shell making up Ω3 we obtain the estimate∫
Ω3

∥∥(h(x,r)[u](t)− h(x,r)[v](t)
)∥∥ d(x, r) ≤ (4 + 2)

π
n
2

Γ(n
2

+ 1)
(R + 2ε)nε.

This is the origin of the second term in (2.76).
Denote the term representing Ω2 in (2.77) by Q. By the same line of argument

applied to show Lemmas 2.3.3 and 2.3.4, without loss of generality, we can assume
v0 = 0 and vd = (λ, 0, . . . , 0), λ ≥ 0. Any relay (x, r) ∈ Ω2 satisfies (x, r) /∈
Cv(t0), Cu(t0). Consequently, there exists a τ1 ∈ [t0, t1] such that v(τ1) is on the relay
boundary and remains inside the relay thereafter, i.e.

r = ‖v(τ1)− x‖ =
∥∥∥((τ1 − t0)λ, 0, . . . , 0)T − x

∥∥∥ ,
and

h(x,r)[v](t) =
1

r

[
((τ1 − t0)λ, 0, . . . , 0)T − x

]
=

1

r

(
−
√
r2 − ‖(x2, . . . , xn)‖2,−x2, . . . ,−xn

)T
.

Similarly, there exists a τ2 ∈ [0, t] such that

r = ‖u(τ2)− x‖
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and

h(x,r)[u](t) =
1

r
[u(τ2)− x]

=
1

r

(
−
√
r2 − (x2−u2(τ2))2 − · · · − (xn−un(τ2))2, u2(τ2)−x2, . . . , un(τ2)−xn

)T
.

Assumption (2.75) gives

‖(u2(τ2), . . . , un(τ2))‖ ≤ ‖u(τ2)− v(τ2)‖ < ε

and results in

(x2 − u2(t1))
2 + · · ·+ (xn − un(t1))

2 < (‖(x2, . . . , xn)‖+ ε)2.

Substituting in the relay states and applying the bounds, we obtain

Q ≤ω
∫

Ω2

∥∥(h(x,r)[v](t)− h(x,r)[u](t))
∥∥ d(x, r)

≤ω
∫

Ω2

1

r

[(√
r2−‖(x2, . . . , xn)‖2 −

√
r2−(‖(x2, . . . , xn)‖+ε)2

)2

+ ε2

] 1
2

d(x, r)

For any given r, the integrand is monotonically increasing in ‖(x2, . . . , xn)‖. On Ω2,
‖(x2, . . . , xn)‖ takes the maximum r − ε. The substitution results in

Q ≤
∫

Ω2

1

r
[2rε]

1
2 d(x, r)

Parametrizing the integration domain and subsequently evaluating and approximat-
ing the inner integral gives

Q ≤
∫ R

ε

∫ r−ε

−(r−ε)

1

r
[2rε]

1
2

∫ √(r−ε)2−x2
n

−
√

(r−ε)2−x2
n

· · ·
∫ √(r−ε)2−x2

n−···−x2
3

−
√

(r−ε)2−x2
n−···−x2

3∫ v1(t)+
√

(r−ε)2−x2
n−···−x2

3

max
“
v1(t)−

√
(r−ε)2−x2

n−···−x2
2,v1(t0)+

√
(r+ε)2−x2

n−···−x2
2

” dx1 dx2 · · · dxn−1 dxn dr

≤λ(t− t0)

∫ R

ε

1

r
[2rε]

1
2

∫ r−ε

−(r−ε)

∫ √(r−ε)2−x2
n

−
√

(r−ε)2−x2
n

· · ·
∫ √(r−ε)2−x2

n−···−x2
3

−
√

(r−ε)2−x2
n−···−x2

3

dx2 · · · dxn−1 dxn dr.

The inner integrals compute the volume of an (n − 1)-dimensional ball of radius

r − ε, which is bounded by V
(n−1)
B (r), resulting in the third term of (2.76). �

Define the right hand linearization of u at time t0 by

ũ(t) =

{
u(t) if t ∈ [0, t0],

u(t0) + (t− t0)∂t+u(t) |t=t0 if t > t0.
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Lemma 2.5.4. Suppose u is twice continuously differentiable on an interval [t0, t1],
t0 < t1. Then

∂t+G[u](t) |t=t0= ∂t+G[ũ](t) |t=t0 .

Proof. Since

∂t+G[u](t) |t=t0 = lim
t→t0+

G[u](t)−G[u](t0)

t− t0

= lim
t→t0+

[
G[u](t)−G[ũ](t)

t− t0
+
G[ũ](t)−G[u](t0)

t− t0

]
,

where the limit of the second term equals ∂t+G[ũ](t) |t=t0 , we will show that

lim
t→t0+

‖G[u](t)−G[ũ](t)‖
t− t0

= 0.

As u is C2[t0, t1], Taylor’s theorem gives

u(t) = u(t0) + ∂t+u(t) |t=t0 (t− t0) +R1(t), t ∈ [t0, t1],

with the remainder

R1(t) =

∫ t

t0

u′′(τ)(τ − t0) dτ.

Therefore, with M := max[t0,t1] ‖u′′(τ)‖, for any t ∈ [t0, t1] we have

‖u(τ)− ũ(τ)‖ = ‖R1(τ)‖ ≤M

∫ t

t0

(τ − t0) dτ =
M

2
(t− t0)

2 =: R̃1(t) ∀τ ∈ [t0, t].

As ‖G[u](t0)−G[ũ](t0)‖ = 0, applying Lemma 2.5.3 with ε = R̃1(t) results in

lim
t→t0+

‖G[u](t)−G[ũ](t)‖
t− t0

≤ lim
t→t0+

(
K1(ε)

R̃1(t)

t− t0
+K2

(
R̃1(t)

)1/2
)

= 0. �

The preceding lemma allows us to compute ∂t+G[u](t) |t=t0 from the right hand
linearization ũ of u in t0. This makes life easier because the relay states for ∂t+G[ũ]
are explicitly known. We will derive a formula for ∂t+G[u](t) |t=t0 under the assump-
tion that ∂t+u(t) |t=t0= (λ, 0, . . . , 0)T . For the general setting, we can then use an
argument similar to Lemma 2.3.3 on the rotation of P .

Lemma 2.5.5. Assume ∂t+u(t) |t=t0= (λ, 0, . . . , 0)T , λ ∈ R, λ ≥ 0. Then

∂t+G[u](t) |t=t0= λ

∫
Π1Cu(t0)

ω(x, r)
u(t0)− x

‖u(t0)− x‖
|x1=ϕ+(Π1x,r;u(t0)) d(Π1x, r)

−λ lim
t→t0+

∫
Π1(Cu(t0)∩Cũ(t))

ω(x, r)h(x,r)[u](t0) |x1=ϕ−(Π1x,r;ũ(t)] d(Π1x, r)

if these integrals exist and if the second integral is a continuous function of t in some
right-hand neighbourhood of t0 for which the limit at t0 exists.



78 2. VECTOR PREISACH HYSTERESIS MODELING

Proof. We proceed in two steps: (a) We make use of the fact that for t ≥ t0,
the cone Cũ(t) forms a convex set moving along a line, so any relay takes exactly
one unambiguous state while inside Cũ(t). Therefore, we can replace h(x,r)[ũ] by a

function h̃(x, r) defined on the relevant domain
⋃
t≥t0

Cũ(t),

h̃(x, r) =


h(x,r)[ũ](t0) if (x, r) ∈ Cũ(t0)

1
r

(
−
√
r2 − (x2 − ũ2(t0))2 − · · · − (xn − ũn(t0))2,

x2 − ũ2(t0), . . . , xn − ũn(t0)
)T

otherwise.

Then we can apply the theorems on differentiation under the integral sign from
Section 1.2.1 and obtain the first term of ∂t+G[u](t) |t=t0 and an intermediate for-

mulation of the second term. (b) We go from h̃(x, r) to h(x,r)[ũ](t0) by showing the
error is 0 in the limit to obtain the second term of ∂t+G[u](t) |t=t0 .

Step (a): Note that h̃(x, r) is continuous in
(⋃

t≥t0 Cũ(t)

)
\Cũ(t0), and that by the

choice of ∂t+u(t) |t=t0 , the function ũ satisfies ũ(t) = (ũ1(t), ũ2(t0), . . . , ũn(t0)). For
the derivative we get

∂t+G[u](t) |t=t0= lim
t→t0+

G[ũ](t)−G[ũ](t0)

t− t0

= lim
t→t0+

1

t− t0

∫
Π1Cu(t0)

[∫ ϕ+(x2,...,xn,r;ũ(t))

ϕ+(x2,...,xn,r;ũ(t0))

−
∫ ϕ−(x2,...,xn,r;ũ(t))

ϕ−(x2,...,xn,r;ũ(t0))

]
(2.78)

ω(x, r)h̃(x, r) dx1 d(Π1x, r).

To the first integral, by Theorem 1.2.9, on the open set R×Π1Cu(t0) we can apply
the change of variables

x1 = ϕ+(x2, . . . , xn, r; y, ũ2(t0), . . . , ũn(t0))

with Jacobian determinant 1. This gives

lim
t→t0+

1

t− t0

∫
Π1Cu(t0)

∫ ϕ+(x2,...,xn,r;ũ(t))

ϕ+(x2,...,xn,r;ũ(t0))

ω(x, r)h̃(x, r) dx1 d(Π1x, r)

= lim
t→t0+

1

t− t0

∫
Π1Cu(t0)

∫ ũ1(t)

ũ1(t0)

ω(x, r)h̃(x, r) |x1=ϕ+(x2,...,xn,r;y,ũ2(t0),...,ũn(t0)) dy d(Π1x, r)

= lim
t→t0+

1

t− t0

∫ ũ1(t)

ũ1(t0)

g̃(y) dy

with

g̃(y) :=

∫
Π1Cu(t0)

ω(x, r)h̃(x, r) |x1=ϕ+(x2,...,xn,r;y,ũ2(t0),...,ũn(t0)) d(Π1x, r).

