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Introduction 1

Introduction
The introduction of financial options delivered a valuable contribution to the efficiency of the

markets in the world. Investors seeking risks - speculators - can use financial options to obtain

large effects with little money. Investors avoiding risks - hedgers - can now buy insurances for

their portfolios at reasonable prices. In book 1, Chapter 11 of Politics, Aristotle already tells the

story of Thales of Miletus (624-547 BC) basically buying an option on olive crop. But, it took until

the 1970s where large volumes of financial options were traded at derivatives exchanges. Today,

the underlying problem of pricing and hedging options is well known and several approaches of

its solution have been proposed. Assuming a simple complete market without any transaction

cost, the Black-Scholes model has been most successful since its introduction 1973 [17].

Despite the beauty and simplicity of the Black-Scholes model, the efficient evaluation of many

exotic options remains challenging. It turned out quickly that analytic solutions e.g. from Mer-

ton [87] are by far not sufficient for the evaluation of traded securities. Consequently, a large

variety of procedures has been developed for the solution of the governing partial differential

Equation (PDE). Direct solvers are e.g. a finite differences method by Schwartz [103], the finite el-

ement method and the finite volume methods by Forsyth and Vetzal [50] resp. Zvan et al [124] as

well as a mesh-less method by Li et al [80]. A popular solver is the Cox-Ross-Rubinstein method

(CRR) [36], which discretizes the asset price process by a binomial tree and solves for the option

price by a simple recursion, which is easy to implement. But, the CRR method does not have as

good convergence properties as the other PDE methods.

A different approach solving for option prices in the Black-Scholes model focuses on the un-

derlying stochastic differential equation (SDE). This is done by simulating Monte Carlo paths

of the underlying asset and computing option prices as some expected value, presented first by

Boyle [21, 23, 53]. While option features such as an early exercise can easily be evaluated in a PDE

solver (cp. Forsyth and Vetzal [50]), this is hard for Monte Carlo methods. Carrière [32] presented

the first practical Monte Carlo method for the valuation of options with early exercise features in

1996, which became popular after being extended by Longstaff and Schwartz [81] in 2001. This

method is called Least-Squares Monte Carlo.

That means the main methods for option valuation are PDE solvers and Monte Carlo simula-

tion. On the one hand, for many pricing problems PDE solvers deliver highly accurate solutions
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in little time. This is especially true for low-dimensional pricing problems. But, not all of them

are low-dimensional. Especially path-dependent options often require the introduction of addi-

tional state variables. Reaching four or five dimensions, the pricing becomes usually infeasible

for current PDE and computer technology. On the other hand, Monte Carlo methods can price

options independent of the dimension of the pricing problem. But, these methods are converging

slowly such that highly accurate solutions often cannot be obtained. Additionally, the valuation

of high-dimensional financial derivatives with embedded options like an early exercise is still

challenging, even if the method of Carrièr [32, 81] is used.

This work will focus on pricing and hedging of derivatives with Monte Carlo simulation. In

some cases, direct numerical PDE solutions will be used as a reference. We will provide insight

into the versatile applications of regression methods for the Monte Carlo valuation. As a result,

very fast valuation procedures are developed: In some cases the methods developed in this dis-

sertation are the first of its kind which handle specific exotic options. Especially the pricing of a

high-dimensional Moving Window Asian option with early exercise and the implementation of a

moving window soft-call constraint of convertible bonds are solved for the first time in this thesis.

Prior technology could not cope with the high-dimensional pricing problem together with

an early exercise feature. The PDE method can deal with an early exercise feature easily, but

high-dimensional problems are unfeasible. Monte Carlo methods can deal with high-dimensional

problems, but an early exercise of a high-dimensional option pricing problem is hard to treat

correctly in the previous setting.

Another contribution of this thesis is the Simulation-Based Hedging method which connects

realistic models for the underlying with suitable pricing and hedging without a detour to a so-

called risk-neutral measure. The Simulation-Based Hedging has extraordinary properties: E.g.

using the Black-Scholes assumptions its convergence to the Black-Scholes prices is much faster

than the comparable Longstaff-Schwartz Least-Squares Monte Carlo [81]. Furthermore, the un-

derlying can follow any real-world process: The algorithm always computes the optimal hedging

strategy and thus attains realistic risk-adjusted prices and hedges. This can also be done using

multiple hedge instruments.

Consequently, the new Simulation-Based Hedging is a new pricing framework together with

a numerical method for the solution to option pricing problems in so called incomplete markets.

The whole setting of the framework is new, but related to risk minimization techniques for op-

timal hedging of financial options presented by several authors [46, 95, 47, 33]). Especially, the

setting of Simulation-Based Hedging can be seen as an extension to the variance minimization

presented by Schweizer [104] and the presented numerical solution is related to a method pre-

sented by Potters et. al. [96] resp. Pochart and Bouchaud [95].

The main results of this dissertation are:

• The usual Monte Carlo method is altered for a quicker evaluation: Extracting the main

features of the option’s payoff, a simple regression can accelerate the evaluation of path
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dependent derivatives significantly.

• A sparse basis for Least-Squares Monte Carlo is presented which allows to price Moving

Window Asian Options for the first time. This method is extended to the evaluation of

convertible bonds with complex rights of holders and issuers.

• A powerful Simulation-Based Hedging method has been developed, which determines

option prices and optimal hedges based on physical simulations of the underlying. This

method is an order of magnitude faster than the state of the art Least-Squares Monte Carlo

and can operate with much less restrictive assumptions on the market than the widely used

Black-Scholes model.



4 Introduction
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Chapter 1

Mathematical Foundations

1.1 Overview

This chapter summarizes the main mathematical tools needed for the pricing and hedging of

financial derivatives. Since this thesis focuses on regression methods, we first define what kind of

regression is meant and which properties of the method are required. Then, the different choices

of regression basis functions are presented. After summarizing the basics for derivatives pricing,

the chapter closes with the corresponding numerical implementation.

1.2 Regression Methods

In this section, we review the mathematical properties of different regression methods. We fo-

cus on least-squares regressions due to their desirable properties and extend the regression ba-

sis to special sparse basis functions in order obtain computational feasible methods for high-

dimensional regressions.

1.2.1 Basics

Before we start with the actual topic on regression methods we need to define some terminology.

The function f(x) is said to be of class Ck if the derivatives df

dx
, d2

f

dx2
, . . . , dk

f

dxk
exist and are

continuous. The function f(x) is said to be of class C0, if it is continuous. The function f(x)

is said to be of class C∞, or smooth, if it has derivatives of all orders.

Approximation by Regression

In the following, we want to show what kind of regressions are useful in the context of option

pricing and which properties they have. There are two main applications of the regression for

option pricing: One is the function approximation, the other is a variance minimization of a port-

folio.
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First, we start with the function approximation. Therefore we need to define our setting and

what we mean by an approximation.

Assumption 1 A data set (X,y), X ∈ Rn,s, y ∈ Rn is provided.

Assumption 2 The rows xi ∈ Rs of X := (x1, . . . ,xn)T are independent and identically dis-

tributed (i.i.d.) realizations of a random vector with a probability density function p(x),

which is non-zero everywhere on the cube D := [xmin,xmax] = ([xj,min, xj,max])j=1,...,s and

zero outside.

Assumption 3 The provided values of y = (y1, . . . , yn)T are noisy observations of f(xi), i =

1 . . . , n, with

yi = f(xi) + εi, i = 1 . . . , n

where εi is random with E[εi] = 0, independent of xi.

Assumption 4 The function f : Rs → R, f ∈ B has a representation f(x) =
∞∑

j=1

ajbj(x), x ∈ Rs,

where bj ∈ B, j = 1, . . . ,∞ are bounded basis functions bj : Rs → R of a vector space

B ⊂ C1 with ‖bj(x)‖∞ = cj < ∞, ∃x ∈ D : |bj(x)| > 0 j = 1, . . . ,∞.

Assumption 1 is clear. Assumption 2 explains that there is one stochastic variable which de-

termines the value xi at which a function is evaluated, while Assumption 3 explains that the func-

tion value plus a random noise is denoted by yi. Now, Assumption 4 contains a decomposition of

function f into basis functions with a continuous total derivative such that an approximation can

be defined properly. Note that Assumption 4 does not impose a restriction on a numerical eval-

uation using a subset of the basis functions since e.g. any continuous function can be uniformly

approximated by polynomials (Stone-Weierstrass Theorem [110]).

Theorem 1.1 Let Assumptions 1 to 4 be satisfied. Then the mapping given by

< b, f >r:=
∫

D

b(x)f(x)p(x) dx, x ∈ Rs (1.1)

with functions b(x), f(x) ∈ B and probability density function p(x) is a scalar product on B and thus B
is a Euclidian vector space, i.e. a real vector space B with a corresponding definition of a scalar product.

Proof We can prove Theorem 1.1 simply by comparing the conditions for a scalar product with

the corresponding expressions. This is straight forward, such that we omit the details. 2

The next thing we need is a stochastic approximation of this scalar product, which we provide

by the following theorem.
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Theorem 1.2 Let Assumptions 1 to 4 be satisfied. Then

lim
n→∞

1
n

n∑

i=1

f(xi)bj(xi) =< f, b >r

holds.

Proof With x := (x1 . . . , xs) ∈ D, xi := (xi
1 . . . , xi

s) ∈ D, i = 1, . . . , n and indicator function

Ix(xi) :=
{

1 if xi
j < xj ∀ j = 1, . . . , s

0 else

we define the empirical cumulative distribution function Fn(x) of n sample observations xi as

Fn(x) :=
1
n

n∑

i=1

Ix(xi),x ∈ D,

which means that
∫

D

fbj dFn =
1
n

n∑

i=1

f(xi)bj(xi).

From the Glivenko-Cantelli Theorem1 we know that Fn(x) → F (x) with true cumulative distri-

bution function F (x) almost surely and uniformly, i.e.

lim
n→∞

∫

D

fbj dFn →
∫

D

fbj dF

holds for all integrants which are bounded and continuous in the domain D. The integrand

f(xi)bj(xi) is continuous by Assumption 4 and since the integration domain D is bounded (As-

sumption 2), f(xi)bj(xi) is bounded everywhere on the domain D. Since p(x) is the total first

derivative of the cumulative distribution function F (x),
∫

D

fbj dF =
∫

D

b(x)f(x)p(x) dx =< b, f >r

holds, which completes the proof. 2

We defined an approximation for the scalar product, but our goal is to obtain an approximation

f̃(x) ≈ f(x) for any x in [xmin,xmax] based on the set of noisy observations (X,y). That means,

we first have to define what we mean by an approximation.

Definition 1.3 Let Assumptions 1 to 4 be satisfied. A local basis approximation f̃m of the function f

induced by the set of samples (X,y), X ∈ Rn,s, y ∈ Rn with function space Bm spanned by the basis

functions b1, . . . , bm ∈ B, is given by

f̃m(x) =
m∑

j=1

ãn
j bj(x), f̃m ∈ Bm ⊂ B, ãn

j ∈ R, j = 1, . . . , m

1See Fahrmeier et al [43], p.315.
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with coefficient vector ãm = A (X,y) , ãm = (ãn
1 , . . . , ãn

m)T iff

∀ε ∃N(ε) :

∥∥∥∥∥∥∥




a1

...
am


−




ãn
1
...

ãn
m




∥∥∥∥∥∥∥
∞

< ε, ∀n ≥ N(ε).

In the following, we state how one can obtain a suitable function A (X,y)), which determines

the coefficient vector ãm given the noisy observations and the basis functions of interest bj(x) ∈
Bm, j = 1, . . . , m, so that we obtain the local basis approximation.

Theorem 1.4 Let the Assumptions 1 to 4 be satisfied. The local basis approximation f̃m(·) of function

f(·) based on a set (X,y) of n noisy observations is given by

f̃m(x) =
m∑

j=1

ãn
j bj(x)

with ãm = (ãn
1 , . . . , ãn

m)T where

ãm = A (X,y)) = arg min
ãm

‖B(X)ãm − y‖2
=

(
B(X)T B(X)

)−1
B(X)T y (1.2)

with

B(X) :=




b1(x1) · · · bm(x1)
...

. . .
...

b1(xn) · · · bm(xn)


 .

See Appendix 7.2 for details of the proof.

Lemma 1.5 Let the Assumptions 1 to 4 be satisfied and f̃m(x) be defined as in Theorem 1.4. Then,

lim
m,n→∞

f̃m(x) = E[y|x].

Proof The order of the limits n →∞ and m →∞ is important:

lim
m→∞

(
lim

n→∞
f̃m(x)

)
= lim

m→∞


 lim

n→∞

m∑

j=1

ãn
j bj(x)


 = lim

m→∞




m∑

j=1

ajbj(x)




= f(x) = E [f(x)|x] = E [y − ε|x]

= E [y|x] ,

since E[ε|x] = 0.

2

Note: In a real application, the quotient nα

m should be constant in the limiting process; the

optimal exponent α depends on the smoothness of f and dimension s.2

2For a detailed proof and optimal exponent see Stentoft [108].
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Variance Minimization by Regression

To get a better understanding of what the local basis approximation can do for a variance mini-

mization, we look at an idea which dates back to 1979 when Ederington [42] showed that a static

minimum variance hedge ratio is simply defined as the ratio of the covariance of V and S to the

variance of S.3

Ederington argues that

β :=
cov(S, V )
var(S)

(1.3)

is the optimal hedge for V with some correlated underlying S in a single period market.

Our approach can be seen as a generalization to this idea to β(x) as a function of some un-

derlying state x ∈ Rs, such that optimal hedges for multi-period markets can be computed. That

means, we allow the optimal hedge to be conditional on the current state of the world x, and thus

we can compute optimal dynamic hedges in the following Chapters.

Given the random variables Ŝ, V̂ with E[Ŝ|x] = 0 and E[V̂ |x] = 0, dependent on state x, the

function

β(x) :=
cov(Ŝ, V̂ |x)

var(Ŝ|x)
(1.4)

shall be estimated from a sample {Ŝi, V̂ i,xi}, i ∈ {1, . . . , n}. From linear regressions of stochastic

variables we know that the definition of Equation (1.4) is the solution to the minimization of4

1
n

n∑

i=1

(V̂ i − β(xi)Ŝi)2, (1.5)

which we can write with some basis functions bj(xi), j = {1, . . . m} and β(xi) =
∑

j ãjbj(xi) as

{ãj} = arg min
ãj

∥∥∥∥∥∥∥




b1(x1)Ŝ1 · · · bm(x1)Ŝ1

...
. . .

...
b1(xn)Ŝn · · · bm(xn)Ŝn







ã1

...
ãm


−




V̂ 1

...
V̂ n




∥∥∥∥∥∥∥
. (1.6)

Standard arguments as in the previous section show that with

BS(x1, . . . ,xn) :=




b1(x1)Ŝ1 · · · bm(x1)Ŝ1

...
. . .

...
b1(xn)Ŝn · · · bm(xn)Ŝn




the values ãj can be computed using efficient algorithms which implicitly solve the normal equa-

tions

BS(X)T BS(X)ã = BS(X)T V̂ (1.7)

3Ederington’s example is the hedge of a future but it applies to any derivative V . For more recent research on futures
hedges see e.g. Allen et al [3].

4Cp. [102]
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with ã = (ã1, . . . , ãm)T and V̂ = (V̂ 1, . . . , V̂ n)T . Then,

β(xi) =
cov(Ŝ, V̂ |x = xi)

var(Ŝ|x = xi)
≈

m∑

j=1

ãjbj(xi)

is the desired result which denotes the optimal hedge ratio based on some state xi. This result

equals the previous result using Theorem 1.4 if we set Ŝ = Sj+1 − E[Sj+1|xj ] and V̂ = Vj+1 −
E[Vj+1|xj ] such that E[Ŝ|xj ] = 0 and E[V̂ |xj ] = 0 holds and a local basis approximation of

V̂ by Ŝ is conducted. In implementations, E[Vj+1|xj ] and E[Sj+1|xj ] can be obtained from the

corresponding local basis approximation of Vj+1 and Sj+1 as defined in Theorem 1.4.5

In total, we obtained a simple method for computing a conditional variance minimization of

a portfolio based on regressions. The resulting Equation (1.7) is very similar to Equation (1.2) of

Theorem 1.4. Consequently, this method itself can be seen as a local basis approximation of the

option V by the underlying asset price S.

The current literature on non-parametric statistics solves slightly different problems, but we

still want the refer to this research: A conditional functional principal components analysis is

proposed by Cardot [31], who presents the computation of conditional covariances based on

kernel smoothers as well as some convergence properties of the approach. Within the GARCH

framework, conditional variance functions are computed by Fan and Yao [44]. They perform re-

gressions on squared residuals and they obtain the asymptotic convergence result that without

knowing the regression function, their method estimates the conditional variance as well as if

the regression functions were given. Finally, non-parametric regressions are presented by several

authors. Especially Härdle [60] provides a good overview of different regression and smoothing

techniques.

Numerical Solution to the Least-Squares Minimization

Now, we want to summarize how the normal Equations ((1.2) and (1.7)) are solved efficiently. The

direct solution by computation of

ã =
(
BT B

)−1
BT y

leads to an unstable solution. In the following, we will provide some insight into the reasons for

this. For more rigorous derivations and detailed error analysis see Higham [62] and the references

therein as well as Voss [114].

First of all, we need a definition and a theorem, which allows us to write the solution of the

minimization problem efficiently.

5This approach with separate estimations of E[Vj+1|xj ], E[Sj+1|xj ] and β(xi) can be unified into a single step with
twice as many basis functions. But, the unification is not useful in practice. The numerical algorithm for estimating the
basis coefficients a is ≈ m3 with m denoting the number of basis functions. Estimating the conditional expectation using
the local basis approximation first, subtracting the expectation and estimating the coefficients for β(x) with m > 1 leads
to ≈ 3 ·m3 which is less than (2m)3 for the joint estimation.
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Definition 1.6 Let B ∈ Rn,m. Then the matrix B† ∈ Rm,n which is determined by delivering the

solution to the minimization problem ‖Ba− y‖2 = min! written as a = B†y is called pseudo inverse of

B.

The next theorem tells us, how to obtain the pseudo inverse:

Theorem 1.7 Let B ∈ Rn,m have a singular value decomposition

B = UΣVT ,

where Σ is a diagonal matrix with the sorted singular values σ1 ≥ σ2, . . . ,≥ σm > 0 on the diagonal and

the orthonormal vectors ui, vi as columns in U resp. V. Then,

• Σ† = (σ−1
i δi,j), δij :=

{
1 if i = j
0 otherwise

• B† = VΣ†UT ,

where B† is the pseudo inverse.

Proof A proof of Theorem 1.7 can be found in [114], Satz 5.26, as well as in [85], Satz. 9.22. 2

Now, we take a closer look at the stability of the minimization problem. We are considering

the linear minimization problem

{ai} = arg min
a
‖Ba− y‖2

with B ∈ Rn,m, rank(B) = m, n ≥ m, and a perturbation thereof

{ãi} = arg min
a
‖B(a + ∆a)− (y + ∆y)‖2,

which are only perturbations of the values y and not of the matrix B.

Let a = B†y and a + ∆a = B†(y + ∆y) be the solution by the corresponding pseudo inverse

B† of B. Then ∆a = B†∆y holds and from ‖B†‖2 = 1
σm

follows 6

‖∆a‖2 ≤ ‖B†‖2 · ‖∆y‖2 =
1

σm
‖∆y‖2.

6Which is a direct result from the definition of a matrix norm:

‖B†‖2 := sup
‖y‖2 = 1

‖B†y‖2 = sup
‖y‖2 = 1

p
yT UΣ†VT VΣ†UT y = sup

‖c‖2 = 1

c = uT y

q
cT (Σ†)2c

= sup
‖c‖2 = 1

c = uT y

 
mX

i=1

c2i
1

σ2
i

! 1
2

=
1

σm
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Furthermore, with ci = (ui)T y

‖a‖22 ≥
1
σ2

1

∥∥∥∥∥
m∑

i=1

(ui)T yui

∥∥∥∥∥

2

2

(1.8)

holds7. Since
∑m

i=1(u
i)T yui is the projection of y into the subspace U spanned by the basis

u1, . . . ,um, we can estimate the relative error by

‖∆a‖2
‖a‖2 ≤ σ1

σm
· ‖∆y‖2
‖PU (y)‖2 , (1.9)

with linear projector PU (y). Since this inequality describes how a relative error of the input to the

minimization can perturb the solution, we define the condition of a matrix.

Definition 1.8 Let B ∈ Rn,m, rank(B) = m, n ≥ m have a singular value decomposition B = UΣVT .

Then, we call κ(B) := σ1
σm

the condition of matrix B.

Example 1.9 Consider the condition of an orthogonal matrix: For any orthogonal matrix Q

QT Q = I

with identity matrix I holds, which means that all eigenvalues equal 1 and thus for all singular values

σi ≡ 1 holds. Consequently, the condition of matrix Q is

κ(Q) = 1.

This condition number can be computed for other matrices and used for other types of prob-

lems, too. We will use the condition number of a rectangular matrix B ∈ Rn,m to compare two

methods of the solution to least-squares regression.

If we now solve the least-squares regression directly by a =
(
BT B

)−1
BT y, the relative error

for the solution is bounded by

κ
(
BT B

)
= κ

(
(UΣVT )T UΣVT

)

= κ
(
V (Σ)2 VT

)

=
σ2

1

σ2
m

= κ (B)2 ,

with κ(B) ≥ 1. We can improve this result by the QR factorization

B = QR

7See Appendix 7.3 for a proof.
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with orthogonal matrix Q ∈ Rn,n and upper triangular matrix R ∈ Rn,m. Since Q is an orthog-

onal matrix and thus has rank(Q) = n, R has the same rank as B: rank(B) = rank(R) = m.

Then,

BT Ba = BT y

⇔ (QR)T (QR)a = (QR)T y

⇔ Ra = QT y

holds. From Example 1.9, we know that the orthogonal matrix Q has a condition of one: κ(Q) = 1.

For the condition of matrix R, we consider

B = UΣVT , R = URΣRVT
R

B = QR = QURΣRVT
R

where QUR is again an orthogonal matrix. That means, V = VR and Σ = ΣR, which is almost

unique.8 That also means that the upper triangular matrix R has the same condition as matrix B,

i.e. κ(R) = κ(B). The relative error of the solution of a = R†QT y is then about κ(B) because in

order to obtain this solution, one has to consider the upper triangular matrix R4 ∈ Rm,m of R

and the first m entries y1, . . . , ym of y only, since all other rows of R are zero. Consequently,

a = R†QT y

= (R4)−1 QT




y1

...
ym




holds, which can be solved by back substitution without any further error, i.e the solution by

normal equations which squares the condition of the problem can increase the error of the solution

significantly.

Consequently, the QR factorization leads to a method for the solution of the least-squares

problem which is more stable than the naı̈ve solution of the normal equations.

A general description of the least-squares problem can be found in the book of Acton [1], an

in depth analysis in the book of Higham [62] and the description of an efficient implementation

of the solution by QR decompositions can be found in the Lapack Guide [8].

1.2.2 Basis Functions

A tricky part of the function approximation by regression and in fact the crucial challenge is the

careful choice of the basis functions B. As described in the previous section we will use a linear

8Here, we quote from Manning and Schütze [86], p. 561: For any given SVD solution, you can get additional non-
identical ones by flipping signs in corresponding left and right singular vectors U and V , and, if there are two or more
identical singular values, then only the subspace determined by the corresponding singular vectors is unique, but it can
be described by any appropriate orthonormal basis vectors. Apart from these cases, SVD is unique.
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combination of these basis functions to approximate specific functions, e.g. an estimate for the

current option value conditioned on the underlying asset price.

In the following, we will present different choices of basis functions from polynomials to

splines and sparse piecewise linear functions. We compare their properties so that we can choose

the most suitable ones for each problem.

Polynomials

In some cases the choice of the class of basis functions seems to have little effect on the values

computed by Least-Squares Monte Carlo [81]. Consequently, in some cases, it is sufficient to

choose the simplest set of basis functions, polynomials.

In a simple approach we could use the full set Bfull
` of all s-dimensional polynomials up to a

certain polynomial degree ` = (`1, . . . , `s) ∈ Ns,

B full
` (x1, . . . , xs) :=

{
s∏

i=1

xgi

i

∣∣∣∣ gi ∈ N0 ∧ gi ≤ `i

}
. (1.10)

But, it is easy to see that this construction by its own will quickly exhaust any available com-

putational resources. A setting with 10 dimensions and a maximal polynomial degree of one in

each direction ` = (1, . . . , 1) already yields as many as 210 = 1024 basis functions, over which

least squares regression has to be performed. A maximal quadratic polynomial degree in each

direction leads to 310 = 59049 basis functions.

That means, a full polynomial basis seems to be useful only in one or two dimensional prob-

lems, when the computational efforts are relatively small. But, in these cases, one often wants to

decrease the approximation error by adding basis function to the regression. In the case of poly-

nomials, this leads to an ill-conditioned matrix which cannot be efficiently treated by standard

methods. Additionally, a refinement does not necessarily lead to uniform convergence (Theorem

of Faber, see [116]). A lot more efficient than these global basis functions are local basis func-

tions such as piecewise polynomial splines which show a better convergence, especially at the

boundary of the regression domain.

Splines

A useful class of basis functions especially for a single dimension (s = 1) is the cubic spline. A

spline is a piecewise polynomial function which lives on a decomposition of the interval [x0, xm],

∆ : x0 < x1 < . . . < xm. (1.11)

We focus on splines which coincide on each interval [xi−1, xi], i = 1, . . . , m with a polynomial

of degree 3 and lie in the class of twice continuously differentiable functions C2. Consider the
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functions

bi(x, xi) =
{

(xi − x)3 if xi ≥ x
0 else , i = 1, . . . , m− 1

bm = x3

bm+1 = x2

bm+2 = x

bm+3 = 1,

then we see from simple differentiation that a linear combination

f spline(x) =
m+3∑

i=1

aibi(x) (1.12)

is continuous everywhere and has continuous first and second derivatives (f spline ∈ C2). Thus the

function f spline(x) in Equation (1.12) is a cubic spline9.

Given the function values y0, . . . , ym at the knots x0, . . . , xm, it is easy to find the coefficients

ai of f spline by solving
f spline(xi) = yi, i = 0, . . . ,m

d2

dx2
f spline(x0) = 0

d2

dx2
f spline(xm) = 0

which leads to natural splines due to the condition that the second derivative at the boundary of

the spline is zero.

Piecewise Linear Sparse Grids

As already stated, the exponential growth of the number of basis functions of full grids quickly

overextends any computer. Fortunately, a much more efficient selection of basis functions can be

constructed, known as sparse grids or combination method [107, 29]. This kind of function basis

has been successfully applied in the field of high-dimensional function approximation [52] and

many others.

The original idea of sparse grids is based on piecewise linear basis functions which we will

call grids. Similar to the full set of m-dimensional polynomials, we define the full grid Ω`,

` = (`1, . . . , `s) which has a possibly different equidistant spacing h` := (2−`1 , . . . , 2−`s) for each

dimension of x = (x1, . . . , xs) and has grid points x`,i := (x`1,i1 , . . . , x`s,is), 0 ≤ ij ≤ 2`j ∀j ∈
{1, . . . , s}. The basis functions and thus the values of such a grid are given by10

b`,i(x) :=
s∏

j=1

b`j ,ij (xj)

9See [111] for details of this basis spline formulation. Other formulations of this spline basis are also useful, especially
for fast evaluation [38, 37] and for higher stability [38, 114].

10See [29], p. 10
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with index vector i := (i1, . . . , is) which denotes the multi-index of b`,i in the grid Ω`. The required

one dimensional basis functions are

blj ,ij (xj) := b

(
xj − ij · hlj

hlj

)

where

b(x) :=
{

1− |x| if x ∈ [−1, 1]
0 otherwise.

The idea of sparse grids is summarized as follows. Instead of using a full grid Ω`

Ω` := span{b`,i(x) : 1 ≤ ij ≤ 2`j − 1 ∀j ∈ {1, . . . , s}},

we combine multiple grids according to a sparse and error optimal scheme Ωsparse

L ,

Ωsparse

L :=
⋃P
`i=L

Ω`. (1.13)

Instead of defining a multidimensional level ` we use the single sparse level L, that limits the sum

of all components ` = (`1, . . . , `s). Figure 1.1 presents two- and three-dimensional sparse grids.

This kind of combining regular grids has been shown to produce a reasonable sparseness for a

wide class of smooth functions [28].

If we compare full and sparse grids, we can see that the computational effort decreases radi-

cally while the error rises only slightly: Comparing grids with minimal mesh size hL = 2−L, a full

grid has O(h−s
L ) grid points and a sparse grid only employs O(h−1

L | log hL|s−1) points. At the same

time, the L2-interpolation error for smooth functions rises from O(h2
L) to O(h2

L · | log hL|s−1) [29].

In many applications with high-dimensional smooth functions, L ∈ {2, 3, 4} is already sufficient.
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Figure 1.1: A three-dimensional sparse grid with L = 5 is presented on the left and two-
dimensional sparse grids from L = 0, . . . , 5 on the right hand side.

Sparse Polynomial Basis Functions

The presented sparse grid approach uses piecewise linear basis functions supporting the grid

nodes. Most of the examples we will consider in the remainder of this dissertation are approxi-

mations to continuation value functions for financial options. These functions are usually smooth

(∈ C∞) with respect to the state variables. In such a case, differentiable basis functions deliver

better results than piecewise linear functions. Consequently, we propose creating a sparse poly-

nomial basis, which is very smooth (∈ C∞). A detailed analysis for this kind of sparse basis can

be found in [13] so that we can focus on the main issues.

We combine the idea of a polynomial basis with the idea of sparse grids: instead of using

a plain polynomial basis Bfull
` as in Equation (1.10), we combine the multiple polynomial orders

according to the same sparse and error optimal scheme as for the sparse grids. The sparse basis

Bsparse

L ,

Bsparse

L (x1, . . . , xs) :=
⋃P
`i=L

B full
β(`)(x1, . . . , xs) (1.14)

has many of the properties of the sparse grid with piecewise linear basis functions but it is smooth

everywhere.

The polynomial basis sparse level L again limits the sum of all components ` = (`1, . . . , `s).

Furthermore, the degree of the combined full polynomial bases is transformed by a mapping

function β that turns each level into a maximum polynomial degree

β(`) = 2 · (2`1 − 1, . . . , . . . , 2`s − 1).
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This transformation cannot be applied to grids because a grid with `i = 0 nodes in the ith di-

mension makes no sense. But, for polynomials, this reduces the number of basis functions. An

example for a three dimensional sparse polynomial basis can be found in Figure 1.2.

Example: A sparse polynomial basis with s = 3, L = 2

First, we have to compute the full basis polynomials of Equation (1.10).
The sparse level L = 2 requires the computation of

` = (2, 0, 0) → B full
6,0,0 = {1, x1, x

2
1, x

3
1, x

4
1, x

5
1, x

6
1}

` = (1, 1, 0) → B full
2,2,0 = {1, x1, x2, x1x2, x

2
1, x

2
2, x

2
1x2, x1x

2
2, x

2
1x

2
2}

` = (1, 0, 1) → B full
2,0,2 = {1, x1, x3, x1x3, x

2
1, x

2
3, x

2
1x3, x1x

2
3, x

2
1x

2
3}

` = (0, 2, 0) → B full
0,6,0 = {1, x2, x
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5
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6
2}
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2
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2
3}

` = (0, 0, 2) → B full
0,0,6 = {1, x3, x

2
3, x

3
3, x

4
3, x

5
3, x

6
3}

for the sparse grid basis and leads to 31 basis functions,

Bsparse
2 (x1, x2, x3) =

⋃P
`i=2

B full
β(`)

= {1, x1, x2, x3, x1x2, x1x3, x2x3, x
2
1, x

2
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2
1x2,

x1x
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Figure 1.2: An example for a three-dimensional sparse polynomial basis.

Thin-Plate Spline Basis Functions

Another alternative to produce a sparse and smooth multivariate approximation function is to

use the nodes of a sparse linear grid as basis function nodes of a thin-plate regression spline.

Thin plate splines are radial basis functions defined by the minimization of a smoothness

measure in a function space. We directly use the resulting spline basis and define a thin-plate

spline f tp spline(x), x ∈ Rs as

f tp spline(x) =
m∑

i=1

aibi(x),

bi(x) := ‖x− xi‖2 log ‖x− xi‖,

with basis nodes xi. 11 The main advantage of thin-plate splines is that we can choose the grid

nodes xi ∈ Rs freely. This allows to use random samples as grid nodes as well as the introduction

11See [115] for the basic derivation, [118] for regressions with large data samples on thin-plate splines and [93] for
option pricing with radial basis functions.
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of additional nodes into interesting areas.

1.2.3 Approximation Properties

The theoretical convergence properties of an approximation by the presented basis functions are

well analyzed. Uniform convergence can be expected from piecewise-linear splines as well as

some thin-plate splines [97]. The approximation properties of a polynomial basis is not as good

as of a spline basis, especially the values at the boundary of the approximation domain can have

a significant error [62].

Table 1.1 presents an overview of the basis functions presented in this chapter. Regressions on

basis functions with a global support usually suffer from artifacts at the boundary of the domain

of the samples. Smooth functions are sometimes required due to numerical properties, such that

C∞ functions should be preferred. The number of functions, which depends on the choice of

the parameter ` and the dimension s, can sometimes grow large for medium size dimensions.

Polynomials seem to be useful up to s = 2 or s = 3. Piecewise linear sparse grids and sparse basis

functions can reach s = 10 to s = 20 and thin-plate splines might still be useful for s > 20. The

presented B-splines are only useful in a single dimension s = 1.

Table 1.1 Overview of the presented basis function classes.

Basis Function Support # of Functions m(L, s) Smoothness
polynomials global m ∈ O(Ls) C∞

B-Splines (local) global m + 3, s = 1 only C2

piecewise-linear sparse grids local m ∈ O(2L| log L|s−1) C0

sparse polynomials global m ∈ O(2L| log L|s−1) C∞

thin-plate splines global m C∞

1.3 Pricing and Hedging in Complete Markets

In the previous sections we saw the basic properties of regression methods and different basis

functions. Now, we are presenting the application for which these tools are required: option

valuation.

1.3.1 Terminology

Before we present the general framework for option valuation, we focus on the instruments we

seek to valuate. All financial options in this thesis depend on a single underlying12 S at specific

dates ti. We will write the value of the underlying at time ti as Sti .

A financial option13 is a contract between an option issuer and the option holder. An option
12The underlying is also called asset, stock, spot price or equity.
13A financial option is also called derivative, security or simply option.
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gives the holder the right, but not the obligation to receive cash flows in the future dependent on

the value of the underlying S.

Consequently options are characterized by cash flows to the option holder. In this section we

introduce a few essential instruments, to which we will add others in the subsequent chapters if

required.

Definition 1.10 A European call (put) option is the right but not the obligation to receive StT
−K

(K − StT
) at maturity time tT . The variable K is called strike price. European call (put) options are also

called vanilla options.

There are many other ways to formulate option contracts. One of the most common option

features is an exercise opportunity by the option’s holder. This can be specified for a certain date

(discrete) or a specific time interval (continuous). We can also make the payoff dependent on the

asset history to get a so called path dependent option.

Definition 1.11 An American call (put) option is the right to receive Sti −K (K − Sti ) at any time

ti from initial time t0 until maturity time tT . The variable K is called strike price. This option is called

early exercisable because the option holder can receive the exercise value Sti −K (K − Sti) prior to the

options maturity time tT .

In order to find so-called fair values for these and other options, we proceed with the general

pricing framework.

1.3.2 General Framework

The valuation of a derivative security is a common task in mathematical finance. Here, we will

provide a brief summary of the model derivation which can also be found in e.g. [117, 64]. For

the Black-Scholes model, we need to make some assumptions and simplifications. The basic

assumptions are a frictionless market, no transaction costs, risk-less assets earn the risk-free rate r

and short selling is allowed without restrictions. Another more conceptual assumption is that the

price of the underlying S behaves like a geometric Brownian motion. That means that nobody

can foresee future stock prices and the asset evolves as

dSt = µSt dt + σSt dWt (1.15)

where µ is the drift rate, σ is the volatility of S and dWt is the increment of a Wiener process.

We can now establish a portfolio Π consisting of the security of interest and a short position

of φ shares. The price of the security clearly depends on the underlying stock price St and time t

and will be noted as V (St, t) or just Vt, i.e.

Πt = V (St, t)− φtSt.
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Using Itô’s Lemma [67], we find that the portfolio changes can be described by

dΠt = dVt − φt dSt

=
∂Vt

∂t
dt +

∂Vt

∂St
dSt +

1
2
σ2S2 ∂2Vt

∂S2
t

dt− φt dSt. (1.16)

If we chose

φt =
∂Vt

∂St
(1.17)

we can make the portfolio independent of dSt, the movements of the stock price. That means the

portfolio is completely deterministic and inhabits no risk. Using the no-arbitrage principle14, this

risk-free portfolio earns the risk-free rate r. Consequently, the changes in Πt are

dΠt = rΠt dt. (1.18)

Now, we can use (1.16), (1.17) and (1.18) to get the relationship

∂Vt

∂t
+

1
2
σ2S2

t

∂2Vt

∂S2
t

+ rSt
∂Vt

∂St
− rVt = 0. (1.19)

Knowing that at maturity time tT the option value equals the payoff P (ST , tT ),

V (StT
, tT ) = P (StT

, tT ),

the partial differential Equation (1.19) can be solved by numerical methods as an initial value

problem in backwards time. This kind of reasoning was published in 1973 by Fischer Black and

Myron Scholes [17].

