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If I take a letter, lock it in a safe, hide the safe somewhere in New York, and then
tell you to read the letter, that’s not security. That’s obscurity. On the other hand, if
I take a letter and lock it in a safe, and then give you the safe along with the design
specifications of the safe and a hundred identical safes with their combinations so
that you and the world’s best safecrackers can study the locking mechanism–and
you still can’t open the safe and read the letter, that’s security.
Bruce Schneier, Preface of “Applied Cryptography” [46]
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Preface

Personal computer systems are used in almost every area of our daily life to create, manage,
process and consume all kinds of information. To safeguard that this information is used ac-
cording to their stakeholders interests, data protection methods are applied. The majority of
such protection systems finally fail to provide a provable security system as they either rely on
obscurity of components or blindly trust the underlying systems to behave fair. The concepts
around the Trusted Platform Module (TPM) solve both issues but fail to integrate into a land-
scape where discovery and exploitation of vulnerabilities makes trust in a software configuration
a transient value.

In this thesis, a combination of methods to overcome those deficiency is presented and used
to build a protection system which is solely based on provable cryptographic components and
adopts to today’s software lifecycle. Digital signatures bridge the gap between a formal policy
model and the measurement values necessary to technically drive the TPM while a certificate
infrastructure provides the ability to react on vulnerabilities. A multilevel security model seg-
ments the assets into distinct protection domains which are protected by TPM based keys and
can be individually shutdown based on the severity of current threats. The verification system is
strictly isolated from the main operating system and under continuous supervision of the TPM,
so it can safely survive a compromise of the platform and reestablish trust after the system was
repaired. Besides the protection of data on the local platform the new digest creation method
eliminates several drawbacks of the remote attestation protocol, especially regarding the privacy
of the challenged user.

Compared to current solutions, our system provides several advantages. First, the protection
mechanism is based on a tamperproof hardware component and its security is provable by
formal means. Second, the impact of attacks based on known vulnerabilities can be estimated
and critical data moved out of their grasp while keeping less valuable data available for business.
And finally, even if an attacker manages to exploit a vulnerability, there are several barriers
hardening his goings and a verification system that reliably detects each modification to the
system at latest on reboot.

ix





Chapter 1

Data Protection on PC-Systems

1.1 Why Data Protection on PC-Systems is Crucial

Personal computer systems are widely used by individuals and business people to simplify and
organise processes of the daily life. These processes rely on input data and produce new data
which is stored on the computer systems. To perform correctly, the processes require that the
stored data is not tampered in an unauthorized way. Besides, the data contains information that
is intended only for a particular audience and releasing it to a third party can cause a multitude
of problems.

In the early days of computer science, everybody was assumed to behave fair and the protection
mechanisms focused on technical errors or accidental mistakes of the users. This assumption
does not hold today. On the one hand, the relation that users have to the data has changed and
we can no longer trust the users to use data only for the intended purpose. On the other hand,
computer systems are getting more and more complex and are considered to have unknown
vulnerabilities while their connection to the internet moves them into the grasp of criminals
worldwide, creating a new kind of offenders. Those people can have different motivations and
targets, but usually strive for a direct or indirect personal advantage which almost always implies
a damage or disadvantage for another party.

Incorrect process information, lost confidentiality or other negative effects cause damage and
must be avoided to ensure business continuity and to protect the privacy of involved individuals
and entities. This can be accomplished by the deployment of data protection methods within
the systems. Which methods are sensible to apply, depends on the protection targets and the
resulting threat scenarios, which we discuss by means of an example in the following section.

1



2 CHAPTER 1. DATA PROTECTION ON PC-SYSTEMS

1.2 Different Aspects of Data Protection

Data Protection covers a large field of situations, roles and aspects which we will explain with
an example. Bob1 drives an online business in creating expertises on demand of individual
customers and uses an online payment system to get paid for his work. Alice is a returning
customer of this service and stores the access credentials for her account as well as the bought
expertises on her computer system. Due to the nature of the data in the reports, she wants to
keep them confidential and prefers to stay anonymous against Bob. To protect her anonymity,
they use the payment service of Trent, who issues non-trackable vouchers and bills them via a
credit card.

Workflows and Protection Properties of the Given Example

Bob offers his services for cash in advance, therefore the first step for Alice is to pay Bob for
the desired service. To obtain payment vouchers from Trent, she submits her credit card data to
him and receives payment vouchers. Alice now passes the input data for the requested report
to Bob and adds one of the payment vouchers to pay Bob. Bob uses the voucher to collect his
earnings from Trent and compiles the requested report, which he then makes available to Alice
in a protected area on his website.

Fig. 1.1: Flow of Information between Alice, Bob and Trent

The three parties involved in the example exchange information as shown in figure 1.1 and it is
mandatory, that these connections fulfill certain properties to ensure a satisfying result for all of
them.

Confidentiality ensures that information exchanged between communication partners is not
disclosed to a third party. The connections from Alice to Bob and Trent must ensure confiden-
tiality, as otherwise payment or personal information gets disclosed. The connection between
Trent and Bob can reveal information about Bobs earnings, so it might be of interest to enforce

1Alice, Bob and Trent are names which are widely used in cryptographic literature and carry implicit properties.
Alice and Bob are two communication partners while Trent represents a neutral and trusted party.
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confidentiality here. It is also mandatory to protect all data items against offenders while they
are stored on the local systems of the participants.

Authenticity proves the origin of a message and is also used to identify the communication
partners in this example. Alice must ensure that she talks to the right communication partners as
an eavesdropper might abuse the submitted data directly or launch a man-in-the-middle attack
which will affect the confidentiality of the communication.

Integrity of an item indicates that it was not changed between two supervisions. A successful
completion of the workflow requires the correctness of all process information and all information
flows and therefore depends on an integrity protection mechanism.

An exhaustive summary of common cryptographic methods to ensure the mentioned properties
is given, for example, in [9,46].

1.3 Protection Systems Currently in Use

In this section, we talk solely about systems, which provide protection of items outside a con-
trolled system environment. Protective mechanisms used inside running systems, as process
separation and the like, are not included in this discussion.

1.3.1 Technical Foundations

Today’s protection systems can be grouped into three major categories. Systems providing
protection using obfuscation, such using cryptographic algorithms and such using a combination
of both. We give a detailed view on these techniques and their special problems in section 2.1.

Protection by Obscurity

All protection systems that must work without a user provided password use obfuscation to
protect themselves. For example the keystores used in Microsoft Windows operating systems to
sign and encrypt items are protected by the secrecy of their internal structure. Another product
which came to dubious fame in the past, is the internet telephony client “Skype” which uses
obfuscation even to encrypt its own program code to protect it from reverse engineering [39].
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Protection by Cryptography

Systems relying solely on pure cryptography and the secrecy of the needed key material are,
for example, several available disk-encryption tools for the Linux operating system like dm-
crypt [44] or eCryptfs [29]. As these are open source projects, it is obvious that there is no place
for obscurity here.

The disadvantage compared against the systems using obscurity, is the necessity to find a se-
cure way to load the key into the system. The usage of a hardware token with a cryptographic
engine and secure key storage solves this problem but leaves the issue how to protect the com-
plete cryptographic engine from abuse as the external token can not detect by which instance it
is called.

Protection by a Combination of Both

The usage and development of systems using only obfuscation is very limited as it is necessary
to disclose secret information to potential business partners. Therefore it seems to be a feasible
approach to use public, proven algorithms to do the protection and use obfuscation only to
provide the necessary key material in an automated way.

1.3.2 System Immanent Deficiencies

As long as we have a friendly user and a system that was setup with security in mind, all off the
above mentioned systems will do there job equally well but there are two kinds of problems we
have to deal with. Effects on the protection systems by a compromise of the operating system
through a vulnerability are discussed later in 1.5.2. The other problem arises from fraudulent
user, which try to avoid or circumvent protective mechanisms.

It is easy to judge on pure cryptographic systems. Toady’s algorithms are mature and do not
offer any feasible approach to achieve a result without the correct initialisation values, namely
the key material. The other way round, a user with access to the key material can reproduce
valid results with an arbitrary implementation of the algorithms, regardless of any context. The
main problem of such a system is the question how to provide the key to the algorithms and
how to protect it from abuse by the different kinds of attackers.

Systems using obfuscation are autonomous, which means they carry all necessary information
to generate the reply on a certain input inside the system. To emulate the behaviour of such an
obfuscated protection system it is necessary to understand the algorithms running inside and
know all parameters of them. If access to enough input/output pairs is given and the mech-
anism is simple or partially known, a mathematical analysis can reveal enough information to
mimic the system. In general, the only way to reveal the internal structure is a stepwise re-
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verse engineering [53] of the deployed binary code which might be expensive but can never be
prevented.

1.4 TPM - One Major Concept of Trusted Computing

1.4.1 Key Functions of the Trusted Platform Module

The Trusted Platform Module (TPM) is a new hardware component which resides on a comput-
ers mainboard and is the central piece in the concepts of the Trusted Computing Group (TCG). It
consists of three major parts. A cryptographic engine supporting the RSA operations, a shielded
storage for key material and the so called platform configuration registers, PCR, which are ba-
sically a storage for hash values with a special input function. A detailed description of the TPM
and its constituents is given in 2.3 so we just briefly explain some important issues here.

The basic functionality of the cryptographic engine of the TPM is similar to the one on con-
ventional smartcards. All key material is hold and processed in a shielded environment and
therefore secret information is never disclosed to the outside. The power of the TPM compared
to a common smartcard is the combination of this engine with the platform configuration regis-
ters. When using a TCG conformable platform, these registers contain a fingerprint of the code
used to bring up the platform. As the registers can be initialised only on a hardware reset and
always reflect the history of all input values starting from the last reset, it is impossible to force
them to a special value after the platform was started. This leads to the assumption, that a given
system state is represented by a combination of register values and that it is impossible to find
another system state resulting in the same values.

The first of two groups of key functions specified by the TCG now uses the values of the PCR
registers as an access credential to key operations which binds the key, and with it all data
encrypted under it, to a defined system state.

The second key function is the attestation of the platform state against a challenger. The basic
idea is simple while its implementation is one of the most complex protocols in the whole TCG
concept. Roughly speaking, a challenger asks the platform to identify itself and receives the
current state of relevant PCR values signed with a special key that can be tracked to belong
to a genuine TPM by a set of certificates. If the challenger successfully verifies the signature
and the certificate chain, he can be sure that the received data was created by a TPM. The
submitted values represent the platform state and if he knows to interpret these values he can
be sure about the hardware and software running on the challenged system.
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1.4.2 Unsolved Problems

If we neglect hardware based attacks and take for granted that no unknown attacks on the used
algorithms, RSA and SHA1, exist, a cryptographic system build around the TPM, can be seen
as a mature solution.

The problems arise from the variety of software on the market, the necessity for interoperability
and the lifecycle of toady’s software. In the current specification, the values inside the PCR
registers depend directly on the binary code used to launch the system and it is not possible to
assign a set of multiple combinations as access credential to an object. This makes it impossi-
ble to directly use TPM protected keys when they must be available in more than one system
state. Furthermore a similar problem arises if we want to include later boot stages into the
measurement values. As modern systems often use a multi-threaded initialisation procedure,
where multiple processes run in parallel and the execution order is not fully deterministic, we
will end up with different measurement results on individual boot cycles. But even if we omit
multi-boot scenarios and linearize the boot process, we still stick to the problem of vulnerability
management as explained in 1.5.2.

Another issue regarding the attestation protocols is not only technology related but also driven
by privacy concerns and political discrimination. The response send upon an attestation re-
quest must contain sufficient information to allow the challenger a judgement on the state of the
platform. With the current solutions this implies, that we reveal the name and exact version of
each component which is part of the measured hardware and software stack. Besides the tech-
nical difficulty to maintain a huge database of all possible components and the ability to derive a
judgement from this knowledge, the challenger can abuse this information to the disadvantage
of the user. User organisations, like the Electronic Frontier Foundation [15], as well as respected
researchers [42] worry about the possibility that companies lock out particular platforms from
their business due to commercial interests. Criminals can also benefit from the attestation, as
they gain detailed knowledge about the platform which they can use to create tailored and most
effective attacks for the target system. Finally, due to the huge variety of combinations, it is likely
possible to link together independent transactions of a single user by watching the received at-
testation results. Such a tracking affects a users privacy as it reveals behavioural information
where it is not recognized and also not avoidable.

1.5 Today’s Software-Lifecycle and Problems Arising from It

As we explained earlier in this section, purely software-based protection systems can never
be secure as they must use some kind of obscurity to protect themselves. But besides this
immanent deficiencies there are some issues that are founded in the lifecycle of toady’s software
systems, which we want to discuss here.
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1.5.1 A Lifecycle-Model for Computer Systems

“Any given piece of software has some number of publicly disclosed vulnerabilities
at any moment, leaving the system exposed to potential attack.” [32]

Even if we cannot formally prove this statement, it matches the experience of people working in
the field of software development and security. Based on their vulnerability lifecycle model, the
authors of [1] propose a lifecycle model for computer systems as shown in figure 1.2. Accord-
ing to it, a computer system repeatedly toggles between the states hardened and vulnerable

during its entire lifetime and might pass into the state compromised in the case of a successful
attack.

Hardened State

While the system is in hardened state, it is not affected by a known vulnerability and considered
to operate as expected. Based on the vulnerability life-cycle model of Arbaugh et al. [1] it is an
unsolvable question if the system is really in hardened state. Prior the public announcement of
a vulnerability, the individual who discovered it might abuse this knowledge to launch attacks on
affected systems without informing a larger audience and misleading an external observer to
the assumption that the system is in hardened state while it is not.

Fig. 1.2: State-Transitions of a System during its lifetime
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Vulnerable State

Once the problem was disclosed to the public audience we know that the system is vulnerable,
but we do not necessarily known at the time if an attacker has already compromised the system.
Besides, there is the question on effective and feasible countermeasures to prevent an attacker
from compromising the system while the vendor prepares the final fix for the issue.

Compromised State

By a successful abuse of a vulnerability an attacker gains unauthorized access to system re-
sources or the system itself. Depending on the kind of vulnerability and the abilities of the
intruder he can manage to hide the traces of the manipulation while preserving control over im-
portant system components [19]. This circumstance brings the system owner into the dilemma
that he can not reliably determine a compromise without an external reference as he can not
trust the system to tell him the truth.

This problem stays effective even after a final fix for the initial problem is available. Attackers
frequently abuse the initial problem to install their own access tools with the purpose to keep
control over the system upright after the problem was fixed. In this case, the removal of the
original vulnerability prevents a new compromise but does not remove the already existing mod-
ifications.

1.5.2 Influences on the Effectiveness of Technical Protection Systems

The technical systems to ensure the protection properties given in 1.2 usually work as a com-
ponent of the running operating system or at least rely on some assurances given by it. If an
attacker has compromised the underlying system he is likely in the position to interrupt data
streams from and to the protection systems and read and manipulate them at will. This will
include the manipulation of measurement values, as for example integrity hashes of binaries,
access to confidential data or even access to key material of the used cryptographic algorithms.

Needless to say, that such interference renders the protection system pretty useless regarding
all activities of the local attacker. As the attacker can forge any information about the state of the
system itself, it is impossible for a local application to judge on the sanity of the system. This is
also true in a communication scenario with a remote partner, but we have a chance to improve
the situation here using an external observer who attests the correctness of the measurements.

Shortly summarized, a compromised system is unable to provide a resilient foundation for the
protection systems and therefore they fail to fulfill their task. As it is possible for a skilled attacker
to avoid the detection of a compromise, we can never be sure to communicate with an intact
system without the presence of an external attestor.
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1.5.3 Lifecycle Related Problems when Using the Trusted Platform Module

The fashion how the platform state is determined and linked to the access control results in an
incompatibility with the described lifecycle model. While the lifecycle model requires that certain
items of the system are exchanged with successive versions due to disclosed vulnerabilities
the TCG concept links the access decision directly to the hash value of a binary. The concept
does not foresee a migration path for these dependencies, and therefore even an intentional
manipulation of a system file blocks access to the associated key material.

The only possibility to perform a system update is very expensive and imposes several security
risks. For certain types of keys the specification defines a method to export them to another
platform but as the exporting TPM can not prove the identity or state of the offered target it is
possible to export them to an unprotected system. For non-migratable keys we have no other
option than decrypting each item protected under this key and re-encrypt it with a fresh key after
the migration.

From a security point of view, one must assume that the known vulnerability was already ex-
ploited and the system was modified. An attacker already present on the system can manipulate
the export routines to intercept the data flows and extract keys and data in unencrypted format.
If it is infeasible to prove the absence of any modifications, there is no way to securely migrate
the data from the affected to an updated system state which leaves us with the decision between
terminating or updating the system immediately and loosing the data, or migrating the data and
accepting the risk that an attacker might gather or even tamper the data while it is migrated.
In most cases it should be possible to lock out an attacker by disconnecting the system from
a network, which protects at least the confidentiality of the data but in either case, the efforts
necessary to transfer and re-encrypt all data items make this an impractical solution.

Even if we solve the problem of a secure migration to a new system configuration, we still stick
with another issue. The key material which is managed by the TPM is not kept in the hardware
storage but swapped out to the hard disk where it is accessible for a user with sufficient access
rights. An attacker can therefore make a copy of it and recreate old keys from a backup even
after they were deleted during an update. Together with a copy of protected items and binaries
taken before the update, he can recreate a system which is declared as valid by the TPM and
has access to all key material although it contains known and exploitable vulnerabilities.

1.6 Organisation of this Work

1.6.1 Objectives of our Work

In the former sections of this chapter we have shown why we think data protection is important
and that the solutions currently in use have several deficiencies. While the concepts defined
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by the TCG have the power to solve the methodical problems of software based cryptographic
solutions, they fail to adopt to toady’s software lifecycle and require huge efforts if protected
objects must remain usable under different software configurations.

The main objective of the work presented in this thesis is a protection mechanism, that is prov-
able secure, has no methodical deficiencies and works with toady’s software and hardware
landscape. The mechanism should leverage the abilities of the TPM to care about the protec-
tion of locally stored data as well as the attestation of the own identity in a communication sce-
nario. The necessary modifications should be reduced to the possible minimum while existing
concepts and projects should be reused to minimize the risk of new errors wherever possible.

The discovery and exploitation of vulnerabilities does not only result in the necessity to imple-
ment a patch management but also raises the demand to have a defense against an attacker
who compromises the system.

1.6.2 Main Contributions

The main contributions of this work can be split into two separate parts. The first contribution
is a new method to create digest values which are then used to fill the platform configuration
registers. The second invention is an enhanced access control and enforcement system, based
on a multilevel security model and encryption.

The new digest creation method is actually made out of two individual subsystems. In the first
step, we overcome the strong dependency on the immutability of binaries in the TCG mea-
surement concept and make the TPMs abilities usable with a mutable and transient system.
Instead of creating the digest directly from the binary, we use digital certificates in a public key
infrastructure and make the recorded digests a representative of important components and
parameters of this infrastructure. Besides a file-based method, that stays close to the original
TCG measurement approach, we created a state-based digest creation method, which can be-
come useful in more complex boot scenarios. In a second step, we add a certificate revocation
management to react on discovered vulnerabilities. While the used cryptographic mechanisms
represent the state of the technology as of today, their arrangement and especially the selection
of components which make up the new digest values are the result of our work.

Our second contribution enhances a given access control and enforcement system with ideas
taken from a multilevel security model. Based on the assumption, that risk is not a “yes-or-no”
decision, we map protection demands of individual items and assumptions about the quality
of used software components to trust levels. Using an existing solution for file encryption with
TPM based keys as foundation, we have developed a concept to transform the trust level into
a physically enforced protection property. By interconnecting the vulnerability management
system with the trust level assignment, we achieve a protection system which is capable to
moderate access to items based on the currently assumed threat level on a system.
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1.6.3 Structure of this Document

The organisation of the remaining document is as follows. Chapter 2 summarises important is-
sues of the state of the technology. In the beginning, section 2.1 explains the mechanisms used
today and their problems, which was already done briefly in the previous chapter. The succes-
sive sections 2.2 and 2.3 give a short introduction on the relevant issues of digital signatures
and public key certificate infrastructures as well as recent development and basic components
of trusted computing technology.

