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Chapter 1

Introduction

Integrated circuits (ICs) are part of our daily live as theg the hearts of MP3 players, cell
phones, personal digital assistants (PDASs), laptops, aBad ears have a high number of
integrated circuits. Also the industry mainly depends degnated circuits in different appli-
cations, ranging from simulations of complex processes amfframe computers to efficient
control of production lines.

The history of integrated circuits started around 1960, nvaealog components were
integrated on a piece of silicon for the first time. In 197Xelrpresented the 4004, the first
microprocessor of the world with about 2300 transistorsth&t time this thesis was written,
integrated circuits can have billions of transistors. Heniategrated circuits are today mostly
called VLSI circuits, with VLSI standing for very large seaintegration. This enormous
complexity of integrated circuits can only be handled if tireuits are designed not by hand,
but by algorithms, executed on computers. The usage of sumipater algorithms in order
to design integrated circuits is called electronic desigtomation (EDA).

In the year 1965, Gordon Moore [M0065] detected that the remnlof transistors in
an integrated circuit is doubling every 18 months (appratity). Still today, Moore’s law
is valid [SEM], which means that the complexity of integdat@rcuit is steadily growing.
Therefore, fast and efficient algorithms are necessanh®EDA of future circuits.

1.1 Electronic Design Automation

Starting from the idea of a circuit, electronic design audtion is done in several steps [SY95,
Lie06], as shown in Figure 1.1. In each step, the descrigifdhe circuit is refined. After all
steps, the circuit can be fabricated.

The first step of EDA is to specify the circuit. Here, the maatires like performance,
functionality, and physical dimensions are defined. Amomglsers, also decisions on the
architecture have be done, e.g., which type of processarhah kind of memory the circuit
should use. After this, the circuit is described as a belaviodeled at system level using a
hardware description language like VHDL or Verilog. The ngtep is logic synthesis, which
first transforms the behavior description of the circuibimat register transfer description. At
register transfer level, the circuit mainly consists of attol unit and a data path. The data
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Figure 1.1: Design Flow of Integrated Circuits
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path includes registers and functional blocks like arittiolegic units. Moreover, the data are
described as bit vectors. Based on the register transfeehodthe circuit, the logic synthesis
constructs the gate level description then. At gate leved, dircuit consists of gates like
inverters, and-gates, or-gates, flip-flops, etc. The gamsaselves consists of transistors. The
data are described as single bits. After logic synthesesg#te level description of the circuit
is simulated, and different specifications are verified,, ¢hg maximal clock frequency. If the
specifications are not met, the logic synthesis is done atfdime circuit is working correctly
at gate-level, layout synthesis is done next. The main stBlpgout synthesis is placement of
the gates, and routing of the nets, which interconnect thesg&lowever, prior to placement,
floorplanning is invoked to determine the positions of tH@ pins, the dimensions of big
gates, and the dimensions of the chip. Due to the high nundiegates, placement itself
is done in two steps: global placement and final placementinBlobal placement, the
gates are roughly spread on the chip. Final placement thaowes the remaining overlap,
aligns the gates to a given row/grid structure. There, difié design rules are considered,
like minimal distances between the gates. This thesis ptes®vel approaches for global
and final placement. After the gates are placed, the netghwhterconnect the gates, are
routed. After routing, the polygon level of the circuit isaehed, i.e., the circuit is described
only by polygons now. At polygon level, the circuit is simtdd again, and it is checked if all
given specifications are met. If not, the EDA is started fraevjpus steps, and if necessary,
it is even started again with logic synthesis. At the end oAEe lithography masks are
created, and the circuit is fabricated using these masks.

1.2 Types of Integrated Circuits

Figure 1.2 displays different types of integrated circuised today. Each circuit type reflect
one design style. The differences between them is mainlyyghe of gates, and how they
are implemented on the “die”. “Die” here means the piece lad@® which implements the
circuit.

1. Mask-Programmable Gate-Arrays/Sea-of-Gates
The dies of mask-programmable gate-arrays and the diesaedfsgates have prefab-
ricated transistors, aligned in a regular pattern. To imy@at circuits with such dies,
the gates of the circuit are broken down to transistors firken, the gates as groups of
transistors are assigned (placed) to the prefabricatedistrs of the die. The routing
is done in metal layers, either in channels between theigtams (mask-programmable
gate-arrays), or above the transistors (sea-of-gates).

2. Field-Programmable Gate-Arrays (FPGA)
The die of a FPGA is completely prefabricated, and consisésregular matrix of pro-
grammable logic blocks and interconnect blocks. PlacemiefRPGAs means to assign
gates of the circuit to the logic blocks of the FPGA. Routisglone by configuring the
interconnect blocks.

3. Standard Cell Circuits
The die of a standard cell circuit is not prefabricated. Tineuit is implemented with
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Figure 1.2: Different circuit types

gates all having the same height but different widths. Suatesyare called standard
cells. Placement of standard cell circuits means to alignctls to a row structure.
Today, routing of standard cell circuits is done mostly abtive standard cells using
various routing layers.

4. Macro Cell Circuits

Similar to standard cell circuits, the dies of macro celtuits are not prefabricated.
Macro cell circuits consists of a few, but complex macro kke.g., memory blocks,

arithmetic units, or even processor cores. Today, theseanare often so called intel-
lectual property (IP) cores. IP cores are purchased andraikable at different descrip-

tion levels: system level (in VHDL or Verilog), at gate-léyver even at polygon level.

Considering placement, there are two types of macros. Safros have a fixed area
but are free in the aspect ratio (relation between width aeidht). Hard macros have
fixed widths and heights. Therefore, placement of circuith woft macros means not
only determining the position of the macros, but also theeesgatio.

5. Mixed-Size Circuits
Mixed-size circuits consist of a few macros and a high nunabetandard cells. This
circuit type is mostly used today.

Figure 1.3 shows two modern design styles based on stateeedrt circuits: (a) mixed-
size, and (b) macro cells. Due to the high number of standaltsl these cells are represented
as “black clouds” around the gray macros in Figure 1.3 (a)e fitacro cell circuit depicted
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in Figure 1.3 (b) represents the widely used System-on-(3m&) design style. There, each
macro can represent one system, e.g., processor core, ldackeor network stack.

(a) Mixed-Size (b) Macros (SoC)

Figure 1.3: Two modern design styles.

1.3 Placement

Placement is one important step of the EDA flow (see Figurg Which highly affects the
quality of a circuit. The input of placement is the circuitsdebed at gate-level. This means
that the circuit consists of gates, and the gates are imagsmed by nets. In the rest of the
paper, the gates are called modules. Placement is to detethre positions of the modules,
while considering different objectives and constraintéie Tundamental constraints are that
the modules do not overlap, and that all modules are locatédrvthe chip area. Here, it
should be noted that today, the chip area is mostly given lyrglanning. An additional
constraint of placement is for example to align the modwesivs or to a grid structure. The
main objective of placement is to minimize the total wirgjén i.e., to minimize the sum of
the lengths of all nets. This objective is used because witlindmal wirelength, the circuit
Is easy to route, the maximal clock frequency is high, andotheer consumption is low. In
summary, placement can be formulated as to solve the fallpwroblem.

Placement Problem:

Place all modules such that
all relevant objectives (e.g., total wirelength) are ogimnd
all constraints (e.g., no overlap) are met.
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Chapter 2

State of the Art

Although the placement problem proposed in the previous@esounds easy, it is a combi-
natorial problem, which is known to be a NP-complete probJ&di79, Don80, SB80, Len88,

Len90]. This means, there exists no algorithm up to datechvholves the problem optimal
with polynomial runtime complexity. In the extreme casd,falsible placements have to
be inspected, in order to find the optimal placement. WitHioms of modules (which is the

number of modules in modern VLSI circuits), the number ofbke placements is quite high,
i.e., the runtime is not practicable.

Hence, to get good solutions in polynomial runtime, the @haent problem is solved by
heuristics. One traditional method is to use two steps facgient: global and final place-
ment. In global placement, the modules are spread roughtherchip, with few overlap
remaining. In final placement, the overlap is removed, ardtfodules are aligned to the
grid/row structure. This thesis covers novel solutionskoth placement steps. In the fol-
lowing, the state-of-the-art in global placement is desamlifirst, including different aspects
as net models and routability optimization. Second, thiest&the-art in final placement is
presented.

2.1 Global Placement

Global placement means to spread the modules roughly orhtperesulting in a placement
with few overlaps. In the previous decades, different athors for global placement were
developed. They differ mainly in the way how the wirelengshminimized, and how the
modules are spread on the chip. Figure 2.1 categorizegeafffeechniques, and lists the
names of different state-of-the-art placers. Some of theseniques are able to spread the
modules without any overlap on the chip. However, they arstmstopped if there is only
little overlap remaining. This overlap is removed in fingh@ément then.

2.1.1 Greedy Placement

Placers based on greedy methods have in common to modifyea gtart placement over a
sequence of iterations, and accept only better placementsding to their cost. Here, the



8 CHAPTER 2. STATE OF THE ART
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Figure 2.1: Different placement techniques and names dadwsuplacers.

start placement can be random, and the cost is mainly a cantoinof wirelength and over-
lap. Due to the fact that only better placements are accepregdy placers are likely to
get stuck in a local minimum, i.e., they will probably not fittte optimal solution. In prin-
ciple, greedy placers modify the placement by permuting uex] either just two modules
[HK72, Shu75, Sch76, Bla85a, Bla85b, CP80, IKB83, KP77, H@JAor three and more
modules [HWA76, Got79, Got81]. However, only for circuitsthvjust a few modules, all
possible modifications can be tested. For bigger circuityy neighboring modules can be
permuted in practicable runtime. Therefore, heuristicsenkeveloped to decide which mod-
ules are best to permute [Qui75, HWA76, Got79, Got81]. Thénmdaawback of greedy
placers is that they only do a local optimization of the ptaeat. Thus, they highly depend
on the start placement.

2.1.2 Cluster-Growth

Placers based on cluster-growth iteratively cluster newdues around already placed mod-
ules. Here, the first placed modules can be random. The gyrafecluster-growth placers
can be viewed as bottom-up: starting from some placed meduoiere and more modules
are placed, until all modules are placed. The decision, lvmodules are clustered, is done
based on a cost function representing the wirelength andhttdule overlap. Placers using
this method are for example [SU72, HK72, Shu75, Sch76, HWA®77, Got79, Got81,
DK87, LM90, Mul90, YK92, KK92, Lee93, SSL93]. These appes have good results for
small circuits, but degrade with increasing numbers of nkeglper circuit. This problem is
due to the local view of the method, and due to the high deper&len the start placement.

2.1.3 Min-Cut Placement

In contrast to the bottom-up strategy of cluster-growthcpta, placers based on min-cut
are following a top-down technique. Here, the placemena amed the circuit are recur-
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sively partitioned. In doing so, parts of the circuit areigsed to parts of the placement
area. The recursive process is done until each module igreeskito a unique part of the
placement area, which results in a placement with no or jtitkt bverlap. The partition-
ing of the circuit is driven by minimizing the wirelength. lorinciple, this is achieved
by minimizing the number of nets cut{ min-cut) by a partition. However, partitioning
a circuit is a NP-hard problem [SH86]. Therefore, differdeiuristics were developed for
this task [KL70, SK72, FM82, GB83, Kri84, Saa93, LLLC96, D&Y DD96a, KAKS97,
AHK97, CLL*97, ACH"97]. Beside the improvement in partitioning the circuite thar-
titioning of the placement area was also improved. The first-ont placers divided the
placement area in two parts (bi-partitioning) in each stiejhe recursive placement process.
[Bre77a, Bre77b, Cor79, Lau79, SH80, BH83, DK83, DK85, LDA#n88, SC88]. Later
on, four parts [SK87, SK88, Apt90, HK97], and even eight pgsan89, Vij89, ML90] were
used. Modern min-cut placers are for example Capo [RI%, Dragon [TYCO05], and Feng-
Shui [AOL"05].

2.1.4 Stochastic Placement

Stochastic placers combine the wirelength and the modwedayvin one cost function, and
minimize this cost function with stochastic methods. S#stit methods means to create
randomly sets of placements in a sequence of iterationshdrend, the placement with the
lowest cost function is chosen as the result. Stochastimeptacan easily extend the cost
function in order to consider different objectives or vaiscconstraints. Moreover, stochastic
placers are able to escape from local minima, and are everi@bhd the optimal solution for
the placement problem. However, stochastic optimizatioganeral needs a lot of samples
(placements), and thus, stochastic placers are only pedodé for circuits with a low number
of modules. In principle, there are two main methods of shstic optimization: simulated
annealing and evolutionary algorithms.

Simulated Annealing

Simulated Annealing [KGV83] follows the annealing processnetallurgy: a hot metal is
cooled (over time) such that in the end, it is most perfece(orystal, no defects). As an
optimization method, Simulated Annealing starts with driteatry start configuration (place-
ment). Over the iterations, new configurations are creaadamly by so called “moves”. A
move for a placement can be to choose randomly a module, astthtage randomly its loca-
tion. Each new configuration is given a cost, and a decisiomade if the new configuration
is accepted, and thus replaces the best-so-far configardtios decision is done based on the
cost of both configurations, and based on the current teriyeral he temperature is high at
the start, and is decreasing over the iterations. As a resatse configurations are accepted
at the start of the optimization process, in order to escapa focal minima. At the end, only
better configurations are accepted. The method of decgésentemperature affects highly
the quality of the solution [Whi84, HRSV86, LD88, BKT93].

The authors of [RSV85, VLA87, Sec88, OvG89, AK89] showed gimulated anneal-
ing is able to find the global optimum. Moreover, the basicrapens of the optimization
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techniques are easy to implement. Hence, this techniquevergigopular for placement in
the past [SSV85, NSS85, SSV86, WL86, Sec88, WLL88, MFNK9Y%BMK96]. However,
the number of configurations necessary to find the optimumeases dramatically with the
complexity, i.e., the number of modules per circuit. Theref different heuristics were used
along with simulated annealing to cope with the increasiagiper of modules per circuit
[MG88, HCC92, SKK93, SS95, SW97]. A typical representative of a stochastcenl is
Timberwolf [SS93]. Today, simulated annealing is rarelgdiso place circuits with millions
of modules.

Evolutionary Algorithms

Evolutionary algorithms use mechanisms inspired by biiglaigevolution: heredity, mutation,
selection, and survival of the fittest. In placement, evohary algorithms start by creating a
set of random placements. In an iterative process, newiplects are created based on current
placements (heredity), and based on random changes (onjtafihen, the new placement
are selected according to their cost. Over the iteratidms better placements survive, and
at the end, a good placement is found. In principle, the bagerations of evolutionary
algorithms are simple, and the optimization can be run ialpgusing numbers of computers.
However, the runtime is still high for modern circuits. Ewtbnary algorithms for placement
are presented in [CP86, CP87, KB89, SM90, KB91, RR96, EK97].

2.1.5 Analytical Placement

Analytical placers are based on an analytical cost functidrich is continuous and in most
cases differentiable. The minimum of the analytical costfion is determined by numerical
optimization. Mostly, the cost function represents theal@ngth, and sometimes it is a com-
bination of wirelength and overlap. Depending on the costfion, analytical placers can be
subdivided in linear, quadratic and non-linear placers.

Linear Placement

Linear placers are using a linear cost function, and rembeentodule overlap by linear
constraints between the modules. This gives a linear pnogktowever, such programs have
a high computational complexity. Hence, linear placers [WM87, HWM86, WM88, JK89,
RCO06] can only be used for circuits with a low number of modul&he analytical cost
function in linear placement can be non differential (euging the absolute value function).
In all other analytical placement approaches, the costtimmes differentiable.

Quadratic Placement

All quadratic placers represent the wirelength in a quacicst functionl":

1
=3 D wa (s = 15)* + wy (v — ;) (2.1)
i,J
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pi = (74, y;) is the position of modulé. T" is the sum of the weighted quadratic Euclidean
distances between pairs of modulésdj). The pairwise connections are called two-pin
connections. To represent the wirelength by two-pin cotiaes inT", a net model is neces-
sary in quadratic placement. Next Section 2.3 gives an @@rgn net models in general, and
on state-of-the-art net models for quadratic placementoAgst others, this thesis presents a
novel net model for quadratic placement.

Representing the positions of allN'= movable modules in vectorp =
(1,2, ooy TN, Y1, Yo, ...yN)T, the sum notation of the quadratic cost function (2.1) can be
represented in a matrix-vector notation:

= %pTCp + p’d + const (2.2)
Matrix C represents the connections between movable modules, atar dereflects the
connections between movable and fixed modules. Fixed meduefor example 1/0 pins
(input/output pins). By minimizing’, quadratic placers obtain the module positipn@ith
minimal netlength, which is the optimal placement. Sincaimizing just the netlength re-
sults in a lot of module overlap, quadratic placers need datkto reduce the overlap. De-
pending on this method, quadratic placers can be subdividedhree categories: based on
eigenvalues, based on partitioning, and based on forces.

Eigenvalue-Based Quadratic Placement

Quadratic placers based on Eigenvalues assume that alllesoahe movable, i.ed = 0 in
(2.2). To reduce the module overlap, and to spread the medumé¢he placement area, these
placers are using the constraiptp = const Combining this constraint with the quadratic
cost functionl” by Lagrangian relaxation gives a new function, whose mimmisi found by
setting its derivative (with respect t andy;) to zero. This results i€p — A\p = 0, which

is similar to determining the Eigenvalues and EigenveatdiS. Then, the module positions
are given by the Eigenvectors with the lowest Eigenvaluegervalue quadratic placers are
for example [Hal70, Ott82a, Ott82b, FYSK83, Bla85a, Bla8bK86]. Since computing
Eigenvalues and Eigenvectors is complex, quadratic pdduased on this technique are rarely
used to place state-of-the-art circuits with millions ofdantes.

Partitioning-Based Quadratic Placement

In order to reduce the module overlap, partitioning-baseatigatic placers divide recursively
the circuit and the placement area, and assign parts ofriti@tdio parts of the placement area.
In contrast to min-cut placers, which use a similar techeifqu placement, partitioning-based
guadratic placers minimize a quadratic cost function irhestep of the recursive placement
process. In quadratic placement based on partitioninfgrdifit techniques are used to par-
tition the placement area, to partition the circuit, and ¢ddithe modules in the placement
region to which they are assigned.
The authors of [WWM82, Wip85] presented a placer, which filsices the modules by

minimizing the quadratic cost function, and then assignglufes to placement regions us-
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ing a technique similar to min-cut. In [CK83, CK84], a methedlescribed, which recur-
sively partitions the placement area in two regions. In dgaation of recursion, the posi-
tions of the modules are used to partition the circuit, andssign the modules to placement
regions. To place the modules in one region, the modulesefbther regions are fixed,
and linear constraints (center-of-mass constraints) seel to spread the modules. PROUD
[TKH88a, TKH88c, TKH88b] is similar to this technique, bubet not utilize linear con-
straints. To spread the modules in one region, the fixed nesdof the other regions are
projected to the border of the current region. With the remir, the placement regions, and
the number of modules assigned to them are continuoushedsiciy. By placing only the
modules in one region, and fixing all other modules, the plea® problem is solved more
and more locally. This will decrease the quality of the siolut In contrast to this, Gor-
dian [KSJ88, KSJ89, Kle89, KSJA91] places all modules coeatly in all iterations of
the recursive partitioning process. The partitioning iveln by the module positions. To
hold the modules, which are assigned to one placement reigiahis region, Gordian uses
center-of-mass constraints. GordianL [SDJ91, Sig92] oues the method for partitioning
the placement area, and introduces weights in the quad@gidunction, which are used for
linearization the quadratic wirelength.

BonnPlace [Vyg97, BS05], and hATP [NRAG6] partition the placement area in four re-
gions in each step of recursive placement process. A mittrnag-flow is used to partition
the circuit, and to assign modules to placement regions.old the modules in their place-
ment regions, BonnPlace and hATP use center-of-mass agristrand so called “terminals”.
These terminals arise while cutting the nets by partitignin other words, the terminals con-
nect two nets of two partitions, which where formerly one inetne partition. The terminals
are located at the border between two partitions, are tleaddixed modules, and results in
that the modules in each placement partition stay withirpadition. In addition, with the
fixed terminals, each placement partition can be placedwosmtly using different CPUs.
This improves runtime, but advanced methods for positigiine terminals are necessary in
order to prevent a decline in the placement quality.

In general, partitioning quadratic placers are able to@laodern circuits in reasonable
runtime. Since they reduce the module overlap by partitignand mostly ignore the module
dimension here, they are problematic if the modules areftérént dimension like in mixed-
size circuits.

Force-Directed Quadratic Placement

The two-pin connections used in (2.1) for the quadratic ¢asttionI" can be viewed as
elastic springs. This creates a spring system, lamelpresents the total energy of the spring
system. The derivative df is the “net” force, created by the springs;... = Cp +d. Setting

this force to zero gives the module positions with minimaleMngth, which equals the equi-
librium state of the spring system. In other words, the gysjn.e., the two-pin connections,
of quadratic placement create a force, which attracts thdubes. Force-directed quadratic
placers utilize an additional forcB,4q to spread the modules on the placement area. This
spreading is done in a sequence of placement iterationsh Eeation starts with a given
placement. Then, an additional force is determined. Sgttie sum of the net force and the
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additional force to zero results in a system of linear equnsti This system can be solved
efficiently with respect tp. At the end of each placement iteration, the modules areedlac
to the positions described lpy

Different approaches exist for the additional forces. ICYF67], the additional force is
modeled in that all modules are repelling each other. Howdvis results in a high number of
additional forces. To reduce the computational complexittyer approaches utilize repelling
forces only between unconnected modules. In [Sca71, QQ@BF9, AJK82, JJA83, Kird4,
For87, Jus87], the repelling force is constant over theadis# between the not connected
modules. In [FCW67, QB79, Kir82, Waw88], the repelling feis reciprocal to the distance.
Another modification is to model the overlaps between the utexdrather than the modules
themselves as the source for the repelling force. In [Sc&hL,75, Rob83, SD85, SB87,
AA88, KKM91] overlaps between modules are repelling eadtent The overlap between
modules and the border of the placement region is modeled@wW[67, Shu75, KKM91] as
the source for the repelling force. In [Joh87], the triaragian of the placement area based on
the module positions is used to determine a force, whichesisrehe modules on the placement
area.

Modern force-directed quadratic placers like Eisenmaapfgoach [EJ98, Eis99, Obe05],
FDP [VKV04, VKO05a, VKO05b, KV06], FAR [HMS02b], mFAR [HMSO05FastPlace [VCO05,
VPCO06, VPCO07], and RQL [VNAQ7], have in common to use the distribution of the modules
on the placement area to determine one additional force peluta. This force drives the
modules away from high density regions towards low dengityans. The above mentioned
modern force-directed placers differ in the way how the tiddal force is implemented, i.e.,
in the way how the force is determined and modeled. Sincehb&s presents a force-directed
placer, details and differences of modern force-directadgys are described in the following;
Figure 2.2 gives an overview.

Placer Controlling Force| Spreading/Perturbing Force
Hold Force Move Force

Eésgfrg?c%n,nl% o Const. Force, Potential

FastPlace, RQL Fixed Points, Bin Utilization

FAR Fixed Points Const. Force, Potential

mFAR Fixed Points Fixed Points, Bin Utilization

Kraftwerk Const. Force Target Points, Potential

Figure 2.2: Implementation of the additional force in madéarce-directed quadratic placers=DP
uses two more forces, but they are not necessary to spreaddtieles on the chip. A dark gray box
means that heuristics are necessary. A light gray box meansdntrollability.

Eisenmann’s approach is based on the idea that modules sit@ly charged, the place-
ment area is negatively charged. Thus, the modules repbl @her, and the modules are
attracted by the placement area. The distribution of theggdsaon the placement area is used
to determine an electrostatic potential. For each modutbe gradient of the potential is
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determined, and the gradients are accumulated in the additforce over the placement it-
erations. The additional force in Eisenmann’s approachddeted as constant force, i.e., the
force does not depend gn

Using a constant force is one way to model a force. Another twaypodel a force is to
use fixed points (each locatedyg}, and connect each module to its fixed point by an elastic
spring having the strengt). This spring creates the force then.

F{P8 — s, (p; — i) (2.3)

The authors of [HMS02b] showed that using fixed points arereegdization of using a
constant force, and they showed that fixed points controptaeement better than constant
forces do. In principle, the controllability is improveddzseise each module is moved at most
to its fixed point in each placement iteration. Using a camstarce, the movement is not
limited.

