
Institut für Informatik
der Technischen Universität München

A methodology for modeling usage behavior of
multi-functional systems

Sabine Rittmann

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Uwe Baumgarten

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy

2. Prof. Dr. Martin Glinz, Universität Zürich / Schweiz

Die Dissertation wurde am 26.02.2008 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 02.09.2008 angenommen.

2

Abstract

Today we face a trend toward more and more complex systems. The complexity does
not only arise because of distributed or heterogeneous hardware solutions. So called
multi-functional systems which are characterized by a high degree of dependencies
between functional units are also a major challenge. Often, the complex interactions
between pieces of functionality (often referred to as feature interaction) are not under-
stood and cause inconsistencies and unwanted behavior.

In order to handle this intricacy, new development techniques have to be created
targeting at handling different aspects in isolation. This can be achieved by specify-
ing the system functionality separately, i. e. with no structural and technical details
involved. This functional model can then be mapped to the technical architecture.
As the mere functionality of a system can be very complex again, both a local and a
global view have to be provided. A local view describes pieces of functionality sep-
arately which reduces complexity and assures reuse. A global view integrates local
views to form a larger (up to the whole) system functionality and sketches the "big
picture".

Currently there is no methodology for specifying the functionality of a multi-
functional system adequately. Most techniques mix up different aspects. They do not
clearly separate the design of functionality and structure, or do not distinguish be-
tween interface behavior and realization, and between local system views and global
system views. Especially the integration of functional specifications is not clearly un-
derstood. So-called (unwanted) feature interaction and dependencies between func-
tionalities often pose major problems. Most approaches also lack a formal founda-
tion. Another problem is the gap between the informal requirements phase (dealing
with texts in natural language) and the formal design phase (dealing with models).

In this thesis, we introduce concepts, suggestions for notational techniques, and method-
ological support for designing usage behavior of multi-functional systems. Hereby,
we only model the behavior as it can be observed at the system boundaries (black
box behavior). The basic building blocks of the methodology are services. Services are
pieces of (partial) behavior that relate system inputs to system outputs. The basic
idea behind the approach is the following: modular services (local view) and the re-
lationships between these services are captured. Based on the relationships between
the services, the modular service specifications are combined step by step until the
overall system functionality (global view) is obtained. Depending on the relationships
pointing at a service, a service can be influenced differently (e. g. disabled or inter-
rupted). The (modular) service specification has to be modified in order to handle
these influences (e. g. it has to provide a special behavior while being disabled). This
modification is done schematically and specific to the service relationships pointing
at a service. We introduce so-called standard control interfaces which the modular ser-
vice specification has to implement in order to handle the influences of the service
relationships. Furthermore, we investigate how conflicting influences can be han-
dled.

The contribution of this thesis is a methodology to formally specify the usage behav-
ior of multi-functional systems. Our approach is a model-based requirements engineer-
ing approach enabling the stepwise transition from informal texts written in natural
language to formal models of the system functionality. The result is a formal model of

the overall black box system functionality. During the formalization process, missing
requirements can be detected. Furthermore, contradictories can be identified. Vari-
ous applications of the system model can be thought of. For example, model-based
testing can be applied to the formal models to test the correctness of the integrated
behavior.

As far as the development process is concerned, the issues covered by this thesis are
situated at the end of the requirements phase at the transition to the design phase.
Furthermore, we focus on the specification of multi-functional systems.

Although our approach is not specific to a particular domain, we make use of a run-
ning example from the automotive domain in order to illustrate our concepts and to
present the methodology.

Acknowledgements

My thanks go to Prof. Dr. Dr. h.c. Manfred Broy for having invited me to work
in his research group and having provided me with the opportunity of writing this
thesis. It was a pleasure to work within the great atmosphere of this chair, to be able
to work together with industry, and to have insights in so many interesting topics.
Furthermore, I would like to thank for comments on work presented in this thesis.

Additional thanks go to Prof Dr. Martin Glinz for also supervising my PhD thesis.
I am very thankful for the detailed and constructive comments on how to improve
this thesis.

Furthermore, I am grateful to Markus Bechter, Florian Deißenböck, Alexander
Harhurin, Judith Hartmann, Markus Herrmannsdörfer, Florian Hölzl, Johannes
Grünbauer, and Birgit Penzenstadler for fruitful and patient discussions and com-
ments on drafts of this thesis.

A very special "thank you" also goes to Silke Müller and Bernhard Schätz for taking
care of the chair in many regards!

I am also very grateful to my colleagues Andreas Fleischmann, Eva Geisberger, Ju-
dith Hartmann, Markus Herrmannsdörfer, Michael Meisinger, Stefano Merenda,
and Doris Wild. I appreciated to work with you very much! I would also like to
thank Markus Pister, Wassiou Sitou, and especially Bernd Spanfelner for always
joking around, standing my sense of humor, and brightening my workdays.

Sincere thanks go to all of my friends. You made an excellent work life balance
possible! Finally, I want to thank my family - especially my Mum, Dad, and sister
Marion. You always lovingly supported and encouraged me in life. Thank you for
all the things you enabled me to do! I love you.

"... for systems with a large number of internal states, it is easier, and
more natural, to modularize the specification by means of features per-
ceived by the customer." ([Davis, 1982])

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Content of this thesis . 4

1.2.1. Rough outline of the approach 6
1.2.2. Scoping - What system classes is the approach for? 8
1.2.3. Scoping - Where in the software development process is the

approach situated? . 9
1.2.4. Scoping - What issues are not covered by the approach? 11

1.3. Contributions of this thesis . 11
1.4. State of the Art . 13

1.4.1. Requirements engineering approaches 13
1.4.2. Formal modeling of the system functionality 16
1.4.3. Work on feature interaction . 17
1.4.4. Feature modeling within product line development 18
1.4.5. Summary . 18

1.5. Outline . 19

2. Running example 21
2.1. General requirements . 21
2.2. Requirements for the manual adjustment 22
2.3. Requirements for the adjustment by memory 22

2.3.1. Requirements for the memory functionality triggered by the
seat button . 23

2.3.2. Requirements for the memory functionality triggered by the
car key . 23

3. Notational techniques (Overview) 25
3.1. System Structure Diagrams (SSDs) . 26

3.1.1. Intuitive description . 26
3.1.2. Graphical representation . 26

3.2. State Transition Diagrams (STDs) . 27
3.2.1. Intuitive description . 27
3.2.2. Graphical representation . 30
3.2.3. Semantics of STDs . 32
3.2.4. Semantics of the combination of STDs and SSDs 33

ix

3.3. Service hierarchy and service graph . 35
3.4. Tables . 35
3.5. Summary . 35

4. Methodology 37
4.1. Basic considerations . 37

4.1.1. Underlying system model . 38
4.1.2. Constituents of functional requirements 40
4.1.3. Specialties with embedded systems 41

4.2. Overview of methodological steps . 42
4.3. Starting point . 46

4.3.1. Concepts . 46
4.3.2. Application to the case study . 47

4.4. Identification of atomic services . 47
4.4.1. Concepts . 47
4.4.2. Notational technique(s) . 49
4.4.3. Methodological steps . 50
4.4.4. Application to the case study . 50

4.5. Logical syntactic system interface . 53
4.5.1. Concepts . 53
4.5.2. Notational technique(s) . 56
4.5.3. Methodological steps . 57
4.5.4. Application to the case study . 57

4.6. Identification of service relationships . 62
4.6.1. Concepts . 62
4.6.2. Notational technique(s) . 69
4.6.3. Methodological steps . 70
4.6.4. Application to the case study . 71

4.7. Formal specification of atomic services 75
4.7.1. Concepts . 75
4.7.2. Notational technique(s) . 77
4.7.3. Methodological steps . 78
4.7.4. Application to the case study . 79

4.8. Combination of services on basis of the service relationships 83
4.8.1. Concepts . 83
4.8.2. Notational technique(s) . 94
4.8.3. Methodological steps . 94
4.8.4. Application to the case study . 97

4.9. Result . 106
4.10. Further considerations . 108

4.10.1. Views onto the service graph . 108
4.10.2. Dependency analyses . 109
4.10.3. Guidelines for the informal specification of functional require-

ments . 110

5. Extension of basic service relationships 113
5.1. Requirements of another case study (memory cell) 114
5.2. Informal introduction . 115

5.2.1. Basic considerations . 115

5.2.2. Extension of the basic service relationships 116
5.3. Standard control interfaces . 117

5.3.1. Sub relationships of RESET . 117
5.3.2. Sub relationships of DISABLE/INTERRUPT 118
5.3.3. Relationship ENABLE . 121
5.3.4. Relationship CONTINUE . 122
5.3.5. Combination of standard control interfaces 122
5.3.6. Discussion on another semantics using buffering channels . . . 122

5.4. Application to the memory cell case study 123
5.4.1. Starting point, identification of atomic services, and identifica-

tion of the logical syntactic system interface 124
5.4.2. Identification of service relationships 124
5.4.3. Formal specification of modular services 125
5.4.4. Combination of services on basis of the extended set of basic

service relationships . 126
5.5. Discussion . 126

6. Related Work 129
6.1. Model-based requirements engineering 129

6.1.1. AutoRAID / AutoFOCUS . 130
6.1.2. Unified Modeling Language 2.0 (UML 2.0) 132
6.1.3. Systems modeling langague (SysML) 134

6.2. Service-/Feature-oriented approaches 135
6.2.1. Services in the telecommunication domain - Distributed Fea-

ture Composition (DFC) . 135
6.2.2. FODA, FORM, FOPLE . 137
6.2.3. MEwaDis . 140
6.2.4. Functional architecture modeling 142
6.2.5. Formal foundation of service-orientation (FOCUS theory and

JANUS approach) and the VEIA approach 143
6.3. Comparison of the basic system model 143

7. Summary, evaluation, and outlook 147
7.1. Summary . 147
7.2. Evaluation . 149

7.2.1. Advantages of the approach . 150
7.2.2. Disadvantages of the approach 151
7.2.3. Experimental analysis of the approach 157

7.3. Outlook . 162

Bibliography 172

Glossary 173

A. Embedding into a theoretical framework 177
A.1. JANUS - A theory for service-orientation 177

A.1.1. The FOCUS Approach . 178
A.1.2. The JANUS approach . 181

A.2. Relation of our approach to the JANUS theory 182

A.2.1. Relation of the underlying system models 182
A.2.2. Relation of service-oriented concepts 183

A.3. Comparison to another approach . 185
A.3.1. Predicate-based specification of services 185
A.3.2. Comparison of both approaches 188
A.3.3. Conclusion . 189

List of Figures

1.1. Development process along different levels of abstraction (schematic
picture) . 2

1.2. Situation of the approach within the software development process
(schematic picture) . 9

3.1. Example for a System Structure Diagram (SSD) 26
3.2. Example for a State Transition Diagram (STD) 30
3.3. Priority concept of State Transition Diagrams (STDs) 31
3.4. History concept adapted for State Transition Diagrams (STD) 31
3.5. Combination of (hierarchical) SSDs and STDs (SSD + STD) 34

4.1. Graphical representation of the underlying system model (SSD) 39
4.2. System boundaries of an embedded system (schematic picture) 42
4.3. Methodology (activity diagram) . 44
4.4. Identification of atomic services (activity diagram) 50
4.5. Logical input and output actions - abstraction of the MMI (SSD) 53
4.6. (Graphical) Specification of the logical syntactic interface (SSD) 57
4.7. Identification of the logical syntactic system interface (activity diagram) 57
4.8. Logical syntactic interface of the power seat control system (SSD) . . . 63
4.9. Service hierarchy (directed graph) . 64
4.10. Service graph (directed graph) . 66
4.11. Identification of service relationships (activity diagram) 71
4.12. Service hierarchy of the power seat control system (service hierarchy) . 72
4.13. Service graph of the power seat control system (service graph) 73
4.14. Formal specification of atomic services (SSD + STD) 77
4.15. Two alternative specifications of a simple service (SSD + STD) 78
4.16. Formal specification of atomic services (activity diagram) 79
4.17. Formal specification of the MANUAL ADJUSTMENT services by a pat-

tern (SSD + STD) . 81
4.18. Formal specification of the FRONT DOOR OPEN service (SSD) 81
4.19. Formal specification of the MEMORY FUNCTIONALITY VIA BUTTON ser-

vice (SSD + STD) . 82
4.20. Formal specification of the ERR LOW BATTERY MANUAL service (SSD +

STD) . 82
4.21. Formal specification of the ERR HIGH VELOCITY service (SSD) 83

xiii

4.22. Influencing and influenced service (schematic picture) 84
4.23. Standard control interface of the basic service relationship DISABLE

(SSD + STD) . 85
4.24. Standard control interface of the basic service relationship ENABLE

(SSD + STD) . 86
4.25. Standard control interface of the basic service relationship INTERRUPT

(SSD + STD) . 87
4.26. Standard control interface of the basic service relationship CONTINUE

(SSD + STD) . 87
4.27. Standard control interface of the basic service relationship RESET (SSD

+ STD) . 88
4.28. Realization of the ENABLE relationship by the influencing service (SSD

+ STD) . 88
4.29. Realization of all basic service relationships (SSD + STD) 89
4.30. Providing information about the execution status of a service (SSD +

STD) . 90
4.31. Interplay of services according to horizontal service relationship (SSD) 91
4.32. Combination of services on basis of service relationships (activity dia-

gram) . 96
4.33. Combination of services on basis of service relationships - Refined

view (activity diagram) . 97
4.34. Combination of the services ADJUSTMENT OF THE BACK BACKWARDS

and ADJUSTMENT OF THE BACK FORWARDS (SSD + extract of service
graph) . 99

4.35. Combination of the services ADJUSTMENT OF THE BACK, ADJUSTMENT

OF THE DISTANCE, ADJUSTMENT OF THE REAR AREA, and ADJUST-
MENT OF THE FRONT AREA (SSD + extract of service graph) 101

4.36. Combination of the adjustment services - belated modification (SSD) . 101
4.37. Combination of the services FRONT DOOR OPEN and MANUAL AD-

JUSTMENT (SSD + extract of service graph) 102
4.38. Combination of the services FRONT DOOR OPEN, MANUAL ADJUST-

MENT, and ERR LOW BATTERY MANUAL without conflict solving (SSD
+ extract of service graph) . 103

4.39. Combination of the services FRONT DOOR OPEN, MANUAL ADJUST-
MENT, and ERR LOW BATTERY MANUAL with conflict solving (SSD) . . 104

4.40. Combination of the services FRONT DOOR OPEN, MANUAL ADJUST-
MENT, ERR LOW BATTERY MANUAL, and ADJUSTMENT BY MEMORY

(SSD) . 105
4.41. Combination of all services (SSD) . 107

5.1. Standard control interface of the basic service relationship IMMEDIATE

RESET (SSD + STD) . 117
5.2. Standard control interface of the basic service relationship SECURE RE-

SET (SSD + STD) . 118
5.3. Schema for the realization of IMMEDIATE DISABLE/INTERRUPT (SSD +

STD) . 119
5.4. Standard control interface for BUFFERING (SSD + STD) 120
5.5. Standard control interface of the IGNORING DISABLE part (SSD + STD) 121

5.6. Standard control interface for the realization of the ERROR MESSAGE

part (SSD + STD) . 122
5.7. Standard control interface for the basic service relationship ENABLE

(SSD + STD) . 123
5.8. Standard control interface for the basic service relationship CONTINUE

(SSD + STD) . 123
5.9. Logical syntactic interface of the memory system (SSD) 124
5.10. Service graph of the memory system (directed graph) 124
5.11. Formal specification of the atomic services of the memory system (SSD

+ STD) . 125
5.12. Combination of the memory services - black box view of WRITE service

(SSD + STDs) . 126
5.13. Combination of the memory services - white box view of WRITE ser-

vice (SSD + STD) . 127
5.14. Combination of the memory services (realization of CONFLICT

SOLVER, SSD + STD) . 128

6.1. Methodological steps of AutoRAID [Geisberger and Schätz, 2007]
(graphical overview) . 131

6.2. Example of a UML Use Case Diagram (UML Use Case Diagram) . . . 133
6.3. Linear usage within Distributed Feature Composition [Zave, 2001] . . 136
6.4. Phases and products of domain analysis 138
6.5. Phases of the service-oriented development process of the MEwaDis

process [Deubler et al., 2004c] . 141

7.1. Steps of the methodology (activity diagram) 148
7.2. Time tick semantics of SSDs and STDs (SSD + STD) 152
7.3. The MANUAL ADJUSTMENT service - modified (SSD + STD) 153
7.4. The services MANUAL ADJUSTMENT, FRONT DOOR OPEN, and LOW

BATTERY - modified (SSD + STD) . 154

A.1. Graphical representation of a FOCUS component and its typed input
and output channels . 179

A.2. Composition of components in the FOCUS theory 180
A.3. Combination of independent services 183
A.4. Combination of dependent services . 184
A.5. Predicate-based specification of services 186
A.6. Comparison of both specification techniques (l.h.s: VEIA approach;

r.h.s: our approach) . 188
A.7. Integrated requirements engineering phase with both approaches . . . 190

List of Tables

4.1. Specification of persistent data . 50
4.2. Specification of atomic services . 50
4.3. Specification of the persistent data of the power seat control system . . 51
4.4. Specification of the atomic services of the power seat control system . . 52
4.5. Specification of logical (input and output) actions 56
4.6. Input actions of the power seat control system 58
4.7. Output actions of the power seat control system 61
4.8. Description of complex horizontal service relationships 70
4.9. Description of the complex horizontal service relationships of the

power seat control system . 74
4.10. Formal specification of persistent data 79
4.11. Formal specification of the persistent data of the power seat control

system . 80

5.1. Extended set of basic service relationships 116

xvii

Chapter 1
Introduction

The topic of this thesis is a methodology for modeling the usage behavior of multi-
functional systems. In this chapter we give a motivation for our approach (see Section
1.1, Motivation). The content of the thesis is sketched out in Section 1.2 (Content of this
thesis). This includes a scoping regarding the system classes for which the approach
is suited and a scoping regarding the position in the software development process.
In Section 1.3 (Contributions of this thesis), we list the major contributions of this thesis.
An identification of gaps in the current state of the art concerning the formal mod-
eling of multi-functional systems is given in Section 1.4 (State of the Art). Finally we
give the outline of the thesis (see Section 1.5, Outline).

Contents
1.1. Motivation . 1

1.2. Content of this thesis . 4

1.3. Contributions of this thesis . 11

1.4. State of the Art . 13

1.5. Outline . 19

1.1. Motivation

Innovative functions often are one of the key potentials to competitive advantage.
This can for example be observed in the automotive domain [Frischkorn, 2004,
Nelson and Prasad, 2003]. However, their merit will be limited, if they can not be
developed efficiently. When it comes to distributed systems, difficulties result from
the integration of functions into a network of complex functional dependencies usu-
ally being deployed on a highly distributed network of heterogeneous control units
and bus systems.

There is the need for new development techniques which are able to deal with this
intricacy. As the complexity stems from various sources (e. g. functional complex-
ity, distribution, and heterogeneity) a promising approach for the development of

1

1.1. Motivation 1. Introduction

Functionality
Black-Box View

White-Box View

Logical solution structure

Technical solution structure

abstract

concrete

Information about
how to realize
the distributed
functionality

• logical components

• relationships

• SW architecture

• HW platform

• services

• (sub) functions

Informally specified requirements
• textually given
requirements

R
E

D
es

ig
n

Information about
how to distribute
the functionality

Figure 1.1.: Development process along different levels of abstraction (schematic picture)

complex systems is by means of different abstraction levels.1 Each of these abstrac-
tion levels deals with modeling certain aspects. The abstraction levels are based on
each other starting with (abstract) high levels, adding more detail on each level, and
leading to (concrete) low levels. During the transition from a higher level to a more
concrete level, the model information is enriched; i. e. the completeness of the models
- with regard to the implementation of the system - is increased. Thereby, the transi-
tion has to be correct: model information of abstract levels is inherited and must be
obeyed and completely realized on the more concrete levels.

Figure 1.1 for example, shows three abstraction levels and how they relate to infor-
mally specified requirements. On the first level, the system functionality is modeled.
The functional requirements (describing the system functionality) are input for this
level. Details concerning the structuring of the system functionality into components
and the technical structuring of a solution (by means of concrete hardware) are not
taken into consideration. On the subsequent level, the model of the system function-
ality (as obtained in the previous level) is enriched with information about how to
logically structure the model. The model is decomposed into logical components and
grouped together in software architectures.2 Finally, on the third level, the model is
refined according to the information how to technically structure the solution. Al-

1The mobilsoft project [Mobilsoft, 2006] for example created a development process based on different
abstraction levels for automotive systems. See [Hartmann et al., 2006c, Hartmann et al., 2006a,
Hartmann et al., 2006b, Pfaller et al., 2006, Wild et al., 2006, Fleischmann et al., 2005,
Rittmann et al., 2005] for more information.

2Ideas on structuring systems (into components/modules) go back to [Dijkstra, 1972] and
[Parnas, 1972].

2

1. Introduction 1.1. Motivation

though the abstraction levels are ordered sequentially, the development process is
usually performed iteratively as decisions made on more concrete levels have influ-
ence on more abstract levels.

A development process based on different levels of abstraction is especially advisable
when developing a functionally complex system. So-called multi-functional systems
[Deubler et al., 2004b] are such functionally complex systems. Functionally complex
hereby does not refer to complex algorithms, but to a high degree of complex de-
pendencies between (sub-) functionalities of the system behavior. For example, the
remote unlocking of a modern car can be considered to be a multi-functional system.
On pressing the remote car key, not only the doors are unlocked. Additionally, the
emergency lights flash (in order to signal that the car has been opened), the interior
lights go on, the driver’s seat is adjusted according to a position saved before, etc. In
order to provide this functionality, many functionalities have to work together (e. g.
the functionalities responsible for controlling the emergency lights, interior lights,
seat adjustment, etc.) and thus have to interact.

The complex interplay of functionalities often poses severe problems in practice. De-
pendencies and interferences between sub functionalities are not understood and
thus not handled appropriately. Therefore, it is important to model the functional re-
lationships within the system. As - for multi-functional systems - this alone is already
very complex, issues concerning the logical and technical structuring of the system
should not also be taken into consideration at once. Consequently, a development
process along different levels of abstraction is needed to first model the pure system
functionality.

When talking about system functionality, we can distinguish between the

• black box functionality/ behavior or usage behavior and the

• white box functionality/behavior

which is offered by a system (see again Figure 1.1). The black box behavior of a sys-
tem is the functionality that can be observed at the system boundaries. Considering
habitual language use, the black box behavior is often described by the terms "fea-
tures" or "services" of a product. An example for a (piece of) black box behavior is
the "comfort opening of a car window". The white box behavior of a system is a
refined view onto the system behavior. It does not only describe the behavior from
an external point of view, but also how the system functionality can be provided by
the interplay of (only internally visible) sub functions. Therefore, a decomposition
into sub functions which are called by each other and collaboratively establish the
black box functionality is done. For example, the detection of the current of the win-
dow motor (in order to detect the end position) is part of the white box functionality
which is not observable by the user (both human users and other (technical) systems
communicating with the system under specification) at the system boundaries (if the
sensor for detecting the resistance lies within the system boundaries).

The black box perspective on the system functionality is ideally used in the require-
ments engineering phase whereas the white box view is ideally part of the design
phase. In the requirements engineering phase it has to be specified which function-
alities the system under development has to provide and which relationships (e. g.
mutual exclusion) are there between the system functionalities. Thus the following

3

1.2. Content of this thesis 1. Introduction

questions have to be answered:

• Which functionalities does my system have to offer to the user?

• Which relationships (or dependencies) between these functionalities should be
realized?

Currently there is no methodology for specifying the system functionality (of a multi-
functional system) adequately (see Sections 1.4, State of the Art, and 6, Related Work).
Most techniques confuse different aspects. They do not clearly separate issues con-
cerning the functionality, structure, and technical realization. Especially the distinc-
tion between the black box and white box specification of the system functionality is
not done explicitly. The latter is important to clearly separate questions about what
the system functionality should look like (problem space of the requirements engineer-
ing phase) from questions already concerning the realization of the system behavior
(solution space of the design phase).

Also the integration of functional specifications is not clearly understood and often
poses major problems. An overall (integrated) model of the system functionality
(which is realized distributedly) in general is not created. Instead, textually given
requirements are usually divided and assigned to components at the beginning of
the design process and not reasoned about as a whole (component-based develop-
ment approach). As a consequence, the interplay of components (resulting from the
dependencies between the functionalities realized by the components) often poses
problems. In this case, unwanted feature interaction [Zave and Jackson, 2000] can
often be observed as a consequence. Moreover, most approaches lack a formal foun-
dation.

Another problem is the transition between the requirements engineering phase
which usually produces informal descriptions of the system under specification (e. g.
textual descriptions) and the subsequent design phase which deals with formal mod-
els (e. g. automata, interaction models, system structure models). This "gap" often
poses problems as the transition between the informal requirements phase and the
formal (model-based) design phase is not understood and can not be performed
seamlessly. Model-based requirements engineering is an upcoming concept which
deals with introducing (semi-) formal models already to the requirements engineer-
ing phase and thus aims at bridging the aforementioned gap.

1.2. Content of this thesis

In the thesis at hand we introduce a methodology for modeling the usage behavior of
multi-functional systems. We hereby are only interested in modeling the functionality
of the system and do not take into consideration questions concerning distribution
or technical realization. Considering Figure 1.1, we deal with the highest level of
abstraction, the functional level. We present a model-based requirements engineering
approach: Starting from informally (i. e. textually) given functional requirements, the
requirements are specified more and more formally until a formal model of the over-
all black box functionality is obtained. We thus smoothen the transition between the
informal requirements engineering phase and the formal design phase. In order to
bridge the gap between these phases totally, the formal model of the black box func-

4

1. Introduction 1.2. Content of this thesis

tionality (which is the result of our approach) has to be refined to a formal model of
the white box functionality. This is however not in the scope of this thesis.

The overall system functionality of medium to large scale systems usually can be
very comprehensive. As far as habitual language usage is concerned, we often say
that the system functionality is comprised of many (hundreds of) separate "services"
or "features". But what exactly is a service or a feature? The terms service and feature
do not have a uniform definition, respectively. Usually they vary from domain to
domain [Kof, 2001, Meisinger and Rittmann, 2008, Salzmann and Schätz, 2003] and
between different phases of the development process. In most cases the term "ser-
vice"/"feature" refers to a characteristic functional property of a system. Prepara-
tory work has been done in order to develop a formal service definition that can
be used independently of the domain [Broy et al., 2007, Salzmann and Schätz, 2003,
Schätz, 2002, Krüger, 2002]. These approaches define services by means of interac-
tion patterns. Such an interaction sequence describes a piece of the system behavior
by specifying the interplay between the system (or system entities) and its users. We
base our approach on this intuition of the term service.

For the remainder of this text, we only make use of the term "service" (and do
not use the term "feature" in order to avoid confusion). As the methodology
uses services as basic building blocks, we speak of a service-oriented approach (re-
lated with feature-oriented development, feature-driven development, or feature engineering
[Turner et al., 1999]).

In the thesis at hand, services are pieces of partial black box behavior. They are specified
by partial input output mappings and capture the interaction between the system
and its environment. Hereby, the initiative does not necessarily lie with the user. The
system can start the interaction, as well. Services can be seen as projections of the overall
system behavior onto use cases. Thus, services induce an aspect-oriented view onto the
system architecture [Filman et al., 2004]. With the help of services, the overall system
functionality can be structured into smaller pieces of behavior. This is very intuitive
as the many stakeholders speak of services to have, change, or modify.

In order to reduce complexity, a modular approach is essential. The services are
captured and specified modularly, i. e. as if they would exist in isolation. Then the
services are combined. The collaborative interplay between the services establishes
the overall system functionality.

However, there exist multiple dependencies between services within the integrated
system. This is especially true for multi-functional systems which are - per definition
- characterized by a high degree of interaction between (sub) functionalities. These
dependencies change the modularly specified behavior of single services. This effect
is known in literature under the keyword feature interaction (or service interaction in
our nomenclature). A prominent definition of the term "feature interaction" is the
following: "A feature interaction is some way in which a feature or features modify
or influence another feature in defining the overall system behavior." [Zave, 2003]
Examples for feature interaction (or: service interaction) are the abortion or the in-
terruption of a service by another service. Although many feature interactions are
wanted, unwanted feature interactions often cause severe problems in practice.

Feature interactions can occur because of different reasons. For example two sub
functionalities might call an exclusively usable function at the same time. How-

5

1.2. Content of this thesis 1. Introduction

ever, as we model the black box behavior of multi-functional systems, we are only
interested in dependencies (relationships) between services which are visible at the
system boundaries. Therefore, we only take into consideration feature interactions
which occur because of user-visible relationships between services. Speaking more
concretely, the abortion of a service by another service is in the focus of this thesis as
it can be observed at the system boundaries. In contrast, the problem of two func-
tionalities accessing an exclusively usable function at the same time is not looked at,
as internal function calls can not be observed from a black box perspective.

Please note that we use the term "service" if we speak of a piece of black box behavior
and the term "function" if we speak of behavior that might only be visible from a
white box perspective.

As mentioned above, the projection of the overall system functionality results in
"smaller" pieces of behavior - namely services. However, without the understand-
ing of the dependencies between services, the projections of the system behavior
would be highly nondeterministic. For example, the textual specification of the ser-
vice "closing of a car window" could be as follows: "On pressing the toggle switch,
the window has to be closed until the end position is reached." The textual speci-
fication of the child protection service could be: "If the child protection service is
turned on, the windows can not be operated anymore." Only having the modular
specifications without the relationship between them (namely that the child protec-
tion service prohibits the closing of the window), the system service "closing of a
car window" would seem to be nondeterministic. In some cases the pressing of the
toggle switch would result in closing the window (if the child protection service is
switched off) and sometimes not (if the child protection service is switched on).

Above, we suggested to specify services modularly in order to reduce the system’s
complexity. However, these modular service specifications lack a treatment of ser-
vice relationships (dependencies) as they model the service behavior in isolation and
not in relation with other services. Consequently, feature interaction (being the result
of dependencies between services) is not handled by the modular service specifica-
tions. The service specifications thus have to be modified according to the service
relationships when they are combined to establish a more comprehensive behavior.

In the following subsection, we give a rough outline of our approach.

1.2.1. Rough outline of the approach

As starting point for our approach, we assume that the functional requirements are
given almost completely. The focus of the approach is not the elicitation or deriva-
tion of requirements but the modeling of requirements. However, as a consequence
of the modeling phase, missing - and therefore new, derived requirements - can be
identified. (See also Section 1.2.3, Scoping - Where in the software development process is
the approach situated?)

By functional requirement we denote the requirements describing the behavior of
the system as defined in [Sommerville, 2004]: "These are statements of services the
system should provide, how the system should react to particular inputs and how
the system should behave in particular situations. In some cases, the functional re-
quirements may also explicitly state what the system should not do."

6

1. Introduction 1.2. Content of this thesis

Furthermore, we assume that they are given in an informal, textual form (i. e. in natu-
ral language).

The basic idea of the approach is the following iterative process:

As the functionality of the system can be very comprehensive, first single pieces of
functionality (modular atomic services) which can be called by the user are identified in
the functional requirements. Examples for such modular atomic services are: "turn
on the radio", "adjustment of the height of the car’s seat up", or "open the car re-
motely".

Furthermore, the syntactic interface of the system under development is specified:
Inputs and outputs are identified and assigned to channels. Possible inputs and out-
puts are "press the radio button"3 and "the height of the seat is increased", respec-
tively.

The modular services are structured using hierarchical relations (vertical service rela-
tionships). On basis of these service hierarchies, dependencies between services (hori-
zontal service relationships) are identified. Examples for such horizontal service rela-
tionship are: "mutual exclusion", "disable", and "interrupt".

In a next step the modular services which are at the bottom of the service hierarchy
are specified by a formal model as if they were independent from each other. Af-
terward, the modular service specifications are combined step by step to form more
comprehensive services. Depending on the horizontal service relationships pointing
at a service, a service can be influenced, e. g. disabled. Thus, the modular service
specification has to be adapted to handle these influences. For example, if a service
can be disabled, its specification has to handle such a command and provide a respec-
tive behavior. This modification is done schematically (and specific to the horizontal
service relationships) during the combination process: Each service specification has
to implement standard control interfaces which are specific to the service relationships.
By implementing the standard control interface, the services can handle the influ-
ences.

The combination process ends when the overall system functionality (being com-
prised of all atomic services) is constructed.

The main outcomes of the approach are the following:

• Both informal and formal modular service specifications which describe ser-
vices (pieces of functionality) on different levels of granularity and which can
be reused.

• A formal model of the overall integrated system functionality making all de-
pendencies between functionalities/services explicit.

• A formal model of the overall system functionality.

3In fact, we will describe the inputs and outputs on a more abstract level in the methodology. For
example, the input "driver wants to turn on the radio" abstracts from technical issues like a button
or a toggle switch.

7

1.2. Content of this thesis 1. Introduction

1.2.2. Scoping - What system classes is the approach for?

As mentioned above, we are interested in modeling multi-functional systems. Multi-
functional systems are characterized by a high degree of dependencies between sys-
tem (sub-) functionalities. We also speak of functionally complex systems in the re-
mainder of this thesis whereas complex relates to the complex interplay of function-
alities and not to complex algorithms. Of course the approach can also be applied
to systems which are not functionally complex. However, this would add an inade-
quate level of complexity.

In order to describe the target domain of our approach, we briefly describe the system
class we aim at. Computer systems can be classified according to different criteria. In
the following we give four different possibilities to classify systems and classify our
approach, respectively.

Classification according to transformation of data

Systems can be divided into three categories according to the way they transform
input into output [Rechenberg and Pomberger, 1999]: Transformational systems trans-
form input which is completely available to the system at the beginning of the exe-
cution into output. The output is not available until the end of the execution. The
user (i. e. both human users and other systems) can not interact with the system dur-
ing the execution and therefore can not influence the computation. Interactive systems
interact and synchronize continuously with users during the execution. The interac-
tion is determined by the system and not by the users. Reactive systems operate like
interactive systems except that the interaction is determined by the user.

In our approach, the user interface is structured according to the (sub-) functional-
ities provided by the system interface and the dependencies between these (sub-)
functionalities. As transformational systems provide a rather simple interface, they
are not within the scope of this thesis. In this thesis we concentrate of reactive systems
as the execution of the system can also be interrupted by the user and therefore the
interface behavior is more complex to model.

Classification according to focus on control vs. data aspects

Systems can be classified according to their focus: The main focus of technical systems
is to control technical processes. The main focus of business systems is on data storage
and manipulation.

In this thesis, we develop an approach for technical systems as we do not intend to
concentrate on aspects concerning data.

Classification according to the distribution aspect

Systems can be classified according to their kind of distribution: Monolithic systems
are realized by one (logical or physical) component. Distributed systems are realized
by components which are logically or physically distributed.

8

1. Introduction 1.2. Content of this thesis

Requirements
engineering Implementation Maintenance,

etc. DesignProject
definition

Figure 1.2.: Situation of the approach within the software development process (schematic
picture)

In this thesis, we abstract from issues concerning distribution (and also from issues
concerning the technical realization of the system). Consequently, the distinction be-
tween monolithic or distributed systems should not matter. However, as mentioned
in Section 1.1 (Motivation), when distributing a system it is important to first create
a model of the integrated system functionality. Against this background and due to
the fact that a monolithic system can be seen as a special case of a distributed system,
we focus on distributed systems in this thesis.

Classification according to variation in time

Considering possibilities at what point in time "relevant" activities are allowed to
happen during the system run, the following classification can be done: In time-
continuous systems, relevant activities can evolve continuously. In time-discrete sys-
tems, the time line is divided into not necessarily but possibly equidistant intervals.
Relevant activities only occur at points of time of the time grid.

For our approach we focus on time-discrete systems.4

1.2.3. Scoping - Where in the software development process is the
approach situated?

As far as a model-based software development process is concerned our approach
can be situated at the transition of the requirements engineering phase and the design
phase (see Figure 1.2). In order to explain this statement, we have a look at the typical
tasks of the requirements engineering and design phase, respectively.

Tasks of the requirements engineering phase

The typical tasks of the requirements engineering phase are (adapted from
[Sommerville, 2004]):

• requirements elicitation

• requirements specification/documentation

• requirements management

• structuring of requirements
4The modification of our approach to also suit the other system classes is considered to be future work.

See also Section 7 (Summary, evaluation, and outlook).

9

1.2. Content of this thesis 1. Introduction

• validation of requirements (e. g. analysis, simulation)

• verification of requirements (e. g. consistency checks)

In the elicitation activities, requirements are elaborated. This includes both the initial
elaboration of requirements and the derivation of further requirements. The docu-
mentation aims at the (formal or informal) specification of the requirements. Man-
agement activities deal with how to manage the requirements. Structuring of the
requirements is important for reasons of clarity. During the validation, the require-
ments are investigated if they really demand the intended system (behavior). The
verification of requirements aims at identifying contradictories.

In our approach, mainly the following activities are covered: requirements elicitation,
requirements specification/documentation, and structuring of requirements. We specify the
functionality of the system by formal models. In case that not all of the informa-
tion needed for creating the models is given, missing requirements can be detected
and therefore implicitly elicited. The specification/documentation is explicitly done
when modeling the services. As mentioned above, the system functionality is struc-
tured into service hierarchies which results in a structured view onto the user func-
tionality.

As a side effect of the formal foundation of the introduced concepts, validation and
verification can be done based on the models. For example models can be simulated
in order to validate the specified functionality and consistency checks can be per-
formed in order to verify the specification. However, this is not in the focus of the
thesis at hand. Issues concerning the management of requirements are not taken into
consideration.

Tasks of the design phase

The tasks of the design phase are the creation of (formal) models containing differ-
ent views onto the system under development (and the integration of these models)
[Broy and Steinbrüggen, 2004]:

• behavioral view

• state view

• structural view (architecture design)

• data view (data flow, data type definition)

As far as the approach to be presented is concerned, formal models for all of these
views are created. The behavioral view represents the system functionality. States of
the services are made explicit, therefore a state view is also provided. The structural
view divides the system into user-visible services and the relationships/connections
between these services. Data being the input and output of the system and needed
to store information persistently are specified, too.

10

1. Introduction 1.3. Contributions of this thesis

1.2.4. Scoping - What issues are not covered by the approach?

The thesis at hand presents a methodology for modeling the usage behavior of multi-
functional systems. Of course, this is a very comprehensive topic. Not all interesting
questions related to this topic can be handled in a single thesis. The following issues
are not covered by our methodology and are subject to future work (see also Section
7.3, Outlook):

The aim of this thesis is to explore the concept of services as far as possible. However,
we do not want to claim that services are the best solution for all abstraction levels of
large-scale systems. For a pragmatic approach, further abstraction techniques should
be combined with the presented approach and evaluated by means of comprehensive
case studies. However, this is not in the focus of this thesis.

The presented approach is only appropriate for modeling systems with a trivial set
of persistent data. In order to handle systems having a more comprehensive set of
persistent data, the approach has to be modified appropriately.

In the thesis at hand we make use of a very simple time semantics which is not ap-
propriate for modeling the timing behavior of real systems. The approach can be
modified accordingly, however the modifications make it more complex. We will
outline how the approach can be changed toward an adequate time semantics in Sec-
tion 7.2.2 (Disadvantages of the approach).

Product line development aims at maximizing reuse. For example, see
[Böckle et al., 2004] and [Clements and Northrop, 2002] for a general introduction on
product line development. The basic idea is to first identify similarities and differ-
ences of products within the same domain. On basis of a common platform, new
products are then developed by adding "building blocks" to this platform. In our
approach we do not take into consideration issues concerning product line develop-
ment. Furthermore, instantiation (e. g. instantiation of parts of models) is not covered
either.

Besides functional requirements, non-functional requirements (e. g. covering relia-
bility, security, performance issues) are very important when specifying the intended
system behavior. However, this topic is very complex and would go beyond the
scope of this thesis.

Other issues like the specification of continuous behavior which are not covered by
our approach result from the target system type (see the preceding subsection).

1.3. Contributions of this thesis

In this section, we briefly list the main contributions of this thesis. A more detailed
discussion on the contributions is given in Section 7.2 (Evaluation).

The scientific contribution of this work is the introduction of a methodology for the
compositional, formal specification of multi-functional systems. The model-based
approach is situated at the transition from the requirements and design phases and
thus bridges the gap between detailed functional requirements and a logical system
architecture.

11

1.3. Contributions of this thesis 1. Introduction

The thesis bases on the following approaches: self-contained, hierarchical services
which communicate with each other by means of typed, directed channels are used
to describe the system structure. The behavior of these components is modeled by
a Statechart variant. The decomposition of the system functionality is done by so-
called service graphs. The hierarchical dimension of service graphs is a well known
way of structuring functionality.

The original contribution of this thesis is a methodology which enables the systematic
development of multi-functional systems by combining smaller pieces of functional-
ity, namely services. The combination is done on basis of service relationships which
describe the dependencies and influences between services. During the composition
of services to more comprehensive services, the transition of informal requirements
to formal specifications is done.

Methodology We present a methodology describing how to proceed when model-
ing the black box functionality of multi-functional systems. To that end we describe
steps (activities) leading to well-defined products (artifacts) and an ordering on them.
The artifacts serve as milestones in the development process.

The process allows a comprehensive reuse of artifacts. As all of the artifacts of our ap-
proach are modeled as modularly as possible, not only the outcomes of the method-
ology but also intermediate results can be reused. For example, informal and formal
specifications of services of an arbitrary level of granularity can be used for the spec-
ification of further systems, again.

By relating services, dependencies between services are made explicit. Thus the com-
plex interplay is understood. Feature interaction (service interaction) can be handled
systematically. This enables an understanding of the complex dependencies within the
system functionality.

Although the elicitation of missing requirements is not in the scope of our thesis,
a positive side effect of our approach is that missing requirements can be detected
(detection of missing requirements). This is due to the model-based character of our
approach. As we will see later, we can check if all the information required by the
models is covered by the requirements. If not, further requirements containing the
missing information have to be elicited.

As another consequence of the modular approach, parts of the system functionality
can be specified in isolation and then integrated. Thus, distributed development is pos-
sible. This is especially important concerning the producer-supplier-relationship. As
only the interface specification of the sub systems has to be known, the internal re-
alization of sub systems can be hidden. The intellectual property (IP) of a company
therefore is protected.

Formally founded concepts In our methodology, modular service specifications
are modified to handle influences by other services, e. g. to handle an interrupt com-
mand. The modular service specifications have to implement standard control inter-
faces in order to handle these service interactions. For each standard control interface
we present a schema how to systematically realize it. These schemata are formally
founded and given a precise semantics. Consequently, the meaning of the concepts

12

1. Introduction 1.4. State of the Art

is defined without ambiguities.

Notational techniques For the specification of the system functionality adequate
notional techniques are suggested and introduced for each step of the methodology.
Wherever possible, standard notations (like State Charts) are used. Additionally, the
introduced notational techniques are very intuitive and easy to learn.

1.4. State of the Art

We compare our work to a selection of related approaches in Section 6 (Related Work).
At this place we shortly identify gaps in the state of the art concerning the formaliza-
tion of functional requirements and show how our approach closes them.

The idea of a continuous model-based development process is relatively new. Most
work centers on a (distinguished) phase (or topic) in the development phase. The
transition between development phases is often neglected. For example, usually, re-
quirements engineering approaches are informal, whereas design approaches are for-
mal. We investigate gaps in these two areas in Sections 1.4.1 (Requirements engineering
approaches) and 1.4.2 (Formal modeling of the system functionality). In our methodology,
modular service specifications are systematically adapted to handle feature interac-
tion. Thus, we also investigate the state of the art in research on feature interaction
(see Section 1.4.3, Work on feature interaction). Many work on feature modeling, espe-
cially decomposing the system functionality into trees, and identifying relationships
between features, has been done in the area of product line development. In Section
1.4.4 (Feature modeling within product line development) we identify gaps in this context.

1.4.1. Requirements engineering approaches

Requirements engineering approaches can be roughly classified according to their
basic concepts, for example: Use Case/Scenario-based approaches, goal-based ap-
proaches, linguistic methods, and model-based requirements engineering.

Use case-/Scenario-based approaches

Use cases are commonly used in practice to capture the functionality of a system.
They describe the tasks which the system has to provide from an external point of
view and thus are helpful to determine the system boundaries. So-called "actors" are
entities which interact with the system. A use case is an abstract description of all ac-
tions and focuses on completeness whereas scenarios usually are concrete instances
of use cases. They focus on understandability by describing concrete sequences of in-
teractions between the system and actors. The most prominent representative of use
cases probably are UML Use Case Diagrams [OMG, 2003]. They are usually accom-
panied by structured, textual descriptions. Although templates for use case diagrams
are structured into entries like participating actors, precondition, flow of events, and
post condition no schema on how to obtain (which kind of) formal models out of the
textual descriptions is given.

13

1.4. State of the Art 1. Introduction

Model-based use case approaches intend to overcome this problem. They enrich
use cases by formal semantics. In [Dano et al., 1997] petri nets are used to give use
cases a precise meaning. Others make use of sequence-based languages like MSCs
[ITU-T, 1996] or Live Sequence Charts [Damm and Harel, 2001] (enhancing MSCs by
modality, anti-scenarios, etc.). The tool AutoRAID [AutoRAID, 2007] for example
makes use of sequence diagrams, called Extended Event Traces, to describe func-
tional requirements. Although being more formal than textual use case descriptions,
these approaches do not take into account dependencies between functionalities.

As far as dependencies between functionalities are concerned, most (informal and
formal) use case approaches only provide "extends" and "uses" relationships. The
first one indicates that an extended use case may include the behavior which is spec-
ified by the extending use case. The second relationship is used to capture common
behavior of use cases. It describes that a use case always includes the behavior of an-
other use case. However, no formal semantics of these relationships is given. Other
dependencies, capturing feature interaction are not provided. Furthermore, the user
can use stereotypes to informally define further relationships.

Although often considered to be intuitive, these notions suffer from the following
disadvantages: Different interpretations of the relationships are possible as their
meaning is not precisely defined. Consequently, we have ambiguous specifications.
This problem already occurs when only looking at two pieces of functionality. The
problem explodes when more services (up to the overall system functionality) is
looked at. The interplay of several functionalities and transitive dependencies pose
severe problems and are not understood.

Goal-oriented requirements engineering

Goal-oriented requirements engineering approaches use goals for all requirements
engineering tasks, i. e. elicitation, verification, documentation, etc. Hereby, a goal
describes the stakeholders’ intentions and desired system properties. Goals can be
situated on different levels of abstraction. For example both "The system shall serve
more passengers." and "Keep ATM card after three wrong password entries." are
considered to be goals. Usually goal-oriented approaches structure the system hi-
erarchically. A goal is broken down into sub goals and refined by "AND" and "OR"
relationships. The AND relationship specifies that all sub goals have to be fulfilled
for the fulfillment of a decomposed goal. The OR relationships states that it is enough
if one sub goal is fulfilled. Furthermore, conflicts between goals are modeled.

One prominent representative of goal-oriented approaches is KAOS
[Darimont et al., 1997]. Goals are classified according to types: Functional vs.
non-functional goals, soft goals (the satisfction of which can be achieved through
verification) vs. hard goals, system state (positive, negative, alternative, etc.) and
others. Goals are refined until they can be assigned to agents within the system
or the environment. KAOS also provides the possibility to model goals formally
by means of a real-time linear temporal logic. However this is suggested only for
critical aspects of the system.

Although formal goal-oriented approaches overcome the problems of informality,
they still suffer the problems of not capturing feature interaction. Usually the only

14

1. Introduction 1.4. State of the Art

functional dependencies which are specified are AND and OR refinements of goals
and goal conflicts.

Linguistic approaches

Linguistic approaches try to overcome the problem of imprecise, ambiguous textual
specifications and to create formal models out of text.

Chris Rupp [Rupp, 2007] introduces a set of rules for the specification of require-
ments in natural language. For example, incomplete process words have to be com-
pleted. The requirement "The system is supposed to record the loss of data." lacks
the information to whom it shall report the loss, how this should be done, etc. Su-
perlatives have to be described further. The requirement "A faster memory has to be
used." for example does not contain the information how fast this actually is. The
approach by Rupp aims at informally but precisely specifying requirements. How-
ever, they do not target at bridging the gap between the requirements engineering
phase and the design phase. Thus the introduced rules are not motivated by design
models.

The rules by Chris Rupp are not implementable. Other approaches automatically
analyze natural language to obtain design models. Lexical approaches analyze words
and sequences of words and produce lists of key words based on frequency (for ex-
ample Abstfinder [Goldin and Berry, 1997]). Syntactic analyses result in entity rela-
tionship diagrams or object-oriented models of natural language. Work by Abbott
[Abbott, 1983] for example transforms nouns into data types, verbs into operations,
etc. In [Kof, 2005] domain-specific ontologies, i. e. terms and relations between these
terms, are extracted from natural language documents. Semantic analyses are based
on syntactic approaches and aim at investigating the semantic role of words or parts
of sentences (see for example Fillmore’s Case Grammar [Fillmore, 1971]).

The above mentioned approaches produce models out of natural language. How-
ever, the result is not an executable model of the system functionality. Especially, the
problem of feature interaction is not handled. Mostly, terms and relations between
terms are identified.

Model-based requirements engineering approaches

Model-based requirements engineering is a quite young research direction. It aims at
bridging the gap between the informal requirements engineering phase and the for-
mal design phase.5 Above, we already mentioned model-based use case approaches.
The tool AutoRAID allows for the motivation of design model elements due to given
requirements. For example, requirements can motivate components or states. How-
ever, requirements are only informally linked to single design model elements. In
[Damas et al., 2006] an approach is introduced which specifies functional require-
ments by Message Sequence Charts (MSCs). The Message Sequence Charts are trans-
formed into a labeled transition system (LTS) which is basically an automata dialect.
Goals are inferred inductively from MSC scenarios.

5In Section 6.1 (Model-based requirements engineering) we compare our approach with model-based re-
quirements engineering approaches.

15

1.4. State of the Art 1. Introduction

Although model-based requirements engineering approaches have the same basic
goal as our work (to systematically obtain formal models out of text) they do not
pay enough attention at capturing functional dependencies appropriately. Further-
more they do not investigate how functional dependencies effect modular functional
specifications.

1.4.2. Formal modeling of the system functionality

There exist many approaches which are concerned with formally modeling the sys-
tem functionality. Function trees for example capture functional entities which are
related to each other by different relationships. These relationships are usually "call"
or "contain" relationships. Jackson diagrams describe structural and sequence-based
relationships. The sequential execution of internal functions can also be specified by
Jackson diagrams.

In [Deubler, 200x] service relationships are identified and formally specified. Al-
though the aim of [Deubler, 200x] is to formalize service relationships from a pure
usage view this goal is not achieved due to our opinion. For example relationships
like "trigger" and "call" are introduced which represent the call of a service with or
without feedback by the called service. As mentioned in Section 1.1 (Motivation)
these relationships are not adequate for the requirements engineering phase as they
already contain information about the realization of the black box system behavior.
Furthermore, no methodological support for the formal specification of the system
functionality is given.

In [Broy, 2007] service relationships (like the sub service relationship) and service
refinement are formally defined. We make use of this formal work as basis for our
approach (see Section A, Embedding into a theoretical framework). [Broy, 2007] aims
at developing a formal theory for service-oriented requirements engineering rather
than providing pragmatic, methodological support.

In [Schätz, 2007] the author also structures the system functionality hierarchically
into modular pieces which are formally specified. The formal specifications are
then combined by alternative combination (OR relationship) or parallel composition
(AND relationship). However, no further relationships are identified to handle fea-
ture interaction. This is not in the scope of that work.