1.3.3 Exercisable Options

We now look at a possible early exercise by the holder of the security. By the no-arbitrage as-

sumption, an exercise where the holder obtains the payoff P (St, t) leads to

V (St, t) ≥ P (St, t), (1.20)

i.e. the early exercisable option will always have a value which is greater or equal to the immedi-

ate exercise value. If this were not true, an investor would buy the option, exercise immediately

and make a risk-less profit.

In order to find a representation of an exercisable option value similar to Equation (1.19), little

thought lead to the observation that the portfolio Π can at most earn the risk-free rate if the no-

arbitrage assumption should still be possible. Consequently, we get, instead of Equation (1.18),

the relationship

dΠt ≤ rΠt dt

⇔
∂Vt

∂t
+

1
2
σ2S2

t

∂2Vt

∂S2
t

+ rSt
∂Vt

∂St
− rVt ≤ 0. (1.21)

14No-arbitrage means in this case that risk-less investments earn the risk free rate and investments that earn more than
the risk-free rate must by risky.
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In the case of an American option the value V is given by the solution to Equations (1.21) and

(1.20) where at least one of the inequalities holds with equality on the complete solution. This is

an initial value problem or Cauchy problem in backwards time τ = tT − t with a free boundary,

starting with the terminal condition, i.e. for an American put option with strike K

V (StT
, tT ) = max(K − StT

, 0) .

Numerical schemes for this kind of PDE solution have been presented by several authors.

An efficient solution has been presented by Forsyth and Vetzal [50], which will also form the

foundation for the PDE reference methods used in this thesis. The next section proceeds with an

overview of the numerical methods currently used in the field of derivatives pricing.

1.4 Numerical Methods for Option Valuation

1.4.1 Overview

The challenge that remains after the introduction of the Black-Scholes framework is the efficient

valuation of arbitrary derivatives. Even though closed-form solutions of the governing Equa-

tion (1.19) can be found for European put and call options, no analytic solutions are available

for early exercisable options such as for the American option price which is governed by Equa-

tions (1.21) and (1.20). In other cases, the derivation of a closed-form solution might be possible,

but its evaluation still might be a challenge or the derivation too complex. In all these cases a

numerical tool is required which can deliver accurate option prices.

In the past few decades, several option valuation methods have been proposed. Besides the

analytic solution of the Black-Scholes PDE by Merton [87] one of the most common methods is

the Cox-Ross-Rubinstein method [36], which discretizes the asset price process by a binomial

tree. A simple recursive solution for the option value allows the valuation of early exercisable op-

tions. This method can be seen as a special case of the finite differences method by Schwartz [103]

which discretizes the Black-Scholes PDE directly and has better convergence properties than the

Cox-Ross-Rubinstein method. Another method with wide application is a Monte Carlo method

by Boyle [21] which simulates the underlying asset price process under a risk-neutral expectation.

Other methods were developed for special cases, e.g. a trinomial model by Boyle [22] for valu-

ation of options with two correlated underlyings. Furthermore, a multinomial-tree method by

Andricopoulos et. al [9] which is based on quadrature methods for integration has found some

applications. This list is certainly not complete, but it assembles the main methods which are in

use in academia and the financial industry.

In the following sections, we focus on numerical option valuation by Monte Carlo methods.

As a reference, we will use a solver for the Black-Scholes PDE similar to the finite differences

method.
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1.4.2 Monte Carlo Methods

In numerous cases, the Monte Carlo method proved useful due to a simple implementation

and dimension independent convergence properties. Further details and advanced Monte Carlo

methods for option pricing can be found in [53].

Valuation of European Option

As we will see later in this section, the valuation of European style options is equivalent to the

integration of the expected terminal option value using the risk-neutral distribution of the under-

lying stock value at the maturity time tT of the option. Consequently, we focus on the integration

of functions by Monte Carlo methods, first. Assume that an option value V is given by

V = e−rtT

∫

D

P (S′)pStT (S′) dS′ (1.22)

where P (S′) is the option’s payoff function and pStT (S′) is the risk-neutral probability density

function of the stock price at the option’s maturity. The area D j Rs is the domain of integration,

where s denotes the dimension of the state space, e.g. the number of underlying instruments

defining the payoff at tT .

The probability density function pStT (S′) can be obtained by the computation of Green’s func-

tion to the Black-Scholes PDE. Naturally, it satisfies
∫

Rs

pStT (S′) dS′ = 1.

If we now draw a sample S1, . . . , Sn from the distribution given by pStT (S′), we can compute an

estimate V
n

for the integral given by (1.22),

V
n

= e−rtT
1
n

n∑

i=1

P (Si).

The variance of this estimate is given by

(
std[V

n
]
)2

=
1

n− 1

n∑

i=1

(
e−rtT P (Si)− V

n
)2

.

If we standardize the distribution function of the error, then we get the

standardized error =
V − V

n

std[V
n
]
· √n (1.23)

which converges with n →∞ to a standard normal distribution if the third moment

E
[|standardized error|3] exists and is finite 15.

15This is an immediate result of the Berry-Esseen Theorem [45] resp. the central limit theorem.
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For Equation (1.23), we can see that the standard deviation of the error V − V
n

is equal to

std[V
n
]√

n
∈ O

(
1√
n

)
. (1.24)

The confidence interval at level α can be approximated by a standard normal distribution:
[
V

n − std[V
n
]√

n
ε(α), V

n
+

std[V
n
]√

n
ε(α)

]
.

The value ε(α) can be obtained by inverting the cumulative standard normal distribution Φ such

that

Prob(|standardized error| ≤ ε(α)) = 1− α

holds, i.e. ε(α) is the (1 − α
2 )-quantile of the cumulative standard normal distribution. For fre-

quently used confidence levels, the intervals are given by Table 1.2. It is important to note that

the confidence limits only depend on the Monte Carlo sample value V
n

as well as the number of

samples n. It does not depend on the dimension s of the state space, which makes this method

suitable for the evaluation of high-dimensional option pricing problems.

Table 1.2 Confidence intervals for different levels of confidence α.

Confidence level α Interval

68% V
n ± 1.00 · std[V ]√

n

90% V
n ± 1.65 · std[V ]√

n

95% V
n ± 1.96 · std[V ]√

n

99% V
n ± 2.58 · std[V ]√

n

Considering a plain vanilla option in the Black-Scholes framework, the probability density of

the terminal stock price values is given by16

pStT (S) =
1

σS
√

2πtT
e
− (log(S/St0 )+(r−(1/2)σ2)tT )2

2σ2tT . (1.25)

But, the inversion of pStT in order to draw a sample S1, . . . , Sn of terminal asset prices is compu-

tationally expensive. A better approach follows from the inspection of the PDE given by Equa-

tion (1.19): The Black-Scholes PDE is just the backward Kolmogorov Equation for the process

dSt = rSt dt + σSt dWt, (1.26)

which is the same process as in the derivation of Equation (1.19), except that the drift rate µ in

Equation (1.15) is replaced by the risk-free interest rate r.17

16See [117], p. 94.
17See Wilmott [117], p.164 ff for details.
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This observation is very important: The dynamics of the process S required for the evaluation

of an option with S as an underlying is different from the real dynamics of S. The reason for this

is that not the dynamics of S itself are required for the valuation, but the dynamics of a hedged

portfolio which consists of a position in the underlying asset S, the option itself V and money in

a bank account.

In the following, we will call the real process of S, which is determined by Equation (1.15) as

the physical or real-world process, while we call the dynamics for the purpose of option valua-

tion (Equation (1.26)) the risk-neutral process. Furthermore, we will denote expectations which

require a risk-neutral dynamic of St by EQ[St], while we will leave E[St] for the expectation under

the physical dynamic:

Definition 1.12 Given an option valuation problem in the Black-Scholes framework.

a) The dynamic of the asset S

dSt = µSt dt + σSt dWt,

is called physical or real-world process. A formula, which requires an expectation of St using this dynamic

is denoted by

E[St].

b) The dynamic of the asset S

dSt = rSt dt + σSt dWt,

is called risk-neutral process. A formula, which requires an expectation of St using this dynamic is denoted

by

EQ[St].

The easiest sampling technique for an Equation as Equation (1.26) is the Euler method. This

method samples n trajectories Sj
t , j = 1, . . . , n at several time steps ti, i = 1, . . . , T , starting at

S1
t0 = S2

t0 = . . . = Sn
t0 =: St0 as

Sj
ti+1

= Sj
ti

+ rSj
ti

(ti+1 − ti) + σSj
ti

θi,j

√
ti+1 − ti (1.27)

with θi,j drawn from a standard Normal distribution.

It turns out that a better discretization can be found, which is given by

Sj
ti+1

= Sj
ti

exp
(

(r − 1
2
σ2)(ti+1 − ti) + σ

√
(ti+1 − ti)θi,j

)
. (1.28)

This method is exact in the sense that the distribution of StT
does not depend on intermediate

time steps as in Equation (1.27)18. Consequently, only one time step is required for the valuation

of a vanilla European option:

Sj
tT

= St0 exp
(

(r − 1
2
σ2)(tT − t0) + σ

√
(tT − t0)θj

)
(1.29)

18See Wilmott [117], p. 924 for details.
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with θj drawn from a standard Normal distribution.

Finally, we summarize the algorithm for pricing a European Put option in the Black-Scholes

framework in Table 1.3.

Table 1.3 Valuation of a European Put option in the Black-Scholes framework with risk-free rate
r, volatility σ, maturity time tT and strike K.

1. Simulate n risk-neutral asset price trajectories starting at the current price St0 , j ∈ {1, . . . , n},

Sj
tT

= St0 exp
(

(r − 1
2
σ2)(tT − t0) + σ

√
(tT − t0)θj

)
.

2. Compute the average payoff and discount it with the risk-free rate r, i.e.

V
n

= e−r(tT−t0)
1
n

n∑

j=1

max(K − Sj
tT

, 0),

which provides an estimate for the option value V , i.e. V ≈ V
n

.

Least-Squares Monte Carlo

Since Monte Carlo is a standard method which is used when dimensionality causes numerical

difficulties, we extend the method in Table 1.3 to exercisable options. We already saw exercisable

options in Section 1.3.3. But another way of formulating this mathematical problem can be used:

The price of an exercisable security is the discounted expected value of the payoff at the optimal

stopping time.

This can be formulated as an optimal stopping problem (see Carrière [32, Section 4]), with

V (St0 , t0) = sup
τ∈T

EQ

[
e−r(τ−t0)P (Sτ , τ)

]
, (1.30)

where the asset price process St evolves in the risk-neutral fashion

dSt = rSt dt + σSt dWt, (1.31)

and T is the set of all possible stopping times.

This formulation as an optimal stopping problem (1.30) now leads to the idea of Monte Carlo

algorithms for pricing American options, because one only has to estimate an optimal stopping

(exercise) strategy within the Monte Carlo method for vanilla options. This way, the solution of

complex free boundary PDEs as defined by the Inequalities (1.21) and (1.20) is avoided.

One approach for Monte Carlo valuation of exercisable options is to parameterize the region

of optimal exercise with a function (see [14] and the references therein). The main other approach

is to approximate the conditional expected continuation value with a regression. This method
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was first presented by Carrière [32] and is called Least-Squares Monte Carlo. This is the method

we will use in the following.

Similar to the previous section, we simulate different asset paths Sj , j ∈ {1, . . . , n}, which

follow Equation (1.28),

Sj
ti+1

= Sj
ti

exp
(

(r − 1
2
σ2)(ti+1 − ti) + σ

√
(ti+1 − ti)θi,j

)

with θi,j drawn from a standard Normal distribution.

At each exercise time ti, the holder decides to exercise the option and get the payoff P (Sti
, ti)

or to continue. In this case, the payoff P (Sti
, ti) may only depend on the value of Sti

at time ti,

which can easily be extended to a dependence on the complete asset paths history as we will see

in later chapters. In order to maximize the option value V , the holder exercises if

P (Sti
, ti) ≥ EQ[V (Sti+1 , ti+1)|Sti

, ti]

with EQ[V (Sti+1 , ti+1)|Sti , ti] denoting the expected option value under the risk-neutral measure

Q if the option is not exercised at time ti. In the Least-Squares Monte Carlo approach, the value

of EQ[V (Sti+1 , ti+1)|Sti , ti] is approximated by

P e(Sti , ti) ≈ EQ[V (Sti+1 , ti+1)|Sti , ti]. (1.32)

The value P e(Sti , ti) is computed using a least-squares regression of many path-realizations Sj

on some basis functions bk, i.e. the local basis approximation of V (Sti+1 , ti+1) given Sti (Theo-

rem 1.4). The regressions start at the time step tT−1, i.e. one step before maturity time tT . The

approximated values are

P e(Sti , ti) =
∑

k

ai
kbk(Sti) (1.33)

with some basis functions bk and unknown coefficients ai
k minimizing

∥∥∥∥∥∥

(∑

k

ai
kbk(Sj

ti
)− e−r(ti+1−ti)V j

ti+1

)

j=1,...,n

∥∥∥∥∥∥
2

(1.34)

where V j
ti+1

is the estimate of the option value for time ti+1 using the Monte Carlo path realization

Sj . The value of V j
ti

is given by the maximum between the estimated value of the unexercised

option P e and the intrinsic value P ,

V j
ti

=

{
e−r(ti+1−ti)V j

ti+1
if P e(Sj

ti
, ti) > P (Sj

ti
, ti)

P (Sj
ti

, ti) else
. (1.35)

In Section 1.2.1, we saw how the solution to Equation (1.33) respectively Equation (1.34) can be

computed.

Given that the option value at maturity time equals the payoff V j
tT

= P (Sj
tT

, tT ), a dynamic

program solves for all values V j
ti

, starting at time tT and iterating backwards to t0. Based on the
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value V j
t0 , we can compute an approximation to the option value, which is known as the in-sample

price,

V in =
1
n1
·

n1∑

j=1

V j
t0 ,

where the asset paths are Sj , j ∈ {1, . . . , n1}. This approach has an obvious disadvantage. Each

of the estimated option values V j
t0 contains information about its future asset path Sj

ti+1
. In order

to avoid this property, we compute the out-of-sample option price: We generate additional simu-

lation paths Sl, l ∈ {n1 +1, . . . , n1 +n2} but use the coefficients ai
k which were fitted to the old set

of simulation paths Sj , j ∈ {1, . . . , n1}. Consequently, the out-of-sample value can not depend on

the knowledge of the future paths. It is given by

V out =
1
n2
·

n1+n2∑

l=n1+1

V l
t0 (1.36)

with

V l
ti

=
{

e−r(ti+1−ti)V l
ti+1

if P e(Sl
ti

, ti) > P (Sl
ti

, ti)
P (Sl

ti
, ti) else

, l ∈ {n1 + 1, . . . , n1 + n2}.

Under optimal conditions, the in-sample and the out-of-sample price converge to the correct

arbitrage-free price. However, in our computations, we will only compute the out-of-sample

value because it is the value for which we can state the exercise policy without information about

the future. Furthermore, the expected value of the out-of-sample price V out of an American option

is always a lower bound for the option value: The crucial point for the convergence of Least-

Squares Monte Carlo simulation is the estimate P e. We are confined to finite many samples and

to finite degrees of freedom in the regressions and will not be able to perfectly represent the real

shape of EQ[V (Sti+1 , ti+1)|Sti
, ti]. Thus, a less than optimal exercise strategy is performed and

provides a reduced option value.

Notes on the Convergence of Least-Squares Monte Carlo

Figure 1.3 presents American put option value estimates computed with Least-Squares Monte

Carlo and different numbers of cubic spline basis functions.

While the Least-Squares Monte Carlo estimates with n1 + n2 = 105 asset paths already reach

a minimal error with two basis functions, the estimates with n1 + n2 = 107 asset paths reach a

minimal error at 10 basis functions. The remaining error is mainly due to the finite number of

time steps (T = 50). That means, one has to analyze the optimal number of basis functions based

on the number of asset paths. With more than 10 basis functions, the error increases due to some

kind of overfitting of the conditional expectation function.

In the following chapters, there will always be a discussion, when and which basis functions

bk are suitable for the specific problem.
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Figure 1.3: The average error of the Least-Squares Monte Carlo price estimate of an American put
option. The put has a strike K = 100, the asset price is St0 = 100, volatility σ = 0.4, risk-free rate
r = 0.05. Different numbers of basis functions are used within the 50 time steps Least-Squares
Monte Carlo. The PDE reference value is 13.66761.

1.4.3 Direct PDE Methods

There are several direct PDE solver methods. The common ones include finite differences [103,

117], finite elements [50] and finite volume methods [124]. Other methods are Laplace and Fourier

transform methods [117] as well as meshless methods [80].

In the following, we present a simple finite element method, which is sufficient for our pur-

poses as a pricing engine. In some cases, this thesis will refer to more advanced techniques. These

techniques are mainly based on the methods presented by Forsyth et. al. [50].

European Options

In this section, we want to build a very simple PDE solver for the Black-Scholes Equation. The

Black-Scholes PDE is a Cauchy-Problem in backwards time τ where the initial values are given

by the payoff at maturity. As usual, with time t we denote the asset price by St, the value of the

option by Vt, the volatility of the asset by σ and the risk-free rate by r. The solver is an implicit

finite volume discretization of

∂Vτ

∂τ
=

1
2
σ2S2

τ

∂2Vτ

∂S2
τ

+ rS
∂Vτ

∂Sτ
− rVτ (1.37)
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working backwards in time from maturity to present time t0. This equation is equivalent to Equa-

tion (1.19), using backwards time τ = tT − t. We integrate Equation (1.37) over a finite volume Ai

using the discrete values Si, i = 0, . . . , m where

Ai =
(

Si+1 + Si

2

)
−

(
Si + Si−1

2

)

with S0 = 0 and sufficiently Sm large19 That means that the cell boundaries are placed half way

between the nodes at

Si+1/2 =
Si + Si+1

2

Si−1/2 =
Si + Si−1

2
.

After the integration of Equation (1.37) over the ith cell, we obtain
∫

Ai

∂Vτ

∂τ
ds =

∫

Ai

σ2

2
s2 ∂2Vτ

∂S2
τ

ds +
∫

Ai

rs
∂Vτ

∂Sτ
ds−

∫

Ai

rVτ ds,

where Vτ is a function of Sτ and τ , i.e. Vτ = V (Sτ , τ) = V (St, t), τ = tT − t. In the following, we

denote the value of the option at time τj and asset price Si as

V (Si
τj

, τj) = V i
j .

Using approximations we get
∫

Ai

σ2

2
s2 ∂2Vτ

∂S2
τ

ds ≈ σ2

2
(Si)2

∫

Ai

∂2Vτ

∂S2
τ

ds

=
σ2

2
(Si)2

((
∂Vτ

∂Sτ

)i+1/2

−
(

∂Vτ

∂Sτ

)i−1/2
)

≈ σ2

2
(Si)2

(
V i+1 − V i

Si+1 − Si
+

V i−1 − V i

Si − Si−1

)
.

Furthermore, we get for the other terms
∫

Ai

rV ds ≈ rV iAi,

∫

Ai

rs
∂Vτ

∂Sτ
ds ≈ rSi

[
V i+1/2 − V i−1/2

]

= rSi

[
V i+1 − V i−1

2

]
.

On the left-hand side of Equation (1.37), we get

∫

Ai

∂Vτ

∂τ
ds ≈ Ai

[
V i

j+1 − V i
j

∆τ

]
.

19For a European call option Sm = e10σ
√

tT−tiK is enough for many realistic settings [49, p.21].
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All the above equations finally lead to

Ai

[
V i

j+1 − V i
j

∆τ

]
=

σ2

2
(Si)2

(
V i+1 − V i

Si+1 − Si
+

V i−1 − V i

Si − Si−1

)
+ rSi

[
V i+1 − V i−1

2

]
− rV iAi

where we have to define the time level of the right-hand side. Choosing a time level j for the right

hand side, we get a so called explicit discretization; choosing a level of j + 1, the discretization is

called implicit. The implicit discretization is more stable so that we will use

Ai

[
V i

j+1 − V i
j

∆τ

]
=

σ2

2
(Si)2

(
V i+1

j+1 − V i
j+1

Si+1 − Si
+

V i−1
j+1 − V i

j+1

Si − Si−1

)
+ rSi

V i+1
j+1 − V i−1

j+1

2
− rV i

j+1A
i (1.38)

in the following. The final algorithm of the PDE solver is obtained by rearranging Equation (1.38)

in a matrix M such that the linear Equation

M ·Vj+1 = Vj

with the known vector Vj = (V 1
j . . . V m

j ) and the unknown Vj+1 = (V 1
j+1 . . . V m

j+1) can be solved.

Note that the time stepping is conducted in backwards time τj , i.e. τ0 = tT − 0, . . . , τT = 0.

Consequently, the boundary for a put option valuation, i.e. the first and the last element of Vj

can be assumed as

V 0
j+1 = V 0

j (1− r∆τ), i.e.
V 0

j − V 0
j+1

V 0
j

= r∆τ

V m
j = 0 ∀j.

Other boundary settings are useful, especially a property that the second derivative ∂2V
∂S2 should

be zero is often used.

Exercisable Options

Previously, we saw that the valuation of exercisable options can be formulated (Equation (1.21)

and (1.20)) as

V (St, t) ≥ P (St, t),
∂Vt

∂t
+

1
2
σ2S2

t

∂2Vt

∂S2
t

+ rSt
∂Vt

∂St
− rVt ≤ 0,

where at least one of the inequalities holds with equality on the complete solution.

In order to solve this setting with a so called free boundary, we can use basically the same

Equation as in the case of non-exerciseable options (Equation (1.38)):

Ai

[
Ṽ i

j+1 − Ṽ i
j

∆τ

]
=

σ2

2
(Si)2

(
Ṽ i+1

j+1 − Ṽ i
j+1

Si+1 − Si
+

Ṽ i−1
j+1 − Ṽ i

j+1

Si − Si−1

)
+ rSi

Ṽ i+1
j+1 − Ṽ i−1

j+1

2
− rṼ i

j+1A
i,
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except that we simply set the node values V i
j+1 to the exercise value P (Si, t) if they are lower than

the exercise value (see Wilmott [117, p. 906]):

Ṽ i
j+1 = max(P (Si, t), V i

j+1).

This solver is sufficient for the purpose of this thesis. However, a better method is given by

internal iterations using a penalty method [50].
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Chapter 2

The Challenge of Path Dependency

2.1 Overview

A challenging problem in option pricing is the evaluation of path dependant options. This chapter

presents a method which can increase the convergence of Monte Carlo pricing [21, 23, 53, 32, 81]

significantly. The method is extended such that Monte Carlo simulation and numerical inte-

gration methods are combined in a consistent framework called Feature Extraction. As an ex-

ample for the efficiency of the framework, the computational effort of pricing different types of

Parisian and Asian style options is compared to the effort of classical Monte Carlo and PDE pric-

ing. Especially, the fast pricing of a moving window Parisian option is presented using a PDE

solver [103, 50] as an efficient tool for the required numerical integration.

While this chapter focuses on options which can only be exercised at maturity time, the later

chapters will address options with an early exercise.

2.2 Introduction

For the numerical evaluation of option prices in the Black-Scholes models, three approaches come

to mind, namely direct numerical integration, solving the Black-Scholes partial differential Equa-

tion (PDE), or Monte Carlo simulation, respectively. Whereas the first two methods are fast and

accurate in many cases, they encounter considerable difficulties for path dependent options. If

the path dependence involves more than just a single or few additional state variables, the PDE

approach may be untractable altogether. Monte Carlo methods, on the other hand, allow for

complex path dependencies (high-dimensional problems) but their efficiency is limited by their

relatively low convergence rate as presented in the previous chapter.

In this chapter we suggest to combine elements of the Monte Carlo and the direct numerical

integration in order to increase the accuracy of the former. We call this method Feature Extraction

because the feature of the option’s payoff, which is hard to compute by other means is estimated

from a Monte Carlo simulation. This feature is then used in a numerical integration method,
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which would not have been possible before. In this context, we use a PDE solver as an efficient

tool for the numerical integration.

That means for the case of a path dependent options, we proceed in two steps. First, a Monte

Carlo simulation is used to replace the given path dependent option with a European-style option

which has the same price. In a second step, this hypothetical European option is evaluated by

direct numerical integration or by solving the Black-Scholes PDE.

Why does this procedure lead to a higher accuracy? In many concrete cases, the value StT
of

the underlying at expiration contributes considerably to the actual payoff of the option. The vari-

ability of the payoff among all paths of the underlying with terminal value StT
is often much

smaller than the variability of the payoff among all conceivable asset price movements. The

possibly slow and inaccurate Monte Carlo step in the Feature Extraction contributes only to the

variability that cannot be explained by the asset’s terminal value StT
, thus leading to a higher

precision in the end.

The main idea of this chapter was first presented by Grau [55]. In contrast to this earlier work,

this chapter provides more insight into the method and derives its correctness.

The chapter is organized as follows. In the next section we explain the general idea of the

combined approach and compare the relative performance in the case of a discretely sampled

Asian option. Subsequently, an iterative extension of the method is applied to moving window

Parisian options. The last section concludes.

2.3 Pricing Using Feature Extraction

We denote by S = (St)t∈[0,tT ] the price process of an asset in the Black-Scholes model with con-

stant volatility σ and risk-less interest rate r. Our aim is to price an option with a payoff P (S),

S := {Sτ |τ ∈ I}, I ⊆ {t0, t1, . . . , tT } at tT which may depend on the whole path history of S. The

fair initial price of the option is given by

Vt0 = e−rtTEQ[P (S)],

where the expectation is taken under the risk-neutral measure given an initial asset price St0 .

If EQ[P (S)|StT
= s] denotes the conditional expectation of the payoff given that the asset price

terminates at s, it follows that

Vt0 = e−r(tT )

∫ ∞

0

EQ[P (S)|StT = s] · pStT (s) ds, (2.1)

where pStT is the probability density function of StT
given an initial asset price St0 , (Equa-

tion (1.25)),

pStT (s) =
1

σs
√

2πtT
e
− (log(s/St0 )+(r−(1/2)σ2)tT )2

2σ2tT .

Now, we define the Feature Extraction as a method which separates the option price computa-

tion into the two parts in Equation (2.1), namely into the conditional expected payoff function
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EQ[P (S)|StT
= s] and the corresponding probability density function pStT (s). In the later Sec-

tion, we will see Asian options, where pStT (s) is known analytically and EQ[P (S)|StT
= s] has

to be estimated numerically. Furthermore, we will see Parisian options, where pStT (s) has to be

estimated numerically and EQ[P (S)|StT
= s] is known at each time step of an induction in back-

wards time. Feature Extraction means to use as much analytical information in an option pricing

process as possible.

Suppose that pStT (s) is known and EQ[P (S)|StT
= s] is not known. The intuition behind this

method is that we interpret

f̃(s) := EQ[P (S)|StT
= s]

as the payoff of a hypothetical European-style option, which is computed by Monte Carlo sim-

ulation. In a second step, the integral in (2.1) is evaluated directly or by numerical solution of

the corresponding PDE. As noted in the introduction, the conditional variance var(P (S)|StT = s)

is typically much lower than the total variance var(P (S)) which leads to a higher precision com-

pared to an unconditional Monte Carlo simulation.

From the way this algorithm works by integrating the payoff of a hypothetical European op-

tion, it is clear that an extension to options with early exercise features is not easy. Another

obvious limitation is that the probability density function of the terminal asset price distribution

has to be known with a high precision, in a symbolic form at best. Apart from these limitations,

the pricing of any option with a payoff that can be computed by a simple forward simulation

and an underlying price process with a known probability density can profit from the presented

approach.

Let us illustrate the approach in the case of a discretely sampled Asian option in the next

section followed by a Parisian option.

2.3.1 A Discretely Sampled Asian Option

An Asian option is a European option with a payoff P (S) that depends on the average I of the

past stock prices and the strike K. For a discretely sampled Asian call option with sample dates

t0 = 0, t1, . . . , tT , the payoff P is

P (S) = max(I(S)−K, 0),

for an Asian call option resp.

P (S) = max(K − I(S), 0)

for an Asian put option with

I(S) =
1

T + 1

T∑

i=0

Sti .
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As presented in Chapter 1, in the classical Monte Carlo pricing method, one would estimate the

discounted expected payoff by the mean of the payoff of n simulated asset paths

Vt0 = e−r(tT )EQ[P (S)]

≈ e−r(tT ) 1
n

n∑

j=1

P (Sj)

with

P (Sj) = max

((
1

T + 1

T∑

i=0

Sj
ti

)
−K, 0

)
,

for the Asian call,

P (Sj) = max

(
K −

(
1

T + 1

T∑

i=0

Sj
ti

)
, 0

)
,

for the Asian put with

Sj
ti

= Sj
ti−1

e(r− 1
2 σ2)(ti−ti−1)+σ

√
ti−ti−1θi,j , (2.2)

where θi,j , i = 1 . . . T , j = 1 . . . n, denotes independent realizations of a random variable drawn

from a standard normal distribution.

The value Vt0 is the no-arbitrage price of the standard Black-Scholes option price model.

As explained in the previous section (see Equation (2.1)), the Asian option pricing problem

can be divided into an expected payoff function and the probability density function pStT of the

asset price at maturity. The PDF is known (see Equation (1.25)) and the expected payoff function

can be estimated by Monte Carlo simulations.

In order to compute the expected payoff function in the case of an Asian option, we have

to compute the payoff for all possible paths starting at St0 . Consider a Monte Carlo simulation

with stock price paths Sj and payoffs P (Sj), j = 1 . . . n. As in Section 1.2.1, an estimate for the

conditional payoff function f̃ ≈ EQ[P (S)|StT = s] is generated by a regression on basis functions.

In this case, a B-spline f spline(StT
) =

∑
k akbk(StT

) proves to be useful. The required regression is

given by

min
fspline

n∑

j=1

‖P (Sj)− f spline(Sj
T )‖22 ⇔ min

a1...,am

n∑

j=1

∥∥∥∥∥P (Sj)−
m∑

k=1

akbk(StT
)

∥∥∥∥∥

2

2

(2.3)

i.e.

f̃(s) = EQ[P (S)|StT
= s] ≈ f spline(s). (2.4)

This can easily be done by using the local basis approximation as presented in Chapter 1. The

regression is only one dimensional – on the asset price at maturity, so that the spline is the best
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choice for the basis. Since this least-squares regression leads to an estimate for the conditional

expectation (see Section 1.2.1), this kind of regression exactly produces the results we need. Due

to the smoothness of the solution, already a small number of cubic spline basis functions (3-5)

generate an acceptable accuracy. A simple implementation can be found in Appendix 7.5.

Figure 2.1 demonstrates the smoothing effect for an Asian option by comparing the condi-

tional payoff of Monte Carlo simulations with the spline approximation of the expected condi-

tional payoff function. On the left, we can see the terminal distribution of the asset price as a

histogram and the realized payoff values as dots. Performing a regression on the data of these

dots, we obtain the line for the conditional expected value of the payoff on the right of the figure.

Instead of using the empirical distribution of the asset price as demonstrated by the histogram on

the left, the Feature Extraction now uses the analytic solution shown as probability density on the

right.

An alternative to a regression on the asset price is the simulation of only very specific asset

paths. Using Brownian bridges, one can basically choose the terminal asset price for each paths.

That means, one can determine the conditional payoff on a grid of the values of StT and interpo-

late the values to obtain f̃(StT ).

Value of payoff at maturity
(Monte Corlo)

Histogram of asset paths at maturity
(Monte Carlo error)

asset price S

time t

Expected value of payoff at maturity

(spline regression on Monte Carlo,
Monte Carlo error)

Distribution of asset paths at maturity

(known as closed-form solution:

pST

no Monte Carlo error

asset price S

time t

Figure 2.1: On the left, an Asian option with the conditional payoff of each asset path and the
path distribution histogram is presented. The right figure demonstrates the smoothing effect
taking place using the PDF and the approximation of the expected conditional payoff function.

2.3.2 Simple Example

To clarify the algorithm, this section will proceed in a step by step fashion and explain every

computational task of the evaluation of the discretely sampled Asian option with the Feature

Extraction method. Consider an Asian option with data in Table 2.1. This is a simple Asian put

option with three observation dates for the averaging: t0 = 0, t1 = 0.5 and tT = t2 = 1.

We start the evaluation by simulating the underlying’s paths using Equation (2.2)

Sj
ti

= Sj
ti−1

e(r− 1
2 σ2)(ti−ti−1)+σ

√
ti−ti−1θi,j
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Table 2.1 Data of an Asian put option with three averaging sample dates.

General features
Independent variable I 1

3

∑2

i=0 Sti

strike price K 100
risk-free rate r 5% p.a.
current stock price St0 100
volatility σ 40% p.a.
maturity time tT 1 year
observations every 0.5 years
Payoff at Maturity P max(K − I, 0)

and the data in Table 2.1. With Sj
t0 = 100 and random numbers θi,j , j = 1 . . . , 10, i = 1, 2, we get

10 asset paths:

j Sj
t0 Sj

t1 Sj
t2

1 100 81.6340 61.7521
2 100 120.7011 86.3528
3 100 89.1249 84.7387
4 100 118.4613 87.9178
5 100 104.5817 118.0245
6 100 81.0836 86.1567
7 100 58.9702 40.8700
8 100 101.6986 72.1828
9 100 65.8471 65.5679

10 100 119.6538 133.2725

Now, we can compute the payoff of the Asian option for each paths. With

P j(Sj
t0 , S

j
t1 , S

j
t2) = max

(
100− 1

3

2∑

i=0

Sj
ti

, 0

)
, j = 1, . . . , 10

we obtain

P := P(St0 , St1 , St2) =




18.8713
0.0000
8.7121
0.0000
0.0000

10.9199
33.3866
8.7062

22.8616
0.0000
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which can already be used for a price estimate following the traditional Monte Carlo pricing

method (cp. Section 1.4.2):

Vt0 ≈ e−rtT
1
10

10∑

j=1

P j

≈ e−0.05·1 · 10.3458

≈ 9.8412.

However, we want to compute the estimate for the option price using the Feature Extrac-

tion, where we need a local basis approximation of E[P |StT ] which we compute following The-

orem 1.4 and Lemma 1.5. For this regression estimate, we need to define our basis functions

b1(x), . . . , bm(x). In this simple case we choose polynomials up to the power of two in x := StT

such that b1(StT ) = 1, b2(StT ) = StT and b3(StT ) = S2
tT

. Consequently, the matrix B := B(StT ) in

the regression is

B =
(
1 Sj

tT
(Sj

tT
)2

)∣∣∣
j=1,...,10

,

which is

B =




1 61.7521 3813.3171
1 86.3528 7456.8073
1 84.7387 7180.6524
1 87.9178 7729.5404
1 118.0245 13929.7926
1 86.1567 7422.9713
1 40.8700 1670.3548
1 72.1828 5210.3516
1 65.5679 4299.1531
1 133.2725 17761.5684




in this particular case. That means, that the local basis approximation is given by

f̃(StT
) =

3∑

k=1

ãkbk(StT
)

with

(ã1 ã2 ã3)
T =

(
BT B

)−1
BT P

= B†P

= (81.70 − 1.375 0.005712)T
.
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We use this result for the pricing with Equation (2.1), i.e.

Vt0 = e−rtT

∫ ∞

0

f(s) · pStT (s) ds

≈ e−rtT

∫ ∞

0

f̃(s) · pStT (s) ds

≈
∫ ∞

0

e−rtT · (81.70− 1.375 · s + 0.005712 · s2) · 1
σs
√

2πtT
e
− (log(s/St0 )+(r−(1/2)σ2)tT )2

2σ2tT ds.

The last integral can now be evaluated with numerical methods. In this simple case, we use the

trapezoidal rule (see Voss [114, p.47]) with equidistant nodes:

s f(s) pStT (s) F(s):=e−rtT f(s) · pStT (s)
25 50.9062 0.0001372 0.0062
50 27.2489 0.0050471 0.1308
75 10.7312 0.0108062 0.1103

100 1.3531 0.0099545 0.0128
125 -0.8852 0.0065309 -0.0055
150 4.0161 0.0036761 0.0140
175 16.0571 0.0019223 0.0294
200 35.2378 0.0097297 0.0326
225 61.5581 0.0004863 0.0285
250 95.0181 0.0002430 0.0220
275 135.6178 0.0001222 0.0158
300 183.3572 0.0000621 0.0108
325 238.2362 0.0000319 0.0072
350 300.2549 0.0000167 0.0048
375 369.4132 0.0000088 0.0031
400 445.7113 0.0000047 0.0020
425 529.149 0.0000026 0.0013
450 619.7264 0.0000014 0.0008
475 717.4434 0.0000008 0.0005
500 822.3002 0.0000004 0.0004

which leaves us with

Vt0 ≈ 25

(
0.5 · (F (25) + F (500)) +

19∑

i=2

F (i · 25)

)
≈ 10.69

as the Feature Extraction estimate for the Asian option with data in Table 2.1. This value is far

from the true value of 6.97 (estimated with 10.000.000 paths) and even further away than the

traditional Monte Carlo method with 9.84. But, as we will see in the next section, in realistic

settings with many paths and more regression basis functions the Feature Extraction method

converges faster to the true solution and delivers more accurate estimates than the traditional

Monte Carlo method.
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Table 2.2 Specifications of an Asian option.