FDP is similar to Eisenmann’s approach in that the gradiefitise potential are accumu-
lated in a constant force to spread the modules on the chigddition, FDP used two forces
to stabilize the placement algorithm, and to improve théenegth. These two forces are mod-
eled by fixed points in FDP. Similar to Eisenmann’s appro&#R utilizes an electrostatic
potential to determine a force, which spreads the moduléseanhip. This additional force is
modeled as a constant force. Instead of accumulating tleagimg force over the iterations,
FAR uses a second additional force for each module to cotiteoplacement process. This
force is modeled by fixed points and is determined by achgfonce equilibrium at the start
of each placement iteration. The main difference betwedR &Ad mFAR is that mFAR uses
a local bin utilization to determine the spreading force] Hre spreading force is modeled by
fixed points. Using a local bin utilization, the spreadingciohas a local view, as the force
of one module depends only on the surrounding modules. Itrastrto this, the (spreading)
force in Eisenmanns’ approach, FAR, and FDP has a global viewthe force of one module
depends on all modules. This is because the force is baseat@ntial formulation there, and
the potential represents all modules.

Instead of accumulating one additional force over the ple# iterations, or using two
additional forces, FastPlace and RQL are using a differesthod to spread the modules. In
each placement iteration, a local bin utilization is deteed similar to mFAR. The addi-
tional force for one moduleis then determined as follows. Modulés temporary placed to
the position determined by the local bin utilization. Thamde viewed as a local diffusion
process. Then, the force is determined, which holds modaiéts temporary position. After
that, module is put back to its original position. After determining theédational force for
all modules, the new positions for all modules are obtainesditing the sum of the net force
and the additional force to zero. The additional force is eted by fixed points. In FastPlace,
the fixed points are located at the border of the placememmeg RQL uses a location be-
tween the border and the module position. In addition, RQldutates the additional force,
which means that for some modules, the additional forceriengd. With this, the modules
are reordered during placement, which can improve the mgtiie On the other hand, the
convergence of the placement algorithm can be harmed.

In summary, fixed points are widely used in modern forceead@d quadratic placers. The
locations of the fixed points are all determined in that adascgiven. This force is to be
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represented by the spring connection between each moddlgsafixed point. In this case,
where the force is given, a good heuristic is necessary tailsuitable locations of the
fixed points. This is a well-known critical problem of usingdd points [HMS02b, HMSO05,
VNA+07].

. ) 1
| =€ & DPi=pi——e (2.4)

Pi=P; Si

In (2.4), the forcee; of modulei is given, and the module is locatedgt i.e., p; = p!.
If the strengths; of the spring is too low, the fixed poif; is too far away from the module
positionp;, and the force is modeled like a constant force, resultiriguncontrollability. If
the strengtls; is too high, the fixed point is too near to the module, and thduteomovement
is highly limited. Thus, all modern force-directed plagersing fixed points, rely on heuristics
for good values ofs;. The force-directed quadratic placer Kraftwerk, as presgin this
thesis, also uses fixed points (called “target points”) dm&s not depend on critical heuristics.
Rather, the locations of the target points are directly igivg the gradients of an electrostatic
potential. In other words, not the force is given, but theatltan of the target points. In
Kraftwerk, two forces are used: a moving force, modeled bgdapoints, and a hold force,
modeled as a constant force. The constant hold force doe®date controllability of the
placement process, but enforces the convergence.

Nonlinear Placement

Nonlinear placers are based on a nonlinear cost functiorghnk even not quadratic. Plac-
ers based on nonlinear cost functions have appeared in¢hatrgears, after developing an
efficient representation of the wirelength by a log-sum-aéxpction [NDSO01]. The major
drawback of nonlinear placers is that nonlinear numerigainoization takes high runtimes.
Nonlinear placers differ mainly in the way how the module it is removed.

Density-Driven Nonlinear Placement

Density-driven nonlinear placers are using the distrinuf the modules on the placement
area (i.e., the module density at various points) to deteenai nonlinear function, which
represents the module overlap, and which is continuous #festeshtiable. This function is
combined with the wirelength function in a total cost funati and the total cost function
is minimized by nonlinear numerical optimization. In thigyy the modules are iteratively
spread over the placement area. Examples for densityrdriealinear placers are APlace
[KWO05a, KRWO05], mPL [CCSO05], and NTUPlace [CJbBE].

Nonlinear Placement Based on Pseudo Nets

Nonlinear placers based on pseudo nets are using additms®ldo” nets (one for each mod-
ule). This is similar to the fixed point approach used in fedaected quadratic placement.
Minimizing the wirelength of the nets and the pseudo netsntlodules are spread iteratively
over the placement area. In each placement iteration, WdA#107] is using a min-cost-
max-flow to assign modules to placement regions. Then, thedusnets are created between
each module and the center position of the placement regiaiich the module is assigned.
In other words, and considering force-directed quadra@acegment, the fixed points of the
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pseudo nets are determined by a min-cost-max-flow approadaastu. Other nonlinear
placers using pseudo nets are not known up to now.

2.1.6 Warping Placement

Placers based on warping start with an initial placemerd,ae using approaches of com-
putational geometry to deform the placement area, and ttoysnm the modules indirectly.
The deformation of the placement area is driven by miningzhre wirelength and the mod-
ule overlap. Placers based on warping are for example [XMER®07, CS07]. To obtain
the initial placement, warping placers usually follow qrattt placement and minimize the
guadratic wirelength.

2.2 Multilevel Approach

To place “large” circuits, i.e., circuits with a high numbafr modules, some placement ap-
proaches are following a hierarchical approach. Min-caicpts, placers based on cluster-
growth, and some partitioning placers are per se hieraathiecause not all modules of the
circuit are placed simultaneously in all placement itenagi

A general hierarchical approach to cope with “large” citsus the multilevel approach,
which can be used for all placement techniques. Starting the “flat” circuit, which consists
of all modules, the modules are clustered over a few levaiadihe coarsening phase. Then,
the coarsest circuit is placed. In the refinement phase, lHmment of the previous level
is used as input, the clusters are declustered, and the redineéd” circuit is placed. The
refinement is done until the flat circuit is placed. Since agudyne placement iterations are
spent in each level of refinement, and in particular only saer@tions for the flat circuit,
the runtime decreases with the multilevel approach. Howedhe major drawback of the
multilevel approach, and of all hierarchical approachegédneral, is that a good heuristic is
necessary to partition or cluster the circuit. This is beeaaptimal partitioning is an NP-
hard problem [SH86]. In addition, using a hierarchical aguh, the placement problem is
solved more locally then using a flat approach, where all rfesdare placed concurrently in
all placement iterations.

2.3 Net Models

The previous sections described different techniques liregbe placement problem. The
general objective of the placement problem is to minimizetttal length of all nets. This

objective is used because a placement with minimal nethesgtsually optimal also in other

objectives like area consumption, routability, timingn@gh of the critical path), etc. This

section describes how to measure the length of one net. Ttexenet is represented by
graphs, different net metrics are shown, and net modelsssacgfor quadratic placement are
presented.
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2.3.1 Graphs and Metrics

In principle, one arbitrary net consists &f pins, and each pin = 1,2,..., N is located
at (x;,y;). The property of a net is that all its pins must have the sareetrét potential.
Consequently, all pins of one net must be connected by a Wiseng graph theory, the pins
are nodes, and the connections between the nodes are réprebyg edges (each connecting
two nodes), or by a hyperedge (each connecting two or moresjod

el

(a) Hyperedge (b) Clique (c) Minimum Spanning Tree

%
o
oo @
Height

(d) Star (e) Steiner Tree () Half perimeter wirelength
(HPWL)

Figure 2.3: Different net models.

Figure 2.3 shows different net models. The hyperedge neeimad displayed in Figure
2.3(a), consists of one hyperedge, connecting all pins @fnigt. All other net models are
using two-pin connections to represent the net. There, ®aeipin connection, i.e., each edge
e = (i,j) between two ping andj, is associated a cost, and the cost represents the distance
between both pins. Using the Manhattan norm, which is basgdst using horizontal and
vertical wires, the distance between both pingjs-z;|+|y; —y;|. In the quadratic Euclidean
norm, the distance ic; — z;)? + (y; — y;)?. This quadratic norm is used in the next section
addressing net models for quadratic placement.

The clique net model (see Figure 2.3(b)) uses all possilbegi connections of one net.
The number of two-pin connections(ss - N - (N — 1). The minimum spanning tree model
[Pri57], which is displayed in Figure 2.3(c), is driven byingga minimal set of edges, whose
total cost is minimal. Here, there alé— 1 number of edges. However, the construction of the
minimum spanning tree needs some runtime, and the runtimelexity is more tharO(N)
[Eis97]. The star net model (see Figure 2.3(d)) uses ondiaddi star pin, which is located
in the center of the net, and connects each pin with the star Pphis results inNV edges,
and the runtime complexity i©(N). The Steiner tree net model, as shown in Figure 2.3(e),
uses several additional pins, and is driven by connectihgia$ by horizontal or vertical
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edges only. In the minimal Steiner tree, the edges are chssgmthat the total cost of all
edges is minimal. Finding such an optimal Steiner tree issknto be a NP-hard problem
[GJ77]. However, there exist numbers of algorithms, whidd f& near-optimal Steiner tree
in practicable runtime [Han66, Hwa79, Ser81, CRS88, HVYWORSZ94, Chu04]. Since
routing of a net is similar to constructing the minimal Stgitree, the routed wirelength,
i.e., the wirelength after routing, is best approximateddngth of the minimal Steiner tree.
However, routing is more complex than just constructingrtiirimal Steiner tree, as more
things have to taken into account in routing. For examplerehs only a limited number
of routing tracks available in a chip, which limits the resms for routing. Or not only the
wirelength is to be minimized in routing, but also the numbikvias.

The half-perimeter wirelength (HPWL), as illustrated irg&ie 2.3(f), is rather a metric
for the netlength, than a net model. Here, “half-perimetagans the half-perimeter of the
smallest rectangle enclosing all pins of the net. The widtthis rectangle is given by =
max z; — minz;, and the height is given by = maxy; — miny;. Then, the HPWL is
w + h. The HPWL equals the length of the minimal Steiner tree fds math two or three
pins [Han66]. For nets with four and more pins, the HPWL is\adobound. Since most
of the nets of a circuit are two and three pin nets, the HPWLniefficient estimation of
the length of the minimal Steiner tree [Chu04], and consetiyét is an efficient estimation
of the routed wirelength [Ser81, SKAS88]. Here, efficientamethat the HPWL offers low
runtime and good approximation.

2.3.2 Net Models for Quadratic Placement

Quadratic placement is based on two-pin connections, andnizing a quadratic cost func-

tion (2.1), which represents the sum of the quadratic lengththe two-pin connections.

Since the runtime complexity of determining suitable twon-ponnections is practicable in

the cliqgue and the star net model, these net models are usiedyvin quadratic placement.

Traditionally, the weights of the two-pin connections asedito linearize the quadratic length,
and to approximate the quadratic cost function to the HPWtrime

Considering one net wittV pins, a weight ofl /N in the cligue net model adapts its
guadratic costs to the cost of the corresponding star neehiS@y92, VCO05]. Hence, clique
and star net model can be used interchangeably. The authpfgg97, BS05] use an addi-
tional weight ofl /N — 1 for each net, in order to prevent that nets with a high numbpirs
are dominating the quadratic cost function. In [SDJ91, 3jgte additional weight for each
netis2/N, and a linearization weight for each two-pin connectiondgsdj in order to adapt
the quadratic cost to the HPWL.

Since the clique and the star net models have different cterstics, and both can be
used concurrently, there is a trade-off between both netetsd@&J98, Eis99, VC05]. The
cliqgue net model has no additional star pin, but a compledfit9 (N?) in the number of two-
pin connections. The star net model introduces one additistar pin per net, but has only
O(N) two-pin connections. To minimize the quadratic cost fumetin short runtime, the
number of two-pin connections, and the number of pins shbalds low as possible. In an
average circuit, most of the nets have two or three pins, &tslwith a high number of pins
are rare. Hence, the clique model is used for small netsfaenets with a about six or less
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pins, as the number of two-pin connections is reasonabke Irer big nets, the star net model
is used, as the number of two-pin connection is low here, hachtmber of additional star
pins is reasonable. Using clique and star net models cagatlyrin a circuit gives the hybrid
clique/star net model.

The authors of [BS05] propose a net model suitable for pamittg quadratic placers,
which is based on the star net model, but introduces additfmns (so called “terminals”) for
those nets, which cross the border of two placement parstitn [OJ04a, Obe05], a method
is described, which integrates the minimal Steiner tre&ééquadratic cost function. This is
used to obtain better timing-driven placements. Howeweminining a minimal Steiner tree
is time consuming.

This thesis presents a new net model, which accurately septe the HPWL in the
guadratic cost function. Compared to a hybrid clique/seammodel, the new net model offers
better placements in lower runtime.

2.4 Routability-Driven Placement

In the layout synthesis of an integrated circuit, the moslalee placed first, and the nets are
routed then. These are two separate steps, mostly done hyiffereent computer programs.
Placement traditionally targets to minimize the total Waregyth, which in general improves
routability. However, the placed circuit may not be rougghbecause there are so called
“congested regions” on the chip, where too many wires aressary to route the nets than
routing tracks are available. In other words, the routinmeed, created by the nets, exceeds
the routing supply, given by the routing layers. Due to suchgested regions, the circuit
has a high routed wirelength, or is even not routable. Tloeeebesides minimizing the total
wirelength, placement has to be driven by routability, vilhiceans to remove the congestions
during placement. To do routability-driven placement, pvoblems have to be solved. First,
a fast and accurate method to estimate the congestionsdassay. This is because the exact
informations about congested regions would be given afietimg, but routing itself takes
enormous runtime. Second, the congestion estimation hagdgrated effectively in the
placer. This thesis presents novel solutions for both gioisl Therefore, the state-of-the art
in congestion estimation and in the integration in placenedescribed next.

2.4.1 Congestion Estimation

Assuming a constant routing supply, congestion estimati@ans to estimate the routing
demand. Most published methods to estimate the routing de e using a grid structure to
divide the chip area into a number of bins, and estimate thénmg demand in each bin.
Based on the bounding box of one net, i.e., the smallestngld&nclosing all pins of one

net, the authors of [[EC94] presented a simple method tonesti the routing demand in one
bin: the routing demand of one net in one bin depends on theap/between the bounding
box of the net and the bin. Another simple technique to esérttee routing demand in one
bin is to use the pin density within this bin [BR02, ZD02]. Adeiy applied technique to
estimate the routing demand is to use a routing model, whiotiels possible routes of each
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net. The number of possible routes crossing the border of adbiects the routing demand
in the bin. In most approaches based on routing models, 4piunlthets are broken down into
two-pin connections by using a minimum spanning tree. Thargach two-pin connection,
different routes with different number of bends are model&tie authors of [LKS02] use
all possible routes for each two-pin connection. This pholisic routing model is improved

in [KX03, SZJ06] by adjusting its result to the result obtdnby routing. The authors of
[WBGO04] state that one- and two-bend routes are enough taehibd routing demand. In

[PCO6], a fast global router is proposed, which uses diffefgteiner Trees to model the
possible routes of each net. In [YKS01, YKS02, HMS02a], tleximal routing demand of a
circuit is estimated based on Rent’s Rule [LR71]. Anothehteque to estimate the routing
demand is the analysis of the distribution of the number ¢$ per bin [WYESQO].

2.4.2 Integration in Placement

Estimating the routing demand in an efficient way is the firspgo optimize routability dur-
ing placement. The second step is to integrate the estimatithe routing demand in the
placement algorithm, in order to remove the congestionstandhprove routability. Since
the congested regions are characterized that the routimguale of the nets is higher than the
supply by the routing layers, there exist two main approadioeoptimize routability. The
direct approach reduces the routing demand in congestéshsegand the indirect approach
increases the routing supply in congested regions. Theéngpstipply can be increased, be-
cause modules block some routing layers, and with a loweruteadensity, more free space
is available in the routing layers. The routing demand caddmeeased by replacing modules,
such that the nets connected to the modules are moved o obtigested regions. The direct
approach is often used as a post-process to tune an alreachdptircuit for routability. A
post-process utilizing Simulated Annealing is descrilmeiEC94, HMS02a, WS99]. A flow-
based method is presented in [WYS00, WS00]. Linear progragis used in [LWHO3].

The indirect approach to optimize routability is mostly dskiring placement. In [HYHO1,
BRO02], a quadratic placer is described, which inflates meslih congested regions. The
authors of [PBS98] present a quadratic placer, which reslncedule density in congested
regions by growing these regions. In [YCSO03], a min-cut ptas shown, which allocates
white space, i.e., reduces module density, in congesteonggduring top-down placement.

In the following, routability optimization in state-of-¢hart placers is described. mPL
[LXK T04, LXK*07] is a multilevel analytical placer based on non-lineairmation. mPL
estimates the routing demand based on a two-pin conneatigting model developed in
[CCPY02]. Routability is optimized in global placement bywng certain modules out of
congested regions in order to reduce the routing demane.tHarfinal placement, a white
space allocation (WSA) method is used, which is based ongizely partitioning the place-
ment area, and shifting the cut lines according to the rgutiemand. Thus, mPL utilizes
the direct approach during global placement, and the intlapproach after wards in detailed
placement.

ROOSTER [RLMO06], as a feature of Capo 10, is a min-cut pladdre placer models
nets by Steiner trees [Chu04], and estimates the routingaddrby a probabilistic routing
model [WBGO04]. The cut lines are shifted during global plaeat based on the routing de-
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mand. During final placement, the WSA method of [LX84] is used. Therefore, ROOSTER
applies the indirect approach to optimize routability.

APlace [KWO05b] is a multilevel analytical placer based on+iaear optimization. APlace
estimates the routing demand by a probabilistic routing eh@dX03]. Routability is opti-
mized during global placement by decreasing module demsitpngested areas, i.e., by the
indirect approach.

2.5 Final Placement

The global placement approaches proposed in Section Z2hdpne modules roughly on the
chip, while considering different objectives like totalrellength and routability. After global
placement, final placement is done. Final placement itegifists mostly of two consecutive
steps: legalization and detailed placement. In legabrnathe remaining overlap of the global
placement is removed, and the modules are aligned to a rowidisgucture if necessary.
In detailed placement, the legal placement is improved shiahthe total wirelength is fur-
ther reduced, or more complex objectives like design for ufacturing (DFM) [GKPO5] or
design for yield (DFY) [ABD"07] are considered. The common approach in detailed place-
ment is to use small sliding windows in order to capture a lawnber of modules (about
10 modules), and to do different transformations on thisogetodules. For example, single
modules are rotated, pairs of modules are exchanged, oraglules in the set are permuted
[CKMO0O0, CX06, LXKT07, PVCO05, RPAQ7]. In [KTZ99, BV00], a detailed placement ap-
proach suitable for standard cell circuits is describeder&éhthe modules in each row are
placed such that their total HPWL netlength is minimizede ©hdering of the modules is not
changed here.

Since this thesis describes new approaches for legalizatiis section focuses on the
state-of-the-art techniques for legalizing a global phaeat. To preserve the global placement
as far as possible, the common objective of legalizatiow isibve the modules as little as
possible. While most global placement approaches can d#dakiiferent circuit types like
standard cell circuits, macro cell circuits, and mixed sireuits, legalization approaches
differ in the circuit type for which they are applicable. Ehilifference in legalization is
because of the different “design rules” for each circuigtyfo, the modules of FPGA circuits,
and the modules of sea-of-gates circuit have to aligned tadastructure. The modules of
standard cell circuits have to be aligned to rows. And the uheslof macro cell circuits have
not to be aligned to rows. These design rules are mostly eghduring global placement as
the modules are spread just roughly on the placement arezauBe of the difference in the
application of the legalization approaches, the moduleglabal placement are now called
standard cells, or macros. In the following, state-of-dneapproaches for legalizing standard
cell circuits are proposed. Most of the approaches are g@ticable for FPGA circuits, and
for sea-of-gates circuits. In addition, modern methodsdgalizing macros are described. In
Chapter 7, novel approaches for legalizing these two ditgpes are presented.
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Figure 2.4: Global and legal placement of standard cells.

2.5.1 Legalization of Standard Cell Circuits

Figure 2.4 displays a global and legal placement of a (veali3istandard cell circuit. Various
approaches exists for legalizing standard cell circuitsmiho [DJA94] is based on network
flow, shreds cells into subcells and rows into places. Heérsuhcells and all places have the
same height and width. The subcells are placed, i.e., as$igmplaces by solving a min-cost-
max-flow. The authors of [BV04, BPV04] present a similar noettlas Domino, but assign
sets of modules to row regions by a min-cost-max-flow. Feaeti Cut [YKM*™03] is a two
stage approach: first the cells are assigned to rows by dynarogramming, then the cells
of each row are packed from left to right. The authors of [KMIRAIso present a two stage
approach: first the cells are assigned to the rows by hetalstell juggling, then the cells
of each row are placed by finding a shortest path in a graph.gwbdfHLOO] uses a greedy
heuristic to move cells from overflowed bins to under capagins in a ripple fashion based
on total wire length gain. Diffusion based placement migrats presented in [RPAV05] to
remove cell overlap. In [LRAPQ7], computational geomesryised to spread the cells, and to
align them to rows. NRG [SW97] uses simulated annealingggalization.

Tetris [Hil02] is a fast greedy heuristic, which is used Wwidé XK 07, KWO05a, KLA"04],
for example. In [LKO3] a similar approach to Tetris is debed. Tetris sorts the cells first,
and legalizes one cell at a time then. Legalizing one celbizedby moving the cell over the
rows, and within the rows by moving the cell over free placésis movement is done until
the nearest free place is found. Once a cell has been ledailizeill not be moved anymore.
This results in a high total cell movement during legaliaati

2.5.2 Legalization of Macros in Mixed-Size Circuits

In pure macro circuits, which consist only of macros, legjalj can be driven by minimiz-
ing the area consumption, rather than the macro movemereh Bgalization of macro cir-
cuits can be done for example with shape-functions [Ott&®31$, sequence-pairs [MFNK95,
MFNK96], or B*-trees [CCWWO00, WC04, cCY®7].

However, mixed-size circuits consist of a few macros, anitlons of standard cells. Fig-
ure 2.5 displays a global and a legal placement of such a rsiidcircuit. To respect the
standard cells, the macros of mixed-size circuit have t@beallzed such that their total move-
ment in minimized. In Figure 2.5(b), the macros are legdllirethis way.

Different approaches exist for legalizing macros in mixezk circuits. The authors of
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(a) Global Placement (b) Legal Placement for Macros

Figure 2.5: Legalization of macros in mixed-size circuitSray rectangles represent macros, black
clouds represent the standard cells.

[CCYO03, VPCO06] are using a low-temperature Simulated Atingapproach in combination
with sequence-pairs. Although Tetris was introduced indiievious section as a legalization
approach for standard cell circuits, it can also be usecdefpalizing macros [KLA 04, CX06].

A direct approach to minimize the movement of the macrosduegalization is to use linear
programming (LP) [Vyg97, CX06, RC06]. Here, the objectigethe total movement, and
linear constraints between all (or almost all) pairs of noacassure that the macros do not
overlap. In detail, two macros are not overlapping, if thetaince between the center posi-
tions of both macros is large enough, either in x-directimnin y-direction. Consequently,
one constraint per macro pair in the LP is enough to assutétith macros do not overlap.
However, the direction (x or y) of the constraint influenclee bbjective of minimal move-
ment. Different approaches exist to optimize the direcodnthe constraints. The authors
of [Vyg97] utilize a branch-and-bound optimization apprba In [CX06], the initial direc-
tions of the constraints are determined based on the gldaaément. Then, a min-cut like
technique is used to change some constraints from x- togetilim, or vice versa.
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Chapter 3
This Thesis

This thesis presents novel approaches for quadratic plcgoth for global placement and
for legalizatiort. All these approaches are driven by minimizing a quadratigt éunction,
which results in low runtime. In global placement, the totaklength is minimized, while in
legalization the total movement is minimized. In the follog, different enhancements of the
new quadratic placement approaches are summarized.