The CASE tool AutoFOCUS 2 [Huber et al., 1997] from which we adopt the nota-
tional techniques for our methodology provides different diagram types to model
different views onto the system: System Structure Diagrams are used to model the
syntactic aspects of the software-to-be like its architecture. State Transition Diagrams
are an automata dialect to capture the local behavior of components. Extended Event
Traces specify the interaction between system entities and between the system and
its environment. Furthermore, Data Type Definitions can be used to define complex
data types. Consistency checks between these different views onto the system are
also implemented. Although AutoFOCUS 2 is connected to the requirements engi-
neering tool AutoRAID [AutoRAID, 2007], only informal links (like "motivate") can
be established between informal requirements and formal model elements.

Although many formal approaches for the modeling of the system functionality ex-
ist, most of them are not appropriate for modeling the system functionality from a re-

16

1. Introduction 1.4. State of the Art

quirements engineering point of view. As mentioned above, relationships like "call",
"trigger", or "use" stem from the implementation and are motivated from a technical
point of view. Moreover, most of these approaches are too formal and not intuitive
enough for the requirements engineering phase. Furthermore, these approaches do
not take into account how feature interaction effects modular, functional specifica-
tions.

1.4.3. Work on feature interaction

The most prominent definition of the term feature definition as mentioned in Sec-
tion 1.2 (Content of this thesis) and much research around this topic comes from the
telecommunication domain. See for example the international series of Feature In-
teraction Workshops or [Calder et al., 2003] for an overview of work on feature in-
teraction in the telecommunication domain. In this domain, features are considered
to be components of additional functionality and thus can be seen as our services.
Examples for features are "call forwarding capability" or "ring back when free".

But also other domains such as computer aided design [Perng and Chang, 1997],
process planning [Hwang and Miller, 1995], and in the area of embedded systems
[Metzger, 2004] are affected by feature interaction. Research generally includes how
to constructively avoid feature interaction or how to identify scenarios in which un-
wanted feature interaction might potentially occur or does occur and how to re-
solve these interactions. The approaches try to tackle the problem differently. Some
make use of well-known techniques like state machines (see for example work by
Braithwaite ant Atlee [Braithwaite and Atlee, 1994]), SDL (see [Kelly et al., 1995]),
or LTL (see [Felty and Namjoshi, 2000]) during design time. Others deal with fea-
ture interaction by detecting and resolving it during runtime by (see for example
[Marples and Magill, 1998, Homayoon and Singh, 1988, Aggoun and Combes, 1997,
Reiff, 2000]).

The problem with existing approaches is that most of them are tailored to the
telecommunication domain and not applicable to other systems. For example the
prominent approach by Zave and Jackson (see Section 6.2.1, Services in the telecommu-
nication domain - Distributed Feature Composition (DFC)) introduces a virtual architec-
ture specific to the telecommunication domain. A precedence relation, i. e. a partial
ordering of the features, is made available to the router in order to avoid unwanted
feature interactions.

Many other approaches deal with feature interaction that is caused by shared re-
sources like for example [Lorentsen et al., 2001]. However, on our level of abstraction
we only want to look at the functional dependencies that can be observed at the sys-
tem boundaries. In [Shehata et al., 2004] the term feature interaction is defined even
more general and also takes into consideration non-functional requirements (again
including shared resources). As mentioned above, a great variety of approaches is
concerned with identifying and resolving feature interaction instead of systemati-
cally combining modular, reusable services to handle feature interaction.

17

1.4. State of the Art 1. Introduction

1.4.4. Feature modeling within product line development

Much work on structuring the system (behavior) into "features" (or "services" in our
setting) and identifying relationships between them exists in the area of product
line development. FODA [Kang et al., 1990] introduces the well-known FODA trees
("Feature Model") which hierarchically decompose a system. However, FODA trees
do not only decompose the system functionality, but also structure technical aspects.

Although there is a variety of other approaches [Kang et al., 1990, Kang et al., 1998,
Kang et al., 2002b, Fey et al., 2002, Jacobson et al., 1997, Lee et al., 2000,
Czarnecki, 1998] each of which defines service relationships - some informal
without precise semantics, some formal - they are all domain-specific. The main aim
of product line development is to maximize reuse. To that end commonalities and
differences between systems in terms of common and distinct features are identified.
Usually, feature models are AND/OR graphs. Features are structured hierarchically
by means of composition, specialization, and implementation relationships. Features
themselves can be declared to be optional, obligatory, or alternative. Furthermore,
these graphs are enriched with "excludes" or "requires" relationships.

In addition to the domain specificness, another fact makes these approaches inappro-
priate for our work: often implementation alternatives specifying alternative imple-
mentations for functional features are also encoded in the feature models. Thereby,
these implementation relationships are not always "just" tracing links but intertwined
with the pure functionality.

1.4.5. Summary

This thesis introduces a model-based requirements engineering approach which aims
at modeling the functionality of multi-functional systems from a black box view.
Thus it aims at bridging the gap between the informal requirements engineering
phase and the formal design phase. Focus is given on how dependencies between
functionalities effect modular functional specifications (feature interaction).

In the paragraphs above we described the current state of the art in requirements en-
gineering approaches, formal modeling of the system functionality, work on feature
interaction, and feature modeling within product line development with regard to
our work.

Typical requirements engineering approaches are usually informal in order to be in-
tuitive. The problem which arises is that the semantics of their concepts are not
formally founded and thus imprecise. The relationships between functionalities
are usually motivated by a specific aim, for example by the refinement of goals
(AND/OR relationships in goal-oriented requirements engineering approaches) or
the reduction of specification effort (extends/includes relationships in UML Use Case
Diagrams). However, relationships capturing feature interaction are not introduced.
Linguistic approaches produce design models like entity relationship diagrams but
do not model the system functionality. Model-based requirements engineering ap-
proaches do not investigate the effects of feature interaction.

Approaches concerning the formal modeling of the system functionality overcome
the problems of imprecise semantics. However they are not appropriate for the re-

18

1. Introduction 1.5. Outline

quirements engineering phase which involves people (e. g. customers) with no for-
mal background. Additionally, the relationships introduced are mainly motivated
from a technical perspective rather than from the usage view.

Work on feature interaction does take into account the effects of a function onto an-
other function. However, these approaches usually are also very focused on a tech-
nical view onto the system. For example, they investigate feature interaction which
arises because of a concurrent access to shared resources. A pure view onto the sys-
tem from a black box perspective, as needed during requirements engineering, is not
given.

Other approaches like feature modeling within product line development or work
on feature interaction within the telecommunication area is tailored to a specific do-
main and not appropriate for a domain-independent approach. Moreover, many
approaches miss methodological support.

To put it in a nutshell: The area of model-based requirements engineering is a rel-
atively young field of research. Most approaches are either informal or formal de-
pending on the target group. The idea of hierarchically structuring the system func-
tionality in smaller pieces is not new. However, the identification of differentiated
service relationships as appropriate from a usage view, the stepwise combination of
services on basis of these dependencies, and the systematic adaption of the service
behavior during the combination process is new to the best of our knowledge.

1.5. Outline

This thesis is organized as follows:

In order to illustrate our concepts and to present the methodology we make us of a
running example: the power seat control system as can be found in modern cars. In
Chapter 2 (Running example) the functional requirements of this system are given in
an informal (textual) form.

Chapter 3 (Notational techniques (Overview)) introduces notational techniques which
are used in the methodology to be presented.

In Chapter 4 (Methodology) we introduce our approach. The iterative process for mod-
eling the black box behavior of multi-functional systems is described step by step.
After a description what we assume to be the starting point of our methodology (in-
formally given, textual requirements), each step is presented in a separate section, re-
spectively. The chapter is concluded by the description of the result of our approach
(formal model of the overall system functionality) and some further considerations.

The basic idea behind our approach is the following: Modular service specifications
are combined on basis of their service relationships. In Chapter 5 (Extension of basic
service relationships) we again take a detailed look onto service relationships.

In Chapter 6 (Related Work) we list related work and compare it to our approach.

Chapter 7 (Summary, evaluation, and outlook) summarizes the approach. The method-
ological steps are revisited again. Furthermore, an evaluation of the methodology is
done. Its advantages and disadvantages are discussed. Finally, an outlook on future

19

1.5. Outline 1. Introduction

work is given.

Also find a glossary at the end of the thesis with the most important key words used
in our methodology. In the appendix (Appendix A, Embedding into a theoretical frame-
work), we embed our approach into a formal framework.

20

Chapter 2
Running example

In order to explain our concepts and the introduced methodology we make use of
a case study from the automotive domain: the power seat control system. In this
chapter we list the textual (informally given), functional requirements for this system.
The requirements of the power seat control are a modified and simplified version of
the requirements presented in [Houdek and Paech, 2002]. Among others, we make
the following simplifications: Our seat adjustment system is only available for the
driver’s seat. Furthermore, only one position can be saved and called.

To be able to reference the requirements within the proceeding chapters, the require-
ments are numbered.

First, we list general requirements of the power seat control system (see Section 2.1,
General requirements). Then we list the requirements for the manual adjustment of the
seat and the adjustment by memory, respectively (see Sections 2.2, Requirements for
the manual adjustment and 2.3, Requirements for the adjustment by memory).

Contents
2.1. General requirements . 21

2.2. Requirements for the manual adjustment 22

2.3. Requirements for the adjustment by memory 22

2.1. General requirements

1. The driver can adjust his/her seat according to his/her requirements. The
driver has the possibility to do the following adjustments:

a) Adjustment of the angle of the back

i. forwards

ii. backwards

b) Adjustment of the distance between the seat and the steering wheel

21

2.2. Requirements for the manual adjustment 2. Running example

i. increasing

ii. decreasing

c) Adjustment of the height of the rear area of the seat

i. up

ii. down

d) Adjustment of the height of the front area of the seat

i. up

ii. down

2. In order to adjust the seat the respective motors are controlled.

3. There are two possibilities to adjust the position of the seat: The adjustment
of the position can either be carried out manually (manual adjustment), e. g. by
means of a toggle switch, or automatically by triggering the memory functional-
ity.

4. The adjustment (manual adjustment or memory functionality) that was se-
lected last determines the movement of the seat, respectively.

2.2. Requirements for the manual adjustment

5. The manual adjustment of the seat is only possible if the front door is open.

6. The manual adjustment can be triggered by pressing the toggle switches (one
for each adjustment: back, distance, rear area, front area) which are attached to
the seat.

7. The manual adjustment of the seat is carried out as long as the user request is
active, respectively.

8. For each adjustment (back, distance, rear area, and front area) only one direc-
tion of movement (e. g. up or down) can be carried out at once in case of the
manual adjustment.

9. At most two of the adjustments can be carried out simultaneously.

10. In case the battery power is too low (lower than 10V) to perform the manual
functionality

a) the seat is not adjusted.

b) If need be the currently active adjustment is aborted.

c) Additionally, the error message err_bat_low_man is sent on the bus.

2.3. Requirements for the adjustment by memory

11. The memory functionality can only be executed as long as the car’s velocity is
not too high (not higher than 5km/h). If need be, the adjustment of the seat is

22

2. Running example 2.3. Requirements for the adjustment by memory

aborted immediately.

12. The memory functionality can be triggered either by pressing the button at-
tached inside the driver’s door (so-called seat button) or by opening the car
remotely with a car key.1 (Please note that our requirements only cover the
retrieval of the seat position and not its saving as in [Houdek and Paech, 2002]
this functionality is part of the user management system.)

2.3.1. Requirements for the memory functionality triggered by the seat
button

13. If the memory functionality is triggered by pressing the seat button, it is as-
sumed that the driver is already sitting on the seat. In order to make the adjust-
ment of the seat as comfortable as possible

a) first those directions are carried out that cause a relaxation: moving the
back backwards, increasing the distance, moving the front area of the seat
down, moving the rear area of the seat down.

b) Afterward, the opposite directions are carried out.

c) At most two directions can be carried out simultaneously.

14. In case the battery power is too low (lower than 10V) to perform the memory
functionality (which was triggered by the seat button)

• the seat is not adjusted.

• If need be, the currently active adjustment is aborted.

• Instead, the error message err_bat_low_seat_button is sent on the bus.

2.3.2. Requirements for the memory functionality triggered by the car
key

15. If the memory functionality is triggered by pressing the car key, it is assumed
that the driver is outside the car (and not sitting on the seat). In order to move
the seat to the desired position as soon as possible, all directions are carried out
simultaneously.

16. In case the battery power is too low (lower than 10V) to perform the memory
functionality (which was triggered by the car key)

• the seat is not adjusted.

• If need be, the currently active adjustment is aborted.

• Additionally, the error message err_bat_low_seat_key is sent on the bus.

As convention, all key words of the running example (service names, inputs, outputs,
etc.) are written in CAPITALS in the remainder of this thesis.

1In modern cars, on opening the car remotely the seat is adjusted according to the previously saved
position.

23

2.3. Requirements for the adjustment by memory 2. Running example

In this chapter we presented the informal, textual requirements of our running exam-
ple. In the following chapter (Chapter 3, Notational techniques (Overview)), we intro-
duce notational techniques which we will make use of in the course of the method-
ology.

24

Chapter 3
Notational techniques (Overview)

In this thesis we present a service-oriented methodology for modeling usage behav-
ior of multi-functional systems. For a pragmatic approach it is inevitable to provide
suitable notational techniques. In industry, graphical descriptions for the specifica-
tion and development of complex systems, provided by a number of development
tools, are already in widespread use. However, many of these notational techniques
lack a precise semantics. Consequently, the interpretation of its models is sometimes
unclear or ambiguous.

In this chapter, we introduce the notational techniques which we suggest for our
methodology. They provide the advantages of both intuitive graphical notations and
a formal foundation of their semantics.

In the following section (Section 3.1, System Structure Diagrams (SSDs)), we explain
System Structure Diagrams (SSDs). They are used to formally specify the syntactic
interface and the system architecture. State Transition Diagrams (STDs, see Section
3.2, State Transition Diagrams (STDs)) are used to describe the semantic interface of
system entities. Finally, we shortly introduce service hierarchies and service graphs.
These diagrams capture the hierarchical structuring of system services and (other)
relationships between services (see Section 3.3, Service hierarchy and service graph).
For the sake of completeness, tables are mentioned in Section 3.4 (Tables). Tables are
used to specify the static interface of services for example.

Originally, SSDs and STDs were introduced to describe the syntactic and semantic
interface of components. However, for our methodology, we use these notional tech-
niques for the specification of services. Therefore, we speak of "services" instead of
"components" in the following.

Contents
3.1. System Structure Diagrams (SSDs) 26

3.2. State Transition Diagrams (STDs) 27

3.3. Service hierarchy and service graph 35

3.4. Tables . 35

3.5. Summary . 35

25

3.1. System Structure Diagrams (SSDs) 3. Notational techniques (Overview)

3.1. System Structure Diagrams (SSDs)

In this section, we give an intuitive description of SSDs and describe their graphical
representation.

We leave the formal semantics of both SSDs and STDs to Section 3.2.3 (Semantics
of STDs). A formal definition of the semantics of SSDs in combination with State
Transition Diagrams (see Section 3.2, State Transition Diagrams (STDs)) is given in
Section 3.2.4 (Semantics of the combination of STDs and SSDs).

3.1.1. Intuitive description

In our methodology, we make use of System Structure Diagrams (SSDs)
[Huber et al., 1997] to describe static aspects of a system such as its architecture. The
system’s architecture is viewed as a network of services exchanging data over di-
rected channels.

We make use of non-buffering channels. This has the following reasons: First, the
original AutoFOCUS semantics also makes use of non-buffering channels. Second,
when using unbuffered communication, the system space is fixed during the system
execution (provided fixed size data types). Consequently, model checkers in general
automatically verify behavioral properties in a reasonable manner.

However, the buffering of inputs can be explicitly introduced into the specifications
if needed (see Chapter 5, Extension of basic service relationships). Each service has a
set of input channels and output channels. Data types are assigned to channels and
describe the data that can be transfered over that channel.

Services can be decomposed hierarchically. A service is then hierarchically refined
into sub services. The sum of the sub services has the same syntactic interface as its
super service.

An SSD describes both a topological view onto a distributed system and the signature
(static interface) of each service.

Service 1
Input-chN: in2…

Input-ch1: in1…

…

Output-ch1: out1, …

…Output-chM: out2, …
Service 2… …

Figure 3.1.: Example for a System Structure Diagram (SSD)

3.1.2. Graphical representation

Graphically, SSDs are represented as graphs (see Figure 3.1). Rectangular vertices
stand for services, directed arrows (edges) represent directed channels. Services and
channels are annotated by their identifiers. Sometimes, channels are also annotated
by their data types in the rest of this thesis.

26

3. Notational techniques (Overview) 3.2. State Transition Diagrams (STDs)

In the original System Structure Diagrams, input and output ports are also intro-
duced and depicted graphically by hollow or filled circles. In this thesis we do not
make use of ports and thus omit them.

In Section 4 (Methodology), we will use dashed and dotted arrows to indicate chan-
nels that aim at a special purpose (see Section 4.8, Combination of services on basis of
the service relationships). As far as semantics is concerned, these dashed and dotted
channels have the same meaning as channels which are represented by solid arrows.

3.2. State Transition Diagrams (STDs)

Automata are a popular specification technique. One can distinguish between the
logical model behind an automaton (state transition system) and its syntactic rep-
resentation (diagram). Many different automata dialects (both state transition sys-
tems and diagram types) exist ([Maraninchi, 1991, Gurevich, 2000, Lynch et al., 2003,
de Alfaro and Henzinger, 2001, Andre, 1996, Alur and Dil, 1994] - just to mention
a few. See [von der Beeck, 1995] for a comparison of statecharts variants). For
our approach, we choose to use AutoFOCUS State Transition Diagrams (STDs)
[Huber et al., 1997] to describe the semantic interface (behavior) of services.

Analogously to the previous section, we first give an intuitive description of STDs
and describe their graphical representation in the following subsections. A formal
definition of the semantics of STDs and SSDs is left to Sections 3.2.3 (Semantics of
STDs) and 3.2.4 (Semantics of the combination of STDs and SSDs), respectively.

3.2.1. Intuitive description

STDs are extended finite automata based on the concepts of [Grosu et al., 1996]. They
are used to describe dynamic aspects, i. e. the behavior of a system or a service. STDs
characterize the behavior by relating stimuli (i. e. inputs sent by the environment) to
responses (i. e. outputs sent to the environment). Hereby, the reaction of the system
depends on its current state and influences its future behavior by possibly migrating
to a new state.

Timing information

In order to represent timing information and to be able to deal with priorities and
interruption, STDs are endowed with a time concept. In STDs, time is represented by
(discrete) time ticks. In each time tick, an input can be pending on an input channel
or not. The same holds for outputs on output channels. All inputs (outputs) are read
(written) simultaneously from the input (output) channels.

Furthermore, we assume that communication takes place instantaneously, i. e. no de-
lay is introduced. This usually does not hold in reality. However, in our methodology
we abstract from this problem.

27

3.2. State Transition Diagrams (STDs) 3. Notational techniques (Overview)

State space

An STD describing a service behavior can make use of local variables. Thus, the state
of a service is defined by both its control space and its data space. The control space
is the current state of the finite state machine, whereas the data space is given by the
current values of the local variables. In each time tick, on receiving input, the STD
enters a new control state and a new data state by migrating to another state and
setting the values of its local variables accordingly. Of course, also the special case
that the STD stays in the same control and data space is possible.

Each STD has exactly one initial control state in which the service is at the beginning.

Transitions

So-called input and output patterns describe the transition from one control state to
another. Each transition is given by a set of annotations:

• a guard {GUARD}: predicate over the data state that has to be satisfied before
the transition. If the guard is not satisfied the transition is not fired but blocked
as long as the predicate evaluates to false.1

• an input pattern INPUT: description of the message pattern that is read from
the input channels

• an output pattern OUTPUT: description of the message pattern that is written
on the output channels

• a post-condition {POSTCOND}: predicate over the data state satisfied after the
transition

The effects of a transition are delayed by one time tick. This means the outputs of
a service are visible one tick after the inputs that triggered them. This behavior is
usually called "strongly causal" [Broy and Stolen, 2001].

Note that transitions in STDs can not be interrupted. However, for our methodology,
the interruption (or disabling) of a service execution is very important. Thus, if the
service should be interruptible between receiving an input and sending an output
we have to split the transition into two transitions and an intermediary control state.
We will come back on this later when introducing the methodology.

ε transitions, i. e. spontaneous transitions without triggering inputs, are fired in each
time interval (as no evaluation of the guard and the input pattern takes place).

Hierarchical refinement of states and the history concept

Control states of STDs can be hierarchically refined. However, the hierarchy con-
struct for STDs is only of syntactic nature and is usually used to get smaller and thus
more readable diagrams. Semantically, hierarchical STDs have the same meaning as
their flat correspondent.

1Please note, that in [Huber et al., 1997] guards are called "preconditions". However, as we want a
transition to be blocked as long as the predicate is evaluated to false we prefer the term "guard".

28

3. Notational techniques (Overview) 3.2. State Transition Diagrams (STDs)

We transfer the history concept of [Harel, 1987] to STDs. If a transition leads to the
so-called history state of a hierarchically decomposed control state, the control state
is entered in which the STD was when the hierarchically decomposed control state
was left. If the system has not been in a sub state of the hierarchically decomposed
state before, the transition leading to the history state is undefined.

Underspecification

In the following we will explain how STDs deal with underspecification.

Underspecified input patterns First we explain how the system reacts in case no
input pattern is specified for an input channel within a transition. The possibilities
are the following:

• Arbitrary behavior ("chaos"): In that case the reaction of the system is left open,
i. e. arbitrary non-deterministic transitions are allowed.

• Ignoring of the inputs: Undefined input patterns are interpreted to result in an
empty valued output and neither the control state nor the data state changes.
Thus the input patterns are complete.

• Allowing for arbitrary inputs: The transition is fired no matter which input is
received on the underspecified input channels.

• Buffering of the inputs: Inputs are buffered. In that case, we would have to
change the semantics to buffering channels and define which input (for exam-
ple the oldest input or each buffered input) would trigger a transition.

For our approach we choose the third possibility for the following reasons: First, we
make use of STDs to model the behavior of services. As in our context services are
partial functionalities, we also need a partial automata semantics. Second, the origi-
nal semantics of STDs [Huber et al., 1997] also makes use of this semantics. Third, the
chaos theory would allow for an arbitrary behavior (which would have to be refined
further). However, this is too liberal for the requirements engineering phase in which
the behavior of the system is to be determined. Possibility two has a total semantics
and thus is inappropriate to model partial service behaviors. The fourth possibility
is not in accordance with our semantics of non buffering channels (see Section 3.2.1,
Intuitive description). We will come back to buffering in Chapter 5 (Extension of basic
service relationships).

Hence, if no input pattern is specified for an input channel then the transition is fired
independently of which value is received on this channel.

Underspecified output patterns If no output is defined for an output channel
within a transition, we leave it open how the system shall react concerning this out-
put channel. This is in accordance with our service definition which defines a service
as a partial piece of functionality. Services make no statement about the system be-
havior for cases which are not specified.

29

3.2. State Transition Diagrams (STDs) 3. Notational techniques (Overview)

state1

{a==0} channel1?in1 /
channel2!out2 {a=1}

state2

state3
{b==5} channel1?in2 /
channel3!out3 {}

{b==c} channel1?c /
channel3!c+1 {b==c+1}

Figure 3.2.: Example for a State Transition Diagram (STD)

Underspecified assignments of variables If variables (visible to the service) are
not specified in a transition, the value of these variables is unaffected by the transi-
tion, i. e. it does not change.

Underspecified transitions (summary) The combination of the different types of
underspecification leads to the following result: A transition is fired no matter which
value is received on underspecified input channels. It is left open how the system
shall react on underspecified output channels. Furthermore, the values of under-
specified local variables are not changed.

3.2.2. Graphical representation

Graphically, an STD is represented as a graph (see Figure 3.2). Labeled ovals indi-
cate control states, labeled arrows represent transitions. Each transition is labeled
by {GUARD} INPUT / OUTPUT {POSTCOND} (see Section 3.2.1, Intuitive description).
Initial control states are indicated by an arrow with no source pointing at it.

Free variables which are local to a transition can be used to formulate more complex
transitions. For example in Figure 3.2 the variable C is used to specify the behavior.
If a value C is received on the input channel CHANNEL1 and C matches the value of
the local variable B, then C+1 is sent (assuming that this operation is allowed for the
data type of C) and B is set to C+1 (assuming that this operation is allowed for the
data type of B).

For reasons of clarity, those parts of the label which are not relevant for a transition
are omitted in the remainder of the thesis. For example, the channel names can be
omitted if it is clear on which channel the message occurs. Then we simply write
?IN1 instead of CHANNEL1?IN1. Furthermore, if there are no guards and postcondi-
tion parts for a transition, they are not displayed either. We then just write CHAN-
NEL1?IN1 / CHANNEL2!ACT2.

Priority concept for competing transitions

AutoFocus STDs provide a special feature - namely the priority concept - to deal with
competing transitions. Figure 3.3 contains an example. In STATE1 it is not clear what
the system has to do in case IN1 and IN2 both occur simultaneously. Which transition

30

3. Notational techniques (Overview) 3.2. State Transition Diagrams (STDs)

state1

channel1?in1 / channel3!out1
(Prio=1)

state2

state3
channel2?in2 /
channel4!out2 (Prio=0)

Figure 3.3.: Priority concept of State Transition Diagrams (STDs)

state1 state2

state3

state4

H

channel1?in1 / …

channel2?in2 / …

Figure 3.4.: History concept adapted for State Transition Diagrams (STD)

should be fired in that case? One convenient way is to make use of priorities. In the
automaton of Figure 3.3, the transitions are given priorities to (e. g. PRIO=1). The
semantics are the following: If for a state more than one transition could be fired
(because the guard of more than one transition is true and the respective input actions
are pending), the transition having the highest priority is fired. To that end we allow
priorities from 0 to 5. If no priority is explicitly specified, we assume priority=0. Of
course there might also be competing transitions having the same (and the highest)
priority. The modeler has to take care of that fact.

Note that the priority concept is syntactic sugar as it also can be specified that the
same behavior can be specified by more complex transitions.

History concept

For the graphical representation of the history concept see Figure 3.4. On receiving
CHANNEL1?IN1, the high level state (either STATE1, STATE2, or STATE3) is left and
STATE4 is entered. The transition from STATE4 to the history state of the high level
state (depicted by the encircled "H") has the following meaning: When returning
from STATE4 to the high level state, that state is entered which was left before. For
example, if the high-level transition was fired from STATE2 to STATE4 then STATE2 is
entered again.

31

3.2. State Transition Diagrams (STDs) 3. Notational techniques (Overview)

3.2.3. Semantics of STDs

We define the semantics of STDs by means of the µ calculus logic [Park, 1976] as done
in [Huber et al., 1997].2

The semantics of STDs are formalized by describing all possible sequences of con-
trol states. Hereby the machine which corresponds to the STD starts in the initial
state. The inputs and outputs which are consumed and produced by the machine are
included in the sequences. The transition relation which defines the set of possible
sequences is defined by a µ calculus representation of channels, the control space, the
variable state space, and the transitions.

Channels

Input and output channels are formalized by variables shared between two adja-
cent services. The type of the variable corresponds to the type of the channel. As a
variable can only hold one value at a time (namely the value that is currently written
on/read from the channel) we implicitly get the semantics of non-buffering channels.

As mentioned above, the value on a channel is restricted to a single step of the ma-
chine (a single time tick). The special value nil represents the absence of a message
and is contained in each data type.

Variable and control state space and initial configurations

The variable state space of an STD is given by the set of all local variables and is
formalized by the product of all these variables. Furthermore, a special variable is
introduced for representing the current control state of the machine corresponding
to the STD.

The initial configuration of the STD is given by the initial control space and the ini-
tial data space. Latter is defined by the initial variable assignments. The predicate
Init(s, x) on the control and variable state space formalizes the initial configuration.

Transitions

For each variable x let the primed variable x′ be the value of the variable after the
transition.

Let further be:

• x is the set of local variables (which are local to the service the behavior of
which is given by the STD)

• v = v1, ..., vk is a set of free variables which are local to the transition (but not
local to the service)

2Please note that [Huber et al., 1997] also take ports into consideration for the formalization of
STDs. However, as we do not use ports within STDs and SSDs we omit them here. A map-
ping of the STD concepts to stream processing functions can be done based on the concepts of
[Fuchs and Mendler, 1994].

32

3. Notational techniques (Overview) 3.2. State Transition Diagrams (STDs)

• P (x) is a predicate3 over x and v (the guard of the transition).

• I(x, v) = I1(x, v); ...; Im(x, v) is a list of patterns for the input channels ii.
Ii(x, v) may either be

– empty or of the form

– ii?ci(x, v) with ci(x, v) being a data type constructor.

• O(x, v) = O1(x, v); ...;On(x, v) is a list of patterns for the output channels oi

corresponding to the input patterns.
Oi(x, v) may either be

– empty or of the form

– oi!di(x, v) with di(x, v) being a data type constructor.

• C(x, x′, v) is a predicate over the local variables x and the free variables v (the
post condition of the transition).

Each transition
S1

P (x);I(x,v)/O(x,v);C(x,x′,v)−−−−−−−−−−−−−−−−−−→ S2

is formalized by the following clause:

∃v1, ..., vk. s = S1 ∧ P (x) ∧ i1 = c1(x, v) ∧ ... ∧ im = cm(x, v)∧

s′ = S2 ∧ o1 = d1(x, v) ∧ ... ∧ on = dn(x, v) ∧ C(x, x′, v)

For empty input patterns on channel ii an input pattern of the form ii?y is implicitly
assumed whereas y is a new transition local variable, i. e. it matches any input - even
nil. The same holds for underspecified output patterns. Thus, we do not have a
constructive semantics.

The complete transition relation is given by the disjunction of all clauses plus clauses
for unspecified behavior. Conflicting transitions (i. e. transitions with the same start
state, input patterns, and preconditions but different output patterns and postcondi-
tions) are interpreted to be solved nondeterministically. The sum of all system runs
choosing one of the conflicting transitions constitutes the semantics.

Note that time is implicitly formalized. As mentioned in Section 3.2.1 (Intuitive de-
scription), all inputs and outputs are read simultaneously from the input and output
channels, respectively. As in each time tick exactly one value can be sent on/received
from a channel and the special value nil represents no value, time is implicitly speci-
fied.

3.2.4. Semantics of the combination of STDs and SSDs

The system is comprised of a collection of interacting services. Figure 3.5 shows the
interplay of interacting services. Service C1 is hierarchically decomposed into ser-
vices C1A and C1B. Thus the overall system behavior is given by the behavior of the
single services (STDs) and the communication between these services (SSDs). As we
assume instantaneous communication (see above), the formalization is obtained by

3Only prositional logic and equality are allowed.

33

3.2. State Transition Diagrams (STDs) 3. Notational techniques (Overview)

C1

C1a C2

C1b

Figure 3.5.: Combination of (hierarchical) SSDs and STDs (SSD + STD)

simply combining the behaviors of the services and defining shared communication
channels between services.

• Control state space: The control state space of the combined behavior is given
by the product of all the control state spaces of the services.

• Variable state space: The variable state space of the combined behavior is de-
fined by the product of all the variable state spaces of the services (renamed if
needed) plus the internal channels (given by the SSD).

• Input and output channels: The input and output channels of the combined
behavior are the external channels of the SSD. (The other channels are internal
channels of the combined behavior.)

• Initial (control and data) states: The initial state of the combined behavior is the
product of all initial states of the services.

• Transition relation: The transition relation of the combined behavior is given
by the product of the transition relations of each service.

Variables can also be assigned to hierarchically decomposed services. For example,
let variable z be assigned to service C1 in Figure 3.5. The question arises to which
services the variable is visible. For our methodology we make us of the semantics
described in [Schätz, 2007]: Local variables of hierarchically decomposed services
are visible to the service itself and to all its sub services.4 A motivation for this will
be given in Section 4.8 (Combination of services on basis of the service relationships). Al-
lowing more than one service to access the same variable might lead to conflicts, if
two or more services want to write the same variable at the same time. We will also
come back to this point in Section 4.8 (Combination of services on basis of the service

4Please note that in [Schätz, 2007], local variables are automatically made visible to all neighbor and
sub services during the combination process. In order to achieve the desired semantics - that only
the sub services have access to the local variable - the variable is explicitly hidden for other services.
This is complementary to our procedure. We directly assign local variables to hierarchical services
and declare it to be visible to all sub services.

34

3. Notational techniques (Overview) 3.3. Service hierarchy and service graph

relationships).

3.3. Service hierarchy and service graph

This thesis introduces a service-oriented methodology for modeling usage behavior
of a system. The basic idea behind the approach is to combine modular service spec-
ifications on basis of their relationships. In order to visualize various kinds of service
relationships we will introduce service hierarchies and service graphs in Section 4.6.2
(Notational technique(s)).

The hierarchical structuring of services can be graphically described by a directed
graph (service hierarchy). Nodes of the graph depict services; parent nodes aggre-
gate the behavior of sub services. The root of the graph contains the overall system
behavior. The edges of the graph represent the hierarchical (restricted) sub service
relationship between services. Service hierarchies can be enriched by horizontal re-
lationships between services on arbitrary levels. The result is the so-called service
graph. Vertical relationships capture dependencies between services.

Service hierarchies and service graphs are only mentioned at this place for the sake
of completeness. For more information please refer to Section 4.6.2 (Notational tech-
nique(s)).

3.4. Tables

Additionally, we also make use of common tables to informally specify services, ser-
vice dependencies, inputs, and outputs. The concrete structure of the tables is ex-
plained in the respective chapter. They are simply mentioned for the sake of com-
pleteness at this place.

3.5. Summary

In this chapter, we presented notational techniques which we make use of in our
service-oriented methodology. In the following chapter (Chapter 4, Methodology) we
introduce the methodology for modeling the black box behavior of multi-functional
systems step by step.

35

3.5. Summary 3. Notational techniques (Overview)

36

Chapter 4
Methodology

In this chapter we introduce a methodology for modeling the black box functional-
ity of multi-functional systems. First, basic considerations needed for the approach
are made. For example the underlying system model is described. Afterward, an
overview of the methodology is given. The starting point, each methodological step,
and the result of the applied methodology are explained in detail in the following
sections.

For each methodological step the corresponding concepts are given. Where appro-
priate, notational techniques are described and sub activities (of the methodological
step) are presented. Furthermore, we apply the approach to the running example for
each step.

At the end of this chapter, further considerations on questions related to the approach
are made.

Contents
4.1. Basic considerations . 37

4.2. Overview of methodological steps 42

4.3. Starting point . 46

4.4. Identification of atomic services . 47

4.5. Logical syntactic system interface 53

4.6. Identification of service relationships 62

4.7. Formal specification of atomic services 75

4.8. Combination of services on basis of the service relationships . . . 83

4.9. Result . 106

4.10. Further considerations . 108

4.1. Basic considerations

In the thesis at hand, a methodology is presented which is concerned with the model-
ing of multi-functionality. As already mentioned in Section 1.1 (Motivation), so-called

37

4.1. Basic considerations 4. Methodology

multi-functional systems are functionally complex systems. The complexity hereby
does not arise because of complex algorithms but because of a high degree of in-
teraction between system functionalities. In the introduction, we gave the remote
unlocking of a car as an example for a multi-functional system.

In the introduction we argued that for the system class of multi-functional systems,
the modeling of the pure functionality (abstracting from issues concerning distribu-
tion or technical realization) is very important to understand the complex dependen-
cies between functionalities. Therefore we are only interested in the functionality of
the system under specification.

Before we start with the description of our methodology, we make some basic con-
siderations. First, the system model underlying our approach is sketched out. Then,
the information which is contained in the informal requirements and which is to be
modeled by our methodology is given a closer look at. At the end of this section, we
briefly discuss the specialties of embedded systems.

4.1.1. Underlying system model

Before we explain the approach in detail, we shortly describe the underlying system
model in this section.1

As already mentioned in the introduction, we model the system functionality from
a black box perspective (usage behavior) as this is appropriate for the requirements
engineering phase. For the requirements definition, the behavior of the system is
looked at from an outside perspective. We model the system functionality from a
black box view, i. e. the system behavior is only observed at the system boundary.
The internal realization (white box behavior) is not taken into account. Especially the
decomposition of functionality - which is observable at the system boundary - into
sub functions and resulting function calls - which are only observable from a white-
box view - are not taken into consideration.

At the system boundaries, inputs (stimuli) go into the system and outputs (system
reactions) leave the system as a response to the inputs. The black box behavior of
the system therefore is specified by relating input streams (of messages since the
system start) and output streams (of messages since the system start) to each other.
In order to structure the black box behavior, we decompose the system functionality
into smaller pieces - namely services. A service is a partial function which relates
inputs to outputs and thus can be seen as a projection of the overall system behavior.

The overall system functionality is established by the interplay of its services (see
Figure 4.1). Services process parts of the possible inputs and produce parts of the
possible outputs. (Note that inputs and outputs of different services can overlap,
respectively.) Services are connected to each other by directed channels. By send-
ing messages (so-called "actions" in our context), services can influence each other
(e. g. interrupt or disable each other). However, as we model the usage behavior of
the system, only messages are sent which represent observable behavior at the system
boundaries. For example, the interruption of a service is observable from an external

1Note that for a comprehensive development process, the system model of the requirements engineer-
ing phase has to be refined by the system model of the design phase.

38

4. Methodology 4.1. Basic considerations

Overall system functionality

Service 1

Service 2

Service 3

Service N

…

„interrupt“

Figure 4.1.: Graphical representation of the underlying system model (SSD)

39

4.1. Basic considerations 4. Methodology

perspective and therefore is modeled. In contrast, function calls are not observable
(as from an external perspective it does not matter if the functionality is realized by
another function that is called or by the function itself).

Note that in Section 1.1 (Motivation) we claimed our methodology to be a black box
approach. Strictly spoken, the approach is not a pure black box approach as it com-
bines "smaller" services step by step to obtain the overall system functionality. Con-
sequently, each non atomic service (see above) has an inner structure, namely the
services of which it is composed. However, the aim of our methodology is to specify
the usage behavior, i. e. the observable behavior of a system. We are not concerned
with specifying the internal realization of the behavior. Therefore, we consider our
approach to handle a black box view onto the system and call it a black box approach.

By assigning messages to channels, the channels are typed. In our methodology, we
assume a global time which divides time into equidistant time intervals. The system
behavior is observed between discrete points in time. (See Section 1.2.2, Classification
according to variation in time.) At discrete points in time the presence or absence of
input can be observed and the respective output is given out.

Furthermore, we assume that our systems are strongly causal [Broy and Stolen, 2001],
i. e. the inputs until time interval t completely determine the output until (and inclu-
sive) time interval t+1. Differently spoken, each system induces a time delay of at
least one time unit.

Our notion of the term system is relative, i. e. the term system can refer to both large
systems and subsystems depending on the product to be developed.

4.1.2. Constituents of functional requirements

The starting point of our methodology is a textual description of the functional re-
quirements. In the course of the process, these informally given requirements are
turned into formal models. That means that the information contained in the func-
tional requirements is modeled (formalized). Consequently, a basic question is what
the constituents of the textually given requirements are.

When having a closer look at the requirements listed in Chapter 2 (Running example),
we can identify the following types of information:

• Inputs and outputs: Containing the information which are the inputs (stim-
uli) and outputs (reactions) of the system that can be observed at the system
boundaries.
For example, "pressing a toggle switch" is an input and "moving the back of the
seat backwards" is an output.

• Service names: Containing the information which services the system under
specification has to offer to the user.
For example, the memory functionality via car key is a service offered to the
user.

• Services relationships: Containing the information which relationships be-
tween services exist.
For example, the mutual exclusion of the adjustment services is a service rela-

40

4. Methodology 4.1. Basic considerations

tionship.

• Service behavior: Containing the information what the behavior of the services
is, respectively.
For example, the description of how the memory functionality via car key has
to look like is the description of a service behavior.

• Persistent data: Containing the information which persistent data a service
needs for its execution.
For example, the four dimensions of the seat position have to be saved persis-
tently as the memory services need these data to automatically adjust the seat.

• (Other: Furthermore, requirements include comments like rationales. This in-
formation is omitted as it is not of relevance for the modeling of the system
functionality.)

As we will see later, each step of the methodology is based on requirements of one
or more categories of this classification. As we deal with the modeling of multi-
functionality, the term requirement always refers to functional requirement in the re-
mainder of this thesis.

Note that sometimes requirements also refer to the internal realization of the behav-
ior. For example there may exist requirements demanding the usage of a particular
algorithm. However, these functional requirements are omitted in this thesis. See
also Section 7.3 (Outlook).

4.1.3. Specialties with embedded systems

The methodology presented in this thesis is domain independent. However, in order
to illustrate our concepts we make use of a running example from the automotive
domain (see Chapter 2, Running example). To be more precise, we make use of an
embedded control system.

The functionality of the running example may seem to be of "different types", i.e
some functionality is more technical than the others. For example, Requirement 10
demands that a minimum of battery power has to be available in order to use the
manual adjustment functionality. In contrast, the sub requirements of Requirement 1
describe less technical but more human user oriented functionalities. These different
kinds of functionalities could be named "system service" and "user service" for ex-
ample. Usually the system services arise because of technical constraints and design
decisions.

As some functionalities are technical the suspicion may arise that we give up the black
box perspective onto the system behavior and look inside the system, too. However,
this is not true as we will explain in the following.

Let us assume that we want to specify the functionality of the embedded system de-
picted in Figure 4.2 (i. e. the functionality of the sub system encircled in red). To that
end we model its system functionality from a black box perspective. The embedded
system is - per definition - embedded into a larger system (named "overall system" in
the figure). Consequently, it has to handle input which is a consequence of a human
user’s input or which is input from another system. For example a user might press

41

4.2. Overview of methodological steps 4. Methodology

Overall systemOverall system

Embedded
system
under

specification

Embedded
system
under

specification

Another embedded
system

Another embedded
system

input1 emInput1

mapping

emOutput1 output1

input2 output2

mapping

Figure 4.2.: System boundaries of an embedded system (schematic picture)

the button of the power windows in order to move the window upwards (INPUT1 in
Figure 4.2). This input is transfered within the system to the responsible embedded
system (e. g. per bus system). On the way to the embedded system the input might
be changed into some other signal/message (EMINPUT1 in Figure 4.2) which finally
arrives at the interface of the embedded system. Thus, the technical signal EMINPUT1
represents the driver’s wish to open a window. This can be understood as a mapping
of INPUT1 (which is an input to the overall system) to EMINPUT1 (which is an input
to the embedded system).2 However, the embedded system also communicates with
other (surrounding) embedded systems. For example the energy management sys-
tem may send signals to the power window control in order to stop it in case the
battery is too low. The communication between embedded systems is depicted by
the exchange of messages/signals INPUT2 and OUTPUT2 in Figure 4.2.

For the embedded system both kinds of functionality are of the same type as the
embedded system has to relate input to output (black box view onto the functionality
of the embedded system).

In an optimal development process, the question which functionality should be re-
alized by software and which by hardware should not be answered until the design
phase. (In practice however, this is not the case.) The whole functionality should
be modeled independently from technical issues. For example, each car provides
the possibility to mechanically unlock the car (by the door lock). The idea might
arise that this functionality does not have to be formally modeled. However, the me-
chanical unlocking of the car can have impact on other functionalities (e. g. the alarm
system). Therefore we advise to also model functionality which will later be realized
by hardware.

4.2. Overview of methodological steps

In this section, we give an overview of the methodology to be presented. Each step
of the methodology (including starting point and result) is explained in detail in the
subsequent sections, respectively. First, we give requirements for the methodology
to be presented. Based on these requirements, we will deduct the single steps of the

2Note, that in general, it does not have to be a 1:1 mapping between these inputs, but an n:m mapping.

42

4. Methodology 4.2. Overview of methodological steps

methodology and describe each of it briefly.

As already mentioned, the aim of the methodology is to "transform" the textual, func-
tional requirements of a multi-function system into formal models of the black box
system functionality. The following requirements have to be fulfilled:

• Structure of the procedure: The methodology should consist of a structured
proceeding on how to develop the formal model of the usage behavior. It
should define steps and artifacts being the results of the steps.

• Seamless transition from informal to formal specifications: The afore men-
tioned gap between the informal descriptions of the functional requirements
(texts) and the formal models of the system functionality should be bridged.

• Scalability of the process: The methodology should be applicable to systems
of different scales. As the system under specification can be quite large, this
problem must be handled, too.

• Support of reuse: Due to increasing cost pressure in industry, the methodology
should strongly support reuse of most artifacts.

• Support of distributed development: As large-scale systems are often devel-
oped distributedly (producer supplier relationship) the methodology has to
support the distributed specification of subsystems and the combination of sub-
systems.

• Understanding of dependencies: Multi-functional systems (the target systems
of our approach) are characterized by a high degree of interaction and depen-
dencies between sub functionalities. These dependencies have to be made ex-
plicit in order to understand the complex interplay.

• Capturing of the (syntactic and semantic) system interface: Often, the de-
velopment of a system is difficult because the interface of the system has not
been defined properly in the requirements engineering phase. Therefore, the
methodology should explicitly describe both the syntactic and semantic inter-
face of the system under specification.

Which consequences for the methodology can be derived from the requirements?
To provide a structured procedure, the methodology has to be divided into single
steps. In each step the information contained in the functional requirements has
to be turned into a more formal representation. This enables a seamless transition
between the informal functional requirements (starting point) and the formal model
of the system functionality (result).

Modularity has to be the basic concept underlying all steps. Due to the modular
development of services (which are "smaller pieces" of the system functionality), ar-
tifacts can be reused and the specification can be done distributedly.

The methodology has to provide both a local view (on single, modular services) and a
global view (describing the dependencies between the single services). This reduces
complexity and enables an explicit capturing of the various dependencies between
services of a multi-functional system.

Figure 4.3 gives a graphical representation of the methodology to be presented in this
thesis. The process can be roughly divided into two phases:

43

4.2. Overview of methodological steps 4. Methodology

Fo
rm

al
 P

ha
se

 (D
es

ig
n)

In
fo

rm
al

 P
ha

se
 (R

E)
St

ar
tin

g
Po

in
t Functional

requirements
given
informally

formal

Identification of
atomar services

Identification of
service relationships

Identification of logical
syntactic system interface

(Service names +
persistent data)

(inputs and outputs)(service names +
service relationships)

informal

Formal specification
of each atomar service

Translation of horizontal
into basic relationships

Combination of services to
super-services according to

basic relationships

R
es

ul
t Functional

requirements
given formally

(service behavior)

Figure 4.3.: Methodology (activity diagram)

44

4. Methodology 4.2. Overview of methodological steps

• the informal phase and

• the formal phase.

The starting point of our approach are the textual (informal) functional requirements.
The informal phase consists of the following steps:

• Identification of atomic services: This step aims at identifying the "smallest"
services (atomic services) which a user can access. Furthermore, data that has
to be persistently saved for a correct service execution is identified. Due to rea-
sons of complexity, the services are first - in this step - described informally
(textually) and formally specified later.
A subset of the service names and the persistent data (see Section 4.1.2, Con-
stituents of functional requirements) contained in the requirements basically de-
termine the set of atomic services and the data which have to be saved.

• Identification of the (logical) syntactic system interface: The result of this step
is a listing of all inputs and outputs which are visible at the system boundaries
and with which the system communicates with other systems. As we abstract
from technical details - like signals - we speak of a logical syntactic system in-
terface (see Section 4.5, Logical syntactic system interface).
The inputs and outputs contained in the requirements determine the (logical)
syntactic interface.

• Identification of service relationships: In multi-functional systems, there is -
per definition - a high degree of interaction between the system functionalities
(services). Service relationships capture these dependencies. In order to under-
stand the complex interplay between services, the various service relationships
between single services are captured in this step. We hereby distinguish be-
tween vertical and horizontal service relationships. Vertical service relationships
define a hierarchy on services and represent an "is-contained in" (structural) re-
lationship. Super services contain two or more sub services. Horizontal service re-
lationships capture the dependencies between services (e. g. mutual exclusion
between services). A special case of a service relationship is a data dependency.
The service names and a subset of the service relationships contained in the re-
quirements determine the horizontal and the vertical relationships.

The following steps make up the formal phase:

• Formal specification of each atomic service: In a model-based development
process, the system functionality - and therefore in our case the services - have
to be specified formally. In this step each atomic service is formalized. This
step includes the assignment of data types to persistent data and the definition
of complex data types if necessary.
The descriptions of the service behavior contained in the requirements determine
the models of the services, respectively.

• Translation of horizontal relationships into basic relationships: Arbitrary
horizontal relationships between services can be thought of. As we will see
later, horizontal service relationships can be reduced to a set of so-called basic
service relationships. (As the combination of services - see next step - is done ac-
cording to these basic service relationships, the horizontal service relationships

45

4.3. Starting point 4. Methodology

first have to be expressed on basis of these basic service relationships.)

• Combination of services to super-services according to basic relationships:
Finally, the service specifications are combined with help of the basic service
relationships. First, the atomic services are combined to more comprehensive
services. (Note that our notion of service is scalable.) Then, these more compre-
hensive services are combined step by step until the overall system functional-
ity is obtained. This step also includes conflict solving.

As result we obtain a formal model of the overall system functionality being com-
prised of modular services and their relationships.

In the subsequent sections, the starting point (textual requirements), each of the
methodological steps (briefly explained above), and the result (formal model of the
system behavior) are described in detail.

4.3. Starting point

Before describing the service-oriented methodology, we describe what the starting
point of our approach is considered to be.

4.3.1. Concepts

As we want to model the functionality of a multi-functional system, the starting point
of the approach of course are the functional requirements of the system under devel-
opment. (In Section 1.2.1, Rough outline of the approach we already gave a definition for
the term functional requirement.) Consequently, the questions arise to what extent
the functional requirements have to be present at the beginning of the methodology
and in what form.

As we do not primarily want to deal with issues concerning the elicitation of require-
ments (see Section 1.2.3, Tasks of the requirements engineering phase), we assume that
the functional requirements are given (almost3) completely.

The other question to be answered is in what form the requirements are assumed
to be given. One possibility could be to take current specifications (as for example
given in [Houdek and Paech, 2002]) as starting point. The advantage in this case is
that the approach to be presented could be used for modeling the functionality as de-
scribed in existing specifications. However, current specifications are inappropriate
for our approach for the following reason: Usually, specifications as can be found in
industry mix up technical and logical details. For example, concrete signal names are
used to describe the inputs and outputs of the system. As we propose a development
process which is based on different levels of abstraction (see Section 1.1, Motivation)
we suggest to describe the functional requirements without any hardware informa-
tion. (The mapping from the abstract information to the hardware information can
be done by putting the signal names in brackets or introducing an additional section
in which the mapping is performed.)

3As a consequence of our model-based approach, missing requirements can be detected. However
this is not the main focus of the approach.

46

4. Methodology 4.4. Identification of atomic services

Furthermore, we assume that the requirements are structured. To that end we sug-
gest that functional requirements that belong together are grouped hierarchically.
This is already done in most existing specifications. For example, the requirements
belonging to the manual adjustment or the memory functionality are put in separate
sections, respectively (see Chapter 2, Running example).

In the previous paragraphs we made assumptions in what form the functional re-
quirements should be present at the beginning of our methodology. Of course, cur-
rent specifications can also be used as the starting point for our methodology. In
that case, the necessary information would have to be worked out first. For exam-
ple, technical information would first have to be abstracted away. As we propose
a development process along different levels of abstraction (see Section 1.1, Moti-
vation), we strongly suggest that the requirements are specified appropriately right
from the beginning. To that end, we will give guidelines for the informal specifica-
tion of functional requirements in order to enable a preferably seamless transition
to our approach in Section 4.10.3 (Guidelines for the informal specification of functional
requirements). Of course this requires an adjustment for all people who are concerned
with the system specification. Among these people are requirements engineers and
designers but also customers and people of the marketing department. However, we
think that this adjustment is reasonable.

4.3.2. Application to the case study

As starting point for the modeling of our running example, we make use of the re-
quirements as given in Chapter 2 (Running example).

