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Chapter 1
Introduction

The investigation of optical spectra of molecules and nanoparticles is very useful for
characterizing a variety of systems that are of importance for a wide range of applica-
tions, like optical and electronic devices, optical data storage, biosensors, magnetism.
A particularly challenging field of timely interest is the investigation and interpretation
of optical properties of nanosystems [1-4].

Optical transitions of metal clusters provide characteristic signatures that can be ex-
ploited in experimental characterization techniques. In addition, recognition of the po-
tential of optical properties of metal nanoclusters for the design of new materials with
desired optical response is growing [5]. Such systems may be used in tagging and an-
ticounterfeiting (or “labeling”) technology, plasmonics, optical communications, and
optical information processing [6]. Therefore, detailed information about the optical
spectra of metal particles is of strong interest for practical applications.

The theoretical investigation of the optical spectra of molecules and nanoparticles
is a very complex task, which has become feasible due to methods based on Time-
Dependent Density Functional Theory (TDDFT) [7-10].

TDDFT extends the ideas of ground state of Density Functional Theory (DFT) to
the treatment of excitations and more general time-dependent phenomena. The fun-
damental variable of TDDFT is the density p(r, t) of electrons which varies in time ¢
and space r. The standard way to obtain the density is with the help of a fictitious sys-
tem of non-interacting electrons, the Kohn-Sham (KS) system. These electrons move
in an effective potential: the time-dependent Kohn-Sham potential. The exact form of
this potential is unknown and therefore has to be approximated.

The response approach to time-dependent density-functional theory [7,11] is for-
mally based on the application of time-dependent perturbation theory. Perturbation
theory allows one to calculate so-called response properties that are of a certain order k
in the strength of an applied time-dependent external electric field E(¢). Usually only
an electric field is considered, which may be a superposition of more contributions
that are periodic in time (monochromatic fields). Each contribution is characterized by

a certain frequency w and can be visualized as the electric field of an “ideal laser light”.
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2 CHAPTER 1. INTRODUCTION

If an electronic system, e.g. an atom or a molecule, is perturbed by such electric
field, then the electron density p(r, t) of the system is “deformed”: the system responds
to the perturbation. Ultimately, the TDDFT response formalism results in the so-called
Coupled Perturbed Kohn-Sham (CPKS) equations [12] of order k which completely de-
termine the k-th order density response of the electronic system to the external electric
tield.

The first-order electron density response can be used to calculate singlet-singlet
and singlet-triplet excitation energies as well as components a;;(w) of the dynamic,
frequency-dependent polarizability tensor. In the TDDFT response formalism, the cal-
culation can be done with help of the first-order CPKS equation.

In this thesis, the implementation of the TDDFT module of the program package
PARAGAUSS is presented. In the course of this work, a previously separate TDDFT

module [11] was significantly augmented in several ways.

First, common gradient-corrected exchange-correlation functionals (GGA XC) have
been added: Becke-Perdew (BP) [13,14], Perdew-Wang (PW91) [15,16], and functionals
derived from the Perdew-Burke-Ernzernhof (PBE) functional [17-19], significantly ex-
tending the options beyond previously available functionals that represented various
types of local density approximations (LDA), such as X, [20] and Vosko-Wilk-Nusair
LDA (VWN) [21]. Second, the TDDFT module was also extended to permit treatment

of open-shell systems (spin-unrestricted formalism).

The previously implemented algorithm [11] for evaluating matrix elements of the
exchange-correlation contribution to the response kernel invokes the resolution of the
identity (RI). In several applications we found this procedure to be not reliable. There-
fore, third, we implemented a direct numerical integration for the matrix elements in

question which resulted in a numerically more stable and accurate procedure.

The density functional program PARAGAUSS [22] makes full use of molecular sym-
metry [23-25]. Symmetry constraints for more than 70 point groups can be exploited in
SCEF calculations. In this spirit, forth, the symmetry adaptation was also introduced for
the TDDFT module, in each step of the response calculation: evaluation of Coulomb
and exchange-correlation kernels, solution of the Casida eigenvalue problem, and eval-
uation of the dipole oscillator strengths. The use of symmetry in TDDFT calculations of
transition energies and oscillator strengths resulted in significant time savings, reduc-
ing the computational costs by factors of two to ten. Moreover, the labels of irreducible
representations allow an easier interpretation of results and they facilitate the correct
assignment of spectral lines. Thus far, only few DFT programs fully exploit the advan-
tages of symmetry in TDDFT calculations, e.g. Amsterdam Density Functional Code
ADF [26], TurboMole [27].

Fifth, and finally, we introduced an option to reduce the active space of the particle-
hole excitations in the response calculations and to exclude core electron levels. We
were able to demonstrate that with a judicious reduction of the active space it is possi-



ble to achieve sufficiently accurate results for valence excitations at a fraction of the
cost. A practical method for computing such transition energies was obtained by
removing core electron levels from the active space. We also studied conditions for
choosing optimal orbital and auxiliary basis sets in the response calculations.

All new features were developed targeting parallel computers and employing effi-
cient parallel algorithms. The correctness and performance of the new TDDFT module
was tested on a variety of well studied systems, mainly involving small coinage metal
clusters. The results were compared with published data [28,29].

The following three chapters represent the body of this thesis. In Chapter 2, the
formalism of TDDFT is briefly sketched together with aspects of symmetrization of
response calculations. Chapter 3 describes the implementation of all new features as
listed above in the TDDFT module of the density functional program PARAGAUSS.
Chapter 4 presents an application of the newly developed TDDEFT tool. Results for the
electronic spectra of coinage metal atoms and dimers in the gas phase are compared to
the spectra when these systems are adsorbed at regular and defect sites of MgO(001).
This systematic evaluation of the optical absorption spectra extends earlier adsorption
studies of our group [30-34]. Finally, Chapter 5 provides a summary of the thesis and

an outlook.
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Chapter 2

The formalism of time-dependent

Density Functional Theory

2.1 The time-dependent Schrodinger equation

In spectroscopy, the starting point is a system in some stationary state, which then is
exposed to electromagnetic radiation (light). Then one records whether the system un-
dergoes a transition to another stationary state. Radiation induces a time-dependent
potential energy term H(t) in the Hamiltonian. Therefore, one has to resort to the
time-dependent Schrédinger equation. The most convenient approach is an approxi-
mate solution of the time-dependent equations by means of the time-dependent per-
turbation theory [35].

Let the system be described by the time-independent Hamiltonian A(®) in absence
of radiation (or other time-depen dent perturbations), and let H(1)(t) be the time-
dependent perturbation. The time-independent Schrodinger equation for the unper-
turbed problem is
A9 = pg0) (2.1)
where ¥(0) is the wave function of a stationary state and E the corresponding energy.
If the electronic system is subject to an external, time-dependent perturbation H M (1)
switched on at a time tp, we can describe the system by a time-dependent wave func-
tion ¥ (¢) which is the solution of the time-dependent Schrodinger equation

i%?@:[mm+Hm@yﬂﬂ 2.2)

The many-electron time-independent Hamiltonian A0 is

A

AO =T+ Q0+ V. (2.3)

It contains the kinetic energy operator T of the N, electrons, the operator Q is the
electrostatic Coulomb interaction, and the operator V,n which is the potential of the

5



6 CHAPTER 2. THE FORMALISM OF TDDFT

interaction with the electrostatic field of the Ny nuclear charges Z 4 at location R 4:

1 Ne Ne Ny Z4

. A N 1 .
T=3LVE Q=% oo Vw=-1 )
n=1

= | — rm|’ n=1A=1

— 24
P (2.4)

Here, r,, and r,;, are the coordinates of the electrons n and m and Vfl is the square of the
nabla operator acting on coordinates of electron n. Hartree atomic units are used here

and in the following.

According to perturbation theory, if the perturbation A (t) is sufficiently weak,
we can write the time-dependent wave function ¥ (t) as a series of contributions ¥ (/)

of order I:

Y(t) = i‘l’(l)(t), (2.5)

where the first term ¥(©) is an arbitrary, stationary many-electron state of the unper-
turbed system at ¢ = tg, typically an eigenfunction of H(©).

Now we will introduce some basic equations to develop the TDDFT formalism.
Measurable quantities accessible in experiments, observables B are calculated as ex-
pectation values of the corresponding quantum mechanical operators B. For the unper-
turbed system one has:

B = (¢(©)|g|¢(0), (2.6)

In order to investigate how the expectation value of observable values B changes with
time in the perturbed system, it is useful to study the difference

0B(t) = (¥(t)|BI¥(t)) — (¥ V|B[¥?) = (¥(1)|Bl¥(t)) — B (2.7)

which is known as the response of observable B to the external perturbation H; and
shows how the value B(t) of the observable B deviates from the initial (ground state)
value B,

Upon substitution of the wave function ¥ (t) in Eq. (2.7) by the series for the per-

turbed wave function, Eq. (2.5), one obtain a series for the response of observable B:
6B(t) = BD(#) + ... (2.8)
with
B () = (¢ O|B¥W)y + (¢ By ), (2.9)

The first term B(1(t) is so-called first-order or linear response term. Second- and
higher order terms describe the nonlinear response which has not addressed in this
work.

We can use the first term of the response of the observable B, Eq. (2.9), to calculate
the first-order response oW (r,t) of density p. The response of the density is the key
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quantity in the time-dependent density functional response theory
e (r,t) = (YO ple V) + (¥ W p[¥?), (2.10)

where the density operator is

N,
Z r—r, (211)

2.2 Time-dependent perturbation theory

First we briefly recall the variation-of-constants approach for the treatment of time-

dependent perturbations [36].

We assume that the perturbation Hamiltonian 4 (¢) in the time-dependent Schro-
dinger equation, Eq. (2.2), is a bounded operator in the separable Hilbert space of the
unperturbed Hamiltonian H(?). We focus on the perturbation of a bound state. We also
assume that the system at very early times t — —oo was initially unperturbed. This un-
perturbed initial system can be described with the help of the normalized eigenfunc-
tion ®,, which can be obtain directly by solving the time-independent Schrodinger
equation. Thus, the general requirement for the perturbation Hamiltonian A1) () is
AW — 0 fort — —co.

According to variation-of-constants procedure [36], we start with a spectral expan-
sion of the state eigenfunction ¥ () in the complete series of solutions @, with the
corresponding energies E; of the time-independent Schrodinger equation for Hamil-
tonian H():

()= Y by(t)@ye ", (2.12)

Inserting this spectral expansion into the time-dependent Schrédinger equation, Eq.

(2.2), we obtain an exact equation of motion for the expansion coefficients by (t)

db, _
lAqq/t

———sz

(2.13)

where A, = E; — Ey, where E; and E, are the corresponding energies of the state
eigenfunctions ®; and @, of the time-independent Schrodinger equation. The first

integral of this equation is readily obtained as
D) it
bq(t):éqa—z/ at' Y by ()AL (¢ (2.14)
—o A

for the initial condition ¥ (t) — ®, for t — —oco.
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We use the perturbation expansion
by(t) = Y b (t) (2.15)

with the requirements b,go)(t) = 0gq and b,gn)(t — —oo) = 0 for n # 0, which ensure
that the chosen initial conditions can be satisfied independently of the strength of the
perturbation. Finally, we obtain the coupled equations

=y 40
e ML O IO (2.16)
q'=0
t
b (1) = —i / ar Z b D ()AL (1) B (2.17)

The first two orders of this hierarchy of approximations to b,(t) read

b0 (t) = 6y, (2.18)

/ dt' Al (¢)e ", (2.19)

For the wave function, Eq. (2.5), with help of Eq. (2.12), we can introduce the following
perturbation expansion:

¥t = Y b)) (@pe . (2.20)

For | = 0 and I = 1, in other words for the first two components of the perturbed
function, we obtain

YO () = pye B, (2.21)
YO (1) = Y b)) (Hge (2.22)
q'=0

2.3 Dipole interaction with external electric fields

Next, we specify the external perturbation H(!) (t). We apply a uniform electric field in
the dipole approximation, in which the effect of the radiation is incorporated into the
interaction term H()(t) that is separated from all other contributions to the field-free
molecular Hamiltonian H(©),

We model the perturbation by a superposition of adiabatically switched on

monochromatic electric fields and we choose the appropriate perturbation operator
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as
N,
AV =p-E(t)=— Y r-Et) (2.23)
n=1
with | e
E() = 5 / dwE(w)e@te, (2.24)

where the convergence factor ¢’ ensures that the perturbation is switched on adiabat-
ically for t — —oo in the appropriate limit of # — 0. The factor 1/2 accounts for the

fact that the integration is also done over negative frequencies.

The perturbation Hamiltonian thus is a sum

Ne
AW = Y v(ra,t) (2.25)
n=1
of one-electron operators
v(r,t) = %/ dw v(r,w)e@tellt (2.26)
with
v(r,w) = —r-E(w) (2.27)

Ultimately, we want to treat linear optical phenomena which arise from the inter-

action of multiple monochromatic fields

E(t) = ;E(wl) cos(wyt). (2.28)

We now substitute in the general time-dependent perturbation expressions the elec-
tric perturbation for the perturbation Hamiltonian H()(t), taking into account that

Agy = Eq — Ey.

b () = 8,9, (2.29)
(D _1/ Vg (@) A i
by’ (t) 5 deqq/ (w77 exp [z(Aqq +w zn)t} , (2.30)
Here we have introduced the abbreviation
N,
Voy = (4] 21 U(tn, )| Py) (2.31)
n=

for the perturbation amplitudes.
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2.4 Systems of non-interacting electrons in external elec-
tric fields

The final expression for the density response
oW (r 1) = (¥ o[ ™) + (¥ W |p[¥ ) (232)

holds for a Kohn—-Sham system of N, non-interacting electrons. Under the influence of

a single-particle potential v(;), such a system is described by the Hamiltonian operator

10 _ 3o (_lge
KS = 2 (_Evn +v(rn)), (2.33)

n=1

which is the sum of one-electron contributions. The time-independent many-electron

Schrodinger equation reduces to equivalent one-electron equations:

[—%Vz + v(r)} Pu(r) = €ngn(r) (2.34)

The solutions @ for such a system can be taken as Slater determinants constructed from

the N, occupied one-electron orbitals ¢, satisfying Eq. (2.34):

b = det

¢1(r1) p2(r2)..on, (rN,) |- (2.35)

1
vV Ne!

For the remainder of this thesis the indices a are used for occupied one-electron or-
bitals, indices s used for unoccupied one-electron orbitals, and g, 4’ denote general, i.e.

many-electronic wave functions.

In this section we assume a closed-shell system for which we now have to obtain
the response of the density. The simplest approach is to apply time-dependent pertur-
bation theory directly at the level of the one-electron orbitals ¢, (7). All many-electron
operators are replaced by the corresponding one-electron operators, and a sum over
the occupied one-electron wave functions ¢,(r) and a sum over the unoccupied one-

electron levels ¢ (7).

Now we recall expression Eq. (2.32) for p(1)(t). With the help of the formulae for
y(0), Eq. (2.21), and y(), Eq. (2.22), the first part of Eq. (2.32) can be rearranged as

(FO1FD) = Y bV (1) (@] p|Dg)e! ™, (2.36)

where Ay = E; — E; , here we recall, that ®, and ®, are the eigenstate functions of
the time-independent system and E, and E; are the energies of those corresponding
states. With help of Eq. (2.30) for bfil) we obtain for the first-order perturbation due to
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an electric field:

12 Vv . .
yO gy = Ly / dw ‘7“ gilw=imt, 2.37

where p45 = (®s|p|Py), and Ags = —Ayy. The perturbation amplitude Vi, (w) is given
by Eq. (2.31).

Exploiting the hermiticity condition vf(w) = v(—w), we find for the Hermitian

conjugate of Eq. (2.37) in analogous fashion

1 Vv w) Lo
1{;(1) A 11;(0) — _ = . /d ﬂq —1(w+117)t 2.38
(T pre™) zq;)pq s w+n7)e (2.38)

where we used the fact that one has for the matrix element of the perturbation poten-
tial:

q)u| Z v rn/ |q)q q)a| Z Uy, —W |CI_)q> qu(_w) (2.39)

Finally, the first-order density response is obtained as

a Va( ) ,0 aVa (w) j
(1 ) _ Lot dew { PaqVq i qaYaq } iwt 2.40
o e Z/ Dyt (@ — i) ' Dga—(w—im)J (240

where in the last step —w has been substituted for w in the second term. By substituting
the Slater determinants, Eq. (2.35), into the first-order density response, Eq. (2.40), and
applying perturbation theory directly at the level of the one-electron orbitals, we finally
obtain the following equation for the response of the density:

OCC unocc
Wy, t) = —elt /d { Pas (1) Vsa(w) Psa (1) Vas(w) } iwt 241
p(r, L Y prse Rl ey pra (241)

Here we had assumed for simplicity that our system has a closed-shell electronic struc-
ture. Note, that in the last equation for the response of the density, Eq. (2.41), all many-
electron operators are exchanged with the corresponding one-electron operators, and
a sum over occupied one-electron orbitals ¢, is used instead of the initial many elec-
tron wave function ®,. In this context of one-electron wave functions the quantities
Asqa = €5 — €, are differences of one-electron eigenvalues, €, designating Kohn-Sham
energies of occupied levels and €; Kohn-Sham energies of unoccupied levels, and the
density amplitudes p,s(r) can be rewritten as

Pas(r) = (@al @s) = @4 (r)ps(r), (2.42)

where we used p = 2111\];1 d(r — r},). The potential due to a perturbation by a superpo-
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sition of monochromatic electric fields is

vis(@) = (gulft- E@)lgs) = = ¥ Ew) [ Froi(rign).  @49)
j=xy,z

Let us define the first-order density response function 7(% of the Kohn-Sham system

of non-interacting electrons as

OCC unocc 4A
sa

e ) = 5555

)2 Pa (1) Ps (T)(Pa(”/)ﬁos (), (2.44)

then one can rewrite Eq. (2.41) to read:

= ) /dw/dSr xs (1,7, w,n)rEj(w)e®! (2.45)

J=xY2

A variant of this formalism for open-shell systems can be found in Appendix A.

2.5 Time-dependent density functional theory

Time-dependent density functional theory is based on the Runge-Gross theorem. It
establishes a one-to-one correspondence between the time-dependent density p(r, f)
and the external potential v(r, t) [8]:

Densities p(r, t) and p’(r, t) evolving from a common initial state ¥ (t — —c0) = P
under the influence of two potentials v(r, t) and v'(r, t) are always different, provided
that the potentials differ by more than a purely time-dependent function (independent
of r):

v(r,t) £V (r,t) +c(t) (2.46)

With such a one-to-one correspondence between density p(r,f) and external po-
tential v(r, t), one can proceed to a time-dependent generalization of the Kohn-Sham
scheme [37] for our given, interacting many-electron system. For this, one needs fur-
ther assumptions. First, one has to assume v-representability for the density p(r,t)
of this interacting many-electron system [10], i.e., one assumes that a time-dependent
one-electron potential vkg(r, t) exists, which, if acting on a system of non-interacting
electrons, creates a density that equals p(r,t). Such a system will be referred to as
Kohn-Sham system in the following, and the potential vkg(r, t) as Kohn—Sham poten-
tial. According to the Runge-Gross theorem, vks(r, t) is unique [8]. The corresponding
Kohn-Sham equation is

2 gulr,t) = (—%vz —— ,-r,t>) oulr, ). (2.47)
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The density of the Kohn—-Sham reference system of the non-interacting electrons is

N,
p(r,t) = Y [@u(r,t)[>. (2.48)
n=1

It is advantageous to separate the one-electron potential vks(r, t) into three major con-
tributions [7]:
vks([p]; 7, t) = v(r,t) +u(r,t) + vxc([p] ;7 t). (2.49)

Here, v(r,t) is the external potential acting on the interacting physical system. It is
augmented by the Coulomb potential of the total density:

u(r,t) = / penTiGa) (2.50)

r—r'|’

and the, in general, unknown exchange-correlation potential vxc([p]; 7, ).

2.6 Application of response theory to TDDFT

An important class of molecular response properties, e.g., excitation energies, is com-
pletely determined once the density response of the corresponding order is known.
As above, see Sec. 2.4, we consider a system under the influence of a time-dependent
electric field, that is switched on adiabatically. The density p(r,t) of such a system is
time-dependent. According to the Runge—Gross theorem, we can make a functional
Taylor expansion of p(r, t) with respect to the external potential v(r, t):

o(rt) = O (r) +pW (r, 1) + 0P (r, 1) + ... (2.51)
Clearly p(%)(r) is the unperturbed ground state density and the function
op(r,t) = p(r,1) —p'(r) (2.52)

is the total density response. To simplify the notation in the following, we introduce
space-time variables:

x=(rt), y=(,t), dx=drdt, dy=d7ar. (2.53)

The first term of the density response series, Eq. (2.51), of the first-order in external-

potential v(x) is defined as the integral

o) = [y (xy)oly) 254

where we introduced the first-order density response function of the interacting many-
electron system x1). The response function is formally the first-order functional
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derivative of the density with respect to the external potential:

W(x,y) = &) (2.55)

Reflecting their definitions as functional derivatives, the density response functions
xV(x,v) describe the change of the electronic density at x induced by the external
perturbation potential v, at y. The initial potential v(?) = v([p(?)];#) is a functional of
the unperturbed ground state density p(®).

The Runge-Gross theorem applies equally to the real system of interacting electrons
as to the model Kohn-Sham system of non-interacting electrons. Therefore we can use
the same algebra for the time-dependent system of the non-interacting Kohn-Sham

system.

Thus, we now apply time-dependent perturbation theory, see Sec. 2.2, to the Kohn-
Sham system of non-interacting electrons. The response of the density is

op(x) = pgs)(x) + p%fs) (x) +... (2.56)

Here Pg)s denotes the [-th order of the density response of the Kohn-Sham system

with respect to the time-dependent part v52(x) of the Kohn-Sham potential, treated
as perturbation of the time-independent initial potential. The first leading term of the

density response is given by

Pl = [ dyxd(xy)oB(y) 257)

The first-order density response function of the Kohn-Sham system is formally the
tirst-order functional derivative of the Kohn-Sham density with respect to the varia-

tion of the external potential:
(1) op(x)

Xxs(XY) = —p5 -~
s Suke (y)

(2.58)

vo

The function ng) describes how the density of the auxiliary Kohn—-Sham system of

non-interacting electrons changes, if the time-dependent perturbation v[2 is applied.