The function g̃ is continuous for y ≥ ũ1(t0) by Theorem 1.2.6 because all the

functions involved are continuous. In particular, h̃ is continuous on the hyper-
surface x1 = ϕ+(x2, . . . , xn, r; y, ũ2(t0), . . . , ũn(t0)), since the points lie completely in
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t≥t0 Cũ(t)

)
\ Cũ(t0). Therefore, by the mean value theorem,

lim
t→t0+

1

t− t0

∫ ũ1(t)

ũ1(t0)

g̃(y) dy = g̃(ũ1(t0))ũ
′
1(t0),

which accounts for the first term in ∂t+G[u](t) |t=t0 .
For the second term in (2.78), follow the same line of argument with coordinate

transformation

x1 = ϕ−(x2, . . . , xn, r; y, ũ2(t0), . . . , ũn(t0)),

obtaining

lim
t→t0+

1

t− t0

∫
Π1Cu(t0)

∫ ϕ+(x2,...,xn,r;ũ(t))

ϕ+(x2,...,xn,r;ũ(t0))

ω(x, r)h̃(x, r) dx1 d(Π1x, r)

= lim
t→t0+

1

t− t0

∫ ũ1(t)

ũ1(t0)

∫
Π1Cu(t0)

ω(x, r)h̃(x, r) |x1=ϕ−(x2,...,xn,r;y,ũ2(t0),...,ũn(t0))(2.79)

d(Π1x, r) dy

Because the freeze cone is open, now the function represented by the inner integral
will in general not be continuous at ũ(t0), preventing us from finishing the argument
like for the first term. However, for

lim
t→t0+

1

t− t0

∫ ũ1(t)

ũ1(t0)

∫
Π1(Cu(t0)∩Cũ(t))

ω(x, r)h(x,r)[u](t0) |x1=ϕ−(Π1x,r;ũ(t)](2.80)

d(Π1x, r) dy

the function in y defined by the inner integral can be continuously extended from
y > ũ1(t0) to ũ1(t0) by the assumptions and thus the mean value theorem can be
applied in the same way as above, giving the second term of ∂t+G[u](t) |t=t0 .

Step (b): To complete the proof, we will show that (2.80) is equal to (2.79). For
this, note that for t > t0∫

Π1Cu(t0)

ω(x, r)h̃(x, r) |x1=ϕ−(Π1x,r;ũ(t)] d(Π1x, r)

=

∫
Π1(Cu(t0)∩Cũ(t))

ω(x, r)h(x,r)[u](t0) |x1=ϕ−(Π1x,r;ũ(t)] d(Π1x, r)

+

∫
Π1Cu(t0)\Π1(Cu(t0)∩Cũ(t))

ω(x, r)h̃(x, r) |x1=ϕ−(Π1x,r;ũ(t)] d(Π1x, r)

by the definition of h̃(x, r). The integral∫
Π1Cu(t0)\Π1(Cu(t0)∩Cũ(t))

ω(x, r)h̃(x, r) |x1=ϕ−(Π1x,r;ũ(t)] d(Π1x, r)

is a continuous function in t. Its limit as t→ t0 is 0 by the dominated convergence
theorem, because ‖ωh̃‖ is bounded and limt→t0+ Π1Cu(t0) \ Π1

(
Cu(t0) ∩ Cũ(t)

)
= ∅.
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Therefore,

lim
t→t0+

1

t− t0

∫ ũ1(t)

ũ1(t0)

∫
Π1Cu(t0)\Π1(Cu(t0)∩Cũ(t))

ω(x, r)h̃(x, r) |x1=ϕ−(Π1x,r;ũ(t)] d(Π1x, r)

= 0

by the mean value theorem, and equality follows. �

From the derivatives of F and G, we can now conclude the right-hand derivative
of w = P [u], which results from the relay variation outside the freeze cone and the
accumulated switches of relays leaving the freeze cone. In view of the theorem, for
a function f : Rn × R+ → Rn we define the jump bfcx1=a : Rn−1 × R+ → Rn at
x1 = a by

bfcx1=a = lim
x1→a−

f(x, r)− lim
x1→a+

f(x, r).

Theorem 2.5.6. Assume u is twice continuously differentiable on some interval
[t0, t1], t0 < t1.

(a) Let ∂t+u(t) |t=t0= (λ, 0, . . . , 0), λ ≥ 0. Then

∂t+w(t) |t=t0=λ

[∫
K\Cu(t0)

ω(x, r)∂y1

(
y − x

‖y − x‖

)∣∣∣∣
y=u(t0)

d(x, r)

+

∫
Π1Cu(t0)

ω(x, r)
⌊
h(x,r)[u](t0)

⌋
x1=ϕ−(Π1x,r;u(t0))

d(Π1x, r)

]
if the second term satisfies the assumption in Lemma 2.5.5.

(b) The Gâteaux derivative with respect to arbitrary ∂t+u(t) can be computed
from the rotational formula

∂t+w(t) |t=t0= Q−1∂t+PQω[Qu, Qξ](t) |t=t0 ,
where Q ∈ O(n) is chosen such that Q∂t+u(t) |t=t0= (λ, 0, . . . , 0)T .

Proof. (a) With ∂t+w(t) |t=t0= ∂t+F (u(t)) |t=t0 +∂t+G[u](t) |t=t0 , the formula
accumulates Lemma 2.5.2, Equation (2.73) and Lemma 2.5.5 together with an ar-
gument similar to that applied in Part (b) of the proof of Lemma 2.5.5 to show that
the second integral term on Π1Cu(t) cancels out.

(b) Applying Lemma 2.3.3 gives

∂t+Pω[u](t) |t=t0 = lim
t→t0+

Pω[u, ξ](t)−Pω[u, ξ](t0)

t− t0

= Q−1 lim
t→t0+

PQω[Qu, Qξ](t)−PQω[Qu, Qξ](t0)

t− t0

and thus the result. �

Remark (Derivative and rate-independence). The notion of rate-independence is
represented in ∂t+w via the factor λ. For two input functions u1 and u2 to be
equivalent up to an admissible time transformation means that they are two different
parametrizations of the same input curve. Then their right-hand derivatives ∂t+u1
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Figure 2.15. Memory state at u(t3) = (−4, 0) in the plane r =
15 for initial state ξ0 and piecewice linear input interpolating (0, 0),
(0, 7.5), (−7.5, 7.5), (−4, 0).

and ∂t+u2 at corresponding curve points are two vectors equal up to a scalar factor,
which reappears in the corresponding λ’s in ∂t+w1 and ∂t+w2.

As an application of Theorem 2.5.6, we investigate the output behaviour for a
piecewise linear input function and n = 2. This is a situation of practical interest
because in real life applications, the input to a vectorial hysteresis operator usu-
ally consists of a sequence of discrete vectors, which are naturally extended to a
continuous input function by linear interpolation.

Example 2.5.7. As an example, assume u on [0, t3], 0 ≤ t3 < T , is the piecewice
linear function interpolating u(t0) = (0, 0), u(t1) = (0, 7.5), u(t2) = (−7.5, 7.5) and
u(t3) = (−4, 0). Figure 2.15 shows the resulting memory state of P [u](t3) in the
plane r = 15, with each vector representing the state of the relay at its base point.
As result of a linear step from one point to the next, u(ti) to u(ti+1), the relay states
h(x,r) form a continuous function of (x, r) in Cu(ti+1) \ Cu(ti) at ti+1. Discontinuities
of h(x,r) can only occur on the boundaries of previous freezecones, ∂Cu(tj), j ≤ i, as
far as they have not been erased from the memory. In Figure 2.15, these remaining
boundaries are drawn at t3.
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Now suppose the input on [t3, T ] is the line segment drawn dashed, so ∂t+u(t) =
(1, 0, . . . , 0). Theorem 2.5.6(a) states that the derivative ∂t+w(t) results from the
variations of the relays outside Cu(t), which form a continuous component of ∂t+w(t),
and the integral of the jump across ∂−Cu(t). Geometrically, we see that this second
component will vary continuously, unless a discontinuity occurs in ∂t+u(t) and thus
in the set ∂−Cu(t), like at t3, or ∂−Cu(t) coincides with ∂Cu(tj), j ≤ 4, in a set
S ⊂ R2 × R+ whose projection Π1S has non-zero measure in R2. This happens
at most if u(t) = u(tj), that is, in our particular example, if u(t) = (0, 0). Using
further Theorem 2.5.6(b), we conclude that in our example, ∂t+w(t) is continuous
everywhere but in ti, i = 1, 2, 3, where ∂−Cu(t) is discontinuous, and in t > t3 such
that u(t) = (0, 0).

Using the same ideas as in the preceeding example, one can deduce the following
result:

Proposition 2.5.8. Assume ω is continuous and of bounded support. For piecewise
linear input u, the output derivative ∂t+w is discontinuous at most in the disconti-
nuities t1, . . . , tk of ∂t+u(t) and in t such that u(t) = u(ti) for some ti < t.

2.5.3. Energy dissipation. A much discussed issue in magnetic modeling is that
of hysteresis losses. In order to obey the laws of thermodynamics, the hysteretic
process must be dissipative. In Section 2.3.6, we have already discussed magnetic
dissipation for closed cycles. To extend this notion to general inputs, we need to
know the internal energy density, or hysteresis potential, associated with a hysteretic
constitutive law. In [16, Chapter 2.5], this question is explored for scalar hysteresis,
and hysteresis potentials are suggested for a number of scalar hysteresis operators.
Here, we want to address the topic in our vectorial setting and propose a hysteresis
potential for P .