4.4. Identification of atomic services

In medium to large-scale systems, the overall system functionality can be quite com-
prehensive. In order to reduce the complexity, our approach is based on the follow-
ing idea: The system behavior is comprised of single services which collaboratively
establish the overall functionality (depending on the service relationships between
them). In the first step of our methodology, we determine the so-called atomic services
which are the "smallest" services that are visible to and can be accessed by the user.
These services will be later combined to form the comprehensive system behavior
(see Section 4.8, Combination of services on basis of the service relationships).

4.4.1. Concepts

As already mentioned in Section 1.2 (Content of this thesis), there exist many defini-
tions for the term service [Meisinger and Rittmann, 2008]. Therefore, we first have
to define what a service is in our context. Informally spoken, a service represents a
piece of functionality of the system under specification. It corresponds to a use case
which describes how to use a system for a specific purpose by means of interaction
patterns.

A service is

47

4.4. Identification of atomic services 4. Methodology

• a (partial) piece of functionality relating system inputs to system outputs

• a user visible piece of functionality (a piece of functionality that can be called by
a user)

Partial means, that the functionality is not specified totally. In general, the service
specification leaves open how the system shall react on receiving particular inputs in
particular situations. The special case of a total black box behavior is also a service.
User visible means that the behavior is observable at the system boundaries. Services
capture the interaction between the system and its environment. Note that the initia-
tive does not necessarily lie with the user but can also lie with the system itself. With
the help of services the overall system functionality can be structured into smaller
pieces.

Notice the important consequence of this definition: The term service is scalable. Con-
sequently, not only "small" pieces of functionality (like the adjustment of a seat in
one direction) are services. Also more comprehensive functionality (like the overall
power seat control functionality) can be called a service. This makes sense as we will
later combine services to form bigger services (see Section 4.8, Combination of services
on basis of the service relationships).

As the notion of service is scalable, it is difficult to say what the "smallest pieces" of
functionality - i. e. the atomic services - are. At this place we can only give a rule of
thumb. Atomic services are the "smallest" pieces of (black box) functionality that

• can be accessed/observed/distinguished by a user

• are likely to be reused4

Note that atomic services can be of different granularity (see Section 4.4.4, Application
to the case study). For example both a reaction pattern (pressing a toggle switch causes
the seat to move) and a more comprehensive functionality (the whole seat adjustment
functionality) can be called a service. Sometimes, "events" can be considered to be
modular services, too. For example, the requirement "If the velocity is too high, the
adjustment of the seat has to be aborted immediately." demands for the service "too
high velocity for seat adjustment". For the meantime it might not be obvious why
this simple "event" should be treated as a service, too. We will come back to this
point later (see Section 4.8, Combination of services on basis of the service relationships).

Note, that there is no 1:1 mapping between requirements and services. Usually, more
than one requirement describe a single service. And sometimes a requirement can be
used to identify more than one service. It requires genuine design work to identify
the services out of the requirements.

[Kang et al., 2002a] suggest to analyze terminologies in order to identify services. To
the authors’ experience, analyzing standard terminologies is an efficient and effective
procedure to identify services of a system. They also suggest to make use of service

4We will refine this rule of thumb later when having more information about the methodology: Our
atomic services are combined to more comprehensive services on basis of the service relationships.
If there exist service relationships that only refer to a sub behavior of a service, it is advisable to de-
compose this service into smaller sub services (atomic services). Additionally, some service relation-
ships need the execution status of a service (active or inactive). In order to determine the execution
status of a service it might be necessary to decompose the service into sub services (atomic services)
as well.

48

4. Methodology 4.4. Identification of atomic services

(feature) categories as a service identification framework. We will come back on this
idea in Section 4.6, Combination of services on basis of the service relationships).

In this step, we are only interested in the question which atomic services the system
has to offer. The service names contained in the requirements describe these services.
Therefore the atomic services are a subset of the service names contained in the re-
quirements. In this step of the methodology we specify the atomic services informally.
That means that no formal specification in terms of formal models is done. (The for-
malization of the atomic services is done later in the methodology. See Section 5.4.3,
Formal specification of modular services.)

Some services need to operate on persistent data. For example the memory services
need the previously saved position of the seat to adjust it. Therefore, we also identify
this data. As services might operate on the same data5 we introduce a repository
for persistent data. In this repository, the persistent data is listed and informally
described. The informal service specifications then refer to entries of this list.

For the informal specification of the services, we suggest the following constituents:

• a reference to the requirement(s) demanding the service,

• a meaningful service name,

• an abbreviation (which will later be useful when displaying the services in the
graphical representations),

• a textual service description (which can be extracted from the informally given
requirements and which will be used for the formalization of the service later),
and

• (if needed) a reference to the persistent data needed by the service.

Note that the informal services are just listed and not structured yet. This will be
done later (see Section 4.6, Identification of service relationships).

4.4.2. Notational technique(s)

We suggest a table to list the informal descriptions of the atomic services and the
persistent data, respectively. The first table has the following columns: abbrevia-
tion (textual abbreviation), name, and description. The other table is comprised of
the columns reference to requirements (containing the numbers of the requirements
demanding the service), service name (textual name), abbreviation (textual abbrevi-
ation), textual service description, and reference to persistent data.

See Section 4.4.4 (Application to the case study) for an example for a data repository
and several examples for informal specifications of atomic services.

For the service names and abbreviations, naming conventions are reasonable. For
example all services describing behavior in error cases could start with "error".

5We will come back to this point and the problems connected to this fact in Section 4.8 (Combination of
services on basis of the service relationships).

49

4.4. Identification of atomic services 4. Methodology

Table 4.1.: Specification of persistent data

Abbreviation Name Description
...

Table 4.2.: Specification of atomic services

Req Service name Abbreviation Textual service description Data abbr.
...

4.4.3. Methodological steps

For the first step of our methodology (the identification of atomic services), we obtain
the sub activities of Figure 4.4. First, the atomic services and the persistent data are
determined. Then the services and the persistent data are informally specified by
tables.

Id
en

tif
ic

at
io

n
of

at

om
ic

se
rv

ic
es

Determination of atomic services and persistent data
as demanded by the functional requirements

Informal specification of the atomic services by means
of a table (specification of table entries)

Informal specification of the persistent data by means
of a table (specification of table entries)

Figure 4.4.: Identification of atomic services (activity diagram)

4.4.4. Application to the case study

As far as our running example (the power seat control) is concerned, we identify the
persistent data shown in Table 4.3.

Furthermore, we obtain the atomic services of Table 4.4. We go through the require-
ments and identify the atomic services which are visible and accessible by the user.
Please note that it is not sufficient to omit the textual description of the requirement
and to just give the reference number as there is not always a 1:1 mapping between
requirements and services.

Remark: The question arises if it really makes sense to have such small services as
ADJBACKFORW and ADJBACKBACKW. Maybe a service ADJUSTMENT OF THE BACK

(ADJBACK) would be fine-grained enough. Also considering the reuse of services,
the introduction of separate services ADJBACKFORW and ADJBACKBACKW does not
seem to be appropriate as both services will always be reused together. However,
ADJBACKFORW and ADJBACKBACKW are user visible services; the user can well
distinguish between these two services. As we will see later (see Section 4.8.4, Appli-
cation to the case study) the distinction also makes sense because of other reasons.

50

4. Methodology 4.4. Identification of atomic services

Table 4.3.: Specification of the persistent data of the power seat control system

Abbreviation Name Description
posBack position_of_the_seat_concerning_back ...
posDist position_of_the_seat_concerning_distance ...
posFront position_of_the_seat_concerning_front_height ...
posRear position_of_the_seat_concerning_rear_height ...

51

4.4. Identification of atomic services 4. Methodology

Ta
bl

e
4.

4.
:S

pe
ci

fic
at

io
n

of
th

e
at

om
ic

se
rv

ic
es

of
th

e
po

w
er

se
at

co
nt

ro
ls

ys
te

m

R
eq

Se
rv

ic
e

na
m

e
A

bb
r.

Te
xt

ua
ld

es
cr

ip
ti

on
D

at
a

ab
br

.
1(

a)
i

A
dj

us
tm

en
t

of
th

e
ba

ck
fo

rw
ar

ds
A

dj
Ba

ck
Fo

rw
Th

e
ba

ck
of

th
e

se
at

ca
n

be
m

ov
ed

fo
rw

ar
ds

by
m

an
ua

l
ad

ju
st

m
en

t.
1(

a)
ii

A
dj

us
tm

en
t

of
th

e
ba

ck
ba

ck
w

ar
ds

A
dj

Ba
ck

Ba
ck

w
Th

e
ba

ck
of

th
e

se
at

ca
n

be
m

ov
ed

ba
ck

w
ar

ds
by

m
an

ua
l

ad
ju

st
m

en
t.

1(
b)

i
A

dj
us

tm
en

t
of

th
e

di
s-

ta
nc

e
in

cr
ea

si
ng

A
dj

D
is

tI
nc

r
Th

e
di

st
an

ce
of

th
e

se
at

ca
n

be
in

cr
ea

se
d

by
m

an
ua

l
ad

-
ju

st
m

en
t.

1(
b)

ii
A

dj
us

tm
en

t
of

th
e

di
s-

ta
nc

e
de

cr
ea

si
ng

A
dj

D
is

tD
ec

r
Th

e
di

st
an

ce
of

th
e

se
at

ca
n

be
de

cr
ea

se
d

by
m

an
ua

l
ad

-
ju

st
m

en
t.

1(
c)

i
A

dj
us

tm
en

t
of

th
e

re
ar

ar
ea

up
A

dj
R

ea
rU

p
Th

e
he

ig
ht

of
th

e
re

ar
ar

ea
of

th
e

se
at

ca
n

be
in

cr
ea

se
d

by
m

an
ua

la
dj

us
tm

en
t.

1(
c)

ii
A

dj
us

tm
en

t
of

th
e

re
ar

ar
ea

do
w

n
A

dj
R

ea
rD

ow
n

Th
e

he
ig

ht
of

th
e

re
ar

ar
ea

of
th

e
se

at
ca

n
be

de
cr

ea
se

d
by

m
an

ua
la

dj
us

tm
en

t.
1(

d)
i

A
dj

us
tm

en
t

of
th

e
fr

on
t

ar
ea

up
A

dj
Fr

on
tU

p
Th

e
he

ig
ht

of
th

e
fr

on
ta

re
a

of
th

e
se

at
ca

n
be

in
cr

ea
se

d
by

m
an

ua
la

dj
us

tm
en

t.
1(

d)
ii

A
dj

us
tm

en
t

of
th

e
fr

on
t

ar
ea

do
w

n
A

dj
Fr

on
tD

ow
n

Th
e

he
ig

ht
of

th
e

fr
on

ta
re

a
of

th
e

se
at

ca
n

be
de

cr
ea

se
d

by
m

an
ua

la
dj

us
tm

en
t.

5
Fr

on
td

oo
r

op
en

Fr
on

tD
oo

rO
pe

n
Th

e
m

an
ua

l
ad

ju
st

m
en

t
of

th
e

se
at

is
on

ly
po

ss
ib

le
if

th
e

fr
on

td
oo

r
is

op
en

ed
.

10
Er

r
lo

w
ba

tt
er

y
m

an
ua

l
Er

rL
ow

Ba
tM

an
In

ca
se

th
e

ba
tt

er
y

po
w

er
is

to
o

lo
w

,
th

e
m

an
ua

l
ad

ju
st

-
m

en
ti

s
no

tp
er

fo
rm

ed
.

11
Er

r
hi

gh
ve

lo
ci

ty
Er

rH
ig

hV
el

o
Th

e
m

em
or

y
fu

nc
ti

on
al

it
y

ca
n

on
ly

be
ex

ec
ut

ed
if

th
e

ca
r

ve
lo

ci
ty

is
no

tt
oo

hi
gh

.
12

M
em

or
y

fu
nc

ti
on

al
it

y
vi

a
bu

tt
on

M
em

or
yB

ut
to

n
Th

e
m

em
or

y
fu

nc
ti

on
al

it
y

ca
n

be
tr

ig
ge

re
d

by
pr

es
si

ng
th

e
bu

tt
on

at
ta

ch
ed

in
si

de
th

e
dr

iv
er

’s
do

or
.(

...
)

po
sB

ac
k,

po
sD

is
t,

po
s-

Fr
on

t,
po

sR
ea

r
12

M
em

or
y

fu
nc

ti
on

al
it

y
vi

a
ca

r
ke

y
M

em
or

yC
ar

K
ey

Th
e

m
em

or
y

fu
nc

ti
on

al
it

y
ca

n
be

tr
ig

ge
re

d
by

pr
es

si
ng

th
e

re
sp

ec
ti

ve
bu

tt
on

of
th

e
ca

r
ke

y.
(..

.)
po

sB
ac

k,
po

sD
is

t,
po

s-
Fr

on
t,

po
sR

ea
r

14
Er

r
lo

w
ba

tt
er

y
bu

tt
on

Er
rL

ow
Ba

tB
ut

to
n

In
ca

se
th

e
ba

tt
er

y
po

w
er

is
to

o
lo

w
(l

ow
er

th
an

10
V

)
to

pe
rf

or
m

th
e

m
em

or
y

fu
nc

ti
on

al
it

y,
th

e
se

at
is

no
ta

dj
us

te
d.

16
Er

r
lo

w
ba

tt
er

y
ca

r
ke

y
Er

rL
ow

Ba
tK

ey
In

ca
se

th
e

ba
tt

er
y

po
w

er
is

to
o

lo
w

(l
ow

er
th

an
10

V
)

to
pe

rf
or

m
th

e
m

em
or

y
fu

nc
ti

on
al

it
y,

th
e

se
at

is
no

ta
dj

us
te

d.

52

4. Methodology 4.5. Logical syntactic system interface

4.5. Identification of the logical syntactic system interface

A system communicates with users. The term user refers to both human users and
other systems (e. g. if an embedded system is specified). It is important to determine
the system boundaries (system interface), i. e. which inputs (stimuli) go into a system
and which outputs (response) come out of a system. Often, during requirements
engineering the explicit specification of the system boundaries is neglected which
results in problems during later phases of the development process.

The interface can be distinguished into the syntactic and the semantic interface. The
syntactic interfaces describes which inputs (in general) go into the system and which
outputs (in general) come out of a system. The semantic interface relates the inputs
to outputs.

In this step of the methodology, we specify the syntactic interface of the overall sys-
tem. That means that the inputs and outputs due to which the system communicates
with its environment are specified but not related to each other. The semantic inter-
face is determined later (when specifying the behavior of the services).

4.5.1. Concepts

We look at our system from a logical view where no technical details are involved.
Therefore, we do not speak of messages or signals that are inputs for the system. We
are rather interested in the meaning of the inputs and outputs from a logical point
of view. We are not interested in how the inputs are later technically realized (e. g.
by signals or messages). For example, we do not say that VEH_SP is the signal or
the message that goes into the system, but that a signal or message representing the
VEHICLE_SPEED is the input. We thus speak of input actions. Analogously, we abstract
from technical information when referring to outputs and speak of output actions. For
example the output action WINDOW_MOTOR_DOWN stands for a signal or message
causing the motor of the window to go down.

The input and output actions of a system together determine the so-called logical
syntactic interface of the system. Although our approach only models the system
functionality on a logical level (and does not take into consideration more concrete
abstraction levels) we nevertheless explicitly speak of logical syntactical interfaces to
sharpen the reader’s understanding of different levels of abstraction. The term logical
action refers to the sum of both input actions and output actions.

MMI
Functionality

(logical
architecture)

Press I-Drive

Turn I-Drive left

Turn on the radio

Turn I-Drive left
Change radio channel

Figure 4.5.: Logical input and output actions - abstraction of the MMI (SSD)

53

4.5. Logical syntactic system interface 4. Methodology

Besides abstracting from technical issues, the logical actions also abstract from as-
pects concerning the man machine interface (MMI). For example, in modern BMWs
an I-Drive is used to navigate through the menu. By pressing or turning the I-Drive
to the left and the right, different menu items (e. g. turn on the radio, change radio
channel) can be chosen. However, for the determination of the logical actions it is
unimportant how the action is caused but only that it is caused. This has to be con-
sidered when determining the logical actions. Figure 4.5 illustrates this fact. This
abstraction from the MMI can also be considered to be a shift of the system bound-
aries.

The logical input and output actions can be extracted from the informally given re-
quirements. The logical inputs are the stimuli with which the user communicates
with the system. For example, the wish to move the back backwards. The logical
outputs are the response of the system, e. g. the commands for the seat motors to
actually move the back.

As already mentioned in Section 4.1.1 (Underlying system model), the system behavior
is established by a set of communicating services. By exchanging logical actions,
services can influence (e. g. interrupt) each other. To that end, services are connected
by directed, so-called logical channels. Depending on the perspective of a service, we
face logical input channels and logical output channels. These logical channels will be
mapped to concrete technical channels (e. g. between a control unit and a bus) later
in the development process.

For our methodology, we introduce a logical channel for each input action and each
output action, respectively. The motivation for this is the following: A service that
is connected to an input channel receives all of the input actions that are sent on this
channel. As a service - per definition - is a partial behavior it does not necessarily
have to handle each of the actions. However, as we do not want to make the service
specification more complex than needed, we only add those input and output ac-
tions to a service interface which are actually needed by the service. Later, when the
logical service architecture is mapped to a concrete component architecture, several
input messages can be sent on a concrete channel as components - per definition - are
total behaviors. A logical channel is automatically typed when the logical action is
assigned to it.

The question arises what should be encoded in a logical (input or output) action.
In order to answer this question we have a look at the technical counterparts from
which the logical actions shall abstract. We obtain the following classes:

• Concrete values: Logical actions abstract from concrete values being transmit-
ted by signals or messages. For example, sensor values like DOOR_OPEN.

• Exceeding of a value: Logical actions can stand for the exceeding of a cer-
tain value. For example, SPEED_TOO_HIGH would represent all speed values
greater than 45km/h (depending on the context).

• Exceeding of a set of values: Logical actions may represent the exceeding of a
set of values. For example, the logical action SPEED_CHANGES stands for the
change of the current speed value.

• Sets of values: A logical action can be the abstraction of a set of values. For
example, the logical action MEDIUM_SPEED could represent a technical speed

54

4. Methodology 4.5. Logical syntactic system interface

value between 20 and 50km/h.

Theoretically speaking, it does not matter from which technical signals a logical ac-
tion abstracts. The important thing is that the mapping between logical actions and
their technical realization is correct. Please note that this mapping is not trivial but
in fact very complex and has to be investigated in detail for a development process
along different levels of abstraction. However, one desired application of the result of
our methodology (the formal model of the usage behavior of the system) is to verify
it. To that end, the dependencies between the actions have to be known. For ex-
ample, the logical input actions DOOR_OPEN and DOOR_CLOSED exclude each other.
Therefore this situation that both actions occur at the same time does not have to be
specified. Thus, the dependencies between the actions should be captured. Please
note that only dependencies of the logical level should be captured in the first iter-
ation of the development process. Dependencies which are specific to the technical
realization should not be taken into account when the functionality is determined in
the first instance. In a second iteration - after the technical realization has been de-
fined - also dependencies which are a result of design decisions can be considered in
order to reduce the complexity of the model. An example for that is a toggle switch
which automatically ensures that the signals (one per position of the switch) can not
be sent simultaneously.

Capturing dependencies between logical actions (like ACTION1 and ACTION2 ex-
clude each other, ACTION1 is a negation of ACTION2, the change in value of ACTION1
is ACTION2, etc.) is an interesting topic and definitely needed for verifying the for-
mal model of the system functionality. However, we do not consider it in this thesis
and leave it for future research.

For each (input or output) action, an intuitive and unique name and a short descrip-
tion has to be given. Additionally, it has to be specified on which logical channel the
action can be sent. A logical action can only be assigned to one channel (the channel
that was introduced for this action) and one channel can only transmit one logical
action which is visible at the system boundaries. As there is a 1:1 mapping between
logical actions and logical channels the question arises why we need to explicitly
name logical channels. The reason is the following: Later in the methodology we
will also introduce internal logical channels between services in order to realize the
dependencies. In order to influence other services, services can send (instances of)
the same logical action to several services.6 The names of the logical channels are
then needed to identify the right channel. Although logical channels that carry logi-
cal actions which are visible at the system boundaries (i. e. logical actions which are
specified in this step of the methodology) do not need to have a name, we also name
them to provide a unified procedure. Otherwise we would have to distinguish be-
tween named and unnamed logical channels which would of course also be possible.

Notice that we do not specify for each (input or output) action from what
user/service or to what user/service it is sent. This increases reuse as the system
under development could be designed for another environment or the environment
could change. No changes to the logical syntactic interface would be necessary in
that case. Moreover, references to requirements in which the actions are used have to

6Furthermore, as far as internal logical channels are concerned, a channel can also carry more than one
logical action.

55

4.5. Logical syntactic system interface 4. Methodology

be given.

The input actions can be determined by going through the requirements and identi-
fying the stimuli that trigger the service.

As already mentioned in the definition for the term functional requirement (see Sec-
tion 1.2.1, Rough outline of the approach), functional requirements may also explicitly
state what the system should not do. In that case we just negate an output action,
e. g. NOT SEAT MOTOR BACK FORWARDS.

Please note that the range of logical actions is arbitrary. In some cases a two-valued
range might be appropriate, in other cases the range is larger. For example the input
action VELOCITY TOO HIGH could be Boolean. VELOCITY TOO HIGH == true would
then mean that the action can be observed at the system boundary (and thus the
speed of the car is too high for adjusting the seat); VELOCITY TOO HIGH == false
would then mean the opposite (namely that the speed of the car is not too high). The
information about the current seat position could be encoded by an integer variable
of an appropriate data type, for example. For each logical action its data type has to
be specified.

Note that some logical (input and/or output) actions might not be known from the
beginning. Sometimes they are not identified until the formal specification of the
services (see Section 5.4.3, Formal specification of modular services). In that case, the
actions have to be added later to the table(s).

4.5.2. Notational technique(s)

For the description of the logical actions (and their channels), we suggest tables. The
columns of the tables are: reference to requirement(s), name of action, abbreviation,
data type, description, and logical channel (on which the action can occur). Input
(output) actions may only occur on input (output) channels. In the description col-
umn, the meaning of the assignments of the actions have to be explained (according
to the data type). Please note that the sources of input actions (targets of output ac-
tions) are not specified as this enhances reuse. The name and the description of an
action are enough to identify it and to understand its meaning.

Table 4.5.: Specification of logical (input and output) actions

Reqs Name of action Abbreviation Data type Description Channel
...

In order to visualize the logical syntactic interface (logical channels and logical ac-
tions) graphically, we suggest System Structure Diagrams (SSDs, see Section 3.1, Sys-
tem Structure Diagrams (SSDs)). Figure 4.6 contains an exemplary SSD with the input
channels a, b, and c and the output channels d and e, respectively. Input channel a
can transmit the input action INACT1, for example.

56

4. Methodology 4.5. Logical syntactic system interface

Service

a: inAct1

b: inAct2

c: inAct3

d: outAct1

e: outAct2

Figure 4.6.: (Graphical) Specification of the logical syntactic interface (SSD)

4.5.3. Methodological steps

This step of the methodology can be divided into the sub activities show in Figure 4.7.
We go through the requirements and identify the logical input and output actions and
assign them to logical input and output channels, respectively. Each input (output)
action is assigned to one input (output) channel and vice versa. We specify both
logical (input and output) actions and (input and output) channels in the respective
tables and by means of an SSD.

Id
en

tif
ic

at
io

n
of

 lo
gi

ca
l

sy
nt

ac
tic

in
te

rf
ac

e Determination of logical input and output actions

Specification of logical input and output
actions (and channels) in table form (resp.)

Specification of logical syntactic interface
by means of an SSD

Figure 4.7.: Identification of the logical syntactic system interface (activity diagram)

4.5.4. Application to the case study

For our running example, we obtain the logical input and output actions shown in
Tables 4.6 and 4.7. (Due to limitations of space we omit the names of the logical
input and output channels here. For each action a channel with the same name or
CHANNEL< name > could be introduced for example.)

57

4.5. Logical syntactic system interface 4. Methodology

Ta
bl

e
4.

6.
:I

np
ut

ac
ti

on
s

of
th

e
po

w
er

se
at

co
nt

ro
ls

ys
te

m
R

eq
s

N
am

e
A

bb
r.

D
at

a
ty

pe
D

es
cr

ip
ti

on
I-

C
ha

nn
el

1(
a)

ii
ad

ju
st

ba
ck

ba
ck

-
w

ar
ds

ba
ck

_b
ac

kw
Bo

ol
Th

e
us

er
w

an
ts

to
m

ov
e

th
e

ba
ck

ba
ck

w
ar

ds
by

m
an

ua
l

ad
ju

st
m

en
t.

(1
m

ea
ns

th
at

th
e

co
m

m
an

d
is

cu
rr

en
tl

y
pe

nd
-

in
g;

0
m

ea
ns

th
at

th
e

co
m

m
an

d
is

no
tp

en
di

ng
.)

1(
a)

i
ad

ju
st

ba
ck

fo
r-

w
ar

ds
ba

ck
_f

or
w

Bo
ol

Th
e

us
er

w
an

ts
to

m
ov

e
th

e
ba

ck
fo

rw
ar

ds
by

m
an

ua
la

d-
ju

st
m

en
t.

(1
m

ea
ns

th
at

th
e

co
m

m
an

d
is

cu
rr

en
tl

y
pe

nd
-

in
g;

0
m

ea
ns

th
at

th
e

co
m

m
an

d
is

no
tp

en
di

ng
.)

1(
b)

i
ad

ju
st

di
st

an
ce

in
-

cr
ea

si
ng

di
st

_i
nc

r
Bo

ol
Th

e
us

er
w

an
ts

to
in

cr
ea

se
th

e
di

st
an

ce
of

th
e

se
at

by
m

an
-

ua
l

ad
ju

st
m

en
t.

(1
m

ea
ns

th
at

th
e

co
m

m
an

d
is

cu
rr

en
tl

y
pe

nd
in

g;
0

m
ea

ns
th

at
th

e
co

m
m

an
d

is
no

tp
en

di
ng

.)
1(

b)
ii

ad
ju

st
di

st
an

ce
de

-
cr

ea
si

ng
di

st
_d

ec
r

Bo
ol

Th
e

us
er

w
an

ts
to

de
cr

ea
se

th
e

di
st

an
ce

of
th

e
se

at
by

m
an

-
ua

l
ad

ju
st

m
en

t.
(1

m
ea

ns
th

at
th

e
co

m
m

an
d

is
cu

rr
en

tl
y

pe
nd

in
g;

0
m

ea
ns

th
at

th
e

co
m

m
an

d
is

no
tp

en
di

ng
.)

1(
c)

i
ad

ju
st

re
ar

ar
ea

up
re

ar
_u

p
Bo

ol
Th

e
us

er
w

an
ts

to
in

cr
ea

se
th

e
he

ig
ht

of
th

e
re

ar
ar

ea
of

th
e

se
at

by
m

an
ua

la
dj

us
tm

en
t.

(1
m

ea
ns

th
at

th
e

co
m

m
an

d
is

cu
rr

en
tl

y
pe

nd
in

g;
0

m
ea

ns
th

at
th

e
co

m
m

an
d

is
no

tp
en

d-
in

g.
)

1(
c)

ii
ad

ju
st

re
ar

ar
ea

do
w

n
re

ar
_d

ow
n

Bo
ol

Th
e

us
er

w
an

ts
to

de
cr

ea
se

th
e

he
ig

ht
of

th
e

re
ar

ar
ea

of
th

e
se

at
by

m
an

ua
l

ad
ju

st
m

en
t.

(1
m

ea
ns

th
at

th
e

co
m

-
m

an
d

is
cu

rr
en

tl
y

pe
nd

in
g;

0
m

ea
ns

th
at

th
e

co
m

m
an

d
is

no
tp

en
di

ng
.)

1(
d)

i
ad

ju
st

fr
on

ta
re

a
up

fr
on

t_
up

Bo
ol

Th
e

us
er

w
an

ts
to

in
cr

ea
se

th
e

he
ig

ht
of

th
e

fr
on

t
ar

ea
of

th
e

se
at

by
m

an
ua

l
ad

ju
st

m
en

t.
(1

m
ea

ns
th

at
th

e
co

m
-

m
an

d
is

cu
rr

en
tl

y
pe

nd
in

g;
0

m
ea

ns
th

at
th

e
co

m
m

an
d

is
no

tp
en

di
ng

.)
1(

d)
ii

ad
ju

st
fr

on
t

ar
ea

do
w

n
fr

on
t_

do
w

n
Bo

ol
Th

e
us

er
w

an
ts

to
de

cr
ea

se
th

e
he

ig
ht

of
th

e
fr

on
t

ar
ea

of
th

e
se

at
by

m
an

ua
l

ad
ju

st
m

en
t.

(1
m

ea
ns

th
at

th
e

co
m

-
m

an
d

is
cu

rr
en

tl
y

pe
nd

in
g;

0
m

ea
ns

th
at

th
e

co
m

m
an

d
is

no
tp

en
di

ng
.)

(T
ab

le
co

nt
in

ue
d

on
th

e
ne

xt
pa

ge
.)

58

4. Methodology 4.5. Logical syntactic system interface

(T
ab

le
of

pr
ev

io
us

pa
ge

co
nt

in
ue

d.
)

R
eq

s
N

am
e

A
bb

r.
D

at
a

ty
pe

D
es

cr
ip

ti
on

I-
C

ha
nn

el
(s

ee
la

te
r)

7
po

si
ti

on
se

ns
or

ba
ck

po
s_

ba
ck

In
te

ge
r[

1.
.2

1]
Th

is
ac

ti
on

re
pr

es
en

ts
th

e
cu

rr
en

t
po

si
ti

on
of

th
e

ba
ck

of
th

e
se

at
.

(1
0

is
th

e
m

id
dl

e
po

si
ti

on
;1

is
th

e
po

si
ti

on
w

it
h

th
e

ba
ck

m
os

t
fo

rw
ar

ds
,

21
is

th
e

po
si

ti
on

in
w

hi
ch

th
e

ba
ck

is
pu

tm
os

tb
ac

kw
ar

ds
)

(s
ee

la
te

r)
po

si
ti

on
se

ns
or

di
s-

ta
nc

e
po

s_
di

st
In

te
ge

r[
1.

.2
1]

Th
is

ac
ti

on
re

pr
es

en
ts

th
e

cu
rr

en
tp

os
it

io
n

of
th

e
se

at
co

n-
ce

rn
in

g
th

e
di

st
an

ce
.(

...
)

(s
ee

la
te

r)
po

si
ti

on
se

ns
or

re
ar

po
s_

re
ar

In
te

ge
r[

1.
.2

1]
Th

is
ac

ti
on

re
pr

es
en

ts
th

e
cu

rr
en

tp
os

it
io

n
of

th
e

re
ar

ar
ea

of
th

e
se

at
.(

...
)

(s
ee

la
te

r)
po

si
ti

on
se

ns
or

fr
on

t
po

s_
fr

on
t

In
te

ge
r[

1.
.2

1]
Th

is
ac

ti
on

re
pr

es
en

ts
th

e
cu

rr
en

tp
os

it
io

n
of

th
e

fr
on

ta
re

a
of

th
e

se
at

.(
...

)
3

ad
ju

st
by

bu
tt

on
ad

ju
st

_b
y_

bu
tt

on
Bo

ol
Th

e
dr

iv
er

w
an

ts
to

ad
ju

st
th

e
se

at
by

pr
es

si
ng

th
e

m
em

-
or

y
bu

tt
on

(m
em

or
y

fu
nc

ti
on

al
it

y)
.

3
ad

ju
st

by
ca

r
ke

y
ad

ju
st

_b
y_

ca
r_

ke
y

Bo
ol

Th
e

dr
iv

er
w

an
ts

to
ad

ju
st

th
e

se
at

by
pr

es
si

ng
th

e
bu

tt
on

of
th

e
ca

r
ke

y
(m

em
or

y
fu

nc
ti

on
al

it
y)

.
5

fr
on

t
do

or
is

op
en

ed
fr

on
t_

do
or

_o
pe

ne
d

Bo
ol

Th
is

ac
ti

on
re

pr
es

en
ts

th
e

in
fo

rm
at

io
n

if
th

e
fr

on
t

do
or

is
op

en
ed

.
(1

m
ea

ns
th

at
th

e
fr

on
td

oo
r

is
cu

rr
en

tl
y

op
en

ed
;

0
m

ea
ns

th
at

th
e

fr
on

td
oo

r
is

cu
rr

en
tl

y
cl

os
ed

.
10

ba
tt

er
y

to
o

lo
w

fo
r

m
an

ua
la

dj
us

tm
en

t
lo

w
_b

at
te

ry
_f

or
_m

an
ua

l
Bo

ol
Th

is
ac

ti
on

co
nt

ai
ns

th
e

in
fo

rm
at

io
n

if
th

e
ba

tt
er

y
po

w
er

is
to

o
lo

w
in

or
de

r
to

al
lo

w
fo

r
m

an
ua

la
dj

us
tm

en
t.

(1
m

ea
ns

th
at

th
e

ba
tt

er
y

po
w

er
is

to
o

lo
w

;0
m

ea
ns

th
at

th
e

ba
tt

er
y

po
w

er
is

no
tt

oo
lo

w
.)

11
ve

lo
ci

ty
to

o
hi

gh
fo

r
m

em
or

y
fu

nc
-

ti
on

al
it

y

ve
lo

ci
ty

_t
oo

_h
ig

h
Bo

ol
Th

is
ac

ti
on

co
nt

ai
ns

th
e

in
fo

rm
at

io
n

if
th

e
ca

r
ve

lo
ci

ty
is

to
o

hi
gh

to
al

lo
w

th
e

us
ag

e
of

th
e

m
em

or
y

fu
nc

ti
on

al
it

y

14
ba

tt
er

y
to

o
lo

w
fo

r
th

e
m

em
or

y
fu

nc
-

ti
on

al
it

y
vi

a
se

at
bu

tt
on

lo
w

_b
at

te
ry

_f
or

_b
ut

to
n

Bo
ol

Th
is

ac
ti

on
co

nt
ai

ns
th

e
in

fo
rm

at
io

n
if

th
e

ba
tt

er
y

is
to

o
lo

w
in

or
de

r
to

al
lo

w
fo

r
m

em
or

y
fu

nc
ti

on
al

it
y

tr
ig

ge
re

d
by

th
e

bu
tt

on
.(

1
m

ea
ns

th
at

th
e

ba
tt

er
y

is
to

o
lo

w
;0

m
ea

ns
th

at
th

e
ba

tt
er

y
is

no
tt

oo
lo

w
.)

(T
ab

le
co

nt
in

ue
d

on
th

e
ne

xt
pa

ge
.)

7 Th
e

in
tr

od
uc

ti
on

of
th

e
in

pu
ta

ct
io

ns
se

nt
by

th
e

po
si

ti
on

se
ns

or
s

w
ill

be
ju

st
ifi

ed
la

te
r

(s
ee

Se
ct

io
n

4.
7.

4,
A

pp
lic

at
io

n
to

th
e

ca
se

st
ud

y)
.

59

4.5. Logical syntactic system interface 4. Methodology

(T
ab

le
of

pr
ev

io
us

pa
ge

co
nt

in
ue

d.
)

R
eq

s
N

am
e

A
bb

r.
D

at
a

ty
pe

D
es

cr
ip

ti
on

I-
C

ha
nn

el
16

ba
tt

er
y

to
o

lo
w

fo
r

th
e

m
em

or
y

fu
nc

ti
on

al
it

y
vi

a
ca

r
ke

y

lo
w

_b
at

te
ry

_f
or

_c
ar

ke
y

Bo
ol

Th
is

ac
ti

on
co

nt
ai

ns
th

e
in

fo
rm

at
io

n
if

th
e

ba
tt

er
y

is
to

o
lo

w
in

or
de

r
to

al
lo

w
fo

r
th

e
m

em
or

y
fu

nc
ti

on
al

it
y

tr
ig

-
ge

re
d

by
th

e
ca

r
ke

y.
(1

m
ea

ns
th

at
th

e
ba

tt
er

y
is

to
o

lo
w

;
0

m
ea

ns
th

at
th

e
ba

tt
er

y
is

no
tt

oo
lo

w
.)

60

4. Methodology 4.5. Logical syntactic system interface

Ta
bl

e
4.

7.
:O

ut
pu

ta
ct

io
ns

of
th

e
po

w
er

se
at

co
nt

ro
ls

ys
te

m

R
eq

s
N

am
e

A
bb

r.
D

at
a

ty
pe

D
es

cr
ip

ti
on

O
-C

ha
nn

el
2

m
ot

or
ba

ck
fo

r-
w

ar
ds

m
_b

ac
k_

fo
rw

Bo
ol

In
st

ru
ct

s
th

e
m

ot
or

to
m

ov
e

th
e

ba
ck

fo
rw

ar
ds

(1
in

ch
,f

or
ex

am
pl

e)
.

(1
m

ea
ns

th
at

th
e

co
m

m
an

d
is

cu
rr

en
tl

y
pe

nd
-

in
g;

0
m

ea
ns

th
at

th
e

co
m

m
an

d
is

no
tp

en
di

ng
.)

2
m

ot
or

ba
ck

ba
ck

-
w

ar
ds

m
_b

ac
k_

ba
ck

w
Bo

ol
In

st
ru

ct
s

th
e

m
ot

or
to

m
ov

e
th

e
ba

ck
ba

ck
w

ar
ds

(1
in

ch
,

fo
r

ex
am

pl
e)

.
(1

m
ea

ns
th

at
th

e
co

m
m

an
d

is
cu

rr
en

tl
y

pe
nd

in
g;

0
m

ea
ns

th
at

th
e

co
m

m
an

d
is

no
tp

en
di

ng
.)

2
m

ot
or

di
st

an
ce

in
-

cr
ea

si
ng

m
_d

is
t_

in
cr

Bo
ol

In
st

ru
ct

s
th

e
m

ot
or

to
m

ov
e

th
e

se
at

ba
ck

w
ar

ds
(1

in
ch

,f
or

ex
am

pl
e)

.
(1

m
ea

ns
th

at
th

e
co

m
m

an
d

is
cu

rr
en

tl
y

pe
nd

-
in

g;
0

m
ea

ns
th

at
th

e
co

m
m

an
d

is
no

tp
en

di
ng

.)
2

m
ot

or
di

st
an

ce
de

-
cr

ea
si

ng
m

_d
is

t_
de

cr
Bo

ol
In

st
ru

ct
s

th
e

m
ot

or
to

m
ov

e
th

e
se

at
fo

rw
ar

ds
(1

in
ch

,f
or

ex
am

pl
e)

.
(1

m
ea

ns
th

at
th

e
co

m
m

an
d

is
cu

rr
en

tl
y

pe
nd

-
in

g;
0

m
ea

ns
th

at
th

e
co

m
m

an
d

is
no

tp
en

di
ng

.)
2

m
ot

or
re

ar
ar

ea
up

m
_r

ea
r_

up
Bo

ol
In

st
ru

ct
s

th
e

m
ot

or
to

m
ov

e
th

e
re

ar
ar

ea
do

w
n

(1
in

ch
,f

or
ex

am
pl

e)
.

(1
m

ea
ns

th
at

th
e

co
m

m
an

d
is

cu
rr

en
tl

y
pe

nd
-

in
g;

0
m

ea
ns

th
at

th
e

co
m

m
an

d
is

no
tp

en
di

ng
.)

2
m

ot
or

re
ar

ar
ea

do
w

n
m

_r
ea

r_
do

w
n

Bo
ol

In
st

ru
ct

s
th

e
m

ot
or

to
m

ov
e

th
e

re
ar

ar
ea

do
w

n
(1

in
ch

,f
or

ex
am

pl
e)

.
(1

m
ea

ns
th

at
th

e
co

m
m

an
d

is
cu

rr
en

tl
y

pe
nd

-
in

g;
0

m
ea

ns
th

at
th

e
co

m
m

an
d

is
no

tp
en

di
ng

.)
2

m
ot

or
fr

on
ta

re
a

up
m

_f
ro

nt
_

up
Bo

ol
In

st
ru

ct
s

th
e

m
ot

or
to

m
ov

e
th

e
fr

on
t

ar
ea

up
(1

in
ch

,f
or

ex
am

pl
e)

.
(1

m
ea

ns
th

at
th

e
co

m
m

an
d

is
cu

rr
en

tl
y

pe
nd

-
in

g;
0

m
ea

ns
th

at
th

e
co

m
m

an
d

is
no

tp
en

di
ng

.)
2

m
ot

or
fr

on
t

ar
ea

do
w

n
m

_f
ro

nt
_

do
w

n
Bo

ol
In

st
ru

ct
s

th
e

m
ot

or
to

m
ov

e
th

e
fr

on
t

ar
ea

do
w

n
(1

in
ch

,
fo

r
ex

am
pl

e)
.

(1
m

ea
ns

th
at

th
e

co
m

m
an

d
is

cu
rr

en
tl

y
pe

nd
in

g;
0

m
ea

ns
th

at
th

e
co

m
m

an
d

is
no

tp
en

di
ng

.)
10

er
ro

r
ba

tt
er

y
to

o
lo

w
fo

r
m

an
ad

j
er

r_
ba

t_
lo

w
_s

ea
t_

m
an

Bo
ol

Er
ro

r
m

es
sa

ge
in

ca
se

th
e

ba
tt

er
y

po
w

er
is

to
o

lo
w

to
pe

r-
fo

rm
th

e
m

an
ua

la
dj

us
tm

en
t.

14
er

ro
r

ba
tt

er
y

to
o

lo
w

fo
r

m
em

ad
j

bu
tt

on

er
r_

ba
t_

lo
w

_s
ea

t_
bu

tt
on

Bo
ol

Er
ro

r
m

es
sa

ge
in

ca
se

th
e

ba
tt

er
y

po
w

er
is

to
o

lo
w

to
pe

r-
fo

rm
th

e
ad

ju
st

m
en

t
vi

a
m

em
or

y
(c

al
le

d
by

th
e

se
at

bu
t-

to
n)

.
16

er
ro

r
ba

tt
er

y
to

o
lo

w
fo

r
m

em
ad

j
ca

r
ke

y

er
r_

ba
t_

lo
w

_s
ea

t_
ke

y

Bo
ol

Er
ro

r
m

es
sa

ge
in

ca
se

th
e

ba
tt

er
y

po
w

er
is

to
o

lo
w

to
pe

r-
fo

rm
th

e
ad

ju
st

m
en

tv
ia

m
em

or
y

(c
al

le
d

by
th

e
ca

r
ke

y)
.

61

4.6. Identification of service relationships 4. Methodology

Figure 4.8 represents the logical syntactic interface graphically.

4.6. Identification of service relationships

So far, the single, atomic services have been captured in a modular fashion (sepa-
rately) but not related to each other. In this section we will relate services.

4.6.1. Concepts

As mentioned in the introduction, multi-functional systems are characterized by a
high degree of dependencies between functionalities. These dependencies have to be
captured and made explicit. Only then, the "big picture" about the system behavior
can be sketched out. In order to relate services to each other we have to identify
service relationships. A service relationship characterizes the effects that a service
has on (the modular specification of) another service. For example Requirement 8
demands that for each adjustment only one direction of movement (e. g. up or down)
can be carried out at once.

As from our perspective the system is a black box behavior, only relationships that
are visible at the system boundaries are taken into consideration, i. e. only relation-
ships between services that a user can observe are captured. This is appropriate for
the requirements engineering phase which describes the observable system behav-
ior. Other relationships, e. g. call or trigger relationships, which can only be detected
inside the system are appropriate for the design phase. The latter focuses on a de-
composition of the black box functionality (usage behavior) into sub-functions and
function calls. For the remainder of this thesis, the term "service relationships" al-
ways refers to those relationships which are observable at the system boundaries
(and not only observable from a white-box perspective on the system functionality).

When taking a closer look at the requirements of our running example, we see that
some requirements do not refer to single services, but to a set of services. For ex-
ample Requirement 10 demands that each manual adjustment (BACK FORWARDS,
BACK BACKWARDS, INCREASE DISTANCE, DECREASE DISTANCE, REAR AREA UP,
REAR AREA DOWN, FRONT AREA UP, FRONT AREA DOWN) is not possible (or if need
be has to be aborted) if the battery power is too low. This is just an "abbreviation"
of demanding the disabling of each of the single services. In a case like that, we
introduce a super service (in this example MANUAL ADJUSTMENT) aggregating sub
services (in this example BACK FORWARDS, BACK BACKWARDS, INCREASE DISTANCE,
DECREASE DISTANCE, REAR AREA UP, REAR AREA DOWN, FRONT AREA UP, FRONT

AREA DOWN). Furthermore, we introduce a horizontal relationship between the bat-
tery service and the super service (instead of introducing relationships between the
battery service and each of the single services, respectively).

Based on the thoughts outlined in the previous paragraphs, we make the following
explicit distinction into:

• vertical (service) relationships and

• horizontal (service) relationships

62

4. Methodology 4.6. Identification of service relationships

Seat
adjustment

system

back_backw

back_forw

dist_incr

dist_decr

rear_up

rear_down

front_up

front_down

pos_back

pos_dist

pos_rear

pos_front

front_door_opened

low_battery_for_manual

low_battery_for_button

low_batter_for_carkey

velocity_too_high

adjust_by_button

adjust_by_car_key

m_back_backw

m_back_forw

m_dist_incr

m_dist_decr

m_rear_up

m_rear_down

m_front_up

m_front_down

err_bat_low_seat_man

err_bat_low_seat_button

err_bat_low_seat_key

Figure 4.8.: Logical syntactic interface of the power seat control system (SSD)

63

4.6. Identification of service relationships 4. Methodology

Vertical service relationships

Vertical relationships between services introduce a hierarchy of services. This hi-
erarchy can be (graphically) represented by a directed graph which we call service
hierarchy (see Figure 4.9).8 The parent node of a service represents the so-called super
service which aggregates services. The children of a node represent the so-called sub
services which are aggregated by the super service.

System
Behavior

S1 …
data: X …

… …S2 …
data: X

Figure 4.9.: Service hierarchy (directed graph)

The edges of the service tree (vertical relationships) represent the restricted sub service
relationship as formally founded in [Broy, 2007]. The restricted sub service relation
is a more general case of the sub service relation. Informally spoken, a service S1
is a sub service of another service S2, if the behavior of S1 is "always" contained in
the (more comprehensive) behavior of S2. S2 thus is a projection of the behavior of
S1. The super service "combines" the behaviors of its sub services. For example, the
services ERR LOW BATTERY BUTTON and ERR LOW BATTERY CAR KEY are sub services
of the service ADJUSTMENT BY MEMORY. They behave according to the modular
specification also in the comprehensive behavior of the super service.

If the service S2 is a restricted sub service of the service S1, S2 is only a sub service of
S1 for specific input from a subset of all possible inputs. The service ADJUSTMENT

OF BACK is a restricted sub service of the service MANUAL ADJUSTMENT for example.
Due to Requirement 9 (demanding that at most two directions can be carried out
at once) the service ADJUSTMENT OF BACK might not be performed although it is
triggered manually by the driver. This is true for the situations (system states) in
which already two other adjustments are currently being carried out. Therefore, the
service is only a restricted sub service (and not a sub service).

In [Broy, 2007] a super service contains the behaviors of its sub services. That means
that it can have additional behavior (which is not defined by sub services), too. In the
thesis at hand, a super service is the "minimal" behavior that contains the behaviors of
its sub services and realizes the horizontal service relationships (see below). The root
of the service hierarchy contains the behavior of all services and therefore contains
the overall system functionality.

8Although the notational techniques for this step of the methodology are introduced in 4.6.2 (Nota-
tional technique(s)), we already give a preview at this place in order to explain our concepts.

64

4. Methodology 4.6. Identification of service relationships

When having a closer look at the services of our running example (and other case
studies), we see that almost always services are related by the restricted sub service
relationship and not by the sub service relationship. Additionally, we figure out that
the horizontal relationships between services determine if a service is a sub service or
a restricted sub service of another service. For example considering again the exam-
ple of the previous paragraph. The horizontal relationship "at most two directions
can be carried out simultaneously" is responsible for the restricted sub service re-
lationship between the services ADJUSTMENT OF BACK and MANUAL ADJUSTMENT.
Therefore, in the thesis at hand we do not explicitly distinguish between the sub ser-
vice relationship and the restricted sub service relationship. In the remainder we will
use the term "sub service relationship" although we refer to the restricted sub service
relationship as formally defined in [Broy, 2007].

The leaves of the tree are the atomic services (see Section 4.4, Identification of atomic
services). The inner services are more comprehensive behaviors combining sub ser-
vices. In the remainder of this thesis we call the services which are represented by
inner nodes of the service hierarchy combined services. The combined services are all
services except the atomic services. The overall system functionality - which is rep-
resented by the root of the service hierarchy - is the "most comprehensive" combined
service. The introduction of a super service only makes sense, if the super service
aggregates at least two services.

The names of the super services are often explicitly given in the requirements. Some-
times they are only given implicitly. In that case, a service name has to be introduced.

Horizontal service relationships

Horizontal service relationships are all other relationships except the sub service
relationship. As mentioned above the relationship XOR is an example for a hori-
zontal relationship between services. Other examples are DISABLE, INTERRUPT, and
MAX2INPARALLEL (the latter demands that among a set of services at most two ser-
vices can be executed in parallel). The horizontal relationships can be of an arbitrary
arity, i. e. they can exist between two, three, or n services depending on the relation-
ship. The service hierarchy is enriched by the information of the horizontal rela-
tionships. The service hierarchy and the horizontal relationships are captured in the
service graph (see Figure 4.10).9 The arrows are labeled by the names of the service
relationships, respectively. (The meaning of the PARAMETER is explained below.).

Horizontal relationships may exist between arbitrary services. There may also exist
horizontal service relationships between services of different levels. However, this
does not mean that a tree is badly structured and has to be restructured. After Section
4.8 (Combination of services on basis of the service relationships) it will be obvious that our
methodology can also handle these cases.10

9Again we give a preview of the notational techniques used in this step of the methodology
10For the requirements engineering phase the hierarchical structuring of usage behavior as suggested

above seems most appropriate. For the subsequent design phase however, other structuring forms
might be better. In the design phase the usage functionality is broken down into smaller system
functions which are not (necessarily) observable at the system boundaries. This will most probably
have influence on the structuring of the functionality. Due to limitation of scope, these questions are
not investigated in this thesis.

65

4.6. Identification of service relationships 4. Methodology

System
Behavior

S1 …
data: X …

… …S2 …
data: X

<relationship Y>

data dependency

<relationship Z>

<relationship X (Parameter*)>

Figure 4.10.: Service graph (directed graph)

The super services are a sub set of the service names in the requirements. The atomic
services and the super services together form the set of all services. The service rela-
tionships can be extracted from the requirements (service relationships).

Basic service relationships In the following paragraphs we will have a closer
look at the horizontal service relationships. We first define a set of basic (primitive,
simple) service relationships and show how the horizontal service relationships can
be put down to these basic relationships.

In our methodology, we look at the system behavior from a black box perspective.
Therefore, we first have to identify the "simplest" effects that a service can have on
another service. These "simplest effects" are then represented by basic service rela-
tionships. We obtain the following basic service relationships:11:

A service S1 can influence a service S2 in the following "basic" ways:

• ENABLE: If S1 enables S2, S1 puts S2 in a state in which S2 can be executed. This
does not mean that S2 is actually executed, but that it is possible to execute S2.

• DISABLE: If S1 disables S2, S1 puts S2 in a state in which S2 can not be executed.
If the service is currently being executed, it is stopped and can not be executed.

• INTERRUPT: If S1 interrupts a service S2, the execution of S2 is interrupted.

• CONTINUE: If S1 continues a service S2, S2 is continued at the same point of the
service execution where it was interrupted before.

• RESET S1: If S1 is reset, its execution is stopped and S1 is put in its initial state.
(When called the next time, the service S1 will start right from the beginning
again.)

• INDEPENDENT: If S1 does not have any influence on the behavior of service S2,
we call S2 independent of S1.