The first two sections of chapter 3 introduce the theoretical basics and the mechanisms of the
new digest creation methods followed by a section on risk management. The last two sections
of this chapter explain the assumed system model and the runtime protection model based on
the multilevel security concept. How to put these ideas together to get a working system is
outlined at the example of our prototype implementation in chapter 4.

Before we finish the thesis with a short conclusion and an outlook in 6, our analysis in chapter
5 points out the necessary efforts, gained advantages and possible threats of the invented
protection system.
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Chapter 2

Introduction into the Used Basic
Technologies

2.1 Currently Used Techniques

This section explains the mechanisms and deficiencies already introduced in 1.3 in more detail
and describes common attack methods and their consequences.

2.1.1 Protection Mechanisms

Protection mechanisms are technical solutions to provide the demanded protection properties
given in 1.2 inside a specified environment. The expected presence of a fraudulent party
amongst the communication partners makes it necessary to use secret knowledge which is
only disclosed to legal participants of the group.

In the former chapter we separated mechanisms whether they use obscurity or known crypto-
graphic systems to reach the protection target. In the following, we will describe both kinds of
mechanisms.

Mechanisms Based on Obscurity

Mechanisms based on obscurity rely on the secrecy of internal structures of the processing
algorithms and used transport formats. As a piece of binary data does not disclose any infor-
mation about itself, knowledge about the algorithms and parameters used to create the data is
necessary to reveal any structured information from it.

There are three ways of breaking such a system. The obvious one is to leak the information
about the used algorithm through a social attack. As everyone who is involved in the develop-

13
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ment of the system must have knowledge of, at least parts of, the secret processing code, it
should be possible to find somebody who discloses his knowledge. If this is not an option, two
technical solutions remain.

A cryptanalysis requires at minimum access to pieces of protected data and an idea about
what the plain text should look like. The chances for a successful analysis raise, if we have
access to the mechanism and can watch the systems response on freely chosen input values
(known-text-attack [46]).

If we have direct access to the software, we can perform reverse engineering [53] on the code
and will finally receive a readable copy of the algorithm inside the binary.

Mechanisms Based on Cryptographic Algorithms

Cryptographic methods comprise of two components, an algorithm and a set of initialisation
parameters. According to the principle of Kerckhoffs, the algorithm should be public and the
secrecy of the initialisation parameters, usually referred to as key, the sole requirement for the
systems security [9].

There are a lot of mature algorithms available today, that follow this principle and provide a
sufficient solution for our demanded properties. A good summary on such algorithms is given
in [46].

What possibilities are now left for a fraudulent user to circumvent the protection system? Leak-
ing knowledge about the algorithm is ineffective as it is usually already public. Leaking the used
key by a social attack is again a possible method, but it would be harder if not impossible as
the amount of users knowing such a key is significantly smaller than in the previous example. If
keys are provided by fully automated processes, a social attack is even impossible.

Cryptanalysis is usually no option as modern algorithms are designed not to allow conclusions
about the used key, even if an offender can chose and watch arbitrary input/output pairs. Re-
verse engineering of the software itself is also useless, as it does not contain any secret infor-
mation.

So, if we cannot gather information from captured information by cryptanalysis and we cannot
convince somebody to tell us the used key, what else can we do. We must try to get the
key material during or after it is inserted into the system, which requires access to one of the
systems legally participating in the communication.

2.1.2 Methods to Attack a Protection System

In the upcoming paragraphs we will outline some practical entrypoints to circumvent protection
systems.
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Eavesdrop a Message Transfer

Eavesdropping a connection is the least invasive method, easy to conduct and impossible to
prevent or detect when using public transport lines. The only possible attack is a cryptanalysis
on the gathered data which imposes no risk when mature algorithms are used. Only a badly
designed system might become broken by such an attack.

Man in the Middle

For a Man in the Middle attack, an offender must not only eavesdrop the data transfer but
manage to intercept all data packets between the two communication partners. If the attacker
can intercept the initial connection request and trick the legal opponents to accept his identity, he
is able to read and manipulate all exchanged information. Using strong authentication requires
a preshared base but eliminates such a threat.

Sandbox Examination

The most promising technical attack is the examination of the protection system while it is in
operation. For the obscurity part of a system, we can do such an examination in a special
laboratory sandbox where we can control the processing environment and easily monitor or
even modify each resource access done by the examined subject. As the obscurity system
does not use external input, it should behave equally on the real target system and inside the
sandbox.

Subverting a Live System

For cryptographic systems, we must perform the examination in the live environment, as we
do not have the desired keys in a sandbox setup. To conduct such a live examination, we
must subvert the protection functions of the live system in a way, that the legal user does not
recognize the modifications and enters his key material into the compromised system.

Usually a running operating system protects itself from manipulations to its own core system.
An ever possible and easy approach is the insertion of a control layer underneath or into the
operating system kernel while the system is shut down, which is an easy task for an attacker
with physical access to the platform. An attacker without physical access must circumvent the
protection mechanisms of the operating system to place manipulations directly into the live
system, which is possible through an unpatched vulnerability. A look on the security advisories
of Secunia [47–50] shows, that such vulnerabilities are discovered from time to time in all major
desktop operating systems and as “Many systems remain vulnerable to security flaws months
or even years after corrections become available” [1], we can expect that the chance to find
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an exploitable hole in a system is high for the majority of systems during a huge part of their
lifetime.

There are some studies about new threats arising from modern architectures with support for
hardware virtualization. Such a virtualization is fully transparent to the guest system and eases
the development to insert and hide control layers into the monitored system [41,43].

2.1.3 Consequences of Disclosure

While the efforts to successfully disclose an algorithm or key material are hard to guess in gen-
eral, the consequences can be stated without any doubt. If we manage to reveal an obfuscated
algorithm, the result is a total loss of security for all installations using this particular system.
All material released in the past can be decrypted and the whole algorithm must be redesigned
and deployed to compensate the breakage.

If a key gets disclosed, the attacker primarily gets access only to material which is under control
of this particular key. If he manages to reproduce the necessary steps to extract the key from a
running system, he can extract arbitrary keys whenever they are handled by a system. Contrary
to a disclosure of the obfuscated algorithm, we are faced with a problem in the implementation
of the algorithm which can be easily modified to prevent any further exploitation of the gained
knownledge. Material protected with other than the disclosed keys is not affected as long as
no legal user reveals keys to a system running the weak implementation while an attacker is
present.

2.2 Digital Signatures and Certificate Infrastructures

Digital signatures are an appropriate tool to provide integrity and authenticity for arbitrary data
items, even in a hostile environment. This section gives a short introduction on signature
schemes based on symmetric and asymmetric cryptography and outlines the properties and
mechanisms of a public key infrastructure based on the ITU-T-Standard X.509 [55].

2.2.1 Symmetric Key Signatures

Signatures based on symmetric algorithms require a shared secret for all involved parties.

An easy way for such a signature is a salted-hash or HMAC function as denoted in RFC
2104 [35]. The input data is extended with the common secret using basic operations as con-
catenation or the XOR operator before it is passed to a hash function like MD5 or SHA-1. As the
hash function is irreversible it is impossible to gain knowledge about the input data and therefore
it is not possbile to extract the key from the signature. The verifier just does like the signer and
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compares the result against the received signature token.

As an alternative, the hash-value can be taken by a standard hash function and encrypted with
a symmetric algorithm afterwards. The receiver decrypts the received hash or encrypts the one
he calculated on the probe and compares both results. As an attacker has access to clear text
and cypher text, algorithms that are known to be vulnerable against a known plaintext attack,
like DES, are not suited for this purpose.

HMACs are very fast and symmetric encryption is still a lot faster than public key signature
schemes. Besides the symmetric methods provide an equivalent security level at a shorter
keysize. Their main problem is the distribution and storage of the shared secret. As every party
has access to the same secret, everyone is able to create a valid signature. The TPM might
offer a secure storage for such a shared secret and there are secure methods to distribute it,
but as the TPM does not support symmetric algorithms, the actual cryptographic operation is
always done in software. This requires availability of the key in the system memory and in case
of a security leak, the key might be disclosed which breaks the security base of the system.

2.2.2 Public Key Signatures

Public Key Signatures use asymmetric cryptographic algorithms where the key consists of two
pieces, one of which is secret and one is public. One of the best known algorithms of this
class is the RSA algorithm [33], which is used widely on the internet, for example for securing
HTTP [40] or signed/encrypted eMail [20], and which is the main algorithm in the TCG concept.
One of the major benefits of public key signatures is, that distributing the public key imposes no
security problem and that everyone who knows this key can check the validity of a signature.
A disadvantage is the high complexity of the underlying mathematical calculations. If a large
number of signatures must be processed or the available resources are very low, like on mobile
or embedded systems, the RSA algorithm might not perform in a suitable manner.

While RSA is suitable for signature and encryption, there are other algorithms like the Digi-
tal Signature Algorithm DSA [46, p553] or its successor ElGamal [46, p543] that provide only
signatures.

2.2.3 Public Key Certificate Infrastructure

A Public Key Certificate Infrastructure according to ITU-T-Standard X.509 (ISO/IEC 9594 [55]
respectively RFC3280 [30]) consists of services and structures that provide manageability of key
material and signatures. The basic element is the digital certificate, a data structure containing
a set of attributes. These attributes describe the technical methods, like the cryptographic
algorithms, that were used to create the certificate, an unique identifier for the subject certified
and a serial number for the certificate. Further there are attributes that describe the issuer and,
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which will become important in our usecase, attributes to give a time based validity interval and
a pointer to a revocation service, where certificates can be declared invalid before their stated
validity period is over.

X.509 Public Key Certificates

Public key certificates are used to certify a cryptographic key. The subject is used to bind the
certificate to an entity, for example an eMail address or the name of a person or institution while
the public part of the users key is referenced by a special field, named public key info.

By daisy-chaining more than one certificate a key hierarchy is created. Usually, a key is used
either for signing other certificates or for end-user purposes like signing and encrypting docu-
ments. A typical setup consists of three hierarchic levels, whereas the topmost node is called
the root key. As no authority exists above this key, the certificate about the key is signed with
the key itself and represents a certificate authority (CA). This root key is used to certify a small
number, for most setups one is sufficient, of intermediate keys, often referred to as Sub-CA or
User-CA. These intermediate keys are now used to sign the end-user keys.

From a functional point of view the root and intermediate level can be merged, if there is only
one intermediate CA, but having them separated has a big advantage from a cryptographic
point of view. The intermediate key is used frequently to sign the end user certificates. Each
usage raises the risk that the key gets revealed and raises the chance for an attacker to create a
collision between a self chosen fraudulent certificate and a legal one. As a countermeasure the
lifetime of the signing key should not exceed a certain amount of signatures. On the other hand,
exchanging the root key has to be done out of band of the existing infrastructure raising a strong
effort and new risks that should be avoided. Hence, it is reasonable to stick with separated root
and intermediate keys where the root key can have a much longer lifetime as the intermediate
key, superseding expensive root key exchanges while keeping the risk of a key compromise low.

X.509 Attribute Certificates

Attribute certificates are another kind of certificates within the X.509 family, defined in section
12.1 of ISO/IEC 9594-8:2005 [55], but not that widespread today than their public key pendants.
While public key certificates link a public key and a subject, an attribute certificate assign a
set of arbitrary defined attributes to a holder. The description of the holder is not limited to
distinguished names but can also reference a filename, integrity hash values or other, nearly
arbitrary chosen identifiers. The definition of the attributes is left to the user and is just limited
to the technical boundaries of the ASN.1 language and the used encoding rules.

An example on the usage of attribute certificates for authorization is the profile given in RFC
3281 [14], which defines an attribute certificate used to grant rights to an entity. The profile



2.2. DIGITAL SIGNATURES AND CERTIFICATE INFRASTRUCTURES 19

offers some basic attributes to describe common properties in the field of authentication and
authorization, like role and group membership, but also allows the creation of own attributes.

For our work, we need such attribute certificates in two places. First, for the rollback protection
of the CRL verification system and second, for the property definitions of the system files. As
the profile given in RFC 3281 does not suit our needs for these, we created two new profiles
based on ISO/IEC 9594. A formal definition of these is given in A.1, A.2 in the Appendix.

Certificate Revocation

The possibility to revoke certificates is one of the most important features we need for the
proposed content protection system. Usually a certificate is issued with a fixed validity period,
but there are two classes of reasons why it can be necessary to invalidate a certificate before
the validity period is over. Loosing control over the certified key is one reason, the expiry of the
conformance between the actual situation and the certification policy the other one. To explain
the issues, a short real life example is given. A company hands out keys to each employee for
signing and encrypting email. If the employee looses the key or has the suspicion that a third
party revealed it, the control over the key is lost. If the employee leaves the company, he is no
longer allowed to sign mails in the name of the employer and the requirement of the certification
policy has expired.

A straight forward approach is re-issuing certificates with a very short validity period, so called
Short-Lived Certificates [7,45], as long as the requirements are fulfilled. This method causes a
high output of certificates that must be distributed to all involved parties, forces a faster renewal
of the intermediate keys and requires the frequent availability of a network connection. The
major design parameter is the validity period which affects the necessary workload of the issuer
on the one hand and the accepted latency and the dependence on a network connection on the
other hand.

To overcome this situation, the X.509 standard defines two explicit ways for revoking certificates.
First, each CA should issue a certificate revocation list (CRL) that contains the serial numbers
and the date of revocation of all revoked certificates. The list itself has also a validity period
after it should not be used and an updated version should be fetched from the crl distribution
point (CDP). It is allowed and common practice to poll the CDP more frequently than at the end
of the given validity period, thus the latency for detecting a revoked certificate is at maximum
the time elapsing between two polls which can also be adjusted depending on the importance
of the requested validation.

While CRLs can be distributed via insecure or asynchronous channels and are suitable for
systems without a permanent connection to the internet, the second method within the X.509
standard is for systems with a permanent connection to an authoritative server. The online
certificate status protocol (OCSP), as specified in RFC2560 [37], describes an online service
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that delivers information about the status of a certificate. The verifier send a list of identifiers
for the certificates in question to the responder and obtains a response indicating the status of
these certificates. The standard does not require but offers the usage of a sender generated
nonce and signed responses to prevent replay attacks and forgery. As the response is created
fresh upon the request, no latency is introduced by the protocol. The latency of the response
is solely determined by the freshness of the underlying datasource at the responder system.
If the responder is connected directly to the leading database of the CA, there is almost no
latency between a revocation by the CA and the availability of this information at the verification
instance.

The server-based certificate validation Protocol (SCVP) [18] is another online status protocol
that basically provides a similar service like the OCSP but also verifies the validity of the trust
chain of the requested certificate. The protocol is in draft status since it was first published in
1999 and no usable public implementation is known to the author at the time of writing, so it was
not investigated further during this thesis.

2.3 Recent Developments on Trusted Computing

2.3.1 The Trusted Computing Group

“The Trusted Computing Group (TCG) is a not-for-profit organization formed to de-
velop, define, and promote open standards for hardware-enabled trusted computing
and security technologies, including hardware building blocks and software inter-
faces, across multiple platforms, peripherals, and devices. TCG specifications will
enable more secure computing environments without compromising functional in-
tegrity, privacy, or individual rights. The primary goal is to help users protect their
information assets (data, passwords, keys, etc.) from compromise due to external
software attack and physical theft.” [24]

PC-System Related Activities

The TCG workinggroups are active on several areas of computing and infrastructure equipment
whereas the majority of issued specifications provide services based on the Trusted Platform
Module. When working with PC-Systems, three different specifications are of interest. The
“Trusted Platform Module (TPM) Specifications” [25] describe the general properties of the TPM
hardware while the “PC Client Specifications” [22] go into detail about the implementation of a
TPM module into a PC-style computing system. The current specifications support platforms
with a conventional BIOS [21] and the newer EFI [27, 28]. The TPM module can do only a few
basic operations on its own while a lot of services are actually provided by a software stack
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running on top of the hardware. The TCG issues the “TCG Software Stack (TSS)1 Specifica-
tions” [23] which describe the extended services and their interfaces.

2.3.2 Trusted Platform Concept

General Concept

The main idea behind the trusted platform concept, as defined by the trusted computing group,
is the creation of a chain of measurement values that prove the trust state of the platform. A
measurement in this context means, the SHA-1 hash value of the item to measure is calculated
and the result is written into one of the platform configuration registers. The next paragraphs
explain the individual functional components inside and around the TPM, which are responsible
to perform those measurements or necessary for the functions offered by the TPM.

Trusted Building Block

The “Trusted Building Block” defines the peripheral components aside the Trusted Platform
Module which are necessary to initialise the trust chain and communicate with the TPM. This
section gives a short overview of the accompanying entities on the PC platform.

LPC-Bus The LPC-Bus (Low Pin Count Bus) [5] is the default bus system on PC-style moth-
erboards to communicate with low speed I/O devices. The TPM is connected to the chipset and
the processor of a system through this bus. One remarkable point regarding this bus is the pres-
ence of a dedicated reset pin which enables an attacker with physical access to compromise
the platform under certain circumstances [34].

Core Root of Trust for Measurement (CRTM) The Core Root of Trust for Measurement com-
plements the BIOS of a PC platform. It provides executable code to perform the initial measure-
ment of the platform and represents the basis of the chain of trust. According to the specification,
the code must be immutable and each code execution after a reset of the platform must begin
at this code [21, p30-31,33].

Physical Presence Mechanism Some TPM commands require the proof, that the user is
physically present at the platform. One possible mechanism may be implemented via the key-
board controller, which is therefore a part of the Trusted Building Block [21, p117].

1The meaning of the letter ”T“ in TSS is not clear, the TCG uses both ”TCG Software Stack“ and ”TPM Software
Stack“ in public documents, while in researcher papers and projects often the word ”Trusted Software Stack“ is read.
For this work we stick to ”TCG Software Stack“ as it is the title of the specification document.
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Platform Configuration Registers (PCR)

The Platform Configuration Registers (PCR) are the key element of the TPM where measure-
ment values of the different boot phases are stored. As the number of measurements can get
large, the storage mechanism should not limit their number while keeping a complete history off
all measurements done.

The measurement routine bases on the SHA1 hash function and is represented by the pseudo-
code

PCRnew = fSHA1(PCRold|V alue),

where | is the concatenation operator. Due to the irreversibility of the hash function it is infeasi-
ble to predict an input value that leads to a certain new register value which is also true for the
concatenation. Thus an attacker might not find a sequence of measurement values that ends
up in the same register value than the present one.

Each register needs to be 160bit wide to store the result of the hash function and must be kept in
a shielded location to prevent external modification. To be compliant with the current PC Client
Specification a TPM must provide at least 24 individual registers [21, p19] which are assigned to
different phases of the boot process. The first sixteen registers, PCR0 to PCR15, form the static
core root of trust (see 2.3.3) where the lower eight are used during the pre-operating system
phase by the CRTM, the BIOS code and the platform loader while PCR8 to PCR15 can be used
by the operating system. These PCRs are initialised on each platform restart with zeros and are
not resettable while the platform is running.

PCR17 to PCR22 are usable only in the context of a dynamic root of trust (see 2.3.3) which
requires a recent mainboard/CPU with a special instruction set2. While the lower PCRs of the
SRTM can be read or written at any time, these PCRs have a new property named “locality”
assigned. The current locality level is determined by the CPU and included in every command
send via the LPC-bus. Each register has its own bitmap under which locality it is allowed to
read from or write to it. As a new feature, the PCRs are resettable without taking down the
whole platform. A brief description how these new features support dynamic loading of different
operating systems and help to eliminate some issues with the SRTM is given in 2.3.3.

The PCR23 is intended to be used directly by applications and is accessible and resettable at
any time

PCR16 is for testing and debugging and not used during normal operation.