As stated in [16], it is natural to expect the hysteresis potential to be a hys-
teresis operator itself, because it should be rate-independent like W and obviously
satisfy the Volterra property. That leads to the natural vector valued extension of
Definition 2.5.1 for hysteresis potentials in [16].∗

Definition 2.5.9 (Hysteresis potentials). Let W and U be respectively a vectorial
and a scalar hysteresis operator. We call U a hysteresis potential for W , if and only
if for all u in the appropriate input set for W it holds that

(2.81) ∂t

(∫ t

0

u · dW [u]

)
− ∂tU [u](t) ≥ 0 a.e. in (0, T ).

Remark (Application to magnetic hysteresis losses). The above discussion reflects
the situation in magnetism in the following way: The constitutive law

M = W [H ]

gives

(2.82) B = µ0H + W [H ].

∗As we are concerned with magnetic hysteresis, we will restrict ourselves to what is called a
counterclockwise hysteresis potential in [16].
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As mentioned earlier, see Equation (2.37), the magnetic energy injected into a mag-
netization process in the interval [0, t] is given by∫ t

0

H · dB.

With (2.82), the integral can be partially evaluated to give∫ t

0

H · dB =
µ0

2
(‖H(t)‖2 − ‖H(0)‖2) +

∫ t

0

H · dW [H ].

Treating both terms of this sum separately, the first terms contributes immediately
to the internal energy. This is in accordance with the general practice of computing
the internal energy of a linear magnetization process H = µB, µ = const, by (see
e.g. [34]) ∫ t

0

H · dB =
µ

2
(‖H(t)‖2 − ‖H(0)‖2).

This leaves the hysteresis potential for W contributed by the second term to be
determined.

Proposition 2.5.10. Consider W = P with ω ≥ 0 of bounded support K. Assume
u is piecewise twice continuously differentiable, and that w′(t) exists and ∂t+w(t)
can be computed via Theorem 2.5.6 a.e. in [0, T ]. Then

U [u](t) =

∫ ∞

0

∫
Rn

ω(x, r) x · h(x,r)[u](t) dx dr

satisfies (2.81).

Proof. Where w′ exists, it is equal to ∂t+w given by Theorem 2.5.6. Due to the
rotational symmetries of P and accordingly U , which we have worked out in detail
earlier, we can suppose without loss of generality that u′ = (λ, 0, . . . , 0), λ ≥ 0.
Then ∂tU [u](t) can be derived in complete analogy to ∂t+w by noting that

U [u](t) =
n∑
i=1

∫ ∞

0

∫
Rn

xi ω(x, r)
(
h(x,r)[u](t)

)
i
dx dr

with
(
h(x,r)[u](t)

)
i

the ith component of h(x,r)[u](t), and carrying the derivatives
over componentwise from the previous section. We obtain

∂tU [u](t) =λ

[∫
K\Cu(t)

ω(x, r) x · ∂y1
(

y − x

‖y − x‖

)∣∣∣∣
y=u(t)

d(x, r)

+

∫
Π1Cu(t)

ω(x, r) x ·
⌊
h(x,r)[u](t)

⌋
x1=ϕ−(Π1x,r;u(t))

d(Π1x, r)

]
.

The existence of w′ by Theorem 1.2.16 gives

∂t

(∫ t

0

u · dW [u]

)
= u(t) ·w′(t).
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Therewith, the left hand side of (2.81) is equal to

u(t)·w′(t)− ∂tU [u](t)

=λ

[∫
K\Cu(t)

ω(x, r) (u(t)− x) · ∂y1
[

y − x

‖y − x‖

]∣∣∣∣
y=u(t)

d(x, r)

+

∫
Π1Cu(t)

ω(x, r) (u(t)− x) ·
⌊
h(x,r)[u](t)

⌋
x1=ϕ−(Π1x,r;u(t))

d(Π1x, r)

]
.

To see that this is nonnegative, the integrand of the first integral can be explicitly
evaluated to be equal to 0 by computing the derivative. The second integrand is
nonnegative because for any (x, r),

(u(t)− x) ·
⌊
h(x,r)[u](t)

⌋
x1=ϕ−(Π1x,r;u(t))

= (u(t)− x) ·
(

u(t)− x

‖u(t)− x‖
− e

)
≥ 0

for some unit vector e. �

Proposition 2.5.10 thus presents us with a possible hysteresis potential for P . In
fact, for the scalar Preisach operator arising from P for n = 1, this U corresponds
to the one suggested in [16, Proposition 2.5.4].



CHAPTER 3

Electromagnetic field simulation with hysteresis

In this Chapter, we present electromagnetic field simulations with hysteresis.
The vector Preisach operator P was computer implemented and coupled with an
existing simulation software to numerically solve two-dimensional electromagnetic
field problems.

The implementation of P is done by discretization of its memory. As the electro-
magnetic simulation algorithm is based on the common vector potential formulation
and therefore requires an inversion of the hysteresis relationship B[H ], an ad hoc
method was developed to address these issues and provide an inverse solution.

In the first section of this chapter, we give a short introduction to Maxwell’s
equations and set up the relevant problem with hysteresis. The second section ad-
dresses the numerical algorithm used in the simulations. Then, we present numerical
solutions for three electromagnetic field problems. The first is that of a hysteretic
ring core and aims at analytical verification of the numerical results. The second
problem considers a simple magnetic sensor and reproduces in simulations a hystere-
sis effect observed in measurements. The third model investigates hysteresis effects
in a magnetic valve.

3.1. Maxwell’s equations and hysteresis

The fundamental laws governing electromagnetism are Maxwell’s equations [40,
48]. They describe the physical relationship between the magnetic and the electric
field quantities, namely magnetic induction B [Vs/m2], magnetic field H [A/m],
electric induction D [V/m] and electric field E [As/m2]. In differential form,
Maxwell’s equations are given by

curl H = g + ∂tD,(3.1)

curl E = −∂tB,(3.2)

div B = 0,(3.3)

div D = ρ.(3.4)

Here, g [A/m2] is the free current density and ρ [As/m2] the electric charge density.
The quantities B, H , E, D and g are vector valued functions and ρ is a scalar
valued function in space x ∈ R3 and time t ∈ [0, T ]. The symbols s, m, A, and V
denote the usual SI units.

To fully describe the involved quantities (H ,B,D,E, g, ρ), the above system
must be completed by additional equations representing the presence of matter and
matter-field interaction [40]. They depend on the specific material properties. We

85
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assume these constitutive laws to be of the general form [46, 48]

D = ε0E + P ,(3.5)

B = µ0H + M ,(3.6)

g = gs + σE.(3.7)

Magnetic permeability of free space µ0 = 4π · 10−7N/A2, permittivity of free space
ε0 = 1/(µ0c

2)[As/(Vm)] and speed of light c are universal constants. M [Vs/m2]
is the magnetization with which a material reacts to a magnetic field H that it
is subjected to. Accordingly, P is the polarization resulting from the electric field
E in the material. In Ohm’s law (3.7), gs is the impressed current density and σ
[A/(Vm)] the material specific conductivity.

Remark. Note that Ohm’s law (3.7) only holds true for stationary geometry. If
moving bodies are involved, (3.7) must be replaced by [40]

g = gs + σ(E + v ×B).

The second term accounts for the currents induced by the Lorentz force result-
ing from the velocity v of a moving body. Quasi-stationary electromagnetic field
problems with motion are discussed in detail in [46]. There, it is derived that for
BEM-FEM coupling, which forms the numerical basis of our later simulations, v
does not appear in the final formulation of the system but through moving domain
boundaries. Therefore, we do not consider the additional term.

In fact, system (3.1)-(3.4) implicitly assumes the regularity of the fields at any
point in space by differentiating them everywhere. This does not need to hold
true at material interfaces, where the fields do not even need to be continuous.
Maxwell’s equations can be used to deduce transmission conditions arising at these
interfaces [40, 48]. Assume two different media occupying domains Ω1 and Ω2 share
a common surface Σ. Denote by n the normal field on Σ directed from Ω1 to Ω2,
and by bucΣ the jump of a vector field u across Σ:

bu(x)cΣ = lim
h→0+

u(x + hn(x))− lim
h→0−

u(x + hn(x)).

Let ρΣ and gΣ respectively be the charge and current densities concentrated on Σ.
Then the transmission conditions at the interface Σ are given by

n× bHcΣ = gΣ,(3.8)

n× bEcΣ = 0,(3.9)

n · bBcΣ = 0,(3.10)

n · bDcΣ = ρΣ.(3.11)

We will only consider applications where gΣ is negligible, and thus set

gΣ = 0.

The full system of Maxwell equations (3.1)-(3.4) together with the material equa-
tions (3.5)-(3.7) and initial conditions at t = 0 describes general time-dependent
electromagnetic fields. The electromagnetic field problems considered in practice
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often do not require the solution of Maxwell’s equations in full generality. The
applications in the context of this dissertation originate from low-frequency electro-
magnetic components like magnetic valves and sensors. Here the spatial distances
involved are small relative to the speed at which field changes propagate in space. It
suffices to consider the quasi-stationary approximation or eddy current formulation
of Maxwell’s equations [7], formally introduced by ε0 = 0, P = 0, and therefore
D = 0, ρ = 0 [46]. Maxwell’s equations (3.1)-(3.4) reduce to

curl H = g,(3.12)

curl E = −∂tB,(3.13)

div B = 0,(3.14)

together with the material equations (3.6) and (3.7).
If, moreover, the impressed currents vary very slowly, both time derivatives can

be neglected, ∂tD = ∂tB = 0. Assuming further that g = gs, we obtain the
magnetostatic formulation of Maxwell’s equations [48]

curl H = gs,(3.15)

div B = 0,(3.16)

together with

B = µ0H + M .(3.17)

To complete the Maxwell system, we are still missing an equation relating the
magnetization M to the other field quantities. Anhysteretic formulations assume
either a linear dependence of M and thus B on H ,

(3.18) B = (µ0 + µ)H

with a constant µ ≥ 0, or a nonlinear relationship of the form

(3.19) B = (µ0 + µ(‖H‖))H
with a bounded continuous function µ : R+ → R+ such that µ(‖H‖)‖H‖ is mono-
tonically increasing in ‖H‖.

