
Lehrstuhl für Rechnertechnik und
Rechnerorganisation

der Technischen Universität München

Grid Resource Management with Service Level
Agreements

Tianchao Li

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. A. Bode

Prüfer der Dissertation:
1. Univ.-Prof. Dr. H. M. Gerndt

2. Univ.-Prof. Dr. M. Bichler

Die Dissertation wurde am 21.01.2008 bei der Technischen Universität München eingere-
icht und durch die Fakultät für Informatik am 02.07.2008 angenommen.

Abstract

With Grid computing adopting Service Oriented Architecture (SOA), resources are repre-
sented by services with standardized interfaces and the management of resources converges
to the more general management of services (i.e. the Service Level Management). The key
to Service Level Management is the management of Service Level Agreement (SLA), a for-
mal contract between the provider and consumer of a service which stipulates and commits
the provided service to a required level of service.

We concentrate in our research on designing and establishing an infrastructure for SLA
management. It consists of a site-local infrastructure for managing SLAs and local re-
sources, and a global infrastructure for advertising and brokering of resources.

From the client’s point of view, a typical session of service usage includes the following
activities: the client sends job parameters and SLA parameters (such as deadline, price
etc.) to the broker, the broker contacts the service sites to get available SLA templates,
the broker selects the appropriate template and sends it to the client for verification and
an acknowledgement is represented by the return of a signed SLA offer. The SLA offer is
then forwarded by the broker to the corresponding service site to create the SLA. With the
negotiated SLA, the client invokes the service and gets an id (endpoint reference) of the
job. According to the negotiated SLA, the job is scheduled at appropriate time and as soon
as the job finishes, a notification is sent to the client so that the result can be retrieved.

On the service site, a service has an associated management infrastructure that handles
the management of SLAs and resources. The WS-Agreement services provide interfaces
for requests for SLA templates, SLA creation and termination, notification of SLA status
changes etc. The performance predictor estimates resource demands for specific values
of job parameters, and the resource manager keeps track of resource capabilities and job
schedules. Based on the information provided by both, the agreement decision maker de-
cides on the acceptance or rejection of a specific SLA offer. The resource manager (together
with the underlying scheduler) is also responsible for the scheduling of jobs with resource
reservation and service invocation at scheduled time.

Targeting to the SLA-based resource management infrastructure, we focus on the fun-
damental issues for the establishment of such an infrastructure, including the specification
of SLAs with WS-Agreement and the design and implementation of a generic and ex-
tensible support infrastructure for WS-Agreement specification, the evaluation of various
techniques for application performance prediction and the establishment of a generic in-
frastructure for non-intrusive monitoring and adaptive prediction of the execution time of

i

services, discussion and solution of job scheduling issues in the local resource management
infrastructure with a focus on the cases where services have exclusive access to the local
resource. In addition, we also present the design and implementation of a set of develop-
ment tools and support environments for the development, management, and accessing of
service-oriented Grid applications that are integrated with our SLA-based resource man-
agement infrastructure.

ii

Acknowledgments

I would like hereby to express my gratitude to all that have made suggestions and offered
help towards the successful completion of this work, and to all that have supported me from
different aspects during the past years.

First of all I would like to thank my advisor, professor Michael Gerndt. He not only
directed me to the right way for pursuing my work but also gave me the most considerate
help throughout the whole course of this research work. I would like to express my special
gratitude to professor Arndt Bode, the leader of our research chair, for all his support and
encouragement. I am also grateful to him for his help in overcoming all the financial and
administrative issues. I would also like to thank professor Martin Bichler for taking the
time to review this thesis and giving valuable comments.

I want to express my gratitude to all my colleagues and the technical and administrative
staff at LRR-TUM. I would like to specially mention Dr. Jie Tao, Dr. Edmond Kereku, Dr.
Josef Weidendorfer, and Houssam Haitof, who worked together with me on projects, and
Dr. Daniel Stodden, who started and finished the Ph.D. study at about the same time and
discussed many issues towards successful completion of the Ph.D.

My research work documented in this thesis has been supported by IBM Center of Ad-
vanced Studies with a research grant for Autonomous Resource Management for Large
Scale Applications. Thanks to Dr. Toni Bollinger, Dr. Hans-Dieter Wehle, and Dr. Niko-
laus Breuer from IBM Development Laboratory in Boeblingen for all the valuable discus-
sions and help in both the application of research funding from IBM and the whole course
of this project.

Finally, thanks to my wife who accompanied me and helped me taking care of many
issues so that I can concentrate on the work. Thanks to my son, Tony, who has brought
happiness, sorrow, hope, and a lot more to me. You have helped me to understand the true
meaning of life.

Tianchao Li
Munich, Germany

December 2007

iii

Contents

1 Introduction 1
1.1 History and Status 1
1.2 Methodology and Outline 2

2 An Infrastructure for SLA-based Resource Management 5
2.1 Introduction 5
2.2 An Infrastructure for SLA-based Resource Management 5
2.3 Challenges 6
2.4 Application Scenarios 8
2.5 Summary 8

3 Specification and Management of Service Level Agreement 9
3.1 Introduction 9
3.2 WS-Agreement Specification 10

3.2.1 Overview 10
3.2.2 Agreement Schema 11
3.2.3 Agreement Template Schema 12
3.2.4 PortType Definition 12
3.2.5 Involvement and Contributions 14

3.3 WS-Agreement Support Infrastructure 14
3.3.1 Generic Design 14
3.3.2 WS-Agreement Services 14
3.3.3 Agreement Management and Monitoring 15
3.3.4 Domain Specific Handling with Backend Providers 17

3.4 Implementation Issues 19
3.4.1 GT4 Platform 19
3.4.2 Interface Schema Adaptation 20
3.4.3 Domain Specific Terms 20
3.4.4 Provider Management 21
3.4.5 Agreement Monitoring 21
3.4.6 Security Issues 22

3.5 Related Work 22

i

3.5.1 SLA Languages 22
3.5.2 SLA Infrastructures 22
3.5.3 WS-Agreement Implementations 23

3.6 Experimental Results 25
3.6.1 Performances 25
3.6.2 Examples 25

3.7 Conclusion 25

4 Prediction-based Application Performance Evaluation 27
4.1 Introduction 27
4.2 The Need for Performance Prediction 28
4.3 Feasible Application Performance Prediction Techniques 29

4.3.1 Analytical Model 29
4.3.2 Statistical Simulation 29
4.3.3 Historical Data Analysis 30

4.4 A Systematic Approach for Performance Prediction with Data Mining
Techniques 32
4.4.1 Overview 32
4.4.2 Performance Data Collection 33
4.4.3 Performance Data Mining 33
4.4.4 Data and Model Management 34

4.5 A Run Time Monitoring and Prediction Framework for Grid Services 34
4.5.1 Overview 34
4.5.2 Non-intrusive Data Collection 35
4.5.3 Generic Modeling and Prediction Interface 36
4.5.4 Automatic Management of Performance Model 36

4.6 Implementation Issues 36
4.6.1 The Globus SOAP Handler 36
4.6.2 Performance Data Storage 38
4.6.3 Performance Prediction 39
4.6.4 Configuration and Management of Recorders and Predictors 39

4.7 Existing Work on Application Performance Prediction 40
4.7.1 Analytical Model 40
4.7.2 Statistical Simulation 40
4.7.3 Historical Data Analysis 42

4.8 Experimental Results 42
4.8.1 Efficiency of Data Recording 42
4.8.2 Efficiency of Model Building and Prediction 43

4.9 Conclusion 44

5 Job Scheduling for Local SLA Management 47
5.1 Introduction 47
5.2 Basic Problem Statement 48

ii

5.2.1 Problem Parameterization 48
5.2.2 Probabilistic Run Time 48
5.2.3 Scheduling Deadline-Constrained Jobs 50

5.3 More Complicated Scenarios 50
5.3.1 SLA Acknowledgement and Asynchronous Parameter Submission 50
5.3.2 User-specified Earliest Start Time 51
5.3.3 Lazy Termination 52
5.3.4 Alternative SLA Offers 53

5.4 Scheduling Phases 53
5.5 Scheduler Design and Implementation 54
5.6 Experimental Results 54
5.7 Related Work 58

5.7.1 Scheduling Algorithms 58
5.7.2 Performance Prediction Assisted Scheduling 58

5.8 Conclusion 58

6 Setting Up a Global Infrastructure 61
6.1 Overview 61
6.2 The Global Infrastructure 62

6.2.1 Establish SLA with Index and Broker Services 62
6.2.2 Enforce SLA with Gateway Services 63

6.3 Index Service 64
6.4 Gateway Service 64
6.5 Broker Service 65

6.5.1 Broker Service and Resources 65
6.5.2 Asynchronous Broker Thread 65
6.5.3 Brokering Strategy 66

6.6 Beyond the Basics 68
6.7 Conclusion 68

7 Development Tools and Support Environment 71
7.1 Introduction 71
7.2 Application Development using Weaveable Components 71

7.2.1 User Roles and Functional Requirements 71
7.2.2 Eclipse as Component Platform 72

7.3 Grid Service Development Environment 73
7.3.1 The Demand 73
7.3.2 Functionalities 74
7.3.3 Integrating Agreement Management 76
7.3.4 Components and Dependencies 76
7.3.5 Service Modeling and Code Generation 77
7.3.6 Service Building 79

7.4 Grid Service Execution Client 79

iii

7.4.1 Overview 79
7.4.2 Agreement Infrastructure Support 81
7.4.3 Components and Dependencies 81
7.4.4 External Libraries and Class Loadpaths 82
7.4.5 Dynamic Extensions for Custom Services 82

7.5 Grid Service Management Environment 83
7.5.1 Overview 83
7.5.2 Components and Dependencies 83

7.6 Related Work 85
7.6.1 Grid Service Development Tools 85
7.6.2 Grid Client and Management Environments 85

7.7 Conclusion 86

8 Demonstration 87
8.1 Introduction 87
8.2 A Concrete Scenario for Distributed Data Mining in Banking 87
8.3 Resource Management Activities in the Demonstration 88
8.4 Deployment Environment 90
8.5 The Service Bundle 91

8.5.1 Data Mining Services 91
8.5.2 Customization Associates in Service Bundle 93

8.6 Client Environments 94
8.6.1 Overview 94
8.6.2 Mining Flow Development and Deployment Client for Data Spe-

cialist 95
8.6.3 Mining Job Management Client for Data Analyzer 96

8.7 Conclusion 97

9 Conclusions 99
9.1 Summary 99
9.2 Future Work 100

9.2.1 Workflow Support 100
9.2.2 Grid Economy 101
9.2.3 Subcontract SLAs 101

9.3 Concluding Remarks 101

A Adaptation of WS-Agreement for GT4 103
A.1 Namespaces 103
A.2 WSDL and XSD Imports 103
A.3 Faults 103
A.4 Compact Schema 105
A.5 xs:simpleRestrictionModel and xs:typeDefParticle 105
A.6 TermCompositorType 106

iv

B WS-Agreement Samples for Data Mining Service 107
B.1 WS-Agreement Template 107
B.2 WS-Agreement Offer 109
B.3 WS-Agreement 112

Abbreviations 115

Bibliography 119

v

List of Figures

2.1 An infrastructure for SLA-based resource management. 6

3.1 Concepts and interfaces of WS-Agreement [79]. 11
3.2 Structure of a WS-Agreement [13]. 12
3.3 Structure of a WS-Agreement template [13]. 13
3.4 WS-Agreement support infrastructure. 15
3.5 Agreement management services on server-side (upper) and client-side

(lower). 16
3.6 Providers handle domain specific or customized processing of agreement. 17
3.7 Provider registration and management. 19

4.1 The need for performance prediction in SLA decision. 28
4.2 A simplified data mining process. 33
4.3 A run time monitoring and prediction framework for service-oriented Grid. 35
4.4 Automatic management of performance model pool. 37
4.5 Possible locations (A, B, C) for data collection handler. 37
4.6 Run time for build and update performance prediction model. 43
4.7 Learning curve show how average error improves with training set size. 44

5.1 Cumulative distribution function (upper) and probability distribution func-
tion (lower) of job finish time. 49

5.2 Relationship of times in job scheduling. 51
5.3 Schematic relationship of two jobs with earliest start time and deadline. In

this figure, Tjob is abbreviated to T , tearliest to te, and tdeadline to td. 52
5.4 Run time of scheduling for different algorithms with small problem size. 55
5.5 Run time of scheduling for different algorithms with large problem size. 55
5.6 Acceptance rate for different algorithms with small problem size. 56
5.7 Acceptance rate for different algorithms with large problem size. 56
5.8 Effects of prediction error on the rate of successful execution. 57

6.1 A minimal global infrastructure supporting SLA-based resource manage-
ment. 62

6.2 Gateway service adds status to stateless services. 63

vii

6.3 Gateway service and associated job resource. 64
6.4 Broker service and associated resource. 65
6.5 Number of negotiations for different brokering strategies. 67
6.6 Infrastructure services in a Grid marketplace mediating agreement negoti-

ation. 68

7.1 The Globus Service Development Environment (this screenshot shows the
user interface for service modeling). 73

7.2 GSDE architecture and dependencies among plug-ins. 77
7.3 Service modeling and code generation in GSDE. 78
7.4 Grid Service Execution Client provides a base client platform (the screen-

shot shows the user interface for observing notifications of resource prop-
erty changes). 80

7.5 GSEC architecture and dependencies among plug-ins. 81
7.6 Grid Service Management Environment support remote system management. 84
7.7 GSME is composed of plug-ins from GSDE, GSEC and DSDP/TM. 84

8.1 A schematic figure showing major components and activities of the demon-
stration, from the perspective of data specialist (a to f) and marketing staff
(1-19). 89

8.2 Deployment environment for distributed data mining demonstration. 90
8.3 Virtual servers on IBM pSeries 510. 91
8.4 Application services for the data mining demonstration. 92
8.5 Designing mining flow with Mining Flow Development and Deployment

Client. 94
8.6 Deploying mining flow with Mining Flow Development and Deployment

Client. 95
8.7 Start mining job with Mining Job Management Client. 96
8.8 View mining job, mining model, and agreement with Mining Job Manage-

ment Client. 97

viii

List of Tables

3.1 Comparison of existing implementations of WS-Agreement. 24
3.2 Performances of WS-Agreement implementation. 25

4.1 A brief summary of application performance prediction techniques. 29
4.2 A brief summary of data mining algorithms for application performance

prediction (†: need transformation, ‡: need normalization, ⊥: requires spe-
cific algorithm, a: with workarounds). 31

4.3 Overhead of application parameter and run time recording. 42

7.1 Development tools and support environments. 72

A.1 Necessary modifications to namespaces in WS-Agreement WSDLs. 104
A.2 Necessary modifications to import locations in WS-Agreement WSDLs. 104
A.3 Adopted name attribute of wsdl:definition in WS-Agreement WSDLs. 104

ix

Chapter 1

Introduction

1.1 History and Status
Grid computing is concerned with coordinated resource sharing in a dynamic, heteroge-
neous, and multi-institutional environment [46]. Grid resource management refers to “the
operations used to control how capabilities provided by Grid resources and services are
made available to other entities, whether users, applications or services” [33]. It is the key
to flexible and efficient resource sharing in Grid systems.

The vision and technology of Grid computing has been ever evolving since its emer-
gence, and so is the resource management techniques involved. Initial generation of Grid
systems known as meta-computing (e.g. I-WAY [48], and the well-known SETI@home
[12]) involved proprietary solutions for sharing computing resources (high performance or
commodity). Such systems usually features centralized resource management with custom
job scheduling. Later systems introduced middlewares (e.g. Legion [31], Unicore [39],
and Globus Toolkit [47] up to version 2) to cope with scale and heterogeneity. The Grid
was viewed as a viable distributed infrastructure on a global scale that support diverse ap-
plications requiring large scale computational power and large volumes of data. Such sys-
tems have common job submission interfaces (like that of GRAM [34] and Condor-G [50]
etc.) that interact with local schedulers, and usually features diverse meta-schedulers (e.g.
Globus Community Scheduler Framework [1], GridWay [86], GridBus [30], GRMS [63])
enabling hierarchical resource management or custom brokers enabling resource manage-
ment in a simple distributed fashion. Local information is globally shared, and the man-
agement of different types of resources is usually differentiated. Generally speaking, such
Grid systems and their resource management systems mainly focus on the issue of dynam-
icity and heterogeneity, and do not address the issue of crossing management domains well
enough.

Current Grid systems are adopting a service-oriented approach, in which a set of Web
services abstract underlying resources [46]. Such services include standard services for
accessing primitive resources and services providing custom functionalities and utilize ar-
bitrary underlying resources. Service-oriented Grid systems demand resource management
infrastructures featuring uniform interfaces for different services belonging to different
management domains. This lead to the idea of resource management based on Service
Level Agreements (SLAs) [33], where the service providers and consumers negotiate uti-
lization of the service (hence the underlying resources) with guaranteed quality of services

2 Chapter 1. Introduction

(QoS). Resource management activities with SLAs provide uniform interface for manag-
ing various types of resources. They can happen in a peer-to-peer fashion, which avoid the
global exposition of local information. Thus, in addition to better support of dynamicity
and heterogeneity, it also addresses crossing management domain issues.

Existing research on SLA-based resource managements mostly originate from the ap-
plications in traditional Web service systems [99, 80, 100, 112] that focus on throughput
and response time. On the other hand, initial work on SLA-based Grid resource manage-
ment is still quite limited. Some are restricted to the presentation of basic concepts and
approach (e.g. [33]), and others mostly only provides a partial solution (e.g. [76, 60]) or
restricted to certain standard Grid services (e.g. [79, 105, 23]). Therefore, further inves-
tigation is demanded towards the establishment of an infrastructure for SLA-based Grid
resource management that can be generally applied to potentially arbitrary custom Grid
services.

1.2 Methodology and Outline
The work presented in this thesis aims at the establishment of a general infrastructure that
facilitates the management of Grid resources with service level agreements. It consists of
a site-local infrastructure for managing SLAs and local resources, and a global infrastruc-
ture assisting the advertising, brokering, and establishment of agreements between multi-
ple clients and Grid resources. We focus on the fundamental issues for the establishment
of such an infrastructure, including the specification of SLAs with WS-Agreement and
the design and implementation of a generic and extensible support infrastructure for WS-
Agreement specification, the evaluation of various techniques for application performance
prediction and the establishment of a generic infrastructure for non-intrusive monitoring
and adaptive prediction of the execution time of services, discussion and solution of job
scheduling issues in the local resource management infrastructure with a focus on the cases
where services have exclusive access to the local resource. In addition, it also presents
the design and implementation of a set of development tools and support environments for
the development, management, and accessing of service-oriented Grid applications and the
integration of SLA-based resource management infrastructure.

The next chapter introduces our infrastructure for SLA-based resource management in
general. It features a global support framework, and local SLA and resource management
infrastructure. This chapter outlines the major issues in both part and serves as a rule of
thumb to more detailed discussions in Chapter 3 to Chapter 5 for local management, and
Chapter 6 for the global infrastructure.

Chapter 3 introduces the specification and management of SLA with WS-Agreement.
It provides a brief overview of the WS-Agreement specification, together with a short
overview of our contributions toward the finalization of this specification. A generic and
extensible support infrastructure for WS-Agreement is presented, which utilizes a provider
mechanism to provide custom processing for domain-specific part of the agreement.

Chapter 4 discusses the application of prediction techniques for the evaluation of pro-
gram performances. It presents a general introduction of application performance pre-

1.2. Methodology and Outline 3

diction techniques, including analytical modeling, statistical simulation, and analysis of
historical data. The applicability and efficiency of common data mining techniques for
performance prediction has been evaluated. It presents a systematic approach for perfor-
mance prediction using data mining techniques, which is supported with a generic run time
monitoring and prediction framework for Grid services.

Chapter 5 discusses the local job scheduling issue in local resource management. With
a formal parameterization of the problem, algorithms of deadline-constraint scheduling and
discussion on more advanced scenarios are discussed. These include the impact of SLA ac-
knowledgement and asynchronous parameter submission, user specified earliest start time,
lazy termination and alternative SLA offers. A comparison of different algorithms and a
scheduler implementation is presented.

Chapter 6 focuses on the global infrastructure for SLA-based resource management.
The design and implementation of a minimal support infrastructure formed by index ser-
vice and broker service has been presented. In addition, a gateway service that enables
traditional stateless Web services be managed by the SLA-based resource management in-
frastructure has been presented. Advanced services supporting a global infrastructure that
overcomes potential issues of scalability is also briefly discussed.

In Chapter 7, development tools and support environments that help develop a Grid sys-
tem utilizing the proposed SLA-based resource management infrastructure are presented.
It include a Grid service development environment that helps to develop Grid services and
integrating them with the SLA-based resource management infrastructure, a base client
environment that can be used as the basic platform for using services in a Grid managed
by the SLA-based resource management infrastructure, and a management environment
that helps Grid managers to manage the Grid servers and controlling the deployment of
Grid services. Based on component-based development, the development and usage of the
different environments are quite efficient and flexible.

Chapter 8 presents a demonstration of the SLA-based resource management based on
a real-life application scenario of distributed data mining. The scenario will be detailed,
including user activities and resource management activities behind the scene. The design
and implementation of this demonstration, including the service bundle and client applica-
tions for data specialists and normal data analyzers are introduced.

The thesis concludes with a short summary and some future directions in Chapter 9.

Chapter 2

An Infrastructure for SLA-based
Resource Management

2.1 Introduction
With Grid computing adopting the Service Oriented Architecture (SOA), resources are
represented by services with standardized interfaces and the management of resources con-
verges to the more general management of services (i.e. the Service Level Management).
The key to Service Level Management is the management of Service Level Agreement
(SLA), a formal contract between the provider and consumer of a service which stipulates
and commits the provided service to a required level of service.

We concentrate in our research on designing and establishing a general infrastructure
for SLA-based Grid resource management. This chapter will provide a brief introduction
and discuss the challenges and applications. The rest of this chapter is organized as follows.
Section 2.2 presents a global overview of the SLA-based resource management infrastruc-
ture. Section 2.3 discusses the challenges towards the establishment of the infrastructure.
Section 2.4 discusses the applications scenarios that the infrastructure can be typically ap-
plied. This chapter ends with a summary in Section 2.5.

2.2 An Infrastructure for SLA-based Resource Man-
agement

Figure 2.1 presents a general overview of the SLA-based resource management infrastruc-
ture. The infrastructure includes facilities for local management at resource site that han-
dles the management of SLAs, resources and performances, and the global management
infrastructure composed by supporting services such as the broker service as indicated in
the figure and other services.

From the client’s point of view, a typical session of service usage includes the following
activities: the client sends job parameters and SLA parameters (such as deadline, price
etc.) to the broker, the broker contacts the service sites to get available SLA templates,
the broker selects the appropriate template and sends it to the client for verification, and
an acknowledgement is represented by the return of a signed SLA offer. The SLA offer is
then forwarded by the broker to the corresponding service site to create the SLA. With the

6 Chapter 2. An Infrastructure for SLA-based Resource Management

Site 3

Site 2

Site 1

Client

Service
WS-

Agreement

Resource
Manager

Performance
Predictor

Agreement
Decision
Maker

Broker Client

Dispatcher
UI

validate SLA

reserve

decide

evaluate

wake up

Broker

Signed
SLA Offer

Job &
Req.

Chosen
SLA

Template

SLA/Template/Offer

Figure 2.1 An infrastructure for SLA-based resource management.

negotiated SLA, the client invokes the service and gets an id (endpoint reference, or EPR)
of the job. According to the negotiated SLA, the job is scheduled at appropriate time and as
soon as the job finishes, a notification is sent to the client so that the result can be retrieved.

On the service site, a service has an associated management infrastructure that handles
the management of SLAs and resources. The WS-Agreement services provide interfaces
for requests for SLA templates, SLA creation and termination, notification of SLA status
changes etc. The performance predictor estimates resource demands for specific job pa-
rameters, and the resource manager keeps track of resource capabilities and job schedules.
Based on the information provided by both, the agreement decision maker decides on the
acceptance or rejection of a specific SLA offer. The resource manager (together with the
underlying scheduler) is also responsible for the scheduling of jobs with resource reserva-
tion and service invocation at scheduled time.

2.3 Challenges
Several challenges have to be addressed to the establishment of the SLA-based resource
management infrastructure:

2.3. Challenges 7

Specification and Management of SLAs The specification and management of SLAs is
a central task for the resource management infrastructure. It is concerned with the
formal specification of service quality requirements in the form of SLAs and the
management of the negotiated SLAs. In a service-oriented Grid architecture, SLAs
should be specified with languages that are general and flexible enough for different
services. Support infrastructure that faciliate the negotiation and management of
SLA-based resource management need to be established to support arbitrary number
and different types of services that are deployed.

Prediction of Resource Demand The management of agreements requires the knowledge
of resource demand or application performance. In many situations, they are not ex-
plicitly specified and can only be estimated from application specific parameters.
Feasible methods range from analytical modeling and statistical simulation to pre-
dictions based on historical data. In addition to the evaluation of such prediction
techniques, a generic framework must be established that can be adapted to different
services and support pluggable prediction techniques.

Local Resource Management and Job Scheduling As a major part of the local facilities
for SLA management, the local resource manager is responsible for the management
of local resources that are made available through the Grid. In addition to the exam-
ination of resource availability for a certain request, a major task of local resource
management is the scheduling of service invocations or jobs. the scheduling of ser-
vice invocations in a SLA-based resource management environment has specific re-
quirements that can not be easily fulfilled by such scheduler - on-line scheduling
targeting maximization of the number of jobs that can be served, jobs are normally
constrained with deadline and possibly also the earliest start time, integral admission
control, and inaccuracies in the predicted execution time of jobs - and thus deserves
to be investigated specifically.

The Global Infrastructure In addition to the local management infrastructure that pro-
vides fundamental support for SLA-based resource management, a global infras-
tructure should be established that assists the establishment of agreements between
multiple clients and Grid resources. Such infrastructure can, for example, help client
to seek for available servers and dynamically select the appropriate server that can
meet its requirement.

Programming and Run Time Environments Applications managed by the SLA-based
resource management infrastructure are formed with Grid services providing stan-
dard or custom functionalities. Supporting tools and environments are demanded for
the development, execution, and management of such applications and the underly-
ing infrastructure. They are important enablers that make the SLA-based resource
management infrastructure a practical approach for Grid application developers and
users.

8 Chapter 2. An Infrastructure for SLA-based Resource Management

In subsequent chapters, each of the above challenges will be addressed with detailed
discussions.

2.4 Application Scenarios
The SLA-based resource management approach is expected to applicable to different ap-
plications of Grid computing. Examples of typical application scenarios include:

Computational Grid for High Performance Applications Computational Grids for
high performance applications represent a typical application scenario in scientific
realm, where high performance computers from computing centers are made avail-
able through Grid infrastructure. Users code, compile and submit programs to be
executed. In addition to the program parameters, the submissions are accompanied
with job specifications of requirements or preferences for the execution platform,
number of CPUs, deadline, and price etc.

Service Grid for Distributed Data Mining A typical application scenario of Grids in
businesses is to utilize the Grid to facilitate distributed data mining on enterprise
data. In this scenario, enterprise business data are collected in data warehouses.
Analysis requirements like data mining that are transient and demands additional re-
source than the daily processing of data, which is to be fulfilled by the provisioning
feature of Grid. Multiple services are deployed on the servers and are managed by
the Grid infrastructure. Users specify the data and the data mining method together
with parameters for the specific data mining method and requirements or preferences
for deadline etc.

Other scenarios also exist, but the above two scenarios represent typical application sce-
narios in scientific and commercial realms and covers Grid applications with both standard
Grid services and custom ones. Therefore, they are to be used throughout our discussions
to help explain the design decisions of the SLA-based resource management infrastructure.

2.5 Summary
This chapter presents an overview of a SLA-based resource management infrastructure for
applying service level agreements in Grids for autonomous resource management. This
infrastructure incorporates a global infrastructure assisting SLA negotiation and a local
management infrastructure for SLA enforcement which manages local resources and han-
dles agreement negotiation and service provisioning.

The following chapters will discuss each of the major issues towards the establishment
of such an infrastructure, include the specification and management of SLAs in Chapter 3,
prediction of resource demand in Chapter 4, local resource management and job scheduling
in Chapter 5, the establishment of a global infrastructure in Chapter 6, and the establishment
of programming and run time environments in Chapter 7. In addition, Chapter 8 presents a
demonstration dedicated to a detailed scenario for distributed data mining.

Chapter 3

Specification and Management of
Service Level Agreement

3.1 Introduction
A Service Level Agreement (SLA) is a contract between a service provider and a ser-
vice consumer about the Quality of Service (QoS) that will be guaranteed by the service
provider [119]. The negotiation and management of SLAs is a central task for the resource
management infrastructure.