3.1 “Kraftwerk”: Force-Directed Quadratic Placement

The force-directed quadratic (global) placer “Kraftwerls presented in this thesis, is char-
acterized by the following enhancements over other foiceeted quadratic placement ap-
proaches:

e The placement is represented in a general demand-andyssygiem. Therefore, dif-
ferent circuit types are supported, e.g., standard celuds, macro cell circuits, mixed-
size circuits, and circuits with fixed modules. In additittiee demand-and-supply sys-
tem is used to optimize the routability of a placement.

e The additional force is separated into a hold force and a naree. This is new com-
pared to Eisenmann’s approach, FDP, FastPlace, and RQlsomgwhat similar to
FAR and mFAR.

e Both additional forces are implemented in a novel and syatenwvay. The move force
is modeled by target points, and the locations of the targieitp are directly determined
by the gradient of the potential of the demand-and-suppdyesy. The hold force is
modeled as a constant force, and decouples each placesratibih from its preceding
iteration.

e Compared to other placement approaches, no heuristicseaessary in Kraftwerk to
determine the locations of the target points. In additibie, target points enforce the
control of the module movement. Since the potential reprtssall modules, and the

1Some content of this thesis is pre-published in [SJ06, SBIGrb, SSJ08a, SSJO8b].
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potential gives the target points of the move force, the nfovee has a global view.
This means that the move force of one module depends on allilesdFurthermore,
the constant hold force does not reduce controllability,gmiorces convergence.

e As a result of the systematic force implementation, Kraftneonverges such that the
demand is adapted further to the supply in each placemeatiga. This in principle
means that the module overlap is reduced in each iteratitve cbnsequence of the
convergence is a fast, robust, and stable placement dlguorln this thesis, the conver-
gence is analyzed in theory and demonstrated by experihrestats. In addition, the
stability is shown by experimental results.

¢ Aflat placement approach is followed, which means that timeptete circuit is consid-
ered in each placement iteration. Compared to a multileppt@ach, no heuristic for
partitioning or clustering the circuit is necessary in tta fllacement approach, and the
solution space is not narrowed.

3.2 “Bound2Bound” Net Model

Besides a force-directed quadratic placer, this thess @lssents the new “Bound2Bound”
net model, which can be used universally in all quadraticgia The advantages of the
Bound2Bound net model are:

e Exact representation of the half-perimeter wire length \(WF in the quadratic cost
function. Based on experimental result in routabilityveén benchmark suites, the
HPWL is an efficient metric for the routed wire length.

e Compared to the clique net model, the number of two-pin cotioies is lower.
e Compared to the star net model, no additional star pins &meduaced.

e Based on experimental results, the Bound2Bound net motersdbwer runtime and
better netlength than a hybrid clique/star net model.

3.3 Routability-Driven Placement

An important objective for global placement is to optimipatability. For this, two problems
have to be solved. First, an efficient estimation of the cetiges based on routing demand
is necessary. Second, an effective integration of the ciiggeestimation in the placer is
needed. Solutions for both problems are presented in thg@sh

3.3.1 “RUDY”: Routing Demand Estimation

The advantages of the routing demand estimation called “RU®as follows:

e No grid structure is necessary, which means the placemeatianot divided into bins.



3.4. “ABACUS” AND “PUZZLE": LEGALIZATION 27

e No routing model is used, which means the estimation is iaddpnt of the router.
e The estimation is accurate.

e The runtime is low.

3.3.2 Integration in Placement
The enhancements of the presented integration of RUDY ifteak are:

e Straight-forward integration by extending the demand-anpply system of Kraftwerk.

e Concurrent reduction of the routing demand and incremerthefrouting supply in
congested regions.

e One parameter models the characteristics of the router.

3.4 “Abacus” and “Puzzle”: Legalization

In addition to novel global placement techniques, inclgdamet model and routability opti-
mization, this thesis also addresses new approaches faizdieg standard cell circuits, and
for legalizing macros in mixed-size circuits. The enhanerta over other legalization ap-
proaches are as follows:

e The total quadratic movement is minimized. Other approaetre targeting the linear
movement. Using the quadratic norm, the placement withmmhimovement is found
in low runtime.

e The relative order of the macros/standard cells is presefVhis means that considering
two macros/standard celtsandb, with « left of b in the legal placement, thenwas
left of b in the global placement.

e “Abacus” determines the legal placement of standard cgllading efficient dynamic
programming.

e “Puzzle” determines the legal placement of macros by quadpeogramming. In ad-
dition, Tabu Search approach is used to determine if two asaare made overlap-free
in x-direction, or in y-direction.
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Figure 4.1: Circuit with hyperedges (a) and two-pin coniue (b).

Chapter 4
Bound2Bound Net Model

Placement in general is based on the gate-level descripfitime circuit. This means, the
circuit consists of modules (s@tt), the modules have pins (sB), and the pins are connected
by nets (setV). Each pinp € P is located at(«?", 4P™). Representing each net by one
hyperedge gives the circuit as shown in Figure 4.1(a). Irdoptéc global placement, the nets
are modeled by two-pin connections. This modeling is dona Imgt model, and results in
that each net € \V is represented by a s&t of two-pin connections, as displayed in Figure
4.1(b). One two-pin connection= (p, ¢) connects pirp andq. The sum of the weighted
guadratic Euclidean lengths of all two-pin connectionsgithe quadratic cost functidn

1 . . . .
N = 5 Z Z wx’pq(xgln . xgln)2 + w%pq(ygm o ygm)z (4.1)
neN e=(p,q)€€n
= D TnatTuy (4.2)
neN

This cost functiori® can be separated in x and y-direction and in single netsthecost’,, .
is the cost of net in x-direction. In the following, the focus is dn, ,.
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4.1 Clique/Star Net Model

Traditionally, the clique net model, or the star net models®d in quadratic placement.
The clique net model utilizes all possible two-pin connaasi of a net. The star net model
introduces an additional star pin per net, and connectsgaabf the net to the star pin. With
P pins in netn, the clique is equivalent to the star in the quadratic cdshe clique cost is
scaled withl /P [LO73, Sig92, VCO05]. Due to this equivalence of both net msdde focus
is on the clique net model in the following. The quadratictaighe clique net is:

P P . .
Z Z Wapq(zh" — 2§")? (4.3)

p=1 q=p+1

me -

N | —

Different approaches exist for the connection weight,,. GordianL [SDJ91, Sig92] uses the
following technique:
GordianL __ 12 4 (4'4)

z,pq - PP |x2in . xgin

The first factorl / P adapts the clique model to the star model. The second factoradjusts
the number of connections of the clique to the number of commes in the corresponding
spanning tree. With the factay |z, — z,|, the quadratic distance between both pirendg
is linearized.

The (quadratic) clique length (4.3) is just one metric fag tietlength. The ideal metric
for the netlength would be the routed wire length, as deteechafter final routing. However,
placement is done iteratively, and in each iteration, tiheudi would have to be final routed,
which would take enormous CPU time. Experiments for roditgkdriven placement (see
Section 6) reveal that the half-perimeter wire length (HPMWéLa very efficient metric for the
netlength. The HPWITHPWL of the netn is defined by the widthw,, and heighth,, of the
smallest rectangle, which enclosesja# 1, ..., P pins of the net:

w,, = max(z)") — min(zP")  h, = max(y2") — min(y?") (4.5)

THPWE — 0, + (4.6)

Using GordianL’s connection weight (4.4), the approxiraaterror between the quadratic
clique lengthl’,, , andI'}°"" is displayed in Figure 4.2. For two-pin nets, GordianL's ap-
proach results in no approximation error. This is due to Hwdr 4 in the last enumerator in
(4.4). However, with increasing pins per net, the approxXiameerror increases. On average,
the approximation error is about 30%, and is too high to retllee HPWL precisely in the
guadratic cost function'.

An unpublished approach of Eisenmann uses the followinggimaonnection weight:

wEisenmann: lz 10
“pd P P10+ w,

(4.7)

Figure 4.2 shows that the average approximation error sfdpproach also depends on the
pins per net, and is increasing with the number of pins per hetaddition, Eisenmann’s
approach has a higher approximation error than Gordiargfs@ach.
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Figure 4.2: Approximation error between the quadratic ¢osttion and HPWL, depending on the
number of pins per net, and using different approaches f®ctnnection weightv, ,,. The statistic
is based on 5.6 million nets of the ISPD 2005 contest bendhmate.

In summary, there is a high approximation error betweenghgth of the clique net model
and the HPWL, independently of different approaches forctirenection weights,, ,,,. The
basic problem of the cligue model is that there are connestlmetween inner pins, which
contribute to the clique length but which are ignored in tH&M metric; the HPWL is just
the distance between the boundary pins. This problem oflitneecnet model is demonstrated
in Figure 4.3(a). Here, boundary pins are those with thedsgbr lowest coordinate; all other
pins are inner pins. The star net model suffers from the saasi Iproblem as the clique net
model: there are two-pin connections, which contributéntoléngth of the star net, but which
are ignored in the HPWL metric.

Boundary pins No inner two-pin connections, just
. Iclne\r pins ' connections to the boundary pins.
@ 7 | S Q@ ' '
: A/ S o : : —0
1 \'4 b4 1 1 : 1 1 O :
: Q : : ! ; : o+
: [.—. :] : 5 Q : —
! T/ > X s> X
! Inner pin '
0 connections Wn 0 Wn

(a) Clique (b) Bound2Bound

Figure 4.3: Traditional clique net model and the new Bourml2®l net model.
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4.2 Bound2Bound Net Model

The new Bound2Bound net model is based on the idea to rembvmal two-pin connec-
tions, and to utilize only connections to the boundary pids.example of a Bound2Bound
net model is displayed in Figure 4.3(b). The new net modellmaderived from the clique
net model. However, its connection weighit>> for one two-pin connection is different:

0 if pin p and ping are inner pins

B2B
Wypg = 2 _ ! _ else (4.8)
P _ 1 |x2|n o x2|n|

With this connection weight, the quadratic cost functior8j4f the net is exactly the HPWL
in x-direction:

P P
1 . .
Poo = 5D > ulia(ad" —af)? (4.9)

P P
1 2 : : ,
_ §P — [ )xpl)ln B xgln + Z )xrl)m xsm + Z )xgm N xgln } (4'10)
q=3 q=3
1
= — P—-2 411
S [wa + (P = 2)w,] (4.11)
= w, (4.12)

In (4.10), the linearization/|+H"—zP"| is multiplied with the quadratic distan¢e)™ —22")?,
which gives the linear distan¢e)" — 2P"|. Furthermore, all possible two-pin connections are
separated in a connection between the two boundary pins (,¢q = 2), in connections
between the “left” boundary pin 1 and inner pins=€ 1, ¢ > 3), and in connections between
the “right” boundary pin 2 and inner pin® (= 2,¢ > 3). The inner two-pin connections
(p > 3,q > 3) are not considered as they have a connection weight of Ze8p. Withw,, =

)9:‘1’"‘ — 22", (4.11) is given. At last, (4.12) expresses that the quarizast function is exactly

the HPWL in x-directionw,,. Using similar operations for the y-direction, in can bewho
that the Bound2Bound net model represents exactly the HRMHei cost function’,, of each
net. Thus, the approximation error is zero in the Bound2Blooet model (independently of
the number of pins per net), which is shown in Figure 4.2.

4.3 Comparison

With P the number of pins in one net, the clique net model resulisinP - (P — 1) two-pin
connections. In the star net model, there Briavo-pin connections. The new Bound2Bound
net model give® - (P — 2) + 1 two-pin connections. Hence, for a two-pin net, the star net
model has the most two-pin connections, and the clique nefefrttas the same number of
two-pin connections as the Bound2Bound net model. In a thire@et, all three net models
are equivalent in the number of two-pin connections. Footider nets, the clique net model
has the most two-pin connections — with a complexityfP?). The Bound2Bound net
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model has a linear complexity in the number of two-pin conio&s, and has more two-pin
connections than the star net model.

In an average circuit, most of the nets have two or three @ind,nets with lots of pins
are rare. Based on such a circuit, the number of two-pin octiores is about 75% lower
in the Bound2Bound net model than in the clique net model. flinéme for minimizing
the quadratic cost functioh depends mainly on the numbers of two-pin connections and the
numbers of pins. Considering the characteristics of triueliand the star net model, there is
a trade-off between both net models in an average circuls9@i For small nets (nets with a
small number of pins), the clique net model is better, as rit@dal star pins are necessary
here. For big nets, the star net model is better, as the nuofbivo-pin connections is
lower here. The disadvantage of increasing the number afwith the additional star pins is
accepted here, because there are just a few big nets in aagavarcuit. Compared to such a
hybrid usage of the clique model and the star net model, thaeu of two-pin connections
is about the same as in the Bound2Bound net model. Howeveadditional star pins are
introduced in the Bound2Bound net model.

Table 4.1 shows experimental results comparing the Bouad@& net model with the
hybrid clique/star net model. The results represent legdgments, and are obtained with
placer “Kraftwerk”. Kraftwerk is described in the next chiegs. In the hybrid clique/star net
model, GordianL’s (4.4) and Eisenmann’s (4.7) approacthiffertwo-pin connection weights
are used. To obtain the best CPU times for the hybrid cliqaefset model, all nets with
up to six pins are modeled as cliques; the remaining nets adeled as stars. The new
Bound2Bound net model offers the best results in HPWL and @Rd. Eisenmann’s ap-
proach increases the HPWL by about 8%, and the CPU time byt 4B68t. Using GordianL's
approach, the HPWL is increased by about 7%, and the CPU siereased by about 17%.
The Bound2Bound net model has the best HPWL, because it sadalrately the HPWL in
the quadratic cost function. The Bound2Bound net model agoivest CPU time, because
no additional star pins are used here.

Bound2Bound  GordianL Eisenmann
Circuit | HPWL | CPU | HPWL | CPU | HPWL | CPU
adaptecl 82.43| 262| 87.96| 303| 87.63| 321
adaptec2 92.85| 349| 99.63| 403| 98.54| 385
adaptec3 227.22| 713| 239.97| 852 | 239.05| 745
adaptec4 199.43| 709| 212.31| 829| 213.32| 721
bigbluel| 97.67| 407 | 104.81| 484 | 107.23| 441
bigblue2| 154.74| 559| 165.27| 590| 165.60| 606
bigblue3| 343.32| 2070 | 370.00| 2367 | 389.58| 2220
bigblued | 852.40| 4147 | 942.06| 5491 | 958.44| 4758
Average | 1.000| 1.00| 1.073| 1.17| 1.084| 1.10

Table 4.1: Comparison between the new Bound2Bound net nadkltwo approaches (GordianL
and Eisenmann) for the connection weights in a clique/stamodel. Results are normalized to the
Bound2Bound net model.
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4.4  Approximation Error depending on Module Movement

In quadratic placement, a net model is used at the start bfdacement iteration to represent
the netlength in the quadratic cost functionTo linearize the quadratic length, the net model
utilizes the connection weights, ,,. There,w, ,, depends on the pin positions, and thus on
the module positions. After the connection weights arerdateed, the quadratic cost function
is minimized by numerical optimization, and the modulesrmaced to the minimum. During
minimization, i.e., during the module movement, the comioacweights are not changed.
Consequently, there is an inherent approximation ertmetween the quadratic cost function
I' and the HPWL at the end of each placement iterattors. the approximation error at the
start of the placement iteration, i.e., right at the poinewehthe net model is applied. Based
on the statements in the previous sectio#, 0 in the Bound2Bound net model.

Figure 4.4 shows the change in the approximation effer= |¢ — ¢| depending on the
average module movement and three approaches: the Bound2Bound net model, and using
the hybrid clique/star net model with GordianL's and Eisemm's approach for the connec-
tion weights. An exact definition of is given with (5.25) in the next chapter. Figure 4.4
demonstrates that in general¢ increases with the module movement. Moreover, there is no
essential difference in the three approaches. Hence, thed2®Bound net model, which sepa-
rates the pins in inner pins and in boundary pins based onith@ogitions before minimizing
the quadratic cost function, does not run into significabpgms after the pin positions are
changed. In addition, Figure 4.4 demonstrates that thedbive and consequently the best
placements, are achieved if the modules are moved as btppessible during each placement
iteration. This is of interest in Section 5.8 addressinggtality control.
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Figure 4.4: Change in approximation error due to module muma for different net models. Results
are based on the bigbluel circuit of the ISPD 2005 contesthmeark suite. Module movement is
normalized to the those movement, which gives a good tréfdeetween runtime and quality (see
Section 5.8).
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Chapter 5

Kraftwerk: Force-Directed Quadratic
Placement

Before describing the details of Kraftwerk, the basics ahdpatic placement are presented
first in the chapter.

5.1 Quadratic Placement

Placement in general is based on a gate-level descriptitimeagircuit, and quadratic place-
ment in particular is based on that each net is representéadpin connections. Figure 5.1
displays a circuit description applicable for quadratiaggment. In other words, in quadratic
placement, the circuit consists of a get of modules, a seP of pins, and a sef of two-pin
connections. One two-pin connectien= (p, q) € £ connects pirp with pin ¢g. The set of
two-pin connections represent the nets, and is obtaineglyiag a net model to each net of
the circuit. Compared to Figure 4(b) of previous sectioncdesg net models for quadratic
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placement, the figure above displays additional geometfarination necessary for place-
ment. So, modulen € M is characterized by its width,,, its heighth,,, and its center
position(z,,, y,). The placement area, i.e., the chip area, is described idts wn, and
its heighthenip. Similar to previous section, pime P is located at positio(wgi”, yg‘“).

In quadratic placement, the length of all nets is represemi¢he quadratic cost function
I, the sum of the weighted quadratic Euclidean lengths ofiadtpin connections:

1 . . . .
r = 3 Z wxqu(xgln . xgln)2 _‘_w%pq(ygm _ ygm)z (5.1)

e=(p,q)€€

Placement determines the positions of all modules, sudhtiieanetlength is minimal.
In quadratic placement, the quadratic cost funcfiois minimized. However]" depends in
(5.1) on the pin positions, and not on the module positiorendeg, a transformation from pin
position to module position is necessary. To do this trams&dion, the functionr(p) = m
maps the pip € P to the modulen € M, according to the relation between moduteand
pin p:

T:P—-M 7(p) = m: pinp € P belongs to module: € M (5.2)

The pin offset(xg“, ygff) (see Figure 5.1) describes the difference between the ra@adsition
and the pin position:

off _ _pin __ off _ _pin __
Ty =L Im Yp = Yp

Ym (5.3)

Using (5.2) and (5.3), the pin position is described by thegiffset and the corresponding

module position:

off pin

xzin = xn(p) - xp yp = y7r(p) - ygﬁ (54)

Placement also separates the modules in movable and fixed lmewause only the positions
of the movable modules have to be determined by placemeetpd$itions of thél/ movable
modules are represented in vectoior x-direction, and in vectoy for y-direction:

X = (x17x27x37"'7xM)T (55)

y = <y17y27y37"'7yM)T (56)

Using (5.2), (5.4), (5.5), and (5.6), the quadratic costfiom I represented as a sumin (5.1),
can be transformed in a matrix-vector notation:

= %XTCXX +xTd, + %yTny +y"'d, + const (5.7)
MatricesC, and C, represent the connectivity between movable modules, aotbreal,
andd, reflect the connections between movable and fixed moduleil®e steps to create
the matrices and the vectors are described later on. If #rerao modules fixed, matric€%,
andC, are positive semidefinite [Hal70]. With some modules fixed,matrices are positive
definite [KV06]. In both cased, is convex, and its minimum is obtained by setting its first
derivative to zero. The first derivatives in x- and in y-diien are described by the nabla
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operatorsv,, andV,,:

o 0 o \"
o o (L) 59
o 0 o \7*
vV, = [—, —, ..., — 5.9
Y <3y1 Yy 8yM) (5-9)

Using these nabla operators, the derivativeE of x- and y-direction are given:

V., = Cx+d, (5.10)
Vv, = C,y+d, (5.11)

Setting these derivatives to zero gives two systems of liegaations:

Cx+d, = 0 (5.12)
C,y+d, = 0 (5.13)

Solving these systems with respectt@andy gives the module positionsandy with min-
imal netlength. (5.12) and (5.13) demonstrate shahdy are determined separately. More-
over, both directions (x and y) or obtained similarly. Hente focus is on the x-direction in
the following. The y-direction is obtained analogously.

5.2 Creation of Matrix C, and Vectord,

This section describes how mat®, and vectord, of the quadratic cost functioh (5.7)
are created. Using (5.2) and (5.3), the cost function inrgadionI",, can be written in sum
notation, depending on the module positians: = 1,2,..., M + F. M is the number of
movable modules, anfl the number of fixed modules.

r, = Z Wy pg(Tr(p) — xgﬁ — Tr(q) + ngf)z (5.14)

e=(p,q)€€

N =

The cost of one two-pin connection is given by:

Wy, 2
Cope = =57 (Tnp) = 7' — Trq) +27') (5.15)

With this cost, the sum notation of (5.14) can be rewritten:
To= > Tup (5.16)
e=(p,q)€€

The matrix-vector notation df, is:

1
I, = §xTCxx +x"d, + const (5.17)
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Vectorx represents the x-position of théd movable modules (5.5). Matri&€,, = [c, ;] is a
two-dimensional matrix with\/ rows and)M columns.c, ;; is the entry ofC, in row ; and
columnj. Vectord, = [d, ;] is a column vector with\/ entries.d,; is the entry ofd, in row
7.

The creation ofC, and vectoid, is described at best by using the derivativa'of
Vel =Cox+d, (5.18)

A small part of the system of linear equation (5.18) lookglik

0z, N & X TSI % ) B €T; d:p,i
A R O R (5.19)

o
ErY cee Cggiooor Cggjoooe X dl’yj

The i-th row in this system of linear equations (5.19) reprgs the derivative of', with
respect tor;. In the sum notation (5.16), this derivative is:

0 0
' e=(pa)eE "

Depending on, p, andg, the derivative of the cost df, ,, of one two-pin connection =
(p.q) is:

) W pg(Ti — T — Ty + ) if i =7(p)
B Lron = § ~Wapa(r) — )" — @i+ ") if i =7(q) (5.21)
Z 0 else

Using all of this, the contribution of one two-pin connectio= (p, ¢) to the matrixC, and
vectord, is as follows (with the substitution= 7 (p) and;j = 7(q)):

1. 4,7 < M, which means that both moduléand; are movable.
The diagonal entries, ;; andc, ;; of the matrix are increased hy, ,,, and the off-
diagonal entries;, ;; andc, ;; are decreased by, ,,. The entryd,; of vectord, is
increased byv, ,,,(—2S" + 22™), and the entryl, ; is decreased by, ,,(—29" + 2°").

2.1 < M N j > M, which means that modufds movable ang is fixed.
The entryc, ;; of the matrixC, is increased by, ,,. In the vectod,, the entryd, ; is
increased byug pq(—29" — 25y + 29").

3. 1> M AN 5 < M, which means that modutds fixed andj is movable.
The entryc, ;; of the matrixC, is increased by, ,,. In the vectod,, the entryd,, ; is
decreased by, (2@ — 20 + 2.

4. i > M A j > M, which means that both moduléand; are fixed.
Matrix C, and vectord, do not change.
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To create matrixC, and vectord,, both are initialized with zeros first. Then, the contri-
bution of each two-pin connectione &, as described above, is consideredp andd,,.
This gives the matrixC,, and the vectod,.

Based on the creation of the matfiX , different properties o€, can be deduced:

1. The matrixC, is symmetric.
2. The diagonal entries of matri¥, are all non-zeros, and are all positive.

3. The off-diagonal entries of matrix, are mostly zeros, and if not, they are negative.

N
4. The matrix is weak diagonal dominant, i.e., foria# 1, ... N: > |z < gl
J=1Nj#i
5. Using the Bound2Bound net model, the number of non-zeepends about linearly
on the number of movable modulés. Hence, the matrixC, is highly sparse. This
property was analyzed using different circuits of varioesthmark suites.

Because of these properties, the system of linear equabid2)(can be solved very effi-
ciently by numerical approaches, e.g., with the conjuggielient approach [YouO3]. Thus,
the module positions are determined in low runtime, whica main advantage of quadratic
placement, compared to other placement approaches likdimear placement or min-cut
placement. Details of solving a system of linear equatisagpeesented in Section 5.12.2.

5.3 Force-directed Quadratic Placement

In quadratic placement, the cast ,, (5.15) of one two-pin connection = (p, ¢) can be
interpreted as the energy of an elastic spring, which isspametween both pinsandg. In
other words, each two-pin connection corresponds to oriegpAll two-pin connections of
one circuit create a spring system, whose total energy iquldratic cost function, (5.16).
Since the derivative of the energy with respect to x (or yhesforce in x (or y) direction, the
derivative ofT’,, is called the “net” force:

F'e = VI, = C,.x +d, (5.22)

The name “net” force is because this force is created by tlepiw connections, and the
two-pin connections represent the nets. The net force itosatro in (5.12) and (5.23), to
obtain the equilibrium state of the spring system, i.e., stage with minimal energy. This
corresponds to the placement with minimal netlength.

F*' =0 (5.23)

With just the net force acting on the modules, the modulestongly attracted, which
results in a lot of module overlap. Mostly, the modules anecemtrated in the center of the
chip. This is displayed in Figure 5.2 (a). Force-directeddyatic placers utilize an additional
force to spread the modules on the chip, and this is done iguesee of placement iterations.
Two placement iterations are shown in Figure 5.2 (b) and (c).
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(a) Initial placement with minimal (b) After iteration 5 (c) After iteration 10
netlength

Figure 5.2: Placement with minimal netlength (a), and piaeets at certain placement iterations (b)
and (c). In each placement iteration, forces are appliedaeenthe modules and to reduce the overlap.