Endorsement Key (EK)

The endorsement key is a RSA key-pair with a keysize of 2048bit [25, p29] and is unique for
each TPM. The TPM can create the key internally, which is recommended from a security point

2Currently offered as Secure Virtual Machine Architecture (AMD) and Trusted Execution Technology (Intel)



2.3. RECENT DEVELOPMENTS ON TRUSTED COMPUTING 23

of view, but can also use a key injected from outside. The main purpose of the EK is the
authentication of the platform which requires a certificate over the EK, stating that this key
belongs to a genuine and compliant TPM.

The private part of the EK is obviously critical for the security of the authentication process. The
public part is not security critical in the usual sense but can be used to trace the platform over
several unique transactions, which might affect privacy of users. Therefore, the public key is
guarded by the TPM and handed out only after proper authorization by the owner.

To protect the privacy and also the security of the platform, external signing requests are per-
formed with an “Attestation Identity Key” and not with the EK itself wherever possible.

Attestation Identity Key (AIK)

The attestation identity keys were introduced as an alias for the EK to protect the secrecy of the
EK and the privacy of the user. A platform can, in theory, create an arbitrary number of such
AIKs using a different key each time it wants to prevent the linkability of two transactions. To
convince the opposing party that the used AIK belongs to a real TPM, a certificate of a trusted
third party, often called Privacy CA, is used. Each time a platfrom creates a new AIK, it connects
to the Privacy CA, authenticates itself using the EK and the EK certificate and sends the public
part of the AIK. The Privacy CA will verify the EK certificate and issue a certificate over the
AIK without including any information that is suitable to link an AIK to the EK or other AIKs. A
detailed description of AIK creation is given at [25, p58-59].

Using AIKs instead of the EK provides another advantage if the platform owner is not equal to
the user or has more than one user. Using the EK requires the TPM owner password, which
is also used for other critical operations that in general should not be performed by a user.
The AIKs are protected by user-provided credentials and thus can be used independently from
each other. This is important especially in the case where the AIK is used to deliberately link
transactions.

Storage Root Key (SRK)

The storage root key is a non-migratable 2048bit RSA key and represents the topmost node of
the local key hierarchy. It is created during the initialisation process of the TPM and its private
part will never leave the originating TPM. Its public key is exportable and can be used to encrypt
data for this particular TPM, but it is up to the user to prove the relation between the public key
and the platform, as the key contains no direct proof of its origin.

The SRK is the only key, except the EK, which is stored permanently in the shielded environment
of the TPM. Any other key used with the TPM is encrypted, at least indirect, under the SRK and
stored outside the TPM on an external storage device.
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The TPM Clear command destroys the SRK and with it all keys underneath and renders all data
associated with the platform inaccessible. This step is essential if the platform is handed over
to another party to prevent the new owner from accessing keys or data.

Monotonic Counters

The monotonic counters are designed to provide an ever-increasing value during the whole life-
time of a TPM. The creation of a counter requires the TPM owner password and the assignment
of a new authentication credential which is used subsequently to increase the counter value
while read access to the counter is possible without any authorization. The specification de-
mands, that the counters can handle an increment rate of once every five seconds for at least
seven years of continous operation. The TPM must provide at least four individual concurrent
counters, but demands that only one of them can be incremented between two platform resets.

When creating a new counter, the initial start value is set to the increment-by-one of the largest
existing counter value, as otherwise an attacker might decrease a counter by deleting and re-
creating it with the same name. In [25, p88] the internal structure is explained by an example.

TCG Software Stack (TSS)

The TCG software stack specification is intended to provide a universal programming interface
for application developers across operating systems and platforms. Its specification is more
than a pure hardware driver and defines high level functions and services instead of direct
interfaces to the TPM hardware. For economic and security reasons, the TPM was designed to

Fig. 2.1: Layered Architecture of the TCG Software Stack
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handle only the absolute minimum of processes and data while the majority of calculations and
operations is done inside the unprotected application space of the operating platform.

The TSS runs entirely in user mode and is split up into three layers as shown in figure 2.1.
The lowest layer is the TCG Device Driver Library (TDDL) which communicates directly with the
kernel space hardware driver. As the hardware interface is not fully specified by the TCG, this
part is hardware dependant and therefore the TDDL needs to be provided by the manufacturer
of the hardware platform. The TDDL-interface towards the next layer is standardized in Chapter
6 of the TSS specification [23, p711ff] and provides a basic instruction set to communicate with
the TPM.

Upon the TDDL, the TSS Core Services (TCS) are running. Usually there will be one instance
per platform running as a system service. The interface exports the primitives and basic func-
tions to handle the resources of the underlying TPM. The TCS interface is also specified in the
TSS specification [23, p496ff] and is available locally as a linked library but can also be exported
to a remote platform using an RPC server.

The top-most layer is the TSS service provider (TSP) which provides an object oriented, ap-
plication centric interface to different services. Multiple TSPs can run in parallel and share a
common TPM as the underlying TCS interface will keep track of the individual sessions and as-
sign the TPMs resources adequately. Instances of the TSP can run either locally or remote via
the RPC connection simultaneously. The TSP interface is the same, regardless if the TSP runs
on a local or a remote TSS, so the actual location of the TPM is irrelevant for the application.

2.3.3 Application of the Trusted Platform Concept

Initial Setup of a TPM-enabled Platform

Before the TPM is usable, we must setup the endorsement key and the storage root key.

The endorsement key is usable only with a corresponding certificate of a trusted authority to
convince a remote party about the origin of the key. As the authority can verify the origin
and uniqueness of the key only by physical presence, the key is usually created during the
manufacturing of the TPM chip itself or at the time when the platform is assembled.

With version 1.2 of the TPM specification a set of commands to erase and recreate an EK
was introduced. This feature is unnecessary from a technical point of view but was demanded
at most by privacy organisations and is useful for usage scenarios in closed groups, like in a
company environment, where the EK certificate is issued by a special authority. For individual
users, the creation of a new EK raises the problem to receive a trusted EK certificate for the
self-generated key, as no other method than physical supervision guarantees that the certificate
request belongs to a TPMs EK.

The second initialisation step is executed by the platform owner when control over the machine
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is passed over. During the “Take Ownership” process, a new SRK is generated and all registers
of the TPM are initialised with default values. The owner is prompted to provide a new password
for owner authorization and the storage root key. While the owner credentials are rarely used
and should be set to a secret value it is usual to set the SRK password to a well known or even
no value and put it into the startup code on disk. This is necessary as each access to keys of
the TPM requires access to the SRK. The well known password is uncritical for security as each
operation with a key underneath the SRK can be protected with another password and the SRK
itself is never used directly.

Static Root of Trust measurement (SRTM)

Most of the services the TPM offers rely on the integrity measurement values stored in the
PCRs. How these PCRs are filled is partly defined in the platform-dependant parts of the
specifications and we will give a short summary of the information for PC-platforms given in [22,
p33ff] here.

Upon a restart of the platform, the first code that gets executed is loaded from the Core Root of
Trust for Measurement. This code is responsible to perform the measurement of the hardware
platform, which is grouped into three parts. The first measurement round includes the CRTM
itself and all components that are physically bound to the mainboard. Afterwards, firmware and
configuration registers of external components, like PCI-Slot cards, are measured. As last entity
the initial program loader is measured and executed. For each measurement group, executable
code and configuration options have their own PCR assigned. The specification is not fully
accurate what entities must or must not be measured into these PCRs but at least advises to
exclude user-dependant data from all measurements.

After these measurement steps, the PCRs 0, 2 and 4 contain values that should be predictable
by the manufacturer of the platform and immutable between boot-cycles, as all data that was
measured includes only code maintained by the platform manufacturer or its delegates. The
PCRs 1, 3 and 5 store only configuration data which should not influence the trust status of the
platform, if it is guaranteed that all subsequent steps continue with performing measurement
steps. The only exception is PCR1 which can include optional microcode updates for the CPU.
Such updates might affect the behaviour of the main processor on the lowest level and cannot
be detected afterwards, which requires that this PCR is included when making a trust statement,
if microcode updates are possible on the platform.

The PCR6 is responsible to guard transitions between the different power states of a system.
The specification suggests not to guard transitions between the ACPI Sleeping states S1 to
S3 [12, p24], as the operating system stays active during these states and the chain of trust
remains intact. A problem might arise from the transition out of S4 (“Suspend-to-Disk”), as the
whole operating system, including its internal states, is written to the disk. While the system
is suspended, an attacker might tamper with the saved system state and bring up a modified
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system on resume. To signal the operating system, that it was resumed from the S4 state, the
PCR6 records transitions from S4 and S5 (“Off”) state differently.

PCR Index Usage
PCR 0-7 Hardware
PCR 8 Binary of stage1
PCR 9 Binary of stage2
PCR 12 Arguments given to Grub
PCR 14 All Binaries loaded by

stage2 (kernel & modules)

Fig. 2.2: PCRs used by TrustedGRUB

The usage of PCR8 to PCR15 is not speci-
fied by the TCG and left to the operating sys-
tem which is started from the boot loader. At
the time of writing, no of-the-shelf software is
known to the author, that use the SRTM to pro-
tect from tampered boot binaries. Microsoft
Windows Vista seems to use only the lower
PCRs to seal the BitLocker encryption key to
the BIOS and MBR integrity [6] but does not use
the PCRs for any additional measurements af-
ter the boot loader was executed. One of the
most advanced projects, that uses the higher PCRs is the TrustedGRUB [52] project. A modi-
fied version of the standard bootloader GRUB [17] that writes fingerprints of itself and the kernel
image to a PCR before executing the code. Table 2.2 shows the measured entities and their
associated PCRs.

Dynamic Root of Trust measurement (DRTM)

The SRTM got its name because it is not possible to reset the PCR values or perform additional
measurements during the runtime of a system. The concept of a dynamic root of trust measure-
ment allows multiple independent measurements without a full reset of the platform and, what
is even more important, eliminates the dependency on the measurement values of the SRTM
which, as shown in this work, imposes some major problems.

The DRTM measurement is based on a new instruction supported by recent processors. By
calling the instruction skinit3 /senter4 from an already running program, the processor recre-
ates a new environment and bootstraps from a verified source. The initialisation of the secure
environment is done in several steps. First, the processor is initialised as it would be done on
a full restart, the locality index is set to 4 and the registers of the DRTM are reset. Now the
bootstrap code is read from a trusted source, usually from the BIOS and locked into memory in
a way that no external process can access it. Afterwards the code is validated against a cer-
tificate which is shipped with the code and send to the TPM via a secured channel, where the
fingerprint is extended into PCR17. Before the bootstrap code is executed, the locality register
of the processor is decreased to 3, which disables the reset capability for the registers PCR17
and PCR18. The further steps are not defined in the TCG specifications, the PCRs 19 to 22 are
usable by the trusted operating system whereof PCR20 to PCR22 are resetable from locality 2.

3on AMD Platforms supporting Secure Virtual Machine Architecture
4on Intel platforms supporting Trusted Execution Technology
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Key Hierarchy and Cryptographic Operations

Key Usage Types and Key Hierarchy The TPM provides a secure storage system for RSA
keys and supports encryption and signature generation with these keys inside the shielded en-
vironment. The interface was not designed to provide a fully fledged cryptographic coprocessor
for arbitrary keys but is limited to be used with TPM-owned keys on data blocks up to the RSA
key length. Each key must have one out of the four different key usage types Storage, Signature,
Migration or Attestation assigned. While keys of the latter type are created and handled with
an own set of commands the other three are handled equally through the same management
functions.

Due to limited storage inside the TPM, all keys are stored outside the TPM when not in use,
protected by encryption with a wrapping key. For the AIKs this wrapping key is always the
storage root key, for all other keys it can also be any other TPM-owned key of type storage as
shown in figure 2.3. Based on this parent-child relation the keys span a hierarchy tree with the
SRK as the topmost node. It is obvious, that using a key requires access to its parent key to
get it decrypted from the external storage. As this requirement applies recursive to the parent
keys, all keys in the hierarchy up to the SRK must be loaded into the TPM when access to a
key is required. The number of parent keys between a key and the storage root is not limited
by the specification or technical means, but as all keys of the hierarchy must be loaded into and
decrypted by the TPM, the latency grows with each level. As each key can be protected by a
user provided authentication secret, this hierarchical storage mechanism provides an access
control system at the same time.

Binding Keys to a Platform State The protection of a key through encryption and authen-
tication credentials prevents an attacker from directly accessing or using the key without the
interaction of a legal owner but does not provide protection from abuse by system compromise.
The specification offers the possibility to lock down each key to a specified set of PCR values,

Fig. 2.3: Hierarchy of Keytypes using the TPM
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that must be present when the key is loaded into the TPM. In combination with a suitable mea-
surement routine a compromise of the system reflects in modified PCR values which causes
the TPM to deny access to the key material. In conjunction with the hierarchical storage model
it is even possible to bind a key to the transition of a sequence of different PCR states.

When binding a key to a certain platform state, the migration property of a key is of essential
matter. Basically, keys protected by the TPM never leave the shielded environment in an unpro-
tected form and are bound to the particular platform. Thus, a party who secures material with a
TPM-owned and PCR-bound key can be sure that it becomes accessible only on a genuine TPM
platform during a defined state of operation. For certain scenarios it is necessary to share keys
between platforms which is supported by a set of commands to migrate key material. Unfortu-
nately there is no technical way to ensure that migration is done only between TPM-protected
platforms and thus the migration system can be abused to reveal plain keys outside a TPM-
protected environment. As a proper authorization of several entities, including the platform and
the key owner, is necessary to migrate a key, this does not raise any security considerations
as long as the credential holders cooperate with the security target. This attitude changes, if a
third party hands out material under the assumption that the TPM platform protects their assets.
To bridge the gap between both necessities, each key carries a flag that indicates if the key is
migratable or not. The specifications mandates, that certain keys, for example AIKs or wrapping
keys for the seal operation, are non-migratable. For obvious reasons, a set migratable flag is
virulent for all children.

Data-Encryption and Sealed Storage The TPM offers two different methods for encrypting
data. The first method is a simple rsa-based encryption with TPM protected keys. As described
above, a user can create a new keypair inside the TPM and retrieve the public part of the key.
The TPM itself does not offer encryption under a public key but this is easily done by hand or
using an appropriate helper function from the TSS. To decrypt the data of such an operation,
the user must load the correct key into the TPM and run the TPM Unbind command. This
sequence will work also with migratable keys and therefore allows share or backup of encrypted
data between different platforms.

The other method is known under the term sealing and frequently used in our system approach.
The TPM Seal/TPM Unseal commands are both executed inside the TPM and differ in two prop-
erties from the encryption method above. First, sealing is not allowed using migratable keys and
thus the data is bound to the specific platform. Additionally, the sealing operation includes two
sets of PCR patterns, whereof one shows the PCR state at the time the seal was created and
the other one acts as binding condition for the unseal process. The TPM will refuse to decrypt
the data, if the values in the PCRs does not match the ones mentioned in the object.

From the view of the bare encryption process, both methods are RSA calculations without ad-
ditional preprocessing like padding or segmentation and therefore the datasize is limited to the
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key size. To encrypt data blocks larger than the used RSA key while retaining the strong pro-
tection of the TPM, a hybrid encryption system should be used. A possible approach uses the
symmetric AES algorithm to encrypt the application data and uses the TPM to wrap the used
AES key into a cryptographic envelope. A major problem, when using encryption techniques, is
the generation of a real random key, so it is not possible for an attacker to shorten the key range
for a brute force attack. The TPM can support this critical task with its built-in random number
generator and provide unpredictable real random data for the AES key.

Digital Signatures Besides data encryption, the TPM provides a facility for digital signatures.
Signature keys are always leafs of the key tree, depending on the SRK and an arbitrary number,
including none, of intermediate keys. The TPM supports two different signature commands,
which are both usable with every key from the key hierarchy that has the correct usage flag set.

The TPM Sign command [26, p126] accepts input data from an external source and signs it with
the loaded key, which must have its key usage flag set to Signature. The only benefit of the TPM
in this case is the protection of the signature key as no statement about the platform state nor a
relation to a TPM platform is expressed directly by the signature. If the used key is bound to a
PCR configuration, the signature creates an indirect relation between the system state and the
signature but requires an intermediate authority to express this circumstances.

The TPM Quote command [26, p160] is used to express the relation to a certain platform state
directly, as it includes a structure of selected PCR values into the signature. As mentioned
above, the signature key has no provable relation to the platform and thus this reporting of PCR
values is only useful in a controlled environment. Otherwise, the key owner might prepare a
faked structure looking like legal PCR information and sign it using the TPM Sign command or
create such a signature without a TPM at all. The TPM Quote operation also accepts AIKs as
signing keys, which is then called Remote Attestation and explained in the next section.

Remote Attestation

A remote attestation should prove the integrity of a platform against an external challenger. If
both parties agree on the integrity of a hardware configuration and a set of binaries, it is sufficient
for the platform to prove, that only such binaries were used to reach the current state. If platform
and binaries use the PCRs to measure themselves, the current PCR values are suitable to prove
the correctness of an untrusted transaction log.

A successful attestation splits into three steps.

1. The challenger sends an attestation request to the platform. A nonce is included in the
request to prevent replay attacks. The platform creates a signature over the nonce and
the current value of its PCRs and sends it back to the challenger. The transaction log
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over the boot process might be included to support the challenger to identify the running
configuration.

2. The challenger uses the transaction log, or other knowledge, to calculate the resulting
PCR values for a platform running in the assumed state and compares them against the
ones submitted by the attestor.

3. The challenger uses the nonce to check that the signature is fresh and verifies the certifi-
cate chain of the signature to ensure it was created by a genuine TPM.

The current TPM specification defines two different protocols to verify the authenticity of a sig-
nature. The older method uses the TPM Quote command to create an RSA signature with an
AIK to link the message to a genuine TPM. This approach has two pitfalls for the privacy of
the user and raised a lot of criticism regarding the role of the Privacy CA. If a platform uses an
AIK in two individual transactions, the challenger can link both together as the AIK identifies the
platform. Creating a new AIK for every transaction might be a theoretical solution, but makes
a high throughput and a fast response of the Privacy CA mandatory, which conflicts with the
necessary security requirements. A second aspect is the trustworthiness of the Privacy CA, as
they are in the position to link each AIK to the corresponding EK.

The solution proposed in [3] solves both issues and was adopted as second method for remote
attestation for the current version of the TPM specification. When using this “Direct Anonymous
Attestation”, we still need a trusted third party to certify that the used DAA credential originates
from a real TPM. The DAA protocol uses a proof of knowledge instead of a RSA signature and
thus does not expose any recurring information to the challenger over multiple sessions. Hence,
neither the certification instance or the challenger, nor both together are in the position to detect
subsequent operations from the same origin. take. under

2.3.4 The Open Trusted Computing (OpenTC) Project

About the Project

The Open Trusted Computing (OpenTC) Project is a research and development project co-
financed under the 6th framework program of the european commission. The project target is
the development of an open source framework around the TPM and the TCG concepts. The
implementations are mainly done with respect to the upcoming x86 platforms but the concepts
are usable on mobile and embedded devices, too. Further information is available at the project
website at http://www.opentc.net [54].
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Fig. 2.4: OpenTC Layer Architecture

The OpenTC System Concept

The system concept is based on virtualization. Instead of having one monolithic operating
system running on the physical host, the applications are grouped according to security and
usability aspects and are put into virtualised compartments. These compartments run on top
of a secure hypervisor which provides strong isolation for the shared physical resources. The
technical basis for the PC-platform prototypes are the L4 microkernel or the XEN virtual machine
monitor which are extended by a new, intermediate layer, the Security Services Layer, as
shown in figure 2.4. Besides the virtualised resources, this layer provides three groups of new
services which are partially based on the capabilities of the TPM. The individual application
systems, which run inside their own virtual machine on the virtual machine layer, can access
the provided services through special interfaces, as also shown in the figure. 5

Compartment Management The first group is a set of management services to handle any-
thing related to the execution of the compartments. Access to this management functions is
only possible from a special instance on the virtual machine layer, which takes the role of a
management system. One of the most important services provided by the compartment man-
agement is the compartment security manager which provides a user interface to perform a
measurement and attest the current state of the host system platform and the compartments.
Regarding the attestation of compartments a set of predefined security properties [11,31,42] is
used instead of values from the binary measurement which allows a fast decision weather the
started compartment meets a given policy or not. Based on this decision, access to resources
as hardware devices, intercommunication between compartments or services running in the
management domains is moderated.