SLAs usually take the form of SLA documents, the syntax and semantics of which are
specified by SLA languages. Several different SLA languages have been specified (see
Section 3.5.1 for a brief summary). The management of SLAs requires support infrastruc-
tures which in some cases are defined as part of the specification that specifies the SLA
language and in other cases, like that of WS-Agreement, only the interfaces are specified
and details of the infrastructure is not.

As is mentioned before, service-oriented Grids are constituted by many different stan-
dard services as well as arbitrary custom services. Each service has domain specific terms
for describing the service parameters, results and QoS requirements. The generality and
flexibility is a major criterion for the choice of SLA languages and the design of support
infrastructures. This is also the major target of the WS-Agreement specification, which
is designed to ensure that any domain specific or other standard condition expression lan-
guage can be used.

WS-Agreement [13], as a standard developed by the Grid Resource Allocation Agree-
ment Protocol working group (GRAAP-WG) 1 of Open Grid Forum (OGF)2, is commonly
recognized in both Grid computing and broader SOA. It is becoming one of the de facto
standard languages of service level agreement.

As an active member of OGF GRAAP working group, we are deeply involved in the
finalization process of the WS-Agreement standard. An implementation of the specifica-
tion, on top of Globus Toolkit 4 (GT4), has also been developed as part of the Automated
Resource Management for Large-Scale Applications project.

This chapter focuses on our research and development activities in the specification, de-

1http://forge.ogf.org/projects/graap-wg
2http://www.ogf.org

10 Chapter 3. Specification and Management of Service Level Agreement

sign and implementation of WS-Agreement and a generic extensible support infrastructure.
It is organized as follows: Section 3.2 introduces the WS-Agreement specification and our
involvement and contributions. Section 3.3 describes the design of a generic support infras-
tructure, including the service interfaces that are responsible for interactions, management
entities that are responsible for decision making and agreement monitoring, and backend
provider mechanism that enables domain-specific handling of WS-Agreements. Section
3.4 explains various issues in the implementation, including the choice of GT4 as imple-
mentation platform, adaptation of WS-Agreement schemas for GT4, the type mapping and
persistence issues for domain-specific terms, registration and management of providers,
monitoring of agreement objectives and security issues. Related works are reviewed in
Section 3.5. Performance evaluation of the implementation is presented in section 3.6.
Section 3.7 concludes this chapter with a brief summary. In addition, examples of WS-
Agreement agreement template, agreement offer and agreement within context of the data
mining scenario described in Section 2.4 are provided in Appendix B.

3.2 WS-Agreement Specification

3.2.1 Overview
The Web Services Agreement (WS-Agreement) specification [13] is a Web service protocol
for establishing agreements between a service provider and consumer, using an extensible
XML language for specifying the nature of the agreement, and agreement templates to fa-
cilitate discovery of compatible agreement parties. The specification consists of three parts
which may be used in a composable manner: a schema for specifying an agreement, a
schema for specifying an agreement template, and a set of port types and operations for
managing agreement life-cycle, including creation, expiration, and monitoring of agree-
ment states.

The specification addresses several major issues in generality and extensibility. Such
issues include the usage of arbitrary service terms, creation of agreements for existing
and new services, usage of any condition specification language, symmetry of protocol,
independence of negotiation model, and independent usage of different parts of the speci-
fication.

The main concepts of the WS-Agreement specification can be outlined with an exam-
ple excepted from [79], which is shown in Figure 3.1. In the chosen example, the agree-
ment responder is a service provider, the agreement initiator the service consumer. An
agreement responder exposes an AgreementFactory interface, which offers an operation to
retrieve a set of agreement templates proposed by the agreement provider and an opera-
tion to create an agreement. Agreement templates are agreements with fields to be filled
in. Templates help an agreement initiator to create agreement offers that the agreement
provider can understand and accept. The create agreement operation returns accept or re-
ject, if a synchronous reply is expected. Otherwise, in case of a longer decision-making
process, the service responder can convey the decision to an AgreementResponse interface
that the agreement initiator exposes. If the create agreement operation succeeds, an agree-

3.2. WS-Agreement Specification 11

Agreement Responder

Agreement
Factory

Agreement

Agreement

Agreement

Service Environment
(Job Scheduling and Execution)

Service Environment
(Job Client, Preparation)

Agreement Initiator

Agreement
Initiator
Client

Agreement
Response

getResourceProperty

createAgreement

Accept/Reject

getResourceProperty / Agreement State

Create agreement resource

Prepare Service Delivery

Accept/Reject (Asynchronous)

Prepare Service Consumption

Service Specific Interaction

e.g., stage in files

Agreement
Offer

Templates

Agreement
Templates

Figure 3.1 Concepts and interfaces of WS-Agreement [79].

ment instance is created. The agreement instance exposes the terms of the agreement as
properties that can be queried. In addition, runtime states for the agreement as a whole
and its individual terms can be inspected by the initiator. All interfaces exposed by the
parties, AgreementFactory, Agreement and AgreementResponse are resources according
to the Web Services Resource Framework (WSRF) [2]. Upon acceptance of an agreement,
both service provider and service consumer have to prepare for the service, which typically
depends on the kind of service subject to the agreement. For example, a service provider
schedules a job that is defined in the agreement. A service consumer will make the input
files available as defined in the agreement. Further service specific interaction may take
place between the parties governed by the agreement.

The remaining part of this section will provide a brief overview of WS-Agreement
specification. For further details of the specification, please refer to the original document
[13].

3.2.2 Agreement Schema
As is shown in Figure 3.2, an agreement (or agreement offer) is conceptually composed of
several distinct parts, including an (optional) name, meta-data for the entire agreement as
context, and terms that describe the agreement itself.

Agreement context includes the identity of the initiator and responder, service provider,

12 Chapter 3. Specification and Management of Service Level Agreement

Agreement

Name

Context

Terms

Service Terms

Guarantee Terms

Figure 3.2 Structure of a WS-Agreement [13].

and expiration time of the agreement. Optionally, it also contains the id and/or name of the
template from which the agreement is created.

Agreement terms constitute the major body of an agreement offer and the consequent
agreement. There are two types of agreement terms: service terms and guarantee terms.
The service terms provide information needed to instantiate or otherwise identify a service
to which this agreement pertains and to which guarantee terms can apply. These are further
refined as service description, service reference and service property terms. The guarantee
terms specify the service levels that the parties are agreeing to. Management systems may
use the guarantee terms to monitor the service and enforce the agreement.

Special compositor elements can be used as logical AND/OR/XOR operators to com-
bine terms. This enables the specification of alternative branches with potentially complex
nesting within the terms of agreement.

3.2.3 Agreement Template Schema
The structure of an agreement template is the same as that of an agreement, but an agree-
ment template may also contain a creation constraint section (see Figure 3.3). This section
specify constraints on possible values of terms for creating an agreement. The constraints
make it possible to specify the valid ranges or distinct values that the terms may take. The
constraints refer back to individual terms they apply to using XPath [4].

3.2.4 PortType Definition
Several different port types have been defined by the WS-Agreement specification. They
define the interfaces to the support infrastructure in both the server side and client side. The
port types include AgreementFactory, PendingAgreementFactory, Agreement, Agreemen-
tAcceptance and AgreementState.

3.2. WS-Agreement Specification 13

Agreement Template

Name

Context

Terms

Service Terms

Guarantee Terms

Agreement Creation Constraints

Figure 3.3 Structure of a WS-Agreement template [13].

Based on top of WSRF, every port type exposes a wsrp:GetResourceProperty operation
as defined in WS-ResourceProperties. This operation enables the port types to expose
read-only resource properties. Other operations defined by the WS-ResourceProperties like
wsrf-rp:GetMultipleResourceProperties and wsrf-rp:QueryResourceProperties may also be
composed into domain-specific agreement and agreement factory types. The wsrl:Destroy
operation as defined in the WS-ResourceLifetime may be used by the initiator to explicitly
destroy no longer used resources.

AgreementFactory port type provides template resource property that represents a se-
quence of 0 or more templates for agreement offers. It also defines wsag:CreateAgreement
operation for generating an agreement from agreement offer, which returns either an EPR
of the created agreement or a fault response indicating that the offer was rejected and may
also indicate domain-specific reasons.

PendingAgreementFactory port type also has the template resource property, like the
AgreementFactory port type. It defines a wsag:CreatePendingAgreement operation for
generating an agreement when the decision process is deferred. In combination with port
type wsag:AgreementAcceptance, which allows a deferred decision to be communicated
as to whether the offer is accepted or rejected, it allows the creating of agreement in an
asynchronous way.

Agreement port type has resource properties that represent an agreement, which is cre-
ated either by AgreementFactory or PendingAgreementFactory port type. For separation
of concern, resource properties that represent the status of an agreement are defined in a
separate port type wsag:AgreementState. However, it is intended to be composed with the

14 Chapter 3. Specification and Management of Service Level Agreement

Agreement port type. wsag:Agreement port type also provides a wsag:Terminate operation,
which terminates an agreement, if possible.

3.2.5 Involvement and Contributions
As an active member of OGF GRAAP working group, we are deeply involved in the de-
velopment process of WS-Agreement specification. By participating in the discussions,
improving schema and port type definitions, as well as renewing the specification docu-
ment, we have played an active role in finalizing the specification.

Our contributions help to improve the specification in different aspects, including better
conformance to WS-ResourceFramework standard, improved type definition of agreement
states and service term states, more consistent naming conventions and so on. Most of these
contributions are accepted by the working group and become part of the final version of the
specification. In addition, we have also defined extensions to the specification that we have
found to be necessary in practical application of the specification. For more details of our
contributions, please refer to [74].

3.3 WS-Agreement Support Infrastructure

3.3.1 Generic Design
Unlike many other SLA languages that are accompanied with a detailed design of the sup-
port infrastructure, the WS-Agreement specification only describes the interface. The na-
ture of WS-Agreement specification requires the design of the support infrastructure to be
generic as well.

Figure 3.4 shows a schematic diagram of the WS-Agreement support infrastructure. It
has a layered design, with the following three layers in its architecture: interface layer that
provides service interfaces as defined by the WS-Agreement specification, management
layer containing components for managing and monitoring the agreement, and extension
layer with managed sets of backend providers for custom processing of domain-specific
terms.

3.3.2 WS-Agreement Services
The services follow the port type definition of the WS-Agreement specification and provide
external interfaces for the whole support infrastructure.

WS-Agreement specification defines the interfaces that an AgreementAcceptance ser-
vice should implement. Practically, each client might maintain multiple agreements at the
same time and thus need to manage multiple “instances” of AgreementAcceptance ser-
vices. In the term of WS-ResourceFramework, we need a Web Service - Resource pair,
i.e. we need to introduce state to AgreementAcceptance service and provide a factory
that manages the creation of the service “instance”s. This introduces the AgreementAc-
ceptanceFacory service that dynamically creates and manages AgreementAcceptance re-
sources, which enable the client to trace the status of multiple agreements dynamically.

3.3. WS-Agreement Support Infrastructure 15

Extension
Layer

Provider
Manager

Management
Layer

Agreement
Decision
Maker

Interface
Layer

SLA

Agreement

Agreement
Factory

Agreement
Monitor

Pending
Agreement

Factory

Provider Set

Figure 3.4 WS-Agreement support infrastructure.

They collaborately serve as a necessary extension to the WS-Agreement specification so
that the AgreementAcceptance service can be practically used to support the acceptance
notification of multiple agreements.

A schematic presentation of the implemented services and resources on both server
side and client side are illustrated in Figure 3.5. The port types (PendingAgreementFac-
tory, AgreementFactory, Agreement, and AgreementAcceptance) and resources (Agree-
mentFactoryProperties and AgreementProperties) in bold are those defined by the WS-
Agreement specification.

3.3.3 Agreement Management and Monitoring
While the SLA services implement interfaces for the interaction between agreement ini-
tiators and responders, the actual management of the agreements is conducted by backend
management components. The decision of agreement creation is delegated to agreement
decision maker, and the responsibility for the monitoring of agreement status is taken over
by the agreement monitor.

The agreement decision maker cooperates with the performance predictor and local
resource manager to estimate the resource demand and check the actual availability of
resource as requested. If possible, the agreement decision maker also checks or determines
the price of the service according to predefined strategies.

16 Chapter 3. Specification and Management of Service Level Agreement

AgreementProperties

• name:String
• agreementId:String[]
• context:AgreementContextType
• terms: TermTreeType
• agreementServiceReference
• agreementState: AgreementStateType
• guaranteeTermState: GuaranteeTermStateType
• serviceTermState: ServiceTermStateType

create

Agreement

• TerminateResponse terminate(TerminateInput)

• getResourceProperty(EPR)
• subscribe(EPR, EPR)

access

AgreementFactory

• createAgreement
→InitiatorAgreementEPR
→AgreementOffer
←CreatedAgreementEPR

• getResourceProperty(EPR)

AgreementFactoryProperties

• template: AgreementTemplateType

PendingAgreementFactory

• createPendingAgreement
→AgreementAcceptanceEPR
→InitiatorAgreementEPR
→AgreementOffer
←CreatedAgreementEPR

• getResourceProperty(EPR)

access

access

create

AgreementAcceptance

• acceptAgreement()
• rejectAgreement()

AgreementAcceptanceProperties

• templateId:String

AgreementAcceptanceFactory

• EPR createAgreementAcceptance(templateId:String)

access

create

Figure 3.5 Agreement management services on server-side (upper) and client-side (lower).

3.3. WS-Agreement Support Infrastructure 17

Agreement

• terminate()

• getResourceProperty(EPR)
• subscribe(EPR, EPR)

AgreementFactory

• createAgreement(...)

• getResourceProperty(EPR)

PendingAgreementFactory

• createPendingAgreement(...)

• getResourceProperty(EPR)
TemplateProvider

CreationProvider

PendingCreationProvider

TerminationProvider

AcceptanceNotificationProviderAgreement
Decision
Maker

Agreement
Monitor

MonitoringProvider

Figure 3.6 Providers handle domain specific or customized processing of agreement.

Each time a new agreement is created, a new agreement monitor is started that mon-
itors the objectives specified in the agreement. The agreement monitor utilizes resource
monitoring information to check the fulfillment of agreement objectives and updates the
status of agreement as appropriate. The change of status can be passively accessed by or
proactively notified to the corresponding party of the agreement. The agreement monitor
checks the status periodically, with an interval specified in the agreement.

3.3.4 Domain Specific Handling with Backend Providers
Provider and Provider Set

The WS-Agreement specification is defined to be generic, and allows the usage of domain
specific terms by using xs:any elements. Although a dedicated WS-Agreement implemen-
tation can be implemented that works only for specific domain, it is desirable to maintain
the generality of the WS-Agreement services and allowing configurable extensions. For
Grid systems, it should also provide concurrent support for multiple services that are dy-
namically deployed. We have designed a provider-handler infrastructure to achieve such
goal of extensibility and configurability.

While the service front-ends provide generic interfaces for the interaction between
agreement initiator and responder, providers are invoked at critical life-cycle points to per-
form domain specific or custom processing (ref. Figure 3.6). All providers must implement

18 Chapter 3. Specification and Management of Service Level Agreement

appropriate interfaces with multiple classes or a single class. Such interfaces include:

1. IAgreementTemplateProvider: interface for agreement template providers. Each fac-
tory or pending factory service can have multiple providers associated.

2. IAgreementCreationProvider: interface for agreement creation providers. It defines
methods to be invoked before and after agreement creation. With different return
values of the former method, it also allows custom control of the agreement creation.

3. IPendingAgreementCreationProvider: interface for pending agreement creation
providers. It defines methods to be invoked before and after pending agreement
creation.

4. IAgreementTerminateProvider: interface for agreement termination providers. It de-
fines methods to be invoked before and after agreement termination. With different
return values of the former method, it also controls whether the agreement termina-
tion is allowed.

5. IAgreementAcceptanceNotificationProvider: interface for agreement acceptance no-
tification providers. It defines methods to be invoked before and after agreement
acceptance notification is delivered. This allows customized actions to be taken, for
example, resend the notification or simply ignore it.

6. IAgreementMonitoringProvider: interface for custom agreement monitoring. It de-
fines methods to be invoked by the agreement monitor in each monitoring cycle.

Each custom service implementation provides a set of above mentioned providers on
a per-template basis. Different providers for the same template can be separately imple-
mented by multiple classes each implements one provider or one single class that imple-
ments all providers.

Provider Management

Figure 3.7 schematically illustrates major activities of provider management, including the
registration, instantiation and retrieval of agreement providers.

Each custom service comes provides a set of providers on a per-template basis. Pro-
grammers of the custom service are required to proactively register their set of providers,
using provided APIs for provider registration.

The providers are managed by ProviderManager, which maintains a registry of avail-
able providers. The registry is a mapping between the agreement template ID and the
corresponding set of providers. The providers are instantiated at the first time when they
are accessed and are cached for future retrieval. The advantage of this approach is that the
same agreement management infrastructure can provide differentiated processing for each
template, or serve different types of services at the same time.

In case providers can not be found in the registry for a specific template ID, dummy
providers will be used by default. The dummy providers perform nothing more than log-
ging, which can be used for debugging and performance studies.

3.4. Implementation Issues 19

Service Application A

Provider
Manager

Provider Set

Management
Engine

Custom
Service A

ID Provider Set

Provider
Cache

register

register

GetProvider

lookup cache Service Application B

Provider Set

Custom
Service B

Figure 3.7 Provider registration and management.

3.4 Implementation Issues

3.4.1 GT4 Platform
We have chosen Globus Toolkit 4 (GT4) 3 as the platform for our WS-Agreement imple-
mentation. As the major component and basic platform of Globus Toolkit, GT4 WS Core
provides a Web service platform featuring support for WS-ResourceFramework (WSRF)
and WS-Notification family of standards, as well as security technology for Web services,
and the Servicegroup implementation.

While WSRF support is the prerequisite of WS-Agreement, the Grid Security Infras-
tructure that provides extensive support for authentication and authorization is needed for
both the identification of participating parties in the agreements and the security of agree-
ment services themselves.

As an open source software toolkit for building Grids with services, GT4 is the de
facto standard Grid platform. Having our implementation based on GT4 provides better
opportunity for our implementation to be integrated and utilized in various Grid systems.

3http://www.globus.org/toolkit

20 Chapter 3. Specification and Management of Service Level Agreement

3.4.2 Interface Schema Adaptation
Due to specialties and limitations of GT4, the schema definitions of WS-Agreement spec-
ification need specific adaptations. This includes the replacement of namespaces and fault
types that are not supported or differently defined by GT4, specification of imported WS-
DLs and XSDs, simplifying the WSDLs by using compact schema, and modifications to
the definition of xs:simpleRestrictionModel and xs:typeDefParticle elements to overcome
the limitation of GT4 on xs:choice elements. More details are provided in Appendix A.

3.4.3 Domain Specific Terms
Wildcards in WS-Agreement

WS-Agreement is designed to be generic to cope with different usage scenarios and ap-
plication domains. As a result, the specification use XML wildcards like xs:any and
xs:anyAttribute extensively in the schema definition, to allow the occurrence of elements
and attributes from specified namespaces. The extensibility of the content model is thus en-
abled, while maintaining a degree of control over the occurrence of elements and attributes.

Definition and Processing

Domain specific terms are defined within separate XML schemas as part of custom ser-
vices. Those XML schemas need to be imported into WS-Agreement WSDLs to be pro-
cessed by the Web service platform.

The XML schemas contain only the syntax of custom elements, and do not provide
semantic information. The contributed handlers, as part of the custom service, are respon-
sible for understanding and custom processing of the elements that are specific to a concrete
domain and usage scenario.

Type Mapping

GT4 relies on the type mapping mechanism of Axis 4 for custom mapping between XML
elements and Java objects. As an extensible and configurable type mapping mechanism, it
allows the user to define custom type mapping.

Although type mapping configuration of common WS-Agreement elements can be di-
rectly inserted into client-config.wsdd, this is not convenient for domain specific elements
and attributes of custom Grid services. This can be solved by defining custom type mapping
definitions in client-deploy.wsdd as part of the custom service, which will automatically
update the client-config.wsdd when the service is deployed.

Persistence of Resource Properties

The properties of the agreement WS-Resource need to be persisted to survive container
restarts. Such persistence in GT4 is done by serializing each resource property object.

4http://ws.apache.org/axis/

3.4. Implementation Issues 21

GT4 guarantees that the message elements are serializable, except for elements of type
xs:anyType, e.g.:

<xs:element name="QualifyingCondition" type="xs:anyType" />

Such elements that are not serializable demand a custom serializer/deserializer to assist
the persistence. The custom serializer and deserializers are provided together with the
custom services to handle domain specific elements.

3.4.4 Provider Management
Provider Registration

The provider registry is implemented as a Hash table. The key of a table item is the agree-
ment template ID, and the value is an instance of ProviderSet, a class that contains each
provider for that template. The ProviderSet also contains links to existing provider in-
stances, which is utilized by provider manager to manage cached instances.

Registering Providers Proactively

The registrations of providers need to be done by the custom services proactively, which is
contradictory to the passive invocation pattern of Web services. Normally, a Web service is
not instantiated until it is invoked for the first time. By modifying the deployment descriptor
of the Web service, it is possible to tell the Web service engine to load and instantiate the
Web service class on startup.

The code that actually performs provider registration can be provided as part of static
code in the service class, which will be automatically executed on class loading. A bet-
ter alternative is to use the life cycle support of Web services by having the Web service
class implementing javax.xml.rpc.server.ServiceLifecycle interface. This allows not only
the registration of providers in the init() method, but also de-registration in the destroy()
method. We chose this approach in our implementation.

Having Web service classes which normally have a large memory footprint loaded on
startup is not memory efficient. Besides, we would like to separate the implementation of
custom services and the code for provider registration. Therefore, in place of the custom
service, we have a dedicated service to provider registration which is configured to be
loaded on startup. Except for the code that handles the registration and clear up, the dummy
service does not implement other methods and thus keeps a very small memory footprint.

3.4.5 Agreement Monitoring
The agreement monitor checks agreement objectives periodically. It is implemented with
the help of the Timer framework supported by GT4 WS Core. The key components of the
Timer framework are TimerManager and TimerListener. TimerManager is responsible for
the periodical invocation of TimerListener. The TimerListener is where the timer work is
implemented. The following code snippet is an example of retrieving TimerManager from

22 Chapter 3. Specification and Management of Service Level Agreement

the Web service context and the registration of a new timer that is started every 100 seconds
from now:

InitialContext ctx = new InitialContext();
TimerManager timerManager = (TimerManager)

ctx.lookup("java:comp/env/timer/ContainerTimer");
timerManager.schedule(new SLAMonitorTimerListener(),

1000 * 100);

In the actual implementation, the interval for timer expiry is configured as is specified
in the agreement. Upon the creation of each new agreement, a new timer is added that
handles the periodical invocation of agreement monitor.

3.4.6 Security Issues
The WS-Agreement specification does not regulate the exact presentation of Agreemen-
tInitiator and AgreementResponder in an agreement. The approach we adopted is to use
credentials of the participating parties (service provider and service consumer) to specify
the initiator and responder of agreement. Besides providing identification of the negoti-
ation parties, authentication is also necessary for authorization. GT4 WS Core provides
extensive support for Web service security, which greatly simplifies our implementation
for authentication and authorization.

3.5 Related Work

3.5.1 SLA Languages
Prior to WS-Agreement, several SLA languages exist. Well-known ones include the
SLAng [106] [70] developed by University College London, Web Service Level Agreement
(WSLA) [77] [78] developed by IBM T.J. Watson Research Center, Web Service Manage-
ment Language (WSML) [99] [100] developed by Hewlett-Packard Laboratories, and Web
Service Offering Language [114] developed by Ottawa-Carlton Institute of Electrical and
Computer Engineering.

Overviews and comparisons of most languages can be found in [21] [91] [85]. Most of
the SLA languages are formal languages in XML format. WSLA and SLAng have metrics
as part of the language, which restricts their generality. Like WS-Agreement, WSLA sup-
ports the concept of agreement templates, which is not supported by SLAng and WSOL.
Both WSLA and WSOL have practical applications in the industry, while SLAng is mainly
used in academia. None of these languages are widely accepted and their usages are limited
to specific field.

3.5.2 SLA Infrastructures
There have been a number of attempts at defining SLA support infrastructure for both
Web and Grid services. Well-known ones include Web Services Offering Infrastructure

3.5. Related Work 23

(WSOI) [112] [113] for WSOL, Web Services Management Network (WSMN) [100][80]
for WSML, TrustCoM [6][120] for extended WSLA. An overview and comparison of those
systems can be found in [91].

Except for the differences in the concrete design and certain excessive functions, those
support infrastructures are essentially quite similar, with interface components providing
operations that handle SLA language protocol and provide other externally-accessible op-
erations, different management components that handles decision making, and SLA mon-
itoring/evaluation, together with supporting data structures or stores. For monitoring pur-
poses, many of those infrastructures instrument Web services by inserting handler or proxy
into the SOAP processing route. Despite the fact that most of them are developed together
with a specific SLA language, the same designs are applicable to other languages as well.

With a focus on coordinated management of SLAs for workflows, WSMN also features
components for interaction with workflow engines and exchanging measurement informa-
tion among WSMN members. WSMN also provides a backend graphical user interface
for system administrators to examine SLA violation logs on specific machine. TrustCoM
supports the separation of SLA monitoring/evaluation and notification functions from the
local support infrastructure into third party services. WSOI design includes an extension
mechanism to support other SLA languages with language specific handlers, however the
actual implementation stays with WSOL only.

3.5.3 WS-Agreement Implementations
Cremona (Creation, Monitoring and Management of WS-Agreement) [76] is a WS-
Agreement implementation by IBM T. J. Watson Research Center. As the first WS-
Agreement implementation, and the only one which was available before the start of our
work, it is based on an early draft of WS-Agreement which is very different from the fi-
nal 1.0 version. Since the early draft does not rely on WS-ResourceFramework, it was
able to be implemented on Axis. PendingAgreement and AgreementAcceptance port types
are not supported. Because of intellectual property restrictions by IBM, the source code
of Cremona is not available, although a binary distribution is included in IBM Emerging
Technologies Toolkit (ETTK) 5 with an IBM AlphaWorks 90 Day Trial license. Cremona is
designed to separate domain-independent from system-specific and domain-specific com-
ponents. To customize it for specific domain, implementations of DecisionMaker, Agree-
mentImplementer and StatusMonitor that follow specific interface should be provided and
configured through configuration script.

The GridARM (Grid Askalon Resource Management) System [105] of Askalon 6 [40]
contains a WS-Agreement implementation. The source code is accessible with a custom
restrictive Askalon Software License7. As part of a resource management system, it is dedi-
cated for advance reservation of Grid resources and both the design and implementation are
tightly coupled with proprietary terms for resource reservation. It is based on a non-final

5http://www.alphaworks.ibm.com/ettk
6http://www.dps.uibk.ac.at/projects/askalon/
7http://www.dps.uibk.ac.at/projects/gridarm/software/license.html

24 Chapter 3. Specification and Management of Service Level Agreement

Platform Spec Ver. Complete Source License generality

Cremona Axis early draft no close custom extend & config
ASKALON GT4 pre-1.0 no open custom no
AssessGrid GT4 1.0 no open Apache 2.0 extend & static register
VIOLA Axis2 1.0 no close custom extend & config
WSAG4GT4 GT4 1.0 yes - - dynamic

Table 3.1 Comparison of existing implementations of WS-Agreement.

version of the WS-Agreement specification, and does not implement PendingAgreement
and Acceptance port types. It is implemented on top of GT4.

The Negotiation Manager 8 [20] is a component of the AssessGrid 9 [23] software stack
that implements the WS-Agreement specification on GT4. It is an open source implementa-
tion, licensed under Apache 2.0 license. It complies with the WS-Agreement specification
version 1.0, but currently PendingAgreement and AgreementAcceptance are not supported.
The implementation is fixed to JSDL, JSDL-POSIX [15] and some domain specific pieces.
Since it does not include an extension mechanism, customization has to be done by manual
modifications and recompilation of the source code. The implementation separates generic
and domain dependent code to ease the customization work.

The WS-Agreement Framework 10 [79] is implemented by the Fraunhofer-Institute for
Algorithms and Scientific Computing (SCAI) as part of the VIOLA (Vertically Integrated
Optical Testbed for Large Applications in DFN) project 11. It is fully compliant with the
WS-Agreement specification version 1.0, but currently PendingAgreement and Agreemen-
tAcceptance are not supported. It is implemented in Java and takes advantage of the in-
novative Axis2 platform. Besides separating generic and domain dependent code, it also
provides a simple customization mechanism based on class inheritance and configuration
script similar to Cremona.