Previous sections described quadratic placement in geflérafollowing sections presents
the novel force-directed quadratic placement approadeac&raftwerk”. Kraftwerk is based
on separating the additional force into two fundamentatdésr and both forces are imple-
mented in a systematic way. The result of Kraftwerk’s systeenforce implementation is
an advanced convergence for various circuits, even for matdnces of macro cell circuits,
where the placement area provides only few free space. br @tbrds, Kraftwerk can place
many different, and sometimes challenging circuits. Thilis,a robust placer. Later on, the
convergence will be analyzed in theory and based on expataheesults. Since Kraftwerk
needs only a few placement iterations to spread the moduolggeplacement area, Kraftwerk
is a fast placer.

5.4 Geometry

Before going into details on Kraftwerk’s force implemeiat some geometric properties are
described now. They are of interest, because they are usgualkntly in the remaining thesis.
The geometric properties of ormenodule is shown in Table 5.1.

(), yl) Position at the start of a placement iteration

(i, yi) Position at the end of a placement iteration

(Az;, Ay;) Change of the positiol\z; = z; — 2, Ay; = y; — v,
w, h; Width, height

Amod,i =w,; - h; | Area

dmod.| Individual density, used in the module demand

Table 5.1: Properties of one modulePosition means the center position of the module.
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The total module ared g 10tiS the sum of the areas of alf movable and fixed modules.

M+F
Amod,tot: Z Amod,i (5-24)
=1
The average module movemenis:
1 M
p=17 D |(A Ay | (5.25)

i=1

Here,| - | means the Euclidean norm.
Table 5.2 summarizes the geometric properties of the chgre Ht should be noted that
the term “chip” and “placement area” are used interchaniyealthis thesis.

(Tchip: Yehip) Position of the lower left cornelr
Wehip; Pchip Width, height
Achip = Wenip * henip | Area

Table 5.2: Properties of the chip.

In the tables above, it is assumed implicitly that the moslaled the chip are rectangular.
This is done for simplicity. However, in Kraftwerk, the mdds and the chip can have any
shape, even circles are possible. Assuming rectangulactste, a rectangle functioR is
suitable to represent the modules and the chip in the twadgional space x-yR is one for
all points(x, y) within a rectangle, and zero outside. The rectangle is defirydts lower left
corner(xy, yyu), its widthw, and its height.

1 f0<z—ay<w ANO<y—y;<h

5.26
0 else ( )

R('I7 Y; X, Yu, W, h) = {

The rectangle functiorR can be used to compute different geometrical properties. aSo
module distribution/ (z, y) is defined by:

M~+F
V(z,y) =Y R(w,y; o — %,y — %, wi, hi) (5.27)

i=1

V reflects at pointx, y) the number of module rectangles covering this point. Hel¢e, y)

is the “local module density” at poiritz, y). In contrast to this, the term “module density”
means the ratio between the total module atggay wrand the placement are&y,,. The term
“module overlap’(2 represents the ared  of the union of all modules, normalized to the
total areadmoq 10:0f all modules:

Ay

Amod,tot

Q=1- (5.28)
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Ay is determined similar to Klee’s measure problem in two disiens [Kle77]. Based on
V(x,y), the aread,, of the unions of all modules is calculated by:

7 | 1if > 1
AU://w(x,y)dxdy with w(:p,y):{o Ielé/e(x’y)_ (5.29)

If there is no overlap between the modules, then = Amoq0s @and2 = 0. If the circuit
consists of a high number of modules, all of which are smallimension and are concentrated
somewhere on the chip, theh;, < Anogtos aNAQ = 1.

5.5 One Placement Iteration

Based on one placement iteration, the systematic forceeinghtation of Kraftwerk is de-
scribed in the following. First, a formal description is giy, and then an illustration of the
forces is presented. The module positions in each placeiteeation are denoted as follows:
the vectorx’ represents the starting positions, the vestaepresents the new positions, and
the vectorAx is the change of position:

Ax =x — X' (5.30)

55.1 Move Force

The move force moves the modules in the current placementiite, in order to reduce the
module overlap, and to spread the modules over the chip. fErdae the move force, the
placement is represented in generic demand-and-suppigmsys. In principle, the modules
create the demanb’®™ and the placement area creates the supS.

D('Tv y) = Ddem(x7y> - Dsup('rv y) (531)

The demand-and-supply system has to be balanced, i.entdgral over the demand has to
equal the integral over the supply. This is necessary totati@pdemand completely to the

supply.
/ / DM () da dy = / / DS (z,y) dx dy (5.32)

—00 —O0 —00 —00

Using the rectangle functioR (5.26), the demand of one modules:

Dr?](e)r(;],l(x7 y) = dmod,i : R(l’, Y; 2 - %7 y; - %7 Wy, hl) (533)
The module deman® " for all M/ movable andF fixed modules is the sum of all single
module demand® g

M+F

Died(,y) = Y Dgei(x,y) (5.34)

i=1
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For simplicity, the individual module density,.qiiS set to one here. Hence, there is no dif-
ference between the module demanE™ (, ) and the module distribution (z, y) (5.27).
Section 5.10 presents an advanced approach for sc@ling in order to remove unwanted
halos around large each modules. Here, “halo” means freeesfs@e Figure 5.7). In the
module demand (5.34), there is no fundamental different&d®n small or large modules,
or between fixed or movable modules. Thus, it can be used t@ plarious circuit types like
standard-cell circuits with millions of small modules, radesize circuits with small and big
modules, and circuits with fixed modules.

Besides a module demand, a module sugpiyis necessary for the demand-and-supply
system. In the simplest case, the whole placement areade®supply for the modules:

Dou(,y) = dsup- R(,Y; Tehip, Yehip, Wenips Renip) (5.35)

The module supply densitl,, is determined by (5.34) and (5.32):

M+F
Z dmod,i Amod,i

dsyp = —=1 5.36
sup Achip ( )

Using (5.35), the modules are spread over the whole placearea. Section 5.11 presents
an advanced approach for the module supply, in order to dgresamodules according to a
user-given module density. With this, the modules are ncgapover the whole placement
area, but can be placed tightly, which reduces the netlength

The module demand-and-supply systBqis the module demanB 2" minus the mod-

U mod
ule supplyD >

Dinod(, ) = Dog (,4) — Dou(w,y) = D(,y) (5.37)
To place the modules overlap-free on the chip, the moduleaderand-supply system is used
for D. However, the generic demand-and-supply sysferoan be extended by additional
demand-and-supply systems. For example, it can be extémdéte routing demand-and-
supply system, in order to optimize routability during patent. This is described in Section
6.4. D can also be used to optimize the temperature profile of a €nip4b, Obe05].

The generic demand-and-supply systém(5.31), and thus the module demand-and-
supply systenDqq(5.37), is interpreted as a charge distribution, and thegehdistribution
creates an electrostatic potentiaby Poisson’s equation:

32 32
(@ + 8—y2) ®(z,y) = —D(z,y) (5.38)
Section 5.12.1 gives details on computing the potedtidlhe usage of a potential is similar to
Eisenmann’s placement approach [EJ98, Eis99, Obe05]. tHawbere, a “constant” force is
used, and the force is accumulated over the placemenidesatin contrast to this, Kraftwerk,
as presented in this thesis, models the move force withttajats and spring connections.
Consequently, the move force dependsxgrmand is not a constant force. In addition, a hold
force is used in Kraftwerk, in order to decouple each plag@nteration from the previous
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one. Consequently, no force accumulation is necessaryrési of this new force modeling,
the placement algorithm has an advanced convergenceof&c8 analyzes the convergence
of Kraftwerk in theory and based on experimental results.

Back to the move force. For modulethis force F"?*¢is created by a spring connection
between the module and its target paint

The target point; is determined by the starting module positigrand the negative gradient

of the potentialb.

. , 0

T = 8x<I>(x,y) ) (5.40)
Based on the move force, which depends via the target poith@potentiakb (5.39) and
(5.40), and the potential represents the demand-andysggptemD (5.38), Kraftwerk is
driven by adapting the demand-and-supply systemw; in (5.39) is the spring constant of
the move force, and is denoted also as the weight of the mawge.fo; affects the distance a
module: is moved during one placement iteration: with a highthe move force of module
1 pulls a lot on its module, and the module will be moved a lorggatice. The opposite is true
for a smallw;. Using target points for the move force, the modules can beechat most up
to their target point during one placement iteration. Herlee module movement is limited.
Moreover, the movement limit is decreasing continuoushirdkie placement iterations. All of
this enforces Kraftwerk’s convergence. To represent theatiorce (5.39) in a matrix-vector
notation, the weights of the move force are collected in iagahal matrix(ojx:

C, = diag(uy) (5.41)

The gradients of the potential are collected in the vedtor

9
o, = <%q>

0

-
(=) Ox

0

T
oy —P (5.42)
(5,95) 0z (' vyM))

All target points are represented in the vector x' — ®_. Therefore, the move forcBJ°ve
in matrix-vector notation is:
F° = C, (x — x) (5.43)

X

5.5.2 Hold Force

To spread the modules iteratively on the chip, the move fmesed. However, besides the
move force, the net force is acting on the modules to minirthizenetlength. Thus, the net
force has to be compensated at the start of each placemextiote Otherwise, the modules
collapse back to the initial placement, where the netlerggthinimal, but the modules overlap
a lot. The compensation of the net force is done by the holcefoand the hold forcghe
equals the negative net force:

Fod — —(C,x' +d,) (5.44)
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Using only the hold force as one additional force, the maoslw@l not collapse back, but
stay at their position in the current placement iterationother words, the change in module
positionAx is zero. This can be shown b® + FI° = 0 & C,Ax =0 & Ax = 0. It
should be noted here that the hold force equals the net folgead the start of the placement
iteration, where the modules are locatecatMoreover, the hold force is a constant force, as
it does not depend ax.

The result of the hold force is that each placement iteras@ecoupled from the previous
one. Therefore, the placement algorithm can be restartedyateration, and the engineering
change order (ECO) is supported best. For example, aftergaing the circuit, and thus
introducing module overlap, the placement process candiarted from the last placement,
in order to remove the introduced module overlap. Hencepklaeement process needs not be
started from scratch, which saves a lot of runtime. Secti@p8esents experimental results
of the ECO feature of Kraftwerk.

E o] c] B 2] 5]

(a) Starting placement (b) Hold force
- L
i
._
" 'F
v
(d) Demand-and-systei? (e) Potential® (f) Target points, move force

Figure 5.3: lllustration of one placement iteration. Thenters in the big arrows represent the se-
quence of the steps, taken in each placement iteration. iy@nlacement with modules and nets.
(b) Hold force to preserve the placement of (a). (d) Demamlsupply system. (e) Potential. (d) and
(e) are density plots with white color representing low dignand black color high density. (f) Move
force, created by springs between the modules and theettpaints. (c) Resulting placement (sum of
the net, move, and hold force is zero). The target pointsepeesented by crosses in (c) and (f).
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5.5.3 lllustration

Previous sections described in a formal way how the moveefarad the hold force are de-
termined, and how they are modeled. This section presenthkiatration of one placement
iteration, particularly of the forces.

The placement iteration starts with a given placement, leach modulé is located at
(«%,yi). Figure 5.3 (a) displays such a placement. Ignoring the nfaree, only the net force
is acting on the modules and attracts them together. To cosape for this, the hold force is
used, which preserves the given placement. The hold foreadisplayed as arrows in Figure
5.3(b).

Based on the module positions, the demand-and-suplystem is created, which repre-
sents the local module density. Figure 5.3 (d) shéwa the given placementD is treated as
a charge distribution, which creates an electrostaticri@ked via Poisson’s equation. Such
a potential is displayed in Figure 5.3(e). Comparingn Figure 5.3 (d) with the potentiab
in Figure 5.3 (e) reveals that the potentiacan be viewed as a smoothed representation of
the demand-and-supply systedth Moreover, in regions wher® is low, the potentialb is
low, and vice versa.

The gradients of the potential, evaluated at the positidrice modules, determine the
target points. The target points are displayed as crossegure 5.3(e). The move force is
created by spring connections between the modules andténgat points. With the springs
to the target points, the modules are moved away from higkitieregions (black regions in
5.3(d) and (e)) towards low density regions (white regionS.B(d) and (e)).

Hence, three forces are acting on the modules in each plaxtetemtion: the net force,
the hold force, and the move force. These forces move the lagduntil the sum of the forces
is zero. The placement, where the sum of all three forcesrig &ethe resulting placement
of one placement iteration. Figure 5.3(f) displays the Itesyplacement. Comparing Figure
5.3(c) with (f) shows that the modules are moved towardsdiget points. In addition, the
modules are spread more over the placement area, and thdentv@ulap is reduced.

5.6 Core of Kraftwerk

In summary, three forces are used by Kraftwerk in each placenteration: the net force
F"® and two additional forces: the move forB&°"® and the hold forc&°. Setting the
sum of the three forces to zero (5.45) gives the core systdmezr equations (5.46) used in
Kraftwerk’s iterative placement process.

Fnet + Fmove + Fhold -0 (5_45)
(cx n éx> Ax=-C & (5.46)

Solving (5.46) with respect tAx, and updating’ by Ax gives the new module positioss
in the current placement iteration. Details on solving §.dre described in Section 5.12.2.
Based on (5.46), Kraftwerk has three degrees of freedonst, Rlve cost functioi”, rep-
resented inC,. Second, the demand-and-supply systerrepresented i, . Third, the
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weights of the move force);, represented iléx. Kraftwerk is very flexible and utilizes the
degrees of freedom to optimize different objectives (likBWL netlength and routability),
and to control the quality of placement.

5.7 Overview of the Placement Algorithm

Algorithm 1: Global placement algorithm “Kraftwerk”.

/I Start with given placement
1 while Module overlag? > 20% do

2 Determine demand-and-supply systéraz, y);
3 Calculate potentiab(z, y) based ornD(z, y) and Poisson’s equation (5.38);
4 Apply net model;
/I In x-direction (similarly in y-direction):
5 begin
6 CreateC,, C,, and®,_;
. Solve (Cx + (°3x> Ax = —C, & _w.rt. Ax;
8 Update module positions by Ax;
9 end
10 Call quality control,
11 end

/I Next step: final placement (legalization and detaileccplaent)

Algorithm 1 displays the iterative global placement algjam of Kraftwerk. The global
placement starts with a given placement. This can be a plkgeof a previous run of
Kraftwerk, but with additional module overlap introducedg., after gate sizing the placed
circuit. Or, the placement is run from scratch, i.e., it mrgtd with the initial placement. For
the initial placement, all modules are placed at the cerftéreochip, and the quadratic cost
functionI” (5.7) is minimized over a few iterations (about five). In e&ehation, a net model
is applied to represent the netlengtHin

In global placement, the modules are spread iterativelyherchip. Each placement iter-
ation starts with determining the demand-and-supply syste(line 2), and computing the
potential® (line 3). Then a net model is applied to determine the weigltthe two-pin
connections and to represent the netlength in the quad@gidunctionl” (line 4). After that,
all elements of the core system of linear equations (5.463atermined (line 6). Then, (5.46)
is solved with respect tdx (line 7), and the module positions are updated (line 8). &hes
three steps (line 6-8) are done for x- and y-direction. Atehd of each placement iteration,
a quality control procedure is called, in order to adjustweghts of the move force. The
global placement is stopped if the module oveflbafs.28) is below a certain limit, e.g., below
20%.

After global placement, final placement is done. Here, thelutes are legalized first,
which means that the remaining overlap is removed, and thautas are aligned to rows/grid
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structure if necessary. Considering the remaining ovesfagbout 20%, the legal placement
is obtained quickly (about 5% of the runtime of global plaest), and the netlength increase
by about 1%. Chapter 7 presents new approaches for legahiz#tfter legalization, detailed
placement can be used to improve the legal placement.

5.8 Quality Control

The weightsw; (1 = 1,2,3,..., M) of the move force (5.41) are one degree of freedom of
Kraftwerk. They are utilized to control the iterative gldipdacement process, and to control
the quality of placement. The weight; of module: is initialized at the beginning of the
global placement process according to:

Amod,i 1
Mg M (5.47)
Aayg represents the average module area, &hds the number of movable modules. With
the factorAmeai/Aavg the move force (5.39) of moduleis proportional to its module area
Amod,i Consequently, the big modules are moved faster/furtrear #mall modules, and the
small modules have to be moved less to obtain an overlap faeement. This improves the
netlength, particularly in mixed-size placements, whemsnof the modules are small, and
where most of the nets interconnect small modules.

Based on Rent’s rule [LR71], with increasidd, there are more connections between
movable modules than connections to fixed modules (e.gd fiX2 pins). Hence, by mini-
mizing the netlength, the movable modules are more comitaeith increasing/. Thus, in
the initial placement, the module overlap is higher, andseguiently the gradients of the po-
tential® are higher. Consequently, the target points (5.40) aredagway from the modules.
To preserve the same move force as with sméallthe weights of the move force are scaled
with 1/M in (5.47).

To control the quality during the placement process, theatttaristics presented in Sec-
tion 4.4, and demonstrated in Figure 4.4 are used. Therewhich is the inherent change in
the approximation error between the quadratic cost fundtiand the real objective, depends
mainly on the module movement To obtain a high quality placement, i.e., a placement with
good netlengthAe should be as low as possible. Hence, good placements amadiwith
a low i.. To controly, the weightso; of the move force are used. This is done because with a
low w;, the target points attract the modules less, resulting awenhodule movement. The
opposite is true for a highy;. However, with a lowu, a high number of placement iterations
are necessary to spread the modules over the chip. Congbgunegh quality placements
need a high CPU time, and vice versa. Thus, there is a trddsetfeen quality and run-
time, and this trade-off is controlled by the user in settrtgrget module movement-. The
regulation of the module movementaccording to the target movememnt is done by the
quality control procedure then. This procedure is callethatend of each placement itera-
tion (see Algorithm 1), and is implemented as follows. Fitse average movementof all
modules is calculated. Then, a scale factas determined based gnand u7: if u < pr,
thenk > 1;if u > ur, thenk < 1; elsex = 1. Figure 5.4 shows a suitable function

k(p) =1+ tanh(In(ur/p)).

w; =
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Figure 5.4: Scale factor depending on module movemeantnd the target module movement.

After the scale factor is determined based gnand yr, the weightsw; of the move force
are multiplied with:
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Figure 5.5: Trade-off between runtime and quality basedi.pn Numbers in brackets represent the
number of placement iterationgy is normalized to the average module dimension. Resultsased
on six circuits of the ISPD 2005 contest benchmark suite.

Figure 5.5 displays the trade-off between runtime (CPU }iared quality (netlength in
HPWL). The trade-off is achieved with the presented qualdwtrol, and is determined by
the user parametegry. With a low i1, the number of iterations is high, which results in a
high CPU time. Though, the netlength is low then, i.e., thaliggpis good. With a highur,
the CPU time is low, but the netlength is high. To choose abléttarget movement;, the
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average module dimension is a good reference. The expdrhresults presented in Section
8 are obtained withu; being around this reference.

5.9 Convergence

Kraftwerk is driven by adapting the demand-and-supplyeysD. Due to the systematic
force implementation, the placement algorithm converge shat the demand is adapted
further to the supply in each placement iteration. In ppiei this means that the module
overlap is reduced in each iteration. This section addsese convergence of Kraftwerk.
First, the convergence is analyzed in theory. Then, theaxgence is demonstrated by exper-
imental results.

5.9.1 Theory

The following theoretical analysis of the convergence isdobon various assumptions. It is
intended as a motivation for the presented force implentiemtaTo analyze the convergence
in theory, an approximation of the position chanye; of modulei during one placement it-
eration is needed first. Since the maig is diagonal dominant, it can be approximated with
a diagonal matrixA, = diag(a, ;). Using the Frobenius matrix norih&||3 = ijzl e;;
and different circuits, the relative error betwe€r) and its approximatio® , is on average
about 12%. Hence, the approximation is valid, and:tkie equation of the system of linear

equations (5.46) is approximated by:
0

(a, ) I (5.49)
With 3,; = a“jrw (5.49) becomes:
0
Awy = =B i7® 0<fBpi <1 (5.50)
Ox ()

Analogous results are obtained for the y-direction. To nthkefollowing formulas simple, it
isassumed that, ; = 1 andj,;, = 1. Later on it is described that both variables can have any
values of (5.50). The position changep, of module: during one placement iteration is:

Ap, = ( ii? ) - -Vo

V represents the two-dimensional nabla opergtdr, ;-
Now, itis assumed that the demand is created by small elen(egt, by the modules), the

demand elements are moved by the move force, and the chapgsitbn of thei-th element

is Ap,. The supply is not moved during one placement iterationeBas these assumptions,

the change of demanti DM in one regionk during one placement iteration is determined

next. Like in charge conservation, there is no creation ss lof demand. Thus, the change

=V, (5.51)

(=}97)

T
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of demandA D$Min region R is the flow of the demand across and inside the boundary
during one iteration:
(2}
ADS™ = / DEEM(t) dt (5.52)
t’!L

Each placement iteration can be assigned a certain timeastdghe current placement itera-
tion starts at time = ¢,, and ends at time=¢,,,;. The flow of the demand)g%’"(t) at timet
is created by the demand elements moving inside the reiantimet.

Dgt) = — Y Aid; Aping (5.53)

1€EOR

The demand elements defined by the ared; and the densityl;, and both properties have
positive values. According to (5.51), the position chaaygp; of the demand elemeritis
—V®,. The vectom; points outside the regioR, has a length of one, and is normal to the
boundaryoR. Thus, the produciAp; n; represents the normal component of the position
change, and is positive if the vectArp; points outside the regioR. Since the flow inside the
region is needed in (5.52), there is a negative sign befasim in (5.53). Assuming that all
vectorsV @ crossing the boundai@R point outside (or inside) in the regidr, then (5.53) is
finally transformed to:

D3EMt) = ~(t) 7{ Vodn with ~(t) >0 (5.54)

OR

If some vectorsV ®, which are crossing the boundamy, point outside of the regio® and
some inside, then further statements on the convergencerdgrbe made if the demand
elements are moved an infinite small distance. This wouldrtieat an inifinite high number
of placement iterations is necessary to spread the demasrdioy supply, which results in
impracticable runtime. However, in all performed expenmse the demand elements are not
moved an infinite small distance, and the convergence to ranstladapted demand-and-
supply system is given in about 25 placement iterations. ceethe assumption about the
vectorsV® crossingdR, made to obtain (5.54), is valid. To obtaikp; in (5.51), it was
assumed that,; = 1 andg,, = 1. If 0 < 4,; < 1 and0 < f3,; < 1, theny(t) in (5.54) will
be smaller, but still non-negative.

Using Poisson’s equation (5.38) in the regi®mwith [, VV® dz dy = — [, D dx dy, and
Gauss’ integral theorerfi, , fdn = [}, Vf dx dy, (5.54) yields:

DIM(t) = —~(t) / Ddxdy with ~(t) >0 (5.55)
R

Inserting (5.55) in (5.52) gives the main equation of theveongence analysis:

tn+1
AD%em —&/Ddxdy with 4 = / ~(t)dt >0 (5.56)
R

tn
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The extreme case, whetds zero, and hence the demand in one rediaioes not change, is
given for example if the regiof is too large. This extreme case is neglected in the following
The main equation of the convergence analysis (5.56) descthat the demand in the region
R will decrease during one placement iteratida/§™ < 0), if the integral of the demand-
and-supply in the region is positivnggD dz dy > 0). According to (5.31), this integral is
positive, if the demand is greater than the supply. Theegf&.56) describes that the demand
will decrease in the regio®, if the demand is greater than the supply there. Similahg, t
demand in the region will increase, if the demand is smaliantthe supply. Consequently,
(5.56) expresses that the demand is adapted further to gpysm an (arbitrary) regiom?
during each placement iteration. If the whole placemerd e&¢he union of such regions, then
the demand of the whole placement is adapted further to thplygualuring each placement
iteration.

Therefore, Kraftwerk converges such that the demand istaddprther to the supply in
each iteration. And this convergence is based on using a®&woisotentiald (5.38), target
points (5.40), and a constant hold force (5.44).

5.9.2 Experimental Results

The previous section analyzed the convergence based aratiffassumption. However,
these assumptions may not always be fulfilled in reality. Bunherous experiments on sets
of different benchmark suites revealed that Kraftwerk @vges also in practice. Hence,
Kraftwerk is robust and it can place various circuits. F&6r6 represents the results of one
typical experiment. Here, a circuit with 0.2 million smallorable modules and some big
fixed modules is placed over a few placement iterations.