The perturbation vi2 of the external potential that acts on the ground state Kohn—
Sham system can also be treated in the framework of response theory if one introduces

as an expansion in the real perturbation of the external potential v(x):

IR (x) = vs(x) — vl (r) = vl (x) + v (x) + ... (2.59)

Now we insert the time-dependent perturbation of the Kohn-Sham potential, Eq.
(2.59), in the first leading term of the density response of the Kohn-Sham system, Eq.
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(2.57), and obtain the expansion

PK /d4y XKs(x y) )+ /d4y XKs(x y)v % )(y) +... (2.60)

The only term of first order in the equation of the Kohn-Sham density response, Eq.
(2.60), is equivalent to the linear response of the density of the physical interacting
system

oW (x) = p%(x) (2.61)

Thus, the linear response of the physical interacting system can be expressed via prop-
erties of the Kohn-Sham system only:

oW (x) = / d*y XL (x )l (y). (2.62)

From the functional Taylor expansion for the perturbation of the external potential,
Eq. (2.59), the first-order response of the Kohn—-Sham potential vl(gg (x) is defined as the
functional derivative of vks(x) with respect to the real, external perturbation v(x):

o) = [ dy 5;’5—(5}5’)‘)0(},). (2.63)

Using the definition of the Kohn-Sham potential, Eq. (2.33),

vks(x) = v(x) + vuxc(x) = v(x) + /d31”'i(i—l':,)| + vxc(x), (2.64)

the functional derivatives in Eq. (2.63) can be evaluated by means of the chain rule:

; /m[ e [y B

4 /‘SUUXC 4, 0p(y")
) + /d /d y(Sv(y) v(y). (2.65)

In the last equation, the inner mtegral evaluates to the first-order density response

oW (y) as given by Egs. (2.54) and (2.55). For the functional derivative in the

outer integral we introduce the time-dependent Coulomb-exchange-correlation kernel

fuxc(x,y):

~ dvuxc(x) 1 duxc(x)
foxe@) = =50ty ~ 1" aoly)

= fu+ fxc (2.66)

Thus, for the first-order response of the Kohn-Sham potential we have arrived at a
relation between the physical perturbation v(x) and the first-order perturbation of the
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Kohn—Sham potential UES) (x):

vRe(x) = v(x) + / d*y fuxc(x,y) oV (). (2.67)

Finally, the so-called coupled perturbed Kohn-Sham (CPKS) equations for the first-
order density response p(1) arises if one combines Egs. (2.62) and (2.67) into a single

equation [11]:

o) = [ayxlliny) (v + [ e )W) @

Note that this is an integral equation for the density response p(!)(x) which appears
both on the left-hand and the right-hand sides.

2.7 Properties of the exchange-correlation kernel

The response of a system at time t can only depend on the state of the system at times
t" < t. The response of the system to an external perturbation must be independent of
the point in time ty, at which the perturbation was switched on. This follows from the
invariance of the unperturbed system with respect to translation in time. The response
function must be invariant with respect to temporal translations, and can therefore
only depend on differences t — . These facts may be reflected in the integral expres-
sions for the first-order density response of the Kohn—-Sham- and the real systems, Eq.
(2.62),

oW (r,t) = /d3r'/dt')(§<18)(r,r',t - t')vl(gs)(r', ot —t), (2.69)

Here we have introduced the step function

1 <t
Q(t—t’):{ <

0 t>+

to explicitly exclude the integration over “future” times t' > t.
An analogous argument holds for the response function of the Kohn-Sham poten-
tial UES) regarding a density variation p(1), Eq. (2.67). Hence the response kernel must

satisfy
foc(T, tr, t/) = fuxc (r, v, t— t’)@(t — tl). (2.70)
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2.8 The coupled perturbed Kohn-Sham equation for the

density response in the frequency domain

To derive the expression for the electronic excitation energies within the first-order
response regime of TDDFT, we first derive the equivalent coupled perturbed Kohn-
Sham equation (CPKS), Eq. (2.64), for the frequency-domain representation of the lin-
ear density response p(!) (r, ). In the following algebra we will omit the infinitesimal
quantity # by setting it formally to zero.
First we introduce the Fourier transformation [38] of the first-order response den-
sity p(1),
oW (r,t) = /dw oW (r,w)et, (2.71)

of the first-order response function X%,

X%(”f vttt —t) = /dw )cg(r, v, w)ewt=t), (2.72)
and of the Coulomb-exchange-correlation kernel fyxc:

foc(r, 1’/,1' — t’)9(t — tl) = /dw fUXC (1’, T/,W)eiw(t_t/). (2.73)

Using these definitions we can express the CPKS equation in the frequency domain by
substituting them into the time-dependent CPKS, Eq. (2.68), and integrating over time.
This procedure yields the frequency-dependent form of the CPKS equation,

oW (r,w) = /d3r’)(§<15)(r,r’,w) (v(r’,w) +/d3r”fUXC(r’,r”,w)p(1)(r”,w)) , (2.74)

that is to be compared with the time-dependent form of the response equation, Eq.
(2.68). The corresponding simple form of time-dependent CPKS equation reads

o = [l (o+ [ @7 fixco) @75

2.9 The coupled perturbed Kohn-Sham equation in ma-

trix form

Now we turn to the derivation of the matrix-based CPKS equation, starting from the
frequency-dependent form of the CPKS equation, Eq. (2.74). We consider the density
response of a system to an applied electric field p(!)(r, w); therefore, we can choose the
KS orbitals ¢, and ¢; as real quantities. As we will also discuss open-shell systems, the
spin index ¢ will be taken into account.

First we will introduce the function &, as a product of occupied Kohn-Sham or-
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bital ¢, () and unoccupied Kohn-Sham orbital ¢, (r):

D5 (1) = Pac (1) Pso (1) (2.76)

The linear response density p(!)(r,w) is expressed by products of the function @,
with coefficients x5, (w)

Spin pcc unocc

=L L L use(w) Paso r). 2.77)

The first-order response function, Eq. (2.44), see also Appendix A, is an expansion over
orbital products:

Spin occ unoce 2 A
_ “Bsagc

X7, w) 222

asa(r)cDasa(rl)z (2.78)
SllU

where Aspy = €50 — €40 is a difference of one-electron Kohn—-Sham energies of occupied

levels €,, and one electron Kohn—-Sham energies of unoccupied levels €,,. The external

perturbation potential is represented in the finite basis by the matrix of coefficients:

Vaser (@ / Pt Do () 0(F, W), (2.79)

For the potential response kernel fyxc we introduce the four-index matrix elements:

Kasa,a’s’tr’ = /d?’r/d?’r/ q)a’s’U’(r/)fUXC(rzr//w) q)asa(r)r (2.80)

With these basis set definitions of the linear response density, Eq. (2.77), the first-
order response function, Eq. (2.78), the external perturbation potential, Eq. (2.79), and
the potential response kernel fyxc, Eq. (2.80), the CPKS equation in frequency depen-
dent form, Eq. (2.75), may be cast into the linear equation:

2A
Xaso = Az—mz (Uasa + Z Kasoa's'o? xa’s’a’) . (2.81)

saoc a's' o’

Here we introduced the matrix representation of the Kohn-Sham response function
XKs:

Xsao = N o2 (2.82)

saoc
The overall structure of the matrix-vector equation, Eq. (2.81), involving the coefficients
x, Kohn-Sham response function x, the perturbation v, and Kohn-Sham potential re-
sponse kernel K is the same as in form of integral equation of coupled Kohn-Sham Eq.
(2.68), and frequency domain form of coupled Kohn-Sham, Eq. (2.74):

x = x(v+ Kx) (2.83)
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The vector and matrix symbols used here were obtained by omitting the indices asc

etc. and the corresponding summation symbols.

210 Reduction of the coupled perturbed Kohn-Sham

equation to the Casida eigenvalue problem

For practical calculations, it is advantageous, to rewrite the CPKS equation, Eq. (2.83),
by grouping the terms that depend on the expansion coefficients x,s, of the density
response on the left-hand side. The structure of the resulting equation is that of an

inhomogeneous linear equation:
(1—xK)x = xv. (2.84)

To leave only the true inhomogeneity, the perturbation v, on the right-hand side, we
multiply this equation by x ! and obtain

(x ' —=Kx=v, (2.85)

Note that all terms in this linear equation are in fact frequency-dependent.
The resonances of the system occur when some small but non-zero perturbation
v — 0 induces an infinitely large response x. Therefore, the nontrivial solutions of the

corresponding homogeneous equation are of special interest:
(x '=Kx=0, (2.86)

By inserting the matrix form of the (inverse) response function, Eq. (2.82), and after the
variable substitution x = \/Ey, we obtain

VA (% _ K) VAy =0 (2.87)

After some rearrangement, one arrives at the Casida eigenvalue problem [7]:
(A2 4+ 2VAKVA)y = w?y (2.88)

where K does, in principle, depend on the frequency w. In explicit form, it reads:

y (555/5M/5W,A§W + 24/ B Kaso arsior /ASW) Yardo! = W Yase (2.89)

a's'o’

The excitation energies (resonances) w can be calculated from the eigenvalues w?. The
density response and the dipole oscillator strength can be obtained from the corre-

sponding eigenvector s,
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The eigenvalue problem for the response matrix M
M = A? + 2A12KAV2, (2.90)
can be recast into finding its spectral representation:

M =) ynwpys- (2.91)
n

Here the y, is the n-th normalized eigenvector of M and w? is the corresponding eigen-
value, Eq. (2.88).

2.11 Oscillator strengths

The linear response of the dipole moment can be written with the help of the linear
response of the density, Eq. (2.77), in the following way:

d(l) = /dgrp(l)(f)r = Zxasa/d3rrq)asa(7')- (2-92)

By definition, the dipole vector transition matrix elements are [35]:

dyso = /d?’rqom(r)rqosg(r) = /d?’rr@asg(r). (2.93)

Note, that dssy = (dx,as0, Ayasc, Azas0). Now, with the help of the equation for the
dipole vector, Eq. (2.93), the linear response of the dipole moment is given by the sum:

d(l) — Zxdsg'dasg'. (2.94)
aso
In classical electrodynamics [39] the intensity of emission is proportional to the square
of the dipole moment variation:

2 ..
[= 2 |dP .
sl (2.95)

In spectroscopy one operates instead with a related quantity, the so-called oscillator
strength, which is given by [40-42]
2 2
f((U) = g Z |qu50(w)di,aso| . (2.96)

i:x/y/z aso

212 Symmetry adapted CPKS equation

In Section 2.9, we derived the matrix form of the CPKS equation, Eq. (2.88), by in-
troducing a finite basis set of molecular orbitals. The actual expansions of the vari-
ous operators were, in fact, carried out over orbital products of the type ®,s,(r) =
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@ac (1) @so (). If a system exhibits a point group symmetry, then the molecular orbitals
can be classified according to the irreducible representations I'; of that particular point
group and the partners 7; of the irreducible representation (see Section 3.2 below). Ac-
cordingly, we will denote the occupied orbitals by q)a”“ (r) and the unoccupied orbitals
by (psb%( ). The symmetrized orbital products will be formed as linear combination of
r ,Y Tos [43]. The sym-
bol 7 is reserved for the rare case when there are several ways to reduce the direct

pair products with the help of Clebsch—Gordon coefficients cth

product of two irreducible representations, I'; and I's, to irreducible representation I'.
The Clebsch—Gordon coefficients are universal coefficients to form symmetry adapted
product functions from symmetry adapted functions. With help of Clebsch-Gordon
coefficients we can symmetrize the product of the occupied and occupied orbitals in
the following way:

T r Tava Tsys
D) (1) = Cﬂ%, Ms(paoﬂ (1) @55 (7). (2.97)
YaYs

We will use this symmetry adapted form of the orbital products, Eq. (2.97), along
the lines of Section 2.10, where the matrix form of the CPKS equation, Eq. (2.83),
was derived. With Eq. (2.97), we introduce the four-component Coulomb-exchange-
correlation kernel K4, v, Eq. (2.80). It allows us to split the four-component
Coulomb-exchange-correlation kernel K, /5 into symmetry-irreducible blocks, see
Appendix B. As the Coulomb-exchange-correlation kernel fyxc(r,’) is defined by the
tull electron density of the system, which is a totally symmetric quantity, the Coulomb-
exchange-correlation kernel is totally symmetric as well. Let us consider the matrix el-
ement of the potential response kernel fuxc(r, ') in the basis of symmetrized products
of molecular orbitals @aw , Eq. (2.97):

r T
[ @ [ o foxcaill = V(@R finclOitl.  @98)
i
where the summation is over the partner index 7; division by the dimension dimI’ of
the irreducible representation I' yields an average. According to the selection rules,
only those integrals are non-zero where the product functions @l and qDa 19y Delong
to the same irreducible representation I' and the same partner .

Thus far we labelled the configuration space by the meta-index as which in-
cludes the index of the occupied orbital a and the index of the unoccupied orbital
s; the spin index o was treated separately. This meta-index ranges over the num-
ber of pairs N;N;. In the symmetry adapted formalism, we will use the meta-index
p = as(I';Ts)TT which includes the irreducible representation I', for the occupied or-

bitals (pm“ﬂ“, Ye = 1..dimT,; and the irreducible representation I's for the unoccupied

orbitals gosg%, v¥s = 1..dimTIs. The multiplicity index T is reserved for the case when

there are several instances of irreducible representation I' in the direct product I'; and
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['s. With the meta-indices p = as([,Is)tl and p’ = a's'(TyTy¢)T'T the Casida eigen-
value equation, Eq. (2.89), factorizes into several smaller eigenvalue problems for each
sub-block M" of M, Eq. (2.90), see Appendix B.

Z MgU,p’a/yg/a/ = wzyl;;a- (2.99)

plo-/

Another application of the symmetry framework is symmetry adaption of the os-
cillator strengths, Eq. (2.96). For this purpose, we first form linear combinations of the
Cartesian components of the dipole vector d, Eq. (2.93), that belong to the irreducible
representation I', partner  and index T:

AT = / Pr @Las) T Ty (2.100)

Here we introduce the symmetry-adapted components of the position vector r which
are just linear combinations of Cartesian components with symmetry adaption coeffi-

T
cients C .

Yy ¢, (2.101)
=X,z
The universal symmetry adaption coefficients Cfm are the same for vector-like quan-
tities.
The oscillator strengths f,, Eq. (2.96), expressed in terms of symmetry adapted

quantities, are given by:

Z AT Ay (2.102)

Tl“'y



Chapter 3

Implementation of a time-dependent
density functional formalism in the
program PARAGAUSS

3.1 Casida eigenvalue problem: open-shell and closed-

shell cases

Time-dependent density functional theory (TDDFT) is an exact reformulation of time-
dependent quantum mechanics, where the fundamental variables are no longer the
many-body wave-function but the density. The time-dependent density is determined
by solving an auxiliary set of Schrodinger equations for a system of non-interacting

electrons: the Kohn-Sham equations.

The symmetry constraints allow one to factorize the Casida eigenvalue problem,
Section 2.12, into several independent problems distinguished by the symmetry (irrep)
T of the solution vector v}, Eq. (2.88), that corresponds to the n-th excited molecular
term of symmetry I'. In the following formalism we will often deal with equations,
vectors, and matrices for some particular irrep, sometimes omitting the irrep label I'.
One should always keep in mind that the same type of equations involving similar

structures needs to be repeated for each irrep to obtain all possible solutions.

The eigenvalue equation for an open-shell system to be solved in order to calculate

excitation energies has been obtained in the previous chapter, Eq. (2.89):

y ((SW/(SW/A%U + 24 /B oK i /AW> Yot = WYpo (3.1)

plo-/

where Ay = e,fg — e?; is a difference of KS-eigenvalues eg(‘} and (—:55-. Here we use the

meta-index p to label the configuration space pairs p = (a,s) with molecular orbital a
in the occupied part of the spectrum and molecular orbital s in the unoccupied part of

23
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the spectrum. The response kernel K, . is given by its matrix elements:

T, T,
KF’U/P/‘TI = (1’15 SU” - nau(r’)

< fr [@rald e (L e s el M) e

Here the function CDL(ZI;{;FS)TF is the symmetry adapted product of two ground-state

r
Lam and unoccupied gosff%, nag and ng; are the oc-

Kohn-Sham orbitals: occupied ¢,
cupation numbers of the orbitals a and s with spin orientation ¢. Symbols I'; and I’

denote the corresponding irreducible representations.

It is convenient to think of the configuration space index p as of a pair of energy

level indices, al'; and sI's. More specifically, the symbol p = as(I',I's)7I is a meta-

Tava

index, which includes the irreducible representation I, for orbital ¢,;'* and irreducible

representation I's for q)SS%
eigenvalue problem for the subblock M! of the whole matrix M, Eq. (2.90). The two

irreps I'; and I's are assumed to be coupled into the resulting irrep I'. The symbol 7 is

To calculate the excitation energies, we will consider the

reserved for the rare case when there are several ways to reduce the direct product of
two irreps, I'; and I's, to irrep I'.

For the closed-shell systems the Casida eigenvalue problem may be further factor-
ized into two independent problems for so-called singlet-singlet and singlet-tripled
transitions (see Appendix C for details). The additional symmetry that allows one to
do that is the symmetry between spin-up and spin-down orbitals, ¢;; = ¢;| in the case
of a closed-shell system, and the corresponding relations for the integrals involving
these orbitals. The eigenvalue equation for the closed-shell ground state and so-called

singlet-singlet transitions reads as follows:

2 / / _ 2
Z ((SPP/AP +4 AP(KPT/P/T + KPT/P/l) AP’) Mp/ =w up, (33)
P’

where the eigenvectors u;, of the reduced eigenvalue problem are related to the two
“up” and “down” ranges of the true eigenvectors, y,; and y,|, by:

Ypr = uP/\/E (34)
Ypl = Uup/V2

The reduced eigenvalue problem for the singlet-triplet excitations from the closed-

shell ground state reads:

2 / / 2
( PP/AP +4 PT . PT Pll) Ap/> Vp/ = w Vp, (35)

where the eigenvectors vy of the reduced eigenvalue problem are related to the two
“up” and “down” ranges of the true eigenvectors, y,; and y,|, by:
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{ v = v/V2 (3.6)

The different signs in Egs. (3.4) and (3.6) reflect the distinguishing feature of the two
(1) (1)

solution classes: for the singlet-singlet solutions due to Eq. (3.4), one has p* = p| " =
oM /2. On the other hand for the singlet-triplet solution, Eq. (3.6), p%l) = —pil) which

implies that p(1) = 0.

The eigenvalue problems for excitations from the open-shell ground state, Eq. (3.1),
for singlet-singlet, Eq. (3.3), and singlet-triplet, Eq. (3.5), excitations from the closed-
shell ground state are of dimension N;N;, where N, is the number of the occupied
Kohn-Sham orbitals, and N; is the number of the unoccupied Kohn-Sham orbitals.
The dimension of configuration space can be reduced by taking into account only rel-
evant ranges of occupied or/and unoccupied parts of the spectrum. Nevertheless, the
dimension of such a problem can easily reach tens of thousands. Eigenvalue prob-
lems of this size can only be treated by iterative procedures seeking only some (e.g. the
lowest) eigenvalues and corresponding eigenvectors. An iterative eigensolver requires
repetitive multiplications of the trial vector by the matrix. This allows one to avoid ex-
plicit construction and storage of the whole matrix; the memory requirements to store
a matrix of the typical size may be unbearable.

The only non-trivial and dense part of the matrix defining eigenvalue problem in
Egs (3.1), (3.3), and (3.5) is the representation of the potential response kernel K5, /570
To further facilitate the repetitive application of the matrix-vector multiplications in
the iterative solution of the eigenvalue problem, we first will factorize the four-index
integrals K s s/, Eq. (3.2), with help of the resolution of the identity into the three-
index integrals and two-index integrals.

3.1.1 Resolution of the identity and its application to the Coupled
Perturbed Kohn-Sham equation

The evaluation of the two-electron four-index integrals over Gaussian-type basis func-
tions is a significant component of the overall cost of many ab initio algorithms. One
method of the approximation in the calculation of the four-index integrals is to use
the resolution of the identity [44, 45] to express the four-index integrals via a smaller
number of three-index quantities.

The resolution of the identity approach to the factorization of four-index integrals
is based on the equality:

(as|a’s’)y =) (as|k) (k|a's") (3.7)

k

which holds if the identity resolution is exact:
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1= Y [k) (K| (3.8)
k

In practice, both Eq. (3.7) and Eq. (3.8) hold only approximately. The ultimate goal of
a strategy on the basis of the resolution of the identity is to avoid at all computing the
four-index integrals, but use the associativity of matrix multiplications when applying
the response kernel to trial vectors. This procedure will be explained in Section 3.1.

More general, the resolution of the identity in non-orthogonal or dual bases may be

1o Y k) (k| = Y 1) (Q 1) (K] (3.9)
k

kK’

expressed as

where we introduced the dual basis

(k| = Y (Q M (K| (3.10)

k/

defined with the inverse Q! of the overlap matrix Q:

Que = (k[K) (3.11)

Non-orthogonal or dual bases factorization of the integrals leads to

(as|K|a's") ~ %(as\k)<E|K|El><k'|a’s'>

= Y (as|k)(Q ") (K'|KIIY(Q~ ) (I'|a's") (3.12)

ki’ 11

We will use a variant of the resolution of the identity (RI) with Coulomb metric to
factorize the four-index integrals K¢ 7 , Eq. (3.2), in an efficient way [46,47]. The use

of the Coulomb metric will be indicated by round brackets and a double bar:

Que = (k||K") = /%cf’ d3r. (3.13)

We will replace the four-index integrals (asc’|K|a's'c’) by the approximate expression
[45]:

(aso|Kla's'o")  ~ %(%ﬂlk)@lKlE/)(k’IM" o’)

= ) (asc|[k)(Q e (K [KIN(Q D (U]|as'e")  (3.14)

kK 11

where we used the inverse Q! of the Coulomb “overlap” matrix Q, Eq. (3.13). The
functional core of the factorization of Eq. (3.14) consists of the two-index matrix ele-
ments of the response kernel K:
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(k|KK) = <k\| + fRE K = Que + (KIFZE|K). (3.15)

The first term on the right-hand side is again the Coulomb repulsion integral Q/, Eq.

(3.13). The second term is the two-index exchange-correlation integral:

Rkak’a’ - <k|f |kl> (3-16)

Calculation of the exchange-correlation part of the partial response kernel K has
been implemented in two variants: by direct grid integration and approximate resolu-
tion of identity followed by grid integration. In the first method with the direct grid
integration of the XC-part of the potential response kernel K, Eq. (2.98), the latter is
defined by:

(aso|Kla's'e’) =Y (aso[[k)(Q " )uQu(Q i (K[|a's'o”) + (aso| € |a's')

kIK'l!

= Y (aso|[k)(Q M (K||a's'0’) + (aso| f5& |a's'e). (3.17)

kK’

Here, Qy again is the Coulomb interaction, Eq. (3.13), which is used as a norm func-
tion for the resolution of the identity. The four-index exchange-correlation integrals,

Fyopror = (aso| & ld's'd"). (3.18)

are, in fact, never evaluated, but instead we evaluate the product of four-index
exchange-correlation integrals and a trial vector, see Section 3.3.4.

A summary of the integrals that need to be calculated and of the algorithms will be
given in the next sections.

3.1.2 Approximations to the potential response kernel

For our purpose it is convenient to view the three-index Coulomb integral (asc||k) as
a rectangular matrix L, with meta-index po = asc and k.

