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Zusammenfassung

Diese Arbeit widmet sich kürzlichen Entwicklungen im Bereich der klassis-
chen Simulationen und der Quantensimulationen von Vielteilchensystemen.

Wir beschreiben neue klassische Algorithmen, die Probleme von konven-
tionellen Methoden wie Renormalisierungsgruppen- oder Monte Carlo Meth-
oden bewältigen. Diese Algorithmen ermöglichen sowohl die Untersuchung
von thermischen Eigenschaften zweidimensionaler klassischer Systeme und
eindimensionaler Quantensysteme, als auch die Analyse von Grundzuständen
und Zeitentwicklungen zweidimensionaler frustrierter oder fermionischer Quan-
tensysteme.

Desweiteren machen wir Vorschläge für ,,analoge” Quantensimulatoren,
die interessante Modelle wie das Tonks–Girardeau Gas oder das frustri-
erte XY–Modell auf einem trigonalen Gitter realisieren. Diese Simulatoren
basieren auf optischen Gittern und Ionenfallen und sind technisch umsetzbar.
Das Tonks–Girardeau Gas konnte experimentell bereits nachgewiesen wer-
den. Für dieses zeigen wir einen detaillierten Vergleich der experimentellen
Daten mit unseren theoretischen Vorhersagen.
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Abstract

This thesis is devoted to recent developments in the fields of classical and
quantum simulations of many–body systems.

We describe new classical algorithms that overcome problems apparent
in conventional renormalization group and Monte Carlo methods. These
algorithms make possible the detailed study of finite temperature properties
of 2–D classical and 1–D quantum systems, the investigation of ground states
of 2–D frustrated or fermionic systems and the analysis of time evolutions of
2–D quantum systems.

Furthermore, we propose new “analog” quantum simulators that are able
to realize interesting models such as a Tonks–Girardeau gas or a frustrated
spin–1/2 XY model on a trigonal lattice. These quantum simulators make
use of optical lattices and trapped ions and are technically feasible. In fact,
the Tonks–Girardeau gas has been realized experimentally and we provide
a detailed comparison between the experimental data and the theoretical
predictions.
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Simulations of many–body quantum systems on a classical computer are
known to be difficult problems. The difficulties have its origin in the expo-
nential scaling of the required resources in time and space with the number
of particles the system consists of. Consider, for example, a system of N
spin-1/2-particles. The number of parameters that are required to describe
the state of this system amounts to 2N . Thus, the memory that has to be
allocated in order to save the state of the system grows exponentially with
the number of particles N . This has the consequence that the description of
a system consisting of merely 50 particles (N = 50) requires several million
Gigabytes of memory. On top of that, the number of elementary steps that
the computer has to execute in order to perform the simulation is of order
22N . Thus, the time required for performing the simulation grows exponen-
tially with the number of particles N , as well. In the case of 50 particles, this
means that the the simulation will last no longer than 1013 years at Gigahertz
speed.

Because of these difficulties, methods have been developed to simulate
quantum systems on a classical computer in an approximate way. Popu-
lar methods are the renormalization group algorithms by K. Wilson [170]
and S. White [169, 168, 135, 117] and quantum Monte Carlo methods [19].
Both of them have been used with great success, but they also have se-
vere limitations: the renormalization group only works in cases where the
original Hamiltonian can be mapped to a local Hamiltonian defined on a
one–dimensional chain, while Monte Carlo methods suffer from the so–called
sign problem [150] which makes them inappropriate for the description of
fermionic and frustrated quantum systems. Very recently however, new in-
sights coming from the field of quantum information and entanglement the-
ory have shown how renormalization group methods can be generalized to
higher dimensions, to finite temperature, to random systems etc. [160, 177,
162, 157, 156, 154, 101, 100, 114, 3]

Another approach to simulate many–body quantum systems goes back
to a conjecture of Feynman in 1982 [40]: he proposed that quantum systems
should be simulated by means of other quantum systems. His suspicion was
that the exploitation of quantum effects would make the simulation more
efficient and remove the exponential scaling. In 1996, this suspicion was
shown to be correct by Seth Lloyd [86]. Seth Lloyd introduced the concept
of a Universal Quantum Simulator. The Universal Quantum Simulator is a
quantum computer equipped with a quantum algorithm that is capable of
simulating the dynamics of arbitrary quantum systems. This algorithm is
proven to be efficient, i.e. the duration of the algorithm scales polynomially
with the size of the simulated quantum system. The only drawback is that
a quantum computer is very difficult to build in practice and has very de-
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manding requirements. Fortunately, there are physical systems with which
it is not known how to build a quantum computer, but in which one can
engineer certain kinds of interactions and thus simulate other systems. The
advantage is that it is more controllable than the original system, so that
more may be learned from the “analog” system rather than from the real
version. Examples are atoms in optical lattices [54, 10, 93] or trapped ions
interacting with lasers [26, 122, 121]. In those systems, one does not require
to individually address the qubits, or to perform quantum gates on arbitrary
pairs of qubits, but rather on all of them at the same time. Besides, one is
interested in measuring physical properties (like magnetization, conductivity,
etc.) which are robust with respect to the appearance of several errors. In
a quantum computer without error correction, even a single error will de-
stroy the computation. For example, to see whether a material is conducting
or not one does not need to know with a high precision the corresponding
conductivity.

Both the approximate simulations on a classical computer (termed “clas-
sical simulations” in the following) and simulations using a quantum system
(termed “quantum simulations” in the following) bear the potential of un-
derstanding quantum systems that form a cornerstone of condensed–matter
physics, chemistry or nuclear physics. For example, these methods might
make it feasible to obtain an accurate description of chemical compounds
and reactions, to gain deeper understanding of high temperature supercon-
ductivity, or to find out the reason why quarks are always confined.

In this thesis, recent developments in the fields of classical and quantum
simulations are reported. New classical algorithms are described that over-
come problems apparent in conventional renormalization group and Monte
Carlo methods. These algorithms make possible the detailed study of finite
temperature properties of 2–D classical and 1–D quantum systems, the in-
vestigation of the ground state of 2–D frustrated or fermionic systems and
the analysis of time evolutions of 2–D quantum systems. Furthermore, new
“analog” quantum systems are proposed that are able to realize interesting
models such as a Tonks–Girardeau gas [51, 85] or a frustrated spin–1/2 XY
model on a trigonal lattice. These quantum systems make use of optical
lattices and trapped ions and are technically feasible. In fact, the Tonks–
Girardeau gas has been realized experimentally and we provide a detailed
comparison between the experimental data and the theoretical predictions.

The thesis is organized in two parts: part II is devoted to classical simu-
lations and part III deals with quantum simulations.

Part II starts with a short introduction in chapter 1 on renormalization
group methods from the viewpoint of the field of quantum information. In
chapter 2, a joint work with Frank Verstraete and Ignacio Cirac is described
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that is published in [100]. In this work, a method to calculate partition
functions of 2–D classical systems and 1–D quantum systems is proposed.
This method makes use of the variational algorithm for time evolution with
matrix product states [47]. In chapter 3, this method is tested on the (ex-
actly solvable) 2–D Ising model. Furthermore, it is used to predict density
and momentum distributions at finite temperature of atoms in a 1–D optical
lattice, which is a problem of great experimental interest [115]. In chapter 4,
a natural extension of the class of MPS to two and higher dimensions is dis-
cussed and variational algorithms for finding the ground state and performing
time evolutions within this class are described. This class of states has been
introduced by Frank Verstraete and Ignacio Cirac in [154] and variational
algorithms within this class have been proven to be useful for finding the
ground state of the 2–D Heisenberg model. In chapter 5, these algorithms
are applied to other models of interest. In particular, results for hard–core
bosons on a 2–D optical lattice and 2–D frustrated antiferromagnets are pre-
sented. These results emanate from a joint work with Frank Verstraete and
Ignacio Cirac and are published in [101] and [102]. Fragments of part II
are also appear in a review paper about variational renormalization group
methods published in [155].

In part III, two examples of “analog” quantum simulators are given. In
Chapter 8, a joint work with Bélen Paredes, Artur Widera, Olaf Mandel,
Simon Fölling, Ignacio Cirac, Gora V. Shlyapnikov, Theodor W. Hänsch and
Immanuel Bloch is presented that is published in [115]. In this work, a way
to create a gas of hard–core bosons in one dimension - a so–called Tonks-
Girardeau gas - by means of atoms in an optical lattice is proposed. This
work is special in the sense that it has been possible to validate this proposal
experimentally. We give a detailed quantitative comparison of the experi-
mental results and our theoretical predictions. Chapter 9 comprises a joint
work with Roman Schmied, Tommaso Roscilde, Diego Porras and Ignacio
Cirac, published in [134]. In this work, extensions of the idea to realize ef-
fective spin–models and interacting–boson models by means of trapped ions
interacting with lasers [122, 121] are discussed. It is shown that a wide range
of spatial dimensions and particle interactions may be achieved by placing
the ions in a regular structure induced by an optical lattice or arrays of ion
microtraps. In particular, the realization of the spin–1/2 model with frus-
trated XY interactions on a triangular lattice is illustrated. It is shown that
this model has potentially interesting properties by applying the algorithm
of chapter 4 in part II.

————————————————————–





Part II

Classical Simulations





Chapter 1

Introduction

One of the main characteristics of quantum mechanics is that the underlying
Hilbert space is endowed with a tensor product structure: the Hilbert space
of two interacting systems is given by the tensor product space of the two
individual ones. This structure of the Hilbert space is a direct consequence
of the superposition principle, and opens up the possibility of entanglement
and new phases of matter. This simple tensor product structure, however,
makes it very clear what the main obstacle is in developing a general theory
of quantum many-body quantum systems: the size of the Hilbert space grows
exponentially in the number of basis constituents, and hence we would, in
principle, need exponentially many variables to specify the wavefunction of a
N -particle system. However, it is a priori not clear whether Nature can fully
exploit and explore these vast territories of Hilbert space, because another
main characteristic of quantum mechanics is that interactions always seem
to happen locally and only between a few bodies.

As it turns out, all physical states live on a tiny submanifold of the Hilbert
space: if we consider, for example, a system of a few hundred spins, it would
take much longer than the lifetime of the universe to come close to a random
point in the Hilbert space by an evolution with local interactions [158]. This
shows that almost all points in the Hilbert space of a many–body quantum
system are unphysical as they are inaccessible. This opens up a very inter-
esting perspective in the context of the description of quantum many-body
systems, as there might exist an efficient parametrization of such a submani-
fold that would provide the natural language for describing those systems. In
the context of many-body quantum physics, one is furthermore mainly inter-
ested in describing the low energy sector of local Hamiltonians, and as we will
discuss later, this puts many extra constraints on the allowed wavefunctions.

As a trivial example of such a submanifold, let’s consider a system of
N → ∞ spins that all interact with each other via a permutation invariant
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2–body Hamiltonian such as the Heisenberg interaction [61, 32]. Note that
there is always a ground state that exhibits the same symmetry as the Hamil-
tonian. As a consequence of the quantum de-Finnetti theorem [146] one can
show that the manifold of all density operators with permutation symme-
try is exactly the set of all separable states ρ =

∑
i piρ

⊗N
i when N → ∞.

Ground states correspond to the extreme points of this set, which are exactly
the product states that have no entanglement. All ground states of permuta-
tional invariant systems therefore lie on the submanifold of separable states
which indeed have an efficient representation (only N vectors, one for each
individual spin, have to be specified); this is the equivalent statement as
saying that mean-field theory becomes exact in the thermodynamic limit.
This can also be understood in the context of the monogamy property of
entanglement [27]: a spin has only a finite entanglement susceptibility, and
if it has to share the entanglement with infinitely many other spins then the
amount of entanglement between 2 spins will be go to zero.

In the more general situation when no permutation symmetry is present
but only a smaller symmetry group such as the group of translations, the
characterization of the relevant manifold is much harder. In contrast to the
case of permutation symmetry, where every pure state of N spin s systems
can be written as a linear combination of a polynomial number of states, the
size of a complete basis of translational invariant states is exponentially in-
creasing as (2s+1)N/N , and hence the manifold of interest has exponentially
many parameters. But ground states of local Hamiltonians have many more
nongeneric properties, most notably the fact that they have extremal local
properties such as to minimize the energy: as the energy is only dependent
on the local properties, and the ground state is determined by the condition
that its energy is extremal, ground states have extremal local properties and
the global properties only emerge to allow for these local properties to be
extremal. As an example, let’s consider a spin–1/2 antiferromagnetic chain
with associated Hamiltonian

HHeis =
∑

〈i,j〉

~Si
~Sj

where the notation 〈i, j〉 denotes the sum over nearest neighbours. Each
individual term in the Hamiltonian corresponds to an exchange interaction
and would be minimized if spins i and j are in the singlet state

|ψ〉 =
1√
2

(|01〉 − |10〉) ,

but due to the monogamy or frustration properties of entanglement, a spin
1/2 cannot be in a singlet state with more than one neighbour. As a result,
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the ground state becomes a complicated superposition of all possible singlet
coverings, and as an interesting by–product quasi long–range order may arise.
The important point, however, is that this wavefunction arises from the con-
dition that its local properties are extremal: finding ground states of local
translational invariant 2–body Hamiltonians is equivalent to characterizing
the convex set of 2–body density operators that originate from a state with
the right symmetry [153].

Clearly, we would like to parameterize the manifold of states {|ψex〉} with
extremal local properties. In practice, it is enough to parameterize a manifold
of states {|ψappr〉} such that there always exists a large overlap with the exact
states {|ψex〉}:

∀|ψex〉,∃|ψappr〉 : ‖|ψex〉 − |ψappr〉‖ ≤ ε

Let’s consider any local Hamiltonian of N spins that exhibits the property
that there is a unique ground state |ψex〉 and that the gap is ∆(N). Let’s
furthermore consider the case when ∆(N) decays not faster than an inverse
polynomial in N (this condition is satisfied for all gapped systems and for
all known critical translational invariant systems in 1D). Then let’s assume
that there exists a state |ψappr〉 that reproduces well the local properties of
all nearest neighbour reduced density operators: ‖ρappr − ρex‖ ≤ δ. Then it
follows that the global overlap is bounded by

‖|ψex〉 − |ψappr〉‖2 ≤ Nδ

∆(N)
.

This is remarkable as it shows that it is enough to reproduce the local prop-
erties well to guarantee that also the global properties are reproduced accu-
rately: for a constant global accuracy ε, it is enough to reproduce the local
properties well to an accuracy δ that scales as an inverse polynomial (as op-
posed to exponential) in the number of spins. This is very relevant in the
context of variational simulation methods: if the energy is well reproduced
and if the computational effort to get a better accuracy in the energy only
scales polynomially in the number of spins, then a numerical method with
polynomial scaling can be constructed that reproduces all global properties
well.

The central question is thus: is it possible to find an efficient parame-
terization of a manifold of states whose local properties approximate well
all possible local properties? A very interesting new development, mainly
originating from the field of quantum information and entanglement theory,
has shown that this is indeed possible. The main idea is to come up with a
class of variational wave functions that captures the physics of the low-energy
sector of local quantum spin Hamiltonians.
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Figure 1.1: The entropy of a block of spins scales like the perimeter of the
block.

So what other properties do ground states of local quantum Hamiltonians
exhibit besides the fact that all global properties follow from their local ones?
The key concept to understand their structure is to look at the amount of
entanglement present in those states [163]: entanglement is the crucial ingre-
dient that forces quantum systems to behave differently than classical ones,
and it is precisely the existence of entanglement that is responsible for such
exotic phenomena like quantum phase transitions and topological quantum
order [166, 82]. It is also the central resource that gives rise to the power
of quantum computing [103], and it is known that a lot of entanglement
is needed between the different qubits as otherwise the quantum computa-
tion can be simulated on a classical computer [68, 160]. This is because the
amount of entanglement effectively quantifies the relevant number of degrees
of freedom that have to be taken into account, and if this is small then the
quantum computation could be efficiently simulated on a classical computer.
In the case of ground states of strongly correlated quantum many-body sys-
tems, there is also lot’s of entanglement, but the key question is obviously
to ask how much entanglement is present there: maybe the amount of en-
tanglement is not too big such that those systems can still be simulated
classically?

Let’s for example consider a quantum spin system on a n-dimensional
infinite lattice, and look at the reduced density operator ρL of a block of spins
in a L× L× · · · × L hypercube (Figure 1.1). The von-Neumann entropy of
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ρL is a coarse-grained measure that quantifies the number of modes in that
block that are entangled with the outside [103], and the relevant quantity is to
study how this entropy scales with the size of the cube. This question was first
studied in the context of black-hole entropy [8, 143, 49, 15] and has recently
attracted a lot of attention [163]. Ground states of local Hamiltonians of
spins or bosons seem to have the property that the entropy is not an extensive
property but that the leading term in the entropy only scales as the boundary
of the block (hence the name area-law):

S(ρL) ' cLn−1 (1.1)

This has a very interesting physical meaning: it shows that most of the en-
tanglement must be concentrated around the boundary, and therefore there
is much less entanglement than would be present in a random quantum state
(where the entropy would be extensive and scale like Ln). This is very en-
couraging, as it indicates that the wavefunctions involved exhibit some form
of locality, and we might be able to exploit that to come up with efficient
local parameterizations of those ground states.

The area law (1.1) is mildly violated in the case of 1-D critical spin systems
where the entropy of a block of spins scales like [163, 14]

S(ρL) ' c + c̄

6
log L,

but even in that case the amount of entanglement is still exponentially smaller
then the amount present in a random state. It is at present not clear to what
extent such a logarithmic correction will occur in the case of higher dimen-
sional systems: the block-entropy of a critical 2-D system of free fermions
scales like L log L [172, 50], while critical 2-D spin systems were reported
where no such logarithmic correction are present [159], but in any case the
amount of entanglement will be much smaller than for a random state. It is
interesting to note that this violation of an area law is a pure quantum phe-
nomenon as it occurs solely at zero temperature: in a recent paper [171], it
has been shown that the block entropy, as measured by the mutual informa-
tion (which is the natural measure of correlations for mixed states), obeys an
exact area law for all local classical or quantum Hamiltonians. The logarith-
mic corrections therefore solely arise due to the zero-temperature quantum
fluctuations. From the practical point of view, that might indicate that ther-
mal states at low temperature are simpler to simulate than exact ground
states.

The existence of an area law for the scaling of entropy is intimately con-
nected to the fact that typical quantum spin systems exhibit a finite corre-
lation length. In fact, M. Hastings has recently proven that all connected
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corr

AB

BABA

l
OOOO exp

A B

corrAB
l

C

Figure 1.2: (taken from [153]) A one dimensional spin chain with finite cor-
relation length ξcorr; lAB denotes the distance between the block A (left) and
B (right). Because lAB is much larger than the correlation length ξcorr, the
state ρAB is essentially a product state.

correlation functions between two blocks in a gapped system have to decay
exponentially as a function of the distance of the blocks [59]. Let us there-
fore consider a 1-D gapped quantum spin system with correlation length
ξcorr. Due to the finite correlation length, the reduced density operator ρAB

obtained when tracing out a block C of length lAB À ξcorr (see figure 1.2)
will be equal to

ρAB ' ρA ⊗ ρB (1.2)

up to exponentially small corrections. The original ground state |ψABC〉 is
a purification of this mixed state, but it is of course also possible to find
another purification of the form |ψACl

〉 ⊗ |ψBCr〉 (up to exponentially small
corrections) with no correlations whatsoever between A and B; here Cl and
Cr together span the original block C. It is however well known that all
possible purifications of a mixed state are equivalent to each other up to
local unitaries on the ancillary Hilbert space. This automatically implies
that there exists a unitary operation UC on the block C (see figure 1.2) that
completely disentangles the left from the right part:

IA ⊗ UC ⊗ IB|ψABC〉 ' |ψACl
〉 ⊗ |ψBCr〉.

Thus, there exists a tensor Ai
α,β with indices 1 ≤ α, β, i ≤ D (where D is the

dimension of the Hilbert space of C) and states |ψA
α 〉, |ψC

i 〉, |ψB
β 〉 defined on

the Hilbert spaces belonging to A,B,C such that

|ψABC〉 '
∑

α,β,i

Ai
α,β|ψA

α 〉|ψC
i 〉|ψB

β 〉.

Applying this argument recursively leads to a matrix product state (MPS)
description of the state and gives a strong hint that ground states of gapped
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Figure 1.3: A general Matrix Product State

Hamiltonians are well represented by MPS. It turns out that this is even true
for critical systems [153].

1.1 Matrix Product States

The most general form of a MPS [157, 36] on N spins of dimension d is given
by

|ψ〉 =
d∑

k1,k2,...,kN=1

tr
(
A

[1]
k1

A
[2]
k2
· · ·A[N ]

kN

)
| k1 〉| k2 〉 · · · | kN 〉

The matrices A
[i]
k have dimension Di × Di+1 (here we take the convention

that DN+1 = D1). A system with open boundary conditions is obtained by
choosing D1 = 1. Every state of N spins has an exact representation as a
MPS if we allow Di to grow exponentially in the number of spins; this can
easily be shown by making use of the tool of quantum teleportation as shown
in [157]. However, the whole point of MPS is that ground states can typically
be represented by MPS where the dimension Di is small and scales at most
polynomially in the number of spins [153]. Then, the state is parametrized
by a number of parameters that scale polynomially with N . This is the basic
reason why variational methods within the set of MPS are exponentially
more efficient than exact diagonalization.

A pictorial representation of a MPS is given in figure 1.3. In this picture,
every physical spin at site i is replaced by two virtual spins of dimensions Di

and Di+1. Each of the virtual spins forms a maximally entangled state

| I i 〉 =

Di∑
γ=1

| γ 〉i| γ 〉i+1

with one virtual spin of a neighboring site. The pair of virtual spins at site i
is then projected onto the physical spin of dimension d by the linear map A[i].
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Figure 1.4: Building up the AKLT state by partial projections on bipartite
singlets

This pictorial representation was first used in the work of Affleck, Kennedy,
Lieb and Tasaki (AKLT) [2] in order to prove that the exact ground state of
the spin-1 chain with Hamiltonian

HAKLT =
∑

〈i,j〉

(
~Si.~Sj +

1

3

(
~Si.~Sj

)2

+
2

3

)

︸ ︷︷ ︸
=Pij

can be parameterized exactly as a matrix product state. To see this, they
observed that the terms Pij are projectors (Pij)

2 = Pij onto the 5-dimensional
spin 2 subspace of 2 spin 1’s, and proceeded by constructing the unique
ground state |ψAKLT 〉 which is annihilated by all projectors Pij acting on
nearest neighbours. This state |ψAKLT 〉 can be constructed as follows:

• Imagine that the 3-dimensional Hilbert space of the a spin 1 particle
is effectively the low-energy subspace of the Hilbert space spanned by
2 spin 1/2’s, i.e. the 3-D Hilbert space is the symmetric subspace of 2
spin 1/2 particles.

• To assure that the global state defined on the spin chain has spin zero,
let’s imagine that each one of the spin 1/2’s is in a singlet state with a
spin 1/2 of its neighbours (see figure 1.4).

• The AKLT state can now be represented by locally projecting the
pair of spin 1/2’s in the symmetric subspace onto the spin-1 basis
{|1〉, |0〉, | − 1〉}:

P = | − 1〉
(〈00| − 〈11|√

2

)
+ |0〉

(〈01|+ 〈10|√
2

)
+ |1〉

(〈00|+ 〈11|√
2

)

≡
∑

α=x,y,z

|α〉
(〈00|+ 〈11|√

2

)
τα ⊗ τy

where τx = σx, τy = iσy, τz = σz with {σα} the Pauli matrices and
where we identified | − 1〉 = |x〉, |0〉 = |z〉, |1〉 = |y〉.
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Historically, the AKLT state was very important as it shed new lights
into the conjecture due to Haldane [57, 56] that integer spin Heisenberg
chains give rise to a gap in the spectrum. That is a feature shared by all
generic matrix product states: they are always ground states of local gapped
quantum Hamiltonians.

Let’s first try to rewrite |ψAKLT 〉 in the MPS representation. Let’s assume
that we have an AKLT system of N spins with periodic boundary conditions;
projecting the wavefunction in the computational basis leads to the following
identity:

〈α1, α2, ...αN |ψAKLT 〉 = Tr (τα1 .τy.τα2 .τy...ταN
τy.) .