Option type Asian arithmetic average
Independent variable I 1

124

∑124

i=1 Sti

Strike K 100
Payoff at Maturity P max(I −K, 0)

Maturity T 0.5 years
Risk free rate r 5% p.a.

Volatility σ 25% p.a.
Daily observations ∆obst 1/250 years

no observations at t = t0, t = tT
Initial asset price St0 100

2.3.3 Numerical Examples

The examples in this section are discretely observed Asian call options based on the specifications

in Table 2.2.

The value of a classical PDE solution of the Asian option with specifications in Table 2.2 is

4.646 (Grid with 1600 nodes in S and 4000 time steps, all four digits correct). All subsequently

reported errors are relative to this value.

In the case of Asian options, the antithetic variables and the variance reduction improve a

Monte Carlo estimate significantly. See Boyle [21, 23] for more information on variance reduction

and antithetic variables. These improvements can be combined with the method of this chapter.

Figure 2.2 shows the frequency distribution of the error with the different Monte Carlo meth-

ods, compared with the new method. In both cases, the antithetic variables and the antithetic

variables with control variable, the error distribution of the new method is smaller. The standard

deviation for each of the methods is a half using the new method compared with the classical

Monte Carlo. That means the new method is an additional improvement of Monte Carlo simula-

tions.

In order to analyze the effect of the Feature Extraction a little further, we are going to separate

the error of a Monte Carlo estimate (cp. Equation 1.24)

Err :=
std[V

n
]√

n

into separate effects. From (Equation (2.1))

Vt0 = e−r(tT )

∫ ∞

0

EQ[P (S)|StT
= s] · pStT (s) ds

we know that we can separate the errors into errors for the estimation of f̃(s) ≈ EQ[P (S)|StT
= s]

and errors for the estimation of p̃StT (s) ≈ pStT (s). We do not discuss an empirical estimation of a

probability density function (PDF) here so that we refer to [20] for details.1 However, the analytic
1The following examples are computed using the Matlab command ksdensity.
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Figure 2.2: The Asian option with data in Table 2.2: Histograms of the error distribution of differ-
ent Monte Carlo simulations. The pure Monte Carlo method uses 1,000 asset paths, the antithetic
variables uses the same paths twice: once positive, once negative. The variance reduction uses
the paths with antithetic variables and the geometric averaging Asian option as correction. The
reference value for this asian option is 4.646.

conditional expectation f(s) for the Asian option in Table 2.2 is not known, which is a problem

for the computation of Equation (2.1). Consequently, we compute a highly accurate estimate with

10.000.000 asset paths and use the result instead of an analytic formula for f(s). A corresponding

implementation can be found in Appendix 7.5.

Table 2.3 summarizes the results of the different methods for pricing an Asian option with

data in Table 2.2. All values are computed using the same set of asset paths, the values in the

column A (Reference MC) are values computed with a pure Monte Carlo method. The mean

value is computed using 10,000 valuations with 10,000 asset paths simulations each. This mean

value is 4.655 ± 0.001 with 95% confidence. This value differs from the reference PDE value by

about 0.01 because the Monte Carlo method uses only 125 time steps for the averaging while the

PDE method uses 4000.

The next column contains the corresponding values where the option value is based on the

Feature Extraction, i.e. the integration with an estimated conditional expectation function f̃(s).

Columns follow, where the integration is also conducted using an estimated probability density

p̃StT (s) and combinations of both. The standard deviation (Std) and thus the error of the Fea-
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ture Extraction with an analytic PDF and an estimate for the conditional expected payoff function

(column B) is much smaller than the value of Reference MC. This was expected since this demon-

strates the effectiveness of the method. The Std for integration based on the PDF estimation (col-

umn C) is also smaller than the value of Reference MC. This is expected because the conditional

expectation in this integration was estimated from a highly accurate estimation with 10,000,000

asset paths. If we now focus on column D, where both functions p̃StT (s) and f̃(s) are estimated

from the sample, we see that the Std is very close to the value of the Reference MC. Again, this

is expected because besides smoothing, no additional information was added to the valuation

process.

The question arises, how the Std values of the different methods are connected. In the fol-

lowing we give some empirical intuition for the interdependency of the different Monte Carlo

errors using the obtained numerical values. Let us assume that the Monte Carlo error Err can be

decomposed into

std(Err) = std(Errp + Errf )

=
√

std(Errp)2 + std(Errf )2 + 2 · cov(Errp, Errf )

where Errf is the error due to the estimation of f̃(s) in Equation (2.4) and Errp is the error due

to the estimation of the probability density pStT . In our example, we can obtain the numerical

estimate for Errp = 0.05700, for Errf = 0.03701 and for Err = 0.06758 from row “Std” of Table 2.3.

A numerical estimate for the covariance of the two errors cov(Errp, Errf ) is 0± 0.000001, which is

effectively zeros. Now, computing
√

std(Errp)2 + std(Errf )2 + 2 · cov(Errp, Errf ) ≈
√

0.057002 + 0.037012 + 2 · 0 (2.5)

≈ 0.06796 (2.6)

this corresponds surprisingly well to the value of Reference MC (0.06758). Therefore, it seems to

be plausible that the different components of the error add up linearly and that they are uncorre-

lated. A further detailed analysis of this error splitting remains open to further research, since it

is beyond the scope of this dissertation.

However, this numerical example demonstrates that the Feature Extraction really benefits

from splitting the error of a Monte Carlo simulation into an error for the expected conditional

payoff function and the probability density function. Using the Feature Extraction uses an an-

alytic expression for the probability density function and thus only the error for estimating the

expected conditional payoff remains.
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Table 2.3 Values and error estimates are presented of different ways estimating the value of the
Asian option in Table 2.2 with St0 = 100, and n = 10, 000 simulated asset paths. Under Reference
MC, the prices were computed using the regular Monte Carlo technique. The other columns are
computed using Equation (2.1) with estimates for the pdf pStT (s) ≈ p̃StT (s) resp. the conditional
expectation f(s) ≈ f̃(s). Std is the standard deviation of a series of 10.000 option valuations and
thus an expected error for a single valuation.

A B C D E
Reference MC f̃(s) p̃StT (s) p̃StT (s) and f̃(s) highly accurate f(s)

Mean 4.655 4.652 4.687 4.687 4.652
Std 0.06758 0.03701 0.05700 0.06788 0
Systematic error - <0.001 ≈0.03 ≈0.03 <0.001

2.3.4 Summary of the Feature Extraction for European Path Dependent Op-
tions

For discretely observed European style path dependent options, the new method can be summa-

rized as follows:

1. Compute the local basis approximation of the expected payoffs f̃(StT ) = EQ[P (S)|StT = s]

for all possible asset path histories S := {Sτ |τ ∈ I}, I ⊆ {t0, t1, . . . , tT } and terminal asset

price StT
at maturity time tT . This can be done by Monte Carlo simulations, starting at St0

and Theorem 1.4.

2. Use the Black-Scholes Equation to solve for the price Vt0 , e.g. by a finite differences time
stepping of

∂V (St, t)

∂t
+

1

2
σ2S2

t
∂2V (St, t)

∂S2
t

+ rS
∂V (St, t)

∂St
− rV (St, t) = 0

with f̃(StT
) as terminal condition. Or solve the Black-Scholes Equation by using the distri-

bution of StT
, i.e.

pStT (s) =
1

σs
√

2π(T )
e
− (log(s/St0 )+(r−(1/2)σ2)tT )2

2σ2tT .

The option price Vt0 is then given by

Vt0 = e−rtT

∫ ∞

0

pStT (s)f̃(s) ds.
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2.4 Pricing Delayed Barrier Options

The Feature Extraction method can be used for pricing Parisian options with different kinds of

knock-out or knock-in conditions. In order to use less computations in the Monte Carlo simula-

tion one can extend the method from one expected payoff function at time T to expected payoff

functions at all discrete observation times with different probabilities for each expected payoff

function to occur. The resulting algorithm is based on PDE time stepping in order to integrate the

expected payoff functions at the different times consistently. In contrast to the previous example,

the probability density function of the terminal asset price is unknown and the conditional ex-

pected payoff function is known at each time step of the Parisian option observation. This was

reversed in the pricing an Asian option.

Definition 2.1 We define Parisian options as follows:

(i) A consecutive counting Parisian option is an option which becomes worthless if the underlying

stock stays M consecutive days above a barrier level SB .

(ii) A cumulative counting Parisian option is an option which becomes worthless if the underlying

stock stays M days above a barrier level SB since the initialization of the Parisian option.

(iii) A moving window Parisian option is an option which becomes worthless if the underlying stock

stays M out of the last N days above a barrier level SB .

Note that the moving window Parisian option is a generalization of the consecutive and cu-

mulative counting Parisian option. The consecutive counting Parisian is equivalent to a moving

window Parisian option with N = M . The cumulative counting Parisian is equivalent to a mov-

ing window Parisian with N →∞.

In the following we will consider a moving window Parisian call option. At each time step

we want to consider the fraction of options which is knocked out separately from the options still

alive.

In the context of moving window Parisian options we apply the method in the previous sec-

tions recursively in time. The payoff function of the option at expiration tT can be represented

as

f(S) = max(StT −K, 0) · I(S, tT ),

where I(S, t) denotes an indicator variable which equals 0 if the option has been knocked out up

to (and including) time t and 1 if it is still alive at t. Obviously, this indicator depends in a complex

way on the whole path history S := {Sτ |τ ∈ I}, I ⊆ {t0, t1, . . . , tT } of the stock price process S.

In order to evaluate the initial fair price

Vt0 = e−rTEQ[f(S)],
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we suggest to compute the conditional expectations

EQ[f(S)|Sti = s, I(S, ti+1) = 1] (2.7)

and

EQ[f(S)|Sti = s, I(S, ti) = 1] (2.8)

recursively for i = T − 1, . . . , 0. Since

EQ[f(S)] = EQ[f(S)|St0 = St0 , I(S, t0) = 1],

this eventually leads to the fair option price.

For the first Step (2.7) suppose that

EQ[f(S)|Sti+1 = s, I(S, ti+1) = 1]

is known by recursion. Note that this is definitely true for i = T − 1 because

EQ[f(S)|StT
= s, I(S, tT ) = 1]

= EQ[max(StT −K, 0) · I(S, tT )|StT = s, I(S, tT ) = 1]

= max(s−K, 0).

Since S is a Markov process, we have

EQ[f(S)|Sti = s, I(S, ti+1) = 1] (2.9)

=
∫
EQ[f(S)|Sti+1 = s̃, I(S, ti+1) = 1] · pSti+1 |Sti

=s(s̃) ds̃,

where pSti+1 |Sti
=s(s̃) denotes the conditional probability density function of Sti+1 given that Sti =

s, i.e.

pSti+1 |Sti
=s(s̃) =

1
σs̃

√
2π(ti+1 − ti)

e
− (log(es/Sti

)+(r−(1/2)σ2)(ti+1−ti))
2

2σ2(ti+1−ti) .

For the second step, we need an estimate of the conditional probability

Pi,i+1(s) := Prob (I(S, ti+1) = 1|Sti = s, I(S, ti) = 1) , (2.10)

i.e. the probability of survival until time ti+1 if the option has not been knocked out until ti and

the underlying price equals s. This conditional probability is determined in the Monte Carlo step

of our approach. It is the only instance where simulation is actually needed. Using (2.10) we can

determine (2.8) by

EQ[f(S)|Sti = s, I(S, ti) = 1]

= EQ[f(S)|Sti = s, I(S, ti+1) = 1] · Pi,i+1(s)

+ EQ[f(S)|Sti = s, I(S, ti+1) = 0]︸ ︷︷ ︸
= 0

· (1− Pi,i+1(s))

= EQ[f(S)|Sti = s, I(S, ti+1) = 1] · Pi,i+1(s). (2.11)
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For many path dependent options, the Feature Extraction can be summarized as follows

1. Compute the probabilities Pi,i+1(s) of survival for all values of s and i. This can be done

e.g. by Monte Carlo simulations, starting at the asset value St0 .

2. Use numerical integration, or better, a numerical solver for the Black-Scholes PDE to com-

pute

EQ[f(S)|Sti
= s, I(S, ti+1) = 1]

from EQ[f(S)|Sti+1 = s, I(S, ti+1) = 1] as in Equation (2.9).

3. Compute EQ[f(S)|Sti
= s, I(S, ti) = 1] from

EQ[f(S)|Sti
= s, I(S, ti+1) = 1]

and Pi,i+1(s) using Equation (2.11) and go back to step 2 if i 6= 0.

4. The price of the path dependent option is given by

Vt0 = e−rtT EQ[f(S)] = e−rtT EQ[f(S)|St0 = St0 , I(S, t0) = 1].

This algorithm can be extended to Parasian, lookback or similar options without large efforts.

2.4.1 Numerical Example: A Parisian Option

In this section, the efficiency of the new method will be compared with the classical Monte Carlo

method. Table 2.4 provides the data of the moving window Parisian option used for the calcula-

tions.

Table 2.4 Specifications of a Parisian option.

Option type Parisian up-and-out
Payoff at Maturity f max(StT

−K, 0)
Strike K 100

Maturity tT 0.25 years
Risk free rate r 5%

Volatility σ 25%
Barrier Level SB 120

Daily observations ∆obst 1/250 years

Length of observation
period N 15 ∆obst

Number of observations
to event M 5 ∆obst

no knock out at t = 0, t = tT
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Figure 2.3: The standard deviation of the value for a Parisian option with specifications in Ta-
ble 2.4 is plotted versus CPU-time. The standard deviation for each CPU-time is computed using
100 runs of different Monte Carlo simulations. The total number of asset paths reach from about
1,000 to 15,000,000 (PDE discretization: 800 to 3200 nodes in the S, 480 to 1920 time steps, Pi,i+1-
grid: spacing in S direction: 800 to 12800 nodes). The CPU time is the run time of a C/C++
implementation on an Intel Xeon 1.7 GHz computer.

For this example of the Parisian options, the values of 1 − Pi,i+1 are presented in Figure 2.4.

The values are estimated using a Monte Carlo simulation. The options price Vt0 is computed

using these probabilities, and a linear interpolation between the nodes.

In order to get an idea of the improvement of convergence, a confidence interval for the price

of the Parisian option is computed. With a traditional Monte Carlo method and with the Feature

Extraction method. In the this example, the Feature Extraction uses a PDE solver for the integra-

tion with the probability density function. This is very efficient for the treatment of many sub

steps, which are required in the Parisian option case.

In Figure 2.3 the confidence interval is given as the standard deviation of different runs of

the pricer.2 The standard deviation of 100 runs of the new method and the classical Monte Carlo

method is presented. The Figure shows that, the Feature Extraction has about half the standard

deviation compared with the pure Monte Carlo simulation.

An interesting property one can observe at Figure 2.3 is that the slope of the log(standard

deviation) versus log(CPU-time) is about−0.5 of all three methods. That means that the standard

deviation is approximately proportional to (CPU-time)−0.5 = 1√
CPU-time

. This result was expected

2This corresponds to 68% probability that the option value is within V± standard deviation (cp. Table 1.2).
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Figure 2.4: Value of the knock out conditional probability 1 − Pi,i+1(S) of a Parisian option with
specifications in Table 2.4 are plotted versus the asset price and time step.

for the pure Monte Carlo method because we found for this kind of Monte Carlo pricing that is

converges with 1√
number of paths

(Equation (1.24)) and the CPU-time is proportional to the number

of paths. The numerical PDE solution required by the new method needs only a small fraction of

time compared to the Monte Carlo sampling thus it has only a minor effect on the CPU-time.

2.5 Summary

This chapter presents a new framework for the valuation of exotic path dependent options, which

we call Feature Extraction. The new framework presented is based on separating the pricing prob-

lem into two parts. One part with high complexity is solved by a Monte Carlo method, and a sec-

ond part with low complexity is solved by standard numerical tools (numerical integration, PDE

solution). The only problem arising is that even though a PDE method can be used in the process,

the Feature Extraction is not easily extended to pricing options with early exercise feature.

Values for different kinds of complex derivatives can be computed. The numerical conver-

gence studies show that the new method is capable of a precise pricing of moving window

Parisian options. While it is practically impossible for a pure PDE method to handle a mov-

ing window Parisian option with long windows (> 20 observations, see [55]), the new solution

can deal with this problem.

The improvement of convergence for Asian options using the new method is comparable with
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the improvement for Parisian options. Furthermore, the improvements by the new method can

be combined with classical Monte Carlo improvements like antithetic variables and importance

sampling in order to increase convergence.
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Chapter 3

Moving Window Asian Options

3.1 Overview

In the previous chapter, we saw a method which can increase the speed of pricing path dependent

options which do not allow early exercise. Now, we want to see, how regression methods can help

pricing exercisable path dependent options.

The pricing of moving window Asian options with an early exercise feature is considered as

one of the most complex problems in numerical finance. The computational challenge is created

by the unknown optimal exercise strategy and the high dimensionality that is required for its

approximation. We use the Least-Squares Monte Carlo approach together with Sparse Grid type

basis functions to combine two simple and well established methods. The resulting algorithm

provides a convergent and practical method for pricing the moving window Asian options as

well as other high-dimensional, exercisable securities, which to our knowledge have not yet been

solved with reasonable accuracy.

3.2 Introduction

Methods for pricing a large variety of exotic options have been developed in the past decades.

Still, the pricing of high-dimensional American style options remains challenging. The price of

this kind of option depends on the complete price path not only on the stock price at the final exer-

cise date. In this chapter, we consider the price of a moving window Asian option (MWAO) with

discrete and continuous observations for the computation of the early exercise value1. The early

exercise value of the MWAO depends on the average value of the underlying stock over a mov-

ing period of time, which means that a continuous observation leads to an infinite dimensional

problem.

1Note that we skip the American in the name for the moving window Asian option with early exercise. We do this,
because a moving window would be useless without an early exercise or a knock-out feature. In the remainder of this
thesis, we will only consider MWAOs with an early exercise.
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Figure 3.1: Although being a popular tool for chart analysts, pricing options on a moving average
is challenging.

The idea of computing a moving average value comes from the technical analysis of stock

price evolution: Chart analysts use the moving average as an indicator for future stock price

movements and they often present charts similar to Figure 3.1. The figure shows a stock-price

index and the corresponding moving average. The analysts claim that there is information about

the future in such charts. However, we will not discuss whether this is true or not, we will use

the moving average in a different setting, as a strike of stock options. This idea is simple and

leads to a product which is easy to understand for investors. But, only a few options which have

a moving average as a strike or as an underlying are actively traded [70]. More common is the

moving average computation in issuer-call features of some fixed income securities [71]. Our

algorithm can easily be adapted to these securities, so that we will only present the simple case of

MWAOs.

The foundation of almost any option pricing method is layed by the no-arbitrage framework

introduced by Black and Scholes [17]. We presented the common methods for valution in this

framework in Chapter 1. Especially important to note is that Least-Squares Monte Carlo which

was first presented by Carrière [32] was improved by Longstaff and Schwartz [81], who already

presented an example of a moving window Asian option with early exercise in their publication.

However, the option priced by their mathematical formula solves a much easier problem than

indicated by their prosa. Another application of the Least-Squares Monte Carlo to the MWAO
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option is presented by Bilger [16]. His method is very limited and computationally extremely

expensive. Accurate values can hardly be expected. However, Bilger’s approach is closely related

to our method, which only uses a different choice of basis functions for the conditional expected

option value.

There are virtually no analytic pricing formulas known for American type options so that one

has to rely on numerical methods, of which Monte Carlo simulation is among the most common.

Alternative approaches are based on the Cox Ross Rubinstein (CRR) [36] binomial tree model,

which can easily be adapted to American Asian options by using non-recombining trees. The size

of non-recombining trees grows exponentially with the number of time steps, such that accurate

results are hardly obtained. Window options in a recombining CRR model have been presented

by Lau and Kwok [77] using forward shooting grids but they price Parisian or delayed-barrier op-

tions and not averaging options. Zvan, Forsyth and Vetzal present PDE methods for continuously

[122] as well as for discretely sampled Asian options [123]. The averaging period in their model

is limited to a start at a fixed point in time and cannot be easily adapted to a moving averaging

period. Other authors like Wilmott [117] present the MWAO with early exercise as a challenging

(“not easy”) problem in a PDE framework.

In fact, pricing methods for MWAOs have been described by very few authors besides Longstaff

and Schwartz [81] or Bilger [16]. Kao and Lyuu [70] present results for moving average-type op-

tions which are traded in the Taiwan market. Their method is based on the CRR model and can

handle short averaging periods: the examples include up to 5 discrete observations in the aver-

aging period. To our knowledge, Bilger [16] as well as Kao and Lyuu [70] are pioneers in the

treatment of MWAOs with early exercise features.

Related to the MWAOs is the problem of multi-asset Asian options. An interesting approach

using Markov transition matrices on low distortion grids has been presented by Berridge and

Schumacher [15]. Their method seems to be promising for problems with medium dimensionality

(4 to 10) and should be applicable to moving window Asian options. An implementation of their

method is much more complex and less flexible than ours. Work on European Asian option

contracts has been conducted by several authors, e.g. Kemna and Vorst [71] and Shao and Roe

[106].

As the main extension to Least-Squares Monte Carlo we propose the utilization of sparse grids

type basis functions in the regression, which allows for an accurate option valuation of up to 20

discrete observations on prevailing hardware. The idea of this technique was originally discov-

ered by Smolyak [107] and was rediscovered by Zenger [121] for PDE solutions in 1990. It has

been applied to many different topics since then, such as integration [19] or Fast Fourier Transfor-

mation [59]. Recently, sparse grids have been used for finite element PDE solutions by Bungartz

[28], interpolation by Bathelmann et al [13], and clustering by Garcke et al [52]. They also have

been applied to PDE option pricing by Reisinger [100]. An extensive overview of sparse grid

methods is provided by Bungartz and Griebel [29].
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This chapter is structured as follows: First we formulate the problem of moving window Asian

option pricing and explain why it is computationally challenging. It follows a brief description

of the Least-Squares Monte Carlo and the introduction of sparse grids to the framework. We

show some numerical examples that demonstrate the method’s effectiveness. Finally we apply

an extrapolation technique to further reduce the error originating from the discrete observations

and other limiting parameters. A paper version of this chapter is also available [40].

3.3 Moving Window Asian Option

In this section, we work out the details of a moving window Asian option and present some

similar derivatives. The MWAO is a simple option that makes use of the moving average as it

is plotted in many stock price charts. Similar to an American option which pays the difference

between the current underlying price and a fixed strike, the MWAO pays the difference between

the current stock price and the floating moving average. Since the computation of moving aver-

ages is well established in chart analysis, this option could be accepted by the market, despite its

computational difficulties. Having derived a precise mathematical formulation for the price of an

MWAO, we will be able to understand its computational challenge. Other securities which seem

to be equally challenging at first sight are already very common and actively traded. We will

show, how the valuation of the related securities avoid the computational difficulties of MWAOs.

However, MWAOs might be more interesting for investors than the related securities because

they have a more intuitive averaging mechanism.

3.3.1 Continuous Version

Before we go into the details of the financial product we set up the process for the underlying vari-

able. As in the previous chapters, we use a standard diffusion process that models the uncertainty

in the stock price, according to the formula of Black and Scholes. We denote the stock price at time

t with St and the option price in dependence of St := {Sτ |τ ∈ I}, I ⊆ [t0, t] with Vt := V (St, t).

From the no-arbitrage arguments we know that the option value satisfies the partial differential

Equation (Equation (1.19)),

∂Vt

∂t
+

1
2
σ2S2

t

∂2Vt

∂S2
t

+ rSt
∂Vt

∂St
− rVt = 0

with risk-free interest rate r.

Now, the peculiarity of the MWAO is expressed by a boundary condition to the option value

V , known as an American constraint. The following condition states the minimum value for the

function Vt and has to be satisfied at each time t > t0 + tw,

Vt ≥ P (At, St) , (3.1)

At =
1∫ tw

0
α(τ)dτ

∫ t

t−tw

α(t− τ)Sτdτ, (3.2)
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where P is the option’s payoff function that depends on the current stock price St and a weighted

average At of the historic stock prices using the weight function α. The moving average is taken

over a window ranging from t− tw to t. In the following, we will consider the payoff function

P (At, St) = max(At − St, 0). (3.3)

Hence, the exercise value is greater zero if the stock price falls below its moving average. Effec-

tively this is the case if the stock price drops either quickly or steadily.

The standard value for the weight α is

α ≡ 1

which results in an arithmetic average.

We will discuss other values in Section 3.4. The difficulty in this pricing Equation is the bound-

ary condition in Equation (3.1) which depends on the whole history of stock prices S within the

averaging period t− tw ≤ τ ≤ t. In fact, it is almost impossible to represent this integral numeri-

cally, unless we discretize the path of S.

3.3.2 Discretization

For the computational implementation of this problem we introduce a number of additional vari-

ables that contain samples of historic values of Sti at different times ti ∈ {t0 = 0, t1, . . . , tT }, i.e.

St := {Sτ |τ ∈ I}, I ⊆ {t0, t1, . . . , tT }. The accuracy of this approximation depends on the time

resolution of the samples. Thus the boundary condition (3.1) becomes a constraint in terms of

historic samples. We assume the last M samples to form the historic window. The condition

Vti = V (St, ti) ≥ P


 1

M

i∑

j=i−M

α(i− j)Stj , Sti


 (3.4)

holds for i ≥ M , after an initial incubation. For weight α, we will consider two possible configu-

rations. Since the sample points are used to approximate the integral over the stock price path, we

can use the trapezoid method for integration as the preferred method for non-smooth integrands:

α1(t) =
{

1
2 for t = 0 ∨ t = M
1 otherwise . (3.5)

A simpler method is sometimes closer to reality. With a constant α we do not optimally approx-

imate the continuous integral, but might do better at modeling the practical implementation of

such an option. In a realistic setting, this option has predefined dates at which the stock price is

fixed and considered in an equally weighted arithmetic average. That means we require a weight

function α with

α2(t) =
{

1 for t < M
0 for t = M

. (3.6)
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Our method for the valuation of the option uses the presented discretization and a quadrature

of either α1 or α2, depending on the setting. The valuation proceeds backwards in time, starting

at maturity tT , where condition (3.4) holds with equality. Then, we solve for the option value at

current time and current stock price Vt0 = V (St0 , t0).

For low values of M this procedure can be rephrased in a PDE setting and solved numerically

by standard methods. Without going into details, we recommend a method that is based on a

finite volume discretization of the Black-Scholes PDE according to the model of Zvan et al [123].

However, due to the “curse of dimensions” it is traditionally thought that a function with more

than three or four dimensions is extremely hard to discretize.

3.4 Related Problems

As we have seen, the moving window Asian option is a derivative with the moving average as one

of its underlyings. In order to determine its price correctly, the full history of previous prices has

to be considered, which leads to an arbitrary number of relevant dimensions. Despite its intuitive

definition the moving average presents a serious computational challenge. This section distin-

guishes the MWAO from other similar derivatives for which straight-forward implementations

or even analytical formulas were derived. Since all the difficulties originate from the averaging

mechanism At, we will focus on some alternative averaging styles.

3.4.1 Asian American Option

The Asian American option (AAO) is very similar to the moving window Asian option. It differs

in the time horizon over which the average is evaluated. While the MWAO has a moving window

with constant length, the AAO has a window that increases in time. The averaging window

always starts at t0 and ends at the current time t. This slight difference considerably simplifies the

computational procedure. In the following we will briefly show that this pricing problem can be

solved in two dimensions.

Consider an asset price process S with an asset price at time t of St. The moving average AAAO
t

is given by

AAAO
t =

1
t

∫ t

0

Sτ dτ. (3.7)

Differentiating this expression with resprect to time t, we obtain

dAAAO
t =

1
t
Stdt− 1

t
AAAO

t dt (3.8)

which does not depend on any historic stock price. Only the current stock price and the previous

average is required.
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3.4.2 Exponential Weight

There exists another version of the moving window Asian option for which a good Markovian

approximation of the update formula can be constructed. It uses the variable a as a decay fac-

tor which determines how much less old stock prices are weighted compared to newer values.

Consider an exponentially weighted average for the payoff

Vt ≥ P (At, St) , (3.9)

A
Exp
t =

1∫ t

0
α(τ)dτ

∫ t

0

α(t− τ)Sτ dτ, (3.10)

with

α(t) = a exp(−at). (3.11)

The average theoretically depends on all previous prices, which makes it difficult to implement

in practice. However, a simple update formula is available by differentiation of the expression

A
Exp
t with respect to time,

dA
Exp
t =

(
a

1− e−at
(St −A

Exp
t )

)
dt. (3.12)

Since this special case assigns virtually no weight to very old asset prices, the method can be seen

as a rough approximation to the MWAO in Equation (3.1) with α(t) = a exp(−at). This kind of

approximation is presented by Longstaff and Schwartz [81].

3.4.3 Moving Window Asian Option

The previous paragraphs presented simple update formulas for averages At of Asian options. A

similar update formula can not be constructed for the MWAO2. The complete set of historic asset

prices in the window is relevant to the exercise decision of MWAOs.

To see that the problem of the MWAO is different from the presented Asian options, we recon-

sider the averaging function in Equation (3.2) with a weight function α = 1:

At =
1
tw

∫ t

t−tw

Sτ dτ.

Differentiating this expression with respect to time t leads to

dAt =
1
tw

(St − St−tw) dt,

which depends on the asset price at two different times. An optimal exercise strategy has to

consider the two values St, St−tw and all asset prices in between. The reason for this is that all the

values Sti , t > ti > t − tw will be used in the computation of future moving averages, which are

required in the computation of the expected value of continuation. Since there are infinite many

asset prices Sti , the computation of the optimal exercise strategy is hard.

2Recall that we defined MWAO to be a moving window Asian option with an early exercise feature.
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3.5 Numerical Procedure

The algorithm that is proposed in this chapter is effectively combining three individual tech-

niques which are well established in their respective fields. We combine Monte Carlo simulation,

least squares regression and sparse grids to a practical method for American option valuation.

Especially in quantitative finance the technique called sparse grids does not yet fully live to its

potential. One of the purposes of this article is to demonstrate the flexibility and the simplicity of

sparse grids. Since all the individual components of our algorithm have been elaborated in full

detail by our cited sources, we will just summarize each of the components’ main aspects.

3.5.1 Simulation

As noted in the previous chapters, the standard method which is used when dimensionality

causes numerical difficulties is Monte Carlo simulation. As we will see, this approach does not

resolve our issue but will provide the framework for our algorithm. Again, we simulate different

asset paths. Each of these paths follows the risk-neutral process, a geometric Brownian motion as

in the first chapter (1.26). Recall this process, which is the process underlying the Black-Scholes

Equation (1.19),

dSt = rSt dt + σSt dWt

with a risk-less interest rate r, volatility σ and the increment of a Wiener process dWt. This

process is sampled at discrete times ti ∈ {t0, t1, . . . , tT } so that each of the n realization Sj , j ∈
{1, . . . , n} follows as in Equation (1.28)

Sj
ti+1

= Sj
ti

exp
(

(r − 1
2
σ2)(ti+1 − ti) + σ

√
(ti+1 − ti)θi,j

)

with θi,j drawn from a standard Normal distribution. The price of the MWAO is the discounted

expected value of the payoff at the optimal stopping time. The optimal stopping time provides a

strategy maximizing the option value without information about the future of the asset path. The

optimal stopping time is computed by Least-Squares Monte Carlo as presented in Section 1.4.2. It

is important to recall that the numerical procedure always produces a suboptimal exercise strat-

egy, such that the average option value is underestimated.
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3.5.2 Choice of Basis Functions

A tricky part of our numerical solution and in fact the crucial challenge is the careful choice of

the basis functions bk in Equation (1.34). As described in the previous section we will use a

linear combination of these basis functions to express an estimate for the current option value in

dependence of all relevant input parameters.

Implementation

In our implementation, we perform the regressions required by Equation (1.34) on sparse poly-

nomial basis functions as presented in Chapter 1 (Section 1.2.2). We use sparse levels L from

0 to 3 which are sufficient for our purposes. But, we do not perform the regressions on S di-

rectly. Instead, we use scaled values of S such that for each simulated path Sj , we compute

xj = (γ1(S
j
ti

), . . . , γM (Sj
ti−M

), with linear transformation function

γj(S
j
ti

) :=
Sj

ti
−min(Sti)

max(Sti)−min(Sti)
,

such that xj ∈ [0, 1]M+1 lies in a unit cube. Since sparse polynomial basis functions are used, this

creates matrices with better condition numbers than without the transformation.

The regression itself is performed by solving the linear least squares problem of Equation (1.34)

implicitly via QR-decompositions (cp. Section 1.2.1). Furthermore, the regression is only per-

formed on the paths with a positive exercise value Si : P (Si, t) > 0. This decreases the computa-

tional effort.

3.5.3 Simple Example

Table 3.1 Specification of a simple moving window Asian option with a floating strike in discrete
time.

Option type moving window Asian option
Maturity tT 0.4 years

Risk free rate r 5% p.a.
Volatility σ 40% p.a.

observation frequency ∆obst 1/10 years

Length of observation
period M 3 observations

Exercise value P (S, ti) = max

(
1
3

(
i∑

j=i−2

Stj

)
− Sti , 0

)

Exercise dates ti ∈ 0.3, 0.4
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To learn more about the implementation, we consider a simple example of a MWAO with few

simulated asset paths and only a single early exercise date. The data of this option is presented in

Table 3.1.

As always, the Monte Carlo evaluation starts with simulating asset paths. To keep this ex-

ample simple, we simulate 20 paths Sj , only. The paths j = 1, . . . , 10 are used for an in-sample

estimate (n1 = 10) and j = 11, . . . , 20 for an out-of-sample estimate (n2 = 10).

j Sj
t0 Sj

t1 Sj
t2 Sj

t3 Sj
t4

1 100 104.0085 80.5268 90.4124 64.3768
2 100 98.1999 91.2582 70.0437 62.3572
3 100 110.3735 118.5273 132.243 111.0303
4 100 98.8469 111.907 96.2535 86.32
5 100 87.1526 80.691 77.7054 78.7367
6 100 110.4539 99.8516 83.3369 103.8844
7 100 78.6144 69.4161 65.5344 63.532
8 100 96.4781 74.4774 90.8101 110.0753
9 100 105.8142 101.2728 96.8907 103.1488

10 100 103.8195 118.0207 101.0886 76.6437
11 100 102.8094 108.1064 121.8964 131.7954
12 100 98.4026 94.6187 76.2072 73.3851
13 100 94.1248 140.5762 150.434 126.2498
14 100 94.6225 81.2551 68.6878 70.1597
15 100 120.4949 135.0204 145.2074 112.4673
16 100 98.0982 89.5304 96.7834 85.1618
17 100 132.8095 125.8557 106.592 107.2087
18 100 96.542 94.6397 105.7335 96.5274
19 100 91.1224 102.0637 88.0567 90.9533
20 100 95.1477 97.4547 78.4171 75.2402

Now, we can compute the value of the option Vt4 at maturity time t4 for each of the paths, i.e.

Vt4 := Pt4(St2 , St3 , St4) = max
(

St4 + St3 + St2

3
− St4 , 0

)
,
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Vt4 =




14.0619
12.1958
9.5699

11.8402
0.3077

0
2.6288

0
0

21.9406
0

8.0185
12.8368
3.2078

18.4311
5.3301
6.0101
2.4395
2.7379
8.4638




.

This completes the work required at time t4. We proceed at time t3, where we compute the

immediate exercise value P j
t3 for each path Sj ,

Pt3(St1 , St2 , St3) = max
(

St3 + St2 + St1

3
− St3 , 0

)
,

Pt3(St1 , St2 , St3) =




1.2369
16.4569

0
6.0823
4.1443

14.5439
5.6539

0
4.4352
6.5543

0
13.5356

0
12.834

0
0

15.1604
0

5.6909
11.9227




.

Following the Least-Squares approach in Section 1.4.2, we have to compute a three dimen-

sional local basis approximation for the expected exercise value P e(S, t3) ≈ EQ[Vt4 |S, t3], S :=
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{Sτ |τ ∈ I}, I ⊆ {t0, t1, t2, t3} which we solve with a sparse polynomial basis as in Section 1.2.2.

The approximation is three dimensional because the known stochastic values at time t3 which

determine Vt4 and Pt3 are St3 , St2 and St1 .

That means, we compute (Theorem 1.4 and Lemma 1.5)

P e(S, ti) ≈ EQ[e−r(ti+1−ti)V (S, ti+1)|S, ti]

=
m∑

j=1

ãjbj(x),

(ã1 ã2 . . . ãm)T =
(
B(X)T B(X)

)−1
B(X)T y,

where we identify the state X := (x1 x2 x3)T , with x1 = γ1(St1), x2 = γ2(St2), x3 = γ3(St3),

γj(S
j
ti

) :=
Sj

ti
−min(Sti)

max(Sti)−min(Sti)

and the function values y := e−r(ti+1−ti)Vt4 to approximate.