Our implementation (denoted as WSAG4GT4 in Table 3.1) is by far the only imple-
mentation that fully implements the latest WS-Agreement specification. Compared to other
existing implementations, it exceeds in its generality and extensibility. Domain dependent
processings are dynamically contributed by the individual services as handlers. The handler
manager manages multiple contributions so that they can coexist, thus multiple services of
different domains can be supported concurrently. This is exceptionally important for Grid
systems.

8https://cit-server.cit.tu-berlin.de/trac/negmgr/wiki
9http://www.assessgrid.eu/

10http://packcs-e0.scai.fraunhofer.de/mss-project/wsag4j/index.html
11http://www.viola-testbed.de/

3.6. Experimental Results 25

operation 1st invocation 2nd and later

get template 10ms 1ms
create agreement 16ms 6ms
get agreement 1ms 1ms
terminate agreement 10ms 2ms

Table 3.2 Performances of WS-Agreement implementation.

3.6 Experimental Results

3.6.1 Performances
An experiment is performed to test the performance of the WS-Agreement implementation.
The underlying platform is a machine with dual Intel Xeon 2.8GHz processors with Linux
system kernel 2.4.20.

As we concentrate on the performance of WS-Agreement support infrastructure, we
would like to avoid interactions with the resource monitor, performance predictor and the
scheduler. Therefore, dummy providers are used, which also provides logging functional-
ity.

The performances are measured for four different tasks: agreement template retrieval,
agreement creation, agreement query, agreement termination, with clock time recorded for
each invocation. Table 3.2 presents the result of the experiment. We distinguish between
the clock time for the first invocation and an average of the following ones.

Agreement creation is a more complex operation; therefore it takes the longest time
to complete. The first invocation for retrieving template, creating agreement and termi-
nating agreement always takes longer than the following invocations. This is because of
class loading, resolving and instantiating the agreement providers. The first retrieval of
agreement is almost as fast as the later invocations, because the relevant classes are already
instantiated and no providers are involved.

3.6.2 Examples
In order to examine the functionalities of the implementation, we have extended the WS-
Agreement support infrastructure to support example Grid services for distributed data min-
ing (more details of the services as well as the configuration of agreement providers will
be provided later in Section 8.5). Different operations of the infrastructure are performed,
and the resulting agreement template, agreement offer and the established agreement are
listed in Appendix B.

3.7 Conclusion
Resource management for service-oriented Grid requires flexible and general languages for
SLA specification. As an active member of OGF GRAAP working group, we have actively

26 Chapter 3. Specification and Management of Service Level Agreement

participated in the finalization of WS-Agreement specification.
An implementation of the specification on top of Globus Toolkit 4 (GT4) has also been

developed as part of the Automated Resource Management for Large-Scale Applications
project. It follows a layered design that separates the service interface, agreement manage-
ment and monitoring, as well as backend providers for extension and customization. Our
implementation exceeds in its generality and extensibility. For Grid systems, its concur-
rently support for multiple services of different domains that are dynamically registered is
important.

As part of the resource management infrastructure, the agreement manager has to coop-
erate with other components, including those for performance estimation and job schedul-
ing. In addition, it also needs a global infrastructure that assists the establishment of SLAs
among multiple clients and services. They will be discussed in the following chapters.

Chapter 4

Prediction-based Application
Performance Evaluation

4.1 Introduction
The resource provisioning capability of Grid depends on dynamic choice of resource for a
specific demand. For such a dynamic scheduling to be possible, detailed specification of re-
source requirements is needed, including the type and amount of resource to be consumed.
However, in many situations, the resource demand is indirectly specified with application
specific parameters which have to be mapped to the type and amount of resource demands.

Many techniques can be used to predict the performance of applications, like analyti-
cal modeling, statistical simulation, and historical data analysis. The applicability of each
technique differs. Among the many techniques, performance prediction using historical
data is a more general technical that can be applied to a broad range of applications. The
prediction of program performances from historical data falls into a more generic category
of problems called “numeric prediction”. It takes as input a set of (numerical and nominal)
variables and outputs a numerical value as prediction. As this is already an intensively
investigated field in statistics and artificial intelligence under the name of data mining, our
focus is not on the invention of new techniques. Instead, we aim to follow a systematic
approach and establish a generic infrastructure for performance prediction, with a focus
on its application in a service-oriented Grid. The infrastructure should incorporate prede-
fined performance predictors using standard data mining techniques or custom predictors
utilizing other performance prediction techniques.

The rest of this Chapter is organized as follows. Section 4.2 explains the need for per-
formance prediction in our SLA-based resource management infrastructure. Section 4.3
presents a general introduction of application prediction techniques that are feasible for
practical usage, including analytical model, statistical simulation, and analysis of histori-
cal data, together with a detailed evaluation of the applicability and efficiency of common
data mining techniques in performance prediction, including statistical regression, decision
tree, nearest neighbour, and artificial neural networks. Section 4.4 presents a systematic ap-
proach for performance prediction using data mining techniques, which is supported with a
generic run time monitoring and prediction framework for service-oriented Grid in Section
4.5. Section 4.6 discusses implementation issues. Section 4.7 summarizes the related work.
Section 4.8 provides experimental result that evaluates the efficiency of application param-

28 Chapter 4. Prediction-based Application Performance Evaluation
The Need for Resource Prediction

Performance
Predictor

Job

Parameters

Decision
Maker

SLA Doc

QoS
Parameters

Local
Scheduler

Resource
Utilization

Resource
Demand

Figure 4.1 The need for performance prediction in SLA decision.

eter and run time recording, and performance modeling and prediction. Finally, Section 4.9
presents a brief summary.

4.2 The Need for Performance Prediction
The WS-Agreement language and the corresponding support infrastructure presented in
Chapter 3 allow service consumers and providers to establish a formal contract for service
usage. During this process, the service provider must evaluate the QoS requirements spec-
ified in the contract and decide whether it will accept it. A major criterion for this decision
is whether it will be able to meet the requirements based on availability of resource and
an estimation of resource demand or application performance with application specific pa-
rameters. While resource availability can be retrieved from the local resource manager, the
application performance must be estimated using performance prediction techniques (see
Figure 4.1).

The two application scenarios discussed in 2.4 also represent two typical scenarios
for performance prediction. In the distributed data mining services scenario, performance
prediction focuses on the pre-deployed service or its backend application. In the high
performance computing center scenario, performances of arbitrary applications submitted
by the user have to be predicted. While the former represents custom application services
that are common in commercial usage of the Grid, the latter is more common in Grids for
scientific purpose.

For a pre-deployed service or application, we can model its performance with tech-
niques that require insight of the code, apply different performance analysis tools, or per-

4.3. Feasible Application Performance Prediction Techniques 29

Generality Feasibility Prediction Type Overall
Application System Accuracy

Analytical Model very poor poor yes partially varies
Statistical Simulation poor acceptable no yes moderate

Historical Data Analysis good good yes yes good

Table 4.1 A brief summary of application performance prediction techniques.

form offline analysis that takes long time. Despite their difference in model building, per-
formance prediction in both scenarios has to be done in real-time.

4.3 Feasible Application Performance Prediction
Techniques

Many techniques can be used to predict the performance of applications, however only
a few of them are feasible for practical usage. A brief summary of such techniques are
given in Table 4.1, which gives comparisons depending on the following factors: gener-
ality - technique can be applied to different cases, feasibility - how easily the technique
can be used, accuracy of the prediction in general, prediction type - “application” means
the performance of application with different input parameters and “system” means the
performance of an application with different system configurations.

4.3.1 Analytical Model
Analytical models (ref. Section 4.7.1 for examples) attempt to derive an analytical equation
that describes application performance using variables from application parameters and
system characteristics.

Analytical is probably the most direct approach to developing a predictive performance
model. It can be applied to predict the performance of an application with different input
parameters and sometimes it is also possible to partially predict the application performance
with different system configurations (e.g. [11]).

A major restriction of analytical model is the requirement of in-depth knowledge of
the program or minimally the algorithm employed. For programs that present compli-
cated/subtle interaction behaviors, deriving an analytical equation can also be very hard
(if not impossible at all). It is infeasible to take architectural details and detailed interac-
tion between the program and architecture into the model. In addition, analytical models
are limited in scope to the concrete application and the specific system architecture being
modeled.

4.3.2 Statistical Simulation
Due to the complexity of modern computer architecture and the immense number of in-
structions executed in average applications, detailed simulations are not applicable for per-

30 Chapter 4. Prediction-based Application Performance Evaluation

formance prediction due to the huge slowdown. A common approach for simplifying the
models of parallel applications and systems relies on statistical properties. The application
is modeled as code blocks separated by communication events, with statistics of mem-
ory access and floating-point operations for the code blocks derived from profiling. The
system model is simplified with benchmark measurements that represent the speed of ac-
cessing different levels of memories, floating-point calculation, and communication latency
and bandwidth.

Statistical simulation provides a feasible approach for predicting the performance of
certain types of parallel applications (mainly those for numerical simulation) under differ-
ent system configurations. It is not applicable, however, to predict the performance of an
application with different input parameters. Another difficulty comes from the fact that
existing tools (ref. Section 4.7.2) are mostly experimental and still under development.

4.3.3 Historical Data Analysis
Techniques have been proposed for predicting application performance using historical in-
formation. They rely on techniques originated from statistics, data mining, machine learn-
ing, fuzzy logic etc., to (semi-)automatically discover the hidden relationship between ap-
plication performance and application parameters and/or system characteristics.

Compared with other methods, techniques based on historical data are more general be-
cause no direct knowledge about applications and the execution environments is required.
This makes it exceptionally attractive in a heterogeneous environment with various types of
applications and systems with different characteristics like the Grid. Depending on the con-
crete scenario where this technique is applied, historical data contains application parame-
ters, system characteristics, or both. Correspondingly, it can be applied to both application
performance prediction and architecture performance prediction. As it is able to capture
unexpected details of the interactions between application and systems, the accuracy of
historical data analysis can be usually quite good.

Common data mining techniques and algorithms can be evaluated according to their
applicability and efficiency. Two types of data mining techniques - clustering and asso-
ciation rule mining can be immediately excluded from our discussion as they are not for
predictions. A brief summary of the applicability and efficiency of other common data
mining techniques is given in Table 4.2, and more detailed discussions are provided in the
following subsections.

Statistical Regression

Statistical regression tries to describe the relationship between the input attributes and the
target attribute with a linear or non-linear formula. This technique, though feasible at cer-
tain circumstances, is not generally applicable due to difficulties of finding an appropriate
type of regression function and performing appropriate transformations.

4.3. Feasible Application Performance Prediction Techniques 31

Prediction Technique Incremental Input Continuous
Discrete Continuous Output

Regression no yes † yes yes
Decision Tree generally no yes yes yes ⊥

Nearest Neighbor yes yes † yes ‡ yes
Neural Network yes yes † yes ‡ no a

Table 4.2 A brief summary of data mining algorithms for application performance predic-
tion (†: need transformation, ‡: need normalization,⊥: requires specific algorithm, a: with
workarounds).

Decision Tree

A specific type of decision tree, the regression tree, can be applied to numerical prediction.
Regression tree (ref. [27]) is a kind of predictive model based on recursively splitting data
into a tree of partitions. Each tree node is a super set of its children, and each child node
contains a sub set of data with better consistency in the prediction value. A simple but
common approach is to divide the data by applying a threshold on a single column.

A regression tree is a special type of decision tree that permits continuous target values.
The advantage of regression tree is that it requires little preprocessing. With respect to a
variety of predictor types (e.g. number, categorical etc.), the algorithm is fairly robust [9].

Although regression tree can be run relatively quick, it is expensive for continuous
inputs [42]. This constitutes a major drawback in performance prediction.

Nearest Neighbour

The k-nearest neighbour algorithms (kNN, ref. [8]) predict the output value(s) for a given
query point by applying a weighting function to the output values of the k nearest instances
as defined by the instance metric.

kNN is a kind of instance-based learning [37], which requires no explicit training phase
and the collection of data directly acts as knowledge base. Another advantage of kNN is its
capability to capture ad hoc features of the application performance [68].

The major problem of such algorithms is the somehow arbitrary selection of the weight
function which does not necessarily reflect the relative importance of each parameter cor-
rectly. Other issues of this technique include performing appropriate transformations, diffi-
culty of avoiding outlier (especially for simple nearest neighbours with k=1). Performance
is a potential issue and caution has to be taken to choose the correct algorithm. Simple
algorithms do not perform well if the number of attributes is over 10, while sophisticated
algorithms like kD-Tree or M-Tree can create metric trees that deal successfully with thou-
sands of dimensions [123].

32 Chapter 4. Prediction-based Application Performance Evaluation

Artificial Neural Networks

Artificial neural network (ANN, ref. [98]), often just called “neural network”, is an analogy
of biological neural networks. It consists of interconnected artificial neurons as processing
units, which respond in parallel to a set of input signals given to each using its small sphere
of knowledge and local memory of data. ANN usually adapts its structure based on external
or internal information that flows through the network during the learning phase.

The greatest advantage of ANNs is their ability to learn unknown, complex and dynamic
relationships directly from the data. Another major advantage is their robustness towards
noisy data [32], which makes them well suited for application performance predictions with
usually a presence of system noise in the performance data.

A minor complexity of applying neural networks in performance prediction is that pre-
processing is usually necessary [9]. Continuous input attributes need to be normalized and
categorical predictors are broken up into virtual predictors that are 0 or 1 for each value of
the original categorical predictor. However, many software packages that implements data
mining algorithms also support certain automation of those preprocessing.

In the following discussions, we will concentrate on the application of data mining
techniques in application performance prediction.

4.4 A Systematic Approach for Performance Predic-
tion with Data Mining Techniques

4.4.1 Overview
Some preliminary research on performance prediction using historical data analysis exist
(ref. 4.7.3). However, all existing studies are limited to the evaluation of a specific analysis
method, and many are restricted to data of a specific format that are collected for certain
application or public workload archives of computing centers. Such studies are all right
in proofing the applicability of data mining techniques for performance prediction, but
the approach can not be followed in general. On the one hand, mature software tools
or libraries are available that support more advanced data mining techniques. Therefore,
there is no need to invent the wheel another time. On the other hand, it is a known fact
that different data mining techniques perform differently with different data. The selection
of a data mining technique and the concrete algorithm is also a major factor that affects
prediction accuracy.

Different Grid services have different application parameters and performance charac-
teristics. To support performance prediction and consequently SLA-based resource man-
agement, we need to follow a systematic approach that can be generally applied to different
types of services. The essence of this approach is to apply standard data mining process
and techniques on performance data.

Figure 4.2 is a simplified schematic figure that shows a typical data mining process.
The collected data are separated into test data, training data, and production data. The
training data is used by the modeler to build models. The quality of the model is estimated

4.4. A Systematic Approach for Performance Prediction with Data Mining Techniques 33

Training
Data

Modeler
(Mining Algorithm)

Settings

Test
Data

Quality info
Tester

Production
Data Scorer Prediction

Model

Figure 4.2 A simplified data mining process.

by the tester against test data. The quality information can be used to tune parameters of
the model. The model can be applied on production data by the scorer to get the prediction.

4.4.2 Performance Data Collection
For performance prediction purposes, two types of data need to be collected - application
parameters and performance data.

In the service-oriented Grid, application parameters can be collected in a straight-
forward way, since they are often specified in the SLA document and/or the service invoca-
tion message. The performance data, on the other hand, has to be collected by monitoring.
While most existing Grid monitoring systems focus on the performance statistics of the
system, several are capable of monitoring application performance and can be applied to
computational services (for example, GRM [89], NetLogger [59], and Autopilot [116]).

The collected data has to be transformed into standard data types, including continuous
numerical values (e.g. 1.2), discrete numerical values (e.g. 5), categorical nominal values
(e.g. red), and nominal values (e.g. large). For example, a fixed set of variables of the same
type can be transformed into several independent inputs, and a variable set of variables of
the same type can be transformed into a variable matrix.

4.4.3 Performance Data Mining
Once the application parameters and performance data are collected, standard data mining
techniques can be applied. This process can be roughly divided into two phases - modeling
and predicting. Modeling, or training, is the process of creating a model using historical
data. And predicting, or scoring, is the process of applying the model to unseen data to
make new predictions. For instance-based mining techniques like kNN, no explicit model-

34 Chapter 4. Prediction-based Application Performance Evaluation

ing process is necessary.
Two parameters play key roles in performance prediction: the predicted performance,

and the prediction accuracy. While the predicted performance can be derived by applying
the model to the data (program parameters), the prediction accuracy can only be derived by
evaluation, which is also part of the performance modeling step.

As is discussed in Sub-section 4.3.3, common data mining techniques that are feasible
for application performance prediction include regression tree, nearest neighbour, and arti-
ficial neural networks. Each technique is supported by different algorithms, and many are
implemented by existing software or libraries. Some advanced ones like Weka [122] are
capable of automated parameter tuning. A major advantage of using the standard data min-
ing techniques is the possibility to reuse those mature algorithms and software. Optionally,
the performance of different data mining techniques can be compared for selection.

4.4.4 Data and Model Management
With new records of application parameters and performance data collected, the existing
model need to be updated. For instance-based learning techniques where the data is the
model, each update of data also updates the model.

The frequency of model update depends on the characteristics and performance of se-
lected data mining algorithm. As is mentioned in Section 4.3.3, both kNN and ANNs are
incremental which can be updated as each new record comes. For regression trees and other
techniques that are slow and non-incremental, the model can only be periodically updated
with a background process.

Depending on the concrete scenario, a two layer organization of data and models similar
to [68] can be optionally applied. In addition to the normal data and model, a local layer is
added that contains only recent data and model built out of the recent data and represents
the short-term performance of the system. This helps to cope with short term performance
perturbations.

4.5 A Run Time Monitoring and Prediction Frame-
work for Grid Services

4.5.1 Overview
While the systematic approach described in Section 4.4 provides a general guideline, actual
application of that approach demands a lot of effort. A uniform framework that provides
infrastructure support for the collection of performance data and performances prediction
is needed. The framework, as is shown in Figure 4.3, features generic interfaces for mod-
eling and prediction, data collection with snoop in the SOAP handler chain, and automatic
management of performance models. This framework has the following advantages:

1. Non-intrusive: it can be plugged in to the Grid environment without modification
of the service implementation. It also means that the process of performance data

4.5. A Run Time Monitoring and Prediction Framework for Grid Services 35

Performance
Data

Performance
Monitor

Web Servicehandler
chain

Performance
Predictor

Interface

Interface

Performance
Model

Model
Manager

Figure 4.3 A run time monitoring and prediction framework for service-oriented Grid.

collection and performance prediction will not have much influence on the service
execution performance.

2. Adaptable: it can be adapted to different types of services, including standardized
services with well-known interfaces like the Globus GRAM etc, or customized ser-
vices with specific port type definitions.

3. Generic: it allows different performance prediction techniques employed under the
same hood, including different data mining techniques for historical data analysis
as well as custom models with analytical modeling or statistical simulation to be
applied.

4. Architecture neutral: the framework does not depend on a specific resource monitor-
ing, neither is its usage restricted to a specific SLA management infrastructure.

4.5.2 Non-intrusive Data Collection
The collection of application parameters and performance data should not require the mod-
ification of existing services to be monitored. This is achieved by inserting a handler into
the SOAP processing chain of the SOAP engine. Upon service invocation, this handler is
invoked by the SOAP engine and deserializes the message into values. These values are
recorded with a timestamp. Once the service invocation finishes, the previous record is
updated with the job finish time and total length of job execution.

While the timestamp can be retrieved directly from the system, the parameters are de-
rived by deserializing the SOAP message. In addition, other performance or utility data
can be collected by monitoring tools. Depending on the exact environment and data to

36 Chapter 4. Prediction-based Application Performance Evaluation

be collected, different tools can be used, for example the Java Management Extensions
(JMX) [95] to monitor application services themselves, Windows Management Interface
(WMI) [71] for reading Windows performance counters, and GANGLIA [82] monitoring
tool available for both Linux and Windows for unified systems monitoring.

4.5.3 Generic Modeling and Prediction Interface
The framework should be able to incorporate different prediction techniques. This is en-
abled by the definition of general interfaces and pluggable performance recorders and pre-
dictors.

The general interface isolates the performance recorder and predictor with other parts
of the resource management infrastructure. It also regulates the different implementations
of performance recorders and predictors that can be plugged into the framework. A manual
configuration of performance recorder and predictor can be specified in a local configura-
tion script.

4.5.4 Automatic Management of Performance Model
Model manager manages the periodical update of models under predefined or user supplied
policies. It also takes care of the actual performance recorders and predictors that are
applied, which means the instantiation of the corresponding class and delegation of the
actual work to that instance, in case that a manual configuration of the performance recorder
and predictor exist.

Because of the vastness in possible algorithms and parameters for different mining
methods, manual choice of appropriate models is a challenging task, which includes the
application of different mining methods on the performance data to build performance
models, evaluate the models in different ways, adjust model parameters accordingly, and re-
evaluate the model. Semi-automatic configuration and evaluation of different performance
modeling techniques against the specific application can be established by managing a pool
of pre-configured models. The model manager periodically updates and evaluates the mod-
els in the pool, and applies the model that produces the most accurate predictions within
relatively shorter period of time for the specific service.

4.6 Implementation Issues

4.6.1 The Globus SOAP Handler
In a typical SOAP engine, SOAP messages go through a sequence of handlers each doing
specific processing. Axis SOAP engine distinguish three types of handlers (see Figure 4.5)
- transport handlers for protocol-specific processing, global handlers that are applied to all
services and service handlers that are applied to a specific service.

Globus WS Core is based on Axis SOAP engine and provides several global handlers
for addressing, authentication, authorization and fault handling. Our handler should be
placed behind all these handlers, with three possibilities shown in Figure 4.5: (A) add a

4.6. Implementation Issues 37

Model Pool

Performance
Data

Performance
Model

Model
Manager

Pool Management

Figure 4.4 Automatic management of performance model pool.

GlobalTransport Service

Axis Engine

request
request

response
response

SOAP Service

Target
Service

request

response

provider

Transport
Listener

Return
control to
listener

C

B

B

Message
Context

A

A

Figure 4.5 Possible locations (A, B, C) for data collection handler.

pair of global handlers as the last one in global request handler chain and the first one
in global response handler chain, (B) add a pair of service handlers each for request and
response, (C) replace the pivot handler (provider) that invokes the actual service.

In our implementation, we chose the last option and implement a RecordingR-
PCProvider that extends the existing RPCProvider class. The major benefit of this approach
is that we can reuse the existing code in RPCProvider class that parses the service argu-
ments. By modifying the service deployment descriptor, our provider can be automatically
inserted into the handler chain when the service is deployed:

<service name= ...>
...

38 Chapter 4. Prediction-based Application Performance Evaluation

<parameter name="handlerClass"
value="de.tum.in.lrr.sog.RecordingRPCProvider"/>

...
</service>

Before invoking the service method, the RecordingRPCProvider calls argument
recorder to record the arguments. And after the service method returns, it calls time
recorder to record the run time. In order to allow some flexibility in data storage meth-
ods (e.g. files or data base), the argument recorder and time recorder can be customized by
implementing predefined interface.

4.6.2 Performance Data Storage
We chose Derby1 in our implementation for data storage. Derby is a pure Java relational
database that can be embedded into Java applications. This makes it possible to automat-
ically start the database when starting the Grid server, and by automatically managing the
database and data tables, the administrative effort is minimized. With embedded JDBC
driver, database accesses are directly in memory, which can be much faster than through
socket.

Derby is embedded into Globus with the help of a dummy Web service. In the deploy-
ment descriptor of that Web service, it is configured to load on server startup. The Web
service class implements javax.xml.rpc.server.ServiceLifecycle interface, and implements
init() and destroy() method that will separately be invoked at server start up or shutdown.
The embedded driver is loaded and the database is started in the init() method. In the
destroy() method, all connection are closed and the database is shutdown.

The collected data are stored in the database with a table following specific schema.
Given the fact that different services have different number of parameters, we define a
pattern for the database schema:

ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY,
START TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
FINISH TIMESTAMP,
LENGTH BIGINT,
VALUE_1 <type1>,
...
VALUE_n <typen>

The table is created dynamically when the data recorder is invoked for the first time, and
the number of values and the type of value are automatically determined for the database.
The mapping between Java types and SQL types is performed with the help of a mapping
table.

There is a one to one mapping between the services and the database tables that contain
performance data. The mapping between service and table is achieved by enforcing certain
rules of the table names, which contains a prefix and the service ID.

1http://db.apache.org/derby

4.6. Implementation Issues 39

4.6.3 Performance Prediction
Our data modeling and prediction implementation is based on Weka [122] from the Uni-
versity of Waikato in New Zealand. Weka is a large collection of state-of-the-art machine
learning algorithms for data mining tasks. It contains tools for pre-processing, classifica-
tion, regression, clustering, association rules, and visualization. It is written in Java and
can be easily extended with new machine learning schemes and algorithms.

The current version of Weka has a limitation of database access - parameters for
database access including table name must be provided with system properties. However,
there might be multiple services deployed on the same Grid server, the performance data of
which are stored in different tables or even different databases. Therefore, we have reimple-
mented some part of Weka to enable the usage of data from existing database connections.

As is mentioned in Section 4.6.2, although all the performance database follow the
same pattern, the exact number of data fields in the database schema differs from service
to service. We use database metadata to dynamically determine the name and type of each
data fields that represent application parameters.

Weka data mining algorithms are Java classes and can be directly invoked from our
program. First, an instance of the corresponding miner is created. Then, it is applied on the
data retrieved from the database to build the model. With cross validation, its prediction
accuracy can be estimated. The miner, with its model inside, can then be applied on a data
instance. And the predicted values are returned together with the estimated accuracy.

4.6.4 Configuration and Management of Recorders and Predic-
tors

The performance recorders are configured on a per-service basis through the service de-
ployment descriptor:

<service name= ...>
...
<parameter name="argumentRecorder"

value = "de.tum.in.lrr.sog.DatabaseArgumentRecorder"/>
<parameter name="timeRecorder"

value = "de.tum.in.lrr.sog.DatabaseTimeRecorder"/>
...

</service>

Performance predictors are accessed by the agreement decision maker, which is out
of the scope of the specific service and a configuration script like that of the performance
recorders can not be directly accessed. Therefore, a registry of available providers is imple-
mented to globally publish the configuration in the Grid platform. The registry is a mapping
between the service parameters and the corresponding performance predictor. The regis-
trations of performance predictors are performed proactively by the custom services in a
way similar to the approach described in Section 3.4.4.

40 Chapter 4. Prediction-based Application Performance Evaluation

4.7 Existing Work on Application Performance Pre-
diction

4.7.1 Analytical Model
Most work on analytical modeling is done against smaller application or kernels. [117]
analyzed sparse matrix-vector multiply (SpMV, y = y+Ax, whereA is a sparse matrix and
x, y are dense column vectors). [72] analyzed symmetric sparse matrix-vector multiply (A
is a symmetric, sparse matrix, i.e. A = AT) and symmetric sparse matrix-matrix multiply
(SpMM, Y = Y + AX , where X , Y are dense matrices).

In many cases, the analytical models are only able to model the upper and lower
bounds. For example, [118] analyzed the upper and lower bounds of sparse matrix op-
eration SpATA, i.e. y = ATAx, where A is a sparse matrix and x, y are dense vectors.

For large scale scientific applications, [97] analyzed the sequential and parallel perfor-
mance of an application that simulates the collision of two black holes from the Cactus
2 software package [11]. [19] presents an analytic performance model of Krak [29], a
large-scale parallel hydrodynamics code irregular mesh partitioning. A series of research
by the Los Alamos National Laboratory model the performance of several applications for
the simulation of deterministic particle transport on structured meshes [61], unstructured
meshes [83], non-deterministic particle transport using Monte-Carlo simulation [84], and
adaptive mesh refinement [69].

Analytical modeling other than scientific simulation also exists. Examples include the
performance modeling of 3D isosurface visualization software [24], and that of a specific
type of databases that uses indexed file as the physical storage mechanism [43].

A methodology of composing analytical models of individual components into a gen-
eral model of whole application is discussed by [101], and [52] discussed the same issue
with “kernel coupling”. The impact of stochastic values on model parameters is discussed
in [102, 104].

4.7.2 Statistical Simulation
There are many research activities in this area. While detailed summary and comparisons
among existing toolsets can be found in [115] and [36], we review some typical ones here
to provide hints about the current status and applicability of current tools.

PERC/PMaC framework

The PERC framework [108] is a collection of tools for gathering machine profiles and
application signatures and provides automated convolutions. The tools are separately de-
veloped and collaborately integrated by several labs and universities from USA and Europe.

It provides a benchmark application MAPS (Memory Access Pattern Signature) [110]
to measure single processor signatures, with emphasis on memory access patterns. The
result can be used in combination with the third party benchmarks that measure network

2http://www.cactuscode.org/

4.7. Existing Work on Application Performance Prediction 41

(MPI) performances like PMB (Pallas MPI Benchmarks) [3], or NPB (NAS Parallel Bench-
marks) [18].