The different weights can therefore be calculated as a trace of a product of
matrices. The complete AKLT state can therefore be represented as

|ψAKLT 〉 =
∑

α1,α2,...αN

Tr (τα1 .τy.τα2 .τy...ταN
τy.) |α1〉|α2〉...|αN〉

which is almost exactly of the same form as the matrix product states in-
troduced earlier. The only difference between the is the occurence of the
matrices τy between the different products. This is however only a conse-
quence of the fact that we connected the different nodes with singlets, and
we could as well have used maximally entangled states of the form

| I 〉 =
2∑

γ=1

| γ 〉| γ 〉

and absorbed τy into the projector; this way the the standard notation for
MPS would have been recovered.

The calculus of MPS relies on the optimization of all parameters of the
MPS, such that the expectation value of the energy

E =
〈Ψ |H|Ψ 〉
〈Ψ |Ψ 〉

is minimized. The key idea to perform this optimization efficiently is to
optimize the matrices A

[i]
k of the MPS independently for each site i. Since

both expressions 〈Ψ |H|Ψ 〉 and 〈Ψ |Ψ 〉 are quadratic functions in A
[i]
k , the

optimization with respect to A
[i]
k reduces to a simple eigenvalue problem in

case of open boundary conditions and a generalized eigenvalue problem in
case of periodic boundary conditions [157].
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1.2 Matrix Product Operators

Instead of restricting our attention to pure matrix product states, we can
readily generalize the approach and deal with matrix product operators
(MPO). In its most general case, a MPO is defined as [156, 177]

Ô =
d∑

k1,k2,...,kN=1

tr
(
A

[1]
k1

A
[2]
k2
· · ·A[N ]

kN

)
σk1 ⊗ σk2 ⊗ · · · ⊗ σkN

(1.3)

with σi a complete single particle basis (e.g. the Pauli matrices for a qubit).
Matrix product operators appear naturally in the variational formulation

of time evolution with MPS [156]. There, every evolution following a Trot-
ter step is expressed by a MPO. That MPO essentially plays the role of a
transfer matrix during the evolution. As we will show later, any transfer ma-
trix arising in the context of classical partition function will have an exact
representation in terms of such a MPO. Matrix product operators have also
been shown to be very useful to obtain spectral information about a given
Hamiltonian. Examples are the parametrization of Gibbs states [156] and
the simulation of random quantum spin systems [114].

The idea of the variational formulation of time evolution with MPS is,
given a Hamiltonian and an initial MPS, to evolve that state within the
manifold of MPS in such a way that the error in approximating the exact
evolution is minimized at every infinitesimal step. We are particularly in-
terested in the case where the Hamiltonian is a sum of local terms of the
form

H =
∑
<ij>

fijÔi ⊗ Ôj

and where < ij > means that the sum has to be taken over all pairs of
nearest neighbours. There are several tools to discretize the corresponding
evolution. This is not completely trivial because generically the different
terms in the Hamiltonian don’t commute. A standard tool is to use the
Trotter decomposition [147, 148]

eA+B = lim
n→∞

(
e

A
n e

B
n

)n

.

Suppose e.g. that the Hamiltonian can be split into two parts A and B such
that all terms within A and within B are commuting: H = A + B; A =∑

i Ai; B =
∑

i Bi; [Ai, Aj] = 0 = [Bi, Bj]. This ensures that one can ef-
ficiently represent eiA as a product of terms. The evolution can then be
approximated by evolving first under the operator eiδtA, then under eiδtB,
again under eiδtA and so further. The time step can be choosen such as to
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Figure 1.5: (a) Tensor network representation of the operators obtained in
the case of a Trotter expansion of a nearest–neighbor Hamiltonian H =
A + B with A containing all interactions between odd–even sites and B all
interactions between even–odd sites. (b) Tensor network representation after
a Schmidt–decomposition of the 2-body operators.

ensure that the error made due to this discretization is smaller than a pre-
specified error, and there is an extensive literature of how to improve on this
by using e.g. the higher order Trotter decompositions [142, 111]. In the case
of nearest neighbour Hamiltonians, a convenient choice for A is to take all
terms that couple the even sites with the odd ones to the right of it and for
B the ones to the left of it. In that case, eiδtA and eiδtB are tensor products
of nearest-neigbour 2-body operators (see figure 1.5a for a pictorial repre-
sentation). By performing Schmidt–decompositions of the 2-body operators,
both eiδtA and eiδtB assume the form of MPOs (see figure 1.5b).

The time-evolution is treated in a variational way within the class of MPS
as follows: a sensible cost function to minimize is given by

K = ‖U |ψ(k)〉 − |ψ(k + 1)〉‖2 (1.4)

where |ψ(k)〉 is the initial MPS, |ψ(k + 1)〉 is the one to be found, and
U is the MPO arising out of the Trotter expansion. In principle, the cost
function can be made equal to zero by increasing the bond dimension D
of the MPS by a factor of at most d2 (this is the largest possible Schmidt
number of an operator acting on two sites). However, the whole point of
using MPS is that MPS with low bond dimension are able to capture the
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physics needed to describe the low-energy sector of the Hilbert space. So
if we stay within that sector, the hope is that the bond dimension will not
have to be multiplied by a constant factor at each step (which would lead to
an exponential computational cost as a function of time), but will hopefully
saturate. This is certainly the case if we evolve using e.g. imaginary time
evolution of a constant local Hamiltonian, as we know that in that case the
ground state is indeed well represented with a MPS with not too large bond
dimension. It is however in principle possible that an exponential explosion
occurs for real time evolution.

A way of dealing with time evolution is to prespecify an error ε, and then
look for the minimal D for which there exists a MPS |ψ(k + 1)〉 such that
the cost function K is smaller than ε. The MPS |ψ(k + 1)〉 that minimizes
the cost function K can be found as follows: since the cost function has
only multiquadratic and multilinear terms in the variables of the MPS, it
can be minimized with respect to one site easily by solving a linear set of
equations. In this way, the optimal MPS can be obtained by minimizing the
cost function site-by-site until convergence is reached. After convergence,
we can check how big the error has been for the particular value of D that
we chose, and if this error is too big, we can increase D and repeat the
optimization.



Chapter 2

Classical Partition Functions
and Thermal Quantum States

In this chapter, we show how the concept of MPS and MPO can be used
to calculate the free energy of a classical 2-dimensional spin system. This
also leads to an alternative way of treating thermal states of 1-D quantum
spin systems, as those can be mapped to classical 2-D spin systems by the
standard classical-quantum mapping 1. Historically, Nishino was the first
one to pioneer the use of DMRG-techniques in the context of calculating
partition functions of classical spin systems [105]. By making use of the
Suzuki–Trotter decomposition, his method has then subsequently been used
to calculate the free energy of translational invariant 1-D quantum systems
[13, 139, 165], but the main restriction of those methods is that it cannot
be applied in situations in which the number of particles is finite and/or
the system is not homogeneous; furthermore, one has to explicitely use a
system with periodic boundary condition in the quantum case, a task that
is not well suited for standard DMRG. The variational MPS-approach gives
an easy solution to those problems.

Our method relies in reexpressing the partition and correlation functions
as a contraction of a collection of 4-index tensors, which are disposed accord-
ing to a 2–D configuration [100]. We will perform this task for both 2–D
classical and 1–D quantum systems.

1In the context of MPS and especially PEPS, there also exist a different mapping
between classical and quantum spin models in the same dimension [159]. There, the
thermal classical fluctuations map onto quantum ground state fluctuations, and this leads
to a lot of insights in the nature of quantum spin systems.
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2.1 2–D classical systems

Let us consider first the partition function of an inhomogeneous classical 2–D
n–level spin system on a L1 × L2 lattice. For simplicity we will concentrate
on a square and nearest–neighbor interactions, although our method can be
easily extended to other short–range situations. We have

Z =
∑

x11,...,xL1L2

exp
[−βH(x11, . . . , xL1L2)

]
,

where

H
(
x11, . . .

)
=

∑
ij

[
H ij
↓

(
xij, xi+1,j

)
+ H ij

→
(
xij, xi,j+1

)]

is the Hamiltonian, xij = 1, . . . , n and β is the inverse temperature. The
singular value decomposition allows us to write

exp
[−βH ij

q (x, y)
]

=
n∑

α=1

f ij
qα(x)gij

qα(y),

with q ∈ {↓,→}. Defining the tensors

X ij
lrud =

n∑
x=1

f ij
↓d(x)gi−1,j

↓u (x)f ij
→r(x)gi,j−1

→l (x),

the partition function can now be calculated by contracting all 4-index ten-
sors X ij arranged on a square lattice in such a way that, e.g., the indices
l, r, u, d of X ij are contracted with the indices r, l, d, u of the respective ten-
sors X i,j−1, X i,j+1, X i−1,j, X i+1,j. In order to determine the expectation value
of a general operator of the form O({xij}) = Z

∏
ij Oij(xij), one just has to

replace each tensor X ij by

X ij
lrud

(
Oij

)
=

n∑
x=1

Oij(x)f ij
↓d(x)gi−1,j

↓u (x)f ij
→r(x)gi,j−1

→l .

2.2 1–D quantum systems

We consider the partition function of an inhomogeneous 1–D quantum system
composed of L n-level systems,

Z = tr exp (−βH) .
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It is always possible to write the Hamiltonian H as a sum H =
∑

k Hk with
each part consisting of a sum of commuting terms. Let us, for simplicity,
assume that H = H1 + H2 and that only local and 2-body nearest neighbor
interactions occur, i.e. Hk =

∑
i O

i,i+1
k and

[
Oi,i+1

k , Oj,j+1
k

]
= 0, with i, j =

1, . . . , L. The more general case can be treated in a similar way. Let us now
consider a decomposition

exp

(
− β

M
Oi,i+1

k

)
=

κ∑
α=1

Ŝi
kα ⊗ T̂ i+1

kα . (2.1)

The singular value decomposition guarantees the existence of such an expres-
sion with κ ≤ n2. As we will see later, a smart choice of H =

∑
k Hk can

typically decrease κ drastically. Making use of the Suzuki–Trotter formula 2

Z = Tr

(∏

k

exp

(
− β

M
Hk

))M

+ O

[
1

M

]

it can be readily seen that the partition function can again be calculated by
contracting a collection of 4-index tensors X ij defined as

X ij
(ll′)(rr′)ud ≡

[
T̂ j

1lŜ
j
1rT̂

j
2l′Ŝ

j
2r′

]
[ud]

,

where the indices (l, l′) and (r, r′) are combined to yield a single index that
may assume values ranging from 1 to κ2. Note that now the tensors X ij and
X i′j coincide, and that the indices u of the first and d of the last row have
to be contracted with each other as well, which corresponds to a classical
spin system with periodic boundary conditions in the vertical direction. A
general expectation value of an operator of the form O = ZO1 ⊗ · · · ⊗ ON

can also be reexpressed as a contraction of tensors with the same structure:
it is merely required to replace each tensor X1j in the first row by

X1j
(ll′)(rr′)ud

(
Oj

)
=

[
OjT̂ j

1lŜ
j
1rT̂

j
2l′Ŝ

j
2r′

]
[ud]

.

2.3 Tensor contraction

In the following, we use the techniques that were originally developed in the
context of PEPS in order to contract the tensors X ij introduced above in a
controlled way. The main idea is to express the objects resulting from the

2Note that in practice, it will be desirable to use the higher order versions of the Trotter
decomposition.
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contraction of tensors along the first and last column in the 2–D configura-
tion as matrix product states (MPS) and those obtained along the columns
2, 3, . . . , L− 1 as matrix product operators. More precisely, we define

〈X1 | :=
m∑

r1...rM=1

tr
(
X11

r1
. . . XM1

rM

) 〈 r1 . . . rM |

| XL 〉 :=
m∑

l1...lM=1

tr
(
X1L

l1
. . . XML

lM

) | l1 . . . lM 〉

Xj :=
m∑

l1,r1,...=1

tr
(
X1j

l1r1
. . . XMj

lMrM

)
| l1 . . . 〉〈 r1 . . . |,

where m = n for 2–D classical systems and m = κ2 for 1–D quantum systems.
These MPS and MPOs are associated to a chain of M m–dimensional systems
and their virtual dimension amounts to D = n. Note that for 2–D classical
systems the first and last matrices under the trace in the MPS and MPO
reduce to vectors. The partition function (and similarly other correlation
functions) reads Z = 〈X1 |X2 · · ·XL−1 | XL 〉. Evaluating this expression
iteratively by calculating step by step 〈Xj | := 〈Xj−1 |Xj for j = 2, . . . , L−1
fails because the virtual dimension of the MPS 〈Xj | increases exponentially
with j. A way to circumvent this problem is to replace in each iterative

step the MPS 〈Xj | by a MPS 〈 X̃j | with a reduced virtual dimension D̃
that approximates the state 〈Xj | best in the sense that the norm δK :=

‖〈Xj | − 〈 X̃j |‖ is minimized. Due to the fact that this cost function is
multiquadratic in the variables of the MPS, this minimization can be carried
out very efficiently; the exponential increase of the virtual dimension can
hence be prevented and the iterative evaluation of Z becomes tractable, such
that an approximation to the partition function can be obtained from Z '
〈 X̃L−1 | XL 〉. The accuracy of this approximation depends only on the choice
of the reduced dimension D̃ and the approximation becomes exact for D̃ ≥
DL. As the norm δK can be calculated at each step, D̃ can be increased
dynamically if the obtained accuracy is not large enough. In the worst case
scenario, such as in the NP-complete Ising spin glasses [5], D̃ will probably
have to grow exponentially in L for a fixed precision of the partition function.
But in less pathological cases it seems that D̃ only has to grow polynomially
in L; indeed, the success of the methods developed by Nishino [105] in the
translational invariant case indicate that even a constant D̃ will produce very
reliable results.



Chapter 3

Applications

3.1 Classical Ising Model in two Dimensions

The 2–D Ising model on a L×L lattice is one of very few nontrivial classical
problems that is exactly solvable and shows a phase transition [112, 70, 138].
It is described by the Hamiltonian H = J

∑
<i,j> sisj, where si = ±1. We

have used this model as a first benchmark for our algorithm by comparing
the exact solution for the free energy to our numerical results. The outcomes
for the special case of a 50 × 50–lattice, antiferromagnetic coupling (J = 1)
and periodic boundary conditions can be gathered from fig. 3.1. In this
figure, numerical results for D̃ = 2 and D̃ = 8 are shown. From the inset,
it can be gathered that the error of these results is maximal at the critical
temperature kBTc/J ∼ 2.2692 at which the phase transition takes place.
At this temperature, the error is of order 10−2 for D̃ = 2 and decreases
significantly for D̃ = 8.

3.2 Interacting Bosons in a 1–D Optical Lat-

tice

A system of trapped bosonic particles in a 1–D optical lattice of L sites is
described by the Bose-Hubbard Hamiltonian [66]

H = −J

L−1∑
i=1

(a†iai+1 + h.c.) +
U

2

L∑
i=1

n̂i(n̂i − 1) +
L∑

i=1

Vin̂i,

where a†i and ai are the creation and annihilation operators on site i and
n̂i = a†iai is the number operator. This Hamiltonian describes the interplay
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(a)

(b) (c)

Figure 3.1: (a) Free energy of the 2–D Ising model (J = 1) on a 50 × 50–
lattice. (b) and (c): Density and (quasi)-momentum distribution in the
Tonks-Girardeau gas limit, plotted for βJ = 1, L = 40, N = 21 and V0/J =
0.034. In all parts, the numerical results for D̃ = 2 (D̃ = 8) are represented
by dots (crosses) and the exact solution is illustrated by the solid line. From
the insets, the error of the numerical results can be gathered. For comparison,
in (a) the exact solution for the infinite–lattice case is also plotted (dashed
line).
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between the kinetic energy due to the next-neighbor hopping with ampli-
tude J and the repulsive on-site interaction U of the particles. The last
term in the Hamiltonian models the harmonic confinement of magnitude
Vi = V0(i − i0)

2. The variation of the ratio U/J drives a phase-transition
between the Mott-insulating and the superfluid phase, characterized by local-
ized and delocalized particles respectively [42]. Experimentally, the variation
of U/J can be realized by tuning the depth of the optical lattice [66, 12]. On
the other hand, one typically measures directly the momentum distribution
by letting the atomic gas expand and then measuring the density distribu-
tion. Thus, we will be mainly interested here in the (quasi)–momentum
distribution

nk =
1

L

L∑
r,s=1

〈a†ras〉ei2πk(r−s)/L.

Our goal is now to study with our numerical method the finite-temperature
properties of this system for different ratios U/J . We thereby assume that
the system is in a thermal state corresponding to a grand canonical ensemble
with chemical potential µ, such that the partition function is obtained as
Z = tre−β(H−µN̂). Here, N̂ =

∑L
i=1 n̂i represents the total number of parti-

cles. For the numerical study, we assume a maximal particle–number q per
lattice site, such that we can project the Hamiltonian H on the subspace
spanned by Fock-states with particle-numbers per site ranging from 0 to q.
The projected Hamiltonian H̃ then describes a chain of L spins, with each
spin acting on a Hilbert-space of dimension n = q + 1. A Trotter decompo-
sition that turned out to be advantageous for this case is

e−β(H̃−µN̂) =
(
V̂ †V̂

)M

+ O

[
1

M2

]
, (3.1)

with H̃ = HR+HS+HT , HR = −J
2

∑L−1
i=1 R(i)R(i+1), HS = −J

2

∑L−1
i=1 S(i)S(i+1),

HT =
∑L

i=1 T (i), R(i) = ã†i + ãi, S(i) = −i(ã†i − ãi), T (i) = 1
2
ñi(ñi − 1) + Viñi

and V̂ = e−
β

2M
HRe−

β
2M

HSe−
β

2M
(HT−µN̂). ã†i , ãi and ñi thereby denote the pro-

jections of the creation, the annihilation and the number operators a†i , ai and
ni on the q-particle subspace. The decomposition (2.1) of all two-particle op-
erators in expression (3.1) then straightforwardly leads to a set of 4-index
tensors X ij

lrud, with indices l and r ranging from 1 to (q + 1)3 and indices u
and d ranging from 1 to q + 1. Note that the typical second order Trotter
decomposition with H = Heven + Hodd would make the indices l and r range
from 1 to (q + 1)6.

Let us start out by considering the limit U/J →∞ in which double occu-
pation of single lattice sites is prevented and the particles in the lattice form
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Figure 3.2: Density and (quasi)-momentum distribution in the Tonks-
Girardeau gas limit, plotted for βJ = 1, L = 40, N = 21 and V0/J = 0.034.
The dots (crosses) represent the numerical results for D̃ = 2 (D̃ = 8) and
the solid line illustrates the exact results. From the insets, the error of the
numerical results can be gathered.

a Tonks–Girardeau gas [115]. In this limit, the Bose-Hubbard Hamiltonian
maps to the Hamiltonian of the exactly solvable (inhomogeneous) XX-model,
which allows to benchmark our algorithm. The comparison of our numerical
results to the exact results can be gathered from fig. 3.2. Here, the density
and the (quasi)-momentum distribution are considered for the special case
βJ = 1, L = 40, N = 21 and V0/J = 0.034. The numerical results shown
have been obtained for Trotter-number M = 10 and two different reduced
virtual dimensions D̃ = 2 and D̃ = 8. The norm δK was of order 10−4 for
D̃ = 2 and 10−6 for D̃ = 8 1. From the insets, it can be gathered that the
error of the numerical calculations is already very small for D̃ = 2 (of order
10−3) and decreases significantly for D̃ = 8. This error can be decreased
further by increasing the Trotter-number M .

As the ratio U/J becomes finite, the system becomes physically more
interesting, but lacks an exact mathematical solution. In order to judge the
reliability of our numerical solutions in this case, we check the convergence
with respect to the free parameters of our algorithm (q, D̃ and M). As an
illustration, the convergence with respect to the parameter q is shown in
figure 3.3. In this figure, the density and the (quasi)-momentum distribution
are plotted for q = 2, 3 and 4. We thereby assume that βJ = 1, L = 40 and

1We note that we have stopped our iterative algorithm at the point the variation of δK
was less than 10−8.



3.2 Interacting Bosons in a 1–D Optical Lattice 29

N = 21 and consider interaction strengths U/J = 4 and 8. The harmonic
potential V0 is chosen in a way to describe Rb-atoms in a harmonic trap of
frequency Hz (along the lines of [115]). We note that we have taken into
account that changes of the ratio U/J are obtained from changes in both the
on-site interaction U and the hopping amplitude J due to variations of the
depth of the optical lattice. The numerical calculations have been performed
with M = 10 and D̃ = q + 1. From the figure it can be gathered that
convergence with respect to q is achieved for q ≥ 3.

We now use our numerical algorithm to study a physical property of in-
teracting bosons in an optical lattice, namely the full width at half maximum
(FWHM) of the (quasi)-momentum distribution. It has been predicted that
the FWHM shows a kink at zero temperature [76, 167, 120]. This kink is
an indication for a Mott-superfluid transition, since the FWHM is directly
related to the inverse correlation length. Experiments have also revealed this
kink [75, 145]; they are, however, performed at finite temperature, something
we can study with our algorithm. In figure 3.4, we plot the numerical results
for the FWHM as a function of U/J for three different (inverse) tempera-
tures βJ = 0.5,1 and 2. The physical parameters L, N and V0 are thereby
chosen as in the previous case. The numerical results have been obtained
for M = 10, q = 4 and D̃ = q + 1. For each temperature, three different
regions can be distinguished: the superfluid region with constant FWHM,
the Mott-region with linearly increasing FWHM and an intermediate region
in which both phases coexist. The value U/J at which the Mott-region starts
increases with increasing temperature, which is consistent with the criteria
U À kBT, J for the appearance of the Mott-phase. This behaviour could be
easily observed in present experiments.
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Figure 3.3: Density and (quasi)-momentum distributions for interaction
strengths U/J = 4 and 8. Here, βJ = 1, L = 40, N = 21 and M = 10. Nu-
merical results were obtained for q = 2 (plus-signs), q = 3 (crosses) and q = 4
(solid line). For comparison, the distributions for U/J = 0 (dotted lines) and
U/J →∞ (dash-dotted lines) are also included.
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Figure 3.4: FWHM of the (quasi)-momentum distribution as a function
of U/J , calculated for temperatures βJ = 0.5 (plus-sign),βJ = 1 (crosses)
and βJ = 2 (dots). The corresponding (quasi)-momentum distributions for
U/J = 2 and U/J = 8 are illustrated in the plots at the right-hand side.





Chapter 4

Simulation of
higher–dimensional quantum
Systems

In this chapter, we present a natural generalization of the 1D MPS to two
and higher dimensions and build simulation techniques based on those states
which effectively extend DMRG to higher dimensions. We call those states
projected entangled–pair states (PEPS) [154, 101], since they can be under-
stood in terms of pairs of maximally entangled states of some auxiliary sys-
tems that are locally projected in some low–dimensional subspaces. This
class of states includes the generalizations of the 2D AKLT-states known as
tensor product states [62, 108, 106, 107, 104, 91, 152] which have been used
for 2D problems but is much broader since every state can be represented as
a PEPS (as long as the dimension of the entangled pairs is large enough).
We also develop an efficient algorithm to calculate correlation functions of
these PEPS, and which allows us to extend the 1D algorithms to higher
dimensions. This leads to many interesting applications, such as scalable
variational methods for finding ground or thermal states of spin systems in
higher dimensions as well as to simulate their time-evolution. For the sake
of simplicity, we will restrict to a square lattice in 2D. The generalization to
higher dimensions and other geometries is straightforward.

4.1 Construction and calculus of PEPS

There have been various attempts at using the ideas developed in the context
of the numerical renormalization group and DMRG to simulate 2-D quantum
spin systems. However, in hindsight it is clear why those methods were never
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Figure 4.1: Representation of a quantum spin system in 2 dimensions using
the PEPS representation. If we calculate the entropy of a block of spins, then
this quantity will obey an area law and scale as the length of the boundary
between the block and the rest. PEPS-states are constructed such as to have
this property build in.

very successful: they can be reformulated as variational methods within the
class of 1-dimensional matrix product states, and the structure of those MPS
is certainly not well suited at describing ground states of 2-D quantum spin
systems. This can immediately be understood when reconsidering the area
law discussed in the introduction (see figure 4.1): if we look at the number
of degrees of freedom needed to describe the relevant modes in a block of
spins, this has to scale as the boundary of the block, and hence this increases
exponentially with the size of that boundary. This means that it is impossible
to use a NRG or DMRG approach, where the degrees of freedom are bounded
by D.