Lpa,k = (p0'||k) (3-19)

According to the approximation to the four-index integrals, Eq. (3.14), and with the
help of the three-index Coulomb matrix, Egs. (3.19), two-index exchange-correlation
integral, (3.16), and two-index Coulomb matrix as a metric, (3.13), we can describe the

eigenvalue problems for open-shell and closed-shell systems by a common expression:
(A2 + cVA[LTLY 4 F]VAly = w?y. (3.20)

The matrices L, T, and F as well as constant ¢ have different expressions for open-shell,
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closed-shell in case of singlet-singlet and singlet—triplet transitions. Table 3.1 shows
the settings for each of the variants.

Table 3.1: Settings for the approximations to the potential response kernel, Eq. (3.20)

lc L T F
RI-XC
Closed-shell: S—S | 4 (as|lk) QY Q+Ry;+R;)Q! 0
Closed-shell: S—T | 4  (as||k) Q YRy — Ry )Q™ 0
Open shell 2 (ascl|k) Q YQ+Ry)Q 7! 0
Direct XC
Closed-shell: S—S | 4 (as||k) Q! Fyp +Fy
Closed-shell: S—T | 4  (as||k) Q! Fyp — F)
Open-shell 2 (aso||k) Q! E

To calculate the excitation energies of the system one has to evaluate:

e matrix L of three-index coulomb integrals, Eq. (3.19)
e matrix Q of two-index coulomb integrals, Eq. (3.13)

e matrix R, of two-index exchange-correlation integrals, Eq. (3.16)

In the case of direct grid integration, instead of the matrix R, one has to evaluate
repeatedly the product of matrix F;,s of four-index exchange-correlation integrals, Eq.
(3.18), with a trial vector y,s,, see Section 3.3.4.

The detailed explanation of the three-, four- and two-index integrals calculation

will be given in the following sections.

3.1.3 Solving the Casida eigenvalue equation in PARAGAUSS

Once the matrices L and T, Table 3.1, have been constructed from the ground state
integrals, the eigenvalue problem, Eq. (3.20), can be solved for the excitation energies
w. However the dimension of this eigenvalue problem can be very large; it grows
with the number N of the occupied-virtual pairs of Kohn-Sham electron levels. On
the other hand, often only the lowest N, < Ny excitation energies are of physical
interest. One possible way to address such an eigenvalue problem is to use an iterative
eigensolver of Davidson [48,49] or Lanczos [50].

E. R. Davidson developed a method that uses perturbation theory to take advan-
tage of the sparsity and the diagonal dominance of the matrices appearing in quantum
chemistry [48,49]. For the present purpose of solving the Casida matrix eigenvalue
problem, a modified and extended version of Davidson’s iterative subspace algorithm
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in the implementation of Stathopoulos and Fischer [51] is used. The main operation
in the Davidson algorithm is the multiplication of a set of test vectors with the matrix
M = A? + \/AK+V/A that defines the eigenvalue problem. In the previous section we
showed how to factorize the only non-trivial part of matrix M, the potential response
kernel, into a product of three matrices: K = LTL'. This design choice allows the
implementation of the matrix-based CPKS method into the program PARAGAUSS par-
allel algorithm without ever building the full matrix LTL'. In Appendix F a schematic

overview over the program PARAGAUSS is given.

Only an estimate for the diagonal elements diag(M) is required to initiate the algo-
rithm. The implementation of the Davidson algorithm due to Stathopoulos and Fischer
is optimized to jointly iterate a set (“block”) of eigenvectors. To simplify the notation

in the following discussion only a single eigenvector y is considered.

The task of calculating the diagonal elements of matrix LTL" can be parallelized
over n processors, if the N, X Nj matrix L is split row-wise, i.e. along dimension Ny,
into N;(f) X N} submatrices L; with N;(,i) = Ny /n, where i is the index of processors. On
each processor the Nr(,i) X Nr(,i) the diagonal elements of the matrix L, TL! are calculated

and sent to the master processor.

However, the most important and time-consuming operation of the algorithm is
the repeated evaluation of the product of a trial vector 7 with the matrix M, Eq. (2.90).
Again the evaluation of the products A%jj or v/A7 is straightforward, and the difficulty
lies in the parallel evaluation of (LTL")#. First of all, the associativity of the matrix
multiplication is employed to evaluate the product “right-to-left”:

(LTL")g = L(T(L"7)) (3.21)

Second, in order to exploit multiple processors, the matrix L and trial vector  are
split row-wise along dimension N, into submatrices L; and trial vector §j; as described
in the previous paragraph. In the first step on each processor the product (L;)'#; of
submatrix and test vector is evaluated according to Fig. 3.1(a). The n resulting vectors
(L;))*§; of length Nj are collected on the master processor, where the matrix-vector
product b = Y,; T(L!y;) is evaluated. The intermediate vector b then will be used
for the matrix-vector product L;b. These vectors of lengths N, are sent to the master
processor (see Fig. 3.1(b)) where they are combined to the final vector (LTLY)7.

The convergence of the iteratively determined estimate y!/) to the true eigenvector
y is verified in the Davidson eigensolver of Stathopoulos and Fischer [51] by requiring
that ||y) — yU=1)|| is below a certain threshold &, where ||6x||c = max,—1,N, ||0%p]].
This is the primary measure of the eigenvector convergence. The second measure is

the magnitude of the residuals,

[IRes(y)]| = [|1M = ?| [y —yl.
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(a)
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(b)
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L, x | | TLp = [] L,TLY
L, | LU

Figure 3.1: Parallel evaluation of the multiplication (LTL")§ in PARAGAUSS

The norm of the residual is a useful convergence criterion, but it does not measure
the relative error of the numerical calculation of eigenpairs. The eigenvalues of the

problem are iteratively improved along with the solution vectors y until convergence.

3.2 Basis set approach to Casida equation: symmetriza-

tion of the auxiliary and orbital basis sets

In this section we will elaborate the construction of basis functions. In PARAGAUSS the
basis functions are linear combinations of atomic orbitals each of which is a product
of two atom-centered functions that describe the angular and the radial part, respec-
tively. The construction of symmetrized orbital and fitting basis functions as well as
contracted orbital basis set functions is described in detailed in Refs. [52] and [23]. In
the present thesis, the symmetry adaptation of orbital and fitting basis functions has
been extended to all irreps. Previously, for SCF the fitting basis functions have been
implemented only for totally symmetric irreducible representation.
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The primitive Gaussian basis functions are parametrized by an exponent « of the
factor e~ Spherical harmonics are characterized by angular and magnetic quantum
numbers [ and m, respectively. The magnetic quantum number m is restricted by —I <
m < |. Each atomic basis function is centered as some position a,,.

The locations a,. of the atoms carrying the primitive basis function are character-
ized by two indices. The first index is the unique atom index u. The second index is
an index denoting symmetry equivalent atoms e. Those atoms whose positions can
be transformed into each other by symmetry operations starting from atom u are re-
ferred to as “symmetry equivalent”. The third index denotes angular momentum I.
The angular momentum function are referred to as s, p, 4, ...-type functions. The fourth
index is the magnetic quantum number m, which ranges from —/ to [. The fifth index
is Gaussian exponent «; it determines the radial extension of the basis function.

The general form of a primitive basis function is

Xuelma (1‘) = Ny, [7’ - aué]lm exp (—IX |7’ — uue|2> ’ (3.22)

where [r — aye|;,, denotes a real spherical harmonic [23,52]. The normalization factor

o\ 374 Ag)! 1/2
Ny = (F) <ﬁ> (3.23)

is chosen such that (x|x) = 1.

Ny

The primitive fitting basis functions f,;,,, (r) differ only by their normalization fac-

tor:

fuelmac(”) = (20‘)1 [r — duelim exp <_‘X r — au€|2) ’ (3.24)

with the real solid harmonic [r — aye];,;, [52] which is used to describe the angular part.
Since real solids harmonics [r — ay.);;, are used in PARAGAUSS, the primitive basis
functions and, thus, the final basis functions as well are real.

Contracted basis functions g, (*) are linear combinations of primitive basis func-
tions Xyerma (7) with different exponents a and the same angular momentum quantum
numbers (I and m) on the same center (1, ¢) with predetermined contraction coefficients
dp.:

guelmc(r> = Z d;xc Xuelma (T) (3.25)
o

The contracted basis function is characterized by unique atom u, equivalent atom e,
angular momentum /, magnetic number m and contraction index c.

Symmetry adapted basis functions are linear combinations of contracted basis func-
tions of the same unique atom u, angular momentum ! and contraction index c. Orbital
basis functions g, (r) of different magnetic quantum number m located on different

symmetry-equivalent atoms e are combined to form symmetry adapted basis functions
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(pﬁ?(r) characterized by an irreducible representations I' and a partner index y. The
multiple independent instances of the same symmetry I'y originated from the angular
momentum shell of a group of symmetry equivalent atoms will be denoted by “inde-
pendent function” index T.

The symmetrization of basis functions has been done with help of symmetry adap-
tion coefficients CLFZL Those coefficients are linear combinations independent of the
contraction index c. They are precalculated in a separate symmetry part of the code
PARAGAUSS [53]. The symmetry adapted orbital basis functions are given by

4’51? ZZ Cljel‘;?;q guelmc ) (3-26)

The auxiliary symmetry adapted basis functions k;lrg are constructed along the

Tlc

same lines as symmetry adapted orbital basis functions ¢/, ¢,

but with one exception.
The totally symmetric fitting function of s and r2-type for historical reasons are nor-

malized differently:

kf(ix = Z fuzOOrx — ay;), (3.27)

where N is the number of symmetry equivalent atoms. For the SCF calculations in
PARAGAUSS only totally symmetric fitting basis functions are in use, but for TDDFT
calculations the symmetry adaption of fitting basis function has been implemented
for all irreducible representations and partner indexes. The symmetrized fitting basis
function are characterized by unique atom u, angular momentum /, exponent «, irre-
ducible representation I', partner 7y, and independent function index 7. A contraction
of the fitting basis was not applied and not implemented in this study.

3.3 Integral calculation in PARAGAUSS for the Casida

eigenvalue problem

3.3.1 Symmetry adaption of three-index Coulomb integrals

In this section we explain the strategy for evaluating and symmetry adapting the three-
index Coulomb integrals as implemented in the parallel density functional code PARA-
GAUSs. Evaluation of the primitive three-index Coulomb integrals follows [53]; the
symmetry adaption for use in TDDFT module has been a part of this thesis.

One of the fundamental algorithmic idea exploited by PARAGAUSS for calculating
the primitive matrix elements is to start with matrix elements between s-type basis
functions [23,52] and then derive matrix elements for basis functions of higher angu-
lar momenta. Matrix elements between primitive [-type basis functions are calculated
by applying differential operators of the form [V,];, to s-type matrix elements. Here
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the square brackets with angular momentum quantum numbers denote real solid har-
monic of the argument enclosed. The differential operators [V];, are defined by for-
mally replacing variables x, y, z by 0/0x, d/dy,and 9/0z in the definition of [r];,. The
differential operators [V,];, are defined similarly by using the derivatives of the corre-
sponding Cartesian coordinates d/day, d/da,, and d/da.

Let the primitive orbital basis functions x, and x; be centered at a and b and the
primitive fitting basis function f centered at c. Then the Coulomb integrals are given
by [53]:

—-1/2
(Xalavazx Xblhvh,Bchlcvcfy) = (“Zﬂ (2111 - 1)”;Blb (2lb - 1)”)
[V al1,0, [V 61,0 [V clicv (3.28)

(Xa00a Xv00p! | feo0y)

X

X

The expression for the integral between s-type basis functions to be differentiated is:

2 | a+p (a+B)y )
— goo<’t I az), 3.29
(XaOOaXbOOﬁHfCOO’Y) 00 v\ a+pB+7 O(lx—l—ﬁ—l—’)’ ( )

where we introduced the distance vector

d:anr,Bb_c

3.30
a+p (3.30)
and used the symbol S for the overlap integral of two s-type Gaussians [52]:
4o 3/4 A
00 — ,X.Hg(a ) ) 31
K ((a+ﬁ>2) ‘ 43D

The series of functions I,,(7) is related to the incomplete gamma function. An impor-
tant property of these functions is that differentiating each member of the series yields
next higher-order member:

2 (1) = (=1) L (7) (3.32)
97! n n+l .
Finally, the general expression for the three-index integral, Eq. (3.28), with three [-type

basis functions can be given in compact form:

Ie Ip+1,
M) i L[N yzhllel (4 b ),

(Xal,,vatx Xblbvb/%chlch'y) =P (“"‘B""Y P Io+1 Xt B+ Vg, Vp, Ve

(3.33)

where we introduced the normalization factor

_ 2 | (a+B)/(at+B+7)
b= 7\/ml(2za—1)!!51(2zb—1)u' (3.34)
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The auxiliary quantity le,“g lﬁblf,c (a,b,c) carries three pairs of angular momentum in-

dices and an additional “radial” index I. We will symmetrize the auxiliary quantity

Z]l,i’l,?blcvc (a, b, ¢) in the following way

Z e (a,0) =YY Cl Y (ee) Z (a, b, c.) (3.35)
e 1

where I' and 7y denote the irreducible representation and partner of the symmetry-
adapted fitting function. Here C,l/£7(ce) are symmetrization coefficients for the contri-
bution of the particular symmetry-equivalent atom c. to the symmetry-adapted fitting
functions, e is the index of symmetry equivalent atoms. For the SCF integrals only
the totally symmetric fitting basis functions have to be considered, but for the TDDFT
module we have to calculate the three-index integrals according to all irreducible rep-

resentation and partners.

The symmetry adaption of the integrals with s- and r-type fitting basis functions is
performed using renormalized symmetrization coefficients CgAl = \/LNfngAl, where N,
is the number of symmetry-equivalent atoms. This ensures the historical normalization
of the totally symmetric fitting functions, Eq. (3.27). After symmetry adaption, the
Coulomb integrals, Egs. (3.29) and (3.33), should be contracted over the exponents of
the orbital basis. Then the symmetry adaption of the orbital basis is applied to obtain
the integrals over symmetrized molecular basis functions. Each batch of integrals is

then stored on disk in a separate file.

In order to understand how the integral batches can be combined into a single
(three-dimensional) “matrix” L, Eq. (3.19), one needs a mapping of the batch indices
on some range of integers. The indices of the unique atom types u, of the angular mo-
mentum /, of the contracted exponents c, and for the additional independent function
degree of freedom T all can be mapped by a bijective projection to a single meta-index
i: ie. {ulen} — {i}. The full identity of a basis function includes the index of the
irreducible representation I" and the partner <, and can be represent by the three-tuple
{iTy}. The particular choice of the mapping is documented by the pseudo-code in
Algorithm 1.

The parallelization strategy used in the three-index integral calculation is to dis-
tribute the tasks of integral evaluation to processors in batches corresponds to pairs of
atomic shells (1111) and (uylp). Here u; and u; are the indices of unique atoms, /; and
I are two angular momentums of those particular unique atoms.

The nontrivial step of symmetrizing of the Coulomb three-index integral can be
performed with the help of the equation for the molecular orbitals, Eq. (3.26), and
Clebsch-Gordon coefficients C.. The symmetry reduced three-index Coulomb

Lava Lsys®
integrals is

Lt

TF'V Tava Tsvsy Iy
asok dlmF ;AYZ& TaYaTss (@as” @5 118 ")- (3.36)
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Algorithm 1 Pseudo-code defining the meta-index for fitting basis functions

II'INPUT: u as unique atom, integrals in form integral(irrep)%l(1)%om(b,a,c,n,m1,m2,pa)
! OUTPUT: int_3c(a,b,i,m2,m1)

1:=0
forall' = 1...Nr do:  !! loop over irreps of fitting basis functions
forall ¥ = 1...dimI do: !! loop over partners
forall I do: Il angular momentum loop
forall cdo:  !! contracted exponents loop
forall T do: !! independent functions loop
1:=1+1
storage(...,i) = (......|[ultTy)
done forall ! over T
done forall 'over c
done forall 'l over [
done forall Il over 7y
done forall Mover I’

The three-index Coulomb integral, Eq. (3.36), will be stored in files named by a pair
of shell indices (u,l;), and (usls), as well as a triple of the irreducible representation
indices (T',I's)7I, where 7 is the multiplicity index.

After the SCF calculations in the response part of PARAGAUSS, the matrix L will be
assembled from these batches of symmetry-reduced three-index integrals. The batches
of the Coulomb integrals will be read from separate files on disk and combined into
one matrix. After that the Coulomb integrals will be transformed into the basis of KS-
eigenvectors with respect to the two orbital indices. The evolution of the Coulomb

three-index integrals in a typical calculation is schematically displayed on Figure 3.2.

3.3.2 Symmetry adaption of the two-index Coulomb integrals

In this section we discuss the evaluation strategy and the symmetry adaption of the
two-index Coulomb repulsion integrals between fitting functions. In this work the use
of fitting functions in PARAGAUSS had to be extended to functions of any symmetry.
This is due to the fact that the density response to a general perturbation is not nec-
essarily totally symmetric, whereas the ground state density by definition is totally

symmetric.

The primitive two-index Coulomb repulsion integral Qs of two unnormalised s-
type fitting basis functions, e k(=0 and ¢=¥ (r—)* can be written in the form

275/2

Qss = (ﬂk||bk’) kk/(k-l—k’)l/z

Io(27x) (3.37)
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Figure 3.2: Calculation of three-index Coulomb integrals

where
kk'

Tkt K

In order to describe the corresponding expressions for r?-type functions, we first note

4 x=d*/2; d=a—b. (3.38)

that it can be obtained by parameter differentiation:

a —k1’2

2 —kr?
r-e = —¢€
ok

(3.39)

Therefore, by applying parameter differentiation to the expression for the ss-Coulomb
integral, Qss, Eq. (3.37), we get the Coulomb integral between an s- and an r?-type

fitting functions, e ¥(r—4)* and, 2K (r=b)*;
d
Qsr = _@st
B Hﬁﬁiﬁﬁﬁ[(§+g01d%¢%+F%kHQQO. (3.40)

For the Coulomb integral Q,s between the r?- and the s-type fitting basis functions,
r2e~k(r=a) and ¥ (=) one has to just interchange k and k" in Eq. (3.40). And the
Coulomb integral Q,, between the two r?-type fitting basis functions is obtained by
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double parameter differentiation of the Coulomb ss-integral Qgs:

82
er = WQSS

275/2
Wk o4

3(k kK 5 3/k K
[ <k’ + — 2 + 2) Iy + = (k’ )ngh + (ng) I

Having expressed those equations for the different two-index Coulomb integrals

X

Qss, Qsr, and Q, as pure functions of x = d?/2, it is easy to apply the parameter
differentiation with respect to the two atomic centers a and b in order to obtain the
(unnormalised) integrals between general [-type fitting function

(alamak||blymypk’) = (=1) [V a1, [V ] 1, Qs (42 /2)

= (_1)lu[V]lma[v]lmess(dz/z)
Lot

— (-1t Y QW@/2)zik ! (a) (3.42)

I=max(I,l})

Here we first replaced V, and V;, by V = 9d/9d with the appropriate sign. To obtain
the two-index Coulomb integral for general [-type fitting function Q;;, we will use ss-
Coulomb integral Qss and the [-derivatives of Qss e.g. Qgé). The auxiliary quantity
Zi,“ljhmlb(d) carries two pairs of angular momentum indices and an additional “radial”
index [. Since Qss contains the incomplete gamma function I, the derivatives Qgé) will

be obtained from the equation (see Eq. (3.32)):

l

S ln(20) = (=1)/(20) L1 (20%) (3.43)

The primitive two-center Coulomb integrals (a;l,m.k||b;l,myk") for all pairs (i, j) of the
symmetry equivalent atoms should be symmetrized, packed and stored. The transition
to the Coulomb integrals over the symmetrized fitting functions is done by invoking

summation with symmetry adaption coefficients:

/ 1
T r
(g;[tluk| |gl€lbk’) = dimT Z

< ) Zcfz%ucfzﬂb ailamak| |bilymyk') (3.44)

img jmy

Here, dimT is the number of partners of an irreducible representation I'. Note that
the summation is performed over all pairs of the symmetry-equivalent atoms i and
j. This is different from the special totally symmetric case of the ground state calcu-
lation in SCF part, where we would replace the summation over all pairs of symme-
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try equivalent atoms by a sum over so-called symmetry nonequivalent distance vec-
tors [23,52-54]. The resulting batch of two-index Coulomb integrals is stored in a file
named after the shell indices (u,/,) and (u;!}) and irreducible representation I'.

The expression for the symmetry reduced integrals corresponding to a given sym-
metry irreducible representation I' is written as the average over symmetry partners.

It is stored in upper triangular form.

3.3.3 Evaluation of the two-index exchange-correlation integrals

The exchange-correlation integrals are evaluated by numeric quadrature on a space
grid. The integrals required for TDDFT are calculated after the SCF convergence is
reached on the same numerical grid as the XC contributions during SCF iterations.
The grid quadrature, essentially a summation over grid points, is parallelized over the
grid points. The expression for the symmetry reduced integrals corresponding to a

given symmetry representation can be written as the average over symmetry partners:
1 /
r _ /
Rieko' = SimT ;(kr’ﬂf% [K'Ty). (3.45)

The exchange-correlation kernel f;{gl reflects the first-order change in the time-
dependent XC-part of the KS-potential due to the density shift dp:

g

90! (1,¢') = ‘;;jjc((rf)) (3.46)

In order to obtain a practical computational scheme, we will use the so-called adia-
batic local density approximation (ALDA). The adiabatic approximation for LDA can
be explained as a limiting case of a slowly varying density and potential, both in time
as well as in space dimensions. These conditions are rarely fulfilled in real systems of
interest; therefore this is a dramatic approximation to TDDFT [10]. However, from the
very beginning of TDDFT until today only a few attempts have been made to improve
adiabatic approximation for the potential response kernel f;{g/ [10]. On the other hand,
the adiabatic approximation for LDA can be extended to the GGA case. According to
this approximation the response kernel is reduced to a spatially local, real function,

evaluated at the ground state density po(r):

v (p(r))

& (r,r) = 0(r =)=
X (5pa (1’) P=00

(3.47)

The LDA exchange-correlation functionals for use within the TDDFT framework
has been made available in the program package PARAGAUSS in a previous work [11].
A part of the current work was to extend the adiabatic approximation to the general-

ized gradient approximation.
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The essence of the “generalization” in GGA in comparison to LDA is that the GGA
exchange-correlation functional depends not only on density p (as LDA), but also on
the density gradient Vp. The energy functional expression for the second-order func-
tional derivative of the GGA exchange-correlation functional is obtained from XC en-
ergy density exc, Eq. (3.50), by differentiation with respect to the density p and the
density gradient Vo [55]:

02 02 02
fxc = i V—apGVp + Vivf—avipavjp €XCs (3.48)

The general form of the exchange-correlation energy can be written as

Excle] = /d31’ exc(pt,01, Vo1, V). (3.49)

Here exc is the exchange-correlation energy density per volume, which in PARAGAUSS
depends on electron densities of different spins p1, and p|, and the squares of the gra-
dients of electron densities 711 = |Vp1|?, 7, = |Vp||? and 1, = (V1 Vp)) =
(Vo Vpy).

exc = exc(O1 01 Y11, Y11 11)- (3.50)

In Appendix D the relation between the first- and second-order derivatives with re-
spect to Vp and 1y is derived. After the mathematical transformation of the integral
R{U o BQ- (3.45), with a XC-kernel of the form of adiabatic approximation for LDA or
GGA, Eq. (3.47), we obtain the final equation for Ry,

82
Riover = [ W (apaapm> excdr

5 5
+ / (VEVK) (a%, + a%,,,> exc dr (3.51)

/ > 9 3

apvaf)’a’r apaa’)’w'
+ Z / (VkVp:) (VK Vo)

wd

(az + i + > + ” )ed3r
otdVerr | MedVor | 0YordTre | MVedYrw )

The summation over spin indices T and 7’ can be explicitly carried out for each partic-
ular choice of the integral indices ¢ and ¢’. In the most general case of an open-shell
system, Eq. (3.45), for the spin state variables o =T and o’ =7 one obtains the following
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expression:

Rirpy =

_|_
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In another essential case of open-shell systems with spin state variablesc =T and 0’ =|

the expression for the two-index exchange correlation integral becomes

Rka/l =

+
+
+

_|_

_|_

/k (E)ze_xc> K d3r
dp19p

/ Vk (anC) \
971

(3.53)

d%¢ d%e
V (kK (ZV XC —XC> 3y
/ (k') plamam pTaPTa'YTl
82€XC
4 / VkVp (—) Vo, VK) dr
( T) a,)/ﬁa,”l ( ! )
2 / (VkVp;) (aze—x‘?> (Vo VK d°r
9711971

In the special case of a closed-shell system we can exploit the consequences of the

equalities

PN =V = P
pr=pL = ZVOI=VO =SS M =T =TS

|Vpl|?