We model the dependence of M on H in hysteretic model components by the
constitutive relation M = P [H ], that is,

(3.20) B = µ0H + P [H ],

with a Preisach distribution ω ≥ 0 of bounded support. Together with Maxwell’s
equations, the result is a partial differential equation of vector-valued functions with
hysteresis.

In view of the electromagnetic field simulations, the question of the existence
and uniqueness of solutions immediately springs up. As hysteresis plays a role in
many applications, partial differential equations with hysteresis form an active field
of mathematical interest. In recent decades, much research has been done in the
context of scalar-valued functions and hysteresis and many results have been estab-
lished, see e.g. [16, 44, 67]. For the scalar-valued Maxwell’s equations, an overview
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of known existence and uniqueness results can be found in [68]. In summary, ex-
istence has been widely proven, whereas uniqueness remains an open problem in
many cases.

The vectorial Maxwell’s equations with hysteresis remain a mostly unresolved
issue. The only known result is by Visintin [69], who has shown existence of the
solution for hysteresis represented by a vectorial formulation of the scalar relay oper-
ator h(x,r) by the same projection method applied in the construction of Mayergoyz’
vector Preisach operator (Example 2.1.9). His method of proof is approximation
by time-discretization, derivation of energy-type estimates and passage to the limit.
Uniqueness remains open, as well as the extension from scalar relay to scalar Preisach
operator or other hysteresis operators.

For the hysteresis operator P investigated in this dissertation, existence and
uniqueness of solutions is also an open question. It would be interesting to see if
Visintin’s method of proof can be carried over in any way. The transition of the proof
from his vector formulation of the scalar relay to the vector relay operator h(x,r) is
not immediate, because Visintin reformulates the relay variationally in terms of two
conditions that he calls confinement and dissipation condition. Due to the only
partially dissipative nature of h(x,r) described in Lemma 2.2.8, we have only been
able to carry over the confinement condition, see Lemma B.0.2.

However, given that P is monotone in that setup, one can at least state the ex-
istence of a solution in each time step of the time discretized magnetostatic problem
on an appropriate spatial domain Ω. To stay within the scope of this thesis, we will
limit discussion to a brief outline of the argument. Time discretization t0, . . . , tL of
the initial value problem associated with the system (3.15)-(3.17) removes hystere-
sis from the single time steps. This is because at each ti, after defining the form
of the step from H(ti−1) to H(ti) to be e.g. linear (cf. the introductory remark on
discontinuities and vectorial hysteresis in Section 2.1), P corresponds to a function
P i : Rn → Rn. Define ai : Ω × Rn → Rn to be the function representing the
respective constitutive law in each point of Ω, that is (3.18), (3.19) or (3.20) with
P replaced by P i. Then if P i is monotonic, as defined in Section 1.1, ai satisfies
the following conditions in each z ∈ Ω:

• pointwise continuity: ai(z,H) is continuous with respect to H because P i is
continuous as a consequence of Lemma 2.5.3.

• growth condition: There exist constants c0, c1 such that

‖ai(z,H)‖ ≤ c0 + c1‖H‖ for all H ∈ Rn.

For (3.18) and (3.19), this is clear. For P i, it follows from the observations on
the saturation of P in Section 2.3.4.

• coercivity:

lim
‖H‖→∞

ai(z,H) ·H
‖H‖

= ∞.

In each of the constitutive laws, this is guaranteed by the term µ0H .
• monotonicity:

(ai(z,H1)− ai(z,H2)) · (H1 −H2) ≥ 0 for all H1,H2 ∈ Rn.
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This is quickly shown for (3.18) and (3.19), and follows from the monotonicity of
P i for hysteresis.

Based on these properties, the existence of a solution of the magnetostatic prob-
lem in each time step can now be shown using standard methods of convex analysis
and, in particular, applying Browder’s Theorem [13, 37].

It remains to be shown that P i is monotone, or alternatively give monotonicity
conditions for P i. The challenge here will be to characterize the attainable memory
states of P , in order to make the investigation of monotonicity tangible. In any case,
the reversible part of the memory, that is the relays outside CH(t), form a strictly
monotone component. It dominates the behaviour of P i with increasing distance
from H(ti−1). Also, our computational tests have indicated that P i is monotone, or
at least very close to monotone, for the Preisach distributions used in the simulations
presented later in this chapter.

Despite the open questions in the solution theory, it is nonetheless fruitful and
desirable to investigate the electromagnetic field problems with hysteresis algorith-
mically. The results can be useful in solving industrial problems, and may provide
some mathematical insight in the underlying theory. In some cases, it is possi-
ble to compute analytic solutions and validate the numerical results on these (e.g.
[65, 30, 45]). Otherwise, one can compare the numerical solution to experimental
measurements to see that reasonable results are obtained in the simulations and
justify the approach.

3.2. Simulation

The vector Preisach operator P was used to model isotropic magnetic hys-
teresis via the constitutive relation (3.20) in the framework of 2D electromag-
netic field simulations. To this end, a discretized approximation of P was com-
puter implemented and coupled with an existing electromagnetic simulation soft-
ware [28, 46, 47, 61]. The software combines finite elements method (FEM) and
boundary elements method (BEM) to solve quasistationary electromagnetic field
problems on the entire R2 or R3.∗ The unbounded domain is made possible because
the BEM requires only a discretization of the domain boundary. The subdomains
containing non-air materials are FEM discretized, and the remaining air space is
discretized by the appropriate lower-dimensional BEM elements on the boundary
of the FEM domains. Both methods are coupled on the common boundary via the
respective transmission conditions.

The FEM-BEM method operates on a B based scheme, as it uses the magnetic
vector potential formulation [6] to obtain a weak formulation of the partial differ-
ential equation. The simulation process consists of a sequence of discrete time steps
t0, . . . , tL. The vector Preisach operator is used to compute M in terms of B when
setting up the right-hand side of the linear FEM equation system in each time step.

∗The nodal Galerkin approach applied as finite elements method in the program has been demon-
strated to be mathematically incorrect as in R3 it only discretizes a subspace of the solution space.
The correct approach is that via edge elements (e.g. [8]). However, in R2 the solution is correctly
discretized but on boundaries and the nodal method is appropriate [19].
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Since the evaluation of M takes place in the Gauss points of the finite element
mesh, we equip each Gauss point with its own vector Preisach operator. In each
time step, the nonlinear system is solved applying M [B]-iteration [28, 47], a fixed
point method. At t0, we initialize the vector Preisach operator P in the neutral
initial state ξ0.

As discussed earlier, for P it matters which path its input function u takes
between two discrete inputs u(ti−1) and u(ti). In the simulations, we assume the
input step from u(ti−1) to u(ti) to be linear. Define the prolongation operator πA
to map a string of vectors to the piecewise linear function

u = πA(u0, . . . ,uL) ∈ C([0, T ]; R2)

interpolating the points u
(
i
N
T
)

= ui. With the above assumption, in each time
step ti−1 to ti, the operator P reduces to a function P i : R2 → R2,

P i(ũ) = P [πA(u(t1), . . . ,u(ti−1), ũ)](ti),

mapping the new input vector ũ to the corresponding output vector P i(ũ). The
function P i is continuous in ũ as a consequence of Lemma 2.5.3. For later reference,
set

w(ti) := P i(u(ti))

for the solution of the ith time step.
To computer implement P for n = 2, the continuous Preisach memory is dis-

cretized by a finite number of relays h(xi,j ,rk) in the points (xi,j, rk) = (xi1, x
j
2, r

k) ∈
R2 × (R+ ∪ {0}). A regular discretization grid{

(xi1, x
j
2, r

k) | xi1 = i
R

N
, xj2 = j

R

N
, rk = k

R

N
, i, j = −N, . . . , N, k = 0, . . . , N

}
is used. Here, N is the grid parameter, and R is chosen such that ω(x, r) = 0 for
all (x, r) such that ‖x‖ + r > R. The Preisach distribution ω(x, r) is replaced by
weights ωijk,

ωijk =

∫ (i+ 1
2)

R
N

(i− 1
2)

R
N

∫ (j+ 1
2)

R
N

(j− 1
2)

R
N

∫ (k+ 1
2)

R
N

max{0,(k− 1
2)

R
N }

ω((x1, x2), r) dx1 dx2 dr,

in the grid nodes.
We can now approximate P by the discretized vector Preisach operator Pd:

(3.21) P [u](t) ≈ Pd[u](t) :=
N∑

i=−N

N∑
j=−N

N∑
k=0

ωijkh(xi,j ,rk)[u](t).

The definition of the corresponding function P d
i in analogy to P i is clear.

In terms of our input and output variables, the material equation (3.17) in each
time step turns into

w̃ = µ0ũ + P i(ũ), ũ, w̃ ∈ R2.