5This section describes parts of the concept as published or internally discussed at the time of writing. As
the whole project is work in progress and not all information is documented or disclosed to the public, the given
information might be incorrect or overhauled in the future.
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Virtual Resources & Protective Services The provisioning of virtual resources is an inher-
ited function from the virtualization layer while the protective services add secure communication
and storage on top of the virtualised resources in a way that is transparent to the guest system.
The whole work to technically apply the protection is done by services running on the host sys-
tem and the protected resources are offered to the guests through standard interfaces. Two
major advantages arise from this approach. First, from inside the guest system the protected
resources are indistinguishable from unprotected components and therefore usable without any
modifications inside the guests. Second, an attacker from inside the guest can neither ma-
nipulate the protection system nor gain access to credentials as all related processes happen
outside the environment of the guest.

An example using those protective services is the currently developed OpenTC demonstrator
for “Personal Electronic Transaction” [11]. A guest suitable for secure webbased transactions,
e.g. for online banking, stores the confidential data on a storage device which is under control
of the host system. The only outbound connection of the guest is a SSL protected network link,
also controlled by the host system. To unseal the user credentials, the guest must pass the local
integrity verification and the authenticity of the SSL link must be verified. In addition, a remote
attestation against the banking server is done to ensure the integrity of the communication
partner. As the verification is done outside the guest and without user interaction, the usual
weakness that the SSL verification fails either due to the unawareness of the user or due to
malware spoofing the verification chain is eliminated.

High Level Services for Trusted Computing While the already described services are re-
sponsible to create and maintain the secure compartments and their environments and are
mainly invisible for the guest, the third group of services is targeted to support application devel-
opers inside the guests. Examples are convenient interfaces to store and access keys or data
under protection of the TPM from inside the guests.
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Chapter 3

Concept for a New Protection System

The first part of this chapter describes the main idea behind the new digest creation method and
discusses different technical concepts. In the middle part, we give an introduction, why risk and
security are no binary arguments and why it is impossible to make a quantitative statement on
their value. The chapter closes with a concept, how qualitative risk classification can be used to
build a protection system based on a modified multilevel security model.

3.1 Finding a Suitable Evaluation Criteria

3.1.1 Requirements on the Digest Creation Method

The requirements on the new measurement system are twofold. First, we want to distinguish
authorized and fraudulent changes to system files and ensure the accessability of sealed data
in the former case. Second, a system meanwhile identified as vulnerable should not be able
to access formerly stored data to prevent intruders from extracting any data. To use the TPM
functions for this purpose, we must work around the relation between fingerprint calculation,
values in the PCRs and access to the sealed data.

The access control is based on the selected set of PCRs and is done by the hardware. Changing
the behaviour of the hardware is not within the scope of this work, so the only point we can work
on, is the association between files, fingerprints and PCR values. The first component under the
control of the platform owner is the code of the initial bootloader, which we can modify to fit our
needs. The internal hardware-based components like the BIOS code and even the first track of
the bootloader software are measured by code implemented in the platform’s hardware and thus
not accessible for this work either, which excludes these components from our improvements.

The basic idea is, to keep the values assigned to the PCRs constant for all legal situations.
This will grant permanent access to sealed data (see 2.3.3) and provides a unique value to

35
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an attestor, disregarding actual details of the configuration but proving a predefined statement.
Currently, the values feed into the PCRs are created by applying the SHA-1 cryptographic hash
function directly on the binary of the measured file. If we want to keep this mechanism, we must
ensure that all legal binaries produce the same output, which means

sha1(Binarya) = sha1(Binaryb), a 6= b

which is obviously contrary to the the design concept of a cryptographic hash function. Instead
of running the hash function on the binaries of the software, we need a representative value that
can be used to create the relevant PCR values and is received from an artificial mapping. This
mapping should deliver an unchanged value for a file that is a legal successor, but should not
resolve to the “correct”1 (old) value for a binary that was trusted before, but has turned out to be
vulnerable.

3.1.2 Integrity as Decision Criterion

Before we can start to create a technical representation of this mapping, we must define under
which conditions two files are allowed to be exchangeable and therefore be represented by the
same value. The, for cryptographers, obvious answer to this question: “if the system-integrity is
not affected”, leads to the question, what is a system’s integrity and how can it be measured.

Integrity is an abstract measure - there is no intrinsic method to calculate the integrity value of
something. Instead, many formal definitions of the term “integrity” are used in different fields of
application.

In information security, the term integrity expresses that a defined set of properties of an ob-
served subject remains unchanged between two observations. This seems to be close to the
understanding of “integrity” by the TCG, where the observed property that must stay unchanged
is the hash value of the binaries.

The Stanford Encyclopedia of Philosophy [58] gives a broader definition:

...integrity is connected in an important way to acting morally, in other words,
there are some substantive or normative constraints on what it is to act with integrity.

Having a look on the motivation for the technical concept reveals, that the latter definition is
close to the problem that should be addressed. Nobody has the intention to enforce a certain
value of the PCR registers or a certain binary to be used. This technical measure is taken upon
the assumption, that the selected values represent a system, which behaves according to a
given expectation. As we will show in some of the next paragraphs, there is no general way to

1 correct is interpreted as “expresses the sane state” and allows access to sealed data
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formally prove such a conformance and, according to the model of Arbaugh, vulnerabilities will
be discovered so the observed behaviour deviates from the expected behaviour after the initial
evaluation.

In this case, there are two possibilities to keep the integrity statement on the system upright. In
certain cases it might be possible to simply bend the specification to fit the observered behaviour
of the software. This might be a good choice, if the abnormality affects only parts that are
irrelevant for the actual use case or can be fixed easier outside the system. It is obvious that a
change in the specification might imply legal or technical problems, as normally multiple parties
agree on such a specification and base their business models or cooperating technical systems
on it. Therefore, the normal procedure to react on a software bug is to fix it and release a new
version so the observed behaviour matches the expectation again.

Regarding the introductory question, what requirements should be met by two files to be ex-
changeable, the above paragraph gives an answer. The integrity state of a system can be
evaluated by comparing its observed and expected behaviour against a given specification.
The result is a suitable criterion, to judge if the update of a particular file should preserve the
trust statement, given to the platform.

3.1.3 Measuring Integrity

The given answer again introduces a new question. What does such a specification look like and
how is a file compared against it? There are several standards that deal with documentation of
requirements and testing during different phases of software development, for example ISO/IEC
250512, ISO/IEC 91263 and ANSI/IEEE Std 1008-19874. These specifications are suitable to
verify that a piece of software operates as expected within its regular field of application, but do
not provide any methods to judge on security aspects. Reliable detection of, accidentally left or
deliberately placed, code that can be used to produce an unexpected behaviour is an unsolved
problem nowadays. There are tools and common guidelines available to assist developers on
reviewing the code or performing tests, but besides the inaccuracy of such tools, the ressources
necessary to perform such tests prohibit their usage during regular operation. The concept of
proof-carrying code [38] sounds promising but is currently a subject of ongoing research and
not suitable for a real world implementation.

So, for practical reasons it is necessary to delegate the integrity check to a party, that has access
to sufficient resources and can verify the conformance of a file with a given specification. As
files and their behaviour do not change during the normal operation of the system, it is sufficient
to perform the examination once and attest the gained result for later use. It is also feasible and

2ISO/IEC 25051 - Software engineering — Software product Quality Requirements and Evaluation (SQuaRE) —
Requirements for quality of Commercial Off-The-Self (COTS) software product and instructions for testing

3ISO/IEC 9126 - Software Engineering Product Quality
4ANSI/IEEE Std 1008-1987 - IEEE Standard for Software Unit Testing
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already common in software development to issue a certificate of conformity based on a quality
assured development process without inspecting the actual result.

3.2 Approaches for a New Digest Creation Method

Based on the results of the former section, the technical part of the new digest creation system
can be reduced to an attestation system which does not perform conformance testing itself. A
given attestation must fulfil three prerequisites. It must be readable within an automated process
and contain information about the conditions and the result of the performed test. We further
need a process to derive an identifier from this data which remains unchanged for all legal
versions of the attested entity5 but is also unique for every entity. As this identifier is used in
the measurement process, it must be impossible to forge an identifier or swap the identifiers of
different entities without the authorization of the attesting authority.

Attribute certificates using digital signatures as presented in 2.2 are suited to provide arbitrary
but unforgeable bindings between a subject and given attributes under the supervision of a
keyholder. In the remaining parts of this section, we explain possible methods for the identifier
derivation process and give a solution for an embedded version control system.

3.2.1 File-Based Mapping-Functions

The first class of derivation functions stays close to the original TCG approach and sets an
entity to an individual file which requires an unique specification and identifier for each file in the
system.

The workflow of a verification is common for all proposed variants. On access of each file, the
chosen attestation method is used to extract the identifier for this particular entity and is written
into the PCR. In case no matching identifier is found, an error value is written into the PCR.
As writing to the PCR is not protected by any means and the used identifier is not secret, an
attacker can use a tampered binary without a matching attestation and write the correct value
into the PCR himself otherwise. In the end, the system would show the measurement values of
a correct system while running a tampered version.

The difference in the proposed variants is the way how identifier and signature mechanism work
together.

5An entity is the smallest unit which is compared against the specification.
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Using One Key per Entity

Each key is used only for signing the different files of one entity which makes the key a unique
representative for this entity. Therefore we can directly use the public key as identifier for this
entity and write it into the PCR after a successful signature verification. The signature is created
over the hash value of the file and can be either directly attached to the file or stored in a
separate location. In the latter case its convenient to use the hash-value as identifier to link the
signature to a file.

This approach has a very close relation to the original solution proposed by the TCG and while
the necessary changes to the measurement functions are small we introduce a huge overhead
to manage the keys and signatures. We must transfer one public key along with each file
and must securely store and manage their private counterparts at the maintainers side. Both
requirements result in a huge technical effort.

Using One Global Key

Instead of using a unique key per file, we sign all files with a global signing key. As the key is
no longer a representative for an entity it is useless to write it to the PCR and we need another
way to record and represent information about the verified files.

The filename is not a suitable candidate for an identifier as there might be two files with the same
name but representing different configurations and therefore do not match the same specifica-
tion. This will work only if we use different signing key for each possible configuration which is
technically possible but causes overhead. It is more comfortable to create an artificial identifier
for the entity and include it in the signature. Configurations which differ only in a few files can
use one common signature key, as the identifiers of the individual boot configurations differ and
lead to a changed PCR value.

If we now use solely this identifier to record the sequence of verified files, we end up with one
problem. The PCR values do not contain any hint on the used signing key and therefore an
attacker might forge signatures with the correct identifiers using his own key. To prevent this
sort of attack, we need to write the used key and the identifier to the PCR. As the key remains
unchanged for all signatures, its sufficient to write it to the PCR once. It is important to write to
the PCR on start up before the first file is verified as writing it at the end of the start up sequence
still leaves the possibility for an attacker to use his own signatures and finally write a forged key
value into the PCR.

Writing the identifiers to a logfile in memory and signing it at the end gives a performance
advantage but also raises a new attack channel. If a vulnerability in a trusted file is disclosed,
an attacker might abuse it to interrupt the boot sequence and afterwards manipulates the logfiles
to hide execution of the vulnerable file. The finally signed logfile will allege another state than
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the present one to a remote challenger.

Hash-Based Reference Database

This method is a mixture of some current solutions like used in the TrustedGrub Project [52] and
the signature based approach evaluated in this work.

The two prior methods create a cryptographic signature for each individual file and derive the
identifiers from this signature. In this approach, we put all identifiers into one common database
and just protect the database as a whole by one signature.

As in the other examples, the identifier is used to represent the membership of a particular file
to an entity and we therefore must set up the database to map the stored identifiers to files on
the disk. We achieve a fast and convenient mapping, if we use the hash value of the file as
database lookup key and put the identifier into the associated dataset.

The signature created on the whole database replaces the role of the global key and represents
a common policy which is valid for all bindings contained in the database. The used key is
written into the PCR first and for each subsequent file verification the identifier gained from the
database is appended to the PCR. As far as the signature key of the database is identical with
the global key, the resulting PCR value is identical to the one using the global key approach from
the previous paragraph. This model obsoletes per-file signatures and lowers the computational
efforts but raises additional ones to extract the necessary information from the database.

Comparison of the Variants

All setups fulfill the requirement to preserve an integrity state for different files but fail to revoke
trust from a broken configuration.

Regarding their implementation, the signature-attached solutions are fairly equal. The one key
per file solution needs fewer lines of additional code so the risk of introducing an exploitable bug
is lower, but as the total amount of code differs not that much and is at all not very complex a
strong audit should abolish this advantage.

From a theoretical point of view, the one key per file paradigm looks superior on the first glance
as one might argue that one revealed key affects only one file. As breaking one file is sufficient
to break the whole system, we can neglect this advantage. On the contrary, as it is more difficult
to handle a large amount of keys than a single keypair and the propability that a key is revealed
increases with the number of keys used, the expected benefit of multiple keys turns into a
disadvantage. Especially in case a symmetric key system is used, the risk of revealing a key
might become a substantial security threat. The penalty for this ease of key handling is a larger
number of available valid signatures, which lowers the complexity to find two files that match
a common signature. An estimation shows that this can be neglected in practical dimensions:
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Using a SHA-1 Hash, there are 2160 different hash values. Even under the assumption that all
files of the operating system are protected individually by this method and each file exists in 10
versions and is signed separately, the number of available signed hashes is not larger than 220.
To compromise the system it is necessary to create a malicious file that matches one of the
available 220 signed hashes. This results in a preimage attack using brute-force and requires an
effort of 1

220 · 2160 = 2140. Today, this is far beyond the computational feasibility.

The database approach looks superior from a management point but has a larger impact on
the code basis, offering a broader spectrum of attacks against the verification mechanisms.
Besides, everytime one file is exchanged the whole database must be refreshed resulting in
additional management overhead, which might become a dominating factor if the number of
protected files is large.

3.2.2 State-Based Mapping-Function

The mapping on a per-file basis sticks close to the mechanisms used by the standard TCG
approach and helps us to overcome small variations in the used files, which is mainly useful
to address discovered vulnerabilities due to the lifecycle model. We might use it also to run
different configurations of an operating system where the general structure of the boot process
is identical but the loaded files differ.

The approach fails to preserve the inner status of the TPM, if the number and order of files
changes, which is the case not only for different system configurations but also affects the appli-
cation of the concepts after the linear boot phase in modern multi-threaded operating systems.
To deal with those situations, we must extend the mapping function to represent only the result
of a whole initialisation step instead of showing up the individual files in the measurement.

The application of the integrity definition onto an individual file was motivated by the current
TCG approach. From a general point of view it does not make a difference, if we verify either
the state of a complete system or the expected behaviour of an individual file against a given
specification. This assumption matches the one used by Sadeghi et al. in their work about
“property based attestation” [42]. Instead of attesting individual properties we incorporate them
into a specification and guarantee the compliance with it. The technical solutions proposed by
Sadeghi in [42] require either a modification of the TPM hardware or the permanent supervision
of an external trusted party. We extend the file-based approach given in the former section 3.2.1
of this chapter and provide a solution using currently available hardware.

The main problem we have to work around in this case, is the order of measurement, execution
and PCR setting. We cannot judge on the final state until the very end of the startup but we have
to take care that an attacker can not interrupt the startup and write the measurement himself. In
the next paragraphs, we present three different control models, to bring up a complete system
and represent it with a single measurement value.
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Snapshot Verification Prior Execution

In a “Snapshot Verification”, the complete measurement is done with the files found on the
storage media before any code is executed. As this breaks atomicity of measurement and
execution, it must be ensured by the environment, that no changes to the files can be made
after the measurement was taken. For local storage media, we might have sufficient control to
prevent write access 6, but in general this might require to preload all code into the systems
memory and measure and execute it from there.

The measurement procedure itself is a bit different from the one used in the file-based scenario.
As we do the measurement prior executing the code, we need to know which files will be in-
volved in the startup process. If relevant behaviour of the bootup procedure can be altered by
configuration files or user input, it is also necessary to consider those items during the measure-
ment. The easiest approach to perform the measurement is, to calculate one single hash value
over all involved files and create a certificate that binds the final identifier to this measurement
value. From a management point of view, it would be more comfortable to use a staged system,
where each individual file has an identifier assigned and their sequence is used to calculate the
final lookup key.

If the final identifier is found, it is written into the chosen PCR and the code gets executed. It
is important, that no one can interrupt or change the boot sequence once the procedure was
started as otherwise the code executed does not match the one reflected by the already written
identifier. If we can not find a matching certificate for the calculated measurement value, we
have to write an error value instead of the identifier. In this case, we do not have to monitor the
further bootup, as the integrity statement is invalid anyway.

Inline Verification

One possibility to perform a verification at the time when the code is actually executed is a
direct verification by the calling party. This requires that each binary which directly calls another
piece of code must be extended to measure and verify the code before it executes it. Such
an implementation is used for example in current implementations of the TrustedGRUB [52]
bootloader.

Compared to the snapshot approach we neither have to care about immutability or intermediate
storage of code nor we have to know the executed files in advance. To determine the final iden-
tifier we can follow two different approaches. First, we can agree on the expected target in the
beginning of the execution sequence and enforce that only code which leads to this chosen tar-
get gets executed. Alternatively, we can pass over the current result of the measurement to each
following component and delegate the creation of the correct identifier to the last component.

6Tampering with the hardware always offers ways to do so while countermeasures raise the efforts for successful
attacks. The protective actions taken should match the overall protection level and value of the system
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This requires at least, that each executed component is trusted to preserve the passed informa-
tion and call the correct successor. If we support only a single state of trust, the consequences
of an undetected compromise are the same, namely access to the protected resources. In a
system where different trust statements are possible within the same verification system, the
second approach raises a security relevant threat. A compromised component originating from
one configuration can manipulate the measurement to represent another configuration and fi-
nally gains access to information assigned to this configuration. The first approach does not
impose such a threat, but requires to select the configuration and write the identifier to the PCR
at the very beginning. If code does not match the chosen configuration, its execution must be
denied or the PCR must be set to another value before the code gets executed.

Verification by External Supervisor

This third method is a combination of the ones given before and exploits the nature of the oper-
ating system, that all requests to load or execute data go through the memory manager routines
of the running kernel. Therefore it is usable only for later boot phases after the kernel was
started. As the kernel has its own memory space that is not accessible by normal processes,
we can assume the supervisor inside the kernel as an isolated instance. We can therefore use
a measurement system alike the one in the snapshot scenario above, as executed fraudulent
code can compromise the system but not affect the kernel internals. We gain the advantage of
a simple measurement without prior knowledge of the execution sequence and without modifi-
cations to external components.

Conclusion

Either one of the proposed methods is suited to derive a common PCR state from non-
deterministic parallel running execution phases or even differently structured boot sequences
without raising security related problems. The third method combines the advantages of the
first and the second one and is therefore the method of choice in the post-kernel boot phase, if
we have access to the kernel to place the necessary modifications. In a real system, we often
do not have a sharp differentiation of boot phase and operation phase and can not define a final
target as system services are started only on demand. We can handle such situations if we set
the time to reach the final target to infinity. The configuration identifier is than interpreted as a
policy identifier which we obviously must put into the PCRs at the beginning of the measurement
and afterwards enforce that no executed process endangers the expected behaviour.
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3.2.3 Establishing Version Control to React on Vulnerabilities

It was specified as a basic requirement to revoke trust from configurations that have shown
vulnerabilities. As signatures are digital items which can be easily copied, there is no way to
destroy a signature once it is released to the public. Thus, we must transfer some additional
information along with the signatures to provide a way to invalidate them artificially.