We will not use the three dimensional basis presented in Figure 1.2, the m = 31 basis functions

Bsparse
2 (x1, x2, x3) =

⋃P
`i=2

B full
β(`)

= {1, x1, x2, x3, x1x2, x1x3, x2x3, x
2
1, x

2
2, x

2
3, x

2
1x2,

x1x
2
2, x

2
1x

2
2, x

2
1x3, x1x

2
3, x

2
1x

2
3, x

2
2x3, x2x

2
3, x

2
2x

2
3,

x3
1, x

3
2, x

3
3, x

4
1, x

4
2, x

4
3, x

5
1, x

5
2, x

5
3, x

6
1, x

6
2, x

6
3}

are too many for just 8 asset paths (in-sample and in-the-money). Instead, we will use a sparse

polynomial basis with L = 1, i.e.

Bsparse
1 (x1, x2, x3) =

⋃P
`i=1

Bfull
β(`)

= {1, x1, x2, x3, x
2
1, x

2
2, x

2
3}.

Since the basis functions do not include high polynomial degrees, we skip the transformation

γ(S) of the S values onto a unit cube, i.e.

xj := γj(S
j
ti

) := Sj
ti

.

Then, the values of the basis functions using the asset paths Sj which are in the in-sample valua-

tion set and in the money (P j
t3 > 0), i.e. j ∈ {1, 2, 4, 5, 6, 7, 9, 10} lead to
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Bin := Bin(St1 , St2 , St3) =
(
1 Sj

t1 Sj
t2 Sj

t3 (Sj
t1)

2 (Sj
t2)

2 (Sj
t3)

2
)∣∣∣

j∈{1,2,4,5,6,7,9,10}
,

Bin =




1 104.0085 80.5268 90.4124 10817.7681 6484.5731 8174.3955
1 98.1999 91.2582 70.0437 9643.212 8328.0551 4906.1259
1 98.8469 111.907 96.2535 9770.7034 12523.1715 9264.7272
1 87.1526 80.691 77.7054 7595.5709 6511.0443 6038.1319
1 110.4539 99.8516 83.3369 12200.0661 9970.3394 6945.0413
1 78.6144 69.4161 65.5344 6180.2308 4818.5902 4294.7519
1 105.8142 101.2728 96.8907 11196.6402 10256.1791 9387.8019
1 103.8195 118.0207 101.0886 10778.4862 13928.8762 10218.9062




.

Analog to Bin, the remaining paths (the out-of-sample paths) in the money j ∈ {12, 14, 17, 19, 20}
lead to a basis function value matrix Bout of

Bout =




1 98.4026 94.6187 76.2072 9683.0692 8952.6961 5807.5343
1 94.6225 81.2551 68.6878 8953.4162 6602.3897 4718.0082
1 132.8095 125.8557 106.592 17638.3735 15839.6651 11361.8604
1 91.1224 102.0637 88.0567 8303.2904 10416.9973 7753.9758
1 95.1477 97.4547 78.4171 9053.0917 9497.4135 6149.2424




.

We are interested in P e(S, t3) of the in-the-money asset path values Sj
t3 ,

j ∈ {1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 20}, only. These values are obtained by

Pe,in
t3 = Bin · (ã1 ã2 . . . ãm)T

for the in-sample respectively

Pe,out
t3 = Bout · (ã1 ã2 . . . ãm)T

for the out-of-sample paths. Altogether with Pe
t3 =

(
Pe,in

t3

Pe,out
t3

)
we can just compute

Pe
t3 =

(
Bin

Bout

)
·




(Bin)†




e−r·(t4−t3)V 1
t4

e−r·(t4−t3)V 2
t4

e−r·(t4−t3)V 4
t4

e−r·(t4−t3)V 5
t4

e−r·(t4−t3)V 6
t4

e−r·(t4−t3)V 7
t4

e−r·(t4−t3)V 9
t4

e−r·(t4−t3)V 10
t4







,

where (Bin)† is the pseudo inverse of Bin (cp. Theorem 1.7). The exercise decision (Equation (1.35))

is in this case

V j
t3 =

{
e−r(t4−t3)V j

t4 if P e(Sj , t3) > P j
t3

P j
t3 else

.

Computing the data for all paths leads to
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j P e(Sj
t3) P j

t3 e−0.05·0.1V j
t4 V j

t3

1 16.2631 1.2369 13.9918 13.9918
2 15.8368 16.4569 12.1350 16.4569
3 - 0 9.5222 9.5222
4 -73.5746 6.0823 11.7811 6.0823
5 9.9375 4.1443 0.3062 0.3062
6 -1.2629 14.5439 0 14.5439
7 1.301 5.6539 2.6157 5.6539
8 - 0 0 0
9 1.7157 4.4352 0 4.4352

10 -111.2316 6.5543 21.8312 6.5543
11 - 0 0 0
12 1.9591 13.5356 7.9785 13.5356
13 - 0 12.7728 12.7728
14 16.9106 12.834 3.1918 3.1918
15 - 0 18.3392 18.3392
16 - 0 5.3035 5.3035
17 -85.4283 15.1604 5.9801 15.1604
18 - 0 2.4273 2.4273
19 -23.5981 5.6909 2.7242 5.6909
20 -8.5221 11.9227 8.4216 11.9227

where the last column contains the option values Vt3 at time t3. Since the option has no further

early exercise dates, we can just compute the values of V j
t0 as the discounted values of V j

t3 :

V j
t0 = e−r(t3−t0)V j

t3 ,

Vt0 =




13.8525
16.2931
9.4275
6.0218
0.3031

14.3392
5.5977

0
4.3911
6.4891

13.4010
12.6457
3.1600

18.1567
5.2507

15.0096
2.4032
5.6343

11.8041




.

The option value V in of the in-sample and the value V out of the out-of-sample set are then the
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average values of the corresponding paths estimates V j
t0 ,

V in = 1
10

10∑
j=1

V j
t0 = 7.6392

V out = 1
10

20∑
j=11

V j
t0 = 8.7029.

In the remainder of this chapter, we will focus on the out-of-sample prices, since on average they

represent a lower bound on the true price as discussed in Section 1.4.2.

3.6 Numerical Examples

In order to demonstrate the efficiency of our approach, a numerical case study is provided in

this final section. We will focus on a discretely sampled MWAO with properties sketched in

Table 3.2. The option is sampled with a regular frequency, e.g. every trading day at a specified

time. We will distinguish between two different sample techniques. The first one has a discretely

sampled averaging window spanning ten observations and is consequently integrated with α2

from Equation (3.6). The second one is aimed at an approximation of the continuous-time version

of the MWAO and is integrated with α1 from (3.5).

Table 3.2 Specifications of a moving window Asian option with a floating strike in discrete time.

Option type moving window Asian option
Maturity tT 0.4 years

Risk free rate r 5% p.a.
Volatility σ 40% p.a.

Daily observations ∆obst 1/250 years

Early exercise at each observation with t ≥ 10/250 years
Length of observation

period M 10 days

Exercise value P (S, ti) = max

(
1
M

(
i∑

j=i−M+1

Stj

)
− Sti , 0

)

3.6.1 Convergence

To analyze the convergence of the presented pricing algorithm for MWAOs, we will denote the

computational result of V out according to Equation (1.36) by Ṽa

i
(n,L, M). Thus, each Monte Carlo

value Ṽa

i
depends on the number of samples n, the level of the sparse grid function basis L, the

number of observations in the window M and the quadrature scheme αa. Using different sets of

random numbers, we compute different Ṽa

i
(n, L,M) with n, L, a and M fixed in order to get an



66 Moving Window Asian Options

100 1,000 10,000 100,000 1,000,000
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8
option price

number of simulations

level 1

level 0 level 2

level 3

Figure 3.2: The option value of an MWAO option with data in Table 3.2 estimated by LSMC.

estimate for the mean

Va(n, L,m) =
1
I

I∑

i=1

Ṽa

i
(n,L,M) (3.13)

of I different Monte Carlo prices. The values for I range from 10 to 1000 depending on an estimate

of the Monte Carlo error. In most cases I is chosen in a way such that the estimate of the 68%-error

is less than 0.001, which means that all presented digits of the option values are correct. The only

exception from this rule are two presented option values with many basis functions L = 3 and

many asset paths n > 105, where I = 1. The computations of more values is too expensive and

the error should be already less than 0.01.

The number of samples n per Monte Carlo price results from the in-sample paths S1, . . . , Sn1

and the out-of-sample paths Sn1+1, . . . , Sn2 , i.e. n = n1 + n2. We use 30% of the sample paths for

regressions (n1) and 70% for valuation out-of-sample (n2).

Figure 3.2 presents the mean V2(n,L, 10) for different numbers of samples n and different

levels L. The values at level L = 0 converge quickly to a value of about V = 7.15 which does

not change after 3000 simulations. Using M = 10, the level 0 consists of just one basis function

and the resulting exercising decision is almost trivial. Level 1 consists of 21 basis functions. This

allows for a more sophisticated strategy with a better utilization of the option. After about 100.000

simulations, the option value saturates at 7.58. The level 2 with 241 basis functions results in an

even higher value of V = 7.60 after 1.000.000 simulations. A third level with 2001 basis functions
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Table 3.3 The option value of an MWAO option with data in Table 3.2 estimated by Least-Squares
Monte Carlo. The mean of a series of evaluations with level L and a fixed # of samples is denoted

by V2(n, L, 10) where as the standard deviation σ(Ṽ2

i
(n,L, 10)) of this series is denoted by σ̂.

\ level L L = 0 L = 1 L = 2 L = 3

# samples n V2(n, 1, 10) bσ V2(n, 2, 10) bσ V2(n, 3, 10) bσ V2(n, 4, 10) bσ
3× 101 7,010 0,499
1× 102 7,110 0,234 4,053 0,470
3× 102 7,138 0,134 6,192 0,264
1× 103 7,145 0,073 7,178 0,114 3,813 0,148
3× 103 7,148 0,043 7,450 0,061 5,399 0,083
1× 104 7,149 0,022 7,536 0,034 6,869 0,041 3,166 0,069
3× 104 7,149 0,014 7,567 0,018 7,359 0,018 5,357 0,024
1× 105 7,150 0,007 7,576 0,010 7,522 0,009 6,841 0,010
3× 105 7,148 0,005 7,580 0,005 7,578 0,006 7,358
1× 106 7,150 0,004 7,582 0,003 7,600 0,002 7,524
3× 106 7,149 0,001 7,579 0,001 7,601 0,001

already exceeds our available computational resources, such that the saturation level could not

be computed.

One thing worth mentioning is the initial inferiority of higher levels due to an over-fitted

exercise strategy. This effect is based on the fact that a regression with relatively few asset paths

on many basis functions is conducted for estimating the optimal early exercise strategy. Now,

the basis functions can predict the behavior of the in-sample data set perfectly and deliver early

exercise strategies which have knowledge of specific future paths characteristics instead of the

average characteristics. In Figure 3.2, the out-of-sample values are presented. For the out-of-

sample data set, the trained knowledge of specific in-sample future paths characteristics delivers

wrong estimates of the expected path development. Now, the over-fitted exercise strategy is

suboptimal and thus delivers lower values than an optimal strategy. The larger the over-fitting

effect, the worse is the exercise strategy in the out-of-sample data set.

The corresponding values to Figure 3.2 are presented in Table 3.3. The mean values of a series

of valuations is denoted by V2(n,L, 10), the standard deviation of the series is denoted by σ̂. For

a single evaluation with the Least-Squares Monte Carlo, σ̂ can be seen as a measure how close the

value is to the mean of many valuations. Contrarily, σ̂ does not provide a measure for the error

compared with the real value. The mean estimate will be biased towards lower than the real val-

ues due to the insufficient estimate of the optimal exercise strategy P e. An approximation of the

MWAO with 1.000.000 sample paths and level two regressions delivers cent accurate estimates.

Consequently, the value of an option with properties in Table 3.2 is at least 7.60.
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3.6.2 Heuristic Extrapolation

After we have successfully handled the ten-dimensional case we will aim for the infinitely di-

mensional problem. While the previous option’s exercise value depends on the average of ten

discretely sampled stock prices we will now consider the continuous integral. The option has a

payoff as defined in Equation (3.3). In order to present the optimal approximation we will in-

crease the number of samples in the averaging window and then extrapolate the value based on

the obtained convergence properties. The derivative’s specification can be found in Table 3.4.

Table 3.4 Specifications of a moving window Asian option with a floating strike in continuous
time.

Option type moving window Asian option
Maturity tT 0.4 years

Risk free rate r 5% p.a.
Volatility σ 40% p.a.

Averaging window length tw 10 days = 10
250 years

Early exercise interval 10/250 years ≤ t ≤ 0.4 years

Exercise value P (S, t) = max

(
1

tw

(
t∫

t−tw

Sτdτ

)
− St, 0

)

For the continuous integral we rely on the trapezoidal quadrature rule α1 as stated in (3.5).

Hence, we compute V1(n, L,M) and analyze the effect of increasing M arbitrarily. Figure 3.3

demonstrates the convergence on level L = 2 with 106 sample path’s. We can clearly recognize

the convergence with the number of observation samples within the averaging window M . De-

spite the converging shape there is still some slope in the curve’s final point V1(106, 2, 20) = 8.16.

Extrapolation will lead us to a final result that is about 2% higher than our best finite approxima-

tion.

In order to approximate the infinite-dimensional result as accurate as possible we use an ex-

trapolation technique for the Least-Squares Monte Carlo, similar to the Richardson extrapola-

tion [1, 98]. For an extrapolation, we require a convergent, strictly increasing series of option

values. Assuming that we knew the order of convergence of the error, we could extrapolate to

infinity and solve for the value of the continuously averaging MWAO. Before going into math-

ematical details we can think of this method as a way of guessing the limit value based on the

information known.

The price of our continuous average option has three main sources of error: the number of

simulation paths n, the level of the function basis L and the number of integration samples M .

The best possible approximation would have to limit each of these parameters towards infinity

and compute V (∞,∞,∞). We will limit our discussion to L ∈ {0, 1, 2} because this should

already give values accurate enough. Furthermore, multidimensional extrapolation is certainly
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Figure 3.3: The mean option value V1(106, 1,M) of an MWAO option with data in Table 3.4 es-
timated by Least-Squares Monte Carlo together with the function 8.2706 − 3.12026 · M−1.1250 is
presented in the upper plot. The plot on the bottom shows the difference of the option values to
the extrapolated value, 8.2706− V1(106, 1, M).



70 Moving Window Asian Options

something where little experience has been collected so far. We will do extrapolation not only

as a mental exercise, but also as a way to justify our finite results which are very close to the

presumable infinite limit.

To our knowledge, there has not been any theoretical error analysis of the Least-Squares Monte

Carlo for MWAOs. But, we can build on a result from Stone [109]: If a regression function θ(x) =

E[Y |X = x] is p-smooth, then the L2-error of a local polynomial kernel estimator converges to

zero at a rate of n−c with some fixed value c and n denoting the number of samples of X . This

result is related to the Least-Squares Monte Carlo valuation because we use a polynomial basis in

order to estimate the conditional expectation and we assume that this is the main source of error.

Hence, we can rewrite Va(n,L,m) as

Va(n, L,M) ≈ Va(∞, L, M)− (c0n
−c1) (3.14)

and our empirical data analysis indicates that this is a reasonable guess.

This extrapolation to n →∞ has little impact, since values based on n = 106 are already very

precise. The difference between V (106, 1,M) and V (∞, 1,M) is just about one cent.

Being able to produce a series of V1(∞, L,M) we can continue and focus on the next pa-

rameter: M . If we want to extrapolate it to infinity, we again have to find the order of the

error. We look for a reasonable function which can fit the option values for different M . Fig-

ure 3.3 presents the Least-Squares Monte Carlo option values for different M together with the

function 8.2706 − 3.12026 · M−1.1250. The fit of the function is almost perfect so that we get

V (106, 1,∞) ≈ 8.27. The same procedure for L = 2 leads to V (106, 2,∞) ≈ 8.30.

In the end, we can present an informed guess for the value V of a continuously averaging

MWAO with properties in Table 3.4:

V ≈ 8.30. (3.15)

This kind of extrapolation can be useful to decrease computational effort or to increase accu-

racy. However, the correct description of the error and in particular the suitability of the error

estimators for the parameters is open for future research.
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3.7 Summary

This chapter presents a simple and flexible implementation of a moving window Asian option.

Despite being actively traded, no accurate algorithm has been published so far which could ex-

tract the derivative’s optimal exercise strategy and its precise value. The computational difficulty

stems from one of the options underlyings: an either discretely or continuously sampled moving

average over a stock price path. This leads to a very high dimensionality in the mathematical

definition with an exponential complexity in standard algorithms. We have shown that a straight

forward approach to this problem could be found by employing Least-Squares Monte Carlo and

a technique called sparse grids, which was specifically developed as a cure to the curse of dimen-

sion. The presented approach can be applied to any derivative that has the moving average as an

underlying, as it is commonly plotted in stock price charts. We believe that this thesis can increase

the acceptance of such products. Now, there is a simple algorithm for the simple derivative.
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Chapter 4

Callable Convertible Bonds

4.1 Overview

After the solution to the Moving Window Asian Option pricing, we will push the Least-Squares

Monte Carlo a little further. This will allow us to determine its efficiency for complex exercise

and call features. Convertible bonds inhabit many of these complex rights for the holder and the

issuer, which makes them a suitable choice for the test of Least-Squares Monte Carlo.

Most methods for valuing convertible bonds assume that the bond is continuously and in-

stantly callable by the issuer. However, in practice convertible bonds can often be called only if

advance notice is given to the holders. In this chapter, we develop an accurate PDE method for

valuing convertible bonds with a finite notice period as a reference. Then, we present a Least-

Squares Monte Carlo method capable of pricing convertible bonds and compare the two meth-

ods. Example computations are presented which illustrate the effect of varying notice periods,

and moving window call constraints. It appears that a low-dimensional sparse basis can be used

to obtain reasonably accurate prices even in the case of the moving window call constraint.

4.2 Introduction

The market for convertible bonds has been growing rapidly in the past few years [12]. Convert-

ibles can be thought of as normal corporate bonds with embedded call options on the issuer’s

stock. Having properties of both stocks and bonds, convertibles can be an attractive choice for

investors. Studies suggest that the historical average return of convertibles has been roughly the

same as that for the equity market, but convertibles have tended to have lower risk [113, 83].

From the standpoint of the issuing firm, a convertible can be attractive for several reasons [26].

They are particularly desirable in situations where the risk of the issuer is hard to evaluate and its

investment policy is somewhat unpredictable. The prototypical issuer is a relatively small firm

with high growth potential and risk. Such firms are often cash-constrained and willing to give

the embedded call option to investors in exchange for lower coupon payments on their debt.
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Convertibles incorporate a variety of features. The instrument might be convertible into shares

of the issuing company or in some cases into shares of a different company. Usually convertibles

may be converted by the holder at any time. Often, these bonds can be sold back (or “put”) to

the issuer at specific dates for a guaranteed price. In addition, the issuer may have the right to

redeem or call back the convertible at a specified call price. If the issuer does so, the investor can

choose between receiving the call price or converting into shares. The ability of the issuer to call

back the issue is frequently restricted by “soft” and “hard” call constraints. A hard call constraint

prohibits calling the issue during the initial life of the contract. A soft call constraint requires that

the issuer’s stock price remains above a discretely observed trigger level before the issue can be

called, e.g. the convertible cannot be called until the underlying has been m out of n days above

the trigger level. In addition, and what is our main focus here, the issuer usually has to give notice

some period in advance (e.g. 1 month) of calling the issue.

A long-standing puzzle with regard to convertibles is the “delayed call” phenomenon. This

has been discussed by many authors [26, 78, 58, 4, 5, 119]. As shown in [65], assuming that the

issuing firm’s management is acting in the interests of the existing shareholders, it is optimal to

call the convertible as soon as its value is equal to the call price. However, the observed behavior

of firms is not consistent with this in that companies often wait until the convertible value is far

above the call price before calling. The optimality of the policy of calling immediately after the

convertible value reaches the call price depends on various other assumptions, and so a variety of

explanations have been proposed to account for the difference between the theoretically optimal

policy and that observed in practice. One possibility is the dilution effect1 [74, 72, 69, 73], another

possibility is the effect of the notice period (see [10] and references therein) on which we will

focus.

A detailed lattice method for valuing convertibles with notice periods is presented in [78].

In [56], we develop a PDE method for pricing convertible bonds with a call notice period. The

main focus of the work in [56] was to compare the pricing results for a call notice period to the

approximations developed by Butler [30], under both the Tsiveriotis and Fernandes [112] model

and the Ayache, Forsyth, Vetzal (AFV) model [11, 12, 7, 119, 84].

Since it now appears that the standard reduced-form pricing model for convertible bonds uses

the AFV assumptions, (see, for example, the most recent version of [64]), we will consider only

models of the AFV type in this thesis.

The main focus of this chapter is on methods for pricing complex path-depedent call and put

features of convertible bonds. We will first present a brief overview of the numerical PDE method

used for pricing convertible bonds using the AFV [11] model. In particular, this one factor PDE

model can be used to price complex put and call features, including calls with a notice period.

Although the PDE method is very general, the valuation of convertible bonds with complex

call constraints is sometimes not feasible due to memory and computational restrictions. Con-
1Dilution is the effect that the relative share of the existing stock holders declines if a holder of a convertible bond

decides to exercise into new shares instead of taking the bond’s face value at maturity time.
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sequently, we present a Monte Carlo method that is capable of pricing securities with a variety

of call constraints. In most cases, computing values of convertible bonds using the Monte Carlo

method is not nearly as efficient as our PDE method. But, the Monte Carlo method allows us to

analyze properties of convertibles which we cannot model efficiently in a PDE framework.

Convertible bonds often have complex call trigger features. For example, a call may be issued

(with notice) only if the underlying was above a trigger level for 20 out of the last 30 days. In

the following, we will refer to this contract feature as moving window call protection. In this

case, the numerical PDE solution would require a solution on a thirty dimensional grid, which is

clearly infeasible. The only real possibility for pricing such a feature is by means of a Monte Carlo

method.

Most previous work on Monte Carlo methods for pricing convertible bonds [27, 6] relies on

a parameterization of the optimal stock price level for issuing a call. It is difficult to correctly

account for the different cash flows and call constraints in this setting so that we choose a more

rigorous non-parametric approach in this work which is similar to the one used in [84].

For the assessment of complex trigger level call constraints, we present a Monte Carlo method

based on least-squares regressions and special basis functions. Our Monte Carlo Method is based

on the American option pricing procedure presented in [32] and [81]. To the best of our knowl-

edge, the only previous work which uses this approach for convertibles is presented by Lvov et

al [84]. While their focus lies on the general application of Least-Squares Monte Carlo to dis-

cretely callable convertibles, we focus on the quantitative comparison of PDE and Monte Carlo

for convertibles with continuous call. Additionally, we present how to incorporate common soft

call constraints.

We will first compare Monte Carlo and PDE methods for convertible bonds with call notice

period features which can be priced using both techniques. We then go on to use the Monte Carlo

method for pricing complex features which cannot be priced using PDE methods.

The main results of this chapter are as follows

• Assuming that the issuer uses various rules of thumb for issuing a call notice, we examine

the impact of these non-optimal strategies on the bond price.

• We verify that the Least-Squares Monte Carlo method can be used to price a convertible

with vanilla call and put provisions. The accuracy of the Monte Carlo method is verified by

comparing with an accurate PDE solution. Our results are consistent with those in [84].

• Since the moving window call protection is heavily path-dependent, it would appear that

the Monte Carlo method would require a very large number of basis functions, even if

sparse grid techniques are used. Our preliminary results indicate that reasonable results

can be obtained even with a small number of basis functions for the least-squares regression.

This is fortunate, since otherwise, the computation would be infeasible.
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The chapter is organized as follows. We first present the standard model for convertible bonds

with credit risk and a short summary of new developments in this area. We then derive the

equations which take into account, in a rigorous manner, the call notice period. An outline of the

numerical algorithms is next presented, followed by some illustrative results. A paper version of

this chapter is also available [57].

4.3 Models for Convertible Bonds

Our main focus here is on modeling the call notice period and other call provisions. We will

restrict our attention to the case where interest rates are constant. This is in line with current

practice since it is commonly believed that the effect of stochastic interest rates on convertible

pricing and hedging is small, compared to stochastic stock prices (see [25, 6]). Dilution effects

will also be ignored in the following.

4.3.1 No Default Risk

For ease of explanation, consider first the case where we ignore the credit risk of the issuer of the

convertible. This is basically the same derivation as for the valuation of vanilla options which we

presented in Chapter 1. Recall that we assume that the stock price S evolves according to

dSt = rSt dt + σSt dWt (4.1)

where r is the risk-free interest rate, σ is the volatility, and dWt is the increment of a Wiener

process. Then, following Equation (1.19), the value of any claim Vt contingent on St satisfies

∂Vt

∂t
+

1
2
σ2S2

t

∂2Vt

∂S2
t

+ rSt
∂Vt

∂St
− rVt = 0. (4.2)

Consider the case of a convertible bond which has no put or call provisions and can only be

converted at the terminal time tT . If the convertible has face value F and can be converted into κ

shares, then the value of the convertible V is given from the solution to Equation (4.2), with the

terminal condition

VtT
(StT

) = max(F, κStT
). (4.3)

Note that the index of VtT
denotes a time tT at which we observe the variable V .

4.3.2 Credit Risk

The above model ignores the credit risk of the issuer of the bond, but this is potentially an im-

portant effect. Several models for incorporating credit risk have been proposed. Tsiveriotis and

Fernandes (T&F) [112] proposed a model in 1998 which was widely adopted. The T&F model was

derived in a very heuristic manner, and, as pointed out by Ayache, Forsyth, and Vetzal (AFV) in

[11, 12], seems to be inconsistent in some cases. In the following, we will use the AFV model as a



4.3 Models for Convertible Bonds 77

basis for out study. A similar model has been used in [7, 119, 84]. We also note that a simplified

form of this model was also suggested in [64].

The Hedged Model (AFV Model)

AFV derive a model, based on a hedging portfolio where the risk due to the normal diffusion pro-

cess is eliminated, and assuming a Poisson default process. The probability of default in [t, t+dt],

conditional on no-default in [0, t] is p(St, t) dt with p(St, t) the hazard rate of the default process.

This model allows different scenarios in the event of default. Upon default, it is assumed that

the stock price jumps according to

St+ = St−(1− η), 0 ≤ η ≤ 1

where St+ is the stock price immediately after default, and St− is the stock price just before de-

fault. Further, the holder of the convertible can choose upon default between:

1. Recovering RX , where 0 ≤ R ≤ 1 is the recovery factor. There are various possible assump-

tions for X , e.g. face value of bond, discounted bond cash flows, or pre-default value of the

bond component of the convertible; or

2. Receiving shares worth κSt+ = κSt−(1− η).

For simplicity in the following, we will assume that the recovery rate R as well as the present

value of the convertible if we wait until liquidation are zero. This leads to the following partial

differential inequality for the convertible value V

∂Vt

∂t
+

σ2

2
S2

t

∂2Vt

∂S2
t

+ (r + pη)St
∂Vt

∂St
− (r + p)Vt + pκSt(1− η) ≥ 0 (4.4)

Vt(S, t) ≥ max(Bp(St, t), κSt) (4.5)

∂Vt

∂tt
+

σ2

2
S2

t

∂2Vt

∂S2
t

+ (r + pη)St
∂Vt

∂St
− (r + p)Vt + pκSt(1− η) ≤ 0 (4.6)

Vt(St, t) ≤ max(Bc(St, t), κSt), (4.7)

where either one of (4.4)-(4.5) or (4.6)-(4.7) hold, and one of the inequalities holds with equality at

each point in the solution domain. The terminal condition is given in Equation (4.3). Note that the

call price Bc(St, t) is the price at which the issuer can terminate the convertible and the put price

Bp(St, t) is the price at which the holder can return the convertible. Inequality (4.5) represents

the options of the holder: She can convert into shares worth κSt or put the option to the issuer

for Bp(St, t). The value of the convertible cannot drop below these prices because otherwise

an investor would buy the convertible, convert (resp. put) immediately and receive a risk-less

profit. This is not possible following the no-arbitrage assumption. Inequality (4.7) represents the

option of the issuer, who can call the convertible and pay Bc(St, t). The value of the convertible

will not rise above this price because the issuer calls and thus terminates the convertible as soon
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as the convertible reaches the call price. This is in the interest of the existing stock holder (see

Ingersoll [66] for details of this reasoning.).

The above Inequalities (4.4)-(4.7) can be derived by constructing a hedging portfolio

Πt = Vt − φ1St − φ2Lt

containing the convertible bond V , φ1 of the underlying stock St and φ2 of a plain bond L is-

sued by the same firm as Vt and with zero recovery. An appropriate choice of φ1 and φ2 renders

this portfolio risk-free, so that we can perform valuations based on pure hedging arguments, see

Appendix 7.4.

Modeling Default Intensity

In order to obtain realistic default behavior of the stock price process, we will use a hazard rate

which depends on the stock price S. For the hazard rate p(St, t), we use the model suggested in

[89] and in [7] where

p(St, t) = p(St) = p0

(
St

S0

)α

.

The parameters p0 > 0 and α < 0 can be calibrated to market data.

As before, we assume in the following, that recovery R = 0 and that the stock jumps to zero

on default (i.e. η = 1) for ease of exposition.

4.3.3 Cash Flows, Call and Put Provisions

Convertible bonds usually have a variety of different features which influence their value. In this

section we will present the most important features and their effects.

Dividends and Coupons

If a discrete dividend Di is paid at time td,i, then the usual no-arbitrage arguments imply that

V (St+d,i
−Di, t

+
d,i) = V (St−d,i

, t−d,i), (4.8)

where t−d,i is the time immediately before the dividend payment, and t+d,i is the time immediately

after the payment.

Consider coupon payments ci paid at times tc,i. Denote the time immediately before the pay-

ment as t−c,i and immediately after the coupon payment as t+c,i. The price of the convertible then

drops according to

V (St+c,i
, t+c,i) = V (St−c,i

, t−c,i)− ci. (4.9)
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Clean and Dirty Prices

The call price Bc and the put price Bp in the previous equations include accrued interest. Specifi-

cally, let Bcl, Bpl be the clean call and put prices. The actual call (put) price is computed by

Bc(St, t) = (Bcl + A(t)) · δcall(St, t), (4.10)

Bp(St, t) = (Bpl + A(t)) · δput(St, t), (4.11)

where A(t) is the accrued interest, a fraction of the next coupon payment and St := {Sτ |τ ∈
I}, I ⊆ {t0 = 0, t1, . . . , tT } denotes the complete asset paths until time t. If the last payment was

at ti−1 and the next payment worth ci is paid at ti, then the accrued interest A(t) is

A(t) =
t− ti−1

ti − ti−1
ci.

The function δcall indicates if a call is allowed, δput indicates if a put is allowed. Different specifi-

cations follow.

Specifications of indicator functions δcall and δput

Another common feature of convertible bonds is the hard call protection which prevents calling in

the initial lifetime of the security. A hard call protection during time [t0, Th] can be accommodated

in our model by defining the set of call times Tcall = {t|t > Th} and the indicator function of

callability

δcall(t) =
{

1 if t ∈ Tcall
∞ otherwise .

Note that we set the indicator to ∞ if the convertible is not callable such that we can use it as

a multiplier to the call price: In Equation (4.10) the dirty call price Bc(St, t) is the product of a

call price and the indicator. If the call feature is not allowed, the indicator and thus the dirty call

price Bc(St, t) are set to infinity. Consequently, Inequality (4.7) is not a binding constraint on the

price of the convertible. But, if the call constraint is active, the indicator is set to 1 and thus the

convertible value V (St, t) cannot exceed the dirty call price. A similar reasoning holds for the

other indicator functions defined in this section.

The indicator for the put feature is defined as

δput(t) =
{

1 if t ∈ Tput
0 otherwise

with the set of put times Tput.

In addition to the hard call protection period, some convertibles have a call trigger price

Bc,trigger which means that the underlying asset value St has to be above the trigger value be-

fore a call can be issued

δcall(St, t) =
{

1 if t ∈ Tcall and St > Bc,trigger
∞ otherwise
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with St = {Sτ |τ ∈ Tcall} Again, we set the indicator to ∞ if the convertible is not callable so that

we can use it as a multiplier.

The most challenging level of complexity in traded convertible securities is a moving window

trigger protection. In this case, the asset value S has to be at least M out of the last N days above

the trigger Bc,trigger before a call can be issued. We assume that in this case, the asset value is

measured discretely. This means that

δcall(S, t) =





1 if t ∈ Tcall and
i∑

k=i−N+1

1Stk
>Bc,trigger ≥ M

∞ otherwise
(4.12)

with St := {Sτ |τ ∈ I}, I ⊆ {t0, t1, . . . , tT } and daily observations, i.e. ∀k : tk − tk−1 = 1 day.

Protection by Call Notice Periods

We now add the feature that the issuer has to provide advance notice of calling the convertible.

In particular, upon the notice being provided, the holder has Tn time units to decide whether to

take the face value or to convert into shares. As noted in [30], the issuer is effectively giving the

holder a put option on the shares, plus the shares themselves. The longer the notice period, the

more valuable is this put option.

The value of the shares plus the put option can be viewed as the value V called,t of a new con-

vertible bond starting at time t, maturing at time t + Tn, and having a terminal value of

V called,t(St, t + Tn) = max(Bc(St, t + Tn), κSt+Tn).

Note that the call price Bc includes accrued interest and is set to infinity if no call is allowed

(see Section 4.3.3). Based on the assumption that the issuer acts in the interests of the existing

shareholders, he has to minimize the market value of the convertible [65]. Consequently, the

issuer will call the convertible as soon as V called,t is less than the price of the convertible. That

means that in the model for convertibles, we need to replace all conditions with a call price Bc by

conditions with V called,t.
For the AFV model, the following equations need to be solved

∂Vt

∂t
+

σ2

2
S2

t
∂2Vt

∂S2
t

+ (r + pη)St
∂Vt

∂St
− (r + p)Vt + pκSt(1− η) ≥ 0 (4.13)

V (St, t) ≥ max(Bp(St, t), κSt) (4.14)

∂Vt

∂t
+

σ2

2
S2

t
∂2Vt

∂S2
t

+ (r + pη)St
∂Vt

∂St
− (r + p)Vt + pκSt(1− η) ≤ 0 (4.15)

V (St, t) ≤ δcall(St, t) · V called,t(St, t), (4.16)

with V called,t(St, t̂), t̂ ≥ t satisfying

∂V called,t

t̂

∂t̂
+

σ2

2
S2

t̂

∂2V called,t

t̂

∂S2
t̂

+ (r + pη)St̂

∂V called,t

t̂

∂St̂

− (r + p)V called,t

t̂
+ pκSt̂(1− η) ≥ 0 (4.17)

V called,t

t̂
(St̂, t̂) ≥ max(Bp(St̂, t̂), κSt̂), (4.18)
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with terminal condition

V called,t(St, t + Tn) = max(Bc(St, t + Tn), κSt+Tn). (4.19)

Dividend and coupon payments are accounted for by applying Equation (4.8) resp. (4.9) to the

convertible bond value V if dividend time td,i (coupon times tc,j) equals model time t. Further-

more, if the model time t̂ of the call value V called,t is equal to a dividend time td,i resp. a coupon

time tc,j , then Equations (4.8) resp. (4.9) are applied to V called,t. This treatment is presented in

Figure 4.1.

Figure 4.1: A convertible bond is presented with two call dates: t1 and t2. The maturity time of
the bond is T , notice time is Tn and a coupon is payed at time tc,1. While V called, t1 is effected by
the coupon payment, V called, t2 is not.

4.4 Numerical Algorithm

This section presents the outline for an accurate PDE model for valuing convertible bonds with

call notice periods. Furthermore, we explain the details of a Least-Squares Monte Carlo method

which can additionally price moving window soft call constraints. For valuations without a mov-

ing window constraint, the PDE method is the superior method due to the slow convergence of

the Monte Carlo method. But, the PDE method cannot handle long moving windows which are

a common feature of convertible bonds.

In the next sections, we first present a brief outline of a PDE implementation with call notice

periods. A Monte Carlo implementation follows, which ignores default and call constraints, so

that we can concentrate on the estimation of optimal call and conversion. Then, we extend the

Monte Carlo implementation to default and soft call constraints. Finally, we present a detailed

description of the regression basis functions used in the Monte Carlo simulation leaving us with

a tool capable of solving high-dimensional problems.

4.4.1 PDE Implementation

The PDEs in the AFV models are parabolic Linear Complementarity Problems (LCP) which in

general cannot be solved analytically. However, the equations can be solved numerically.
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The solution of the LCPs in the AFV case are computed via a discretization in two dimensions:

S and t. The solution is generated at discrete values V (Si, tn) = V j
tn

, S = {S1, . . . , Simax}. As is

usual in finance, the solution proceeds backwards in time. Given the terminal (payoff) conditions

at tn = T , the solution at tn−1 is generated using an implicit finite difference scheme. Dividend

and coupon payments are included as in Equation (4.8)-(4.9).

The pseudo code provided in Listing 1 illustrates the solution procedure. We assume the

existence of a function discrete_timestep which, given V(tn) = {V 1
tn

, . . . , V imax
tn

}, does one

time step of the implicit solution method to return V(tn−1) = {V 1
tn−1

, . . . , V imax
tn−1

}. See [50] and [12]

for implementation details of such a function.