For application profiling, it uses MetaSim Tracer [110] to trace memory accesses and
floating-point operations, and uses MPIDtrace [17] to record communication (MPI calls).

For statistical simulation, DIMEMAS simulates the execution of the application on
a parallel system, based on the MPI event trace produced by MPIDtrace to simulate the
execution of the application on the target system. It uses latency and bandwidth to model
the communication time. The run time between MPI events is estimated using MetaSim
Convolver [110], which can be used to estimate the run time for the whole application or
parts of the application on a single processor. The specification of the target system is via
configuration file, which can be user parameterized or measured with benchmarks.

The PMaC Prediction Framework3 is an upgrade of the PERC framework. The
MetaSim Tracer, as a binary instrumenter tool on top of the ATOM toolkit for Tru64 Unix
on Alpha AXP processors, has been replaced by PMaCinst, an instrumentation tool for
XCOFF binaries on AIX for PowerPC processors. The MetaSim Convolver becomes the
PMaC Convolver, and MAPS becomes MultiMAPS. A migration of the MetaSim Tracer
based on DyninstAPI is also reported [109].

PACE

PACE (Performance Analysis and Characterisation Environment) [90] is a modeling and
performance analysis toolset for high performance and distributed applications. It is based
on a layered infrastructure formed by extensible objects describing each of layer: applica-
tion, subtask, parallel template (computation-communication interactions), and hardware.

The system model is formed by hardware objects, which are organized in a hierarchical
way to describe the hardware system in general or individual parts like memory, CPU, and
communication system. The hardware objects are custom developed in C language and
collaboratively form a hardware object library.

The application model is described with CHIP3S (Characterisation Instrumentation for
Performance Prediction of Parallel Systems) language [94], and can be semi-automatically
generated using ACT (Application Characterisation Tool). ACT performs static analysis of
the source code to produce the control flow of the application, operation counts in terms of
SUIF language [121] operations, and the communication structure. Dynamic performance
related aspects of the application, such as data dependent parameters, are obtained either
by manual analysis or profiling using tool AddSensors [10].

A compiler translates CHIP3S scripts to C code which are linked with an evaluation
engine and the hardware models. The final output is a binary file which can be executed
rapidly. The user determines the system/application configuration and the type of output
that is required as command line arguments. The model binary performs all the necessary
model evaluations and produces the requested results. PACE includes an option to generate
predicted traces (PICL [54, 53], SDDF [16]) that can then further analyzed by visualization
tools (e.g. PABLO [96]).

3http://www.sdsc.edu/pmac/projects/

42 Chapter 4. Prediction-based Application Performance Evaluation

first invocation 2nd and later (average)

parameters recording 106ms 6ms
run time monitoring 3ms 3ms

Table 4.3 Overhead of application parameter and run time recording.

4.7.3 Historical Data Analysis
There are relatively few researches on the application of historical data analysis in applica-
tion performance prediction. Most work focus on case studies for a specific program. For
example, a group of researchers has [64] applied multilayer neural networks to predict the
performance of SMG2000, a semi-coarsening multigrid solver based on the hypre library
[41]. It uses a “multilayer fully connected feed-forward neural network” with one hidden
layer and sigmoid activation function.

The k-nearest neighbour method with three different weighting functions - unweighted
average, weighted average, and locally weighted polynomial regression - is used in [68] to
predict resource usage for the PUNCH (the Purdue University Network-Computing Hubs)
[67] system, a Web portal for executing tools on servers at Purdue University. [73] im-
proved the above technique by using a genetic algorithm to automatically search for optimal
parameters and applied it on workload traces.

Very few researches also attempt to apply other algorithms that are not very popular.
[14] presented an approach based on a genetic algorithm and fuzzy logic which allows
for creation of robust prediction models even with scarce training data. [38] presented an
approach based on a state-transition model.

4.8 Experimental Results
Experiments are performed to test the performance of run time monitoring and prediction
infrastructure. The experiments are made using a custom service for ray tracing that in-
vokes a famous open source ray tracing program Povray 4 in the backend. The experiment
platform is a machine with dual Intel Xeon 2.8GHz processors with Linux operating sys-
tem. The Linux kernel version is 2.4.20 and the exact version of the Povray program is
2.6.

4.8.1 Efficiency of Data Recording
To evaluate the performance of the run time and application parameter monitor, we man-
ually instrumented the service source code to measure the amount of time spent on the
recording of application parameters and runtime. A test client is implemented that contin-
uously invokes the service with random parameters. The result of the experiment is shown
in Table 4.3.

4http://www.povray.org

4.8. Experimental Results 43

Model Build/Update Time

1.48

197.61

0.02

1167.39

1.48

197.61

0.02

0.11

0.01

1

100

10000

Regression

Decision Tree K-NN ANN

(s
)

build update

Figure 4.6 Run time for build and update performance prediction model.

The recording of application parameters for the first time takes longer than the others.
The excessive time is spent on the creation of database table. The recording of service
parameters takes longer than that of the run time. This is because of the additional process-
ing of the recorder to dynamically adapt to multiple and variable parameters, including the
determination of the parameter type and the construction of corresponding SQL statement.

4.8.2 Efficiency of Model Building and Prediction
The application parameters collected are the most important and typical ones that Povray
supports, including scene file, image width, image height, and image quality. The pa-
rameters cover several typical types of data, including nominal, continuous and discrete
numerical. We choose 12 scenes out of the advanced sample scenes as part of the povray
distribution. For each scene, we sampled image width from 200 to 2000 with a gap of 200
and image quality from 1 to 0 with a gap of 0.1. This means a total of 9x10x10 samples for
each scene.

The performances of the learning algorithms are evaluated mainly interms of prediction
time. Prediction accuracy, which is know to be completely application specific, is not of
our interest here. The result is shown in Figure 4.6 (note that y axis is in logarithm). The
time for building performance model with all the samples and the time for updating the
model with the last sample are separated. Regression and kNN method performs very fast.
And decision tree is a bit slower. ANN might give an initial impression that seems to be
relatively slow. However, taken the fact that ANN is incremental, the run time for each
update is greatly reduced.

To give a little bit more insight, Figure 4.7 provides an example of the learning curve
measured using ANN. It shows the improvement of the evaluation accuracy with increasing

44 Chapter 4. Prediction-based Application Performance Evaluation

Relative Root Squared Error

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

10 20 50 100 200 400 900

Figure 4.7 Learning curve show how average error improves with training set size.

number of samples.
It should be noted that such prediction techniques can work equally for scientific appli-

cations. For example, the same algorithms are applied to workload logs of super computer
centers from the Parallel Workloads Archive [44]. Although the resulting prediction is not
very accurate due to the fact that application specific parameters are missing from those
logs, it clearly shows the applicability of such techniques to predict the run time and mem-
ory usage of parallel applications on various high performance computers.

4.9 Conclusion
Agreement decisions require accurate estimation of resource demand or application perfor-
mance with application specific parameters or different system configurations. Compared
with other methods like analytical modeling and statistical simulation, techniques based on
historical data are more general. It requires no direct knowledge about applications and the
execution environments.

While existing works focus on the application of a specific algorithm, we aim to follow
a systematic approach that applies standard data mining process and techniques for perfor-
mance prediction. To assist the application of such an approach in service-oriented Grid, a
generic, adaptable, non-intrusive run time monitoring and prediction framework has been
designed and implemented.

Based on application performance prediction, the local resource manager can schedule
Grid jobs according to the availability of resources and QoS requirements of the job. While
the availability of performance prediction provides an additional opportunity for the sched-
uler, the stochastic nature of the predicted performance implies however difficulties, all of

4.9. Conclusion 45

which will be discussed in the following Chapter 5.
It should be noted that the prediction-based approach can be applied to a broader range

of resource types other than computational. For example, the Network Weather Service
[124] utilizes the prediction-based approach to predict network performances. This enables
the uniform applicability of the SLA-based resource management approach on different
types of resources.

Chapter 5

Job Scheduling for Local SLA
Management

5.1 Introduction
As a major part of the local facilities for SLA management, the local resource manager
is responsible for the management of local resources that are made available through the
Grid. Major functions of the local resource manager include the examination of resource
availability for a certain request and the scheduling of service invocations or jobs, which
are supplied by the local scheduler.

While normal schedulers focus on minimizing the total execution time (i.e. make-span)
of a set of scheduled jobs, the scheduling of service invocations in a SLA-based resource
management environment has specific requirements that can not be easily fulfilled by such
schedulers. The scheduling is made on-line, where instead of minimizing make-span, the
objective is to maximize the number of jobs that can be served. Admission control, i.e. the
judgment of accepting or rejecting a scheduling request, is an integrated part of the sched-
uler. The jobs are normally constrained with deadline and possibly also the earliest start
time. In addition, the scheduler has to cope with inaccuracies in the predicted execution
time of jobs. For example, the scheduler can decide if the current job execution should be
extended if the actual execution exceeds the scheduled finish time.

This chapter focuses on job scheduling problems for local SLA management. More
specifically, we deal with a case where the service in execution has exclusive access to the
local resource. We start with a basic scenario in 5.2.1 where all the jobs are constraint with
individual deadlines. Based on a formal parameterization of this basic scenario, discussions
on dealing with probabilistic run time and algorithm for scheduling deadline-constraint jobs
are presented. Section 5.3 discussed several more complicated scenarios, including situa-
tions where SLA acknowledgement and asynchronous parameter submission are necessary,
the user specifies the earliest start time, the job can opportunistically run over its scheduled
finish time, and alternative SLA offers are provided. Section 5.4 overviews job scheduling
phases before and after a SLA is established. Section 5.5 discusses the design and imple-
mentation issues. Section 5.6 presents experimental results that compare the performance
of different scheduling algorithms, in terms of run time and acceptance rate. Related work
is summarized in Section 5.7. Section 5.8 concludes this chapter with a brief summary.

48 Chapter 5. Job Scheduling for Local SLA Management

5.2 Basic Problem Statement

5.2.1 Problem Parameterization
A simplistic description of job scheduling in the SLA-based resource management infras-
tructure can be accomplished with the following parameters:

1. The job has predefined parameters which can be used to predict the estimated run
time t̂job and the variance σ2.

2. The job has associated SLA parameters, including QoS parameters like deadline
tdeadline and business values like the price p and penalty (or fine) f .

Based on these parameters, scheduling determines if the required QoS can be fulfilled
so that the job is admitted (admission control) and decides when the job should be exe-
cuted. The objective here is to maximize the total number of jobs that are scheduled. The
important lifecycle times of the job include:

1. tstart: the start time of the job 1.

2. tfinish, Tfinish: the actual and scheduled finish time of the job.

3. tjob, Tjob: the actual and scheduled execution time of the job.

In our discussion, for simplicity, we assume that once a job is admitted and scheduled,
it will not be canceled by the scheduler to move space for later jobs.

5.2.2 Probabilistic Run Time
The possibility of a job finishing before deadline is defined as P :

P = P (tfinish ≤ tdeadline)

= P (tstart + tjob ≤ tdeadline)

= P (tjob ≤ tdeadline − tstart)

.
Since tfinish = tstart+tjob, and tjob has a truncated distribution (tjob >= 0) centering on

its expected value t̂job, the distribution of tfinish centers around its expected value tstart +
t̂job which is schematically illustrated in Figure 5.1. And in a practical schedule where the
job is scheduled before Tfinish, the probability P is calculated as P = P (tjob ≤ Tfinish −
tstart).

The utility U of a new job that is scheduled on the server, i.e., the expected benefit of
the job, can be evaluated as:

1At any time, the actual and scheduled time are always the same. If the job is delayed, a re-scheduling
must be performed before the job can be executed, which updates the scheduled time.

5.2. Basic Problem Statement 49

fp
fU

+
+0

0UU =

1

P

startt
jobstart tt ˆ+ deadlinet

0Ttstart +

startt
jobstart tt ˆ+ finishtdeadlinet

0Ttstart +

'P

Figure 5.1 Cumulative distribution function (upper) and probability distribution function
(lower) of job finish time.

U = p · P − f · (1− P)

= (p+ f) · P − f

A minimal utility Umin can be used to regulate the execution time of job tjob during
scheduling. If U ≥ Umin, then P ≥ (Umin + f)/(p + f). That means, the job must be
scheduled with a length greater than Tmin (tfinish ≥ tstart + Tmin, ref. Figure 5.1), so that
the probability of the job finishing before the deadline is greater than (Umin+f)/(p+f). In
case a minimal utility is not specified, there is also an implicit minimal value of Umin = 0
because the utility should not be negative.

In practice, the scheduled job execution time Tjob is determined based on t̂job and its
distribution so that the probability is reasonably higher than a certain threshold (accuracy
threshold). This assures that the job will not occupy too much excessive time without
obvious improvements to the utility. This is exceptionally important when the deadline is
not very restrictive.

50 Chapter 5. Job Scheduling for Local SLA Management

5.2.3 Scheduling Deadline-Constrained Jobs
For the simplest case where the jobs are constraint with deadlines, the scheduling can be
based on Earliest Deadline First (EDF) algorithm in which the job with the earliest absolute
deadline is executed first. For preemptive scheduling, EDF has been proven to be optimal
with respect to minimizing the maximum lateness of n independent tasks with arbitrary
arrival times (aporadic task set) [56, 75]. For non-preemptive scheduling, EDF is also
proven to be optimal for sporadic task sets among all the non-idle algorithms (the processor
is not allowed to be idle when there are active jobs) [55].

To apply EDF algorithm in our infrastructure, it has to be twisted with admission con-
trol. Upon the arrival of a new job, all jobs are sorted according to their deadline. A
schedule is attempted by continuously selecting and scheduling the job with the earliest
deadline until there are no more jobs. If the new schedule can not hold all jobs, the new job
will be rejected and the original schedule will be kept. Otherwise, the new job is accepted
and the new schedule replaces the original one.

5.3 More Complicated Scenarios

5.3.1 SLA Acknowledgement and Asynchronous Parameter
Submission

Two situations have similar impacts on job scheduling:

1. If the agreement offer is initialized by the service provider instead of service con-
sumer, the agreement has to be acknowledged by the service consumer. The service
specifies a deadline for the SLA acknowledgement, namely TSLA. The actual SLA
acknowledge time tSLA must be before TSLA.

2. For security reasons, the SLA might only contain the job parameters that are critical
for SLA negotiation and performance evaluation. The full set of parameters can
be encrypted and sent to the service asynchronously, before certain deadline Tready

specified by the scheduler. The actual ready time tready must be before Tready.

The impacts of SLA acknowledge and asynchronous parameter submission on schedul-
ing include:

1. The initial schedule is only temporary, which has to be consolidated by SLA ac-
knowledgement or parameter submission. If the temporary schedule expires and
thus has to be canceled, the scheduler can perform a rescheduling to optimize the
schedule.

2. If the actual ready time tready is earlier than Tready, scheduler can determine to keep
the current schedule or modify the existing schedule between current to deadline
tdeadline.

5.3. More Complicated Scenarios 51

deadlinet

finisht

startt finishT

jobt
jobT

SLAt readyt

SLAT readyT

1T scheduled

actual

earliestt

Figure 5.2 Relationship of times in job scheduling.

3. When applying the EDF algorithm, the schedule needs to be adapted so that the job
will not be scheduled before TSLA and Tready.

5.3.2 User-specified Earliest Start Time
The user might specify an earliest start time tearliest as part of the SLA. This can happen
for the co-scheduling of resources for parallel execution or the scheduling of jobs that
constitute a workflow.

The user specified earliest start time tearliest imposes a lower bound on job start time
tstart, i.e. job start time tstart must be later than tearliest (see Figure 5.2). This can be con-
sidered as a generalization of the deadline-only case, where the tearliest can be considered
to be 0, or now. In another extreme, where tdeadline−tearliest is very close to t̂job, it becomes
the traditional reservation-based scheduling.

For n jobs, there will be P n
n = n · (n− 1) · (n− 2) · · 2 possible execution sequences.

Therefore, finding the optimal schedule by traversing the whole search tree with n jobs has
a complexity of ∼ O(n!). Pruning the search tree by abandoning the branches when the
addition of any node to the current path causes a missed deadline can reduce the complexity,
but does not help the worst case. Heuristics for global searching like genetic algorithm or
simulated annealing help to reduce the time for looking for possible schedules, but mostly
are not able to derive the optimal schedule.

On the other hand, a heuristic algorithm can be derived by adapting the original EDF al-
gorithm to jobs with earliest start times that are first sorted with an ascending deadline and
then are scheduled with each job after the previous job and its earliest start time. Although
such an algorithm will not give the optimal schedule, it can still be applied to derive subop-
timal schedules. This can be inferred from Figure 5.3 where the relationships between two
jobs with earliest start time and deadline are illustrated. Except for a rare situation in Case
4 (see Figure 6.3) with same deadline and different earliest start time and two subcases of
Case 6 with containment relationship, EDF holds true for their relationship. The distinction
between the first two cases and the last case in Case 6 is determined by the length of jobs,
which can not be generalized to multiple jobs.

In Section 5.6, we will compare the performance of several different approaches, in-
cluding a branch-and-bound algorithm, genetic algorithm, and EDF-based heuristic as de-
scribed above.

52 Chapter 5. Job Scheduling for Local SLA Management

Case1: separated

Case2: partial overlap

TAteA tdA

teB tdBT
B

Case3: same deadline
same earliest

Case5:same earliest,
different deadline

Case4:same deadline,
different earliest

Case6: containment

(TB>te
A-te

B &
td

A-te
B≥TA+TB)

TAteA tdA

teB tdBTB

TAteA tdA

teB tdBTB

(TB>teA-teB &
tdA-teB<TA+TB≤tdB-teA)

TAteA tdA

teB tdBTB
(teA=teB , tdA=tdB)

TAteA tdA

teB tdBTB
(teA<teB , tdA=tdB)

TAteA tdA

teB tdBTB
(teA=teB , tdA<tdB)

TAteA tdA

teB tdB
(teA<teB < tdA <tdB)

(teA<tdA < teB <tdB)

(TB≤te
A-te

B)
TAteA tdA

teB tdBTB

Figure 5.3 Schematic relationship of two jobs with earliest start time and deadline. In this
figure, Tjob is abbreviated to T , tearliest to te, and tdeadline to td.

5.3.3 Lazy Termination
In the above discussions, we assume that each job will be terminated if the actual job
execution exceeds the estimated time. An alternative is to attempt to execute the job for a
longer period of time than the original schedule. In such cases, job postponement can affect
the start time of the next job. As a consequence, the next job’s probability of running longer
than its scheduled finish time and thus having to be postponed as well will also change. If
we consider the postponement as a status of the job represented by X, the postponements
of all jobs form a Markov chain [81].

There are simplified cases when termination of the current job is postponed only prior
to the scheduled start time of the next job and bounded by its deadline. In such cases, the
probability of the next job running longer than its scheduled finish time and thus having
to be postponed is not changed, as the postponement of the current job will not impact the
existing schedules.

5.4. Scheduling Phases 53

5.3.4 Alternative SLA Offers
Another possible scenario is the existence of alternative QoS parameters in the SLA. For
example, suppose several alternative sets of time constraints like earliest start times t(j)deadline

and deadlines t(j)deadline, each with different business values like price p(j) and penalty (or
fine) f (j).

There are several strategies to deal with alternative SLA offers. In one possible strat-
egy, one out of the several alternative QoS parameters is selected for scheduling until it
is successful with one of the alternatives. In another strategy, schedules for all alternative
QoS parameters are performed, which might result in multiple possible schedules. A com-
parison and selection can be performed based on some internal criteria like the expected
benefit U or unit benefit U/t̂job.

5.4 Scheduling Phases
For each job handled by the local resource manager, the scheduling activities can take
place several times during and after SLA negotiation. Such scheduling activities can be
divided into three different phases with respect to agreement establishment, including pre-
scheduling, scheduling, and re-scheduling.

Pre-Scheduling : Pre-scheduling is an optional phase which takes place during SLA nego-
tiation sessions with SLA acknowledgement or asynchronous parameter submission
(ref. Section 5.3.1). Take the case of SLA acknowledgement for example: For each
agreement offer initiated by the service provider, a temporary schedule is made so
that the resource can be reserved before the client acknowledges the agreement offer.
The temporary schedule will be canceled if the client rejects the agreement offer or
does not respond before a deadline for SLA acknowledgement TSLA.

Scheduling : Scheduling happens when an agreement offer is accepted by the service
provider or service consumer. In the later case, the temporary schedule resulted from
pre-scheduling can be simply consolidated.

Re-Scheduling : The existing schedule can be changed during re-scheduling. Re-
scheduling usually takes place when new jobs are scheduled, but it can also happen
on certain critical points, for example:

1. The actual SLA acknowledgement tSLA is far ahead of scheduled SLA ac-
knowledgement deadline TSLA and the resource is free.

2. The actual ready time tready is far ahead of the scheduled ready deadline Tready

and the resource is free.

3. The actual finish time of a job tfinish reaches the scheduled finish time Tfinish,
and the scheduler decides to give it additional time tallowance.

54 Chapter 5. Job Scheduling for Local SLA Management

5.5 Scheduler Design and Implementation
A scheduler based on probabilistic service execution time prediction has been designed
and implemented. This scheduler assumes space sharing of resource, i.e., each running job
will have exclusive access to the allocated resource and other jobs have to wait until the
previous job has finished or exceeds the schedule and when resource becomes available
again.

A single queue of pending jobs is maintained by the scheduler. Jobs are dequeued when
they become the currently running job. Jobs are sorted according to the scheduled start
time. The job is represented by Java class SchedulingEntry, which contains the following
information:

• Job parameters

• SLA parameters (earliest start time, deadline, price, penalty etc.)

• Performance prediction results (estimated execution time, estimation confidence etc.)

• Scheduling information (scheduled start time, scheduled finish time)

For evaluation purposes, we have implemented several scheduling algorithms in the
scheduler, including Branch-and-Bound (BB) search, heuristics based on EDF as described
in Section 5.2.3, and a genetic algorithm (GA). Based on performance comparisons (ref.
Section 5.6), we use a hybrid approach for the scheduling, in order to balance between
optimality and time taken for scheduling. If the total number of jobs are less than 20, BB
search is used, otherwise use the heuristic based on EDF.

5.6 Experimental Results
We did experiments to examine the performance of three different algorithms. The exper-
iments are done with simulation where scheduling requests are randomly generated. The
run time of jobs are simulated with a negative exponential distribution, with a normal dis-
tribution of prediction error. The earliest start time is generated with a uniform distribution,
and the deadline is simulated with a negative exponential distribution after the earliest start
time plus job run time.

We performed experiments with different amount of jobs, different algorithms, and
different confidence intervals. We examined the number of jobs that are accepted, and the
jobs that are successfully executed before the deadline.

Figure 5.4 shows the run time of scheduling for different algorithms with a problem size
up to 25. While the run time with heuristics based on EDF can be neglectable for such a
small problem size, that of Branch-and-Bound search grows so fast that on-line scheduling
is not possible with a problem size over 20. Genetic algorithm begins with a very small
run time that rises as the number of jobs approaches 10 and stays at a run time of around
25,000 ms, which corresponds to 100 iterations after which if no improvements are found
the iteration will be stopped.

5.6. Experimental Results 55

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

#Jobs

Ti
m

e
(m

s) EDF
GA
BB

Figure 5.4 Run time of scheduling for different algorithms with small problem size.

1

10

100

1000

10000

100000

1000000

10 20 50 100 200 500 1000 2000

#Job

Ti
m

e
(m

s) EDF
GA
BB

Figure 5.5 Run time of scheduling for different algorithms with large problem size.

56 Chapter 5. Job Scheduling for Local SLA Management

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

#Jobs

A
cc

ep
ta

nc
e

R
at

e

EDF
GA
BB

Figure 5.6 Acceptance rate for different algorithms with small problem size.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 50 100 200 500 1000 2000

#Jobs

A
cc

ep
t R

at
e

EDF
GA
BB

Figure 5.7 Acceptance rate for different algorithms with large problem size.

5.6. Experimental Results 57

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3

Confidence Interval (σ)

Su
cc

es
s

R
at

e

EDF
GA
BB

Figure 5.8 Effects of prediction error on the rate of successful execution.

Figure 5.5 shows the same run time with large problem sizes. With the problem size
growing from 10 to 2,000, the run time for heuristics based on EDF grows from less than
1 ms up to about 200 ms. The run time of genetic algorithm also rises from 25,000 ms
to 900,000 ms. The run time of Branch-and-Bound search was not measured for problem
sizes greater than 25 because of its poor scalability.

The quality of different algorithms can be evaluated by comparing the job acceptance
rate. The result of Branch-and-Bound search provides optimal results that serve as the
maximum of jobs that can be scheduled. For small amount of jobs in Figure 5.6, genetic
algorithm and EDF-based heuristic shows comparable performance, with a drop of 5% to
15% average job acceptance rate compared to that of Branch-and-Bound search. A similar
conclusion holds for large amount of jobs (see Figure 5.7), except that no comparison was
made against the Branch-and-Bound search for jobs over 20 because of its huge run time.

Figure 5.8 shows the impact of different confidence levels on the success rate, i.e. the
ratio of jobs that are successfully executed within all jobs that are accepted. The results for
all three algorithms are quite similar. While the success rate improves a lot when the confi-
dence level increasing from 1σ to 2σ, it does not improve very much when the confidence
level further increases to 3σ.

58 Chapter 5. Job Scheduling for Local SLA Management

5.7 Related Work

5.7.1 Scheduling Algorithms
Moore [88, 87] presents a genetic algorithm to schedule tasks on clusters, targeting make-
span minimization. Braun et. al. [26] [25] compared eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed computing systems. There are no
deadlines for the tasks, and the objective of the scheduling is to minimize make-span. Some
of the heuristics are specific to mapping tasks to multiple resources, such as Opportunistic
Load Balancing, Minimum Execution Time, Minimum Completion Time, Min-Min, Max-
Min, and Duplex. Others are general ones that can be applied to our scenario as well,
including Genetic Algorithms, Simulated Annealing, Genetic Simulated Annealing, Tabu
Search, and A* (a Branch-and-Bound tree search algorithm). According to the comparison
result, GA is out performs among all the algorithms and we assume this also holds true for
our case. Basically, we can also extend our research to cover all different algorithms.

Spooner et. al. [111] studied the local scheduling on a cluster of hosts, where each
job has an associated deadline and can be mapped onto multiple hosts. It also employs
a performance prediction to evaluate the performance of applications under different sys-
tem configurations. It evaluates and compares three different heuristics, including deadline
sort (i.e. EDF) and genetic algorithm that uses a fitness function that balances make-span,
processor idle time, and deadline fulfillment. This work supplements ours as we are fo-
cusing on the provisioning of services that have exclusive access to the local resources.
Other work on the application of genetic algorithms on job scheduling targeting make-span
minimization is also available in [51], [93], and [7].

5.7.2 Performance Prediction Assisted Scheduling
In [125], scheduling of jobs on a cluster of hosts using predicted run time and variance
has been presented. Similar to our approach, it uses the mean plus variance as the run
time for scheduling. [107] applied predicted run time derived from workload archive to
help estimate queue wait times and improve scheduler performance. Both researches are
limited to independent jobs without any constraints on the execution time.

An analytical study of the impact of prediction inaccuracy on execution scheduling is
discussed in [65]. It introduces the degree of misprediction, a performance metric that rep-
resents the probability that the predicted execution times of jobs display different ordering
characteristics from their real execution times due to inaccurate prediction. The impact
of prediction inaccuracy on make-span of several Grid scheduling algorithms, including
Min-Min, Max-Min, Sufferage, and Fast-Greedy, is simulated in [126].

5.8 Conclusion
Local resource scheduling is a major component of the local resource management in-
frastructure. This chapter discusses major issues that arise in the scheduling of service
invocations in SLA-based resource management environments, where normal schedulers

5.8. Conclusion 59

can not fulfill their specific requirements. Based on comparison of different algorithms, a
scheduler implementation is also introduced.

While the support infrastructure of WS-Agreement presented in Chapter 3 allows the
specification and management of SLAs, the actual decision on SLAs has to be made with
the admission control functionality of the local scheduler, which examines the availability
of resources against the request. The run time prediction facility presented in Chapter 4
offers run time estimations for a specific request, and is the basis of job scheduling.

The local scheduler only solves the problem of job scheduling of individual resource
providers, and the issue of mapping jobs to appropriate resource providers is a collective ef-
fort of the SLA management infrastructure. In Chapter 6, the local resource management is
supplemented with a global infrastructure that assists the SLA negotiation and enforcement
among multiple clients and unknown resources.