Instead of raw signatures, we assemble the necessary information to a digital certificate and
embed it into a certificate infrastructure (see 2.2). Signature keys are protected by X.509 public
key certificates while we use X.509 attribute certificates to link identifiers to entities and system
states. The profile of the used attribute certificates is based on the definition given in section
12.1 of ISO/IEC 9594-8:2005 [55] and described in the appendix at A.2.

The certificate infrastructure offers several ways to control the validity of the trust relation ex-
pressed by the signature. Including the certificates validity properties and the revocation mech-
anisms of the infrastructure into the signature verification results in a fine grained version control
system, where each individual attestation statement can be declared as invalid at any time. We
have to extend the verification component in the selected measurement system to care about
this revocation information and treat signatures from expired or revoked certificates as not ex-
isting.

As an attacker who can hide the most current revocation status from the system can allege a
revoked binary as valid, we must protect the revocation information itself from manipulation, too.

Reliable Revocation on Systems Without a Permanent Network Connection

Without a permanent connection to an authoritative certificate status server, the system must
rely on a locally stored datasource to check the validity of a certificate. The certificate revocation
list is designed for offline use, but has some pitfalls for the given application scenario, that can
be used to successfully attack the system. The list itself suffers the same problem as the
raw signatures discussed earlier - without any additional information a valid signature shows
only that the list was correct at the time of signing, but no statement can be made about the
correctness of the provided information at the actual moment. Usually, the CRL 7 is issued with a
validity window to limit the possible latency until an updated version is available at all peers and
with it the timeframe for an exploitation of vulnerabilities. As today’s computer systems do not
provide a tamperproof time source, an attacker can fool the verification system by manipulating
the system time, which enables him to install any revocation list that was issued by the correct
certification authority at any given point in the past. An attacker just needs an exploit for a known
vulnerability, a copy of the vulnerable binary and a copy of a revocation list issued before the
vulnerability was discovered. He can use such a copy at any time to undermine the verification
system and execute the vulnerable binary in a sane context.

7certificate revocation list, see 2.2
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Monotonic counters (see 2.3.2), as introduced with version 1.2 of the TPM specification, can
provide a partial solution on the problem. Each time a new CRL is received, we increment the
value of the assigned counter and create a special binding certificate that links the counter value
to the current CRL. The verification system reads the value of this counter from the hardware
and looks if it matches the one stored with the CRL to make sure it uses the most current one.
As the counters cannot be decremented, it is impossible for an attacker to recreate a system
state which accepts an old CRL as valid. A point we cannot prevent is blocking of updates.
Our implementation, as given in 4.5, uses the standard operating system to fetch an update
and requires a platform reboot to update the CRL binding. A local user can always block this
process while a remote attacker might abuse a present vulnerability and block updates to stay
undiscovered. If the system is sane and the user cooperates, the presented method provides
a sufficient protection to keep the revocation information up to date as far as we can regularly
access the network to check for an update.

Reliable Revocation on Systems With a Permanent Network Connection

Systems with a permanent network connection can also use the CRL to judge on the validity of
certificates. There is no need to store or protect the freshness of the CRL by the system as the
CRL distribution point can be queried for the most recent version whenever necessary. This will
guarantee a low latency even if the CRL is renewed before the end of the intended validity pe-
riod, which might be the case if a vulnerability is discovered. However, instead of downloading
a whole CRL and check the certificate in question locally, the use of a certificate status respon-
der produces less load and guarantees the most recent status. Similar to the temporary online
system, an already present attacker can block requests to the external verification sources and
use this unavailability to hide himself.

3.3 Risk and Vulnerability Management

3.3.1 Vulnerabilities of Protection Systems

Risk management for a deployed computer systems infrastructure means to deal with different
types of threats arising from the presence of vulnerabilities. Some of these vulnerabilities are
obviously known, while the presence of others is only assumed but proven by experience.

Disclosure of Confidential Information

The protection systems mentioned in 2.1 as well as our certificate based digest creation method
rely to a certain extend on the secrecy of information. Obfuscated algorithms, cryptographic key
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material and authentication credentials can become disclosed as a result of technical or social
attacks. The consequence of a disclosure is always a breakage of the given security promises
but the number of affected items as well as the efforts which are necessary to compensate
the disclosure and bring the system back into a sane state depend on the kind of disclosed
information.

Discovery of Technical Flaws

The presence and discovery of technical flaws in software, colloquially called “bugs”, is a com-
monly known problem and subject of the lifecycle model of Arbaugh [1]. Such flaws usually
evolve from misstakes done by humans while writing the code [57]. Some of them are suit-
able to circumvent security mechanisms and enable an attacker to gain unauthorized access to
ressources.

3.3.2 Estimating Risk

In IT security, risk is often defined as the product of the chance to get hit by an attacker and the
caused damage when an attack is successful [56]. Both factors are hard to estimate quantita-
tive. The probability is a combination of the attraction of the system and the kind and quantity of
exploitable vulnerabilities while the possible damage comprises of different aspects depending
on the endangered items.

Why it is Necessary to Rate the Risk

So, if the estimation of a risk is hard to do and offers only vague results, why is it necessary to
perform such an estimation? Obviously, it would be best to stop using the system or at least
the affected components, if a vulnerability is disclosed. Figure 1 and Figure 4 in [32] show the
number of vulnerabilities effective on each single day during the period of a year for a chosen
system. Even if the author does not go into detail about the kind of vulnerabilities and it is likely
that not all of them are relevant for a given system setup, the numbers show unambiguously that
a system is endangered by disclosed vulnerabilities for a considerable part of its lifetime.

The unavailability of a system is usually not an option and also causes damage so we have to
find a way to compare the damage resulting from the unavailability against the one arising from
a successful exploitation of the vulnerability. To finally come to a decision and either accept the
risk of an attack or avoid it at the costs of the unavailability, it is necessary to have at least a
qualitative statement to do the comparison.
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Accounting Possible Damage

The possible damage arising from a successful attack comprises of two different kinds. After
an attack, the technical system must be repaired, which includes the removal of any installed
malicious software and fixing the abused vulnerability as well as restoring affected data. The
damage calculates from the direct and indirect costs related with this work, which is easy to
estimate.

The unavailability of a system, the disclosure of information to unauthorized parties or processes
running with manipulated information also cause damage, which is hard to estimate in general.

The direct financial losses are calculable while indirect economical losses or consequences
due to the violation of legal issues cannot be expressed in financial terms. The IT-
Grundschutzkataloge [56] categorize the expected damage into three levels and uses quali-
tative statements from six different realms to assign a suitable level. Based on the assumption,
that an attacker exploits the given vulnerability we can evaluate this scheme for each protected
item on the affected system and assign a potential damage.

Probability for a Successful Attack

The probability for a successful attack is calculated from two sources, the number of attacks
and the chance for one attacker to be successful. If an attacker is successful depends on his
personal skill and if the attacked target is vulnerable for the exploit he uses. The personal
skill and also the number of attackers evolves over time, as the vulnerability is evaluated and
knowledge about possible attacks is distributed. Figure 3.1 shows the propability to get attacked
using a certain vulnerability based on its evolution over time according to the lifecycle model
of [1].

Fig. 3.1: Stages of the Lifecycle with Propability of Compromise
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Based on this model, the probability that a certain system is attacked can be divided into four
phases. The vulnerability is born with the deployment of the defective component but there
wont be any attacks until the issue is discovered. The model distinguishes disclosure and
publication with respect to the size of the addressed audience. Both events will raise the
number of potential attackers and thus the chance that a certain system is affected. Another
significant raise is expected, when an exploit reaches the scripting state. If we assume, that
the distribution of knowledge is viral, the number of potential attackers raises with exponential
growth starting with the disclosure. At the moment where the publication and scripting

states are reached, the growth-rate will encounter an unsteady increase.

If the vulnerability is repaired the success-rate of an attack, and thus the related risk, drops to
zero but it is likely that the propability decreases earlier if the attackers move on to abuse newer
vulnerabilities.

Effects of Countermeasures

The demanded effect of a countermeasure is a decrease of the propability of a successful
attack. As repairing the affected component is usually out of the current scope we can primarily
just reduce the visibility on the vulnerability for potential attackers. As a result, the number of
available targets decreases which lowers the number of possible victims and therefore possible
gains for the attackers. If the efforts rise above the expected gains or another attack promises
a higher revenue, the attackers will loose interest and invest their resources somewhere else.
Besides, a decreasing number of successful attacks might slow down the evolution of their skills.

3.3.3 Managing the Risk

Even if the direct disclosure of confidential information is not based on technical flaws, the
management of such cases is within the range of a technical system. Although we do not
pursuit such breakages further, the proposed management cycles can be adopted to deal with
disclosed passwords or other secrets.

The management of risks arising from the discovery of technical flaws is dominated by two
events. The first one is the disclosure of the problem to a suitable audience. Before this dis-
closure, the system is endangered by a privileged group of people who gained this knowledge
in advance. As we do not know about the problem at the moment, we can neither estimate the
associated risks nor do anything special against this threat. Fortunately, based on the model of
Arbaugh et al., the number of attackers and so the probability to get attacked is low. After the
problem came to our attention, we try to estimate the risk and decide if the risk is acceptable or
if there are possible countermeasures, which lower the risk to an acceptable level by reducing
the chance for an attacker to exploit the flaw. If this is not possible, we have to move valuable
items away from the system to limit the damage in case of a successful attack. The estimation



3.4. SYSTEM MODEL 49

of the risk and the decision about the resulting measures must be a recurring process as the
probability for a successful attack changes over time.

The second important event is the publication of an official fix for the vulnerability. After repairing
the system and ensuring its integrity we can discontinue any intermediate countermeasures and
release moved items back to the system. This sounds trivial but raises a major problem as the
patch will fix only the original vulnerability but will not detect or remove other modifications
which were done while the system was compromised. In certain cases it is not sufficient to
verify all binaries on the system as an attacker might manipulate configuration files to modify
the behaviour of a legal process to support his demands.

3.4 System Model

To efficiently deal with vulnerable components it is important to estimate how those affect the
overall system. In the remainder of this section we outline the assumed system architecture,
based on the prototype implementation given in chapter 4, and discuss briefly how the behaviour
of each component can affect the security properties of a handled data item. Even if the system
model is important for some aspects of the final protection system, it should be possible to adopt
the general concept on other architectures, too.

3.4.1 Bootloader and Initial Kernel

Bootloader

At the end of the hardware initialisation of the TCG enabled platform (see 2.3.3) the boot process
reads the bootloader from the selected storage media. Due to legacy constraints, the initial
code is very limited in size and most bootloaders today are multistage loaders to overcome
this limit. The size limit and some other resource limitations will become important later in the
implementation.

The main objective of the bootloader is the detection and execution of the initial kernel of the
operating system which requires knowledge of the binary format and the data structures on disk.
Possible further options of the bootloader are unimportant for our objective as long as they are
not suited to break the chain of measurements. Even if the bootloader does not contribute to
the codebasis of a finally started system, its integrity is an essential matter to assure a proper
measurement and startup of the kernel image.
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Kernel Image

A lot of security related researches promote microkernel architectures to enhance a system’s
security but the systems examined for this work use monolithic or hybrid kernels, where at least
parts of the hardware drivers run in kernel mode.

The kernel is the core part of the operating system and provides the interfaces to the hardware of
the system and dispatches resources and computing time to the different processes. Therefore,
it has unlimited access to all information floating in the system and its behaviour is critical for
security relevant aspects. The kernel processes are executed in a dedicated part of the system,
the kernelspace, which has special privileges and is shielded from the rest of the operating
system. All other processes run in the userspace and can communicate with the hardware only
through the kernel’s interfaces.

Kernel Modules

Kernel modules are a trick to stick with the structure of a monolithic kernel while keeping the
initial kernel image small. Kernel modules dynamically extend the kernel with new functions and
can be added and removed while the system is in operation. As the modules are directly loaded
into and executed within the kernelspace, we cannot protect the initial kernel from possibly
fraudulent behaviour of a module. This makes it obligatory to verify the code of modules before
it is added to the kernel and, if its trust statement does not match the one of the running system,
either adjust the system’s trust statement or deny its execution.

As a module can modify the kernels internal structures while it is loaded, we cannot restore the
trust statement after removing the module from the kernel.

Fig. 3.2: Segmentation of Processes into Different Groups
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3.4.2 Runtime Environment

The processes of the running operating system can be divided into several different groups
exchanging data with each other as shown in figure 3.2. We will explain how the security
properties of processes in the different groups will affect the overall security and what are the
implications for our protection system. The verification of a component always implies that the
current trust statement either allows the execution of the component or can be adjusted to match
the new situation.

System Daemons Performing Management Services

These processes are mostly harmless as they cannot affect the data between an application
and the kernel. The influence on the kernel is limited and well defined by the interfaces the
kernel offers to this process. If the exposed functionality can affect given integrity assurances,
the verification of the component is done with respect to the trust statement of the kernel.

System Daemons Providing Supporting Services

The daemons providing supporting services communicate directly with the user application and
can, depending on the kind of provided service, affect assured properties. We can group such
services into two subgroups, depending on the direction where information goes. If the applica-
tion requests data from the service, the only possibility to influence the integrity is in providing
a false answer. If such an answer is used in a policy calculation, for example getting the current
time to check if a time window matches, the integrity is affected and the service must be integrity
checked. Types of the second subgroup receive data from the service which will obviously break
any assurance about confidentiality or integrity if the receiving party does not behave according
to given requirements.

The necessity to include these components into the verification procedure therefore depends
on the kind of information and the concrete assumptions of the trust statement.

Library Linking

The concept of shared libraries is very common to current systems and the relation between
application and library can be compared with the one of kernel and modules. The code included
from a shared library becomes part of the application itself and runs in the same processing
environment, therefore we need to ensure that a linked library shares the trust assumptions of
the application.
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User Applications

The user application is the primary interface to handle requests and usually deals with protected
and unprotected content items as well as key material and rendered content. The application
is like a central hub, moderating the whole workflow of data from its origin to its final rendering
and can manipulate or leak this information at any point in the process chain. Therefore it might
affect any kind of protection target which makes it a very precarious component. Fortunately,
the association with data items is very clear and easy to determine as the application itself
deals with the protected items and offers only a defined set of operations. This allows a direct
comparison of the demanded protection targets of a particular data item against the properties
of the application.

The difficulty is given by the dependency of applications on other parts of the system as men-
tioned in the previous paragraphs. One challenge is to determine if a certain interaction with
another component affects the security of the handled data or not.

Additional Issues with Inter-Process Interference

Besides regular communication between two processes via formerly agreed interfaces the pro-
cess management of the operating system allows two other kinds of interference, which were
neglected during the explanations above. The POSIX Signal interface is used by the operating
system to terminate and notify processes and is usually implemented by each program. On the
examined operating systems, signaling is controlled as an ordinary resource access and thus
allows a user to send signals to all processes running under his user account. Such signals
can be used to kill a process or to initiate a refresh of associated resource bindings which might
result in a denial of service but can not be abused to gain access to any process data. To steal
or manipulate data one must utilize the second method of process intercommunication, process
tracing. By calling ptrace on Unices or DebugActiveProcess on Windows, the current process
becomes the new parent of the target process and gains full control over memory, registers and
code of the child. On the systems reviewed in our work, attaching to a process is controlled
by the same access conditions like other resource access, which means a discretionary ac-
cess control based on the process owner on these systems. In our protection system the trust
statement of an individual component is an essential value, which can be circumvented using
process tracing to gain uncontrolled access to protected data.

Special attention is necessary for processes running with escalated privileges as such can
interfere with processes of other owners and therefore manipulate all daemons and applications
on the system.
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3.5 Adjustable Protection through a Multilevel Security Model

3.5.1 Multilevel Security Model

The multilevel security approach originates from military and intelligence services where it is
common to have a strong hierarchical structure of trust and access clearances. The model
consists of a set of security levels which form a partial ordered set and assigns each subject
and object to one of those levels. Access is possible within the same level and crossing levels
is considered to be allowed along the safe direction. Even if this sounds like a trivial condition,
the classification if a direction is safe or not, depends on the type of access and the assumed
security property, namely read/write and confidentiality/integrity. Therefore, a technical system
must be in the position to get knowledge of these attributes on every access.

Ensuring Confidentiality in a MLS

The model of Bell and LaPadula [8,9] was the first one to model a MLS system and cares about
the confidentiality of data. Access to an item usually includes all operations possible with this
type of object which are basically read, write and execute. As long as subject and object stay
on the same security level, we do not have any problems, but if we cross the border of a level,
we quickly run into trouble in certain situations. Alice, who has the highest level A, can access
information on level A but then publish it to an item on level B. Bob, who has access on level
B, will now gain access to information which is classified for level A without proper permission.
The Bell-LaPadula Model invents the so called “star-property”, which disallows writing to lower
levels for all subject except special trusted subjects, which must ensure that all information that
is passed to a lower level meets this clearance level. The second rule in the Bell-LaPadula is
the “Simple Security property” which provides the obvious - a subject is not allowed to read
information on higher levels.

Ensuring Integrity in a MLS

Two important models that deal with integrity of data are the models of Biba [2] and Clark-
Wilson [4]. Biba reverses the rules of Bell-LaPadula and states that no object is allowed to
read from lower levels or write to higher ones. Violating one of these rules enables a person
on a low security level to publish false information to higher levels. The model of Clark-Wilson
however cares about preserving integrity in a transaction. The central requirement is, that each
transaction leaves the system in a state which is consistent with the system policy. This target
is achieved through an enforcement component, that maintains a listing of all transactions a
subject is allowed to perform on a certain object. For example, the access control mechanism
used in the SELinux [13] extension is based on this model.
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3.5.2 Adoption of the MLS Model for Risk Management

Classification of Subjects and Objects

Even if the originating field of MLS models is the military sector, the motivation behind the
classification is similar to our risk estimation. An object is classified depending on the expected
consequences of its unauthorized disclosure. Our risk estimation, as explained earlier in this
section, is a measure for such consequences and can therefore be used to do the classification.

The role of the subjects in our adoption is not assigned to the users but to components of the
system, whereas the security level is determined from two aspects.

First, we define an upper bound for the security level of a certain component which reflects
the propability that this component is involved in a security breakage. The criterion for such a
ranking can be for example the reached “Evaluation Assurance Level” according the Common
Criteria or ITSEC standard [9]. At the moment when a vulnerability is disclosed, the security
level of the component is reduced based on the criticality of the vulnerability. One challenge to
the system is the secure storage and evaluation of this security level during all relevant compu-
tations to prevent a system from alleging a higher security level than it actually got assigned.

Embedding the Trust Level into the Proposed Measurement System

To embed the multilevel security approach into the proposed system we must first find a method
to attach the determined security levels to subjects and objects and second modify the enforce-
ment facilities to obey this new criterion.

As long as the core operating system, which contains the access enforcement and maintains the
security levels, is sane, we can simply implement this as a feature into the used management
system. To guarantee the security of the protected items, we must assure that no physical
accessible information has a security level higher than the one of the protection system itself.
This might impose a problem if we share data between system configurations with a different
security level and will surely become a problem if a vulnerability affects the security level of the
access control and enforcement system.

We can efficiently assign and protect the security level assignment of all subjects by including
them into the used integrity certificates as an additional attribute. To reliably represent the value
of the core systems security level we use one of the PCRs of the TPM.

The assignment of the security level to the objects is combined with the protection system,
so we just need to pass the security level when we create a new file. We therefore need no
protection mechanism or even storage for the security level of a file, as the storage system is
unable to open the file if it is in a wrong security level. A detailed description of the protection
system is given in the following.
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3.5.3 Content Protection by Encryption

General Considerations

Encryption is widely used already today to protect data from unauthorized access. To protect a
group of individual items on a filesystem we can distinguish three modes of operation. Volume
based encryption schemes, like dm-crypt [44], present a standard filesystem with unencrypted
files inside the authorized domain and show only random data to an outsider. The system
depends on only one key and performs encryption usually based on storage blocks between
the virtual filesystem layer and the hardware. As the data is available as plain files once the
volume is mounted as a filesystem, this method does not provide any protection in case of a
compromise from within the running system.