However, it is straightforward to generalize the MPS-picture to higher
dimensions: the main reason of the success of the MPS approach is that it
allows to represent very well local properties that are compatible with e.g.
the translational symmetry in the system. These strong local correlations are
obtained by sharing maximally entangled states between neighbours, and the
longer range correlations are basically mediated by the intermediate parti-
cles. This is of course a very physical picture, as the Hamiltonian does not
force any long-range correlations to exist a priori, and those only come into
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Figure 4.2: Structure of the coefficient related to the state | k11, .., k44 〉 in the
PEPS |ΨA 〉. The bonds represent the indices of the tensors [Ai]

k that are
contracted.

existence because of frustration effects. This generalization to higher dimen-
sions can therefore be obtained by distributing virtual maximally entangled
states between all neighbouring sites, and as such a generalization of the
AKLT-picture is obtained.

More specifically, each physical system at site i is represented by four
auxiliary systems ai, bi, ci, and di of dimension D (except at the borders of
the lattices). Each of those systems is in a maximally entangled state

| I 〉 =
D∑

i=1

| ii 〉

with one of its neighbors, as shown in the figure. The PEPS |Ψ 〉 is then
obtained by applying to each site one operator Qi that maps the four auxiliary
systems onto one physical system of dimension d. This leads to a state with
coefficients that are contractions of tensors according to a certain scheme.
Each of the tensors is related to one operator Qi according to

[
Ai

]k

lrud
= 〈 k |Qi| l, r, u, d 〉

and thus associated with one lattice–site i. All tensors possess one physical
index k of dimension d and four virtual indices l, r, u and d of dimension D.
The scheme according to which these tensors are contracted mimics the un-
derlying lattice structure: the four virtual indices of the tensors are related
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to the left, right, upper and lower bond emanating from the corresponding
lattice–site. The coefficients of the PEPS are then formed by joining the
tensors in such a way that all virtual indices related to same bonds are con-
tracted. This is illustrated in fig. 4.2 for the special case of a 4×4 square lat-
tice. Assuming this contraction of tensors is performed by the function F(·),
the resulting PEPS can be written as

|Ψ 〉 =
d∑

k1,...,kM=1

F([
A1

]k1 , ...,
[
AM

]kM
)| k1, ..., kM 〉.

This construction can be generalized to any lattice shape and dimension and
one can show that any state can be written as a PEPS if we allow the bond
dimension to become very large. In this way, we also resolve the problem of
the entropy of blocks mentioned before, since now this entropy is proportional
to the bonds that connect such block with the rest, and therefore to the area
of the block. Note also that, in analogy to the MPS [36], the PEPS are
guaranteed to be ground states of local Hamiltonians.

There has recently been a lot of progress in justifying this PEPS picture;
M. Hastings has shown [60] that indeed every ground state of a local quantum
spin Hamiltonian has an efficient representation in terms of a PEPS, i.e. one
whose bond dimension D scales subexponentially with the number of spins
under interest. Also, he has shown that all thermal states have an efficient
representation in terms of matrix product operators. This is great news, as
it basically shows that we have identified the relevant manifold describing
the low-energy physics of quantum spin systems. This can lead to many
applications in theoretical condensed matter physics, as the questions about
the possibility of some exotic phase of matter can now be answered by looking
at the set of PEPS hence skipping the bottleneck of simulation of ground
states.

The family of PEPS also seems to be very relevant in the field of quantum
information theory. For example, all quantum error-correcting codes such as
Kitaev’s toric code [74] exhibiting topological quantum order have a very sim-
ple and exact description in terms of PEPS. Furthermore, the PEPS-picture
has been used to show the equivalence between different models of quantum
computation [137]; more specifically, the so-called cluster states [123] have
a simple interpretation in terms of PEPS, and this picture demystifies the
inner workings of the one-way quantum computer.
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Figure 4.3: Structure of the contractions in 〈ΨA |ΨA 〉. In this scheme, the
first and last rows can be interpreted as MPS |U1 〉 and 〈U4 | and the rows
in between as MPO U2 and U3. The contraction of all tensors is then equal
to 〈U4 |U3U2|U1 〉.

4.2 Calculus of PEPS

We now show how to determine expectation values of operators in the state
|Ψ 〉. We consider a general operator O =

∏
i Oi and define the D2 ×D2 ×

D2 ×D2–tensors

[
E

Oj

j

](uu′)(dd′)
(ll′)(rr′) =

d∑

k,k′=1

〈 k |Oj| k′ 〉
[
A∗

j

]k′

lrud

[
Aj

]k

l′r′u′d′ .

In this definition, the symbols (ll′), (rr′), (uu′) and (dd′) indicate composite
indices. We may interpret the 4 indices of this tensor as being related to
the 4 bonds emanating from site j in the lattice. Then, 〈Ψ |O|Ψ 〉 is formed

by joining all tensors E
Oj

j in such a way that all indices related to same bonds
are contracted – as in the case of the coefficients of PEPS. These contractions
have a rectangular structure, as depicted in fig. 4.3. In terms of the function
F(·), the expectation value reads

〈Ψ |O|Ψ 〉 = F(
EO1

1 , ..., EON
N

)
.

The contraction of all tensors E
Oj

j according to this scheme requires a number
of steps that scales exponentially with N – and makes calculations intractable
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as the system grows larger. Because of this, an approximate method has to
be used to calculate expectation values.

The approximate method suggested in [154] is based on matrix product
states (MPS) and matrix product operators (MPO). The main idea is to
interpret the first and last row in the contraction–scheme as MPS and the
rows in between as MPO. The horizontal indices thereby form the virtual
indices and the vertical indices are the physical indices. Thus, the MPS
and MPO have both virtual dimension and physical dimension equal to D2.
Explicitly written, the MPS read

|U1 〉 =
D2∑

d̃1,...,d̃L=1

tr
([

EO11
11

]1d̃1 · · · [EO1L
1L

]1d̃L

)
| d̃1, ..., d̃L 〉

〈UL | =
D2∑

ũ1,...,ũL=1

tr
([

EOL1
L1

]ũ11 · · · [EOLL
LL

]ũL1
)
〈 ũ1, ..., ũL |

and the MPO at row r is

Ur =
D2∑

ũ1,...,ũL=1

d̃1,...,d̃L=1

tr
([

EOr1
r1

]ũ1d̃1 · · · [EOrL
rL

]ũLd̃L

)
| ũ1, ..., ũL 〉〈 d̃1, ..., d̃L |.

In terms of these MPS and MPO, the expectation value is a product of MPO
and MPS:

〈Ψ |O|Ψ 〉 = 〈UL |UL−1 · · ·U2|U1 〉
The evaluation of this expression is, of course, intractable. With each multi-
plication of a MPO with a MPS, the virtual dimension increases by a factor
of D2. Thus, after L multiplications, the virtual dimension is D2L – which
is exponential in the number of rows. The expression, however, reminds of
the time–evolution of a MPS [156, 29, 161]. There, each multiplication with
a MPO corresponds to one evolution–step. The problem of the exponential
increase of the virtual dimension is circumvented by restricting the evolution
to the subspace of MPS with a certain virtual dimension D̃. This means
that after each evolution–step the resulting MPS is approximated by the
”nearest” MPS with virtual dimension D̃. This approximation can be done
efficiently, as shown in [156]. In this way, also 〈Ψ |O|Ψ 〉 can be calculated
efficiently: first, the MPS |U2 〉 is formed by multiplying the MPS |U1 〉 with
MPO U2. The MPS |U2 〉 is then approximated by | Ũ2 〉 with virtual dimen-
sion D̃. In this fashion the procedure is continued until | ŨL−1 〉 is obtained.
The expectation value 〈Ψ |O|Ψ 〉 is then simply

〈Ψ |O|Ψ 〉 = 〈UL | ŨL−1 〉.



4.3 Variational method with PEPS 39

Interestingly enough, this method to calculate expectation values can be
adopted to develop very efficient algorithms to determine the ground states
of 2D Hamiltonians and the time evolution of PEPS by extenting DMRG
and the time evolution schemes to 2D.

4.3 Variational method with PEPS

Let us start with an algorithm to determine the ground state of a Hamiltonian
with short range interactions on a square L × L lattice. The goal is to
determine the PEPS |Ψ 〉 with a given dimension D which minimizes the
energy:

〈H〉 =
〈Ψ |H|Ψ 〉
〈Ψ |Ψ 〉 (4.1)

Following [157], the idea is to iteratively optimize the tensors Ai one by one
while fixing all the other ones until convergence is reached. The crucial ob-
servation is the fact that the exact energy of |Ψ 〉 (and also its normalization)
is a quadratic function of the components of the tensor Ai associated with
one lattice site i. Because of this, the optimal parameters Ai can simply be
found by solving a generalized eigenvalue problem.

The challenge that remains is to calculate the matrix–pair for which the
generalized eigenvalues and eigenvectors shall be obtained. In principle, this
is done by contracting all indices in the expressions 〈Ψ |O|Ψ 〉 and 〈Ψ |Ψ 〉
except those connecting to Ai. By interpreting the tensor Ai as a dD4–
dimensional vector Ai, these expressions can be written as

〈Ψ |O|Ψ 〉 = A†
iHiAi (4.2)

〈Ψ |Ψ 〉 = A†
iNiAi. (4.3)

Thus, the minimum of the energy is attained by the generalized eigenvector
Ai of the matrix–pair (Hi,Ni) to the minimal eigenvalue µ:

HiAi = µNiAi

It turns out that the matrix–pair (Hi,Ni) can be efficiently evaluated
by the method developed for the calculation of expectation values: Ni relies
on the contraction of all but one tensors EI

j (with I denoting the identity)
according to the same rectangular scheme as before. The one tensor that has
to be omitted is EI

i – the tensor related to site i. Assuming this contraction
is performed by the function Gi(·), Ni can be written as

[Ni

]k

lrud

l′r′u′d′

k′ = Gi

(
EI

1 , ..., E
I
N

)l′r′u′d′

lrud
δk
k′ .
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If we join the indices (klrud) and (k′l′r′u′d′), we obtain the dD4×dD4–matrix
that fulfills equation (4.3). To evaluate Gi(·) efficiently, we proceed in the
same way as before by interpreting the rows in the contraction–structure as
MPS and MPO. First, we join all rows that lie above site i by multiplying
the topmost MPS |U1 〉 with subjacent MPO and reducing the dimension
after each multiplication to D̃. Then, we join all rows lying below i by
multiplying 〈UL | with adjacent MPO and reducing the dimension as well.
We end up with two MPS of virtual dimension D̃ – which we can contract
efficiently with all but one of the tensors EI

j lying in the row of site i.
The effective Hamiltonian Hi can be determined in an analogous way,

but here the procedure has to be repeated for every term in the Hamiltonian
(i.e. in the order of 2N times in the case of nearest neighbor interactions).
Assuming a single term in the Hamiltonian has the tensor–product structure
Hs ≡ ∏

i h
s
i , the effective Hamiltonian Hs

i corresponding to this term is
obtained as

[Hs
i

]k

lrud

l′r′u′d′

k′ = Gi

(
E

hs
1

1 , ..., E
hs

N
N

)l′r′u′d′

lrud

[
hs

i

]k

k′ .

The complete effective Hamiltonian Hi that fulfills equation (4.2) is then
produced as

Hi =
∑

s

Hs
i .

Thus, both the matrices Ni and Hi are directly related to the expres-

sions Gi

(
EI

1 , ..., E
I
N

)
and Gi

(
E

hs
1

1 , ..., E
hs

N
N

)
. These expressions, however, can

be evaluated efficiently using the approximate method introduced before for
the calculation of expectation values. Therefore, the optimal Ai can be deter-
mined, and one can proceed with the following site, iterating the procedure
until convergence.

4.4 Time evolution with PEPS

Let us next move to describe how a time–evolution can be simulated on a
PEPS. We will assume that the Hamiltonian only couples nearest neighbors,
although more general settings can be considered. The principle of simulating
a time–evolution step is as follows: first, a PEPS |Ψ0

A 〉 with physical dimen-
sion d = 2 and virtual dimension D is chosen as a starting state. This state
is evolved by the time–evolution operator U = e−iHδt (we assume ~ = 1)
to yield another PEPS |ΨB 〉 with a virtual dimension DB increased by a
factor η:

|ΨB 〉 = U |Ψ0
A 〉
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The virtual dimension of this state is then reduced to D by calculating a
new PEPS |ΨA 〉 with virtual dimension D that has minimal distance to
|ΨB 〉. This new PEPS is the starting state for the next time–evolution
step. The crucial point in simulating a time–evolution with PEPS is thus
the development of an efficient algorithm for reducing the virtual dimension
of a PEPS.

Before formulating this algorithm, let us recite how to express the product
U |Ψ0

A 〉 in terms of a PEPS. This is done by means of a Trotter–approximation:
first, the interaction–terms in H are classified in horizontal and vertical ac-
cording to their orientation and in even and odd depending on whether the
interaction is between even–odd or odd–even rows (or columns). The Hamil-
tonian can then be decomposed into a horizontal–even, a horizontal–odd, a
vertical–even and a vertical–odd part:

H = Hhe + Hho + Hve + Hvo

The single–particle operators of the Hamiltonian can simply be incorporated
in one of the four parts (note that different Trotter decompositions are again
possible, e.g. grouping all Pauli operators of the same kind in 3 different
groups as we discussed earlier, and in some cases this leads to a clear compu-
tational advantage). Using the Trotter–approximation, the time–evolution
operator U can be written as a product of four evolution–operators:

U = e−iHδt ≈ e−iHheδte−iHhoδte−iHveδte−iHvoδt (4.4)

Since each of the four parts of the Hamiltonian consists of a sum of commut-
ing terms, each evolution–operator equals a product of two–particle operators
wij acting on neighboring sites i and j. These two–particle operators have a
Schmidt–decomposition consisting of, say, η terms:

wij =

η∑
ρ=1

uρ
i ⊗ vρ

j

One such two–particle operator wij applied to the PEPS |Ψ0
A 〉 modifies the

tensors A0
i and A0

j associated with sites i and j as follows: assuming the
sites i and j are horizontal neighbors, A0

i has to be replaced by

[
Bi

]k

l(rρ)ud
=

d∑

k′=1

[
uρ

i

]k

k′
[
A0

i

]k′

lrud

and A0
j becomes

[
Bj

]k

(lρ)rud
=

d∑

k′=1

[
vρ

j

]k

k′
[
A0

j

]k′

lrud
.
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These new tensors have a joint index related to the bond between sites i
and j. This joint index is composed of the original index of dimension D
and the index ρ of dimension η that enumerates the terms in the Schmidt–
decomposition. Thus, the effect of the two–particle operator wij is to increase
the virtual dimension of the bond between sites i and j by a factor of η.
Consequently, e−iHheδt and e−iHhoδt increase the dimension of every second
horizontal bond by a factor of η; e−iHveδt and e−iHvoδt do the same for every
second vertical bond. By applying all four evolution–operators consecutively,
we have found an approximate form of the time–evolution operator U that –
when applied to a PEPS |Ψ0

A 〉 – yields another PEPS |ΨB 〉 with a virtual
dimension multiplied by a constant factor η.

The aim of the approximate algorithm is now to optimize the tensors Ai

related to a PEPS |ΨA 〉 with virtual dimension D, such that the distance
between |ΨA 〉 and |ΨB 〉 tends to a minimum. The function to be minimized
is thus

K
(
A1, ..., AM

)
=

∥∥|ΨA 〉 − |ΨB 〉
∥∥2

.

This function is non–convex with respect to all parameters {A1, ..., AM}.
However, due to the special structure of PEPS, it is quadratic in the pa-
rameters Ai associated with one lattice–site i. Because of this, the optimal
parameters Ai can simply be found by solving a system of linear equations.
The concept of the algorithm is to do this one–site optimization site-by-site
until convergence is reached.

The coefficient matrix and the inhomogeneity of the linear equations sys-
tem can be calculated efficiently using the method developed for the calcula-
tion of expectation values. In principle, they are obtained by contracting all
indices in the expressions for the scalar–products 〈ΨA |ΨA 〉 and 〈ΨA |ΨB 〉
except those connecting to Ai. By interpreting the tensor Ai as a dD4-
dimensional vector Ai, these scalar–products can be written as

〈ΨA |ΨA 〉 = A†
iNiAi (4.5)

〈ΨA |ΨB 〉 = A†
iWi. (4.6)

Since
K = 〈ΨB |ΨB 〉+ 〈ΨA |ΨA 〉 − 2Re〈ΨA |ΨB 〉,

the minimum is attained as

NiAi = Wi.

The efficient calculation of Ni has already been described in the previous
section. The scalar product 〈ΨA |ΨB 〉 and the inhomogeneity Wi are calcu-
lated in an efficient way following the same ideas. First, the DDB ×DDB ×
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DDB ×DDB–tensors

[
Fj

](uu′)(dd′)
(ll′)(rr′) =

d∑

k=1

[
A∗

j

]k

lrud

[
Bj

]k

l′r′u′d′

are defined. The scalar–product 〈ΨA |ΨB 〉 is then obtained by contracting
all tensors Fj according to the previous scheme – which is performed by the
function F(·):

〈ΨA |ΨB 〉 = F(
F1, ..., FM

)

The inhomogenity Wi relies on the contraction of all but one of the tensors
Fj, namely the function Gi

(·), in the sense that

[Wi

]k

lrud
=

D∑

l′r′u′d′=1

Gi

(
F1, ..., FM

)l′r′u′d′

lrud

[
Bi

]k

l′r′u′d′ .

Joining all indices (klrud) in the resulting tensor leads to the vector of length
dD4 that fulfills equation (4.6). Thus, both the scalar–product 〈ΨA |ΨB 〉
and the inhomogenityWi are directly related to the expressions F(

F1, ..., FM

)
and Gi

(
F1, ..., FM

)
. These expressions, however, can be evaluated efficiently

using the approximate method from before.
Even though the principle of simulating a time–evolution step has been

recited now, the implementation in this form is numerically expensive. This
is why we append some notes about how to make the simulation more effi-
cient:
1.- Partitioning of the evolution: The number of required numerical opera-
tions decreases significantly as one time–evolution step is partitioned into 4
substeps: first the state |Ψ0

A 〉 is evolved by e−iHvoδt only and the dimension
of the increased bonds is reduced back to D. Next, evolutions according to
e−iHveδt, e−iHhoδt and e−iHheδt follow. Even though the partitioning increases
the number of evolution–steps by a factor of 4, the number of multiplications
in one evolution–step decreases by a factor of η3.
2.- Optimization of the contraction order: Most critical for the efficiency of
the numerical simulation is the order in which the contractions are performed.
We have optimized the order in such a way that the scaling of the number of
multiplications with the virtual dimension D is minimal. For this, we assume
that the dimension D̃ that tunes the accuracy of the approximate calculation
of Ni and Wi is proportional to D2, i.e. D̃ = κD2. The number of required
multiplications is then of order 1 κ2D10L2 and the required memory scales

1The scaling D10 is obtained when at all steps in the algorithm, a sparse matrix al-
gorithm is used. In particular, we have to use an iterative sparse method for solving the
linear set of equations in the approximation step.
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as dηκ2D8.
3.- Optimization of the starting state: The number of sweeps required to
reach convergence depends on the choice of the starting state for the opti-
mization. The idea for finding a good starting state is to reduce the bonds
with increased virtual dimension ηD by means of a Schmidt–decomposition.
This is done as follows: assuming the bond is between the horizontal neigh-
boring sites i and j, the contraction of the tensors associated with these sites,
Bi and Bj, along the bond i–j forms the tensor

[Mij

]k

lud

k′

r′u′d′ =

Dη∑
ρ=1

[
Bi

]k

lρud

[
Bj

]k′

ρr′u′d′ .

By joining the indices (klud) and (k′r′u′d′), this tensor can be interpreted as
a dD3 × dD3–matrix. The Schmidt–decomposition of this matrix is

Mij =
dD3∑
ρ=1

cρAρ
i ⊗Aρ

j

with the Schmidt–coefficients cρ (cρ ≥ 0) and corresponding matrices Aρ
i

and Aρ
j . We can relate these matrices to a new pair of tensors A0

i and A0
j

associated with sites i and j:

[
A0

i

]k

lρud
=

√
cρ

[Aρ
i

]k

lud[
A0

j

]k

ρrud
=

√
cρ

[Aρ
j

]k

rud

The virtual dimension of these new tensors related to the bond between
sites i and j is equal to the number of terms in the Schmidt–decomposition.
Since these terms are weighted with the Schmidt–coefficients cρ, it is justified
to keep only the D terms with coefficients of largest magnitude. Then, the
contraction of the tensors A0

i and A0
j along the bond i–j with dimension D

yields a good approximation to the true value Mij:

[Mij

]k

lud

k′

r′u′d′ ≈
D∑

ρ=1

[
A0

i

]k

lρud

[
A0

j

]k′

ρr′u′d′ .

This method applied to all bonds with increased dimension provides us with
the starting state for the optimization.
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Applications

5.1 Hard–Core Bosons in a 2–D Optical Lat-

tice

Let us now illustrate the variational methods with some examples. Models
the PEPS algorithms have already been applied to successfully include the
Heisenberg antiferromagnet [154] and the Shastry-Sutherland model [64]. In
the following, we present the results for the system of hard–core bosons in a
2D optical lattice [101] – which include calculations of ground state properties
and studies of the time–evolution after sudden changes in the parameters.

The system of bosons in a 2D optical lattice is characterized by the Bose–
Hubbard Hamiltonian

H = −J
∑
<i,j>

(
a†iaj + h.c.

)
+

U

2

∑
i

n̂i(n̂i − 1) +
∑

i

Vin̂i,

where a†i and ai are the creation and annihilation operators on site i and
n̂i = a†iai is the number operator. This Hamiltonian describes the interplay
between the kinetic energy due to the next-neighbor hopping with ampli-
tude J and the repulsive on-site interaction U of the particles. The last
term in the Hamiltonian models the harmonic confinement of magnitude
Vi = V0(i−i0)

2. Since the total number of particles N̂ =
∑

i n̂i is a symmetry
of the Hamiltonian, the ground–state will have a fixed number of particles N .
We choose this number by appending the term −µN̂ to the Hamiltonian
and tuning the chemical potential µ. The variation of the ratio U/J drives
a phase-transition between the Mott-insulating and the superfluid phase,
characterized by localized and delocalized particles respectively [42]. Ex-
perimentally, the variation of U/J can be realized by tuning the depth of
the optical lattice [66, 12]. The quantity that is typically measured is the
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momentum distribution. The is done by letting the atomic gas expand and
measuring the density distribution of the expanded cloud. Thus, we will be
mainly interested here in the (quasi)–momentum distribution

nk =
1

L2

∑
r,s

〈a†ras〉ei2πk·(r−s)/L2

of the particles.
In the following, we focus on the limit of a hard–core interaction, U/J →

∞. In this limit, two particles are prevented from occupying a single site.
This limit is especially interesting in one dimension where the particles form
the so–called Tonks-Girardeau gas [51, 115]. The particles in this gas are
strongly correlated – which leads to algebraically decaying correlation func-
tions. In two dimensions, the model was studied in detail in [72]. In the
hard–core limit, the Bose–Hubbard model is equivalent to a spin–system
with XX–interactions described by the Hamiltonian

H = −J

2

∑
<i,j>

(
σ(i)

x σ(j)
x + σ(i)

y σ(j)
y

)
+

1

2

∑
i

(
Vi − µ

)
σ(i)

z .

Here, σ
(i)
x , σ

(i)
y and σ

(i)
z denote the Pauli-operators acting on site i. This

Hamiltonian has the structure we can simulate with the algorithm: it de-
scribes L2 physical systems of dimension d = 2 on a L× L–square lattice.

5.1.1 Ground state properties

We start with the study the ground–state properties of the system of hard–
core bosons for lattice–sizes 4×4 and 11×11. We calculate the ground–state
by means of an imaginary time–evolution which we can simulate with the
method from before.