The standard deviationp of the demand-and-supply syste as displayed in Figure
5.6(a), is a suitable metric for the convergence:

—+00 400

%= | | 0= o) dway (5.57)

—00 —O0

The lowerop is, the better is the adaption of the demand to the supplgeSimaftwerk adapts
the demand further to the supply in each iteratiog should decrease continuously over the
iterations. Exactly this effect is illustrated in Figuréga). Acnip in (5.57) represents the area
of the chip. The average, of the demand-and-supply system is by definition (5.32).zero
Figure 5.6(a) shows also that, is bound from below, and this lower bound is almost
reached at iteration 25. This means, the demand-and-sapglgm is almost adapted there.
The lower bound ofp can be computed by assuming that all modules are placedpvizde
on the chip. If the densitieg; of all modules equal the supply density, then the lower bound
is zero. Otherwise, the lower bound of is greater than zero. The circuit represented in
Figure 5.6 (a) has a supply density of about 0.45, and almbstalules have a density of
1. This results in a lower bound of, of about 0.45. If the module demand-and-supply is
represented i, then with a decrease of, the module overlag) (5.28) is also decreasing
continuously. This behavior d? is demonstrated in Figure 5.6(a). Moreoveris about 2%
at the last iteration.
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Figure 5.6: Demonstration of Kraftwerk’s convergence base the smooth and continuous progress
of some characteristic parameters. Circuit: adaptecleof$PD 2005 contest benchmark suite.

The parametet, displayed in Figure 5.6(b), represents the average lesfgtie potential’s
gradientd. There,| - | means the Euclidean norm.

1 M

0=37 Y VO, y) ) (5.58)
i=1

The continuously decreasing standard deviatigrof the demand-and-supply systdbre-
flects that the peaks i are reduced more and more. As the potentiakepresentd) by
Poisson’s equation (5.38), the average lengti the potential’'s gradient is also decreasing
continuously, as displayed in Figure 5.6(b).

Using (5.50), the module movement of modul@ x-direction is limited by the gradient
of the potential in x-direction:

Azi| < '%(x,m (5.59)

ox

(=],y5)
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Thus, the average module movemegns limited by é:
1 M
p= > | (Aw A" <0 (5.60)
=1

This relation betweep ando is demonstrated in Figure 5.6(b). Moreover, the progress of
has three characteristicg.is small in the first placement iteration as the weights ofténget
pointsw; are initialized with a small value (5.47). Thenm,is increasing and is around the
target movemeni because of the quality control described in Section 5.8erAftacement
iteration 20, is continuously decreasing as it reached its upper bnaimdé is continuously
decreasing over all placement iterations.

Figure 5.6(c) shows that the netlengthis continuously and steadily increasing up to
around placement iteration 20. This is because the moduiement, is almost constant
aroundur in these iterations. Theid, increases with a lower rate and is almost not changing
after iteration 30. This is also due to the module movemenivhich is decreasing after
iteration 20 and has a very low value after iteration 30.

In summary, Figures 5.6(a), (b), and (c) demonstrate theargence of Kraftwerk based
on the the smooth and continuous progress of some chasdittgrarameters. Particularly,
the parametesp, as a suitable metric for the convergence, is continuoustyehsing. In
addition, the global placement, as represented in theseefigis stopped at around iteration
25, because the module overl@ps below 20% there. Another useful termination criterion is
the value ofrp.

5.9.3 Limitations

Some limitations of the convergence of Kraftwerk should beed here. First, if two modules
are exactly on top of each other, i.e., their module pos#tian, y;) are identical, then they
must have different adjacent modules. Otherwise, thetieally stacked modules are moved
always in the same way, and the overlap between them will @aseimoved. However, in all
of the experiments, such critically stacked modules wetadetected. Another limitation of
Kraftwerk is the number of placement iterations necessagbtain the completely adapted
placement. Such a placement is describedppeing equal to its lower bound, which means
there is no module overlap. In theory, this number of iteradiis infinite. This is because
each modulé has to move a certain distangein the whole placement process, in order to
remove all module overlap. Though, the module movementdsedesing over the placement
iterations (execept the first ones). Hence, the requirddmtg); is only reached in an infinite
number of iterations. However, Kraftwerk is a global plaeerd it is stopped if the placement
is almost adapted, e.g., if the module overlap is below 20B&s€ almost adapted placements
are obtained in about 25 placement iterations.

5.10 Advanced Module Demand

In Section 5.5.1, the individual module densiky,q of the module demand is set to one for
simplicity. Usingdmoegi = 1 results in a halo, i.e., free space, around each module.rd=igu
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5.7(a) demonstrate such halos, particularly around tlgeelarodule at the center. This halo
is not wanted, because the small modules are “pushed away’tfee large module, which
increases the netlength. A better placement with no halorareéhe large module is shown
in Figure 5.7(b). This placement is achieved by scalipgy; down for large modules. This
section describes details about this approach for prevguoimwanted halos.

(a) Withdmeqi= 1: halo around the large module.  (b) With scaling downimeq,i No halo.

Figure 5.7: Impact of scaling down the module dengiyq ; for large modules. Global placements
are displayed here.

The reason for the halos is the potentigland thus the demand-and-supply system
Section 5.9.1 demonstrates with (5.56) that the demand @gi@am R will change until the
demand equals the supply in this region. Hence, after thieagjslacement iterations, each
module: is in an “exclusive” regionk;, and in this region, the demand is balanced by the
supply. With a module supply density af,, an individual module densityy.q;, and a
module areainyqq,, the exclusive regioti; of module: has the areal g ;:

d .
Ap; = C’Z“—d Amodi (5.61)
sup

In Figure 5.7(a)dsyp = 0.5 anddmod,i = 1. Thus,Ar; = 2 - Aneq,, and the exclusive region
for the large module in the center is quite big. Consequetitbre is a halo around the large
module. To prevent the haldy.q;has to be scaled down depending on the module Afga:

A good approach fotlmeg,iis:

d 1 if Amod,i < Alarge (5 62)
d B .
o \/% (1 - dSUp) + dsup else

There, the individual module density,qq i Stays one for small modulesl{oq,i < Ajarge). This
conserves the halos around small modules, as these halog@ssary to spread the small
modules on the placement area. For large modulggdi > Alarge), dmod,i IS SCaled down
with increasing module arednoq; In addition, dmeg,i IS bound from below by the supply
densityds,, Otherwise, the placement algorithm would not convergencan overlap-free
placement. A good value for the reference arkgg used in (5.62) i$H0 Aayg With Agyg
denoting the average module area. Figure 5.7(b) demoestita¢ result of scaling down the
individual module densitymog,iby (5.62). Here, the halo around the large module is removed.
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5.11 Advanced Module Supply

In Section 5.5.1, the whole placement area provides suplthe modules. This results in
that the modules are spread on the whole placement areapas & Figure 5.8 (a). The
module density equals the chip utilizatiarthen.

Amods mov
u = ’ 5.63
Achip - Amods,fixed ( )

Amods.moviS the total area of all movable modules,ogs fixediS the total area of all fixed mod-
ules, andAg, is the chip area. Prior to placement, the chip area is detertnby floorplan-
ning. Thus, the chip area is fixed during placement. To lowemtetlength, it may be allowed
to pack the modules with a higher density tharFigure 5.8 (c) demonstrates the effect that
with increasing module density, the netlength decreaseis. SEction presents an approach to
control the module density.

1.35
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Figure 5.8: Control of the module density. Module densitgtpl(a), (b), and (d) represent a low
density with white color and high density with black colorhébig black rectangles represent fixed
big modules. Based on a circuit with 0.2 million small mowabiodules and some big fixed modules.

Since Kraftwerk adapts the demand to the supply, and the le®dwe represented in the
demand, the supply can be used to control the module deBsisgd on an user given module
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target densityd, the creation of the module supply is done in two steps (sger€i5.9). First,
an initial module supplyD o8 .. (z, y) with the valuetd is created at each poift, y) where

mod,init

the module demand is greater zefe™(z,y) > 0. Second, an additional module supply

(0]
Do aqd(@, ) with the valuetd is created around the initial module supply. The additional

module supply is needed to get a balanced demand-and-ssysigm (5.32). The sum of the
initial and additional module supply gives the module sypplys = Dood it + Piod.add |f
(5.62) is used for the module demand, thgp, = td.

y y D%ﬂﬂ,inggg, y) = td
Ddem(x y) <~ 0 Dmod,add(xa y) =td

mod

(@) Module demand dem (b) Module supplyD; >

Figure 5.9: Creation of the module suppBf, & = D8 i+ Dod aaqP@sed on the module demand
Dem This controls the module density to hé

Since the potential is solved numerically, the potentialakulated on a grid structure.
The demand-and-supply system is also represented by atguictise. The grid structure
divides the placement area in a number of bins. Hence, thestejs described above to
create the module supply can be done by using the bins. Hiesinitial module supply is
created in each bin where the module demand is greater zeocon8, the additional module
supply is created iteratively around the bins, where thgininodule supply was deposited.

5.12 Implementation Details

This section covers different implementation details dalmmmputing the electrostatic poten-
tial (z,y) and how to solve the core system of linear equations (5.4ig)ezftly.

5.12.1 Calculation of the Potential

The target points (5.40) of the move force are determinedhieygradient of the potential
®(x,y). The potentialb(z, y) itself is given by the demand-and-supply syst&rtx, y) and
Poisson’s equation (5.38):

0? 0?
(@ + 8—g/2) (z,y) = —D(z,y) (5.64)



58 CHAPTER 5. KRAFTWERK: FORCE-DIRECTED QUADRATIC PLACEN\H

One approach to calculate the potendiét, ) is to use a Greens functiéi(z, y) = In (22 + y?)
in combination with a convolution:

O(z,y) =k - D(z,y) » G(z,y) with k= const (5.65)

The convolution can be solved by the Fourier TransformaWit80]. For a computer algo-
rithm using numerics, the Discrete Fourier Transforma(loRT) is applicable. This means
that the demand-and-supply systémhas to be discretized. The discretization is done by
overlaying the placement area with a grid structure, re@sgllin a number of bins. The av-
erage value ofD in a bin gives the discrete value in this bin. Based on Nyg8isinnon
sampling theorem [Nyg28], the maximal bin dimension hasatdalf of the minimal module
dimension. However, withV the number of modules, the number of bins wouldgv?),
which results in an impracticable computational complexi@ased on experimental results,
the bin dimension can be reduced to about the average moduénsion, without loss in
quality. With this, the number of bins i9( V), thus the computational complexity is practi-
cable, and depends linearly on the numieof modules.

Since the DFT results in periodic functions, the grid stowetfor discretization needs to
be twice as big as the placement area in each direction (x)aridhis increases the number of
bins, and thus increases the runtime to calculate the pateat faster numeric approach to

compute the potential is to transform the Laplace operggor + 7 ) into finite differences

[HW76]. Here, the demand-and-supply system has to digectas described above, too.
However, the grid structure needs not be enlarged in eaettchn. Hence, the runtime is
lower compared to the DFT approach. Using finite differentes potential is determined by
solving a system of linear equations. There, the systemixmawf special kind, namely it has
a band structure. This means that all entries of the matexaar the diagonal. Such a system
of linear equations is solved efficiently by a geometric nguitd method like DIMEPACK
[KWO1].

5.12.2 Solving the System of Linear Equations

The core of Kraftwerk is to solve the system of linear equati¢b.46) with respect td\x
in each placement iteration. Addinfyx to x’ gives the new module positionsin each
placement iteration. By substituting, + C, = A and—C,®, = b, the system of linear
equation is:

A-Ax=Db (5.66)

The matrix A has similar properties as the matiX, (see Section 5.2)A is symmetric,
positive definite, and highly sparse. Compared to the matrhich is used in solving Pois-
son’s differential equation (see previous Section 5.12A1has no band structure, i.e., the
off-diagonal entries are not always near the diagonal. dfoee, geometric multigrid meth-
ods like DIMEPACK are not applicable to solve the system pnédir equations (5.66). An
efficient method to solve (5.66) is the conjugate-gradi@@) approach [YouO03]. This is an
iterative approach, and in each solving iteration, a mategtor multiplicationA - r is exe-
cuted. The runtime of the CG approach depends mainly on thtsxxwector multiplication,
and on the number of solving iterations. The number of sglviarations can be lowered
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by using preconditioning matrices. An efficient precorattimatrix is based on the diagonal
entries ofA. The runtime of the matrix-vector multiplication dependsyongst others, on the

arithmetic precision (single or double precision). Singe56) is solved for the changax

in the module positions, single precision is sufficient. sTtiecreases the runtime of solving
(5.66) by a factor of two, compared to double precision, Wwhiould be necessary if (5.66) is

solved for the absolute module positiasAmongst others, this single precision arithmetic
gives the fast runtimes of Kraftwerk.
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Chapter 6

Routabllity-Driven Placement

(a) RUDY of a circuit (b) Exact routing demand (c) Module density

Figure 6.1: Routing demand estimation RUDY (a), exact mqutiemand (b), and module distribution
after routability-driven placement (c). White color repeats low density, and black color high density.
Results are based on the circuit ibm12e of IBM-PLACE 2.0 bemark suite.

The layout synthesis of a circuit means to place the moduigb®chip, and to route the
nets, which connect the modules. These two steps (placeandnbuting) are done consec-
utively, mostly by different computer algorithms. To olstdhe best results, routing must be
considered during placement. This is called “routabitityjwven placement”, and this chapter
presents new approaches for it. In detail, a circuit may lzakegh routed wirelength, i.e., a
high wirelength after routing, or the circuit may even notrbatable, because of “congested
regions”. Congested regions are regions on the chip, wherenuch wires are necessary to
route the nets, than routing tracks are available there.tHarovords, in congested regions,
the routing demand, created by the nets, exceeds the rostipgly, given by the routing
layers. Consequently, routability-driven placement nseanremove the congestions during
placement. To do this, two problems have to be solved. Eirsgccurate and fast estimation
of the routing demand is necessary. The most precise intowmabout the routing demand
would be given by routing, but routing can not be performedrdythe iterative placement
process, because of the enormous runtime of routing. Seteadouting demand estimation
must be integrated in the placer to optimize routabilityisidhapter addresses both problems.
First, the efficient routing demand estimation called “RUDY¥ presented. After that, the
integration of the routing demand in the placer Kraftwerlkléscribed.

61
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6.1 RUDY: Efficient Routing Demand Estimation

This section presents RUDY, which is a novel and efficientrestion of the routing demand.
First, the routing demand of one nete N is described, and then the routing demand of a
complete circuit is presented. In general, one mebnsists of several pins. The positions
of the pins determine the “net rectangle”, which is the sesllectangle enclosing all pins.
Amongst others, Table 6.1 describes the geometric pregseofi the net rectangle. This rect-
angle has the lower left corner located @fet., Ynetrn ), @ Width ofwpet,,, and a height ofines ..
The product of width and height gives the atéa., Independent of the net rectangle, net
n has the wirelengtli.,,. L, can be the routed wirelength, i.e., the wirelength aftetingu
However, routing takes some runtime. To estimate the rgutiemand in low runtime, it
is better to use an estimation of the routed wirelengthZipr A suitable estimation is the
half-perimeter wirelength (HPWL), which is the width,e,, plus the heighti,e,, Of the net
rectangle.

(Tnetn, Ynetn) Position of the lower left corner
Whetn, Mnetn Width, height

Anetn = Wnetn * finetn | Area

L, Wirelength

Table 6.1: Properties of one netand in particular of its “net rectangle”.

The routing demand estimation technique RUDY is based oi#geto assume a uniform
wire densitydyiren Within the net rectangle of each net. There, the acronym RUBR\ds
for RectangulatUniform wire Density. The RUDY of one net is displayed in Figure 6.2. In
principle, the wire densityl,ie , Of Netn is the ratio between the wire aref,i » and the net
areaA,enr The wire area is the product of the wirelendih and the wire widthp. The wire
width p is the average wire-to-wire pitch of process technologggdus fabricate the circuit.

do Avwire,n o Ly -p
wire,n = =
Anet,n Wnetn * hnem

(6.1)

The routing demand)r?,ﬁ’{‘n of one netn using RUDY is the wire densityyr n inside its
net rectangle, and zero outside. Using the rectangle fom¢&.26), the RUDY of one net is:

Drgi?n (377 y) = dwire,n - R(xu Y5 Tnetns Ynetns Wnetn, hnem) (6.2)

The routing demand 2" of all N nets, i.e., the RUDY of a circuit, is the sum of all net
routing demand$ 2m -

rout,n

N
Dr((j)lejin(xa y) = Z Dr?)i?n (xv y) (6.3)
n=1

6.2 Characteristics of RUDY

Figure 6.1 shows different density plots. The exact routiiegnand, displayed in Figure
6.1(b), is given after routing, and describes at pdinty) the number of wires, covering
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Net rectangle with uniform wire density dyiren:
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Figure 6.2: Routing demand estimation RUDY of onemet

this point. The comparison between the estimated routimgaghel using RUDY (see Figure
6.1(a)) and the exact routing demand (see Figure 6.1(b)pdstrates that RUDY estimated
very precisely regions with high routing demand (high wiendity), as well as regions with
low routing demand (low wire density).

Figures 6.1 (a) and (b) give a graphic comparison betweenRai2l the exact routing
demand. In the following, a more precise comparison baseore characteristic parameters
is given. Moreover, not only RUDY is compared with the exaxitmg demand, but also the
quality of two other estimation techniques is analyzed, elgrthe approach called “RISA’
[[EC94], and the approach of Westra et al. [WBGO04]. To do theparison, the chip is
overlayed with a fine grid structure, which results in a nundféins. In each bin, the exact
routing demand, and the three estimated routing demandteéeemined. These four routing
demands in biri are represented ifeac{?], 7rupv(?], TrisA], @NATwestrd?], respectively. For
each routing demand, the average,.,.~ over all N bins is computed:

N
1 .
Hdem> = E T<dem>|t] With dem= exact, RUDY, RISA, or Westra (6.4)
=1

The average errqig o, for each estimation technique is then given by:
Lermor (€S = ficest> — llexact With  est= RUDY, RISA, or Westra (6.5)

Table 6.2 shows that RUDY has the best average error, Wesjpproach has a higher average
error, and the average error of RISA is far too high.

To obtain the standard deviation of the ersgf,, the routing demand of each estimation
technique is scaled such that the average error is zero:

P eoso[i] = Teosa[i] 222 with  est= RUDY, RISA, or Westra (6.6)

H<est>
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The standard deviation of the err@go; is:

N
1 .
Ot (€)= ——— Y (reess[i] = rexacli])’  With est= RUDY, RISA, or Westra

N—14
(6.7)
In (6.7), the factorl /(N — 1) is used instead of /N, in order to address the unbiasedness
[And74]. However, in the evaluated circuits, the numbérof bins is hundred and above,
hence there is no big difference betwedeiv and1/(N — 1).

In Table 6.2, the standard deviation of the ey, of the three estimation techniques
are all about the same. Westra’s approach is the best, RIS#e iworst, and RUDY in the
middle between them. In the runtime necessary to obtairoihing demand, RUDY is as fast
as RISA. Westra’s approach needs about 10 times more runfimebtain the exact routing
demand, i.e., to route the circuit, takes about factor 4008emuntime.

| | RUDY | RISA | Westraetal.| Exact |

temor | 0.013| 200653 0.939 —
oemor | 0.144| 0.153 0.130 —
CPU 1.00 1.00 10.66| 3800.00

Table 6.2: Comparison of RUDY and other approaches to estitiie routing demand. The exact
routing demand, as given by routing the circuit, is used afexence folgor aNdoger. Statistic is
based on all circuits of the IBM-PLACE 2.0 benchmark suite.

In summary, RUDY is a fast and accurate routing demand estmapproach. In con-
trast to other approaches, RUDY needs no grid structure. gfigestructure used above to
determine the estimation error is because RISA and Westpgsoach rely on it, and because
of numerical reasons: the continuous routing demand of Rt be discretized by bins
in order to compute the estimation error on a computer. Inteohd RUDY does not use a
routing model to describe possible routes of each net. Gtpproaches like Westra’s tech-
nique are using such routing models, and are fitting the piisigis of the routes to the results
obtained by routing. Using such routing models results iepethdency between the routing
demand estimation technique and the router. RUDY is notdase routing model, and thus
RUDY estimates the routing demand independently of thesrout

6.3 Routing Supply

Besides the routing demand, there is also a routing supplg.rduting supply is given by the
routing layers of the chip. Based on the rectangle functto®q), the routing supply is:

Dr%lﬂ[t) ('ra y) = dr%lfﬁ‘ R(% Y; Tchips Yehip; Wehip, hchip) (6-8)

Routing obstacles (e.qg., fixed macros) are excluded fromatliéng supply. The routing sup-

ply densityd.. is determined by considering a balanced demand-and-ssgptgm (5.32).
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If there are no routing obstacles, the routing supply dgnsit

N
dsup o Zn 1 dWIren Anet,n

= 6.9
rout Ach|p ( )

6.4 Integration in Kraftwerk

sup

The routing demand 2™ (6.3) and the routing suppl®.; (6.8) give the routing demand-
and-supply system .
Diout (xv y) Ddem( z, y) - Dr?)lljft)(x y) (6.10)

rout

To drive placement by routability in Kraftwerk, its demaadd-supply systen® (5.38) has
to be a combination of the module demand-and-supplyq (5.37) and the routing demand-
and-supplyD;out:

D(xv y) = (1 - wrout)Dmod (xv y) + WroutDrout (1'7 y) (6-11)

In Kraftwerk, the demand, which is created by the modulestaednets in (6.11) now, is
adapted to the supply, which is given by the chip. Therefémaftwerk’s approach for
routability-driven placement can be viewed as placing treates and the net rectangles
concurrently on the chip.

The routing weightw,o, in (6.11) represents the degree of routability optimizatiwith
wut = 0, routability is ignored, and withw,o,: = 1, just routability is optimized, ignoring
the placement of the modules. The optimégl,,, which gives the lowest routed wirelength,
depends on the circuit and the router. For one circuit andgoren routeruwy; , is determined
by the golden section search method [Kie53]. This is a nurakoptimization method, which
evaluates the routed wirelengtiVL for certain values ofu,y, and iteratively refines the
interval, in which the minimum ofWL is located. The interval is refined by using the golden
ratio (1 + +/5)/2, in order to have best convergence speed. To evai\idtefor one value of
wrout, the circuit is placed withw,o,, and the resulting placement is routed.

Figure 6.3 displays the dependency of some parameters anutieg weightw,q,;. One
parameter is the standard deviation of the routing denmagyd which is calculated by:

2
rout h / / l)r((j)izjrtn ,Urout) dx dy (6-12)
c ip

Lirout 1S the average value aD %M (x, ). Other parameters are the netlength and the routed
wirelength. The dependency of these parameters,gpare as follows:

1. oy decreases with increasing routing weight,.. This means that the peaks in the
routing demand are reduced more and more. Thus, also thagaldmand in congested
regions is reduced.

2. The netlength measured in HPWL or RSMT (rectilinear Seminimal tree) increases
with increasing routing weighto:.
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Figure 6.3: Dependency of some parameters on the routinghivej, ;. Results are based on ibm0le
of the IBM-PLACE 2.0 benchmark suite.

3. There is a trade-off between netlength ang;, resulting in an optimal routed wire-
length. For the circuit used in Figure 6.3, the optimg, is 0.28.

Based on these characteristics, which are demonstratadunef6.1, some statements can be
derived:

1. Kraftwerk reduces the routing demand in congested ragidhis is demonstrated by a
decrease of o With increasinguyout.

2. Kraftwerk increases the routing supply in congestedorgi This can be shown by
comparing the wire density plot in Figure 6.1(b) with the madensity plot in Figure
6.1(c). In congested regions, where the wire density is,tHiggnmodule density is low.
Since modules block some routing layers, a low module dgmsitongested region
means more routing supply there.

3. The HPWL is an efficient estimation of the routed wire ldngThis is because the
HPWL correlates to the routed wire length as good as the RSMdth does. However,
the HPWL is much faster determined than the RSMT [Chu04].

To validate the statement that the HPWL is an efficient estoneof the routed wire
length, four estimation techniques for the routed wiretengere tested: HPWL, RSMT
(length of rectilinear Steiner tree), RMST (length of minim spanning tree), and RISA
[[EC94] (estimating the length of one net by a function dep)eg on the HPWL and the
number of pins). The four different estimation techniquesenintegrated in RUDY and in
the quadratic cost functioh. The integration in RUDY was done by using the estimated
wirelength inL,,. The integration in” was done by using the Bound2Bound net model, and
scaling the connection weights of each net by the ratio betviiee estimated wirelength and
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the HPWL. The results of the four estimation techniques amrsarized in Table 6.3, and
are based on all circuits of the IBM-PLACE 2.0 benchmarkesutll four techniques do not
differ much in the routed wirelength and the number of videe difference is below 0.2%.
However, HPWL has the lowest runtime for placement, ancefloee is an efficient estimation
of the routed wire length.