Semantically, DISABLE and INTERRUPT are equivalent as both prevent a service from

11In Chapter 5, Extension of basic service relationships we will discuss this set of basic service relationships
again and enlarge it.

66

4. Methodology 4.6. Identification of service relationships

being executed or stop its execution if need be. However, to continue a service (see
basic service relationship CONTINUE) it is necessary to know at what place of the ex-
ecution it was stopped. Therefore, we distinguish between DISABLE and INTERRUPT.

Complex horizontal service relationships Based on these basic relationships,
complex horizontal service relationship can be defined. Complex horizontal service rela-
tionships are all horizontal service relationships which are not basic ones. For each
horizontal relationship a stereotype with the name of the service relationship (or an
abbreviation) has to be introduced. Complex horizontal service relationships can be
put down to basic service relationships. For example an XOR relationship, demand-
ing that two services are not executed in parallel, can be put down to the ENABLE

and DISABLE service relationships. Consider again Requirement 8 which demands
that for each adjustment only one direction of movement (e. g. rear area up or down)
can be carried out at once. Assuming that the service which was called first is to be
executed, we obtain the following setting: In case the upwards direction is currently
performed (the service ADJUSTMENT OF THE REAR AREA UP is carried out), the ser-
vice ADJUSTMENT OF THE REAR AREA DOWN is disabled (and vice versa). After the
service ADJUSTMENT OF THE REAR AREA UP has finished, the service ADJUSTMENT

OF THE REAR AREA DOWN is enabled again. Note, that most complex relationships
are based on the execution status of a service. For example for disabling and enabling
the service ADJUSTMENT OF THE REAR AREA DOWN, we have to know if the other
service being executed. We will come back to this point in Section 4.8 (Combination of
services on basis of the service relationships).

Some of the complex horizontal service relationships need additional information.
For example, the XOR relationship of the example above does not say anything about
what to do if a service S2 is called while another service S1 is being executed. Shall
S1 be aborted in favor of S2? Or shall S1 be finished and S2 not started? Shall one
of the services (S1 or S2) have a higher priority concerning the right of execution?
Consequently, the XOR relationship has to be enriched with further information. At
this point we face two possibilities: We can either introduce refinements of the XOR

relationship or introduce a parameter for it. We take the second possibility (see Sec-
tion 4.6.4, Application to the case study). For example, the XOR relationships is further
specified by a parameter PRIORITY. The codomain of this parameter is {RUNNING,
STARTED, <SERVICE>}. If the parameter is set to RUNNING, the service currently be-
ing executed is not stopped. If it is set to STARTED, the currently running service
is stopped in favor of the new service. <SERVICE> stands for one of the services,
to which the relationships refers meaning that this service always has the highest
priority.

By introducing parameters to service relationships we obtain a nice side effect: miss-
ing requirements can be detected. For example when taking a closer look at the
requirements of our running example again (see Chapter 2, Running example), we see
that no information is given on which value to assign to the parameters of the XOR

relationship. Although the identification and elicitation of (missing) requirements is
not in the scope of this thesis (see Section 1.2.3, Tasks of the requirements engineering
phase), it is partly covered by our methodology.

Note that horizontal service relationships can be symmetric or asymmetric and - as

67

4.6. Identification of service relationships 4. Methodology

mentioned above - of arbitrary arity.

No service relationship between services implicitly represents the INDEPENDENT re-
lationship. We therefore will not explicitly use this relationship in the remainder of
the thesis. It might be wanted to explicitly specify if two services should be inde-
pendent. Thus, the explicit use of the INDEPENDENT service relationship would be
wanted. However, this enhances the complexity of the model. Therefore we decided
to not model independence explicitly.

Data dependencies

As mentioned above, services might operate on the same persistent data. Data de-
pendencies are also relationships between services which have to be captured. Al-
though at this stage of the methodology we are still informal, we have to take a look
how persistent data will be realized later during the formalization process. Only
then, we can prepare the information in a target-oriented way.

Persistent data will later be realized by variables (see Section 4.7.1, Concepts). The
question arises what the scoping of these variables has to be like. We face three
possibilities:

• Global variables

• Variables local to atomic services

• Variables local to sub services of a service

Global variables would be visible to all services. Consequently, each service could
read and write the persistent data. This is problematic for the following reasons:
First, conflicts might occur when more than one service want to write the variable at
the same time. Implicit communication is possible due to the shared variables. The
concept of information hiding is not complied with. Thus, global variables couple
services too tightly.

If persistent data was local to an atomic service, services would have to exchange
data in order to operate on the same data. This could either happen in a push or pull
manner. In the first case, a service would sent the data to all subscribing services
in case it modified the data. In the second case, a service needing the data would
explicitly request it from the service which the data is local to. However, from a
requirements engineering perspective this is not appropriate as the sending of data
can not be observed from the usage view.

The third possibility assigns data to a hierarchically decomposed service. In this case
the data is visible to all sub services. Although the data is not visible within the
overall system, the problems mentioned for global variables still hold for the set of
sub services.

With all the three alternatives we face a basic complex of problems. We choose pos-
sibility three as it is most appropriate for our approach. If services operate on the
same persistent data, the variable (representing the persistent data) is assigned to
their least common parent. Consequently, all sub services have access to the vari-
able. This might be displeasing if the least common parent is situated at a high level
or even is the overall root service of the service hierarchy. However this could be the

68

4. Methodology 4.6. Identification of service relationships

consequence of a badly structured service hierarchy. As we will see later (see Sec-
tion 4.8, Combination of services on basis of the service relationships) this way of handling
persistent data also goes along well with the semantics of our notational techniques.
As mentioned above, conflicts might occur between services if they want to write
the same variable at the same time. We will also come back to this point in Section
4.8 (Combination of services on basis of the service relationships) by explicitly introducing
conflict solving for this situation in our methodology.

Please note that the most appropriate way of handling persistent data would be to
make it visible to only those services which actually need the data. However this is
not possible with our notational techniques.

Remarks

The service hierarchy is only an intermediate result. It serves as a basis for the service
graph. Therefore, the final result of this methodological step is the service graph.

Note that by organizing services hierarchically, further atomic services can be identi-
fied. The high-level structure of a service graph can serve as a service identification
framework the usage of which is suggested in [Kang et al., 2002a].

The set of complex horizontal service relationships is infinitely large. However, it
might be stable for a specific domain (e. g. automotive systems). Most probably, after
the development of several products within the same domain, a catalog of complex
horizontal service relationships can be created. Thus, the horizontal service relation-
ships can be reused. (See also comments on product line development in Section 7.3,
Outlook.)

4.6.2. Notational technique(s)

As already mentioned in the previous subsection, we make use of directed, hierarchical
graphs in order to represent our vertical and horizontal service relationships. Figures
4.9 and 4.10 show directed graphs with the first one containing only the vertical rela-
tionships (so-called service hierarchy) while the second one contains both the vertical
and horizontal service relationships (so-called service graph).

Each node represents a service behavior. The leaves of the graph stand for the behav-
ior of the atomic services. The inner nodes represent the behavior of the combined
sub services. Edges visualize service relationships. In the service hierarchy, directed
edges point to sub services. In the service graph we also have horizontal arrows
representing the horizontal service relationships.

The nodes of the hierarchy contain the names of the services, respectively. Nodes
can also contain the name of persistent data (data: <name>) indicated by the key-
word "data". In that case the data is visible to all sub services. The edges which are
not labeled represent the sub service relationship (vertical relationships). All other
relationships (horizontal relationships) are labeled with the name of the relationship
(and its parameters if appropriate).

Each complex horizontal service relationship has a textual description. Furthermore

69

4.6. Identification of service relationships 4. Methodology

- if need be - it has to be specified which parameters are required by the complex hor-
izontal service relationship and what the codomain of the parameters is, respectively.

The textual descriptions of the complex horizontal service relationships can be listed
in tables (see Table 4.8). Each complex horizontal service relationship has a name
and an abbreviation. Furthermore, the arity has to be specified indicating between
how many services the relationship exists. Moreover, it has to be specified whether
the relationship is symmetric or asymmetric. Textual descriptions of the relationship
and its parameters also have to be given.

Table 4.8.: Description of complex horizontal service relationships

Name Abbr. Arity (A)Symm Description Parameters
...

It is not necessary to list the combined services in a table, too, like we suggested for
the atomic services. The combined services serve as a container for its sub services
and the information which sub services belong to which super service is already
captured in the service hierarchy (and thus also in the service graph).

4.6.3. Methodological steps

The aim is to create one service hierarchy for the system under specification. For
medium to large scale systems this can be quite difficult. We suggest a meet-in-
the-middle approach. A meet-in-the-middle approach is a mixture of a top down
approach and a bottom up approach. For our service hierarchy we have the follow-
ing starting points concerning the service hierarchy: The root is the overall system
functionality; the leaves are the atomic services (see Section 4.4, Identification of atomic
services). The inner nodes represent the combined services. It may be helpful to first
create sub trees of the hierarchy and combine them afterward. Such a sub tree would
contain the services of a sub system for example.

Figure 4.11 contains an overview of the activities performed during the identification
of service relationships.

First the service hierarchy has to be created. To that end, the leaves of the service hier-
archy are the atomic services and the root represents the overall system functionality.
These activities can be performed in parallel.

The determination of the vertical and horizontal service relationships is tightly cou-
pled as the horizontal service relationships motivate the introduction of combined
services (super services). Therefore, the step of the identification of the service rela-
tionships is an iterative procedure.

The combined services (super services of several sub services) which are explicitly
mentioned in the requirements are identified. Vertical sub service relationships are
introduced between the combined services and their sub services. Thus, the service
hierarchy is created. Additionally, the horizontal service relationships (both basic
and complex ones) are determined. The service hierarchy is enriched by the hori-
zontal service relationships. The result is the service graph. Each complex horizontal
service relationship has to be described in table form.

70

4. Methodology 4.6. Identification of service relationships

Id
en

tif
ic

at
io

n
of

 s
er

vi
ce

re
la

tio
ns

hi
ps

Make atomic services the leaves
of the service hierarchy

Make the overall system functionality
the root of the service hierarchy

Identification of combined services

Description of complex horizontal
service relationships

and their parameters (if need be)

Identification of horizontal
service relationships between services
and specification of their parameters

(service graph)

Introduction of vertical
service relationships

Identification of data
dependencies and assignments

of variables to services

Figure 4.11.: Identification of service relationships (activity diagram)

Additionally, data dependencies between services operating on the same data have
to be identified. This goes along with the assignment of data to the least common
parent.

4.6.4. Application to the case study

In this subsection, we show how we determine the service relationships of our run-
ning example step by step. Figure 4.12 shows a first version of the service hierarchy.
The root (shaded oval) represents the overall system functionality. The leaves (filled
ovals) represent the atomic services (see Section 4.4, Identification of atomic services).
Due to reasons of clarity, we omit the assignment of data in this and the following fig-
ures. The services MEMORY FUNCTIONALITY VIA BUTTON and MEMORY FUNCTION-
ALITY VIA CAR KEY would be assigned with the persistent data POSBACK, POSDIST,
POSFRONT, and POSREAR. Each of the eight adjustment services would also have a
data entry specifying the data for the respective position.

First, we introduce the combined services which are explicitly contained in the re-
quirements: Requirement 3 determines the introduction of the services MANUAL AD-
JUSTMENT and ADJUSTMENT BY MEMORY. The Requirements 1a,1b,1c, and 1d lead to
the introduction of the services ADJUSTMENT OF BACK, ADJUSTMENT OF DISTANCE,
ADJUSTMENT OF REAR AREA, and ADJUSTMENT OF FRONT AREA.

Respective vertical service relationships are introduced. Some of the atomic services
are not related hierarchically so far (see atomic services at the bottom of Figure 4.12).
This will be done next, when the horizontal service relationships are identified.

The horizontal service relationships lead to the introduction of combined services
and thus more vertical service relationships. They are explained in the following.
First, we only introduce the horizontal service relationships (and no further vertical
service relationships). Figure 4.13 shows the service graph of our running example.
Due to reasons of clarity, the parameters of the complex horizontal relationships have
been omitted in the figure.

71

4.6. Identification of service relationships 4. Methodology

Power
seat

control

Manual
adjustment

Adjustment
by

memory

Memory
func. via

button

Memory
func.via
car key

Adjustment
of back

Adjustment
of distance

Adjustment
of rear area

Adjustment
of front area

AdjBack
Forw

AdjBack
Backw

AdjDist
Incr

AdjDist
Decr

AdjRear
Up

AdjRear
Down

AdjFront
Up

AdjFront
Down

ErrLow
Bat
Key

ErrLow
Bat

Button

Front
door
open

ErrLow
BatMan

ErrHigh
Velo

Figure 4.12.: Service hierarchy of the power seat control system (service hierarchy)

Requirement 5 leads to the ENABLE and DISABLE relationships between the services
FRONT DOOR OPEN and MANUAL ADJUSTMENT. Requirement 9 demands for the
MAX2PAR relationship between the adjustment services. (The MAX2PAR relationship
is described below.) The introduction of the XOR relationship between the leaves of
the MANUAL ADJUSTMENT service is a result of Requirement 8. (The XOR relationship
is also described below.) The ENABLE and DISABLE relationships between the services
MANUAL ADJUSTMENT and ERRLOWBATMAN are a consequence of Requirement 10.

Requirements 11, 14, and 16 lead to the assignment of the remaining four ENABLE

and DISABLE relationships.

The memory services both operate on the same persistent data, namely the POSBACK,
POSDIST, POSFRONT, and POSREAR. The data dependency between these two service
visualizes this fact.

The service hierarchy can be obtained from the service graph by omitting the hori-
zontal service relationships.

72

4. Methodology 4.6. Identification of service relationships

Po
w

er

se
at

co
nt

ro
l

Fr
on

t
do

or
op

en

M
an

ua
l

ad
ju

st
m

en
t

Er
rL

ow
B

at
M

an

A
dj

us
tm

en
t

by
m

em
or

y

Er
rH

ig
h

V
el

o

A
dj of

ba
ck

A
dj of

di
st

an
ce

A
dj of

re
ar

ar
ea

A
dj of

fr
on

t a
re

a

A
dj

B
ac

k
Fo

rw
A

dj
B

ac
k

B
ac

kw
A

dj
D

is
t

In
cr

A
dj

D
is

t
D

ec
r

A
dj

R
ea

r
U

p
A

dj
R

ea
r

D
ow

n
A

dj
Fr

on
t

U
p

A
dj

Fr
on

t
D

ow
nM

em
fu

nc
vi

a
bu

tto
n

Er
rL

ow
B

at
B

ut
to

n

M
em

fu
nc

vi
a

ca
rk

ey

Er
rL

ow
B

at

K
ey

en
ab

le
/d

is
ab

le
en

ab
le

/d
is

ab
le

m
ax

2P
ar

en
ab

le
/d

is
ab

le

en
ab

le
/

di
sa

bl
e

en
ab

le
/

di
sa

bl
e

xo
r

xo
r

xo
r

xo
r

da
ta

 d
ep

en
de

nc
y

Fi
gu

re
4.

13
.:

Se
rv

ic
e

gr
ap

h
of

th
e

po
w

er
se

at
co

nt
ro

ls
ys

te
m

(s
er

vi
ce

gr
ap

h)

73

4.6. Identification of service relationships 4. Methodology

Ta
bl

e
4.

9.
:D

es
cr

ip
ti

on
of

th
e

co
m

pl
ex

ho
ri

zo
nt

al
se

rv
ic

e
re

la
ti

on
sh

ip
s

of
th

e
po

w
er

se
at

co
nt

ro
ls

ys
te

m

N
am

e
A

bb
r.

A
ri

ty
A

sy
m

m
D

es
cr

ip
ti

on
Pa

ra
m

et
er

s
m

ut
ua

le
xc

lu
si

on
X

O
R

n
sy

m
m

If
se

rv
ic

es
S1

,S
2,

...
,S

n
m

ut
ua

lly
ex

cl
ud

e
ea

ch
ot

he
r,

on
ly

on
e

se
r-

vi
ce

ca
n

be
ac

ti
ve

at
on

ce
.

PA
R
∈

{<
N

O
N

E
>

,S
1,

S2
,..

.,
SN

}
sp

ec
ifi

es
w

hi
ch

se
rv

ic
e

to
ex

ec
ut

e
in

ca
se

tw
o

or
m

or
e

se
rv

ic
es

ar
e

ca
lle

d
at

th
e

sa
m

e
ti

m
e.

A
N

O
T

H
E

R
∈

{<
R

U
N

-
N

IN
G

>
,<

FI
R

ST
>

,<
ST

A
R

T
E

D
>

,P
R

IO
R

IT
Y

(S
X

,S
Y

)}
de

fin
es

w
ha

tt
o

do
in

ca
se

a
se

rv
ic

e
is

al
re

ad
y

be
in

g
ex

ec
ut

ed
an

d
an

ot
he

r
on

e
is

ca
lle

d.
<

R
U

N
N

IN
G

>
m

ea
ns

th
at

th
e

ru
nn

in
g

se
rv

ic
e

is
co

nt
in

ue
d

to
be

ex
ec

ut
ed

.
<

FI
R

ST
>

de
fin

es
th

at
th

e
se

rv
ic

e
w

hi
ch

is
al

re
ad

y
ru

nn
in

g
is

ex
ec

ut
ed

fu
rt

he
r.

<
ST

A
R

T
E

D
>

m
ea

ns
th

at
th

e
ne

w
ly

ca
lle

d
se

rv
ic

e
is

ex
ec

ut
ed

an
d

th
e

ru
nn

in
g

se
rv

ic
e

is
st

op
pe

d.
P

R
IO

R
IT

Y
(S

X
,S

Y
)

is
a

fu
nc

ti
on

in
tr

od
uc

in
g

an
or

de
ri

ng
on

th
e

se
rv

ic
es

w
hi

ch
se

rv
ic

e
ha

s
a

hi
gh

er
pr

io
ri

ty
.

m
ax

im
al

tw
o

pa
ra

lle
l

M
A

X
2P

A
R

n
sy

m
m

If
th

er
e

is
a

M
A

X
2P

A
R

re
la

ti
on

-
sh

ip
be

tw
ee

n
n

se
rv

ic
es

,
on

ly
2

of
th

e
se

rv
ic

es
ca

n
be

ac
ti

ve
at

on
ce

.

PA
R
∈

{<
N

O
N

E
>

,P
R

IO
R

IT
Y

(S
X

,S
Y

)}
de

fin
es

w
hi

ch
se

rv
ic

e
is

to
be

ex
ec

ut
ed

if
m

or
e

th
an

tw
o

se
rv

ic
es

ar
e

ca
lle

d
at

th
e

sa
m

e
ti

m
e.

A
N

O
T

H
E

R
∈

{<
N

O
N

E
>

,
P

R
IO

R
IT

Y
(S

X
,S

Y
)}

sp
ec

ifi
es

w
ha

t
to

do
if

tw
o

se
rv

ic
es

ar
e

al
re

ad
y

ru
nn

in
g

an
d

an
ot

he
r

se
rv

ic
e

is
ca

lle
d.

74

4. Methodology 4.7. Formal specification of atomic services

As far as our running example is concerned we do not know to which values we
should set the parameters. This is not covered by the requirements. This is a good
example to show how our model-based approach helps at identifying missing re-
quirements (although this is not in the main focus of the thesis at hand).

We just decide to set the parameters as follows.12 The XOR relationships between the
adjustment services get the parameter ANOTHER = <FIRST>. The parameter PAR is set
to the FORWARDS, INCREASING, and UP services, respectively. The service relation-
ship MAX2PAR has the parameter PAR set to <NONE> and the parameter ANOTHER

set to <NONE>, too.

4.7. Formal specification of atomic services

So far, we took a quite informal look onto the system. During the remaining steps
of the methodology, the system functionality is specified formally. The first step is to
specify the modular, atomic services formally. In this section, we show how this is
done. Based on the service relationships identified in the previous step, the formal
specifications of the modular services will be combined in the following section (see
Section 4.8, Combination of services on basis of the service relationships).

4.7.1. Concepts

This step of the methodology bridges the gap between informal to formal service de-
scriptions. The informal (textual) service specifications are transformed into formal
service models, respectively.

In this step, only the atomic services (i. e. the leaves of the service graph) are formal-
ized. The formalization of the super services, particularly of the root service which is
the overall system behavior will later be obtained as the result of the combination of
the atomic services. When formalizing the atomic services, the effects resulting from
the service relationships is not taken into consideration. Only the modular behavior,
as if the service was alone in the system and no other services had an effect on the
service is specified formally. We call this behavior the core behavior of a service.

Some atomic services may be quite trivial (e. g. the service FRONT DOOR OPEN). How-
ever, as we will see later - when combining the services in Section 4.8 (Combination
of services on basis of the service relationships) - the behavior will become more compre-
hensive. Therefore we formalize all atomic services, although it may not make sense
for the trivial services with the knowledge we have at this stage of the methodology.

Another possibility would be to distinguish between trivial services ("events" or "pre-
conditions/guards" like the FRONT DOOR OPEN service) and non-trivial services (like
the service MEMORY FUNCTIONALITY VIA CAR KEY). However, as we will see later,
for our methodology this distinction is not necessary as trivial services ("events" or
"preconditions/guards") and non-trivial services are treated in the same way. Con-
cerning habitual language use (the FRONT DOOR OPEN service usually would be

12Of course, during the development of a real system, these requirements would have to be elicited
later.

75

4.7. Formal specification of atomic services 4. Methodology

called a feature/service, too) and in order to keep the number of concepts of our
methodology as small as possible we choose to not make this distinction.

For each service both the syntactic and semantic interface have to be formally spec-
ified. The syntactic interface (logical channels and logical actions) is comprised of
those logical input and output actions (see Section 4.5, Logical syntactic system inter-
face) which the service makes use of. Thus, the logical interface of a service is a sub
type of the logical interface of the overall system. Here, we make use of the concept of
interface sub typing as formally founded in [Broy, 2007]. Informally spoken, a syn-
tactic interface I1 is a subtype of the interface I2, if the channels of I1 are a subset of
the channels of I2 and if the messages ("actions" in our context) possibly sent on the
channels of I1 are a subset of the messages possibly sent on the channels of I2. I1
therefore is a projection of I2. This refers to both the input and output channels of the
syntactic interface.

As far as the semantic interface is concerned, each service is specified by relating log-
ical input actions to logical output actions. In our methodology this is done by I/O
automata (see Section 4.7.2 (Notational technique(s))). Automata are an appropriate
means for specifying reactive behavior. Automata (amongst others) have an opera-
tional semantics [Olderog, 1986]. Note that it might not make sense to specify each
service by an operational specification technique. For example a service which gets
a list and returns a sorted list may be better specified in an assumption/guarantee
style. The question which service should be specified by which technique is not scope
of this thesis and should be investigated in future work.

Formally, a service can be seen as a finite automaton. It relates a set of input actions to
a set of output actions. A service can enter different control states (which structure
the service execution).13 Transitions between control states can be considered to be
service steps. Furthermore, a service has exactly one initial state. When the service is
in the initial state and the triggering input action occurs, the service starts the service
execution. A service does not need to have one or more end states as the ending of a
service execution might result in the initial state again. Thus, end states are optional
to a service specification. A service may operate on local data. In order to be able
to speak about preemption (and also priorities) we also need to capture the time
aspect of a service execution. We assume that the service specifications are based on
an equidistant time grid. Transitions between control states of services (i. e. service
steps) take one time unit. Thus, if we introduce an additional control state, we also
introduce an additional delay. We will illustrate this fact in Section 4.7.2 (Notational
technique(s)) by a small example and with the help of our notational techniques.

Furthermore, a service step (transition) can not be interrupted. A service execution
can only be interrupted at control states. Thus, if we want to express that a service can
be interrupted at some point in the service execution, we have to insert an additional
control state. Analogously, if we want to express that the service execution can not
be interrupted at some point, no control state should be introduced.14

13As the service relationships, and thus the service combination, may depend on the execution status
of services (see Section 4.8, Combination of services on basis of the service relationships) the state view of
automata is very helpful.

14Note that we will later loosen this demand by the introduction of "secure interrupts" in Section 5
(Extension of basic service relationships).

76

4. Methodology 4.7. Formal specification of atomic services

As mentioned above, services might operate on persistent data. During the iden-
tification of atomic services, persistent data is specified informally (see Section 4.4,
Identification of atomic services). When formalizing services we have to define a data
type for each persistent data. Persistent data can either be of a basic data type (like
Integer, Real, or String) or of a complex data type. In latter case this complex data
type first has to be defined for example by means of AutoFOCUS Data Type Defini-
tions (DTDs) [Huber et al., 1997]. Then, the persistent data can be specified formally.
Each data is given a data type, a unit (if appropriate), a range, and an initial value.
Note that this formal data specification holds for all services which make use of the
persistent data.

Having a closer look at the services of the running example, we observe that some
services have the same "behavioral pattern". For example all manual adjustment
services (ADJUSTMENT OF THE BACK FORWARDS, ADJUSTMENT OF THE BACK BACK-
WARDS, ADJUSTMENT OF THE DISTANCE INCREASING, ...) exhibit the same kind of
behavior: On receiving the driver’s wish to adjust the seat, the respective motor is
controlled. Of course, a formal specification could be given for each service. How-
ever, this effort can be reduced by introducing a service pattern which can be instanti-
ated with different actions. An example for such a service pattern is given in Section
4.7.4 (Application to the case study).

4.7.2. Notational technique(s)

In order to formally specify the syntactic and semantic interface of atomic services,
we use System Structure Diagrams (SSDs) and State Transition Diagram STDs, re-
spectively (see Sections 3.1, System Structure Diagrams (SSDs) and 3.2, State Transition
Diagrams (STDs)).

We combine these two diagrams and display it in one graphic (see Figure 4.14).
Sometimes, the behavior of an atomic service is comprised of parallel sub functional-
ity. For example, the service MEMORY FUNCTIONALITY VIA BUTTON adjusts the four
dimensions of the seat position in parallel. In that case, it is better to decompose an
SSD into further SSDs with contain the parallel functionality. The parallel function-
ality is then specified by an STD, respectively. Figure 4.19 shows an example.

ch1: a

ch2: b

ch3: c

Figure 4.14.: Formal specification of atomic services (SSD + STD)

A service - in our context - is a partial behavior. Consequently, it is (in general)
modeled by a partial STD. Partiality in this context means, that it is not (necessarily)
specified how the system shall react in each situation (state) if a certain action is
received. In that case, we make no statement about the behavior of the service.

As mentioned in the previous paragraph, transitions (per definition) take one time

77

4.7. Formal specification of atomic services 4. Methodology

req:
read(nr)

read (alternative 1)

result:
val∈Integer

{val==mem[nr]}
?read(nr) / !val

req:
read(nr)

read (alternative 2)

result:
val∈Integer

? read(nr)

!val
val:=
mem[nr]

Figure 4.15.: Two alternative specifications of a simple service (SSD + STD)

tick. Thus, if we introduce an additional control state, we also introduce an additional
delay. Figure 4.15 shows two alternative specifications of a simple read service. On
receiving a read request, it calculates the value stored, and issues it. In the left spec-
ification these steps are all done in one transition. Consequently, the read request
can not be interrupted and takes one time tick. The specification in the right hand
side is different. For each step, one transition is introduced. Thus, the service can be
interrupted after each service step (at each control state) and takes three time ticks.
Additionally, a service request can only be handled every third tick (when the ser-
vice is in the initial state). This problem can be eliminated by scaling the time ticks of
services accordingly. For example, for the read service of the right specification we
could define that a tick is only a third of a global time tick. One has to be aware of
this implicit information when specifying a service with an STD. For reasons of sim-
plicity, we do not take into consideration timing problems in the remainder of this
thesis. We leave topics like the scaling of time ticks within service specifications for
future work (see Section 7.3, Outlook). For our work it is (just) important to be able to
speak of an interruption of a service. To that end, we introduce control states to the
service specification.

Note that due to the semantics of STDs (see Section 3.2.3, Semantics of STDs), the
system reaction is left open for underspecified transitions. This goes along with our
understanding of services which make no statement about how the system shall react
in underspecified cases.

In Section 3.2.2 (Priority concept for competing transitions) we introduced the priority
concept for competing transitions. For the formal specification of atomic services,
only the priorities 0 to 4 are allowed to be used. We will give a motivation for that in
Section 4.8 (Combination of services on basis of the service relationships).15

Persistent data is formally specified by enlarging the data table which was already
suggested for the informal specification (see Table 4.1). The result looks as shown in
Table 4.10.

4.7.3. Methodological steps

The activities of this step of the methodology are shown in Figure 4.16. First the
syntactic interface is formally specified for each atomic service. To that end, an STD

15Priority 5 will be used to handle feature interaction.

78

4. Methodology 4.7. Formal specification of atomic services

Table 4.10.: Formal specification of persistent data

Abbreviation Name Description Data type Unit Range Initial Value
...

is created for each service. If the service operates on persistent data (and the data has
not formally been specified so far), the data is formally specified. This includes the
definition of complex data types if need be. The assignment of the data to services
has already been done during the identification of service relationships. The semantic
interface of the core behavior16 of each service is specified by an STD.

Fo
rm

al
 s

pe
ci

fic
at

io
n

of
 a

to
m

ic
se

rv
ic

es

(service behavior)

Formally specify the syntactic interface
of each atomic service

Formally specify the core
behavior of each atomic service

Define complex data types (if need be) and
formally specify persistent data

Figure 4.16.: Formal specification of atomic services (activity diagram)

4.7.4. Application to the case study

For our running example, we identified the following atomic services (see Section
4.4.4, Application to the case study):

• ADJUSTMENT OF THE BACK FORWARDS

• ADJUSTMENT OF THE BACK BACKWARDS

• ADJUSTMENT OF THE DISTANCE INCREASING

• ADJUSTMENT OF THE DISTANCE DECREASING

• ADJUSTMENT OF THE REAR AREA UP

• ADJUSTMENT OF THE REAR AREA DOWN

• ADJUSTMENT OF THE FRONT AREA UP

• ADJUSTMENT OF THE FRONT AREA DOWN

• FRONT DOOR OPEN

• MEMORY FUNCTIONALITY VIA BUTTON

16As mentioned above, the core behavior of a service is the modular "characteristic" behavior of a
service which is not influenced by other services.

79

4.7. Formal specification of atomic services 4. Methodology

• MEMORY FUNCTIONALITY VIA CAR KEY

• ERR HIGH VELOCITY

• ERR LOW BATTERY BUTTON

• ERR LOW BATTERY CAR KEY

• ERR LOW BATTERY MANUAL

In the following, we formally specify their syntactic and semantic interface by an
SSD and an STD, respectively. As we will see, the initial states of the services are
not always defined by the requirements. This points at missing requirements which
would have to be elicited. As far as our running example is concerned, we will choose
the initial states as we think is reasonable.

Due to reasons of clarity we first formally specify the persistent data of our running
example. The formal service specifications of the atomic services can then make use
of the formal data specifications. Table 4.11 shows the result.

Table 4.11.: Formal specification of the persistent data of the power seat control system

Abbr. Name Description Data type Unit Range Init.
posBack ... The variable contains the

position of the back as
saved by the user man-
agement (10 represents the
middle position; 1 is the
position with the back
most forward; 21 is the po-
sition with the back most
backward).

Integer - [1..21] 1

posDist Integer - [1..21] 1
posFront Integer - [1..21] 1
posRear Integer - [1..21] 1

The manual adjustment services

The manual adjustment services (the first eight services of the listing above) all
operate according to the same pattern: If the driver expresses his/her wish to
move the seat in a direction, the motor is controlled. Figure 4.17 shows this
pattern. It has to be instantiated for each manual adjustment service. For ex-
ample for the service ADJUSTMENT OF THE BACK FORWARDS this pattern has
to be instantiated with <chI>=MOVE_BACK_BACKW, <direction>=BACK_BACKW,
<chO>=MOTOR_BACK_BACKW, <command>=M_BACK_BACKW, and <state>=INIT.
(As the other services are instantiated analogously, we omit their formal specifica-
tion.)

80

4. Methodology 4.7. Formal specification of atomic services

<chI> : <direction> <chO> : <command>
<state>

<chI> ? <direction> /
<chO> ! <command>

Figure 4.17.: Formal specification of the MANUAL ADJUSTMENT services by a pattern (SSD
+ STD)

The FRONT DOOR OPEN service

As mentioned above, some atomic services are quite trivial. The FRONT DOOR OPEN

service falls into this category. As the core behavior of the service does not have an
output behavior, we just specify its syntactic interface at this point (see Figure 4.18).17

front_door_opened

Figure 4.18.: Formal specification of the FRONT DOOR OPEN service (SSD)

The MEMORY FUNCTIONALITY VIA BUTTON and MEMORY FUNCTIONALITY VIA CAR
KEY services

The MEMORY FUNCTIONALITY VIA BUTTON service is more complicated. As de-
manded in Requirement 13, the seat has to be moved into the previously saved po-
sition as fast as possible. Therefore, all movements have to be carried out simultane-
ously.

The idea behind the specification of the service behavior is the following: On receiv-
ing the command ADJUST_BY_BUTTON, the seat is moved until the actions sent by
the position sensor match the values saved. (Time delays are not taken into consid-
eration.)

As specified in 4.5.4 (Application to the case study), the logical input actions POS_BACK,
POS_DIST, POS_REAR, and POS_FRONT represent the current position of the back, the
distance, the rear area, and the front area of the seat by Integer values, respectively.

The variables POSBACK, POSDIST, POSREAR, and POSFRONT (of type Integer) con-
tain the previously saved positions and were already introduced during the identifi-
cation of the service relationships. Note that a service SAVE CURRENT SEAT POSITION

would write these variables. However this service is not specified in this thesis.

17When combining the services later (see Section 4.8, Combination of services on basis of the service re-
lationships) the core behavior of the FRONT DOOR OPEN service will be adapted and thus become
non-trivial.

81

4.7. Formal specification of atomic services 4. Methodology

Figure 4.19 shows the syntactic (SSD) and semantic (STD) interface of the MEM-
ORY FUNCTIONALITY VIA BUTTON service. On receiving the input action AD-
JUST_BY_BUTTON, the four directions are controlled in parallel. For each direction, an
SSD and STD is introduced, respectively. The seat is in the right position when all cur-
rent seat positions (sent by the position sensor by the actions POS_BACK, POS_DIST,
POS_REAR, and POS_FRONT) match the saved values (represented by the variables
POSBACK, POSDIST, POSREAR,.

Back

init adjusting

adjust_by_button / -
{posBack <
pos_Back} - /
!m_back_backw

{posBack <
pos_Back} - /
!m_back_forw

{posBack ==
pos_Back} -/ -

m_back_backw

m_back_forw

adjust_by_button

pos_back

m_dist_incr

m_dist_decr

m_rear_up

m_rear_down

m_front_up

m_front_down

pos_dist

pos_rear

pos_front

Distance

Rear

Front

…

…

…

Figure 4.19.: Formal specification of the MEMORY FUNCTIONALITY VIA BUTTON service
(SSD + STD)

The MEMORY FUNCTIONALITY VIA CAR KEY services can be designed similarly.

The ERROR LOW BATTERY services

Figure 4.20 shows the formal specification of the service ERR LOW BATTERY MANUAL.
The other error services (ERR LOW BATTERY BUTTON and ERR LOW BATTERY CAR

KEY) can be specified analogously. (Their specification is omitted here.) gain, we
could make use of a common service pattern as all three error services expose the
same behavior.

low_battery_for_manual err_bat_low_man
init

?low_battery_for_manual
/ !err_bat_low_man

Figure 4.20.: Formal specification of the ERR LOW BATTERY MANUAL service (SSD + STD)

82

4. Methodology 4.8. Combination of services on basis of the service relationships

The ERR HIGH VELOCITY service

The ERR HIGH VELOCITY service is a trivial service. Its syntactic interface is shown in
Figure 4.21.

velocity_too_high

Figure 4.21.: Formal specification of the ERR HIGH VELOCITY service (SSD)

4.8. Combination of services on basis of the service
relationships

So far we have (formally) specified the services in a modular fashion. In order to
obtain the overall system functionality, we have to combine the services, i. e. we also
have to model their interplay.

4.8.1. Concepts

In Section 4.6 (Identification of service relationships) we distinguished between vertical
and horizontal service relationships. As far as the combination of services is con-
cerned, the vertical relationships (which make up the service hierarchy) define the
order in which the services are combined (bottom up strategy) and the horizontal
relationships define the way of combining them. To be more precise: the horizontal
service relationships define how the core behavior of the services has to be modified
in order to handle the influences of other services.

For the combination of the modular service specifications we use a bottom up strat-
egy: The combination of atomic services leads to more comprehensive services, so-
called combined services. These combined services are again combined until the over-
all system functionality is obtained. Concerning the service graph (see Figure 4.10),
the leaves are combined to get the behavior of inner nodes. Inner nodes are com-
bined again until the overall system functionality which is represented by the root is
obtained.

For each combined service (note that our notion of service is relative, see Section 4.1.1,
Underlying system model), we have to specify the syntactic and semantic interface, too.

The syntactic interface can be obtained quite easy. It is the combination (least super
type, see [Broy, 2007]) of the syntactic interfaces of its sub services. The syntactic in-
terface of the root thus has the logical syntactic interface of the overall system. Given
the modular service specifications, the logical syntactic interface of their combined
behavior (their super service) can be generated automatically.

To obtain the semantic interface of the combined behavior we first have to make
some considerations. Services are combined based on the service relationships be-

83

4.8. Combination of services on basis of the service relationships 4. Methodology

tween them. To that end, we have to investigate what effects a horizontal service
relationship has on the behavior of a service. Note that the behavior of all services
"involved" in a horizontal service relationship is affected. For example if a service S1
influences a service S2 (see Figure 4.22),

S1 S2
<basic relationship>

Figure 4.22.: Influencing and influenced service (schematic picture)

• the modularly specified behavior (core behavior) of S1 (influencing service) has
to be modified to indicate at what point the service S2 shall be influenced and

• the modularly specified behavior (core behavior) of S2 (influenced service) has
to be modified to handle the influence of S1.

This holds analogously for service relationships of arbitrary arity.

In the following we first show how each basic service relationship affects the core be-
havior (modular service specification) of a service. Then we will show how complex
horizontal service relationships influence service specifications.

Realization of basic service relationships

In Section 4.6.1 (Concepts), we introduced a set of basic relationships (ENABLE, DIS-
ABLE, INTERRUPT, CONTINUE, RESET, and INDEPENDENT) that influence a service
behavior.18

In the following we show how the effect of the basic service relationships can be
realized by the influenced and the influencing service. As we model the syntactic and
semantic interface of services by means of SSD and STD, respectively, we show how
the SSD and the STD have to be modified in order to realize the influence of the basic
service relationships. For each basic service relationship we give a standard control
interface. A service which is affected by a basic service relationship (e. g. DISABLE) has
to implement the respective standard control interface in order to handle this influence.
If a service is affected by several basic service relationships, it has to implement all
respective standard control interfaces.

Put in other words, we give schemata how to transform the core behavior of a service
into the so-called modified behavior of a service. The latter is the service behavior as
exposed in the overall system functionality.

Realization of the basic service relationship DISABLE Figure 4.23 illustrates the
realization of the basic service relationship DISABLE. The upper part of the graphic
contains the service relationship as used in the service graph. The lower part contains
the service specification after the realization of the service relationship. The service
S2 implements the standard control interface of the DISABLE service relationship.

18The INDEPENDENT relationship does not influence other services.

84

4. Methodology 4.8. Combination of services on basis of the service relationships

Let INPUT-CH1, ... INPUT-CHN be the logical input channels and OUTPUT-CH1, ...
OUTPUT-CHM be the logical output channels of the service. The syntactic interface
(SSD) is enlarged by a channel (named S1_S2, indicated by a dashed arrow) and by
the logical input action DISABLE. This action is sent by the influencing service S1
when the influenced service S2 has to be disabled.

As far as the semantic interface of the influenced service is concerned (represented by
the STD), a hierarchical automaton is introduced. On the highest level, the automaton
has the two states DISABLED and ENABLED. The semantics are the following: If the
service is in the state ENABLED, the service can be executed (according to the modular
specification of its core behavior as specified in Section 5.4.3, Formal specification of
modular services). If the service is in the state DISABLED, it can not be executed. No
output is produced even if the input actions triggering the service are received. The
transition ?X / !NIL of Figure 4.23 is a universal transition which accepts each input
on each input channel (except those inputs for which a transition is explicitly defined,
for example ?ENABLE / ..., see later). NIL is the empty value which represents the
absence of a message on each output channel of the universal transition. Thus the
system reaction is not left open, but it is specified that the service produces no output.
On receiving the input action DISABLE, the service leaves the state ENABLED and
enters the state DISABLED. As the transition leading from the state ENABLED to the
state DISABLED has PRIO=5 (and transitions of the modular service specification can
only have priorities ranging from 0 to 5, see Section 4.7.2, Notational technique(s)), this
transition is fired. In case local data has been changed, it must additionally be set
back to the initial value. (This might lead to conflicts, see later.) This can be done by
specifying the postcondition (e. g. ?DISABLE/!NIL {VAL:=INITVAL}) accordingly.

As the channel S1_S2 aims at a special purpose, namely to connect influencing and
influenced service(s), it is formated differently. We make use of dashed arrows in-
stead of solid arrows to represent these kinds of special channels. However, as men-
tioned in Section 3.1 (System Structure Diagrams (SSDs)) they have the same semantics
as the solid arrows.

Note, we decided to enable the service per default. (The ENABLED state is the initial
state of the automaton.) If demanded differently by the requirements this can of
course be changed.

S1 S2
disable

S2 (modified)

Input-chN: …

Input-ch1: …

S1_S2:
disable

… Output-ch1: …

…
Output-chM: …

disabled enabled
(S2)

? disable (Prio=5)

S1

?x / !nil

Figure 4.23.: Standard control interface of the basic service relationship DISABLE (SSD +
STD)

85

4.8. Combination of services on basis of the service relationships 4. Methodology

Realization of the basic service relationship ENABLE The standard control in-
terface of the basic service relationship ENABLE is shown in Figure 4.24. It basically
can be seen as the inverse behavior of the DISABLE service relationship. If a service is
currently disabled, it transits to the state ENABLED on receiving the action ENABLE.

S1 S2
enable

S2 (modified)

Input-chN: …

Input-ch1: …

S1_S2:
enable

… Output-ch1: …

…
Output-chM: …

disabled enabled
(S2)

?enable (Prio=5)

S1

?x / !nil

Figure 4.24.: Standard control interface of the basic service relationship ENABLE (SSD + STD)

Realization of the basic service relationship INTERRUPT The realization of the
basic service relationship INTERRUPT is shown in Figure 4.25. Again, the logical syn-
tactic interface is enlarged by a channel (S1_S2) and by the logical input action IN-
TERRUPT.

The automaton is a high level automaton having the states RUNNING19 and INTER-
RUPTED. In the state RUNNING the service can be executed as specified modularly.
On receiving the action INTERRUPT the service exits the state RUNNING and goes
into the state INTERRUPTED. In this state, the empty value NIL is sent on all output
channels.

As noted before, the basic service relationships DISABLE and INTERRUPT are seman-
tically equivalent. However, for the basic service relationship CONTINUE (see pro-
ceeding paragraph) it is necessary to "remember" the state in which the service spec-
ification was left. For the ENABLE relationship this is not necessary. Therefore, we
explicitly distinguish between DISABLE and INTERRUPT.

Realization of the basic service relationship CONTINUE Figure 4.26 contains the
standard control interface of the basic service relationship CONTINUE. Being caused
to continue its execution (by receiving the action CONTINUE) the service enters the
history state of RUNNING again (indicated by the encircled H). Due to the history
state of the service, the service execution can be continued at the point where it was
interrupted.

Realization of the RESET relationship The realization of the RESET relationship
is shown in Figure 4.27. This time we introduce one high level state (containing

19Please note, that the service can also be in the state ENABLED (see above) when being "interrupted".

86

4. Methodology 4.8. Combination of services on basis of the service relationships

S1 S2
interrupt

S2 (modified)

Input-chN: …

Input-ch1: …

S1_S2:
interrupt

… Output-ch1: …

…
Output-chM: …

running (S2)
interrupted

?interrupt (Prio=5)

S1

?x / !nil

Figure 4.25.: Standard control interface of the basic service relationship INTERRUPT (SSD +
STD)

S1 S2
continue

S2 (modified)

Input-chN: …

Input-ch1: …

S1_S2:
continue

… Output-ch1: …

…
Output-chM: …

running (S2)
interrupted

?continue (Prio=5)

S1 H
?x / !nil

Figure 4.26.: Standard control interface of the basic service relationship CONTINUE (SSD +
STD)

the core behavior of service S2) and a transition starting and ending at this high
level state. The syntactic interface is enlarged by the logical input action RESET. On
receiving this action, the service performs the transition which causes the service
execution to stop and the service to enter its initial state. In case the service makes
use of data, these data must additionally be reset to the initial value.20 This can be
achieved by specifying the postcondition of the transition accordingly (?RESET/!NIL

{VAL:=INITVAL}).

Realization of the INDEPENDENT relationship If two services are independent, the
modular specifications do not have to be modified. Their specifications is simply
combined in parallel.

As the actions ENABLE, DISABLE, INTERRUPT, CONTINUE, and RESET play a special

20Analogously to the DISABLE service relationship.

87

4.8. Combination of services on basis of the service relationships 4. Methodology

S1 S2
reset

S2 (modified)

Input-chN: …

Input-ch1: …

S1_S2:
reset

… Output-ch1: …
…

Output-chM: …S2

?reset
(Prio=5)

S1

Figure 4.27.: Standard control interface of the basic service relationship RESET (SSD + STD)

role in our methodology (namely to realize the basic service relationships), we give
them a special name: basic actions.

In the preceeding paragraphs, we showed how the specification of the influenced
services have to be modified in order to handle the basic service relationships. As
mentioned above the modular specifications of the influencing services have to be
modified, too. To that end, the influencing services have to send the respective ac-
tions (ENABLE, DISABLE, INTERRUPT, CONTINUE, and RESET) at the point of the ser-
vice execution where appropriate. This time however, the syntactic output interface
is enlarged. (See Section 4.8.4, Application to the case study for examples.)

Figure 4.28 schematically shows how the specification of the influencing service is
modified.

S1 S2
enable

S1 (modified)

Input-chN: …

Input-ch1: …

S1_S2:
enable

…

Output-ch1: …
…

Output-chM: …

… / !enable

S2

Figure 4.28.: Realization of the ENABLE relationship by the influencing service (SSD + STD)

Figure 4.29 shows a modular service specification implementing the basic service
relationships ENABLE, DISABLE, INTERRUPT, CONTINUE, and RESET. Note, that the
result is a partial behavior again. It is not specified how the service has to behave if
a DISABLED action occurs in the INTERRUPTED state (and vice versa). This can not be
said in general but has to be specified specifically for each service. Therefore it is not
demanded by the standard schema.

For the communication between services (in order to realize the service relationships)
we introduce channels between the services. As convention we name the channels
S1_S2 if the directed channel starts at S1 and leads to S2. As all channels should

88

4. Methodology 4.8. Combination of services on basis of the service relationships

S2‘

Input-chN: …

Input-ch1: …

disable

…
Output-ch1: …

…
Output-chM: …

S2 disabled

?disable (Prio=5)

?enable
(Prio=5)

interrupted

?interrupt
(Prio=5)

?continue
(Prio=5)

enable

interrupt

continue

? x / ! -

? x / ! -reset

?reset
(Prio=5)

Figure 4.29.: Realization of all basic service relationships (SSD + STD)

have unique names, it might be necessary to make use of further identifiers (e. g.
S1_S2_1).21

Realization of complex horizontal service relationships (relationship services)

So far we have shown how the basic service relationships can be realized. Now we
will have a closer look at the complex horizontal service relationships. As mentioned
in 4.6 (Identification of service relationships) the horizontal service relationships can be
put down to the basic service relationships. The transformation of a horizontal re-
lationship into basic relationships sometimes can be complex. In our approach, the
logic behind such a transformation is "hidden" in a service, too. For example, for the
horizontal service relationship XOR, we introduce an XOR service that is responsible
for realizing the relationship, i. e. sending the actions ENABLE and DISABLE to the
services which mutually exclude each other. We call such a service - which is respon-
sible for realizing a complex service relationship - a relationship service. (See Section
4.8.4, Application to the case study for examples.)

Relationship services are special services. They can be considered to be pieces of
functionality which are observable at the system boundaries. However, the relation-
ship services can not be triggered by a user. They merely realize complex horizontal
service relationships.

When taking a closer look at the horizontal service relationships of our running ex-
ample, we see that some relationships depend on the execution status of one or more
services. For example, the horizontal service relationship MAX2PAR indicates that
at most two of the adjustment directions can be carried out simultaneously. As a
consequence, the service which realizes the MAX2PAR relationship has to "know" the
execution status of the adjustment services. To be more concrete, the MAX2PAR ser-
vice has to know which one of the adjustment service is currently running, i. e. which
service is currently ACTIVE or INACTIVE.

21As atomic and combined services should have unique names too, this is automatically achieved.
However, in our methodology we will also introduce further services (see below) which could have
the same name.

89

4.8. Combination of services on basis of the service relationships 4. Methodology

Providing information about the execution status of a service Similarly to the
realization of the basic service relationships, we modify the service specifications to
provide information about their execution status. Figure 4.30 contains the schema
for modifying a modular service specification (i. e. the core behavior which might al-
ready have been adopted to handle basic service relationships). The syntactic output
interface is enlarged by an output channel (depicted by a dotted arrow in the graphic)
and the logical output actions ACTIVE and INACTIVE. Two high-level states are in-
troduced: INACTIVE and ACTIVE. Per default the service is in the INACTIVE state.
On receiving the first input action which triggers the service execution (STARTACT in
the graphic), it sends the output action ACTIVE to a service realizing a service rela-
tionship which depends on the execution status. Within the state ACTIVE the service
is executed according to its modular specification (according to the core behavior
with might already have been adopted to handle basic service relationships). When
putting out the last output action (ENDACT in the graphic), the service leaves the
ACTIVE state and sends the action INACTIVE.

Input-chN: endAct

Input-ch1: startAct

S_service:
active, inactive

…

Output-ch1: …
…

Output-chM: …inactive

?startAct / !active

active
(S2)

…/ !endAct; !inactive

Figure 4.30.: Providing information about the execution status of a service (SSD + STD)

As the actions ACTIVE and INACTIVE introduced above have a special role in our
methodology - as the basic actions (see above) - we give them a special name: status
actions. The channels on which status actions are carried are formated differently,
namely by dotted arrows. However, as mentioned in Section 3.1 (System Structure
Diagrams (SSDs)) they have the same semantics as dashed or solid channels.

In Section 4.5.1 (Concepts) we introduced a channel for each input and output action,
respectively, although the notational techniques allow the sending of multiple actions
on one channel. The motivation for this is the following: If a service is connected to
an input channel it receives all the input actions. However, as services are partial
behaviors, a service does not have to handle each action. To keep the model simple
we thus only sent those actions to/from a service which it needs for its execution.
However, as far as inner channels (transmitting basic actions and status actions) are
concerned, we allow multiple actions to be sent on one channel. This makes sense as
basic actions and status actions are specifically introduced for a service.

During the examination of two case studies, we only identified horizontal service
relationships that needed the information whether a service was active or inactive.
However, other execution stati could be necessary for the realization of a horizontal
service relationship, too. For example, if a service is in a stand-by mode. In that
case, the modular service specification would have to be modified accordingly to the
schema presented above. The syntactic output interface would be enlarged by the
action STAND-BY and three high-level states would be introduced. As we can see,
our schema can be adopted for an arbitrary set of executions stati.

90

4. Methodology 4.8. Combination of services on basis of the service relationships

Figure 4.31 summarizes the concepts introduced above: In general, if we want to
combine two services S1 and S2 being related to each other by a horizontal service
relationship (<horRel>), we obtain the model of Figure 4.31. The service <horRel>
which is responsible for taking care of the realization of the horizontal relationship
controls the execution of the services S1 and S1 by sending the basic actions (ENABLE,
DISABLE, INTERRUPT, CONTINUE, and/or RESET). As the relationship <horRel> may
depend on the execution status of S1 and/or S2, the services S1 and S2 send the
actions ACTIVE and INACTIVE to the <horRel> service.