(3.54)

and simplify the Egs. (3.52) and (3.53), by grouping equivalent contributions. The two-
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index exchange-correlation integrals Ry 1 in the closed shell case simplifies to:

2
Rka/T = /k <aa€%) kl d31’
+ o2 / Vi (anC) T (3.55)

azexc 1 azexc
/ - 3
+ [ () Ve (amam + 23m3m> dr

azexc azexc 1 aZGXC
+ / \aY + T VoVK) dr
(VEVE) (M%T 911971 407, (VoVE)

The two-index exchange-correlation integrals Ry | in the closed shell case is similarly
simplified to:

826)((: 3
Rk K = /k(—)k’d?‘
Tl dp19p|

v / Vi <a€XC) VK dr (3.56)
971

azexc 1 azexc
/ - 3
i /V (k) ve (apTam " Zama’m) o

2 2 2
+ / (Vivp) [ 2xc | dexc | 19 X ) (VoK) dr
0Y11971L 0111911, 4 977,

In practice, there are more terms to integrate as in the implementation we expand the
gradient of the product V (kk’) in the third line of Egs. (3.52), (3.53), (3.55), and (3.56)
by using the formula:

V (kK') = (VK) K +k (VK. (3.57)

In practice the integrals are of course evaluated approximately by a numerical quadra-
ture on the grid of points.

3.3.4 Representing exact exchange-correlation response kernel in the

basis of orbital products.

The purpose of the resolution of identity introduced in Section 3.1.1 is an attempt to
replace the (four-index) matrix representation of the potential response kernel in the
basis of orbital products by an approximate but more economic (two-index) matrix rep-
resentation in the basis of fitting functions. The construction of the latter was discussed
in the preceding section (Section 3.3.3). However, this approximation performs differ-
ently when applied to the Coulomb or XC-part of the potential response kernel.

The two-electron response kernel K = Ky + Kxc can be thought of as a Taylor
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coefficient of the second-order term in the DFT energy expansion series over density
response Jp. As such it should be positively definite at the minimum of the energy
functional (defined on the sub-domain of N-representable densities [7,9]). Technically
it is separated in the positive definite Coulomb part and the “negative” XC-part that,
in particular, compensates for self-interaction [7,9]. Moreover, in the adiabatic LDA
approximation, the dominating exchange kernel has a weak singularity at low densi-
ties far from the nuclei Ky = —Cp’z/ 3, Although the RI method, also called “den-
sity fitting technique”, appears to work well for the Coulomb part, it also appears
to be hard to preserve the positiveness of the total response kernel by representing
XC-kernel in an arbitrary chosen auxiliary basis sets. In the resolution of the identity
approach, the auxiliary basis for the XC-kernel is dual to that for density response dp,
see Appendix E. In the case of the highly non-local Coulomb metric the dual basis of
extended systems becomes extremely delocalized when starting from localized atomic
density fitting functions; this may entail numerical instabilities. The direct approach of
representing the XC-response kernel in the basis of orbital products, on the other hand,
appears to cancel nicely the weak singularity of the LDA exchange and does not lead

to numerical instabilities.

Combining Coulomb matrix Q, Eq. (3.17), and matrix Fy,, ., of direct grid integra-
tion for XC potential response kernel, Eq. (3.18), and using the meta-index p = (as) for
orbital pairs, we obtain the response matrix M, ,,/, Eq. (2.90), in the following form:

Moo ot = ppOger By + 2V A Qo ot + Fpopror |V A (3.58)

The Coulomb part Qo is calculated with the resolution of the identity, as shown

before in Section 3.1.1.

The matrix element of the exchange-correlation response kernel between two basis

functions of the product space @), ans @, is, formally, given by the integral:

Foo o' = (Ppol FSE |Ppor). (3.59)

In the simplest case, without symmetry, ®,, is the product of two molecular orbitals
@ac (1) @so(r), Eq. (2.76). A basis of the product space in the symmetry-adapted case

can be given by

et (r) = Y CLT [ gad (r)pss (). (3.60)
YaYs
where C17 are the Clebsch—Gordon coefficients.

Favalsys
Comparing the expressions for F,; ., Eq. (3.59), and for Ryy o, Eq. (3.45), it
follows that the derivations in Section 3.3.3 for R-integrals formally also hold for F-
integrals. In particular, the expression on the right-hand side of Eq. (3.51) can be used
for Fy; o if one substitutes:
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Vk: = V(I)pa =V (Goaaﬁosa) = (V(Puo) Pso + Pac (VGOSU) . (3.62)

However, it is not necessary to evaluate directly the exchange-correlation integrals
Fyg por- The requirements to do so in terms of time and memory would be very high
in a realistic calculation. Rather, one needs the value of the (matrix) product of the
exact exchange-correlation integral F,,, s, and a trial eigenvector {x,,} provided by

the eigensolver in each iteration:

Yoo =Y FooporXpor (3.63)
/(T/

After substituting the equation for the exchange-correlation integrals Fy; ./, Egs.
(3.59) and (3.60), we obtain

Yaso = Qac (1) Pse (1) X Zf X 2 Paro (1) Psror (1) Xrgr o (7). (3.64)

a's!

Schematically, the evaluation of Eq. (3.64), will be done in three steps. In the first step

one calculates the response of the density:
Spg (r Z Pator () Pstor () Xgrsror (1) (3.65)
In the second step one obtains the potential response:
S0 (r Zf r) 6po (r (3.66)
The third step is the calculation of Y,

Yoo = (Qac|0ve|pso), (3.67)

again, the meta-index p = (as) was introduced in the last equation.

3.3.5 Numerical quadrature for the LDA exchange-correlation inte-

grals

In the actual implementation the calculation of the LDA integrals is done in five steps.
One calculates the values of the molecular KS-orbitals q)lrg (r) on the grid of points

r using eigenvectors E! _and values of the orbital basis functions )(57(1/) on the grid:

9ir (r ZEmaxn (3.68)
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Further down we will distinguish occupied molecular orbitals gogg (r) and unoccupied
molecular orbitals (psrg (r). This operation has been implemented using BLAS matrix
multiplication subroutines [56]. The cost of the operation per irrep and per partner is
of the order N;N,, where N; is the number of grid points and N, is the dimension of
orbital basis set.

In the next step one computes the two-center functions <I>;£7(r) from the prod-
ucts of occupied and virtual orbitals by symmetry adaption with the help of Clebsch—
Gordon coefficients Cy ,;Y r,y.s Eq- (3.60). The cost of the operation per irrep and per
partner is of the order N;N,, where N; is the number of grid points and N, is the

dimension of product space of occupied and virtual molecular orbital basis sets.

The symmetry-adapted basis functions together with the set of approximate eigen-

vectors {x” 1 are used to calculate the response of the density.
po P Y-

nTF'y Z cI)TF')/ (369)

The set of approximate eigenvectors {xp,} are provided every iteration by the
Davidson eigensolver while solving Eq. (3.20). The BLAS matrix multiplication sub-
routine has been used for this operation. The cost of the operation per irrep and per
partner is N; N, N;;, where N; is the number of grid points, N, is the dimension of prod-
ucts of occupied and virtual molecular orbital basis sets, and N, is the size of the set of

approximate eigenvectors {x7}.

The next step is the calculation of the response of the XC-functional 50357(1’) (we
omit the symbol XC for brevity here). For that, one multiplies the response of the

"7 (+) with the exchange-correlation kernel f;{g/ (7).

nTl"’y Zf nTF’y( ) (3.70)

density ép,

The cost of the operation per irrep and per partner is N;N,, where N, is the number of
grid points, N, is the size of the set of approximate eigenvectors {x};, }.

The next two operations are implemented in the integration procedure. The method
(a) is integration of the symmetrized functions CID;(FT'Y(r), of the size NN, with the re-
sponse of the XC-functional, évm T(r), of the size N, Nj:

r r
= L[ #ref ™ o

dlmF ZZw TM ngM(r), (3.71)

12

where w(r) are the weights of the grid points [57]. In the method (b) one evaluates the
matrix elements of the XC-potential response for each pair of the partners <y, and s of
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the orbital sets {gpe"", 7, = 1..dimT,} and {5, 7s = 1..dim T, }:

(a0T 474|607 |s0Tgys) ~ Z w(r) @rdT (1) SV (1) @i (r). (3.72)

That is followed by the symmetry adaption of the resulting integrals, Eq. (3.72), by

reducing them with the help of Clebsch—-Gordon ler;ya Toe:

Yggr d T Z Z IT{%Z Fs’r a‘TFa")’a’(sUgTrW‘SUTs’YQ (3.73)
m Y Ya%s

The cost of operations (a) and (b) per irrep and per partner is N;N,, where N, is the
number of grid points, N, is the dimension of products of occupied and virtual molec-
ular orbital basis sets. Here the BLAS subroutine is used for optimal matrix multipli-
cations. Methods (a) and (b) show different performance. Method (b) was from 2 to 12
times faster than method (a) according to the tests on different systems. Another tech-
nical advantage of method (b) is that one is able to re-use already implemented and
well tested code. The result Y;;gf of the last step will be returned to the eigensolver.

The calculation of the exchange-correlation potential response is effectively paral-
lelized over the grid points. The two-center functions ®,, are split along the dimension
N, between processors as Ny, /1, where 7 is the number of processors, see Section 3.1.3.

3.3.6 Numerical quadrature for the GGA exchange-correlation inte-

grals

In the previous section we described the evaluation of the numerical quadrature for
four-index LDA exchange-correlation integral. In this section we will extend the de-
scription of the integration scheme for GGA exchange-correlation functionals. The
terms and expressions common both to GGA and LDA from Section 3.3.3 will be omit-
ted. We will again use the analogy between the expression for the XC response kernel
representation Fpo—,prg/, Eq. (3.59), and for two-index XC response kernel representation
Ryo ko', Eq. (3.45), and we will use the alternative expressions for k , Eq. (3.61), and VK,
Eq. (3.62). For GGA as well as for LDA we do not explicitly calculate the four-index
integrals Fy; o/, Eq. (3.59), but instead we calculate the product of the trial eigenvec-

tor xp, with four-index GGA exchange-correlation integral Fp; o7, Eq. (3.59). In the

po
actual implementation the numerical quadrature for the GGA functionals is done in

tive steps.

For the numerical quadrature of GGA exchange-correlation functionals we calcu-
late not only the values of the molecular KS-orbitals (plrg (r) on the grid of points r from

eigenvectors E! and values of the orbital basis functions )(57(1'), Eq. (3.68), but also

mo

the gradients of molecular KS-orbitals Vgolly (r), from the values of the gradient of the
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orbital basis functions Vx}," (r).
Vo (r) =Y ELe V' (r) (3.74)
n

Below we will distinguish the gradient of the occupied molecular orbitals Vgoarg (r)
and the gradient of unoccupied molecular orbitals V(pgg (r). This operation has been
implemented using the BLAS matrix multiplication subroutine as well. The additional
cost of the operation per irreducible representation and per partner when compared to
the LDA code is of the order 3N, N,, where N, is the number of grid points and N, is
the dimension of the orbital basis set.

In the next step in addition to the two-center functions <I>;£7(r), Eq. (3.60), one
computes also the gradient of the two-center function Vq);gy(r) from the products

and gradients of occupied and virtual orbitals. Symmetry adaption is done with the

. r
help of Clebsch-Gordon coefficients C;ﬂ ,;Y” oyt
VO (r) = G v (Yol (1@l (1) + gh™ () Vol () (3.75)

The additional cost of the operation per irreducible representation and per partner
when compared to LDA is of the order 6N, N,, where N; is the number of grid points
and N, is the dimension of the product space of occupied and virtual molecular or-
bitals.

The symmetry-adapted basis functions together with the set of approximate eigen-
vectors {x’;g} are used to calculate in addition to the response of the density, the gra-
dient of the response of the density. Again we will use the set of approximate eigen-
vectors {x},, } provided every iteration by the Davidson eigensolver while solving the
Casida eigenvalue problem, Eq. (3.20):

r r
(SVpZT W(r) = ZVCID;UW(r)xZU (3.76)
p
The BLAS matrix multiplications subroutine is used for this operation. The additional
cost of the operation per irreducible representation and per partner is 3N, N, N;;, where

N; is the number of grid points and N, is the dimension of product space of occupied

and virtual molecular orbitals, Nj, is the size of the set of approximate eigenvectors

{*po}-

The fourth step is the calculation of the response of the XC-potential. For those

. . .1 . T r T
calculations we introduce three auxiliary vector functions a," ' (r), by ' (r), ¢y ' (r),



3.3. INTEGRAL CALCULATION IN PARAGAUSS 47

the origin of which is Eq. (3.51):

al™r = Z(SV iy (ava + ava )exc
oo oo’

02 02
bnrl"7 _ 5 ﬂ/TT’Y v ntly ( + > € 3.77
(o4 Z p(T Z p apo_aryo_/é apo-a")/go-/ XC ( )

e ZZVpnTM (Vpr6Vpy)
0—/ gg/

aZ 82 az aZ
+ + + EXC
(amawa Y09y Yo7 OYeOV e )

X

and the auxiliary scalar function "7 (r), as in Eq. (3.51):

2 2
nTF‘y ntlvy ntlvy 0 0
ZZ (VorTTovor™) ( TR apgam,) exc. (378

Indices o, ¢’ and {, {'are spin indices. Here and below we omit the explicit dependence
of quantities on r.

The next two operations of the XC quadrature are implemented in the integration
procedure in two ways. Method (a) is the integration of the symmetrized functions

product, CD;E (r), with the response of the XC-functional for LDA su™ 7 (¢) and scalar

function d"Tr'Y( ), and integration of the gradients of the symmetrized function prod-

uct, Vq);(rﬂ( ), with the auxiliary vector functions ar™ ' (r), ™7 (r), ¢i™ 7 (r).

1 r r r
i e =YY w (@57 (005™ " +d5™™)),
v or

dirln T Z Zw (VCI);(FTW( AR AL cmm)) (3.79)
v or

+

Here w = w(r) are the weights of the grid points [57]. In method (b) one evaluates the
matrix elements of the XC-potential response for each pair of the partners 7y, and <y of
the orbital sets {gre" (1), 7a = 1..dimT,} and {@"* (r), 7s = 1..dim T}

<a‘7ra7a |(5ng1"7 ’SUFS’YS> = w ((P%% ((50011“7 + dnrr7)§0£3%>

¥

+ Lo (Ve (@™ b+ Tl (3.80)
¥

+ Z w (@Efy%( nTF7+bnTF7+CnTF7)V(PF5%)
¥

Here we again omit the explicit dependence of the quantities on the grid points r. The
integration is followed by the symmetry adaption of the resulting integrals, Eq. (3.80),
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by reducing them with the help of Clebsch-Gordon coefficients Cr aTers:

b = d1rnF Y. ) learga o (a0T 474|607 [s0Tsys) (3.81)
Y Ya7s

Here, too, a BLAS subroutine is used for optimal matrix multiplications. The difference
between the two methods (a) and (b) is in performance, see Sec. 3.3.5. The result of the
last step will be returned to the Davidson eigensolver.

The numerical quadrature of the exchange-correlation potential response is effi-
ciently parallelized over the grid points. The two-center functions ®,, and V®,,; are
split over the dimension Np between processors in blocks of the size N, /n, where n is
number of processors, see Section 3.1.3.

3.4 Evaluation of the exchange-correlation kernel: LDA
and GGA

In this section we will explain the evaluation of the exchange-correlation kernel. At the
moment, the following exchange-correlation functionals with second-order derivatives
are available in PARAGAUSS:

e Local density exchange functional (X, with « = 2/3) [20]

e Vosko, Wilk, Nusair (VWN) local density correlation functional (VWN) [21]

e Perdew and Wang local density correlation functional (PW LDA) [16]

e Becke generalized gradients approximation exchange functional (B88) [13]

e Perdew generalized gradients approximation correlation functional (P86) [14]

e Perdew and Wang generalized gradients approximation exchange-correlation
functional (PW91) [15]

e Perdew, Burke and Ernzernhof generalized gradients approximation exchange-
correlation functional and its revised versions (PBE, PBEN, revPBE) [17-19].

The exchange-correlation kernel for TDDFT calculation involves the second-order
derivative of the exchange-correlation energy density exc, Egs. (3.50) and (3.51). To
evaluate the LDA exchange-correlation kernel, we have to determine the second-
order derivatives 9%exc/dp,0p, of exchange-correlation function with respect to
the density. In the case of GGA, we additionally need to evaluate the mixed
second-order derivatives with respect to the density and the gradient of density
d%exc/9ps0V p,r, and the second-order derivative with respect to the gradient of the
densities d%exc/9V p,0V p,s as well. In PARAGAUSS the XC functional for open-shell
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systems depends on the two densities p; and p;. The GGA XC functional in addi-
tion depends on the gradients of the density via the scalar variables 11 = ]VpT|2,
Y11 = |Vp|% and vy = (Vp1 Vp)), see Appendix D.

The exchange-correlation function exc is conventionally separated into two terms:
the exchange term with the exchange density ex(o1,0|, 711, 71,,7))) and the correla-
tion term with the corresponding correlation density ec(pT, 0L Y11 Y11 Y] l):

EXCc = €x + €c. (3.82)

The most general exchange density in a spin-polarized system is a sum of two contri-
butions [58]:

1 1
exlpr, 01] = Sex[201] + Fex[20,] (3.83)

We will start our explanation from the simplest case, the X, LDA exchange functional
[20].

LDA exchange functional: X,
The local density exchange approximation of the X, functional is a significant contri-

bution to the XC-functional which serves as a basis for GGA exchange functionals. In

general it can be written as [58]

1
Ex.(p1.p)) = 5 [ #r (ex,(20) +ex,(20))) (3.84)

Here €x, is the exchange density for the X, functional [20]:

1/3
ex.(00) = — (ga) ; (%) o3, (3.85)

The first- and second-order derivatives of the exchange energy density with respect to
the density p, are given by the following expressions:

1/3
ex, (0s) = —(g«x) (%) ol/3, (3.86)

3\1/3\Y% _
ex, (0s) = —(50‘)§(;> ps /3. (3.87)

Note, that the mixed second-order derivatives d%cx, /dp1dp| is equal to zero, ac-
cording to the equation for general exchange density, Eq. (3.83).



50 CHAPTER 3. IMPLEMENTATION OF TDDFT

GGA exchange energy functionals

Generalized gradients approximations (GGA) of the energy functional are constructed
as a correction of the LDA functional in such a way that they fulfill as many exact
scaling and asymptotic properties of the hypothetical exact energy functional as pos-
sible [13,15,17]. The GGA XC functional depends on the electron density and the
gradient of the electron density.

The exchange energy function of the open shell system consists of the LDA ex-
change energy function ex, , Eq. (3.85), and the GGA correction to the LDA expression
introduced as a scaling factor F(s?) [13,15,17]:

ex[po] = €x, (o) F(s?). (3.88)

which depends on the square of the generalized density gradient s*:

1 7
2 _ (%
5= (372)2/3 p8/3 (3.89)
This exchange energy functional is applied to both density contributions p and p|,
as suggested by the general form of the exchange density, Eq. (3.83). The first-order
derivatives of the exchange energy density with respect to the density p, and the den-

sity gradient measure ‘., are:

Bex

— / F F/ 2\/ )
0 ex, F+ex,F'(s7),, (3.90)
dex o N,
ror €x, F'(57)7,0- (3.91)

The second-order derivatives of the exchange energy density with respect to the den-

sity ps and the density gradient measure 7, are:

2
_aapezx = e’)’gaF + 26/)(“1:/(82);,0 + eXaF”((sz);,U)2 + eXaP’(sz)gg, (3.92)
o
oex = e F'(s?), +ex F'(s?) (s*) +exF (¥, , (3.93)
apaa')’aa o Yoo a Po Yoo « PoYoo
0%e
5 = ex (7)) Fex, F (), (3.94)
Y5,

The first-order derivatives of the square of the generalized density gradients with re-

spect to the density p, and with respect to the density gradient measure <y, are:
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8 1 Yoo
(%), = —= , (3.95)
[% 3 (37-[2)2/3 p(171/3
1 1
2\/ -
(S )’ym _ (37.[2)2/3 p(33/3‘ (3-96)

The second-order derivatives of the square of the generalized density gradients
with respect to the density p, and with respect to the density gradient measure ;¢

are:

88 1 Yoo

2\/!
= —— , 3.97
(S )pgpg 9 (37.(2)2/3 P¢174/3 ( )
8§ 1 1
(2) e = —a2aryA e (3.98)
P 3 (372)2/3 p§/3
() 0er = 0. (3.99)

The mixed second-order derivatives 9%€x / 00590y, d%ex/ 00090, d%ex/ 0009Y ',
02€x/0Y000Y 107, 0%€X/ Y510V 00, that involve two different spin o # ¢’ orientations,
are identically equal to zero.

For the B88 Becke exchange functional [13], the GGA scaling factor is

Ds?
14 As sinh !(Bs)
For the PW91 Perdew—Wang exchange functional [15], the GGA scaling factor is

Fpgg = (3.100)

s?(D — Cs* — Eexp(—100s?))
1+ Assinh!(Bs) + Cs*
where A = 0.19645, B = 7.7956, and D = 0.2743 are the same parameters for B88
[13] and PW91 [15] exchange functionals; C = 0.004, and E = 0.1508 are additional

parameters in the case of the PW91 [15] exchange functional.