Another widely used method is content encryption where files are stored unprotected on a stor-
age media but have an encrypted payload. The encryption process and the key management is
left to the application while the operating system is not involved. The protection primarily resists
against an intruder as long as he cannot extract the keys from the applications key management
because the data is visible only in an encrypted form to him.

If we combine features from both mechanisms, we end up with a file based encryption on
the level of the operating system. Like in the volume based scenario, key management and
encryption is done transparently for the application by the operating system but an attacker,
who circumvents the normal access control, cannot gain any valuable information from the file
as long as he does not have the correct key. The challenge for the operating system here is to
distinguish if a file access results from a legal user request or an attacker which requires the
inclusion of process information into the access decision.

TPM-based Key Management

In combination with our new digest creation method we can use the TPM as a secure keystore
to manage encryption keys and make them available within a defined system configuration.
As mentioned earlier, a volume-based mechanism can successfully prevent a compromise by
running a modified kernel or accessing the disk from outside the system but fails if an attacker
compromises a running system. If the system detects the attack, it can delete the volume key
from memory and lock the TPM by changing the PCR values but if the attacker gains access to
the key or blocks the TPM update earlier, all protected content is endangered. Besides these
problems, support for different security levels requires using separate volumes and keys for
each level.

We have multiple possibilities to manage the keys in a file based approach. First, we can use
a global key for all files which we put under the TPM. This stops an attacker from direct access
to the files once he is inside the system but if he gains access to the global key we again loose
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control over all content. Like in the volume based scenario we need at least different keys for
each supported security level.

Using one key per file is the superior approach but also has the highest impact on the resource
consumption of the key management system. The benefit is a very high protection level even
in the case of compromise, as the attacker must query the TPM for each individual file. Attacks
on a raw copy of the disk are also of very low value, even for very powerful attackers, as one
revealed key is usable for only one particular item. Compared to a disk based encryption this
decreases the value of a broken key dramatically. Usage of the TPM also provides a physical
upper bound for the number of files an attacker can leak in a defined amount of time, as the
number of key operations of the TPM is limited. Furthermore, if we detect the attack and lock
the TPM, the attacker is unable to access arbitrary files even if he extracted key material before.

TPM-based Key Provisioning for a MLS system

Providing the keys for a MLS system through the TPM faces us with a well known problem.
Assuming we have three distinct levels in our system called A,B,C where A is the highest level
and C the lowest and we want to represent the current trustlevel by a PCR value. If we now
seal the keys for objects with security level C to the PCR value of the systems level C, we loose
access to these objects from its superior classes A and B. We evaluated two different concepts
two work around this problem, both are based on the sealing function of the TPM.

A sealed item can be protected not only by the current PCR configuration but also requires an
authentication secret to reveal the information. We use this secret to distinguish the different
security levels and exclude the PCR used for the security level from the sealing precondition.
The secret used for each level is also protected by the TPM but this time the PCR assigned to
the security level is used

Fig. 3.3: Three-Step Key Retrieval for System with Three Levels
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keyA = f(PCRBaseconfig, secretA);

secretA = f(PCRBaseconfig, PCRSLevel).

As we cannot jump between the different PCR configuration but need to have the keys of all
relevant levels at hand for encryption, it is necessary to iterate through the PCR configurations
at least once, retrieve the secret keys of the level and store it in the operating systems memory.
To be able to iterate through all inferior levels, we need to daisy-chain them starting at the
highest level

PCRLevelA = fPCR(PCRInit + IdentifierLevelA);

PCRLevelB = fPCR(PCRLevelA + IdentifierLevelB);

. . .

PCRLevelN = fPCR(PCRLevel(N−1) + IdentifierLevelN ).

The key retrieval for a system whose core system is certified for the middle out of three levels
is shown in figure 3.3. The bootloader, which is the first component involved in the new mea-
surement system, reads the security level of the measured component from its certificate and
writes the identifiers for this level and all superior levels subsequently to the PCR, starting with
the highest one. If during the remaining boot phase a component is executed, which has a
lower security level than the present one assigned, the missing identifiers are also written into
the PCR. Afterwards the PCR value represents the concatenation of all identifiers starting from
the highest level down to the level of the currently measured component.

At the moment where the main operation system containing the access control components is
started, the second phase is initiated. The enforcement facility needs access to all keys from
the current and all inferior levels, so it reads out the secret for the current level secretLevelN from
the sealed storage, stores it in a protected place and writes IdentifierLevel(N+1) to the PCR to
retrieve secretLevel(N+1). This procedure is executed until the secret keys for all levels are read.

The weak point of this setup is the disclosure of the stored secrets. If an attacker manages to
extract the secret for a high level once through a vulnerability, he can abuse a vulnerability even
in lower levels to gain access to the high level data, reusing the stolen secret. Our alternative
approach, as shown in figure 3.4, eliminates this problem at the price of higher management
costs.

Instead of accessing keys from an inferior level we publish keys to all superior levels at the
time of their creation. This eliminates the necessity to access more than one PCR configuration
during the systems runtime and the current system state can be kept in the PCR and used to
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Fig. 3.4: Key Duplication for System with Three Levels

bind data under the TPM. Setting the PCR to the current system level is done as described
above as it allows a safe degradation of the level during the boot phase.

The sealing function allows us to specify the expected PCR configuration at the time of decryp-
tion independently from the present state, which we use to seal the key for all demanded levels.
This requires knowledge of the PCR values of all superior levels, which is easy to maintain as
this information is accessible and its secrecy not necessary for security. This approach does
not create a security problem, as no secret data which can be abused to break the level barriers
is kept in the system. The practicability of this method depends heavily on the number of used
security levels as it directly influences the necessary overhead regarding storage capacity, key
management and computation power. A minor issue is the fact that we loose the ability to de-
termine the security level of an object simply through its key, which can become problematic as
a false assumption about the security level can leak data to a lower level.



Chapter 4

A Sample Implementation

This chapter will show, how we can put the ideas given in 3 together to build a protection
system based on a tamperproof root of trust. The Gentoo Linux Distribution [16] was chosen as
a sample platform for this work and the examples and explanations are given with respect to the
proof of concept implementation we did on such a system. The concept does not regulate all
details of a finally useable system and sometimes leaves different options to choose from. Within
this chapter, we make decisions on those choices to stay as close as possible to established
technical and organisational structures, used by the chosen implementation base. We expect
a multilevel security system with three security levels A to C, as already used in the examples
in 3.5.3, as a well-balanced compromise between manageability and protection, and therefore
use such a configuration. Nevertheless the concept is applicable to every system based on the
model given in 3.4 and should work with modifications on other models, too.

In the introductory section, we present and shortly explain a feasible hierarchy for the keys used
in the verification system, based on an organisational model where hardware and software
components are contributed by different vendors. The necessary workflow how to react on a
reported vulnerability is also outlined. In the end of this section, we give a technical description
how we handle keys and certificates in our implementation.

The sections two, three and four explain the different phases to bring up and run the system.
The first phase reaches from the platform start up to the load of the operating system kernel.
Phase two is responsible to bring up the operating system’s initial process init and guard the
setup of system daemons and management services. The third phase implements the actual
protection system and moderates the access requests of users to the resources and does the
necessary risk management and key handling. In the last section we describe the parts of the
system which are responsible to maintain the revocation information.

59
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4.1 Key Hierarchy of the Verification System

4.1.1 Hierarchy

Fig. 4.1: Key Hierarchy of the Verification System

Figure 4.1 shows the hierarchy of keys and certificates used in our implementation scenario.
Items with a light background are global items, which are common for all participants while
the dark boxes mark items which are individual on each platform. Boxes with sharp edges
represent a cryptographic key with a corresponding X.509 public key certificate according to
RFC 3280 [30]. Rounded edges denote X.509 attribute certificates, for which we use custom
formats based on the ITU-T recommendation for X.509 [55].

Each one of the branches is dedicated to a special type of certification but all have a similar
organisational structure that reflects the organisation of the business parties. The topmost
node is the common root authority, which is represented by the root key in the verification
system. On the first level, directly under the root key, we have a master authority for each of the
branches. Each authority possess its own key pair, where the private key is securely stored at
the authority. The root authority issues a certificate over the public key, which is than distributed
to all participants. On the second level, we have multiple certificates on each branch, which are
assigned to the individual business parties one by one. Each single party forms a subordinate
authority that can do signatures on behalf of the whole group of participants on this branch. Up
to here, the segmentation into several keys has only manageability issues and can be neglected
from a functional point of view. The items on level three and four have individual meanings on
the different branches and are platform or entity dependant and therefore obligatory.

The branch on top of the figure includes the software vendors and distributors. Using the sig-
nature keys shown on level two, each vendor issues certificates of conformity for his distributed
binaries. The certificates, shown on level four, are X.509 attribute certificates following our
custom schema given in appendix A.2.

The second branch contains the organisational units which drive the revocation system. The
CRLSign certificate and the corresponding key on the third level are unique for each system and
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generated during the system initialisation explained in section 4.5 of this chapter. The private
key is protected by the local TPM and released only to the revocation management system. The
key is used solely to issue the binding certificates, which bind the monotonic counter and the
revocation list together. Level four shows the binding certificates, which are also unique to each
platform and follow the X.509 attribute certificates schema given in appendix A.1.

While these two certification paths are important for the local protection system and must end
up in the root key to make the proposed verification system work, the two structures on the
bottom of the figure are used only during remote attestation. The dashed elements in the
figure are optional, if the challenger and the PrivacyCA have direct knowledge of the PrivacyCA
key respectively the endorsement key of the TPM. However, embedding the PrivacyCAs and
manufacturers into the used hierarchy eases the distribution of knowledge.

4.1.2 Handling of Vulnerability Reports

Fig. 4.2: Workflow to React on a Reported Vulnerability

If a vulnerability in a certified component is reported, the workflow shown in figure 4.2 is started.
An important organisational issue is the publication of a suitable representative, who receives
the reports. We do not want to discuss this issue further, but assume that the report is received
at a central instance. Before any further actions are taken, it is at the responsibility of the
vendor who issued the certificate, to verify the correctness of the report. If the presence of
a vulnerability is confirmed, the further processing splits into three branches. The first and
most urgent duty, is the revocation of the certificate and the distribution of updated revocation
information to prevent the usage of the vulnerable component. Even if we have different signing
authorities with their own keys, and it would be covered by the specification that every signer
creates his own CRL, it is sensible to accumulate all revocations in one central list to save
processing time and network load of the CRL freshness checks and updates. Therefore, the
authority responsible for the “wrong” signature requests its revocation at a central authority,
which then issues the new revocation information.

Based on the evaluation of the risk which results from the vulnerability, it might be feasible to
issue a new certificate with a lower trust level, to allow further usage of the vulnerable compo-
nent at least for data with low protection needs. This step is optional and not necessary at all, if
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a fixed component is available fast enough.

To finally receive a fix for the vulnerable component, it is necessary to allocate resources to
prepare a fix and afterwards distribute the update component together with a new certificate to
the end users.

4.1.3 Technical Organisation

Root Key and Intermediate Certificates

The intermediate certificates to verify the vendor keys are a small number, which we can effi-
ciently store in a central place in the file system. The root key, and a subset of the intermediate
certificates to verify the kernels certificate, are necessary already before the system is opera-
tional, so we must put them into a place that is reachable by the bootloader.

The openssl toolkit [10] organises the certificates simply as files in a special directory and uses
a hash over the issuer name to speed up seek operations. The toolkit is an accepted and proven
solution that suits our needs and we therefore decided to reuse its concept.

Certificates which are necessary in a verification step but not present on the system can be
fetched from a central LDAP repository, which is provided as a part of the defined infrastructure.
The connection information to reach the LDAP server can either be included into the certificates
or globally defined by configuration options.

Entity Certificates

The entity certificates are stored aside the certified entity using the extended attributes of the
filesystem. This provides us fast access to the certificates during the verification procedure and
makes an additional management system unnecessary.

As the used implementation of the bootloader does not support reading from the extended
attributes, we additionally store the certificates which are needed before the kernel is started as
normal files in the configuration directory of the bootloader. The relation between a file and the
corresponding certificate is defined by keywords in the configuration file of the bootloader.

CRL Binding Certificate

The CRL binding certificate must be accessible by the bootloader and is therefore stored as
individual file and referenced by a keyword, too.
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4.2 Boot of the Initial Kernel

When a conventional system is powered up, the Basic Input Output System (BIOS) looks for a
bootable media and executes the initial bootloader. Through one or more stages the operating
system is loaded into the computers memory and executed. The finally started operating system
is in the unfortunate situation that it can not judge on its own history and therefore can not make
any assumptions on its own integrity or the hardware it is running on. This section describes a
modified boot procedure that reflects the complete boot history through PCR values using the
new digest creation method.

4.2.1 Starting the Initial Bootloader

Starting at the Core Root of Trust Measurement

PCR Index Usage
PCR 0-7 Hardware
PCR 8 Grub stage1
PCR 9 Grub stage2
PCR 10 root key
PCR 11 CRL
PCR 12 kernel & policy identifier
PCR 13 trust level identifier

Fig. 4.3: PCR Assignment

The core root of trust measurement (CRTM), a
component invented by the TCG, measures itself
and afterwards measures and loads the remain-
ing parts of the BIOS. Further components of the
system hardware are also measured before finally
the code in the master boot record (MBR) of the
boot media is measured and executed. The MBR
contains the first 512 bytes of the bootloader code,
which are called stage1 in our example. As shown
in table 4.3, the measurement value of these 512
bytes is written into PCR8. Further information on
the measurement of the hardware components is
given in 2.3.3.

The measurements of the hardware and of the MBR are done by components which are con-
trolled by the platform manufacturer and not accessible for our work. We therefore could not
implement an alternative measurement method here.

Loading the Initial Bootloader

Our prototype uses the GRand Unified Bootloader GRUB [17], a mutli-stage bootloader that
supports a large spectrum of filesystem and kernel formats. The extended version Trusted-
GRUB [52] adds routines to measure its own stages as well as the files of the loaded operating
system into the PCRs in a TCG conformable manner.

The boot process and the associated code is split into three parts. The first part is the code from
the master boot record, which is already measured by the TCG extension of the BIOS and is
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considered trusted. This code, named stage1, locates, measures, and executes the beginning
of the upcoming stage2. Due to technical limitations, stage1 is unable to access data beyond the
first sector of stage2 which makes it necessary to split stage2, at least logical, into two parts.
This results in a stage2 binary, where the first 512 Bytes, that are measured and executed
by stage1, contain again all code that is necessary to measure and execute the remainder of
stage2. Within the TrustedGRUB project these two measurements are realized using the TPMs
built-in hash functions and due to the very limited available size, it seems infeasible to implement
a more sophisticated measurement without having additional trusted resources.

While stage1 and the beginning of stage2 are mainly for circumventing technical difficulties
in running the bootloader, the remainder of stage2 contains the actual bootloader system. The
stage2 code of the TrustedGRUB extension already contains measurement routines to calculate
and write the hashes of the kernel image into the PCRs. We modified these routines to use our
certificate-based digest creation methods which enables a system maintainer to exchange the
kernel image without changing the associated digest value.

4.2.2 Setting up the Verification System

To verify the signature of the kernel, we first need to setup the verification infrastructure, which
consists of the root key and the current revocation list.

Loading the Root Key

The public part of this root key is now read from disk and its fingerprint is written into PCR10.
This does not guarantee anything on the used key and there is no way to do a verification of it,
but as the PCR value depends on it, sealing operations will fail and a challenger will receive an
unexpected value if the key changes.

For the remaining processing stages we must ensure, that always the key stored and measured
is used and that no one can change the stored key.

Loading the Revocation Information

In a standard X.509 public key infrastructure, the correctness of a revocation list is verified by its
signature and a check on the validity interval. We explained in 3.2.3 why the absence of a net-
work connection and an authoritative timesource can be used by an attacker to blind discovered
vulnerabilities from the system and outlined an approach how to prevent such an attack. The
central components of this rollback protection system are the CRL binding certificate, the corre-
sponding signing key CRLSign and the TPM-based monotonic counter mechanism. To prevent
any influences on this protection system from a compromised operating system, the manage-
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Fig. 4.4: Validation of the CRL Binding Certificate

ment of these binding certificate is done by a dedicated system, which we explain in 4.5 at the
end of this chapter.

The binding certificate is a X.509 attribute certificate based on the custom profile given in A.1.
The holder information is set to the SHA-1 hash of the CRL binary so the certificate is linked
to a dedicated instance of the CRL. The certificate issuer field denotes the platform on which it
was created by the hash of the public endorsement key while the serialnumber of the certificate
reflects the value of the monotonic counter at the time of creation. As the monotonic counter is
increased whenever a new CRL is invented to the system, this relation indicates if the present
certificate is the most current one. The certificate is signed using the CRLSign key, which is
unique for each platform and is verified by a set of certificates ending in the used root key as
shown in figure 4.1.

Figure 4.4 gives a schematic view of the necessary steps to actually load the revocation infor-
mation into the verification system. After checking the signature of the binding certificate against
the previously loaded root key, the hash value of the CRL is calculated and verified against the
holder field. The current platform state is expressed by the public part of the endorsement key
EK and the value of the monotonic counter. Both items are read from the TPM and matched
against the issuer field respectively the serial number field. In addition, we check if the current
system time matches the validity window, which is necessary to have a reliable time reference
for checking all further certificates. It is not necessary to validate the signature of the CRL itself,
as this is done by the update system when the binding certificate is issued. If the validation
of the binding certificate fails, we destroy the representation of the root key by writing an error
value to PCR10.

As the given system can only prevent a rollback but not guarantee absolute freshness of the
used CRL, we write its hash value to PCR11 to give a remote challenger the chance to detect
its version.
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4.2.3 Boot of the Initial Operating System

Load and Measure Kernel and Initial System

After setting up the verification system, we load the code of the kernel-image from the storage
media into the systems memory and calculate its hash value. Before we execute the code, we
check for a certificate and determine the resulting trust statement of the system.

Verification and Trust Assignment

As the kernel comprises of only one single file, which we can measure in a single step, we
use the file-based method with a global key as explained in 3.2.1 and assemble the necessary
management information into an attribute certificate according to our custom profile given in
Appendix A.2. The holder field is set to the kernels binary SHA-1 hash value and provides
the linkability between certificate and binary. At this stage, the second important item in the
certificate is the attributes section, which contains two entries for the kernel certificate. The
first entry designates the identifier, which should be used as the digest value for this special
file while the second entry assigns the trust level. The issuer contains a pointer to the signers
key, which is one of the vendor keys as depicted in 4.1. After we have verified, that the holder

information matches the hash value calculated while loading the kernel into memory, we check
the signature of the certificate. We use the issuer information from the certificate to select
the correct signing key, check the signature, and verify the certificate chain up to the root key.
Besides the verification of the cryptographic signature, we have to check if the system time
matches the certificate’s validity window and if the loaded revocation list does list it as revoked.

If all verification steps are completed without error, we want the PCRs to reflect the measured
entity and the current trust level. The identity of the used file is represented by its digest value,
which we extract from the attributes section of the certificate and write it into PCR12. Setting the
trust level of the system can require more than one step. We reuse our example from chapter 3
with three trust levels and assume the kernel has trust level B assigned. The PCR value which
represents trust level B results from a concatenation of the predefined identifiers for trust level
A and B inside the TPM

PCRLevelB = fPCR(fPCR(PCRInit + IdentifierLevelA) + IdentifierLevelB).

It is now up to the bootloader to write both identifiers to PCR13. Once written, there is no way to
force the PCR back to the state assigned to trust level A without rebooting the whole platform.
As the key provisioning depends on the value of this PCR, it is physically impossible for an
attacker to gain access to keys for items associated to trust level A.