S1 S2
<horRel>

…

<horRel>

S1
(modified) … …

S2
(modified) …

horRel_S2:
<basic actions>

horRel_S1:
<basic actions>

S1_horRel:
<execution status>

S2_horRel:
<execution status>

Figure 4.31.: Interplay of services according to horizontal service relationship (SSD)

In order to keep the model simple, we only modify the modular service specifications
if necessary. If the horizontal relationship <horRel> of Figure 4.31 does not depend
on the execution status of S1 and S2, the channels S1_HORREL and S2_HORREL are
not introduced.

Often, services have to be modified because of service relationships pointing at their
parent (or the parent of the parent, ...). In that case the service specification has to
be modified accordingly later. We will come back to this point with an example in
Section 4.8.4 (Application to the case study).

Horizontal service relationships pointing at super services (status calculating
services and basic handling services) As explained at the beginning of this sec-
tion, our notion of service is scalable. During the combination process we combine
services (based on the service relationships between them) and get more compre-
hensive services. For example the service MANUAL ADJUSTMENT is hierarchically
comprised of its sub services ADJUSTMENT OF BACK, ADJUSTMENT OF DISTANCE,
ADJUSTMENT OF REAR AREA, and ADJUSTMENT OF FRONT AREA. If a horizontal re-
lationships points to a hierarchically decomposed services, e. g. the service FRONT

DOOR OPEN points to MANUAL ADJUSTMENT, the hierarchical service has to be able
to handle the basic actions. What it means if a hierarchical service is affected, enabled
or disabled for example, has to be designed individually. For example, it could mean
that all sub services are disabled or just a dedicated one. The same holds for the exe-

91

4.8. Combination of services on basis of the service relationships 4. Methodology

cution status. A hierarchical service might have the status RUNNING if one of its sub
services is running or if all are running in parallel. In general, the affection and the
execution status of a hierarchical service have to be determined individually based
on its sub services and according to the requirements (See Section 4.8.4, Application to
the case study for examples).

Additional services have to be introduced which calculate the execution status of a
combined service as the execution status of a combined service in general depends
on the execution stati of its sub services. We call these services (which calculate the
execution status of combined services status calculating services. See Section 4.8.4 (Ap-
plication to the case study) for several examples.

Moreover, if a combined service has to handle basic actions (because of horizontal
service relationships pointing at it) it has to be specified how this is realized. In
general, its sub services have to handle these basic actions. We introduce so-called
basic handling services which delegate the handling of basic actions (which a combined
service receives) to the sub services of the combined service. Again see Section 4.8.4
(Application to the case study) for several examples.

By using the schema presented above, the modular service specifications are adopted
(to realize the service relationships) step by step.

Often, a service has more than one service relationship pointing at it. In our running
example for instance, both the services FRONT DOOR OPEN and LOW BATTERY have
an effect (ENABLE and DISABLE relationship) on the service MANUAL ADJUSTMENT.
These effects might be conflicting. For example, the FRONT DOOR OPEN service could
demand the enabling of the MANUAL ADJUSTMENT service while the LOW BATTERY

service might demand the disabling. It has to be decided how to proceed in this case.
The effect on the MANUAL ADJUSTMENT service has to be calculated based on the
effects that the FRONT DOOR OPEN and LOW BATTERY services have on it. Again, see
Section 4.8.4, Application to the case study for examples.

Remarks on the scoping of variables

In Section 4.6 (Identification of service relationships) we assigned persistent data (vari-
ables) that several services make use of to the least common parent in the service
hierarchy. As in our methodology, services are hierarchically combined resulting in
hierarchical SSDs, we get the following consequence: Variables which are assigned
to inner nodes of the service hierarchy (i. e. the least common parent service) are as-
signed to the respective, hierarchically decomposed SSD. In Section 4.6 (Identification
of service relationships) we also said that variables which are assigned to a service are
in the scope of the service itself and all its sub services. This matches to the semantics
of our notational techniques (see Section 3.2.4, Semantics of the combination of STDs
and SSDs).

Conflicts due to services writing on the same output channel

As already depicted in Figure 4.1, the case might occur in which services write differ-
ent values on the same output channel. This might lead to conflicts. Also, one service

92

4. Methodology 4.8. Combination of services on basis of the service relationships

could demand that an action is not written in a specific time interval while another
service wants to send the action.

In order to handle these conflicts, conflict solving services also have to be introduced
if services share output channels.

Conflicts due to services writing the same variable at the same time

As mentioned several times before, services might operate on the same persistent
data. For example the user management (which is not part of our running example)
saves the seat position according to the four dimensions (back, distance, height front,
and height rear). The manual and the automatic adjustment services read this data.
Allowing services to share the same data might lead to conflicts. The cases in which
services only read the same data, or one service writes the data and several other
services read it (like in the just mentioned example), we do not have a conflict. How-
ever, in general the case might occur in which several services write different values
to a variable at the same time.

These conflicts lead to unwanted partiality. Allowing several services to access - to be
more precise: to write - the same data at the same time, we do not have a constructive
semantics anymore. Although the model allows the concurrent writing of the same
variable this can not be implemented in case of conflicts.

In our case, such conflicts lead to contradictory or missing requirements. From a
users’ perspective, it should not be possible to write different values at the same time.
Either the requirements are contradictory or a requirement (e. g. determining a prior-
ity order) is missing. Therefore, we enrich this step of the methodology by explicitly
solving these conflicts: During the combination process, conflicts due to concurrent
writing of shared variables have to be detected. This can be done schematically. Each
time we reach an inner service which has data assigned, we go through all the ser-
vices of its subtree and identify conflicts. This is eased by the data dependency rela-
tionships within the service graph. The conflicts then have to be solved specifically.

Further remarks

Before the combination of the the modular service specifications we had a local view
on the functionalities as we modeled the single services separately. Consequently,
after the combination process, states of different services might have the same name.
Therefore, if unique state names are demanded, states might have to be renamed
during the combination process.

In Section 4.4 (Identification of atomic services) we gave a rule of thumb what atomic
services are. We informally defined them as "smallest" pieces of (partial) black box
functionality which can be accessed/observed/distinguished by a user and which
are likely to be reused. Based on the concepts introduced in this section, we modify
this informal definition. For example, if a service relationship only refers to a part
of the service behavior, it might be appropriate to split the service behavior into sub
services and let the service relationship point to the sub service. Also, if the execution
status of a service is determined due to the execution stati of its sub behaviors, it

93

4.8. Combination of services on basis of the service relationships 4. Methodology

might also be necessary to introduce sub services.

In our methodology we make use of persistent data to allow services to operate on
the same data. If data is assigned to a service, it is in the scope of all of its sub services.
Mapping our logical architecture which abstracts from distribution (see Section 1.2,
Content of this thesis) to a distributed architecture, we have to be aware of the follow-
ing fact: Services which share data and which are mapped to different components
can not communicate via shared variables anymore. Consequently, this dependency
has to be solved by assigning the data to a service and having it requested by others.
Note that this fact might be a criteria for a specific mapping.

4.8.2. Notational technique(s)

As the combination of services results in services again (our notion of service is rel-
ative), we again make use of (hierarchical) SSDs and STDs for the specification of
combined services.

Remark: As mentioned above, we chose automata for the modeling of the service
behavior. Of course, other notational techniques are suitable as well. However, if
other notational techniques are chosen, the introduced concepts have to be defined
on them.

4.8.3. Methodological steps

Figure 4.32 summarizes the combination of the (formal) modular service specifica-
tions graphically:

In the first activity, the services which are to be combined (next) are identified. Note
that as mentioned above, we follow a bottom-up procedure (concerning the service
graph) for the combination process. We start with the combination of the atomic
services and go up until we obtain the functionality which is represented by the root
of our service graph.

The next activity depends on the relationship(s) between the services to be combined:
basic relationship or (complex) horizontal relationship. In case we have a (complex)
horizontal relationship between them (right part of the activity digram of Figure
4.32) we have to perform the following steps: a service realizing the logic behind the
horizontal relationship (e. g. XOR) is introduced. Additionally, the horizontal service
relationship is broken down into basic relationships. Afterward we proceed for each
basic relationship as described in the following paragraph. Furthermore, if need be,
a conflict solving service is introduced.

If we have a basic relationship between the services, we perform the following steps:
First, we introduce a channel between the influencing and the influenced service. The
channel is directed and starts at the influencing service and leads to the influenced
service. Note that the influencing service can be the service which realizes a horizon-
tal relationship or another service which is the result of another service combination.
As naming convention we suggested to name a channel S1_S2 if the channel con-
nects service S1 with service S2. Accordingly to the newly introduced channel, the
syntactic and semantic interfaces of the influencing and the influenced service have

94

4. Methodology 4.8. Combination of services on basis of the service relationships

to be modified, respectively. These activities are refined in Figure 4.33.

As far as the syntactic interface of the influencing service is concerned, output chan-
nels (containing the basic actions sent to the influenced service) are introduced (start-
ing at the influencing service and leading to each influenced service, respectively)
and - if need be - input channels (containing the status actions sent by the influenced
services) are introduced (starting from the influenced services, respectively, and lead-
ing to the influencing service. It has to be determined which basic actions have to be
sent on the output channels in order to influence the behavior of the influenced ser-
vices. This depends on the relationship which is realized. For example if the ENABLE

and DISABLE relationship is realized, the actions ENABLE and DISABLE are sent on it.
Additionally, it has to be determined which basic actions are received by the influ-
enced services.

The semantic interface of the influencing service is modified in the following way:
It has to be specified at what point in the service execution of the influencing service,
the basic actions have to be sent to the influenced services. As mentioned above, this
may depend on the execution status of the influenced services.

The syntactic interface of each influenced services has to be modified complemen-
tarity. An input channel is introduced containing the basic actions sent by the influ-
encing service. Moreover, if need be, an output channel is introduced with the status
actions that the influenced service needs.

Of course, the semantic interface of each influenced services has to be changed ac-
cordingly. The behavior has to be modified (according to the schemes introduced
above) in order to handle the basic actions that can be received on the newly intro-
duced channel. Furthermore, the execution status of the service has to be sent on
the newly introduced output channel. Again this can be realized using the schemes
presented above.

95

4.8. Combination of services on basis of the service relationships 4. Methodology

Combinationof services

Id
en

tif
y

w
hi

ch
 s

er
vi

ce
s

sh
al

l b
e

co
m

bi
ne

d
ne

xt

(b
ot

to
m

-u
p

pr
oc

ed
ur

e)

R
ea

liz
e

ba
si

c
se

rv
ic

e
re

la
tio

ns
hi

ps
R

ea
liz

e
(c

om
pl

ex
)

ho
riz

on
ta

l s
er

vi
ce

 re
la

tio
ns

hi
ps

R
es

ol
ve

 c
on

fli
ct

s
(if

 n
ec

es
sa

ry
)

In
tro

du
ce

 a
 s

er
vi

ce
 S

 re
al

iz
in

g
th

e
se

rv
ic

e
re

la
tio

ns
hi

p

D
ef

in
e

th
e

lo
gi

c
of

 S
 b

y
pu

tti
ng

 it
 d

ow
n

to

th
e

ba
si

c
se

rv
ic

e
re

la
tio

ns
hi

ps

R
ea

liz
e

ba
si

c
se

rv
ic

e
re

la
tio

ns
hi

ps

M
od

ify
 s

yn
ta

ct
ic

 in
te

rfa
ce

 o
f

th
e

in
flu

en
ci

ng
 s

er
vi

ce
M

od
ify

 s
yn

ta
ct

ic
 in

te
rfa

ce
 o

f
th

e
in

flu
en

ce
d

se
rv

ic
e

M
od

ify
 s

em
an

tic
 in

te
rfa

ce
 o

f
th

e
in

flu
en

ci
ng

 s
er

vi
ce

M
od

ify
 s

em
an

tic
 in

te
rfa

ce
 o

f
th

e
in

flu
en

ce
d

se
rv

ic
e

In
tro

du
ce

 c
ha

nn
el

s
be

tw
ee

n
in

flu
en

ci
ng

se

rv
ic

e
an

d
in

flu
en

ce
d

se
rv

ic
es

, r
es

p.

In
tro

du
ce

 lo
gi

cs
 h

an
dl

in
g

ba
si

c
ac

tio
ns

 a
nd

 c
al

cu
la

tin
g

th
e

ex
ec

ut
io

n
st

at
us

 o
f t

he
 c

om
bi

ne
d

se
rv

ic
e

Fi
gu

re
4.

32
.:

C
om

bi
na

ti
on

of
se

rv
ic

es
on

ba
si

s
of

se
rv

ic
e

re
la

ti
on

sh
ip

s
(a

ct
iv

it
y

di
ag

ra
m

)

96

4. Methodology 4.8. Combination of services on basis of the service relationships

Modify syntactic interface of the influencing service

Introduce a logical output channel
containing the basic actions

(enable, disable, interrupt, continue, abort) which
are demanded by the basic relationship

leaving the service

Modify semantic interface of the influencing service

Modify behavior to send
basic actions to influenced service(s)

based on its (their) execution stauts (if need be)

Modify syntactic interface of the influenced service

Introduce a logical input channel
containing the basic actions

(enable, disable, interrupt, continue, abort) which
are demanded by the basic relationship

pointing at the service

Introduce a logical output channel
containing the service execution actions

(active, inactive)

Modify semantic interface of the influenced service

Modifiy behavior (according to the schemes
presented) in order to be able to

handle basic actions

Modify behavior (according to the schema
presented above) in order to send

the execution status

Figure 4.33.: Combination of services on basis of service relationships - Refined view (activ-
ity diagram)

After these activities, conflicts might be resolved. As described in Section 4.8.1 (Con-
cepts) conflicts for example might be the result of services writing the same data at
the same time. These conflicts can be identified with help of the data dependency
relationship. Conflicts might also occur if different service write on the same output
channels. Conflicts in general can not be solved according to a schema as they differ
from case to case.

Services which are the combination of sub services may be affected by basic ac-
tions (e. g. the MANUAL ADJUSTMENT service is affected by the service FRONT DOOR

OPEN), too. Therefore it has to be modeled what sub services (all or a subset) shall
be affected in case a basic action occurs. The same holds for the execution status of a
service which is combined of sub services. The execution status of the service combi-
nation has to be calculated on basis of the execution stati of its sub services. To that
end, we introduce two more services: a basic action logic and a status action logic. (See
proceeding paragraph for an example.)

4.8.4. Application to the case study

In this subsection we combine the services of the running example step by step (in a
bottom-up manner, see Figure 4.13) until the overall system functionality is obtained.

Combination of the atomic manual adjustment services

First, the atomic services which are needed for the manual adjustment of the seat
are combined. The formal specification of these services was already done in Section
4.7.4 (Application to the case study).

97

4.8. Combination of services on basis of the service relationships 4. Methodology

The combination of the ADJUSTMENT OF THE BACK BACKWARDS (ADJBACKBACKW)
and the ADJUSTMENT OF THE BACK FORWARDS (ADJBACKFORW) services yields in
the service ADJUSTMENT OF BACK. For the combination, the complex horizontal ser-
vice relationship XOR has to be realized.

Figure 4.34 shows the result. The relationship service XOR is introduced which
is responsible for realizing the service relationship. In case the ADJBACKFORW

(ADJBACK´BACKW) service is active, it sends the action ACTIVE to the XOR service.
On receiving this action, the XOR relationship disables the other service. As soon as
the service execution is over, the ADJBACKFORW (ADJBACKBACKW) service sends
the action INACTIVE to the XOR service which enables the other service again. In case
both services are called at the same time, the XOR service disables the ADJBACKFORW

service.22

22Note that this case is not covered by the requirements. We just chose one possibility.

98

4. Methodology 4.8. Combination of services on basis of the service relationships

Ad
jB

ac
kF

or
w

 (m
od

ifi
ed

)
Ad

ju
st

m
en

t
of

 b
ac

k

Ad
jB

ac
kF

or
w

Ad
jB

ac
kB

ac
kw

XO
R

X
O

R

…
…

Ad
jB

ac
kB

ac
kw

(m

od
ifi

ed
)

…

XO
R

_A
dj

B
ac

kB
ac

kw
:

en
ab

le
, d

is
ab

le

XO
R

_A
dj

B
ac

kF
or

w
:

en
ab

le
, d

is
ab

le
A

dj
B

ac
kF

or
w

_X
O

R
:

ac
tiv

e,
 in

ac
tiv

e

A
dj

B
ac

kB
ac

kw
_X

O
R

:
ac

tiv
e,

 in
ac

tiv
e

in
ac

tiv
e

in
it

di
sa

bl
ed

en
ab

le
d

ac
tiv

e

XO
R

_A
dj

Ba
ck

Fo
rw

?e
na

bl
e

/ -
 (P

rio
=5

)

X
O

R
_A

dj
Ba

ck
Fo

rw
?d

is
ab

le
 /

- (
P

rio
=5

)

?b
ac

k_
ba

ck
w

 /
Ad

jB
ac

kF
or

w
_X

O
R

!a
ct

iv
e

- /
 m

ot
!m

_b
ac

k_
ba

ck
w

,
Ad

jB
ac

kF
or

w
_X

O
R

!in
ac

tiv
e

ba
ck

_f
or

w
m

_b
ac

k_
fo

rw

ba
ck

_b
ac

kw
m

_b
ac

k_
ba

ck
w

no
ne

ac

tiv
e

ba
ck

w

ac
tiv

e

fo
rw

ac

tiv
e

Ad
jB

ac
kF

or
w

_X
O

R
?a

ct
iv

e
/

XO
R

_A
dj

Ba
ck

Ba
ck

w
!d

is
ab

le

Ad
jB

ac
kB

ac
kw

_X
O

R
?a

ct
iv

e
/

XO
R

_A
dj

Ba
ck

Fo
rw

!d
is

ab
le

Ad
jB

ac
kB

ac
kw

_X
O

R
?i

na
ct

iv
e

/ X
O

R
_A

dj
Ba

ck
Fo

rw
!e

na
bl

e

Ad
jB

ac
kF

or
w

_X
O

R
?i

na
ct

iv
e

/
XO

R
_A

dj
Ba

ck
Ba

ck
w

!e
na

bl
e

Ad
jB

ac
kB

ac
kw

_X
O

R
?a

ct
iv

e
&&

Ad

jB
ac

kF
or

w
_X

O
R

?a
ct

iv
e

/
XO

R
_A

dj
Ba

ck
Fo

rw
!d

is
ab

le

?x
 /

!n
il

?b
ac

k_
fo

rw
 /

!m
_b

ac
k_

fo
rw

Fi
gu

re
4.

34
.:

C
om

bi
na

ti
on

of
th

e
se

rv
ic

es
A

D
JU

ST
M

E
N

T
O

F
T

H
E

B
A

C
K

B
A

C
K

W
A

R
D

S
an

d
A

D
JU

ST
M

E
N

T
O

F
T

H
E

B
A

C
K

F
O

R
W

A
R

D
S

(S
SD

+
ex

tr
ac

t
of

se
rv

ic
e

gr
ap

h)

99

4.8. Combination of services on basis of the service relationships 4. Methodology

The core behavior of each atomic service is modified: The syntactic interface is en-
larged by channels receiving and sending the basic actions and actions about the
execution service, respectively. The behavior (semantic interface) is modified accord-
ingly (omitted for the service ADJBACKBACKW in the graphic). We hereby make use
of the schemes presented above.

Figure 4.34 shows two problems of our methodology on which we will come back
again in Section 7.2 (Evaluation): The services ADJUSTMENT OF THE BACK BACK-
WARDS and ADJUSTMENT OF THE BACK FORWARDS are specified independently of
the fact how long the actual changing of the seat position (by the respective motor)
takes place. The services send the status action INACTIVE in the next time tick after
sending the output action. Either we have to assume that the changing of the seat
position takes one time tick or we have to alter the model accordingly by taking into
account the actual amount of ticks it takes to change the position. In the first case,
the composition of the services leads to additional restrictions. In the second case we
take into account restrictions given by the environment. Assuming the the chang-
ing of the seat position takes one time tick, the model of Figure 4.34 could be much
simplified. For the combined service (ADJUSTMENT OF THE BACK) one SSD could
be introduced. The corresponding STD would contain only one state with two tran-
sitions: ?BACK_BACKW / !M_BACK_BACKW and ?BACK_FORW / !M_BACK_FORW.
Additionally, a priority ordering should be specified (PRIO=1) for the case in which
both inputs are received at the same time. These two transitions exclude each other
per definition. For this combination of two simple services, the composed model of
our approach seems to be an overkill. In order to combine two more elaborate func-
tionalities (which can not be represented by a single transition) by means of an XOR

relationship, three states could be introduced: two (hierarchical) states realizing the
behavior of the sub services, respectively, and one state in which both services are
not active. Our methodology provides a systematic and schematic procedure how
to combine services on basis of service relationships. However, for special cases like
the XOR relationship, although our schema does result in a correct model, the model
might be too complex. In this case one can restrain from the schema and make use of
a simpler model. We will come back on this in Section 7.2 (Evaluation).

The combination of the other manual adjustment services is done analogously to the
ADJUSTMENT OF BACK service and omitted here.

Combination of the adjustment services

Figure 4.35 depicts (a simplified model of) the MANUAL ADJUSTMENT service be-
ing the combination of its four sub services. The horizontal service relationship
MAX2PAR controls the status of the four sub services ADJUSTMENT OF THE BACK, AD-
JUSTMENT OF THE DISTANCE, ADJUSTMENT OF THE REAR AREA, and ADJUSTMENT

OF THE FRONT AREA. As soon as two services are active, the other two services are
disabled. In case less than two services are currently active, the other services are
enabled again.

Note, the MAX2PAR service needs the execution status of the services ADJUSTMENT

100

4. Methodology 4.8. Combination of services on basis of the service relationships

Adjustment of back
(modified)

max2Par

Adjustment of distance
(modified)

Adjustment of rear area
(modified)

Adjustment of front area
(modified)

Manual
adjustment

Adjustment
of back

Adjustment
of distance

Adjustment
of rear area

Adjustment
of front area

max2Par

<enable, disable>

<active, inactive>

Figure 4.35.: Combination of the services ADJUSTMENT OF THE BACK, ADJUSTMENT OF THE
DISTANCE, ADJUSTMENT OF THE REAR AREA, and ADJUSTMENT OF THE FRONT
AREA (SSD + extract of service graph)

Adjustment of back

AdjBackForw (modified)

XOR

AdjBackBackw
(modified)

enable, disable

active, inactive
Basic
actions
logic

Status
logic

Figure 4.36.: Combination of the adjustment services - belated modification (SSD)

OF THE BACK, ADJUSTMENT OF THE DISTANCE, ADJUSTMENT OF THE REAR AREA,
and ADJUSTMENT OF THE FRONT AREA. Also, it enables or disables these services.
In the current version of the service specifications (as obtained in the previous para-
graph), this information is not contained. Only their sub services (e. g. ADJBACK-
BACKW and ADJBACKFORW) can be enabled or disabled and provide their execu-
tion status. Therefore, the specifications of the four adjustment services have to be
modified later. Figure 4.36 depicts the modified specification. Two more services are
introduced. The BASIC ACTIONS LOGIC determines which sub services have to be
enabled (disabled) if the combined service (ADJUSTMENT OF BACK) shall be enabled
(disabled). We call this service a basic handling service. For example it would make
sense to enable both sub services if the super-service has to be enabled. However, this
depends on the context. Analogously, the service STATUS LOGIC calculates the execu-
tion of the combined service depending on the execution stati of its sub services. This
also depends on the context. The service STATUS LOGIC is a status calculating service.

101

4.8. Combination of services on basis of the service relationships 4. Methodology

Manual adjustment

Manual
adjustment

Front
door
open

enable/disable

Front door open

<enable, disable>

Figure 4.37.: Combination of the services FRONT DOOR OPEN and MANUAL ADJUSTMENT
(SSD + extract of service graph)

Combination of the services FRONT DOOR OPEN and MANUAL ADJUSTMENT

Figure 4.37 contains the combination of the services FRONT DOOR OPEN and MAN-
UAL ADJUSTMENT. In Section 4.7.4 (Application to the case study) we mentioned, that
the FRONT DOOR OPEN service is trivial and the formal specification of its semantic
interface might not make sense. However, now we see, that specifying this func-
tionality as a separate behavior indeed makes sense. Its behavior is mainly given by
the influence the FRONT DOOR OPEN service has on the MANUAL ADJUSTMENT ser-
vice. Imagine the situation that the FRONT DOOR OPEN service might influence other
services, too or could be in turn influenced by other services. Its behavior would
become even more comprehensive in that case. Therefore, it makes sense to specify
it modularly.

Note that the FRONT DOOR OPEN service does not depend on the execution status of
the MANUAL ADJUSTMENT service. Therefore, the syntactic and semantic interface
does not have to be enlarged in this regard.

Combination of the services FRONT DOOR OPEN, MANUAL ADJUSTMENT and ERR
LOW BATTERY MANUAL

Next, we combine the services FRONT DOOR OPEN and MANUAL ADJUSTMENT

(which we already combined in the previous paragraph) with the service ERRLOW-
BATMAN (see Figure 4.38). On closer examination we realize a problem: The situa-
tion could occur in which the MANUAL ADJUSTMENT service is enabled by the FRONT

DOOR OPEN service (because the front door is opened), but disabled by the ER-
RLOWBATMAN service (because the battery is too low). The enabling by the FRONT

DOOR OPEN service could "override" the disabling by the ERRLOWBATMAN service.
This sort of problem is referred to in literature under the term feature interaction (see
[Zave, 2001] for instance).

In order to handle this problem, we modify our model as shown in Figure 4.39. We
introduce a special service called CONFLICT SOLVER which handles the basic actions

102

4. Methodology 4.8. Combination of services on basis of the service relationships

Manual adjustment

Manual
adjustment

<enable, disable>

Front
door
open

enable/disable ErrLow
BatMan

enable/disable

Front door open ErrLowBatMan

<enable, disable>

Figure 4.38.: Combination of the services FRONT DOOR OPEN, MANUAL ADJUSTMENT, and
ERR LOW BATTERY MANUAL without conflict solving (SSD + extract of service
graph)

sent by the services FRONT DOOR OPEN and ERRLOWBATMAN. Only if both services
(FRONT DOOR OPEN and ERRLOWBATMAN) enable the service MANUAL ADJUST-
MENT, it is really enabled. Due to reasons of clarity, we named the channels a,b, and
c instead of using the (longer) name of the channels. Furthermore, some of the transi-
tion labels are committed. They can be obtained analogously to the labels displayed.

The conflict solving service has four control states. In state BOTH ENABLING both
services (FRONT DOOR OPEN and ERRLOWBATMAN) want to enable the MANUAL

ADJUSTMENT services. In the state BOTH DISABLING both services want to disable
them. In the other states, exactly one of the services wants to enable the MANUAL

ADJUSTMENT.

Combination of the services FRONT DOOR OPEN, MANUAL ADJUSTMENT, ERR
LOW BATTERY MANUAL, ADJUSTMENT BY MEMORY and ERR HIGH VELOCITY

Next, we want to combine the services FRONT DOOR OPEN, MANUAL ADJUSTMENT,
ERR LOW BATTERY MANUAL, and ADJUSTMENT BY MEMORY. Figure 4.40 shows the
result. Basically, the XOR relationship between the service MANUAL ADJUSTMENT

and the service ADJUSTMENT BY MEMORY has to be realized. As this relationship
depends on the execution status of both services, MANUAL ADJUSTMENT and AD-
JUSTMENT BY MEMORY send this information to the relationship service XOR which
is responsible for realizing the relationship. According to this status information, the
XOR service enables or disables the services. Note that as the service ADJUSTMENT

BY MEMORY can also be enabled or disabled by the service ERR HIGH VELOCITY, we
again introduce a conflict solving service (CONFLICT SOLVER2). The conflict solver of
Figure 4.39 was modified to also handle the enable or disable actions of the service
XOR.

Taking a closer look at this example, we see the main advantage of our approach. We
do not have to know the white box specification (STD) of the service ADJUSTMENT

BY MEMORY. This functionality can be developed in isolation. We just demand the

103

4.8. Combination of services on basis of the service relationships 4. Methodology

Manual adjustment

<enable, disable>

Front door open ErrLowBatMan

<enable, disable>

Conflict solver

Both
enabling Both

disabling

a

b c

Only front door
enabling

Only battery
enabling

b?disable;
c?disable /
a!disable

b?enable;
c?enable /
a!enable

b?disable;
c?enable /
a!disable

b?enable;
c?disable /
a!disable

b?enable;
c?enable/
a!enable

b?nil;
c?disable/
a!disable

b?enable;
c?disable/
a!disable

b?nil;
c?enable/
a!enable

Figure 4.39.: Combination of the services FRONT DOOR OPEN, MANUAL ADJUSTMENT, and
ERR LOW BATTERY MANUAL with conflict solving (SSD)

requirement that ADJUSTMENT BY MEMORY has to send the status actions ACTIVE and
INACTIVE in order to submit its execution status to the service XOR. Additionally, we
demand the requirement that ADJUSTMENT BY MEMORY must be able to handle the
basic actions ENABLE and DISABLE which are sent by the XOR service. The realization
of these requirements again can be achieved by implementing the standard control
interfaces.

104

4. Methodology 4.8. Combination of services on basis of the service relationships

M
an

ua
l a

dj
us

tm
en

t

Fr
on

t d
oo

r o
pe

n

Er
rL

ow
Ba

tM
an

<e
na

bl
e,

 d
is

ab
le

>

C
on

fli
ct

 s
ol

ve
r (

m
od

)

Ad
ju

st
m

en
t b

y
m

em
or

y

XO
R

<a
ct

iv
e,

 in
ac

tiv
e>

C
on

fli
ct

 s
ol

ve
r 2

E
rr

H
ig

hV
el

o

Fi
gu

re
4.

40
.:

C
om

bi
na

ti
on

of
th

e
se

rv
ic

es
F

R
O

N
T

D
O

O
R

O
P

E
N

,
M

A
N

U
A

L
A

D
JU

ST
M

E
N

T,
E

R
R

L
O

W
B

A
T

T
E

R
Y

M
A

N
U

A
L

,a
nd

A
D

JU
ST

M
E

N
T

B
Y

M
E

M
O

R
Y

(S
SD

)

105

4.9. Result 4. Methodology

The memory services make use of commonly shared persistent data. In this case we
have to investigate if conflicts might occur. This would be the case if a service would
write the same variable at the same time. However in our example, the services only
read the same data. Thus no conflicts can occur.

Combination of all subservices

The last step is to combine all services in order to obtain the overall system function-
ality. At the end of this step we get the result of our methodology. In the proceeding
section, the overall model is shown.

4.9. Result

Figure 4.41 contains a simplified model of the overall system functionality. At the
end of the requirements engineering phase it is important that the functional require-
ments are captured completely and consistently and that they are described precisely.
The precise meaning of the functionality is given by the formal foundation of our
notational techniques. We showed how our model-based requirements engineering
approach helps at identifying missing requirements. To validate the requirements,
the model can be simulated. However, according to the semantics of underspecified
transitions (as defined in Section 3.2.3, Transitions), our notational techniques do not
have a constructive semantics. In order to simulate the model, a tool could choose
one of the possible outputs nondeterministically for each channel to deal with this
situation.

To finally make the model total, each automaton now has to be made total (if not
already been done) to specify the usage behavior completely. Basically, we face three
different forms of canonical completions to extend a partial service specification to a
total service specification [Schätz and Salzmann, 2003]:

• Chaotic completion: In this case arbitrary behavior is possible on receiv-
ing underspecified input. (The behavior can not be distinguished from non-
deterministic behavior if underspecified input is received.)

• Operational completion: Empty output is produced in case the service exhibits
undefined behavior at some point of time.

• Error completions: The service produces an error message if it exhibits unde-
fined behavior.

From a requirements engineering point of view, a canonical completion does not
make sense. If there exist situations in which it is not clear what a service (or the com-
bination of services) has to do, missing requirements are the reason. Consequently,
further functional requirements have to be elicited.

As far as our running example is concerned, we omit the step of making the specifi-
cation total.

106

4. Methodology 4.9. Result

M
an

ua
l a

dj
us

tm
en

t

Fr
on

t d
oo

r o
pe

n

Lo
w

 b
at

te
ry

C
on

fli
ct

 s
ol

ve
r 1

Ad
ju

st
m

en
t b

y
m

em
or

y XO
R

5

C
on

fli
ct

 s
ol

ve
r 2

E
rr

or
 h

ig
h

ve
lo

ci
ty

Ad
jB

ac
kB

ac
kw

Ad
jB

ac
kF

or
w

XO
R

1

BA
L1

ES
L1

m
ax

2P
ar

Ad
jD

is
tIn

cr

Ad
jD

is
tD

ec
r

XO
R

2

BA
L2

ES
L2

Ad
jR

ea
rU

p

Ad
jR

ea
rD

ow
n

XO
R

3

BA
L3

ES
L3

Ad
jF

ro
nt

U
p

Ad
jF

ro
nt

D
ow

n
XO

R
4

BA
L4

ES
L4

BA
L5

ES
L5

A
dj

us
tm

en
t b

y
m

em
or

y

Fi
gu

re
4.

41
.:

C
om

bi
na

ti
on

of
al

ls
er

vi
ce

s
(S

SD
)

107

4.10. Further considerations 4. Methodology

The formal model of the overall system functionality is not the only result of our
methodology. We also obtain the various artifacts that we produced during the pro-
cess and which can be reused for the specification of future systems:

• Informal (textual) service specifications of

– atomic services

– combined services

• Specification of logical input and output actions

• Specification of logical input and output channels

• (Informal and formal) Specification of complex horizontal service relationships

• Formal service specifications of

– atomic services

– combined services

4.10. Further considerations

In this section we make some considerations about our approach which can not be
allocated to one of the previous sections.

4.10.1. Views onto the service graph

When specifying the functionality of medium to large scale systems, hundreds of
(atomic and combined) services can be identified. Consequently, the service graph
can be quite big and thus difficult to overview. In order to solve this problem, it is
usually very helpful to reason about different aspects in isolation. Different views
onto the system provide an extract of the service graph. They display one aspect at
a time. In the following we give ideas what kind of views onto the service graph of
our methodology could be useful to maintain an overview.

One possibility is to only look at sub graphs of the service graph. These sub graphs
could be called logical (functional) sub systems. For example, the services of the
power seat control system are a sub system of a bigger system. Due to the modular
character of our approach, logical sub systems can be reasoned about in isolation and
combined later.

Another possibility to introduce views onto the service graph is to only look at a
subset of the services according to service types. For example, only the conflict ser-
vices could be looked at to get an understanding about possible conflict situations. If
we go one step further, additional service types could be introduced, e. g. error ser-
vices, initialization services, configuration services. Services could be also classified
according to different behavioral patterns ("enabler"). Views could then be created
containing just the services of one of these special service types.

We could also filter the information of the service graph according to the service
relationships. For example, we could only display the services being connected by

108

4. Methodology 4.10. Further considerations

the ENABLE and DISABLE relationship. This might be helpful during design in order
to identify the state space of the system.

If the overall development process provides a tracing model, we also have other crite-
ria according to which views can be created. Concerning tracing we can distinguish
between so-called horizontal and vertical tracing. Horizontal tracing relates artifacts
within the same development phase whereas vertical tracing relates artifacts along
the development process. The service relationships can be considered as horizontal
tracing links for example. Vertical tracing links, e. g. between use cases and services
or between services and functions (building blocks of the white box functionality of
a system) could provide a basis for views as well.

4.10.2. Dependency analyses

The aim of our approach is the formalization of the functional requirements. As
already mentioned several times, for multi-functional systems it is very important
to make the various dependencies that exist between system functionalities explicit.
The service graph is the first step toward this need as it visualizes the dependencies
which are visible at the system boundaries.

However, the dependencies between the services can be investigated in more detail.
To that end, we need a calculus on service relationships.23 By means of such a calcu-
lus further service relationships could be calculated on basis of the already identi-
fied service relationships. Above others, inheritance relationships could be detected.
For example the service ERRLOWBATMAN enables (disables) the service MANUAL

ADJUSTMENT. This enabling (disabling) is realized by the enabling (disabling) of
the sub services ADJUSTMENT OF BACK, ADJUSTMENT OF DISTANCE, ADJUSTMENT

OF REAR AREA, and ADJUSTMENT OF FRONT AREA. In turn, these services realize
the enabling (disabling) by forwarding the respective actions to their sub services.
The ENABLE/DISABLE relationship thus is inherited to the sub services of the service
MANUAL ADJUSTMENT.

However, this is only true as the basic handling services BAL1, BAL2, BAL3, BAL4,
and BAL5 (see Figure 4.41) realize the enabling (disabling) of the manual adjustment
service by enabling (disabling) the sub services, respectively. Therefore, the logic
behind the basic handling services has to be taken into account when calculating the
effects of the ENABLE/DISABLE relationship.

In order to calculate the effects of the MAX2PAR relationship, the logic behind the
relationship service MAX2PAR (which realizes this relationship) has to be known, too.

Based on such a calculus, dependency tables could be introduced visualizing the de-
pendencies between the services of a system. For example, it could be visualized
which service is (indirectly) enabled by which other service or which service (indi-
rectly) enables which other service.

23Currently such a calculus on service relationships is investigated in the PhD thesis of Johannes Grün-
bauer. It might also be appropriate for our service relationships.

109

4.10. Further considerations 4. Methodology

4.10.3. Guidelines for the informal specification of functional
requirements

In the methodology presented in this thesis, textually given functional requirements
are turned into formal models step by step. Thus, the functional requirements which
are given in prose, are the starting point of our methodology (see Section 4.3, Starting
point).

Now that we have presented our methodology the question arises whether we can
give some advice on how to better document the functional requirements. The better
the functional requirements are given, the easier our methodology can be applied.
The intention is to give guidelines for the informal description of the functional re-
quirements so that they serve as a better starting point for our approach.

We suggest the following guidelines: The system boundaries have to be specified
explicitly by listing all inputs and outputs.24 Another guideline is that for each
technical signal which is referred to in the requirements (e. g. the error message
ERR_BAT_LOW_MAN) an explanation has to be given.25 This helps in defining the
logical input and output actions of our approach which abstract from the technical
realization (concrete technical signals or messages). Furthermore, sub functionalities
have to be given names. This simplifies the identification of services.

The functional requirements of our running example are already structured. For ex-
ample Section 2.2 (Requirements for the manual adjustment) contains the requirements
for the manual adjustment and Section 2.3 (Requirements for the adjustment by mem-
ory) contains the requirements for the adjustment by the memory functionality. This
structuring can serve as a first clue for the structure of the service graph. Another
way of preparing the functional requirements is to make use of the names of (both
the basic and complex) horizontal service relationships. Due to the schemes for the
realization of each basic service relationship, they are given a precise semantics. This
is important as it is often unclear what the exact relationship between functionalities
is.

Furthermore, when making use of the horizontal service relationships already dur-
ing the informal specification of the functional requirements, the values of the respec-
tive parameters have to be given, too. This helps in detecting necessary information
which otherwise would have to be elicited later. As the semantics of the horizontal
service relationships are given (by the schemes for the standard control interfaces)
the habitual language use in informally specified requirements is stricter. For ex-
ample, the requirements engineer has to think more carefully about using the term
"reset" or "disable".

If we carry these ideas to the extreme the following bold assumption arises: Do I need
the plain text description of functional requirements at all? Or is it possible to specify
the service graph (with the textual description of the atomic and combined services
"attached" to the nodes) at once? If this is really possible should be investigated (see
Section 7.3, Outlook). Although this seems to be a tempting idea, the main point

24This is already done in [Houdek and Paech, 2002] from which we adopted the functional require-
ments of our running example.

25Usually, in requirement specification way more technical signal names are used to describe the
wanted system functionality.

110

4. Methodology 4.10. Further considerations

of criticism lies in the fact that there is no 1:1 mapping between requirements and
services. It demands real genuine work to identify the services. For our running
example the mapping between functional requirements and services was quite easy.
However for other systems this might be difficult. This definitely also depends on
the system type of the system under specification. For business information systems
(BIS) the functionality of which is characterized by larger sequences of interactions it
might be error prone. Here, an overlapping of different use cases (making use of the
same sub functionalities) should probably be done first to identify the services.

In this chapter, we introduced a methodology for modeling usage behavior of multi-
functional systems. The basic idea of the approach is to combine modular service
specifications on basis of their dependencies. To that end, we introduced a set of basic
service relationships. For each basic service relationship we gave a standard control
interface. By implementing these standard control interfaces, the modular service
specifications (core behavior) can handle the service influences (service/feature in-
teraction). In the following chapter (Chapter 5, Extension of basic service relationships),
we take a closer look onto these basic service relationships, discuss, and extend them.

111

4.10. Further considerations 4. Methodology

112

Chapter 5
Extension of basic service
relationships

The main idea behind our approach is to combine modular service specifications
on basis of their dependencies (service relationships). Hereby, the vertical service
relationships determine the order in which the combination is done. The horizontal
service relationships (both the complex and the basic ones) capture information about
feature interaction (or "service interaction" in our terminology). Complex horizontal
service relationships are broken down to basic service relationships (RESET, ENABLE,
DISABLE, INTERRUPT, and CONTINUE). For each basic service relationship a standard
control interface is given. Services which implement this standard control interface can
handle the effects of the respective basic service relationship. The modular service
specification thus is modified according to the standard control interfaces (see Section
4.8, Combination of services on basis of the service relationships).

In Section 4.6 (Identification of service relationships) we introduced a set of basic service
relationships. This set of basic service relationships is sufficient to model our running
example. However, for other systems these basic service relationships might not be
powerful enough to express each possible service relationship.

For example, the introduced basic service relationships do not contain any informa-
tion what has to be done with the service call in case a service call is made while
the service is currently being disabled (or interrupted). Should the call be buffered
and issued as soon as possible as the service is enabled again or should the call be
ignored? Another functional requirement that can not be expressed by our basic ser-
vice relationships is one demanding that an error message has to be issued in case a
service call is made while a service is currently disabled (or interrupted).

In this chapter we extend the set of basic service relationships of Section 4.6 (Identifi-
cation of service relationships). Due to this extension, our methodology becomes more
powerful; however it also becomes more complicated.

In order to introduce the more powerful extended set of basic service relationships,
another quite small case study is given (a memory cell). In Section 5.1 (Requirements of
another case study (memory cell)) we give the informal (textual) functional requirements
for this case study. In Section 5.2 (Informal introduction) we present the extended set

113

5.1. Requirements of another case study (memory cell) 5. Extension of basic service relationships

of basic service relationships. The end of this chapter is given by a discussion on the
extension of the set of basic service relationships (see Section 5.5, Discussion).

Contents
5.1. Requirements of another case study (memory cell) 114

5.2. Informal introduction . 115

5.3. Standard control interfaces . 117

5.4. Application to the memory cell case study 123

5.5. Discussion . 126

5.1. Requirements of another case study (memory cell)

In order to introduce the extended set of basic service relationships, we make use
of another case study: a very simple version of an integer memory (i.e. a memory
that stores integer values). In this section, we give the informal (textual), functional
requirements for this case study.

For reasons of simplicity, we assume that the memory cells are given initial values
(for example "0") and that the storage is limited to 20 values.1

1. It must be possible to turn the system on and off.

2. It must be possible to turn the system into a standby mode and a normal mode.

3. The system can only be turned into the standby mode, if the system is on (and
not off).

4. If the system is turned on, it must turn to the normal (standby) mode if it was
in the normal (standby) mode when it was turned off.

5. If the system is on, it is possible to write an integer value to a specified cell.
(There are 20 cells altogether. Both the integer value to be stored and the ID
of the cell have to be specified when a value shall be written to the memory.)
After the successful writing of the value, an acknowledgment action should be
issued ("writeOk").

6. If the system is on, it is possible to read an integer value of a specified cell.

7. If the system is off, no other functionalities except the turning on of the system
can be called. This includes the switching to the normal (standby) mode and
the read and write requests.

8. If the system is on, all other functionalities can be called.

9. If the system is turned off, currently served requests are aborted immediately.

10. If the system is turned on, the system enters the initial state.

11. If the system is off, no read or write requests are performed. If a read or write
request occurs while the system is off, the request is ignored.

1The latter requirement is a system requirement and not a functional requirement. However, this
restriction has effects on the functionality, namely that only 20 values can be stored.

114

5. Extension of basic service relationships 5.2. Informal introduction

12. If the system is switched to the standby mode, currently served requests are
interrupted and continued when the system is turned back to the normal mode.

13. If the system is in the standby mode and a request occurs, the request is
buffered and handled when the system is turned back to the normal mode.
Additionally, an error message ("System standby mode. Request buffered.") is
issued.

5.2. Informal introduction of the extended set of basic
service relationships

In this section we will introduce the extended set of basic service relationships. First,
basic considerations are made on how to systematically determine the set of basic
service relationships (see Section 5.2.1, Basic considerations). Then, the actual service
relationships are listed. Additionally, each service relationship is named (see Section
5.2.2, Extension of the basic service relationships).

5.2.1. Basic considerations

In our approach, we first specify the atomic services modularly, i.e. as if they were
not influenced by other systems. Then, the modular service specifications are com-
bined. During the combination process, service interaction has to be resolved. This
is done by adapting the modular service specifications according to standard control
interfaces.

In order to analyze the basic service relationships systematically, i.e. to analyze which
basic effects a service relationship can have on a modular service specification, we
look at the following questions:

1. How is the modular service specification left?

2. What is done while the modular service specification is left (i.e. disabled or
interrupted)?

3. How is the modular service specification resumed again?

When a service forces the ending (interruption) of another service execution we face
two possibilities: Either the service is aborted (interrupted) immediately, i.e. as soon as
the action which forces the ending (interruption) arrives, or the services "is allowed"
to proceed until a secure point is reached before it is (finally) aborted (interrupted).
It may be questioned, if it is worth to distinguish between these two cases. It would
also be possible to leave it to the service whether its execution should be stopped
immediately or not. However, the distinction does make sense. For example, in some
situations, a "secure stop" might be wanted (i.e. to save data first). In other situations,
it might be inevitable to stop the service immediately, for example, when the airbag
of a car is about to be fired and other services are stopped immediately to have more
battery power. Therefore, we distinguish between the immediate stopping and the
secure stopping of a service execution.

The next question is what shall be done if a service call is issued while the service is

115

5.2. Informal introduction 5. Extension of basic service relationships

stopped (disabled or interrupted). Here, we again have two possibilities: The simple
possibility is that service calls (or other data which are necessary for the service exe-
cution) are ignored. The more elaborate possibility is that service calls (or other data)
are buffered. As soon as the service is enabled or continued again, the service can
process the buffered service calls (data). Additionally, it can be specified whether or
not an error message (error msg) shall be issued in case a service call is issued while
the service is stopped.

Last, it has to be specified by the basic service relationship, how the modular service
specification is resumed after it was left. The service execution could start at the init
state again (i.e. it is enabled) or continue from the state the service was in when it
was stopped (i.e. continued).

5.2.2. Extension of the basic service relationships

In the previous subsection, we identified alternatives how a service execution can be
influenced. We investigated how a modular service specification can be left, what is
done while the specification is left, and how the service specification can be resumed.
All the possible and sensible combinations of these parts are listed in Table 5.1.

Table 5.1.: Extended set of basic service relationships

leave
reset immediate
reset secure

while

disable/interrupt immediate buffering error msg
disable/interrupt immediate buffering no error msg
disable/interrupt immediate ignoring error msg
disable/interrupt immediate ignoring no error msg
disable/interrupt secure buffering error msg
disable/interrupt secure buffering no error msg
disable/interrupt secure ignoring error msg
disable/interrupt secure ignoring no error msg

resume
enable
continue

The combinations shown in Table 5.1 make up the extended set of basic service re-
lationships which is a refinement of the set of basic service relationships which was
already introduced in the previous chapter.

The first service relationship of the extended set of relationships is called reset. It is
equivalent with disabling and immediately enabling a service. This case is addressed
specifically, as it is not necessary to specify what the service has to do while it is
being disabled. For example, as the service is enabled immediately after it has been
disabled, no error message can be issued in case a service call occurs.

We can distinguish between the service relationships IMMEDIATE RESET and SECURE

RESET. An IMMEDIATE RESET forces the service to immediately abort the service exe-
cution (and return in the initial state) whereas the SECURE RESET relationship allows
the service to first proceed until a secure point is reached.

116

5. Extension of basic service relationships 5.3. Standard control interfaces

The other basic service relationships are self explaining. Each of these extended basic
service relationships is realized by sending and receiving (handling) a logical action
with the same name.

5.3. Standard control interfaces of the extended basic
service relationships

During the combination phase of our methodology (see Section 4.8, Combination of
services on basis of the service relationships), the formal modular service specifications
are adapted to handle the effects of other services (which are captured by the hor-
izontal service relationships). We introduced standard control interfaces describing
how a formal modular service specification has to be adapted in order to handle these
influences. In this subsection we give the standard control interfaces of the extended
set of basic service relationships.

For each basic service relationship (of the extended set of basic service relationships)
a standard control interface for its realization is given (see Sections 5.3.1, Sub relation-
ships of RESET to 5.3.4, Relationship CONTINUE).

5.3.1. Sub relationships of RESET

S1 S2
Immediate_reset

S2‘i1: …

S1_S2:
immediate_reset

…

S2 modular
specification

?immediate_reset
(Prio=5)

S1‘

iN: …

o1: …
…

oM: …

Figure 5.1.: Standard control interface of the basic service relationship IMMEDIATE RESET
(SSD + STD)

Figure 5.1 contains the standard control interface of the basic service relationship
IMMEDIATE RESET. In case an IMMEDIATE RESET command is received, the service
S2 performs the higher level transition, i.e. the actual service execution is stopped
and the initial state is entered.

The realization of the basic service relationship SECURE RESET is shown in Figure 5.2.
A local variable (SEC) is introduced. On receiving the local action SECURE_RESET, the
variable SEC is set to TRUE. The service specification is executed further until a secure
point is reached. In the example shown in Figure 5.2, STATEN and STATEM are such
(arbitrarily chosen) secure points. At such secure points, the transition {SEC==TRUE}
- / - {SEC==FALSE} is fired, in case the variable SEC is set to TRUE. Thus, the service
execution is reset. The variable SEC is set to FALSE. The secure points of a service
execution are specific to the service and have to be determined for each service.

117

5.3. Standard control interfaces 5. Extension of basic service relationships

S2‘

S1 S2secure_reset

S1_S2:
secure_reset

S1‘

stateN
i1: …

…
iN: …

o1: …
…

oM: …
stateM

?x && secure_reset / -
{sec=true} ?secure_reset /

!y {sec=true}

?z && secure_reset / -
{sec=true}

…

{sec==true} - / -
{sec=false}
(Prio=highest)

{sec==true} - / - {sec=false}
(Prio=highest)

Figure 5.2.: Standard control interface of the basic service relationship SECURE RESET (SSD
+ STD)

5.3.2. Sub relationships of DISABLE/INTERRUPT

The standard control interfaces for the sub relationships of DISABLE/INTERRUPT (as
noted before, DISABLE and INTERRUPT are semantically equivalent), are more com-
plicated. We will introduce these sub relationships step by step.

Realization of the IMMEDIATE and SECURE part of the relationship

First we will present the standard control interface of the IMMEDIATE DISABLE

(IMMEDIATE INTERRUPT) part of the relationships depicted in Figure 5.3. The stan-
dard control interface of the SECURE DISABLE (SECURE INTERRUPT) relationship can
be obtained analogously to the SECURE RESET relationship (see Subsection 5.3.1, Sub
relationships of RESET). The standard control interface for the realization of the IM-
MEDIATE INTERRUPT part can be obtained from Figure 5.3 by simply changing the
logical actions and the respective stereotype IMMEDIATE DISABLE to IMMEDIATE IN-
TERRUPT.