Chapter 6

Setting Up a Global Infrastructure

6.1 Overview
The local management infrastructure provides fundamental support for SLA-based re-
source management. Based on the local infrastructure, a client application can negotiate
with a known server for formal contracts about service usage on an individual basis. In a
realistic Grid system, where clients seek for available servers and dynamically select the
appropriate server that can meet their requirement, a global infrastructure is required to
assist such SLA negotiation processes.

In the spirit of service-oriented Grid, the basic building blocks of the global infrastruc-
ture are services of various types. Due to the open nature of Grid systems, the type of ser-
vices that constitute the global infrastructure is also not closed. As part of the ARM4SLA
project, a set of services have been implemented or integrated, that collectively form a
minimal global infrastructure for SLA-based resource management. The services include
the index service that provides a catalogue of available services together with their SLA
templates, and the broker service that helps the client to negotiate with multiple services.
In addition, a gateway service enables status and asynchronous execution of traditional
stateless Web services, so that they can be managed by the local SLA management infras-
tructure. Those services provide support for three major steps for running a Grid job [22] -
resource discovery, resource selection and job execution.

The rest of this chapter is organized as follows. Section 6.2 briefly introduces the roles
of index services, broker services and gateway services in the establishment of a global
infrastructure. Section 6.3 presents the index service with a focus on the registration of SLA
templates associated with Grid services. Section 6.4 discusses the functionality, design and
implementation of the gateway service, and Section 6.5 the broker service. Possibilities of
more advanced infrastructure services beyond those basic ones, which address scalability
issues with market-based mechanisms, are introduced in Section 6.6. This chapter ends
with a summary in Section 6.7.

62 Chapter 6. Setting Up a Global Infrastructure

Broker

Index
Service

Server

Server

Server

SLA Negotiate

SLA Negotiate

SLA NegotiateClient

query

broke

Figure 6.1 A minimal global infrastructure supporting SLA-based resource management.

6.2 The Global Infrastructure

6.2.1 Establish SLA with Index and Broker Services
A minimal global infrastructure can be formed with an index service and a broker service,
as is shown in Figure 6.1. The index service provides a list of candidate services to the
broker or the client. The broker service helps the client to establish an agreement with one
of the candidate services that can fulfill the QoS requirement.

The index service maintains a list of resources that are registered to it. Attached to each
resource, it also maintains a list of selected resource properties. In order to assist agreement
establishment, the index service should provide information about available application
services and associated agreement factory services. Optionally, agreement templates can
also be registered. The registration has to be performed with custom implementation and
configuration script.

Upon the request of a client, a broker service tries to establish an agreement for service
usage with specified QoS requirements. The broker service relies on the index service for
a list of available application services and associated agreement factory services, possibly
also the templates of each agreement factory. Based on this information, the broker service
makes a pre-selection of the candidates and tries to establish service usage agreements
with services in the candidate list. The exact sequence of negotiation depends on internal
evaluation of the broker service. The result of agreement negotiation will be notified to the
client, with a reference to the established agreement when successful.

6.2. The Global Infrastructure 63

Gateway
Service

state
state

ServiceClient

State

1. URL & JobParameter

3. EPR

5. invoke (parameters)4. subscribe

7. notification (JobState) 6. return

2.create

9. getResourceProperty()

10. JobResult

Figure 6.2 Gateway service adds status to stateless services.

6.2.2 Enforce SLA with Gateway Services
Many existing Web services are stateless services. Every invocation of the service results
into a prompt execution of the service, with the underlying resource consumed. For such
services, the effectiveness of negotiated SLAs on resource management is limited - if there
is an agreement negotiated, the service will be executed, otherwise the service invocation
will be rejected. In order for the SLA-based resource management approach to work, in
which the execution of services is handled by the local resource manager, we need to enable
asynchronous execution of the services. Key to the enablement of asynchronous service
execution is the representation of service lifecycle and results with status. For services
that are custom implemented, adding status to the service is usually an issue of additional
coding. However, for many existing stateless services, it is impractical and sometimes
impossible to modify their implementation. The gateway service is designed to address this
issue. It enables status and asynchronous execution of existing services without modifying
their implementation.

The gateway service serves as a generic facade (ref. Figure 6.2) to the stateless Web
services in the backend. Instead of directly invoking the backend service, the client sends
the URL and parameters of the target service to the gateway service. The gateway service
initializes state for the service invocation and returns an EPR to the client. With the EPR,
the client can query details of the current status at any time. Optionally, the client can
subscribe to notifications to be notified with any changes of the state. The actual invoca-
tion of the backend service is thus an asynchronous process, which is controlled by the
local resource manager. The state reflects the status of the invocation lifecycle as well as
parameters and result.

64 Chapter 6. Setting Up a Global Infrastructure

State

• service:URL
• parameters: JobParameter
• status: JobStatus
• result: JobResult

create

access

GatewayService

• EPR exec(URL, JobParameter)
• boolean cancel(EPR)

• getResourceProperty(EPR)
• subscribe(EPR, EPR)

Figure 6.3 Gateway service and associated job resource.

6.3 Index Service
Index service is part of WS MDS (Web Service Monitoring and Discovery System) mod-
ule of GT4. It collects information about Grid resources and publishes that informa-
tion as a service group [5]. Index service information can be queried using standard
WS-ResourceProperties operations or retrieved through subscription/notification opera-
tions specified in WS-Notification.

The index service relies on the WS MDS Aggregator Framework [103] to collect in-
formation from aggregator sources. An aggregator source is a Java class that implements
an interface (defined as part of the aggregator framework) to collect XML-formatted data.
For service resources, a query source uses the WS-ResourceProperty mechanism to poll a
WSRF service for resource property information.

In order to publish agreement templates in the index service, we rely on the GT4 API
to publish resource property as information. The registration is done in the agreement tem-
plate resource home class, which is responsible for the actual creation and initialization
of resources. The most important component of the API is the ServiceGroupRegistra-
tionClient class. It allows the user to specify registration parameters and initialize a timer
for periodical registration of resource parameters. The parameters can be retrieved from
a configuration file in predefined format. The configuration file specifies refresh interval,
poll interval, and a list of resource property names which in our case is the wsag:Template.

6.4 Gateway Service
The gateway service provides a stateful facade for backend stateless Web services. It is
designed and developed following the WS-ResourceProperties and WS-Notification speci-
fications (ref. Figure 6.3). The State resource represents the state of a service invocation. It
is created and managed through interfaces offered by the GatewayService, including cus-
tom ones for launching and canceling a service invocation and operations inherited from
WS-ResourceProperties and WS-Notification port types for accessing the resource proper-
ties and subscribing and notifying property changes. The properties of the State resource
include URL of the target service, job parameters, job status (pending, running, finished,
error), and job result.

6.5. Broker Service 65

BrokerTask

• jobParameters:JobParameter
• slaParameters:SLAParameter
• agreementEPR:EPR
• status:TaskStatus

create

access

BrokerService

• EPR findService(JobParameter, SLAParameter)
• boolean cancel(EPR)

• getResourceProperty(EPR)
• subscribe(EPR, EPR)

Figure 6.4 Broker service and associated resource.

Gateway service creates the State resource when its exec() operation is invoked. It
is initialized with supplied service URL and job parameters, and the initial status of the
job is “pending”. The follow-on modifications to the job status and result are performed
internally by the local resource manager which takes care of the actual execution of the
backend service. The changes of status and job result can be promptly notified to the client
or accessed at any time by the client.

6.5 Broker Service

6.5.1 Broker Service and Resources
Creating an agreement with multiple candidate services is a long running process, therefore
the broker service has been designed and implemented as a stateful service (ref. Figure
6.4). The broker service inherits the operations defined by the port types specified by the
WS-ResourceProperties and the WS-Notification specifications for accessing the resource
properties and subscribing and notifying property changes. The findService() operation is
the starting point of a brokering process, with which the client specifies the parameters of
the job and its SLA and get a reference to the created broker task. It also provides a method
for canceling the brokering task.

The BrokerTask resource represents the state of a broker task. It is created and ini-
tialized when findService() operation of the broker service is invoked. The job parameters
and SLA parameters are kept for later retrieval, and the status is initialized to idle. Later
updates to the status are performed by an internal worker thread (ref. Section 6.5.2) that
performs the actual brokering. If brokering is successful, the resource property will also
be updated with the resulting agreement EPR. Any updates of the resource property can be
promptly notified to the client or accessed at any time by the client.

6.5.2 Asynchronous Broker Thread
When the user invokes the service with findService() operation, a reference to the created
broker task will be promptly returned. The actual work is performed in an asynchronous
way, which includes the following activities:

1. Query index service for all candidates.

66 Chapter 6. Setting Up a Global Infrastructure

2. Pre-selection according to specific QoS requirements (minimal price, for example).

3. Prioritize the remaining candidates.

4. Negotiate with each candidate until succeed.

Those activities are performed in a thread managed by the Web service container. It
is implemented with the help of Work Manager framework supported by GT4 WS Core.
The key components of the Work Manager framework are WorkManager and Work. Work-
Manager is responsible for the management of a series of Works. The Work is where the
actual activities are implemented. The following code snippet is an example of retrieving
WorkManager from the Web service context and the registration of a new Work:

Work work = ...
Context ctx = new InitialContext();
WorkManager workManager = (WorkManager)

ctx.lookup("java:comp/env/wm/ContainerWorkManager");
workManager.schedule(work);

6.5.3 Brokering Strategy
For each job to be brokered, there can be multiple candidate services. The broker negoti-
ates SLAs with those candidates following a specific sequence. Appropriate choice of the
sequence will reduce the amount of messages between the broker and candidate services.
In addition to a static brokering strategy that follows a predefined sequence of the candidate
services for all the jobs, we have also considered the following strategies that the broker
takes to determine the negotiation sequence: random, round-robin, and information-based
prioritization.

With random brokering strategy, candidate resources are chosen on a random basis for
each job, i.e. a random choice of the resource is performed and the chosen resource is the
next to negotiate with. This is equivalent to prioritizing the servers randomly for each job.
Caution is taken to make sure that visited resources will not be revisited for the same job.

With round-robin brokering strategy, candidate resources are negotiated one by one on
a round-robin basis. Additionally, it also makes sure that the same resource will not be
revisited for the same job.

Traditional Grid brokers utilize utility information published by each service to prior-
itize appropriate resources in order to improve the schedule. In a Grid system with SLA-
based resource management, no global knowledge about the resource utility is published.
Therefore, the utility can only be roughly estimated by the broker. The broker maintains lo-
cal records of previously brokered jobs, and uses the success rate of previous job brokerings
as a rough indication of the utility.

We have performed experiments to compare the effectiveness of different brokering
strategies. The experiment is done with discrete event simulation that simulates the be-
haviors and interactions of Grid clients, broker service, and Grid servers. The simulation

6.5. Broker Service 67

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

#Resources

#N
eg

ot
ia

tio
ns

Static
Random
Round-Robin
Information-Based

Figure 6.5 Number of negotiations for different brokering strategies.

program is implemented on top of SimJava [62] 1, a discrete event simulation library for
Java. The Grid server is simulated as a time-sharing computational resource, with all the
jobs scheduled using the EDF algorithm introduced in Chapter 5. The broker service is
simulated with different brokering strategies, and the Grid clients submit random jobs.

Figure 6.5 shows the number of negotiations between the broker and the candidate
servers for 100 jobs. With the increase of the number of resources from 1 to 10, the num-
ber of negotiations between the broker and candidate servers increases for all brokering
strategies. According to the speed of such increases, the four brokering strategies can be
sorted from static, random, round-robin to information-based.

A static brokering strategy performs worse than random strategy because it follows a
fixed sequence of negotiation and thus has higher chance to fall into the situation where
the following job is rejected by the same server of the last negotiated job due to conflicting
schedule. For the same reason, since round-robin strategy avoids this situation completely,
it performs even better than the random strategy. Compared with the above strategies,
information-based strategy performs the best, because it is capable of capturing the utility
information of the servers.

The observations from Figure 6.5 are two-folds. Despite the capability of information-
based brokering strategy in reducing the number of negotiations, the scalability for Grids
with larger number of resources still constitutes a major issue of agreement negotiation with
simple brokers. This can be solved by introducing more advanced infrastructure services
based on market mechanisms, which will be introduced in Section 6.6.

1http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/

68 Chapter 6. Setting Up a Global Infrastructure

Client

Service Service Service Servide

ClientClientClientClientClientClientClient

ClientClientClientClientClientClientClientClient

ClientClientClientClientClientClientClientClient

Broker
Service

Catalogue
Service

Grid Marketplace

Broker
Service

Auction
Service

Banking
Service
Banking
Service

Broker
Service

Index
Service

Figure 6.6 Infrastructure services in a Grid marketplace mediating agreement negotiation.

6.6 Beyond the Basics
The global infrastructure introduced in former sections that are constituted by several basic
services possesses scalability issue. For Grid systems with a large number of resources,
agreement negotiation using simple broker services can result into too many messages be-
tween the broker and the candidate resources. This can be solved by introducing infras-
tructure services that assists agreement negotiation with more advanced mechanisms. A
major type of such services is originated from ideas based-on market mechanisms - auc-
tion service, for example, accepts messages from both clients and services and establishes
agreements with an auctioning process. It can be combined with other techniques like
mobile agents (ref. [49]) to reduce the amount of messages for agreement negotiation.

Services based on market mechanisms usually demand supports on financial issues that
deal with currencies. Grid currencies can either represent and can be transformed into or
from real money, or are simply virtual tokens. This again can be assisted by additional
services. For example, there can be banking services that provides the support of currency
exchange. All such services collectively form a Grid marketplace (ref. Figure 6.6), where
the Grid clients and services can trade with each other.

6.7 Conclusion
The local management infrastructure presented in Chapter 3 to Chapter 5 provides funda-
mental support for SLA-based resource management. This chapter supplements the local
management infrastructure with a global infrastructure that provides services to assist the
establishment of agreements between clients and services.

In Chapter 8, the global infrastructure is applied to a demonstration based on a concrete

6.7. Conclusion 69

application scenario of distributed data mining for banking.
The global infrastructure presented contains a minimal set of services that are needed.

More advanced ones can be implemented to extend the infrastructure, for example those
supporting market-based service trading. This and other relevant issues constitute part of
future work that is summarized in the last chapter.

Chapter 7

Development Tools and Support
Environment

7.1 Introduction
Applications managed by the SLA-based resource management infrastructure are formed
by Grid services. Such services include not only the standard ones, but also include those
that provide custom functionalities. The development of custom services and their inte-
gration with the infrastructure demand development tools. In addition, the development of
client applications and the management of the Grid application demand support environ-
ments.

A set of development tools and support environments are developed, which will be in-
troduced in this chapter. Section 7.2 discusses the requirement of different user roles and
explained the necessity of using component-based runtime platform like Eclipse. Section
7.3 introduces the tooling environment for Grid service development, Section 7.4 intro-
duces the base client environment for Grid services, and Section 7.5 the environment for
managing Grid infrastructure. Section 7.6 presents related work on Grid service devel-
opment tools and Grid client and management environments. Section 7.7 concludes this
chapter with a brief summary.

7.2 Application Development using Weaveable
Components

7.2.1 User Roles and Functional Requirements
The tools and environments (see Table 7.2.1) are designed to meet the functional require-
ments of different user roles. These include service development tools that help service
developers to develop Grid applications, execution clients that are used by Grid users to
control the execution of jobs, and management environments that are used by Grid man-
agers to administrate the Grid system.

Many functional requirements of different user roles are overlapping, therefore the tools
and environments need to be developed in a component-based approach that enables the
reuse of components between different applications. The actual types of services deployed
in the service-oriented Grid system, which are management by the SLA-based resource

72 Chapter 7. Development Tools and Support Environment

management infrastructure, are dynamically changing. Besides, many users need addi-
tional tools. Therefore, the management tools and environments should be extensible to
work with different types of services and be able to integrate additional tools.

Development Tool Client Environment Management Environment

Platform Eclipse IDE Eclipse RCP/IDE Eclipse RCP
Purpose program services execute job manage system
User role Grid developer Grid user Grid manager

Table 7.1 Development tools and support environments.

The above mentioned user roles are neither distinct nor mutually exclusive. Rather,
there are chances that a specific person has multiple roles and needs to have corresponding
tools and environments to support his work. For the user’s convenience, the tools and
environments for different roles should be able to be integrated consistently and seamlessly.

Another noticeable fact is the overlapping of functions in the above mentioned tools and
environments. For example, both the development tool and the management environment
need to deploy Grid services; both the client environment and the management environment
need to explore the index services; and all of them require the functionality of executing
Grid services. Therefore, component reuse should be enabled.

The management client has both a domain specific part (that relies on the concepts,
terms and program details of the specific service, for example the result visualization) and
a domain independent part (that is generic to any usage). The client needs to provide a
capability of extension so that the client can be easily adapted to a different scenario.

7.2.2 Eclipse as Component Platform
In response to the above requirements, we need a platform that supports component-based
program deployment enabling extensions, and supports both IDE and normal client appli-
cations (rich client in terms of Eclipse). The best known platform that meets such criteria
is Eclipse 1 which provides plug-in based application development, role-based UI layout
into perspectives, fundamental platforms for IDEs and rich client applications with its Rich
Client Platform (RCP). Certain components of the Eclipse platform can be directly inte-
grated into our environment, for example, the CVS support etc.

Following Eclipse, there are also other similar platforms emerging, for example Net-
Beans 2. However, regarding the popularity and functionality (esp. Eclipse provides native
OS look and feel), Eclipse is currently the preferred platform chosen as our implementation
basis.

1http://www.eclipse.org
2http://www.netbeans.org

7.3. Grid Service Development Environment 73

Figure 7.1 The Globus Service Development Environment (this screenshot shows the user
interface for service modeling).

7.3 Grid Service Development Environment

7.3.1 The Demand
Programming services for the Grid is a tedious and error-prone process, due to both the
large amount of work for correctly writing the service interface document and configura-
tion files, and the effort in writing a group of classes following predefined patterns (service,
resource, resource home etc.). The Globus Toolkit provides only very basic command-line
tools for stub-generation and service deployment. All the service definition and config-
uration files have to be prepared by the user, which is quite challenging for most of the
developers. Although existing Web service development tools and environments provides
support for editing service interface definition, functionalities specific for Grid services de-
velopment (e.g. the configuration files for resource registry, security etc) does not exist.
More importantly, programming with such tools means that the user has to go down into
the details of WSDL, service deployment scripts etc, which are too complex. We need a
tool that allows the programmer to program at a higher level and help the user to do all
(or most of) the tedious works. This is the objective of the Globus Service Development
Environment (GSDE).

74 Chapter 7. Development Tools and Support Environment

7.3.2 Functionalities
GSDE is intended to be such a programming tool that supports the development of Grid
services in a natural way that is familiar to most Java developers. It does not require the
programmer to follow a specific development process, and it does not restrict the developed
Grid services to follow specific patterns. Towards this aim, major functions of GSDE are
divided into three groups that can be used separately or collaboratively:

1. Service modeling and code generation. It allows users to develop models as templates
for Grid services, which can be customized and used to generate skeletons of Grid
service codes.

2. Service development. This includes project creation, configuration and building sup-
port, as well as deployment, execution and debugging of the developed service.

3. Service deployment. It allows the project to be exported into GARs or deployed into
different runtime servers, currently including Globus and Tomcat.

Modeling Grid Services

GSDE supports the modeling of Grid services with user-friendly editors. The following
aspects can be modeled:

1. Service-Resource relationship. This includes the association and creation relation-
ships between services and resources. This is a generalization of some typical pat-
terns like factory service and singleton service. However, it allows more complex
relationships to be modeled.

2. Service model. This includes parameters such as name, operations etc.

3. Resource model. This includes the specification of resource parameters such as
name, properties, persistence etc., resource lifetime (immediate destruction or sched-
uled termination), and resource notification topics including topics representing re-
source property change and custom topics.

4. Configuration model. This includes aspects like index registration, logging require-
ments, and security configurations.

To meet the needs of two different types of users - experts and newbies, two editors
are provided: Advanced Editor and Simple Editor. The Advanced Editor provides a tree-
based interface that can be applied to model complex relationships (many to many) between
services and resources. The Simple Editor offers a more user friendly interface based on
forms (see Figure 7.1), but is currently restricted to model simple service-resource relation-
ship following the singleton or factory design pattern. The two editors can also be used in a
combined way - use the Simple Editor to edit the properties of services and resources, and
use the Advanced Editor to compose their relationships.

7.3. Grid Service Development Environment 75

Grid Service Skeleton Code Generation

Models of Grid services can be used to generate classes and scripts. The generated classes
and scripts serve as a skeleton of the actual Grid service implementation, which can be
modified or customized in different aspects.

The classes include service implementation, resource implementation (including re-
source interface, resource, persistent resource, resource home etc.), client implementation
(base classes for client, notification listener etc), and assistant classes (constant definition,
etc).

The scripts include WSDL, deployment descriptors (service and client), names-
pace2package.mapping and jndi-config-deploy files, post deployment scripts, security de-
scriptors (service, resource, client), and registration configuration files.

Grid Service Project Management

A wizard is provided that helps to create and configure projects for Grid service develop-
ment. It guides the users through a series of steps for project creation and configuration,
which is otherwise a complex and dispersed process:

1. A Java project is created with a custom tag, or “nature” in terms of Eclipse. This
allows the project to be identified and distinguished.

2. The existence of Sysdeo Tomcat Launcher plug-in 3 is automatically detected, and
the project is configured to work with Tomcat if the plug-in exists.

3. The classpath of the project is initialized with Globus jars added. Three different
source folders each for the services, the stubs and the client classes are created. Other
folders for schema, libraries, etc. are also created. The standard schema files from
Globus WS-Core are also copied into project.

4. The project is configured with a series of builders to enable automatic or manual
build of the project, from the standard Java builder to the custom GSDE builders.

Automatic Grid Service Build

During the project creation process, several builders are configured to work collaboratively
for Grid service project build. A group of custom GSDE builders work together to translate
the compact WSDL into stubs. The resulting codes for stubs, together with service codes
generated from the service model, are compiled into Java classes by the standard Java
builder offered by Eclipse JDT.

All builders are managed by the Eclipse platform and can be configured to work in
different ways for automatic or manual project build. With automatic build, modifications
of codes and scripts will automatically result in an update of the compiled Java classes.

3http://www.eclipsetotale.com/tomcatPlugin.html

76 Chapter 7. Development Tools and Support Environment

Service Deployment, Execution and Debugging

GSDE supports the deployment of Grid services into a standard Globus server or Tomcat
server on the local machine. It can also export Grid service projects into GARs, which
can be used for remote deployment. Additional deployment plug-ins can be developed to
support other servers.

With functionality contributed by third-party Sysdeo Tomcat Launcher plug-in, Tomcat
servers can be started, stopped, or restarted directly from GSDE.

Based on advanced features of Eclipse debugging framework, GSDE can debug the
Grid service and client directly from inside Eclipse.

Leveraging Eclipse Functionalities

Eclipse provides rich functionalities that can be leveraged in GSDE. In the above descrip-
tions, we have already seen how GSDE uses JDT of Eclipse to assist Java coding, Eclipse
debugging framework for debugging Grid services and clients. Many other features of
Eclipse can be utilized as well, for example the TCP/IP Monitor can be used to assist de-
bugging, and CVS support can be used for source code management. Web Tools Platform
(WTP) provides various editors for Web service related documents and can be seamlessly
used for artifacts created in the GSDE.

7.3.3 Integrating Agreement Management
GSDE is designed to support the development of arbitrary Grid services that can be de-
ployed on any Globus servers, without dependence on a specific resource management
mechanism. To integrate the developed services with a specific resource management in-
frastructure, additional codes and scripts must be developed and deployed together with the
services.

GSDE can be customized to provide additional assistance to develop services that are
to be managed by our SLA-based resource management infrastructure. This is done by
extending the service model and code generation templates to generate additional codes
and configuration scripts, including custom agreement providers as is described in Section
3.3.4, custom data recorder and predictor as is described in Section 4.5.3, and proactive
handler registration service described in 3.4.4 and later in Section 4.6.4.

While the generated agreement providers provide only a skeleton for the custom agree-
ment provider, the generated data recorder and predictors, service launcher, and proactive
handler registration services can be normally applied without much modifications if they
follow the most common patterns.

7.3.4 Components and Dependencies
GSDE is a set of plug-ins that can be organized into three functional groups (”features”
in terms of Eclipse), each for modeling and code generation, project configuration and
building, and deployment.

7.3. Grid Service Development Environment 77

Modeling & Code Gen. Project Config & Build Service Deployment

Builder
Plug-in

UI
Plug-in

Core
Plug-in

Tomcat
Deploy Plug-in

Globus
Deploy Plug-in

Code Gen.
Plug-in

EMF

JDT

Service Model
Plug-in

Editor
Plug-in

ANT

TOMCAT

Template
Plug-in

Ec
lip

se
Pl

at
fo

rm
Th

ird
-p

ar
ty

Pl
ug

-in
s

Debug

Figure 7.2 GSDE architecture and dependencies among plug-ins.

Figure 7.2 shows the dependencies among the GSDE plug-ins, third-party plug-ins and
Eclipse platform. The dashed lines denote optional dependencies. GSDE plug-ins has been
designed and implemented to be composable so that different runtime configurations are
possible.

Among the dependencies, Ant, JDT and Debugging are part of the standard Eclipse
distribution. The availability of Eclipse Modeling Framework (EMF) [28] and Tomcat
Launcher plug-ins will decide whether a specific feature is available to GSDE - if EMF is
not installed on the platform, the modeling and code generation feature is not activated;
and if Tomcat Launcher plug-in does not present, the feature for deploying the project into
tomcat is deactivated. However, the basic core function for project creation, configuration
and build will be working on most platforms as it does not depend on plug-ins not existing
in the standard Eclipse platform.

7.3.5 Service Modeling and Code Generation
The modeling and code generation feature of GSDE follows the model-driven development
practice. We use EMF to define the meta-model for Grid services, from which we auto-
matically generate the plug-ins that contain implementations of the meta-model and model
editor. Using the generated meta-model and model editor, we can create and edit the model
for Grid services.

As part of EMF, Java Emitting Templates (JET) provides a powerful language for defin-

78 Chapter 7. Development Tools and Support Environment

Service Model JET Template
for Service Impl.

Code Generator
Plug-in

Service
Codes & Scripts

Service Model
Editor

JET
Editor

Service
Meta-Model

Meta-Model
Editor

edit

generate

generate

edit edit

Figure 7.3 Service modeling and code generation in GSDE.

ing templates with JSP-like syntax. The editing of the templates is assisted with JET editor,
from the EMFT (Eclipse Modeling Framework Technology) subproject of Eclipse. Com-
pared to hard coding code generators, using templates enables future extension and cus-
tomization. In order to support code reuse among templates, we define reusable templates
as template snippets and utilize the “@include” directive of JET to import those snippets
into the template. A total of 22 templates and 35 snippets are developed for different classes
and scripts of Grid services. The service model and templates are weaved together by the
code generator to generate the code and scripts. This is integrated as part of the project
creation process.

A major design decision is to separate service modeling and code generation from other
parts of GSDE. Due to the complexity of a practical Grid service implementation, syn-
chronization between the model and codes is impractical, which always brings additional
constraints or limitations.

7.4. Grid Service Execution Client 79

7.3.6 Service Building
In GSDE, custom builders are implemented to generate stubs from WSDL. They work
collaboratively with the Java builder that compiles all Java source codes in the project to
Java classes. Multiple custom builders are implemented, each responsible for one step in
the stub generation process:

1. Mapping Merge Builder: merge the project namespace2package.mappings file with
the global one. In automatic incremental build, it is invoked upon changes in the
mapping file. In full build, it is always applied on the single mapping file.

2. WSDL Flatten Builder: flatten the compact WSDL by replacing inherited port types
and data types with actual definitions. In automatic incremental build, it is invoked
every time the WSDL has been modified. In full build, it is applied on all original
WSDLs.

3. WSDL Binding Builder: generate binding and service WSDLs from the flattened
WSDL. In automatic incremental build, it is invoked every time the flattened WSDL
has been modified. In full build, it is applied on all flattened WSDLs.

4. WSDL Stub Builder: generate stub source codes from the service WSDLs. In auto-
matic incremental build, it is invoked every time the service WSDL has been modi-
fied. In full build, it is applied on all service WSDLs.

Globus has provided Ant scripts for the generation of stubs from the original WSDLs.
Our builders reuses the Java classes that implement the actual transformation, instead of
directly invoking the Ant script due to its poor performance.

In both manual build and automatic incremental build, the builders are activated se-
quentially. Changes made by a builder will also be handled by subsequent builders. For
Grid service projects, this sequence is defined as Mapping Merge Builder, WSDL Flatten
Builder, WSDL Binding Builder, WSDL Stub Builder, and Java Builder. This guarantees
that any change in the project will be correctly and fully handled.