We first focus on the 4×4–lattice for which we can calculate the ground–
state exactly and are able to estimate the precision of the algorithm by
comparison with exact results. In fig. 5.1, the energy is plotted as the system
undergoes the imaginary time–evolution. We thereby assume a time–step
δt = −i0.03. We choose the magnitude of the harmonic confinement (in units
of the tunneling–constant) V0/J = 36. In addition, we tune the chemical
potential to µ/J = 3.4 such that the ground state has particle–number N =
4. With this configuration, we perform the imaginary time–evolution both
exactly and variationally with PEPS. As a starting state we take a product
state that represents a Mott-like distribution with 4 particles arranged in
the center of the trap and none elsewhere. The variational calculation is
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Figure 5.1: Energy as a function of time for the imaginary time–evolution
of the system of hard–core bosons on a 4 × 4–lattice. The evolutions are
performed sequentially with PEPS of virtual dimension D = 2, D = 3,
D = 4 and D = 5. The times at which D is increased are indicated by
vertical lines. For comparison, the exact ground state–energy, the exact
imaginary time–evolution and the energy of the optimal Gutzwiller ansatz
are included.

performed with D = 2 first until convergence is reached; then, evolutions
with D = 3, D = 4 and D = 5 follow. At the end, a state is obtained
that is very close to the state obtained by exact evolution. The difference in
energy is |ED=5 − Eexact| w 6.4614 · 10−5J . For comparison, also the exact
ground–state energy obtained by an eigenvalue–calculation and the energy of
the optimal Gutzwiller ansatz are included in fig. 5.1. The difference between
the exact result and the results of the imaginary time–evolution is due to the
Trotter–error and is of order O(δt2). The energy of the optimal Gutzwiller-
Ansatz is well seperated from the exact ground–state energy and the results
of the imaginary time–evolution.

In fig. 5.2, the energy as a function of time is plotted for the imaginary
time–evolution on the 11 × 11–lattice. Again, a time–step δt = −i0.03 is
assumed for the evolution. The other parameters are set as follows: the
ratio between harmonic confinement and the tunneling constant is chosen
as V0/J = 100 and the chemical potential is tuned to µ/J = 3.8 such that
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Figure 5.2: Energy as a function of time for the imaginary time–evolution
of the system of hard–core bosons on a 11 × 11–lattice. The evolutions are
performed sequentially with PEPS of virtual dimension D = 2, D = 3, D = 4
and D = 5. The times at which D is increased are indicated by vertical lines.
For comparison, the energy of the optimal Gutzwiller ansatz is included.

the total number of particles N is 14. The starting state for the imaginary
time–evolution is, similar to before, a Mott-like distribution with 14 particles
arranged in the center of the trap. This state is evolved within the subset of
PEPS with D = 2, D = 3, D = 4 and D = 5. As can be gathered from the
plot, this evolution shows a definite convergence. In addition, the energy of
the final PEPS lies well below the energy of the optimal Gutzwiller ansatz.

The difference between the PEPS and the Gutzwiller ansatz becomes
more evident as one studies the momentum distribution of the particles. The
diagonal slice of the (quasi)–momentum distribution is shown in fig. 5.3. As
can be seen, there is a clear difference between the momentum distribution
derived from the PEPS and the one from the Gutzwiller ansatz. In contrast,
the PEPS and the Gutzwiller ansatz produce a very similar density profile
(see inset). The acceptability of the Gutzwiller ansatz is due to the inhome-
genity of the system: the different average particle number at each site is the
cause for the correlations between different sites. These correlations are, in
many cases, good approximations. In contrast, the average particle number
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Figure 5.3: (Quasi)–momentum distribution of the particles in the ground
state of a 11 × 11–lattice. Plotted are results of the variational calculations
with PEPS of dimension D = 5 and with the Gutzwiller ansatz. From the
inset, the density of the particles can be gathered.

is constant in homogeneous systems – which leads to correlations that are
constant. Thus, the Gutzwiller ansatz is expected to be less appropriate for
the study of correlations of homogeneous systems.

5.1.2 Dynamics of the system

We now focus on the study of dynamic properties of hard–core bosons on a
lattice of size 11× 11. We investigate the responses of this system to sudden
changes in the parameters and compare our numerical results to the results
obtained by the Gutzwiller ansatz. The property we are interested in is the
fraction of particles that are condensed. For interacting and finite systems,
this property is measured best by the condensate density ρ which is defined
as largest eigenvalue of the correlation–matrix 〈a†iaj〉.

First, we study the time evolution of the condensate density after a sudden
change of the trapping potential. We start with a Gutzwiller–approximation
of the ground state in case of a trapping potential of magnitude V0/J =
100. The chemical potential we tune to µ/J = 3.8 to achieve an average
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Figure 5.4: Time evolution of the condensate density after a sudden change
of the magnitude of the trapping potential from V0/J = 100 to V0/J = 64.
As a starting state, we use the Gutzwiller–approximation of the ground state.
The evolution is performed on the basis of the Gutzwiller ansatz and PEPS
with D = 2, D = 3 and D = 4. From the inset, the overlap between the
PEPS with D = 2 and D = 3 (solid line) and the PEPS with D = 3 and
D = 4 (dashed line) can be gathered.

particle–number of 〈N̂〉 = 14. This state we expose to a trapping potential of
magnitude V0/J = 64 and calculate the evolution of the condensate density
using the Gutzwiller ansatz and PEPS with D = 2, D = 3 and D = 4.
We thereby assume a time–step δt = 0.03. To assure that our results are
accurate, we proceed as follows: first, we perform the simulation using PEPS
with D = 2 and D = 3 until the overlap between these two states falls below
a certain value. Then, we continue the simulation using PEPS with D = 3
and D = 4 as long as the overlap between these two states is close to 1.
The results of this calculation can be gathered from fig. 5.4. What can be
observed is that the results obtained from using PEPS are qualitatively very
different from the result based on the Gutzwiller ansatz. The inset in fig. 5.4
shows the overlap of the D = 2 with the D = 3–PEPS and the D = 3 with
the D = 4–PEPS.

In fig. 5.5, the time–evolution of the condensate density after a sudden
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Figure 5.5: Time evolution of the condensate density after a sudden shift of
the center of the trap by one site in x– and y–direction. Starting state is the
Gutzwiller–approximation of the ground state. The evolution is performed
using the Gutzwiller ansatz and PEPS with D = 2, D = 3 and D = 4. The
inset shows the overlap between the PEPS with D = 2 and D = 3 (solid
line) and D = 3 and D = 4 (dashed line).

shift of the trapping potential is plotted. As a starting state, again the
Gutzwiller–approximation of the ground state in a trap of magnitude V0/J =
100 is used. This state is evolved with respect to a trapping potential that
is shifted by one lattice–site in x– and y–direction. We assume a time–step
δt = 0.03 and tune the chemical potential to µ/J = 3.8. As before, we
perform the simulation successively with D = 2, D = 3 and D = 4 and
judge the accuracy of the results by monitoring the overlap between PEPS
with different Ds. From the plot, it can be gathered that the evolution of
the condensate density based on the Gutzwiller ansatz is qualitatively again
very different from the evolution obtained from using PEPS. The evolution
obtained from using PEPS shows a definite damping. The shift of the trap
thus provokes a destruction of the condensate. The evolution based on the
Gutzwiller ansatz doesn’t show this feature.

As a contrary example, we study the evolution of a Mott-distribution
with 14 particles arranged in the center of the trap. We assume V0/J = 100,
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Figure 5.6: Time evolution of the condensate density starting from a Mott–
distribution with 14–particles arranged in the center of the trap. The mag-
nitude of the trapping potential is V0/J = 100. For the evolution, the
Gutzwiller ansatz and PEPS with D = 2, D = 3 and D = 4 are used.
The inset shows the overlap between the D = 2 and D = 3–PEPS (solid
line) and the D = 3 and D = 4–PEPS (dashed line).

µ/J = 3.8 and δt = 0.03. We perform the simulation in the same way as
before with D = 2, D = 3 and D = 4. In fig. 5.6, the time evolution of
the condensate density is plotted. It can be observed that there is a definite
increase in the condensate fraction. The Gutzwiller ansatz is in contrast to
this result since it predicts that the condensate density remains constant.

5.1.3 Accuracy and performance of the algorithm

Finally, we make a few comments about the accuracy and the performance
of the algorithm. One indicator for the accuracy of the algorithm is the
distance between the time–evolved state and the state with reduced virtual
dimension. For the time–evolution of the Mott–distribution that was dis-
cussed in section 5.1.2, this quantity is plotted in fig. 5.7. We find that the
distance is typically of order 10−3 for D = 2 and of order 10−4 for D = 3 and
D = 4. Another quantity we monitor is the total number of particles 〈N̂〉.
Since this quantity is supposed to be conserved during the whole evolution,
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Figure 5.7: Distance K between the time–evolved state and the state with
reduced virtual dimension. The virtual dimensions D = 2, D = 3 and D = 4
are included. The distance is plotted for the evolution of a Mott-distribution
with N = 14, as explained in fig. 5.6. From the inset, the deviation of the
particle number from the value 14 can be gathered.

its fluctiations indicate the reliability of the algorithm. From the inset in
fig. 5.7, the fluctuations of the particle number in case of the time–evolution
of the Mott–distribution can be gathered. We find that these fluctuations
are at most of order 10−5.

The main bottleneck for the performance of the algorithm is the scal-
ing of the number of required multiplications with the virtual dimension D.
As mentioned in section 4.4, the number of required multiplications is of
order D10. Another bottleneck for the algorithm forms the scaling of the
required memory with the virtual dimension D – which is of order D8. The
simulation on a 11× 11–lattice with D = 5 thereby required a main memory
of 2 GB. These bottlenecks make it difficult at the moment to go beyond a
virtual dimension of D = 5. Nonetheless, a virtual dimension of D = 5 is
expected to yield good results for many problems already.
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5.2 Frustrated Antiferromagnets in two Di-

mensions

Frustrated spin–systems have attracted a lot of interest in the last years,
because they may possess exotic ground states that are very different from
conventional Néel–ordered states. Such states are especially intriguing, as
connections to high-Tc superconductivity have been put forward [4]. They
are usually characterized by a break down of long–range order: the system
reorganizes in a quantum state where only local antiferromagnetic correla-
tions are present. The class of such states, named Short Range Valence Bond
States (SRVB), encompasses a broad range of phases: they range from va-
lence bond crystals with broken translational symmetry to pure spin liquids
that have all symmetries restored.

Studies of frustrated systems are especially challenging, because Quan-
tum Monte–Carlo (QMC) studies are hindered by the sign-problem [150] and
Density Matrix Renormalization Group (DMRG) [169, 168, 135] investiga-
tions are restricted to one–dimensional systems. Other methods that have
been developed to take on these systems are, for example, the coupled cluster
method [127], DMRG combined with QMC [33] and exact diagonalizations
within the subspace of SRVB [88, 89]. In this section, we give the PEPS–
algorithm [154, 101] presented in chapter 4 a try.

In the following, we focus on the J1 − J2 − J3 model, especially on the
J1 − J3 and the J1 − J2 model (section 5.2.1 and section 5.2.2). We discuss
our observations and possible implications. In the J1 − J2 − J3 model on a
square lattice, frustration is caused by the competition between first, second
and third neighbor interactions of magnitudes J1, J2 and J3 respectively:

H = J1

∑

〈ij〉
si · sj + J2

∑

〈〈ij〉〉
si · sj + J3

∑

〈〈〈ij〉〉〉
si · sj

The phase diagram of this model is involved and still controversal. Of special
interest are the regimes of maximal frustration that are suspected of having
non-classical ground states.

Let us first review the classical limit [39, 24, 97, 48] (S → ∞). In this
limit, the system possesses four phases, as shown in figure 5.8: the usual
Néel phase, two spiral antiferromagnetic phases ordered at (q, q) and (q, π)
and a phase with collinear order. The Néel phase is bounded by the classical
critical line (J2 + 2J3)/J1 = 1/2.

When quantum fluctuations are taken into account, the phase diagram
changes considerably [39, 41, 124, 88]: the Néel phase substantially extends
to larger values of J3, up to the line of maximal frustration (J2+J3)/J1 = 1/2
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Figure 5.8: Classical phase diagram of the J1−J2−J3 model. Phase I is the
usual Néel phase, phase II a collinear phase and phases III and IV are two
spiral antiferromagnetic phases ordered at (q, q) and (q, π). The red dotted
line denotes the line of maximal frustration in the quantum case.

(see red dotted line in figure 5.8). In the vicinity of this line, it is believed that
the classical ordered ground state is destabilized and a singlet ground state is
formed [88]. The precise nature of this state is still controversal: suggestions
include columnar valence bond crystals [81], plaquette states [88] and spin
liquids [17, 175, 16, 21, 87]. Special attention has been devoted to the end-
points of the line: the point at J3/J1 = 1/2 that separates the Néel from
the spiral antiferromagnetic phase [17, 16, 87], and the tri-critial point at
J2/J1 = 1/2 at which 3 phases meet [175, 33, 21, 20].

In the following, we focus on two lines in the phase diagram that include
these points: J2 = 0 (J1 − J3 model) and J3 = 0 (J1 − J2 model). In both
cases, we apply the PEPS-algorithm and discuss our observations.

5.2.1 J1 − J3 Model

In order to get a first idea of the nature of the ground state as J3/J1 increases,
we calculate the static structure factor,

S(q) =
1

N2

∑

kl

eiq·(rk−rl)〈sk · sl〉. (5.1)

Figure 5.9 shows S(q) for the 10 × 10 lattice at values of J3/J1 of 0.1, 0.5,
0.7 and 0.9. For J3/J1 < 0.5, it is clearly observed that S(q) is peaked
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Figure 5.9: Structure factor S(q) for different values of J3/J1. The values of
Qx and Qy are in units of π. The results were obtained for a 10× 10–lattice
and virtual dimension D = 3.

at q = (π, π), indicating long–range Néel order. This order disappears at
J3/J1 ∼ 0.5 at which the structure factor becomes smooth. At around
J3/J1 ∼ 0.7 peaks at (±π/2,±π/2) reappear, indicating a revival of in-
commensurate long–range order.

The collapse of long–range order is confirmed by a direct observation
of the spin–spin correlations 〈si · sj〉. These are shown in figure 5.10 for
J3/J1 = 0.1, 0.3, 0.5 and 0.8. The system–size considered is 20 × 20. As
can be seen, the spins are antiferromagnetically ordered for J3/J1 < 0.5. For
J3/J1 > 0.5, every second spin possesses antiferromagnetic order. However,
the long–range order of the spins disappears in the vicinity of J3/J1 ∼ 0.5.

The considerable decrease of the correlation length at J3/J1 ∼ 0.5 opens
the possibility for a short–range resonating valence bond state (SRVB) in
this area. We investigate this possibility by doing a direct comparison of the
PEPS results to results obtained by an exact diagonalization of the Hamil-
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Figure 5.10: Spin–spin correlations 〈si · sj〉 as a function of the distance ∆ =
|i− j| for the 20× 20 J1 − J3 model. The results have been obtained using
a D = 3–PEPS.

tonian in the subspace of SRVB. The overlap between the SRVB and PEPS
with virtual dimensions 3 and 4 on a 6 × 6–lattice can be gathered from
figure 5.11a. As it can be seen, the overlap increases up to 99% at the point
J3/J1 = 0.5 and is significantly smaller in other regions. A comparison of
energies, however, reveals that the set of valence bond states does not cover
all terms in the ground state. As shown in figure 5.11b, the energies of
the diagonalization within the subspace of SRVB are - though very close to
the PEPS–results at J3/J1 = 0.5 - always higher than the energies obtained
within the set of PEPS. Thus, the true ground state at J3/J1 = 0.5 might
contain a small fraction of valence bond terms that have longer range.

Even if it is assumed that the ground state is a pure SRVB in the vicinity
of J3/J1 = 0.5, its properties can be very rich and it needs a more precise
classification. On the one hand, it could be a state with broken translational
symmetry - such as a columnar valence bond crystal or a plaquette state.
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Figure 5.11: (a) Ground state energy of the J1 − J3 model on a 6× 6 lattice
as a function of J3/J1, obtained by diagonalizing within the SRVB subspace
(solid line) and by PEPS calculations with D = 3 (crosses) and D = 4 (dots).
(b) Overlap between the SRVB ground state and the D = 3–PEPS ground
state.

On the other hand, an equally weighted superposition of valence bond states
with restored translational symmetry known as spin–liquid is possible.

The observation of nearest–neighbor spin–spin correlations 〈si · sj〉 gives
us an indication of a plaquette state [44]. These correlations are shown
in figure 5.12 for a 8 × 8 lattice and D = 3. In case of a pure plaquette
state, the nearest–neighbor spin–spin correlations would be equal to −1/2
on a plaquette and 0 between two plaquettes. In our case, the values of the
spin–spin correlations deviate slightly from these values, nontheless a clear
plaquette structure remains visible.

The plaquette order is better detected and more clearly distinguished
from the Néel ordered phase by the cyclic permutation operator Pαβγδ of the
four spins α, β, γ and δ on one plaquette. By means of this operator, the
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Figure 5.12: Nearest–neighbor spin–spin correlations at J3/J1 = 0.5, calcu-
lated with D = 3–PEPS.
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Figure 5.13: Plaquette order parameter Qαβγδ at J3/J1 = 0.5, evaluated on
a 8× 8 lattice. The used virtual dimension is D = 3.
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plaquette order parameter [44] is defined as

Qαβγδ =
1

2

(
Pαβγδ + P−1

αβγδ

)

= 2 (sα · sβsγ · sδ + sα · sδsβ · sγ − sα · sγsβ · sδ)

+1/2 (sα · sβ + sγ · sδ + sα · sδ + sβ · sγ)

+1/2 (sα · sγ + sβ · sδ + 1/4) .

In case of a pure plaquette state, this order parameter assumes the value 1
on each plaquette; between the plaquettes, its expectation value is 1/8. The
order parameter vanishes in case of the Néel state which lacks the cyclic
permutation symmetry. In figure 5.13, we plot the plaquette order parameter
evaluated on all square clusters. As before, a clear plaquette structure is
visible, though the absolute values of the expectation values differ slightly
from the optimal ones.

To get a better impression of the vicinity of the ground state to a pure
plaquette state, we average the expectation values of the plaquette order
parameters evaluated on all plaquettes. The dependence of this quantity
on the ratio J3/J1 can be gathered from figure 5.14. Lattice sizes of 4 × 4,
6 × 6, 8 × 8, 10 × 10, 14 × 14 and 20 × 20 are considered and indicated
by the different lines in the figure. As can be clearly seen, the averaged
plaquette order parameter shows a peak in the vicinity of J3/J1 = 0.5. It
is further noticed that the absolute value of the order parameter decreases
with increasing particle number N . An extrapolation to N → ∞, however,
suggests that the value remains finite. For the extrapolation, a scaling with
1/
√

N is assumed. The extrapolation is illustrated by the dashed line in the
figure. The error bars indicate the reliability of the extrapolation.

In conclusion, the PEPS algorithm reproduces well the properties of the
J1−J3 model in the regimes of weak frustration and gives strong indications
for a plaquette ordered state in the regime of strong frustration. In this
regime, our results are thus consistent with ref. [88].

5.2.2 J1 − J2 Model

As in the previous section, we get a first impression of the order in the ground
state of the J1− J2 model by studying the static structure factor S(q) given
in (5.1). The structure factor is plotted in figure 5.15 for values of J2/J1

equal to 0.1, 0.5, 0.6 and 0.9. Similar to the J1 − J3 model, S(q) indicates
long–range Néel order for J2/J1 . 0.5 with a peak at (π, π). For J2/J1 larger
than 0.5, columnar long–range order develops which is detected by a peak at
(0, π). In fact, this columnar long–range order reveals an order–by–disorder
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Figure 5.14: Averaged plaquette order parameter Qαβγδ as a function of J3/J1

for different lattice–sizes. The used virtual dimension is D = 3. The dotted
line indicates results of an extrapolation to N → ∞ via finte–size scaling.
The error bars indicate the reliability of the extrapolation.

phenomenon [164]: quantum fluctuations select from the huge manifold of
classical ground states configurations where all spins are parallel to a given
direction. In the regime in–between the Néel and the columnar phase the
peaks disappear and long–range order breaks down.

The vicinity of the ground state to the class of SRVB in this region is
analyzed in figure 5.16a. This figure shows the overlap of the PEPS ground
state with the ground state obtained by exact diagonalization within the
PEPS subspace. Lattice size 6 × 6 and virtual dimensions 3 and 4 were
considered. The overlap clearly reaches the maximum at J2/J1 = 0.5 and
assumes a value of about 70%. A comparison of the energies, as shown in
figure 5.16b, uncovers that the true ground state will not be exactly in the
subspace of SRVB: the energies of the PEPS calculations are slightly lower
than the ones obtained from SRVB, even at the critical point. Nonetheless,
the distance to the subspace of SRVB might be very small for J2/J1 ≈ 0.5.
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Figure 5.15: Structure factor S(q) for different values of J2/J1. The values
of Qx and Qy are printed in units of π. The results were obtained for a
10× 10–lattice and D = 3.

A more precise classification of the ground state is done by observing the
order parameter for the columnar dimer state [81]

χ = 〈
∣∣∣∣∣
1

N

∑
r

θr

∣∣∣∣∣

2

〉

with
θr = (−1)rxsr · sr+x̂ + i(−1)rysr · sr+ŷ.

The vectors x̂ and ŷ denote unit vectors in horizontal and vertical direction
respectively. The values of this order parameter as a function of J2/J1 for
D = 3 and lattice sizes 6×6, 8×8 and 10×10 can be gathered from figure 5.17.
As can be seen, there is a clear peak in the region of maximal frustration. The
order parameter decreases with increasing N . The extrapolation to N →∞
shows that this peak remains finite. This gives a strong indication of a valence
bond crystal with columnar order in the region of maximal frustration.
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Figure 5.16: (a) Ground state energy of the J1 − J2 model on a 6× 6 lattice
as a function of J2/J1, obtained by diagonalizing within the SRVB subspace
(solid line) and by PEPS calculations with D = 3 (crosses) and D = 4 (dots).
(b) Overlap between the SRVB ground state and the D = 3–PEPS ground
state.

Thus, the PEPS algorithm reproduces also well the properties of the
J1−J2 model. Furthermore, it gives strong indications for a columnar ordered
valence bond state in the regime of strong frustration.
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Chapter 6

Conclusions

Summing up, we have described two algorithms that are natural extentions
of variational algorithms with MPS.

In chapters 2 and 3, we have introducted an algorithm to efficiently cal-
culate partition functions of 2–D classical and 1–D quantum systems. This
algorithm we have applied to the 2–D Ising model and the 1–D Bose–Hubbard
model with a harmonic trap. In case of the 2–D Ising model, we have com-
pared our results to exact solutions of the model and found that the error can
indeed be made very small. For the 1–D Bose–Hubbard model, we have found
indications for a Mott–superfluid transition by observing the full width at
half maximum of the (quasi)–momentum distribution at various interaction–
strengths.

In chapters 4 and 5, we have described the class of Projected Entangled
Pair States (PEPS) as a natural generalization of MPS to higher dimensions.
As a first application, we have studied the system of hard–core bosons on a
2–D lattice using a variational method based these states. We have thereby
investigated the ground state properties of the system and its responses to
sudden changes in the parameters. We have compared our results to re-
sults based on the Gutzwiller ansatz. We have observed that the Gutzwiller
ansatz predicts very well the density distribution of the particles. However,
the momentum distribution obtained from the Gutzwiller ansatz is, though
qualitatively similar, quantitatively clearly different from the distribution
obtained from the PEPS ansatz. In addition, the PEPS and the Gutzwiller
ansatz are very different in the prediction of time evolutions. We conclude
that the Gutzwiller ansatz has to be applied carefully in these cases.

As a further application, we have investigated the ground states of frus-
trated spin–systems on 2–D lattices. We have thereby focused on the J1 −
J2−J3 model and found that the ground state in the strongly frustrated pa-
rameter regime is constructed of nearest–neighbor dimers. These dimers form



66 Conclusions

a plaquette structure at the point (J2/J1, J3/J1) = (0, 1/2) and a columnar
structure at the point (J2/J1, J3/J1) = (1/2, 0). We have shown via finite–
size scaling plots that these structures persist in the thermodynamic limit.

These applications give a clear demonstration of the power of the PEPS-
approach, both for finding ground states in higher-dimensional quantum spin
systems and for simulating real-time evolution.