Listing 4.1 Pseudo code for the numerical algorithm

func t ion vector= d i s c r e t e t i m e s t e p (Vold , S , t , c o n s t r a i n t , . . . )
\\This function is a discrete version of the AFV
\\model. It uses an implicit method to compute the
\\values V(t−∆t) from V(t) and returns the result
\\as a vector. The c o n s t r a i n t on the values V is
\\implicitly applied with a penalty method [50].

func t ion vector= c o n v e r t i b l e w i t h n o t i c e (Vterminal , S , T , σ , r , . . . )
{
\\Computes the values of a convertible with a notice period
\\and returns the prices V(Si)∀i at t = 0 as a vector.

V=Vterminal ;
for a l l t imesteps from t = T down to t = 0
{

i f n o t i c e to c a l l p o s s i b l e
{\\solve for the constraint

Bc=Bcl + a c c r u e d i n t e r e s t ( t + Tn ) ;
Vcalled,t(Si)=max(Bc, κSi)∀i ;\\ the terminal condition
for a l l t imesteps from t̂ = t + Tn down to t̂ = t
{

c o n s t r a i n t ={Vcalled,t(Si) ≥ max(Bp(t̂), κSi)∀i} ;
Vcalled,t= d i s c r e t e t i m e s t e p (Vcalled,t , S , t̂ , c o n s t r a i n t , . . . ) ;

i f cash flow occurs between l a s t t imestep and t̂
apply cash f low ( ) ;

}\\end of inner time-stepping for loop
}\\end of constraint block
e lse \\no call possible
{

Vcalled,t(Si)=∞∀i ;
}
c o n s t r a i n t ={(V ≥ max(Bp, κS) ∧ (V ≤ max(Vcalled,t, κ S))};
Vt−∆t= d i s c r e t e t i m e s t e p (Vt , S , t , c o n s t r a i n t , . . . ) ;

i f cash flow occurs between l a s t t imestep and t
apply cash f low ( ) ;

}\\end of time-stepping for loop
return V ;

}\\end of function convertible with notice
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An important detail in this implementation is the treatment of cash flows which occur within

the notice period. There are usually no details given in the convertible bond contract about what

happens if the issuer calls and there is a coupon payment within the notice period. We assume

that there is no special treatment in this case and the coupon will be paid as usual. A similar

reasoning applies for dividends. Both types of cash flows, coupons and dividends, which are

paid at time ti are applied at t = ti to calculate V (S, t) and at t̂ = ti to calculate the value for

the constraint V called,t(S, t̂). This allows the holder to obtain the coupon after a notice of call and

then convert into shares before the end of the notice period to get the dividend. The algorithm in

Listing 1 can be easily adapted for a different treatment of these cash flows.

4.4.2 Monte Carlo Implementation

The numerical solution of the AFV model by finite difference schemes is very efficient for con-

vertibles with and without call notice periods. However, consider the case where the convertible

has a discretely observed moving window call protection. In this case, the underlying has to be m

out of the last n days above a trigger level before a call can be issued. This would require the so-

lution of an n dimensional PDE. This moving window type feature is computationally extremely

challenging using traditional PDE discretization schemes.

We will present a Monte Carlo method based on least-squares regressions similar to the pro-

cedures proposed for American type option pricing [32, 81]. Least-Squares Monte Carlo methods

for convertible bonds have also been suggested in [84]. Our method is extended to handle the

moving window feature by utilization of sparse grid like basis functions.

For explanatory purposes, our first formulation of the Least-Squares Monte Carlo will focus

on the exercise decisions leaving out default and call notice periods. We will then present a second

formulation which extends the first formulation, by adding provisions for call notice periods and

default of the asset. Two sections follow, which explain the basis functions and the specific design

choices made for the implementation used in the case study.

Simulation without Default and Call Notice Period

In a Monte Carlo simulation, we simulate different asset paths. Each of these paths follows a

geometric Brownian motion as described by Equation (4.1). This process is sampled at discrete

times ti ∈ {t0, t1, . . . , tT } so that each realization Sj , j ∈ {1, . . . , s1} follows

Sj
ti+1

= Sj
ti

e(r− 1
2 σ2)(ti+1−ti)+σ

√
(ti+1−ti)θi,j (4.20)

with θi,j drawn from a standardized Normal distribution. The price of the convertible is the

discounted expected value of the payoff at the optimal stopping time. The optimal stopping

time provides a strategy for maximizing the bond value by optimal conversion of the holder and

minimizing the bond value by optimal calling of the issuer.
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It is interesting to note that Equation (4.20) is a discretization of the process described by

Equation (4.1) which does not introduce any time stepping error by itself, i.e. the distribution of

the simulated asset prices ST does not depend on the number of timesteps n. But, in the PDE case

we assume continuous conversion and continuous call. The Least-Squares Monte Carlo can only

evaluate convertibles with discrete conversion and discrete call features. This introduces a time

stepping error which we analyze in Section 4.5.2.

Least-Squares Monte Carlo for Optimal Decision

The valuation of the convertible proceeds as the valuation of exercisable options in the previous

sections. But, the procedure presented in Section 1.3 is generalized to handle the conversion and

put by the holder as well as the issuer’s call constraints.

As usual, the Monte Carlo valuation begins with a simulation of the underlying by (4.20)

forwards in time. At each conversion time ti, the holder decides to convert the bond and receive

the payoff κSti or to continue. At the same time, the issuer decides between a call and paying the

call price Bc(S, ti) or continuation, where

Sti := {Sτ , τ ∈ I}, I ⊆ {t0, . . . , ti}

denotes the complete asset paths until time ti. In order to maximize the option value Vti , the

holder exercises if

κSti ≥ EQ[e−r(ti+1−ti)Vti+1 |Sti , ti],

and returns the convertible to the issuer for the put price Bp(St, t) if

Bp(Sti , ti) ≥ EQ[e−r(ti+1−ti)Vti+1 |Sti , ti] and Bp(Sti , ti) ≥ κSti ,

and the issuer calls if

Bc(Sti , t) ≤ EQ[e−r(ti+1−ti)Vti+1 |Sti , ti],

with EQ denoting the expectation under the risk-neutral measure. In the Least-Squares Monte

Carlo, the value of EQ[Vti |Sti , ti] is approximated by

P e(Sti , ti) ≈ EQ[e−r(ti+1−ti)Vti+1 |Sti , ti],

The value P e(Sti , ti) is computed using a least-square regression on many path-realizations Sj
ti

.

The regressions start at the time step tT−1, i.e. one step before maturity time tT . The approximated

values are

P e(Sti , ti) =
∑

k

ai
kbk(Sti) (4.21)

with some basis function bk(Sti) and unknown coefficients ai
k which are determined by a least-

squares regression corresponding to the procedure presented in Section 1.4.2. We then determine
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ai
k in Equation (4.21) from

{ai
k} = arg min

ai
k

∥∥∥∥∥∥

(∑

k

ai
kbk(Sj

ti
)− e−r(ti+1−ti)V j

ti+1

)

j=1,...,s1

∥∥∥∥∥∥
2

(4.22)

where V j
ti+1

is the estimate of the current convertible value of a Monte Carlo path realization Sj
ti

at

time ti. The value of V j
ti

is given as the maximum between the estimated value of the unexercised

bond P e and the exercise value κSti
, as well as the minimum of the expected bond value P e and

the call price Bc,

V j
ti

=





max(Bp(S
j
ti

, ti), κSj
ti

) if P e(Sj
τ,ti

, ti) < max(Bp(S
j
ti

, ti), κSj
ti

)
max(Bc(S

j
ti

, ti), κSj
ti

) if P e(Sj
ti

, ti) > Bc(S
j
ti

, ti)
e−r(ti+1−ti)V j

ti+1
otherwise

. (4.23)

Given that the value of the convertible bond at maturity time equals the payoff V j
T = F , a dynamic

program solves for all values V j
ti

, starting at time T and iterating backwards to t0. Dividend and

coupon payments are included by the application of Equation (4.8) resp. (4.9).

Now, there are essentially three different methods which can provide us with an estimate of

the convertibles value V (St0 , t0) = EQ[Vt0 |St0 , t0]. The first possibility is the computation using

the regression function given in Equation (4.21):

V ≈ P e(St0 , t0) =
∑

k

a0
kbk(St0).

This is especially useful if the asset paths realizations Sj do not start at St0 but at values spanning

an interval around St0 , e.g. ∀j : Sj
t0 ∈ [ 12S0, 2S0]. This way, we can easily get estimates for the

hedge ratios delta and gamma,

∂Vt

∂St
=

∑

k

a0
k

∂bk(St)
∂St

,

∂2Vt

∂S2
t

=
∑

k

a0
k

∂2bk(St)
∂S2

t

.

But, computing the value of the convertible and the greeks (delta and gamma) this way, the shape

of the basis functions bk(St0) can introduce a systematic error, which might not be negligible. This

error will be especially large if the expected value function EQ[Vt0 |St0 , t0] is not smooth in St0 .

A second possibility for the computation of V (St0 , tt0) is given by

V in =
1
n1
·

s1∑

j=1

V j
t0

and a third by

V out =
1
n2
·

n1+n2∑

j=n1+1

V j
t0
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with V j
ti

as given in Equation (4.23), which is similar to the usual Least-Squares Monte Carlo

(Equation (1.36)).

As in Section 1.3, we name this value the out-of-sample price. As already noted, this price

has the desirable property that it can present a bound on the true model price for exercisable

options. However, in the presence of exercise and call features, the out-of-sample price is neither

a lower, nor an upper bound since both, the issuer’s call and the holder’s conversion strategy, are

suboptimal.

The next sections will extend this implementation to default and soft call constraints. After

that, we summarize the design choices of the implementation we use for our numerical experi-

ments.

Simulation with Default

Given, that the issuer can go into default, the simulation has to account for the effect of default

on the price of the convertible. In general, we could simulate the asset as a combined Brownian

motion and jump default process. However, if we examine the PDEs (4.4-4.7) with (η = 1), we

can immediately see that the price V can be computed by simulating the process

dSt = (r + p)St dt + σSt dW (4.24)

and discounting the cash flows back along the path with the effective discount rate (r + p). Note

that in general, we must also add in the effective default cash flow pκSt(1− η) dt in each timestep

t → t + dt. We will use this approach in the following.

Monte Carlo Valuation with Default and Call Notice

In Section 4.4.2, we discussed the case without a notice period and without default. Now, we want

to consider the call constraints discussed in Section 4.3.3. In contrast to the clean call price Bcl

which is a constant, specified in the convertible bond contract, we defined the call price Bc(St, t) to

account for accrued interest (Equation (4.10)) and the call trigger constraint (Equation (4.12)). That

means, Bc(St, t) may depend on the complete asset paths history. Consequently, the optimal call

strategy may depend on the recent history of the asset path. This greatly increases the complexity

of the convertible bond valuation.

In the case of a defaultable convertible, we discretize the asset price process governed by (4.24)

which leads to

Sj
ti+1

= Sj
ti

e(r+p(Sj
ti

)− 1
2 σ2)(ti+1−ti)+σ

√
(ti+1−ti)θi,j . (4.25)

In contrast to the Equation without default (4.20), this Equation introduces some time stepping

error because the default intensity p is not constant. However, the error is small already for a few

timesteps as we will see in Section 4.5.2.

As for the non-defaultable contingent claim case, the optimal decisions are solved by regres-

sions. In the Least-Squares Monte Carlo, the value of EQ[Vti+1 |Sti , ti], Sti := {Sτ , τ ∈ I}, I ⊆
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{t0, . . . , ti} is approximated by

P e(Sti , ti) ≈ EQ[Vti+1 |Sti , ti].

The value P e(Sti , ti) is again computed using a least-square regression backwards in time, starting

at time ti−1. The approximated values are

P e(Sti
, ti) =

∑

k

ai
kbk(Sti−m

, . . . , Sti
)

with some m-dimensional basis function bk and unknown coefficients ai
k satisfying

{ai
k} = arg min

ai
k

∥∥∥∥∥∥

(∑

k

ai
kbk(Sj

ti−M
, . . . , Sj

ti
)− e−r(ti+1−ti)V j

ti+1

)

j=1, ...,n

∥∥∥∥∥∥
2

(4.26)

where V j
ti+1

is the estimate of the current convertible value of a Monte Carlo path realization Sj at

times ti−M , . . . , ti. The value of V j
ti

is given as the maximum between the estimated value of the

unexercised bond P e(Sti , ti) and the exercise value κSti , as well as the minimum of the expected

bond value P e(Sti , ti) and the effective value of the call price V called,ti(Sj
ti

, ti),

V j
ti

=





max(Bp(S
j
ti

, ti), κSj
ti

) if P e(Sti , ti) < max(Bp(S
j
ti

, ti), κSj
ti

)
max(V called,ti(Sj

ti
, ti), κSj

ti
) if P e(Sti , ti) > δcall(Sti , ti) · V called,ti(Sj

ti
, ti)

e−r(ti+1−ti)V j
ti+1

otherwise
.

The Equation for V j
ti

now also accounts for a call notice period. The algorithm proceeds according

to Section 4.3.3, i.e. the call price Bc is substituted by the value of the convertible after a call notice.

Since after the notice, the convertible cannot be called again, the value of the convertible after a

call notice V called,t(Sj , ti) is easy to compute. It is the value of a convertible bond with the exact

same properties as the original convertible except that the convertible with price V called,t(Sj
ti

, ti)

has a maturity time t + Tn and no issuer call options. This value can be estimated e.g. by Least-

Squares Monte Carlo or the PDE method ( Equations (4.17) to (4.19)).

As in the valuation of a non-defaultable convertible, a dynamic program solves for all values

V j
ti

, starting at time T and iterating backwards to t0, given that the value of the convertible bond

at maturity time equals the payoff V j
T = F . We can compute the in-sample option price with

V in =
1
n1
·

n1∑

j=1

V j
t0

with asset paths Sj , j ∈ {1, . . . , n1}. And we compute the out-of-sample option price by

V out =
1
n2
·

n1+n2∑

l=n1+1

V j
t0

with V j
t0 as given in Equation (4.4.2) based on new simulation paths Sl, l ∈ {n1 + 1, . . . , n1 + n2}

and the coefficients ai
k from the in-sample valuation.
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Sparse Grids: Choice of Basis Functions

The described Monte Carlo algorithm works well in case of a single factor model. But, in case of

a moving window call protection, we have to deal with additional dimensions. In some special

cases, the moving window constraint can be reformulated as a set of one-dimensional problems,

where the number of elements grows exponentially with the size of the window [55]. This re-

formulation is only useful for moving windows, with relatively small length, e.g. a condition is

feasible where the underlying has to stay 5 out of 15 days above a trigger level before a call can

be issued. However, call protection requiring 20 out of 30 days over a trigger level is not feasible.

The 20 out of 30 protection is fairly typical of real convertibles.

Since the value of the convertible will depend on the daily observations in the window of

historic samples, this represents a high dimensional problem (i.e. 30 dimensional). An American

type option pricing problem with so many dimensions is challenging. The procedure we are fol-

lowing is presented in Section 1.2.2 as well as in [40] and proves to be useful for moving window

type pricing problems.

A key issue in our numerical algorithm revolves around the choice of the basis functions bk

in Equation (4.22). As described in the previous section we will use a linear combination of these

basis functions to express an estimate for the current option value, which includes dependence

on all relevant input parameters. Thus, we need one additional dimension in the basis for each

observation in the window of historic samples. In the case of a window with M samples, we

need, in principle, a basis of dimension M .

As in Chapter 3, where we evaluated a moving window Asian option, we choose a sparse

basis Bsparse

L ( see Equation (1.14)),

Bsparse

L (x1, . . . , xM ) :=
⋃P
`i=L

Bfull
β(`)(x1, . . . , xM ),

which is smooth everywhere.

Implementation Details

In our implementation, we perform the regressions required by Equation (4.22) on sparse poly-

nomial basis functions as presented in the previous paragraphs. We use sparse levels L from 0

to 3 which are sufficient for our purposes. But, we do not perform the regressions on S directly.

Similar to the MWAO option pricing, we use scaled values of S such that for each path j, we

compute xj = (γ1(S
j
ti

), . . . , γM (Sj
ti−M

)), with linear transformation function

γj(S
j
ti

) :=
Sj

ti
−min(Sti)

max(Sti)−min(Sti)
,

such that xj ∈ [0, 1]M lie in a unit cube. Since sparse polynomial basis functions are used, this

creates matrices with better conditions numbers then without the transformation.
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The regression itself is performed solving the linear least-squares problem of Equation (4.22)

implicitly via QR-decompositions.

In case of a call notice period, we use the PDE method for the computation of the convertible

bond value V called,ti after a call. The problem that, in general, the required value V called,ti(Sj
ti

, ti)

of the Monte Carlo paths Sj does not lie on a grid point of the PDE is solved by a cubic-spline

interpolation of the PDE values.

In the following, all reported values for a valuation by our Monte Carlo methods are out-of-

sample values V out.

4.5 Case Study

The base case data is presented in Table 4.1 and all following examples are computed using this

data. The data is consistent with the data used by other authors [12, 112].

Any variation to the base case data will be explicitly noted: some of the parameters will be

varied so that the effect on the model price of optimal decisions can be analyzed. We will denote

a computed approximation for the value of a convertible with an asset value St by V(St). Varied

parameters will be denoted by a “|” sign, e.g.

V(St|Tn = 0, p(St) = 0)

denotes the approximation for the value of a convertible with no notice period and no default.

We assume that even in the presence of a hard call protection during the initial lifetime of

the bond, a call notice can only be given after this protection period. Note that a call period of

Tcalled = {t|t > (2.0 years + Tn)} means that the first notice of a call can be issued at time t = 2.0.

Table 4.1 Base case data of a convertible bond with AFV default model and a call notice period.

General features
conversion ratio κ 1

face value F 100
coupon payment ci 4, (8% p.a.)

coupon times Tcoupon {0.5, 1.0, . . . , 5.0}
maturity tT 5.0 years

risk-free rate r 5% p.a.
volatility σ 20% p.a.

dividends Di 0,

Callability
notice period Tn 1/12 years

call period Tcall {t|t > (2.0 years + Tn)}
clean call price Bcl 110

first call notice t > 2.0
call trigger Bc,trigger 0

Putability
putable at time Tput {t|t = 3.0 years}
clean put price Bpl 105
put price Bp(t = 3) Bpl + c3 = 109

Default model

hazard rate p(St) p0

(
St

St0

)α

spread p0 2% p.a.
α −1.2

St0 100
recovery rate R 0

jump factor η 1
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4.5.1 Convergence Analysis - PDE

In Table 4.2 the values are displayed for a convertible using the base case data in Table 4.1. Crank-

Nickolson time stepping is used. To mitigate numerical oscillations, the method presented in [99]

is used. This method uses two implicit time-steps after each non-smooth solution and proceeds

with Crank-Nickolson time stepping. The reason for this is that the implicit time-steps smooth out

the non-smooth initial conditions, which can then be used by but Crank-Nickolson time stepping.

The Crank-Nickolson method has a better convergence than the implicit time stepping for smooth

initial conditions, such that the combination of both has a better convergence than the implicit

method alone [99, 50].

Table 4.2 shows a numerical convergence analysis. At each refinement, we double the number

of nodes in the S grid and the number of time steps. The number of substeps used to determine

V called,t (inner time stepping in loop in pseudo code, Listing 1) is also shown. From the column

”difference”, we can estimate the order of the convergence. A method with first order conver-

gence has the property that the absolute difference halves from one refinement to the next, while

the absolute difference of a method with second order convergence is reduced to a quarter.

For both methods, the case with a finite call notice period and the case where the notice period

is zero, the convergence seems to be about first order. This contrasts with the smooth quadratic

convergence reported in [50] for simple American options. We conjecture that the effect of discrete

coupon payments and accrued interest may cause some difficulties on obtaining smooth conver-

gence. However, this is not a problem of practical concern, since we can obtain results which are

clearly correct to five digits, which is much more accuracy than would be required in any real

situation.

Each time step of the algorithm in Listing 1 requires about (#substeps+1) times the work re-

quired for a convertible bond with no notice period. In all cases, the constraint V called,t is solved

on a grid with the same spacing as that for V . From Table 4.2, we see that a grid with 3200

nodes has an absolute error of less than 0.01. All results of PDE values in subsequent sections are

reported using a 3200 node grid.
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Table 4.2 Convergence results for a convertible with data in Table 4.1 in the AFV model with a
one months and without a call notice period. Substeps refers to the number of time steps used to
determine V called,t, at each discrete time.

The AFV model - no call notice V(St|Tn = 0)
grid for V

S × t V (S = 100, t = 0) difference
50× 50 122.3672

100× 100 122.3713 0.0041
200× 200 122.3851 0.0138
400× 400 122.3692 -0.0159
800× 800 122.3660 -0.0032

1600× 1600 122.3653 -0.0007
3200× 3200 122.3649 -0.0004

The AFV model - call notice V(St) (Tn = 1
12 )

grid for V , V called,t

S × t× substeps V (S = 100, t = 0) difference
50× 50× 1 123.0799

100× 100× 2 122.9873 -0.0926
200× 200× 4 122.9365 -0.0508
400× 400× 7 122.9073 -0.0292

800× 800× 14 122.8928 -0.0145
1600× 1600× 27 122.8853 -0.0075
3200× 3200× 54 122.8814 -0.0039

4.5.2 Convergence Analysis - Monte Carlo

For the Monte Carlo valuation, we use the algorithm discussed above. The number of in-sample

paths n1 and out-of-sample paths n2 are equal, i.e. n1 = n2. The sparse basis functions are used

even in the case of a single dimension. In one dimension, the sparse basis functions become a full

basis with 2L basis polynomials. We use a level of L = 3 for up to n1 + n2 = 105 asset paths and

a level of L = 2 for n1 + n2 = 106 paths simulations. The reported values of the Monte Carlo

procedure are always the out-of-sample values.

In Table 4.3, we list average values we computed using the Monte Carlo method. The reported

average VMC is based on as many Monte Carlo valuations as required to compute the prices with

an accuracy of ±0.02 with 95% confidence (cp. Table 1.2). The reported standard deviations are

the standard deviations of the set of Monte Carlo values.

We can observe in Table 4.3 that the Monte Carlo simulations appear to converge to the value

computed by the PDE-method. This is the case for the convertible without notice period as well as

for the convertible with notice period. Note that we cannot expect precise convergence to the PDE

values since we are taking daily MC steps leading to errors due to finite sized MC time stepping.

As mentioned before, there are mainly two sources of time stepping errors of the Monte Carlo
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Table 4.3 Convergence results of Monte Carlo simulations for the AFV models with and without
a call notice period. Values for convertibles with data in Table 4.1 are presented. VMC denotes the
average of at least 20 simulations and std(VMC) denotes the standard deviation of these simula-
tions. The real mean values lie in: reported value ±0.02, with a probability of 95%.

no notice period
VPDE(St0 = 100|Tn = 0) = 122.36

# asset paths VMC std(VMC)
104 122.18 0.31
105 122.37 0.11
106 122.39 0.05

one month notice
VPDE(St0 = 100) = 122.88

# asset paths VMC std(VMC)
104 122.67 0.30
105 122.88 0.10
106 122.90 0.04

method compared to the PDE method: the discrete call of the Monte Carlo method and the dis-

cretization (4.25) of the asset price process with variable default intensity. Table 4.4 shows the

effect of different time steps. The upper table presents the isolated effect due to the variable de-

fault intensity p(S). The effect introduces an error O(∆t), weekly timesteps (5/250) create only an

error of about 0.01. A little larger error is introduced by fewer call times which is presented in the

lower table. The order of the error is again O(∆t), but daily timesteps are required for an error of

about 0.01.

However, in spite of this, the MC method appears to be converging to a solution with at least

four digit accuracy, which is sufficient for many practical purposes.
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Table 4.4 Convergence results of Monte Carlo simulations for different time steps. Values for
convertibles with data in Table 4.1 are presented with different time intervals of the Monte Carlo
simulation. The convertible evaluated on the upper table is only convertible at maturity, al-
lows neither a put nor a call. The values on the lower table are computed using daily timesteps
(ti+1− ti = 1

250 ) for the underlying process but perform call or conversion fewer times (see # time
between calls) than daily. The real mean values lie in the interval of the reported value ±0.02,
with a probability of 95%.

variable default intensity time steps
conversion only at maturity T , no call,

no put, no coupons, 106 paths
VPDE(St0 = 100) = 104.18

time step (ti+1 − ti) VMC

625/250 106.01
125/250 104.43
25/250 104.23
5/250 104.19
1/250 104.20

variable time between call/conversion
VPDE(St0 = 100) = 122.36

106 paths, sampling of paths: ti+1 − ti = 1/250

# time between calls VMC

16/250 122.51
8/250 122.46
4/250 122.43
2/250 122.41
1/250 122.39

4.5.3 Properties of Different Call Strategies

The call strategy of the issuer is an important factor for the value of the convertible bond. Early

papers [65, 24] derive the optimal call strategy which an issuer should follow without a notice

period. The optimal call strategy for a continuously callable convertible without a notice period

is to call if the conversion value rises to the effective call price [65]. Or, as an Equation:

κS∗ = Bc (4.27)

with Bc being the effective call price (including accrued interest) and S∗ the stock price at which

it is optimal for the issuer to call. Note that in case of no default, the sufficient condition for the

optimality is that the coupon rate has to be less than the risk-free rate2.

2See [65], Theorem III
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Figure 4.2: A convertible using the data from Table 4.1. The level of stock price S∗ for the optimal
call strategy versus time t approximated by the AFV model using a PDE solver. The plot shows
the solution on a coarse grid (1600 nodes in S, 1600 time steps, 27 substeps) versus a fine grid (3200
nodes in S, 3200 time steps, 54 substeps): Except close to maturity, both estimates lie virtually on
the same line.

Under some simplistic assumptions, these results are extended in [30] to include notice peri-

ods. But, the simplification does not lead to realistic approximations for optimal call strategies of

traded securities.

A more sophisticated model that takes more of the complex features of the convertible bond

into account follows from the discretization of the PDE in the AFV model. For each node V j at

time ti of the discretization we check if

V j(ti) = (V called,t)j(ti), (4.28)

i.e. we see if the maximum constraint in Equation (4.16) is active. At time step ti, let V j(Sj , ti) be

the node with Sj the smallest value in S that results in an active constraint. Then Sj gives a good

approximation for the optimal stock price level: S∗(ti) ≈ Sj(ti). This method is simply a nearest

neighbor interpolation.
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with default: S∗ (V(S))
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without default: S∗ (V(S|p(S) = 0))
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Figure 4.3: The optimal stock price S∗ for a call of a convertible using the data from Table 4.1
is presented on the top. On the bottom, the stock price S∗ is presented for a non-defaultable
convertible: p = 0. The level of stock price S∗ for the optimal call strategy versus time t is
estimated by the AFV model using the PDE solver and the Monte Carlo solver.
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without notice time: Tn = 0 with notice time Tn = 1/12y
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Figure 4.4: The optimal stock price S∗ for a call of a convertible using the data from Table 4.1 ex-
cept a call notice time of zero is presented on the left. On the right, the stock price S∗ is presented
with a notice time of one month. The level of stock price S∗ for the optimal call strategy over time
t approximated by the AFV model using the PDE solver.

The error of approximating the optimal strategy by the PDE method is presented in Figure 4.2.

In this figure, S∗ is approximated by a PDE solution on a coarse grid and on a fine grid. The

difference between the two approximations is less than 0.02 for t < 4.5. The calculation of S∗ is

less accurate for t > 4.5 because the grid is still coarse in both discretizations (a structured mesh is

used). Furthermore, the gradients of the convertible bond value and the constraint are very close

for S À Bc:
∂V

∂S
≈ ∂V called,t

∂S
≈ 1. (4.29)

A similar estimation procedure for the stock price S∗ above which it is optimal to call, is

possible by the Monte Carlo algorithm:

S∗(ti) ≈ min
(
Sj

ti
: P e(Sj

ti
, ti) ≥ V called,ti(Sj

ti
, t̂ = ti)

)
.

This leads to similar results as for the PDE. Figure (4.3) presents the estimates for S∗(ti) computed

by a PDE method with 3200 nodes in S and an estimate by a Monte Carlo method with 106 asset

paths. One can observe that both approaches deliver comparable results, but the PDE method has

much less noise in the estimate. Consequently, the PDE method provides a reference point for the

other approximations using a sufficiently fine grid. Note that the MC estimate is particularly

noisy near expiry, which happens because the holder of the convertible receives about the same

cash flows with and without an issuer’s call. Consequently, the shapes of V (Sti) and V called,ti(Sti)

are very similar and the numerical procedure starts oscillating.

In Figure 4.4, the left graph depicts the PDE estimate of the optimal stock price level for a call

S∗ for two convertibles without notice period and different call prices. The value of the optimal
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stock price level equals the clean call price plus the accrued interest, as derived in [65]. The right

graph in Figure 4.4 presents the optimal stock price level S∗ for the same convertible but including

call protection by a one month notice. Now, the optimal call strategy is more complex: there is

a large drop in S∗ just before a coupon payment is within the notice period and a jump as soon

as the coupon payment is within the notice period. A closer look at this phenomenon shows that

this is a result of the “screw clause”: The holder will not receive the accrued interest if he chooses

to convert into shares, but he can still receive a coupon if the payment date is within the notice

period. An issuer’s call just before the coupon falls within the notice period avoids this situation.

An interesting property of the optimal call strategy (Figure 4.4) is that it does not seem to be

optimal to call after the last coupon before maturity is paid. This is because the issuer is trying to

minimize the value of the convertible. Consequently, the issuer tries to avoid the situation where

the holder gets a coupon plus the opportunity to convert into shares. Thus, the value for S∗ is

relatively low just before a coupon payment takes place. But at maturity, the holder gets either

the face value plus the last coupon or κ shares and no coupon. So, there is no need for the issuer

to call because the holder cannot get both.

From Figure 4.4, we can see that in the case of a notice period, the optimal S∗ at which the

issuer should call the convertible is most of the time higher than in case of no notice period with

Bcl = 150. But, with Bcl = 110, S∗ is most of the time lower than in case of no notice period. This

is surprising since it means that in general, the delayed call observed in the real market cannot be

explained by a call notice period.

Implications of Different Call Strategies

It is interesting to examine the effect of the call policies on the convertible bond value. In Figure 4.5

on the left, we can see the effect of different notice periods on the value of the convertible. These

results are all obtained using our accurate PDE method (AFV model). The premium for a notice

period varies over the stock price S with a maximum between 85 and 95. As predicted, the

premium is larger for a longer notice period. The premium for a typical notice period with 30

days is about 0.55, a significant addition. The reason for this is that the issuers interest it to

minimize the value of the convertible and the notice period makes it more difficult of her. Thus,

the price of the convertible rises introducing call notice period.

The right graph in Figure 4.5 shows the gain in value holding the notice period fixed at one

month notice and varying the clean call prices Bcl. A higher call price leads to higher gains in

value due to the call notice period.

Another interesting subject is the effect of suboptimal call policies, especially the delayed call

phenomenon. Assuming that issuers call their convertibles late, what is the effect on the value?

Consider the following strategy. The issuer calls only if it is beneficial for him to call, but he will

not call until the stock price level S∗ is reached. This seems to be a realistic assumption, because

the issuers tend to call their convertible bonds late.
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Figure 4.5: The impact of notice periods on the initial value of the convertible bond. The difference
in value compared to a convertible with Tn = 0 is shown across the stock price (t = 0). The graph
on the left shows the effect of different notice periods with constant call price Bc = 110, while
the graph on the right shows the effect of different call prices and a constant notice period of
Tn = 1/12. All values are computed using the AFV model with data in Table 4.1.

This last calling strategy is implemented by altering the model for valuation with notice peri-

ods. The Inequalities (4.13)-(4.16) become for St < S∗

∂Vt

∂t
+

σ2

2
S2

t

∂2Vt

∂S2
t

+ (r + pη)St
∂Vt

∂St
− (r + p)Vt + pκSt(1− η) ≥ 0

V (St, t) ≥ max(Bp(St, t), κSt)

and for St ≥ S∗

∂Vt

∂t
+

σ2

2
S2

t
∂2Vt

∂S2
t

+ (r + pη)St
∂Vt

∂St
− (r + p)Vt + pκSt(1− η) ≥ 0

V (St, t) ≥ max(Bp(St, t), κSt)

∂Vt
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+
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2
S2

t
∂2Vt

∂S2
t

+ (r + pη)St
∂Vt

∂St
− (r + p)Vt + pκSt(1− η) ≤ 0

V (St, t) ≤ V called,t(St, t),

where at least one of the inequalities holds with equality on the complete solution.

The impact of this new call strategy is presented in Figure 4.6 in the graph on the left. The

difference in value compared with the optimal strategy (for a range of S∗ = {120, 130, 140, 150})

for a convertible bond from Table 4.1 is shown over the stock price. This premium rises sharply

for higher values S∗. But, for S∗ = 150, we have a maximum impact on the value of about 7.00.
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late calling call at S∗(t) = Bc(t)
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Figure 4.6: The impact of suboptimal calling. The value of a convertible with data in Table 4.1
and optimal call strategy is compared to suboptimal call strategies. A strategy which calls at
higher than optimal values results in an increase of the security value presented in the left graph.
The right graph depicts the difference in value of the convertible called as if there were no notice
compared to the optimal call strategy.

That means that the optimality of the issuer’s behavior also has a significant impact on the value

of a convertible bond.

We now consider a second, somewhat realistic scenario. Suppose the issuer uses an approx-

imate method to determine the optimal call policy which we denote S∗. This strategy can be

modeled by replacing Inequalities (4.13)-(4.16) by

∂Vt

∂t
+

σ2

2
S2

t

∂2Vt

∂S2
t

+ (r + pη)St
∂Vt

∂St
− (r + p)Vt + pκSt(1− η) ≥ 0

V (St, t) ≥ max(Bp(St, t), κSt)

for St < S∗t and by

∂Vt
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σ2

2
S2

t
∂2Vt

∂S2
t

+ (r + pη)St
∂Vt

∂St
− (r + p)Vt + pκSt(1− η) ≥ 0

V (St, t) ≥ max(Bp(St, t), κSt)

∂Vt

∂t
+

σ2

2
S2

t
∂2Vt

∂S2
t

+ (r + pη)St
∂Vt

∂St
− (r + p)Vt + pκSt(1− η) ≤ 0

V (St, t) = V called,t(St, t) (4.30)

for St ≥ S∗t , where at least one of the inequalities holds with equality on the complete solution.

Since this strategy is suboptimal, all values computed using this set of Equations will be larger
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than values obtained with the optimal method (Inequalities (4.13)-(4.16)). This makes the result-

ing premium a good measure of the error of approximating the optimal call strategy.

The graph on the right in Figure 4.6 shows the premium (compared to the optimal strategy)

at t = 0 due to a call strategy which ignores the call notice period. More specifically, we set S∗t =

Bc(St, t), which is optimal for a notice period of zero (cp. Equation (4.27)). One can see that this

policy has only a slight effect on the value (varying from 0.04 to 0.36). In other words, computing

the optimal value S∗ for calling by ignoring the call notice period can be a good approximation of

the optimal call (but note that this assumes taking into account that the holder receives an option

worth V called upon call notice). This depends on the set of parameters. Using the Ingersoll call

policy in case of dividend payments can add significant value.

4.5.4 Moving Window and Call Notice Protection

We now want to assess the effects of a moving window trigger as soft call protection. More

precisely, the underlying asset has to stay M = 20 out of the last N = 30 days above a trigger

level before a call notice can be issued. In our example, we set the trigger level to the clean call

price, which is often seen in convertible bond contracts. This trigger level constraint will increase

the value of the convertible. Furthermore, the issuer must give 30 days notice before the bond is

called.

A mathematical formulation of the trigger constraint can be found in Equation (4.12). We use

a discrete formulation since discrete observation is more realistic in convertible bond contracts.

As already mentioned, since no similar pricing procedure can be done using the PDE method,

we rely on our Monte Carlo estimates.

Influence of Moving Window Constraints

Numerical experiments of the PDE model show that in our example (no dividends), a conversion

of the convertible is not optimal for a holder at any time, even in the presence of the default model.

Consequently, we will use the approximation that only call stopping times are computed for the

Monte Carlo valuations in this section, conversion is ignored. This allows to see the average value

of many Monte Carlo estimates as an estimate for an upper bound of the true price.

Table 4.5 shows the results for various choices of basis functions in the Least-Squares Monte

Carlo regression. The dimension of the basis refers to the number of observations taken into

account in the window of historic observations. The correct method requires a 30 dimensional

basis. The L in Table 4.5 refers to the level of the sparse basis, as in Equation (1.14), which results

in m (# basis) different basis functions.

In Table 4.5 we can see the values for a different number of observations in the moving win-

dow. Note: value is the average of #sims simulations with #paths asset paths each. The confidence

level is 2 std(V)√
#sims

where V is the set of values of the simulations with #sims elements, which cor-
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responds to over 95% probability that the correct value lies within the reported interval.3 The

presented values are the best values of a large series of computations. It turns out that an increase

in the sparseness level L (i.e. the #basis) does not always lead to lower upper bound estimates.