Fpwor = (3.101)

In the case of the PBE exchange functional [17], the GGA scaling factor is

2
KUs
Fpgg = ———~. 3.102
PBE = Gy s?) (3.102)
In the case of the PBEN exchange functional [18], the GGA scaling factor is
FPBEN =K (1 — exp ( X >) ’ (3103)

where ¥ = 0.804 and y = 0.2195 are the same parameters for PBE [17] and PBEN [18]

exchange functionals.
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GGA correlation energy functional

The correlation energy can be separated into two parts, the LDA correlation energy
and the correction due to GGA:

Elpy,pi] = ELpaler, p1] + Eccaler, py] (3.104)

where the LDA part of the correlation functional is usually taken either in the
parametrization of Vosko, Wilk and Nusair [21] (for the Becke86 GGA correlation see
Ref. [13]) or Perdew and Wang [16] (for the PBE GGA functionals see Ref. [17] and
PW91 GGA functional see Ref. [15]). The equation for the GGA correlation functional
Eccaler,py] is a GGA correction to the LDA part. The GGA correlation functional
depends on the GGA energy density per particle H(A, B,C, D)

Ecaaley,p] = [ d*rpH(4,B,C,D), (3.105)

where p = p; + p|, and the energy density is egca = pH(A, B,C, D).

Next, we will discuss the implementation of the GGA correction, Eggalp1,0,]. The
GGA correlation energy density per particle H depends on four auxiliary intermediate
quantities A(o1,01,7), B(o1,01,7), Cloy,01,7), D(py,01,7), where v = ypq 47| +
271,. The first-order derivatives of the GGA correlation energy density H per particle
are given by the chain rule:

9GGA _ g ( Y aﬂ%), (3.106)
I0s k=ABcp 9k 9po

decea ( oH ak>

—=2 = ) Y, = ). (3.107)
dy k=Apcp 9k 07

The second-order derivatives of the GGA correlation energy density H per particle are

obtained by applying the chain rule twice:

2
Toon .y OHMOK oH ok (3.108)
90r0P, k=apcp 9K 00 i5icp %k I
+ Z B_H—azk + BZ_H% ol
0 o \ Ok dpoape T B okalaps dper )
2
d%€cea _ y 0H ok 5100

dps9Y k=A,B,C,D 9k 9po

oH 0%k 0°H ok ol
+ 0 ) ( )

- + voas I
k—apcp \ 9k dpsdy - A,ZB;C’D okol dpy Iy

Recoa OH 92k 92H 9k I
TN VA T Rl D E ot (8.110)
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As an example, we provide the correlation energy density H per particle for the
PBE GGA correlation functional [17]:

e? B 1+ Zt?
Hpge (¢, t,€c) = %fyqb‘g In{1+ ;tz (1 o Z2t4) } (3.111)

Here, the auxiliary quantity Z depends on the LDA correlation energy density e1pa
Z= g[exp{—eLDA/(w%z/ao)} -1 (3.112)

We choose to define the auxiliary function A for the PBE correlation functional as a
spin-scaling factor ¢:

P — P
A=¢ = (1402 +1-0*3)/2, (= (3.113)
’ ( ) PT TP
The auxiliary function B for the PBE correlation functional is a dimensionless density
gradient t:
_ Vol (3.114)
2¢pksp

Here the quantity ks is the Thomas-Fermi screening constant [17]. The auxiliary func-
tion C of the PBE correlation functional is the LDA correlation functional € pa:

C:= €1L.DA- (3115)

Note that there is no D auxiliary function for the PBE correlation functional. The
quantity e?/ag is equal to one in the Hartree atomic units system. B = 0.066725 and
v = 0.031091 are parameters [17].

For the PW91 correlation functional [15] we write the GGA correlation energy den-
sity (per particle) H = Hpgpg + Hpwo1. Here the GGA correlation energy density Hpgg
per particle is taken from the PBE functional, Eq. (3.111), with values for the parameters
v = 0.02474 and B = 0.06726, and the function Hpwo; is

Hpwoi(rs, ¢,t) = v(Ce(rs) — Cc(0) — 3Cx /7))t (3.116)
X exp[—1008¢*trs]

where the spin-scaling factor ¢ is taken in the form of Eq. (3.113), the dimensionless
density gradient f is taken in the form of Eq. (3.114) and the auxiliary function D is
taken as the local Seitz radius r; [15]:

1/3
D:i=rs= (i> (3.117)
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The function C.(rs) can be found in Ref. [59]. The quantities v = 15.7559, C.(0) =
0.004235, Cy = —0.001667, and 6 = 0.66344 are parameters [15].

3.5 Evaluation and performance of the TDDFT module
of PARAGAUSS

The performance of the TDDFT module of PARAGAUSS

Finally, we discuss the performance of the new TDDFT module of the program package
PARAGAUSS with respect to its computational demands. Benchmark calculations were
carried out with the LDA exchange-correlation potential (SVWN, i.e. X, exchange,
with & = 2/3 [20] and VWN correlation [21] functionals) and the GGA exchange-
correlation potential (BP86 [13, 14]). For the evaluation of the parallel performance
the calculations were carried out with 2, 4, and 8 processors. The 30 lowest excitation
energies of each irreducible representation were examined. To investigate the scaling
of the new TDDFT code we compared the wall-clock time required for each run.

We have chosen the Cu, dimer deposited on the (001) surface of MgO represented
by the cluster model Mg;9Oqq as a test system. This system belongs to the C; point
group symmetry. The orbital basis set for Cu was (16s13p7d —7s5p4d) and the auxil-
iary basis set was (16s13r25p5d) [32,33].

The results of the time measurements for Cuy on Mg;¢Oj are collected in Tables 3.2
and 3.3. On two processors, the calculation of this system takes two hours for the LDA
XC potential and seven hours for the GGA XC potential. The most time consuming
parts are the calculation of the density response on the grid, Egs. (3.69) and (3.76),
and the numerical quadrature of the XC potential response, Eq. (3.63). The TDDFT
calculation with the LDA XC potential (see Table 3.2) is 2.3 times slower than the SCF
calculation. The TDDFT calculation with the GGA XC potential (see Table 3.3) is 7
times slower than the SCF calculation. The factor 3 reflects the fact that the GGA XC
potential, formally, is an extension of the LDA XC potential, see Section 3.3.6, Egs.
(3.72) and (3.80). Comparison of the ratio of timings, R, for 4 and 8 processors shows
essentially ideal scaling of the TDDFT module of PARAGAUSS, at least for these typical

numbers of processors.

Restricting the active space for core and valence excitations by an en-

ergy cutoff

The availability of a general and accurate method of treating core excitations, as well as
the valence electron transitions separated from the core electron excitations, is highly
important. To a large extent, excitations of core electrons do not interfere with the
valence electron transitions. This fact can be used to reduce computational costs by
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Table 3.2: Timing of the relevant program parts of PARAGAUSS (in s) for the Cuy cluster
supported on Mg;0Oqg, calculated with SVWN LDA exchange correlation functional
[20,21,60-62].

(2proc) (4proc) R* (8proc) R”?

SCF? 19524 10655 1.8 688.5 2.8
TDDFT* 44711 22512 2.0 11412 39
| -calc. of R, Eq. (3.16) 247.3 123.8 2.0 60.7 4.1
| -calc. of L, Eq. (3.19) 364.9 1554 2.3 89.0 4.1
\-TDDFT calc. 38583 1971.3 2.0 990.8 3.9
| -calc. of diagonal, see Sec. 3.1.3 643.3 343.7 1.9 173.5 3.7
|-calc. of eigensolver and Y, Eq. (3.63)  3151.2  1626.2 1.9 816.0 3.9

| -summary of calc. of dp 1272.2 629.5 2.0 3014 4.2
|- calc. of x, Eq. (3.26) 158.4 78.0 2.0 369 4.3

| -calc. of ¢, Eq. (3.68) 195.7 9%.4 20 45.0 43

|- calc. of 6p, Eq. (3.69) 856.2 4247 2.0 205.0 4.2

\- rest 62.0 304 2.0 144 43

| -calc. of gip‘;, see Sec. 3.4 135.0 67.1 2.0 31.7 43
\-summary of calc. of Y 1738.6 857.7 2.0 412.3 4.2
|- calc. of dv, Eq. (3.70) 131.0 576 2.3 281 47

| -calc. of Y, Eq. (3.63) 1344.5 669.9 2.0 3209 4.2

\- rest 309.2 130.2 24 634 49
TOTAL (usr) 6423.5 33166 19 1829.7 3.5
TOTAL (real) 7355.0 37750 19 23150 3.2

#) The ratio of timings is denoted by R = Time (2 proc)/Time (n proc)
b) Time spent on SCF calculations
¢) Time spent on TDDFT calculations

neglecting Kohn-Sham eigenstates based on their energy. In the TDDFT calculation
one can choose the working space of occupied levels and the working space of virtual
orbitals to exclude a priory “irrelevant” states. In practice the occupied orbitals can be
limited to the core shell under study or, similarly, to the valence shell. The examples
below shall demonstrate how sensitive the low excitation energies are to contributions
of the core-to-valence excitations.

The supported metal particles Au on MggOg9 and Au; on Mg;9O;p were chosen as
test systems. These systems have been calculated with the BP86 GGA XC potential.
The orbital basis set for Au was (22s20p11d7f —9s7p6d4f) and the auxiliary basis set
was (22520r25p5d) [32,33].

With the help of the cutoff of the core levels we include only the 11 electrons of the
5d6s valence electronic shells per Au atom, as well as the 2 electrons of the 3s valence
electronic shell per Mg atom and the 6 electrons of the 2p valence electronic shell per
O atom in the working space.

As seen from Tables 3.4 and 3.5, the cutoffs of core excitation energies do not in-

fluence the results for excitations of valence electrons. The maximal deviation of ex-
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Table 3.3: Timing of the relevant program parts of PARAGAUSS (in s) for the Cuy cluster
supported on Mg;00O, calculated with the BP86 GGA exchange correlation functional
[13,14].

(2proc) (4proc) R* (8proc) R”?

SCF? 2769.6 14289 1.9 893.0 3.1
TDDFT* 19429.6 96143 2.0 48704 4.0
| -calc. of R, Eq. (3.16) 1545.3 776.3 2.0 395.8 3.9
| -calc. of L, Eq. (3.19) 421.9 1456 2.9 748 5.6
\-TDDFT calc. 17461.8  8691.7 2.0 4399.1 4.0
| -calc. of diagonal, see Sec. 3.1.3 641.9 3273 2.0 168.0 3.8
|-calc. of eigensolver and Y, Eq. (3.63) 16818.5 8363.0 2.0 4399.0 3.8

| -summary of calc. of ép 61844 30735 2.0 15389 4.0
|- calc. of x, Eq. (3.26) 156.7 785 2.0 39.1 4.0

| -calc. of ¢, Eq. (3.68) 795.2 399.7 2.0 198.7 4.0

|- calc. of 5p, Eq. (3.69) 51713  2564.8 2.0 1285.7 4.0

\- rest 61.3 30.6 2.0 154 4.0

| -calc. of gip‘;, see Sec. 3.4 136.2 68.3 2.0 345 3.9
\-summary of calc. of Y 104154  5153.1 2.0 25764 4.0
|- calc. of 4v, Eq. (3.70) 733.9 3664 2.0 183.5 4.0

| -calc. of Y, Eq. (3.63) 9196.8 4556.3 2.0 22769 4.0

\- rest 484.7 2304 2.1 116.0 4.2
TOTAL (usr) 22186.5 11043.2 2.0 5763.5 3.8
TOTAL (real) 242140 12263.0 2.0 6553.0 3.7

#) The ratio of timings is denoted by R = Time (2 proc)/Time (n proc)
b) Time spent on SCF calculations
¢) Time spent on TDDFT calculations

citation energies is 0.01 eV and that of oscillator strengths is 0.005 a.u. Calculation of
excitation energies without inclusion of core electrons in the working space of a TDDFT
part is more than twice faster than a calculation with core electrons. Hence, in further
calculations one can cut the core electron levels without any significant effect on the
results. The excitation energies obtained with cutoffs for virtual orbitals are more sen-
sitive to the inclusion of a complete set of MO’s. The maximal deviation of excitation
energies is 0.05 eV and oscillator strength -0.012 a. u. Hence, one can use the cutoff for

virtual levels, but with careful check of the accuracy.

Investigation of core excitations

Next, we investigated the performance of the TDDFT module for the core excitations of
the molecules SO, and TiCly. We will calculate transitions from selected core electron
levels to valence levels. We will remove from consideration all valence and virtual
electron levels which are not involved in the transitions investigated. Also we will
compare our results with the results in the literature [28,29].
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The molecule SO, was calculated with the SVWN LDA exchange-correlation po-
tential (X, exchange, with « = 2/3 [20] and VWN correlation [21] functionals). For
comparison with the results of Fronzoni et al. [28], we used the LB94 correction for the
ground state [63]. The Gaussian-type basis set for the S atom was (12s9p2d —6s5p2d),
and for the O atoms (10s4p —3s,2p). Only the 1s and 2p orbitals of the S atom and the
1s orbital of the O atoms were kept among the occupied levels. For the virtual levels
no cutoff was employed.

The results of Ref. [28] were obtained with the ADF program package [26]. The
basis set employed for the S and O atoms is an all-electron ZORA basis set, consisting
of Slater-type orbitals of the size (13s9p5d6f) for the S atom and (10s6p4d4f) set for
the O atoms (ET-QZ4P-2diff) [28, 64]. The adiabatic local density approximation to the
exchange-correlation kernel was employed. For the XC potential in the SCF calculation
the LB94 XC potential was employed [63]. The LB94 XC potential was chosen for its
correct asymptotic behavior at large electron-nucleus separations [63]. The point group
symmetry is Cp,. The experimental geometry [65] was used: the S-O distance is 1.432A
and the 5-O-S angle is 119.5°.

The present and literature results are compared in Table 3.6. Deviations are in the
range 0.1-0.6 eV for excitation energies and 0.03-0.4 a.u. for oscillator strengths. The
results of our calculations are in good agreement with those obtained in Ref. [28].

Another test was performed with the molecule TiCly. The basis set for the Ti atom
was chosen to be (15511p6d6f) and for the Cl atoms (12s9p2d —9s6p2d). All the occu-
pied levels except 2p orbital of the Ti atom were cut from the working space of TDDFT;
for the virtual levels no cutoff was employed.

Fronzoni et al. [29] calculated TDDFT excitation spectra of TiCly with the ADF pro-
gram [26]. They used the Slater-type diffuse basis set ET-QZ3P-2diff [28, 64] for the Ti
and Cl atoms. The point group symmetry was T;. The experimental geometry [66] was
used: the Ti-Cl bond length is 2.17A.

The present and literature results are compared in Table 3.7. The discrepancy be-
tween the two calculations is about 2.0 eV for excitation energies and about 0.022 a.u.
for oscillator strengths. The different methods and algorithms used in PARAGAUSS

and ADF could be the reason for such a large disagreement.
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Table 3.4: Excitation energies (eV) and oscillator strengths (a.u.) of Au atom supported
on MgO and differences due to exclusion of either the occupied core levels or valence
levels above the imposed cutoff.

Reference” 54 and 6s” 100 eV*© 50 eV*© 20 eV* 10 eV©
31e-364a; 2.01 0.00 0.00 0.00 0.00 0.00
35a1-364; 2.07 0.01 0.01 0.01 0.02 0.04
14b,-364a, 2.14 0.00 0.00 0.00 0.00 0.00
30e-36a; 2.15[0.008] 0.01[0.000] 0.01[0.000] 0.01[0.000] 0.01[0.000] 0.01[0.000]
4a,-36a, 2.26 0.00 0.00 0.00 0.00 0.00
344,-36a; 2.37[0.011] 0.00[0.000] 0.00[0.000] 0.00[0.000] 0.01[0.000] 0.01[0.000]
14b1-36a1 2.39 0.00 0.00 0.00 0.00 0.00
13b,-364a, 2.57 0.00 0.00 0.00 0.00 0.00
29e-36a1 2.61 0.00 0.00 0.00 0.00 0.01
13b1-3644 2.63 0.00 0.00 0.00 0.00 0.00
28¢-36a; 2.70[0.005] 0.00[0.001] 0.00[0.001] 0.00[0.001] 0.00[0.001] 0.01[0.001]
12b1-36a1 2.72 0.00 0.00 0.00 0.00 0.01
27e-36a; 2.90[0.004] 0.00[0.001] 0.00[0.001] 0.00[0.001] 0.00[0.001] 0.00 [0.001]
12b,-3644 2.96 0.00 0.00 0.00 0.00 0.00
3a,-36a1 3.13 0.00 0.00 0.00 0.00 0.00
33a1-364; 3.13 0.01 0.01 0.01 0.02 0.04
36a1-32¢  3.28[0.077] 0.00[0.000] 0.00[0.000] 0.00[0.000] 0.01[-0.002] 0.03[0.001]
36a1-37a; 3.44[0.001] 0.00[0.000] 0.00[0.000] 0.00[0.000] 0.00[0.000] 0.00][0.000]
36a1-33¢ 3.49 0.00 0.00 0.00 0.00 0.00
26e-364a4 3.53 0.00 0.00 0.00 0.00 0.01
11b1-364a, 3.64 0.00 0.00 0.00 0.00 0.00
36a1-384; 3.72[0.001] 0.00[0.000] 0.00[0.000] 0.00[0.000] 0.00[0.000] 0.00][0.000]
36a1-39a; 3.88[0.034] 0.00[0.000] 0.00[0.000] 0.00[0.000] 0.00[0.000] 0.00][-0.001]
25e-364; 3.93 0.00 0.00 0.00 0.00 0.00
32a1-36a; 3.93[0.004] 0.00[0.000] 0.00[0.000] 0.00[0.000] 0.01[0.000] 0.01][-0.001]
31a1-36a; 3.98 [0.001] 0.00[0.000] 0.00[0.000] 0.00[0.000] 0.01[0.001] 0.02[0.002]
36a1-34e 4.01 0.00 0.00 0.00 0.00 0.00
36a1-40a; 4.18 [0.058] 0.00[-0.002] 0.00[-0.002] 0.00[-0.002] 0.01[-0.006] 0.01[-0.012]
364a1-35¢ 4.21 0.00 0.00 0.00 0.00 0.00
MAX? 0.01 [-0.002] 0.01[-0.002] 0.01[-0.002] 0.02[-0.006] 0.04[-0.012]
AVG 0.00 [0.000] 0.00[0.000] 0.00[0.000] 0.00[0.001] 0.01][0.001]
Space® A; 16570 3907 3594 3089 1831 1188
Space A 12255 3291 3050 2644 1512 968
Space B; 14309 3601 3316 2857 1659 1066
Space B, 14183 3583 3316 2866 1677 1084
Space E 28645 7190 6638 5728 3339 2153
Time, s 1734.92 793.62 755.33 710.95 533.16 434.86

?) Reference excitation energies (eV) and oscillator strengths in square brackets (a.u.).
b) “5d and 6s” denotes the system where “core transitions” (from all occupied levels of

Au except 5d and 6s) were excluded.

) “100 eV”, “50 eV”, “20eV”, and “10 eV” denote results corresponding to a cutoff of
virtual one-electron levels at 100 eV, 50 eV, 20 eV, and 10 eV, respectively.
d) The row labeled “MAX” shows the maximal deviation from the reference; “AVG”
denotes the average deviation.

¢) The size of the active space, NyccNy;,, for each symmetry term.
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Table 3.5: Excitation energies (eV) and oscillator strengths (a.u.) of Au, dimer sup-
ported on MgO and differences due to exclusion of either the occupied core levels or
valence levels above the imposed cutoff.

Reference”  5d and 6s? 20 eV©
704" -1104" 2.88[0.005] 0.00[0.000] 0.00 [0.000]
694" -110a’ 2.92[0.001] 0.00[0.000] 0.00 [0.000]
1084’-1104a" 2.9210.011] 0.00[-0.001] 0.00 [-0.002]
1094’ - 1104’ 2.99[0.043] 0.01 [0.000] 0.03 [-0.008]
1064’ - 1104’ 3.07[0.059] 0.00 [0.002] 0.00 [0.008]
684" - 1104’ 3.10 0.01 0.01
1074’ - 1104’ 3.13[0.001] 0.00[0.005] 0.00 [0.005]
674" -110a’ 3.13[0.006] 0.00[-0.004] 0.01 [-0.003]
1054’ - 1104’ 3.15[0.002] 0.01 [0.000] 0.01 [0.000]
66a" - 1104’ 3.16 0.00 0.00
1044’ - 1104’ 3.19[0.001] 0.00 [0.000]  0.00 [0.000]
654" - 1104’ 3.20 0.00 0.00
64a” -110a’ 3.25[0.004] 0.00 [-0.001] 0.00 [-0.001]
1034’ - 1104’ 3.33[0.001] 0.00 [0.000]  0.00 [0.000]
63a" - 1104’ 3.35 0.00 0.00
1024’ - 1104’ 3.38[0.001] 0.00 [0.000]  0.00 [0.000]
1014’- 1104’ 3.59[0.012] 0.00 [0.000] 0.00 [0.000]
62a" -110a’ 3.62[0.001] 0.00[0.000] 0.00 [0.000]
1004’ - 1104’ 3.63[0.001] 0.00 [0.000]  0.00 [0.000]
994’ - 1104’ 3.720.005] 0.00 [0.000] 0.00 [-0.001]
61a” -110a" 3.93[0.003] 0.00[0.000] 0.00 [0.000]
984’ - 1104’ 3.97[0.006] 0.00 [0.000] 0.01 [-0.001]
60a’” -110a" 3.99[0.001] 0.00[0.000] 0.00 [0.000]
1094’ - 71a”  4.18 [0.009] 0.00 [0.000] 0.01 [-0.001]
97a’-110a" 4.19[0.024] 0.00 [-0.001] 0.01 [-0.002]
1094’ - 1114’ 4.21[0.011] 0.00 [0.000] 0.01 [-0.001]
96a’-110a" 4.26 [0.011] 0.00 [0.000] 0.01 [0.000]
59a"-110a’ 4.29 0.01 0.00
70a" - 71a" 4.32 0.00 0.00
MAX? 0.01 [0.005] 0.03 [0.008]
AVG 0.00 [0.000]  0.00 [0.000]
Space® A’ 48535 10997 5425
Space A" 46156 10692 5235
Time, s 7582.0 3633.0 2949.0

?) Reference excitation energies (eV) and oscillator strengths in square brackets (a.u.).
b) “5d and 6s” denotes the system where “core transitions” (from all occupied levels of
Au except 5d and 6s) were excluded.

) “20 eV” denotes results corresponding to a cutoff of virtual one-electron levels of 20
eV.

d) The row labeled “MAX” shows the maximal deviation from the reference; “AVG”
denotes the average deviation.

¢) The size of the active space, NyccNy;,, for each symmetry term.
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Table 3.6: Excitation energies (eV) and oscillator strengths f (a.u.) for the first three
core-to-valence transitions from the S 1s, O 1s, and S 2p levels of SO, in the TDDFT
approach.