Part III

Quantum Simulations





Chapter 7

Introduction

As it was argued in the previous part, exact simulations of quantum systems
on classical computers are not feasible, since the required resources scale
exponentially with the number of particles, and the utilization of sophisti-
cated approximative methods becomes necessary. On a quantum computer,
however, such simulations can be performed efficiently - a conclusion al-
ready reached by Richard Feynman in 1982. The reason is that these devices
harness the laws and phenomena of quantum mechanics. These laws and
phenomena characterize the quantum world and they are fundamentally dif-
ferent from those one encounters in classical physics: Complex probability
amplitudes, quantum interference, quantum parallelism, quantum entangle-
ment and the unitarity of the quantum evolution are the most impressive
of these phenomena. These phenomena comprise an enormous potential of
computational power.

A quantum computer is a system built up of a set of quantum systems
(qubits), such as s = 1/2 nuclear spins with possible orientations up and
down. The basis states of one qubit are usually denoted as | 0 〉 and | 1 〉.
These states represent the binary values 0 and 1. Thus, a qubit is the quan-
tum analogue to a classical memory cell that stores the binary values 0 or 1.
However, a qubit has properties that are more general than the properties
of a classical memory cell: A qubit is allowed to be in a superimposed state,
such as 1

2
(| 0 〉+ | 1 〉), and it can be entangled with numerous other qubits of

the system. These properties constitute the basis for the power of a quantum
computation. A quantum computation consists of the following three steps:
First of all, the input data is encoded in a quantum state and the quantum
computer is prepared in this state. In second place, the state of the quantum
computer is manipulated by realizing a certain time–evolution. Finally, a
measurement of interest is performed. The result of the measurement forms
the output data of the computation. The way in which the time–evolution
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is realized leads to a classification of quantum computers in “analog” and
“digital” - in the same spirit as in case of classical computers.

The “digital” quantum computer realizes the time–evolution by means
of few elementary operations acting on one or two qubits - usually referred
to as quantum gates. With appropriate sequences of such quantum gates,
arbitrary time–evolutions can be created. Sequences of quantum gates are
usually denoted as quantum networks or quantum algorithms. The efficiency
of the quantum algorithm is judged by the scaling of the number of required
gates with the size of the input: If the number of gates scales polynomially
with the size of the input, the quantum algorithm is considered to be effi-
cient. At this point, the question arises whether efficient quantum algorithms
exist that have no classical analogue. Indeed, this question can be answered
affirmatively. For example, Shor’s algorithm [140] allows to factorize inte-
gers in a time that scales polynomially with the number of digits, whereas
every known classical algorithm requires an exponenial number of gates. In
addition, Seth Lloys introduced the concept of a Universal Quantum Simu-
lator [86] that is based on a quantum algorithm that is capable of efficiently
simulating arbitrary quantum systems.

The Universal Quantum Simulator works as follows: assume, the quan-
tum system under study consists of N particles. The state of each particle
shall live in the Hilbert-space H(j) of dimension d. The Hilbert-space that
corresponds to the whole quantum system then decomposes as

HN = H(1) ⊗ · · · ⊗ H(N)

and is of dimension dN . The dynamics of the system shall be described by
the Hamiltonian H. The time evolution operator that corresponds to this
Hamiltonian reads

U(t) = e−iHt/~.

A time evolution according to H of duration T transforms the initial state of
the system, |ψ(0) 〉, into the final state |ψ(T ) 〉 = U(T )|ψ(0) 〉. The Univer-
sal Quantum Simulator is a quantum computer equipped with a quantum
algorithm that simulates this time evolution and yields properties of the
final state |ψ(T ) 〉. An efficient decomposition of this time–evolution into
elementary gates is possible if the quantum system evolves according to local
interactions, i.e. is described by a Hamiltonian that is equal to a sum of
operators Hj that act on a smaller subspace of HN :

H =
L∑

j=1

Hj
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It is assumed that the operator Hj acts on a subspace of dimension mj and
that this dimension is independent from N . The time evolution operator
corresponding to the Hamiltonian H can now be approximated by a product
of exponentials:

U(T ) ≈ (
e−iH1T/~ · · · e−iHLT/~)n

(7.1)

The error that is made by this approximation is calculated as [86]

∥∥∥e−iHT/~ − (
e−iH1T/~ · · · e−iHLT/~)n

∥∥∥
∞
≤ κ

T 2

n
,

with

κ =
1

2

∥∥∥
∑

j<k

[Hj, Hk]
∥∥∥
∞

.

In order to guarantee that the error is at most ε, the value of n has to exceed
the bound κT 2

ε
. The number of gates that are required to realize the approx-

imation (7.1) of the unitary transformation U(T ) on the quantum computer
is estimated as follows: The realization of the operator e−iHjT/~ requires a
number of gates of order m2

j . The number of gates for the realization of U(T )
with an accuracy 1− ε therefore amounts to

n

L∑
j=1

m2
j ≤ nLm2 ≈ κ

T 2

ε
Lm2,

with
m = max

j
{mj}.

Since κ, T , m and ε are independent from N , the efficiency of the algorithm is
determined by the scaling of the function L with the number of particles N :
A polynomial scaling of L with N makes the algorithm efficient. Such a
polynomial scaling is shown by all many-particle systems with local interac-
tions. Famous examples are the Ising model, the Heisenberg model and the
Hubbard model.

A system that may hold the promise of a “digital” quantum simulator is
a system of laser–cooled trapped ions [25, 26, 78]. In this system, ions are
stored and laser–cooled in an electromagnetic trap in such a way that they
remain practically frozen in a specific region of space. The internal states of
an ion are used as a storage for a single qubit. Due to the relatively large
separation of the ions (about 10µm), the ions can be individually addressed
with lasers. Thus, the internal states of individual ions can be precisely ma-
nipulated and measured with very high efficiency. Furthermore, they can be
decoupled from the environment very efficiently. All this makes possible the
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implementation of one- and two–qubit gates [25] - the main building blocks of
universal quantum simulators. The two–quibit gates are thereby based on the
strong interaction between the ions via Coulomb repulsion. By a first laser–
pulse directed on one ion, the internal state of this ion is transferred to the
collective center–of–mass motion of all ions. A second laser–pulse directed
on another ion triggers the absorbtion of the state–dependent center–of–mass
motion by the ion. This way, a state–dependent interaction between 2 ions
is realized. Realizations of such systems have been achieved in numerous
experiments [96, 73, 79, 132].

Another system of interest for “digital” quantum simulations is a system
of cold atoms in optical lattices [66, 65]. Here, neutral atoms are loaded from
a Bose-Einstein condensate into an optical lattice via a quantum phase tran-
sition. Each qubit is stored in the internal states of an atom. The result is
an array of a huge number of identifiable qubits. These qubits cannot be ad-
dressed individually, but it is possible to apply massively parallel operations.
This is done by using two spin–dependent optical lattices: one that traps
the qubit state | 0 〉 and one that traps the qubit state | 1 〉. By shifting one
optical lattice by a single lattice-site, state–dependent controlled collisions
between adjacent atoms are induced. These state–dependent collisions real-
ize two–qubit gates that are the same for all adjacent qubits. This makes this
scheme very useful for the simulation of translational invariant systems [141].
In the laboratory, such scenarios have been realized in series of remarkable
experiments [54, 90].

Unlike the “digital” quantum computer, the “analog” quantum computer
realizes the desired time–evolution directly by using a system that evolves
according to the same physical equations, but can be controlled and mea-
sured more easily than the original system. This is very close to the idea of a
classical “analog” computer: for example, electrical phenomena are used to
model mechanical components, such as springs and dashpots, because they
are described in terms of equations that are essentially of the same form.
Also, physical simulations in wind tunnels may be considered as “analog”
computers. In the same spirit, one can simulate the dynamics of a compli-
cated quantum system by choosing a system that is described by the same
Hamiltonian but can be very well controlled and measured.

Many mathematical problems and ground–states of physical systems can
be investigated very well with an “analog” quantum computer by means of
adiabatic variations of the available parameters. This way of obtaining so-
lutions is referred to as “adiabatic quantum computation” [38, 23, 37, 151].
The prerequisite for such a method to work is that the solution can be en-
coded in the ground state of a Hamiltonian. This Hamiltonian is usually
referred to as problem Hamiltonian HP . Mathematical problems with this
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property are for example NP–complete combinatorial search problems like
3SAT and Exact Cover. The solution of those problems therefore reduces
to transforming the initial state of the quantum computer into the ground
state of the problem Hamiltonian HP . This is realized by making use of the
Adiabatic Theorem [9, 69, 46]: this theorem states that a system stays in
the instantaneous ground state if it evolves according to a Hamiltonian that
varies sufficiently slowly in time. Thus, the obvious thing to do is to construct
an “analog” system with a Hamiltonian that interpolates between a begin-
ning Hamiltonian HB whose ground state is easily prepared and the problem
Hamiltonian HP as a parameter is varied. The algorithm then consists in
preparing the quantum computer in the ground state of the beginning Hamil-
tonian and varying the parameter such that the Hamiltonian of the system
changes from the beginning Hamiltonian into the problem Hamiltonian. If
the parameter is varied sufficiently slowly, the Adiabatic Theorem guarantees
that the final state of the quantum computer will be close to the ground state
of the problem Hamiltonian. The measurement of the final state then yields
with a high probability of success the solution to the problem. The dura-
tion of the algorithm is related to this probability of success, because only
a time evolution that lasts for a sufficiently long time guarantees a slowly
varying Hamiltonian. In order to ensure a high probability of success, the
duration of the algorithm has to exceed a certain bound. The estimation of
this bound is fundamental for the discussion of adiabatic quantum compu-
tation, because this bound states whether adiabatic quantum computations
can surpass computations performed on classical computers. The Adiabatic
Theorem basically states that this bound is proportional to 1

∆2 , where ∆ de-
notes the minimum gap between the ground state energy and the energy of
the first excited state. As a consequence, level crossings between the ground
state and the first excited state that result in ∆ = 0 make the algorithm
fail. The investigation of the efficiency of adiabatic quantum computation
therefore consists in rigorously studying the spectrum of the interpolating
Hamiltonian [99].

A system that can be considered as an “analog” quantum simulator for
the Bose–Hubbard model [42] is the system of cold atoms in optical lat-
tices [66, 65]. The Bose–Hubbard model describes the physics of interacting
bosons on a lattice. It is closely related to the Hubbard model which origi-
nates from solid state physics and describes the motion of electrons between
the atoms of a crystalline solid. It can also be used for the effective de-
scription of other interesting physical systems like arrays of Josephson junc-
tions [11]. The phase diagram of this model is especially interesting because
of the competitions between two tendencies of the particles: the tendency
towards global coherence, due to the hopping of the particles, and the ten-
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dency towards localization induced by the strong interactions. From these
competitions two phases emanate: the superfluid phase with completely de-
localized particles and the Mott–phase where every particle has a fixed po-
sition. Realizations of transitions between these two phases by means of
bosons in optical lattices have been proposed theoretically [66] and observed
experimentally [54].

Other approaches for an “analog” quantum simulator are based on trapped
ions interacting with lasers. These approaches are capable of realizing effective-
spin models with Ising or the Heisenberg–like interactions [173, 122, 30] and
interacting–boson models [121, 31]. In case of the effective-spin models,
the spins are represented by the internal states of the ions. All ions are
driven by off-resonant laser beams propagating along the three spatial direc-
tions. The effect of these lasers is to exert a state–dependent force on the
ions that excites collective motions. These motions induce effective Ising or
Heisenberg–like interactions between the internal levels of the ions. In case of
the interacting–boson models, the bosons are associated with the vibrations
(phonons) of the ions. The anharmonicities in the trapping potentials give
rise to the effective phonon–phonon interaction.

In the following, we give two further examples of “analog” quantum sim-
ulators. In Chapter 8, a way to realize a Tonks-Girardeau gas by means of
atoms in an optical lattice is proposed. In chapter 9, extensions of the idea
to realize effective spin–models and interacting–boson models by means of
trapped ions interacting with lasers are discussed. It is shown that a wide
range of spatial dimensions and particle interactions may be achieved by
placing the ions in a regular structure induced by an optical lattice or arrays
of ion microtraps.



Chapter 8

Tonks–Girardeau Gas in a 1–D
Optical Lattice

Strongly correlated quantum systems are among the most intriguing and
fundamental systems in physics. Here the Tonks-Girardeau gas [51, 85], pro-
posed about 40 years ago, is especially remarkable. In such a gas, bosonic
particles are confined to one dimension, and repulsive interactions between
them dominate the physics of the system. In order to minimize their mutual
repulsion, the bosons are prevented to be at the same position in space. This
mimics the Pauli exclusion principle for fermions, resulting in pronounced
fermionic properties of the bosonic particles [51, 85]. Interestingly however,
these fermionized bosons do not exhibit either completely ideal bosonic or
fermionic quantum behaviour, which is for example reflected in their charac-
teristic momentum distribution [80]. Here we report on the preparation of a
Tonks–Girardeau gas of ultracold rubidium atoms held in a two–dimensional
optical lattice formed by two orthogonal standing waves. The addition of a
third, shallower lattice potential along the long axis of the quantum gases has
allowed us to enter the Tonks–Girardeau regime by increasing the effective
mass and thereby enhancing the role of interactions. We make a theoreti-
cal prediction of the momentum distribution based on an approach in which
trapped bosons acquire fermionic properties and find that it agrees closely
with the measured distribution.

8.1 Tonks–Girardeau Gas

The physics of ultracold 1–D Bose systems is drastically different from that
of ordinary 3–D cold gases [51, 85, 119, 34]. For example, by decreasing
the particle density n, a usual 3–D quantum many body system becomes
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more ideal, whereas in a 1–D Bose gas the role of interactions becomes more
important. The reason is that at temperatures T → 0 the kinetic energy of
a particle at the mean interparticle separation is K ∝ n2 and it decreases
with decreasing density n faster than the interaction energy per particle
I ∝ n. The ratio of the interaction to kinetic energy γ = I/K characterizes
the different physical regimes of the 1–D quantum gas. For a large value
of γ, the gas enters the Tonks-Girardeau (TG) regime, where the repulsion
between particles strongly decreases the wave function at short interparticle
distances.

Achieving such a TG regime and observing ”fermionization” of the 1–D
Bose system is a great challenge, and it is complementary to the current
experiments in which bosonic properties are observed in fermionic quan-
tum gases [67, 1, 176, 125]. The 1–D regime is obtained by tightly con-
fining the particle motion in two directions to zero point oscillations [119,
34, 109]. It was first demonstrated in experiments with weakly interacting
Bose-condensed trapped gases, where γ ¿ 1(see ref. [52, 136]). In ref. [53]
a tight radial confinement was realized by using two-dimensional optical lat-
tice potentials to create an array of one-dimensional quantum gases. In later
experiments with optical lattices [98, 149] it has become possible to reach a
one-dimensional regime with γ ≈ 1, i.e. in-between a weakly interacting 1–D
Bose condensed gas and a fermionized Tonks-Girardeau gas. So far, however,
it has not been possible to bridge the last one or two orders of magnitude
in γ that could bring the bosonic quantum gas fully into the TG regime.
Larger values of γ could either be reached by decreasing the density of the
quantum gas or by increasing the effective interaction strength between the
particles [119, 34].

In this work, we propose and demonstrate a novel idea of achieving the
TG regime. The main point is to include an additional optical lattice along
the 1–D gas, which results in an increase of γ. For a homogeneous gas, γ
can be expressed as γ = mg/~2n , where g is the one-dimensional interaction
strength, m the mass of a single atom and ~ denotes Planck’s constant divided
by 2π. The addition of a periodic potential along the third axis increases the
effective mass and thus leads to an increase of γ. In fact, in the limit in which
only the first Bloch band is occupied we have I = Uν and K = Jν , where
ν is the filling factor, U the on-site interaction energy and J the tunnelling
amplitude, and thus γ = U/J . Additionally, in order to achieve a pure TG
regime in a lattice, the filling factor ν should be smaller than unity. Otherwise
doubly occupied sites would be present and the direct correspondence to the
TG gas would be lost. Following these ideas we have been able to enter the
TG regime with γ ≈ 5− 200. In this regime, the bosons can be theoretically
described using a fermionization approach [35, 77]. For γ →∞, the ground
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state of N bosons at zero temperature is described by the many body wave
function

Ψ0(x1, x2, . . . , xN) ∝ |det [ϕi(xj)]| , i, j = 1, . . . , N (8.1)

where det denotes the Slater determinant, and ϕi(x) is the ith eigenfunction
of the single-particle Hamiltonian. The presence of the Slater determinant
guarantees that the wave function vanishes whenever two particles occupy
the same position in space. However, the absolute value of the determinant
ensures that the wave function for the bosons remains completely symmetric.
This wave function reflects the fundamental similarities between strongly
interacting bosons and non-interacting fermions in 1–D, with properties such
as the spatial density distribution, the density-density correlation function,
or the entropy of the gas being the same as in the case of non-interacting
fermions. More interestingly though, several properties are strongly modified
by the presence of the absolute value of the determinant, leading to a unique
behaviour of e.g. the momentum distribution of the TG gas [80]. This can
be understood qualitatively in the following way: the bosonic particles in a
TG gas are not allowed to occupy the same position in space. Due to this
restriction, they are distributed over a more extended region in momentum
space than in the case of an ideal or weakly interacting Bose gas. On the
other hand, in order to keep themselves apart from each other, they do not
need to be in different momentum states, as it would be the case for fermions.

8.2 Experimental Realization

Let us first describe the experimental realization together with the measured
data and then provide a detailed theoretical analysis of the system. In or-
der to reach the regime of low filling factor we start with a rather small
Bose-Einstein condensate (BEC) of approximately 4 × 104 87Rb atoms in a
magnetic trap. Then the BEC is loaded into a two-dimensional optical lat-
tice potential (along the y- and z-axes) such that an array of one-dimensional
quantum gases is created (see Fig. 8.1a). The lattice potential is formed by
superimposing two orthogonal standing waves with a wavelength of 823nm
on top of the BEC. In order to transfer the atoms into the optical poten-
tial, the potential depth of the optical lattice is first gradually increased to
a mean final value of 27ER (see Fig. 8.1b). Here ER is the recoil energy
~2k2/2m, with k describing the wave vector of the lattice laser light. During
this ramp up of the lattice potentials, the tunnel coupling between the dif-
ferent one-dimensional quantum gases decreases exponentially. This results
in a decoupling of the quantum gases, such that particle exchange between
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Figure 8.1: (a) Experimental sequence and momentum profiles. (b) Using
a 2–D optical lattice potential, we realize an array of 1–D quantum gases.
(c) These quantum gases are created by first increasing the optical lattice
depths along the y and z axes in an exponential ramp over a time of 160ms
(time constant t = 40ms) to a mean final value of 27ER. After a further
hold time of 10ms at this final lattice depth, we increase the optical lattice
potential along the x axis within a time of 20ms (time constant t = 10ms)
to a variable lattice depth Vax. The quantum gases are then allowed to
equilibrate for another 30ms before we probe the momentum distribution
as described in the text. (d) Typical time-of-flight images after a ballistic
expansion of the atom clouds over a time of 16ms for an axial optical lattice
depth Vax = 6.5Er. The white dashed lines denote the area from which
averaged momentum profiles along the x axis are extracted.
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different tubes is suppressed. For the maximum lattice depth, the Gaussian
shape of the laser beams (150µm waist) leads to an axial harmonic confine-
ment of the 1–D gases with a trapping frequency of ωax ≈ 2π × 60Hz. This
has been verified by exciting a sloshing motion of the thermal cloud and
by parametric heating measurements, which both agree with the calculated
value. Furthermore, the depths of all standing wave potentials have been
measured by vibrational band spectroscopy [113]. For such onedimensional
quantum gases, without a lattice in the axial direction, we have γ ≈ 0.5 near
the lattice centre.

After a further hold time of 10ms, we add an optical standing wave along
the axial direction (x-axis) in order to increase γ. The intensity of the laser
forming this lattice potential (operated at a wavelength of 854nm) is ramped
up to a final depth Vax of up to 18.5ER. The axial momentum distribution of
the quantum gases is subsequently probed by suddenly removing all optical
and magnetic trapping potentials and by imaging the atom clouds after a
time-of-flight period of 16ms. In order to prevent a strong expansion of the
atom cloud along the propagation axis of the imaging laser beam (z-axis),
which would make the experiment more sensitive to misalignments in the
imaging axis, we reduce the confinement along this axis by lowering the z-
lattice potential to 6ER within a time of 100 s before initiating the ballistic
expansion sequence. Also, along the x-axis we use a ramp down, which is
not fully non-adiabatic and leads to a narrowing of the Gaussian envelope
in the observed momentum distribution by approx. 20%. This enhances
the number of atoms in the central momentum peak. From the absorption
images we extract profiles of the axial momentum distribution by averaging
horizontal profiles through the centre of the atom cloud (see Fig. 8.1c).

In figures 8.2 and 8.3 we show six experimentally measured momen-
tum profiles (see figures 8.5, 8.6 and 8.7 for all experimentally measured
profiles) corresponding to different values of the axial optical lattice depth
(Vax/ER = 0 − 18.5). In Fig. 8.2(a) there is no lattice present along the
x-axis, and thus no first order diffraction peak appears. Here, the value
of γ ≈ 0.5 at the trap centre. For the rest of the figures we can use the
relation γ ∼ U/J obtaining γ ∼ 5 − 200, which indicates that one enters
the TG regime rather rapidly when increasing the axial lattice depth. In
the figures we also plot our theoretical predictions based on fermionization
at finite temperature averaged over the different one dimensional tubes (see
methods). Apart from a normalizing factor for each experimental curve, only
the atom number in the central tube is used as an overall adjustable param-
eter in this model. This atom number is however kept constant between
different momentum profiles. The initial temperature for the lowest axial
lattice depth Vax = 4.6ER has been obtained through a finite temperature fit
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Figure 8.2: Momentum profiles of the 1–D quantum gases for different axial
lattice depths. In (b)-(f), the experimental data (blue circles) are displayed
together with our theoretical predictions (black line) based on fermioniza-
tion at finite temperatures, averaged over the different 1D tubes. In order
to emphasize the linear part of the momentum profiles, an auxiliary straight
line with the corresponding slope is shown in each plot. In (c), the momen-
tum profiles for the ideal Bose gas (green dotted lines) and the ideal Fermi
gas (yellow dashed lines) are also displayed for comparison. For all plots,
an atomic distribution characterized by an atom number N0,0 = 18 in the
central tube is used, for which we have found the best agreement with the
experimental data (see Methods). In the insets of (b)-(f), the density profile
of a single 1–D tube with N = 15 particles at the corresponding temperature
and lattice depth is shown for the fermionized gas (black lines in plots (b)-(f)
), for the ideal Fermi gas (yellow line in (c)), and for the ideal Bose gas (green
line in (c)).
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Figure 8.3: (Continuation of Fig. 8.2) The values of the axial lattice depths
Vax, the average temperatures, the slopes a of the linear part of the momen-
tum profiles, and the values of γ = U/J are: (b) 4.6ER and kBT/J = 0.5
(Tonks), α = 1.90, γ = 5.5; (c) 7.4ER and kBT/J = 0.7 (Tonks),
kBT/J = 1.6 (ideal Bose gas), kBT/J = 0.7 (ideal Fermi gas), α = 1.4,
γ = 13.7; (d) 9.3ER and kBT/J = 0.9 (Tonks), α = 1.2, γ = 23.6; For the
momentum profile without the axial lattice (a), we find α = 2.2 and γ = 0.5
at the center of the trap. (e) 12ER and kBT/J = 1.3 (Tonks), α = 0.8,
γ = 47.6; (f) 18.5ER and kBT/J = 3.9 (Tonks), α = 0.6, γ = 204.5.

to the corresponding momentum profiles using our fermionization approach.
From this initial temperature the temperatures of the quantum gases at in-
creasing lattice depth Vax have been modelled by assuming conservation of
entropy during the ramp up of the axial lattice. For all twelve experimen-
tally measured momentum profiles we find an excellent agreement with the
theory based on fermionization. For reference, we have plotted the results
obtained assuming an ideal Bose or Fermi gas, also averaged over all the one
dimensional tubes and at finite temperatures (see e.g. Fig. 8.2c).