HPWL | RSMT | RMST | RISA
rWL | 1.0000| 0.9989| 0.9988| 1.0005
Vias | 1.0000| 0.9993| 0.9984| 1.0005
CPU Place 1.00 1.29 1.08| 1.00
CPU Route 1.00 1.02 0.98| 1.00

Table 6.3: Results of different techniques to estimate ¢luieed wirelength (rWL) during placement.
“CPU" is the runtime, either for placement, or for routing.hd routing demand is estimated with
RUDY, placement is done with Kraftwerk. Results are norgelito the results of HPWL. Based on
all circuits of the IBM-PLACE 2.0 benchmark suite.

Two principle problems of estimating the routed wirelengtiould be pointed out. First,
almost all estimation techniques represent each pin asrd poihe x-y plane. In routing,
each pin is represented by a rectangle, called “pin sitefs dlference can result in that the
estimation of the routed wirelength is higher than the exagted wirelength. For example,
imagine a two-pin net, where both pin sites almost touch etiolr. Hence, connecting both
pins sites needs almost no wire. In contrast to this, commgdtoth pin points, which are
located typically in the center of each pin sites, needs marelength. A second problem
of estimating the routed wirelength is that routing consdée interaction (overlapping) be-
tween the nets. In contrast to this, traditional estimat&mmniques consider one net at a time,
and ignore the interaction between the nets. This resuliisanthe estimation of the routed
wirelength is lower than the exact routed wirelength.

At last, the results presented in this chapter (see Tabla®®2Table 6.3) can be sum-
marized as follows: it is sufficient to use RUDY for estimatitihe routing demand, and it is
sufficient to use the HPWL for estimating the routed wirelingOther techniques may be
a bit better, but consume much more runtime. Considerintatolity-driven placement, the
placement with optimal routed wirelength is obtained infiw@rk by adjusting one parame-
ter: wrouyt.
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Chapter 7

Legalization

Placement of circuits is done in two consecutive steps:ajlabd final placement. In global
placement, the modules are spread roughly on the chip, wbitsidering different objec-
tives like wirelength and routability. The previous chaptdescribe Kraftwerk, which is a
fast global placer based on force-directed quadratic pi@ce. Final placement itself consists
also of two steps: legalization and detailed placementaliegtion means to remove the re-
maining module overlap of a global placement, and to aligmtimdules to rows if necessary.
Detailed placement is performed after legalization, arttiéssecond step of final placement.
In detailed placement, different objectives are furthgpiaved, for example total wirelength,
or more complex objectives like design for yield (DFY), osag for manufacturing (DFM).

This chapter presents novel approaches for legalizatioetail2d placement is not ad-
dressed in the following. To preserve the global placemsrfaaas possible, the common
objective of legalization is to minimize the module movemen the following, two legal-
ization approaches based on minimizing the quadratic mewtrare presented. With the
quadratic norm, the minimum is found quickly. The first legation approach “Puzzle” deals
with legalizing macros. “Abacus” is the second legalizatapproach, which focuses on le-
galization standard cells. The separation between maostandard cells is necessary here,
because standard cells must be aligned to rows, and mactosvitweover, there are mil-
lions of standard cells in a modern circuit, while there arst p few (about hundreds) macros.
Thus, legalizing macros can be done with exhaustive appasadn contrast to this, legalizing
standard cells must be done quickly, concerning the runpierestandard cell.

Table 7.1 summarizes some properties of one modyeacro or standard cell). Both
legalization approaches (Puzzle and Abacus) refer to theseerties. The properties are
similar to those shown in Table 5.1, which is used in globatpment. Howeverz!, y.)
is the position of module in the global placement now, and;, y;) the position in the legal
placement. In detail, there are two meanings of “positidaf macros, it refers to the center of
the macro, and for standard cells, it refers to the lowerdefher of the cell. This difference
is made because it simplifies the later given problem fortrarda. w; andh; presented in
Table 7.1 are the dimensions (with and height) of modulBhe weighte; of a module is for
example the area of the module, or the number of pins locadtégkanodule.

In the next sections, the term “movement” is used with sdvenams: (7.1) is the quadratic
Euclidean movement, (7.3) is the Euclidean movement, (8.2)e Manhattan movement.

69
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| Property | Explanation

(xf, y)) Position in global placemen
(i, ;) Position in legal placement
wi, h; Width, height

€; Weight (e.g. number of ping)

=

Table 7.1: Properties of moduldmacro or standard cell).

Moreover, these are total movements, i.e., they are the gutmeanovements of all mod-
ules. In addition, the movement of each module is weighted, by The proposed quadratic
programs optimize (7.1), or (7.2) in combination with lingation weights. The quality of
a legal placement is measured by (7.3). These differencédsimorms are made, because
the quality is best measured in the Euclidean norm (7.3)bbth other norms are best to
minimize with numerical optimization.

N

HQuad,Euclid = Z €ui ([xz - x;]z + [yz - y;]Q) (71)
=1
N

KU Manhattan — Zeu,i (|xl - Ilf;| + |yl - yz/|) (72)

1=1

N
HBuclid = Z iV (T — 20)2 + (y; — yl)? (7.3)
=1
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7.1 Puzzle: Macro Legalization

This section presents “Puzzle”, which is a fast legalizatpproach for macros. Macros are
modules with various dimensions. Figure 7.1 (a) display®ba]j placement of macros. Two
legal placements are shown in Figure 7.1 (b) and (c).

5

3

(a) Global Placement

1 TN = l\
2 i 4 5 1 \

(b) Legal Placement (constraint direction based on place- (c) Legal Placement (with constraint
ment) direction optimization)

Figure 7.1: Global placement of macros (a), and two legatgteents of macros (b) and (c). The
movement of each macro is displayed by an arrow. The staheoatrow reflects the position in the
global placement, and the end of the arrow reflects the pasiti the legal placement. There, position
refers to the position of the center of the macro. The totalenment in (c) is about 25% lower than in

(b).
The legalization of macros can be formulated by the follapyguadratic program (QP):

N
min ) e; (wx,i [x; — x;]Q +wy; [y — y§]2) (7.4)

P: =1
Q st. Ap>b (7.5)
The objective (7.4) is similar to (7.1), and represents tha sf the weighted quadratic Eu-
clidean movements of alV macros.w, ; andw, ; are used to linearize the quadratic move-
ment. Since all weights(, w, ;, andw, ;) are positive, the objective is convex. The constraint

(7.5) assures that there is no overlap between the macresvédtorp reflects the legal posi-
tions of all macros, separated in x and y-direction:

p= (xl,xg,...,xn,yl,yg,...,yN)T (7.6)

In general, two macros and j; do not overlap, if either the distance in x-direction, or the
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distance in y-direction is large enough. This constraikscribed by:
1 1
i — 25| 2 5 (witwy) Vg =il 2 S+ hy) (7.7)

In the rest of this section about Puzzle, the following isuassd for two indeces andj: if
the macros andj are located atz;, y;) and(z, y;) in the global placement, therand;j are

chosen such that, > 2’ andy; > y:. Based on this, (7.7) is transformed to:

T —Tj 2 %(mewj) VoY 2 %(hz‘ﬂth) (7.8)
With this, the relative order of the macros is preserved.theowords, if macra is right of
(above of) macrg in the global placement, then the ordering between bothosasithe same
in the legal placement. The constraints shown in (7.8) catidseribed by the matrix-vector
notationAp > b for all macros. However, there is & between the x- and y-constraint,
which means that two macros must be overlap &éeerin x or in y-direction. In other words,
a decision on the constraint direction (x or y) must be made,land the decision influences
highly the movement of the macros during legalization. Igufe 7.1 (a), the decision is done
based on the global placement. In Figure 7.1 (b), the indiggisions are refined (optimized)
by Tabu Search [GL97]. Comparing 7.1 (a) with 7.1 (b) dem@tss that this “constraint
direction optimization” results in a lower total movemerittbe macros. In the following,
some general aspects are described first, and then detaimsiraint direction optimization
are presented.

7.1.1 Construction of Matrix A and Vector b

The matrix-vector notatioAp > b, used in (7.5), represents in each row one constraint (7.8).
In the following, the construction of matrix and vecto is described. MatrixA has entry

ay; in row k and column. Vectorb has entryp, in row k. First, A andb are initialized with
zeros, and an index variabkeis initialized with 1. Then, all pairs of macros are considered.
One pair(i, 7) contributes toA andb as follows:

1. If the constraint direction is x, theA andb are updated by:
Qi — ap; + 1, Qgj < Qg5 — 1, andby, < by, + % (wi + wj).

2. If the constraint direction is y, theA andb are updated by:
Qpi+N < QpieN + 1, Ak j+N < Qf j+N — 1, andb, « by + % (hz + h])

3. The index variablé is increased by one:
k+— k+ 1.

7.1.2 Initial Legalization

Algorithm 2 shows how the initial legal placement is obtain&irst, the macros are placed
to the positiongx’, y;) of the global placement (line 1). Then, some iterations areedline
2-8). In each iteration, the direction (x or y) of the constitais determined based on the
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placement (line 3). Next section describes this importéep of Puzzle. With the determi-
nation of the constraint direction, the matrix-vector rimta of the overlap-free constraint
Ap > bis given. Then, the quadratic program (7.4) s.t. (7.5) iselusing some lineariza-
tion iterations (line 4-7). With the linearization, the Maitan movement (7.2) is optimized.
At the end, a new placement with no overlap is obtained. Barezkperimental results, about
3 linearization iterations are enough.

Since the constraint direction is decided based on a platgsred the constraint direction
gives a new placement (via the quadratic program), bothsstegtermination of constraint
direction and solving the quadratic program) are executetsecutively for some iterations.
This is done in the “for” loop in line 2-8 in Algorithm 2. The ¢ is done until convergence,
which means, the loop is executed until the quadratic pragtaes not change the positions
of the macros anymore. Based on experimental results, &mydes for the loop are enough.

Algorithm 2 : Initial macro legalization

1 Initialize (z;, ;) <« (x}, y));

2 for some iterationslo

3 Create constraints based on placenienty;) = Matrix A and vectomb;
4 for some linearization iteratiordo

5 Wai — /|2 — xi], wy — /]y — yil;

6 Solve QP (7.4) s.t. (7.5 new positiongz;, y;);

7 end

s end

7.1.3 Constraint Direction based on Placement

One important step of Puzzle is to determine the directioor(x) of each constraint. In the
following, it is described how the direction of the consttabetween two macrosandj is
decided based on a placement. There, the decision is drxemoliing both macros as little
as possible. The two macros are locatethaty,;) and(z;,y;). Two properties), ;; andd,, ;;
can be computed:

1

Ong = @i — 15— 5(wi+wj) (7.9)
1

Oyij = Yi—Yj— §(hi + hyj) (7.10)

These properties reflect the distance between both macr#ha dimensions of both macros.
In detall, if§, ;; < 0, the macros are overlapping in x-directionjjf;; < 0, they are overlap-
ping in y-direction. In both cases;J, ;; and—J, ;; is the amount of overlap in each direction.
Consequently, i, ;; > ¢,..;, then the movement for both macros to an overlap-free placém
is lower in x-direction, than in y-direction. This exactlyvgs the decision of the constraint
direction: if 6, ,; > 6,,;, then the constraint direction is x, otherwise it is y. Thexdion

is not made for overlapping macros only, but for all pairs aiams. In other words, there
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will be constraints between all pairs of macros. This is ssaey for the convergence of Al-
gorithm 2. Otherwise, macros, which were made overlap fne@e iteration (see line 2-8 in
Algorithm 2), have no constraint in the next iteration. Ceqsently, they will collapse back
and will overlap again, which is not wanted.

Determining the constraint direction as described abovaimzes just the movement
between two macros. It does not minimize the total moveméailanacros. Hence, the
initial constraint direction can be good, but need not to pinoal.

7.1.4 Optimization of Constraint Direction

This Section describes the complete approach called “BYyyazhich is a novel method for
macro legalization. The total movement is minimized by qatid programming. The initial
constraint directions are determined by the placementu Bearch is used to optimize the
constraint directions, in order to minimize the total mowarn

Before presenting Puzzle, some aspects are to be notedMigstiithm 2, describing the
determination of the initial legal placement, convergeshgihat the QP solved in line 4 does
not change the placement anymore. In such a placement, dheressential” constraints,
where two macros are abutting, i.e., there is no free spaveslea the macros. These essential
constraints have=" instead of >"in (7.8). All other constraints with " are not active.
Hence, the legal placement, obtained by Algorithm 2, isattarized by essential constraints.
The set of essential constraints, in combination with tigections, is called “configuration”,
and describes a legal placement; Tabu Search acts on thefsgucations. In the following,
the terms “configuration” and “legal placement” are usedrichangeably.

Algorithm 3 describes Puzzle, and the application of Tabar&e The algorithm starts
with an initial configuration (line 1), and optimizes itaxatly the configuration (line 4-28). In
each iteration, the neighboring configurations of the auroenfiguration are evaluated (line
9-17). Each neighboring configuration is created by change direction of one essential
constraint (line 10). Neighboring configurations, whiclk ar the tabu-list, are ignored (line
18). Two special neighboring configurations are saved: tieewith the best cost (line 20),
and the one with the worst cost (line 21). After evaluatinignaighboring configurations,
the current configuration is compared with both saved naghly configurations. If the best
neighboring configuration has a better cost than the cuo@nfiguration, then this neighbor-
ing configuration is used as the new current configuratiore(#5). With this approach, Tabu
Search is a greedy optimization method. However, if all hb@ing configurations have a
worse cost than the current configuration, then the worsiigoration is used as the new cur-
rent configuration (line 26). With this technique, Tabu $&dnas a “hill-climbing” ability,
and local minima can be escaped. At the end of each optiraizégration, the new current
configuration is appended in the tabu-list (line 27). Witis thethod, configurations are only
visited once.

The optimization iterations are done until a stopping cigte is triggered (line 28). Suit-
able stopping criterions are for example a maximal numbé#eddtions, or a maximal increase
in the cost, i.e., a maximal difference in the best cost sarfarthe current cost. At the end of
Tabu Search, the best configuration is found in the tabwadighe configuration with the low-
est cost (line 29). This best configuration represents tiselbgal placement with a minimal
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total movement (line 30).

Algorithm 3: Puzzle: macro legalization with constraint directioniopzation.

© 0 N o o b W N P

=
N R O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Do initial macro legalization (see Algorithm 2);
Initialize tabu-list;

Determine costey,;

repeat

Save positions{z;, 7;) < (x;, y;);
Cpest < 00,
Cworst <~ —0Q;
foreach essential constraimto
Change direction;
Restore position&r;, y;) < (2, 9;);
for some placement iteration®
Create constraints based on placementy;), consider direction of the
changed essential constraiatMatrix A and vectoib;
for some linearization iteratiorso

we s — 1|z — @], wys — 1/|ys — wil;

Solve QP (7.4) s.t. (7.5 new positiongz;, y;);
end
end
if new configuration is not in tabu-lighen
Determine cost;
if ¢ < cpestthen Save this configuration and positions as begt; < ¢ ;
if ¢ > cworst then Save this configuration and positions as watgsst < ¢;
end
Change direction;
end
if chest < ceur then Restore best positions and configuratiag, < cpest
elseRestore worst positions and configuratiogy < cworst;
Append costy,,, configuration, and positions in tabu-list;

until stopping criterion triggered ;
Scan tabu-list for best costBest positions;
Put macros to best positions;

Two details of Tabu Search about the constraint directicim@pation are left to cover.

First, the determination of the cost of one configuratios, iof one legal placement. A suit-
able cost is the total weighted Euclidean movement of allrosbetween the global place-
ment and the legal placement, as described by (7.3) #yith= e;. The second and more
interesting detail is how a neighboring configuration isateel. This is done in line 9-17 of
Algorithm 3. Starting from the current configuration, theedition of one essential constraint
is changed (line 9). All macros are put back to the positidrte® current configuration (line

10). In line 11-17, the neighboring configuration (i.e., tieghboring legal placement) is
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determined similar to the initial legal placement, as dégct in Algorithm 2. However, the
constraint directions are created based on the placementnd considering the direction of
the changed essential constraint (line 12). If the changedrgial constraint is between the
macrosi andj, then the constraint direction is not chosen based,on(7.9) ands, ;; (7.9)
(see Section 7.1.3). Rather, the direction is the same adirkaion of the changed essential
constraint. The constraint direction between all othermmsis chosen based op;; ando, ;.

Figure 7.2 demonstrates the hill-climbing abilities of Uigbearch. Here, the cost of the
current configuration in each optimization iteration isplié&syed. The cost represents the total
movement of all macros between the global placement aneé s placement, as formulated
in (7.3). Each configuration is a legal placement. In Figu& the cost of the initial config-
uration is rather high. Then, Tabu Search starts to changedhstraint directions. Hence,
the cost sinks over two optimization iterations. In itevatthree, the cost increases. Hence, a
“hill” in the cost function is climbed. After the hill, the &b in iteration four is lower. At the
end, the cost increases, and the Tabu Search is stoppedioteiour represents the best legal
placement.
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Figure 7.2: Minimization of the movement by optimizing thenstraint directions with Tabu-Search.

7.1.5 Comparison

Using the linearization weights, ; andw, ; in combination with some linearization iterations
(see Algorithm 2 and 3), the quadratic program (7.4) s.t5)(finimizes the total linear
movement, i.e., the Manhattan movement (7.2). The quadpatigram can be solved for
example with OOQP [GWO03]. Instead of using the quadratigmm and some linearization
iterations, a similar result (placement) is obtained byfttl®wing linear program (LP):
N

€i

min ) e; (|2 — @] + [y — yi) (7.11)
LP: =

st. Ap>b (7.12)
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Here, only the objective (7.11) changed. The constraidi)7is similar to (7.5). The linear

program can be solved for example with GLPK [GGL]. This sacipresents some exper-
imental results demonstrating that using the quadratignar with linearization iteration

gives similar placements, but in lower runtime than usinigedr program. The problem with
linear programming is that the absolute movement— x| can not be minimized directly.

Moreover, two auxiliary variables;, z;, and four additional constraints are necessary:

min |z; — 2| = minT; —z, st z, <z z <zl T, >z T; > (7.13)

This increases the numbers of variables and constrainteibP compared to the QP. Thus,
the LP needs more runtime to solve the same problem. Fig@rdigplays the complexity of
both approaches. Here, a global placement of a circuit withouthousand macros is legal-
ized. Different numbersV of macros are selected to be legalized, and all the selecaedos
are overlapping each other in the global placement. Excapesminor glitches for small
N, the quadratic program is always faster (lower runtimenttiee linear program. More-
over, the computational complexity of the quadratic progia better than those of the linear
program. Considering the quadratic program, the average-computational complexity is
©(N?) for the initial placement. Applying the Tabu Search for ogtiing the constraint di-
rections, the complexity i® (N%%). Using linear programming, the complexity@g N25%),
andO(N3™), respectively.
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Figure 7.3: Runtime versus number of macros. QP: quadratigram, LP: linear program, init:
initial placement, TS: applying Tabu Search for constrdirgction optimization. Based on one global
placement of a circuit with up to 911 macros.

Table 7.2 summarizes detailed results of Puzzle using a@tiagsirogramming and using
linear programming. The results are based on the same gbtda@ment and the same cir-
cuit as used in Figure 7.3, which describes the computdtmoraplexity. In the following,
the term “movement” means the total weighted Euclidean mm&re of all macros between
the global placement and the legal placement, as descrip&€d.®) withe,, = e;. Using
quadratic programming, and based on the initial legal prees#, Puzzle improves with Tabu
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Search the movement by about 30%. Moreover, the improvedesg not decline with in-

creasing numbers of macr@é. Hence, the Tabu Search approach is successful. Replacing

the quadratic program and the linearization iteration \thign equivalent linear program gives
about the same results in the movement. However, the runtirabout factor four higher
then.

Quadratic Program Linear Program
Initial Tabu Search Initial Tabu Search
N CPU Avg CPU Avg | Impr| CPU Avg CPU| Avg
# Macros| [s] Mov [S] Mov | [%] [S] Mov [s]| Mov
20 0.01| 25421 1.86| 20446|19.57| 0.01| 25387 1.51| 20664
50 0.06| 39219 39.04| 28207/28.08 0.09| 39215 37.63/ 28811
100 0.22| 57541 302.43 39030/ 32.17| 0.48| 58175 588.29 39914
150 0.48| 64321 926.49| 42352/ 34.16] 1.36| 64372 3142.14 41022
200 0.72| 72653 2063.36 47585/ 34.50] 3.65| 73790 6479.32 49644
300 1.88| 79369 6791.02 49145/38.08| 11.00] 83860 32497.5Q0 55960
500 6.771113492 27044.4Q 71326|37.15| 28.52| 120090 timeout n.a.
911 20.29| 238151 114673.00 173397, 27.19| 167.09 232337 timeout| n.a.
Average:| 1.00f 1.00 1.00, 1.00 3.86| 1.01 2.51] 1.03

Table 7.2: Results of Puzzle (with quadratic programmiegglizing one global placement of a circuit
with up to 911 macros. “Avg Mov” means the average Euclideavement|u||2/N (7.3). “Impr” is
the improvement in the movement between initial placemedtadter applying Tabu Search.

In summary, the results shown in Figure 7.3 and in Table 7r@ahstrate that using
guadratic programming in combination with some linear@aiteration is better than using
the equivalent linear program. Better means the runtimeviget and the total linear move-
ment is equivalent. For circuits with some macros, Tabu @eean be used to improve the
macro movement significantly. However, for circuits withnigised or more macros, Table
7.2 shows that Tabu search is not applicable due to the higfinra. To cope with this, two
approaches can be used. First, not all macros are legaligbdPwzzle, but only big macros.
This decreases the numb€rof macros, for which Puzzle is applied to. The remaining roscr
can be legalized with Tetris [Hil02] (see Section 7.3). Theand approach is to stop global
placement when the module overlap is rather low (e.g., 5%g,ret at 20% overlap. Based
on such a global placement, the initial decisions for thestamt direction, which are made
based on the global placement, are quite good. Tabu Seallamotvimprove the movement
much here. Thus, Tabu Search needs not be applied, and tia¢ legal placement is suffi-
cient. However, with more iterations spent in the globaktplaent, global placement takes
more runtime. In addition, in mixed-size circuits, the stard cells are moved farther during
global placement, resulting in a higher netlength. Henlge,second approach in applying
global placement longer is only applicable for circuits,igfhconsist only of macros.
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7.2 Abacus: Standard Cell Legalization

Previous Section 7.1 described Puzzle, a novel approaddh@s quadratic programming
and Tabu Search to legalize macros. This section describasus, a new method based on
guadratic programming and dynamic programming to legataedard cells. In contrast to
macros, standard cells all have the same height, and haeedianed to the rows of the chip.
In addition, in modern circuits, the number of standardscislisome decades greater than the
number of macros. In Figure 7.4 (a), a global placement ofdsed cells is displayed. Figure
7.4 (b) shows the legal placement obtained by Abacus.

5 6 2 _[x8

: 4h - Lo v 7
= 35

(a) Global Placement (b) Legal Placement

Figure 7.4: Global and legal placement for standard celtee Movement of each cell is displayed by
an arrow. The start of the arrow reflects the position in ttedbgl placement, and the end of the arrow
reflects the position in the legal placement.

In case that the circuit has standard cells and macros, gssmaed that the macros are
legalized first, for example by using Puzzle. Furthermoogs, which are blocked (e.g., by
macros) have to be sliced into new rows, such that all new eo@$0t blocked anymore.

Algorithm 4 : Abacus: legalization of standard cells.