PARAGAUSS ADF*

Initial Final state Eb eV  fx 102 EP, eV  f x 102
state (Term)

S1s 3b1(By)  (2449.66) 0.630 (2438.07) 0.581
9a1 (A7) 484 0270 427 0220
6by(B,) 5.81 0280 522 0211

O 1s 3b1(By)  (534.15) 4560  (526.75) 4.331
9a1(B) 4.75 2.820 4.36 1.821
6by (A7) 5.75 2.010 5.31 1.731

S2p 9a1(B1) (170.23)  2.220  (168.95) 2421
3b1(By) -4.95 0.090 -4.67 0.162
3b1(Aq) -4.29 0.070 -3.82 0.109
6b,(B>) 0.88 0.750 0.71 1.066

6by (A1) 136 0760  1.09 0999

) Ref. [28], nonrelativistic results.
b) Absolute excitation energy given in parentheses. Positions of other lines are reported
relative to the first line.




3.5. PERFORMANCE OF THE TDDFT 61

Table 3.7: Excitation energies (eV) and oscillator strengths f (a.u.) for the first core-to-
valence transition from the Ti 2p level of TiCly in the TDDFT approach.

PARAGAUSS ADF*

Initial ~ Finalstate E’ eV fx102 Eb, eV  f x 102
state (Term)

Ti2p(f) 106, +3¢ (456.90) 5061  (455.99) 45.69
3¢ +10t, 250 1610 211  2.343

11t 5.19 2.860 4.04 0.558
12t 6.26 2.170 4.98 0.847
13t 8.60 0.590 5.50 1.354
11a4 8.61 0.010 6.13 0.900
14t, 8.74 2.390 6.35 3.183

Se 11.49 0.350 7.07 3.402
15t 11.77 6.840 7.27 0.559

7) Ref. [29], nonrelativistic results.
) Absolute excitation energy given in parentheses. Positions of other lines are reported
relative to the first line.
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Chapter 4

Optical spectra of Cu, Ag and Au
monomers and dimers supported on
MgO

Unique optical, thermodynamic, electronic, and spectral properties make metal
nanoparticles useful for a variety of applications, such as optical and electronic de-
vices, optical data storage, biosensors, magnetism, as well as catalysis [1-4]. In this
context, metal nanoclusters supported on oxide surfaces and thin films as well as on
inner surfaces of zeolite frameworks attract growing interest [67-70], as there is an ob-
vious advantage of incorporating very small amounts of clusters with special chemical
and physical functions into conventional materials, which in addition provide struc-
tural support for the clusters. However, the support itself may affect the electronic
structure and the chemical properties of supported species [67-69,71]. In particular,
surface defects have been shown to influence in a direct and characteristic fashion the
properties of adsorbed species due to typically stronger interaction with these sites
than with more chemically inert regular positions [67-69,71]. Cluster-support interac-
tion is thus a crucial issue when rationalizing observations on such systems and using
this knowledge in the design of new materials with predefined properties.

Although chemical and catalytic properties of supported metal nanoparticles com-
prise an area of intensive and fruitful research [67-70,72,73], experimental or theoreti-
cal studies on magnetic [74,75] and optical properties [76-80] of deposited nanoparti-
cles are far less numerous. However, this situation is changing fast due to the growing
recognition of the potential for using the attractive optical properties of metal nan-
oclusters (in particular Au, Ag and nanoalloys thereof) in the design of materials with
desired optical response for applications like tagging and anticounterfeiting (or “la-
beling”) technology, plasmonics [5], optical communications, and optical information
processing [6].

In addition to applications just mentioned, optical transitions of clusters provide
signatures that can be exploited in experimental characterization techniques. Optical
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spectroscopy has long been used to study metal clusters in the gas phase [3,81]. How-
ever, studies on supported clusters require the development of new characterization
tools to complement those of traditional surface science, such as ultra-violet electron
spectroscopy (UPS), X-ray electron spectroscopy (XPS) or electron energy loss spec-
troscopy (EELS), for which major challenges arise due to the low concentrations of ad-
sorbed species (at the border of detection limit) and the dominant background signal
of the support material. Only recently the very sensitive cavity ringdown spectroscopy
(CRDS) was applied to surface systems and seems to emerge as a method of choice for
overcoming these problems [79,80]. Theoretical investigations of absorption spectra
of supported metals represent a complex task, which can be performed with sufficient
accuracy with the help of the linear response TDDFT method [8, 9, 82]. The poten-
tial of this theoretical approach for surface systems has not yet been fully exploited;
among the few published works we mention very recent contributions devoted to Cu
or Au atoms and small aggregates on MgO [77,78] and atomic and dimer Au species
on amorphous SiO, [79,80].

Recently, our group carried out a series of systematic adsorption studies [30,32-34]
on coinage metal atoms and small aggregates, M,, (M = Cu, Ag, Au,n =1 -4), de-
posited at regular O~ and oxygen vacancy sites Fs or F} of MgO(001). In continu-
ation of these studies, we present here a systematic evaluation and discussion of the
optical absorption spectra of supported coinage metal atoms and dimers, where we
explored three key parameters: elemental composition, particle size, and interaction
with the support on regular as well as defect sites. In the size range where metal par-
ticles consist of only a few atoms, the optical properties of free and supported clusters
are directly linked to their intrinsic electronic and geometric properties. We will show
that for such small supported species, interaction with a defect can significantly affect

their electronic energy levels and optical signatures.

4.1 Computational methods and models

The optical properties of atoms M; (M = Cu, Au, Ag) and dimers M, adsorbed at O*~
sites of the regular MgO(001) surface as well as at F; and F; oxygen vacancies of that
surface were theoretically studied in the framework of DFT with the help of the parallel
computer code PARAGAUSS [22,83]. All-electron calculations were carried out with
the linear combination of Gaussian-type orbitals fitting-functions density functional
(LCGTO-FF-DF) method [84]. The generalized gradient approximation (GGA) of the
exchange-correlation (XC) potential suggested by Becke and Perdew (BP86) [13, 14]
was used for calculation of the properties of the supported metal species.

The calculations were performed at the non-relativistic level for Cu and with the
scalar relativistic variant of the Douglas-Kroll-Hess approach to the Dirac-Kohn-Sham
problem for Ag and Au [85,86]. Thus, the current study does not account for spin-orbit
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(SO) interaction. Optical properties of free and adsorbed atoms and dimers were com-
puted using a linear response formalism based on the time-dependent density func-
tional theory (TDDFT) as implemented in the program PARAGAUSS [46, 47, 83]; see
Chapters 2 and 3. For numerical stability, the resolution of the identity in the coupled
Kohn-Sham equations [46,47] was applied only to the Coulomb part of the response
kernel while the XC contribution to the response kernel was treated by an accurate
numerical integration; see Section 3.3.4.

The Gaussian-type orbital basis sets of Cu, Ag [87,88], and Au [89], used in the
structure optimization [30-32], had to be augmented by diffuse functions for an accu-
rate evaluation of absorption properties by the linear response TDDFT method. The
orbital basis set of Cu was augmented by one s exponent (0.012237 au), two p expo-
nents (0.046199, 0.021537 au), and one d exponent (0.042600 au). The orbital basis set of
Ag was augmented by two s exponents (0.041877, 0.014877 au), and two p exponents
(0.032648, 0.012615 au). Similarly the orbital basis set for Au atom was augmented
by one s exponent (0.004545 au) and three p exponents (0.008695, 0.003780, 0.001644
au). The exponents of the orbital basis sets for metal atoms have been augmented ac-
cording to geometric progressions. Thus, in the TDDFT calculations, the orbital basis
sets of the coinage metal atoms were Cu(16s13p7d — 7s5p4d), Ag(19s15p9d —8s6p5d),
and Au(22s20p11d7 f —9s7p6d4f). For the support, we used the same orbital basis set,
Mg(15s10p1d —6s5p1d) and O(13s8p1d —6s5p1d) [84], as in earlier studies [30-34].
The generalized atomic contractions were obtained from BP86 calculations on atoms.
For additional flexibility of the wave functions in the cavity of the surface defects, F,
or F centers were represented by a “ghost” basis set of oxygen [32].

The auxiliary basis set used in the LCGTO-FF-DF method to represent the electron
charge density and for treating the Hartree part of the electron-electron interactions
was constructed in a standard fashion [84]. The s and p exponents of the orbital basis
sets were doubled for s- and r>-type functions of the auxiliary basis set. In addition,
tive “polarization” exponents of p- and d-type were added on each atom, constructed
as geometric series with a factor 2.5. The exponents of the p set started at 0.1 au for Mg
and O, 0.133442 au for Cu, and 0.103053 au for Ag as well as Au; the corresponding
d-type series started in each case at twice these values. The resulting auxiliary basis
sets were Cu(16s,13r2,5p,5d), Ag(19s,15r2,5p,5d), Au(22s,20r%,5p,5d), Mg(13s,412,5p,5d),
O(13s,4rz,5p,5d) [30-34]. The influence of additional auxiliary functions on the ex-
citation spectra under scrutiny, in particular of diffuse p- and d- or higher angular
momenta f- and g-functions, proved to be rather minor. A study of metal atoms and
dimers in the gas phase and on selected support sites demonstrated that the use of satu-
rated auxiliary basis sets (at least 13 exponents each of p-, d- and f-type) resulted in dif-

terences of 0.01-0.06 eV for excitation energies and 0.005-0.010 for oscillator strengths.

The spatial grids for numerical integration of XC contributions in SCF and response
calculations were set up as a superposition of radial and angular grids [90]. The radial
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grids comprised 102 shells for Cu, 119 shells for Ag, and 102 shells for Au, 67 shells
for Mg, and 29 shells for O anion. In each shell a Lebedev angular grid accurate up to
angular momentum L = 23 for the coinage metal atoms, and L = 17 for the substrate
atoms was used [57].

Cluster models of the MgO substrate, described quantum mechanically (QM), were
embedded in an elastic polarizable environment (EPE), represented by a force field
[91,92]. The EPE approach to cluster model embedding affords an accurate descrip-
tion of the relaxation of the support also for a charged defect, F". We employed the
QM cluster MgoOg (Mgp Py, to model adsorption of atoms of at O?~ sites of the regular
MgO(001) surface and the QM cluster MggOg(MgP Py,¢ for atomic adsorption at neu-
tral, Fs, and charged, F;, oxygen vacancies [30,31]. Here, MgP P designates pseudopo-
tential centers Mg?+ without electrons [91,92]. For dimers, we used slightly different
cluster models, MgloOlo(MgP Pyi, and MggOg(MgP Pyio, respectively [32]. In all cases
studied, the coinage metal atom or dimer adsorbed directly above an O atom or a cor-
responding oxygen vacancy. The optimized geometries were taken as determined in
previous studies [30-32]. All cluster models with adsorbed atoms were calculated in
C4p symmetry, while cluster models for adsorbed dimers were calculated in Cs sym-
metry.

In the molecular orbital (MO) analysis given below, we will use a simplified termi-
nology where we refer to a MO according to its leading (zero-order) character. In im-
portant cases, we will explicitly comment on admixtures of other orbitals. Also, we will
assign electronic transitions by their dominant contribution; of course, TDDFT calcula-
tions commonly yield many, often notably smaller contributions from other symmetry-
allowed combinations of states. The investigation of the electron transitions with the
help of the natural transition orbitals (NTO) [93] is a matter of the future work. With
the help of the NTO technique based on the corresponding orbital transformation of
Amos and Hall [94] one can dramatically simplify the quantitative description of an
electronic transition.

Calculated polarization-resolved optical spectra will be presented with a Gaussian
broadening (o = 0.05 eV equivalent to a full width of 0.12 eV at half height) applied to
individual transitions, weighted by the corresponding calculated oscillator strengths.

4.2 Optical transitions of M; adsorbed at regular and de-
fect sites of MgO

Atoms in the gas phase and at regular O* sites

Computational studies of our group [30-32,95-97] and of others [77,98-101] have un-
ambiguously shown that on the regular MgO(001) surface metal atoms preferentially

adsorb on top of surface oxygen anions. The nature of interaction with regular surface
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sites is mainly polarization and electrostatic attraction, counteracted by Pauli repul-
sion; therefore, adsorption energies are moderate, 93, 46, and 96 k] ~1 for Cu, Ag, and
Au, respectively [30,31]. Distances to the oxygen center forming the adsorption site are
2.11,2.29, and 2.30 A, for Cu, Ag, and Au, respectively. Two TDDFT studies recently
addressed optical properties of Cu [77] and Au [78] atoms and larger aggregates sup-
ported at regular O?~ and F; sites of MgO(001) terraces. However, neither a theoretical
nor an experimental work to date compared systematically the optical spectra of the
coinage metals adsorbed at MgO. The current work attempts such a systematic evalu-
ation. We also wanted to compare with the results of earlier TDDFT studies for Cu and
Au [77,78], where different types of pseudopotential approaches were used in contrast
to the present all-electron method; in Ref. [78], a plane-wave based technology [102]
was employed as opposed to the present approach which relies on localized MO basis
sets.

Table 4.1: Vertical transition energies (eV) and oscillator strengths (in square brackets)
for coinage metal atoms in the gas phase (gp) and supported at O?~ sites of MgO(001).*

(n-1)d—ns ns—mnp ns—(n+1)s
calc. exp.? calc. exp.’ calc. exp.
Cu gp 1.10(Hg)  [0.000] 1.49 4.12(Ty,) [0.154] 3.81 5.18 (Ag) [0.000] 5.35
O?~site  2.13(E) [0.001] 245(E) [0.072] 3.41 (A1) [0.076]
2.20(A1) [0.000] 2.86 (A1) [0.004]
2.36(By)  [0.000]
2.39(B1)  [0.000]
Au gp 3.27(Hg)  [0.000] 3.97 4.07 (Ty,) [0.234] 3.74 5.14 (Ag) [0.000] 5.28
O*site  2.66-5.44 [0.053] 2.62(E) [0.110] 3.54 (A1) [0.053]
3.22(A1) [0.133]
Ag gp 1.36 (Hg)  [0.000] 1.74 5.23(Ty,) [0.129] 4.95 6.16 (Ag) [0.000] 6.76
O*site  2.14-5.15 [0.012] 3.33(E) [0.041] 4.20(A1) [0.046]
3.87 (A1) [0.038] 426 (A1) [0.049]
428 (A1) [0.042]

#) Atoms in the gas phase were calculated in I;, symmetry, adsorbed atoms in C4,, sym-
metry. The irreducible representations given in parentheses characterize the transition
dipole moment.

b) Ref. [103,104]. Experimental values for d—s and s—p transitions are averaged over
the fine structure. For transitions between degenerate states, oscillator strengths per
partner are given.

©) Maximum value.

b

To understand the nature and trends in optical transitions of adsorbed coinage
metal atoms, it is informative first to look at the excitation spectra of the corresponding
free species. All three congeners, Cu, Ag, Au, feature the same electronic ground state
25 and electronic configuration of the valence shell, (n — 1)d10ns1 (with n = 4,5,6,
respectively). The low-lying excited states include 2D, P, and (1 + 1)s 2S obtained by
promoting a single electron: (n — 1)d—ns, ns—np, and ns— (n + 1)s, respectively (Ta-
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ble 4.1); of these excitations, only ns—np transitions are symmetry allowed in optical
spectra. Promoting one d electron into the valence p shell results in dipole and spin
forbidden transitions to high-spin states 4P 4F, and *D, which for Cu and Au, extend
in part below the (1 + 1)s %S level. The 5d—6p excitations of Au are strongly affected
by spin-orbit interaction; for instance, the three components of P, with a weighted
average of 5.66 eV, are separated by 1.4 eV due to spin-orbit interaction [103,104]. Ta-
ble 4.1 compares calculated excitation energies for free atoms with experimental data
obtained by averaging term energies over the spin-orbit structure and also with the ex-
citation energies for supported atoms to be discussed below. The (n — 1)d—np group
of transitions is not included because for atoms supported at O>~ sites of MgO this

series lies above the presently considered energy range up to 4.5 eV.

That energy range is already at the border of the theoretical band gap of MgO(001),
4.6 eV, as determined with the presently used GGA method, whereas the experimental
gap is much larger, 7.8 eV [105]. Common local density functional and GGA methods
are known to underestimate the band gap of wide-gap insulators [10]. Unfortunately,
this causes some artifacts (and we will touch on that again in the further discussion),
e.g., unrealistic mixing of unoccupied levels of the metal with the conduction band of
the support. Hence, only the lowest transitions can be reliably and unambiguously
described with the methodology used here. Our GGA estimate for the band gap of the
support is close to the value, 4 eV, previously estimated with a cluster approach at the
LDA level [78]. Therefore, it would not be appropriate if one tried to match blindly
current TDDFT results to experimental data. Instead of expecting quantitative accu-
racy, we regard the current computational method as a semi-quantitative tool, which
affords a coherent systematic comparison and information about the MOs involved
in the various transitions. In this way, it may become useful for interpreting experi-
mental results. Also, the method provides valuable means for assessing trends, e.g. it
allows us to compare systematically the three coinage metals and to explore the extent
to which the cluster geometry as well as the nature of the adsorption site affects general

aspects of spectral features.

As seen from Table 4.1, for free atoms the current TDDFT approach reproduces
experimental trends very well: the order and the relative energies of the transitions are
adequately predicted. The maximum error in the theoretical transition energies, ~25%,
is obtained for the 3d—4s transition of Cu, but the average deviation from experiment,
12%, is quite a bit smaller. We note a significantly larger separation of 4d and 5s levels
in the Ag atom, ~4 eV, compared to the corresponding valence levels in Cu and Au, 1.5
and 1.7 eV, respectively. The similarity between Cu and Au comes as the consequence
of a relativistic stabilization of the 6s level and simultaneous destabilization of the 5d
levels of Au [106]. The same trend also occurs for bulk metals, where the 4d levels of
bulk Ag were found to lie ~2 eV lower than the 3d levels of bulk Cu [107]; the 5d levels
of bulk Au lie ~1 eV below the 3d levels of bulk Cu [108].
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As a result of the interaction with the O?~ anions of the MgO surface, the ns level of
the coinage metal atom M shifts to higher energies; this effect is a manifestation of the
so-called Pauli repulsion between the filled shells. Consequently, ns—np and ns—(n +
1)s transition energies are reduced by 1.5 -2 eV (Table 4.1). In addition, the M np levels
split into p, and py, components; the former level also shifts to a somewhat higher
energy due to electrostatic destabilization by a negatively charged oxygen center.

Fig. 4.1 shows the calculated polarization-resolved absorption spectra for Cu, Ag,
and Au monomers adsorbed on top of an O center of the ideal MgO(001) surface. The
three main spectral features, labeled by I, II, and III, are the same for all three metals M
and have mainly intra-atomic character, nS—npyy, NS—NPz, and ns—(n + 1)s, respec-
tively. However, the unoccupied np and (1 + 1)s levels of the coinage metal M lie rather
close to the upper end of the MgO band gap and mix considerably with unoccupied
states of the support. For instance, the 4p, level of Cu delocalizes particularly strongly
via mixing with several unoccupied states. Consequently, it contributes to several tran-
sitions, of which the lowest most intensive ones are marked as II and III. The M np,
level also mixes strongly with higher lying states of M s character. Yet for simplicity, in
Table 4.1, transitions II and III are formally assigned as ns—np, or ns—(n + 1)s accord-
ing to our convention (see Section 4.2). In contrast, the ns—mnp, y transitions are quite
unambiguously identified, as can be seen from polarization-resolved spectra (Fig. 4.1).
These transitions are of E symmetry within the C4, point group and thus are “visible”
in x or y polarized light.

The d—s transitions, which were symmetry forbidden for atoms, now appear with
low intensity due to mixing with the states of the support, e.g., a feature at ~2.8 eV for
Ag (Fig. 4.1B) and at ~2.5 eV for Au (Fig. 4.1C). The mixing of the metal d states with
the top of the O 2p valence band is especially pronounced for silver. This is also con-
sistent with observations for the free Ag atom and the bulk metal (see above), where
we noted lower lying 4d levels of Ag compared to the corresponding (n - 1)d levels of
Cu and Au. Fig. 4.2A displays the calculated density of states (DOS) of Ag adsorbed
at an O?~ site of a defect-free MgO(001) surface, represented by the MgoOg(Mg!)14
embedded cluster model; the contributions to the total DOS from d, s, and p states of
the Ag atom are explicitly given. The other two coinage metals show qualitatively sim-
ilar patterns. The singly occupied ns orbital of each of the three adsorbed monomers
lies well inside the band gap of MgO, whereas the (1 - 1)d and np levels appear at the
lower and upper ends of the band gap, respectively. The 6s orbital of an adsorbed Au
atom is shifted by ~1 eV to lower energies compared to Ag and Cu. Hence, the three
major signals of Fig. 4.1 (all originating from the ns level of M) are shifted to higher
energies for Au;/MgO (panel C). The unlabeled features to the far right of panels A
and B can be roughly assigned to transitions of type ns—(n + 1)p and (n - 1)d—np.
However, these high-lying transitions can no longer be unambiguously described in

terms of excitations within a metal atom as the corresponding final states involve no-
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Figure 4.1: Absorption spectra of coinage metal atoms Cu (A), Ag (B), and Au (C)
adsorbed at an O~ site of a defect-free MgO(001) surface. Spectra are weighted by cal-
culated oscillator strengths and broadened by a Gaussian with ¢=0.05 eV. Polarization-
resolved spectra are indicated by shading: gray — z-polarized transitions; black — one
of two equal polarization components of xy-polarized transitions. See the text for a
discussion of the major peaks marked with I, II, and IIL

table admixtures of the support which likely have to be considered as artifacts of the

presently used XC approximation.