Realization of the BUFFERING and IGNORING part of the relationship

Figure 5.4 shows how the buffering of data can be realized. In the figure, the buffer-
ing and secure disable is shown. The other buffering variants (SECURE and/or IN-
TERRUPT) can be obtained easily by using the concepts introduced above.

In order to realize the buffering, the modified service specification is divided into
two sub services: a BUFFER and S2’. Latter is the modular service specification (S2)
which has already been modified to handle the action DISABLE (see Figure 5.3). In the

118

5. Extension of basic service relationships 5.3. Standard control interfaces

S1 S2
immediate_disable

S2‘

S1_S2:
immediate_disable

S2 modular
specification

?immediate_disable (Prio=5)

S1‘
disabled

i1: …
…

iN: …

o1: …
…

oM: …?x / !nil

Figure 5.3.: Schema for the realization of IMMEDIATE DISABLE/INTERRUPT (SSD + STD)

NORMAL state, the buffer service behaves transparently2. It transmits the inputs to
the modular service specification. The buffer service stores the logical input actions
in a buffer variable "b".3 Each input action "x" that is received is stored. The buffer
service forwards the logical input actions (which are stored in the buffer variable
b) in a FIFO (First-In-First-Out) fashion to the service S2’. In the BUFFERING state,
the buffer service just stores incoming input actions in the variable "b" but does not
forward it to S2’. Furthermore, it disables the service S2’ on entering the BUFFERING

STATE.

The buffer variable "b" that we use to store data while a service is disabled (inter-
rupted) is local to the service.ˆ is used to represent the concatenation of both charac-
ters and strings. || depicts the logical OR.

Another important point to mention is the following: We can decide between ser-
vices for which the service call is the only input (i.e. no further input data is needed
for the service execution) and services that need additional input data for the service
execution. By "service call" we denote the very first input action by which a service is
triggered (if a service needs an input action to start its execution). In case a service is
BUFFERING DISABLED which does need additional data this data is stored/buffered.
When the service is enabled and called again, these buffered data is (still) at the be-
ginning of the queue "b". Thus, a BUFFERING DISABLE does not make sense for this
kind of service. However, it does make sense for services for which the only required
input data is the service call.4 In case, additional data is buffered, this has to be
deleted before the enabling of the service. Of course, it is also possible to specify the
buffer service accordingly, i.e. to only store the data after the next incoming service
call (including the service call of course).

Figure 5.5 contains the standard control interface for the realization of the IGNORING

DISABLE part of the basic service relationships. Again the IGNORING INTERRUPT

interface part can be obtained by just changing the actions accordingly.

2modulo time delay
3Note that for reasons of clarity we only make use of one variable here. For each input channel, a

variable has to be introduced.
4Note, that a BUFFERING INTERRUPT always makes sense as the service is continued (after the inter-

rupt) at the place in the execution flow it was interrupted an thus needs the buffered data in any
case.

119

5.3. Standard control interfaces 5. Extension of basic service relationships

S2‘‘

S2‘

S1 S2
secure_and_buffering_disable

S1_S2:
secure_and_
buffering_
disable

S2 modular
specification

?disable
(Prio=5)

S1‘

i1: …
…

iN: …

o1: …
…

oM: …

disabled

Buffer

…
iN: …

i1: …

disable

{b==a^c} - / !a {b=c} ||
{b==a^c} ?x / !a {b=c^x} ||
{b==<>} - / !nil ||
{b==<>} ?x / !x

?secure_and_
buffering_
disable / !disable

?x / !nil {b=b^x}

normal

buffering

?x / !nil

Figure 5.4.: Standard control interface for BUFFERING (SSD + STD)

It might not be clear why we need the "fake" buffer in the NORMAL state of the buffer
service that immediately forwards the data. As motivation, imagine the following
situation. A service is BUFFERING INTERRUPTED and (a little bit later) CONTINUED

again at the same point in the service execution where it has been interrupted. After it
is continued, the service first processes the buffered data. However, while processing
the buffered data, new data might already come in. This input data then is buffered
until the previously buffered data has been processed. Additionally, this construction
is a way to handle time delays in case a service call is received while the service is
currently active (and thus not in the initial state).

Realization of the ERROR MSG and NO ERROR MSG part of the relationship

The realization of the error message part is quite easy. Figure 5.6 shows the standard
control interface for the relationship IMMEDIATE AND IGNORING DISABLE WITH ER-
ROR MESSAGE (X). On receiving a service call in the IGNORING state, an error mes-
sage is sent. The opposite case, in which no error message is sent while the service is
disabled, can be obtained trivially by leaving away this output.

120

5. Extension of basic service relationships 5.3. Standard control interfaces

S2‘‘

S2‘

S1 S2
secure_and_ignoring_disable

S1_S2:
secure_and_
ignoring_
disable

S2 modular
specification

?disable
(Prio=5)

S1‘

i1: …
…

iN: …

o1: …
…

oM: …

disabled

Buffer

…
iN: …

i1: …

disable

? secure_and_
ignoring_
disable / !disable

normal
{b==a^c} - / !a {b=c} ||
{b==a^c} ?x / !a {b=c^x} ||
{b==<>} - / !nil ||
{b==<>} ?x / !x

?x / !nil

ignoring

?x / !nil

Figure 5.5.: Standard control interface of the IGNORING DISABLE part (SSD + STD)

Final standard control interfaces of the basic service relationships DISABLE
and INTERRUPT

All sub relationships of the DISABLE/INTERRUPT relationship can be obtained by
combining the schemas presented above.

Practical examples for the application of the more complex basic service relationships
can be found in Section 5.4.4 (Combination of services on basis of the extended set of basic
service relationships).

5.3.3. Relationship ENABLE

The realization of the basic service relationship ENABLE stays the same (see Section
4.8, Combination of services on basis of the service relationships) and is shown in Figure
5.7. On receiving the action ENABLE the service leaves the DISABLED state and enters
the NORMAL state (modular service specification). As a consequence of our automata
semantics (see Section 3.2, State Transition Diagrams (STDs)), the high-level transition
(which is triggered on receiving the action ENABLE) makes the service enter the initial
state of the NORMAL MODE. Thus, the service is "ready" for a service call.

Note that we only allow the ENABLE transition to start from the DISABLED state and
not from the INTERRUPTED state as the relationships ENABLE and DISABLE logically
belong together.

121

5.3. Standard control interfaces 5. Extension of basic service relationships

S2‘‘

S2‘

S1 S2
secure_and_ignoring_disable_

with_error_msg(„currently disabled“)

S1_S2:
secure_and_
ignoring_
disable_
with_error_
msg(„currently
disabled“)

S2 modular
specification

?secure_
disable
(Prio=5)

S1‘

i1: …
…

iN: …

o1: …
…

oM: …

disabled

Buffer

…
iN: …

i1: …

secure_
disable

? secure_and_
ignoring_disable_
with_error_msg
(„currently disabled“) /
!secure_disable

?x / error!„currently
disabled“

normal
{b==a^c} - / !a {b=c} ||
{b==a^c} ?x / !a {b=c^x} ||
{b==<>} - / !nil ||
{b==<>} ?x / !x

ignoring
error:
…

?x / !nil

Figure 5.6.: Standard control interface for the realization of the ERROR MESSAGE part (SSD +
STD)

5.3.4. Relationship CONTINUE

Figure 5.8 contains the standard control interface for the basic service relationship
CONTINUE (as already presented in Section 4.8, Combination of services on basis of the
service relationships). This time the high-level transition starts from the INTERRUPTED

state (and not from the DISABLED state) and leads to the history state of the NORMAL

state. As explained in Section 3.2, State Transition Diagrams (STDs), the history state
denotes the state in which the service was when the modular service specification
was left (due to the reception of an INTERRUPT action).

5.3.5. Combination of standard control interfaces

For the combination of several standard control interfaces (the realization of several
basic service relationships) the same holds as already discussed in Section 4.8 (Com-
bination of services on basis of the service relationships). For example, conflicts might
have to be solved by a conflict solver service.

5.3.6. Discussion on another semantics using buffering channels

In Chapter 3 (Notational techniques (Overview)) we introduced the semantics of our
notational techniques. We declared channels to be non buffering. Consequently, for

122

5. Extension of basic service relationships 5.4. Application to the memory cell case study

S1 S2
enable

S2‘

S1_S2:
enable

S2 modular
specification

?enable (Prio=5)

S1‘

i1: …
…

iN: …

o1: …
…

oM: …disabled

?x / !nil

Figure 5.7.: Standard control interface for the basic service relationship ENABLE (SSD + STD)

S1 S2
continue

S2‘

S1_S2:
continue

S2 modular
specification

?continue (Prio=5)

S1‘

i1: …
…

iN: …

o1: …
…

oM: …
interrupted

H ?x / !nil

Figure 5.8.: Standard control interface for the basic service relationship CONTINUE (SSD +
STD)

those extended basic service relationships which make use of input buffering we
explicitly have to model the buffering of the inputs (see Figure 5.4).

Another possibility would be to change the semantics of the notational techniques to
buffering channels. In that case, actions would be automatically buffered. It would
have to be specified which input is to be handled first, for example the oldest one, or
if each buffered input can trigger a transition.

For our methodology we chose non buffering channels as motivated in Section 3.2.1
(Intuitive description). If buffering of inputs is the general case for the system under
development, it might make sense to make use of buffering channels. Although this
is possible, changes to the semantics are non trivial and have effects that would have
to be identified and evaluated first.

5.4. Application to the memory cell case study

In the previous section, we introduced the extended set of basic service relationships.
In this section we will show their application within our methodology with help of
the memory case study.

123

5.4. Application to the memory cell case study 5. Extension of basic service relationships

5.4.1. Starting point, identification of atomic services, and
identification of the logical syntactic system interface

The starting point and the first two steps of the methodology (see Sections 4.3, Start-
ing point, 4.4, Identification of atomic services, and 4.5, Logical syntactic system interface)
remain the same.

We obtain the atomic services READ and WRITE (performing the read and write re-
quests of the memory), STANDBY ON and STANDBY OFF (with the help of which the
system can be switched to the standby mode and back), and the atomic services SYS-
TEM ON and SYSTEM OFF (for turning the system on and off).

Memory system
functionality

req: read(nr), write(nr,val)

modes: standbyOn,
standbyOff, systemOn,
systemOff

ack:writeOk

result: val ∈Integer

Figure 5.9.: Logical syntactic interface of the memory system (SSD)

The logical system interface of the memory system is depicted in Figure 5.9. Read
and write requests are sent on the request channel (abbr. "req"). The parameter "nr"
determines the number of the memory cell to be written or read out. The parameter
"val" represents the value to be written and the value that is read, respectively.

The first methodological step that has to be adapted to our extended set of basic
service relationships is the identification of service relationships.

5.4.2. Identification of service relationships

Memory
Func-

tionality

Read /
write Standby

Standby
on

Standby
offRead Write

On /
Off

System
on

System
off

(1)

(2)(3)

(1) immediate and ignoring disable
(2) enable
(3) immediate and buffering interrupt with error msg („standby“)
(4) continue

(1)
(4) (2)

Figure 5.10.: Service graph of the memory system (directed graph)

For our running example we obtain the service graph (including the service hierar-

124

5. Extension of basic service relationships 5.4. Application to the memory cell case study

chy) shown in Figure 5.10. For reasons of clarity, we did not display the name of the
relationships in the service graph, but refer to them by numbers. Also for reasons of
simplicity we do not take into account the atomic service READ and the relationships
pointing at it.

Requirement 7 demands the IMMEDIATE AND IGNORING DISABLE service relation-
ships (abbreviated by number 1 in the figure). Analogously, Requirement 8 results
in the ENABLE service relationship. The basic service relationship IMMEDIATE AND

BUFFERING INTERRUPT WITH ERROR MSG ("STANDBY") is a consequence of Require-
ments 12 and 13. The ENABLE relationship is implicitly given by Requirement 12.

Finally, the additional inner services (READ/WRITE, STANDBY, and ON/OFF) are in-
troduced to further structure the services.

5.4.3. Formal specification of modular services

req:
read(nr)

read

result:
val ∈Integer

{val==mem[nr]}
?read(nr)

!val

req:
write(nr,val)

write ack:
writeOk?write(nr,val)

{mem[nr]:= val}

!writeOk

modes:
stanbyOn

Standby on

?standbyOn

modes:
standbyOff

Standby off

?standbyOff

modes:
systemOn

System on

?standbyOn

modes:
systemOff

System off

?standbyOff

Figure 5.11.: Formal specification of the atomic services of the memory system (SSD + STD)

The formal specification of atomic services is done as introduced in Section 5.4.3 (For-
mal specification of modular services). Figure 5.11 contains the formal models of the
modular service specifications. (It is assumed that 1 ≤ nr ≤ 20.)

125

5.5. Discussion 5. Extension of basic service relationships

req:
write(nr,val)

write‘‘ ack:
writeOk

modes:
stanbyOn

Standby on

?standbyOn /
!immediate_and_
buffering_interrupt_
with_error_
msg(interrupted)

modes:
standbyOff

Standby off

?standbyOff /
!continue

modes:
systemOn

System on

?systemOn /
!enable

modes:
systemOff

System off
?systemOff/
!immediate_
and_
ignoring_
disable

Immediate_
and_
ignoring_
disable

continue

enable

Immediate_
and_
buffering_
interrupt_with
_error_msg(int
errupted)

Figure 5.12.: Combination of the memory services - black box view of WRITE service (SSD +
STDs)

5.4.4. Combination of services on basis of the extended set of basic
service relationships

In Figure 5.12 the combination of the modular service specifications is shown. (Due
to reasons of simplicity, the READ service is omitted.) The WRITE service is given
from a black box perspective. The white box specification of the WRITE service is
(schematically) depicted in Figure 5.13. The STD of the CONFLICT SOLVER service is
given in Figure 5.14.

5.5. Discussion on the extended set of basic service
relationships

The basic service relationships introduced in Section 4.8 (Combination of services on ba-
sis of the service relationships) are not powerful enough to model each behavior. There-
fore, we introduced an extended set of basic service relationships in this chapter. As
we have seen, the extended set is more powerful, however the approach gets consid-
erably more complex. The combination of several standard control interfaces and the
conflict solving get more intricate.

Another point is, that some behavior still is not covered by our extended set of ba-
sic service relationships. For example, the deleting of the current buffer content on

126

5. Extension of basic service relationships 5.5. Discussion

write‘‘

ack:
writeOk

Immediate_
and_
ignoring_
disable

continue enable

Immediate_
and_
buffering_
interrupt_with
_error_msg(int
errupted)

write‘buffer‘

conflict solver

req:
write(nr,val)

write(nr,val)

immediate_interrupt,
continue,
immediate_disable,
enable

buffering_err
(interrupted),
ignoring,
normal

normal

buffering

err:
interrupted

ignoring

?normal

?normal

?ignoring ?buffering …

?buffering …

?ignoring …

Figure 5.13.: Combination of the memory services - white box view of WRITE service (SSD +
STD)

receiving a DISABLE action is not realized but might be wanted in some cases.

Basically speaking, a trade off has to be made. Either the approach is more powerful
and complex or less powerful and less complex. Depending on the system this deci-
sion has to be made. For behavior that is still not covered by the service relationships,
the standard control interfaces have to be adapted manually.

In this chapter, we extended the set of basic service relationships to make our
methodology more powerful. We systematically identified and refined the set of
basic service relationships, gave a standard control interface for each relationship,
and discussed the result. In the following chapter (see Chapter 6, Related Work), we
compare our methodology to related approaches.

127

5.5. Discussion 5. Extension of basic service relationships

Immediate_
and_
ignoring_
disable

continue enable

Immediate_
and_
buffering_
interrupt_with
_error_msg(int
errupted)

conflict solver

immediate_interrupt,
continue,
immediate_disable,
enable

buffering_err
(interrupted),
ignoring,
normal

init

interrupted

disabled

Disabled
after interrupt

?immediate_and_buffering_
interrupt_with_error_msg(interrupted) /
!immediate_interrupt, buffering_err(interrupted)

?immediate_and_ignoring_disable /
!immediate_disable, normal

?immediate_and_ignoring_
disable / !ignoring

?enable /
!buffering_err
(interrupted)

?continue /
!normal, continue

?enable /
!normal, enable

Figure 5.14.: Combination of the memory services (realization of CONFLICT SOLVER, SSD +
STD)

128

Chapter 6
Related Work

In the thesis at hand, we introduced a methodology for modeling the usage behav-
ior of multi-functional systems. In this chapter, we relate our methodology to other
approaches.

Our methodology is a model-based requirements engineering approach. It stepwise in-
troduces models already to the requirements engineering phase to bridge the gap
between the informal requirements engineering phase and the formal design phase.
Model-based requirements engineering is a quite young concept. Not many ap-
proaches exist so far. We therefore relate our approach to approaches that aim at
the seamless transition between the requirements engineering and design phase (see
Section 6.1, Model-based requirements engineering).

The basic building blocks of our methodology are services. Thus, we presented a
service-oriented development approach. In the last few years, service-orientation con-
quered different areas. The underlying concepts (like the notion of service itself)
vary more or less from domain to domain. As our methodology is not tailored to
a specific domain, but generically applicable, a comparison to service-oriented ap-
proaches is difficult. In Section 6.2 (Service-/Feature-oriented approaches) we compare
our approach to a selected sub set of service-oriented approaches.

In Section 6.3 (Comparison of the basic system model) we compare our basic system
model (see Figure 4.2).

Contents
6.1. Model-based requirements engineering 129

6.2. Service-/Feature-oriented approaches 135

6.3. Comparison of the basic system model 143

6.1. Model-based requirements engineering

Usually, requirements are textually written and thus informally given. Model-
based requirements engineering is a relatively young research direction that aims

129

6.1. Model-based requirements engineering 6. Related Work

at bridging the gap between informal requirements descriptions and formal mod-
els. Although many model-based design approaches exist (model-based design of
embedded systems with AutoMoDE [Bauer et al., 2005], model-based design of re-
active systems with InServe [TUM, 2006b], model-based development of adaptive
and context-sensitive automotive systems with MEwaDis [TUM, 2006c], tool support
for model-based development by Rhapsody [Gery et al., 2002], model-based devel-
opment of embedded systems with IST OMEGA [Graf and Hooman, 2004], model-
driven development of enterprise architectures [Kulkarni and Reddy, 2005] - just to
mention a few), model-based requirements engineering approaches are quite rare. In
this section we relate our approach to two other model-based requirements engineer-
ing approaches.

6.1.1. AutoRAID / AutoFOCUS

At this place we relate our approach to the concepts of the model-based require-
ments engineering tool AutoRAID (AutoFocus Requirements Analysis Integrating
Development) [AutoRAID, 2007].

Background information

AutoRAID [AutoRAID, 2007] is a tool for model-based requirements analysis for
embedded software systems. Its abbreviation stands for "AutoFocus Requirements
Analysis Integrating Development". The tool is integrated with the model-based de-
velopment tool AutoFOCUS [TUM, 2006d]. The main aim of AutoRAID is to ease the
identification, structuring, and consolidation of requirements and to provide a more
seamless transition from the informal requirements engineering phase to the formal
design phase.

AutoRAID was developed in the summer of 2004 by a team of students and research
members of the chair of Software & Systems Engineering, Technische Universität
München [TUM, 2006a] and has been continuously enhanced since then.

Approach

As mentioned above, the main aim of AutoRAID is to ease the identification, struc-
turing, and consolidation of requirements and to bridge the gap between the informal
requirements engineering phase and the formal design phase.

AutoRAID is integrated with the model-based development tool AutoFOCUS and
makes use of AutoFOCUS’ formally founded system views. These are: structural
view, behavioral (state) view, interaction view, and data view. AutoFOCUS provides
the following notational techniques for the specification of the system views, respec-
tively: system structure diagrams (SSDs), state transition diagrams (STDs), extended
event traces (EETs), and data type definitions (DTDs). The relationships between
these modeling elements (e. g. components, states, transitions, ports, data types) are
used for the refinement, structuring, and consolidation of requirements.

130

6. Related Work 6.1. Model-based requirements engineering

Analyze and
complete

requirements

Analyze and
complete

requirements

Structure by
classifying

requirements

Structure by
classifying

requirements

Refine and
develop

requirements

Refine and
develop

requirements

Structure
requirements

by models

Structure
requirements

by models

A
na

ly
si

s
C

lassifying

Refinement

Modelling

Starting and
getting

requirements
System
design

Figure 6.1.: Methodological steps of AutoRAID [Geisberger and Schätz, 2007] (graphical
overview)

The methodology of AutoRAID is an iterative process which is defined by the fol-
lowing four requirements engineering activities (see Figure 6.1):

• Identification and refinement of requirements: Requirements can be inserted
manually or by copying them from an existing file. Further requirements can
be derived (refined) from given requirements or from business goals (goal-
oriented requirements engineering).

• Classification of requirements: Requirements can be classified according to the
different system views (into use cases, architectural constraints, modal con-
straints, and data type constraints). The refinement and specification is later
done specific to the class of requirements.

• Modeling of requirements: The services (functions) of the system are refined
and modeled iteratively. The steps within use cases are "observed" and cap-
tured in the elements of the design model (interaction, mode switch, data op-
eration). Furthermore, model elements are "motivated" by constraints (e. g. in-
troduction of components or states).

• Analysis of requirements: The core techniques of AutoRAID for the analysis of
requirements are the constructive support of refinement, tracing mechanisms,
and the detection of missing requirements (due to the association to model ele-
ments).

Commonalities and Differences

Both AutoRAID and the approach of this thesis aim at a seamless transition from
textual requirements to formal models. AutoRAID takes into account all kinds of
requirements (i. e. business requirements, functional requirements, system require-
ments); the methodology presented above only takes care about the modeling of

131

6.1. Model-based requirements engineering 6. Related Work

functional requirements.

The main idea behind AutoRAID is to relate requirements with elements of the
design model. Thus the focus is on vertical tracing (relating artifacts of different
phases/stages of the development process). In the approach of this thesis, a require-
ments model is created. The focus therefore is on horizontal tracing (relating artifacts
of the same phase/stage of the development process). Consequently, AutoRAID
deals with models representing different system views (structure, internal behavior,
interaction, and data) whereas our methodology primarily makes use of behavioral
models.

One of the main ideas behind the presented approach is to make dependencies be-
tween functionalities (services) explicit. In AutoRAID two different kinds of rela-
tionships exist. First, so-called "motivation" and "association" links relate functional
requirements to elements of the design model. However, the "motivation" and "as-
sociation" links of AutoRAID are coarse and only express the existence of a rela-
tionship. Second, functional requirements can be (assigned to business requirements
and) structured hierarchically. In our methodology, we introduced differentiated ba-
sic service relationships and horizontal service relationships. Furthermore, we made
use of the (restricted) sub service relationship to structure services hierarchically.

The stepwise transformation of textually given steps of sequence diagrams in Au-
toRAID, resembles our step of the formalization of modular services. In our method-
ology, single services are modeled by automata.

The approaches differ in the main idea on which we based our approach: In our
methodology we show how the modularly specified behavior (given by functional
requirements) has to be adapted because of other functional requirements (services).
This is not looked at in the approach behind AutoRAID.

6.1.2. Unified Modeling Language 2.0 (UML 2.0)

It has been proven that modeling is an essential part of medium- to large-scale soft-
ware projects. Many modeling languages have been developed during the last years
to support the development process. The most famous one is probably the Unified
Modeling Language (UML) [OMG, 2003].

Background information

The Unified Modeling Language (UML) was developed by the Object Management
Group [OMG, 2007a]. It has become the de facto standard for modeling object-
oriented software systems. The first version of the UML appeared in 1990 as a re-
action to numerous suggestions for modeling languages. A revised version of the
UML (UML 2.0) was released in 2005.

Approach

The UML informally defines identifiers for most notions which are important for
the modeling process and also identifies relationships between them. There exist 13

132

6. Related Work 6.1. Model-based requirements engineering

System

Actor 1

Actor 2

Use Case 1

Use Case 2

Use Case 3

«uses»

«extends»

Figure 6.2.: Example of a UML Use Case Diagram (UML Use Case Diagram)

standard diagram types for the graphical representation of parts of the UML model.
Furthermore the UML suggests a format for the interchange of models and diagrams
between different tools.

The standard diagram types are divided into structure diagrams, behavior diagrams,
and interaction diagrams which are used to model different aspects, respectively. The
diagram type which is most similar to our approach are UML Use Case Diagrams.
Figure 6.2 contains an example for a UML Use Case Diagram. Actors indicate human
users or surrounding systems (with which the system communicates). Ovals repre-
sent use cases (functionalities). Use cases are connected (by lines) with those actors
that affect the use case or that are affected by the use case. UML Use Case Diagrams
provide two different kinds of relationships between use cases: << extends >> and
<< uses >>. The extend relationship helps to reduce the complexity of use cases.
The extend relationship visualizes the effect that an instance of an extended use case
may include (under certain circumstances) the flow of events specified by the extend-
ing use case. The use relationship is used to represent commonalities in use cases. A
use case is used by another use case if it is included in its flow of events.

Commonalities and Differences

The UML 2.0 informally defines notions and relationships between notions. It is
relatively easy to learn and supports several views onto software systems. However,
the simplicity of the Unified Modeling Language has its costs: Its concepts are not
formally founded. Furthermore, the UML itself does not present methodological
support.1 We base our work on a formally founded system model. Furthermore, we
provide the semantics of our service relationships by giving schemes (automata) how
to realize them.

We do not take into consideration actors. If necessary, actors can be easily added

1Although numerous methodologies were developed around the UML.

133

6.1. Model-based requirements engineering 6. Related Work

to our diagram types (service hierarchy/graph and SSDs). In our methodology we
also separate modular functionalities from relationships between them. However, we
distinguish between several relationships which are observable at the system bound-
aries and - as mentioned above - give their semantics.

6.1.3. Systems modeling langague (SysML)

We now relate our methodology to the work of the SysML project [OMG, 2007b].

Background information

In 2001 the Object Management Group (OMG) together with the International Coun-
cil on Systems Engineering (INCOSE) founded the Systems Engineering Domain
Special Interest Group (SE DSIG). The aim of SE DSIG was to develop a standard-
ised enhancement of the UML to make it a modeling language for the specification,
design, and verification of complex systems. In 2003 a request for proposal was pub-
lished containing the requirements for such a modeling language. The SysML work-
group formed in order to answer this proposal. Members of the SysML group for
example are: IBM, Telelogic, I-Logix, Motorola, NASA, and EADS.

SysML was accepted as standard by the OMG in April 2006. The current SysML
specification can be obtained at [OMG, 2007b].

Approach

SysML is an enhancement of UML. It is a general-purpose graphical modeling lan-
guage suitable for specifying, analyzing, designing, and verifying complex systems.
The systems may consist of hardware, software, information, processes, person-
nel, and facilities [OMG, 2006]. SysML provides graphical notational techniques for
modeling requirements, the system behavior, and the system structure. It is speci-
fied by a combination of UML modeling techniques and "precise natural language"
[OMG, 2006].

SysML is based on UML 2.0. Its most important enhancements (above others)
are [oose Innovative Informatik, 2007]: structure diagrams, requirements diagram
(modeling of functional and non-functional requirements), parametric diagram
(modeling of parametric relationships between model elements). For the compari-
son of SysML and our approach, only the requirements diagram is of interest.

The requirements diagram is used to represent text-based requirements. It relates
them to model elements of other diagrams. Requirements can be depicted either in
graphical, tabular, or tree structure format. Additionally, a requirement can appear
on other diagrams in order to show its relationship to elements of design models.
SysML introduces several requirements relationships including relationship for re-
lating requirements hierarchically (composite requirements, subrequirements), de-
riving further requirements, satisfying requirements (a model element can satisfy a
requirement), verifying requirements (a test case can verify a requirement), and re-
fining requirements.

134

6. Related Work 6.2. Service-/Feature-oriented approaches

Commonalities and Differences

Analogously to AutoRAID, SysML relates requirements with elements of the design
models. For example, the relationships << satisfy >> and << verify >> are
used to relate textual requirements to design elements and to test cases, respectively
(horizontal tracing). In contrast, in our approach we make use of behavioral models
within the requirements engineering phase.

Both approaches make use of hierarchies (and graphical representations of hierar-
chies) in order to structure functionalities (functional requirements and services, re-
spectively).

However, again, the main idea underlying the methodology of this thesis (namely
that the modularly specified service behavior has to be adapted according to rela-
tionships) is not looked at.

6.2. Service-/Feature-oriented approaches

In this section we relate our methodology to other service-oriented approaches. We
hereby concentrate on a selected set of approaches which seem to be similar to our
approach. A comparison of different service-oriented approaches can be found in
[Meisinger and Rittmann, 2008].

6.2.1. Services in the telecommunication domain - Distributed Feature
Composition (DFC)

Many roots of service-orientation lie in the area of telecommunication. In this section
we compare our approach with one prominent approach of this domain, the one of
Pamela Zave and Michael Jackson [Zave and Jackson, 2000, Zave, 2003, Zave, 2001].

Background information

The approach presented in this subsection is the creation of Michael Jackson and
Pamela Zave. Michael Jackson (currently) is a visiting research professor at the De-
partment of Computing, Open University, and a visiting professor of the School
of Computing Science, University of Newcastle. Pamela Zave (currently) works at
AT&T Labs Inc.-Research as Technology Consultant.

Approach

Distributed Feature Composition (DFC) is a virtual architecture. It aims at the spec-
ification and implementation of telecommunication system. It was developed as a
response to the feature-interaction problem (see below) in telecommunication sys-
tems.

The approach assumes that a base of functionality already exists. This might be an
existing implementation of a POTS (Plain Old Telephony System) or any other sys-

135

6.2. Service-/Feature-oriented approaches 6. Related Work

Formal Methods for DFC 19

own features or getting third parties to do it. Furthermore, any telecommu-
nication system has an enormous legacy to deal with.

3 Distributed Feature Composition

3.1 The DFC Architecture

Distributed Feature Composition (DFC) is a new feature-oriented architec-
ture for describing telecommunication services [17,28,27]. Its primary design
goals were generality, analyzability, and behavioral modularity. It is now be-
ing implemented on an I.P. substrate within AT&T Research [4].

Regarding generality, hundreds of features and services have been de-
scribed informally within the DFC framework, and we know of no services
(including mobile and multimedia services) that cannot be fit into the archi-
tecture. The next section discusses analyzability. The following overview of
DFC leaves out many details and even whole aspects; it is intended just to
convey an impression of how DFC achieves behavioral modularity.

In DFC a customer call generates and is responded to by a usage, which
is a dynamic assembly of boxes and internal calls. A box is a module, and
implements either a line/device interface or a feature. An internal call is a
featureless connection between two ports on two different boxes. Figure 4
illustrates a simple usage at two points in time.

LI a F1 F2 F3 F4 F5 LI b

source zone

of a

target zone

of b

LI a F1 F2 F3 F4 F6 F7 LI c

source zone

of a

target zone

of c

Fig. 4. Two snapshots of a linear usage.

In Figure 4 a DFC internal call is shown as an arrow from the port that
placed the call to the port that received the call. Each internal call begins with
a setup phase in which the initiating port sends a setup signal to the DFC
router, and the DFC router chooses a box and forwards the signal to it. The
receiving box chooses an idle port for the call (if there is one) and completes

Figure 6.3.: Linear usage within Distributed Feature Composition [Zave, 2001]

tem. The main goal of the feature-oriented approach is how to add, remove, modify
and combine pieces of functionality later in the life cycle of such systems.

A feature is an "optional or incremental unit of functionality" [Zave, 2001] and resem-
bles our notion of service. The feature specification contains an action, enabling con-
dition and priority. The action is performed if the enabling condition is true and the
priority is the highest. A feature-oriented description is a "description of a software
system organized by features, consisting of a base description and feature modules,
each of which describes a separate feature" [Zave, 2001].

Zave and Jackson define the term feature interaction as "some way in which a feature
or features modify or influence another feature in describing the system’s behavior
set" [Zave, 2001]. They explicitly distinguish between wanted and unwanted feature
interaction. Unwanted results of feature interaction are incompleteness, inconsis-
tency, non-determinism, and unimplementability. Desired feature interaction "can
be" achieved without changing any feature modules, rather by simply adjusting the
precedence relation; i. e. the order in which feature can occur in a route (see later).

The following methodology accompanies DFC:

1. Describe new features as if they were independent (manually).

2. Understand all potential interactions (help of automated analysis necessary).

3. Classify interactions as bad or good (manually).

4. Adjust feature descriptions (priorities) so that the result contains no more bad
interactions.

DFC is a virtual architecture with the basic goal to support usages. A usage is a
dynamic assembly of features, line/device interfaces and internal calls to satisfy a
system’s requirements to connect two end points on behalf of a user with a given
set of requested features (see Figure 6.3). A router component is responsible for es-
tablishing a connection between the end points across the source and target zones,
activating a certain number of features along the call. All features have a certain ac-
tivation protocol and can be invoked independently from each other. Features are
connected to each other and to end points by internal calls. To avoid or control fea-
ture interaction, all features have a priority that determines the order in which they

136

6. Related Work 6.2. Service-/Feature-oriented approaches

can be applied by the router. The basic idea behind DFC features is that they are au-
tonomous, modular units that can be applied in sequence by adhering to a standard
black-box feature interface. In this way, the DFC architecture follows the "Pipes-and-
Filters" architectural style described in general in [Buschmann et al., 1996].

The precedence relation defines the order in which features occur in a route. It is the
only place of the algorithm where feature relations are captured. The goal is to place
features with a higher priority later in the route, close to the target zone. The propo-
nents of the methodology claim that their concept of features and feature precedence
provides a useful degree of behavioral modularity and that it is possible to manage
desired and unwanted feature interactions by simply adjusting the precedence rela-
tion without modifying any of the feature modules themselves [Zave, 2001].

Commonalities and Differences

When comparing the DFC with the methodology of this thesis, we see that the idea
is the same: Services (Features) are specified modularly in order to reduce complex-
ity and enhance reuse. Services (Features) may influence each other; consequently
we face the problem of feature interaction.2 In the approach by Zave/Jackson the
problem of feature interaction is solved by introducing a partial ordering on features
according to their priorities. In our methodology we adapt the behavior in order to
handle feature interaction.

Zave/Jackson explicitly distinguish between wanted and unwanted feature interac-
tion. In our methodology, we only take care of wanted feature interaction as specified
in the functional requirements. As mentioned in Section 7.3 (Outlook), a calculus on
service relationships would help in identifying implicitly given service relationships.
These implicitly given relationships make up unwanted feature interaction. Given
such a calculus on service relationships, our methodology could be enhanced to also
deal with unwanted feature interaction.

In DFC features are added to a base specification. In our approach, we combine
services (features) without a base specification. Furthermore, DFC does not introduce
differentiated service relationships. In contrast, the (vertical and horizontal) service
relationships are the basis for the combination process.

6.2.2. FODA, FORM, FOPLE

Service-/Feature-oriented software development is also common in the field of
product line approaches. In this subsection we relate our approach to the first
feature-oriented product line approach - Feature Oriented Domain Analysis (FODA)
[Kang et al., 1990] and two of its enhancements (FORM and FOPLE).3

2In fact, we adopted the definition of the term feature interaction [Zave, 2001] for our approach.
3A good summary of the FODA methodology can be found in [Adersberger, 2006] (in German).

137

6.2. Service-/Feature-oriented approaches 6. Related Work

Domain Analysis

Domain ModellingContext Analysis Architecture Modelling

Structure diagram

Context diagram

Entity relationship model

Features model

Domain terminology
dictionary

Functional model

Process interaction
model

Module structure
chart

Figure 1-3: Phases and Products of Domain Analysis

1.3. Feasibility Study Overview

Before a discussion of the details of the FODA domain analysis method itself is appropriate,

it is necessary to discuss the context in which this feasibility study was performed. Certain

constraints applied to this initial study influenced the work, and are re-examined in Chapter

8 in light of the study’s results.

First, domain analysis is still a research topic. Despite the different efforts outlined in Chap-

ter 2 there is no uniform agreement on method, representation, or products. This report

presents a proposed approach and some experience in applying it, but does not attempt to

imply that all of the central issues surrounding domain analysis have been resolved.

Second, the application of the FODA method to the window manager domain was done as a

feasibility study to see if it would be possible and useful to analyze application domains with

this method. While most aspects of the method were applied to the sample window manager

domain, it was not deemed necessary to exhaustively apply the method beyond the point

where basic feasibility had been determined and significant lessons learned.

CMU/SEI-90-TR-21 7

Figure 6.4.: Phases and products of domain analysis

Background information

FODA was developed at the Software Engineering Institute (SEI), Carneggie Mellon
University, in 1990 under guidance of Kyo-Chul Kang. The aim of FODA was to
develop a methodology for the identification and specification of commonalities and
differences within software systems (the term "product line" was not used at that
point of time).

There existed several methodologies for the domain analysis of software systems al-
ready in the 80ies. However, these methodologies were not applied in practice but
were only a matter of research. FODA managed to be applied in practice by publish-
ing its concepts by a feasibility study [Kang et al., 1990] instead of by publishing a
theoretical concept paper.

FODA first was an independent research domain within the SEI. In 1994
FODA was embedded in the MBSE initiative (Model-Based Software Engineering)
[Withey, 1994]. In the meantime, FODA and MBSE are declared to be "legacy". FODA
now is one of six methods suggested in the Software Engineering Practice Area: Domain
Analysis in the Pruduct Line Practice (PLP) Framework [CMU, 2007].

Both the Feature-Oriented Reuse Method (FORM) [Kang et al., 1998] and Feature
Oriented Product Line Engineering (FOPLE) [Kang et al., 2002b] are enhancements
of the FODA methodology.

Approach

Figure 6.4 shows the three phases of the FODA method and lists the product of each.
The domain analysis starts with the context analysis the aim of which is to make
a scoping with regard to the domain. Two products are the result of the context
analysis: The context diagram describes the data flow between the system under
specification and surrounding systems. The structure diagram positions the domain
with regard to other domains.

The aim of the domain modeling is to model the problems of the domain and doc-

138

6. Related Work 6.2. Service-/Feature-oriented approaches

ument the domain knowledge. The first part of the domain modeling phase is the
feature analysis. It is the most famous part of the FODA methodology. The aim
of the features model is to provide an overview of the capabilities and features of
the system under development. The features model is the main instrument for the
communication with the end user of the system. During the information analysis,
the domain knowledge is captured by entities and their relationships (entity rela-
tionship model). During the functional analysis, commonalities and differences of
applications within a domain are identified. The so-called functional model is cre-
ated. In this phase, the largest part of the domain glossary is also usually created
(domain terminology dictionary).

In the last phase of the FODA methodology, the architecture modeling, the solu-
tion space is described. For example, reference architectures for the domain are de-
scribed.4 The architecture modeling phase is covered shortly in [Kang et al., 1990]. It
is based on the DARTS method as presented in [Gomaa, 1984]. The main idea is to
describe the system architecture by two layers: the process interaction model and the
module structure chart. The former describes the domain processes and its relation-
ships. The latter contains the decomposition of the entities (of the entity relationship
model) and the functions (of the functional analysis) into modules.

FORM is an enhancement of FODA to elaborate the architecture modeling phase.
Furthermore, the features model was enriched for possibilities to more formally spec-
ify the system features. FOPLE is an interpretation of FORM with regard to product
line development. The main enhancement is the introduction of a marketing and
product plan (MPP). The MMP substitutes the context analysis by a market analysis.

Commonalities and Differences

FODA describes a methodology targeting at the requirements engineering and de-
sign phase. Our methodology only deals with the requirements engineering phase.
Furthermore, FODA is a product line oriented approach whereas we aim at specify-
ing one system.

FODA adopts the definition of [Pickett, 2000] and defines a feature as a "prominent
or distinctive user-visible aspect, quality, or characteristic of a software system or
systems". In our approach, a service is a functional, user-visible characteristic of a
software system. Therefore, our services can be seen as a subset of the FODA features
- namely the FODA features that describe functionality.

In FODA, the scoping is done by means of the context analysis. The determination of
the syntactic interface (step 2 of our methodology) can be compared with the context
diagram of FODA.

The features model of FODA is an AND/OR tree and resembles our service hier-
archy. FODA also distinguished between vertical and horizontal relationships be-
tween the features model.There are three different kinds of vertical relationships:
<< consistof >> (a feature consists of other features that have to exist in the sys-
tem),<< optional >> (the existence of a feature is optional), and<< alternative >>

4An example is the QUASAR reference architecture for business information systems
[Siedersleben, 2004].

139

6.2. Service-/Feature-oriented approaches 6. Related Work

(only one feature can be chosen for a concrete system). Additionally, the following
horizontal relationships exist: << mutuallyexclusivewith >> and << requires >>.
The FODA relationships are motivated by product line concepts. They mainly de-
scribe dependencies between features that determine how concrete products can be
assembled. In FODA, the features are structured by a tree. In the approach presented
in this thesis, a service might also have several parents.

As in FODA, a feature is also a user-visible characteristic, the (functional features
of the) features model also describes a black-box view onto the system. However,
in FODA no formal model within the requirements engineering phase is created, i. e.
neither the relationships are formally founded nor the service specifications are given
formally. Furthermore, the relationships are a means to assemble a product rather
than to combine feature in order to obtain a formal model of the overall behavior.

6.2.3. MEwaDis

In this subsection, our methodology is compared to another model-based develop-
ment process - MEwaDis.

Background information

MEwaDis (German: Modellbasierte Entwicklung adaptiver Dienste, English: model-
based development of adaptive services) [TUM, 2006c] was funded by the Hightech-
Offensive Zukunft Bayern, BMW Car IT, ESG and Peak-Systems. The primary aim
of MEwaDis was the development of techniques and methods for the analysis, mod-
eling, and validation for the development of reliable, adaptive, context-sensitive ser-
vices.

Project partners were BMW Car IT GmbH, BMW Forschung und Technik GmbH, and
the chair or Software & Systems Engineering, TUM.

Approach

In [Deubler et al., 2004b, Deubler et al., 2004c, Deubler et al., 2005,
Deubler et al., 2004a] the service-based development process as elaborated in
MEwaDis is presented. The process is made up of the phases shown in Figure
6.5. In the Inception Phase, the project mission and requirements are elaborated.
Afterward, the sequence of actions are modeled in the Service Identification Phase.
This is done on a high level of abstraction. Activity diagrams are used to describe
the run of service functions. In the subsequent Use Case Modeling Phase, the
services of the Identification Phase are elaborated. To that end, the flow of events of
each service function is specified. Furthermore, inputs and outputs, preconditions,
security requirements, and service requirements are captured. The result of this
phase is a use case model with textual descriptions of the use cases, sequence
diagrams for a service function, a textual description of the security requirements,
and a logical service architecture.

In the Service Modeling Phase, the behavior of a service is formally specified by

140

6. Related Work 6.2. Service-/Feature-oriented approaches

Inception

Service Identification

Use Case Modeling

Service Modeling

Component Design

Construction

Transition

S
e

rv
ic

e
 r

e
la

te
d

 p
h

a
s
e

s

Figure 1. Phases of the Service Oriented Development Pro-

cess

development. The presented process is model-based, i.e.

the development is driven by explicit models of both the

development artifacts (product model) and of the process it-

self. The models of the development artifacts have a prede-

fined structure (which does not rule out textual parts), and

the process model describes how development proceeds in

the different phases, in terms of the product model. The

process is incremental in that it can be repeatedly applied

to add new functionality in small steps, which considerably

reduces risk (see Section 2.5).

Figure 1 shows the phases of the service oriented pro-

cess. We give a short overview about them and explain the

service related ones in more detail in the following sections.

We assume that we have an Inception Phase, in which

the project is born and both a project mission and the re-

quirements are elaborated. This is the starting point of our

process. The concept of service does not yet appear and

thus the Inception Phase is not affected by our approach.

The results of this phase are documented in a project mis-

sion document and in a requirements specification list.

After the Inception Phase the sequences of actions at

a high abstraction level are modeled in the Service Identifi-

cation Phase. In this phase a separation of the system takes

place. The service identification is covered in Section 2.1.

Results of this phase are activity diagrams modeling the run

of service functions.

A first elaboration of the services, which are identi-

fied in the Service Identification Phase, is worked out in

the Use Case Modeling Phase. The flow of events of ev-

ery service function (as a subfunction of a service) is spec-

ified as well as the input and output data, preconditions

for the processing, security requirements and service de-

pendencies. The Use Case Modeling Phase is discussed in

detail in Section 2.2. As a result this phase leads to a use

case model with a structured textual specification of the use

cases, sequence diagrams for one or more flows of events

for a service function, a textual description of the security

requirements, and a logical service architecture.

The sequence diagrams from the Use Case Modeling

Phase make up a first version of the analysis model, which

will be worked out in the Service Modeling Phase. The be-

havior of a service is specified formally in an abstract way

by relating its inputs and outputs, e.g. using state transition

diagrams. Execution scenarios are derived as compositions

of services (logical architecture), and the security require-

ments are concretized in terms of the formal model. The

service modeling is described in detail in Section 2.3.

The next phase, the Component Design Phase, ends

the service specific activities in the process. Here the ser-

vices are mapped to system components and thereby the

logical architecture is transformed into a system architec-

ture. This phase is summarized in Section 2.4. Result of

this phase is a set of components with assigned services

and a behavioral modeling of the components.

Afterwards, the system development is commonly

(e.g. according to [5]) continued with the Construction

Phase and the Transition Phase. These phases can be car-

ried out conventionally, as service-specific issues have been

resolved previously by the above mentioned mapping.

We explain our approach by referring to an industrial

case study from the automotive domain, an onboard diag-

nostic system. The purpose of this system is to monitor de-

vices of an automobile for malfunctions, to conduct diag-

noses by downloading device-specific diagnosis software

into the MMI system, and to suggest and take appropriate

measures such as initiating a software update or offering to

contact a dealer’s workshop with relevant information for

them to prepare a repair. As an example for a monitored

device, we consider a climate control unit.

2.1 Service Identification

In this phase, requirements have to be divided and they

have to be arranged to actors, whereby actors can be repre-

sented by roles, systems or services.

In a first step the requirements of the requirements

specification list from the former phase are transformed to

flows of activities, which are sufficiently fine-grained such

that each activity can be carried out by one actor.

In a second step after this division we have to arrange

these activities to their executing actors, i.e. the actor who

gets information from this activity or who sends informa-

tion to it. In the model the actors are swim lanes within an

activity diagram, the nodes are the activities and the arrows

show their causal (and temporal) relationship.

Since we deal with service-based modeling we have

to extend the actor model. Conventionally we have to deal

with two types of actors. The first actor type is the ab-

straction of a real person within a role, e.g. a driver role as

abstraction for a person who drives and operates a car. The

second actor type represents external systems interacting

with the system to be developed (e.g. via the different auto-

motive bus systems) which are not modeled in our specifi-

Figure 6.5.: Phases of the service-oriented development process of the MEwaDis process
[Deubler et al., 2004c]

state transition diagrams. Moreover, the security requirements are concretisized. The
logical service architecture is mapped to a system architecture in the Component
Design Phase. As result of this phase, we obtain a behavioral model of the system
components with assigned services.

The last two phases - Construction and Transition - can be carried out conventionally
as know from other development processes and are not specific to services.

Commonalities and Differences

For a comparison of the MEwaDis approach and our methodology, only the Service
Identification, Use Case Modeling, and Service Modeling Phases are of interest.

The service specifications of the MEwaDis approach are comprised of the syntactic
interface, the semantic interface, and quality of service attributes. Quality of service
attributes are not looked at in our methodology.

Furthermore, the service specification of MEwaDis explicitly contains relationships
to other services. In the approach presented in this thesis, the service relationships
are separated from modular service specifications. Additionally, there are no de-
tailed service relationships or defined semantics of the relationships in the MEwaDis
approach. The service specifications only refer to "Involved Services".5

Moreover, MEwaDis does not stick to a black box view onto the system behavior, as
the internal communication (e. g. call relationships) between services is also specified.

The Service Identification Phase of the MEwaDis methodology could be adapted for
our approach to identify services out of given requirements.

5It is suggested to integrate service relationships into the CASE Tool AutoFOCUS, (see Section 6.1.1,
AutoRAID / AutoFOCUS). It should be possible to annotate service relationships to services so that
this information can be used in later phases of the development process, i. e. for model transforma-
tions.

141

6.2. Service-/Feature-oriented approaches 6. Related Work

Both approaches make use of System Structure Diagrams (SSDs) and State Transition
Diagrams (STDs) to model services.

6.2.4. Functional architecture modeling

In this subsection we describe the approach of Bernhard Schätz et al. as described in
[Schätz, 2005, Schätz and Salzmann, 2003] and [Kof et al., 2004].

Background information

The focus of this work is the explicit modeling of functional architectures. The type
of the target systems are distributed reactive systems. During the last years, several
publications on this topic have occurred.

Approach

The main idea behind the presented approach is the following: Different functions
of a system are first specified separately (modularly). Then, these modular specifica-
tions are integrated into a functional architecture. The integration is done on basis of
well-defined, formally founded operations to ensure compatibility and consistency
of the functions. Services encapsulate pieces of functionality. A service is comprised
of its interfaces (input ports and output ports), its variables (data space), its configu-
rations, and its transitions. Services communicate with each other over typed and
directed channels connecting input ports to output ports.

The behavior of a service is described by configurations and transitions. A configura-
tion is a state of a system describing which (sub) services are active in a configura-
tion. A transition describes how a services changes from one transition to another.
So-called connectors describe the entry and exit points of a transition, i. e. define how
a configuration is activated and terminated.

The behavior of a service is described by means of the following notations: a state is
an assignment of input and output ports as well as variables to their current values.
A step is a pair of states describing the change between the two states. An observation
is either a finite or an infinite sequence of states with a given starting location and -
in case of a finite sequence - an ending location. The behavior of a service is the set of
observations which are performed by the service.

By using disjunctive combination, services are combined to form alternative configura-
tions. The disjunctive combination of two services results in a service making use of
the sum of input and output ports and the sum of variables. It exhibits the combined
behavior of each service. The conjunctive combination of two service exhibits the joint
behavior of each service.

Commonalities and Differences

Compared to our approach, we obtain the following commonalities: The approach of
Schätz et al. also uses the concept of services to encapsulate pieces of partial function-

142

6. Related Work 6.3. Comparison of the basic system model

ality. Services are used to describe the functional architecture of reactive systems. Ad-
ditionally, the methodology puts the integration of functionality at an early stage in
the development process. Both approaches use the AutoFOCUS [Huber et al., 1997]
computational model as basis.

In our methodology we combine the services based on the service relationships be-
tween them. Thus we emphasize on modeling the various dependencies between
services. We also focus on how to adapt modular service specifications in order to
handle feature (service) interaction.

6.2.5. Formal foundation of service-orientation (FOCUS theory and
JANUS approach) and the VEIA approach

The JANUS approach [Broy, 2005] (based on the FOCUS theory
[Broy and Stolen, 2001]) is the formal foundation of our concepts. In the Ap-
pendix A (Embedding into a theoretical framework) we embed our approach into this
formal framework. Furthermore, we compare our approach to the predicate-based,
service-oriented approach by the VEIA project which is also based on the concepts
of FOCUS and JANUS.

Both works are just mentioned at this place for the sake of completeness.

6.3. Comparison of the basic system model

In Section 4.1.3 (Specialties with embedded systems) we introduced our basic system
model. In this section we compare it with the Four Variable Model by Parnas and
Madey.

Background information

The Four Variable Model (FVM) was introduced by Parnas and Madey
[Parnas and Madey, 1995] to organize software documentation. The authors both
give a formal foundation for the FVM and a list of documents which are needed
to completely document the system-to-be. Other approaches enhance the FVM by
providing software tools or requirements development guidelines, e. g. the Software
Cost Reduction method (SCR, [Heitmeyer, 2002]) and the Core Method for Real-Time
Requirements (CoRE, [Faulk et al., 1992]).

Approach

The basic idea is to document a system by describing it in a mathematical way. The
system behavior is specified by functions relating exactly one element of the domain
to one element of the range.