1 Sort cells according to x-position;
2 foreachcell 7 do

3 Chest <— OO,

4 foreachrow r do

5 Insert celli into row r;

6 PlaceRowr (trial);

7 Determine cost;

8 if ¢ < Cpest tNEN Cppst = C, Thest = T3
9 Remove cell from rowr;
10 end

11 Insert Celli to row rp.s;

12 PlaceRowr . (final);

13 end

Algorithm 4 describes Abacus. First, the cells are sortezbating to their x-position
(line 1). Then, the cells are legalized one at a time (lineGR-The legalization of one cell
i is done by moving it over the rows (line 4-10). In each row, tled is inserted according
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to its x-position in the global placement (line 5). Then,d€Row” (line 6) places all cells
of the row such that their total movement is minimal and theyret overlapping. PlaceRow
is described in the next section. After PlaceRow is called, dost of the new position of
cell 7 is determined (line 7), e.g., by the movement of ¢ddetween its position in the global
placement and its new position in the current row. At lasg ¢elli is removed from the
current row (line 9). After the cell is moved over the rows, it is inserted into the best row
(line 11). The best row is the row with the lowest cost (line Buring the movement of the
cell 7 over the rows (line 4-10), i.e., during the trial mode, theulés of PlaceRow are treated
as temporary positions, which means that the cells are adliyrsnoved to these positions.
Hence, the best row needs to be placed again (line 12), amddhks of PlaceRow are treated
as the final legal positions. This means, the cells are dgtpiaced to these positions. Since
one cell at a time is legalized, and the cell is placed to thst mv, Abacus is a greedy
algorithm. However, already legalized cells within the soave moved (by PlaceRow), which
improves the total movement.

Different issues should be noted here. First, the sortinthefcells according to their x-
position can be done either in increasing order or in deangawder. Both directions should
be tested because the results of each direction can beediffand the best result should
be used. Experiments showed that the difference in the nota&ement between both sort
directions is abou0.5%. Another issue is that each cell need not be moved over ak row
of the chip (line 4-10). Rather, each cell is first moved to tlearest row (according to the
global position) and then moved above and below this row. daah row, a lower bound of
the cost is computed by assuming that the cell is only moveticedy. If the lower bound
exceeds the minimal cost of an already found legal positivery the movement of the cell
over the rows can be stopped. This method limits the movemelytto some rows and
improves the CPU time of legalization drastically. At lastshould be noted that the cells
are inserted into the rows in order of their x-position in giebal placement. Since the cells
are processed according to their global x-position (lir,linserting a cell into a row means
either to append the cell as the last cell in the row (if somedcreasing order), or as the first
cell (if sorted in decreasing order).

7.2.1 PlaceRow

The core of Abacus is to optimize the total quadratic moveméall cells within one row.
This optimization is called PlaceRow, and it is used seuvaras for each cell during legal-
ization (see Algorithm 4). In the following, PlaceRow is delsed.

In PlaceRow, it is assumed that the row Agsstandard cells, indexed frointo V,.. Table
7.1 shows the different properties of one @elGiven is the position (of the lower left corner
of the cell) in the global placemeft], /), the widthw;, and the weight;. The weight can
be for example one, the area of the cell, or the number of dittseccell. The cells in the row
are sorted according to their global x-position, i26.> z;_,. PlaceRow determines the legal
x-positionz; of each cell. The legal y-positiog is obtained beyond PlaceRow by moving

the cell over the rows (see line 4-10 in Algorithm 4). Basedhmse definitions, PlaceRow is
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described by the following quadratic program:

Nr.
oP min > e; [2; — )° (7.14)
; i=1
st. z,—x,1 2w,y 1=2,..., N, (715)

The objective (7.14) describes the total, weighted, andiglmovement of all cells between
the global positione, and the legal positiom;. Moreover, the objective is convex, since all
weightse; are positive. Furthermore, the objective is similar to Yiith N = N,, e,.; = e;,
and since all cells in the row have the same y-positipns y;. The constraint (7.15) assures
that there is no overlap between the cells. In addition, trestraint preserves the relative
order of the cells, i.e., cell is placed left of celb if a is left of b in the global placement.

The quadratic program of PlaceRow (7.14) s.t. (7.15) islsin® the quadratic program
of Puzzle (7.4) s.t. (7.5). However, PlaceRow does notzetiinearization weights, because
it is called several times for each cell, and using lineaitreweights would mean to increase
the number of calls. In addition, PlaceRow does not optirtizeconstraint direction, but all
constraints between the cells in one row have to be in x-ticec

Similar to the quadratic program of Puzzle, the quadratagpam of PlaceRow (7.14)
s.t. (7.15) can be solved with OOQP [GWO03] for example. Havesolving quadratic pro-
grams with >" constraints is time consuming in general. If the same smiudf the quadratic
program (i.e., the same legal placement) is found by equatihstraints, then the quadratic
program is solved quite fast by solving one linear equatibime situation that equality con-
straints are sufficient is given if all cells of one row are tliimg in the legal placement. There,
two cells are “abutting” if there is no free space betweemtlie the legal placement. With
only equality constraints, (7.15) is transformed to:

T :x1+2wk 1=2,...., N, (7.16)

Inserting (7.16) in the objective of (7.14) gives a quadréatinction, only depending omn;.
The minimum of this function is obtained by setting its dative with respect ta:; to zero,

which gives:

Ny Ny i—1

Zei T — |eir) +Zei [x; —Zwk” =0 (7.17)

i=1 R 1=2 k=1 L

¢ q
Table 7.3 shows the iterative calculation &fw, andq, which depends only on given

properties of the cellsz], w;, ande;. Executing the iterations up to= N,, ¢ is the total
weight of all V, cells, andw is the total width of allV, cells. ¢ is used in (7.17), and gives
the optimal positiorr; of celli = 1:

ery—qg=0 & x| = (718)

[

Using (7.16), the optimal positions of the remaining cellsi(= 2, ..., NV,.) in the row are
determined. At this point, the quadratic program, and tHasdRow, is solved based on one
linear equation (7.18) — assuming equality constraints.
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| Init | Iteration (i =1,2,..., N,) |

e=0 é<—é+6i
G=0 | q+elz;—w
w=0|w+ ¢+ w

Table 7.3: Iterative calculation.

7.2.2 Implementation by Dynamic Programming

However, the equality constraints, which are used to ol§#ail8), are just allowed for abutting
cells, and not in general for all cells in one row. Therefaanethod is necessary to detect
clusters of cells, where all cells in the clusters are abgttand the clusters themselves do not
abut. The optimal position of a cluster is found then by sai\i7.18) for this cluster. Here it
should be noted that (7.18) is obtained by assuming thaeldic= 1, ..., N, in the row are

in one cluster. The clustering method, and solving PlaceBpwynamic programming are
shown in this section. The properties of one clustare summarized in Table 7.4t . iS
the first cell in the clustet, andn,st. IS the last cell in the cluster. Nes. is the number of
cells in clustere. xqus. is the left x-position of clustet, eqys. represents the total weight of
the cells in the clustet, andwqys. is the total width of the cluster.

| Property | Explanation |
Nfirst,c First cell of the cluster
Niast.c Last cell of the cluster
Neuse Number of cells in the cluster,
Nclus,c = Nyastec — Nirst,e T 1
Zelus,c Optimal position (lower left corner
€cluse, Weluses Jeluse | Values similar to Table 7.3.
Eclusc Total weight
Welus e Total width
oluse/ Ccluse Optimal position

Table 7.4: Properties of cluster

Algorithm 5 shows the implementation of PlaceRow by dynaprmgramming. The al-
gorithm starts in line 1-13 with iteratively clustering tells, and determining the optimal
position of each cluster. Here, the cells 1, ..., IV, are processed in increasing order (line 1)
according to their global x-positiart, i.e.,z;, > 2 _,. In other words, the cells are processed
from “left” to “right”. If cell i is the first cell, or if it does not overlap with the last clusiene
3), then a new cluster is created containing the c@ihe 4-8). Otherwise, the cellis added
to the last cluster (line 10), and the last cluster is reseigicollapsed with its predecessor
cluster (the next left cluster) as long as the clusters aeglapping (line 11, and line 27-36,
respectively). During the clustering, the iterative cddt¢ion of eciys ., Weius,,» aNdgeius, IS done
in line 24-26, which is similar to Table 7.3. The optimal gasi zqys. Of clusterc is deter-
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Algorithm 5. PlaceRow: places all cells in one row optimally, i.e., witmimal total movement. Solves
(7.14) s.t. (7.15).

/I Determine clusters and their optimal positiatigs :
1fori=1,..,N,.do

2 ¢ +— Last cluster;
/I First cell or celli does not overlap with last cluster:

3 if i =10r Zeuse + Weuse < @ then
4 Create new cluster,
5 INit eclus ¢, Welus e» Gelus e 1O ZETO;
6 Telus,c < l'/i;
7 Nfirst,c < 1
8 AddCell(c, 7);
9 else
10 AddCell(c, 7);
11 Collapsef);
12 end
13 end

Il Transform cluster positionsgs . to cell positionse;:
14 ¢« 1;
15 for all clustersc do
16 x = z.(c);
17 for ¢ < njastc do
18 XTi < I,
19 €T — T+ w;,
20 end
21 end

22 Function AddCell(c, 7):

23 Naste < 1,

24 eclusc < Ccluse T €is

25 (qelusc < Yeluse + € (I; - wclusc);
26 Welusc “— Welus,c + Wi,

27 Function Collapse():
/I Place cluster:
28 Tcluse < Gelusc/€clus e
/I Limit position betweemmin and xmax — Welus,c
29 if Zeuse < Tmin then Touse = Tmin;
30 if Telus,e > Tmax — Welus e then Tclus,ec = Tmax — Welus,cs
/I Overlap between and its predecessar ?:
31 ¢ «+ Predecessor af;
32 if ¢ existsand zeyser + Weluser > Telus,e then
/I Merge cluster to ¢’

33 for i = nfirst, e t0 Njast. do AddCell(’, 7);
34 Remove cluster;

35 Collapse(');

36 end

mined in line 28. This is similar to (7.18). In line 29 and 3tk fposition of a cluster is limited
such that the left cornery,s. is right of the starting position,,;,, of the row, and the right
COMeErT s + Weus.c 1S left of the ending position, ., of the row. In line 14-21 of Algorithm
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5, the optimal positions; of all cells are determined based on the optimal positiqns,. of
the clusters to which the cells belong. After that, PlaceRowd the quadratic program (7.14)
s.t. (7.15) are solved.

The described dynamic programming approach for PlaceRaptisal in the result, be-
cause the clusters, which are formed during the algorithme péaced to their optimal posi-
tions (see line 28). Moreover, each cluster consists onboftting cells, because a cell (or
a cluster) is clustered with its left neighbor, only if theyeaverlapping (line 32-35). As a
consequence, the clusters themselves do not abut.

7.2.3 Worst-Case Computational Complexity

The worst-case complexity of PlaceRow is given by the nurobealls to function “AddCell”
(line 22-26). AddCell is called once for each cell (line 8 df. During recursive collapsing,
AddCell is called overall at most — 1 times for celli (line 33). This extreme situation
represents that all cells are in one cluster at the end. ThddCell is called maximai
times for cell:. AddCell itself has constant runtime. Wit the number of cells in one
row, the worst-case complexity of PIaceRowEZN;li = O(N?). Another critical part for
the complexity of PlaceRow is line 18-19. However, this gaexecuted only once per cell,
which alone would give only)(N,.) for PlaceRow.

Based on the complexity @ (N?) for PlaceRow, the worst-case computational complex-
ity of Abacus (Algorithm 4) can be analyzed. Wiffi the number of cells in the circuit, the
“foreach loop” in line 4-10 of Algorithm 4 is calledv times. With R the number of rows,
one “foreach loop” hagt cycles. In each cycle, PlaceRow is called. With at méstells in
one row, the complexity of PlaceRow is limited B} N2). Since all of this is executed in a
nested way, the worst case complexity of AbacuS (&7 R N?).

To obtain a complexity of Abacus, which just depends\agrapproximations foiz and N
are necessary. Assuming that the standard cells are qita@ane width and height), and the
chip area is also quadratic, the number of rowRis: v/ N. The upper bound for the number
of cells in one row is the sam®, ~ v/N. This gives the complexity of Abacus lfy( N2).

7.2.4 Average-Case Computational Complexity

Figure 7.5 displays the runtimes of legalizing various wit€ with Abacus. N represents
the numbers of standard cells per circuit. The results Witk 10° are based on the IBM-
PLACE 2.0 benchmark suite [YCSO02], the other results arethas the ISPD 2005 contest
benchmark suite [NAV05] and on the ISPD 2006 contest benchmark suite [DES]. With t
almost linear average-case computational complexitg@¥'-'?), Abacus can easily cope
with future circuits having an increasing. Moreover, the worst-case complexity©f N)
shown in the previous section is not reached by experiments.

7.2.5 Comparison

Tetris [Hil02] is similar to Abacus in that the cells are smitaccording to their position first,
and then legalized one at a time then. Next Section 7.3 pie3etris. The main difference
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Figure 7.5: Average computational complexity of Abacus.

between Tetris and Abacus is that cells, which are legalrex, are not moved anymore in
Tetris. In contrast to this, Abacus applies PlaceRow whena\cell is moved to a row, and
PlaceRow places all cells within a row such that there tataldgatic movement is minimal.
Consequently, Abacus moves already legalized cells dlegglization. Therefore, the total
movement of the cells during legalization is supposed toolaeet in Abacus than in Tetris.
Here, and in the following, movement is determined by (7.8hw,; = 1, which means
the movement is the (unweighted) Euclidean movement ofelie between global and legal
placement. Figure 7.6 shows the histogram of the movemérat p€&rfect histogram would be
a peak with a relative frequency of one at a movement of zepresenting that all cells are not
moved. However, the cells in the global placement are ogpitey and are not aligned to the
rows. Therefore, the cells are moved during legalizatioam@ared to Tetris, the histogram
of the movement using Abacus is better, the cells are mowstied the peak is nearer to zero
movement. The average movement is about 30% lower in Ab&eunsih Tetris.
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Figure 7.6: Movement histogram of Abacus and of Tetris. Bamseibm12e of the IBM-PLACE 2.0
benchmark suite. Movement is normalized to the averagerdimae of the cells.

7.3 Tetris

In this thesis, there are some references to the legalizapproach Tetris [Hil02]. Therefore,
this approach is presented shortly in the following. As iSettan be used for macros and
for standard cells, the term “module” is used below insteBthmcro” or “cell”. Based on
design rules, Tetris assumes that a grid structure existehagives a set of available x- and
y-positions. For example, the available y-positions axeigiby rows, and the available x-
positions are given by the minimum feature size of the teldgy which is used to fabricate
the circuit. Algorithm 6 describes Tetris. First, the moskiare sorted according to their
positions (line 1). Then, the modules are legalized one e @line 2-13). The legalization
of one module is done by moving the module over the chip according to thdahla x and y
positions (line 4 and 5). If modulkfits at the current positiofx, y), i.e., the module does not
overlap with already legalized modules, then the cost of plaisition is determined (line 7).
For example, the cost is the movement of modletween global placement and the current
position(x,y). Or the cost is the length of the nets adjacent to modubdter the movement
of modulei over the chip, the module is placed to the best legal positina 12). The best
legal position is the one with the lowest cost (line 8).

One advantage of Tetris is the simple implementation. Oatufe of Tetris that can be
viewed as an advantage or as an disadvantage, is that thea@aler of the modules is not
preserved. This means, if moduleis left of (or above of)b in the legal placement, then
modulea could have been right of (or below df)in the global placement. As a consequence,
the legal placement obtained with Tetris can have a lower HRMtlength than the legal
placements obtained with the previous presented appreashacus and Puzzle. However,
both latter approaches preserve the relative order of thiuhes, and thus preserve the global
placement better than Tetris. The main disadvantage ofsTistthat once a module is le-
galized, it will not be moved anymore. Compared to Abacuss tésults in a higher total
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Algorithm 6 : Tetris: greedy legalization.

1 Sort modules according to x-position;
2 foreach modulei do

3 Chest <— 00,

4 foreachx do

5 foreachy do

6 if modulei fits at(z, y) then
7 Determine cost;

8 if ¢ < Chest then Chest = Cy Thest = Ly Ybest = Y
9 end

10 end

11 end

12 Place modulé to (zpes:, Ypest);

13 end

movement of all modules during legalization (see Secti@bj. This, in combination with

not preserving the relative order, results in that the dighlacement is not very well pre-
served in Tetris. Consequently, the legal placementsédavith Tetris have a higher routed
wirelength than the legal placement obtained with Abacas &ection 8.3).
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Chapter 8

Experimental Results

This chapter demonstrates the high quality and extremelyrimtime of the presented ap-
proaches for global placement, including routabilityioptation, and for legalization. The
results of various benchmark suites are shown. All resutidegal placements, and all run-
times report the total runtime of the complete placement.flol@ obtain the results, the
following placement flow is used:

1. Global placements are obtained by “Kraftwerk”.
2. Nets are modeled in global placement by the “Bound2Boued’model.

3. Routability is optimized during global placement by oraing the routing demand
estimation approach “RUDY” in Kraftwerk.

4. Legalization of global placement is done depending orcitoelit type and on the ob-
jective of placement:

(a) Standard cells in routability-optimized placementslagalized with “Abacus”.
(b) Big macros in mixed-size circuits are legalized with ZRle” using Tabu Search.

(c) All macros in the floorplacement circuits are legalizathiPuzzle” without Tabu
Search. There, floorplacement means there are about thisiedmodules with
various dimensions, the dimensions are all fixed, and theutesdhave to be
placed overlap-free within a given placement region.

(d) In benchmark suites, where the quality is measured in HP¥tlength and not
in routed wirelength, standard cells are legalized withi$gHil02]. This is done
because Tetris can optimize the HPWL netlength during iezg@bn. However,
the movement of the standard cells is much higher then. Hdtes is not used
for legalization a routability-optimized global placenten

(e) The remaining small macros in mixed-size circuits agaleed with Tetris. This
is done because Puzzle in combination with Tabu Search veonsime too much
runtime. Tetris is much faster here, however, the moveméthe macros in-
creases.

89
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5. Detailed placement is used to improve the netlength ofapal placement. A simple
and greedy approach is used here: single modules are rpotatpdirs of neighboring
modules are exchanged. In addition, the modules in eachr@placed such their total
HPWL netlength is minimal by using an approach similar to goB, BV0O]. There,
the alignment of the modules to the rows, and the orderingp@fhodules within the
rows is not modified.

Since global placement is the first step in the placement o, determines mainly the
result, the complete placement flow as presented above evieimoted as “Kraftwerk” in the
rest of this chapter.

All benchmark suites are placed on an AMD Opteron 248 machiite 8 GB RAM
running at 2.2 GHz. The memory usage of the biggest benchiméaeiow 4 GB. On average,
about 80% of the total runtime is spent in global placemehe femaining 20% are spent in
legalization and detailed placement. Moreover, most matof global placement is used to
solve the systems of linear equations: (5.46) for x-digggtand a similar one for y-direction.
Since both directions can be solved concurrently, the twt) €CBres of the AMD Opteron
could be used, which would give a speedup of almost two. Hewdw have comparable
runtime, this was not done.

To compare the runtimes with other published runtimes, tinéimes are scaled according
to the SPEC CPU2000 benchmark [Cor]. This scaling factdrlvéinoted as “CPU scaling”
in the following. All HPWL netlengths, and all routed wirelgths are expressed in meters.
The runtimes are denoted by “CPU” and are in seconds.

In all benchmark suites, the chip area of the circuits, aedtletrics to measure the qual-
ity of a placer are given. Mostly, the HPWL netlength or thateml wirelength are used as
quality metrics. However, the ISPD 2006 contest benchmaitk §SP06] uses various qual-
ity metrics, and the most important one considers routgiaind runtime. Most benchmark
suites were introduced in publications. However, two oimth@amely the ISPD 2005 and
2006 contest benchmark suites [ISP05, ISP06], were intedlin two international place-
ment contests, and various academic teams attended thresstso The circuits of the contest
benchmark suites were given by the IBM corporation and sgremodern integrated cir-
cuits.

In the following, two key features of Kraftwerk are demoastd first: stability and sup-
port of the engineering change order. After that, resultvafous benchmark suites are
presented.

8.1 Stability

One important feature of Kraftwerk is the stability of tha@ément algorithm. A placement
algorithm is stable, if for a small change in the input (iie.the circuit), the output (i.e.,
the placement) changes also just a bit [ANVYO05]. Today, $ectenges in the circuit arise
frequently during the design flow. After running the wholesidg process for the first time,
important specifications like maximal clock frequency araleated based on the placed and
routed circuit. Mostly, the specifications are not met, arldircuit is modified, for example
by sizing some gates [BJ90], or by inserting buffers [vG98fter these small changes in
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the circuit the design process is restarted and placemgrgrisermed again. These cycles
in the design flow are executed until all specifications aré riie have convergence in the
design flow, the placement algorithm must be stable and theggs in the placement must
be low. Therefore, stability is as important for a placemagbrithm as giving high quality
placements [ANVYO05].

In [ANVYO05], different stability metrics are presented. Amgst others, the stability is
measured by the change of the pin positions between twormpktes A and B. Placement A
is obtained based on the original circuit, and placementdbtiained based on the gate-sized
circuit, i.e., based on the changed circuit. Lef',y:') be the position of pini in placement
A, and (22, y?) be the position of pin in placement B. For each nete N, the geometric
center position is also givefy? x4 ) and(z2 , 42 ), respectively. For one netwith P pins,
indexed froml to P, the perturbatiorD,, is determined as follows [CSO07]:

P
Z | — ad | = [af — 2B ||+ Iyl — | - lyE —yE] (8.1)

The perturbatiorD,, is zero, if the pin positions are the same in A and/B, is also zero, if
the relative position between the pins and the geometriteceof each net do not change,
ie., [z — 22| = [2P — 2B |. Hence, the loweD, is, the smaller are the changes in the
placements and the more stable is the placement algor{@lomsidering all nets of a circuit,
the average oD, can be considered, the root mean square (RMS),gfor the maximum
of D,,. In Table 8.1, these metrics for one test case, and usingreift placers are presented.
The test case is based on the circuit bigbluel of the ISPD 206fest benchmark suite. The
circuit is changed by doubling the width of randomly choserduies, either of 10% of all
modules, or of 20% of all modules. The results of Morph andcCaie taken from [CSO07].
The results in Table 8.1 demonstrate that Kraftwerk is stadidcause the perturbationin,
is very low compared to other placers. Both other placersrffi@and Capo) have a higher
perturbation, which ranges between factor two higher, ufatbor seven higher. Here, it
should be noted that in particular, the placer Morph targegbility [CS07]. Moreover, other
results than presented in the table below are not availaljle$07].

With the excellent stability of Kraftwerk, this placemenmpaoach is suitable to be used
in the everyday design process, and supports best the gemes of the design process and
achieving timing closure.

Change in Kraftwerk Morph Capo

input HPWL|Avg|RMS Max|HPWL| Avg|RMS Max|HPWL| Avg|RMS Max
10% 101.01 175/1047/413,610 106| 634]3590/1,010,000 116{1190| 9870|3,490,00(
20% 104.02 183)1577/701,873 109| 645/3740/1,180,000 120{1200| 9080(2,880,00(
Average 1.00/1.00| 1.00f 1.00f 1.053.57| 2.90 2.06| 1.14 6.68 7.59 6.27

Table 8.1: Results representing stability. The valuesénctiiumns “Avg”, “RMS”, and “Max” repre-
sent the average, root mean square, and maximum in net petitur D, ,.
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8.2 Engineering Change Order

The previous section describes that changes in the circaiipart of the everyday design
flow. The changes arise, because a placed circuit does natathepecifications like max-
imal clock frequency or area consumption. To meet the spatifin, the circuit is changed
slightly, which is called Engineering Change Order (ECOJ}his section. After ECO, the
circuit needs to be placed again. To speed up the designgmopkacement is not executed
from scratch, but from a previous given placement. Thisiseatvaluates the ECO feature
of Kraftwerk. The experiments are based on the circuit highlof the ISPD 2005 contest
benchmark suite. In the first run, the original circuit isqed, and global placements at dif-
ferent placement iterations are saved. In the second rencitbuit is modified and placed
again, either from scratch, or starting with the saved dglptecements of the first run. The
circuit is modified by randomly choosing 10% of all modueladay doubling the width
of these modules. Table 8.2 displays the results of the senom There, the placement
quality, measured in HPWL netlength, does not change sogmifiy. However, the runtime
(CPU) is decreasing drastically. For example, the runtimenore than 80% lower, if the
modified circuit is not placed from scratch, but from the lgsten global placement of the
first run (given at iteration 25). Thereby, the placementli(piahanges only by about 0.5%.
Therefore, Kraftwerk supports ECO best, mainly becausbé@hbld force, which decouples
each placement iteration from the previous one. Consety émt placement process can be
restarted easily at any placement iteration.

| Mode | HPWL | CPU |

From scratch 101.01| 435
With iteration 5 0.17% | -40%
With iteration 10| 0.28% | -51%
With iteration 15| 0.26% | -69%
With iteration 20| 0.28% | -78%
With iteration 25| 0.49% | -82%

Table 8.2: ECO feature of Kraftwerk. After gate sizing a gitcthe placement process is restarted,
either from scratch, or with a placement of the previous gtaent run.