Some of the present findings can be compared to the results of other recent TDDFT
studies [77,78]. In the previous study on Cu;/MgO, only the 3d—4s and one of the
4s—4p transition energies are given [77]. That predictions with the B3LYP hybrid
exchange-correlation functional [13,109], are very close to our results: 2.29 — 2.57 eV
vs. 2.13 -2.39 eV of this work for the 3d — 4s transitions and 2.63 eV vs. 2.45 eV of this
work for the lowest 4s — 4p transition (we assigned this transition to 4s —4p,,). An
optical spectrum of Au;/MgO was recently reported from a TDLDA calculation [78];
there, the first two strong transitions were also assigned to 6s—6p excitations, split into
px,y and p; components. Given the rather different computational methodologies, the
TDLDA excitation energies at 3.38 and 3.61 eV agree very well with the present results,
3.33 and 3.87 eV.
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Figure 4.2: Density of states for Ag; adsorbed at various sites of MgO(001). (A) regular
O?~ site; (B) Fy site; (C) F; site. A Gaussian broadening with ¢=0.05 eV was applied.
Contributions from Ag s, p, and d orbitals are given by black, light gray, and dark gray
shading, respectively. The position of the highest occupied Kohn-Sham level is marked

by a vertical dashed line.
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Atoms at F]” vacancy sites

“Color centers” F{ or F; are point defects on a surface that correspond to oxygen va-
cancies with one or two free electrons, respectively, trapped in a cavity previously oc-
cupied by a missing O atom. The bonding of M; to an F;" center [110] can be envisaged
as interaction of the singly occupied vacancy level and the ns and np, orbitals of M,
particularly strongly with np,; as schematically illustrated in Fig. 4.3, this is a typical
example of a three-orbital interaction [111]. The ns orbital of M shifts down, whereas
the Fs and np; levels shift up. Note the non-bonding character of the intermediate level,
which we refer to as Fs (level); actually it carries a strong M p, contribution. The orbital
labeled p; has a contribution of the original F; cavity level. Therefore, our notations
reflect the nature of these MOs only approximately. As a result of such interaction, the
ns orbital of an adsorbed metal atom becomes doubly occupied and the F; cavity level
is formally empty if adsorption occurs at a charged defect, F;". Favorable bonding of
M; at an F center is manifested by metal adsorption energies which are two to five
times larger than the binding energies at regular O?~ sites of MgO(001) [30,31]. Com-
pared with binding energies of 242 and 229 k] mol~! for Cu and Ag, respectively, the
Au monomer features the strongest interaction, 358 kJ —1 which correlates with the
fact that the Au 6s orbital is ~1 eV lower in energy than Cu 4s or Ag 5s in either free
atoms or atoms adsorbed on regular O?~ sites of MgO(001), as shown by our calcula-

tions. Consequently, the stabilization due to electron transfer from the vacancy site is

stronger for Au.

Figure 4.3: Schematic orbital energy diagram illustrating the interaction of a metal M;
with an F; site at the MgO(001) surface.

As seen from Fig. 4.2B, the ordering of frontier orbitals slightly changes upon going
from M; /0%~ to My /F{. The ns—np separation grows somewhat larger, while the F;
orbital, with a notable M np, contribution, appears below the M np, , levels. Thus, at
variance with the optical spectra of M; adsorbed at O? sites, the ns—F;(np;) transition
(I'in Fig. 4.4) occurs at lower energies than the ns—npy, , transition (Il in Fig. 4.4). The
next group of transitions, III, can be classified as predominantly (1 - 1)d—npy . Recall
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Figure 4.4: Absorption spectra of coinage metal atoms Cu (A), Ag (B), and Au (C)
adsorbed at an F;" site of the MgO(001) surface. Polarization-resolved spectra are indi-
cated by shading; lay-out as in Fig. 4.1. See the text for a discussion of the major peaks
marked with I, II, III.

that our model neglects spin-orbit interaction, which should shift the initial state to
somewhat higher energies. Less intensive (1 - 1)d—np, transitions have lower energy
and overlap with ns—npy , bands. For Au; on F;, the energy separation of excitations
with initial states of 5d and 6s character is really small (below 1 eV); thus, one observes
in Fig. 4.4 that bands II and III, quite well separated for Cu and Ag, almost overlap for
Au. Transitions of type ns—np,(Fs) and ns—(n + 1)s lie higher than 5 eV and are not
discussed here.

The difference to optical spectra of M; adsorbed at O~ sites is quite pronounced.
The first strong transitions in the case of M;/F;" appear at higher energies than in the
case of M /O?~. Furthermore, a fundamental difference in the spectral pattern is most
easily recognized if one compares polarization-resolved contributions to the spectra
(Figs. 4.1,4.4).
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Atoms at F; vacancy sites

The interaction of a neutral vacancy site with an adsorbed coinage metal atom follows
the same scheme as described above for the case of F] and illustrated in Fig. 4.3,
with the only essential difference that due to an additional electron contributed by the
vacancy. Therefore, the HOMO of the ground state is the singly occupied Fs(np;) level.

Table 4.2: Calculated vertical transition energies (eV) and oscillator strengths (in square
brackets) of the main low-lying excitations for coinage metal atoms supported at F;"
sites of MgO(001).

ns—F; ns—>npx,yb (n- 1)d—>npx,y
Cu 3.28 (A7) [0.081] 3.80(E)[0.052] 3.86-5.59,4.37(E) [0.066]°
Au 3.30 (A7) [0.161] 3.88 (E)[0.122] 4.22-6.64,4.41(A4) [0.070]°
Ag 3.68 (A1) [0.055] 4.21 (E)[0.043] 4.24-6.56,4.36(A1) [0.058]°

#) Adsorbed atoms were calculated in Cy4;, symmetry. The irreducible representations
given in parentheses characterize the transition dipole moment.

b) For transitions of E symmetry, oscillator strengths are given per partner.

) Transition with maximum intensity.

Table 4.3: Calculated vertical transition energies (eV) and oscillator strengths (in square
brackets) of the main low-lying excitations for coinage metal atoms supported at F;
sites of MgO(001).

F; —>npx,yb Fs —np, Fs —>(n+1)px,yb
Cu 0.72(E)[0.007] 1.35(A7)[0.081] 1.78(E) [0.033]
Au 0.86 (E)[0.009] 1.48 (A7)[0.096] 1.81(E)[0.016]
Ag 093 (E)[0.002] 1.52(A;)[0.056] 1.83(E)[0.009]

?) Adsorbed atoms were calculated in C4, symmetry. The irreducible representations
iven in parentheses characterize the transition dipole moment.

g P p

b ) For transitions of E symmetry, oscillator strengths are given per partner.

Accordingly, the lowest transitions originate from the F; level (Tables 4.2 and 4.3).
Spectral features for Cu, Ag, and Au in the low-energy region are quite similar (Fig.
4.5). The low-intensity peak I corresponds to Fs—npy,, transitions, whereas peak II
is assigned to a transition from Fs to a level exhibiting mainly MgO character. This
probably is an artifact of the model as in reality the bottom of the MgO conduction
band should lie much higher than predicted by our GGA-based TDDFT approach.
The most intensive band III is a transition from Fs to np;, followed by Fs —(n+1)px
(IV) and higher lying transitions involving higher order p and s levels of M, which
contain a sizable contribution from unoccupied levels of MgO. Thus, beyond that point
application of our GGA-based TDDFT method is not meaningful. Overall, a notable
difference to optical spectra of coinage metal atoms adsorbed at regular O?>~ sites and
Ff sites is that intense peaks appear in our model at much lower energies, at 1.5 eV
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or below. Polarization-resolved spectra below 2.5 eV are dominated by transitions

polarized in z-direction, i.e., perpendicular to the surface plane.
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Figure 4.5: Absorption spectra of coinage metal atoms Cu (A), Ag (B), and Au (C)
adsorbed at an F; site of the MgO(001) surface. Polarization-resolved spectra are indi-

cated by shading; lay-out as in Fig. 4.1. See the text for a discussion of the major peaks
marked with I, II, III, IV.

4.3 Optical transitions of coinage metal dimers adsorbed

at regular and defect sites of MgO

Dimers in the gas phase and at regular O*~ sites

The dimers Cuy, Agy, and Auy in the gas phase are characterized by a singlet ground
state, 12; [112]. The order of the valence orbitals as obtained at our BP86 level is simi-
lar for Cuy and Auy and involves an antibonding combination of d orbitals, do;; orbital,
as HOMO (Fig. 4.6) and the antibonding combination, so;;, as LUMO. This is differ-
ent from the MO ordering rendered by HF-based methods [113,114] and the hybrid
B3LYP functional [77], the HOMO is predicted to derive from a bonding combination
of two s orbitals, so;. Experimental spectroscopic studies on Cup and Aup [115-119]
also assumed the (sag)(sajo) electronic configuration because this is consistent with
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1%.5(soy —so;r) as the first singlet excited state. Nevertheless, most recent spectro-
scopic studies [116-119] actually reveal that for both Cu, and Au, the two lowest ex-
cited states, A and B, of 0] symmetry are strongly spin-orbit coupled and derive from
%5 (soy —soy) and 311,(d7ty —so7;) states corroborating our expectation that valence
s and d levels lie rather close and are able to mix either via spin-orbit interaction or
s-d hybridization. In our calculations the energy difference between the so, and doy
(HOMO) orbitals of Cup was determined to be just 0.3 eV, i.e.,, much smaller than the
whole span of Cu 3d orbitals, 1.63 eV. Whether or not the do;; orbital is the correct
HOMO actually does not affect the qualitative pattern of optical transitions of dimers
in the gas phase as all low-lying d—s transitions have zero or vanishing intensity in
our TDDFT approach, where spin-orbit coupling is not included (Table 4.4). For the
same reason all singlet-triplet transitions in our calculations are spin-forbidden and
have zero intensity. Our calculated values for so; —so;; transitions for Cu; and Aup
(2.53 and 2.76 eV) are slightly lower than the experimental X—B excitation energies,
2.69 eV for Cuy [117] and 3.18 eV for Au, [119]. (The B state has more 'Y character
than the A state.) The X— A excitation energies, 2.53 eV for Cu [115] and 1.76 eV for
Auj [118], are lower than our theoretical values. A TDDFT calculation [77] using the
hybrid B3LYP approach yielded a value 2.89 eV for the so, —s0;,; transition in Cup.
That study reported only the lowest d—s excitation energies, beginning at 2.53 eV,
which is notably higher than our result, 1.90 eV. We attribute this difference to the use
of a different XC functional, B3LYP [77], which affects the MO ordering (see above)
and, in general, increases the HOMO-LUMO gap. That previous study [77] did not
report transitions of d—p type.

) Cuz Ag2 Aus

3L

[, /SO0  ==soy
4L ; .~'
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-51 d t_dcu* S -
-7: d E Pu — =S50y
-8| : : i
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Figure 4.6: Frontier molecular orbital levels of dimers Cup, Agy, and Au; in the gas-
phase, obtained with an all-electron BP86 calculation. The LUMO s ¢;; is indicated by
an open horizontal bar.

For Agy, we find the same HOMO and LUMO, so, and soy,, as inferred from MRD-
CI ground and excited states and underlying HF MOs [120] and also supported by
spectroscopic measurements [121]. This difference to Cup and Aus; is clearly a conse-
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quence of the larger separation between the valence s and d levels in Ag (Fig. 4.6).

The first transition of Ag, with non-zero intensity is the HOMO-LUMO transition
of s—s nature corresponding to XlZ; —1 £ (soy —sof), just as calculated in the
case of Cup and Aup. The experimental value for this excitation energy of Agy is 2.85
eV [121], 0.2 eV lower than our result, 3.05 eV. According to the present calculations,
the first d—s transition with intensity appears at 5.41 eV (doy —soy;). This value is
very close to the adiabatic transition energy 5.55 eV determined for the corresponding
X! Z; —2!%F transition calculated with a MRD-CI method [120].

For dimers adsorbed at regular sites of MgO, the MO order does not change signif-
icantly as the interaction with the MgO surface is mainly of polarization type. From
the preceding study [32], the adsorption energies of Cuy, Agy, and Aup in the most
favorable upright orientation are 132, 80, and 164 k] mol~!, respectively. The nature
of HOMO and LUMO remains the same as for M, species in the gas phase. Thus, in
dimers adsorbed at O~ sites of ideal MgO(001) the lowest transitions are of the type
HOMO—LUMO, i.e. do;; —s0;; for Cuz and Au; (labeled I'in Fig. 4.7), and soy —soy
for Ag, (labeled II). Here, we preserved the notations used for MOs of diatomics in
the gas phase, although the symmetry in the adsorbed systems has been lowered to
Cs and thus previously forbidden transitions o;; — o; have become allowed via in-
teraction with the support. Furthermore, note that for Cup and especially for Au, s-d
hybridization becomes even more pronounced than in the corresponding molecules in
the gas phase, which permits a certain degree of mixing between do;; and sog MOs.
For the three coinage metal diatomics under study, the calculated absorption spectra
exhibit quite different spectral shape and types of transitions (Fig. 4.7).

For Cuy, the first two peaks at 2.6 eV and 3.6 eV correspond to the transitions
do;; —soy; (1) and soy —soy; (II). Both transitions blue shift by ~1 eV relative to those
calculated for free Cu, (Table 4.4). This result is at variance with findings of Del Vitto et
al. [77] who reported an almost unchanged transition energy for the s, —so;; excita-
tion upon adsorption, 2.95 eV, vs 2.89 eV in the gas phase. The low-intensity feature at
4.0 eV in Fig. 4.7 is assigned as sc; —prr, (III) followed by do;; —prr, at4.1 eV. Beyond
that point the continuum of the support sets in and thus makes further identification
of transitions within the metal particle difficult. As already pointed out, this much too
early emergence of the continuum is a shortcoming of the XC approximation used in
the present TD-DFT study.

Transitions of adsorbed Ag, begin at 3.1 eV with an intense so, —so;; peak followed
by another intense transition at 3.8 eV of so; —p7, type (Ill). The sy —s7t;; transition
remains at about the same energy as in the gas-phase dimer (3.05 eV), consistent with
the essentially unchanged HOMO-LUMO gap, ~2 eV in adsorbed Ag,. We note the
difference to Cup and Auyp; in the latter species, the HOMO-LUMO gap increased by up
to 1 eV upon adsorption, indicative of a favorable interaction with the MgO support.
This is also reflected in 1.6 and 2 times higher adsorption energies of Cu, and Aup
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Table 4.4: Calculated vertical transition energies (eV) and oscillator strengths (in square
brackets) for coinage metal dimers, in the gas phase (gp) and supported at O?~ sites of

MgO(001).4
System d—s? s—s d—p and s—p°

Transition Character Transition Character Transition Character

Cuy gp 1.90[0.000] ¢ — o; 2.53[0.080] 0y — 0, 3.45-5.43
1.91[0.006] 7z — oy 3.67[0.016] drmrg —
2.07[0.000] ¢, — o, 4.19[0.036] ddg — 7y
2.30[0.000] 6y — oy 4.26[0.063] do,; — oy
2.81[0.000] m, — o, 5.32[0.007] dm, — oy
4.79[0.531] o0g — 0 5.43[0.038] dog — 7y
4.54[0.389] sog —
O*site  2.12-6.44 3.55[0.094] o0y — 0;; 3.99[0.003] do,; — 0g
2.60[0.045]¢ o — o 4.09[0.032] do — m,
4.26[0.046] 0y — o} 4.09[0.003] do; — m,
3.96[0.033] sog — 71y
3.96[0.012] soy — 7y

Agr gp 3.71[0.000] o; — 0; 3.05[0.367] 0y — 0, 3.70-7.96
3.83[0.004] 75 — oy 6.01[0.054] dmg — 7y
4.03[0.000] 9, — o, 6.43[0.419] do,; — oy
4.23[0.000] 6y — oy 6.47[0.218] dé; — 7y
4.79[0.000] 7, — o} 7.30[0.046] dog — 7
5.41[0.060] o0g — o, 7.37[0.050] drm, — oy
4.70[0.754] sog — 7y
O*site  3.30-5.86 3.12[0.502] oy — 0, 4.28[0.004] doj; — oy
4.54[0.041]¢ o — o 3.81[0.117] sog — 7y
3.87[0.131] soy — 1y

Au; gp  227[0.000] o —op 276[0122] 0y — i 5.05-8.13
2.33[0.011] 75 — oy 5.23[0.003] drmy — 7,
2.40[0.000] ¢, — o 5.50[0.014] do;; — oy
2.73[0.000] 6, — oy 6.07[0.288] dd; —
3.84[0.000] m, — o; 7.710.363] dm, — 0g
6.35[0.804] oy — 0y, 8.13[0.170] dog — 7y
5.62[0.288] soy — 11y
O?site  2.93-5.53 4.01[0.006] og — oy; 4.91[0.003] do;; — oy
3.02[0.052)¢ ¥ — o 4.17[0.004] do; — m,
4.18[0.005] do;; — my

#) MO symmetries are given for the point group D.,,. For M, adsorbed on MgO, the
same notations are used to show correspondence between the MOs of gas-phase and
adsorbed molecules.
b) For degenerate transitions, oscillator strengths are given per partner.
) Only transitions with non-zero intensity are listed; for adsorbed species, the range
up to 4.5 eV is considered.
4y Transition with maximum intensity.
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Figure 4.7: Absorption spectra of coinage metal dimers Cuy (A), Agy (B), and Au, (C)
adsorbed at an O*~ site of a defect-free MgO(001) surface. Polarization-resolved spec-
tra are indicated by shading: dark gray — x-polarized transitions black — y-polarized
transitions, light gray — z-polarized transitions. See the text for a discussion of the
major peaks marked with I, II, IIL

For Auy, the first transitions with intensity appear at 3.0 eV with the weak
do,, —so,, band and remain at rather low intensity in the considered energy range
up to 4.25 eV (Fig. 4.7). The do,; —so;; transition lies 0.7 eV above the gas-phase value,
2.26 eV; this upward shift is of similar magnitude as determined for Cu;, (Table 4.4).

Although quite differently looking, the three spectra can be characterized by some
common features. In the energy range considered, the two main transitions are of type
do;; —soy; (I) and sog —soy; (IT) (Fig. 4.7). The remarkably high intensity of the latter
transition in the case of Ag, can probably be rationalized by the relatively pure soy
character of the HOMO, separated by 0.8 eV from the underling d-manifold, and the
weak interaction with the support, whereas for Cuy and Auy, sy and do;; mixing is
quite pronounced. The former transition, of do;, —so;; type, is less intense because it
is parity forbidden for dimers in the gas phase. Furthermore, the d—s transitions are
dipole forbidden in the free atoms.

Inclusion of SO interaction is expected to affect the calculated spectra at least of
Auy, because of an upward spread in energy of the d-manifold and thus a decreased
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HOMO-LUMO gap (by ~0.5 eV as revealed by our test calculations for the gas-phase

dimer).

Dimers at F;” and F; vacancy sites

Coinage metal dimers adsorb at vacancy sites in an almost upright orientation with
some degree of tilting with respect to the surface normal [32]. The bonding involves,
as shown above for atoms, considerable shifts of the valence (frontier) orbitals and a
change of the electronic configuration of the adsorbed metal species. To first approx-
imation, the MO picture of bonding can be described as interaction of the singly (or
doubly) occupied vacancy level F; and the so;; LUMO of the dimer. As a result, the
bonding combination so;;+F; is lowered in energy and the antibonding combination
so,, —Fs shifts upward, close to the (bonding) virtual MOs pog and prr, of My while
mixing considerably with pcoy. For simplicity, in the following we will refer to the two
MOs with a contribution from the cavity as so;; and F; instead of so;;+F; and so;, —F;.
Note, however, that due to interaction with the support, there are several unoccupied
levels with mixed Fs and poy character; thus, our simplified labeling of virtual orbitals
is just a convenience. The adsorption interaction just described stabilizes the electron
from the vacancy level F at the lowered sc;: orbital. However, there is also a destabi-
lizing effect due to the weakening of the M-M bond, yet the former contribution seems
to dominate as adsorption energies of My at FJ~ (66, 64 and 116 k] mol ! /atom for Cuj,
Agy, and Auy, respectively) are equal or greater than for diatomics adsorbed at regular
O?~ sites (66, 40 and 82 k] mol~!/atom) [32]. The strongest increase in the binding
energy, for Aup, correlates with the largest downward shift of so;; (almost 1 eV below
the corresponding MOs of Cu, and Agp).

The bonding picture at neutral vacancy sites is quite similar, only that the HOMO
so,+Fs acquires a second electron from the vacancy site. The net stabilizing effect is
even stronger on F; than on F;" as the vacancy orbital is doubly occupied. The adsorp-
tion interaction on a neutral F; site is 60 — 70% stronger for all three dimers than on a
charged defect site F and 1.6 — 2.7 times larger than at regular O?~ sites [32].

The spectral features of diatomics adsorbed at vacancy sites are consistent with the
orbital pattern just described. For dimers adsorbed at F; (Fig. 4.8), the first relatively
strong transition is so;, —poy (I), which appears at 2.61, 2.27, 3.18 eV for Cuy, Agp,
and Auy, respectively (Table 4.5). The highest energy of this transition is calculated for
Auy, again consistent with the largest downward shift of s¢;; and the strongest binding
to the surface as mentioned above. The low-intensity peaks to the left of I (Fig. 4.8)
are mainly from the higher occupied d orbitals to so;; (and soy —soy, in the case of
Agy). For Agy, the next well-pronounced high-intensity peak (II) corresponds to the
transition so;, —pm,. In fact, the MO to that we refer as pry is its A’ component,
which bears a sizable contribution from Fs and also mixes strongly with poy due to
a considerable tilting of Ag, with respect to the surface normal, 29° [32]. Transitions
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Figure 4.8: Absorption spectra of coinage metal dimers Cuy (A), Agy (B), and Au, (C)
adsorbed at an F;" site of the MgO(001) surface. Lay-out as in Fig. 4.7. See the text for
a discussion of the major peaks marked with I, II, III.

of this type are found to appear with much lower intensity for Cu; and Au; (Table
4.5). One reason for that difference could be a less significant tilting of Cu, and Aup
moieties, at most 10°. However, we will see in the following that the same strong peak
appears for Agy (but not for Cu; and Auyp) at a neutral Fs defect where only a minor
tilting was calculated for all three dimers. This anomalous behavior of Ag, may be due
to its weaker interaction with the MgO surface. Thus, low-lying transitions have more
pronounced intramolecular character, whereas Cu, and Au, interact stronger with the
support, which results in many mixed states and a distribution of oscillator strength
over a range of transitions. Transitions from so;; to Fs carry very low intensity (Table
4.5). Only for Ag; is this transition at 3.3 eV calculated to be visible in the spectrum.
Other well-separated peaks to the right of I (and also to the left of I in case of Auy),
marked as III in Fig. 4.8, are assigned as d—sc;.

Absorption spectra of dimers supported at neutral vacancy sites Fs of the MgO(001)
surface (Fig. 4.9, Table 4.5) can be interrelated with those for M, at the corresponding
F; sites. As stated above, the qualitative frontier orbital picture differs only by the
doubly occupied so;; HOMO level instead of the singly occupied level of dimers ad-
sorbed at F;. In the spectra of all three coinage metal dimers, the first peaks of high
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Table 4.5: Calculated vertical transition energies (eV) and oscillator strengths (in square
brackets) for coinage metal dimers supported at F;” and F; sites of MgO(001).”