This is a result of numerical difficulties (poor condition of the matrix with basis function values)

and insufficiently many simulations for a good approximation of the conditional expected contin-

uation value. The rows where the trigger is set to ”-”, contain the values of the example without

a trigger condition. All other rows contain the values for the example with the constraint that the

underlying stock has to be 20 out of the last 30 days above the trigger price before a call notice

can be issued.

The values in Table 4.5 suggest that the estimation of the continuation value based only on the

current asset price is already extremely good. That means, we include the complete trigger con-

dition in order to decide, which paths allow a call notices. But then, we use only the current stock

price of these paths for the computation of the expected continuation value. This has obviously a

systematic error. But, the approximation is cheap and leads to good estimates: The value is very

close (for Bcl = 110) to the estimate of the full 30 dimensional basis functions 123.69± 0.01. This

is also true, for a clean call price of Bcl = 140.

Consequently, it appears that a one dimensional basis function can already provide good es-

timates for the continuation value of a convertible bond with a 20 out of 30 day moving window

trigger price protection. Furthermore, the value added for the moving window call protection,

compared with an unprotected convertible (0.79 for Bcl = 110 and 0.38 for Bcl = 140) can be a

significant effect.

At first sight, it is difficult to understand why such a comparatively poor approximation (only

considering a basis using the current asset price) should yield such a good solution, when, at least

in theory, the value of the bond depends on the past 30 day history. However, note that in the

Monte Carlo simulation, calls cannot be issued along a particular path, unless the asset has been

above the trigger for 20 out of the past 30 days. Consequently, it appears that much of the path

dependency has already been taken into account, and there is little error introduced when we use

only a low-dimensional basis. In our example, the required CPU time for one evaluation of the

one dimensional approximation is only one tenth of the time required for the thirty dimensional

problem.

3See Table 1.2 for details.
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Table 4.5 Average Monte Carlo estimates of value for a convertible callable when S is 20 out of 30
days above Btriggger = Bcl = 110 and Btriggger = Bcl = 140 is presented compared to one without
this trigger condition. The data of the convertible is given in Table 4.1, the average Monte Carlo
values lie with a probability of about 68% within the reported confidence.

trigger Bcl observations in basis value confidence dim L #paths n #sims I #basis m

- 110 St 122.91 +- 0.01 1 3 106 30 15
110 110 St 123.69 +- 0.01 1 3 106 20 15
110 110 St, St−29 123.73 +- 0.02 2 2 105 250 17
110 110 St, St−5, ..., St−25,

St−29 123.72 +- 0.02 7 1 105 250 15
110 110 St, St−5, ..., St−25,

St−29 123.69 +- 0.02 7 2 3 · 105 15 361
110 110 St, St−1, ..., St−29 123.69 +- 0.01 30 1 106 30 61
- 140 St 129.26 +- 0.02 1 2 105 250 7
140 140 St 129.64 +- 0.02 1 2 105 250 7
140 140 St, St−29 129.64 +- 0.02 2 2 105 250 17
140 140 St, St−5, ..., St−25,

St−29 129.67 +- 0.02 7 1 105 250 15

4.6 Summary

Convertible bonds are a popular financial instrument with complex behavior. The notice period

which prevents the issuer from an immediate call for conversion has a significant impact on the

theoretical value of a convertible bond and the optimal call strategy of the issuer.

In this chapter, we compare both PDE and Monte Carlo approaches to pricing convertible

bonds with complex call features. In particular, we examine calls with notice periods, and moving

window call protection, whereby calls cannot be issued unless the underlying asset is observed

above a trigger level for m out of the last n days.

Various authors have analyzed the delayed call phenomenon. Evidence suggests that issuers

wait to call their convertibles until the stock price is well above its optimal level. If we assume

such a delayed call, we of course find that the value of the convertible is larger than the convertible

without a notice period. For example if the convertible is called 10% above the optimal value, with

a notice period of 30 days, the value of the convertible increases by about 1% compared with the

optimal strategy. A notice period of 30 days, assuming optimal issuer behavior, adds about 0.5%

to the value compared to a bond with no notice period.

Some authors argue that the introduction of a notice period results in a higher stock price

level which is optimal for the issuer to call. We find that the call price and the schedule of coupon

payments have a significant effect on this stock price level. In general, the optimal stock price is

higher than the call price for convertibles with notice periods, but in some cases, it is lower. Just

before a coupon payment falls within the notice period, an optimal call by the issuer can be at a

considerably lower stock price than the call price.
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For the case of convertible bonds with simple notice periods, we find that a Least-Squares

Monte Carlo approach gives quite good solutions compared with an accurate PDE solution. These

results are consistent with those reported in [84], we extend their results to continuous call and

conversion. We find that the PDE approach is computationally much more efficient and it is very

expensive to get cent accurate Monte Carlo estimates.

However, it is not feasible to value convertibles with the moving window soft call protection

using a PDE method. Our Monte Carlo method is based on least-squares regressions on sparse

basis functions. In principle, we need a large dimensional basis set to take into account the path

dependency of this contract feature. However, it appears that a very low order approximation

(i.e. a basis using only the current asset price) yields a very good solution, compared with a

full dimensional sparse basis. This is very fortunate, since the computational cost of using a full

dimensional basis (even for the case of a sparse basis) is very high.
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Chapter 5

Simulation-Based Hedging and
Incomplete Markets

5.1 Overview

The previous chapters demonstrated a few applications of regressions for a complete market

which follows the Black-Scholes assumptions. The presented methods can increase the speed

of Monte Carlo pricing significantly and even allow to evaluate options for which pricing was

not possible before. Applying regressions to incomplete markets, which do not follow the Black-

Scholes assumptions, this chapter goes a large step further than the previous ones.

Even though, the axiom that financial markets do not allow arbitrage and the axiom that they

are complete lead to various breakthroughs in the previous decades, this chapter lies out of this

line of derivatives research by only assuming that a real-world model for the underlying hedge

instrument exists. The optimal hedging strategies are computed based on statistical properties of

the market and prices are obtained by the computation of all cost components of the derivatives

hedge including the cost of risk. This allows to apply Monte Carlo pricing to many more realistic

market scenarios than the ones based on the Black-Scholes assumptions.

It turns out that this approach can be seen as a powerful extension to common pricing frame-

works such as Least-Squares Monte Carlo. But it implies desirable properties, such as higher

accuracy for complete markets than comparable Least-Squares Monte Carlo methods and more

realistic prices in incomplete markets.
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5.2 Introduction

Many extensions to the famous Black-Scholes model have been published including local volatil-

ity surfaces1, stochastic volatility2, jumps3 and transaction costs4. These models often still assume

that markets are arbitrage-free and in some cases even complete. For the incomplete markets,

valuation can be conduced in many different ways, since the corresponding so called equivalent

martingale measure is not unique5 which it is in the complete market case. Solutions to the option

pricing problem in incomplete markets include6 risk minimization [46, 95] (especially variance

minimization [48, 47, 104, 33]), utility maximization [68, 54, 91] and martingale methods [51, 75].

In this chapter we will present a simple numerical framework which can provide numerical so-

lutions to many of the complete and incomplete market models. We propose simple properties

which we think an option price should satisfy. The new setting we propose is similar to the one

presented by Schweizer [104]. His work provides valuable structural results, which correspond

to our findings. But, our work extends these structural results to an efficient numerical valuation

technique based on Monte Carlo simulation.

We present a method which is especially designed for but not limited to the pricing and hedg-

ing of OTC (Over-The-Counter) options which are not liquidly traded in the market. The new

method will be based on the view of the hedging issuer of a derivative and overcomes many of

the deficiencies of other methods. Additionally, the framework fits seamless into the risk manage-

ment already existent in banks. The numerical implementation is very general and can be easily

extended to all kinds of options and hedging scenarios.

We call the algorithm of this chapter Simulation-Based Hedging. It will compute optimal port-

folios explicitly in order to obtain prices which have a foundation on a hedging strategy in the

physical or real-world measure. Especially in illiquid markets, where no option prices can be fit-

ted to traded prices, the complete market models suffer from systematic errors. In these situations

the Simulation-Based Hedging can rely on econometric models for the underlying which capture

the real-world dynamics in order to compute realistic prices.

In order to obtain a versatile method which can be used to price a large multitude of op-

tions such as path-dependent, exercisable, or callable options we present a framework which can

be seen as an extension to the Least-Squares Monte Carlo by Carrière [32] resp. Longstaff and

Schwartz [81]. The underlying principles for the valuation of exotic options can easily be adapted

to our algorithm.

1Local volatility models were introduced as implied trees by Dupire [41] as well as Derman and Kani [39]. Further
references can be found in Wilmott [117, p. 357ff].

2Introduced by Hull and White in 1987 [63], stochastic volatility models became especially popular after closed-form
solutions were published 1993 by Heston [61].

3Option pricing when the underlying jumps was first studied 1976 by Merton [88].
4In 1985, option pricing with transaction costs was studied by Leland [79] who introduced proportional transaction

costs to the Black-Scholes option pricing framework. A summary of references can be found in [117, p.353].
5In an arbitrage-free market, a trader can only earn more than the risk-free rate with a risky investment. These and

other concepts are presented by many authors, e.g. Zagst [120], Panjer [92] and Pliska [94].
6An overview of the different methods can be found in [90, p.99ff, p.252ff] as well as [34].



5.3 Derivation 107

Simulation-Based Hedging is similar to mean-variance option pricing in incomplete markets,

which corresponds to the maximization of a quadratic utility function [104]. But, the method of

this chapter adjusts the prices to account for the remaining risk of the hedged position which

delivers prices a bank could directly trade on. A numerical method which is similar to the

Simulation-Based Hedging is the Hedged Monte Carlo presented by Potters et. al.[96] respectively

Pochart and Bouchaud [95]. Potters’ method did not find wide acceptance due to its convergence

properties: It is challenging to find the right parameter set which delivers accurate option prices

because they compute their prices directly by regressions. Instead, we perform regressions to

compute the optimal hedge only. This preserves the convergence to the correct values and allows

for a higher accuracy since the option prices do not rely much on the specific set of basis functions

used. Other related methods are proposed by Ryabchenko et. al. [101] with a global quadratic op-

timization as well as Luenberger [82] who unifies a dynamic version of CAPM and Black-Scholes

in a continuous time setting.

The remainder of this chapter is structured as follows: the next section will introduce the set-

ting we want to study including a definition of the objective of the trader and the risk management

of the bank. A section follows, which presents the optimal solution to the setting. Implementing

the optimal solution in a numerical algorithm, a section explains details for the practical pricing

and hedging estimation. Then, we discuss possible extensions illustrated using the example of a

GARCH process for the return distribution of the option’s underlying. Finally, we conclude with

a summary of the results.

5.3 Derivation

5.3.1 Basic Requirements for a Pricing Method

Before we proceed with the derivation of a pricing method for options, we want to see what the

objectives for a derivatives price are.

The motivation for a new pricing method lies mainly in the observation that a large OTC

market exists where positions of exotic options are traded. Some of these exotics are rarely traded

so that a market price is not observable. Others might be traded in higher volume, but the ask-

bid spread is substantially high. Even the ask price of the different sellers for such an option

might be considerably varying because the different market participants use different models and

assumptions since the Black-Scholes prices are not sufficient. The models used instead usually try

to present a fair market value plus some spread the bank wants to earn. But, it is not even clear

whether this fair market value covers the cost of the hedging strategy.

The reason why the derivatives prices based on strategies like maximal utility, minimal risk

and market price of risk cannot ensure that the price is at least on average greater than the cost of

the hedging strategy lies in the treatment of risk. On the one hand, the option is priced by a utility

function of the bank - whatever that is - or a market price of risk. On the other hand, the bank has
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to pay for the risk of her portfolio by keeping money in a margin account. This margin account

will have to cover losses occurring and has to be supported by the bank’s own funds, which have

to earn the equity return.

In order to develop a pricing tool, which does not suffer from these deficits, we will deduce

four fundamental properties we require for the prices at which a hedging derivative’s issuer

should trade.

Property 5.1 A method which delivers the price of a derivative also delivers a corresponding hedging

strategy, which an issuer can follow.

Property 5.2 The price of a derivative covers at least on average all cost components which occur at the

issuer.

Property 5.3 The hedging strategy reduces the risk of the issuer.

Property 5.4 Any realistic, physical market model is allowed in the pricing method.

The first property is clearly a matter of realism: the issuer of an option desires to replicate the

option using a hedging strategy. That means Property 5.1 has to be fulfilled, otherwise the issuer

has no information, how her hedging strategy looks like.

Property 5.2 denotes a second principle, which is clearly a requirement of a bank. The average

cost of a derivatives trade must be estimated, otherwise one could not control the companies

earnings accurately.

The third property seems obvious. The important issue of Property 5.3 is that a hedging strat-

egy should not be designed for maximizing profits or utilities. It should be designed to minimize

the required capital in the margin account since the bank’s own funds are limited and thus ex-

pensive.

The last Property 5.4 is a requirement such that the issuer can tie the derivative’s price to as

much information as possible. The issuer has specific knowledge about the underlying and it’s

market and she should be able to make it available to the pricing method.

5.3.2 Hedging and Pricing of a Liquidly Traded Security

Using these Properties 5.1- 5.4, we will deduce pricing procedures which allow the computation

of prices one could trade on in a real market. We start with a derivative which is already traded

in the market with a small ask-bid spread. From Properties 5.1-5.4 it is immediately clear what

the method for the pricing of such a liquidly traded derivative is: the issuer sells the derivative at

a price V ask with

V ask = V ask, market + C
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where V ask, market is the market ask price of the option and C is the residual transaction cost plus

a spread the issuer wants to earn. Now, the issuer’s hedging strategy is to buy the derivative at

the market for V ask, market.

However, the method for pricing of an illiquid derivative is not obvious. In the next sections,

we will see that pricing and hedging are still possible.

5.3.3 Setting for an Illiquid Market

Based on the requirements of Properties 5.1-5.4, we proceed assembling the parts of a real-world

pricing method for illiquid derivatives. However, we will restrict our first setting to a derivative

with a value V and a payoff function depending on a single underlying. This is extended in

Section 5.4.6 to an example of a hedge with two hedge instruments. The terminal value of the

derivative is denoted by VtT
= P (StT

) with payoff P which depends of the asset price at maturity

time tT , only. A generalization at a payoff which depends on S := {Sτ |τ ∈ I}, I ⊆ {t0, t1, . . . , tT },

i.e. the whole paths history is straight forward. We consider an issuer who sells this derivative

and holds no other position in the market.

Property 5.1 requires a discrete-time model, because a hedging party can only buy and sell the

underlying at discrete times in order to follow a hedging strategy. Note that this does not prevent

the computation of the option’s payoff P (StT
) because it may only depend on discrete samples

Sti of the underlying. Consequently, we employ a discrete-time market model, where

Sti+1 = fti+1(Sti), (5.1)

with the underlying asset Sti at time ti and the transition function fti+1(Sti) which describes the

change of S from time ti to time ti+1. The transition function fti+1 is arbitrary with a continuous

probability density which allows to model a large variety of markets. This function can easily be

extended to account for state variables such as multiple underlyings or stochastic volatility.

Suppose that the derivative is not actively traded in the market so that the position in the

derivative cannot easily be closed by the issuer. That means, the issuer’s risk management has to

account for the risk over the whole lifetime of the derivative. A hedging strategy reducing the risk

involved in holding the short position in the derivative will be initiated and the question arises,

how much the issuer should charge for the derivative. It is clear that, the issuer should charge at

least all costs occurring in the derivatives trade (Property 5.2), i.e. she should charge the expected

cost of the hedge portfolio, the transaction costs plus the capital costs of the margin account.

To determine the expected cost of the hedge portfolio we are going through the hedging pro-

cess backwards in time, starting at maturity.

In this setting, we are computing the value of a portfolio Π which compensates exactly for the

cost occurring in the hedge of the derivative. We will restrict ourselves here to a simple portfolio

Πti = Bti + φtiSti (5.2)
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with a bank account value Bti
and a position φti

in the options underlying Sti
.

The exact quantity of money required in the bank account B and thus the portfolio value Π

are unknown at the initialization time t0 of the derivatives trade. Thus, distributions for Bt0 and

Πt0 will be computed. The exact value of Π and B are known at maturity time tT of the option,

only. This makes the processes Π and B measurable at tT . However, since the hedging strategy

should be feasible in a real environment (Property 5.1), the hedging strategy itself must be known

(measurable) at each time step ti.

Focussing on the bank account B, the issuer has to pay the payoff of the derivative at maturity,

i.e. the trader sells the hedge

φtT
= 0

and the bank account compensates for the payoff payed to the option holder,

BtT
= VtT

.

At this time (maturity), Π is measurable:

ΠtT
= BtT

+ φtT
StT

= VtT
.

In order to obtain a hedging strategy for the whole life time of the option, we proceed by an

induction from ti+1 to ti. The bank account at time ti should be able to compensate for the money

required at time ti+1, i.e.

er(ti+1−ti)Bti + φtiSti+1 = Bti+1 + φti+1Sti+1 (5.3)

⇔ Bti = e−r(ti+1−ti)(Bti+1 + (φti+1 − φti)Sti+1) (5.4)

where (φti+1 −φti)Sti+1 denotes the profit from the position in the underlying and r is the interest

rate the option’s issuer receives respectively pays on a bank account. That means, Bti is only

measurable at maturity time ti = tT . Furthermore, the equation for B describes a self-financing

hedging strategy7. We can use Equation (5.4) to derive the value of the hedge portfolio

Πti = Bti + φtiSti

= e−r(ti+1−ti)(Bti+1 + (φti+1 − φti)Sti+1) + φtiSti

= e−r(ti+1−ti)
(
Πti+1 − φti

(
Sti+1 − er(ti+1−ti)Sti

))
, (5.5)

which is helpful in formulating the numerical evaluation in the next section. Again, Πti is only

measurable at maturity time ti = tT . Finally, the expected cost of the hedging strategy is given by

Vt0 = E[Πt0 ]. (5.6)
7A self-financing hedging strategy is a trading strategy which does not require external cash-flows hedging the option

(see Zagst [120, p.52] for a more formal definition): All money required is available in the bank account. Note that
in contrast to Schweizer [104] neither the bank account value nor the portfolio value are measurable at time ti < tT .
Schweizer’s framework contains a measurable portfolio, which is mean self-financing. That means the expected cost of
hedging the option is met by the portfolio value.
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Again, it is important to note that the hedge portfolio in Equation (5.5) is not deterministic at time

t0, because the bank account Bt0 denotes the money required to compensate for the hedging costs

including the hedging error. Since the exact path of the underlying is not known at any time ti,

i < T , the required amount in the bank account is stochastic.

In order to determine, which trading strategy φti , i ∈ {0, . . . , T} the issuer should follow, we

have to consider the objectives of the issuer.

That means, the crucial part for the determination of the hedge is the choice of the objective

function. The objective of the hedging party of a derivatives trade is to minimize the risk incurred

in the derivative (Property 5.2). The risk can be measured in many ways which lead to different

strategies.8

Hedging Strategies

There are several objectives of an issuer, which we have to consider in order to determine a specific

hedging strategy. The issuer is usually a bank which constitutes of a derivatives trading depart-

ment and an investment department. While the investment department actively takes risks, the

derivatives trading department should not take risks. That means that the market models of the

derivatives department are not made for investment strategies.

Consequently, the objective of a derivatives hedge should be to minimize a symmetric risk

measure. Most other strategies demand that the drift

µ =
1

(ti+1 − ti)
· log

E
[
fti+1(Sti)

]

Sti

of the underlying is correctly identified which is extremely difficult as this knowledge is usually

not present to the derivatives department. If it were, one would still not consider over invest-

ing (or under investing) in an underlying to make a profit on the investment: The investment

department already has an optimal portfolio allocation and usually such an over-investment in

the derivatives underlying does not result in a better portfolio allocation. Consequently, a strat-

egy is required which does not depend much on the underlying’s drift. The traditional option

pricing model of Black-Scholes perfectly fulfils this property, since the drift µ does not appear in

the pricing equations. In other models it is desirable that the more often a hedge is conducted,

the less should be the influence of µ on the option’s price. In the later, we will see that variance

minimization has this property.

Variance is a very simple risk measure, which corresponds to a quadratic utility of the issuer.

Some higher order minimization strategies are also independent of the drift rate µ. However,

they are not only harder to evaluate, but one looses the linear superposition of optimal hedges for

individual options in a trading book.9

8It is worth noting that the risk should be measured in the physical measure and not in a risk-neutral way, otherwise
the connection to the real-world trader would be lost.

9A strategy minimizing the fourth moment of the error and the resulting properties is described by Selmi and
Bouchaud [105].
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Another property to look at is the optimization procedure itself. Consider an issuer who al-

ready followed a risk-minimizing strategy for some time. During that time, he lost some money

due to hedging errors. Should this issuer change the hedging portfolio in order to compensate

for the errors? The answer is no, because the same arguments as before apply: the derivatives

department should not invest in order to make gains on the position in the underlying but in

order to minimize future risks. Consequently only future risk should be hedged, that means a

hedge should be local in time not global10.

Quadratic Hedging

Before we actually consider the variance minimization strategies of this work, we want to focus on

related work in the literature: A setting similar to the setting of this thesis is the quadratic hedging

or local variance minimization as described by Föllmer and Schweizer [47] and Schweizer [104].11

We provide a brief summary of their framework using a notation similar to the previous section.

We have an option value V with an underlying asset S. At maturity time tT , the option has the

same value as the payoff P (StT ),

VtT
= P (StT

).

For technical reasons, this local variance minimization is defined with a risk-free interest rate of

r = 0 and with process S being a martingale, i.e. Sti = E[Sti+1 |Sti , ti]. Furthermore, given a

hedging strategy φ = φt0 , . . . , φtT we define the function Π̃tT as

Π̃tT
:= P (StT

)−
T−1∑

i=0

φti(Sti+1 − Sti),

i.e. it has the value of the payoff P (StT
) minus the so called gains process

∑T−1
i=0 φti(Sti+1 − Sti)

from time t0 until tT . For ti < tT , we define

Π̃ti := E
[
Π̃tT

|Sti , ti

]
.

Consider a market such that the contingent claim P (StT
) is attainable12. Then, for the option price

process Vti ,

Vti := E

[
P (StT

)−
T−1∑

k=i

φtk
(Stk+1 − Stk

) | Sti , ti

]
,

= Π̃ti +
i−1∑

k=0

φtk
(Stk+1 − Stk

)

10Local in time means that the objective function for the decision on the hedge position at time ti is not based on
previous variable values at time tj , j < i. Global in time means that the complete hedging strategy is defined at the
initial time t0.

11The local variance minimization is based on the work of Föllmer and Sondermann [48] who use variance minimization
in a global setting. Černý and Kallsen [35] extended the work of Föllmer and Schweizer [47] to a use regressions in a global
variance minimization, which is also related to the work of this thesis.

12A contingent claim P (StT ) is called attainable if there is a feasible hedging strategy, which perfectly replicates the
contingent claim. For details see Zagst[120, p.62]
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holds, especially Vt0 = Π̃t0 holds as well. Minimizing the local quadratic risk defined as the

quadratic deviation from Π̃ti+1 to Π̃ti at time ti the optimal strategy is given by

{φti , Vti} = arg min
φti

,Vti

�
E
h
(Π̃ti+1 − Π̃ti )

2 | Sti , ti

i�
= arg min

φti
,Vti

0@E24  Vti+1 −
iX

k=0

φtk (Stk+1 − Stk )

!
−
 

Vti −
i−1X
k=0

φtk (Stk+1 − Stk )

!!2

| Sti , ti

351A
= arg min

φti
,Vti

�
E
h�

Vti+1 − Vti − φti (Sti+1 − Sti )
�2 | Sti , ti

i�
.

In this setting, Vti
and φti

are measurable at time ti. Thus the solution to the minimization

problem is given by

φti
=

cov
[
Vti+1 , Sti+1 | Sti

, ti
]

var
[
Sti+1 | Sti , ti

] ,

Vti = E[Vti+1 |Sti , ti]− φtiE[Sti+1 − Sti |Sti , ti].

This setting is equivalent to the solution of

{φti} = argmin
φti

(
var

[(
φtiSti+1 − Vti+1

) | Sti , ti
])

(5.7)

and setting the option value, such that it is self-financing on average:

Vti = E[Vti+1 |Sti , ti]− φtiE[Sti+1 − Sti |Sti , ti].

In contrast to the work of this thesis, where no intermediate option prices exist and hedge port-

folio values are only measurable at tT , the work of Föllmer and Schweizer is focused on option

prices and portfolio values measurable at time ti. That means, it is hard to compute global hedg-

ing errors and extensions to non-martingale underlyings and non-zero interest-rates are chal-

lenging. Furthermore, no efficient numerical methods are known for the computation of these

minimum-variance hedges. However, a simple numerical method with a multi-nominal tree for

this setting can be found in Černý [33]. A more general Monte Carlo method for the setting is

presented by Potters et al [96] which we summarize in Section 5.4.3.

Now, we are proceeding with the new method of this thesis. In the next section, we want to

see what are the different possible types of variance minimization and which one should use.
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Figure 5.1: Tree model of stock price S for an incomplete market with states ω01, . . . , ω24.

Variance Minimization Strategies

This section will take a closer look at the different possibilities for a variance minimization of the

required portfolio value Π.

More formally, if we look at the value of the hedge portfolio Πti required to compensate for the

hedging strategy from time t0 until maturity time tT , the choices for variance-risk minimization

we consider are Global Hedging, Local Hedging, and something we call Forward Global Hedging.

We will describe the different strategies based on the example of hedging a European call

option in an incomplete market. Consider a discrete market model of asset price S with states as

presented in Figure 5.1 and a risk-free rate of r = 0. The option has a payoff Vt2 at maturity time

t2 of

Vt2 = max(St2 − 95, 0).

Additionally, the hedge portfolio Πt2 is given by

Πt2 = Vt2 .

With this information and the information of the transition Πt+1 → Πt, we will present the effects

of the different variance minimization strategies.
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Table 5.1 Global optimization of a derivatives hedge in a market as in Figure 5.1.

t0 t1 t2
St0 Πt0 φt0 var(Πt0) St1 Πt1 φt1 var(Πt1) St2 Vt2 Πt2

100 10.29 110 15.00 110 15 15
100 6.74 110 11.45 0.65 3.18 100 5 5
100 8.20 110 12.91 90 0 0
100 7.50 100 7.50 110 15 15
100 5.00 0.47 2.54 100 -5.00 0.75 2.08 100 5 5
100 7.50 100 7.50 90 0 0
100 8.37 80 -1.05 100 5 5
100 6.40 80 -3.02 0.30 2.36 90 0 0
100 9.42 80 0.00 80 0 0

1.) Global Hedging A globally optimal hedge minimizes the variance for the total hedging error,

{φt0 , . . . , φtT
} = arg min

φt0 ,...,φtT

(var [Πt0 | St0 , t0]) ,

with

Πti = e−r(ti+1−ti)
(
Πti+1 − φti

(
Si+1 − er(ti+1−ti)Si

))
, ΠtT = VtT = P (StT )

i.e. it minimizes the variance var(Πt0) at time t0. This can create odd artifacts: In some cases

the trader would try to loose gains she made in the past and even pay for that. In other

cases, she would change her strategy in order to compensate for losses in the past.

In the example of Figure 5.1, we use the parameters φω01
t0 , φω11

t1 , φω12
t1 and φω13

t1 to minimize

the sample variance var(Πt0).

Table 5.1 presents the result of the single-step four-dimensional optimization. The computa-

tion itself starts by setting all required values at time t2. Then, the process proceeds at time

t1, where the underlying value St2 and the position φt1 in St1 is used for the computation of

Πt0 :

Πt0 =
(
Πti+1 − φti (Si+1 − Si)

)
, i ∈ {0, 1}

since r = 0. Then, at time t0, we compute Πt0 from Πt1 , φt0 , St1 and St0 . The values for the

4 different φ’s are chosen by a simple gradient-based method such that the variance of the 9

samples of Πt0 at time t0 is minimal.
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Table 5.2 Local optimization of a derivatives hedge in a market as in Figure 5.1.

t0 t1 t2
St0 Vt0 Πt0 φt0 var(Πt0) St1 Vt1 Πt1 φt1 var(Πt1) St2 Vt2 Πt2

100 8.27 9.35 110 14.17 15.0 90 0 0
100 8.27 9.35 110 14.17 15.0 0.75 2.08 110 15 15
100 8.27 9.35 110 14.17 12.5 100 5 5
100 8.27 6.67 100 6.67 7.5 110 15 15
100 8.27 6.67 0.48 1.51 100 6.67 5.0 0.75 2.08 100 5 5
100 8.27 6.67 100 6.67 7.5 90 0 0
100 8.27 8.81 80 -0.83 -0.0 100 5 5
100 8.27 8.81 80 -0.83 -2.5 0.25 2.08 90 0 0
100 8.27 8.81 80 -0.83 -0.0 80 0 0

2.) Local Hedging Local hedging minimizes the variance from one time step to the next, which

is similar to the quadratic hedging presented in the section about quadratic hedging. This

setting is intended for hedging of options for which we can observe a market price Vti . Since

the hedge portfolio Π̃ti should replicate the option price, we define

Vti+1 := E[Π̃ti+1 | Sti , ti], VtT
= P (StT

)

i.e. that the expected value of the hedge position equals the option price.

As usual, we define the hedge portfolio as

Π̃ti := Bti + φtiSti .

The objective of this local hedge at time ti is to minimize the discrepancy be between a

hedge portfolio Π̃ti+1 and the option value Vti+1 , i.e.

{φti} = arg min
φti

(
var

[
Π̃ti+1 − Vti+1 | Sti , ti

])
,

= arg min
φti

(
var

[
Bti+1 + φti+1Sti+1 − Vti+1 | Sti , ti

])
.

Using the self financing property of Equation (5.4), this equals

{φti} = arg min
φti

(
var

[
er(ti+1−ti)Bti + φtiSti+1 − Vti+1 | Sti , ti

])
,

= arg min
φti

(
var

[
φtiSti+1 − Vti+1 | Sti , ti

])
,

which is essentially the same solution as presented in the quadratic hedging, Equation (5.7).

The result of this step-wise minimization for the example in Figure 5.1 and payoff Vt2 =

max(St2 −95, 0) is presented in Table 5.2. One can observe that local minimization results in
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Table 5.3 Forward global optimization of a derivatives hedge in a market as in Figure 5.1.

t0 t1 t2
St0 Πt0 φt0 var(Πt0) St1 Πt1 φt1 var(Πt1) St2 Vt2 Πt2

100 10.18 110 15.00 110 15 15
100 7.68 110 12.50 0.75 2.08 100 5 5
100 10.18 110 15.00 90 0 0
100 7.50 100 7.50 110 15 15
100 5.00 0.48 3.07 100 5.00 0.75 2.08 100 5 5
100 7.50 100 7.50 90 0 0
100 9.64 80 -0.00 100 5 5
100 7.14 80 -2.50 0.25 2.08 90 0 0
100 9.64 80 -0.00 80 0 0

a different strategy than the global minimization in Table 5.1. However, since the transition

from Π̃ti+1 → Π̃ti is different than that from Πti+1 → Πti in the global setting, the resulting

variances cannot be compared directly.

3.) Forward Global Hedging A strategy between the local and the global is one, we call forward

global. In a forward global variance minimization, one solves

Πti = e−r(ti+1−ti)
(
Πti+1 − φti

(
Si+1 − er(ti+1−ti)Si

))
, ΠtT

= VtT
= P (StT

)

with

{φti} = arg min
φti

(var [Πti ] | Sti , ti)

and thus only minimizes the variance of the hedging actions required in the future and ig-

nores all information from the past t0, . . . , tt−1. In this setting, in contrast to Local Hedging,

the complete future hedging errors can be obtained for further computations.

Table 5.3 presents the Forward Global Minimization. Starting at φω11
t1 , var(Πω11

t0 ) is mini-

mized, followed by φω12
t1 where var(Πω12

t0 ) and φω13
t1 where var(Πω13

t0 ) is minimized. Finally,

φω01
t0 is used for minimizing var(Πω01

t0 ). The resulting strategy is identical to the Local Mini-

mization, and different to the Global Minimization. In fact, the forward global and the local

variance minimization strategy coincide in many cases. 13

Choice of the Variance Minimization Strategy

It is obvious that a forward global risk minimization, not a global risk minimization should be

pursued, since the global risk minimization tries to correct errors from the past by investing. The

forward global risk minimization only reduces future hedging errors, based on the assumption

that the future strategy does the same.

13In a similar mean-variance setting with no-arbitrage this has been shown by Černý [33, Theorem 2]. And in an other
similar setting, this has been proved by Lamberton et al [76, Proposition 2].
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Consequently, we focus on the forward global optimization. Then, the minimization decom-

poses into a minimization of the risky capital costs for each time-step. That means the optimal

fraction φti of the hedge instrument S is given by

{φti} = arg min
φti

(var [Πti
| Sti

, ti]) (5.8)

= arg min
φti

(
var

[
e−r(ti+1−ti)(Πti+1 − (φti

(Sti+1 − er(ti+1−ti)Sti
))) | Sti

, ti

])

= arg min
φti

(
var

[
Πti+1 − φti

Sti+1 | Sti
, ti

])
,

which is similar to the quadratic hedging in discrete time which is discussed in the literature (cp.

Section 5.3.3, Quadratic Hedging). We basically reduced all future values of the stochastic variables

S and V to one stochastic variable Πti+1 . Now, the solution to (5.8) can be found by setting the

first derivative ∂
∂φti

to zero and rearranging to φti ,

φti =
cov[Πti+1 , Sti+1 | Sti , ti]

var[Sti+1 | Sti , ti]
. (5.9)

The values of (5.9) can be computed using the regression method presented in Section 1.2.1.

Determination of the Cost of Risk

The cost of risk for a bank is given by the bank’s risk management system: The bank has to deposit

a certain amount of capital in a margin account. For simplicity, we assume that this capital is

deposited at the initial time t0 of the trade until maturity of the option tT .

We propose a risk measure which is called Conditional Value at Risk of the future hedge error

at the time of the initiation of the trade t0:

R := CVaR [Πt0 ] .

Other choices of the risk measurement (e.g. VaR) are easy to accommodate in the model,

too. In a more complicated setting, the risk management department computes a marginal CVaR

value, which is the CVAR of all hedges minus CVAR of all hedges except the one under consider-

ation.

The risk management has to allocate R units of money in the margin account in order to

compensate for unexpected future losses on the hedge. This money is equity capital which has to

earn the return on equity, a risky interest rate re. That means, the derivative trade has to earn the

accrued interest

(ere(tT−t0) − 1)R (5.10)

for the risk management, payable at maturity. Consequently, the cost of capital for the risk man-

agement is worth

CR = e−r(tT−t0)(ere(tT−t0) − 1)R
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at the initial time t0.

The task of the issuer is to sell the derivative as expensive as possible and minimize the capital

cost caused by the risk management. Again, the issuer’s task is not to earn excess returns from the

derivatives hedge because that would result in an investment strategy. But, investment decisions

should be made consciously and not based on random derivative sales.

Now, we collected all ingredients for the option valuation: The value of an illiquid option is

given by

V ask
t0 = Vt0 + CR.

The unadjusted value Vt0 = E[Πt0 ] is computed using the variance minimization starting at ma-

turity time, while the margin capital cost is a direct result from the residual randomness in the

hedged portfolio, measured by the bank’s risk management system.

Now, V ask
t0 is the lowest price at which a trader should sell the option: Since she wants to

maximize the bank’s profit14, the trader will add an additional spread to the option price, which

is an excess profit.

5.3.4 Transaction Costs

In the previous section, we saw how to convert remaining risk of a derivatives hedge into costs

which can be included in the derivative’s price. In this section, we want access another impor-

tant feature often omitted in option pricing: transaction costs. In this section we briefly discuss

possible choices for the inclusion of transaction costs in Simulation-Based Hedging. In the next

Chapter, a Monte Carlo method is presented which is then extended to transaction costs. This

way, the complete costs of an option hedge can be compared for different hedging strategies.

Any kind of transaction costs model can be implemented for the Simulation-Based Hedging.

But, an optimal solution requires the introduction of an additional state variable: The current

position φ in the asset. This is computationally expensive and the optimal rehedge also requires

a numerical minimization with respect to this state variable, to decide wether to rehedge or not.

This is often not feasible due to insufficient computing capacity.

A more practical strategy follows from the current practice in option pricing: a time-based

rehedge15. Here, one fixes specific dates (often equidistantly) at which the rehedge occurs. This

is a strategy which can deliver satisfying results without introducing large computational efforts.

The parameters of the strategy can also be optimized in order to find the optimal time interval.

The Monte Carlo method in the following Chapter (Section 5.4.6) is based on this time-based

rehedge.

As in the case without transaction costs, a rebalancing strategy which minimizes directly V ask
t0

including the expected replication cost would effectively be a strategy betting on the drift of the
14Maximizing the bank’s profit, maximizes the trader’s bonus.
15Different hedging strategies with transaction costs are discusses in Wilmott [117, p.331], the time-based rehedge for

the Black-Scholes framework was analyzed by Leland [79]
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underlying. As a result, an over (or under) investment in the underlying, which violates Prop-

erty 5.3.

The objective, which one minimizes in order to find an optimal rehedge under transaction

costs requires some further thoughts: A usual risk minimization would result in a strategy which

rehedges every time step. Thus extremely large transaction costs occur. The Simulation-Based

Hedging allows a more intuitive procedure: Instead of minimizing some risk, we try to find

a strategy which minimizes the capital costs of the margin account plus the transaction costs.