Due to the method applied in the electromagnetic simulation software, we need
to invert this equation to obtain P i[ũ], i.e. M(ti), in dependence of a given w̃,
i.e. B(ti). The function P d

i is not suitable for inversion because, unlike P i, it is
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discontinuous: Each time t when one of the relays h(xi,j ,rk) leaves the freeze cone
Cu(t), it produces a jump of

ωijk

(
h(xi,j ,rk)[u](t)− lim

δ→0+
h(xi,j ,rk)[u](t− δ)

)
in Pd[u], resulting in a discontinuity in P d

i . We address this issue in a straight-
forward, rather crude, manner by replacing P d

i by a continuous piecewise linear
approximation P dl

i . For this, we evaluate P d
i exactly in the grid nodes,

P dl
i (xi,j) = P d

i (x
i,j).

Between the grid nodes xi,j, the funcion P dl
i is the piecewise linear interpolation of

the grid nodes. Figure 3.1 shows the form of the interpolation grid. A fundamental
property of rate-independent hysteresis is that the output function is constant in
a time interval whenever the input function is. In the time-discretized setting this
means that P dl

i must fix the solution from the previous time step,

P dl
i (u(ti−1)) = w(ti−1).

To guarantee this condition, the interpolation for P dl
i contains additionally the point

(u(ti−1),w(ti−1)). Note that here lies a weakness of this approach: For lack of
an interpolation method that depends continuously on u(ti−1), if this point is too
close to a grid edge, the interpolation grid discontinuously switches to a different
interpolation pattern, shown on the right-hand side of Figure 3.1. Another weakness
of the grid approach is the lack of rotational symmetry of the grid.

It would be highly inefficient to pursue the grid interpolation method in satu-
ration, that is, where ‖ũ‖ > R may be arbitrarily large and the output values are
unambiguously known anyway. Here, we define a transitional ring on which the
output value is the linear interpolation of R ũ

‖ũ‖ and (R + δ) ũ
‖ũ‖ . Outside the ring,

the saturation curve

(3.22) w̃ = λ(‖ũ‖)ũ
(cf. Equation (2.24)) is piecewise linearly interpolated to obtain a relationship of
the form (3.19).

We now have a continuous map ũ → w̃ = µ0ũ + P dl
i (ũ) which satisfies ũ · w̃ =

µ(‖ũ‖)‖ũ‖2 ≥ 0 on any circle ∂B0,R̃ for R̃ ≥ R+δ and is therefore surjective in B0,R̃

[37, Theorem 30.5]. As also the output can get arbitrarily large, an inverse exists
for any w̃ ∈ R2. Uniqueness of the inverse cannot be ensured, because the applied
interpolation does not guarantee monotonicity of P dl

i , even if the provided nodal
data were pairwise monotone (cf. Appendix C). However, to our knowledge, no
2D monotonicity preserving interpolation for this situation has been developed so
far. In the test applications considered, the map appears to be close to monotone,
so no further effort was invested into clearing that issue, which should rather be
resolved later by means of a better implementation method of P . In saturation,
the inverse is unique and easily computed from relationship (3.22). On the grid, an
inverse is numerically computed by applying Newton’s method with the local tangent
matrices of the piecewise linear interpolation and stepwidth restriction combined
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R R + δ

u(ti−1)

Figure 3.1. Linearization grid of P dl
i : A special interpolation pat-

tern is used on the square in the 1st quadrant containing u(ti−1). On
the right, alternative special interpolation patterns are sketched for
the case that u(ti−1) lies close to a grid edge or node. The shaded
ring represents the transition from grid interpolation to saturation.

with a simple linesearch. To address the possible failure of this Newton’s algorithm
in view of non-monotonicity and resulting local minima around the reversal point
(u(ti−1),w(ti−1)), initial values in different grid triangles in the neighbourhood of
the previous time step solution u(ti−1) are tried until a solution is found.

M [B]-iteration requires a large number of evaluations of P dl
i in each time step.

Storing the already computed nodal values of P dl
i in each time step cuts down

significantly on the computational effort. The biggest computational involvement
results from the large number of M [B]-iteration steps, as the fixed point iteration
is very slow in finding a solution.

In the following, simulations with hysteresis in terms of P dl
i are presented.

3.3. Application 1: Ring core

In a first simulation, we want to verify the numerical results analytically. For
this, we choose the model of a hysteretic core enclosing a conductor. The solution of
this simple electromagnetic field problem can be determined analytically [65, 45].
Figure 3.2 shows the model as well as the finite element mesh used in the simulations.
As remarked on before, due to BEM-FEM coupling we do not need to include the
air space surrounding the model in the mesh.

The hysteresis data of the simulation is presented in Figures 3.3 and 3.4. The
first figure shows the Preisach distribution ω(‖x‖, r) used for the isotropic vector
Preisach operator P , which is chosen piecewise linear on a grid as described in
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2.5cm 3.75cm
I(t)

x

y

node 1t
node 2t
node 3t

Figure 3.2. Ring core: Model geometry (left) and finite element
mesh (right). The nodes marked are those for which a solution is
extracted in Figure 3.8.

Appendix A with grid parameter N = 3. The second figure gives the resulting
uniaxial hysteresis curves. Here, the constants are Hsat = 17.5 kA/m, M sat = 1.63
T and ωmax = 2.4 · 10−12. For discretizing P , the parameter N = 30 was chosen.

For the excitation setup of our computations we chose Imax = 2 kA. The exci-
tation current I(t) was linearly increased from 0 A to Imax, lowered to −Imax, and
increased back to 0 A, see Figure 3.5.

The analytical solution can be derived from symmetry considerations, using
Ampère’s law, which states that the line integral of H(t) along a closed path is
equal to the current I(t) enclosed at time t [48],∮

H(t) · ds = I(t).

Choosing the path to be a concentric circle of radius ρ, we obtain that the azimuthal
component of H is given by

Haz(ρ, t) =
I(t)

2πρ
.

‖x‖
r0

Hsat
0

Hsat

ω
(‖

x
‖,
r)

ωmax

Figure 3.3. Ring core: Isotropic Preisach distribution ω(‖x‖, r).
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−Hsat Hsat

−M sat

M sat

Figure 3.4. Ring core: Uniaxial hysteresis resulting from ω(‖x‖, r)
in Figure 3.3 with initial curve, outer loop, and first order reversal
curves.
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Figure 3.5. Ring core: Excitation current.
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Figure 3.6. Ring core: Remanent B field at t = 40.
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Figure 3.7. Ring core: Remanent B field at t = 40 in dependence
of the radius r – analytical solution (solid line) vs. FE simulation
result (+).
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Figure 3.8. Ring core: Azimuthal component of analytical vs.
simulated solution (Haz(ρ, t), Baz(ρ, t)) in nodes 1, 2, and 3 for the full
simulation run.

The radial component of H is 0. The magnetic induction B can be computed
from H by evaluating (3.20). For neutral initial state ξ0 of P , it also has only an
azimuthal component, Baz. For the practical computation of B in the analytical
solution, we used the discretized P with very fine discretization N = 80.

The results of the numerical and analytical computations are shown in Fig-
ures 3.6 through 3.8. Figure 3.6 is a plot of the absolute B field values at t = 40.
Because there is no excitation current, I(40) = 0, the entire B field is due to hys-
teresis. One can see well the radial symmetry. Figure 3.7 compares analytical and
numerical solution along a radial line. A good correspondence with small devia-
tions is seen. These deviations are due the coarse spatial discretization of the ring
core model as well es the discretization error of P . Figure 3.8 displays the curves
(Haz, Baz) at the three nodes marked in Figure 3.2 for analytical and simulated so-
lution for the full excitation cycle. As expected, the solution in each node describes
a different inner hysteresis curve, with amplitudes decreasing with increasing radius
of the node position. The results exhibit a very good correspondence.

We have thus shown that the results obtained in our numerical simulations of
the ring core with hysteresis in terms of P agree well with the analytical solution.



3.4. APPLICATION 2: POSITION SENSOR 97

Figure 3.9. Position sensor: A hysteretic yoke is moved horizon-
tally along a row of permanent magnets of alternating magnetization.

3.4. Application 2: Position sensor

We now investigate a more complicated, fully vectorial electromagnetic field
problem. It represents a simple position sensor. The model and the finite element
mesh are shown in Figure 3.9. The sensor consists of a hysteretic yoke made from
soft magnetic material, which can be moved back and forth along a row of permanent
magnets with alternating magnetization. In the air gap of the yoke, a Hall sensor
measures the horizontal component Bh of the magnetic induction B in the measuring
point. The sensor output Bh is periodically correlated with the position of the
yoke. It takes maximum amplitudes when the legs of the yoke lie centered over the
permanent magnets, as in Figure 3.9, and is 0 when the legs are centered over the
borders of the permanent magnets.

In experiments, Bh was measured as the yoke was moved from left to right
as well as from right to left. Depending on the direction of the movement, a lag
was observed which is due to hysteresis in the yoke material. A pair of measured
curves is displayed in Figure 3.10. The lag is small but was found consistently in all
experiments with the yoke made of different hysteretic materials.

The aim was to reproduce this lag in simulations. Anhysteretic simulations, in
which the initial hysteresis curve was used to represent the functional dependence of
B on H , show that the fields in both legs of the yoke rotate with varying absolute
value as the yoke changes position (Figure 3.11). Thus, computations use the fully
vectorial nature of the hysteresis model. Table 3.1 lists the model specifications
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Figure 3.10. Position sensor: Normalized sensor output curves
Bh/Bh,max versus yoke position obtained from measurements for the
yoke moving from left to right and from right to left – (a) full curve,
(b) curve enlarged at Bh = 0.
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(a) −10 mm (b) −10 mm

(c) −10 mm (d) −10 mm

Figure 3.11. Position sensor: Magnetic induction B in the legs
of the yoke, simulated without hysteresis, as the yoke position varies
from −10 mm to 0 mm.

used in the simulation. The simulations were done with the same hysteresis data
as for the ring core model, displayed in Figures 3.3 and 3.4, scaled to the values of
Hsat and M sat given in Table 3.1, and initial state ξ0 for the hysteresis. Since the
movement of the yoke is slow, the simulations are magnetostatic.