8.3 Momentum Distribution

Let us discuss the momentum distribution in more detail. For a homoge-
neous gas at zero temperature and in the thermodynamic limit, the low
momentum distribution in the Tonks gas regime exhibits a power law decay
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Figure 8.4: Momentum profiles of a single 1D tube obtained from our
fermionization-based theory for different lattice depths. The plots are shown
for axial lattice depths Vax of 5.0ER (a), 9.5ER (b), and 12.0ER (c). For all
plots, the number of particles is N = 15, and b = 8 × 10−4ER (this value
of b corresponds to the trapping frequency of the experiment; see Methods).
In each plot, the log-log momentum profile at kBT/J = 0 (black line) is dis-
played together with that at kBT/J = 1.0 (orange dashed line). The density
profiles at kBT/J = 0 and kBT/J = 1.0, together with the corresponding
lattice-harmonic potential, are shown in the inset of each plot. Note that
at kBT/J = 0, finite size effects make the slope at low momenta deviate
from the ideal 1/2. The slope α is larger than 1/2 for small filling factors
(α = 0.79 in (a) ), it approaches 1/2 as a Mott phase is developed at the
centre of the trap (α = 0.49 in (b) ), and it decreases to zero deep in the
Mott phase (a = 0.29 in (c) ).
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as 1/
√

p (ref. [80]). Therefore, a log-log plot for the momentum distribution
of such a system should show a linear behaviour with slope 1/2. However,
here we are considering a system with a finite number of particles (about 20
per tube) in a lattice, in the presence of a harmonic trap, and at finite tem-
peratures. Our fermionization-based theoretical treatment of such a finite
inhomogeneous Tonks gas predicts pronounced deviations of the momentum
distribution from the “ideal” 1/2 behaviour (see Fig. 8.4), in agreement with
the experimental data. Let us qualitatively explain this non-ideal behaviour
of the momentum distribution. For an infinite lattice system, the only char-
acteristic momentum is pν = ~ × 2πν/λ related to the mean interparticle
separation, where λ is the wavelength of the axial lattice laser light and the
filling factor ν is here smaller than 1/2. For ν ≥ 1/2 the lattice system can
be viewed as a system of holes undergoing tunneling, and the filling factor
ν in pν is replaced by 1 − ν, ensuring the particle-hole symmetry of the ho-
mogeneous lattice system. For momenta p ¿ pν the momentum distribution
exhibits a linear 1/2 behaviour, and for larger p it is strongly affected by short
range correlations [110], which tend to increase the 1/2 slope. Note that for
the case of ν = 1/2, pν is the closest to the lattice momentum ~× 2π/λ, and
the momentum distribution is the least affected by short range correlations.
The trapping potential and finite temperature introduce two new momen-
tum scales, below which the slope has a tendency to decrease [77, 18]. Those
are the momentum pL = ~ × π/L related to the finite size L of the system,
and pT = ~ × π/LT , where LT ≈ λJ sin πν/kBT is a characteristic length
determined by the temperature. In our experiment we have pL < pT ∼ pν .
Therefore, finite size and temperature effects overlap with effects of short
range correlations, leaving no space for the ideal 1/2 behaviour. This ex-
plains the characteristic features of the log-log momentum profiles observed
in the experiment:

1. A rather flat momentum distribution at small p, which extends to larger
momenta with increasing lattice depth, since the ratio of temperature
to tunneling slightly increases.

2. A linear region with slope larger than 1/2 at larger p.

Remarkably, the value of the slope decreases with the lattice depth, and the
ideal 1/2 value is recovered on approach to the Mott insulator transition [42,
66, 54, 145, 76]. This is a fundamental feature that is present irrespective
of the number of particles and trap frequency. It is related to the fact that
in the trapped case the characteristic average filling factor of the system
increases with the lattice depth, since tunneling decreases and particles try
to accumulate near the trap centre. At the Mott insulator crossover, where
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the filling factor at the trap centre is equal to unity, the average filling factor is
close to ν = 1/2 (see methods). This is the value for which the effects of short
range correlations are strongly suppressed in a uniform lattice system. Note,
finally, that in the weakly interacting regime for a trapped quasicondensate
one should have a Lorentzian momentum distribution [126], which would
correspond to a slope close of 2 for p À ~×π/LT . Already for low axial lattice
depths Vax we observe a smaller slope, which emphasizes a strong difference
of our system from previously studied one-dimensional quasicondensates.

8.4 Methods

In the following, we develop the theoretical treatment based on fermioniza-
tion that we have used above to model the experiment. We consider N
bosonic atoms moving in the lowest band of a 1–D lattice and experiencing
an additional harmonic potential. This situation is described by the Bose-
Hubbard Hamiltonian H = HB + V , where

HB = −J

∞∑

l=−∞

(
a†l al+1 + a†l+1al

)
+ b

∞∑

l=−∞
l2a†l al

V = U

∞∑

l=−∞
a†2l a2

l

The first term describes the motion of the atoms in the combined lattice-
harmonic potential, and the second one accounts for on-site interactions. The
bosonic operators al annihilate one boson at the lth site, and fulfil canoni-
cal commutation relations [al, a

†
l′ ] = δll′ . The parameter b is related to the

frequency ω of the harmonic potential by b = 1/8mω2λ2.

8.4.1 Fermionization

We will be interested in the strongly interacting or Tonks regime, in which
two atoms cannot occupy the same lattice site. Within this regime, the
bosonic operators al can be re-expressed using the Jordan-Wigner transfor-
mation [130] (JWT) in terms of fermionic ones cl fulfilling [al, a

†
l′ ]+ = δll′ .

Under the JWT the interacting Bose Hamiltonian HB is transformed into a
non-interacting fermionic Hamiltonian HF , through the replacement al → cl.
In order to predict the behaviour of the different bosonic observables, one
has to transform them into fermionic ones via the JWT, and then evalu-
ate the corresponding expectation values for the fermionic ground state. At
T = 0 the fermionic ground state is given by the Slater determinant of
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eqn. (8.1). At a finite temperature T the wave function is a mixture of dif-
ferent Slater determinants characterized by the many-body density matrix
ρ ∝ exp(−HF /kBT ), where kB is Boltzmann’s constant.

8.4.2 Density and momentum distribution

The particle density n(x) coincides with that of non-interacting fermions,
since the JWT maps the corresponding bosonic observable onto the same
fermionic one (e.g. a†l al → c†l cl). Under the Thomas-Fermi approximation
we have

n(x) =
1

π
arccos

(
max

[
µ− bx2

−2J
,−1

])
,

if µ − bx2 > −2J and zero otherwise. The size L of the cloud is L =
λ
√

(2J + µ)/4b, and µ is determined by imposing that the total number of
particles is N . When µ ≥ 2J a Mott phase is produced at the center of the
trap, and n(x = 0) is equal to 1. At this point the average filling factor of
the system ν = λN/2L ≈ 3/

√
2π , a value which is close to 1/2.

The momentum distribution n̂(p) is related to the one-particle correlation
function 〈a†l al′〉 through

n̂(p) = |φ(p)|2
∞∑

l,l′=−∞
eip(l−l′)〈a†l al′〉,

where φ(p) is the Fourier transform of the Wannier function, and p denotes
momentum in units of ~k. Using the JWT the bosonic one-particle correla-
tion function can be re-expressed as

〈a†l al′〉 = 〈c†l (−1)
∑

l>m>l′ c
†
mcmcl′〉,

where l > l′. Making extensive use of Wick’s theorem, one can re-express
this quantity as a Töplitz determinant 〈a†l al′〉 = det [Gl,l′ ], where Gl,l′ is a
(l − l′)× (l − l′) matrix with elements

(Gl,l′)x,y = 〈c†l′+y−1cl′+x〉 − δx,y−1/2.

Therefore, in order to evaluate the momentum distribution at a finite tem-
perature T one has to determine the one-particle correlation functions for a
non-interacting Fermi system at that temperature. We have used the Grand
Canonical Fermi-Dirac distribution and the exact eigenstates ϕi(x) of the
single-particle Hamiltonian to determine the momentum distribution in this
way.
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8.4.3 Averaging

In order to give a quantitative prediction for the experimental situation, we
have averaged the momentum distribution for different tubes. To determine
the atomic distribution, we have assumed that during the ramp up of the
two-dimensional optical lattice potential tunnelling becomes negligible, and
we have an array of independent 1–D gases. For each tube we have assumed
a Thomas-Fermi density profile. Minimizing the total energy of the array
with respect to the number of atoms in each of the tubes, we obtain

Ni,j = N0,0

(
1− 5N

2πN0,0

(i2 + j2)

)3/2

,

where Ni,j is the number of atoms in a tube located at position (i, j) in the
two-dimensional optical lattice, N is the total number of particles in the
array, and N0,0 is the number of particles in the central tube. It follows that
the probability of having a tube with M particles is

P (M) =
2

3

1

N
2/3
0,0 M1/3

,

where M ≤ N0,0. Remarkably, this distribution only depends on one param-
eter, namely, the number of particles in the central tube, which is the only
adjustable parameter in our model.

The temperature of each 1–D quantum gas has been calculated assuming
adiabatic evolution of the system during the ramp up of the axial lattice.
Due to the presence of the harmonic confinement, the ratio kBT/J is not
conserved in the adiabatic evolution. Given the temperature at Vax = 4.6ER,
the conservation of entropy allows us to determine the temperature at the
final lattice depth Vax. The entropy of the TG gas coincides with that of the
non-interacting Fermi gas, since both have the same spectrum and density
of states. This results in the same temperatures for a TG gas and an ideal
Fermi gas, but a different temperature for the ideal Bose gas when the axial
lattice depth is increased. Note that tubes with different number of particles
also have different temperatures at the same lattice depth.
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Figure 8.5: Momentum profiles of the one-dimensional quantum gases for dif-
ferent axial lattice depths (a)–(l). The experimental data (blue dots) are dis-
played together with our theoretical predictions for a fermionized gas (black
line), an ideal Bose gas (green dotted line) and an ideal Fermi gas (yellow
dashed line). In order to emphasize the linear part of the momentum pro-
files an auxiliary straight line with the corresponding slope is shown in each
plot. For all plots an atomic distribution characterized by an atom number
N0,0 = 18 in the central tube is assumed (see methods).
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Figure 8.6: (continuation of figure 8.5) The temperatures for the Tonks and
ideal Fermi gas have been obtained in the same way as for Fig. 8.2. The
temperatures for the ideal Bose gas have been derived again assuming con-
servation of entropy for increasing axial lattice depths. In this case, the
initial temperature at Vax = 0 has been obtained using an ideal Bose gas fit
to low momenta for this momentum profile, where the ideal Bose gas is a
good description of the system.
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Figure 8.7: (continuation of figure 8.6) In plot (d) the momentum profiles for
the ideal Bose gas (green lines) are also displayed for different temperatures
and particle numbers in the central tube of kBT/J = 3.7, N0,0 = 16 (dash-
dotted green line) and kBT/J = 0.75, N0,0 = 20 (dashed green line). The
lattice depths and the slopes α of the linear part of the momentum profiles
are summarized in the table 8.4.3 together with the calculated temperatures
for a Tonks gas, an ideal Fermi gas and an ideal Bose gas.
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Fig. Lattice depth Slope Tonks and Ideal Ideal Bose Gas
(ER) Fermi Gas (kBT/J) (kBT/J)

(a) 4.6 1.9 0.5 1.1
(b) 5.6 1.73 0.56 1.25
(c) 6.5 1.58 0.62 1.41
(d) 7.4 1.44 0.69 1.58
(e) 8.3 1.31 0.77 1.77
(f) 9.3 1.17 0.87 2.02
(g) 10.2 1.05 0.99 2.27
(h) 11.1 0.95 1.13 2.56
(i) 12.0 0.84 1.29 2.90
(j) 12.9 0.75 1.49 3.29
(k) 13.9 0.66 1.76 3.82
(l) 18.5 0.59 3.93 8.0

Table 8.1: The lattice depths and slopes α of the linear part of the momentum
profiles shown in figures 8.5, 8.6 and 8.7. Also shown are the calculated
temperatures for a Tonks gas, an ideal Fermi gas and an ideal Bose gas.



Chapter 9

Quantum Phases of Trapped
Ions in an Optical Lattice

The merging of atomic physics and condensed matter physics has opened ex-
citing new perspectives for the creation and manipulation of quantum states
of matter. For example, cold atoms in optical lattices are a setup which al-
lows experimentalists to simulate quantum many-body lattice systems [7, 83].
In recent years, trapped ions have also been proposed as an experimental
system where a rich variety of quantum many-body models can be imple-
mented [94, 173, 122, 121, 31]. The advantage of trapped ions is that we
profit from the technology that has been developed for quantum information
processing [73, 78, 55, 132, 144, 116]. In particular, it is possible to measure
and manipulate the system at the single-particle level.

So far, previous proposals fall into two categories: (i) effective-spin mod-
els, in which the motion of the ions induces an effective interaction between
internal levels [173, 122, 30], and (ii) interacting-Boson models, in which the
vibrations (phonons) play the role of interacting particles [121, 31]. In this
work we show that these proposals may be scaled up to a wide range of spa-
tial dimensions, geometries, and particle interactions by placing the ions in
a regular structure. This structure may be induced by optical lattices or by
an array of ion microtraps.

The presence of the trapping structure offers us a way to increase the
dimensionality of the system beyond the traditional linear Paul trap scheme.
Further, it also opens up new possibilities for controlling particle interactions.
On one hand, since ions are tightly confined by individual trapping poten-
tials, their motion in any spatial direction can be used to induce spin–spin
interactions which decay with the third power of the distance. This situation
is to be compared with the case of Coulomb crystals confined in an overall
trapping potential, where vibrational phonons with small wavevector, cor-



92 Quantum Phases of Trapped Ions in an Optical Lattice

responding to highly collective vibrations, have a low-energy spectrum and
induce infinite-range spin–spin interactions only [122]. On the other hand,
in the optical lattice trapping scheme, we can control the anharmonicities of
the trapping potentials and engineer effective phonon–phonon interactions.
Thus, vibrational degrees of freedom may follow a Bose–Hubbard model along
the lines of Ref. [121].

The realization of a periodic trapping potential with an optical lattice is
a standard experimental method. In this work we focus on the study of the
quantum many-body phases which arise in such experimental setups. We
discuss two limiting cases. First, the case of small anharmonicities, and the
effective quantum spin models which can be implemented by using the ion
motion as a medium for inducing spin interactions among internal degrees
of freedom. Second, we discuss in more detail the ground vibrational state
in trapping schemes in which large anharmonicities induce phonon–phonon
interactions and allow mapping hard-core phonons onto S = 1/2 spins. We
focus on the case of periodic trapping potentials with interesting geometries,
e.g., the triangular lattice. This case provides us with a playground for
studying frustrated quantum magnets in a clean experimental setup. In this
way, trapped ions allow us to implement models which have attracted much
attention in condensed matter physics.

9.1 Microtraps

The starting point for all of the models in this work is a set of ions trapped in
individual microtraps. Such traps have been proposed in the literature to be
micro-fabricated, e.g., on surfaces [22], which allows for arbitrary geometries
of the resulting ion “crystal” and, in principle, gives the experimentalist great
control over the effective anharmonicity of the spatial ion motion near the
microtrap minima.

We propose an alternative scheme for creating microtrap potentials, post-
poning detailed calculations to a further publication [133]. Optical lattices
have been used extensively in experiments with cold atoms, which interact
mostly on short length scales and can populate d-dimensional lattices densely.
If a d-dimensional Wigner crystal, assembled in an electromagnetic trap, is
subjected to a sufficiently strong optical lattice potential, the spatial motion
of each ion is restricted to a region near the minimum of the lattice well
closest to the crystal equilibrium position. However, the effective amplitude
of a realistic optical lattice is much smaller than the repulsion of two ions in
the same or even neighboring lattice wells. Therefore, as opposed to exper-
iments with cold atoms, the optical lattice will be very sparsely populated
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with ions, but their strong interactions over large distances are nevertheless
sufficient for experimentally exploring the models presented in Section 9.3.
Depending on the stiffness of the Wigner crystal used as a starting point, the
optical lattice does not need to be so strong as to trap the ions by itself; it
is sufficient that the zero-point motion of the Wigner crystal is reduced by
the optical lattice (since the optical lattice increases the effective mass of the
ions) to the point where each ion is constrained to moving within a single
lattice minimum.

As we have already mentioned, many interesting models require signifi-
cant phonon–phonon interactions (see Section 9.2.3). The anharmonicity of
the Coulomb interaction in a Wigner crystal is insufficient for observing these
phenomena, and a harmonic normal-mode analysis captures the full physics
of low-energy ion motion. We can make use of the natural anharmonicity
of the sinusoidal optical lattice potential to introduce significant phonon–
phonon interactions. For a strong monochromatic optical lattice, the ions
are forced to the lattice minima, where the quartic anharmonicity is nega-
tive and corresponds to an effective phonon–phonon attraction. Much more
interesting phases result from repulsive phonon–phonon interactions, which
can be achieved by using an optical superlattice [43, 133]. In what follows
we assume such repulsive phonon–phonon interactions, irrespective of how
the microtraps are put in place.

9.2 Varying the Anharmonicity

This section describes three regimes of anharmonicities of the microtraps. If
the anharmonicities are negligible, the internal degrees of freedom of trapped
ions can be made to interact via dipolar phonon-mediated couplings. At the
opposite end, for strong anharmonicities the quantized vibrational modes
themselves describe a S = 1/2 spin model with XY interactions. In the
intermediate regime, the vibrational motion of the ions can be effectively
described by an interacting Bose–Einstein condensate.

9.2.1 No anharmonicity: short-range lattice Hamilto-
nians

In Ref. [122] a model is elaborated where internal states of trapped ions repre-
sent effective S = 1/2 spin degrees of freedom. In this model, the vibrational
modes of a self-assembled ion crystal in a harmonic trap mediate variable
interactions between the effective spins, allowing for controllable interactions
in all spin directions. A drawback of the proposed architecture is that the
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longitudinal vibrational modes, where the ion crystal moves as a whole in
the ion trap, are naturally slow (“floppy” modes) and lead to long-range fer-
romagnetic interactions. This limits the generality of the Hamiltonians that
can be constructed with such crystals of trapped ions.

If, however, local microtraps are added to the confining potential, then
this problem can be overcome by increasing the potential energy curvature in
all directions of motion of the individual trapped ions. In the simplest case,
adding the same isotropic harmonic microtrap potential to each ion, the dis-
persion and shape of normal modes of the ion crystal are unchanged except
for an overall shift in frequency corresponding to the curvature of the mi-
crotraps. Such a frequency shift renders the vibrational modes “stiff” for all
three spatial directions of each ion. Consequently the effective spin-1

2
degrees

of freedom of the trapped ions can be made to interact through Ising, XY,
or XYZ couplings, all of which have adjustable amplitudes and decay as r−3

since they stem from the dipole–dipole interactions of the ionic vibrations.
Ref. [122] further shows that if the phonon modes have only finite stiffness,
then next-nearest neighbor interactions can be suppressed, approaching ef-
fective nearest-neighbor Hamiltonians on arbitrary lattice geometries.

9.2.2 Small anharmonicity: interacting Bose–Einstein
condensate

The vibrational motion of a self-assembled ion crystal in a global trap is very
well approximated by a harmonic model, as was used in Sec. 9.2.1. At low
energies, cubic terms of the Coulomb interaction are unimportant because
the three-phonon processes they describe are highly nonresonant. Quartic
terms are smaller than the quadratic terms by roughly a factor of (ζ/d0)

2,
where ζ is the zero-point motion amplitude and d0 the inter-ion distance [129].
Since in realistic self-assembled trapped ion crystals ζ ¿ d0, quartic terms
(phonon–phonon interactions) and higher-order interactions can be safely
neglected.

This picture changes when microtraps are added to the local potentials
of the individual ions. In addition to the harmonic confinement, these mi-
crotraps can add significant anharmonicities Uα to the ionic vibrations. As
discussed in Refs. [121, 31], the spatial motion of trapped ions thus behaves
like a Bose–Hubbard model of phonons, with Hamiltonian

HBH =
∑

〈α,β〉
tα,β(a†αaβ + h.c.) +

∑
α

Uαnα(nα − 1) +
∑

α

Vαnα, (9.1)

where the indices α, β run over the 3N eigen-directions of motion of the N
ions. Here we assume that the quartic phonon–phonon interaction terms (an-
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harmonicities) do not couple different modes, even if the modes are localized
on the same ion. This decoupling occurs naturally in a cubic optical lattice;
however, irrespective of the microtrap geometry, we will assume throughout
this work that of the three directions of motion of each ion, only one is “ac-
tive” and contributing to the models we wish to study, while the other two
modes are off-resonant and do not influence the low-energy dynamics of the
active mode. This is achieved with strongly anisotropic prolate microtraps,
where one slow direction of motion is decoupled from the two fast directions
of motion.1 For example, in a three-dimensional cubic optical lattice where
one standing wave is much weaker than the other two, every lattice minimum
constitutes such a prolate microtrap.

Calling ~mα the direction of motion of the αth ion, the effective tunneling
matrix elements of the phonons are of the dipolar form

tα,β =
ζαζβe2

8πε0r3
α,β

[~mα · ~mβ − 3(~nα,β · ~mα)(~nα,β · ~mβ)], (9.2)

where e2/(4πε0) is the electrostatic coupling strength, ~rα,β = ~r
(0)
β −~r

(0)
α are the

equilibrium inter-particle spacings, and ~nα,β = ~rα,β/rα,β. The length scales ζα

are those of the harmonic-oscillator motion in the quadratic component of the
local microtrap potentials, related to the local potentials as ζα = ~/

√
mVα,

where m is the mass of the ions. In a homogeneous lattice of microtraps,
where all ~mα are equal, the angular dependence of Eq. (9.2) is proportional
to the Legendre polynomial tα,β ∝ −P2(~nα,β · ~m). In the following sections,
we will focus our attention on the central region of the trap, where the
tunneling coefficients tα,β and local potentials Vα are sufficiently isotropic to
be approximated by a translationally invariant model.

In the absence of anharmonicities (Uα = 0 ∀α), the Hamiltonian (9.1)
can be easily diagonalized. Irrespective of the signs of the tunneling matrix
elements tα,β, there will be a lowest-energy normal mode z (possibly degen-
erate by symmetry). The ground state in the canonical ensemble of fixed
phonon number n is simply (n!)−1/2(b†z)

n| g 〉, which can be interpreted as a
Bose–Einstein condensate (BEC) of phonons in mode z.

The BEC analogy can be extended to small but nonzero phonon–phonon
interactions Uα. With the canonical transformation aα =

∑
k Γα,kbk that

diagonalizes the harmonic part of the Hamiltonian (i.e., describes the normal
modes), the Hamiltonian is re-expressed as

HBH =
∑

k

Ṽknk +
∑

k1,k2,k3,k4

Uk3,k4

k1,k2
b†k1

b†k2
bk3bk4 , (9.3)

1Extensions of the present models to two or three ionic degrees of freedom are straight-
forward and do not introduce new physics if the degrees of freedom are separable.
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with the coefficients Uk3,k4

k1,k2
=

∑
α UαΓ∗α,k1

Γ∗α,k2
Γα,k3Γα,k4 describing interac-

tions between normal modes which deplete the BEC. When approximating
the central region of the ion crystal by a quasi-infinite periodic d-dimensional
lattice of N ions, the normal modes become Fourier modes

b~k = N−1/2
∑

j

aj exp(−i~k · ~rj).

The interaction of these modes conserves linear momentum:

H =
∑

~k

t̂(~k)n~k + UN−1
∑

~k1,~k2,~k3,~k4

b†~k1
b†~k2

b~k3
b~k4

δ(~k1+~k2),(~k3+~k4),

where t̂(~k) =
∑

~δ t(~δ)ei~k·~δ are the Fourier transformed tunneling couplings,

and n~k = b†~kb~k. In this approximation, a small interaction U partly depletes

the BEC at ~kz and broadens the structure factor around this momentum
component. The condensate depletion fraction is then [118]

nex

n0

=
1

N

∑

~k 6=~kz

1

2


 t̂(~k) + 2Un0√

[t̂(~k)]2 + 4Un0t̂(~k)
− 1


 , (9.4)

where n0 = n/N is the undepleted BEC density, and the dispersion relation

is shifted such that t̂(~kz) = 0.