8.3 IBM-PLACE 2.0 Benchmark Suite

The IBM-PLACE 2.0 benchmark suite [YCS02] consists of sxteircuits (ilbm03e/h-ibm06e/h
do not exist) with up to 68k modules and 68k nets. The qualfifglacement is measured in
the routed wirelength and in the number of vias. Hence, hasroutability-driven benchmark
suite. The routing is done with Cadence WarpRoute 2.3.38jrantudes final routing.

Table 8.3 shows the results of Kraftwerk and of other stét#@-art placement approaches.
The results of ROOSTER, mPL, and APlace are taken from [RM@5ihg a CPU scaling of
0.91. Compared to other placement approaches, Kraftwdeisofesults with the lowest
routed wirelength and the lowest number of vias. The difieeeto the other placement ap-
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proaches ranges from 0.4% to 11%. In addition, Kraftwerkdigihes faster for placement
than ROOSTER. Runtimes of other placers are not availabletetder, the placements of
Kraftwerk are routed in the lowest runtime. The routing dietplacements needs between
40% and 300% more runtime. In addition, all placements oftiserk are routable, i.e., there
are no routing violations. In summary, the results of TabRd@monstrate the efficiency of
Kraftwerk using RUDY for estimating the routing demand daigrglobal placement, and using
Abacus for legalization.

In Table 8.4, a comparison between Abacus and Tetris folilgen is given. The re-
maining placement flow of Kraftwerk is not changed. The rsssihown in the columns “Aba-
cus” are the same as the result shown in the columns “KralfiwerTable 8.3. Compared to
Tetris, Abacus reduces the average movement of the celisgli@galization by about 30%,
demonstrating that the global placement is better predeirvé\bacus. Consequently, the
routed wirelength, and the number of vias are decreased dytdlss if Abacus is used. Us-
ing Abacus, the runtime of the complete placement proceisgisased on average by about
6.6%; with Tetris, the runtime is increased by 0.5%. In sumyym@bacus gives better results

than Tetris and increases the runtime not significantly.

Circuit

Kraftwerk

ROOSTER

mPL

APlace2

CPU
Place

CPU
Rout]

rwL

# Vias

CPU
Placs

CPU
Rout]

rwL

# Vias

CPU
Rout]

rwL

# Vias

CPU
Rout]

rwL

# Vias

ibmOle
ibmO1h

16
15

297
354

0.678
0.673

118487
119710

246
242

382
546

0.718
0.725

122873
124063

600
600

0.718
0.691

123064
213162

7207
6606

0.790
0.732

158646
161717

ibm02e
ibm02h

39
32

364
387

1.840
1.977

253027
265587

672
660

546
600

2.000
1.978

256155
262022

600
710

1.821
1.897

250527
260455

491
764

1.846
1.973

254713
268259

ibm07e
ibmO7h

105
102

551
591

3.559
3.601

469384
483191

1347
1314

710
1037

3.953
4.091

470104
489067

1147
1420

4.129
4.240

492947
516929

928
1255

3.975
4.141]

500574
518089

ibm08e
ibmO8h

132
141

844
715

3.993
3.926

559984
567249

2096
2063

873
1037

4.231
4.240

559010
577879

1256
1420

4.372
4.280

579926
599467

983
983

3.960
3.960

595528
595528

ibm09e
ibm09h

140
127

582
493

2.877
2.890

484327
487189

1455
1424

600
600

3.200
3.205

473605
480961

938
1037

3.319
3.454

488697
502742

600
655

3.095
3.102

502455
512764

ibm10e
ibm10h

175
169

871
890

5.660
5.692

759409
761935

2312
2292

1146
1419

6.420
6.544

755673
781897

1638
1801

6.553
6.474

777389
799544

1256
1529

6.178
6.169

782942
801605

ibmlle
ibm11h

172
177

670
650

4.319
4.281]

629705
629790

1920
1878

819
873

4.746
4.716

613437
625654

1201
1365

4.917
4.912

633640
660985

983
1310

4.755
4.818

648044
677455

ibml12e
ibm12h

189
191

1371
1516

8.344
8.351

923900
941797

2745
2691

1638
2129

9.333
9.282

930397
942551

3112
2730

10.185
9.724

995921
976993

1747
2730

8.599
8.814

921454
961296

Average

1.00

1.00

1.000

1.000

14.04

1.36

1.097

1.004

1.92

1.117

1.080

4.04

1.072

1.078

Table 8.3: Results in the IBM-PLACE 2.0 benchmark suiteeans there are some routing violations.
“rWL” is the routed wirelength. “# Vias” means the number dds.
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Abacus Tetris
CPU Move| CPU : CPUMove| CPU _
Circuit Leg Route WL #Vias Leg Route WL\ #Vias

ibmOle| 0.790.913 297/0.678118482 0.1211.073 292/0.680120198
ibmO1h| 0.881.175 354/0.67311971Q 0.21]1.707) 361/0.679121424
ibm02e| 2.430.721] 364/1.840253027 0.17/0.888 311/1.859253170
ibm02h| 2.06/0.854 387|1.977/265587 0.27/1.296 472/2.056 271696
ibmO7e| 6.440.542 551/3.559469384 0.46/0.753 584|3.595473695
ibmO7h| 8.66/1.000 591/3.601/483191 1.08 1.488 681/3.705491398
ibm08e| 8.750.569 844/3.993559984 0.450.752 640/4.038568458
iIbm08h| 9.57/0.579 715/3.926567249 0.52/0.927 732/3.989573271
ibm09e| 9.800.618 582/2.877/484327 0.47/0.956 488/2.901488415
ibm09h| 8.730.620 493/2.890487189 0.651.009 510/2.932490594
ibm10e| 11.230.543 871/5.660759409 0.650.808 898/5.715764847
iIbm10h| 11.350.542 890/5.692761935 0.67/0.823 919|5.738 768437
ibmlle| 12.520.536 670/4.319629705 0.580.794 680/4.348633766
ibm11h| 13.07/0.554 650/4.281/62979Q0 0.730.879 723/4.32363342]
ibm12e| 11.160.535 13718.34492390Q 0.64/0.748 1211/8.409 930654
ibm12h| 11.360.541 1516/8.351/941797 0.66/0.794 1371/8.38494165]
Average|6.6%"|1.000 1.001.000 1.0000.5%7"|1.456 0.9951.012 1.010

Table 8.4: Results in the IBM-PLACE 2.0 benchmark suite. @arison between Abacus and Tetris
for legalization. “CPU Leg” is the runtime of legalizatior.means the ratio between the runtime of
legalization and the runtime of the complete placementgsec‘Move” is the average cell movement
during legalization, normalized to the average cell dinem®f each circuit. “rWL” is the routed
wirelength. “# Vias” means the number of vias.

8.4 ISPD 2006 Contest Benchmark Suite

The ISPD 2006 contest benchmark suite was introduced intamational placement contest
[ISPO6] and consists of eight circuits with up to 2.5 millimovable modules. The quality of a
placer is measured based on three parameters: the netlartgftWL, the CPU factor and an
overflow factor. The overflow factor is zero if the given upperit d, for the module density
is respected everywhere on the chip. Thus, the overflow factaombination with a low
dup, Should assure routability. The CPU factor is derived fréva logarithmic ratio between
the placer's CPU time and the median over the CPU times oflatlgos, which completed
this benchmark suite. For example, a CPU factor of —4% (+4%6)asents that the placer’s
CPU time is two times smaller (greater) than the median CRig tiThe three parameters are
combined in three quality metrics: HPWL, HPWL+Overflow, adBWL+Overflow+CPU.
The last quality metric considers routability and runtinmelavas deciding in the placement
contest. In the following, all three quality metrics are matized to the best values published
in [ISPO6].

Table 8.5 shows the detailed results of Kraftwerk. The lowrfiow factor of 1.87%
demonstrates that Kraftwerk respects the upper lilyitof the module density very well.
Therefore, the control of the module density (with= d,), described in Section 5.11, is
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very effective. The very low CPU factor of —9.35% revealst thmtimes of Kraftwerk are
more than four times smaller than the median runtime. Toinlkee CPU factor, the runtimes
of Kraftwerk are scaled in Table 8.6 (a) with 0.86, since #suits of [DES] (which are used
for normalization) are based on a different machine.

Table 8.6 summarizes the results of Kraftwerk and of othatestf-the-art placers. The
results of NTUPlace3 are taken from [C366], using a CPU scaling of 1.1. The results of
FastPlace3 are taken from [VPCOQ07], and the CPU scaling isTh@ results of RQL are taken
from [VNA T07] with a CPU scaling of 1.2. For other placers, the origiresults [ISP06]
of the placement contest are used. Unfortunately, therem@anmintimes available of RQL.
Based on the CPU factor, Kraftwerk is the fastest placer. ofdiog to the main quality
metric HPWL+Overflow+CPU, Kraftwerk is the best placer. NHldce3 is the second best
and has a 3.9% higher value in this quality metric. Ignoring €CPU factor and using the
quality metric HPWL+Overflow, Kraftwerk is the fourth bedTUPlace3, RQL, and mPL6
are 4.1%, 3.0%, and 2.9% better, respectively. Unfortupatieere are no recent results of
FastPlace3 in HPWL and HPWL+Overflow available. The samdsiole for recent results
of RQL in HPWL+Overflow+CPU.

In summary, Table 8.6 reveals that Kraftwerk offers excgllesults in extreme low run-
time. The same holds true for the original results of Kraflwim the placement contest.
The presented results demonstrate the efficiency of vafieatsires of Kraftwerk. For ex-
ample, using the Bound2Bound net model to express the HPWeénggh accurately in the
cost function, or using the advanced methods for the modeeashd and module supply to
prevent halos around large modules and to control the mathrisity.

Score
HPWL+
Circuit HPWL Overflow CPU CPU | HPWL g\lj(\a/:/fll_o:v Overflow+
factor factor CPU
adaptec5| 433.84| 3.606%| 1618 -9.35%| 1.071 1.032 0.939
newbluel| 65.92| 0.415%| 603 —8.38%| 1.057 1.043 0.956
newblue2| 203.91| 1.286%| 508 | —10.00% 1.033 1.082 0.975
newblue3| 278.51| 0.382%| 526| —10.00% 1.018 1.067 0.961
newblue4| 304.24| 1.709%| 1553 —8.63%| 1.068 1.033 0.945
newblue5| 548.38| 2.694%/| 2622 —-9.50%| 1.109 1.054 0.957
newblue6| 528.59| 1.702%/| 2579 —-9.89%| 1.048 1.036 0.936
newblue7| 1126.58| 3.155%/| 4828 —-9.06%| 1.053 1.051 0.958
Average 1.869% -9.35% | 1.057 1.050 0.953

Table 8.5: Results of Kraftwerk in the ISPD 2006 contest herark suite. *As required in this
benchmark suite, the CPU factor is limited #610%. The “raw” CPU-factors are —13.50% and —
10.98%, respectively.
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Score
HPWL+
Placer Overflow | CPU HPWL (H)\Ij:vrfll_o;v Overflow+
factor factor CPU

Kraftwerk 1.87%| —9.35%| 1.057 1.050 0.953
NTUPlace3 6.26 % | —2.61%| 0.976 1.007 0.990
RQL 6.80 % n.a. %| 0.981 1.018 n.a.
Fastplace3 na.| —8.17% n.a. n.a. 1.040
mPL6 1.36 % 1.589% | 1.035 1.020 1.040
mFAR 271%| -0.12%| 1.108 1.107 1.108
APlace3 3.83% 5.31%| 1.097 1.107 1.165
Dragon 0.12%| —-5.90%| 1.331 1.300 1.232
DPlace 9.32%| —454%| 1.343 1.414 1.364
Capo 0.32% 269%| 1.375 1.344 1.385

Table 8.6: Results of various placers in the ISPD 2006 cobeschmark suite.

8.5 ISPD 2005 Contest Benchmark Suite

Similar to the previous presented benchmark suite, the 138 contest benchmark suite
[ISPO5, NAVF05] was also introduced in an international placement &infehe suite con-
sists of eight circuits with up to 2.2 million movable modsileThe quality of placement is
measured by the HPWL netlength. Routability is ignored cletay in this benchmark suite.
Table 8.7 depicts the results of Kraftwerk and other st&twe-art placers. The results of
NTUPIlace3 are taken from [CIH6], using a CPU scaling of 1.1. The results of FastPlace3
are taken from [VPCO7], and the CPU scaling is 1.2. The resnfitRQL are taken from
[VNA *07] with a CPU scaling of 1.2. The results of other placerstaken from [KRWO05].
Unfortunately, in [KRWO05], there are no detailed runtimesblished, and no results for the
circuits adaptecl and adaptec3 are published. On averagéwrk is as good as Fast-
Place3 in netlength, but two times faster. Compared with RQ&aftwerk has a 5.38% higher
netlength, but is more than three times faster. Comparel MitUPlace3, Kraftwerk has a
2.2% higher netlength, but is more than three times fasteatiRe to APlace2, Kraftwerk has
a 3.5% higher netlength, but is almost fourty times fastezcakding to the netlength of the
remaining other placers, Kraftwerk is between 2.7% and 3@%&hb Hence, the results in the
ISPD 2005 contest benchmark suite benchmark show thatvwigdtis a fast placer, which
offers comparable results in the HPWL netlength. The opesstijon here is how relevant a
low HPWL netlength is, if routability is not considered. metISPD 2006 contest benchmark
suite, which is successor of the ISPD 2005 contest benchsuites, routability is considered
by setting an upper limit for the module density. ResultdefiSPD 2006 contest benchmark
Suite are presented in the previous section.
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Circuit

Kraftwerk

FastPlace3

RQL

NTUPlace3

APlace

MFAR

Dragon

mPL5

Capo

HPWL|CPU

HPWL]CPUHPWL]

CPUHPWL| CPU HPWL

HPWL

HPWL

HPWL

HPWL

adaptec

1 82.43

262

79.3§

353

77.82

751

80.93

883

n.a

n.a

n.a

n.a

n.a

adaptec

P 92.85

349

93.0§

559

88.51

1247

89.85

906

87.31

91.5

94.72

97.1

99.71

adaptec

27.22

713

217.8(

2275

210.96

2405

214.2(

1944

n.a

n.a

n.a

n.a

n.a

adaptec

4199.43

709

201.36

1411

188.86

2096

193.74

!

2325

187.65

190.84

1 200.88§

200.94

1 211.25

bigbluel

97.67

407

95.68

604

94.98

1160

97.28

1675

94.64

97.70

102.39

) 98.31

108.21

bigblueZ

154.74

)

559

155.1(

1380

150.04

2261

152.2(

3352

143.82

168.7(

159.71

1 173.22

172.3(

bigblue3

343.32

2070

379.88

4642

323.09

) 4864

348.48

6256

357.8¢

379.95

380.45

369.66

382.63

852.4(

bigblue4

4147

832.889

6862

797.66

12410

829.14

11308

833.21

876.28

903.9¢

904.14

1098.76

D

[Average] 1.004 1.00 1.0042.00 0.959 3.17 0.979 3.4§ 00967 1.029 104§ 1.053 1.128

8.6

Table 8.7: Results in the ISPD 2005 contest benchmark suite.

ICCAD 2004 Mixed-Size Benchmark Suite

The ICCAD 2004 mixed size benchmark suite [ACdR] consists of eighteen circuits with
up to 200k movable modules. The number of macros is about 40@ipcuit. Table 8.8
summarizes the results of Kraftwerk and of other placersis benchmark suite. Results
of FDP are taken from [VKO5b] with a CPU scaling of 1.1. Reswt APlace2 and mPL5
are taken from [CJHO6] with a CPU scaling of 1.1. Results of NTUPlace3 are takemf
[CJHT06], using a CPU scaling of 1.1. Kraftwerk is the fastest @ta@nging from 3.52 faster
than NTUPlace3 up to 24 times faster than APlace2. In the HR&tlength, Kraftwerk
is 1.0%, and 5.3% better than mPL5, and FDP, respectivelyngaoed to APlace2, and
NTUPIlace3, Kraftwerk has a 0.5%, and 1.8% higher netlemgtipectively. The results in the
ICCAD 2004 mixed size benchmark suite demonstrates thdtweek is a fast placer, which
offers good results. With these results, also the efficiasfajifferent features of Kraftwerk
are shown. Amongst others, using a move force proportiantié module area, the macros
are moved away from the standard cells, and standard cellmaved a small distance during
global placement, which improves the netlength. Using Ruzth Tabu Search, big macros
are legalized with minimal total movement.

8.7 IBM-HB " Floorplacement Benchmark Suite

The IBM-HB™ floorplacement benchmark suite [NARMO6] consists of sexentcircuits,
and is derived from the same benchmark suite (IBM/ISPD’38jhe ICCAD 2004 mixed
size benchmark suite. However, the IBM-HBircuits do not have standard cells, but consist
of about 1000 macros with various dimensions. The dimemsairthe macros are fixed,
and the placement area is given. Therefore, this benchnékk is called “floorplacement”

in [NARMO6, RAPMO6]. Since a big part of the placement areadgsupied by just a few
macros, and there is little free space in the placement Hreajrcuits are considered as hard
instances in [NARMOG6]. In addition, only results of SCAMREaavailable in [NARMOG6].
Other placers produce invalid placements, in which somerosaaverlap, or not all macros
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Kraftwerk FDP NTUPlace3 APlace2 mPL5
HPWL | CPU | HPWL | CPU| HPWL | CPU | HPWL | CPU| HPWL | CPU
ibm01 2.24 11 2.42| 145 2.17 33 2.14 381 2.22 91
ibm02 4.90 27 5.11| 284 4.63 63 4.65 872 4.68| 264
ibm03 6.61 24 7.08| 337 6.65 72 6.71| 1015 6.86| 300
ibm04 7.63 29 7.69| 317 7.21 89 7.57 977 7.69| 261
ibm05 9.79 33 n.a.| n.a. 9.66| 160 9.69 766 | 10.09| 130
ibm06 6.11 40 6.20| 389 5.94 95 6.02 967 6.16| 520
ibmQ7 10.42 52| 10.57| 607 9.90| 219| 10.00| 1296 9.96| 692
ibm08 12.97 85| 13.30| 719| 12.29| 235| 12.50| 1484| 11.92| 1133
ibm09 11.98 71| 13.30| 713| 12.00| 213| 12.13| 1837| 13.15| 1363
ibm10 30.15| 232 | 30.70| 924| 28.49| 351| 28.83| 2649| 29.36| 1654
ibm11 17.59| 107 | 18.41| 950| 17.54| 336| 18.67| 3814| 17.87| 1071
ibm12 31.42| 124 | 36.46| 1472| 32.07| 332| 33.42| 3663| 33.43| 1419
ibm13 22.48| 147 | 23.60| 1175| 22.16| 536| 22.80| 3845| 22.52| 1079
ibm14 35.13| 308 | 37.84| 2185| 35.36| 1274 | 35.92| 4723| 34.99| 1588
ibm15 4758| 468 | 47.69| 2468| 45.38| 1251 | 46.81| 5419| 50.88| 4989
ibm16 54.17| 527 | 61.27| 2792| 57.59| 1595| 54.53| 6109| 55.21| 6200
ibm17 66.63| 474 | 69.45| 3577| 66.73| 2123| 65.67| 6635| 66.96| 2131
ibm18 42.36| 609 | 44.88| 4369| 41.58| 2874 | 41.99| 10925| 43.99| 2477
Average | 1.000| 1.00| 1.056| 9.02| 0.982| 3.25| 0.995| 23.93| 1.010| 9.67

Circuit

Table 8.8: Results in ICCAD 2004 mixed size benchmark suite.

are within the placement region. In contrast to this, allcptaents of Kraftwerk (and of
SCAMPI) are valid. Compared to SCAMPI, Kraftwerk has a 14%dyeHPWL netlength,
and is about eight times faster. In Kraftwerk, the legal@ais done with Puzzle (without
using Tabu Search). Hence, the excellent results of Kraktimethis benchmark suite reveals,
amongst others, the efficiency of Puzzle. In addition, tis&llte demonstrate that Kraftwerk
is a robust placer, which can even place such hard instances.

8.8 Average-Case Computational Complexity

Figure 8.1 displays the runtimes of Kraftwerk versus the benVv of movable modules. The
results are obtained by placing the ISPD 2005/2006 contgstimark suites. The average-
case computations complexity &(N'1®), and thus nearly linear. Hence, Kraftwerk can
easily cope with future circuits having an increasemenyYin



8.8. AVERAGE-CASE COMPUTATIONAL COMPLEXITY

Kraftwerk SCAMPI
HPWL | CPU | HPWL | CPU
ibm-HBT01 2.83 10 3.4 68
ibm-HBT02 5.88 25 8.0| 154
ibm-HB™03 9.23 16 9.5| 115
ibm-HBT04 | 10.02 18 12.3| 158
ibm-HBT06 | 10.76 12 11.0| 187
ibm-HBT07 | 14.93 16 15.7| 110
ibm-HBT08 | 21.01 22 20.5| 207
ibm-HBT09 | 17.50 18 22.2| 200
ibm-HBT10 | 45.71 53 55.2| 351
ibm-HBT11 | 25.77 23 27.8| 159
ibm-HBT12 | 51.29 43 67.6| 447
ibm-HBT13 | 34.85 23 42.2| 231
ibm-HB*14 | 63.08 42 66.4| 295
ibm-HBT15 | 92.36 46 88.2| 414
ibm-HBT16 | 95.62 54| 106.2| 337
ibm-HB*™17 | 148.16| 99| 152.7| 424
ibm-HBT18 | 74.44 53 77.8| 211

Average 1.000| 1.00| 1.140| 7.99

Circuit

Table 8.9: Results in IBM-HB floorplacement benchmark suite.

10000

1000

CPU time (in seconds)

100
100000 le+06

N: Number of movable modules

Figure 8.1: Average-case computational complexity of Kvafk.
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Chapter 9

Conclusion

Integrated circuits play an important role in industry, andour daily life. To cope with
the complexity, and to lower the design time, integrateduits are designed by computer
algorithms today. This design process is called EDA (etextr design automation), and
consists of several consecutive steps. One key step isythetlaynthesis, as it highly affects
the quality of the circuit. Starting from a gate level deption, layout synthesis means to
place the modules (placement) and to route the nets (rquikiter this, the polygon level is
reached, and the circuit can be fabricated.

This thesis presents novel approaches for all main stepsoément. Each step is driven
by expressing the objective in a quadratic cost functionctvisan be minimized efficiently.
During global placement, netlength and routability ardraped. Legalization then removes
the remaining module overlap of global placement and tartje¢ module movement. The
key features of the placement approaches presented irhdsstare as follows:

e Kraftwerk is a global placer. It is driven by a generic demamdi-supply system, and
utilizes two forces to spread the modules over the placerassd. Both forces are
determined and modeled in a systematic way. As a conseguéraféverk converges
such that the demand is adapted further to the supply in dachmpent iteration, which
in principle means that the module overlap is reduced in @tatement iteration.

e Due to the generic demand-and-supply system and the systefoece modeling,
Kraftwerk is versatile, robust, stable, and fast. Versatilecause of the demand-and-
supply system, different placement types are supportey, (standard cell circuits,
macro cell circuits, mixed-size circuits, and circuits lwitxed modules). Furthermore,
various objectives (e.g., routability) can be considereaddition to minimal netlength.
Kraftwerk is robust, because it successfully places eved imstances of placement,
e.g., placing some big modules in a narrow placement areaftwerk is stable, be-
cause for small changes in the circuit, the changes in theepiant are also small.
Kraftwerk is fast, because the runtime is extremely low.

e The Bound2Bound net model enables the accurate represerdéthe HPWL netlength
in the quadratic cost function. Consequently, the obtapladements are excellent in
the HPWL netlength. In addition, experiments on routapititiven placement reveal
that the HPWL metric is a sufficient estimation of the routecklength.
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e RUDY is fast and accurate routing demand estimation approkgs integrated in the
demand-and-supply system of Kraftwerk, in order to optemiautability of a circuit
during global placement.

e Puzzle is a legalization approach, suitable for macro eedligs. For each overlapping
macro pair, the overlap is removed either in x or y directinitially, the directions are
determined based on a given placement. In addition, Tabrclsé&aused to optimize
the directions, and thus to reduce the movement of the macniisg legalization.

e Abacus is a fast and greedy legalization approach, appéidabalign standard cells
to a given row structure. Cells within one row are placed bwpaiyic programming.
Already legalized cells are moved, which reduces the totaleament of all cells.

The presented experimental results demonstrate that gwiled placement approaches
give high quality placements in extremely low runtime. Wéth almost linear average-case
computational complexity, the approaches are applicalvlifure circuits with an increasing
complexity.
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