Two simulations were performed: In the first, the yoke was moved left to right
from position −30 mm to position 10 mm; in the second, the yoke was moved right
to left from position 30 mm to position −10 mm. The additional hysteresis cycle

permanent magnets: width = 10 mm,
height = 5 mm,
M = .75T

yoke: height = 12 mm,
leg width = 4 mm,
airgap width = .7 mm

distance permanent magnet - yoke: .5 mm

yoke material hysteresis: Hsat = 2 kA/m,
M sat = 1.218 T,
ωmax = 1.2 · 10−9

Table 3.1. Position sensor: Data used in the simulation.
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Figure 3.12. Position sensor: Normalized sensor output curves
Bh/Bh,max versus yoke position obtained from simulation without hys-
teresis (dashed line) and with hysteresis (solid line) for the yoke mov-
ing from left to right and from right to left – (a) full curve, (b) curve
enlarged at Bh = 0.
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from −30 mm to −10 mm and from 30 mm to 10 mm, respectively, was added to
erase initial state effects in P . The resulting Bh was extracted at the measuring
point and is plotted in Figure 3.12. It can be seen that the curves reproduce the
experimentally observed effect well, with the anhysteretic curve lying between the
hysteretic ones.

Note that both measured and simulated curves do not have their zeros exactly
at 5 mm and their maxima at -10 mm and 10 mm do not attain the full value. This
is due to the finite lenght of the row of permanent magnets. In the measurements,
it consisted only of six magnets, so the effect is more pronounced.

Figure 3.13 shows the B field for the yoke at position 0 mm, computed in the
simulation with the yoke moving from left to right. One can clearly see that the
field configuration is asymmetric. Without hysteresis, due to the symmetry of the
model at this position, the fields must be distributed symmetrically in both legs of
the yoke. The asymmetry is the result of hysteresis.

Figure 3.13. Position sensor: Absolute magnetic induction ‖B‖ [T]
at yoke position 0 mm.

3.5. Application 3: Magnetic valve

As a third application, we have simulated a simple magnetic valve with the full
eddy current approximation (3.12)-(3.14) with motion and a combination of different
hysteretic and anhysteretic materials. The goal was to verify that reasonable results
can also be obtained in this complex setting. Figure 3.14 shows a quarter section of
the magnetic valve, consisting of a magnetic core surrounding a coil, armature and
housing. When an electric current flows in the coil, a magnetic field builds up in
the valve which results in an attractive magnetic force between core and armature.
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Figure 3.14. Magnetic valve: Quarter section of the rotationally
symmetric 3D model (left), 2D mesh1 of 131 (right).
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Figure 3.15. Magnetic valve: Uniaxial hysteresis curves consisting
of initial, outer and first order reversal curves for core and armature.
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The armature is pulled towards the core if the magnetic force exceeds a certain
threshold, 78 N in our case, and moves back if the excitation is decreased and the
force falls below the threshold. The problem is rotation-symmetric and can thus be
modeled by means of a 2D model [29]. The corresponding 2D mesh for the rotation-
symmetric simulations is shown on the right in Figure 3.14. The height of the valve
is 15 mm, the radius 11.5 mm.

Both core and armature consist of hysteretic materials, whereas the housing is
assumed anhysteretic. Figure 3.15 presents the hystereses assigned to core and ar-
mature. The first order reversal curves shown are computed with P . The respective
Preisach distributions were fitted from measured material curves with the method
described in Appendix A. As outlined there, the saturation curves resulting from
P are replaced by given curves, with the objective of saving hysteresis memory in
fitting P . This has no theoretical implications on the simulations. For the dy-
namic simulations, the conductivities σ of core, armature and housing are set to
2.7 · 106A/Vm, 3 · 106A/Vm and 4.55 · 106A/Vm, respectively.

In a first sequence of simulations, we determine the B field in the valve for a
magnetostatic process without motion. The excitation current is slowly increased to
a maximum of 18 A and then decreased back to 0 A. In one simulation, the armature
is fixed in its original position where the valve is open. In the second simulation,
it is fixed in its final position where the valve is closed. Figure 3.16 shows vector
plots of the resulting B field for the open valve at maximum excitation simulated
without hysteresis and with hysteresis. For the anhysteretic simulation, the initial
curves of the uniaxial hystereses were used as B(H)-curves of the materials. We see
that the results are almost identical, as expected. The remanent B fields of the two
hysteretic computations are shown in Figure 3.17. There is no excitation current at
this point, so the fields are entirely due to the hysteresis of the materials. It can
be seen that for the open valve, as a result of the larger air gap between armature
and core, part of the magnetic flux lines close inside the armature. The effect is a
smaller remanent field than obtained for the closed valve, in particular in the core.
This example demonstrates the large influence of small changes in air gap widths in
the magnetic circuit.

In a second sequence of simulations, we carry out dynamic electromagnetic field
computations with eddy currents. For this, the magnetic valve is subjected to a
realistic excitation setup [62]. It consists of five phases: (1) The coil excitation is
driven by a booster voltage U1 until a given current I2 has built up. (2) The current
I2 is kept constant until time t1, at which point the armature has been pulled into
its stopping position. (3) The excitation is kept constant at holding current I3 until
time t2. (4) A deletion voltage U4 is applied to lower the current to 0 A. (5) The
excitation current remains at 0 A. In our simulations, we have chosen U1 = 47 V,
I2 = 18 A, I3 = 3.5 A, U4 = −33 V, t1 = .8 ms, and t2 = 1 ms.

As the whole switching cycle takes place in less than 2 ms, eddy currents are
induced and influence the evolution of the fields significantly. They counteract the
field propagation in the material, and they outlast the excitation by quite some time,
inducing a B field even after the excitation has been turned off.
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Figure 3.16. Magnetic valve: The B field at maximum excitation
current for magnetostatic simulation of the open valve without (left)
and with (right) hysteresis.

Figure 3.17. Magnetic valve: Remanent B field for magnetostatic
simulation with hysteresis after turning off the excitation current –
open valve (left) and closed valve (right).
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Figure 3.18 shows the magnetic force between core and armature computed in
simulation runs without and with hysteresis, normalized with the maximum force
Fmax attained in the anhysteretic case. The observed hysteresis effect satisfies well
what would be expected to happen: Due to hysteresis in the field propagation, the
maximum force obtained with hysteresis is lower than that without. When the
excitation is lowered, hysteresis results in a lag in the decrease of the force and in
larger remaining force. Figure 3.19 shows the corresponding B fields at t = .8 ms,
when the fields attain their maximum. Again we can see a very good correspondence
between the anhysteretic and the hysteretic result, as would be expected. Figure 3.20
presents the respective B fields at t = 2 ms. Note that B is not equal to 0 even in
the anhysteretic case because the eddy currents have not yet died out. However, we
clearly see that the hysteretic field is larger. In the armature, the remanent pattern
observed in Figure 3.17 for the open valve has started to form.

From empirical evidence [63], it is known that introducing a larger airgap at
some point in the magnetic circuit reduces the hysteretic lag at decreasing fields. In
computations with modified armature design, we check if this effect is reproduced
by the simulations. For this, we grade the armature to increase the air gap at the
inner pole (Figure 3.21) and repeat the simulation runs done for the original design.
The resulting force curves are shown in Figure 3.22 and the corresponding fields at
t = 2 ms in Figure 3.23. As can be seen, the lag is indeed reduced, as well as the
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Figure 3.18. Magnetic valve: Magnetic force without hysteresis
(solid line) and with hysteresis (dashed line).
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Figure 3.19. Magnetic valve: Maximum B-field at t = .8 ms
without (left) and with hysteresis (right).

Figure 3.20. Magnetic valve: B-field at t = 2 ms without (left)
and with hysteresis (right).
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Figure 3.21. Magnetic valve: Original armature design (top), mod-
ified armature design (bottom).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

t [ms]

F
/F

m
a
x

Figure 3.22. Magnetic valve: Magnetic force without hysteresis
(solid line) and with hysteresis (dashed line) for the modified armature
design.
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Figure 3.23. Magnetic valve: B-field at t = 2 ms without (left)
and with hysteresis (right) for the modified armature design.

remaining force at t = 2 ms. This effect seems to be a consequence of more field
lines closing inside the armature rather than traversing the air gap to the core, as
was previously seen in the magnetostatic case for differing airgap widths.

3.6. Summary

We have seen that our simulations have yielded good results, reproducing well
the analytical solution in the case of the ring core and secondary hysteresis effects
for the position sensor and the magnetic valve model. The simulations shed light
on the internal field configurations forming in the presence of hysteresis. These are
otherwise inaccessible, as measurements can only be taken of secondary effects but
not of internal fields directly.

A quantitative validation of the hysteresis modeling with P should be carried out
to obtain better insight into the potential and limitations of this new model. This
includes on one hand the comparison of measured and modeled hysteresis curves
for a number of materials. In view of this, the parametrization question must be
addressed more thoroughly. On the other hand, electromagnetic field simulations of
model problems should be quantitatively verified with measurements. This poses the
question of the quality of the hysteresis data used in the parametrization of P . The
measuring of a material’s specific hysteresis is challenging (see e.g. [5, Chapter 1]
for a discussion of the arising problems) and requires specific toroidal or cylindrical
probe geometries to guarantee the homogeneity of the ambient magnetic field in the
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probe and thus generate accessible results [10],∗. Any processing of the material
has significant impact on the material hysteresis [10],∗. It is thus uncertain to what
degree the material specifications from standard hysteresis measurements assumed
in the simulations are valid.