Thus, we find a balance between paying transaction costs and taking risk. Later, we will provide

examples for this procedure.

5.3.5 American Put Options

Valuing exercisable options within this general framework cannot be based on no-arbitrage. How-

ever, this is still realistic because options are usually not exercised at the optimal values computed

by no-arbitrage arguments [2]. Consequently, the American put option valuation has to be based

on other means: The bank has to prepare for a hostile option holder who exercises at the worst

possible time for the issuer. That means the expected conditional value of the hedge portfolio

has to be at least as high as the exercise value at all times. This is accomplished by replacing

Equation (5.6) with

Πti =
{

(K − Sti) if e−r(ti+1−ti) · E[Πti+1 |Sti , ti] < K − Sti

Bti + φtiSti else
.

This is easy to compute following the ideas of Least-Squares Monte Carlo as presented in Sec-

tion 1.2.1.

5.4 Monte Carlo Implementations

Implementing an algorithm for the Simulation-Based Hedging is easy using the techniques pre-

sented in Chapter 1, especially the regression method presented in Section 1.2.1 helps to deter-

mine the optimal hedges. A simple implementation can be found in Appendix 7.6.

In the next section, we will start with a detailed computation of a simple European put option

with Simulation-Based Hedging. Then, brief summaries of Simulation-Based Hedging and the

method from Potters [96] follow. A theoretical analysis of the convergence properties of the Least-

Squared Monte-Carlo and Simulation-Based hedging follows, which is confirmed by numerical

experiments.

5.4.1 Simple Example

After the theoretical considerations in the previous sections, we now focus on a simple example

of the Simulation-based Hedging. Consider a European put option with data in Table 5.4. We
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Table 5.4 Data of a European put option.

General features
strike price K 100
risk-free rate r 5% p.a.
volatility σ 40% p.a.
drift rate µ 5% p.a.
maturity time tT 1 year
terminal value P (StT

, tT ) max(K − StT
, 0)

evaluate this option with 10 asset paths using the Simulation-Based Hedging. As in the previous

Chapters, we simulate the underlying’s paths using Equation (1.28)

Sj
ti

= Sj
ti−1

e(r− 1
2 σ2)(ti−ti−1)+σ

√
ti−ti−1θi,j

and the data in Table 5.4. With St0 = 100 and random numbers θi,j , i = 1 . . . , 10, j = 1, 2, we get

10 asset paths:

j Sj
t0 Sj

t1 Sj
t2

1 100 81.6340 61.7521
2 100 120.7011 86.3528
3 100 89.1249 84.7387
4 100 118.4613 87.9178
5 100 104.5817 118.0245
6 100 81.0836 86.1567
7 100 58.9702 40.8700
8 100 101.6986 72.1828
9 100 65.8471 65.5679

10 100 119.6538 133.2725

Computing the option’s payoff

V j
tT

= V j
t2 = max(100− Sj

t2 , 0)

we get

Vt2 =




38.2479
13.6472
15.2613
12.0822

0
13.8433
59.1300
27.8172
34.4321

0




.



122 Simulation-Based Hedging and Incomplete Markets

For the portfolio ΠtT
= BtT

= Vt2 holds. Pathwise, we obtain

Πt2 =




38.2479
13.6472
15.2613
12.0822
0.0000

13.8433
59.1300
27.8172
34.4321
0.0000




as scenario values.

Now, all values at time tT = t2 are computed and we can proceed with the backwards time

stepping to the previous time step tT−1 = t1. At this time, we are computing the optimal hedge

for all possible states based on the sample for the next time step.

We saw in the previous section that optimal hedge is given by

φj
t1(S

j
t1) =

cov(St2 , Πt2 |Sj
t1 , t1)

var(St2 |Sj
t1 , t1)

.

Following Section 1.2.1, we approximate φj
t1(S

j
t1) by

φj
t1(S

j
t1) ≈

m∑

j=1

ãjbj(S
j
t1),

with ãj defined as (cp. Equation (1.7))

ã =
(
BŜ(St1)

T BŜ(St1)
)−1

BŜ(St1)
T Π̂

=
(
BŜ(St1)

)†
Π̂ (5.11)

with Ŝj = Sj
t2 − E[St2 |St1 = Sj

t1 ] and Π̂j = Πj
t2 − E[Πt2 |St1 = Sj

t1 ]. Ŝ and Π̂ can be computed

from the local basis approximation16 E[St2 |St1 = Sj
t1 ] of St2 respectively from the local basis

approximation E[Πt2 |St1 = Sj
t1 ] of Πt2 , i.e.

Π̂ := Πt2 −B(St1) ·
(
B(St1)

†Πt2

)

and

Ŝ := St2 −B(St1) ·
(
B(St1)

†St2

)

with pseudo inverse B(St1)
† of B(St1) (see Definition 1.6). In this Equation, we have to chose the

appropriate basis functions bj(St1) for

B(St1) :=




b1(S1
t1) · · · bm(S1

t1)
...

. . .
...

b1(S10
t1 ) · · · bm(S10

t1 )


 ..

16The local basis approximation is defined in Theorem 1.4 and Lemma 1.5
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Since we only have 10 samples to do the regression, we choose a polynomial basis with m = 3

basis functions, such that

B := B(St1) = (1 Sj
t1 (Sj

t1)
2)

∣∣∣
j=1,...,10

,

i.e.

B =




1 81.6340 6664.1164
1 120.7011 14568.7494
1 89.1249 7943.2463
1 118.4613 14033.0766
1 104.5817 10937.3404
1 81.0836 6574.5581
1 58.9702 3477.4886
1 101.6986 10342.6003
1 65.8471 4335.8452
1 119.6538 14317.0342




.

This results in

Π̂ =




13.2697
4.5509

−3.5234
3.1732

−10.7258
−11.6489

6.3162
16.0707
−8.4905
−8.9921




, Ŝ =




−14.284
−17.0855

1.1383
−14.7551

22.2798
10.7196
−5.605

−21.6508
9.0629

30.1799




,

which we use in

BS := BS(S1
t1 , . . . , S

10
t1 ) :=




b1(S1
t1)Ŝ

1 · · · bm(S1
t1)Ŝ

1

...
. . .

...
b1(S10

t1 )Ŝ10 · · · bm(S10
t1 )Ŝ10


 .

Then, the numerical values are

BS = (Ŝj Sj
t1 · Ŝj (Sj

t1)
2 · Ŝj)

∣∣∣
j=1,...,10

,

i.e.

BS =




-14.284 -1166.0613 -95190.2909
-17.0855 -2062.243 -248914.949

1.1383 101.4493 9041.6545
-14.7551 -1747.9124 -207059.949
22.2798 2330.0611 243681.841
10.7196 869.1857 70476.7514

-5.605 -330.5282 -19491.3279
-21.6508 -2201.8519 -223925.199

9.0629 596.7638 39295.1894
30.1799 3611.1368 432086.279




.
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Now, the estimate for the hedge position

φt1 = −B · ((BS)† · Π̂)

evaluates to

φt1 =




−0.9347
−0.3008
−0.781
−0.3259
−0.5121
−0.9466
−1.4926
−0.5573
−1.3086
−0.3124




.

This result is used to compute the portfolio value Πt1 . Following Equation (5.5), we obtain

Πj
t1 = e−0.05·0.5 · (Πj

t2 − (φj
t1(S

j
t2 − e0.05·0.5Sj

t1))),

which is in this case

Πt1 =




17.2941
2.3366
9.8246
1.1209
5.3918

16.2901
29.1472
9.6868

31.0981
3.2265




.

This completes the steps required at time t1. We proceed with time t0, where we have to

compute the next variance optimal hedge. At time t0, the computation of φt0 is easier than at time

t1 since all state variables are equal: Sj
t0 = 100 ∀j ∈ {1, . . . , 10}. Consequently, we can compute

φt0 without conditioning at St0 :

φt0 =
cov(Πt1 , St1)

var(St1)
,

which is computed using the sample covariance and the sample variance of Sj
t1 and Πj

t1 , j ∈
{1, . . . , 10}. The result is

φt0 =




−0.4633
−0.4633
−0.4633
−0.4633
−0.4633
−0.4633
−0.4633
−0.4633
−0.4633
−0.4633




.
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Using this in the Equation for Πt0 :

Πj
t0 = e−0.05·0.5(Πj

t1 − (φj
t0(S

j
t1 − e0.05·0.5Sj

t0))),

we obtain

Πt0 =




7.4243
10.4891
3.5241
8.2913
6.1851
6.1964
8.7438
9.0712

13.7539
10.8838




,

which means

Vt0 =
1
10

10∑

i=1

Πj
t0 = 8.45629.

This can be compared with the traditional Monte Carlo estimate, which is

Vt0 ≈ e−rtT
1
10

10∑

i=1

V j
t2

≈ e−0.05·1 · 21.4461

≈ 20.4002,

while the true Black-Scholes price is 13.1459. It is easy to observe that the sample standard de-

viation std(Vt2) = 17.58 is a lot larger than the sample standard deviation std(Πt0) = 2.8720,

which is a clear indication that the Simulation-Based Hedging can provide better estimates than

traditional Monte Carlo methods.
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5.4.2 Simulation-Based Hedging in a Black-Scholes Market (European Op-
tions)

The previous section presented the computations of Simulation-Based Hedging for a simple set-

ting in detail. In order to provide an overview of this method, this section summarizes the impor-

tant steps of the Simulation-Based Hedging framework for Black-Scholes markets:

1. Simulation of asset Sti
= (S1

ti
, S2

ti
, . . . , Sn

ti
) in physical measure,

e.g. Sj
ti+1

= Sj
ti

exp
(
(µ− 1

2σ2)(ti+1 − ti) + σ
√

(ti+1 − ti)θi,j

)

2. Determine payoff P (Sj) and

φj
tT

= 0

Πj
tT

= P (Sj
tT

)

of paths Sj .

3. For all j and for i = T − 1 down to 0 repeat

(a) Perform least-squares regressions to determine φj
ti

according to

φj
ti

=
cov[Πti+1 , Sti+1 | Sti , ti]

var[Sti+1 | Sti , ti]
≈

∑

k

αkbk(Sj
ti

)

(b) Update portfolio value Πj
ti

Πj
ti

= e−r(ti+1−ti)
(
Πj

ti+1
− φti

(
Sj

ti+1
− er(ti+1−ti)Sj

ti

))

4. Finally, the option value is given by Vt0 ≈ 1
n

∑n
j=1 Πj

t0 as an in-sample value.17.

17Vt0 is computed as an in-sample value, only. This is because an out-of-sample value similar to the out-of-sample
value of Equation (1.36) has no benefit for the Simulation-Based Hedging: The convergence of the out-of-sample value to
the theoretical price is slower than for the in-sample case. Furthermore, there is no useful average bound as in the case of
Least-Squares Monte Carlo, where the out-of-sample price is on average a lower bound on the true value.
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5.4.3 Hedged Monte Carlo (Potters et. al. [96]) in a Black-Scholes Market (Eu-
ropean Options)

For comparison, we present the Hedged Monte Carlo method of Potters et. al. [96].18 Instead of

a Forward Global Hedge as in Simulation-Based Hedging, this method minimizes the variance

using some kind of Local Hedging.

1. Simulation of asset Sti
= (S1

ti
, S2

ti
, . . . , Sn

ti
) in physical measure,

e.g. Sj
ti+1

= Sj
ti

exp
(
(µ− 1

2σ2)(ti+1 − ti) + σ
√

(ti+1 − ti)θi,j

)

2. Determine payoff P (Sj) and

φj
tT

= 0

V j
tT

= P (Sj
tT

)

of paths Sj .

3. For all j and for i = T − 1 down to 0 repeat

(a) Perform least-squares regressions to determine φj
ti

according to

φj
ti

=
cov[Vti+1 , Sti+1 | Sti , ti]

var[Sti+1 | Sti , ti]
≈

∑

k

αkbk(Sj
ti

)

(b) Update option value V j
ti

V j
ti

= e−r(ti+1−ti)E
[
V j

ti+1
− φj

ti

(
Sj

i+1 − er(ti+1−ti)Sj
i

)
| Sti , ti

]

4. Finally, the option value is given by Vt0 = 1
n

∑n
j=1 V j

t0 as an in-sample value.

18Note that there is no rigorous derivation of the setting or the resulting solution in Potters et. al. [96].
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5.4.4 Simulation-Based Hedging in a Black-Scholes Market (American Put
Option)

In this section, we summarize the implementation for Simulation-Based Hedging of American

put options in a Black-Scholes markets. That means, we extend the algorithm presented in Sec-

tion 5.4.2 by early exercise opportunities where the option holder exercises in a way which is

the worst possible one for the issuer. We already discussed this early exercise behavior in Sec-

tion 5.3.5. Note that additional to the regressions for estimating the optimal hedge position φj
ti

,

regressions are required for estimating the conditional expected continuation value. The regres-

sion are performed on the two possibly different sets of basis functions bj , j = 1, . . . , m1 resp. b̂j ,

j = 1, . . . , m2.

1. Simulation of asset Sti = (S1
ti

, S2
ti

, . . . , Sn
ti

) in physical measure,

e.g. Sj
ti+1

= Sj
ti

exp
(
(µ− 1

2σ2)(ti+1 − ti) + σ
√

(ti+1 − ti)θi,j

)

2. Determine payoff P (Sj) and

φj
tT

= 0

Πj
tT

= P (Sj
tT

)

of paths Sj .

3. For all j and for i = T − 1 down to 0 repeat

(a) Perform least-squares regressions to determine φj
ti

according to

φj
ti

=
cov[Πti+1 , Sti+1 | Sti , ti]

var[Sti+1 | Sti , ti]
≈

m1∑

k=1

akbk(Sj
ti

)

(b) Perform least-squares regression to determine

E[Πti+1 |Sti , ti] ≈
m2∑

k=1

ãk b̃k(Sj
ti

)

(c) Update portfolio value Πj
ti

Π̃j
ti

= e−r(ti+1−ti)
(
Πj

ti+1
− φti

(
Sj

i+1 − er(ti+1−ti)Sj
i

))

Πj
ti

=

{
(K − Sj

ti
) if e−r(ti+1−ti) · E[Πj

ti+1
|Sj

ti
, ti] < K − Sj

ti

Π̃j
ti

else
.

4. Finally, the option value is given by V j
t0 ≈ 1

n

∑n
j=1 Πj

t0 .
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5.4.5 Remarks on the Computational Efficiency

This new method based on the computation of optimal hedges and the computation of their cost

is not only more realistic than pricing in the Black-Scholes framework. Using the assumptions

of the Black-Scholes prices, the new framework is much more efficient than regular Monte Carlo

methods: Especially the comparison with Least-Squares Monte Carlo shows that the new method

requires dramatically less computations. We will show that by estimating the order of conver-

gence for both methods.

First, we take a look at Least-Squares Monte Carlo. This convergence analysis is similar to

the analysis of plain Monte Carlo in Section 1.4.2. We use a few assumptions which allow a brief

exposition, because a detailed analysis goes beyond the scope of this work.19 However, the result

is also valid for much more general assumptions which is confirmed by the numerical examples

presented later in this chapter.

We assume that the regression leads to perfect estimates of the conditional expectation func-

tion P e(Sti , ti) = EQ[V (S, ti+1)|Sti , ti] in Equation (1.34). We also assume that a constant propor-

tion m of the n samples is exercised, the rest reaches maturity time. And we assume that all paths

are exercised for P (S∗) which is constant for all t at asset price S∗, additionally, that the interest

rate r is zero. Consequently, the expected variance of a single Monte Carlo samples is given by

σ2
LS = var

[
n−m

n
V (S, tT ) +

m

n
P (S∗)

]

=
(

n−m

n

)2

var[V (S, tT )].

That means a Monte Carlo estimate, which is the mean value of the samples has a variance of σ2
LS
n .

Consequently, the standard deviation is in Landau-O notation:

O
(

1√
n

)

(cp. Equation (1.24), Section 1.4.2). This result is independent of the number of time steps made

in the Least-Squares Monte Carlo.

The situation is different if we look at the Simulation-Based Hedging. Again, we assume that

the regressions lead to perfect estimates of the conditional expectation function. That means, the

Simulation-Based Hedging samples deviate only by the hedging error due to finite time-stepping.

Furthermore, we assume that the underlying asset follows the Black-Scholes assumptions (i.e.

µ = r = 0). In order to obtain a good estimate of the hedging error Hti between time ti and ti+1,

we look at the total hedging error until timestep ti, which is

Πti − E[Πti |Sti , ti].

19See e.g. Stentoft [108] for a more detailed convergence analysis.
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If we now define the value function V (Sti
, ti) := E[Πti

|Sti
, ti], we get the hedging error Hti

as

Hti
:= (Πti+1 − V (Sti+1 , ti+1))− (Πti

− V (Sti
, ti))

=
(
Πti+1 −Πti

)− (
V (Sti+1 , ti+1)− V (Sti , ti)

)
. (5.12)

From Equation (5.5) we know that with r = 0

Πti+1 −Πti
= φti

(
Sti+1 − Sti

)

holds. That means together with (5.12)

Hti
=

(
φti

(
Sti+1 − Sti

))− (
V (Sti+1 , ti+1)− V (Sti

, ti)
)
.

With the Taylor expansion

V (Sti+1 , ti+1)− V (Sti
, ti) =

∂V (Si, ti)
∂S

(
Sti+1 − Sti

)
+

∂V (Si, ti)
∂t

(ti+1 − ti)

+
1
2

∂2V (Si, ti)
∂S2

(
Sti+1 − Sti

)2 + O
(
(ti+1 − ti)

2 +
(
Sti+1 − Sti

)3
)

and the approximation20

φti =
cov[Πti+1 , Sti+1 |Sti , ti]

var[Sti+1 |Sti , ti]
≈ ∂V (Si, ti)

∂S

we obtain

−Hti ≈ 1
2

∂2V (Si, ti)
∂S2

(
Sti+1 − Sti

)2 +
∂V (Si, ti)

∂t
(ti+1 − ti) + rest.

where rest ∈ O((ti+1 − ti)
2 +

(
Sti+1 − Sti

)3). Now, the variance hedging error of the portfolio is

given by

var[Hti |Sti , ti] ≈ var
[
1
2

∂2V (Si, ti)
∂S2

(
Sti+1 − Sti

)2 +
∂V (Si, ti)

∂t
(ti+1 − ti) + rest | Sti , ti

]

= var
[
1
2

∂2V (Si, ti)
∂S2

(
Sti+1 − Sti

)2 + rest | Sti , ti

]
,

since ∂V (Si,ti)
∂t (ti+1 − ti) is a constant at time ti and does not contribute to the variance of the

one-step error. Assuming that
∥∥∥ 1

2
∂2V (Si,ti)

∂S2

∥∥∥
∞

= c < ∞ and that ‖rest‖∞ ≈ 0 and using the

Black-Scholes assumptions for the asset price process with r = 0, we obtain

var[Hti | Sti , ti] ≤ var
[
c · (Sti+1 − Sti)

2 | Sti , ti
]

≈ var
[
c ·

(
Sti

(
e(−0.5σ2)(ti+1−ti)+σθ

√
ti+1−ti − 1

))2

| Sti , ti

]

≈ var
[
c · (Sti)

2
(
(−0.5σ2)(ti+1 − ti) + σθ

√
ti+1 − ti

)2

| Sti , ti

]

= (Sti)
4c2var

[
(−0.5σ2)2(ti+1 − ti)2 + σ2θ2(ti+1 − ti) | Sti , ti

]

∈ O
(
(ti+1 − ti)2

)

20This can be seen from the fact that with zero interest-rate in a one-period Black-Scholes market, both expressions
minimize the variance of the hedge portfolio. Further discussions can be found in [33], Section 3.2.
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with θ ∼ N(0, 1) holds, which is the variance of a single time step.

Since there are T := tT /(ti+1 − ti) time steps in each paths (assuming equal time steps), the

total variance of the set of Simulation-Based Hedging paths is given by

var

[
T−1∑

i=0

Hti

]
.

Assuming furthermore, that the hedging errors are uncorrelated and var[Hti∗ |Sti∗ , ti∗ ] denotes

the largest hedging error, i.e. var[Hti∗ |Sti∗ , ti∗ ] ≥ var[Hti
|Sti

, ti] ∀i = 0, . . . , T − 1, then

var

[
T−1∑

i=0

Hti

]
≤ Tvar [Hti∗ ]

∈ O
(

tT (tti∗+1 − tti∗ )
2

tti∗+1 − tti∗

)

∈ O (tti∗+1 − tti∗ ) .

That means, the variance of the mean of n sample paths of hedged portfolios is in O( 1
nT ) and the

standard deviation is in

O
(

1√
nT

)
.

These results show that the Least-Squares Monte Carlo method requires about T -times as

many asset paths simulations as the Simulation-Based Hedging method for a computation with

the same accuracy. Using equally many asset paths, both methods require the same order of

numerical operations: The regressions of the Simulation-Based Hedging require about triple21

the computations of the Least-Square Monte Carlo, which is irrelevant in Landau-O notation. In

reality, where many time steps are used, Simulation-Based Hedging is an order of magnitude

quicker than Least-Squares Monte Carlo for pricing American put options.

5.4.6 Numerical Experiments

After we theoretically confirmed the high speed of the Simulation Based Hedging and went

through a simple example, we now want to obtain more insight into the practical properties of

this new method. A few numerical experiments will demonstrate the efficiency and other effects

compared with regular Least-Squares Monte Carlo.

Black-Scholes: American Put Options

First, we focus on an American option as in Table 5.5. Its Black-Scholes price is given by V =

13.66761 (all digit correct, computed by a PDE method). In order to compare the continuous

time PDE value with the discrete American (thus Bermudan) option values of the Monte Carlo

methods, we first compare the computed option values for different numbers of time steps. Note

21Simulation-Based Hedging requires three regressions at each time-step ti for estimating Π̂ti = E[Πti+1 |Sti , ti], Ŝti =
E[Sti+1 |Sti , ti] and φti , while Least-Squares Monte Carlo requires a regression for estimating E[Vti+1 |Sti , ti], only.
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Table 5.5 Base case data of an American put option.

General features
strike price K 100
risk-free rate r 5% p.a.
volatility σ 40% p.a.
drift rate µ 5% p.a.
dividends Di none
maturity time tT 1 year
terminal value P (S, tT ) max(K − StT

, 0)
exercise price at tj < tT max(K − Stj

, 0)

that we are computing Black-Scholes prices, i.e. we are not assigning a margin capital cost to the

remaining hedging error.

A summary of these result is presented in Table 5.6, which contains the values for the Least-

Squares Monte Carlo, the Simulation-Based Hedging and the Hedged Monte Carlo22. Both, the

Least-Squares Monte Carlo and the Simulation-Based Hedging seem to converge to the reference

value: 128 time-steps are required for cent accurate values (±0.01). On the other hand, our imple-

mentation of the Hedged Monte Carlo does not converge to the reference value, which is mainly

due to the nature of the Hedged Monte Carlo. The main difference of Hedged Monte Carlo to

Simulation-Based Hedging is that in Hedged Monte Carlo, the regression is performed on a func-

tion that is interpreted as option value V , which is unique in each state. Instead, in Simulation-

Based Hedging, we perform regressions on the amount Π required for a self-financing hedge,

which is stochastic in each state. Consequently, the Hedged Monte Carlo has a large interpolation

error in the expected value V at each time-step, which increases with the number of time-steps.

This is not the case for Simulation-Based Hedging. In Simulation-Based Hedging, the regression

(or interpolation) error influences the hedging strategy φ only, the expected value of Π is not

affected.

Another experiment (Table 5.7) shows that if the drift rate is changed, the option value with

few time-steps can be much different, but with an increasing number of time steps, the value still

converges to the Black-Scholes price. This is expected since the drift of the underlying is irrelevant

for the Black-Scholes price. But, one can see that the option price depends on the underlying

market such that even daily hedging (256 time steps) introduces a difference of 0.02 (drift µ =

30%) compared with the Black-Scholes price. This is not a model or numerical error, a real-world

trader would obtain the same results for this market with a daily hedge rebalancing.23

A different aspect is presented in Figure 5.2: One can see that the Simulation-Based Hedging

is indeed a lot more accurate due to a higher convergence. While the standard deviation of the

sample of Least-Squares Monte Carlo valuations does not change with increasing time steps, it

reduces quickly with the Simulation-Based Hedging valuations. Again, this is expected as we

22As presented in [96]
23For details of different hedging strategies we refer the reader to [117], p. 326.
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Table 5.6 Valuation results for an American option as in Table 5.5, comparing the values of Least-
Squares Monte Carlo, Potters’ method (Hedged Monte Carlo) and the Simulation-Based Hedging.
All values are computed using the same set of 1,000,000 asset paths and 1 to 256 time-steps of the
sample. The PDE reference value is 13.66761.

# time steps V Simulation-Based Hedging V Least-Squares Monte Carlo V Hedged Monte Carlo

256 13.6605 13.6584 13.8073
128 13.6593 13.6605 13.8016

64 13.6533 13.6569 13.7787
32 13.6431 13.6476 13.7384
16 13.6268 13.6317 13.7071

8 13.5906 13.5782 13.6283
4 13.5126 13.4927 13.5257
2 13.3926 13.3574 13.2526
1 13.1474 13.1288 12.4762

Table 5.7 Valuation results for an American option as in Table 5.5, comparing the values of
Simulation-Based Hedging with different drift rates µ. All values are computed using the same
set of 1,000,000 asset paths. The PDE reference value is 13.66761.

Simulation-Based Hedging with different drift rates

# time steps V : µ = 5% V : µ = 30% V : µ = −15%
256 13.6605 13.6395 13.6588
128 13.6593 13.6205 13.6540

64 13.6533 13.5764 13.6518
32 13.6431 13.4908 13.6352
16 13.6268 13.3285 13.6062

8 13.5906 12.9984 13.5357
4 13.5126 12.3494 13.4267
2 13.3926 11.1942 13.1903
1 13.1474 9.3091 12.7706

theoretically saw the higher convergence of the Simulation-Based Hedging in Section 5.4.5.

Black-Scholes + Transaction Cost

After the verification in the previous section that the proposed Simulation-Based Hedging method

yields to the correct values, we will extend the portfolio strategy by introducing a proportional

transaction cost factor κ :

Bj
ti

= e−r(ti+1−ti)
(
Bj

ti+1
+ (φj

ti+1
− φj

ti
)Sj

ti+1
+ κ

∣∣∣(φj
ti+1

− φj
ti

)Sj
ti+1

∣∣∣
)

.
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Convergence with the number of time-steps
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Figure 5.2: Valuation results for an American option as in Table 5.5, comparing the values of
Least-Squares Monte Carlo and the Simulation-Based Hedging. All values are mean values of
100 valuations, computed using a set of 104 asset paths and 1 to 128 time steps. The presented
interval is the mean value of the valuations ± the standard deviation of the valuations. The PDE
reference value is 13.66761.

The resulting optimization problem is

{φti} = arg min
φti

(var [Πti | Sti , ti])

= arg min
φti

�
var

h
e−r(ti+1−ti)

�
Πti+1 − φti(Sti+1 − er(ti+1−ti)Sti) + κ

���(φti+1 − φti)S
j
ti+1

���� | Sti , ti

i�
= arg min

φti

�
var

�
Πti+1 −

�
φti − κ

��φti+1 − φti

���Sti+1 | Sti , ti

��
.

The corresponding solution is similar to the one in the case without transaction costs (Equa-

tion (5.9)), i.e. the solution is,

φti − κ
∣∣φti+1 − φti

∣∣ =
cov[Πti+1 , Sti+1 | Sti , ti]

var[Sti+1 | Sti , ti]
,

which is for φti+1 > φti :

φti =
1

1 + κ

(
cov[Πti+1 , Sti+1 | Sti , ti]

var[Sti+1 | Sti , ti]
+ φti+1κ

)
,

and for φti+1 < φti :

φti =
1

1− κ

(
cov[Πti+1 , Sti+1 | Sti , ti]

var[Sti+1 | Sti , ti]
− φti+1κ

)
.

Interestingly, for

1
1− κ

(
cov[Πti+1 , Sti+1 | Sti , ti]

var[Sti+1 | Sti , ti]
− φti+1κ

)
< φti <

1
1 + κ

(
cov[Πti+1 , Sti+1 | Sti , ti]

var[Sti+1 | Sti , ti]
+ φti+1κ

)
,

the solution does not exist. We propose that in this situation φti = φti+1 holds, which means that

one does not change the hedge.
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Table 5.8 Base case data of a European put option. The Black-Scholes option price is VBS =
13.1459

General features
strike price K 100
risk-free rate r 5% p.a.
volatility σ 40% p.a.
drift rate µ 5% p.a.
dividends Di none
maturity time T 1 year
terminal value P (S, T ) max(K − StT

, 0)
exercise price at t < T 0

Table 5.9 Valuation results for a European option as in Table 5.8 with proportional transaction
costs (κ) in a risk-neutral setting, i.e. µ = r, 8 time steps are used for rehedging. The table
provides values for comparing the not admissible strategy φ with the approximate strategy φ̂. All
values are computed such that the 95% confidence interval is at most ±0.005.

φ φ̂

κ V , φ std(Πt0) V , φ̂ std(Πt0)
0.001 13.238 8.0476 13.267 8.052
0.020 14.847 8.2429 15.581 8.433

Now, it is important to note that the hedging strategy φti is not measurable at time ti as in the

case without transaction costs. The strategy at time ti depends on the strategy at time ti+1, which

is clearly not available at time ti. Consequently, we approximate φti+1 with a simple estimate, i.e.

φti+1 ≈ φti . This leads to an approximate hedging strategy φ̂ti ,

φ̂ti =
cov[Πti+1 , Sti+1 | Sti , ti]

var[Sti+1 | Sti , ti]

which is the same as in the case without transaction costs. Table 5.9 presents values of the exam-

ple with data in Table 5.8 for the not admissible strategy φ, as well as the admissible approximate

solution φ̂. In the case with low transaction costs κ = 0.001, the option value and the hedging

are not much different for both solutions, which suggests that the approximate solution is useful

in this case. In the case with large transaction costs, the hedging error is still not much different

(about 2% difference). But, the option value is affected by almost 5%, which is significant. How-

ever, it is important to emphasize that the optimal strategy φti is not admissible and thus super

optimal because it is measurable at time ti+1.

Leland [79] already solved the time based hedging problem for the case of a Black-Scholes

delta hedge in a risk-neutral setting with constant revision intervals ∆t = (ti+1 − ti). His result is

that one effectively has to price the option with an adjusted volatility

σ2
Leland = σ2

(
1 +

√
8
π

κ

σ
√

∆t

)
,
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Table 5.10 Valuation results for a European option as in Table 5.8 with proportional transaction
costs (κ = 0.001) in a risk-neutral setting, i.e. µ = r. All values are computed such that the 95%
confidence interval is at most ±0.005.

nt V , κ = 0.001 VLeland

512 13.864 13.851
256 13.669 13.659
128 13.528 13.521

64 13.426 13.423
32 13.351 13.353
16 13.300 13.303

8 13.267 13.268
4 13.249 13.243
2 13.228 13.226
1 13.219 13.213

such that the option price is given by

VLeland = VBS(σLeland) + ‖κθt0St0‖, (5.13)

where VBS(σ) is a function which returns the Black-Scholes price for the option under considera-

tion and θt0 is the Black-Scholes delta at time t0. The additive term ‖κθt0St0‖ results from the fact

that we assume that the transaction cost for the θt0 · St0 we buy at the initial time have to be paid.

This is not the case in the original model of Leland. Furthermore, we assume physical delivery at

maturity, which corresponds to the Leland model.

Table 5.10 presents the results for a European option with data in Table 5.8. The Black-Scholes

price of the option is 13.1459, the column V presents the Simulation-Based Hedging prices for a

risk-neutral drift µ = r and VLeland presents the price with Leland’s adjusted volatility according to

Equation (5.13). In most cases the difference between the Leland price and the Simulation-Based

Hedging price is small and within the confidence interval of the Monte Carlo estimates. But,

for decreasing time intervals, i.e. larger numbers of time steps T , the cost in Simulation-Based

Hedging seem to increase a bit faster than in Leland’s model. This is mainly due to numerical

properties: the estimated representation of the hedging strategy leads to additional oscillations in

the hedge portfolio, which result in higher transaction costs.

Simulation-Based Hedging with Transaction Cost and Margin Capital Cost

In the previous paragraphs, we saw how the transaction costs behave in the Simulation-Based

Hedging setting. The values missing for a valuation of ask price V ask
t0 of an option are the margin

capital costs CR. These capital costs are easy to obtain in the simulation framework since the

distribution of the required capital in the portfolio Πt0 is already computed using simulated asset

paths in the Monte Carlo algorithm. In this case, we are interested in the conditional value at risk

(CVaR). Consequently, we can compute the required margin capital cost CR by the corresponding
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quantile of paths (using Equation (5.10)):

CR = e−r(tT−t0)(ere(tT−t0) − 1)CV aR95%(Πt0),

CV aRα(Πt0) := E[Πt0 |Πt0 ≤ V aRα(Πt0)],

V aRα(Πt0) := sup(x ∈ R | P (Πt0) ≤ x) < α).

Assuming an expected return on equity capital re of 20% p.a., we obtain the capital costs pre-

sented in Table 5.11 for the hedge of a European option with data in Table 5.8 and proportional

transaction costs κ = 0.001. Comparing the properties of the prices obtained with different time

steps, a few facts are obvious: The transaction costs are the lowest with only a single time step

and they are increasing with the number of time steps. The reverse is true for the required margin

capital costs CR, i.e. the capital costs are the lower, the more time steps are used for rehedging.

This was expected. Now, we can find some optimal strategy, which minimizes the transaction

costs + margin capital costs value: The lowest costs are at T = 64 time steps, which equals about

weekly rehedging. This option value is 13.6638 and has about 0.51 costs associated compared with

the Black-Scholes price, which is a significant addition. Note that this costs can be dramatically

reduced using an expected drift rate µ > r, non-equally distant hedging intervals or move-based

rehedges.24

Table 5.11 Valuation results for a European option as in Table 5.8 with proportional transaction
costs (κ = 0.001) in a risk-neutral setting, i.e. µ = r. All values are computed such that the 95%
confidence interval is at most ±0.005.

T V , κ = 0.001 trans. V 1 − VBS capital cost CR trans. + CR V ask
t0

256 13.6690 0.5231 0.1245 0.6476 13.7935
128 13.5280 0.3821 0.1735 0.5556 13.7015

64 13.4260 0.2801 0.2378 0.5179 13.6638
32 13.3510 0.2051 0.3385 0.5436 13.6895
16 13.3000 0.1541 0.4843 0.6384 13.7843

8 13.2670 0.1211 0.6823 0.8034 13.9493
4 13.2490 0.1031 0.9324 1.0355 14.1814
2 13.2280 0.0821 1.2940 1.3761 14.5220
1 13.2190 0.0731 1.7359 1.8090 14.9549

Simulation-Based Hedging with an Econometric Model for the Underlying

This section is not intended to promote a specific model: It is intended to promote the potential of

Simulation-Based Hedging. Therefore, we will describe an econometric model which is somehow

realistic, but which will not satisfy everybody due to the specific model restrictions. At the end of

this section, we will briefly summarize the method’s abilities and possible extensions.

24For details of different hedging strategies, we refer the reader to Wilmott [117] the the references therein.



138 Simulation-Based Hedging and Incomplete Markets

As an econometric model, we use a GARCH(1,1) volatilty model as proposed by Bollerslev [18],

with

r = const.

Rti = a + εti−1 , εti ∼ N(0, σ2
ti

)

σ2
ti

= α + βσ2
ti−1

+ γε2ti−1

Sti+1 = eRti Sti
.

Using an algorithm for parameter estimation as in MATLAB, we can create parameters from

Data (German DAX, daily from 01.01.2003 to 06.11.2006):

r = 3.9%

Rti
= 9.28 · 10−4 + εti−1 , εti

∼ N(0, σ2
ti

)

σ2
ti

= 1.69 · 10−6 + 0.91σ2
ti−1

+ 0.079ε2ti−1

Sti+1 = eRti Sti .

In order to complicate the setting a little further, we are going to evaluate an option using

two hedge instruments. The data in Table 5.12 contains the data of a one year barrier option

V which we would like to sell. The hedge will consist of a two-year option Vc on the same

underlying plus the underlying S itself. Consequently, we need a model for the volatility of

the hedge. Assuming that Vc were liquidly traded, Figure 5.3 suggests that the implied volatility

of Vc can be approximated by

σimplied,ti
= 0.29 · 0.306 + 0.71 · σti (5.14)

with GARCH volatility σti at time ti.

In this setting with two hedge instruments, we set up the portfolio similar to Equation (5.2) as

Πti = Bti + φtiSti + ψtiVc,ti

with an option which is tradable at price Vc,ti . The self-financing condition leads to

er(ti+1−ti)Bti + φtiSti+1 + ψtiVc,ti+1 = Bti+1 + φti+1Sti+1 + ψti+1Vc,ti+1

⇔ Bti = e−r(ti+1−ti)(Bti+1 + (φti+1 − φti)Sti+1 + (ψti+1 − ψti)Vc,ti+1)

for the bank account value Bti . From the objective to minimize the variance of Πti at each time-

step ti, we obtain the optimal solution by

{φti , ψti} = arg min
φti

,ψti

(
var

[
e−r(ti+1−ti)(Πti+1 − φti(Sti+1 − er(ti+1−ti)Sti)

−ψti(Vc,ti+1 − er(ti+1−ti)Vc,ti)) | Sti , ti

])
,
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Table 5.12 The data for the hedge of an up-and-out barrier option with two hedge instruments in
a market with GARCH volatility.