9.2.3 Large anharmonicity: spin-1/2 XY models

In the limit of strong repulsion |Uα| À |∑β tα,β| ∀α and for low phonon filling
n < 1, double phononic occupancy is strongly suppressed, and the system
of phonons attains the hardcore limit, where phonons can be conveniently
mapped onto S = 1/2 spins via the Holstein–Primakoff transformation a†α →
S+

α , aα → S−α , nα → Sz
α + 1

2
. For each ion, the vibrational ground state | 0 〉

is then mapped onto the spin state | ↓ 〉, and the lowest excited state | 1 〉
onto the state | ↑ 〉. The resulting spin Hamiltonian has the form of an XY
model with long-range dipolar couplings and a site-dependent field:

HS = 2
∑

〈α,β〉
tα,β(Sx

αSx
β + Sy

αSy
β) +

∑
α

VαSz
α. (9.5)

Any spin–spin couplings for the z components must derive from off-site
density–density interactions between the phonons, namely from terms of the
form ninj. The only source of such interactions is the fourth-order terms
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of the Coulomb interaction between the ions; as discussed in Section 9.2.2,
they are smaller than the XY interaction by a factor of (ζ/d0)

2 and therefore
negligible. Nonetheless the implementation of the Hamiltonian of Eq. (9.5)
is of significant interest, because it offers the possibility of exploring the rich
physics of frustrated XY spin models in various dimensions, with a fully
tunable frustration. Detailed discussions of several such spin models and
associated quantum phases and phase transitions are provided in the next
section.

9.3 Frustrated XY Spin-1/2 Models

In this section we discuss several frustrated XY lattice spin models belong-
ing to the family described by the Hamiltonian of Eq. (9.5) and realizable
in linearly or planarly trapped ions. We henceforth assume for simplicity
uniform local potentials Vα = V in the trapping region; under the condition
of preparing the system with a well-defined number of phonons, we can then
discard the field term in Eq. (9.5). Moreover we focus on a half-filled sys-
tem of hardcore bosons, corresponding to the zero-magnetization sector of
the Hilbert space for the spin system. In the case of bipartite lattices, the
ground state of an XY antiferromagnet in this zero-magnetization sector can
be rigorously shown to coincide with that of a (more common) XY antifer-
romagnet without magnetization constraints and in zero field [92]. As for
frustrated lattices, this remains certainly true for finite-size systems, where
no spontaneous breaking of the Z2 symmetry of the Hamiltonian can occur.

We have focused on spin models with XY interactions, featuring full frus-
tration for two equivalent (and non-commuting) spin components, a paradigm
of quantum frustration. When using internal states of the ions to encode the
spin variable (Section 9.2.1), the effective spin–spin interaction which arises
is typically of Ising-like symmetry, and full frustration appears only for one
spin component at a time. Fine tuning of the system parameters would be
required to obtain a rotationally invariant Hamiltonian, e.g. in the XY plane.
On the other hand, when spins are encoded in the phononic states of each
ion (Section 9.2.3), the XY rotational symmetry is a robust property of the
Hamiltionan, as it stems from the conservation of the number of phonons.

Linear chain. The Hamiltonian of Eq. (9.5) on a linear chain, obtained
by strong transverse confinement of the ions, realizes an S = 1/2 one-
dimensional XY antiferromagnet with dipolar interactions. If we neglect
all interactions except nearest-neighbor ones, we recover an exactly solv-
able model [84] with power-law decaying correlations in the ground state,
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Figure 9.1: The zig-zag ladder with inter-chain distances r1 = d0

√
1 + ξ2

and intra-chain distances r1 = 2d0 . The motions of the ions in the direction
~m of the blue arrow are coupled to form a spin lattice model.

〈Sz
i S

z
i+r〉 ∼ r−2 and 〈Sx

i Sx
i+r〉 ∼ r−1/2. Long-range dipolar tunneling simply

modifies the decay exponents [30], leading to a faster decay of 〈Sx
i Sx

i+r〉 and
to a slower decay of 〈Sz

i S
z
i+r〉.

Zig-zag ladder. A richer physics emerges in the case of a zig-zag ladder
of ions, which develops naturally for weaker transverse confinement of the
ions [6, 131]. Assuming longitudinal inter-ion spacing d0 and a zig-zag am-
plitude ξ × d0, inter-chain neighboring ions are distant by r1 = d0

√
1 + ξ2

and intra-chain neighbors by r2 = 2d0 (see Fig. 9.1). The relevant phonon
direction of motion ~m in Eq. (9.2) is taken perpendicular to the main trap
axis and at an angle ϕ from the ion plane normal. Hence the ratio between
the dominant intra-chain (t2) and inter-chain (t1) couplings is

R =
t2
t1

=
1

8
× (1 + ξ2)5/2

1− 1
2
ξ2(1− 3 cos 2ϕ)

. (9.6)

In trapped-ion experiments with cylindrically symmetric traps, at ξ ≈ 0.965
spontaneously generated zig-zag ladders deform into helices [131]. For ϕ = 0
(out-of-plane vibrational motion) this limits the range of easily accessible
coupling ratios to R . 0.335. In practice, larger amplitudes ξ (and hence a
larger R) can be engineered by breaking the cylindrical symmetry of the trap
and constraining the ions to two dimension, or by microtrap stabilization [26].
However, choosing ϕ = π

2
instead (in-plane vibrational motion) gives access

to all ratios R > 1/8 for ξ < 1/
√

2. In what follows we therefore assume in-
plane vibrational motion. We use ξ and R interchangeably through Eq. (9.6).
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Figure 9.2: Dispersion t̂(k) of normal modes in an infinite zig-zag ladder with
dipolar couplings (ϕ = π

2
). The white line traces the minimum as a function

of the zig-zag amplitude ξ.

Figure 9.2 shows the normal-mode dispersion relation in the zig-zag lad-
der. For small zig-zag amplitudes ξ < ξ̂classical

dipole = 0.461 (R < 0.353) the

normal-mode dispersion t̂(k) has a unique minimum at kzd0 = π, corre-
sponding to Néel order; but for ξ > ξ̂classical

dipole this minimum bifurcates into
two symmetric minima at k±z d0 = π ± q(ξ), corresponding to spiral order.
This is to be compared with a similar result for the system with intra-chain
and inter-chain nearest-neighbor couplings only ({t1, t2} system), where the
transition from Néel to spiral order occurs at a smaller value of R = 1/4
in the limit of classical XY spins [58]. A spiraling ground state is endowed
both with spontaneous magnetic order, namely the breaking of the rotational
symmetry in spin space, and with chiral order, corresponding to the choice
of helicity of the spiraling state.

In a quasi-1D system we define the chirality as [63]

κi = 4(Sx
i Sy

i+1 − Sy
i Sx

i+1), (9.7)

where the sites i and i + 1 belong to different chains. A striking result in
quantum systems is that chiral order can survive even when magnetic order
disappears. In fact, the {t1, t2} XY zig-zag ladder with S = 1

2
is found in

Ref. [63] to exhibit power-law decaying spin–spin correlations for all values
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Figure 9.3: The chiral order parameter Oκ from Eq. (9.8b) in the ground state
of the zig-zag ladder (ϕ = π

2
), for the {t1, t2} model (blue) and long-range

dipolar interaction (red), computed from exact diagonalizations (Arnoldi)
with L = 8, 12, 16, 20 spins (top to bottom). The shaded bands indicate
2σ regions of the extrapolation to infinite system size by least-squares fits
including L−1 and L−2 corrections. The vertical line indicates the transition
point to long-range chiral order in the {t1, t2} model, estimated from DMRG
calculations [63]

.

of R, but it is also found to develop long-range chiral order for R > 1.26. We
extend the calculation of Ref. [63] to an XY ladder with dipolar interactions,
making use of exact diagonalization up to sizes L = 20. We define an order
parameter for the chiral phase as the averaged chiral correlation over all pairs
of the system:

O∆
κ =

1

L− 1− |∆|
∑

i

〈κiκi+∆〉 (9.8a)

Oκ =
1

2L− 3

L−2∑

∆=−(L−2)

O∆
κ . (9.8b)

Fig. 9.3 shows this chirality order parameter as a function of the zig-zag am-
plitude. For the {t1, t2} model, we confirm a relatively sharp transition to a
chirally ordered state for ξ ≈ 0.59 (corresponding to R ≈ 0.9), consistent with
the transition of Ref. [63]. The full long-range dipolar model essentially re-
tains this transition, shifted to slightly higher zig-zag amplitudes (ξ ≈ 0.63),
along with what seems like a reorientation transition around ξ ≈ 0.8 with
significantly higher chiral order, which is not observed in the classical limit.
At present we do not provide a description of the phase 0.8 < ξ < 1, but we
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Figure 9.4: Ion vibrational motion in the triangular lattice. The black (red)
lines show the t1 (t2) interactions in the τ1 (τ2) directions. Blue is a possible
direction of motion ~m, perpendicular to the τ1 direction and forming an angle
ϑ with the surface normal (green arrow).

point out that despite the perturbative appearance of the dipolar interaction
tails, they change the phase diagram of this zig-zag ladder drastically. This
effect is currently the subject of further study.

Triangular lattice. When put in a planar trap, ions self-assemble into a
triangular-lattice Wigner crystal [95]. Adding an optical lattice to this setup,
the degrees of freedom associated with the strongly non-linear vibrational
motion in the lattice minima can realize a large family of spatially anisotropic
XY triangular antiferromagnets. Unlike the case of the zig-zag ladder, we
consider fixed average ion positions here, and the model parameters are varied
by tilting the direction of motion of the ions ~m with respect to the lattice
normal. We further assume that ~m remains perpendicular to one of the
lattice directions, indicated by τ1, and makes an angle ϑ with the lattice
normal (see Fig. 9.4).

For ϑ = 0 the model of Eq. (9.5) realizes an isotropic triangular XY
antiferromagnet with dipolar couplings, and it is maximally frustrated. For
this system the minima of the normal-mode dispersion are on the corners of
the hexagonal first Brillouin zone, corresponding in the classical limit to the
well-known three-sublattice ordered state with 120◦ angles between the spin
directions on the sublattices [see Fig. 9.5(a)].

A nonzero angle ϑ produces a spatial anisotropy in the couplings, leav-
ing the intra-chain couplings along the τ1-axis unchanged while modifying the
transverse (inter-chain) couplings. The value ϑ ≈ 31◦ produces the minimum
effective interaction between the τ1-chains, in the sense that the normal-mode
dispersion t̂(~k) is least corrugated in the direction perpendicular to τ1. We
note that ϑ = 31◦ is also the point where the BEC depletion of Eq. (9.4) grows
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Figure 9.5: Phase diagram of the S=1/2 XY antiferromagnet on the spatially
anisotropic triangular lattice ({t1, t2} model). a) Classical spin ordering:
decoupled Néel-ordered horizontal (τ1) chains for t2/t1 = 0; three-sublattice
ordering for t2/t1 = 1; Néel order on the t2 lattice for t2/t1 ≥ 2. b) Proposed
quantum phase diagram for S = 1/2 spins, including three spin-liquid (SL)
phases.

fastest with U , approximating the 1D limit where the BEC is fully depleted
for any nonzero interaction U . At ϑ ≈ 42◦ the nearest-neighbor inter-chain
coupling vanishes, while residual weaker couplings to further neighbors sur-
vive due to the long-range nature of the dipolar interaction. On the opposite
end, a value of ϑ = π

2
maximizes the inter-chain nearest-neighbor interaction.

Thus by rotating the direction of vibration ~m with respect to the lattice plane
we produce a similar effect to that produced in the zig-zag ladder by defor-
mation of the Coulomb crystal. This different method is necessary because
tuning the interaction coefficients in the effective spin Hamiltonian by me-
chanical deformation of the ion crystal is problematic, due to the significant
stiffness of a two-dimensional Wigner crystal. The two approaches could
possibly be combined in order to cover a larger range of system parameters.

At the classical level, varying ϑ from zero continuously deforms the three-
sublattice structure of the ground state of the isotropic triangular antiferro-
magnet, shifting the peaks in the structure factor away from the corners of the
first Brillouin zone. For both zero and nonzero ϑ, the classical ground state
has a finite vector chirality, defined on a plaquette with counter-clockwise
labeled corners (i, j, k) as [71]

κ4 =
2

3
√

3
[~Si × ~Sj + ~Sj × ~Sk + ~Sk × ~Si]z, (9.9)
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Figure 9.6: Ground-state vector-chirality correlations ψ−/ψ̂− from Eq. (9.10),
given in terms of the theoretical maximum ψ̂− = 4

9
. Plotted here are the

correlations with the central plaquette pair, averaged over the simulation
volume. Black: PEPS 20x20 with D = 2. Red: PEPS 10x10 with D = 3.
Blue: exact diagonalization (Arnoldi) 4x4. Green: exact diagonalization 4x4,
periodic boundary conditions. Solid lines, squares: plaquette pairs share a
t1 link; dashed lines, circles: plaquette pairs share a t2 link. Points around
t2/t1 = 1, where the system is maximally frustrated, have been excluded
from the PEPS results due to poor convergence. The black dotted line is the
classical result.

and long-range chirality correlations, defined on plaquette pairs as [128]

ψ− = 〈(κ4 − κ5)(κ4′ − κ5′)〉, (9.10)

where the plaquette pairs (4,5) and (4′,5′) each share two spins. We find
that even in the quantum model it is numerically irrelevant which edge is
being shared (along the τ1 or a τ2 direction), as shown in Fig. 9.6.

In the quantum limit S = 1/2 we neglect the long-range dipolar tail of
interactions, restricting our attention to the case of nearest-neighbor intra-
chain (t1) and inter-chain (t2) couplings. According to the previous discussion
on the dependence of inter-chain couplings upon the angle ϑ, one can exper-
imentally span the range of parameter ratios 0 < |t2/t1| < 5/4; the sign of
t2/t1 is of no relevance since it can be reversed by a π rotation of every other
τ1-row of spins [with a corresponding modification to Eq. (9.9)]. We have
done calculations up to t2/t1 = 3/2, which may be experimentally accessible
by minor deformations of the Wigner crystal. Numerical treatment of the
two-dimensional model with exact diagonalization is restricted to very small
lattices, while other approaches such as quantum Monte Carlo are hindered
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by the sign problem due to frustration. We hence resort to a variational cal-
culation based on projected-entangled pair states (PEPS) [154, 101], which
allow us to look at much larger lattices than with exact diagonalization.
The calculations are performed on rhombic 10x10 and 20x20 lattices with
open boundary conditions; such boundary conditions, while being essentially
inherent to the PEPS method, are particularly welcome in a system devel-
oping incommensurate spiraling order due to frustration, and they moreover
mimic the natural boundary conditions realized experimentally in a finite
Coulomb crystal. Due to the significant scaling of the computational effort
with the bond dimension D of the variational PEPS basis, we limit ourselves
to the smallest bond dimensions (D = 2, 3) going beyond the mean-field limit
D = 1. Despite this aspect we still capture dramatic quantum features due
to the interplay between frustration and quantum fluctuations.

In Fig. 9.6 we report the evolution of chiral order upon increasing the
spatial anisotropy in the couplings. We observe strong indications for the
breakdown of chiral order around t2/t1 ≈ 0.6 and t2/t1 ≈ 1.3 via quantum
phase transitions. Indeed, at the classical level long-range chiral order is
expected for all t2/t1 < 2, as it is associated with the a spiral state with
a well defined helicity of the spirals; chiral order is expected to vanish only
for t2/t1 ≥ 2 (square lattice XY antiferromagnet). Quantum mechanically,
the limits t2 = 0 and t2/t1 → ∞ are well known to give a spin liquid with
algebraically decaying correlations, as already mentioned above, and long-
range Néel order [45], respectively. The way these two limits are attained
is nonetheless highly non-trivial, as clearly shown by the evolution of spin–
spin correlations upon changing t2/t1. In the following we will focus on the
spin–spin correlations along the τ1 direction (of the t1 couplings) and along
the τ2 direction (of the t2 couplings). In particular, we indicate with (i, j)
the position of a point in the (τ1, τ2) reference system, and for any inter-site
separation δ we average over all pairs of sites at a distance of δ, along τ1 and
τ2. For instance, for correlations along τ1, we define in analogy to Eq. (9.8a)

〈Si,jSi+δ,j〉 =
1

Nδ

∑

(i,j)δ

〈Si,jSi+δ,j〉, (9.11)

where Nδ is the number of sites (i, j)δ in the sum for which (i + δ, j) is
also within the simulation cell. Fig. 9.7 shows the spin–spin correlations
for different values of t2/t1. The correlations along the τ2 axis build up very
slowly upon increasing t2/t1, and they become significant only for t2/t1 ≈ 0.7,
consistently with the appearance of chiral order as observed in Fig. 9.6. Hence
in the interval 0 < t2/t1 . 0.6 the interplay between quantum fluctuations
and frustration leads to an effective decoupling between the τ1 chains. What
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Figure 9.7: Ground-state spin–spin correlation functions 4〈Sx
i,jS

x
i+δi,j+δj〉

along the τ1-direction (top, along t1 bonds) and along the τ2 direction (bot-
tom, along t2 bonds), averaged over the simulation volume as in Eq. (9.11).
Values of t2/t1 are {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.2, 1.3, 1.4,
1.5} from bottom to top, with the red lines indicating the shifted reference
lines of zero correlations. Points around t2/t1 = 1, where the system is max-
imally frustrated, have been excluded due to poor convergence of the PEPS
calculations. Simulation size was 20× 20 with bond dimension D = 2.
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Figure 9.8: Solid lines: comparison of the lowest six curves of the upper
panel of Fig. 9.7: τ1 structure factors 4(−1)δ〈Sx

i,jSi,j±δ〉 for t2/t1 = {0.1,
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(2 ≤ δ ≤ 5) reveal a transition from polynomial (black) to exponential (red)
decay around t2/t1 ≈ 0.4. Dashed line: τ2 structure factor 4(−1)δ〈Sx

i,jSi±δ,j〉
for t2/t1 = 1.3, showing exponential decay.

is then the state along each τ1-chain? Its evolution with increasing t2/t1 is
absolutely non-trivial and completely dominated by quantum effects. In fact,
classically a staggered ordering appears along each chain for t2 = 0 and it
turns continuously into (generally incommensurate) spiraling order for any
finite t2. The spiral order reproduces the three-sublattice structure of an
isotropic triangular lattice for t2 = t1, and it realizes Néel order on the t2-
lattice when t2/t1 ≥ 2. This evolution is sketched in Fig. 9.5(a). Quantum
mechanically, on the other hand, for t2/t1 ¿ 1 the dominant correlations
along each chain remain antiferromagnetic, and the decay of correlations
becomes stronger for larger t2: as shown in Fig. 9.8, the decay is initially of
the type 1/rK/2 with K = 1 at t2 = 0. K is seen to grow upon increasing t2:
the two-dimensional system hosts a one-dimensional Luttinger-liquid state on
each of the τ1-chains, with a non-universal K exponent. Even more strikingly,
the algebraically decaying staggered correlations turn to exponential decay
for 0.4 . t2/t1 . 0.6, where the state on each chain evolves from a gapless
to a gapped spin liquid. Only upon increasing t2/t1 further we observe that
long-range correlations build up again, this time with a spiraling structure.

When increasing t2/t1 above 1, a similarly non-trivial evolution of cor-
relations takes place. We observe that the loss of chiral order, occurring
at t2/t1 ≈ 1.3, is accompanied by a loss in correlations along the τ2 direc-
tion, rendering the τ1-chains again effectively decoupled. The state along
each τ1-chain appears to be again a gapped spin liquid, with exponentially
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decaying correlations. It is only for t2/t1 ≈ 1.5 that the system exhibits
long-range correlations in both the τ1 and τ2 directions, the latter of which
already exhibits a full Néel structure. Fig. 9.5(b) summarizes our quantum
phase diagram based on PEPS calculations, which exhibit three spin-liquid
phases: a gapless one and two gapped ones. The inclusion of long-range
dipolar interactions, which physically arise in the ion system, is at present
technically challenging; however, we expect the long tail of interactions to
give only small corrections to phases which develop a finite gap in the spec-
trum or finite long-range order in the model limited to short-range couplings,
as is the case for most phases in Fig. 9.5(b).

The study of quantum antiferromagnetism on the anisotropic triangular
lattice has recently attracted a deep interest in the case of Heisenberg inter-
actions, in connection with the physics of quasi-2D antiferromagnets such as
Cs2CuCl4 [28]. In particular, a similar phase diagram to the one presented in
Fig. 9.5(b) has been obtained in Ref. [174] by variational calculations. It is
extremely intriguing to observe that one of the most striking features of the
phase diagram predicted for the Heisenberg case [174], namely the emergence
of intermediate gapped spin-liquid phases in the system, is also present in the
case of XY interactions. Hence the evolution from a 1D gapless spin liquid to
a spiraling ordered state, and from spiral to Néel order, apparently acquires a
“universal” discontinuous structure: instead of a continuous deformation of
correlations in the ground state, exhibited by the classical system, the quan-
tum system first shows a complete loss of (quasi-)long-range correlations in
favor of a short-range spin-liquid state, and then a revival of correlations at
a different wavevector.

9.3.1 Preparation of the half-filled system

The results for the spin models in this section assume a ground state with zero
total magnetization, which corresponds to a phonon model with population
N/2 assuming N active degrees of freedom. Such a state may be more
easily prepared in the absence of anharmonicities, as a BEC of phonons
described in Section 9.2.2. The optical lattice constituting the microtraps is
subsequently switched on adiabatically, which transforms the BEC into the
half-filled ground state of the Bose–Hubbard Hamiltionian (9.1) and, for very
large anharmonicities, into that of the S = 1/2 spin model.

The phonon BEC at the starting point of this adiabatic passage cannot
be prepared by cooling a thermal population of phonons, since their number
is not conserved during the cooling process. Instead, we propose that the
harmonic trap holding the ion crystal is opened to the point where just the
lowest-frequency vibrational mode becomes soft. In a linear chain, for exam-
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ple, we open the radial confinement to the point where the chain acquires a
small zig-zag amplitude [6, 131]. The ion crystal is then cooled to its vibra-
tional ground state in the new symmetry-broken configuration, after which
the trap is rapidly closed to its original state. Depending on the amplitude
of this symmetry breaking, the final state of the system is a coherent state of
phonons in the lowest-frequency mode. In a sufficiently large system, adjust-
ing the mean number of phonons to the half-filling point results in a coherent
state which is not very far from a Fock state of exactly half filling.



Chapter 10

Conclusions

In summary, two specific examples of “analog” quantum simulators have been
discussed in this part.

In chapter 8, a method to realize a Tonks–Girardeau gas by means of an
optical lattice has been described. This method has been implemented ex-
perimentally and the experimental data has been compared to our theoretical
predictions. It has been shown that the bosonic atoms exhibit a pronounced
fermionic behaviour and show a momentum distribution that is in excellent
agreement with a theory of fermionized trapped Bose gases.

In chapter 9, a variety of quantum many-body Hamiltonians realized by
the anharmonic vibrations of ions trapped in the wells of a deep optical
lattice has been presented. While the dominant Coulomb interaction and
the overall trapping potential determines the geometry of the ionic Wigner
crystal, the optical lattice allows to engineer the phononic states for the
ions and it endows the system with a broad range of tunability. On the
one hand, one can control the effective on-site repulsion/attraction of the
phonons by modifying the optical lattice potential. In this way, one can
explore several regimes: a regime of essentially harmonic phonons, which
can mediate anisotropic spin–spin interactions between internal degrees of
freedom of the ions [122]; a regime of weakly interacting phonons, which, in
the case of a two-dimensional triangular-lattice Wigner crystal, condense in
a non-trivial finite-momentum state containing vortex-antivortex pairs; and
a regime of essentially hard-core phonons, which allows a mapping of the
phononic Hamiltonian onto a frustrated S = 1/2 XY model with spatially
anisotropic couplings that can be tuned by changing the orientation of the
optical lattice with respect to the ionic crystal. In this latter case, it has
been shown that an extremely rich physical picture can be obtained in the
case of a half-filled system of phonons: in particular, one can realize a gapless
spin-liquid phase with long-range chiral order in zig-zag ion ladders, and a
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variety of two-dimensional spin-liquid phases, either gapped or gapless, in the
case of a triangular Wigner crystal. Hence this setup offers a platform for
the exploration of highly non-trivial quantum phases and quantum critical
phenomena in tunable frustrated quantum magnets.



Part IV

Appendices





Appendix A

Code Examples

As a last part, we would like to give an idea of how to program the variational
methods explained in part II. We present two MATLAB functions, one for
the calculation of ground- and first excited states and one for the reduction
of the virtual dimension of matrix product states. We demonstrate these
functions by calculating the ground state and the first excited state of the
antiferromagnetic Heisenberg chain and simulating a time–evolution with
respect to this model. Furthermore, we use these functions to calculate the
partition function of the 2–D Ising Model and evaluate the scalar product of
two PEPS.