In any case, even if the exact quantitive performance of P remains open for
now, the simulations allow insight into the mechanisms underlying the secondary
hysteresis effects observed in measurements.

Due to time restrictions and the predetermined numerical setup of the electro-
magnetic simulation software, a straightforward computer implementation of P was
chosen for the inclusion of hysteresis in the framework of electromagnetic field sim-
ulations. It leaves some potential numerical issues unaddressed and, in addition, is
fairly inefficient with regard to storage and time requirements. It would be desirable
to develop a more elegant and efficient implementation of the hysteresis memory of
P and to find a more satisfactory coupling with electromagnetic field methods.

∗personal communication with Dr. H. Kleine, Magnettechnik Kleine, February 2006





Conclusion

In this dissertation, we have presented our results on the new vector Preisach
operator recently introduced by Della Torre, Cardelli and Pinzaglia [24, 25]. Aside
from giving a formal mathematical definition of the vector relay operator, we have
proven a range of properties of the vector relay and Preisach operators regarding,
for example, isotropy, saturation, dissipation, periodicity and output behaviour.
We have shown that there is a good qualitative correspondence between some of
the properties inherent to this vector Preisach operator and characteristic features
of the hysteresis of magnetic materials observed in measurements, like the satura-
tion behaviour or the typical shape of the loss curves. Further, we have presented
electromagnetic field simulations with hysteresis in terms of the new operator and
demonstrated that hysteresis effects observed in experiment are reproduced in the
simulations. All this gives rise to the hope that it might offer an interesting new
approach to the vectorial modeling of magnetic hysteresis.

Within the limits of this dissertation, it was possible to address no more than
a small number of the issues arising with a new hysteresis operator. Some crucial
questions remain open for further research. One is the continuity of the operator
P , which forms the fundamental requirement for any sound numerical scheme. In-
vestigations to this effect indicate that P is continuous. However, a mathematical
proof has not been found to date. Another question is that of a characterization of
the operator, that is, to determine the defining properties of the input-output map,
as presented by Mayergoyz [49] and Brokate [12] for the scalar Preisach operator,
and by Friedman [36] for Mayergoyz’ vector Preisach operator. Related to this is
the development of a satisfactory parametrization method to identify the underlying
Preisach distribution ω representing given hysteresis data, for which we have so far
only suggested a perfunctory algorithm. Finally, the successful application of P in
the modeling of magnetic hysteresis will crucially depend on the question of whether
it is possible to find an efficient numerical implementation of the operator. In the
constraints of this dissertation, we have resigned to using an ad hoc implementation
discretizing the relay memory of P . This results in large computational cost in
storage and evaluation, which prohibits an application in the simulation of electro-
magnetic components requiring a mesh with a bigger number of finite elements or
in three-dimensional simulations.

The vector modeling of magnetic hysteresis is a challenging subject. This disser-
tation hopefully contributes some interesting insight in the modeling approach via
the new vector Preisach operator P .
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APPENDIX A

A simple identification method

In order to be able to carry out 2-dimensional electromagnetic field simulations
of real life problems, we need to identify the vector Preisach operator P represent-
ing the measured hysteresis curves of a real material. For this, we present a simple
fitting method. It computes an isotropic Preisach distribution ω such that the corre-
sponding vector Preisach operator approximates the outer hysteresis loop obtained
under uniaxial input. Figure A.1 shows example input data. The algorithm consists
of making a nodal ansatz for ω, setting up a system of equations, completing this
system with Tikhonov regularization and computing its nonnegativity constrained
least squares solution.

We assume ω to be isotropic, nonnegative and continuous, and choose a piecewise
linear ansatz for ω(‖x‖, r) on a regular triangular grid of the form displayed in
Figure A.1. Outside the grid and, to satisfy the continuity assumption, in the white
nodes along the outer diagonal, ω is assumed to be 0. The discrete values ω1, . . . , ωL
of ω in the black nodes must then be computed.

The input data provides two sorts of information that result in two types of
equations for ω1, . . . , ωL. Denote the upper hysteresis curve by Mup(H), the lower
hysteresis curve by Mlow(H). Let K := {(x, r) | ||x|| + r ≤ R} ⊂ R2 × R+ be
the volume covered by the ansatz grid, i.e. the volume where ω can differ from 0.
Denote by N the grid parameter representing the number of black grid nodes along
the ‖x‖-axis, so L = N2. Because the curves originate in saturation, at any value

0 H

M

‖x‖

r

R

R

Figure A.1. Outer uniaxial hysteresis loop used in fitting (left),
ansatz grid for ω(‖x‖, r) with N = 5 (right).
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of H, the memory states h(x,r) for Mup(H) and Mlow(H) are unambiguously known.
Outside the freeze cone C(H,0)T , for both curves they are equal to

(H, 0)T − x

‖(H, 0)T − x‖
.

Inside the freeze cone, they are equal to

±1

r

(√
r2 − x2

2

x2

)
with negative sign for Mlow and positive sign for Mup (cf. Equation (2.48)). There-
fore, adding up the corresponding curve values on lower and upper curve gives the
integral over the outside of the freeze cone:

(A.1)
1

2
(Mup +Mlow) =

∫
K\C

(H,0)T

ω(‖x‖, r) H − x1

‖(H, 0)T − x‖
d(x, r).

Subtracting the respective values gives the integral over the inside of the freeze cone:

(A.2)
1

2
(Mup −Mlow) =

∫
K∩C

(H,0)T

ω(‖x‖, r)
√

1− (x2/r)2 d(x, r).

The corresponding integrals for the x2-components cancel out to 0 due to symmetry
and thus do not need to be pursued. Plugging in the nodal ansatz for ω, Equa-
tions (A.1) and (A.2) can now be used to derive equations in ω1, . . . , ωL for any
given set of points on the hysteresis curves.

In general, the resulting system will not determine ω1, . . . , ωL uniquely because
the number of independent equations will not correspond to the number of vari-
ables. Even when it does, the solution might give perfect fit in the discrete points
used for fitting but not satisfy the nonnegativity assumption on ω1, . . . , ωL and give
undesirable hysteresis curves. Therefore, we subject the equation system to a simple
Tikhonov regularization as suggested in [59]. For this, we set up a penalty term on
the first derivative of ω(‖x‖, r), represented by the first difference matrix of adjacent
grid nodes.

The result is a nonnegativity constrained least squares problem of the form

(A.3) minimize
(ω1,...,ωL)

∥∥∥∥∥∥
(

A
λT

)ω1
...
ωL

−
(
b
0

)∥∥∥∥∥∥
2

subject to ω1, . . . , ωL ≥ 0

with A the equation system matrix, b the corresponding right hand side, and
T (ω1, . . . , ωL)T the Tikhonov penalty term. The real number λ ≥ 0 is the Tikhonov
parameter weighting the penalty term. It can be varied to choose a solution vector
(ω1, . . . , ωL) resulting in desirable hysteresis curves. Problem (A.3) can be solved
by means of available software products, e.g. the DQED library [26].

As examples, we have fitted two measured hysteresis curves for the magnetic
valve simulation in Section 3.5. Figures A.2 and A.4 show the input and the output
of the fitting. Figures A.3 and A.5 show the corresponding Preisach distributions.
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Figure A.2. Fitting of ω for the armature of the magnetic
valve in Section 3.5. Measured initial and upper hysteresis curve
(solid line), input data points (◦) and initial, outer and first order re-
versal curves resulting from the fitted vector Preisach operator (dashed
line). The fit was carried out with N = 20, R = 10000 and λ = .01.
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Figure A.3. Preisach distribution ω of the fit in Figure A.2.
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Figure A.4. Fitting of ω for the core of the magnetic valve
in Section 3.5. Measured initial and upper hysteresis curve (solid
line), input data points (◦) and initial, outer and first order reversal
curves resulting from the fitted vector Preisach operator (dashed line).
The fit was carried out with N = 50, R = 5000 and λ = .0075.
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Figure A.5. Preisach distribution ω of the fit in Figure A.4.
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We see that the fit is good but not perfect. It differs especially in the neighbour-
hood of the zeros of the outer curves, where the slope is steep. The reason for this is
the lacking discretization of ω around this region of strong change in the hysteresis
curve. It indicates that a better ansatz should be chosen in future approaches, e.g.
a non-regular grid in a first attempt. In a straightforward manner, to increase the
resolution without grid refinement, we resigned to only fitting the hysteretic part of
the curves but not the saturation curves, and used a smaller R than the actual satu-
ration of the curves would have required. Therefore, the saturation curves resulting
from the fit are much less steep than the measured curves. This is compensated by
replacing the saturation curves obtained from the vector Preisach operator by the
measured ones in simulations.

In conclusion, the presented method is a straightforward way to obtain some ω
representing a given hysteresis curve. However, the identification problem requires
more extensive research and the development of more suitable approaches. As is the
case with Mayergoyz’ vector Preisach operator, for which identification is treated
in [53, 54, 51], there will most likely not be a solution as straighforward as exists for
the scalar Preisach operator, where the first order reversal curves provide directly
the necessary information (Theorem 2.4.11,[16, 51]). In any case, it remains to be
investigated what properties given hysteresis data must satisfy at all to allow perfect
representation by the isotropic vector Preisach operator investigated in this thesis.





APPENDIX B

Variational results on the vector relay operator

In the following, a few statements on h(x,r) are listed which may be of use in
view of a variational formulation of the operator. They represent generalizations of
results given by Visintin [67] for the scalar relay operator. The first part deals with
what Visintin refers to as “laziness”. The remainder presents a vectorial version
of the confinement condition, which Visintin employes together with a dissipation
condition to give a variational representation of the relay operator.