To that end, four variables are defined:

143

6.3. Comparison of the basic system model 6. Related Work

• Input variables represent the hardware input provided by sensors, switches,
etc. For example, an input from a speed sensor may be a 16-bit unsigned quan-
tity.

• Monitored variables capture environmental quantities from inputs. They are
described in terms of the domain vocabulary. For example, the current speed
of the car may be expressed by a variable "velocity".

• Controlled variables represent environmental quantities from outputs. Analo-
gously to monitored variables, they are expressed in terms of the domain vo-
cabulary. For example the angles of the seat position (of the driver’s seat) may
be described by a controlled variable.

• Output variables provide values that the hardware understands. For example,
a special floating-point value sent to an actuator may set the angles of the seat
to the required position.

Furthermore, four functions are specified on these variables:

• IN maps monitored variables to input variables and thus describes the behav-
ior of the input devices (e. g. sensors or switches).

• REQ maps controlled variables to monitored variables and thus describes the
behavior which the system is supposed to expose.

• OUT maps output variables to controlled variables and thus describes the be-
havior of the output devices (e. g. actuators).

• NAT maps monitored to controlled variables and thus defines the environmen-
tal context of the system.

Commonalities and Differences

The Four Variable Model describes the system by mathematical functions mapping
elements of the domain to the range. In our methodology, these mappings are de-
scribed by automata which process inputs and produce outputs.

In case our methodology is used to model the overall (possibly further decomposed)
system, we abstract from the mappings IN and OUT of the FVM. We then use the
monitored and controlled variables for the definition of input actions and output
actions, respectively. In the subsequent system design the system-to-be would be
divided into hardware (including input and output devices). The model would then
have to be refined accordingly.

In case our approach is used for the specification of an embedded system (being
surrounded by other system entities within the overall system) the logical input and
output actions represent the input and output variables of the FVM. The design spec-
ification of the overall system would have to take care of the mapping of monitored
to input variables and controlled to output variables.

In this chapter, we compared our work to related approaches. In the following chap-

144

6. Related Work 6.3. Comparison of the basic system model

ter (Chapter 7, Summary, evaluation, and outlook) we summarize our methodology,
give an evaluation of it, and list future research topics.

145

6.3. Comparison of the basic system model 6. Related Work

146

Chapter 7
Summary, evaluation, and outlook

In this chapter, we summarize our approach again briefly. Furthermore, we evaluate
the approach by listing a set of its advantages and disadvantages. Finally, we give an
outlook on future research topics.

Contents
7.1. Summary . 147
7.2. Evaluation . 149
7.3. Outlook . 162

7.1. Summary

In this thesis, we introduced a methodology for the modeling of usage behavior of
multi-functional systems. Figure 7.1 summarizes the approach graphically.

The starting point of our approach are functional requirements which are given tex-
tually, i. e. in an informal form.

The first three steps define the informal phase:

In the first step, the atomic services which are the "smallest" user-visible services of
the system are identified. They are specified textually by means of a table. Further-
more, persistent data needed by the atomic services is informally specified in a table
repository.

Afterward, the logical syntactic system interface is determined. It is comprised of a
set of logical input and logical output channels and their logical input actions and logical
output actions, respectively. The channels and actions are specified in table form and
by means of an SSD.

In the subsequent step, the service relationships are identified. We distinguish be-
tween vertical service relationships and horizontal service relationships. Vertical relation-
ships hierarchically decompose the overall system functionality into sub services.
We specify the vertical relationships graphically by means of a service hierarchy. Ad-
ditionally, horizontal relationships are identified. We hereby identify a set of basic

147

7.1. Summary 7. Summary, evaluation, and outlook

Fo
rm

al
 P

ha
se

 (D
es

ig
n)

In
fo

rm
al

 P
ha

se
 (R

E)
St

ar
tin

g
Po

in
t Functional

requirements
given
informally

formal

Identification of
atomar services

Identification of
service relationships

Identification of logical
syntactic system interface

(inputs and outputs)

Struc-
tured
text

(service names +
service relationships)

informal

Formal specification
of each atomar service

Translation of horizontal
into basic relationships

+ Data Typ
Definitions

Combination of services to
super-services according to

basic relationships

R
es

ul
t Functional
requirements
given formally

(service behavior)

(Service names +
persistent data)

Figure 7.1.: Steps of the methodology (activity diagram)

148

7. Summary, evaluation, and outlook 7.2. Evaluation

service relationships and (complex) horizontal relationships which can be translated into
basic relationships. It might be necessary to further specify the horizontal relation-
ships by means of parameter. Data dependencies between services that operate on
the same persistent data are also captured. The sum of all service relationships is
graphically represented in the service graph.

By performing the next steps of our approach (the formal phase), we stepwise become
more formal until a formal model of the system behavior is obtained:

First, the atomic services (which are the leaves of the service graph) are formally
specified. Their syntactic interface is specified by an SSD, their semantic interface is
specified by an STD, respectively. The persistent data is specified formally, too, e. g.
data types are defined (if needed) and assigned.

Simultaneously, the complex horizontal service relationships are translated into basic
service relationships.

Finally, the modular formal service specifications are combined. To that end, we
make use of a bottom-up approach concerning the service graph. Services which are
responsible for realizing the horizontal relationships are introduced. Depending on
which basic relationships point to a service, we stepwise adapt its behavior by im-
plementing standard control interfaces. As some relationships might depend on the
execution status of the services, we also have to adapt the modular service specifi-
cations to provide the respective information. Furthermore, conflict solving services
are introduced to resolve conflicts. Additionally, conflicts because of services which
concurrently write the same persistent data have to be eliminated.

The result of our approach is a formal model of the overall system functionality from
a black box perspective.

In our methodology the system functionality is comprised of "smaller" services.
Thus, all services except the atomic services have an inner structure. As already
explained in 4.2 (Overview of methodological steps) this might lead to the assumption
that our approach is not a black box approach. However, as we only model the ob-
servable usage behavior of a system we consider our methodology to be a black box
approach.

In the appendix (Appendix A, Embedding into a theoretical framework)) we
embed our approach into a formal framework: the FOCUS/JANUS theory
[Broy and Stolen, 2001, Broy, 2005] and compare it to a predicate-based service-
oriented approach.

7.2. Evaluation

In this section, we evaluate our approach by listing its advantages and disadvan-
tages. Furthermore, we describe our experience with the application of our method-
ology.

149

7.2. Evaluation 7. Summary, evaluation, and outlook

7.2.1. Advantages of the approach

In Section 1.3 (Contributions of this thesis) we already mentioned some advantages of
our approach. We again summarize them shortly:

We defined our process with the help of methodological steps. Therefore, the user is
given a systematic procedure. The output of each steps is well-defined. These outputs
can be used to control the intermediate results of the process.

The process allows the enhanced reuse as the approach primarily is based on the con-
cept of modularity. Both modular service specifications and a catalog of complex
horizontal service specifications (defining how these complex relationships can be
translated into basic relationships) can be reused. Other artifacts, like the specifica-
tion of actions or channels, of course, can be reused, too.

Our approach makes relationships between services explicit. Therefore, the com-
plex interplay between services can be understood (the "big picture" is sketched out).
The dependencies between functionalities and their effects on the core behavior of
services (modular service specifications) is modeled. Furthermore the dependencies
between service relationships is modeled. For example, in our running example,
we handled the conflict of the enabling/disabling of the battery service and the en-
abling/disabling of the driver’s door open service.

Although the elicitation of requirements is not in the (main) focus of this thesis, we
have seen that the detection of missing requirements (e. g. due to the information re-
quired by parameter to service relationships) is also a nice side-effect of our method-
ology. For example, the XOR relationship requires the information what has to be
done in case a service is already running and another service is called.

In our approach, we have a quite seamless transition from informal service descriptions
to formal service models. This ensures that people of different formal backgrounds are
served. For example, the client can reason about the system specification given by the
service graph and the informal textual service descriptions behind the inner nodes
and the leaves. The designer can reason about the system specification given by
the formal model. Furthermore, we gave guidelines how to informally specify func-
tional requirements to ensure a smooth transition to our methodology. This helps
even more in bridging the gap between informally specified and formally specified
requirements.

Looking at different requirements specifications in industry, we observed that the
identification and specification of the system boundaries is often neglected. In most
cases only signal/message names were listed as inputs and outputs. In our method-
ology we take care of this fact by introducing a dedicated step: the identification of
the (logical) system interface (see Section 4.5, Logical syntactic system interface). Thus it
is specified which information is needed by the system (e. g. the current seat position
and the velocity of the car) and what quantities are controlled by the system. The
inputs and outputs are described on a logical level. This increases the understand-
ability.

As another consequence of the modular approach, parts of the system functionality
can be specified in isolation and integrated afterward. This allows for distributed de-
velopment. This can for example be observed in 4.8.4 (Combination of the services FRONT

150

7. Summary, evaluation, and outlook 7.2. Evaluation

DOOR OPEN, MANUAL ADJUSTMENT, ERR LOW BATTERY MANUAL, ADJUSTMENT BY

MEMORY and ERR HIGH VELOCITY).

Due to the modular character of the approach, the model can be modified quite eas-
ily (enhanced modifiability). For example, if relationships between services change, the
modular service specification does not have to be changed. The stepwise modifica-
tion of the service specification might have to be redone and adjusted. If a service
relationship changes, this might only cause effects to the relationship service which
realizes the service relationship. Simplified spoken, the advantage of our approach
is that the information is specified where needed. For example, the execution status
of a service is specified within the service. The affection of a service behavior (e. g.
when the service is interrupted) is specified in the service behavior. Conflicts can be
solved modularly, too, by means of conflict solving services.

As mentioned in 4.8.1 (Concepts), the status actions introduced (ACTIVE and INAC-
TIVE) might not be sufficient. For example, for some systems it might be necessary to
deliver the status "stand-by" or something as some relationships may depend on it.
However, our approach can be enhanced pretty easily. The set of status actions can
be enlarged by an action STAND-BY for example that is sent to a service realizing a re-
lationship that depends on this status. To that end it should be investigated whether
the set of necessary status actions depends on the system type and/or the domain.

As far as the development process is concerned, the design of the system functional-
ity from a black-box perspective of course is just the beginning. Subsequent phases
would deal with the white box functionality (see Section 7.3, Outlook). The advantage
of our model is that it can be distributed as it is comprised of modular services (rep-
resented by SSDs). The automata can be distributed to components. This would not
be possible, if we specified the overall system functionality by means of one overall
automata for example. Therefore, the result of our methodology serves as a good basis
for the subsequent phases.

As the introduced concepts all are formally founded, they are given a precise semantics.
For example it is specified what the difference between "disable" and "interrupt" is.
Additionally, the process can be tool-supported.

As far as the notational techniques are concerned, suggestions are made for each step.
At places where possible, standard notations (like state charts) are used. Additionally
introduced notational techniques are very intuitive and easy to learn. However, the
methodology does not depend on particular notional techniques. For example, for
the formal specification of the services, sequence diagrams like MSCs [ITU-T, 1996]
could be used to. In general, arbitrary suitable notational techniques can be used as
long as the concepts (e. g. realization of basic relationships) are mapped to them.

7.2.2. Disadvantages of the approach

Despite its advantages, the approach also has disadvantages.

For small scale systems (with trivial services) the approach most probably can be
considered to be an "overkill". Therefore, it only seems to be suited for medium to
large scale systems. Furthermore, the specification of trivial services like the ERROR

LOW BATTERY services might not seem to be appropriate. This in deed makes only

151

7.2. Evaluation 7. Summary, evaluation, and outlook

sense if service relationships point from or at these trivial services. Otherwise, a
leaner model could be achieved by combining the behavior of trivial services with
other services. (See also the discussion on an adequate service granularity below.)

In the introduction we motivated a strict black box view onto the system as appro-
priate for the requirements engineering phase. However, this causes an additional
effort when modeling the system as the white box functionality also has to be mod-
eled. Therefore, this strict distinction might not be reasonable for each system. For
example for systems which do not exhibit (a high degree of) feature interaction, it
might be more advisable to directly model the white box functionality of the system-
to-be. Generally speaking the cost performance ratio should be pre-estimated first.

Another disadvantage of our methodology arises because of the strict black box view
onto the system functionality. In case services encapsulate a larger part of identi-
cal behavior this behavior has to be modeled twice. When modeling the white box
behavior of a system, this common behavior could be realized in a separate func-
tion which is called by both services. However, service calls are not allowed in our
methodology as they already concern the internal realization of the functionality.

As mentioned in the introduction, our methodology is only adequate for modeling
the behavior of systems having a trivial set of persistent data. The approach has to be
modified accordingly to handle systems with a more comprehensive set of persistent
data.

As already discussed, Figure 4.34 visualizes another problem of our methodology.
After having sent the respective action to the motor controller the service sends the
status action INACTIVE to the XOR relationship service. This however assumes that
the controlling of the motor only needs one tick. If it takes longer this has to be
taken into account in the specification of the ADJUSTMENT OF BACK BACKWARDS and
ADJUSTMENT OF BACK BACKWARDS services. Thus, our methodology either has to
make restrictions to the environment or has to obey restrictions of the environment.

S3

S1 S2

Figure 7.2.: Time tick semantics of SSDs and STDs (SSD + STD)

Time semantics

The worst problems - due to our opinion - arise because of the time tick semantics
of our approach. Quantitative timing information is intricate to model. Consider a
requirement which demands that the system has to react within five seconds. In this
case we could determine that one tick is one second. However, the system’s reaction

152

7. Summary, evaluation, and outlook 7.2. Evaluation

Manual
adjustment Adjustment of back

(strongly causal)

a: back_backw c: m_back_backw

init

a?back_backw

b?back_forw

c!m_back_backw

d!m_back_forw

e!active

e!active
f?proceed

f?proceed

disabled

f?disable c!nil, d!nil

f?disable
c!nil,
d!nil

Adjustment of distance
(strongly causal)

Adjustment of rear area
(strongly causal)

Adjustment of front area
(strongly causal)

f: disable, proceed

e:
active,
inactive,
disable

e!disabled

f?disable

a?back_backw

max2Par
(weakly
causal)

…

…

…

…

…

…

b!back_forw

b: back_forw d: m_back_forw

Figure 7.3.: The MANUAL ADJUSTMENT service - modified (SSD + STD)

could occur after one tick (i. e. one second), two ticks, or up to five time ticks. We
would have to model all possible behaviors.

Furthermore, according to the semantics of our notational techniques, we introduce a
time delay each time we decompose a service. Consider Figure 7.2. Each sub service
needs (at least) one time tick to transform input into output. Consequently the super
service S3 needs at least two time ticks. When combining sub services to more com-
prehensive services, these delays sum up. As other services communicating with S3
need the output of S3 their behavior has to be scaled accordingly. In the following
we outline how the approach can be modified to handle this problem. However, as
the modifications make the approach more complex, it has to be decided whether the
richer time semantics are worth the complexity.

In the modified approach we allow for both weakly causal and strongly causal ser-
vices. Transitions of weakly causal services cause no time delay whereas transitions
of strongly causal services take at least one time tick [Broy and Stolen, 2001]. In the
latter case, in our methodology, transitions take exactly one time tick. Atomic ser-
vices are strongly causal entities. Relationship services, status calculating services,
basic handling services, and conflict solvers are weakly causal entities. As loops al-
ways incorporate an atomic service, we do not get problems with the semantics and
thus do not have to introduce delays.

Additionally, each transition of an atomic service is refined into 4 segments. The
service behavior for each segment is defined as follows:

1 segment: Read the system inputs (i. e. logical input actions that are visible at the
system boundary).

153

7.2. Evaluation 7. Summary, evaluation, and outlook

g: door_open

Manual adjustment (strongly causal)

Adjustment of back
(strongly causal)

Adjustment of distance
(strongly causal)

Adjustment of rear area
(strongly causal)

Adjustment of front area
(strongly causal)

max2Par
(weakly
causal)

Front door open (strongly causal)

closed

g?door_open

open

h?door_closed

i:
disable,
enable

Low battery
(strongly
causal)

…

CS1 (weakly
causal)

CS2 (weakly
causal)

CS3 (weakly
causal)

CS3 (weakly
causal)

CS
(wc)

i!disable

i!enable

h: door_closed

Figure 7.4.: The services MANUAL ADJUSTMENT, FRONT DOOR OPEN, and LOW BATTERY -
modified (SSD + STD)

154

7. Summary, evaluation, and outlook 7.2. Evaluation

2 segment: Send the status that the service is going to be in (ACTIVE or INACTIVE)
and the intended ENABLE/DISABLE/INTERRUPT/CONTINUE requests to
other services (if need be).

3 segment: Read the ENABLE/DISABLE/INTERRUPT/CONTINUE actions sent by
other services (if this is the case).

4 segment: Send the system outputs (i. e. logical output actions that are visible at
the system boundary) if not being DISABLED/INTERRUPTED or go to the
DISABLED/INTERRUPTED state without sending the system outputs.

The execution of the 4 segments is performed sequentially and takes one time tick
altogether.1

Figures 7.3 and 7.4 contain an extract of the case study as an example.2 The transi-
tions of the service ADJUSTMENT OF BACK are refined accordingly. If the service is
in the initial state, it first reads the input actions and then sends the status it is go-
ing to be in - namely ACTIVE. In the next segment, i. e. the third segment, it receives
the commands by the weakly causal service relationship MAX2PAR. If the service is
allowed to proceed (indicated by receiving the action PROCEED) the service sends its
outputs. If not, the service does not send its outputs (but NIL) and enters the state
DISABLED. As long as the service is in the state DISABLED it asks the MAX2PAR service
for permission to execute its behavior if it received the input actions. If it is allowed
to, it behaves as specified modularly. If not, is stays in the state DISABLED.

In Figure 7.4 we see the sequential composition of several conflict solving services.
As conflict solvers are weakly causal entities, no time delay is introduced.

As mentioned above, the model now gets more complex. However, the model can be
obtained by the modular specification quite easily. For example, one could specify
the activity status in a separate table. For each state and each input situation, one
could specify the status of the service (i. e. ACTIVE or INACTIVE). As a consequence
we get the label of the second segment of each transition. Additionally, in the third
segment it is checked whether the service is interrupted or disabled.3 The service
would then enter the DISABLED or INTERRUPTED state, respectively. In the case of
interruption, the state which was left has to be remembered, too, to enable the con-
tinuation later. In case the service is allowed to proceed, the service sends the outputs
as specified modularly. The rest of the behavior can be obtained similarly.

The ideas presented above are described in more detail in
[Hölzl and Rittmann, 2008]. The interested reader is referred to this document.

Variation of schematic procedure and service granularity

Another problem is that the consequent composition of (primitive) services may re-
sult in models that are more complex than necessary. The presented approach pro-

1This proceeding is similar to micro programming where the interrupt line is checked before a com-
mand is executed.

2For reasons of clarity, the services ADJUSTMENT OF THE BACK BACKWARDS and ADJUSTMENT OF THE
BACK FORWARDS are modeled with one STD.

3Note that a DISABLE and INTERRUPT command can not be received at the same time as a conflict
solving service would already resolve this conflict.

155

7.2. Evaluation 7. Summary, evaluation, and outlook

vides a schematic procedure and leads the developer. However, at some points the
models get too complex. Of course, if we do not proceed like the methodology sug-
gests we can optimize the models. The questions arise if we can diverge from the
procedure and if yes how.

The first question can be answered quite easily. As our approach is based on the
principle of modularity it does not matter how the internal model of a service looks
like. The important thing is that the specifications of the atomic or combined services
realize the interfaces that are demanded by the service relationships. For example it
does not matter how the MANUAL ADJUSTMENT functionality is internally structured
and realized as long as it can handle the DISABLE and ENABLE requests and resolve
conflicts. However it may also be necessary to add information about the timing
behavior of a service (see discussion above).

The second question is more intricate to answer. First, the level of the service granu-
larity is important. If services are decomposed too far, the models get more complex
than needed. For example, as far as our running example is concerned, we definitely
carried the decomposition too far. However, we wanted to explain all concepts of
the approach by means of a well manageable case study. In general it is difficult
to answer what the appropriate level of service granularity is. This problem resem-
bles the question when to introduce a separate class in object-oriented programming.
As mentioned before, it may be adequate to introduce sub services if relationships
only point to or from a sub behavior of a service. Moreover, a complex functionality
should be decomposed into sub services in order to handle the complexity. Of course
the experience of the developer has to be taken into account, too. If the black box
specification of a service is already realized and should be reused, it is not necessary
to decompose it either. This is for example possible in an OEM-supplier-relationship
where the internal realization of a package is often not disclosed.

Another way to simplify the model is to use high level states in order to realize
exclusively available behavior indicated by the XOR service relationship. The high
level states would then contain a state for each exclusively executed service and the
switch condition (i. e. the XOR logic) on the transitions. However this is only pos-
sible if the services are not required to oppose a certain behavior while being dis-
abled/interrupted as the control flow is only given to one service at the time. For
example if there exists an XOR service relationship between the services A and B and
B is supposed to issue an error message while being disabled, it also needs control
flow. Thus, an XOR relationship can not always be realized by introducing a high
level automaton.

Furthermore, simple conflicts (e. g. concurrent disable and interrupt requests) can
be solved without the introduction of an additional conflict solver. At this place
the transitions can be labeled accordingly. For example, a transition with the input
pattern A?DISABLE, B?INTERRUPT (PRIO==5) may lead to the state DISABLED and
not to the state INTERRUPTED.

To put it in a nutshell, a schematic procedure as given by our methodology is sup-
posed to guide the developer, but may result in too complex models. According to
their experience, the developer is free to diverge from the schema and to optimize
the model as long as the interfaces demanded by the service relationships are real-
ized properly.

156

7. Summary, evaluation, and outlook 7.2. Evaluation

7.2.3. Experimental analysis of the approach

In the last sections we listed advantages and disadvantages of the approach. In
order to evaluate it, we give some experimental analysis at this place. We hereby
proceed similarly as proposed by the Goal Question Metric approach (GQM)
[Basili et al., 1994] which is a measurement mechanism for feedback and evaluation.
We first identify the overall goal of our methodology, derive questions to character-
ize the abstract goal, and give metrics on how to assess the degree of achievement.
Finally we describe the necessary information and give the results of the analysis.

The overall goal of the methodology is to improve the quality of the requirements engi-
neering process from all stakeholders’ perspectives4. In order to determine how well this
goal is achieved, many questions are relevant. In the following we give and answer
those questions which we consider to be most important:

1. How well do stakeholders (with different backgrounds) understand the nota-
tional techniques used?

2. Is the quality of the requirements specification document improved by the pro-
cess?

3. Is there a seamless transition to the design phase?

4. How well are dependencies between system functionalities captured?

Question 1 is important as stakeholders with different backgrounds are involved in
the requirements process, e. g. people of the marketing department and designers
having an informal and formal background, respectively. Furthermore, for the ac-
ceptance of the approach it is also important to have notational techniques which are
intuitive.

The requirements specification document is the result of the requirements engineer-
ing phase and thus the central artifact. In practice, the quality of the requirements
specification document is crucial as incomplete, inconsistent, and imprecise require-
ments lead to problems in the subsequent development phases. Question 2 is used to
assess the quality of the requirements specification document in regard to its degree
of completeness, preciseness, and consistency.

Question 3 characterizes a known problem of current development processes. As
mentioned in the introduction, there is a gap between the informal requirements
engineering phase and the formal design phase. Thus, the transition is error-prone.

In the thesis at hand we focus on multi-functional systems, i. e. systems which are
characterized by a high degree of dependencies between functionalities. We thereby
also focus on how well relationships are captured by our methodology (see Question
4).

In the following we will answer each question. To that end we give metrics to assess
the answers and perform the evaluation, respectively. For a quantitative evaluation
of the questions, comprehensive empirical studies would be necessary. As this is
not in the scope of this thesis, we give a subjective evaluation which is based on our

4In the GQM approach it is explicitly demanded to specify the viewpoint from which the goal is
considered. For our evaluation we do not take into account a particular stakeholder, therefore we
chose to specify the goal "from all stakeholders’ perspectives".

157

7.2. Evaluation 7. Summary, evaluation, and outlook

personal experience and on feedback given by colleagues (from academia) and prac-
titioners (from industry) in the course of respective PhD seminars and an ongoing
collaboration project with a car manufacturer.

How well do stakeholders (with different backgrounds) understand the
notational techniques used?

Due to our experience, the informal service hierarchy and service graph are a good
means to discuss the system functionality and the dependencies with people who do
not have a formal background. As we make use of a FODA-like tree notation and
describe the dependencies informally (by textual descriptions) this informal model
was immediately understood. Almost no questions came up when presenting these
informal models.

The formal models (i. e. System Structure Diagrams and State Transition Diagrams)
were not immediately understood by people with informal background. However,
this was not stringently necessary as the system functionality was already discussed
with the help of the informal models. People having a formal background (like de-
signers) understood the models with no problems as SSDs and STDs are just dialects
of known notational techniques like structure diagrams and automata. We basically
had to describe the underlying semantics of the notational techniques.

However, there was one problem which we had to deal with: Although people were
convinced why a pure black box view onto the system functionality (without infor-
mation about the realization) is important, it was is hard to make people actually stick
to this outer perspective. Often people wanted to decompose services into functions
that are called by other services and to introduce call relationships. Additionally,
practitioners did not abstract from technical signals, but continued to use very tech-
nical messages/signals for the description of the system boundaries.

Is the quality of the requirements specification document improved by the
process?

As mentioned above, the requirements specification document is the central result
of the requirements engineering phase. It is important that the requirements are
described completely, consistently, and without ambiguities in order to avoid errors in
the subsequent phases. In this paragraph we describe our experiences concerning
which errors where found in an existing requirements specification document when
applying our approach to it.

To that end, we modeled the black box functionality of the power seat control sys-
tem which is described in [Houdek and Paech, 2002]. [Houdek and Paech, 2002] is
an exemplary requirements specification document for a fictitious automotive door
control unit. It is not a real industrial specification, however practitioners from a car
manufacturer were engaged in its creation. It aims at being the basis for case studies
and claims to match industrial specifications regarding content and complexity. We
chose this case study as due to issues of secrecy, it is hard to get real requirements
specification documents from industry. Furthermore, we did not want to create our
own requirements specification document (as a basis for the evaluation) as we are fa-

158

7. Summary, evaluation, and outlook 7.2. Evaluation

miliar with our approach and already pay attention to critical issues like the specifi-
cation of dependencies between services. Moreover we assume that the specification
had been reviewed (prior to publication) and thus serves as a realistic basis.

We applied our approach to the power seat control system of
[Houdek and Paech, 2002]. Additionally, we totalized the model to obtain a
complete functionality. No tool support was available therefore the models (service
hierarchy/graph, SSDs, and STDs) were drawn on paper. Every time missing, im-
precise, or conflicting requirements were identified, the type of error was classified
and its occurrence was counted. Furthermore, we introduced missing requirements
and resolved conflicts due to our idea of how the system functionality is reasonable
as no other stakeholders were available.

After having modeled the exemplary power seat control system we obtained the fol-
lowing evaluation:

• Amount of requirements to be modeled: 205

• Missing requirements: 7

• Imprecise requirements: 1 (we did not understand what the requirement de-
mands)

• Miscellaneous: 2 requirements demanding the same functionality (thus 1 re-
quirement is redundant)

As far as the missing requirements are concerned, one missing requirement was
needed to describe a missing relationship parameter. It was determined - as in our
running example - that at most two directions of the seat are allowed to be controlled
at the same time. However it was not specified, what happens if more than two di-
rections are called at the same time. Two further requirements had to be added to
describe missing service relationships. We identified two disable relationships but
no enable relationships for two services, respectively. Moreover, three requirements
were needed to describe the exact service behaviors. It was specified that an error
message has to be processed but not if this error message shall be processed once or
continuously as long as the error holds. Last, the initial values for the seat position
were not given. A requirement demanding that the automatic adjustment can only
take place after a position has been saved was not given either.

Note, that in order to show that the introduced requirements engineering method-
ology reaches its aim - the complete, precise, consistent specification of functional
requirements - one would have to show that the resulting requirements specification
document does not have any more missing or conflicting requirements. However,
this can not be accounted as the only way to detect errors is to perform reviews.
Therefore, we showed how many missing, imprecise, and conflicting requirements
were detected.

As a result of our experiment we also see another advantage: Quality checks for
a requirement specification document can be automated. For example, it can be
checked if there are still underspecified automata missing transitions or exhibit-
ing non-determinism. As the semantics of our notational techniques are formally

5In the original specification, some requirements could be split in two or more sub requirements. We
structured the requirements as we think is appropriate.

159

7.2. Evaluation 7. Summary, evaluation, and outlook

founded, the models already specify the functional requirements precisely.

Is there a seamless transition to the design phase?

Practice often suffers from the gap between the informal, textual descriptions of the
requirements engineering phase and the formal models of the design phase. Our
methodology aims at bridging the gap by formalizing functional requirements step
by step. Concerning the question, whether the transition between these phases is
seamless we can only give a subjective evaluation.

Usually, we have textually formulated requirements at the end of the requirements
phase. In our methodology, the result is a formal model of the system functionality.
The result is modeled by typical design models, i. e. structure diagrams (SSDs) and an
automata dialect (STD). To answer the question above we have to investigate if the
result of our approach matches the starting point of the subsequent design phase.
This is difficult to answer as industry usually (and unfortunately) does not make
use of design models but immediately starts with coding. Often the requirements
documents are generated afterward on basis of the implementation. With regard to
an "ideal" development, the result of our approach seems to be a good starting point
for design.

We further experienced the following fact: The better the structure of the informal
requirements specification is, the easier it is to develop the service graph. In require-
ments documents, usually one functionality is described per section or subsection
(depending on how comprehensive the functionality is). Usually, the relationships
between functionalities are specified in either of the sections describing the func-
tionalities. Sometimes dependencies are also specified in the common super section.
If there exist dependencies between a functionality and other functionality that is
specified several pages later in the document, the handling of these dependencies is
error-prone. Usually these relationships are only taken into account when design-
ing the functionality where the dependency is mentioned. Of course, the opposite
also holds: The worse a requirements specification document is structured, the more
effort it takes to obtain the service graph.

How well are dependencies between system functionalities captured?

Another goal of our approach is to make dependencies between functionalities ex-
plicit and to understand their effects. In order to assess if this goal is met, we again,
can only give a subjective evaluation: The service hierarchy explicitly captures re-
lationships between user observable services. The effects of these relationships are
specified by the systematic adaption of the modular service specifications.

Due to feedback by our industrial partner, relationships like "disable" and "interrupt"
(as defined in this thesis) are often confused in practice. Furthermore, practitioners
with who we spoke especially appreciated the fact that our methodology also investi-
gates dependencies between relationships (like the enabling/disabling of the battery
and the front door open services).

160

7. Summary, evaluation, and outlook 7.2. Evaluation

Further remarks and limitation of study

Tool support is inevitable. As there is no tool support yet (see Section 7.3, Outlook)
we had to make use of other tools (like the organigrams provided by Microsoft Of-
fice Visio) or even paper and pencil to draw the service hierarchies/graphs of the
case studies. The tool AutoFOCUS 2 is suitable for the specification of the logical
architecture (hierarchical SSDs with assigned STDs). However, the stepwise creation
of hierarchical models out of already specified models is difficult. Additionally, we
faced the above mentioned problems concerning the time ticks. However, we made
good experiences with the consistency checks and possibility of simulation provided
by AutoFOCUS 2.

After a PhD seminar at university, two colleagues showed their interest in our work.
They are concerned with testing human user interfaces and might base their work on
our (extended) set of basic service relationships.

The experience presented in this section is just a first step toward a comprehensive
evaluation.6 For a detailed evaluation the following limitations of study have to be
overcome:

First of all, a more comprehensive system should be modeled. This system should
be a real, industrial system. However, as mentioned above, it is difficult to get such
sensitive data as they are competitive advantage.

For evaluating the effects of the new requirements engineering approach, it has to
be embedded in an overall process. Errors are the more expensive the later they
are found in the development process. Therefore, errors made in the requirements
engineering phase can cause high costs. In order to calculate the cost performance of
our approach it would be necessary to consider the overall process. Only then, the
additional effort in modeling the requirements can be judged and justified.

Another limitation of the study is that the approach was applied by the inventor
herself. To get an understanding of how easy the approach is to learn, typical re-
quirements engineers from industry should apply and evaluate it.

Another interesting point is the question how good the approach could be used in
industry in general. This is concerned with a migration strategy of the academic
approach to an industrial setting. As mentioned, industry rarely uses models. Usu-
ally, they immediately start with the coding. Within the ongoing collaboration project
with a car manufacturer, we intend to make first steps to realize ideas of the approach
in industry. For example, the industry - as a first step - could make use of service
graphs perhaps annotated with (semi-) formal specifications like UML Use Case Di-
agrams or Sequence Diagrams. Seminars with practitioners are planned which will
give insights on how this can be done and further potential for the realization of the
approach in a non-academic surrounding.

The validation given in this section is just a first step. By applying the approach to
a small to medium-scale case study, a good impression on the advantages can be
achieved. However, we did not identify and discuss the costs that arise due to the
application of the approach. In order to evaluate whether it is advisable to make

6As mentioned above, we will evaluate this work further during an ongoing project. Due to reasons
of secrecy the results will probably not be made public.

161

7.3. Outlook 7. Summary, evaluation, and outlook

use of an approach, its cost-performance ratio has to be calculated. This however
is intricate. As a next step it would furthermore be necessary to compare the cost-
performance ratio of our approach with the cost-performance ratio of alternative ap-
proaches. This is again difficult as the cost-performance ratio of other approaches of
course has to be known but is rarely documented or not documented at all in liter-
ature. Furthermore, if the advantages of two approaches diverge, the comparison is
even more difficult.

In summary, analyses of the cost-performance ratio and a comparison with cost-
performance ratios of alternative approaches are necessary to decide whether the
application of the approach is profitable.

7.3. Outlook

In this thesis we presented a methodology for modeling the usage behavior of a
multi-functional system. We hereby only modeled its black box functionality, i. e.
the behavior that can be observed at the system boundaries. This is adequate for the
requirements engineering phase which aims at describing what the system has to do
and not at describing already the technical realization. For an overall development
methodology of course it has to be investigated how to proceed from the result of
our approach. Future research topics include the transition from a model of the black
box functionality to a model of the white box functionality. Further topics deal with
the mapping of the system functionality to a (distributed) component architecture.

In Section 4.10 (Further considerations) we already mentioned interesting questions
related to our approach. For example the introduction of different views onto the (pos-
sibly very comprehensive) service graph and dependency analyses.

Moreover, it has to be investigated how verification of the formal model of the system
functionality can be performed, e. g. by model checking.

In our methodology we only modeled functional requirements that contained qual-
itative timing information (which is the result of causality). Often, however, quan-
titative timing information is given. The methodology has to be enriched by con-
cepts and notational techniques for dealing with explicit timing requirements or non-
functional requirements in general. For example the usage of timed automata could be
thought of.

The requirements of our running example only describe discrete behavior. Contin-
uous functionality is not covered. The approach also has to be adapted to fit the
requirements for modeling continuous behavior.

Product line development is an upcoming paradigm which aims at maximizing reuse.
The main idea is to explicitly identify commonalities and differences of different
products. On basis of a common platform, individual products are developed by
adding "building blocks" to this platform. For future work we suggest to enrich our
methodology with product line concepts.

As notational techniques for the formal specification of the system services we sug-
gested an automata dialect. It should be investigated if other notational techniques
are more suitable. This may depend on the system type. For example, for business

162

7. Summary, evaluation, and outlook 7.3. Outlook

information systems (BIS), sequence diagrams could be more appropriate as BIS usu-
ally are described by interaction sequences. The concepts of the presented approach
would then have to be mapped to the other notational technique.

There does not exist a 1:1 mapping between functional requirements and services. As
far as the running example of this thesis is concerned, the identification of services
was quite easy. However, for other systems this may be quite tricky. Often the sys-
tem functionality is described by different use cases. The set of use cases implicitly
described system services. How to identify services out of a set of overlapping use cases
definitely is an interesting topic for future work.

Another interesting question is how the formal model of atomic services can be ob-
tained. The transition between informally specified requirements and formal models
(automata for example) could be simplified by defining textual patterns which can be
transformed into models quite easily. This idea is currently investigated in a PhD
Thesis (Andreas Fleischmann).

Medium to large scale systems can not be developed at once but have to be decom-
posed in order to handle complexity. The "pieces" (components) into which the sys-
tem is composed have to be integrated in the end to obtain the overall system. Today,
the decomposition and integration of comprehensive systems is not sufficiently un-
derstood. As far as our approach is concerned the following steps seem to be neces-
sary: First, the black box functionality of the system has to be modeled (as presented
in this thesis). Then the transition from black box to white box functionality has to
be done. The white box functionality can be decomposed into smaller sub systems
which in turn are described by a black box view onto the sub system functionality.
These sub systems would then be developed (and further decomposed if necessary)
and integrated in the end. The transition from systems to sub systems is definitely a
topic for future research.

In this thesis we introduced a set of basic service relationships. The complex hori-
zontal service relationships can be put down to these basic service relationships. It
is probable that for each domain a set of horizontal service relationships could be
constant. However, this seems to be an issue of practice instead of future research.

The model of the black box functionality has to be totalized to define the system
behavior in each situation. However, some input combinations might not be of rele-
vance as inputs can exclude each other (e. g. the driver can not move the window up
and down at the same time). In order to reduce the effort when making the model
total, dependencies between logical actions should be captured and taken into con-
sideration (see Section 4.5.1, Concepts).

As mentioned in Section 3.2 (State Transition Diagrams (STDs)) transitions (within au-
tomata) take one time tick. This may impose unwanted time delays. A possibility
to avoid this problem is to scale the time ticks within service specifications. How to
deal with time delays is definitely an interesting topic for future research.

For a pragmatic approach, tool support is inevitable. Future work should therefore
deal with the development of adequate tools realizing the methodology.

In Section 7.2.3 (Experimental analysis of the approach) we gave some experimental anal-
ysis based on our experience. Further analysis should be performed to evaluate the
approach in more detail. As mentioned above, the approach should be evaluated in

163

7.3. Outlook 7. Summary, evaluation, and outlook

the context of an overall development process to analyze the effects the approach also
has on other phases of the development process. This is partly done in an ongoing
collaboration with industry.

164

Bibliography

[Abbott, 1983] Abbott, R. J. (1983). Program design by informal english descriptions.
Commun. ACM, 26(11):882–894. (cited on p 15)

[Adersberger, 2006] Adersberger, J. (2006). FODA, FORM, FOPLE - Supporting material
for the course "Produktlinien für Software und Systementwicklung" (Technische Univer-
sität München). As of 15.03.2007, http://www4.in.tum.de/lehre/seminare/hs/
SS06/produktlinien/index.shtml. (cited on p 137)

[Aggoun and Combes, 1997] Aggoun, I. and Combes, P. (1997). Obervers in the SCE and
SEE to detect and resolve feature interactions. In Feature Interactions in Telecommunication
Networks IV, pages 198–212. IOS Press. (cited on p 17)

[Alur and Dil, 1994] Alur, R. and Dil, D. L. (1994). A theory of timed automata. Theoretical
Computer Science, 126(2):183–235. As of 01.03.2007, http://citeseer.ist.psu.edu/
alur94theory.html. (cited on p 27)

[Andre, 1996] Andre, C. (1996). Synccharts: A visual representation of reactive behaviors.
(cited on p 27)

[AutoRAID, 2007] AutoRAID, T. U. M. (2007). Homepage of the tool AutoRAID. As of 2007,
http://wwwbroy.in.tum.de/~autoraid/. (cited on pp 14, 16, 130)

[Basili et al., 1994] Basili, V. R., Caldiera, G., and Rombach, D. H. (1994). Encyclopedia of Soft-
ware Engineering, volume 1, chapter The goal question metric approach, pages 528–532.
John Wiley & Sons Inc. (cited on p 157)

[Bauer et al., 2005] Bauer, A., Romberg, J., Schätz, B., Braun, P., Ulrich, F., Mai, P., and Ziegen-
bein, D. (2005). Incremental development for automotive software in AutoMoDe. In
Proceedings of the 3rd Workshop on Object-oriented Modeling of Embedded Real-Time Systems
(OMER3), volume 191 of HNI - Verlagsschriftenreihe, Paderborn, Germany. (cited on p 130)

[Böckle et al., 2004] Böckle, G., Knauber, P., Pohl, K., and Schmid, K. (2004). Software-
Produktlinien. Number ISBN: 3-89864-257-7. dpunkt.verlag. (cited on p 11)

[Braithwaite and Atlee, 1994] Braithwaite, K. and Atlee, J. (1994). Towards automated detec-
tion of feature interactions. (cited on p 17)

[Broy, 2005] Broy, M. (2005). Service-oriented systems eingineering: Specification and design
of services and layered architectures - the JANUS approach. Engineering Theories of Software
Intensive Systems, pages 47–81. Springer Verlag. (cited on pp 143, 149, 175, 177, 181)

[Broy, 2007] Broy, M. (2007). A theory for requirements specification and archi-
tecture design of multi-functional software systems. Unpublished. (cited on
pp 16, 64, 65, 76, 83, 176, 182, 183)

165

http://www4.in.tum.de/lehre/seminare/hs/SS06/produktlinien/index.shtml
http://www4.in.tum.de/lehre/seminare/hs/SS06/produktlinien/index.shtml
http://citeseer.ist.psu.edu/alur94theory.html
http://citeseer.ist.psu.edu/alur94theory.html
http://wwwbroy.in.tum.de/~autoraid/

Bibliography Bibliography

[Broy et al., 2007] Broy, M., Krüger, I. H., and Meisinger, M. (2007). A formal model of ser-
vices. ACM Transactions on Software Engineering Methodology (TOSEM), 16(1). (cited on
p 5)

[Broy and Steinbrüggen, 2004] Broy, M. and Steinbrüggen, R. (2004). Modellbildung in der
Informatik. Number ISBN 1439-5428. Springer. (cited on p 10)

[Broy and Stolen, 2001] Broy, M. and Stolen, K. (2001). Specification and Develop-
ment of interactive systems - FOCUS on Streams, Interfaces, and Refinement. Num-
ber ISBN 0-387-95073-7 in Monographs in Computer Science. Springer. (cited on
pp 28, 40, 143, 149, 153, 178, 180, 183)

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal,
M. (1996). A System of Patterns. Pattern-Oriented Software Architecture. Wiley. (cited on
p 137)

[Calder et al., 2003] Calder, M., Magill, E., Kolberg, M., and S., R.-M. (2003). Fea-
ture interaction: A critical review and considered forecast. Computer Net-
works, 41/1:115–141. Available at: http://www.dcs.gla.ac.uk/~muffy/papers/
calder-kolberg-magill-reiff.pdf. (cited on p 17)

[Clements and Northrop, 2002] Clements, P. and Northrop, L. (2002). Software Product Lines:
Practices and Patterns. Number ISBN-10: 0-201-70332-7 in The SEI Series in Software Engi-
neering. Addison-Wesley. (cited on p 11)

[CMU, 2007] CMU (2007). Homepage of the Carneggie Mellon University (CMU), infor-
mation about software product lines. As of 15.03.2007, http://www.sei.cmu.edu/
productlines/. (cited on p 138)

[Czarnecki, 1998] Czarnecki, K. (1998). Generative Programming: Principles and Techniques of
Software Engineering Based on Automated Configuration and Fragment-Based Component Mod-
els. PhD thesis, Technische Universität Ilmenau. (cited on p 18)

[Damas et al., 2006] Damas, C., Lambeau, B., and van Lamsweerde, A. (2006). Scenarios,
goals, and state machines: a win-win partnership for model synthesis. In SIGSOFT
’06/FSE-14: Proceedings of the 14th ACM SIGSOFT international symposium on Foundations
of software engineering, pages 197–207, New York, NY, USA. ACM. (cited on p 15)

[Damm and Harel, 2001] Damm, W. and Harel, D. (2001). LSCs: Breathing life into Message
Sequence Charts. Formal Methods in System Design, 19(1):45–80. (cited on p 14)

[Dano et al., 1997] Dano, B., Briand, H., and Barbier, F. (1997). An approach based on the
concept of use case to produce dynamic object-oriented specifications. In RE ’97: Proceed-
ings of the 3rd IEEE International Symposium on Requirements Engineering (RE’97), page 54,
Washington, DC, USA. IEEE Computer Society. (cited on p 14)

[Darimont et al., 1997] Darimont, R., Delor, E., Massonet, P., and van Lamsweerde, A. (1997).
GRAIL/KAOS: an environment for goal-driven requirements engineering. In ICSE ’97:
Proceedings of the 19th international conference on Software engineering, pages 612–613, New
York, NY, USA. ACM. (cited on p 14)

[Davis, 1982] Davis, A. M. (1982). The design of a family of application-oriented require-
ments languages. Computer, 15 (5):21–28. (cited on p vii)

[de Alfaro and Henzinger, 2001] de Alfaro, L. and Henzinger, T. A. (2001). Interface au-
tomata. SIGSOFT Softw. Eng. Notes, 26(5):109–120. (cited on p 27)

[Deubler, 200x] Deubler, M. (200x). Strukturierte Nutzungssicht für multifunktionale Systeme.
PhD thesis, Technische Universität München. To appear. (cited on p 16)

[Deubler et al., 2005] Deubler, M., Grünbauer, J., Holzbach, A., Popp, G., and Wimmel, G.
(2005). Kontextadaptivität in dienstbasierten Softwaresystemen. Technical Report TUM-

166

http://www.dcs.gla.ac.uk/~muffy/papers/calder-kolberg-magill-reiff.pdf
http://www.dcs.gla.ac.uk/~muffy/papers/calder-kolberg-magill-reiff.pdf
http://www.sei.cmu.edu/productlines/
http://www.sei.cmu.edu/productlines/

Bibliography Bibliography

I0511, Institut für Informatik, Technische Universität München TUM. (cited on p 140)

[Deubler et al., 2004a] Deubler, M., Grünbauer, J., Jürjens, J., and Wimmel, G. (2004a). Sound
development of secure service based systems. In Proceedings of the 2nd International Confer-
ence on Service Oriented Computing (ICSOC). (cited on p 140)

[Deubler et al., 2004b] Deubler, M., Grünbauer, J., Popp, G., Wimmel, G., and Salzmann, C.
(2004b). Tool supported development of service-based systems. In Proceedings of the 11th
Asia-Pacific Software Engineering Conference (ASPEC), pages 99–108, Busan, Korea. IEEE
Computer Society. (cited on pp 3, 140)

[Deubler et al., 2004c] Deubler, M., Grünbauer, J., Popp, G., Wimmel, G., and Salzmann,
C. (2004c). Towards a model-based and incremental development process for service-
based systems. In Proceedings of the IASTED International Conference on Software Engineering
(IASTED SE 2004). As of 04.07.2007, http://www4.in.tum.de/~gruenbau/. (cited
on pp xv, 140, 141)

[Dijkstra, 1972] Dijkstra, E. W. (1972). Notes on structured programming. In Structured Pro-
gramming, Academic Press New York. Dahl, O.-J. and Hoare, C. A. R. and Dijkstra, E. W.
(cited on p 2)

[Faulk et al., 1992] Faulk, S., Brackett, J., Ward, P., and Kirby, J. J. (1992). The core method for
real-time requirements. IEEE Software, pages 22–33. (cited on p 143)

[Felty and Namjoshi, 2000] Felty, A. P. and Namjoshi, K. S. (2000). Feature specification and
automated conflict detection. In Feature Interactions Workshop. IOS Press. (cited on p 17)

[Fey et al., 2002] Fey, D., Fatja, R., and Boros, A. (2002). Feature modeling: A meta-model to
enhance usability and usefullness. In Software Product Lines : Second International Conference
(SPLC 2), pages 198–216. (cited on p 18)

[Fillmore, 1971] Fillmore, C. J. (1971). Universals in Linguistic Theory, chapter The case for the
case, pages 1–118. (cited on p 15)

[Filman et al., 2004] Filman, R., Elrad, T., Clarke, S., and Aksit, M. (2004). Aspect-Oriented
Software Development. Addision Wesley Professional. (cited on p 5)

[Fleischmann et al., 2005] Fleischmann, A., Hartmann, J., Pfaller, C., Rappl, M., Rittmann,
S., and Wild, D. (2005). Concretization and formalization of requirements for automotive
embedded software systems development. In Proceedings of the 10th Australien Workshop
on Requirements Engineering (AWRE), Melbourne, Australia. (cited on p 2)

[Frischkorn, 2004] Frischkorn, H.-G. (2004). Automotive software - the silent revolution. In
Proceedings of the Automotive Software Workshop San Diego (ASWSD 2004). Abstract and
Presentation. (cited on p 1)

[Fuchs and Mendler, 1994] Fuchs, M. and Mendler, M. (1994). Formal Semantics for VHDL,
chapter Functional Semantics for Delta-Delay VHDL based on Focus, pages 9–38. Kluwer
Academic Publishers. (cited on p 32)

[Geisberger and Schätz, 2007] Geisberger, E. and Schätz, B. (2007). Modellbasierte An-
forderungsanalyse mit AutoRAID. GI - Informatik Forschung und Entwicklung. (cited on
pp xv, 131)

[Gery et al., 2002] Gery, E., Harel, D., and Palachi, E. (2002). Rhapsody: A complete life-
cycle model-based development system. In Integrated Formal Methods: Third International
Conference, IFM 2002, Turku, Finland, May 15-17, 2002. Proceedings, volume 2335/2002 of
Lecture Notes in Computer Science. (cited on p 130)

[Goldin and Berry, 1997] Goldin, L. and Berry, D. (1997). Abstfinder, a prototype natural
language text abstraction finder for use in requirements elicitation. (cited on p 15)

[Gomaa, 1984] Gomaa, H. (1984). A software design method for real-time systems. In Com-

167

http://www4.in.tum.de/~gruenbau/

Bibliography Bibliography

munications of the ACM, number 27(9), pages 938–949. (cited on p 139)

[Graf and Hooman, 2004] Graf, S. and Hooman, J. (2004). Software Architecture, volume
3047/2004 of Lecture Notes in Computer Science, chapter Correct Development of Embed-
ded Systems, pages 241–249. Springer Berlin / Heidelberg. (cited on p 130)

[Grosu et al., 1996] Grosu, R., Klein, C., Rumpe, B., and Broy, M. (1996). State transition
diagrams. Technical Report TUM-I9630, Technische Universität München. (cited on p 27)

[Gurevich, 2000] Gurevich, Y. (2000). Abstract state machines - theory and applications. In
Proceedings of the international workshop on abstract state machines, number 1912 in Lecture
Notes in Computer Science. (cited on p 27)

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems. In
Science of Computer Programming, volume 8, pages 231–274. (cited on p 29)

[Hartmann et al., 2006a] Hartmann, J., Fleischmann, A., Pfaller, C., Rappl, M., Rittmann, S.,
and Wild, D. (2006a). Feature Net - ein Ansatz zur Modellierung von automobil- spez-
ifischem Domänenwissen und Anforderungen. In Proceedings of the 4th Workshop on Au-
tomotive Software Engineering (ASE 2006) held in conjunction with the annual congress of the
"Gesellschaft für Informatik", Dresden Germany. (cited on p 2)

[Hartmann and Harhurin, 2008] Hartmann, J. and Harhurin, A. (2008). A formal approach
to specifying the functionality of sofware system families. In Submitted as contribution to
the conference on Fundamenal Approaches to Software Engineering 2008 (FASE 2008). (cited on
p 185)

[Hartmann et al., 2006b] Hartmann, J., Rittmann, S., Scholz, P., and Wild, D. (2006b). A com-
positional approach for functional requirement specifications of automotive software sys-
tems. In Proceedings of the Workshop on Automotive Requirements Engineering (AuRE 06),
Minneaplis/St. Pauls, U.S.A. (cited on p 2)