We now execute the kernel’s code from the system memory and pass control to the kernel.
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Necessary Modifications to the Kernel

With the execution of the kernel code, the process of the bootloader terminates and its infor-
mation, including the verified revocation information, is lost. The kernel becomes the central
element in the measurement architecture of the running system, and therefore needs access to
the components of the verification system. As the first measurement must be done already on
the init process, before other userspace components can be set up, we must implement the
verification system directly into the kernel.

The modifications to actually perform the measurements are placed into the memory mapper
functions of the kernel and become part of the kernel binary while root key and revocation list
are stored in separate files and read from disk on every startup. It is important to ensure, that
root key and revocation information as loaded by the kernel are identical to the ones used by
the bootloader and represented via the PCRs. As it is likely, that the kernel needs to load a
driver module to access the TPM, the TPM might not be available early enough to verify the
loaded items. To ensure that the items loaded and used by the kernel match the ones logged
into the PCRs, we pass their hash values from the bootloader to the kernel using the kernel
commandline and compare the values on load.

4.3 System Startup

The first element in the system startup phase is the initial system process init which is started
by the kernel. It starts the kernel management and system services and executes configuration
scripts to setup the systems devices.

As the exact configuration and execution order of those items may vary between different sys-
tem configurations, we can not use the file-based measurement approach from 3.2.1 here but
use a state-based one with an infinite execution time as discussed in 3.2.2 instead. The par-
ticular identifier of a started entity does no longer matter and the corresponding attribute in
the certificates is obsolete and replaced by a policy identifier. The policy identifier used in the
measurement as reference can be either implemented directly into the kernel or passed to the
system as a parameter and is extended on top of the kernel’s digest into PCR12.

4.3.1 Starting the Initial Process init

The initial process init becomes the parent of all further processes running on the system. It
therefore has full access to their process structures while they are executed, so it is mandatory
to include it into the trust level evaluation. Even if the init process is a very special process in
the system, it also goes through the memory mapper functions and we can handle it the same
way as all other processes. After the kernel has setup all of its internal structures, it reads the
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executable code for the init process from a file on disk, maps it into the memory and calculates
the SHA-1 hash value of it. The certificate is read from the extended attributes section of
the files inode and its holder information matched against the hash value calculated from the
loaded code. Finally, the signature of the certificate is checked, using the root certificate and
the revocation information which was previously loaded into the kernel. If the cryptographic
verification succeeds, the policy identifier is read from the certificate and compared against the
one used by the system. Before we can execute the loaded code, we determine its trust level
from the certificate and, if necessary, adjust the trust level of the system accordingly.

4.3.2 Running Configuration Scripts

Configuration scripts are started by the init process to load necessary kernel modules and start
the system daemons, which is explained in detail later, but also perform several other tasks like
mounting file systems or initialising hardware devices. Our system and trust model is based on
the assumption, that the trust level of an operation is determined only by the trust level of the
involved processes.

As configuration scripts usually do not result in a long-lived process and do not get involved into
a trust level sensitive operation, it is unnecessary to measure them.

4.3.3 Extending the Kernel Space with Kernel Modules

Immediately after the boot process has finished, the data inside the kernel space is determined
by the kernel image which has been already measured by the bootloader and thus contains
only trusted code. The concept of kernel modules allows the dynamic extension of this initial
codebase during runtime. Once such a module was loaded into the kernel, it is fully incorporated
into the code running in the kernel space and becomes part of the kernel. We therefore must
ensure that loaded modules match the current policy and trust level of the running system.
Adjusting the trust level downwards can lead to a violation of protection targets if the system
is currently processing data with a higher trust level demand. To avoid such a violation, we
maintain an internal table about all currently used resources and their trust level and either
force the system to free affected resources before loading the module or deny its inclusion.

The actual implementation of the module measurement is based on the concept given in the
article “Signed Kernel Modules” [36] which we modified to use our certificate based approach.

4.3.4 Execution of System Daemons

System daemons are basically normal applications and communicate with the kernel or other
daemons via defined interfaces. As their code is executed outside the kernel space, they do not
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affect the security properties of the kernel directly. Nevertheless, it is necessary to know about
their security properties, as soon as they get involved into an operation on protected data. We
therefore take a measurement whenever a daemon is executed and store the results of the
verification to use it in later decisions.

The kernel usually mediates access to its own interfaces as well as communication between
processes through a discretionary access control model based on user and group membership.
We extended this model with the attribute trust level, which is set to the result of the performed
verification, and evaluated by a new ruleset for every access decision. The rules dictate, that
a system daemon can only bind to the kernel or communicate with another system daemon, if
they share the same trust level. The trust level of the kernel is the one of the core system, which
is the highest possible level of all other processes, too. Decreasing the trust level of a daemon
is possible if it currently has no binding to resources which contradict the decrease.

A detailed description on application measurement is given in 4.4.1 in the next section.

4.4 Protection System in the Application Space

The key feature of the invented protection system is the trust level based access manage-
ment which obviously requires knowledge about the trust level of the requesting application.
As the application can not interfere with the core operating system and influence the access
control system, we assume the kernel is capable of blocking access requests from applications
to resources with higher trust levels and it is not necessary to adjust the physical protection
mechanisms depending on the applications trust level.

4.4.1 Trust Level of Applications

Initial Measurement on Startup

The measurement code is placed into the memory mapper functions of the kernel which is a
perfect place as every code passes by just before it gets loaded into the system memory and
executed. At the moment when the launch of the application is requested by the user, the
code’s SHA-1 hash value is calculated while it passes through. We extract the pointer to the
inode on the disk of the loaded binary from the internal process structures and use it to load the
corresponding certificate, which is stored aside the binary using the extended attributes feature
of the ext3 file system. We perform the usual verification steps on the certificate and extract the
trust level from it, which is then stored in a lookup table using the id of the started process as
key. As parts of the operating system can inherently access and manipulate process structures,
and are finally responsible to enforce the rules based on the trust level, it is useless to set the
trust level of an application higher than the one of the core system.
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Dependency on Configuration Options

In our trust model, we assume that the trust level of a process is determined by the binary
from which it is created but does not depend on any configuration options passed to it via the
command line or a configuration file.

On current systems, there are several system components where this assumption does not
hold. For example, an attacker with access to the password database file can easily add a new
user or modify the password of an existing one. This will not result in a compromise of the
system itself and is not detected by our verification systems, but enables an attacker to access
protected resources.

As the configuration options are usually platform dependant and must be adjustable by the local
administration staff, we can not solve this problem with global property certificates based on
the hierarchy given in 4.1. At the moment, we can not provide a feasible, general solution and
therefore leave the implementation of countermeasures to the affected applications.

Dependency on Shared Libraries

If the application depends on shared libraries, we will see their code passing through the mem-
ory mapper shortly after executing the application and can detect the origin of the request
through the id of the calling process. As the library code gets included into the application,
it fully contributes to the security assumption. Each library is measured in the same way than
the application itself and the trust level in the lookup table is set to the lowest value of all mea-
sured items.

Communication with System Daemons

System daemons provide a multitude of functionalities and it is impossible to make a general
decision if a communication with them is suited to violate a security property. A solution to this
problem would require a detailed analysis of the kind of information that flows between appli-
cation and daemons and a policy that defines which kind of information needs which kind of
protection. As current systems can not provide such information, we have no handy solution for
this problem and therefore must consider each communication as a potential risk for our protec-
tion properties. This leads to the very rigid requirement, that we either block access to system
services, if their trust level is below the one of the application or decrease the application’s trust
level which might be impossible due to opened resources.



4.4. PROTECTION SYSTEM IN THE APPLICATION SPACE 71

4.4.2 Protection by Encryption

The basic protection mechanism of our system is an item based encryption using the eCryptfs
[29] filesystem. Each file gets encrypted using a unique key which is sealed to the TPM under
the selected trust level.

Sealing Precondition

The seal of each key is bound to the PCRs 0 to 10, 12 and 13 which represent information
about the used root key, the identifier of the kernel, the used policy, and the systems trust level
as seen in table 4.3. As long as we assume that no vulnerabilities are present in the files of
the core system, there is no way for an attacker to gain unauthorized access to the protected
resources even with full physical control over the platform.

Key Provisioning

We presented two different methods to manage the keys for such a system in 3.5.3. Within the
boundary conditions of the presented implementation with three trust levels, the management
overhead using the key duplication method shown in figure 3.4 seems to be an acceptable price
for the gained resistance against a key leakage. The publicly available eCryptfs code already
comes with support for TPM based keys so we do not have to spend any additional efforts to
enable access to existing resources. The available code also handles the creation of new keys
which we modify to populate the key at the different trust levels as foreseen in the proposed key
management mechanism.

Before we can seal the key, we need to know the parameters for the sealing operation. These
are the selection of PCR registers and their expected values, a storage key from the hierarchy,
and an optional passphrase, which we will omit in our case. The registers we assign to the seal
are fixed and their values are publicly known, as they are used in the remote attestation, so their
publication does not impose a security problem. Nevertheless we must protect this information
against changes, as using the wrong registers or wrong values might grant access to the sealed
information in an unintended platform state. Finally, we need to know all trust levels at which the
key should be available as each one has its own value of PCR13. As we pointed out in 3.5.1, the
publication of data across the border of a trust level has effects on integrity and confidentiality of
the information. We therefore think, that it is a bad idea to allow the user an arbitrary selection
of the trust level. For the moment, we take the trust level currently assigned to the originating
application, but we will have a brief discussion on this topic a bit later.

We now take the newly created key and seal it to the target trust level and all superior levels
using the collected information. Besides, we use the key to encrypt the identifier of the target
trust level and write the plain and encrypted form to the header of the eCryptfs file as shown
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Fig. 4.5: Structure of the eCryptFS Fileheader with added trust level fields (grey)

in figure 4.5. Afterwards, we pass the key to the original code to encrypt the payload. The
information about the trust level serves two purposes. The plain version is used only to speed
up the decision, if a file can be decrypted on the current trust level or not. Instead of doing
an expensive search for the key stored under the TPM, it is sufficient to check if the identifier
is known to be accessible from the current configuration. An attacker might change the entry
but can launch at least a denial of service attack by either forcing unuseful key searches or
preventing access to the file even if the trust level is sufficient. The encrypted version is useful,
if we need to reliably know the trust level from which the item originates.

4.4.3 Resource Access by an Application

Read Access to an Existing Storage Item

The decision wether an application can access an existing item on disk depends on the assigned
trust level of the application and the requested resource. How to determine the trust level of both
was mentioned in the previous paragraphs and the comparison of both is a simple operation. If
the preconditions are fulfilled, the access control accepts the request and advises the protection
system to load the key and offers a file handle to the decrypted information.

Write Access to a Storage Item

The decision to allow a write access to an item is more difficult than for a read. The problems
arise from the fact, that read across the borders of a trust level is possible and that the trust
level assigned to a running application does not reflect the nature of the handled content. We
can divide the possible situations into two groups, whether the data item is stored with the same
trust level or not.

If we want to store an item on the same trust level as it was opened from, we are faced with
two kinds of problem. First, we must track the used resource or at least store the trust level
of it, to assign the correct trust level when writing the item. Furthermore, we must ensure that
the application can not open items from a higher trust level within the same processing space
and transfer information from it into the other resource. We can provide the expected by either
manipulating the application itself to deal with the trust level property internally and obey these
rules or we readjust the trust level of the application to match the one of the opened resources
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on every read. This will prevent any transfer of material between trust levels but also reduces
the convenience of the user, as it forces him to close and reopen the application, if he wants to
access items from different trust levels.

If a user deliberately wants to transfer information from one trust level into another, the operation
will affect either the confidentiality or the integrity of the information. According to Biba [2], the
integrity is affected, if we move information to a higher trust level. Due to a technical feature of
the sealing mechanism, we can deal with such situations. Each seal stores information about
the system state when it was created and we therefore gain knowledge about the system’s trust
level at the time of the write operation. If integrity is a concern, we additionally demand that
the selection of the target trust level is done by user interaction using a component running on
the system’s trust level. This way we ensure that the trust level recorded in the seal reflects the
circumstances under which the trust level was selected.

Moving information downward, endangers its confidentiality (Bell-LaPadula [8]), which we could
not compensate in the case of a security relevant breakage. We assume the legal user as
a trusted party who is able to judge on the protection demands of processed information and
therefore allow him such a transformation of trust levels without further conditions. We also need
no additional measures against fraudulent attackers, as they first need to access the information
on the originating, higher level and there is no benefit for them to lower the trust level after they
already have access.

4.5 Maintenance of the Revocation Information

The ability to react on discovered vulnerabilities depends on the revocation mechanism included
into the X.509 infrastructure. The availability of the most current revocation information at the
verification system is critical for an adequate reaction in either operation phase of the system.

4.5.1 Timeliness in a Networked System

While the system is operational and has access to an authoritative source of revocation infor-
mation like a CRL distribution point, a service supporting the online certificate status protocol or
the like, we can simply query this source for every single revocation request respectively store
and refresh the information inside the protected memory of the verification system. Besides the
verification of all newly started applications, it is also necessary to check if the certificate status
used to evaluate running processes changes. This becomes especially important for the core
components on systems with large intervals between two reboots.
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4.5.2 Preserve Updated Information Across Reboots

To preserve the updated information after a reboot cycle, we need to store it in a non-volatile
storage. As already mentioned in 3.2.3, a special challenge for our system is the protection of
this revocation information against a rollback attack and we already gave an outline for a suitable
protection mechanism using the TPMs monotonic counters.

Updating the Binding Certificate

Updating the revocation information consists of five steps. The updated information is fetched
from a distribution point and afterwards verified for authenticity and checked if it is newer than
the data already stored locally. If the checks succeed, the monotonic counter is incremented
and a new certificate is issued, linking the incremented counter value and the new revocation
information together. The final step is the distribution of the new information to the verification
system which is done in our implementation proposal by replacing two files in the configuration
filesystem of the bootloader.

Requirements on the Certificate Issuance Process

One central requirement of our architecture is the sane recovery of the verification system after
a compromise of the main operating system which includes a guarantee on the freshness of
the revocation information. This makes it mandatory, that the potentially compromised system
is not involved in the creation of the mentioned binding certificate, as otherwise an attacker can
tamper with the revocation information. Therefore, we must delegate the certificate issuance to
an external process.

External Signing Authority

Using an external signing authority seems a feasible approach but fails due to limitations in the
current TPM specification and the TCG Software Stack TSS. To issue a new certificate, the
authority needs to know the current value of the monotonic counter and a reliable feedback if
the demanded incrementation was successful. Unfortunately, reading the counter value from
the TPM is possible only as a plain number without any proof of origin or correctness. The
TSS allows a secure connection of a remote party and also a proof of the local platform state
via remote attestation, but assumes that the TSS is trusted and does not tamper information
between the communication channel and the origin. This assumption is contrary to our demand
to keep the operating system out of the certification process.

The transport session feature of the TPM allows the verification of a whole communication
session by a signature and can be modified to create a provable channel between the monotonic
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counter and the remote signing authority. However, this requires a large deviation away from
common practices and the current specification and will reveal a lot of platform internals to the
signing authority and therefore affect privacy concerns. Besides, such a protocol requires either
a network connection or a costly exchange of several messages via a portable data storage.

Local Signing Authority

A local signing authority avoids all these problems and provides a convenient way using current
standards. The complete process for issuing a new binding certificate does not require any
human interaction, if the location of the update information is well known and we can simply pack
the whole signing authority into its own miniature operating system which runs independently
from the main system. On legacy platforms, this requires that we shutdown the original system
and boot into the updater system while we can run both in parallel if the platform provides a
virtualisation layer with strong isolation.

The signature on the binding certificate must be verified through the root key of the system and
therefore we need a certificate chain from the used signing key up to the root authority as shown
in figure 4.1. Besides, we must avoid any usage of the signing key outside the updater system,
as this would allow a forgery of the revocation information. In the upcoming paragraphs, we give
a detailed setup procedure how to create, store and certify the signature key, so the demands
are fulfilled.

4.5.3 Setup of the Local Signing Authority

To effectively protect the signature key used for the CRL binding certificates from abuse, we
use a TPM based key bound to a PCR state which is only reachable by a legal CRL manage-
ment system. The management system itself consists only of a small kernel and a ramdisk
image, so we can efficiently measure it using the snapshot verification approach directly from
the bootloader.

After the initial deployment of the management system we must create a key and obtain a
certificate for it from a “CRL Key CA”. The bootloader is configured to perform the measurement
the same way like on a normal system start, but omits the check of the revocation list, as it does
not exist at this moment. As soon as the system is running, a key bound to PCR0 to PCR12 is
created using the TPM CreateWrapKey command. As the key is supervised by but not stored
inside the TPM, we have to export the encrypted key packages and store it in some non-volatile
storage outside the system. The system image itself must be read-only as otherwise the hash
will change with the key update thus blocking access to the key.

We now initialise a monotonic counter of the TPM and create a first, empty, binding certificate
and write it into the certificate storage area used by the bootloader. Afterwards, we create a
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certification request over the key to obtain an intermediate certificate linking our newly created,
platform specific signing key to the global root key. The whole certification request object is
then signed by the TPM Quote command using the endorsement key or a previously created
attestation identity key, including the values of the PCR0 to PCR12. As the CRL update system
has no network connection, we cannot dispatch the request directly to the superordinate signing
authority and thus store it along with the key blob into a dedicated storage area.

Afterwards, we shutdown the CRL management system and start another system which pro-
vides network support. This system does not necessarily have to be trusted or use the TPM
at all and just has to forward the certification request to a signing authority of type “CRL Key
CA”. Based on the signature of the outer envelope, the authority can verify that the request was
created using an AIK or EK of a genuine TPM while the list of PCRs reveals that the CRL man-
agement system was running at this time. The authority now issues the intermediate certificate
for the platforms “CRLSign” key and sends it back to the requestor, where it is written into the
well known location of the verification system and closes the gap in the certification chain.



Chapter 5

Analysis of Gains and Efforts

This chapter contains mainly a summary of the conceptual work and the sample implementation,
as already presented in the two former chapters. In the beginning, we evaluate to which extend
the features of the given implementation match the expected objectives stated in 1.6.1. The
middle section summarises the efforts spent on the implementation of the proposed protection
system, both on the technical level and from an organisational point of view. In the last section,
we finally examine the exposure of the new components against local and remote attackers. We
rate the propability for an exploitable vulnerability based on the added code and estimate the
consequences and the efforts to fix the problem, if such an exploit really happens.

5.1 Achieved Improvements

The main objective of this work is a protection system for digital items based on the Trusted
Platform Module’s encryption abilities, which is useable under the assumptions made by Ar-
baugh’s lifecycle model. A subordinate objective is the enhancement of privacy and manage-
ability aspects in remote attestation scenarios. This section shows the reached coverage of
both objectives.

5.1.1 Protection of Data on the Local System

Superseding Obscurity by TPM-based Protection

As shown in 1.3, the protection of digital items nowadays mainly relies on obfuscation which is
provably not a secure method. The functions provided by the Trusted Platform Module to seal
data or keys to a defined system state are suited to protect a system from changes made to
system components stored on disk. The certificate-based digest creation method, described in
3.1, eliminates the system immanent deficiencies given in 1.5.3 and enables us to use the TPM
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under the influence of Arbaugh’s lifecycle model [1]. With the TPM as secure key storage, we
can avoid the problems given in 1.3.2 arising from a fraudulent user and replace obscurity by
provable cryptographic procedures.

Managing Risk on Disclosed Vulnerabilities

The multilevel security access model provides us with a comfortable tool to regulate access to
resources based on the currently assumed trust state of the core system and individual compo-
nents. The recurring discovery of new vulnerabilities in used components make the vulnerability
exposure, and thus the trust assumption, a transient value over time. If a vulnerability is dis-
closed, it can be necessary to adjust the trust statement given to an individual component or
the whole system. The invented measurement procedure supports such an adjustment by re-
voking and reissuing property certificates. The trust level in applications is enforced in software
by the access control system, which does not impose a problem as long as the core system
is not affected by a vulnerability. If the trust level of the core system needs to be decreased,
the changes will be visible in the platform configuration registers which are used by the key
provisioning system. This breaks the sealing precondition for all items on higher trust levels and
therefore makes access to them physically impossible.