A.1 Minimization of the Energy

The function minimizeE optimizes the parameters of a matrix product state
in such a way that the expectation value with respect to a given Hamiltonian
tends to a minimum. The function expects this Hamiltonian to be defined in
a M ×N cell hset, where N denotes the number of sites and M the number
of terms in the Hamiltonian. Assuming the Hamiltonian is of the form

H =
M∑

m=1

h(1)
m ⊗ · · · ⊗ h(N)

m ,

the element hset{m,j} equals h
(j)
m . Further arguments are the virtual di-

mension of the resulting matrix product state, D, and the expected accuracy
of the energy, precision.

Output arguments are the optimized energy E and corresponding matrix
product state mps. The matrix product state is stored as a 1×N cell, each
entry corresponding to one matrix.
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Optionally, a matrix product state mpsB can be specified as an argument
to which the resulting state shall be orthogonal. This is especially useful for
calculating the first excited state.

function [E,mps]=minimizeE(hset,D,precision,mpsB)

[M,N]=size(hset);
d=size(hset{1,1},1);
mps=createrandommps(N,D,d);
mps=prepare(mps);

% storage-initialization
Hstorage=initHstorage(mps,hset,d);
if ~isempty(mpsB), Cstorage=initCstorage(mps,[],mpsB,N); end
P=[];

% optimization sweeps
while 1

Evalues=[];

% *************** cycle 1: j -> j+1 (from 1 to N-1) *************
for j=1:(N-1)

% projector-calculation
if ~isempty(mpsB)

B=mpsB{j};
Cleft=Cstorage{j};
Cright=Cstorage{j+1};
P=calcprojector_onesite(B,Cleft,Cright);

end

% optimization
Hleft=Hstorage(:,j);
Hright=Hstorage(:,j+1);
hsetj=hset(:,j);
[A,E]=minimizeE_onesite(hsetj,Hleft,Hright,P);
[A,U]=prepare_onesite(A,’lr’);
mps{j}=A;
Evalues=[Evalues,E];

% storage-update
for m=1:M

h=reshape(hset{m,j},[1,1,d,d]);
Hstorage{m,j+1}=updateCleft(Hleft{m},A,h,A);

end
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if ~isempty(mpsB)
Cstorage{j+1}=updateCleft(Cleft,A,[],B);

end
end

% *************** cycle 2: j -> j-1 (from N to 2) ***************
for j=N:(-1):2

% projector-calculation
if ~isempty(mpsB)

B=mpsB{j};
Cleft=Cstorage{j};
Cright=Cstorage{j+1};
P=calcprojector_onesite(B,Cleft,Cright);

end

% minimization
Hleft=Hstorage(:,j);
Hright=Hstorage(:,j+1);
hsetj=hset(:,j);
[A,E]=minimizeE_onesite(hsetj,Hleft,Hright,P);
[A,U]=prepare_onesite(A,’rl’);
mps{j}=A;
Evalues=[Evalues,E];

% storage-update
for m=1:M

h=reshape(hset{m,j},[1,1,d,d]);
Hstorage{m,j}=updateCright(Hright{m},A,h,A);

end
if ~isempty(mpsB)

Cstorage{j}=updateCright(Cright,A,[],B);
end

end

if (std(Evalues)/abs(mean(Evalues))<precision)
mps{1}=contracttensors(mps{1},3,2,U,2,1);
mps{1}=permute(mps{1},[1,3,2]);
break;

end
end
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% ********************* one-site optimization ***********************

function [A,E]=minimizeE_onesite(hsetj,Hleft,Hright,P)

DAl=size(Hleft{1},1);
DAr=size(Hright{1},1);
d=size(hsetj{1},1);

% calculation of Heff
M=size(hsetj,1);

Heff=0;
for m=1:M

Heffm=contracttensors(Hleft{m},3,2,Hright{m},3,2);
Heffm=contracttensors(Heffm,5,5,hsetj{m},3,3);
Heffm=permute(Heffm,[1,3,5,2,4,6]);
Heffm=reshape(Heffm,[DAl*DAr*d,DAl*DAr*d]);
Heff=Heff+Heffm;

end

% projection on orthogonal subspace
if ~isempty(P), Heff=P’*Heff*P; end

% optimization
options.disp=0;
[A,E]=eigs(Heff,1,’sr’,options);
if ~isempty(P), A=P*A; end
A=reshape(A,[DAl,DAr,d]);

function [P]=calcprojector_onesite(B,Cleft,Cright)

y=contracttensors(Cleft,3,3,B,3,1);
y=contracttensors(y,4,[2,3],Cright,3,[2,3]);
y=permute(y,[1,3,2]);
y=reshape(y,[prod(size(y)),1]);

Q=orth([y,eye(size(y,1))]);
P=Q(:,2:end);
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A.2 Time Evolution

The function reduceD forms the basis for the simulation of a time evolution.
It multiplies a given matrix product state with a given matrix product oper-
ator and reduces the virtual dimension of the resuling state, i.e. it searches a
matrix product state with reduced virtual dimension and minimal distance
to the original state. The matrix product state and the matrix product op-
erator are specified in the arguments mpsA and mpoX. As before, they are
represented by a cell with entries identifying the matrices. The reduced vir-
tual dimension is specified in the argument DB. The argument precision

defines the convergence condition: if fluctutions in the distance are less than
precision, the optimization is assumed to be finished.

The output argument is the optimized matrix product state mpsB with
virtual dimension DB.

function mpsB=reduceD(mpsA,mpoX,DB,precision)

N=length(mpsA);
dB=size(mpoX{1},3);
mpsB=createrandommps(N,DB,dB);
mpsB=prepare(mpsB);
% initialization of the storage
Cstorage=initCstorage(mpsB,mpoX,mpsA,N);

% optimization sweeps
while 1

Kvalues=[];

% *************** cycle 1: j -> j+1 (from 1 to N-1) *************
for j=1:(N-1)

% optimization
Cleft=Cstorage{j};
Cright=Cstorage{j+1};
A=mpsA{j}; X=mpoX{j};
[B,K]=reduceD2_onesite(A,X,Cleft,Cright);
[B,U]=prepare_onesite(B,’lr’);
mpsB{j}=B;
Kvalues=[Kvalues,K];

% storage-update
Cstorage{j+1}=updateCleft(Cleft,B,X,A);

end
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% *************** cycle 2: j -> j-1 (from N to 2) ***************
for j=N:(-1):2

% optimization
Cleft=Cstorage{j};
Cright=Cstorage{j+1};
A=mpsA{j}; X=mpoX{j};
[B,K]=reduceD2_onesite(A,X,Cleft,Cright);
[B,U]=prepare_onesite(B,’rl’);
mpsB{j}=B;
Kvalues=[Kvalues,K];

% storage-update
Cstorage{j}=updateCright(Cright,B,X,A);

end

if std(Kvalues)/abs(mean(Kvalues))<precision
mpsB{1}=contracttensors(mpsB{1},3,2,U,2,1);
mpsB{1}=permute(mpsB{1},[1,3,2]);
break;

end
end

% ********************* one-site optimization ***********************

function [B,K]=reduceD2_onesite(A,X,Cleft,Cright)

Cleft=contracttensors(Cleft,3,3,A,3,1);
Cleft=contracttensors(Cleft,4,[2,4],X,4,[1,4]);

B=contracttensors(Cleft,4,[3,2],Cright,3,[2,3]);
B=permute(B,[1,3,2]);

b=reshape(B,[prod(size(B)),1]);
K=-b’*b;
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A.3 Auxiliary Methods

The previous two functions depend on several auxiliary functions that are
printed in this section.

• Gauge transformation that prepares the MPS mpsB in such a form that
Neff is equal to the identity for the first spin (see [157]):

function [mps]=prepare(mps)

N=length(mps);

for i=N:-1:2
[mps{i},U]=prepare_onesite(mps{i},’rl’);
mps{i-1}=contracttensors(mps{i-1},3,2,U,2,1);
mps{i-1}=permute(mps{i-1},[1,3,2]);

end

function [B,U,DB]=prepare_onesite(A,direction)

[D1,D2,d]=size(A);
switch direction

case ’lr’
A=permute(A,[3,1,2]); A=reshape(A,[d*D1,D2]);
[B,S,U]=svd2(A); DB=size(S,1);
B=reshape(B,[d,D1,DB]); B=permute(B,[2,3,1]);
U=S*U;

case ’rl’
A=permute(A,[1,3,2]); A=reshape(A,[D1,d*D2]);
[U,S,B]=svd2(A); DB=size(S,1);
B=reshape(B,[DB,d,D2]); B=permute(B,[1,3,2]);
U=U*S;

end

• Initialization of storages:

function [Hstorage]=initHstorage(mps,hset,d)

[M,N]=size(hset);
Hstorage=cell(M,N+1);
for m=1:M, Hstorage{m,1}=1; Hstorage{m,N+1}=1; end
for j=N:-1:2
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for m=1:M
h=reshape(hset{m,j},[1,1,d,d]);
Hstorage{m,j}=updateCright(Hstorage{m,j+1},mps{j},h,mps{j});

end
end

function [Cstorage]=initCstorage(mpsB,mpoX,mpsA,N)

Cstorage=cell(1,N+1);
Cstorage{1}=1;
Cstorage{N+1}=1;
for i=N:-1:2

if isempty(mpoX), X=[]; else X=mpoX{i}; end
Cstorage{i}=updateCright(Cstorage{i+1},mpsB{i},X,mpsA{i});

end

function [Cleft]=updateCleft(Cleft,B,X,A)

if isempty(X), X=reshape(eye(size(B,3)),[1,1,2,2]); end

Cleft=contracttensors(A,3,1,Cleft,3,3);
Cleft=contracttensors(X,4,[1,4],Cleft,4,[4,2]);
Cleft=contracttensors(conj(B),3,[1,3],Cleft,4,[4,2]);

function [Cright]=updateCright(Cright,B,X,A)

if isempty(X), X=reshape(eye(size(B,3)),[1,1,2,2]); end

Cright=contracttensors(A,3,2,Cright,3,3);
Cright=contracttensors(X,4,[2,4],Cright,4,[4,2]);
Cright=contracttensors(conj(B),3,[2,3],Cright,4,[4,2]);

• Creation of a random MPS:

function [mps]=createrandommps(N,D,d)

mps=cell(1,N);
mps{1}=randn(1,D,d)/sqrt(D);
mps{N}=randn(D,1,d)/sqrt(D);
for i=2:(N-1)
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mps{i}=randn(D,D,d)/sqrt(D);
end

• Scalar product of the MPS mpsl with the MPS mpsr:

function [s]=scalarproduct(mpsl,mpsr)

N=length(mpsl);
d=size(mpsl{1},3);

s=1;
X=eye(d); X=reshape(X,[1,1,d,d]);
for j=N:-1:1

s=updateCright(s,mpsl{j},X,mpsr{j});
end

• Expectation value of the MPS mps with respect to the operator defined
in hset:

function [e,n]=expectationvalue(mps,hset)

[M,N]=size(hset);
d=size(mps{1},3);

% expectation value
e=0;
for m=1:M

em=1;
for j=N:-1:1

h=hset{m,j};
h=reshape(h,[1,1,d,d]);
em=updateCright(em,mps{j},h,mps{j});

end
e=e+em;

end

% norm
n=1;
X=eye(d); X=reshape(X,[1,1,d,d]);
for j=N:-1:1

n=updateCright(n,mps{j},X,mps{j});
end

e=e/n;
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• Contraction of index indX of tensor X with index indY of tensor Y (X
and Y have a number of indices corresponding to numindX and numindY

respectively):

function [X,numindX]=contracttensors(X,numindX,indX,Y,numindY,indY)

Xsize=ones(1,numindX); Xsize(1:length(size(X)))=size(X);
Ysize=ones(1,numindY); Ysize(1:length(size(Y)))=size(Y);

indXl=1:numindX; indXl(indX)=[];
indYr=1:numindY; indYr(indY)=[];

sizeXl=Xsize(indXl);
sizeX=Xsize(indX);
sizeYr=Ysize(indYr);
sizeY=Ysize(indY);

if prod(sizeX)~=prod(sizeY)
error(’indX and indY are not of same dimension.’);

end

if isempty(indYr)
if isempty(indXl)

X=permute(X,[indX]);
X=reshape(X,[1,prod(sizeX)]);

Y=permute(Y,[indY]);
Y=reshape(Y,[prod(sizeY),1]);

X=X*Y;
Xsize=1;

return;

else
X=permute(X,[indXl,indX]);
X=reshape(X,[prod(sizeXl),prod(sizeX)]);

Y=permute(Y,[indY]);
Y=reshape(Y,[prod(sizeY),1]);

X=X*Y;
Xsize=Xsize(indXl);
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X=reshape(X,[Xsize,1]);

return
end

end

X=permute(X,[indXl,indX]);
X=reshape(X,[prod(sizeXl),prod(sizeX)]);

Y=permute(Y,[indY,indYr]);
Y=reshape(Y,[prod(sizeY),prod(sizeYr)]);

X=X*Y;
Xsize=[Xsize(indXl),Ysize(indYr)];

X=reshape(X,[Xsize,1]);

• Economical singular value decomposition:

function [U,S,V]=svd2(T)

[m,n]=size(T);
if m>=n, [U,S,V]=svd(T,0); else [V,S,U]=svd(T’,0); end
V=V’;
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A.4 Examples

A.4.1 Ground State and First Excited State

As a demonstration of the function minimizeE from before, we show how
to calculate the ground-state and the first excited state of the Heisenberg
antiferromagnetic chain. We focus on a chain of length N = 10, and vary
D from 2 to 18. The results of the variational calculation we compare to
the results obtained via exact diagonalization. As can be gathered from
figure A.1 (left), the error |E−Eexact|/|Eexact| is of order 10−2 for D = 2 and
decreases below 10−8 for D = 18.

The code to obtain these results looks as follows:

N=10;
precision=1e-5;
D=5;
% Heisenberg Hamiltonian
M=3*(N-1);
hset=cell(M,N);
sx=[0,1;1,0]; sy=[0,-1i;1i,0]; sz=[1,0;0,-1]; id=eye(2);
for m=1:M, for j=1:N, hset{m,j}=id; end; end
for j=1:(N-1)

hset{3*(j-1)+1,j}=sx; hset{3*(j-1)+1,j+1}=sx;
hset{3*(j-1)+2,j}=sy; hset{3*(j-1)+2,j+1}=sy;
hset{3*(j-1)+3,j}=sz; hset{3*(j-1)+3,j+1}=sz;

end

% ground state energy
randn(’state’,0)
[E0,mps0]=minimizeE(hset,D,precision,[]);
fprintf(’E0 = %g\n’,E0);

% first excited state
[E1,mps1]=minimizeE(hset,D,precision,mps0);
fprintf(’E1 = %g\n’,E1);

A.4.2 Time Evolution

To demonstrate the function reduceD, we focus on the real time evolution
with respect to the Hamiltonian of the Heisenberg antiferromagnetic chain.
Starting state is a product state with all spins pointing in z-direction - except
the one at the center which is flipped. We evolve the state with the method
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Figure A.1: left: Error |E − Eexact|/|Eexact| of the energy of the ground
state and the first excited state of the N = 1 Heisenberg antiferromagnetic
chain, calculated using the variational method using MPS, as a function
of the virtual dimension D. right: Time evolution of the magnetization
of the central spin (and its neighbor) under the Hamiltonian of the N = 10
antiferromagnetic Heisenberg chain. The time evolution is calculated exactly
and via reduction of dimension of MPS (D=5). Starting state is a product
state with all spins pointing in z-direction - except the one at the center
which is flipped.

reduceD and calculate at each step the magetization mz of the central spin.
The results for a N = 10 chain and D = 5 can be gathered from figure A.1
(right). This figure also contains the results of an exact calculation.

The code for this example is the following:

N=10;
dt=0.03;
D=5;
precision=1e-5;
jflipped=5;

% magnetization in z-direction
oset=cell(1,N);
sx=[0,1;1,0]; sy=[0,-1i;1i,0]; sz=[1,0;0,-1]; id=eye(2);
for j=1:N, oset{1,j}=id; end;
oset{1,jflipped}=sz;

% time evolution operator
h=kron(sx,sx)+kron(sy,sy)+kron(sz,sz);
w=expm(-1i*dt*h);
w=reshape(w,[2,2,2,2]); w=permute(w,[1,3,2,4]); w=reshape(w,[4,4]);
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[U,S,V]=svd2(w); eta=size(S,1);
U=U*sqrt(S); V=sqrt(S)*V;
U=reshape(U,[2,2,eta]); U=permute(U,[4,3,2,1]);
V=reshape(V,[eta,2,2]); V=permute(V,[1,4,3,2]);
I=reshape(id,[1,1,2,2]);
mpo_even=cell(1,N);
mpo_odd=cell(1,N);
for j=1:N, mpo_even{j}=I; mpo_odd{j}=I; end
for j=1:2:(N-1), mpo_odd{j}=U; mpo_odd{j+1}=V; end
for j=2:2:(N-1), mpo_even{j}=U; mpo_even{j+1}=V; end

% starting state (one spin flipped)
mps0=cell(1,N);
for j=1:N

if j==jflipped, state=[0; 1]; else state=[1; 0]; end
mps0{j}=reshape(state,[1,1,2]);

end

% time evolution
mps=mps0;
mzvalues=[];
for step=1:50

fprintf(’Step %2d: ’,step);
[mps,K]=reduceD(mps,mpo_even,D,precision);
[mps,K]=reduceD(mps,mpo_odd,D,precision);
mz=expectationvalue(mps,oset);
mzvalues=[mzvalues,mz];
fprintf(’mz=%g\n’,mz);

end

A.4.3 Evaluation of Partition Functions

Another application of the function reduceD is the calculation of partition
functions of 2–D classical and 1–D quantum systems, as discussed in chap-
ter 2. In the following, we focus on the 2–D Ising model with open boundary
conditions.

As a first step, we have to reexpress the partition function as a contraction
of 4–index tensors X (see section 2.1). The calculation of these tensors
is performed by the subroutine createXising. The parameters that are
required are the coupling strengths (in all four directions) in units of 1/β.

The code for this subroutine is as follows:
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Figure A.2: left: Partition function of the 2–D Ising model as a function of
J/β. Dots (crosses) denote results for D = 2 (D = 8). The different colors
represent different lattice sizes (see legend). right: SRVB with horizontal
(vertical) dimers represented by red (blue) lines.

function [X]=createXising(Jl,Jr,Ju,Jd)

[fl,gl]=calcfg(Jl);
[fr,gr]=calcfg(Jr);
[fu,gu]=calcfg(Ju);
[fd,gd]=calcfg(Jd);

X=zeros(2,2,2,2);
for l=1:2

for r=1:2
for u=1:2

for d=1:2
for n=1:2

X(l,r,u,d)=X(l,r,u,d)+gl(n,l)*fr(n,r)*gu(n,u)*fd(n,d);
end

end
end

end
end

function [f,g]=calcfg(J)

w=[exp(-J),exp(J); exp(J),exp(-J)];
[f,s,g]=svd2(w); f=f*sqrt(s); g=sqrt(s)*g; g=g.’;
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Now, since the tensor network has been defined, it can be contracted in
an approximative way by reexpressing it as a time–evolution of a MPS. The
time–evolution is performed, as before, by means of the subroutine reduceD.

The code for contracting the network looks as follows:

N=[20,20];
beta=1;
D=6;
precision=1e-5;

% define upper matrix product state
X=createXising(beta,beta,0,beta);
for j=2:(N(2)-1)

mpsu{j}=permute(X(:,:,1,:),[1,2,4,3]);
end
X=createXising(0,beta,0,beta);
mpsu{1}=permute(X(1,:,1,:),[1,2,4,3]);
X=createXising(beta,0,0,beta);
mpsu{N(2)}=permute(X(:,1,1,:),[1,2,4,3]);

% define lower matrix product state
mpsd=mpsu;

% define matrix product operators
X=createXising(beta,beta,beta,beta);
for j=2:(N(2)-1)

mpo{j}=X;
end
X=createXising(0,beta,beta,beta);
mpo{1}=X(1,:,:,:);
X=createXising(beta,0,beta,beta);
mpo{N(2)}=X(:,1,:,:);

% perform the contraction
mps=mpsu;
logfactor=0;
for i=2:(N(1)-1)

% keep the mps normalized
n=sqrt(scalarproduct(mps,mps));
for j=1:N(2), mps{j}=mps{j}/(n^(1/N(2))); end
logfactor=logfactor+log(n);
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% time evolution step
[mps,K]=reduceD(mps,mpo,D,precision);

end
Z=scalarproduct(mpsd,mps);

% the result: the free energy
F=-1/beta*(log(Z)+logfactor);

Results for a several lattice–sizes and virtual dimensions D of the MPS
can be gathered from figure A.2 (left). Here, the free energy is plotted as
a function of J/β. It can be seen that convergence is achieved quickly with
increasing D. Note that these results differ slightly from the results obtained
in section 3.1 for periodic boundary conditions.

A.4.4 Scalar Product of two PEPS

As a last example, we show how the function reduceD can be used to ef-
ficiently calculate the scalar product of two PEPS. The method we use is
the one explained in chapter 4: we rewrite the scalar product as a contrac-
tion of a tensor network and perform this contraction by reexpressing it as a
time–evolution of a MPS.

We choose two short range valence bond states (SRVB), since these states
have an exact representation as PEPS and their scalar product can be eval-
uated exactly [88]. In particular, we assume that the first SRVB is made up
of horizontal dimers and the second SRVB of vertical dimers (see right part
of figure A.2).

The code for performing this scalar product is as follows:

N=[10,10]; % must be even
D=2;
precision=1e-5;

id=eye(2); sy=[0,-1i;1i,0];
f=id/2^(1/4); g=(-1i*sy)/2^(1/4);

% PEPS1: SRVB with horizontal dimers
peps1=cell(N);
for i=1:N(1)

for j=1:2:(N(2)-1)
peps1{i,j}=permute(f,[3,2,4,5,1]);
peps1{i,j+1}=permute(g,[2,3,4,5,1]);

end
end
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% PEPS2: SRVB with vertical dimers
peps2=cell(N);
for i=1:2:(N(1)-1)

for j=1:N(2)
peps2{i,j}=permute(f,[3,4,5,2,1]);
peps2{i+1,j}=permute(g,[3,4,2,5,1]);

end
end

% Tensor network
X=cell(N);
for i=1:N(1)

for j=1:N(2)
A=peps1{i,j};
B=peps2{i,j};
C=contracttensors(A,5,5,conj(B),5,5);
C=permute(C,[1,5,2,6,3,7,4,8]);
C=reshape(C,[size(A,1)*size(B,1),size(A,2)*size(B,2),...

size(A,3)*size(B,3),size(A,4)*size(B,4)]);
X{i,j}=C;

end
end

% upper matrix product state
mpsu=cell(1,N(2));
for j=1:N(2)

mpsu{j}=permute(X{1,j},[1,2,4,3]);
end

% lower matrix product state
mpsd=cell(1,N(2));
for j=1:N(2)

mpsd{j}=X{N(1),j};
end

% contraction
mps=mpsd;
logfactor=0;
for i=(N(1)-1):-1:2

% keep the mps normalized
n=sqrt(scalarproduct(mps,mps));
for j=1:N(2), mps{j}=mps{j}/(n^(1/N(2))); end



A.4 Examples 131

logfactor=logfactor+log(n);

% time evolution step
[mps,K]=reduceD(mps,X(i,:),D,precision);

end

% the result
s=exp(logfactor)*scalarproduct(mps,mpsu);

% the error
sexact=2^(prod(N)/4-prod(N)/2);
serr=(s-sexact)/sexact;

The precision of the results is very high, already for D = 2. For a 10×10
lattice, the relative error is of order 10−14. We note that the way we calculate
the scalar product here is not the most efficient one. For maximal efficiency,
the order in which all tensor are contracted has to be optimized, as described
in chapter 4.
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gen und hat mein Interesse an der theoretischen Physik gefördert. Besonderer
Dank gebührt auch meinen Kollegen und Betreuern Belén Paredes, Frank
Verstraete, Roman Schmied und Tommaso Roscilde, die mit mir zusammen
gearbeitet haben und deren Ideen viele Teile der Arbeit erst ermöglichten.
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