[Hartmann et al., 2006c] Hartmann, J., Rittmann, S., Scholz, P., and Wild, D. (2006c). Formal
incremental requirements specification of service-oriented automotive software systems.
In Inproceedings of the Second International Symposium on Service Oriented System Engineering
(SOSE 2006), Shanghai, China. (cited on p 2)

[Heitmeyer, 2002] Heitmeyer, C. L. (2002). Software cost reduction. In Marciniak, J. J., editor,
Encyclopedia of Software Engineering, number ISBN: 0-471-02895-9. John Wiley & Sons, Inc.,
New York, second edition. Available at: http://chacs.nrl.navy.mil/personnel/
heitmeyer.html. (cited on p 143)

[Hölzl and Rittmann, 2008] Hölzl, F. and Rittmann, S. (2008). Early simulation of usage be-
havior of multi-functional systems. Submitted to the Modellierung 2008. (cited on p 155)

[Homayoon and Singh, 1988] Homayoon, S. and Singh, H. (1988). Methods of addressing
the interactions of intelligent network services with embedded switch services. Communi-
cations Magazine, IEEE, 26(12):42–46. (cited on p 17)

[Houdek and Paech, 2002] Houdek, F. and Paech, B. (2002). Das Türsteuergerät - eine
Beispielspezifikation. Beispiel-Spezifikation IESE-Report Nr. 002.02/D, Frauenhofer IESE.
(cited on pp 21, 23, 46, 110, 158, 159)

[Huber et al., 1997] Huber, F., Schätz, B., and Einert, G. (1997). Consistent graphical specifi-
cation of distributed systems. volume 1313 of 4th International Symposium of Formal Methods
Europe - Lecture Notes in Computer Science. (cited on pp 16, 26, 27, 28, 29, 32, 77, 143)

[Hwang and Miller, 1995] Hwang, H.-S. and Miller, W. A. (1995). Computers and Industrial
Engineering, chapter Hybrid blackboard model for feature interactions in process plan-
ning, pages 613–617. Elsevier Science. (cited on p 17)

[ITU-T, 1996] ITU-T (1996). ITU-T-recommendations z.120 - Messsage Sequence Chart

168

http://chacs.nrl.navy.mil/personnel/heitmeyer.html
http://chacs.nrl.navy.mil/personnel/heitmeyer.html

Bibliography Bibliography

(MSC 96). As of 10.12.2006, http://www.itu.int/ITU-T/studygroups/com10/
languages/Z.120_1199.pdf. (cited on pp 14, 151)

[Jacobson et al., 1997] Jacobson, I., Griss, M., and Jonsson, P. (1997). Software Reuse: Achitec-
ture, Process and Organization for Business Success. Number ISBN-10: 0201924765. Addison-
Wesley Longman. (cited on p 18)

[Kang et al., 1990] Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. (1990). Feature-
oriented domain analysis (FODA) - feasibility study. Technical Report CMU/SEI-90-TR-
021, Carnegie Mellon Software Engineering Institute. (cited on pp 18, 137, 138, 139)

[Kang et al., 2002a] Kang, K., Kang, K. C., and Lee, J. (2002a). Concepts and guidelines of
feature modeling for product line software engineering. In Gacek, C., editor, Proceedings
of the Seventh Reuse Conference (ICSR7), volume 2319 of LNCS, pages 62–77, Austin, U.S.A.
Springer. (cited on pp 48, 69)

[Kang et al., 1998] Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M. (1998). FORM: A
feature-oriented reuse method with domain-specific reference architectures. In Annals of
Software Engineering, number 5, page 143 168. (cited on pp 18, 138)

[Kang et al., 2002b] Kang, K. C., Lee, J., and Donohoe, P. (2002b). Feature-oriented product
line engineering. In IEEE Software. IEEE. (cited on pp 18, 138)

[Kelly et al., 1995] Kelly, B., Crowther, M., King, J., Masson, R., and DeLapeyre, J. (1995).
Service validation and testing. (cited on p 17)

[Kof, 2001] Kof, L. (2001). Formales Service Engineering für Eingebettete Systeme. Diploma
Thesis at Technische Universität München. (cited on p 5)

[Kof, 2005] Kof, L. (2005). Text Analysis for Requirements Engineering. PhD thesis, Technische
Universität München. (cited on p 15)

[Kof et al., 2004] Kof, L., Schätz, B., Thaler, I., and Wisspeintner, A. (2004). Service-based
development of embedded systems. In Net.Object Days, OOSE Workshop, Erfurt, Germany.
(cited on p 142)

[Krüger, 2002] Krüger, I. H. (2002). Specifying services with UML and UML-RT. In Caillaud,
B. and Muscholl, A., editors, Electronic Notes in Theoretical Computer Science, volume 65 (7).
Elsevier Science B. V. (cited on p 5)

[Kulkarni and Reddy, 2005] Kulkarni, V. and Reddy, S. (2005). UML Modeling Languages and
Applications, volume 3297/2005 of Lecture Notes in Computer Science, chapter Model-Driven
Development of Enterprise Applications, pages 118–128. Springer Berlin / Heidelberg.
(cited on p 130)

[Lee et al., 2000] Lee, K., Kang, K. C., Koh, E., Chae, W., Kim, B., and Choi, B. W. (2000).
Domain-oriented engineering of elevator control software: A product line practice. In
Donohoe, P., editor, Proceedings of theFirstSoftware Product Line Conference, pages 3–22.
(cited on p 18)

[Lorentsen et al., 2001] Lorentsen, L., Tuovinen, A. P., and Xu, J. (2001). Modeling feature in-
teractions in mobile phones. In ECOOP Workshop - Feature Interaction in Composed Systems.
(cited on p 17)

[Lynch et al., 2003] Lynch, N., Segala, R., and Vaandrager, F. (2003). Hybrid I/O automata.
In Information and Computation, volume 185, Issue 1, pages 105–157. (cited on p 27)

[Maraninchi, 1991] Maraninchi, F. (1991). The Argos language: Graphical representation
of automata and description of reactive systems. In Proceedings of the IEEE International
Conference on Visual Languages, Kobe, Japan. (cited on p 27)

[Marples and Magill, 1998] Marples, D. and Magill, E. H. (1998). The use of rollback to pre-
vent incorrect operation of features in intelligent network based systems. In Feature In-

169

http://www.itu.int/ITU-T/studygroups/com10/languages/Z.120_1199.pdf
http://www.itu.int/ITU-T/studygroups/com10/languages/Z.120_1199.pdf

Bibliography Bibliography

teractions in Telecommunications and Software Systems, pages 115–135. IOS Press. (cited on
p 17)

[Meisinger and Rittmann, 2008] Meisinger, M. and Rittmann, S. (2008). A service compar-
ison. Technical report, Technische Universität München, Munich, Germany. To appear.
(cited on pp 5, 47, 135, 175)

[Metzger, 2004] Metzger, A. (2004). Computer Networks, volume 45, chapter Feature Interac-
tions in embedded control systems, pages 625–644. Elsevier. (cited on p 17)

[Mobilsoft, 2006] Mobilsoft (2006). Homepage of the mobilsoft project. (cited on p 2)

[Nelson and Prasad, 2003] Nelson, E. C. and Prasad, K. V. (2003). Automotive infotronics:
An emerging domain for service-based architecture. In Krüger, I. H., Schätz, B., Broy, M.,
and Hussmann, H., editors, SBSE’03 Service-Based Software Engineering - Proceedings of the
FM2003 Workshop, number TUM-INFO-09-I0315-0/1.-FI, pages 3–14. Technische Univer-
sität München. (cited on p 1)

[Olderog, 1986] Olderog, E.-R. (1986). Semantics of concurrent processes. volume 29 of Part
I Bulletin of EATCS, pages 73–97. (cited on p 76)

[OMG, 2003] OMG (2003). Unified Modeling Language: Superstructure. As of 09.10.2007,
http://www.omg.org/docs/formal/07-02-03.pdf. (cited on pp 13, 132)

[OMG, 2006] OMG (2006). OMG SysML Specification (final adopted specification). Technical
report, OMG. (cited on p 134)

[OMG, 2007a] OMG (2007a). Homepage of Object Management Group. As of 15.03.2007,
http://www.omg.org/. (cited on p 132)

[OMG, 2007b] OMG (2007b). Homepage of OMG SysML. As of 15.03.2007, http://www.
omgsysml.org/. (cited on p 134)

[oose Innovative Informatik, 2007] oose Innovative Informatik (2007). Homepage of oose
Innovative Informatik; site about Systems Modeling Language (SysML). As of 15.03.2007,
http://www.oose.de/sysml.htm. (cited on p 134)

[Park, 1976] Park, D. (1976). Finitness is µ-ineffible. Theoretical Computer Science, 3(2):173–
181. Springer Verlag. (cited on p 32)

[Parnas, 1972] Parnas, D. (1972). On the criteria to be used to decompose systems into mod-
ules. ACM, 15:1053–1058. (cited on p 2)

[Parnas and Madey, 1995] Parnas, D. L. and Madey, J. (1995). Functional documents for com-
puter systems. Science of Computer Programming, 25(1):41–61. (cited on p 143)

[Perng and Chang, 1997] Perng, D.-B. and Chang, C.-F. (1997). Computer-Aided Design, vol-
ume 29, chapter Resolving feature interactions in 3D part editing, pages 687–699. Elsevier.
(cited on p 17)

[Pfaller et al., 2006] Pfaller, C., Fleischmann, A., Hartmann, J., Rappl, M., Rittmann, S., and
Wild, D. (2006). On the integration of design and test - a model based approach for em-
bedded systems. In Proceedings of the Workshop on Automation of Software Test (AST 06),
Shanghai, China. (cited on p 2)

[Pickett, 2000] Pickett, J. P., editor (2000). The American Heritage Dictionary. Houghton Mifflin
Company, Boston, MA, USA. (cited on p 139)

[Rechenberg and Pomberger, 1999] Rechenberg, P. and Pomberger, G. (1999). Informatik-
Handbuch. Number ISBN 3-446-19601-3. Carl Hanser Verlag München Wien. (cited on
p 8)

[Reiff, 2000] Reiff, S. (2000). Identifying resolution choices for an online feature manager. In
Feature Interactions in Telecommunications and Software Systems, pages 113–128. IOS Press.

170

http://www.omg.org/docs/formal/07-02-03.pdf
http://www.omg.org/
http://www.omgsysml.org/
http://www.omgsysml.org/
http://www.oose.de/sysml.htm

Bibliography Bibliography

(cited on p 17)

[Rittmann et al., 2005] Rittmann, S., Fleischmann, A., Hartmann, J., Pfaller, C., Rappl, M.,
and Wild, D. (2005). Integrating service specifications on different levels of abstraction.
In Proceedings of the IEEE International Workshop on Service-Oriented System Engineering
(SOSE), Bejing, China. (cited on p 2)

[Rupp, 2007] Rupp, C. (2007). Requirements Engineering und -Management. Professionelle, iter-
ative Anforderungsanalyse für die Praxis. Hanser. (cited on p 15)

[Salzmann and Schätz, 2003] Salzmann, C. and Schätz, B. (2003). Service based software
specification. In Proceedings of Intl. International Workshop on Test and Analysis of Com-
ponent Based Systems (TACOS), ETAPS 2003 Warsaw, Poland 2003. As of 02.12.2006,
http://www4.in.tum.de/%7Esalzmann/salzmannSchaetzFASE03.pdf. (cited
on pp 5, 5)

[Schätz, 2002] Schätz, B. (2002). Towards service-based systems engineering: Formalizing
and mu-checking service descriptions. Technical Report TUM-INFO-07-I0206-0/1.-FI,
Technische Universität München. Available at: http://www4.in.tum.de/~schaetz/
public.html (as of 1.12.2006). (cited on p 5)

[Schätz, 2005] Schätz, B. (2005). Building components from functions. In Proceedings of the
International Workshop on Formal Aspects of Component Software (FACS 2005), volume 160 of
Electronic Notes in Theoretical Computer Science. (cited on p 142)

[Schätz, 2007] Schätz, B. (2007). Modular functional descriptions. In Proceedings of the Fourth
International Workshop on Formal Aspects of Component Software (FACS 2007), Electronic
Notes in Theoretical Computer Science. (cited on pp 16, 34)

[Schätz and Salzmann, 2003] Schätz, B. and Salzmann, C. (2003). Service-based systems en-
gineering: Consistent combination of services. In Proceedings of ICFEM 2003, Fifth Interna-
tional Conference on Formal Engineering Methods, number 2885 in LNCS. Springer. (cited on
pp 106, 142)

[Shehata et al., 2004] Shehata, M., Eberlein, A., and Fapojuwo, A. (2004). The use of semi-
formal methods for detecting requirements interactions. In Proceedings of the IASTED In-
ternational Conference on Software Engineering (IASTED SE 2009), pages 230–235. (cited on
p 17)

[Siedersleben, 2004] Siedersleben, J. (2004). Moderne Softwarearchitektur - Umsichtig planen,
robust bauen mit Quasar. dpunkt Verlag. (cited on p 139)

[Sommerville, 2004] Sommerville, I. (2004). Software Engineering. Number ISBN 0-321-21026-
3. Addison Wesley Publishers Limited, Pearson Education Limited, 7th edition. (cited on
pp 6, 9, 174)

[TUM, 2006a] TUM (2006a). Homepage of the chair of Software & Systems Engineer-
ing, Institut für Informatik, Technische Universtität München. As of 01.02.2006, http:
//wwwbroy.in.tum.de. (cited on p 130)

[TUM, 2006b] TUM (2006b). Homepage of the project InServe, Technische Universität
München. As of 2006, http://www4.in.tum.de/proj/inserve/index.shtml.
(cited on p 130)

[TUM, 2006c] TUM (2006c). Homepage of the project MEwaDiS, Technische Universität
München. As of 2006, http://www4.in.tum.de/~mewadis/. (cited on pp 130, 140)

[TUM, 2006d] TUM (2006d). Homepage of the tool AutoFOCUS 2. As of 2006, http://
wwwbroy.in.tum.de/~af2/. (cited on p 130)

[Turner et al., 1999] Turner, C. R., Fugetta, A., Lavazza, L., and Wolf, A. L. (1999). A concep-
tual basis for feature engineering. Journal of Systems and Software, 49 (1):3–15. (cited on

171

http://www4.in.tum.de/%7Esalzmann/salzmannSchaetzFASE03.pdf
http://www4.in.tum.de/~schaetz/public.html
http://www4.in.tum.de/~schaetz/public.html
http://wwwbroy.in.tum.de
http://wwwbroy.in.tum.de
http://www4.in.tum.de/proj/inserve/index.shtml
http://www4.in.tum.de/~mewadis/
http://wwwbroy.in.tum.de/~af2/
http://wwwbroy.in.tum.de/~af2/

Bibliography Bibliography

p 5)

[von der Beeck, 1995] von der Beeck, M. (1995). Comparison of statecharts variants. In Pro-
ceedings of the Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT 94), num-
ber 863 in Lecture Notes in Computer Science, pages 128–148, Lübeck, Germany. Springer.
(cited on p 27)

[Wild et al., 2006] Wild, D., Fleischmann, A., Hartmann, J., Pfaller, C., Rappl, M., and
Rittmann, S. (2006). An architecture-centric approach towards the construction of depend-
able automotive software. In Proceedings of the SAE 2006 World Congress, Detroit, U.S.A.
(cited on p 2)

[Withey, 1994] Withey, J. V. (1994). Implementing model based software engineering in your
organization: An approach to domain engineering. Technical Report CMU/SEI-94-TR-01,
Carnegie Mellon University, Pittsburgh, Pa, USA. (cited on p 138)

[Zave, 2001] Zave, P. (2001). Feature-oriented description, formal methods, and DFC. In Lan-
guage Constructs for Describing Features, pages 11–26. Springer-Verlag London Ltd. (cited
on pp xv, 102, 135, 136, 137)

[Zave, 2003] Zave, P. (2003). An experiment in feature engineering. Programming method-
ology, (ISBN 0-387-95349-3):353–377. Springer-Verlag New York, Inc. (cited on
pp 5, 135, 174)

[Zave and Jackson, 2000] Zave, P. and Jackson, M. (2000). New feature interactions in mo-
bile and multimedia telecommunication services. Feature Interactions in Telecommunications
and Software Systems, pages 51–66. As of 12.06.2006, http://www.research.att.com/
~pamela/fiw6.pdf. (cited on pp 4, 135)

172

http://www.research.att.com/~pamela/fiw6.pdf
http://www.research.att.com/~pamela/fiw6.pdf

Glossary

A

atomic service In our approach an atomic service is the smallest piece of (par-
tial) black box functionality which is user visible and likely to be reused.
For example, the adjustment of the back backwards is an atomic service,
p. 45.

B

basic actions Basic actions realize the internal communication between services
realizing a service relationship (→relationship services) and services
which are influenced by the relationship. The set of basic actions con-
tains the actions ENABLE, DISABLE, INTERRUPT, CONTINUE, and RESET,
p. 88.

basic handling service If a →basic action is sent to a hierarchically decomposed
service, the basic handling service forwards the basic actions to the re-
spective sub services, p. 92.

basic service relationship Basic service relationships are the "simplest"
→horizontal service relationships that represent the information
how a service can affect the black box behavior of another service. The
set of basic service relationships is comprised of ENABLE, DISABLE,
INTERRUPT, CONTINUE, and RESET. The basic service relationships are
realized by sending and receiving the→basic actions, p. 66.

C

combined service In the thesis at hand, combined services are more comprehen-
sive behaviors that contain the behavior of several sub services. All ser-
vices except the atomic services are combined services. The overall sys-
tem behavior is the most comprehensive combined service of a system,
p. 65.

complex horizontal service relationship Complex horizontal service relation-

173

GLOSSARY GLOSSARY

ships are all→horizontal service relationships except the→basic service
relationships, p. 67.

F

feature interaction For our thesis we adopt the definition of [Zave, 2003] for the
term feature interaction: "A feature interaction is some way in which a
feature or features modify or influence another feature in defining the
overall system behavior". As in our terminology a feature is a service, we
also speak of→service interaction in this thesis, p. 5.

functional requirement Functional requirements "are statements of services the
system should provide, how the system should react to particular in-
puts and how the system should behave in particular situations. In some
cases, the functional requirements may also explicitly state what the sys-
tem should not do" [Sommerville, 2004], p. 6.

H

horizontal (service) relationship In our approach we distinguish between
→vertical and horizontal (service) relationships. Horizontal relation-
ships describe the effects/dependencies between services, p. 62.

I

influenced service The behavior of a user-visible service can be influenced by an-
other service (e.g. by a relationship service). We call the service the be-
havior of which is influenced by another service, the influenced service,
p. 84.

influencing service The behavior of a user-visible service can be influenced by
another service (e.g. by a relationship service). We call the service which
influenced the behavior of another service, the influencing service, p. 84.

L

logical action The term logical action refers to the both input actions and output
actions. It is an abstract term for message, signal, etc. and abstracts from
the technical realization, p. 53.

logical channel Logical channels are used for the communication between ser-
vices. For each logical action, a logical channel is introduced. Logical
channels do not necessarily exist in the later technical realization. The
can be understood as logical communication links, p. 54.

logical syntactic interface The logical syntactic interface of a service (or the sys-
tem under specification) is a listing of all possible input and output chan-
nels and their input and output actions, respectively, p. 53.

174

GLOSSARY GLOSSARY

M

multi-functional system A multi-functional system is characterized by a high de-
gree of interaction / dependencies between (sub-) functions, p. 3.

R

relationship service Horizontal service relationships, e.g. the XOR relationship,
are realized by special services which are responsible for realizing the
service relationship. They do not have a user-visible behavior, but just
realize the service relationship by sending→basic actions to the services
which are affected by the relationship. We call these services relationship
services, p. 89.

S

service There does not exist a uniform definition for the term service. See
[Meisinger and Rittmann, 2008] for an overview of various service no-
tions. In this thesis we adapt the idea of [Broy, 2005] and define a service
as follows: A service is a piece of functionality - abstracting from technical
structure. It is described by a black box view relating inputs to outputs
and hiding the internal realization. It is a partial behavior, i.e. it might not
be defined for all possible inputs in each situation. In order to define in
which situations the service can be used, and which inputs are needed to
guarantee a specific output, a→service protocol has to be defined. Quality
of service attributes can be annotated to further specify a feature, p. 5.

service graph A service graph is a service hierarchy enriched by the horizontal
relationships between the services of the service hierarchy, p. 65.

service hierarchy →Vertical service relationships introduce a hierarchy on ser-
vices. The root (service) of the hierarchy is the overall system functional-
ity which is comprised of sub-behaviors, p. 64.

service interaction See→feature interaction, p. 5.

service-oriented approach A service-oriented approach is an approach which
uses services (in our methodology: pieces of partial functionality) as ba-
sic building blocks, p. 5.

service relationship Service relationships make dependencies between services
explicit. They contain the effects that services have on each other. We
distinguish between →vertical service relationships and horizontal ser-
vice relationships, p. 62.

standard control interface In order to handle influences by other services, the
modular service specification has to be adapted. To that end, a service
has to implement so-called standard control interfaces which are specific
to the relationships between services, p. 7.

State Transition Diagram (STD) A State Transition Diagram graphically repre-

175

GLOSSARY GLOSSARY

sents the dynamic structure of system entities. In our methodology it
is used to describe the behavior of modular services. We also make use
of State Transition Diagrams to show how the→basic relationships and
the sending of the information about a service’s status can be realized
schematically, p. 27.

status actions Horizontal service relationships may depend on the execution sta-
tus of one or more services. The status actions (ACTIVE and INACTIVE)
are sent by the user-visible services to the→relationship services in order
to provide them with the information of their current status. Note, that
the set of status actions can be enlarged if needed, p. 90.

status calculating service A status calculating services calculates the status of a
hierarchically decomposed service on basis of the stati of its sub services,
p. 92.

sub service →Vertical service relationships introduce a hierarchy on services. The
child of a super service (which basically is a more comprehensive behav-
ior) is called a subservice. A formal foundation of the subservice rela-
tionship - as used in our approach - can be found in [Broy, 2007], p. 64.

super service →Vertical service relationships introduce a hierarchy on services.
The parent of a service (which is basically a more comprehensive behav-
ior) is called its super service. The child of the super service is called a
→subservice. The upper most super service is the overall system behav-
ior, p. 64.

system behavior see→system functionality, p. 38.

system functionality The term system functionality refers to the overall function-
ality provided by the system under specification. It is used synony-
mously for the→system behavior, p. 3.

System Structure Diagram (SSD) A System Structure Diagram graphically repre-
sents the static structure (entities and relationships) of a system. In our
methodology it is used to represent the services and the relationships (di-
rected logical channels) between them, p. 26.

U

usage behavior The usage behavior of a system is the totality of func-
tions/services that a user can call, p. 3.

user In this work, the term user refers to both human users and other (techni-
cal) systems with which a system communicates, p. 53.

V

vertical (service) relationship In our approach we distinguish between vertical
and →horizontal (service) relationships. Vertical relationships describe
the structure of (comprehensive) services, i.e. they describe out of which
subservices a service is comprised, p. 62.

176

Appendix A
Embedding of the approach into a
theoretical framework

So far, we have introduced and treated the system model which underlies our ap-
proach (see Section 4.1.1, Underlying system model) informally. The reason for this is
that informal descriptions are usually easier to understand and more pragmatic to
use. However, informality also has disadvantages: in order to precisely describe an
approach a formal, theoretical basis is needed.

We now embed our concepts into a theoretical framework and compare it in detail
with another service-oriented specification style, namely with the predicate-based
specification of services. In Section A.1 (JANUS - A theory for service-orientation) the
formal model which implicitly lies behind our approach - the FOCUS/JANUS theory
- is described. In Section A.2 (Relation of our approach to the JANUS theory) we relate
our concepts to this theoretical framework. We compare our approach to a predicate-
based, service-oriented approach in Section A.3 (Comparison to another approach).

The contents presented in this section also are concerned with comparing our ap-
proach to other approaches and thus could be placed in the related work section (see
Chapter 6, Related Work). However, as the FOCUS/JANUS theory provides the for-
mal framework for our approach we present it separately and in more detail in this
section. Due to the fact, that the predicate-based specification approach (see Section
A.3.1, Predicate-based specification of services) also fits into the formal FOCUS/JANUS
framework, we also present it here.

A.1. JANUS - A theory for service-orientation

In this section, we describe the formal model behind our approach: the JANUS ap-
proach [Broy, 2005]. The main goals of JANUS are to give a formal model for services,
layers, and layered architectures. Furthermore, a theory for relating, composing, and
refining services, layers, and layered architectures is aimed at. Advanced goals are
specification and verification techniques, a methodology for designing services and
respective architectures, and design patterns for services, layers, and layered archi-

177

A.1. JANUS - A theory for service-orientation A. Embedding into a theoretical framework

tectures.

The JANUS approach is based on the FOCUS system model [Broy and Stolen, 2001].
The aim of FOCUS is to first specify systems as families of components (and their
interfaces) and then to put the components together forming the architecture. The
verification of the component specification can be achieved by the interface specifi-
cations of the components and the composition verification rules.

In the following section (see Section A.1.1, The FOCUS Approach) we describe the
FOCUS approach. In Section A.1.2 (The JANUS approach) we give an introduction to
the JANUS approach.

A.1.1. The FOCUS Approach

In the FOCUS model, a system is composed of a number of components which en-
capsulate behavior (principle of modularity). The notion of system is relative, i. e.
components can be composed to components again: "A system is a component is a
system" [Broy and Stolen, 2001].

Interfaces exist between components and between components and the environment.
The communication between components and with the environment takes place via
directed communication channels. A mapping of message streams to channels rep-
resents the exchange of typed messages over these channels assuming a system wide
global clock. The behavior of such systems is expressed as equations or relations re-
lating a number of (possibly infinite) input sequences to a respective set of output
sequences. More precisely, the communication is expressed in terms of relations on
streams; streams represent histories of communications of data messages in a time
frame. Multiple possible outputs for a certain input express non-determinism. Fur-
thermore, the channels are divided into disjoint input and output channels for a com-
ponent, respectively. Causality of such a system is enforced by requiring that every
computed output is only dependent on inputs which have been received before the
output happens.

In the following we formally describe the basic concepts of the FOCUS approach. For
more information please refer to [Broy and Stolen, 2001].

(In-) Finite (Non-) timed streams

As mentioned above, streams represent histories of communication of data massages
in a given time frame. Let M be the universe of messages; by M∗ (M∞) the set of
finite (infinite) sequences of elements of M is denoted. It can be represented by a
mapping N → M where N is the set of natural numbers without 0. M∗ (M∞) is
called a finite (an infinite) non-timed stream. For a given set M , a timed stream is
defined by

s : N →M∗

whereas s(t) stands for the messages communicated at time t in the stream s.

178

A. Embedding into a theoretical framework A.1. JANUS - A theory for service-orientation

f

x1 : S1

xn : Sn

y1 : T1

ym : Tm

Figure A.1.: Graphical representation of a FOCUS component and its typed input and out-
put channels

Input/Output channels and channel histories

Channels are used as identifiers for streams. They are divided into disjoint sets of
input channels I and output channels O. Type(c) denotes the data type of messages
sent over the channel c. To that end, the function Type : C → TY PE is given, with
TY PE being a set of types which are carrier sets of data elements.

Let C be a set of typed channels; a channel history H(C) is a mapping

x : C → (N →M∗)

such that x.c is a stream of type Type(c) for each c ∈ C.

Furthermore, the following notations are introduced on streams: s.k is the k-th se-
quence in the stream s. s↓k is the prefix of length k (k ∈ N) of the timed stream s.

Components

The behavior of components is described by their black box behavior, i. e. their in-
terfaces. The interfaces provide a syntactic and semantic notion. The syntactic in-
terface associates a type for the component whereas the semantic interface describes
the observable behavior. Let I and O be sets of typed input and output channels,
respectively.

(IIO)

denotes the syntactic interface of a component. It defines the types of messages that
can be exchanged by a component. The semantic interface with the syntactic interface
(IIO) is represented by

F : H(I)→ ℘(H(O))

that fulfills the timing property for all its input histories.

Let x, z ∈ H(I), y ∈ H(O), and t ∈ N . The timing property is specified as follows:

x↓t = z↓t⇒ {y↓(t+ 1) : y ∈ F (x)} = {y↓(t+ 1) : y ∈ F (z)}.

This means that the set of possible output histories for F for the first t+1 intervals only
depends on the inputs of the first t time intervals. Or in other words: The processing
of messages takes at least one time interval. Functions that fulfill this timing property
are called time-guarded or strictly causal. The application of a strictly causal function
leads to either an empty output for all input histories, or a non-empty output for all
input histories. In the first case, we call the function paradoxical, in the second case
we call it total.

179

A.1. JANUS - A theory for service-orientation A. Embedding into a theoretical framework

F1 F2

I1\ C2 I1\ C1

C2C1

O1\ C1 O2\ C2

Figure A.2.: Composition of components in the FOCUS theory

A component is a total behavior. Figure A.1 gives a graphical representation of a FO-
CUS component.

Composition of components

The composition is done by parallel composition with feedback [BS01]. Figure A.2
schematically shows how two components F1 and F2 can be composed by the intro-
duction of feedback channels C1 ⊆ O1 ∩ I2 and C2 ⊆ O2 ∩ I1.

Formally: Let F be the compositon of the components F1 and F2 having the syntactic
interfaces (I1IO1) and (I2IO2), respectively. The syntactic interface of F is denoted
by (IIO) with I = (I1\O2) ∪ (I2\O1) and O = (O1\C1) ∪ (O2\C2). Let z ∈ H(I1 ∪
O1 ∪ I2 ∪O2) and x ∈ H(I). The semantic interface of F is defined by

F.x = {z|O : x = z|I ∧ z|O1 ∈ F1(z|I1) ∧ z|O2 ∈ F2(z|I2)}

Specification styles

FOCUS suggests different styles for the specification of the system behavior
[Broy and Stolen, 2001]:

Equational specifications are specifications which define the behavior in terms of recur-
sively defined stream processing functions.

Assumption/Guarantee specifications (abbr.: A/G specifications) structure in the spec-
ification into an assumption and a guarantee part. The assumption describes the
properties expected of the input which is legal for the specification. The guarantee
part describes the black box behavior of the component that the system must fulfill
in case the assumption is fulfilled.

Tables and diagrams (like State Transition Tables and State Transition Diagrams) are
also provided as specification styles.

180

A. Embedding into a theoretical framework A.1. JANUS - A theory for service-orientation

A.1.2. The JANUS approach

In this section, we describe the enhancement of the FOCUS approach for service-
orientation: the JANUS approach. We again only summarize the main concepts
which we need for our work. For more information please refer to [Broy, 2005].

Component interfaces provide functionality. The idea is to describe for each piece
of functionality (method/message) under which conditions (precondition) the func-
tionality may be invoked (message may be sent or received) and which effects this
has (postcondition). This leads to the notion of a service.

Services, service range, and service domain

A service is a partial behavior as opposed to components which are total behaviors.
Partial means that a service is defined only for a subset of input histories. This subset
is called the service domain. A service is a set of interaction patterns. Formally, a
service with the syntactic interface (IIO) is given by a function

F : H(I)→ ℘(H(O))

that fulfills the timing property only for the input histories with nonempty output
set. Let x, z ∈ H(I), y ∈ H(O), and t ∈ N . Then:

F.x 6= ∅ 6= F.z ∧ x↓t = z↓t⇒ {y↓t+ 1 : y ∈ F (x)} = {y↓t+ 1 : y ∈ F (z)}

The set
Dom(F) = {x : F.x 6= ∅}

is the so-called service domain. It characterizes those input streams for which F is
defined.

Ran(F) = {y ∈ F.x : x ∈ Dom(F)}
is the so-called service range and defines the output for all valid inputs. A service
gives a partial view onto the behavior of a component.

For services, the same specification styles (see above) as for components can be used.

Interface subtyping and the projection of a behavior

Before describing various service relationships, we first explain some basic concepts.

Given a typed channel set C1 and a typed channel set C2. C1 is called a subtype of
C2 if the following formula holds:

(c, T1) ∈ C1⇒ ∃T2 ∈ TY PE : (c, T2) ∈ C2 ∧ Type(T1) ⊆ Type(T2)

We then write C1 subtype C2.

(I1IO1) subtype (IIO) is an abbreviation for (I1 subtype I2) ∧ (O1 subtype O2).

Let (I1IO1) and (IIO) be two syntactic interfaces with (I1IO1) subtype (IIO), the
projection for a behavior F with the syntactic interface (IIO) to the syntactic inter-
face (I1IO1) is defined by the following equation:

∀x ∈ H(I1) : F †(I1IO1).x = {y|O1 : ∃x′ ∈ H(I) : x = x′|I1 ∧ y ∈ F.x′}

181

A.2. Relation of our approach to the JANUS theory A. Embedding into a theoretical framework

where x|I is the stream x projected to the channels and types of I .

Service relationships

Based on the concepts above, [Broy, 2007] introduces vertical service relationships.
Horizontal service relationships are not further discussed in [Broy, 2007] (but men-
tioned to be important).

We now explain service refinement and sub service relationships. Let F1 have the
syntactic interface (I1IO1) and F2 have the syntactic interface (I2IO2), respectively,
with (I1IO1) subtype (I2IO2). F2 is a service refinement of F1 if for all input histories
x ∈ H(I1):

F †(I1IO1).x ⊆ F1.x

Thus, it is permitted to enlarge the number of channels and their types. As the para-
doxical services is always a service refinement, this notion of refinement is too lib-
eral. Consequently, [Broy, 2007] furthermore introduces the notion of a sub service
relation.

F1 is a sub service of F2, if F2 is a service refinement of F1 and the following formula
holds:

Dom(F1) ⊆ Dom(F2†(I1IO1))

In cases in which the sub service relationship does not hold, there may hold a re-
stricted version, if there exists a set R ⊆ Dom(F2) of input histories such that F1
subservice F2|R. This means that F1 is a sub service for the input histories of a sub-
set of the domain, namely of R. This leads to the following definition. Let F1 and F2
be as above. F1 is called a restricted sub service of F2, if there exists a set R of input
histories with R ⊆ Dom(F2) such that F1 subservice F2|R holds.

[Broy, 2007] suggests to use trees to graphically display services according to the (re-
stricted) sub service relationship.

A.2. Relation of our approach to the JANUS theory

In this section, we relate our approach to the formal framework of JANUS. As our
main concepts (underlying system model, services, and service relationships) are
based on this model (see Section 4.1.1, Underlying system model and 5.4.3, Formal spec-
ification of modular services) we will see that the mapping works well.

Note that as JANUS does not provide methodological support, we only relate the
concepts of the two approaches.

A.2.1. Relation of the underlying system models

As mentioned in the previous paragraph, our underlying system model can be easily
mapped to the FOCUS system model: In our approach, the stimuli that go into the
system are the so-called input actions. They are simply the input messages of the

182

A. Embedding into a theoretical framework A.2. Relation of our approach to the JANUS theory

S

S1 S2

O1

I1

O2

I2

Figure A.3.: Combination of independent services

FOCUS world. Analogously, the responses of the system which are our output ac-
tions can be seen as the output messages of FOCUS. The sum of the input and output
messages thus is the universe of messages M .

The behavior in both approaches is described by relating inputs to outputs. In our
case, the automata describing the service behaviors, turn sequences of inputs (input
histories in FOCUS) step by step to sequences of outputs (output histories in FOCUS).
A service thus is a FOCUS service S : H(I) → ℘(H(O)) relating an input history to
an output history of logical actions (messages).

We also - like FOCUS / JANUS - assume a global clock that structures time (time
synchronous system). Furthermore, we also specify strongly causal behavior as the
output in time interval t+1 depends on the input until time interval t. Consequently
our notion of service fulfills the requirement that a service has to fulfill the timing
property.

The matching system models of our approach and the FOCUS approach in fact are
the basis for having chosen AutoFOCUS State Transition Diagrams (see Section 3.2,
State Transition Diagrams (STDs)) as notational technique.

A.2.2. Relation of service-oriented concepts

As already mentioned in Section 5.4.3 (Formal specification of modular services), we
make use of the JANUS service definition and define a service as a partial behav-
ior. Therefore, we obtain the same consequences, like a relative notion of services
and the possibility of underspecification and the specification of non-determinism.

[Broy and Stolen, 2001] describes different specification styles for the specification of
behavior (see Section A.1.1, The FOCUS Approach). In our methodology, we make use
of the specification style "tables and diagrams" as we use State Transition Diagrams
which is an operational specification technique.

As far as service relationships are concerned, [Broy, 2007] introduces (above others)
the sub service relationship and the restricted sub service relationship which we also
make use of (see Section 4.6, Identification of service relationships). In [Broy, 2007] how-
ever, a super service only has to "contain" the sub services. It is theoretically possible
that it also offers arbitrary additional behavior. In our approach, the super service
is exactly the combination of the sub services plus the realization of the service rela-
tionships.

As far as the combination of services is concerned, the ideas of [Broy, 2007] and of our
work also match. In [Broy, 2007] the combination of two independent services, i. e.

183

A.2. Relation of our approach to the JANUS theory A. Embedding into a theoretical framework

S

S1modif S2modif

S1modif S2modif

I1

O1

I2

O2

I1

O1

I2

O2

C2

C1

C2

C1

C2

C1

Figure A.4.: Combination of dependent services

services with disjoint input and output interfaces, is done as depicted in Figure A.3.
The super service S being comprised of the behaviors S1 and S2 can be obtained by
simply putting the sub services next to each other.

In the more common case that two services exhibit dependencies between each other,
the combination is more intricate. The two modular service specifications S1 and S2
first have to be refined accordingly to handle the service influence. Figure A.4 shows
how this is done. In the upper part of the figure, the services are refined by the
introduction of additional channels. On these channels, the logical actions which are
needed to realize the service relationship are sent. We obtain the modified service
behaviors S1modif and S2modif having the syntactic interfaces

((I1 ∪ C2) I (O1 ∪ C1))

and

((I2 ∪ C1) I (O2 ∪ C2))

respectively. The super service S is then obtained by composing the modified sub
services. The modification of the services depends on the service relationships be-
tween the services.

Formally, it is required that the modified behaviors S1modif and S2modif contain the
modular service specifications S1 and S2 as restricted sub services, i. e. that the fol-
lowing formulae hold: S1 restrictedsubservice S1modif and S2 restrictedsubservice
S2modif . In those cases that no service interaction takes place, the service specifica-
tions behave according to their modular specification. The input histories are then in
the subset R for which the service is a sub service of the super service (see above).

In our methodology, the introduction of additional services (e. g. conflict solving ser-
vices) might also be necessary. However it just matches to the introduction of further
services and channels.

184

A. Embedding into a theoretical framework A.3. Comparison to another approach

A.3. Comparison to a predicate-based service-oriented
approach

In the previous section we embedded the concepts of our approach in a theoreti-
cal framework. In this section we describe another service-oriented approach which
also fits nicely into the JANUS framework. Although this other approach makes use
of the same understanding of services, it uses a different specification style, namely
property-based specification. We will also explain their concepts with help of the
FOCUS and the JANUS theory and finally compare it to our approach and give ad-
vantages and disadvantages of both approaches.

A.3.1. Predicate-based specification of services

The approach described in this section is currently elaborated in the VEIA1 project.
The aim of VEIA is to develop concepts for the distributed development and in-
tegration of automotive software systems. They also make use of services to for-
malize the system functionality. Modular service specifications are combined to ob-
tain the overall system behavior step by stop. Based on a service-oriented system
functionality, the model is enriched by product line aspects like variability issues
[Hartmann and Harhurin, 2008].

The VEIA approach also defines services as pieces of partial behavior. Each service
has a syntactic interface determining which messages can be received and sent by
the service. The service behavior is a partial mapping relating input streams to out-
put streams. The single services are specified in an assumption/guarantee manner.
The assumption of a service is a predicate on the input streams and indicates which
streams are a valid input for the service. The guarantee is a predicate on both input
and output streams and defines the behavior of the service in case a valid input has
been made to the service.

Formally (see [Hartmann and Harhurin, 2008]): Let (IIO) be the syntactic interface
of a service S.2 The assumption and the guarantee of a service have the following
signatures, respectively:

AS : H(I)→ B
GS : H(I)×H(O)→ B

A service is consequently defined as:

S : H(I)→ ℘(H(O))
S(x) ≡ {y|AS(x) ∧GS(x, y)}.

Consider, as a small example, the power window services (including a child protec-
tion service) as depicted in Figure A.5. The power window services allow the user

1Verteilte Entwicklung und Integration von Automotive Produktlinien, BMBF project, grant number
01ISF15A.

2In [Hartmann and Harhurin, 2008] the interface is defined by the typed input and output ports of a
service instead of its typed input and output channels. Therefore, I and O are defined over ports.
However this difference does not matter for our comparison.

185

A.3. Comparison to another approach A. Embedding into a theoretical framework

System

Child
protection

service

Power
window
services

Predicates on
inputs and outputs

pw1: up pw2: down

mot1: up mot2: down

System

Child
protection

service

Power
window
services

ch1:on ch2:off

Figure A.5.: Predicate-based specification of services

186

A. Embedding into a theoretical framework A.3. Comparison to another approach

to move the windows up and down. If the child protection service is enabled, the
windows can not be moved, i. e. the user’s wish is ignored. The assumptions and
guarantees of the power window services (PWS) is:

APWS(x) ≡ ∀t ∈ N : (x[pw1](t) ∈ {up, ε} ∧ x[pw2](t) ∈ {down, ε})
GPWS(x, y) ≡ ∀t ∈ N : (x[pw1](t) = up⇒ y[mot1](t) = up∧

x[pw2](t) = down⇒ y[mot2](t) = down)

with x ∈ H(IPWS ∪ ICPS) and y ∈ H(OPWS ∪ OCPS) and x[pw1](t) depicting the
messages sent on channel pw1 within the input stream x in time interval t. The as-
sumption demands that the input on the channel pw1 (pw2) is either up (down) or
nothing (ε). The guarantee assures that if the driver wants to move the window up
(down), the respective command is sent on the output channels.

The child protection service (CPS) has the following assumption and guarantee:

ACPS(x) ≡ ∀t ∈ N : (x[ch1](t) ∈ {on, ε} ∧ x[ch2](t) ∈ {off, ε})
GCPS(x, y) ≡ ∀t ∈ N : (x[ch1](t) = on⇒ y[mot1](t) = ε ∧ y[mot2](t) = ε

The inputs for the child protection service can either be on, off , or nothing (ε). If the
child protection service is turned on, no output is allowed to be sent on the output
channels mot1 and mot2.

The modular service specifications (i. e. predicates) are then combined by logical con-
junction.

System_Specification = SCPS ∧ SPWS

During this combination, conflicts may occur being the consequence of feature in-
teraction. For example, the child protection service demands that no output is sent
on the channels mot1 and mot2 in case the child protection is turned on. However,
the power window services demand the controlling of the respective motor in case
the user wants to move the window. Thus, different demanded outputs on the same
output channel within the same time interval cause a conflict.

In order to solve conflicts, additional predicates (conflict solving predicates) are intro-
duced. They can be seen as the formalization of service relationships. In the example
above, the predicate SPWS is then loosened and replaced by the new conflict solving
predicate CPSprio:

CPSprio ≡∀t ∈ N : (CPS[y][mot1](t) 6= PWS[y][mot1](t)⇒ CPS[y][mot1](t)∧
CPS[y][mot2](t) 6= PWS[y][mot2](t)⇒ CPS[y][mot2](t))

whereCPS[y][mot1](t) denotes the messages sent on channelmot1 within the stream
y during time interval t as specified by the service CPS.

The overall system specification finally is given by conjunction of all service predi-
cates and conflict solving functions.

187

A.3. Comparison to another approach A. Embedding into a theoretical framework

System

Child
protection

service

Power
window
services

Predicates
on inputs
and
outputs

pw1:up pw2:down

mot1:up mot2:down

System

Child
protection

service

Power
window
services

ch1:on ch2:off
pw1:up

pw2:down

mot1:up mot2:down
Internal actions

ch1:on ch2:off

enable,
disable

Figure A.6.: Comparison of both specification techniques (l.h.s: VEIA approach; r.h.s: our
approach)

A.3.2. Comparison of both approaches

Although the VEIA approach and the approach introduced in this thesis share some
of the same ideas, they also differ in many respects. In this section we compare the
approaches.

Commonalities Both approaches have the same underlying system model. Fur-
thermore, they aim at the formalization of functional requirements and thus at bridg-
ing the gap between the requirements engineering and the design phase. Services -
which are pieces of partial behavior - are the main entities of which a system spec-
ification is comprised. The understanding that modular service specifications have
to be adapted to handle service relationships is also common to both approaches.
In the VEIA approach this is achieved by substituting service predicates by special
conflict solving predicates. In our methodology, feature interaction is handled by the
introduction of dedicated conflict solving services.

Differences VEIA elaborates concepts for the specification of service-oriented sys-
tems (and enhances them with concepts for product line development). The aim of
our work is to provide an overall methodology which is based on service-oriented
concepts.

The main differences between the approaches can be described by looking at Figure
A.6. The figure confronts the different specifications of the child protections service
and the power window services. On the left hand side, the VEIA specification can
be seen. The system specification as proposed in this thesis is depicted on the right
hand side. Both approaches modularly specify the child protection service and the
power window services. VEIA makes use of predicates and thus uses a predicate-
based specification style whereas we make use of automata to specify the behavior
(see Section 5.4.3, Formal specification of modular services) and consequently make use
of an operational specification style. The combination of the sub services is done
differently, too: VEIA uses additional predicates on inputs and outputs in order to

188

A. Embedding into a theoretical framework A.3. Comparison to another approach

handle service relationships, i. e. feature interaction. In our methodology we make
use of internal actions to control the influences between services. The modular ser-
vice specifications are adapted accordingly.

The VEIA project does not provide a standard set of predicates for the handling of
service relationships. For each service relationship a new predicate has to be defined.
Future work of the VEIA project will deal with the introduction of classes of predi-
cates. For example, a class for the specification of priorities as needed in the example
above. Predicates of these classes would then have the same structure/pattern.

Advantages and disadvantages The VEIA approach is more abstract. It abstracts
from internal communication, internal control and data states. This information is
represented in the predicates. Consequently, a stricter black box view is kept. How-
ever, modularity is given up as these predicates refer to several services. In our ap-
proach, the power window services do only have to be able to handle a DISABLE and
an ENABLE command, but do not need the information why this command is sent.
Furthermore, we provide a set of standard relationships which can be used for the
combination of the services. In the VEIA project a new predicate has to be introduced
in each case (see previous paragraph).

In Section 4.8 (Combination of services on basis of the service relationships) we showed
how the modular formal service specifications can be combined on basis of the ser-
vice relationships between them. Thus, we exhibit a stronger compositionality of
services.

The result of the VEIA project is a conjunction of logical formulae. These can be
verified by theorem proving. In contrast, the result of our approach is an executable
model of the system functionality which can be simulated and validated.

As VEIA is more abstract than our approach, its approach faces a conceptual gap
between the predicates and the logical architecture which is comprised of logical
components and internal communication channels, etc. The transition to a logical
architecture having an operational semantics is more difficult. The question arises
how to perform the step from logical formulae (the result of the VEIA approach) to a
logical architecture. The opposite holds for our approach: Here, the formal model of
the requirements is more concrete from the beginning as it uses logical entities and
communication channels between them. However, the requirements model conse-
quently already contains information how to realize the functional requirements. We
think that due to this reason our approach is more pragmatic for industry.

The question which specification style is better - predicate-based or operational - is a
question of taste and can not be answered in general.

A.3.3. Conclusion

In the previous subsection, we compared our approach with the VEIA approach. To
put it in a nutshell, the VEIA approach can be situated on a more abstract level. The
advantages and disadvantages of both approaches are basically a consequence of
these different levels of abstraction.

As VEIA mainly uses the same concepts but on a more abstract level, the idea arises

189

A.3. Comparison to another approach A. Embedding into a theoretical framework

Logical solution structure

System

Child
protection

service

Power
window
services

pw1:up pw2:down

mot1:up mot2:down

ch1:on ch2:off

Predicates
on inputs
and
outputs

System

Child
protection

service

Power
window
services

ch1:on ch2:off pw1:up pw2:down

mot1:up

mot2:down
Internal actions

enable,
disable

Figure A.7.: Integrated requirements engineering phase with both approaches

190

A. Embedding into a theoretical framework A.3. Comparison to another approach

if VEIA and our presented approach can be combined. Figure A.7 shows this idea
graphically. The textual requirements would then be first specified very abstractly
by predicates and then mapped to a first operational logical architecture.

First discussions with the VEIA project team lead to the assumption that the con-
secutive ordering of the two approaches is possible. However, the question is how
pragmatic such an integrated model would be or if it would be an overkill. Respec-
tive cost benefit analyses would have to be carried out.

191

	Introduction
	Motivation
	Content of this thesis
	Rough outline of the approach
	Scoping - What system classes is the approach for?
	Scoping - Where in the software development process is the approach situated?
	Scoping - What issues are not covered by the approach?

	Contributions of this thesis
	State of the Art
	Requirements engineering approaches
	Formal modeling of the system functionality
	Work on feature interaction
	Feature modeling within product line development
	Summary

	Outline

	Running example
	General requirements
	Requirements for the manual adjustment
	Requirements for the adjustment by memory
	Requirements for the memory functionality triggered by the seat button
	Requirements for the memory functionality triggered by the car key

	Notational techniques (Overview)
	System Structure Diagrams (SSDs)
	Intuitive description
	Graphical representation

	State Transition Diagrams (STDs)
	Intuitive description
	Graphical representation
	Semantics of STDs
	Semantics of the combination of STDs and SSDs

	Service hierarchy and service graph
	Tables
	Summary

	Methodology
	Basic considerations
	Underlying system model
	Constituents of functional requirements
	Specialties with embedded systems

	Overview of methodological steps
	Starting point
	Concepts
	Application to the case study

	Identification of atomic services
	Concepts
	Notational technique(s)
	Methodological steps
	Application to the case study

	Logical syntactic system interface
	Concepts
	Notational technique(s)
	Methodological steps
	Application to the case study

	Identification of service relationships
	Concepts
	Notational technique(s)
	Methodological steps
	Application to the case study

	Formal specification of atomic services
	Concepts
	Notational technique(s)
	Methodological steps
	Application to the case study

	Combination of services on basis of the service relationships
	Concepts
	Notational technique(s)
	Methodological steps
	Application to the case study

	Result
	Further considerations
	Views onto the service graph
	Dependency analyses
	Guidelines for the informal specification of functional requirements

	Extension of basic service relationships
	Requirements of another case study (memory cell)
	Informal introduction
	Basic considerations
	Extension of the basic service relationships

	Standard control interfaces
	Sub relationships of reset
	Sub relationships of disable/interrupt
	Relationship enable
	Relationship continue
	Combination of standard control interfaces
	Discussion on another semantics using buffering channels

	Application to the memory cell case study
	Starting point, identification of atomic services, and identification of the logical syntactic system interface
	Identification of service relationships
	Formal specification of modular services
	Combination of services on basis of the extended set of basic service relationships

	Discussion

	Related Work
	Model-based requirements engineering
	AutoRAID / AutoFOCUS
	Unified Modeling Language 2.0 (UML 2.0)
	Systems modeling langague (SysML)

	Service-/Feature-oriented approaches
	Services in the telecommunication domain - Distributed Feature Composition (DFC)
	FODA, FORM, FOPLE
	MEwaDis
	Functional architecture modeling
	Formal foundation of service-orientation (FOCUS theory and JANUS approach) and the VEIA approach

	Comparison of the basic system model

	Summary, evaluation, and outlook
	Summary
	Evaluation
	Advantages of the approach
	Disadvantages of the approach
	Experimental analysis of the approach

	Outlook

	Bibliography
	Glossary
	Embedding into a theoretical framework
	JANUS - A theory for service-orientation
	The FOCUS Approach
	The JANUS approach

	Relation of our approach to the JANUS theory
	Relation of the underlying system models
	Relation of service-oriented concepts

	Comparison to another approach
	Predicate-based specification of services
	Comparison of both approaches
	Conclusion