Limited Damage in the Case of a Compromise

In the unfortunate case, when an attacker exploits a known or unknown vulnerability and gains
unauthorized access to the system, the invented protection system limits the possible damage
in several ways.

First of all, we must distinguish if we have a partial compromise in the application space or a
full compromise of the core system. In the first case, the attacker can only access items which
are on or below the trust level of the compromised application. This will efficiently block each
access by additionally installed malicious software, as such does not possess a valid certificate
and therefore gets no trust level assigned. If the core system is compromised, the logical access
control of the system becomes ineffective, and the attacker gains access to all items, even
if he uses untrusted software. Compared to a system, where the operating system’s access
control is the only effective instance, we still have two limitations enforced by the TPM. First,
the item based encryption makes a bulk copy of data items useless while the low operation
speed of the TPM limits the number of decryptable items per time. The second advantage
is only effective, if the system’s trust level was lowered based on a risk management decision
prior to the compromise. In such cases, the degraded trust level recorded in the TPM will reliably
prevent access to all items on trust levels higher than the one assigned to the vulnerable system.
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5.1.2 Benefits in Remote Attestation Scenarios

Benefits for the Challenged Party

The effects on the privacy of the challenged party by a remote attestation are an unsolved
problem in the scope of the current TCG specification. The problematic part in the attestation
is the misuse of the submitted measurement values, which reflect detailed information about
the used software and hardware stack. As elucidated in 1.4.2, this knowledge can be abused
to track or discriminate the user or, in the worst case, to identify vulnerable components and
launch a well targeted attack. The digest creation method invented in this work condenses the
submitted information and reduces the variety of possible combinations, making it impossible
to draw conclusions about the actual running system configuration. Assuming a representative
large amount of users, a challenger is no longer in the position to either identify a particular
platform or even link subsequent transactions to the same origin.

Simplified Evaluation of Attestation Results

The decreased number of possible configuration values does not only enhance the privacy of the
challenged platform but also provides a benefit for the challenger, too. It is no longer necessary
for him to deal with hash values of individual binaries and perform complex calculations to find
legal combinations thereof. Instead he just has to evaluate if he accepts the combination of root
key, running kernel, policy identifier and trust level as suited for his purpose. To ensure that the
remote system is not running vulnerable software unintentionally, he must additionally check the
timeliness of the used revocation information.

5.2 Efforts

The first part of this section briefly summarises the efforts, which are necessary to implement the
system as described in chapter 4. The efforts for an implementation on other system platforms
are considered to be comparable. In the second half, we outline the organisational and technical
efforts which are necessary for a working certificate management.

5.2.1 Implementation at the Target System

Bootloader

The TrustedGRUB project [52] already provides methods to calculate the SHA-1 hash of files,
an interface to write to the platform configuration registers of the TPM and the ability to read files
from a storage media. Starting from here, we are missing functions to parse ASN.1 structures
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and to verify RSA signatures. Suitable code can easily be extracted from other projects. As the
bootloader has only few dependencies on other components of the system, we do not have to
spent much efforts on compatibility issues here.

Runtime

The necessary changes to components of the runtime system have a considerably large foot-
print but can be done with reasonable efforts as the data flow model of the system allows us
to concentrate all necessary changes inside the system’s core components. The efforts to im-
plement the item encryption and the binary measurement are comparable low as we can reuse
existing code and profit from existing interfaces.

The access decision component however requires a complex system, which can trace depen-
dencies between different processes and manage all information necessary to control the trust
levels of applications and items. As such functionality is not foreseen in the systems, we have no
fixed interfaces but must modify components of the kernel directly. The necessary programming
work is noteable but does not raise any technical or conceptual problems.

Vulnerability Management

The periodic update of the locally stored revocation information is not a complex task and easy to
be implemented. A larger effort is necessary to implement the creation of the binding certificate,
as such a component does not exists yet. However, functional modules for the different steps in
the workflow are available and assembling them requires just some programming experience.

5.2.2 Certificate Management

Organisational Issues

The organisational cornerstone behind the certificate-based digest creation is the common pol-
icy document and its acceptance by all involved authorities. The policy contains one rulesets
to define how we assign a trust level to an item and second, information about the criteria that
must be meet when sharing an identifier. Depending on the number of involved parties and
the desired granularity of the used rules, the complexity, and with it the necessary efforts, of
such a policy document can become quite large. However, a system with only one trust level is
easily created using existing processes and relations and already enhances the reliability and
effectiveness of the protection system significantly.

One dominating factor for the quality of our protection system is the time elapsing between the
disclosure of a vulnerability and the revocation of the affected certificate. A fast deployment



5.3. NEW THREATS ARISING FROM THE NEW COMPONENTS 81

of a fixed component will satisfy customers and keep the damage caused by the unavailability
of resources low. Both requires the permanent availability of skilled developers to first verify
and than prepare a fix for the vulnerability and, where appropriate, define the parameters for an
interim certificate about the affected component. The remaining steps from the workflow shown
in figure 4.2 do not require skilled personnel and run mainly without human interaction.

The necessary efforts to build a suitable certificate lifecycle management system are dominated
by the preventive allocation of resources to react on new vulnerabilities.

Technical Implementation

Neither the workflows nor the cryptographic components of our proposal are uncommon or
a new challenge from a technical point of view. Systems to perform resource allocation and
coordination during software development as well as vulnerability tracking are widely deployed
today but some efforts might be necessary to interconnect the systems of the involved parties.

The management of certificates with all surrounding elements is a typical task for a PKI-
infrastructure and several solutions are out on the market providing the necessary functionality.
Workflows and organisational structures are predetermined by this concept and the rules given
in the policy document. The handling of key material and the operation of critical infrastructures
anyhow is already part of the daily work of software distributors. We therefore do not have to
expect noteworthy efforts or complications here.

5.3 New Threats Arising from the New Components

The newly invented components raise new threats, which we want to point out and evaluate
in this section. We assume that, where applicable, any interference with external processes is
prevented by the operating system. Therefore the only relevant possibility to compromise one of
the components is a vulnerability which can be exploited by manipulated input data. To evaluate
the possible threats, we analyse the points where user provided data enters the system and
judge on the propability for an exploitable problem within the data path, based on the amount
and complexity of added code.

5.3.1 Bootloader

The bootloader consumes two types of user provided data, binaries and certificates and revoca-
tion information. The only new processing step, which happens directly on the loaded binaries,
is the calculation of their SHA-1 hash value. Due to the low complexity and small footprint of
this step, there should not be vulnerabilities in this data path.
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The handling of the certification information is far more complex and results in a large imple-
mentation footprint, but the nature of the handled data reduces the possible intrusion points. In a
first processing step, the binary data is decoded which demands a well formed ASN.1 structure.
Implementation problems in the ASN.1 parser component are possible but due to its simplicity
unlikely. The second step in the processing chain is the signature verification where the most
likely candidate for an exploitable vulnerability is the multiprecision arithmetic. A strong inspec-
tion of this code should abolish possible implementation mistakes here. Beyond this step, the
presence of vulnerabilities is likely, but an abuse through manipulated data packets is nearly im-
possible, as packets without a valid signature will be rejected before they can reach the critical
points. If forgery of a signature becomes possible, it is useless to care any longer about the
integrity of the verification system as the attacker can create arbitrary certificates.

Even if a compromise seems to be unlikely, the dramatic consequences require extraordinary
diligence when creating this component. A vulnerability might lead to the execution of arbitrary
code while the TPM still assumes the operation of a trusted system. As the bootloader itself is
measured by the hardware, it is impossible to exchange the code without loosing access to the
protected data.

5.3.2 Infrastructure for Revocation Information

Binding Certificate Creation

The management system responsible for the creation of the binding certificates is a fully au-
tonomous and isolated system. The only way to interfere with it, is the provided update infor-
mation, which is processed like previously described in 5.3.1 for the certification information
during the bootloader phase. The assumptions made there, regarding the location and propa-
bility of a vulnerability are similar for the management system. What differs are the possible
consequences, in the case of a compromise.

Even if an attacker manages to exploit a vulnerability and gains full access to the management
system and the local CRL signing key, the worst thing he can do, is the creation of an empty
revocation list. To convert this into an attack against protected data, he further needs a copy of a
vulnerable binary with a valid certificate and sufficient access to install this defective component.
This enables him to circumvent, at least parts of, the local protection system but can not hide
the presence of the vulnerable component from a remote challenger.

Although we assume an exploitable vulnerability a very unlikely event, we take precautions to
react on it. Fixing the problem is as easy as deploying a new image for the management system
and perform the initialisation procedure given in 4.5.3. To prevent an attacker from rolling back
to the old image, its binding certificate must be invalidated. As the vulnerable image is installed
on many different systems, where each one has its own certificate, a revocation of the individual
binding certificates would cause a very huge revocation list. A more efficient way to handle
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Fig. 5.1: Hierarchy of Keys for the CRL Updater Systems and Reaction on a Compromise

such a situation is possible, if a key hierarchy as shown in figure 5.1 is used. Each version
of the updater system has its own signature key assigned and all certificates for the individual
platform keys are signed with it. If all certificates belonging to a particular image version need
to be revoked, we simply revoke the authority key which renders all subordinate keys invalid.

Blocking Updates of the Revocation Information

A denial of service attack against updates of the revocation information is relatively easy to
conduct by cutting down the network connection to the authoritative servers. It does not create
any harm itself but as soon as a vulnerability is discovered, an attacker can abuse the public
knowledge about it to infiltrate the system. As the system does not participate on the new
knowledge about the vulnerable component, it willingly hands out the protected items to the
attacker.

5.3.3 Digest Creation for System Entities

Whenever an application is started, its code is measured using a SHA-1 function to later find
the corresponding certificate and finally create the digest.
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Measuring the Binary Code

The hash calculation is done inside the kernel space and therefore a potential candidate for
a compromise of the kernel space using a crafted binary. However, as the hash calculation
destroys the structure of the code, and we can safely assume that the hash calculation routines
used in the kernel are not prone to a buffer overflow attack or the like, we do not expect a
vulnerability in this context.

Creating the Digest

To create the digest from the calculated fingerprint, we have to load and verify the corresponding
certificate. A compromise of the kernel space is possible in anyone of the involved subsystems
which are several filesystem layers, the ASN.1 parser or the signature verification code. As
already explained for the bootloader and the CRL management system, vulnerabilities beyond
the signature verification are usually not exposed to an attacker.

The used filesystem functions are already present in the kernel, so if they are affected by a
vulnerability, it is likely that other subsystems are also usable to break into the kernel. For a
judgement on the certificate parsing and verification functions, we can reuse our argumentation
used on the bootloader in 5.3.1. We can therefore assume, that the digest creation code does
not introduce new threats into the system.

5.3.4 Access Control System

The access control system is the linchpin of the protection system and the file encryption rou-
tines offer the most critical path for an exploitable vulnerability. The data provided to the en-
cryption routines can be arbitrarily chosen by the attacker and it is therefore possible to send
special input which exploits a given vulnerability. However, as the encryption and filesystem
code is not very complex, the propability for a vulnerability in these parts is likely not higher than
in the other parts of the core system. The additional risk introduced with the changes made can
therefore be neglected in terms of the overall risk. On the contrary, the invention of the TPM as
key storage still offers limited protection in the case of a compromise, as illustrated in 5.1.1.
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Conclusion and Outlook

6.1 Review of Efforts and Gains

The implementation of the given system approach is possible with feasible efforts on the tech-
nical as well as on the organisational side. As shown in 5.2, a lot of structures already exist
in toady’s software landscape, which reduces not only the development costs but also lowers
the risk of new vulnerabilities. The gained enhancements must be reviewed differently, depend-
ing on whether we take a software based protection system or one already using the TPM as
reference.

Regarding systems with TPM support, we receive a nearly full coverage of the expected ob-
jectives. The improvements brought to the system with the new methods successfully handle
the consequences of the lifecycle model as good as possible. The only limitation, we did not
totally overcome with reasonable efforts, is the timeliness of the revocation information. As the
implicated problems of this insufficiency were also present in the original solution, it does not
create a new threat and therefore does not count as a negative effect. Even if the proposed
new methods do not invent noteable additional propabilities for a vulnerability into the system,
the chance for an exploitable vulnerability in the core system, that affects the TPM based pro-
tection system, remains a likely event. In an overall estimation, the multilevel security approach
reduces the possible damage while the revocation system shortens the exposure time of known
vulnerabilities so the overall risk of the system gets decreased.

Compared to a system which used obscurity, the judgement is ambiguous, as a formal evalua-
tion means comparing apples and oranges. Better than a formal evaluation seems a comparison
of the necessary efforts to circumvent the protection system. Assuming that the confidence we
put into the used cryptographic methods holds, the efforts to break into a TPM protected system
are equal to the ones necessary to break a relevant component of the core system. As such
a breakage is only possible using a vulnerability, the estimation of efforts is closely related to
the quality the code. For an obscurity system, the efforts can be accounted as the work we
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have to spent to reveal the obscure secret by either social attacks or reverse engineering. It is
impossible to make a general statement about those estimations and therefore we can not rec-
ommend our system proposal as the preferred solution for any usecase. On the contrary, there
might be situations, where the underlying system is of such a bad quality, that an obfuscation
system is the better choice. We owe this effect to the dependency of cryptographic solutions on
the reliability of the used operating system, while an obfuscation system always tries to shields
itself from all influences.

When we make such a trade off, we should not underestimate the role of exposure time and the
management aspects. As we have discussed in 2.1.3, it is impossible to react on a breakage of
an obfuscation mechanism, while a vulnerability in a system component can be handled using
our new methods. So even if the necessary efforts to reveal the obfuscation system are larger,
it might be a more interesting target for an attacker than the abuse of a short-lived vulnerability.

Besides the problem of vulnerabilities in the used operating system, many available hardware
implementations of the TCG concept are prone to two kinds of physical attacks. On many
implementations, the TPM is an individual component and the wires of the LPC bus, which
connects it with the rest of the system, are accessible from outside. With some modifications, it
becomes possible to send a reset signal to the TPM, using the LPC reset wire, without triggering
a reset of the platform itself. The result is a running platform with a freshly initialised TPM,
which we can now set to reflect whatever values we want [51]. A second problem arises from
insufficient protection of the BIOS, which contains the core root of trust measurement. Even if
the specification demands a sufficient protection against unauthorized changes for the relevant
parts of the BIOS, not all vendors obey these requirements. The work of Kauer [34] describes
a successful attack against a current platform, which is sold as TCG conformable, by making
changes to the BIOS code. Both attacks are possible to conduct without special equipment and
knowledge and allow the forgery of values stored in the PCRs and therefore cause a collapse
of the security base. It is needless to say, that a successful attack undermines our protection
system as there is no chance to discover or prevent such a compromise neither from inside the
running system nor from outside by a remote attestation.

6.2 Impact on User’s Habits and User Acceptance

The major obstacle for the effective deployment of an active risk management system is its im-
pact on the user’s habits. The price we have to pay during a phase with a raised vulnerability
exposure is the unavailability of certain items. Users might not accept the necessary changes of
their habits to deal with such protective measures. The result would be either uncooperative be-
haviour with negative effects on the completion of business tasks or an intentional misbehaviour
on the classification of objects. In the first case, the additional damage due to such secondary
effects might raise the overall damage caused by the unavailability over the damage assumed
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in the case of a compromise. As a consequence, blocking access to the item is no longer the
preferred choice. In the other case, information is not protected according to its real trust level
but only by the one selected by the user, and an attacker might gain access to those items, even
if the risk management system performed correctly.

To avoid those social problems, a well-founded education of the users is necessary to raise their
awareness for security issues. Besides, a fast response and the immediate availability of a fix
for discovered vulnerabilities will shorten the unavailability period and therefore keep the impact
on the user habits low.

6.3 Future Developments

A very beneficial step would be the adoption of several aspects of the proposed concept into
the next generation of TPM modules. An implementation of the proposed certificate-based
digest creation method directly into the hardware should not require much efforts but makes
the advantages usable for a larger audience. Especially the state-based digest creation, as
described in 3.2.2, has some associated risks which can be eliminated by an implementation
inside the TPM. If we finally can manage the availability of a reliable timesource and have the
certificate revocation check inside the tamperproof hardware, we can even improve the problem
with the revocation information’s latency.

The movement of the TPM hardware itself directly into the mainboard chipset or the processor
is frequently discussed and partially done by several manufacturers already. This will harden
or even eliminate reset attacks and probably makes it possible to extend the role of the PCR
registers as access credential to other resources of the system.

Besides modifications to the TPM and the used measurement procedures, it is essential to
enhance the robustness of the software stack. On the one hand, we have to reduce the number
of errors in the code by an improved software development process. Handy technologies are,
for example, model-driven code generation and formal verification of code. On the other hand,
alternative system architecture models can reduce the impact of an error or reduce the exposure
of systems. Hardware-based virtualisation is one of the most current of such concepts and its
benefits in conjunction with the TCG concept are currently exploited by the OpenTC project [54].
Last but not least, microkernel based system architectures are already under development for
a long time and offer benefits from both worlds as they reduce the impact of errors and make
a formal verification easier due to the small size of the components. In the past, the need for
interoperability with legacy software and insufficient hardware resources hindered the raise of
new architecture concepts but the ongoing demand for security and the cheap availability of
high-performance hardware might give them a chance.
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Appendix A

Additional X.509 Profiles

A.1 CRL Binding Certificate

AttributeCertificate ::= SIGNED{AttributeCertificateInfo}

AttributeCertificateInfo ::= SEQUENCE {

version INTEGER { v2(1) },

holder {

digestedObjectType 2 (otherObjectTypes),

otherObjectTypeID OBJECT IDENTIFIER (custom definition),

digestAlgorithm SHA-1,

objectDigest BIT STRING (Hash of CRL-Object)

},

issuer {

digestedObjectType 0 (publicKey),

digestAlgorithm SHA-1,

objectDigest BIT STRING (Hash of public EK)

},

signature RSA,

serialNumber INTEGER, (Value of the Counter)

attrCertValidityPeriod AttCertValidityPeriod,

attributes {}

}

The above definition is based on the definition for attribute certificates as found in section 12.1 of
ISO/IEC 9594-8:2005 [55]. The scheme shows only the values we choose to construct our bind-
ing certificate and ommits all alternatives. The attributes section is empty, as the fields holder,
issuer and serialNumber in the certificate header already contain all necessary information.
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The otherObjectTypeID is optional in the recommendation and can be ommited in our case, as
the content of the field is clearly dedicated. To help a third party to determine the usage of the
certificate and to allow a later extension of the system by other holders, a dedicated OID should
be retrieved and included in the certificate.

A.2 Property Certificate

AttributeCertificate ::= SIGNED{AttributeCertificateInfo}

AttributeCertificateInfo ::= SEQUENCE {

version INTEGER { v2(1) }

holder {

digestedObjectType 2 (otherObjectTypes),

otherObjectTypeID OBJECT IDENTIFIER (custom definition),

digestAlgorithm SHA-1,

objectDigest BIT STRING (Hash of CRL-Object)

},

issuer {

digestedObjectType 0 (publicKey),

digestAlgorithm SHA-1,

objectDigest BIT STRING (Hash of public EK)

},

signature RSA,

serialNumber INTEGER, (Value of the Counter)

attrCertValidityPeriod AttCertValidityPeriod,

attributes Attribute

}

Attribute ::= SEQUENCE {

type OBJECT IDENTIFIER,

values SET OF AttributeValue

-- at least one value is required

}

AttributeValue ::= ANY DEFINED BY AttributeType

The list of attributes differ depending on the type of the certified item. Formally we have to
define custom Object Identifiers and possible values in the used policy document.
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