Up-and-Out Barrier Option

Barrier B 7800
Strike K 6500
Payoff P (S) 1

100 max(StT −K)
Maturity Time T 1.00 years
Kock-out observation 12:00h daily

Hedge Instruments: S and Vc

Underlying S
current asset price St0 6500
current volatility σt0 18%
transaction cost κS 10 basis points (0.001)

Call option
Strike Kc 6500
Payoff Pc(S) max(StT −K)
Maturity Time T 2.00 years
transaction cost κV 200 basis points (0.02)

using a regression set of basis functions {bφ
1 , bψ

1 , bφ
2 , bψ

2 , . . .} and the optimal strategy

φ(xi) ≈
∑

j

ãφ
j bφ

j (xi)

and

ψ(xi) ≈
∑

j

ãψ
j bψ

j (xi)

where the state variable is

xi := (σj
ti

, Sj
ti

)

thus two dimensional. We solve this regression using thin-plate splines as presented in Chapter 1.

The numerical results are presented in Table 5.13. These results are only correct about±0.10 since

the Monte Carlo evaluation of such a barrier option is challenging. The transaction costs (row

t.-cost) is the difference between one evaluation with transaction costs and a second evaluation on

the same set of Monte Carlo paths without transaction costs. One can observe that the transaction

costs rise dramatically the more often the portfolio is rehedged, while the cost of capital CR stays

constant for 1 to 16 time steps and rises for more than 32. Now, different strategies can be pursued

to do something optimal. Looking at the accumulated costs (transaction costs + margin require-

ments), the optimal rehedging frequency seems to be within 0 and 3 times during the one year
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until maturity (1 to 4 time steps). However, one could sell the option for less when one rehedges

8 or 16 times per year.

Table 5.13 Costs and prices computed using Simulation-Based Hedging for the up-and-out barrier
call with data in Table 5.12 in a market with GARCH volatility.

T V t.-cost CR t.-cost + CR ψ φ V ask
t0

256 0.77 9.04 1.71 10.75 1.55 -0.90 11.52
128 0.77 3.19 0.84 4.03 0.92 -0.69 4.80

64 0.83 1.28 0.59 1.87 0.75 -0.43 2.69
32 0.88 0.58 0.47 1.05 0.50 -0.28 1.93
16 1.00 0.18 0.44 0.61 0.13 -0.05 1.61

8 1.04 0.14 0.43 0.57 0.03 0.02 1.61
4 1.18 0.05 0.42 0.47 0.05 0.00 1.65
2 1.21 0.17 0.41 0.58 0.05 -0.01 1.79
1 1.48 -0.06 0.42 0.36 0.03 -0.01 1.84

5.5 Summary

The question, which this chapter tried to answer was: How should a pricing and hedging strategy

look like, especially for the seller of an exotic OTC-contract? We found that the price of the option

should cover all cost components of the bank. These costs consist of the cost of the hedge plus

the cost of the risk involved. While the cost of the hedge is the expected capital required for

the hedge including transaction costs, the cost of the risk is the required margin capital for the

residual risk of the hedge. The costs of the risk are minimized using a dynamic hedging strategy,

which minimizes the variance of the hedged portfolio.

In short, this chapter presented a new an versatile Monte Carlo method called Simulation-

Based Hedging, capable of pricing derivatives based on optimal hedges. The method can be used

in very general market settings including econometric market models such as GARCH. Theoreti-

cal considerations and numerical experiments confirm that the new method is capable of efficient

pricing and hedging in incomplete markets, while being faster than regular Least-Squares Monte

Carlo in complete markets.
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Chapter 6

Conclusions

Summary of Results

This thesis provides three new ideas for the application of Least-Squares regressions to the pricing

of financial derivatives. All of them contribute to low variance Monte Carlo pricing, each in a

separate context.

The first idea is called Feature Extraction and parts of the first idea were previously presented

by Grau [55]. But, the idea was extended and the theoretical correctness has been shown. The

idea is to accelerate the pricing of path dependent options in complete markets by separating the

pricing algorithm into two parts: One which estimates a conditional expected payoff functions,

and another which uses this function in a numerical integration to determine the option value.

As a result, the required computational effort for the pricing of a delayed barrier option could

be reduced dramatically. The method is new and basically combines the ideas of Monte Carlo

pricing as presented by Boyle [21] with quadrature pricing as presented by Andricopoulos et.

al. [9].

The second idea is the utilization of sparse basis functions for the Least-Squares Monte Carlo

method. The Least-Squares Monte Carlo method introduced by Carrière [32] as well as Longstaff

and Schwartz [81] is the state of the art method for pricing exercisable options within a simulation

framework. So far, the complexity of the options’ payoff in Least-Squares Monte Carlo was very

limited since the regression in the algorithm could only handle low dimensionality. The sparse

basis functions which are similar to sparse grids allow regressions on relatively high-dimensional

functions and thus allow the valuation of much more complex derivatives than before. The suc-

cessful application of the Least-Squares Monte Carlo to a Moving Window Asian option demon-

strates the ability of this powerful method. No other practical and convergent approach has been

presented yet. In a second application, the complex rights of holders and issuers of convertible

bonds are implemented for a numerical valuation of a convertible bond. Although a so called

moving window soft call protection is common in convertible bond contracts, this thesis is the

first to evaluate this kind of constraints correctly. This work is the first to present a combination
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of Least-Squares Monte Carlo [32, 81] with the idea of sparse grids [107, 29].

The last application of regression methods leads to the most powerful method of this thesis:

A method is presented, which can evaluate options much quicker than comparable methods as

Least-Squares Monte Carlo [32, 81] or Hedged Monte-Carlo [96, 95] while dropping the complete

market assumptions. For the pricing of American Put options, the new method is an order of

magnitude faster than the state of the art Least-Squares Monte Carlo. This remarkable result is

obtained by the direct computation of optimal hedging portfolios. Therefore, we call this new

method Simulation-Based Hedging. The option price in an incomplete market is then given by

the cost of the hedge plus the cost of the required margin capital for the remaining risk. Since the

provided prices are based on a risk minimizing strategy similar to the variance minimization by

Schweizer [104], which a trader can follow in real world, this approach can be a benchmark for

all issuers in the market.

All together, this thesis has shown that Least-Squares regression is a useful tool in a wide area

of derivatives pricing.

Future Work

There are a few topics open for further research. The main question about the Feature Extraction

presented in Chapter 2 is, how it could be extended to the pricing of American options. Besides,

the careful analysis of the proposed error splitting (Equation (2.5)) would provide more insight to

the efficiency of the Feature Extraction.

Even though the sparse basis functions presented in Chapter 3 and 4 create significant speed-

ups of the evaluation of exercisable path-dependent options, the required computations are still

expensive and further work has to be conducted in order to obtain a fast valuation procedure.

Our findings suggest that further research about approximate exercise and call strategies can lead

to such a fast valuation procedure.

The Simulation-Based Hedging presented in Chapter 5 could be extended a joint minimiza-

tion of transaction costs and costs of risk (costs of the margin account) in an efficient procedure.

Furthermore, different trading strategies under transaction costs than the presented time-based

rehedging should be analyzed. Finally, another open task is the transfer of Simulation-Based

Hedging to other numerical procedures, i.e. lattice or PDE methods in order to obtain even better

convergence.
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Chapter 7

Appendix

7.1 Important Symbols

Symbol Explanation
α the level of confidence
β a regression coefficient
i, j index variables
m number of basis functions
n number of observations
B = (b1 . . .bm) regression basis
bj = (b(x1) . . . b(xn))T single basis function of the observations x1, . . . , xn

x = (x1 . . . xn)T vector of random observations
y = (y1 . . . yn)T vector of random observations
f(xi) some function of the random observation, e.g. a payoff
z state ∈ Rs

s dimension of the state space
S underlying asset price process
t time
T number of time steps
φ number of assets in a portfolio
θ random number, drawn from a standard normal distribution
f some function
P (S, tT ) payoff at maturity time
Prob(X) probability of event X
E[X] expected value of X
var(X) variance of X
cov(X, Y ) covariance of X and Y
std(X) standard deviation of X
‖·‖2 Euclidian vector norm
κ conditioning number (stability of a problem)
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7.2 Notes for the Proof of Theorem 1.4

In this section, we present the proof for Theorem 1.4.

The following lemmas and definitions are restating the properties of usual linear algebra. For

details and proofs we refer the reader to [85], Chapters 6 and 7.

Lemma 7.1 Let B be a possibly infinite dimensional Euclidian vector space and let Bm be a linear subspace

of B with dimension m. Then, for every b ∈ B, there exists a unique decomposition such that

b = b̃ + ε

with b̃ ∈ Bm and ε ⊥ Bm.

Proof See [85], Satz 6.10. 2

Definition 7.2 Let B be a possibly infinite dimensional Euclidian vector space and let Bm be a linear

subspace of B with dimension m. Furthermore, let b ∈ B and b = b̃ + ε be the decomposition from

Lemma 7.1. Then, b̃ is called orthogonal projection from b on Bm. The mapping P : B → Bm, which

assigns to each b ∈ B its orthogonal projection b̃ ∈ Bm ⊂ B is called orthogonal projection from B onto

Bm.

Lemma 7.3 Using any orthonormal basis b1, . . . , bm of Bm, the orthogonal projection of b onto Bm is

given by

P (b) =
m∑

j=1

< b, bj > bj

with a scalar product < ·, · >.

Proof See [85], Bemerkung 6.12. 2

Lemma 7.4 Let b1, . . . , bm be an arbitrary basis of Bm. Then P (b) has a unique representation P (b) =∑m
j=1 ajbj , where a1, . . . , am are determined by the solution to




< b1, b1 > · · · < b1, bm >
...

. . .
...

< bm, b1 > · · · < bm, bm >







a1

...
am


 =




< b, b1 >
...

< b, bm >


 ,

which is unique.

Proof See [85], Bemerkung 6.14 2
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Lemma 7.5 Let B be a possibly infinite dimensional Euclidian vector space and let Bm be a linear subspace

of B with dimension m and P is the orthogonal projection onto Bm. Then, for all b ∈ B

‖b− P (b)‖ < ‖b− b̃‖ ∀b̃ ∈ Bm, b̃ 6= P (b)

holds, i.e. P (b) is the best approximation of b in Bm and the approximation problem has a solution which

is unique for the norm ‖b‖ :=
√

< b, b > induced by the inner product < ·, · >.

Proof See [85], Satz 6.16 2

Finally, after describing the above setting, we can start with the proof to Theorem 1.4.

Proof of Theorem 1.4: If we now look at the local basis approximation of a non-noisy observation

sample (X,y) with yi = f(xi), and f(x) =
∞∑

j=1

ajbj(x) and basis functions b1 . . . , bm. We can use

Theorem 1.1, to get

lim
n→∞

1
n

n∑

i=1

f(xi)bj(xi) =
∫

D

f(x)bj(x)p(x) dx

= < f, b >r

with random vectors xi ∈ Rs, i = 1, . . . , n which are distributed according to the probability

density function p(x). Lemma 7.5 provides that if we chose a basis b1, . . . , bm ∈ Bm, we can

approximate f ∈ B,Bm ⊂ B by

f(x) ≈
m∑

j=1

ãn
j bj(x)

using the projection given by Lemma 7.4. Since the projection is unique, the coefficients ãn
j , j =

1, . . . , m are unique. Since the basis functions b1, . . . , bm form a basis of Bm, the coefficients ãn
j

of the approximation are equal to the coefficients ãn
j = aj of the represented function f(x) =

∞∑
j=1

ajbj(x).

If we now introduce independent noise into the observations such that the sample is given by

(X,y) with yi = f(xi) + εi, εi,xi independent, i = 1, . . . , n and f(x) =
∞∑

j=1

ajbj(x), aj = ãn
j still
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holds for n →∞ since the discrete version of the scalar product of Equation (1.1) is

< b, y > = lim
n→∞

1
n

n∑

i=1

b(xi)yi

= lim
n→∞

(
1
n

n∑

i=1

b(xi)f(xi) +
1
n

n∑

i=1

b(xi)εi

)

Theorem 1.1

=
∫

D

b(x)f(x)p(x) dx + E[b(x)ε]

independence of x, ε
=

∫

D

b(x)f(x)p(x) dx + E[b(x)] · E[εi]

=
∫

D

b(x)f(x)p(x) dx.

If we now, take a closer look at the explicit representation of the determination of the coefficient

vector a:

ãn = (B(X)T B(X))−1B(X)T y

=




n∑
i=1

b1(xi)b1(xi) · · ·
n∑

i=1

b1(xi)bm(xi)

...
. . .

...
n∑

i=1

bm(xi)b1(xi) · · ·
n∑

i=1

bm(xi)bm(xi)




−1 


n∑
i=1

b1(xi)yi

...
n∑

i=1

bm(xi)yi




=




1
n

n∑
i=1

b1(xi)b1(xi) · · · 1
n

n∑
i=1

b1(xi)bm(xi)

...
. . .

...
1
n

n∑
i=1

bm(xi)b1(xi) · · · 1
n

n∑
i=1

bm(xi)bm(xi)




−1 


1
n

n∑
i=1

b1(xi)yi

...
1
n

n∑
i=1

bm(xi)yi




Thus

lim
n→∞

ãn =




< b1, b1 >r · · · < b1, bm >r

...
. . .

...
< bm, b1 >r · · · < bm, bm >r




−1 


< f, b1 >r

...
< f, bm >r




=




a1

...
am




2
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7.3 Proof of Equation (1.8)

Proof Starting with

‖a‖22 =
m∑

i=1

c2
i

σ2
i

≥ 1
σ2

1

m∑

i=1

c2
i

and U = (u1, . . . ,um) we get

m∑

i=1

(ui)T yui =
m∑

i=1

ciui = UT c.

Furthermore,
∥∥∥∥∥

m∑

i=1

(ui)T yui

∥∥∥∥∥

2

2

=
∥∥UT c

∥∥2

2
=

(
UT c

)T (
UT c

)
= cT UUT c = cT Ic = cT c

=
m∑

i=1

c2
i

with identity matrix I holds. That means

‖a‖22 ≥
1
σ2

1

∥∥∥∥∥
m∑

i=1

(ui)T yui

∥∥∥∥∥

2

2

2
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7.4 Proof of Equation Set (4.4)-(4.7)

In this section we are following the arguments of Ayache et al [12] in order to proof Equa-

tions (4.4)-(4.7).

The Equation set (4.4)-(4.7) describes the risk-neutral dynamics of a convertible bond. First,

we want to restate the partial differential inequality for the convertible value V

∂V

∂t
+

σ2

2
S2 ∂2V

∂S2
+ (r + pη)S

∂V

∂S
− (r + p)V + pκS(1− η) ≥ 0 (7.1)

V (S, t) ≥ max(Bp(S, t), κS) (7.2)

∂V

∂t
+

σ2

2
S2 ∂2V

∂S2
+ (r + pη)S

∂V

∂S
− (r + p)V + pκS(1− η) ≤ 0 (7.3)

V (S, t) ≤ max(Bc(S, t), κS), (7.4)

where either one of (4.4)-(4.5) or (4.6)-(4.7) hold, and one of the inequalities holds with equality at

each point in the solution domain.

Note that we leave out the indices for the time t of the stochastic processes S and V in this

section to make the equations more readable.

The main difference to the derivation of the Black-Scholes Equation in Section 1.3 lies in the

possibility of default of the company. In this case, one has to model what happens to the holder

of the convertible.

Consider an instantaneous probability p(S, t) of default in the time interval [t, t + dt] condi-

tional on no default in [t0, t]. In general, we assume that the asset drops to (1− η)S upon default

and the present value of holding the convertible until liquidation of the company is F giving the

convertible a value of

max(κ(1− η)S, F ).

For simplicity, we assume that F is zero. In the following, we are considering a hedged portfolio

Π = V (S, t)− φ1S − φ2L

with defaultable bond L of the same issuer as V and zero recovery rate upon default. Further-

more, let dL = rL dt, F = 0 = R and p := p(S, t) hold.
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Then, we need to determine the dynamics of portfolio Π due to changes of the underlyings.

Consequently, there are two main cases:

No default with probability 1− p(S, t) dt. The arguments from Section 1.3 apply since the port-

folio is hedged against small changes in the underlying asset S. That means

δΠ = dV − φ1 dS − φ2 dL,

which is consistent with Equation (1.16).

Default with probability p(S, t) dt. The change dΠ in the portfolio is given by the assets held in

the portfolio and the value of the bond as well as the underlying after default:

δΠ = κS(1− η)− V − φ1(−ηS)− φ2 · 0.

Unifying both cases and computing the dynamics of Π from Itô’s Lemma [67] we obtain

dΠ = (1− p dt) · ( dV − φ1 dS − φ2 dL) + p dt · (κS(1− η)− V − φ1(−ηS)− φ2 · 0)

= (1− p dt) ·
([

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2

]
dt +

∂V

∂S
dS − φ1 dS − φ2 dL

)

+p dt · (κS(1− η)− V + φ1(ηS)). (7.5)

When choosing φ1 = ∂V
∂S , Equation (7.5) becomes

dΠ =
(

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2

)
dt− (1− p dt) · φ2 dL

+p dt ·
(

κS(1− η)− V +
∂V

∂S
(ηS)−

[
∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2

]
dt

)
,

which should be risk-free assuming that the probability of default p is given in the risk-neutral

world. Consequently, using dL = rL dt, we obtain

dΠ = rΠ dt = r(V − ∂V

∂S
S − φ2L) dt

⇔ 0 =
∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ (r + p)ηS

∂V

∂S
− (r + p)V

+pκS(1− η)− p ·
(

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
− rLφ2

)
.

If we now choose φ2 = 1
rL

(
∂V
∂t + 1

2σ2S2 ∂2V
∂S2

)
we finally obtain the governing PDE of the convert-

ible, which is

∂V

∂t
+

σ2

2
S2 ∂2V

∂S2
+ (r + pη)S

∂V

∂S
− (r + p)V + pκS(1− η) = 0. (7.6)

Since the holder can convert into shares worth κS or return the convertible to the issuer for the

put price Bp and the issuer can call the convertible for Bc, the following boundary constraints
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have to hold during the lifetime of the security:

V (S, t) ≥ κS

V (S, t) ≥ Bp

V (S, t) ≤ Bc.

Imposing these constraint on the value of the convertible, described by Equation (7.6), leads to

the Equation set (4.4)-(4.7).
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7.5 Feature Extraction in Octave/MATLAB

function s t a r t ( n )
% s t a r t ( n ) i s a t e s t f u n c t i o n f o r t h e Asian o p t i o n p r i c e r wi th
% F e a t u r e E x t r a c t i o n v a l u e ( t T , T , S0 , K , r , s igma ) . n i s t h e
% number o f v a l u a t i o n s p e r f o r m e d .
for i = 1 : n

[ V1 ( i ) V2 ( i ) V3( i ) V4( i ) V5( i ) ] = value ( 0 . 5 , 125 , 100 , 100 , 0 . 0 5 , 0 . 2 5 ) ;
end

disp ( s p r i n t f ( ’V1 : mean=%g std=%g ’ , mean ( V1 ) , std ( V1)/ sqr t ( n ) ) ) ;
disp ( s p r i n t f ( ’V2 : mean=%g std=%g ’ , mean ( V2 ) , std ( V2)/ sqr t ( n ) ) ) ;
disp ( s p r i n t f ( ’V3 : mean=%g std=%g ’ , mean ( V3 ) , std ( V3)/ sqr t ( n ) ) ) ;
disp ( s p r i n t f ( ’V4 : mean=%g std=%g ’ , mean ( V4 ) , std ( V4)/ sqr t ( n ) ) ) ;
disp ( s p r i n t f ( ’V5 : mean=%g std=%g ’ , mean ( V5 ) , std ( V5)/ sqr t ( n ) ) ) ;
disp ( ’ The c o r r e l a t i o n i s : ’ )
co r r c o e f ( [ V1 V2 V3 V4 V5 ] )
disp ( ’ The covar iance i s : ’ )
cov ( [ V1 V2 V3 V4 V5 ] )

end

function B = B s p l i n e ( S , S min , S max )
% r e t u r n b a s i s B o f c u b i c s p l i n e a c c o r d i n g t o S e c t i o n 1.2.2

m = 4 ;
x = l inspace ( S min , S max ,m+ 2 ) ;
x = x ( 2 : end−1) ;
B = [ ones ( s i ze ( S ) ) S S . ˆ 2 S . ˆ 3 max ( repmat ( S , 1 ,m)−repmat ( x , s iz e ( S , 1 ) , 1 ) , 0 ) . ˆ 3 ] ;

end

function f = B approx ( x , a , S min , S max )
% r e t u r n v a l u e o f s p l i n e a t x
% ’ a ’ a r e t h e b a s i s f u n c t i o n c o e f f i c i e n t s
% ’ S min ’ and ’ S max ’ a r e t h e boundary v a l u e s o f t h e s p l i n e

f = B s p l i n e ( x ’ , S min , S max )∗ a ;
end

% p l e a s e turn page
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function [ V0 nn V0 fn V0 np V0 fp V0 sim ]= value ( t T , T , S0 , K, r , sigma )
% [ V0 nn V0 fn V0 np V0 fp V0 sim ] = v a l u e ( t T , T , S0 , K , r , s igma )
% Computes t h e v a l u e o f an Asian o p t i o n with m a t u r i t y t ime t T , T o b s e r v a t i o n s ,
% i n i t i a l s t o c k p r i c e S0 , s t r i k e K r i s k− f r e e r a t e r and v o l a t i l i t y s igma .

% s i m u l a t e s t o c k S and p a y o f f P
S = S0 ∗ ones ( 1 0 0 0 , 1 ) ;
dt = t T/T ;
I = 0 ;
for i =1 :T

S = S .∗ exp ( ( r−0.5∗ sigma ˆ 2 )∗ dt + s qr t ( dt )∗ sigma∗randn ( s i ze ( S ) ) ) ;
i f ( i<T )

I = I + S/(T−1) ;
end

end
P = max ( I−K , 0 ) ;

% d e f i n e p r o b a b i l i t y d e n s i t y f u n c t i o n p ( x ) , e s t s t a n d s f o r e s t i m a t e d ;
% n e s t f o r not e s t i m a t e d
p nest = @( x ) 1 . / ( x∗sigma∗ sqr t (2∗ pi∗ t T ) ) . ∗ . . .

exp (−( log ( S0 ./ x ) + ( r−0.5∗ sigma ˆ 2 )∗ t T ) . ˆ 2 / ( 2 ∗ sigma ˆ2∗ t T ) ) ;
p e s t = @( x ) ( ksdensi ty ( ( S ) , ( x ) ) ) ;

% p e r f o r m r e g r e s s i o n t o compute f t i l d e := E ( P | S )
a e s t = B s p l i n e ( S , min ( S ) , max ( S ) ) \ ( P ) ;

% f o r t h e c a s e wi th no e s t i m a t i o n use p r e c a l c u l a t e d h i g h l y−a c c u r a t e v a l u e s
S n e s t = 1 . 0 e+002 ∗ [ 0 .35049011165481375 2 . 4 7 6 9 5 9 6 0 9 7 1 0 1 4 3 ] ;
a n e s t = 1 . 0 e+002 ∗ [ −2.271270933408031; 0 .095967077029140 ; −0.001335089683737

0 .000006124458780 ; −0.000006609485300; −0.000000109620663
0 .000002091568479 ; −0.000007210515689] ;

f e s t = @( x ) B approx ( x , a e s t , min ( S ) , max ( S ) ) ;
f n e s t = @( x ) B approx ( x , a nest , min ( S n e s t ) , max ( S n e s t ) ) ;

% V t0 computed as i n t e g r a l
V0 nn = exp(− r∗ t T ) ∗ quad (@( x ) f n e s t ( x ) . ∗ p nest ( x ) ’ , 0 , 1 0∗ S0 , 1 E−5) ;
V0 fn = exp(− r∗ t T ) ∗ quad (@( x ) f e s t ( x ) . ∗ p nest ( x ) ’ , 0 , 1 0∗ S0 , 1 E−5) ;
V0 np = exp(− r∗ t T ) ∗ quad (@( x ) f n e s t ( x ) . ∗ p e s t ( x ) ’ , 0 , 1 0∗ S0 , 1 E−5) ;
V0 fp = exp(− r∗ t T ) ∗ quad (@( x ) f e s t ( x ) . ∗ p e s t ( x ) ’ , 0 , 1 0∗ S0 , 1 E−5) ;

% V t0 computed us ing t h e s i m u l a t i o n s
V0 sim = exp(− r∗ t T ) ∗ mean ( P ) ;

end
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7.6 Simulation-Based Hedging in Octave/MATLAB

function [ V, d e l t a ] = value ( S0 , K, r , mu, sigma , T , t imesteps , number paths )
% Computes t h e v a l u e V and t h e o p t i m a l hedge d e l t a
% o f an American put o p t i o n .
%
% [ V d e l t a ] = v a l u e ( S0 , K , r , mu, sigma , T , t i m e s t e p s , number pa ths )
% Example : [ V d e l t a ] = v a l u e ( 100 , 100 , 0 . 0 5 , 0 . 0 5 , 0 . 4 , 1 , 10 , 10000)

% S i m u l a t e t h e a s s e t v a l u e s 1 : number pa ths / 2 s t a r t i n g in [ 0 . 5 ∗ S0 , 1 . 5 ∗ S0 ]
% t h e o t h e r h a l f ( number pa ths / 2 + 1 : number paths ) o f t h e a s s e t s s t a r t a t S0

dt = T/t imesteps ;
S = zeros ( number paths , t imesteps + 1 ) ;
S ( : , 1 ) = [ l inspace ( 0 . 5∗ S0 , 1 . 5 ∗ S0 , number paths /2) S0∗ones ( 1 , number paths / 2 ) ] ’ ;
for i = 2 : t imesteps +1

S ( : , i ) = S ( : , i −1) .∗exp ( (mu−0.5∗ sigma∗sigma )∗ dt + sigma∗ sqr t ( dt ) . ∗ . . .
randn ( number paths , 1 ) ) ;

end

% Determine v a l u e s a t m a t u r i t y t ime T
V = max (K−S ( : , end ) , 0 ) ;
B = zeros ( number paths , t imesteps + 1 ) ;
d e l t a = zeros ( number paths , t imesteps + 1 ) ;
B ( : , end ) = −V;
delta tmp = zeros ( number paths , 1 ) ;

% Determine t h e o t h e r v a l u e s us ing a dynamic program
for i = t imesteps :−1:1

% Determine t h e e x p e c t e d p o r t f o l i o v a l u e Pi
P i j = −B ( : , i +1)−d e l t a ( : , i + 1 ) .∗ S ( : , i + 1 ) ;
E Pi = r e g r e s s ( S ( : , i +1) , P i j ) ; % E [ Pi ( t { i +1}) | S ( t { i +1} ) ]

% Compare wi th E x e r c i s e Value
Payoff = K − S ( : , i + 1 ) ;
ex index = ( E Pi < Payoff ) & ( Payoff > 0 ) ;

% Adjust bank a c c o u n t s o f e x e r c i s e d p a t h s
i f sum( ex index )>0

B ( ex index , i +1) = −(Payoff ( ex index ))− d e l t a ( ex index , i + 1 ) .∗ S ( ex index , i + 1 ) ;
end

% Compute c o r / var , t h en u pd a t e d e l t a and bank a c c o u n t B
E S = exp (mu∗dt )∗S ( : , i ) ; % E [ S ( t { i +1}) | S ( t i ) ]
E Pi = r e g r e s s ( S ( : , i ) , P i j ) ; % E [ Pi ( t { i +1}) | S ( t i ) ]
d e l t a ( : , i ) = −r e g r e s s c o v ( S ( : , i ) , S ( : , i +1)−E S , P i j−E Pi ) ;
B ( : , i ) = exp(− r∗dt ) ∗ ( B ( : , i +1) + ( d e l t a ( : , i +1)−d e l t a ( : , i ) ) . ∗ S ( : , i + 1 ) ) ;

end
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% a d j u s t bank a c c o u n t f o r i n i t i a l d e l t a p o s i t i o n
B ( : , 1 ) = B ( : , 1 ) + d e l t a ( : , 1 ) . ∗ S ( : , 1 ) ;

% r e t u r n t h e o p t i o n p a r a m e t e r s f o r t h e p a t h s s t a r t i n g a t S0
V=−mean ( B ( number paths /2: end , 1 ) ) ;
d e l t a = −mean ( d e l t a ( number paths /2: end , 1 ) ) ;

% END o f v a l u e f u n c t i o n

function [ E y ] = r e g r e s s ( x hat , y ) ;
% Per form a r e g r e s s i o n on a p o l y n o m i a l b a s i s
% t o compute c o n d i t i o n a l e x p e c t a t i o n E [ y | x ]

% s c a l e x domain onto [ 0 , 1 ]
x = ( x hat−min ( x hat ) ) / ( max ( x hat )−min ( x hat ) ) ;

% compute p o l y n o m i a l b a s i s up t o d e g r e e n
n=6;
B = [ ] ;
for i =0 :n

B = [ B x . ˆ i ] ;
end
n = round ( length ( x ) / 2 ) ;

% p e r f o r m t h e r e g r e s s i o n
E y = B ∗ ( B ( 1 : n , : ) \ y ( 1 : n ) ) ;
% END o f r e g r e s s

function [ Cov ] = r e g r e s s c o v ( x hat , co , y ) ;
% Per form a r e g r e s s i o n on a p o l y n o m i a l b a s i s f o r cov / var paramet e r ,
% which i s t h e c o n d i t i o n a l r e g r e s s i o n c o e f f i c i e n t cov ( co , y | x h a t ) / var ( y | x h a t )

% s c a l e x domain ont o [ 0 , 1 ]
x = ( x hat−min ( x hat ) ) / ( max ( x hat )−min ( x hat ) ) ;

% compute p o l y n o m i a l b a s i s up t o d e g r e e n
n=6;
B = [ ] ;
B pla in = [ ] ;
for i = 0 : n

B = [ B co .∗ x . ˆ i ] ;
B pla in = [ B pla in x . ˆ i ] ;

end
n = round ( length ( x ) / 2 ) ;
Cov =B pla in ∗ (B\ y ) ;
% END o f r e g r e s s c o v



Bibliography

[1] F. S. Acton. Numerical Methods that Work, page 106. The Mathematical Association of Amer-
ica, August 1997.

[2] H. Ahn and P. Wilmott. On trading American options. Technical report, Mathematical
Finance Group at the University of Oxford (OCIAM), 1997.

[3] D. E. Allen, G. MacDonald, K. D. Walsh, and D. M. Walsh. Using regression techniques
to estimate futures hedge ratios, some results from alternative approaches applied to Aus-
tralian 10 year treasury bond futures. Edith Cowan Finance & Business Economics Working
Paper, September 2001.

[4] Z. A. Altintig and A. Butler. Are they still late? The effect of notice period on calls of
convertible bonds. Journal of Corporate Finance, 11:337–350, 2002.

[5] M. Ammann, A. Kind, and C. Wilde. Are convertible bonds underpriced? An analysis of
the French market. Journal of Banking and Finance, 27:635–653, 2003.

[6] M. Ammann, A. Kind, and C. Wilde. Simulation-based pricing of convertible bonds. Work-
ing paper, University of St. Gallen, Switzerland, 2005.

[7] L. Andersen and D. Buffum. Calibration and implementation of convertible bond models.
Journal of Computational Finance, 7(2):1–34, 2003/04.

[8] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK User’s Guide, chapter Lin-
ear Least Squares (LLS) Problems. SIAM, Philadelphia, 3rd edition, 1999.

[9] A. D. Andricopoulos, M. Widdicks, P. W. Duck, and D. P. Newton. Universal option valu-
tion using quadrature methods. Journal of Financial Economics, 67:447–471, 2003.

[10] P. Asquith. Convertible bonds are not called late. The Journal of Finance, 50(4):1275–1289,
September 1995.

[11] E. Ayache, P. A. Forsyth, and K. R. Vetzal. Next generation models for convertible bonds
with credit risk. Wilmott Magazine, pages 68–77, December 2002.

[12] E. Ayache, P. A. Forsyth, and K. R. Vetzal. The valuation of convertible bonds with credit
risk. Journal of Derivatives, 11:9–29, Fall 2003.

[13] V. Bathelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation on
sparse grids. Advances in Compuational Mathematics, 12:273–288, 2000.

[14] C. Bender, A. Kolodko, and J. Schoenmakers. Iterating snowballs and related path depen-
dent callables in a multi-factor libor model. WIAS Preprint, ISSN 0946-8633, 2005.



158 BIBLIOGRAPHY

[15] S. J. Berridge and J. H. Schumacher. Pricing high-dimensional American options using local
consistency conditions. Technical Report 2004-19, CentER Discussion Paper, 2004.

[16] R. Bilger. Valuing American-Asian options using the Longstaff-Schwartz algorithm. Msc
thesis in computational finance, Oxford University, 2003.

[17] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of Political
Economy, 81:637–659, 1973.

[18] T. Bollerslev. Generalized autoregressive condtional heteroscedasticity. Journal of Economet-
rics, 31:307–327, 1986.

[19] T. Bonk. A new algorithm for multi-dimensional adaptic numerical quadrature. In W. Hack-
bush, editor, Proceedings of the 9th GAMM-Seminar, Kiel 1993, Braunschweig, January 1994.
Vieweg.

[20] A. W. Bowman and A. Azzalini. Applied Smoothing Techniques for Data Analysis: The Kernel
Approach with S-Plus Illustrations. Oxford Statistical Science Series, 1997.

[21] P. Boyle. Options: A Monte Carlo approach. Journal of Financial Economics, 4(3):323–338,
1977.

[22] P. Boyle. A lattice framework for option pricing with two state variables. Journal of Financial
and Quantitative Analysis, 23(1):1–12, March 1988.

[23] P. Boyle, M. Broadie, and P. Glasserman. Monte carlo methods for security pricing. Journal
of Economic Dynamics and Control, 21(8/9):1276–1321, 1997.

[24] M. J. Brennan and E. S. Schwartz. Convertible bonds: Valuation and optimal strategies for
call and conversion. Journal of Finance, 32:1699–1715, 1977.

[25] M. J. Brennan and E. S. Schwartz. Analysing convertible bonds. Journal of Financial and
Quantitative Analysis, 15:907–929, 1980.

[26] M. J. Brennan and E. S. Schwartz. The case for convertibles. Chase Financial Quarterly,
1(3):27–46, 1982.

[27] M. J. Buchan. Convertible bond pricing: Theory and evidence. PhD thesis, Harvard University,
1997.

[28] H. J. Bungartz. Higher order finite elements on sparse grids. Electronic Transactions on
Numerical Analysis, 6:63–77, December 1997.

[29] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, pages 147–269, 2004.

[30] A. W. Butler. Revisiting optimal call policy for convertible bonds. Financial Analyst Journal,
58(1):50–55, 2002.

[31] H. Cardot. Conditional functional principal components analysis. Scandinavian Journal of
Statistics, (OnlineEarly Articles):–, 2006.

[32] J. F. Carrière. Valuation of the early-exercise price for options using simulations and non-
parametric regression. Insurance: Mathematics and Economics, 19:19–30, 1996.

[33] A. Cerny. Dynamic programming and mean-variance hedging in discrete time. Technical
report, Cass Business School Research Paper, October 2003.



BIBLIOGRAPHY 159

[34] A. Cerny. Mathematical Techniques in Finance: Tools for Incomplete Markets. Princeton Univer-
sity Press, January 2004.

[35] A. Cerny and J. Kallsen. Hedging by sequential regression revisited. Working paper, City
University London and TU München, 2007.

[36] J. Cox, S. Ross, and M. Rubenstein. Option pricing: A simplifyed approach. Journal of
Financial Economics, 7:229–263, 1979.

[37] M. G. Cox. The numerical evaluation of b-splines. IMA Journal of Applied Mathematics,
10(2):134–149, 1972.

[38] C. de Boor. A practical guide to splines. Springer, 1985.

[39] E. Derman and I. Kani. The volatility smile and its implied tree. Quantitative strategies
research notes, Goldman Sachs, January 1994.

[40] S. Dirnstorfer, A. J. Grau, and R. Zagst. Moving window Asian options: Sparse grids and
Least-Squares Monte Carlo. submitted, December 2005.

[41] B. Dupire. Pricing with a smile. Risk magazine, 7(1):18–20, 1994.

[42] L. Ederington. The hedging performance of the new futures markets. Journal of Finance,
34(1):157ff, Mar 1979.

[43] L. Fahrmeir, R. Knstler, and I. Pigeot. Statistik. Springer, 2004.

[44] J. Fan and Q. Yao. Efficient estimation of conditional variance functions in stochastic regres-
sion. Technical report, Department of Statistics, UCLA, 1998.

[45] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 2, 3rd ed., chapter The
Berry-Essen Theorem., pages 542–546. Wiley, 1971.
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