7.4 Grid Service Execution Client

7.4.1 Overview
Grid clients help Grid users to utilize the rich functionalities provided by the services.
Although command line clients can be used for simple Grid services, many services provide
comprehensive functionalities and demand graphical user interface. On the other hand, due
to the dynamic nature of Grid systems, new applications are continuously deployed on it
in the form of custom services. In order to support them, the client must be extended and
customized.

The Grid Service Execution Client (GSEC) is developed as a client environment that
can be used as the base of custom client applications. It contains generic functionalities

80 Chapter 7. Development Tools and Support Environment

Figure 7.4 Grid Service Execution Client provides a base client platform (the screenshot
shows the user interface for observing notifications of resource property changes).

and UI support for accessing the power of a service-oriented Grid built on top of Globus
WS Core. Build on top of Eclipse, it is highly extensible and customizable. Client libraries
and UI elements for additional custom services can be dynamically integrated into the
application.

Figure 7.4 is a screenshot of the basic layout of GSEC. Its basic functionalities include:

1. Generic Web service support. It maintains a directory of services, which can be man-
ually managed with add, remove, or modify. They can also be selectively imported
from index services. It can be used to examine the WSDLs of existing services, and
monitoring SOAP messages.

2. WSRF and WSN support. Besides accessing the basic operations supported by
WSRF and WSN services, it can also start local notification listeners that observe
changes of resource properties.

7.4. Grid Service Execution Client 81

Broker UI
Plug-in

Broker Client
Library Plug-in

Index Client
Library Plug-in

Index UI
Plug-in

Agrmt. Client
Library Plug-in

Agrmt. UI
Plug-in

Globus
Library Plug-in

Service1 Client
Library Plug-in

Service1 UI
Plug-in

B
as

ic
 S

er
vi

ce
 C

lie
nt

Service2 Client
Library Plug-in

Service2 UI
Plug-in

C
us

to
m

 S
er

vi
ce

 C
lie

nt

WSRF/WSN UI
Plug-in

WSRF/WSN
Plug-in

C
or

e
Se

rv
ic

e
C

lie
nt

Eclipse RCP / IDE Platform

Plug-ins for Advanced Features

Figure 7.5 GSEC architecture and dependencies among plug-ins.

7.4.2 Agreement Infrastructure Support
Besides the basic functionalities, GSEC also incorporates customized support for our SLA-
based resource management infrastructure. More specifically, it is extended to support the
following infrastructure services:

1. Broker service. It allows the user to interact with a broker service and specify the
parameters for the job to be brokered. It also allows checking the status of an existing
job to be brokered.

2. Agreement service. It allows the user to establish agreements with service providers,
browse the content and check the status of agreements, and cancel an existing agree-
ment.

3. Index service. It allows the user to manage index services, and browse the content of
index services.

API library and UI components for accessing each service are provided as plug-ins.
They can be used out-of-the-box, or be integrated into the UI of custom services.

7.4.3 Components and Dependencies
Figure 7.5 shows the dependencies among the plug-ins. GSEC plug-ins can be virtually
organized into several groups that are layered on top of each other. The first layer is a set
of plug-ins that constitute the Core Service Client, including plug-ins that wrap the Globus

82 Chapter 7. Development Tools and Support Environment

libraries, plug-ins that provide UI and client libraries for WSRF/WSN port types. The
second layer is formed by plug-ins that provide UI and libraries for infrastructure services
as the Basic Service Client, and those for custom services as the Custom Service Client.
Beneath the Core Service Client is the Eclipse IDE or RCP platform, and above all these
plug-ins are those that provide advanced features based-on all underlying layers.

From a higher level point of view, the architecture of the system can also be divided into
UI layer and non-UI layer. It should be noted that non-UI plug-ins are not dependent on
any UI-plug-ins. This makes it possible to further develop a non-GUI client based on the
same architecture, with the support of Eclipse for “headless” (i.e. non-GUI) applications.

7.4.4 External Libraries and Class Loadpaths
The formal approach for introducing a third-party library into Eclipse is to implement a
plug-in that physically contains the library. The advantage of this approach is that it main-
tains strict version dependency relationships among all Eclipse plug-ins. However, for
libraries that are part of the dependent middleware platforms, wrapping them into plug-ins
means duplication. This is also not convenient for libraries that are frequently updated.

Globus library plug-in allows dependent plug-ins to access Globus libraries. Globus is
implemented in a way that strongly depends on system variables to decide its load path to
access several configuration files like client-config.wsdd and client-jndi-config.xml if the
client needs to receive notifications. Therefore, a Globus WS Core is usually installed on
the client.

We have implemented the Globus library plug-in in a special way that allows libraries
in an external Globus installation to be accessed by dependent plug-ins. In the MANI-
FEST.MF file that describes the classpath of the bundle, we manually replace references
to jars to an external location. Besides, we put GLOBUS_LOCATION in the front of the
classpath, to ensure that Globus finds the correct configuration files.

Bundle-ClassPath: external:$GLOBUS_LOCATION$,
external:$GLOBUS_LOCATION$/lib/addressing-1.0.jar,
external:$GLOBUS_LOCATION$/lib/axis.jar,
...

Due to a limitation of the Eclipse plug-in development environment, the references to
external JARs are not recognized. So, the modified MANIFEST.MF can not be applied at
development time, therefore the plug-in project still has to physically include Globus JARs.
Once the plug-in are deployed, the modified MANIFEST.MF file will be applied and those
JARs are no longer necessary at run time.

7.4.5 Dynamic Extensions for Custom Services
Eclipse allows easy extension of the basic client platform for new custom services with
plug-ins. Eclipse plug-ins are actually OSGi [92] bundles, which is a Java JAR with addi-
tional manifest identifying the bundle and laying out its dependencies. The Eclipse runtime

7.5. Grid Service Management Environment 83

is an implementation of OSGi framework, that manages the plug-ins (bundles) dynami-
cally, allowing them to be dynamically loaded, unloaded, updated, started and stopped at
run time. This also applies to the plug-ins that contains libraries and UI components for
custom services.

In addition to the underlying OSGi mechanisms, Eclipse provides Update Manager as
GUI-level support for the installation, update and management of plug-ins. The basic unit
of the Update Manager is “feature”, which represents a collection of tightly coupled plug-
ins offering highly related functionalities. Therefore, the individual plug-ins that provide
client libraries, non-UI functionalities, and UI contributions for a single custom service
need to be wrapped into a feature. The feature can be published online as an update site,
with which users of the Grid service can extend or update their client applications.

7.5 Grid Service Management Environment

7.5.1 Overview
The management of Grid systems and applications involves many discrete activities. Such
activities include installation of Grid middleware, deployment of Grid services, monitoring
Grid systems, etc. Therefore, Grid managers need support environments to assist those
administrative activities. Service Management Environment (GSME) is developed as such
an environment.

Figure 7.6 is a screenshot of the basic layout of GSME. Its basic functionalities include:

1. System management. It allows accessing remote file systems and execute commands
in consoles. It reuses the Remote Systems explorer and Remote Shell from Eclipse
DSDP/TM project.

2. System monitoring. Currently it reuses certain parts of GSEC to check the status of
systems from information published by the Index Services. This can be extended to
integrate with more advanced Grid monitoring systems.

3. Grid service deployment. It can be used to deploy Grid service GARs on remote Grid
servers. It is based on parts of GSDE that offers such functionality.

4. Service clients. By reusing parts of GSEC, it allows to test the deployed services.

7.5.2 Components and Dependencies
GSME plug-ins are mostly reused from GSDE, GSEC and Eclipse DSDP/TM. Figure 7.7
provides a simplified picture that shows the composition of GSME. This provides a good
example of developing new tools by weaving existing applications on the same platform.

84 Chapter 7. Development Tools and Support Environment

Figure 7.6 Grid Service Management Environment support remote system management.

GSDE GSEC

GSME

DSDP/TM

Index
Plug-in

WSRF/WSN
Plug-in

Tomcat
Deploy Plug-in

Globus
Deploy Plug-in

Figure 7.7 GSME is composed of plug-ins from GSDE, GSEC and DSDP/TM.

7.6. Related Work 85

7.6 Related Work

7.6.1 Grid Service Development Tools
GT4IDE 4 was the first attempt to implement a development tool for GT4 based Grid ser-
vices. It was built on top of Eclipse platform and JDT. It provides simple code generation
functionality based on limited information provided in a wizard, and simple project config-
uration that creates the project structure and configures the classpath. It relies on custom
Ant scripts for project build which is not integrated with Eclipse build system. Due to its
limited functionality and buggy implementation, GT4IDE is not applied in actual devel-
opment work. It has, however, inspired our development of GSDE and similar works that
progressed independently.

The Grid Development Tools (GDT) 5 provides a programming environment similar to
our service development tool. It requires the user to follow specific programming pattern
by annotate Java interfaces with custom tags as means of service modeling. It is unable
to model arbitrary relationships between Grid services and resources, and also restricts the
user from programming complex services on top of the generated code.

The Introduce Grid Service Authoring Toolkit 6 is a self-contained GUI that provides
service modeling, code generation and service deployment support. As a stand-alone ap-
plication implemented with Java Swing, it is not able to benefit from the rich functionalities
of a real IDE, such as Java coding support, automatic build, interactive debugging. It also
does not allow the integration of third-party tools.

7.6.2 Grid Client and Management Environments
The g-Eclipse 7 project aims to build an integrated workbench framework on top of Eclipse
to access the power of existing Grid infrastructures. The framework targets three user roles
- Grid application developers, Grid application users, and Grid operators, and provides tools
for application development, deployment and debugging, job management and monitoring,
data management, as well as VO management, infrastructure configuration, monitoring and
benchmarking. The current design of g-Eclipse only support standard Grid services and its
current implementation is limited to gLite.

Intel Grid Programming Environment (GPE) 8 provides an environment for using the
standard services from Globus [47] and Unicore [39]. It provides several client applica-
tions for Grid users with different expertise and a support environment for administrators.
In addition to the standard Grid services, GPE allows to define higher-level custom services
that take advantage of the standard ones. Service-specific user interfaces are defined with
GridBeans, which are published in GridBean service and are dynamically integrated in
different clients. Although the GridBeans allows GPE clients to display custom UI compo-

4http://gsbt.sourceforge.net/content/view/12/29/
5http://ds.informatik.uni-marburg.de/MAGE/gdt/
6http://www.cagrid.org/mwiki/index.php?title=Introduce
7http://www.geclipse.org/
8http://gpe4gtk.sourceforge.net

86 Chapter 7. Development Tools and Support Environment

nents for custom services, more advanced customizations that involve custom interactions
of multiple services is not possible.

Examples of simpler Grid client environments include those of P-GRADE [66],
ASKALON [40] and GEMLCA [35]. All of them only work with standard or predefined
services and does not support application-specific extensions or customizations.

7.7 Conclusion
A comprehensive set of tools and environments for the development, execution, and man-
agement of applications in the SLA-based Grid environment has been developed. It in-
cludes tools for application service development, basic client environment that can be
extended to access the Grid applications, tools for the management of underlying Grid
infrastructure and the deployed services. All the tools and environments are seamlessly
integrated with the Eclipse platform, and can be freely composed according to the needs
of the user as Grid service developer, Grid service user, or Grid system manager. They are
also extensible and customizable for the usage in a special scenario.

The tools and environments have been practically applied in our daily work. They
are used in the development of the SLA management services in Chapter 3, and custom
application services in Chapter 8 where they are also used to develop custom application
clients.

Chapter 8

Demonstration

8.1 Introduction
The WS-Agreement support infrastructure presented in Chapter 3, the run time prediction
framework presented in Chapter 4, the probability aware scheduler presented in Chapter 5,
and the global infrastructure presented in Chapter 6 constitute the major basis for a SLA-
based resource management infrastructure outlined in Chapter 2.

As part of the Automated Resource Management for Large Scale Applications project,
a demonstration of SLA-based resource management has been developed. The demonstra-
tion is based on a concrete application scenario of distributed data mining for banking. The
SLA-based resource management infrastructure is integrated with custom Grid services for
data mining. And custom clients that provide easy to use user interfaces are implemented
by extending and customizing the GSEC base client. The development tools and support
environments introduced in Chapter 7 provide considerable support for the development of
related services and clients.

This chapter focuses on the development, deployment and usage of the demonstration.
The remaining part of this chapter is organized as follows. Section 8.2 describes the con-
crete application scenario of the demonstration from the perspectives of different users,
and Section 8.3 explains the resource management activities that happen behind the scene.
Section 8.4 presents the deployment environment of the demonstration. The design and
implementation of the custom data mining services are presented in Section 8.5, and that
of two client applications for data specialists and normal data analyzers are presented in
Section 8.6. Section 8.7 concludes this chapter with a brief summary.

8.2 A Concrete Scenario for Distributed Data Mining
in Banking

The scenario is a concrete application of the distributed data mining scenario described in
Section 2.4.

In a bank, transaction data are collected in data warehouses and data mining techniques
are used to analyze the data to assist different business decisions. To meet the need of
resources for such analysis, resource provisioning based on Grid techniques is applied. A
pool of servers are started up with Grid middleware together with the SLA-based resource

88 Chapter 8. Demonstration

management infrastructure pre-installed, and Grid services are deployed and managed by
the resource management infrastructure to dynamically serve the request of users.

To assist normal users that have no knowledge of the IT infrastructure and no back-
ground of data mining techniques, the Grid services are not developed by the end users
but by data specialists. With specialized tool support, data specialists specify details of the
data mining job by composing different data and data processing methods into a mining
flow. A set of parameters that are accepted by the mining flow is also specified. Multiple
mining flows are developed, each for a different analysis. The developed mining flows are
then deployed onto servers in the server pool in the form of custom data mining services.
The deployed services automatically register themselves to the Grid index, so that they can
be known. Each mining service is associated with method name that represents the type
of analysis it is capable of, together with a description of that method. The Grid index
virtually groups all services (hence the server) that belong to the same method together.

A colleague in the bank, say a marketing staff, wants to analyze the data. As a first
step, he looks up the Grid index for existing data mining methods and chooses one that
meets his needs. This is assisted with supplied client application that provides easy to use
interface. With the same program, he submits a request together with mining parameters
and specified deadline. After a while, he is notified that his request is accepted and sched-
uled. Otherwise, if his request is rejected because the existing resources are not sufficient
to meet the deadline, he can modify his request and resubmit. From now on, he does not
have to keep the client program running, but if he does he will be notified as soon as the job
finishes. Otherwise, he can choose to check the status of his request whenever he wants.
When the job finished, he can view the result of the analysis or in rare cases check the error.

8.3 Resource Management Activities in the Demon-
stration

Complexities of Grid resource provisisioning are hidden in the activities described above,
because the SLA-based resource management infrastructure automates the whole process
in the backend.

The client application handles user request by looking up Grid indexes for existing data
mining services that supports the requested method. One out of the many candidates is cho-
sen, and the client application tries to, through the WS-Agreement support infrastructure,
establish an agreement on serving its work before the specified deadline. More concretely,
the client application contact the associated WS-Agreement factory service to get the avail-
able SLA templates, and send a SLA offer by modifying the template with details of the
analysis parameters and required deadline. With the help of performance predictors and
the local scheduler, the WS-Agreement support infrastructure for the chosen data mining
service will be able to decide whether it is able to serve the request before specified dead-
line and it will accept or reject the SLA offer accordingly. If the SLA offer is accepted, it
will notify the client application with a reference to the created SLA. Otherwise, the client
application will try to negotiate with another service until succeed. And if all the data min-

8.3. Resource Management Activities in the Demonstration 89

M
in

in
g

U
se

r
C

lie
nt

Ag
re

em
en

t
M

gm
t.

D
at

am
in

in
g

S
er

vi
ce

Sc
he

du
le

r

3.
ge

tT
em

pl
at

e 5.
Ag

re
em

en
t O

ffe
r

6.p
reS

ch
ed

ule

7.
pr

ed
ic

t

9. createJob

8.c
on

so
lid

ate
Sch

ed
ule

M
in

in
gJ

ob

10
.cr

ea
te

12
.A

gr
ee

m
en

tE
PR

 &
 M

in
in

gJ
ob

EP
R

13
.s

ub
sc

rib
e

13
.s

ub
sc

rib
e

4.
Ag

re
em

en
t T

em
pl

at
e

11.MiningJobEPR

15. exec

17
.u

pd
at

e

18
.n

ot
ify

D
at

am
in

in
g

Jo
b

S
er

vi
ce

19.record

In
de

x
S

er
vi

ce

1.q
ue

ry
2.M

ini
ng

flo
ws

M
in

in
gF

lo
w

16
.ac

ce
ss

8.
pr

ed
ic

tio
n

9.s
uc

ce
ss

/fa
il

14
.ti

m
er

16
.e

xe
cu

te

P
er

fo
rm

an
ce

M
gm

t.

D
at

a
S

pe
ci

al
is

t
C

lie
nt

D
at

am
in

in
g

Fa
ct

or
y

S
er

vi
ce

d.c
re

ate

f.re
gis

ter

a.query
b.MiningflowFactories

c.
M

in
in

gf
lo

w
e.

M
in

in
gf

lo
w

E
P

R

Fi
gu

re
8.

1
A

sc
he

m
at

ic
fig

ur
e

sh
ow

in
g

m
aj

or
co

m
po

ne
nt

sa
nd

ac
tiv

iti
es

of
th

e
de

m
on

st
ra

tio
n,

fr
om

th
e

pe
rs

pe
ct

iv
e

of
da

ta
sp

ec
ia

lis
t

(a
to

f)
an

d
m

ar
ke

tin
g

st
af

f(
1-

19
).

90 Chapter 8. Demonstration

LRR, TUM IBM Boeblingen

IBM pSeries 510

VS1 VS2
LRR1

VPN

Figure 8.2 Deployment environment for distributed data mining demonstration.

ing services rejects the offer, the client application will notify the user. Once the SLA is
created, the client application will invoke the data mining service with a reference to the
SLA, which will result in the creation of a new data mining job. The data mining job is
executed at a specific time controlled by the scheduler. Each time the job status changes, a
notification message will be sent to the client application. The status and result of the job
is also maintained as the service status, which can be retrieved at any time. A schematic
graph of the involved components and major activities is shown in Figure 8.1. Activities
labeled with a to f are those from the data analyst’s perspective, and those labeled with 1
to 19 are for normal mining users, say the marketing staff.

Optionally, the client application can also delegate the negotiation of SLAs to one of the
existing Grid brokers, which is itself a service deployed on one of the Grid servers. Before
this, the client application has to look into the Grid index and choose the Grid broker. The
broker acts on behalf of the client application to negotiate with the Grid servers, with the
same process as described above. The benefit of this approach is that the user does not have
to keep his program running during the whole process of SLA negotiation. But if he does,
when the broker finishes the negotiation, he will be notified promptly. Otherwise, he can
choose to check the result of negotiation at any time. From the user’s perspective, this is
also the only difference between using and not using a broker service.

8.4 Deployment Environment
As is shown in Figure 8.2, the demonstration is deployed onto a system formed by several
servers located at IBM Boeblingen Laboratories (in short, IBM) and LRR of Technische
Universitaet Muenchen (in short, LRR), and a number of clients. Through a VPN gateway,
a virtual network between IBM and LRR is formed.

8.5. The Service Bundle 91

VIO Server

OS : AIX

CPU : 0.3
Virt. Proc. : 1
Memory : 0.7GB
Disk: : 2

VS1

OS: SuSE SLES9 SP2

CPU : 0.3-0.5-0.7
Virt. Proc. : 1-2-3 / SMT
Memory : 0.7-1.2-1.5 GB
Virt. Eth. : 1
Real Eth : 1

VS2

OS: SuSE SLES9 SP2

CPU : 0.3-0.5-0.7
Virt. Proc. : 1-2-3 / SMT
Memory : 0.7-1.2-1.5 GB
Virt. Eth. : 1
Real Eth : 1

Disk1

HMC

Power Hypervisor

10.0.0.1/VLAN1 10.0.0.2/VLAN2

VLAN

DLPAR

172.16.202.101 172.16.202.102

172.16.202.1
VPN - Gateway

VSCSI

Disk2

Figure 8.3 Virtual servers on IBM pSeries 510.

The server in IBM is an IBM pSeries 510 machine with 2 x 1.65GHz processors, 4
GB memory, and 2 x 70 GB hard disk. With advanced resource virtualization support
of IBM hardware, two “virtual servers” are created, each with 2 x 0.5GHz CPU, 1.2 GB
memory, and SuSE SLES9 SP2 as OS. Figure 8.3 shows the system structure, where those
two servers are configured as logical partitions (LPAR). Besides, a special partition - virtual
I/O (VIO) server - provides virtual disk storage (Virtual SCSI, VSCSI) and Ethernet adapter
(Virtual LAN, VLAN) sharing. The Power Hypervisor is firmware for resource provision-
ing control, which can be operated from a Hardware Management Console (HMC).

The LRR server is Fujitsu-Siemens CELSIUS 670 XEON with dual Intel Xeon 2.8GHz
processors, 2GB memory and 100GB hard drive. A Fedora 6 with Linux kernel version
2.4.20 is installed as OS.

Globus WS Core v4.0.4 and the SLA management infrastructure are installed on all
servers as the platform. The data mining services implementation and customization bundle
is deployed on the platform.

8.5 The Service Bundle

8.5.1 Data Mining Services
The deployment of mining flows and the management of mining jobs are supported by a
set of services. The data mining services are designed and developed following the WS-

92 Chapter 8. Demonstration

DataminingFactoryService

• EPR createDatamining(String, String[])

DataminingResource

• name:String
• script:String
• variables:String[]

create

create

DataminingService

• EPR createDataminingJob()

• getResourceProperty(EPR)

DataminingJobService

• PMML exec()
• void asyncExec()

• getResourceProperty(EPR)
• subscribe(EPR, EPR)

access

access

DataminingJobResource

• miningService:EPR
• variableValues:String[]
• status: IJobStatus
• result:PMML
• message: String[]

DataminingFactoryResource

• database:String[]

• getResourceProperty(EPR)

access

Figure 8.4 Application services for the data mining demonstration.

Resource and WS-Notifications specification. Three services provide accessible interface
for three resources holding information on accessible data, and representing deployed min-
ing flow and the concrete data mining job, as is shown in Figure 8.4.

DataminingResource and DataminingJobResource are resources for mining flows and
mining jobs. DataminingResource holds the mining flow and the name of variables that
are defined in the mining flow. DataminingJobResource holds the actual variable values,
status of the job, the result of the mining flow in the form of PMML [58], and an array of
messages representing details of the mining process. It also maintains an endpoint reference
(EPR) to the associated DataminingResource, so that the corresponding mining flow can
be accessed.

The DataminingFactoryResource is a special resource entity. It is a singleton and ded-
icates to providing information. As the only property of this resource, the actual list of
databases that are accessible from this server is provided. The actual list of databases is
initialized during service deployment, and can be updated later by privileged administra-
tors.

The DataminingFactoryService provides an interface for the creation of DataminingRe-
source, which is referenced by an EPR. The DataminingService, as a stateful Web service,

8.5. The Service Bundle 93

supports accessing the properties of the associated DataminingResource instance, through
interfaces defined by WS-ResourceProperties. It also provides an interface for the creation
of DataminingJobResource. DataminingJobService, another stateful Web service, supports
accessing the properties of the associated DataminingJobResource instance through in-
terfaces provided by WS-ResourceProperties and subscribing and notification of status
changes through interfaces provided by WS-Notification. It also contains two methods
that control the job execution in synchronous or asynchronous way.

For demonstration purposes, the implementation utilizes IBM Intelligent Miner as part
of the IBM DB2 Data Warehouse Edition 9.1 product for data mining. However, other data
mining toolkits or products can also be applied in a general sense.

8.5.2 Customization Associates in Service Bundle
Together with the implementation of the services and resources, the service bundle that is
deployed on the server also contains code and scripts for customizing the SLA manage-
ment infrastructure. While all necessary customizations have been described in previous
chapters, we intend to provide a case study based on our demonstration.

Custom Agreement Providers

Two agreement providers are implemented, including DataminingAgreementTem-
plateProvider and DataminingAgreementCreationProvider. While DataminingAgreement-
TemplateProvider creates a custom agreement template, DataminingAgreementCreation-
Provider integrates the local resource manager with the WS-Agreement support infrastruc-
ture.

Custom Data Recorder and Predictor

Custom argument recorder DataminingJobArgumentRecorder and result recorder Datamin-
ingJobResultRecorder is implemented to use database to store data.

Custom performance predictor DataminingPerformanceEvaluator that applies data
mining to predict performance.

Proactive Handler Registration

DataminingJobArgumentRecorder and DataminingPerformanceEvaluator are configured
in server-deploy.wsdd in the way described in Section 4.6.1 and 4.6.4.

The DataminingInitializationService is configured to proactively register the agreement
handlers, service launcher, and performance evaluator:

IAgreementHandlerConfiguration provider =
new DataminingAgreementHandlerConfiguration();

ProviderRegistry.registerAgreementHandlerConfiguration(
provider);

94 Chapter 8. Demonstration

Figure 8.5 Designing mining flow with Mining Flow Development and Deployment Client.

ILauncher launcher = new DataminingServiceLauncher();
LauncherRegistry.register(

DataminingJobParameters.class, launcher);

IPerformanceEvaluator evaluator =
new SimpleDataminingPerformanceEvaluator();

PerformanceEvaluatorRegistry.register(
DataminingJobParameters.class, evaluator);

8.6 Client Environments

8.6.1 Overview
By extending the base client environment GSEC described in Section 7.4, two custom
client applications have been developed to meet the different needs of data specialists that
design and deploy data mining services, and normal data analyzers that utilize existing data
mining services.

Based on the component infrastructure of GSEC, the clients are implemented as a set

8.6. Client Environments 95

Figure 8.6 Deploying mining flow with Mining Flow Development and Deployment Client.

of plug-ins. A MiningService Library plug-in wraps the client libraries for data mining
services. A MiningService UI plug-in implements the basic UI extensions that are shared
between the two clients. Two separate UI plug-ins provide the higher-level UI components
to data specialist and normal data analyzers.

The common UI components offered by MiningService UI plug-in includes a Mining
Service View and a Mining Flow and Job View. The former provides information of avail-
able servers that are feasible for mining flow deployment by maintaining a list of Datamin-
ingFactoryServices. The later provides information of all deployed mining flow and asso-
ciated mining jobs. It is a customization of the standard service view - instead of listing
all deployed services, it focuses on DataminingFlowService and DataminingJobService. It
groups existing DataminingFlowServies according to their method name and maintains a
hierarchical relationship between DataminingFlowServices and DataminingJobServices.

8.6.2 Mining Flow Development and Deployment Client for
Data Specialist

The Mining Flow Development and Deployment Client is a customized client application
that helps data specialists to design and deploy mining flows. In addition to the standard

96 Chapter 8. Demonstration

Figure 8.7 Start mining job with Mining Job Management Client.

functionality of GSCE and the basic library and UI plug-ins for data mining services, it pro-
vide high-level user interface, including Mining Flow Editor and Mining Flow Deployment
Wizard.

The Mining Flow Editor is a graphical editor for mining flow design, originally part of
IBM Design Studio for DB2 Data Warehouse. This gives an example of easy integration
of third-party tools that are based on the same Eclipse platform into our client application.

The Mining Flow Deployment Wizard is a wizard that helps data specialist to deploy the
developed mining flow to selected servers. It is based on functionalities and UI components
of lower level plug-ins for index, agreement, and the custom data minining services.

Figure 8.5 presents a screenshot of the client application in mining flow design. And
deploying mining flow with the client application is shown in Figure 8.6.

8.6.3 Mining Job Management Client for Data Analyzer
The Mining Job Management Client for Data Analyzer is a separate client application that
helps normal data analyzers to use the mining flows deployed on the Grid. In addition to
the standard functionality of GSCE and the basic library and UI plug-ins for data mining
services, it also provides high-level user interfaces including Mining Job Launch Wizard

8.7. Conclusion 97

Figure 8.8 View mining job, mining model, and agreement with Mining Job Management
Client.

and Mining Job Result Viewer.
The Mining Job Launch Wizard provides step by step guidance that helps the data

analyzer to request the execution of specific mining flow. It is based on functionalities and
UI components of lower level plug-ins for index, agreement, and the custom data minining
services.

The Mining Job Result Viewer visually renders the resulting data mining model. It
is developed by wrapping existing functionalities from IBM DB2 Intelligent Miner Visu-
alization. This gives an example of easy integration of third-party tools into our client
application by wrapping them into plug-ins.

Figure 8.7 presents a screenshot of the client application in launching mining job. And
viewing mining job, agreement, and mining model with the client application is shown in
Figure 8.8.