Define the set of right-continuous functions that agree with w while u is outside
the relay Bx,r, and otherwise are equal to some arbitrary unit vector,

K(u,ξ) := {v ∈ Cr([0, T ]; ∂B0,1) | v(0) = ξ if u(0) ∈ Bx,r,

v(t) =
u(t)− x

‖u(t)− x‖
if t ∈ [0, T ] and u(t) /∈ Bx,r}.

Obviously, w ∈ K(u,ξ). As w does not vary while u(t) ∈ Bx,r, it satisfies

(B.1) Var
[0,t]

(w) ≤ Var
[0,t]

(v) ∀v ∈ K(u,ξ) and ∀t ∈ [0, T ].

Visintin [67, Chapter IV], who discusses the analogous behaviour for the scalar relay,
calls this behaviour laziness. In fact, the vectorial relay also satisfies a strict global
minimization property:

Lemma B.0.1 (Strict global minimization property). For all v ∈ K(u,ξ)\{w}, there
exists a t ∈ (0, T ] such that

(B.2) Var
[0,t]

(w) < Var
[0,t]

(v).

Proof. Essentially, the argument is that even if v has the same total variation as
w for any t such that u(t) is outside the relay, as it differs from w, it must vary
for some t such that u(t) is inside the relay, while w is constant. At that point, the
strict inequality holds.

Formally, (B.2) can be shown as follows: For any v 6= w, there is a τ ∈ (0, T ]
such that u(τ) ∈ Bx,r and v(τ) 6= w(τ). One of two situation will be satisfied:
Either there exists τ̃ := max{t ∈ [0, τ) | u(t) ∈ ∂Bx,r}, or u(t) |[0,τ ]∈ Bx,r, in
which case we set τ̃ := 0. In both cases, w is constant on the entire interval [τ̃ , τ ],
so w(τ) = w(τ̃), and by definition of τ̃ function v satisfies v(τ) 6= v(τ̃) = w(τ̃).
Thus, for τ̃ := 0,

Var
[0,τ ]

(w) = 0 < Var
[0,τ ]

(v).

For τ̃ > 0, by (B.1), Var
[0,τ̃ ]

(w) ≤ Var
[0,τ̃ ]

(v), so Var
[0,τ ]

(w) < Var
[0,τ ]

(v). �
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We want to present a vectorial version of what Visintin [67] calls confinement
condition. For this, we define a new set of functions,

K̃(u,ξ) := {v ∈ Cr([0, T ]; ∂B0,1) | v(0) = ξ if u(0) ∈ Bx,r,

v(t) =
u(t)− x

‖u(t)− x‖
if t ∈ [0, T ] and u(t) /∈ Bx,r},

which differs from K(u,ξ) only in that any v ∈ K̃(u,ξ) can take arbitrary values

on ∂Bx,r. The set K̃(u,ξ) will be relevant when attempting to close the image of
C([0, T ]; Rn) under h(x,r), as Visintin [67] does for the scalar relay. The following
statement could be used in a variational formulation of the closed relay operator.

Lemma B.0.2. A function v is in K̃(u,ξ) if and only if v ∈ Cr([0, T ]; Rn), u(0) ∈ Bx,r

implies v(0) = ξ, and

‖v(t)‖ = 1,(
v(t)− u(t)−x

‖u(t)−x‖

)
·
(
u(t)− r u(t)−x

‖u(t)−x‖

)
≥ 0

∀t ∈ [0, T ].

Proof. Trivially, the equation is equivalent to v ∈ ∂B0,1. For showing the inequal-
ity, assume first that u(t) /∈ Bx,r, i.e.

(B.3) u(t)− r
u(t)− x

‖u(t)− x‖
= κ

u(t)− x

‖u(t)− x‖
holds with κ > 0. Therefore, the only unit vector for which the inequality in(

v(t)− u(t)− x

‖u(t)− x‖

)
·
(

u(t)− r
u(t)− x

‖u(t)− x‖

)
=κ

(
v(t)− u(t)− x

‖u(t)− x‖

)
· u(t)− x

‖u(t)− x‖
≥0

holds true is v(t) = u(t)−x
‖u(t)−x‖ . Now assume u(t) ∈ Bx,r, so Equation (B.3) holds with

κ ≤ 0. For this κ, v(t) can take on any unit vector to satisfy the inequality. �

Because the vectorial relay lacks the monotonicity property, we have not been
able to derive a vectorial version of the dissipation condition presented by Visin-
tin [67] for the scalar relay.



APPENDIX C

Piecewise linear monotone functions

In this appendix, a few facts on piecewise linear monotone functions are sketched.

Lemma C.0.3 (Linear monotone functions). Assume F (x) = Ax, A ∈ Rn×n. Then
F is monotone if and only if A is positive semidefinite.

Proof.

(Ax− Ay) · (x− y) = (x− y)TA(x− y) ≥ 0. �

Suppose Ω ⊂ R2 is a polyhedral domain. A triangulation of Ω is a finite collection
of open triangles {Ki} such that [11]

(1) Ki ∩Kj = ∅ if i 6= j,
(2)

⋃
Ki = Ω, and

(3) no vertex of any triangle lies in the interior of an edge of another triangle.

Obviously, the linearization grid in Figure 3.1 is a triangulation of the domain
Ω arising as union of all triangles.

We will now show that the monotonicity property of a continuous function on
each triangle extends to the whole domain.

Lemma C.0.4. Suppose F : Ω → R2 is continuous, and monotone on each triangle.
Then F is monotone on Ω.

Proof. Fix arbitrary y1,y2 ∈ Ω. Then the line connecting y1 and y2 traverses
finitely many triangles in Ω, cf. Figure C.1. Call the points where this line intersects
with the triangle boundaries z1, . . . ,zs. Then the monotonicity of F on each triangle
implies that there exist λ0, . . . , λs ≥ 0 such that

(F (y1)− F (y2)) · (y1 − y2)

= (F (y1)− F (z1)) · (y1 − y2) + (F (z1)− F (z2)) · (y1 − y2)

+ · · ·
+ (F (zs−1)− F (zs)) · (y1 − y2) + (F (zs)− F (y2)) · (y1 − y2)

= (F (y1)− F (z1)) · λ0(y1 − z1) + (F (z1)− F (z2)) · λ1(z1 − z2)

+ · · ·
+ (F (zs−1)− F (zs)) · λs−1(zs−1 − zs) + (F (zs)− F (y2)) · λs(zs − y2)

≥0 �

Note that for a piecewise linear interpolation function on a triangulation, it is
not sufficient to require that the monotonicity condition is pairwise satisfied by the
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Figure C.1. Illustration for the proof of Lemma C.0.4.

vertices of each triangle,

(F i − F j) · (xi − xj) ≥ 0,

to guarantee that the linear interpolation on this triangle is monotone, cf. Lemma C.0.3.
However, in practice, it is almost always sufficient.



Notation

N set of integers

R set of real numbers

R+ = {r ∈ R | r > 0}
x · y scalar product in Rn, p. 5

‖x‖ = (x · x)
1
2 , p. 5

xT , QT transpose of a vector or a matrix

X closure of set X, p. 6

∂X boundary of set X, p. 6

sign(x) sign function, p. 57

Γ Gamma function [35]

a.e. almost everywhere [42]

By,r ball of radius r centered at y, p. 5

V
(n)
B (r) volume of the n-dimensional ball, p. 5

Cy,R, Cy cone, p. 5

V
(n)
C (R) volume of the cone in Rn+1, p. 5

Map(X;Y ) set of maps from X to Y , p. 5

C(X;Y ) space of continuous functions from X to Y , p. 5

Cr(X;Y ) space of right-continuous functions from X to Y , p. 5

limt→τ− f(t), limt→τ+ f(t) left-hand and right-hand limit, p. 5

f ′(t) derivative, p. 6

∂t−f(t), ∂t+f(t) left-hand and right-hand derivative, p. 6

∂yi
ϕ(y1, . . . , yn), ∂yϕ(y) partial derivative, Jacobian, p. 6

dzf(y) Gâteaux derivative of f in the direction z, p. 72

S(u; Γ) p. 12

Var
[0,T ]

(u) total variation of u, p. 12

R(u,w; Γ) Riemann-Stieltjes sum, p. 12

Γ = {t0, . . . , tM} partition, p. 12

|Γ| p. 12
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∫ T
0
u dw,

∫ T
0

u · dw Riemann-Stieltjes integral, p. 12

O(n), SO(n) orthogonal group, special orthogonal group, p. 15

Id identity matrix

ut truncation of u at t, p. 20

ut shift of u by t, p. 25

Wf generating functional, p. 20

h(x,r) scalar relay operator, p. 21

Fr scalar play operator, p. 22

P scalar Preisach operator, p. 22

Ψ0 set of Preisach memory curves, p. 23

h(x,r) vector relay operator, p. 24

γ(x,r) p. 26

ξ0, ξ0 neutral initial state, p. 34-36

Mpm[0, T ], Cpm[0, T ] piecewise monotone functions on [0, T ], p. 49

S, SA sets of finite (alternating) strings, p. 50

ρA, πA restriction/prolongation operator, p. 50

Πi projection, p. 57

b·cx1=· jump, p. 80

b·cΣ jump across a surface, p. 86

H magnetic field, p. 85

B magnetic induction, p. 85

M magnetization, p. 86

D electric induction, p. 85

E electric field, p. 85

P polarization, p. 86

g free current density, p. 85

gs impressed current density, p. 86

ρ electric charge density, p. 85

σ conductivity, p. 86
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