8.7 Conclusion
To illustrate the applicability of our SLA-based resource management with predictive per-
formance evaluation approach, a demonstration for distributed data mining has been im-

98 Chapter 8. Demonstration

plemented. It is consisted of custom application services for mining flow deployment and
mining job execution. Custom clients are developed to meet the need of different users. It
is deployed and tested on a small-scaled Grid system in a virtual network between LRR of
TU Muenchen and IBM Boeblingen Laboratories, which justifies the applicability of our
development.

The demonstration also shows how application specific customization of the SLA-based
resource management infrastructure can be easily achieved with the help of accompanied
support environments. Custom agreement handler, data recorder and predictor, as well
as service launchers, can be easily implemented by extending existing implementations
and configured. Implementation of client environments can also be greatly simplified by
extending the base client platform GSEC.

Chapter 9

Conclusions

9.1 Summary
The work presented in this thesis focuses on applying service level agreements in service-
oriented systems for autonomous resource management. The basis of this approach is a
SLA-based resource management infrastructure, which incorporates a global infrastructure
assisting SLA negotiation and a local management infrastructure for SLA enforcement
which manages local resources and handles agreement negotiation and service provision-
ing. Major issues towards the establishment of such an infrastructure have been addressed
in this work.

The specification of SLAs is accomplished with an emerging standard language WS-
Agreement, developed by the GRAAP working group of Open Grid Forum. We have been
actively participating in this group and contributed to the finalization of this specification.
A generic and extensible support infrastructure for WS-Agreement has been designed and
developed, which utilizes a provider mechanism for custom domain specific processings.
It is the first full implementation of WS-Agreement on GT4 platform and the only one that
can be dynamically extended for different Grid services coexisting on the same server.

For application performance prediction, we have designed and implemented a generic
run time monitoring and prediction framework for service-oriented Grid applications. The
framework achieves non-intrusive run time monitoring with custom handlers inserted in the
SOAP handler chain. It allows incorporating different performance prediction techniques,
including analytical modeling, statistics simulation, and historical data analysis. A set of
generic performance predictors that follows a systematic approach for applying data mining
techniques has been developed and evaluated.

As a major requirement of the local resource management infrastructure, the local
scheduler controls the execution of services that are provisioned. For jobs with a run time
that are derived with prediction techniques, the probabilistic nature of the estimated run
time imposes additional requirement on the scheduling. Besides, jobs in a SLA-based re-
source management infrastructure has additional features that need to be considered, for
example the different possibilities of earliest job start time, lazy termination and alterna-
tive SLA offers. A hybrid scheduling approach that combines global scheduling and local
scheduling has been developed. A scheduler that controls the execution of provisioned ser-
vices has been implemented based on the hybrid scheduling approach, which is integrated
with the WS-Agreement support infrastructure and the run time monitoring and prediction

100 Chapter 9. Conclusions

framework to form the local resource management infrastructure.
A global infrastructure that assists the establishment of SLAs with unknown services

and the enforcement of SLAs for stateless Web services has been developed. This in-
frastructure incorporates three services that help the discovery and selection of service
providers and assist provisioning of stateless Web services - index service, broker service,
and gateway service. The open nature of the global infrastructure makes it possible to in-
corporate other services, for example those supporting service trading, to support advanced
means of SLA negotiations with improved scalabilities.

In order to support the development, usage and management of Grid systems managed
by our SLA-based resource management infrastructure, a comprehensive set of develop-
ment tools and support environments has been designed and implemented. The environ-
ment is intended to support users of three different roles - Grid application developers,
Grid application users, and Grid managers. Based on platforms like Eclipse that support
component-based application development, the tools that are developed can be dynamically
composed or custom extended to meet the needs of a specific user.

Based on a concrete scenario of distributed data mining for banking, a demonstration of
the SLA-based resource management approach has been implemented. The demonstration
incorporates techniques that have been developed for WS-Agreement support, application
performance prediction and scheduling of jobs with probabilistic run time, and utilizes the
global infrastructure that assists resource discovery, resource selection and job execution.
The demonstration also serves as a general evaluation of the SLA-based resource manage-
ment approach and related techniques that has been developed in this work.

9.2 Future Work
The work presented in this thesis has been a major step towards automated Grid resource
management with SLA-based approach. On top of this, a number of possible areas exist
that deserves to be continuously explored in the future.

9.2.1 Workflow Support
Individual services can be composed into workflows, the execution of workflows need to be
investigated. The SLA-based resource management infrastructure provides the fundamen-
tal support for co-scheduling the execution of different services, which can be leveraged for
workflow support. This mainly involves the development of a workflow service that plans
the execution of each individual service of the workflow and makes reservations through
the SLA management infrastructure. In addition, the development and management tools
need to be extended to support the composition and execution of workflows, including the
development of a workflow editor and client for workflow services. The existing develop-
ment tools and support environments can be used in the development and deployment of
the resulting services and client components.

9.3. Concluding Remarks 101

9.2.2 Grid Economy
As one of the topics for future work, we are looking forward to a generic area of resource
management with Grid economy, i.e. market-oriented resource negotiation. This can be
achieved with an extension of current global infrastructure with services that support ser-
vice trading and financial management. Besides the various services outlined in previous
chapters that support different trading methods, services for financial management are also
needed. They regulate and manage Grid currency or virtual Grid currency (quota) and
supporting the financial activities during service trading.

9.2.3 Subcontract SLAs
Besides co-scheduling for workflow support and Grid economy supporting market-oriented
resource negotiation, another topic that can be investigated is to subcontract SLAs. Service
provider might negotiate with other service providers to make a subcontract for taking over
whole or part of the service provisioning. The application scenarios of subcontract SLAs
as well as the exact means of achieving this goal need to be investigated. Again, the current
SLA-based resource management infrastructure can be leveraged as the basis.

9.3 Concluding Remarks
In summary, the work presented in this thesis has implemented a comprehensive approach
for automated resource management with service level agreements in the context of service-
oriented Grids. Infrastructure and techniques for automated negotiation and management of
service level agreement, learning-based resource requirement prediction, and probability-
aware scheduling are designed and developed, that forms a local resource management
infrastructure. This is complimented with a global infrastructure that assists the negotiation
of SLAs between clients and unknown services, as well as the enforcement of SLAs.

The infrastructure and techniques developed in this work establish the fundamental
basis for future developments.

Appendix A

Adaptation of WS-Agreement for
GT4

A.1 Namespaces
The namespaces used by WS-Agreement specification are consistent with those of Apache
WSRF, a newer but currently less popular WSRF implementation. The current release of
GT4 uses older namespace definitions compared to those used by WS-Agreement spec-
ification, so it is necessary to replace them with those supported by GT4. A list of the
modifications to the namespaces is provided in Table A.1.

Of course, there are foreseeable cross-platform interoperability issues. However, before
GT4 is updated to conform to the newer namespaces in forthcoming versions, there are no
better solutions. The developers of GT4 have been aware of this issue and are working on
it.

A.2 WSDL and XSD Imports
The original WSDLs and XSDs of the WS-Agreement specification have WSDL imports
and XSD imports from addresses specified in URLs. GT4 does not allow the import of
external WSDLs and XSDs. Instead, it requires all WSDLs and XSDs organized in the
schema directory.

Furthermore, as is already mentioned, the namespaces used by GT4 are different from
those of the specification, so the locations of the imported WSDLs and XSDs should be
changed accordingly. Please see Table A.2 for a list of the import locations.

A.3 Faults
WS-Agreement specification references wsrf-rw:ResourceUnavailableFault. The corre-
sponding namespace used by GT4 is wsrf-rpw. However, although the older defini-
tions used by GT4 do share most of the fault types like wsrf-rpw:ResourceUnknownFault
and wsrf-rpw:InvalidResourcePropertyQNameFault, wsrf-rw:ResourceUnavailableFault
is not supported. A work around is to use an existing similar fault type wsrf-
rw:ResourceUnknownFault.

104 Appendix A. Adaptation of WS-Agreement for GT4
N

S
W

S-
A

G
Sp

ec
G

T
4

w
sr

f-
rp

ht
tp

://
do

cs
.o

as
is

-o
pe

n.
or

g/
w

sr
f/

rp
-2

ht
tp

://
do

cs
.o

as
is

-o
pe

n.
or

g/
w

sr
f/

20
04

/0
6/

w
sr

f-
W

S-
R

es
ou

rc
eP

ro
pe

rt
ie

s-
1.

2-
dr

af
t-

01
.x

sd
w

sr
f-

bf
ht

tp
://

do
cs

.o
as

is
-o

pe
n.

or
g/

w
sr

f/
bf

-2
ht

tp
://

do
cs

.o
as

is
-o

pe
n.

or
g/

w
sr

f/
20

04
/0

6/
w

sr
f-

W
S-

B
as

eF
au

lts
-1

.2
-d

ra
ft

-0
1.

xs
d

w
sa

ht
tp

://
w

w
w

.w
3.

or
g/

20
05

/0
8/

ad
dr

es
si

ng
ht

tp
://

sc
he

m
as

.x
m

ls
oa

p.
or

g/
w

s/
20

04
/0

3/
ad

dr
es

si
ng

w
sr

f-
rp

w
ht

tp
://

do
cs

.o
as

is
-o

pe
n.

or
g/

w
sr

f/
rp

w
-2

ht
tp

://
do

cs
.o

as
is

-o
pe

n.
or

g/
w

sr
f/

20
04

/0
6/

w
sr

f-
W

S-
R

es
ou

rc
eP

ro
pe

rt
ie

s-
1.

2-
dr

af
t-

01
.w

sd
l

w
sr

f-
rw

ht
tp

://
do

cs
.o

as
is

-o
pe

n.
or

g/
w

sr
f/

rw
-2

N
/A

(u
se

w
sr

f-
rp

w
in

st
ea

d)

Ta
bl

e
A

.1
N

ec
es

sa
ry

m
od

ifi
ca

tio
ns

to
na

m
es

pa
ce

s
in

W
S-

A
gr

ee
m

en
tW

SD
L

s.

N
S

W
S-

A
G

Sp
ec

G
T

4

w
sr

f-
rp

w
ht

tp
://

do
cs

.o
as

is
-o

pe
n.

or
g/

w
sr

f/
rp

w
-2

.w
sd

l
../

../
w

sr
f/

pr
op

er
tie

s/
W

S-
R

es
ou

rc
eP

ro
pe

rt
ie

s.
w

sd
l

w
sr

f-
rp

ht
tp

://
do

cs
.o

as
is

-o
pe

n.
or

g/
w

sr
f/

bf
-2

.x
sd

../
../

w
sr

f/
fa

ul
ts

/W
S-

B
as

eF
au

lts
.x

sd
w

sr
f-

rw
ht

tp
://

do
cs

.o
as

is
-o

pe
n.

or
g/

w
sr

f/
rw

-2
.w

sd
l

N
/A

(n
o

im
po

rt
)

w
sa

ht
tp

://
w

w
w

.w
3.

or
g/

20
06

/0
3/

ad
dr

es
si

ng
/w

s-
ad

dr
.x

sd
../

../
w

s/
ad

dr
es

si
ng

/W
S-

A
dd

re
ss

in
g.

xs
d

w
sr

f-
bf

ht
tp

://
do

cs
.o

as
is

-o
pe

n.
or

g/
w

sr
f/

bf
-2

.x
sd

../
../

w
sr

f/
fa

ul
ts

/W
S-

B
as

eF
au

lts
.x

sd

Ta
bl

e
A

.2
N

ec
es

sa
ry

m
od

ifi
ca

tio
ns

to
im

po
rt

lo
ca

tio
ns

in
W

S-
A

gr
ee

m
en

tW
SD

L
s.

W
SD

L
de

fin
iti

on
na

m
e

A
gr

ee
m

en
t.w

sd
l

A
gr

ee
m

en
t

A
gr

ee
m

en
tA

cc
ep

ta
nc

e.
w

sd
l

A
gr

ee
m

en
tA

cc
ep

ta
nc

e
A

gr
ee

m
en

tF
ac

to
ry

.w
sd

l
A

gr
ee

m
en

tF
ac

to
ry

A
gr

ee
m

en
tS

ta
te

.w
sd

l
A

gr
ee

m
en

tS
ta

te
Pe

nd
in

gA
gr

ee
m

en
tF

ac
to

ry
.w

sd
l

Pe
nd

in
gA

gr
ee

m
en

tF
ac

to
ry

Ta
bl

e
A

.3
A

do
pt

ed
na

m
e

at
tr

ib
ut

e
of

w
sd

l:d
efi

ni
tio

n
in

W
S-

A
gr

ee
m

en
tW

SD
L

s.

A.4. Compact Schema 105

A.4 Compact Schema
WS-Agreement port types extends port types of WSRF, thus the original WSDLs of
WS-Agreement contains definitions “inherited” from the WS-ResourceProperty and WS-
Lifetime. The mixture of new and “inherited” definitions makes the WSDLs less readable.

GT4 support WSDLPreprocessor which helps to simply WSDL definition with port
type extension. The WSDLs are modified to use WSDLPreprocessor, by removing the
“inherited” definitions and adding wsdlpp:extends attribute on wsdl:portType element:

<wsdl:portType name="Agreement"
wsdlpp:extends="wsrf-rpw:GetResourceProperty"
xmlns:wsdlpp=
"http://www.globus.org/namespaces/2004/10/WSDLPreprocessor"

The original WSDLs from WS-Agreement specification does not define name attribute
for wsdl:definitions element, which is optional according to the WSDL specification. How-
ever, the WSDL preprocessor of GT4 depends on this attribute for proper flattening of the
WSDL document, for example:

<wsdl:definitions name="Agreement" ...

Therefore, name attribute are added to the WSDLs. Table A.3 provides a list of the
names that are added to the WSDL definition.

A.5 xs:simpleRestrictionModel and
xs:typeDefParticle

ItemConstraint element in WS-Agreement specification is defined using
xs:simpleRestrictionModel and xs:typeDefParticle:

<xs:element name="ItemConstraint">
<xs:complexType>
<xs:choice minOccurs="0">
<xs:group ref="xs:simpleRestrictionModel" />
<xs:group ref="xs:typeDefParticle" />

</xs:choice>
</xs:complexType>

</xs:element>
...

Due to a limitation of the data binding component in GT4, it fails to generate stubs
for both xs:simpleRestrictionModel and xs:typeDefParticle. Compared to other platforms
like Axis2, where different or alternative data binding can be applied, this reveals a major
limitation of GT4.

In our implementation, workaround has been performed by modifying the definition to
use xs:anyType like the following:

106 Appendix A. Adaptation of WS-Agreement for GT4

<xs:element name="ItemConstraint" type="xs:anyType" />

Manual parsing are then applied on the message element to correctly handle item con-
straints. There is a potential benefit with this modification, however, that it allows the
usage of alternative restriction models. An example of such restriction models includes
those defined by JSDL [15].

A.6 TermCompositorType
The definition of TermCompositorType in WS-Agreement specification is based on
xs:choice maxOccurs=”unbounded”:

<xs:complexType name="TermCompositorType">
<xs:sequence>

<xs:choice maxOccurs="unbounded">
<xs:element name="ExactlyOne"
type="wsag:TermCompositorType" />

...
<xs:element name="GuaranteeTerm"
type="wsag:GuaranteeTermType" />

</xs:choice>
</xs:sequence>

</xs:complexType>

However, GT4 is not able to handle such elements. As a workaround to this is-
sue, the TermCompositorType definition has been slightly modified to avoid the usage of
xs:choice maxOccurs=”unbounded” as the following:

<xs:complexType name="TermCompositorType">
<xs:sequence>

<xs:element name="ExactlyOne"
type="wsag:TermCompositorType"
minOccurs="0" maxOccurs="unbounded" />

...
<xs:element name="GuaranteeTerm"

type="wsag:GuaranteeTermType"
minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>
</xs:complexType>

This modification keeps the essences of the original definition and allows GT4 to pro-
cess TermCompositorType elements. There is however a minor difference that the later
requires the elements to appear in certain sequences. This can be considered to be a
workaround before GT4 is upgraded to the newest version of Axis.

Appendix B

WS-Agreement Samples for Data
Mining Service

B.1 WS-Agreement Template
<wsag:Template

xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"
wsag:TemplateId="DataminingServiceAgreementTemplate">
<wsag:Name>Datamining Service Agreement Template</wsag:Name>
<wsag:Context xsi:type="wsag:Context">

<wsag:AgreementResponder>
http://grid:9090/wsrf/services/DataminingService

</wsag:AgreementResponder>
<wsag:ServiceProvider>

AgreementResponder
</wsag:ServiceProvider>
<wsag:ExpirationTime>

2007-05-09T13:50:04.719Z
</wsag:ExpirationTime>
<wsag:TemplateId>

DataminingServiceAgreementTemplate
</wsag:TemplateId>
<wsag:TemplateName>

Datamining Service Agreement Template
</wsag:TemplateName>

</wsag:Context>
<wsag:Terms>

<wsag:All>
<wsag:ServiceReference

wsag:Name="Datamining Service Reference"
wsag:ServiceName="DataminingService"
xsi:type="wsag:ServiceReference">
<xsd:anyURI>

http://grid:9090/wsrf/services/DataminingService
</xsd:anyURI>

</wsag:ServiceReference>

108 Appendix B. WS-Agreement Samples for Data Mining Service

<wsag:ServiceProperties wsag:Name="deadline"
wsag:ServiceName="DataminingService">
<wsag:VariableSet>

<wsag:Variable wsag:Metric="job:Second"
wsag:Name="endTime">
<wsag:Location />

</wsag:Variable>
</wsag:VariableSet>

</wsag:ServiceProperties>
</wsag:All>

</wsag:Terms>
<wsag:CreationConstraints>

<wsag:Item wsag:Name="Penalty Value Constraint">
<wsag:Location>

//wsag:GuaranteeTerm/wsag:BusinessValueList
/wsag:Penalty/wsag:ValueExpression

</wsag:Location>
<wsag:ItemConstraint>

<svrl:LowerBoundedRange
xmlns:svrl="http://lrr.in.tum.de/arm/2006/10/svrl"
exclusiveBound="false">
0

</svrl:LowerBoundedRange>
</wsag:ItemConstraint>

</wsag:Item>
<wsag:Item wsag:Name="Penalty Unit Constraint">

<wsag:Location>
//wsag:GuaranteeTerm/wsag:BusinessValueList
/wsag:Penalty/wsag:ValueUnit

</wsag:Location>
<wsag:ItemConstraint>

<svrl:Exact
xmlns:svrl="http://lrr.in.tum.de/arm/2006/10/svrl">
0

</svrl:Exact>
</wsag:ItemConstraint>

</wsag:Item>
<wsag:Item wsag:Name="Reward Value Constraint">

<wsag:Location>
//wsag:GuaranteeTerm/wsag:BusinessValueList
/wsag:Reward/wsag:ValueExpression

</wsag:Location>
<wsag:ItemConstraint>

<svrl:LowerBoundedRange
xmlns:svrl="http://lrr.in.tum.de/arm/2006/10/svrl"
exclusiveBound="false">

B.2. WS-Agreement Offer 109

0
</svrl:LowerBoundedRange>

</wsag:ItemConstraint>
</wsag:Item>
<wsag:Item wsag:Name="Reward Unit Constraint">

<wsag:Location>
//wsag:GuaranteeTerm/wsag:BusinessValueList
/wsag:Reward/wsag:ValueExpression

</wsag:Location>
<wsag:ItemConstraint>

<svrl:Exact
xmlns:svrl="http://lrr.in.tum.de/arm/2006/10/svrl">
0

</svrl:Exact>
</wsag:ItemConstraint>

</wsag:Item>
<wsag:Item wsag:Name="Deadline Constraint">

<wsag:Location>
//wsag:GuaranteeTerm/wsag:ServiceLevelObjective
/wsag:KPITarget/wsag:CustomServiceLevel

</wsag:Location>
<wsag:ItemConstraint xsi:nil="true" />

</wsag:Item>
<wsag:Item wsag:Name="Argument Constraint">

<wsag:Location>
//wsag:ServiceDescriptionTerm/job:job/job:arguments

</wsag:Location>
<wsag:ItemConstraint xsi:nil="true" />

</wsag:Item>
</wsag:CreationConstraints>

</wsag:Template>

B.2 WS-Agreement Offer
<AgreementOffer

xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"
wsag:TemplateId="DataminingServiceAgreementTemplate"
xsi:type="wsag:AgreementTemplateType">
<Name>Datamining Service Agreement Template</Name>
<Context>

<AgreementResponder>
http://grid:9090/wsrf/services/DataminingService

</AgreementResponder>
<ServiceProvider>AgreementResponder</ServiceProvider>

110 Appendix B. WS-Agreement Samples for Data Mining Service

<ExpirationTime>2007-05-09T13:50:04.719Z</ExpirationTime>
<TemplateId>DataminingServiceAgreementTemplate</TemplateId>
<TemplateName>

Datamining Service Agreement Template
</TemplateName>

</Context>
<Terms>

<All>
<ServiceDescriptionTerm

wsag:Name="Datamining Service Description Term"
wsag:ServiceName="DataminingService">
<ns1:DataminingJobParameters

xmlns:ns1="http://sog.lrr.in.tum.de/datamining
/DataminingService/parameters">
<ns1:dataminingEPR>

<wsa:Address>
http://grid:9090/wsrf/services/datamining
/DataminingService

</wsa:Address>
<wsa:ReferenceProperties>

<wsag:DataminingResourceKey
xmlns:wsag="http://sog.lrr.in.tum.de
/datamining/DataminingService">
a84222f0-fe35-11db-ac4a-f38050f1049c

</wsag:DataminingResourceKey>
</wsa:ReferenceProperties>
<wsa:ReferenceParameters />

</ns1:dataminingEPR>
<ns1:variableValues>SAMPLE_TABLE</ns1:variableValues>
<ns1:variableValues>0.1</ns1:variableValues>
<ns1:variableValues>0.5</ns1:variableValues>

</ns1:DataminingJobParameters>
</ServiceDescriptionTerm>
<ExactOne>

<GuaranteeTerm wsag:Name="MaxEndTime"
wsag:Obligated="ServiceProvider">
<ServiceScope wsag:ServiceName="DataminingService" />
<ServiceLevelObjective>

<KPITarget>
<KPIName>endTime</KPIName>
<CustomServiceLevel xsi:type="xsd:dateTime">

2007-05-09T15:00:35.063Z
</CustomServiceLevel>

</KPITarget>
</ServiceLevelObjective>
<BusinessValueList>

B.2. WS-Agreement Offer 111

<Penalty>
<AssessmentInterval>

<Count>1</Count>
</AssessmentInterval>
<ValueUnit>GUVC</ValueUnit>
<ValueExpression>100</ValueExpression>

</Penalty>
<Reward>

<AssessmentInterval>
<Count>1</Count>

</AssessmentInterval>
<ValueUnit>GUVC</ValueUnit>
<ValueExpression>40</ValueExpression>

</Reward>
</BusinessValueList>

</GuaranteeTerm>
<GuaranteeTerm wsag:Name="MaxEndTime"
wsag:Obligated="ServiceProvider">
<ServiceScope wsag:ServiceName="DataminingService" />
<ServiceLevelObjective>

<KPITarget>
<KPIName>endTime</KPIName>
<CustomServiceLevel xsi:type="xsd:dateTime">

2007-05-09T10:00:35.063Z
</CustomServiceLevel>

</KPITarget>
</ServiceLevelObjective>
<BusinessValueList>

<Penalty>
<AssessmentInterval>

<Count>1</Count>
</AssessmentInterval>
<ValueUnit>GUVC</ValueUnit>
<ValueExpression>1000</ValueExpression>

</Penalty>
<Reward>

<AssessmentInterval>
<Count>1</Count>

</AssessmentInterval>
<ValueUnit>GUVC</ValueUnit>
<ValueExpression>400</ValueExpression>

</Reward>
</BusinessValueList>

</GuaranteeTerm>
</ExactOne>

</All>

112 Appendix B. WS-Agreement Samples for Data Mining Service

</Terms>
<CreationConstraints />

</AgreementOffer>

B.3 WS-Agreement
<Agreement
xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"
wsag:TemplateId="DataminingServiceAgreementTemplate"
xsi:type="wsag:AgreementTemplateType">
<Name>Datamining Service Agreement Template</Name>
<Context>

<AgreementResponder>
http://grid:9090/wsrf/services/DataminingService

</AgreementResponder>
<ServiceProvider>AgreementResponder</ServiceProvider>
<ExpirationTime>2007-05-09T13:50:04.719Z</ExpirationTime>
<TemplateId>DataminingServiceAgreementTemplate</TemplateId>
<TemplateName>

Datamining Service Agreement Template
</TemplateName>

</Context>
<Terms>

<All>
<ServiceDescriptionTerm

wsag:Name="Datamining Service Description Term"
wsag:ServiceName="DataminingService">
<ns1:DataminingJobParameters

xmlns:ns1="http://sog.lrr.in.tum.de/datamining
/DataminingService/parameters">
<ns1:dataminingEPR>

<wsa:Address>
http://grid:9090/wsrf/services/datamining
/DataminingService

</wsa:Address>
<wsa:ReferenceProperties>

<wsag:DataminingResourceKey
xmlns:wsag="http://sog.lrr.in.tum.de/datamining/
DataminingService">
a84222f0-fe35-11db-ac4a-f38050f1049c

</wsag:DataminingResourceKey>
</wsa:ReferenceProperties>
<wsa:ReferenceParameters />

</ns1:dataminingEPR>
<ns1:variableValues>SAMPLE_TABLE</ns1:variableValues>

B.3. WS-Agreement 113

<ns1:variableValues>0.1</ns1:variableValues>
<ns1:variableValues>0.5</ns1:variableValues>

</ns1:DataminingJobParameters>
</ServiceDescriptionTerm>
<GuaranteeTerm wsag:Name="MaxEndTime"

wsag:Obligated="ServiceProvider">
<ServiceScope wsag:ServiceName="DataminingService" />
<ServiceLevelObjective>

<KPITarget>
<KPIName>endTime</KPIName>
<CustomServiceLevel xsi:type="xsd:dateTime">

2007-05-09T15:00:35.063Z
</CustomServiceLevel>

</KPITarget>
</ServiceLevelObjective>
<BusinessValueList>

<Penalty>
<AssessmentInterval>

<Count>1</Count>
</AssessmentInterval>
<ValueUnit>GUVC</ValueUnit>
<ValueExpression>100</ValueExpression>

</Penalty>
<Reward>
<AssessmentInterval>

<Count>1</Count>
</AssessmentInterval>
<ValueUnit>GUVC</ValueUnit>
<ValueExpression>40</ValueExpression>

</Reward>
</BusinessValueList>

</GuaranteeTerm>
</All>

</Terms>
<CreationConstraints />

</Agreement>

Abbreviations

A
ACT Application Characterisation Tool
ANN Artificial Neural Network
ARM4LSA Automated Resource Management for Large-scale Applications

C
CHIP3S Characterisation Instrumentation for Performance Prediction of Parallel Systems
CPU Central Processing Unit
CSF Community Scheduler Framework

D
DNS Domain Name Service
DSDP/TM Device Software Development Platform / Target Management

E
EMF Eclipse Modeling Framework
EMFT Eclipse Modeling Framework Technology
EPR Endpoint Reference

F
FIFO First–In First–Out

116 Abbreviations

G
GGF Global Grid Form (see Open Grid Forum)
GRAAP Grid Resource Allocation Agreement Protocol
GRAM Grid Resource Allocation Management
GRM Grid Resource Manager
GRMS Grid Resource Management System
GSDE Grid Service Development Environment
GSEC Grid Service Execution Client
GSME Grid Service Management Environment
GT Globus Toolkit
GT2 Globus Toolkit version 2
GT4 Globus Toolkit version 4

H
HP Hewlett Packard
HPC High Performance Computing
HPF High Performance Fortran

I
IBM International Business Machines
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers

J
JDK JavaTM Development Kit
JDT (Eclipse) Java Development Tools
JET Java Emitting Templates
JMX Java Management Extensions
JSDL Job Submission Description Language

L
kNN k-Nearest Neighbour

L
LAN Local Area Network

Abbreviations 117

M
MPI Message Passing Interface
MPP Massively Parallel Processor
MuSE Multithreaded Scheduling Environment

N
NCName “Non-Colonized” Names
NoW Network of Workstations
NPB NAS Parallel Benchmarks

O
OS Operating System
OGF Open Grid Forum
OGSA Open Grid Service Architecture
OGSI Open Grid Services Infrastructure

P
PACE Performance Analysis and Characterisation Environment
PC Processor Consistency or Personal Computer
PET Positron Emission Tomography
PMB Pallas MPI Benchmarks
PMML Predictive Model Markup Language
PoP Pile of PCs
POSIX Portable Operating System Interface for uniX
PUNCH Purdue University Network-Computing Hubs
PVM Parallel Virtual Machine
PVP Parallel Vector Processor

Q
QoS Quality of Service

R
RAL Rutherford Appleton Laboratories
RAM Random Access Memory
RCP Rich Client Platform
RPC Remote Procedure Call

118 Abbreviations

S
SLA Service Level Agreement
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SOG Service Oriented Grid
SPMD Single Program Multiple Data
SpMV Sparse Matrix-Vector Multiply
SpMM Sparse Matrix-Matrix Multiply
SQL Structured Query Language
SUIF Stanford University Intermediate Format

U
URI Uniform Resource Identifier
URL Uniform Resource Locator

W
WSDL Web Service Description Language
WSMN Web Service Management Language
WSMN Web Services Management Network
WSOI Web Services Offering Infrastructure
WSOL Web Services Offering Language
WSRF Web Service Resource Framework
WS-Addressing Web Service Addressing
WS-Agreement Web Service Agreement
WS-BaseFaults Web Services Base Faults
WS-Notification Web Services Notification
WS-Resource Web Services Resource
WS-ResourceProperties Web Services Resource Properties
WS-ResourceLifetime Web Services Resource Lifetime
WS-Security Web Services Security
WMI Windows Management Interface

X
XML Extensible Markup Language
XSD XML Schema Definition
XPath XML Path

Bibliography

[1] Community Scheduler Framework (CSF). Web site
http://www.globus.org/grid_software/computation/csf.php.

[2] OASIS Web Services Resource Framework (WSRF). OASIS Web page
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf.

[3] Pallas MPI Benchmarks. Pallas GmbH http://www.pallas.com/e/produces/pmb/.

[4] XML Path. OASIS Web page http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrf.

[5] Web Services Service Group 1.2 (WS-ServiceGroup). Online avail-
able at http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ServiceGroup-1.2-draft-
02.pdf, June 2004.

[6] TrustCoM Basic Reference Implementation, Deliverable D19. Online available
at http://212.0.127.139/trustcom/wp-content/uploads/2007/08/d19+basic+.pdf,
September 2005.

[7] Mona Aggarwal, Robert D. Kent, and Alioune Ngom. Genetic Algorithm Based
Scheduler for Computational Grids. In HPCS, pages 209–215. IEEE Computer
Society, 2005.

[8] C. G. Akteson, S.A. Schaal, and A. W. Moore. Locally Weighted Learning. AI
Review, 11,:11–73, 1997.

[9] Kurt Thearling Alex Berson. Building Data Mining Applications for CRM.
McGraw-Hill, Inc., New York, NY, 1999.

[10] A. M. Alkindi, Darren J. Kerbyson, and Graham R. Nudd. Dynamic Instru-
mentation and Performance Prediction of Application Execution. In Louis O.
Hertzberger, Alfons G. Hoekstra, and Roy Williams, editors, HPCN Europe, vol-
ume 2110 of Lecture Notes in Computer Science, pages 513–523. Springer, 2001.

[11] Gabrielle Allen, Tom Goodale, Gerd Lanfermann, Thomas Radke, Edward Seidel,
Werner Benger, Hans-Christian Hege, André Merzky, Joan Massó, and John Shalf.

120 Bibliography

Solving Einstein’s Equations on Supercomputers. IEEE Computer, 32(12):52–58,
1999.

[12] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
SETI@home: an experiment in Public-resource Computing. Communication of
ACM, 45(11):56–61, 2002.

[13] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services
Agreement Specification (WS-Agreement). Open Grid Forum,
http://www.gridforum.org/documents/GFD.107.pdf, 2007.

[14] Artur Andrzejak, Sven Graupner, and Stefan Plantikow. Predicting Resource De-
mand in Dynamic Utility Computing Environments. In ICAS, page 6. IEEE Com-
puter Society, 2006.

[15] Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly,
Stephen McGough, Darren Pulsipher, and Andreas Savva. Job Sub-
mission Description Language (JSDL) Specification. Online available at
http://www.gridforum.org/documents/GFD.56.pdf, November 2005.

[16] R. Aydt. The Pablo Self-Defining Data Format. University of Illinois at Urbana-
Champaign, Department of Computer Science, 1992, latest revision 2003.

[17] Rosa M. Badia, Jess Labarta, Judit Gimenez, and Francesc Escale.
DIMEMAS: Predicting MPI Applications Behavior in Grid Environ-
ments. Workshop on Grid Applications and Programming Tools (GGF8),
www.cepba.upc.es/dimemas/docs/dimemas_updt.pdf, 2003.

[18] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications, 5(3):63–73, Fall 1991.

[19] Kevin J. Barker, Scott Pakin, and Darren J. Kerbyson. A Performance Model of
the Krak Hydrodynamics Application. In ICPP, pages 245–254. IEEE Computer
Society, 2006.

[20] Dominic Battré. On the Use of Service Level Agreements in AssessGrid. OGF20,
May 7-11, 2007, Manchester, UK, 2007.

[21] Antonia Bertolino, Guglielmo De Angelis, and Andrea Polini. Automatic Gen-
eration of Test-beds for Pre-deployment QoS Evaluation of Web Services. In
WOSP’07: Proceedings of the 6th international workshop on software and per-
formance, pages 137–140, New York, NY, USA, 2007. ACM Press.

Bibliography 121

[22] Ponsy R. K. Sathia Bhama, Thamarai Selvi Soma Sundaram, Supriya Vasudevan,
P. Al Niyas, and K. Swadha. Scheduling of Jobs in a Dynamic Heterogeneous
Environment. In Hamid R. Arabnia, editor, GCA, pages 97–106. CSREA Press,
2006.

[23] Georg Birkenheuer, Karim Djemame, Iain Gourlay, Odej Kao, James Padgett, and
Kerstin VoSS. Using WS-Agreement for Risk Management in the Grid. First
WS-Agreement Workshop (OGF18), Washington, September 2006.

[24] Ian Bowman, John Shalf, Kwan-Liu Ma, and Wes Bethel. Perfor-
mance Modeling for 3D Visualization in a Heterogeneous Computing En-
vironment. Lawrence Berkeley National Laboratory. Paper LBNL-56977.
http://repositories.cdlib.org/lbnl/LBNL-56977, June 2004.

[25] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau Bölöni, Muthucumaru
Maheswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys, Bin Yao,
Debra A. Hensgen, and Richard F. Freund. A Comparison Study of Static Mapping
Heuristics for a Class of Meta-tasks on Heterogeneous Computing Systems. In
Heterogeneous Computing Workshop, pages 15–29, 1999.

[26] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau Bölöni, Muthucumaru
Maheswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys, Bin Yao,
Debra A. Hensgen, and Richard F. Freund. A Comparison of Eleven Static Heuris-
tics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed
Computing Systems. J. Parallel Distrib. Comput., 61(6):810–837, 2001.

[27] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, 1984.

[28] Frank Budinsky, Dave Steinberg, Ed Merks, Ray Ellersick, and Timothy J. Grose.
Eclipse Modeling Framework. Addison Wesley Professional, 2003.

[29] D. Burton. Multidimensional Discretization of Conservation Laws of Unstructured
Polyhedral Grids. In Proc. 2nd International Workshop on Analytical Methods and
Process Optimization in Fluid and Gas Mechanics, 1994.

[30] Rajkumar Buyya. Grid Economy Comes of Age: Emerging Gridbus Tools for
Service-Oriented Cluster and Grid Computing. In Ross Lee Graham and Nahid
Shahmehri, editors, Peer-to-Peer Computing, page 13. IEEE Computer Society,
2002.

[31] Steve J. Chapin, Dimitrios Katramatos, John F. Karpovich, and Andrew S.
Grimshaw. The Legion Resource Management System. In Feitelson and Rudolph
[45], pages 162–178.

[32] M. Copelli, R. Eichorn, O. Kinouchi, M. Biehl, R. Simonetti, P. Riegler, and
N. Caticha. Noise Robustness in Multilayer Neural Networks, 1997.

122 Bibliography

[33] K. Czajkowski, I. Foster, and C. Kesselman. Agreement-Based Resource Manage-
ment. Proceedings of the IEEE, 93(3):631–643, March 2005.

[34] Karl Czajkowski, Ian T. Foster, Nicholas T. Karonis, Carl Kesselman, Stuart Mar-
tin, Warren Smith, and Steven Tuecke. A Resource Management Architecture for
Metacomputing Systems. In Dror G. Feitelson and Larry Rudolph, editors, JSSPP,
volume 1459 of Lecture Notes in Computer Science, pages 62–82. Springer, 1998.

[35] Thierry Delaitre, Tamás Kiss, Ariel Goyeneche, Gábor Terstyánszky, Stephen C.
Winter, and Péter Kacsuk. GEMLCA: Running Legacy Code Applications as Grid
Services. J. Grid Comput., 3(1-2):75–90, 2005.

[36] Erik D. Demaine. Efficient Simulation of Message-Passing in Distributed-Memory
Architectures. Master’s thesis, Department of Computer Science, University of
Waterloo, 1996.

[37] K. Deng and A. W. Moore. Multiresolution Instance-based Learning. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
Montreal, Canada, 1995.

[38] Murthy V. Devarakonda and Ravishankar K. Iyer. Predictability of Process Re-
source Usage: A Measurement-Based Study on UNIX. IEEE Trans. Software
Eng., 15(12):1579–1586, 1989.

[39] Dietmar W. Erwin. UNICORE - a Grid computing environment. Concurrency and
Computation: Practice and Experience, 14(13-15):1395–1410, 2002.

[40] Thomas Fahringer, Alexandru Jugravu, Sabri Pllana, Radu Prodan, Clovis Sera-
giotto Jr., and Hong Linh Truong. ASKALON: a Tool Set for Cluster and Grid
Computing. Concurrency - Practice and Experience, 17(2-4):143–169, 2005.

[41] Robert D. Falgout and Ulrike Meier Yang. hypre: A Library of High Performance
Preconditioners. In Peter M. A. Sloot, Chih Jeng Kenneth Tan, Jack Dongarra, and
Alfons G. Hoekstra, editors, International Conference on Computational Science
(3), volume 2331 of Lecture Notes in Computer Science, pages 632–641. Springer,
2002.

[42] Usama M. Fayyad and Keki B. Irani. On the Handling of Continuous-Valued
Attributes in Decision Tree Generation. Machine Learning, 8:87–102, 1992.

[43] Jane Fedorowicz. Database Performance Evaluation in an Indexed File Environ-
ment. ACM Trans. Database Syst., 12(1):85–110, 1987.

[44] Dror Feitelson. Parallel Workloads Archive.
http://www.cs.huji.ac.il/labs/parallel/workload/, 2006.

Bibliography 123

[45] Dror G. Feitelson and Larry Rudolph, editors. Job Scheduling Strategies for Par-
allel Processing, IPPS/SPDP’99 Workshop, JSSPP’99, San Juan, Puerto Rico,
April 16, 1999, Proceedings, volume 1659 of Lecture Notes in Computer Science.
Springer, 1999.

[46] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International Journal of Supercomputer Applications,
15(3), 2001.

[47] Ian T. Foster. The Globus Toolkit for Grid Computing. In CCGRID, page 2. IEEE
Computer Society, 2001.

[48] Ian T. Foster, Jonathan Geisler, Bill Nickless, Warren Smith, and Steven Tuecke.
Software Infrastructure for the I-WAY Metacomputing Experiment. Concurrency
- Practice and Experience, 10(7):567–581, 1998.

[49] Ian T. Foster, Nicholas R. Jennings, and Carl Kesselman. Brain meets brawn: Why
grid and agents need each other. In AAMAS, pages 8–15. IEEE Computer Society,
2004.

[50] James Frey, Todd Tannenbaum, Miron Livny, Ian T. Foster, and Steven Tuecke.
Condor-G: A Computation Management Agent for Multi-Institutional Grids. Clus-
ter Computing, 5(3):237–246, 2002.

[51] Yang Gao, Hongqiang Rong, and Joshua Zhexue Huang. Adaptive Grid Job
Scheduling with Genetic Algorithms. Future Generation Comp. Syst., 21(1):151–
161, 2005.

[52] Jonathan Geisler and Valerie E. Taylor. Performance Coupling: A Methodology
for Predicting Application Performance Using Kernel Performance. In PPSC,
1999.

[53] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A Users’ Guide to PICL.
Technical Report ORNL/TM-11616, Oak Ridge National Laboratory, Tennessee,
USA, 1990.

[54] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. PICL: A Portable
Instrumented Communication Library, Reference Manual. Technical Report
ORNL/TM-11130, Oak Ridge National Laboratory, Tennessee, USA, 1990.

[55] L. George, P. Muhlethaler, and N. Rivierre. Optimality and Non-Preemptive Real-
Time Scheduling Revisited. Technical report, Rapport de Recherche RR-2516,
INRIA, Le Chesnay Cedex, France, 1995.

[56] L. George, N. Rivierre, and M. Spuri. Preemptive and Non-Preemptive Real-Time
Uni-Processor Scheduling. Technical report, Rapport de Recherche RR-2966, IN-
RIA, Le Chesnay Cedex, France, 1996.

124 Bibliography

[57] Germán S. Goldszmidt and Jürgen Schönwälder, editors. Integrated Network Man-
agement VII, Managing It All, IFIP/IEEE Eighth International Symposium on In-
tegrated Network Management (IM 2003), March 24-28, 2003, Colorado Springs,
USA, volume 246 of IFIP Conference Proceedings. Kluwer, 2003.

[58] L. Grossman, S. Bailey, A. Ramu, B. Malhi, P. Hallstrom, I. Pulleyn, and X. Oin.
The Management and Mining of Multiple Predictive Models Using the Predic-
tive Modeling Markup Language (PMML). Information and Software Technology,
41:589–595, 1999.

[59] Dan Gunter and Brian Tierney. NetLogger: A Toolkit for Distributed System
Performance Tuning and Debugging. In Goldszmidt and Schönwälder [57], pages
97–100.

[60] Mohammed H. Haji, Peter M. Dew, Karim Djemame, and Iain Gourlay. A SNAP-
Based Community Resource Broker Using a Three-Phase Commit Protocol. In
IPDPS. IEEE Computer Society, 2004.

[61] Adolfy Hoisie, Olaf M. Lubeck, and Harvey J. Wasserman. Performance and
Scalability Analysis of Multidimensional Wavefront Algorithms on Teraflop-Scale
Architectures. In PPSC, 1999.

[62] Fred Howell and Ross McNab. SimJava: a Discrete Event Simulation Package
for Java with Applications in Computer Systems Modelling. In Society for Com-
puter Simulation, editor, Proc. First International Conference on Web-based Mod-
elling and Simulation, San Diego CA, Jan 1998.

[63] Jiandong Huang, Y. Wang, N. R. Vaidyanathan, and Feng Cao. GRMS: A Global
Resource Management System for Distributed QoS and Criticality Support. In
ICMCS, pages 424–432, 1997.

[64] Engin Ipek, Bronis R. de Supinski, Martin Schulz, and Sally A. McKee. An Ap-
proach to Performance Prediction for Parallel Applications. In José C. Cunha and
Pedro D. Medeiros, editors, Euro-Par, volume 3648 of Lecture Notes in Computer
Science, pages 196–205. Springer, 2005.

[65] Stephen A. Jarvis, Ligang He, Daniel P. Spooner, and Graham R. Nudd. The
impact of predictive inaccuracies on execution scheduling. Perform. Eval., 60(1-
4):127–139, 2005.

[66] Péter Kacsuk, Gábor Dózsa, József Kovács, Róbert Lovas, Norbert Podhorszki,
Zoltán Balaton, and Gabor Gombás. P-GRADE: A Grid Programming Environ-
ment. J. Grid Comput., 1(2):171–197, 2003.

[67] Nirav H. Kapadia, Renato J. O. Figueiredo, and José A. B. Fortes. PUNCH: Web
Portal for Running Tools. IEEE Micro, 20(3):38–47, 2000.

Bibliography 125

[68] Nirav H. Kapadia, José A. B. Fortes, and Carla E. Brodley. Predictive Application-
Performance Modeling in a Computational Grid Environment. In HPDC, 1999.

[69] Darren J. Kerbyson, Henry J. Alme, Adolfy Hoisie, Fabrizio Petrini, Harvey J.
Wasserman, and M. Gittings. Predictive Performance and Scalability Modeling of
a Large-scale Application. In SC, page 37, 2001.

[70] D. Davide Lamanna, James Skene, and Wolfgang Emmerich. SLAng: A Language
for Defining Service Level Agreements. In FTDCS, pages 100–. IEEE Computer
Society, 2003.

[71] M. Lavy and A. Meggitt. Windows Management Instrumentation (WMI). Sams,
2001.

[72] Benjamin C. Lee, Richard W. Vuduc, James Demmel, and Katherine A. Yelick.
Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse
Matrix-Vector Multiply. In ICPP, pages 169–176. IEEE Computer Society, 2004.

[73] Hui Li, Juan Chen, Ying Tao, David Gro, and Lex Wolters. Improving a Local
Learning Technique for QueueWait Time Predictions. In CCGRID, pages 335–
342. IEEE Computer Society, 2006.

[74] Tianchao Li and Michael Gerndt. A Generic Extensible WS-Agreement Imple-
mentation for Globus Toolkit 4. Technical report, Institut fuer Informatik, Tech-
nische Universitaet Muenchen, 2006.

[75] C. L. Liu and Layland. Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment. J. Assoc. Compu., 20:46-61, 1973.

[76] Heiko Ludwig, Asit Dan, and Robert Kearney. Cremona: An Architecture and
Library for Creation and Monitoring of WS-Agreents. In Marco Aiello, Mikio
Aoyama, Francisco Curbera, and Mike P. Papazoglou, editors, ICSOC, pages 65–
74. ACM, 2004.

[77] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, and Richard Franck.
A Service Level Agreement Language for Dynamic Electronic Services. Elec-
tronic Commerce Research, 3(1-2):43–59, 2003.

[78] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, and Richard Franck.
Web Service Level Agreement (WSLA) Language Specification, Version 1.0. IBM
Research Web page, http://www.research.ibm.com/wsla/documents.html, 2003.

[79] Heiko Ludwig, Toshiyuki Nakata, Oliver Wäldrich, Philipp Wieder, and Wolfgang
Ziegler. Reliable Orchestration of Resources Using WS-Agreement. In Michael
Gerndt and Dieter Kranzlmüller, editors, HPCC, volume 4208 of Lecture Notes in
Computer Science, pages 753–762. Springer, 2006.

126 Bibliography

[80] Vijay Machiraju, Akhil Sahai, and Aad P. A. van Moorsel. Web Services Man-
agement Network: An Overlay Network for Federated Service Management. In
Goldszmidt and Schönwälder [57], pages 351–364.

[81] A. A. Markov. Extension of the Limit Theorems of Probability Theory to a Sum of
Variables Connected in a Chain. reprinted in Appendix B of: R. Howard. Dynamic
Probabilistic Systems, volume 1: Markov Chains. John Wiley and Sons, 1971.

[82] Matthew L. Massie, Brent N. Chun, and David E. Culler. The Ganglia Distributed
Monitoring System: Design, Implementation, and Experience. Parallel Comput-
ing, 30(5-6):817–840, 2004.

[83] Mark M. Mathis and Darren J. Kerbyson. A General Performance Model of Struc-
tured and Unstructured Mesh Particle Transport Computations. The Journal of
Supercomputing, 34(2):181–199, 2005.

[84] Mark M. Mathis, Darren J. Kerbyson, and Adolfy Hoisie. A Performance Model of
Non-Deterministic Particle Transport on Large-scale Systems. Future Generation
Comp. Syst., 22(3):324–335, 2006.

[85] Carlos Molina-Jimenez, Jim Pruyne, and Aad van Moorse. Software Archi-
tectures for Service Level Agreements and Contracts. Online available at
http://tapas.sourceforge.net/deliverables/D6/Appendix2.pdf.

[86] Ruben S. Montero, Eduardo Huedo, and Ignacio M. Llorente. Grid Scheduling
Infrastructures Based On the GridWay Meta-scheduler. TCSC Newsletter, 8(2),
2006.

[87] Michelle Moore. An Accurate and Efficient Parallel Genetic Algorithm to Sched-
ule Tasks on a Cluster. In IPDPS, page 145. IEEE Computer Society, 2003.

[88] Michelle Moore. An Accurate Parallel Genetic Algorithm to Schedule Tasks on a
Cluster. Parallel Computing, 30(5-6):567–583, 2004.

[89] P. Kacsuk N. Podhorszki. Design and Implementation of a Distributed Monitor
for Semi-on-line Monitoring of VisualMP Applications. In Proceedings. DAP-
SYSŠ2000 Distributed and Parallel Systems, From Instruction Parallelism to Clus-
ter Computing, pages 23–32, Balatonfüred, Hungary, 2000.

[90] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper, and
D. V. Wilcox. PACE - A Toolset for the Performance Prediction of Parallel and
Distributed Systems. The International Journal of High Performance Computing
Applications, 14(3):228–251, Fall 2000.

[91] Tuomas Nurmela. Web Services Level Management: Overview of Service Level
Agreement Languages and Support Infrastructures, 2006.

Bibliography 127

[92] OSGi Alliance. OSGi Service Platform Core Specification Release 4.
http://www.osgi.org, August 2005.

[93] Andrew J. Page and Thomas J. Naughton. Dynamic Task Scheduling using Genetic
Algorithms for Heterogeneous Distributed Computing. In IPDPS. IEEE Computer
Society, 2005.

[94] E. Papaefstathiou, Darren J. Kerbyson, Graham R. Nudd, and T. J. Atherton. An
Introduction to the CHIP3S Language for Characterising Parallel Systems in Per-
formance Studies. Research Report CS-RR-280, Department of Computer Sci-
ence, University of Warwick, Coventry, UK, January 1995.

[95] Steve Perry. Java Management Extensions. O’Reilly, 2002.

[96] D. A. Reed, R. A. Aydt, T. M. Madhyastha, R. J. Noe, K. A. Shields, and B. W.
Schwartz. The Pablo Performance Analysis Environment. Dept. of Comp. Sci.,
Univ. of IL, 1992.

[97] Matei Ripeanu, Adriana Iamnitchi, and Ian T. Foster. Cactus Application: Per-
formance Predictions in Grid Environments. In Rizos Sakellariou, John Keane,
John R. Gurd, and Len Freeman, editors, Euro-Par, volume 2150 of Lecture Notes
in Computer Science, pages 807–816. Springer, 2001.

[98] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, Cambridge, UK, 1996.

[99] A. Sahai, A. Durante, and V. Machiraju. Towards Automated SLA Management
for Web Services, 2001.

[100] Akhil Sahai, Vijay Machiraju, Mehmet Sayal, Aad P. A. van Moorsel, and Fabio
Casati. Automated SLA Monitoring for Web Services. In Metin Feridun, Pe-
ter G. Kropf, and Gilbert Babin, editors, DSOM, volume 2506 of Lecture Notes in
Computer Science, pages 28–41. Springer, 2002.

[101] Jennifer Schopf. Structural Prediction Models for High-Performance Distributed
Applications, February 1997.

[102] Jennifer M. Schopf and Francine Berman. Performance Prediction in Production
Environments. In IPPS/SPDP, pages 647–653, 1998.

[103] Jennifer M. Schopf, Mike D’Arcy, Neill Miller, Laura Pearlman, Ian Foster, and
Carl Kesselman. Monitoring and Discovery in a Web Services Framework: Func-
tionality and Performance of the Globus Toolkit’s MDS4. Technical report, Tech
Report ANL/MCS-P1248-0405, 2005.

[104] Jennifer Melinda Schopf. Performance Prediction and Scheduling for Parallel Ap-
plications on Multi-User Clusters, January 1998.

128 Bibliography

[105] Mumtaz Siddiqui and Thomas Fahringer. GridARM: Askalon’s Grid Resource
Management System. In Peter M. A. Sloot, Alfons G. Hoekstra, Thierry Priol,
Alexander Reinefeld, and Marian Bubak, editors, EGC, volume 3470 of Lecture
Notes in Computer Science, pages 122–131. Springer, 2005.

[106] James Skene, D. Davide Lamanna, and Wolfgang Emmerich. Precise Service
Level Agreements. In ICSE, pages 179–188. IEEE Computer Society, 2004.

[107] Warren Smith, Valerie E. Taylor, and Ian T. Foster. Using Run-Time Predictions
to Estimate Queue Wait Times and Improve Scheduler Performance. In Feitelson
and Rudolph [45], pages 202–219.

[108] Allan Snavely, Laura Carrington, Nicole Wolter, Jesús Labarta, Rosa M. Badia,
and Avi Purkayastha. A Framework for Performance Modeling and Prediction. In
SC, pages 1–17, 2002.

[109] Allan Snavely, Xiaofeng Gao, C. Lee, Laura Carrington, Nicole Wolter, Jesús
Labarta, Judit Gimenez, and P. Jones. Performance Modeling of HPC Applica-
tions. In Gerhard R. Joubert, Wolfgang E. Nagel, Frans J. Peters, and Wolfgang V.
Walter, editors, PARCO, volume 13 of Advances in Parallel Computing, pages
777–784. Elsevier, 2003.

[110] Allan Snavely, Nicole Wolter, and Laura Carrington. Modeling Application Per-
formance by Convolving Machine Signatures with Application Profiles, November
2001.

[111] DP Spooner, GR Nudd, J Cao, and S Saini. Local Grid Scheduling Techniques
using Performance Prediction. IEEE Proc. - Comp. Digit. Tech., 250(2):87–96,
2003.

[112] Vladimir Tosic. Service Offerings for XML Web Services and Their Management
Applications. PhD thesis, Carleton University, Ottawa, Ont., Canada, Canada,
2004. Adviser-Bernard Pagurek.

[113] Vladimir Tosic, Bernard Pagurek, Kruti Patel, Babak Esfandiari, and Wei Ma.
Management applications of the web service offerings language (WSOL). Inf.
Syst., 30(7):564–586, 2005.

[114] Vladimir Tosic, Kruti Patel, and Bernard Pagurek. WSOL - Web Service Offer-
ings Language. In Christoph Bussler, Richard Hull, Sheila A. McIlraith, Maria E.
Orlowska, Barbara Pernici, and Jian Yang, editors, WES, volume 2512 of Lecture
Notes in Computer Science, pages 57–67. Springer, 2002.

[115] Sergi Girona Turell. Performance Prediction and Evaluation Tools. PhD thesis,
Department of Computer Architecture, Polytechnic University of Catalunya, 2003.

Bibliography 129

[116] J. S. Vetter and D. A. Reed. Real-time Monitoring Adaptive Control and Interactive
Steering of Computational Grids. The International Journal of High Performance
Computing Applications, 2000.

[117] Rich Vuduc, James Demmel, Katherine A. Yelick, Shoaib Kamil, Rajesh Nishtala,
and Benjamin Lee. Performance Optimizations and Bounds for Sparse Matrix-
Vector Multiply. In SC, pages 1–35, 2002.

[118] Rich Vuduc, Attila Gyulassy, James Demmel, and Katherine A. Yelick. Mem-
ory Hierarchy Optimizations and Performance Bounds for Sparse A. In Peter
M. A. Sloot, David Abramson, Alexander V. Bogdanov, Jack Dongarra, Albert Y.
Zomaya, and Yuri E. Gorbachev, editors, International Conference on Computa-
tional Science, volume 2659 of Lecture Notes in Computer Science, pages 705–
714. Springer, 2003.

[119] Erik Wilde. Web and XML Glossary. Online available at http://dret.net/glossary/.

[120] Michael Wilson, Alvaro Arenas, David Chadwick, Theo Dimitrakos, Jurgen
Doser, Pablo Giambiagi, David Golby, Christian Geuer-Pollman, Jochen Haller,
Stølen Ketil, and ... The TrustCoM Approach to Enforcing Agreements Between
Interoperating Enterprises. In Proc. Interoperability for Enterprise Software and
Applications Conference (I-ESA’06), Bordeaux, France, March 2006.

[121] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amaras-
inghe, Jennifer-Ann M. Anderson, Steven W. K. Tjiang, Shih-Wei Liao, Chau-
Wen Tseng, Mary W. Hall, Monica S. Lam, and John L. Hennessy. SUIF: An
Infrastructure for Research on Parallelizing and Optimizing Compilers. SIGPLAN
Notices, 29(12):31–37, 1994.

[122] I. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and S. Cunningham. Weka:
Practical Machine Learning Tools and Techniques with Java Implementations,
1999.

[123] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann, second edition, June 2005.

[124] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. Future Genera-
tion Computer Systems, 1999.

[125] Lingyun Yang, Jennifer M. Schopf, and Ian T. Foster. Conservative Scheduling:
Using Predicted Variance to Improve Scheduling Decisions in Dynamic Environ-
ments. In SC, page 31. ACM, 2003.

130 Bibliography

[126] Y. Zhang and Y. Inoguchi. Influence of Inaccurate Performance Prediction on Task
Scheduling in a Grid Environment. IEICE Trans. Inf. Syst., E89-D(2):479–486,
2006.