System s, —Pp0y so; —p7h so,, — Fs
Cuy F/ site 2.61[0.133] 3.91[0.012]  3.36[0.003]
3.92[0.011]
F; site 2.1710.123] 2.46[0.006]  2.54[0.082]
2.46[0.009]
Ag, Fsite 2.2710.082] 2.84[0.281] 3.29[0.028]
2.84[0.000]
F; site 2.08[0.142] 2.12[0.001] 2.48[0.096]
2.13[0.001]
Auy F{ site 3.17[0.220] 3.15[0.011]  3.97[0.002]
3.17[0.006]
F; site 2.72[0.122] 2.78[0.000]  3.09[0.099]
2.78[0.000]

#) MO symmetries are given for the point group Dy, to show the correspondence be-
tween MOs of gas-phase and adsorbed molecules.
b) For degenerate transitions, oscillator strengths are given per partner.

intensity (I) again correspond to the so;, —po, transition. At neutral vacancy sites,
these transitions are calculated 0.2 — 0.5 eV lower in energy compared to the spectra of
dimers at charged defect sites F". The so;: —F transitions (II) follow with comparable
intensities at 2.5, 2.4 and 3.1 eV for Cup, Agy, and Auy, respectively. The next higher
band (III) that appears in all three spectra is also of so;, —po, type, but it involves
a higher lying orbital of partial pog character. In the case of Agy, transitions II and
III cannot be unambiguously separated because both are actually mixtures involving
large contributions of so;; —Fs and so;; —pog. Other identifiable higher transitions
(IV) are from the top of the d manifold, do;; —F;, found in the spectra of Cu; and Au;
around 2.9 and 4.0 eV, respectively; for Ag, they are not observed in the considered en-
ergy range as occupied d orbitals lie quite low in energy. Instead, a so; —poy, transition
(V) with sizable intensity is found around 3.7 eV. Unmarked bands involve transitions
to higher lying orbitals with considerable admixtures of MgO levels. Overall, the spec-
tral shapes of the three congeners differ notably (Fig. 4.9). Still the transition so;;, —poy
can be considered characteristic, ordered in energy according to Ag, <Cuy<Auy; that
pattern is similar to what was calculated for the coinage metal dimers adsorbed at F;
(Fig. 4.8).

Optical transitions of Au, at F, centers of MgO(001) have previously been studied
computationally [78] using TDDFT in the LDA approximation. In that work, two al-
most isoenergetic minima were reported, one with the gold dimer standing “upright”
and another one with the dimer tilted by 33° from the surface normal. Surprisingly,
calculations yielded completely different spectral shapes for the two isomers, despite
only slight difference in geometry. Although an earlier study by our group determined
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Figure 4.9: Absorption spectra of coinage metal dimers Cuy (A), Ag, (B), Aup in “up-
right” orientation (C), and Au, in “tilted” orientation (D), adsorbed at an F; site of the
MgO(001) surface. Lay-out as in Figure 4.7. See the text for a discussion of the major
peaks marked with I to V.
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only one minimum for this system (the upright geometry) [32], the remarkable simi-
larity of our predicted spectrum (Fig. 4.9C) to that for a tilted geometry in Ref. [78]
motivated us to calculate also the optical transitions for a tilted gold dimer. We used
the same tilt angle as reported in Ref. [78], 33°, but kept the Au-Au distance as pre-
viously optimized with our embedded cluster model approach, at 2.63 A. This cal-
culation revealed only a slight shift (at most 0.3 eV) of the main bands I to IV with
respect to those of the “upright” structure, although oscillator strengths decreased on
the whole and migrated partially from the z to the y spectral component (following
the dimer axis tilted in y-direction), while several previously forbidden transitions ap-
peared with low intensity (Fig. 4.9D). The general agreement with the spectrum of the
tilted isomer in Ref. [78] may seem worsened due to the appearance of several low in-
tensity transitions; however, the positions of the main bands still agree within 0.1 - 0.2
eV. Our test showed a relatively small variation in the spectral shape upon changing
the orientation of Au, with respect to MgO surface from an essentially upright to the
titled geometry, at variance with predictions of Ref. [78]. Thus, the apparently good
agreement of our spectrum for the “upright” structure (Fig. 4.9C) with the TDLDA
spectrum of a tilted dimer [78] seems to be coincidental.

4.4 Effect of cluster embedding on calculated optical

properties

Finally, we would like to address the importance of proper cluster embedding for ac-
curate calculations of vertical excitation energies and oscillator strengths. To this end,
we compared three cluster models, using a Cu atom supported at a regular O>~ site of
the ideal MgO(001) surface as benchmark system. Model I is our standard EPE model,
briefly described in the Section Computational Methods and in more detail elsewhere
[91,92]. In Model II, the QM cluster environment was kept untouched, but the rep-
resentation of the long-range electrostatic potential was removed. In other words,
the surface charge representation of the electrostatic embedding potential (SCREEP),
which accounts for the electrostatic field due to the distant part of the infinite crystal,
was eliminated, but a point-charge array of 644 point charges representing the elec-
trostatic field of the nearby region of the support (region II of EPE [91,92]) was kept.
Model III comprised only the QM cluster model CuMggOg(MgP Py,¢ without any em-
bedding. The TDDFT results of these three models are compared in Table 4.6.

The d—s transition energies and the corresponding oscillator strengths, calculated
in Model II, agree quantitatively with the benchmark values of Model I, whereas the
s—p and s—s transitions are shifted by 0.3 — 0.4 eV. However, the average deviation
in transition energies can be considered small (<0.3 eV) and maximum deviation ob-
tained was 0.7 eV. The oscillator strengths deviated at most 0.06 and on average by 0.01
from those obtained with Model I. Model III underestimates the d—s transition ener-
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Table 4.6: Vertical transition energies (eV) and oscillator strengths (in square brack-
ets) for supported Cu atom at O~ sites of MgO(001) with three cluster models of the
support.”

Model” (n-1)d—ns? ns—mpb ns—(n+1)s
calc. calc. calc.
I 2.13 (E) [0.001] 2.45(E) [0.072] 3.41 (A7) [0.076]

( ]

2.20 (A7) [0.000] 2.86 (A1) [0.004]
2.36 (By)  [0.000]
2.39 (B;)  [0.000]

i 214 (E) [0.001] 2.46 (E) [0.063] 3.08 (A;)[0.043]
220 (A;) [0.000] 2.11 (A;) [0.002]
2.36 (By)  [0.000]
2.39 (B;)  [0.000]

| 145(E)  [0.010]
1.68 (A7)  [0.000]
1.69 (By)  [0.000]

1.85(By)  [0.000]

NI- MggOg(MgP Py, cluster embedded in an elastic polarizable environment (EPE);
IT - same as I, i.e. with an array of 644 point charges representing the electrostatic field
of the nearby region of the support, but without the surface charge representation of
the long-range electrostatic embedding potential (SCREEP);

I - MgoOg(Mg"")16 model without embedding.

b) For degenerate transitions, oscillator strengths are given per partner.

0.85 (E) [0.049] 3.10 (A7) [0.036]
0.92 (A;) [0.080]

gies by 0.5 - 0.7 eV and particularly strongly the s—p transition energies, by 1.6 — 2.0
eV. Although the s—s transition energies predicted by Model III closely match those
calculated with Model II, this is probably fortuitous because the average deviation of
transition energies from Model I, calculated for the 30 lowest transitions, was 0.8 eV
and the maximum deviation was 2.6 eV. These results illustrate the fact that Model III
is too crude to be useful.

This simple test substantiates the importance of cluster embedding, which affects
the ordering of the MOs and hence the excitation energies calculated with a TDDFT
method. Inclusion of the SCREEP, however, overall contributes only little, in particular
when one considers the overall predictive accuracy of the approach used here, but
omission may affect individual transitions too much to prevent correct assignment for

some systems.
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Chapter 5
Summary

The objective of the present thesis was to improve and extend the functionality of the
parallel density functional program package PARAGAUSS for calculating electronic
excitations with methods on the basis of time-dependent density functional theory
(TDDFT). The new TDDFT implementation is based on a previous separate code,
which was restricted to closed-shell systems. The module, now merged with PARA-
GAUss was extended to open-shell reference systems, to exploiting spatial symmetry
of a molecular framework, and to feature more variants of exchange-correlation ker-
nels. This newly developed TDDFT module of PARAGAUSS, was validated by calcu-

lating optical spectra of a variety of molecular and surface systems.

Chapter 2 presented a review of the formalism of TDDFT. Starting point was the
Schrodinger equation in its time-dependent form. Next, using a superposition of
monochromatic electric fields as model of an external perturbation, first-order response
of the density was invoked to solve of the time-dependent Schrodinger equation, lead-
ing to the coupled perturbed Kohn-Sham (CPKS) equation. Finally, symmetry adap-

tation of the CPKS equation was explained.

In Chapter 3, various aspects of the implementation of TDDFT in the program
PARAGAUSS were discussed. First, the resolution of the identity (RI) method for the
CPKS eigenvalue problem was described for open-shell and closed-shell systems. It
was shown, that applying the resolution of the identity, one can separate time- and
memory-demanding four-index integrals into two-index integrals and three-index in-
tegrals with the help of auxiliary basis functions. The solution of the Casida eigenvalue
problem with the help of a Davidson eigensolver as well as the parallelization of the it-
erative Davidson eigensolver over several processors was discussed. The symmetriza-
tion of the integrals, which are necessary for the Casida eigenvalue problem, was ex-
plained starting from the symmetrization of the orbital and auxiliary basis sets. Then
the symmetrization of the four-, three- and two-index integrals was treated. The imple-
mentation of the second-order derivatives of the energy density in the local density ap-
proximation and the generalized gradients approximation to the exchange-correlation
kernel was discussed in detail. The origin of numerical instabilities was analyzed. A
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numerical quadrature scheme for the exchange-correlation four-index integrals and
the evaluation of matrix elements of the exchange-correlation kernel as second-order
derivative of the exchange-correlation functional was constructed, thus improving on
the RI approach. The new numerical quadrature scheme does not require an auxiliary
basis set; in turn, the results became numerically stable. However, the RI technique is
still used in the TDDFT module of PARAGAUSS for evaluating the matrix elements of
the Coulomb contribution to the response kernel; this part of the algorithm has never

suffered from numerical instabilities.

Test calculations demonstrated the performance of the new TDDFT module of
PARAGAUSS for different exchange-correlation functionals and systems of various spa-
tial symmetry. This suite of test systems comprised the metal species Au, Aup, and
Cuy adsorbed at an oxygen site of the ideal MgO(001) support. The performance of the
TDDFT module of PARAGAUSS was carefully analyzed by restricting the active space
for core- and valence excitations with the help of energy cutoffs. The comparison of
timings for 2, 4, and 8 processors for Cup; on MgO showed an essentially ideal scaling
and a reasonable time consumption of the TDDFT module. It was shown, that the a
priory “irrelevant” states, e.g., the core electrons for optical excitations of low energies,
do not influence the results. The maximal deviation of the excitation energies between
2.0 and 5.0 eV for the test systems Au and Au, on MgO(001) was 0.01 eV and that
of oscillator strengths was 0.005 a.u. With such a judicious restriction of the working

space, calculations can be carried out in half the time.

Not only valence excitations, but also electronic transitions from core orbitals to the
LUMO and other low-lying unoccupied levels were analyzed. The results obtained
with PARAGAUSS were compared with those of other authors [28,29] and fair agree-
ment was noted. Deviations for the molecule SO, with excitation energies of 170-2450
eV were 0.1-0.6 eV in excitation energies and 0.03-0.04 a.u. in oscillator strengths. De-
viations for the molecule TiCly with excitations from Ti 2p orbitals in the range 450—470
eV were 0.4-3.0 eV for excitation energies and 0.002-0.022 a.u. for oscillator strengths.
Different algorithms used in this work and other implementations [28,29] likely are the

main reason for these discrepancies.

Chapter 4 reported a systematic study on the absorption spectra of coinage metal
atoms Cu, Ag, and Au and the diatomics Cuy, Agy, and Auy, all systems being sup-
ported on MgO(001) terraces, at regular O?>~ sites as well as neutral and charged oxy-
gen vacancies (Fs; and F;"). The adsorption complexes were described with an accurate
all-electron DF method in combination with cluster embedding in an elastic polariz-
able environment. The energies and oscillator strengths of vertical electronic transi-
tions were calculated within the framework of linear response TDDFT using the BP86
exchange-correlation potential and all-electron basis sets. The calculated adsorption
spectra for excitation energies up to 4.5 eV for the three coinage metals show in gen-
eral similar characters of the transitions, although they differ energetically and by rela-
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tive intensities. Particularly for adsorbed Au atoms and dimers, the lowest transitions
with intensity are typically blue-shifted with respect to the spectra of the correspond-
ing species of the other two metals. Comparison with electronic spectra of the metal
species in the gas phase revealed how the interaction of the metal species with the
support affect optical properties. It was found that the interaction with MgO support
significantly perturbs the atomic or molecular orbitals; therefore, transition energies for
the adsorbed species are shifted by up to 2.5 eV compared to the gas-phase reference.
Trends among various metal species and the importance of embedding for an accurate
prediction of excitation energies of adsorbed systems were carefully analyzed. The av-
erage deviation between the results with and without embedding was 0.8 eV and the
maximum deviation was 2.6 eV for excitations with energies of up to 4.5 eV. This com-
parison between the results with embedding and without embedding demonstrated
the importance of cluster embedding in an elastic polarizable environment for ionic
substrate cluster models.

Spin-orbit interaction was not included in the treatment of the systems involving
Ag and Au atoms. A TDDFT method that accounts for spin-orbit interaction seems
advantageous and promising for exploring excitation properties of these systems with
heavy elements.
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CHAPTER 5. SUMMARY



Appendix A

Response density and response

function

The first-order density response p(!)(r, w) of the system of non-interacting electrons is
obtained by inserting the Slater determinants into the perturbation expression, see Sec-
tion 2.4. A simpler approach is to apply time-dependent perturbation theory directly
at the level of the one-electron orbitals ¢, (r). All many-electron operators in Section
2.2 need to be exchanged with the corresponding one-electron operators, and a sum
over occupied one-electron wave functions ¢, is used instead of the summation over

many electron states ¥,

o Nggor +w Asgr — w

Spin occ unocc
p(l)(r,w) — ZZ Z (Pas 1) Usar (W )+Psaa(r)vasa(w)>
0CC UNo

) SPZH‘ZCUZCC (Pasa Usaa( )(ZAsaU §U+Asaa+w)) (A1)
L L Afar
spin occ unocc Aswpasg( )Usar(w)
~ A2y

Here we use the following equations pgsc = Psae and Ugse = Usqe. The matrix of the

electric perturbation v, is given in form

Vaso (W) = (@ac |0(r, W)| ¢s) = /dr @ar (1) V(1, W) Qs (7). (A.2)

and Ay = €50 — €40 is the difference of one-electron Kohn-Sham energies of occupied
levels €,, and unoccupied levels €5,. Thus the first-order density response, Eq. (A.1),

can be written as

(r,w) /d3r Xs (r, 7, w)v(r,w) (A.3)

where the integral kernel is the first-order density response function of a system of N,

non-interacting particles:
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spin occ unocc 2 A
saoc

Z Z 2 A2 _ o2 Pac (1) Pso (1) Pac (1) s (7). (A4)

S(ZU’



Appendix B

Example: point group Cs,

Table B.1: Characters of point group Cs,

Csw | E 2C3 30y
ap |1 1 1
a |1 1 -1

e |2 -1 0

Table B.2: Direct product of irreducible representations (irrep) for point group Cs,

@ |lag a e
a; | a1 az e
ar | dp M1 e
e |l e e mtat+e

Table B.3: Selection rules for the two-index Coulomb overlap integrals in symmetry
Csp. Irreps of rows and columns denote the irrep of fitting functions k and k/, respec-
tively. The combinations allowed by symmetry are labelled by crosses

(k||K') | a7 ax e
a1 X
a» X
e X
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Table B.4: Selection rules for three-index Coulomb integrals (ij||k) in symmetry Cs,.
Labels of the columns denote the irrep of fitting function k. The direct product of the
irreps of orbital basis functions i and j must be reducible to the irrep of the fitting func-
tion in order for the integral to be non-zero. The combinations allowed by symmetry

are labelled by crosses.

(ij1k)

a1

a e

l

a1 b m
ar P ar
edbe

!

!

l

a1 b ay
ede

l

l

a1 De
a, e
ede

|

!

a
a1
al

ap
az

X

X
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Table B.5: Selection rules for the four-index integrals (ij||kl) in symmetry Cs,. The
direct products of irreps of each pair orbital functions (ij) and (kI) must be reducible
to the same irrep in order for the integral to be non-zero. The combinations allowed by
symmetry are labelled by crosses.

(ij|[kT)

arba — ay
a, ba, — ay
edbe — @m

apday — a
ede — ap

a be — e
a, e — e
ede — e

l

a1 o a;
ar P ar
ede

l

l

!

a; dap
ede

|

l

aDe
a, de
ede

l

|

al
a
a1

ap
ar

X X
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Appendix C

From open shell to closed shell

In this appendix we will derive the Casida equation for closed-shell systems, from the
more general equation for open-shell systems, Eq. (3.1). In the following algebra, we
will use the diagonal matrices with the elements defined by energy differences

(A)ppr = (€51 = €a1)dpp
(AI)PP/ = (esl—eal)épp/ (Cl)

and the full matrices with matrix elements defined by

(ATT)PP' - 2\/APTKPT,P’T\/AP’T
(Al)py = 20/ BpiKpLpr 1A/ By (C2)
(At ppy = 20/ Bp1Kpr 1/ By
(ALT)W’ = 2\/ APlKPer/T\/AP’T

We use a meta index p for the pairs of occupied and virtual orbitals 2 and s. Using
the new notations, Egs. (C.1) and (C.2), the Casida eigenvalue problem, Eq. (3.1), may
be rewritten in a form that emphasizes the block structure of the equation:

2
[(AT 02>+<ATT Au) (W) :wz<m> C3)
0 A} A Ay Y Y

Here we also introduced the vectors y and y,| for corresponding ranges of the so-

lution vector. Let us make a variable substitution:

) ()
A v
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where the matrix
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V= \% ( 1 _11 ) (C.5)

is unitary. By applying the basis transformation to Eq. (C.3) we obtain the eigenvalue
equation for u and v:

A2 0 Ay A
0 Al A” Au 14 1%

Upon transformation the diagonal term of the original matrix acquires off-diagonal

V'l'

elements:

2 2 2 2 2
4 2 4 2 2 2 2 ( )
0 Al 2 AL_AT AL+AT

The blocks of the second term of the original matrix will be rearranged after transfor-

mation:

vt ( A Ay ) vl ( (A + A+ (A +A) (A + A — (A — 4y >
Ay Ay 2\ (A=A + (A —4Ay) (A —Ap)— (A +4y)

(C.8)

In a closed-shell system, the occupied and unoccupied spin-up and spin-down
molecular KS orbitals have the same shape: ¢, = ¢,, as well as ¢4 = ¢
and A% = A% = A% Spin-up and spin-down densities, therefore, are also equal:
pr = p; = p/2. Thus, the Coulomb-exchange-correlation kernel must satisfy the
equalities K,y iy = K| ,v|, and Ky y| = K| 4. By introducing A = Ay =A )|, and
B = Ay =A|;, we can bring the Casida equation, Eq. (C.3), into completely decoupled

(59 (“m ) ()-(2) e

The equation for the so-called singlet-singlet transitions u is derived from the first row
of Eq. (C.9):

form:

(AZ F(A+ B)u) = W, (C.10)

and the equation for the so-called singlet-triplet transitions v is derived from the sec-
ond row of Eq. (C.9):

(A2 +(A— B)v) — W (C.11)



Appendix D

Exchange-correlation kernel

In this section we will express the second-order derivatives of the exchange-correlation
potential response kernel, Eq. (3.48), in terms of derivatives with respect to 7, =
(VpsVp,r), see Sec. 3.4. In the open-shell case we have the following expressions for
the exchange-correlation potential response kernel f;{g in terms of Vp,,:

A i_va—z_kv.v‘a—z € (D.1)
XC 00500, 000V p, IOV 000V jogr | C '

where summation over repeated Cartesian indices i and j is assumed. To replace the
derivatives with respect to Vp, by derivatives with respect to 7,,,, we will use the

following formulae for the first-order derivatives:

d

0 0
IV, B ;VPT (a')’ﬁ T a')’rtf) (D-2)

Similarly, the second-order derivatives with respect to Cartesian components of the

density gradient Vp are given by the following expression:

02 d d
Yoovo, — i T
BVZpUBV]pa/ a’}’glg a’)fgg/
+ Y VipeVjpr (D.3)

Tt/

02 92 02 02
X + + +
( Y59Vt Y109V Vo0Vt Y7o Yrlol )
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Appendix E

Balance between orbital and auxiliary

basis sets

The equation for the exchange energy density of the X, exchange functional, when
a = 2/3,[20,60-62] is

1/3
€x, = —Z (%) / o3, (E.1)
The potential response kernel is the second-order derivative of the LDA exchange en-
ergy density €x,:
13\
fxo=—3 (;) p . (E.2)

The electron density in the case of a Slater-type orbital basis sets is of the general atomic

form
o = e %, (E.3)

and in the case of a Gaussian-type orbital basis sets is of the atomic form

2

p=e 1. (E.4)
Substituting Eq. (E.3) into Eq. (E.2), we obtain:

Cl/rzdre"”zeggreﬁrz = Cl/erre(‘”ﬁ)rz*%g’. (E.5)

This integral is well defined, because | — (a + B)r?| > |2{r/3| for r — 0.
In the case of Gaussian-type functions, we substitute Eq. (E.4) into Eq. (E.2), and

obtain:

Cq / r2dre =237 B — C1 / r2e~ (@B +30r?, (E.6)
This integral converges if v < 3(a + ) /2. Therefore there should be a balance between
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titting basis sets («, B) of the auxiliary basis set and the exponents () of the orbital
basis set. To avoid this restriction we decided to implement an accurate numerical

quadrature of the exchange-correlation kernel on a grid, see Sec. 3.3.4.



Appendix F

Flowchart of the TDDFT module of
PARAGAUSS

SCF part

Calculation of
2 center Coulomb
integrals

Calculation of
3 center Coulomb
integrals

SCF iterations

Dipole calculations
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Calculation of 2 and 3 center integrals

for all symmetry irreps and save it on tape.
Only full symmetry irreps will participate in
SCF iterations.

Calculation the dipole moments
according to symmetry irreps and
storeit.
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Main TDDFT part

assemble
2 center Coulomb
integrals

|

I Assemble of 2 and 3 center integrals
- = == : for all symmetry irreps according to

|

|

assemble quadruples
3 center Coulomb

integrals (" | - ---TT-T-TT-T - - - - - T-T-T----

calculation
2 center XC
integrals

Assemble the dipole moments
according to symmetry irreps

assemble - — ==
dipole moments

calculation

of diagonal

eigensolver four-center integral calculations
iterations (will be called every iterations)

output results




Appendix G

Usaging the TDDFT module of
PARAGAUSS

Overview

The response formalism of the time dependent density functional theory (TDDFT),
which is now a part of the PARAGAUSS [22] code, allows to calculate:

e closed-shell case: vertical singlet - singlet (5—S5) and singlet - triplet (S—T) elec-

tron excitation energy,
e open-shell case: vertical excitation energy for the different electronic transitions,

e oscillator strengths.

After the calculation of the ground state of the system, the so-called “integrals” part
of the calculation, PARAGAUSS [22] starts the TDDEFT part, which is a parallel code for
calculating excitation energies of large systems using an iterative Davidson-type eigen-
solver [48,49,51]. Optionally, the oscillator strengths can be calculated as well. In this
appendix we will discuss typical strategies and suggestions for TDDFT calculations.
Also we will explain in detail, how to use TDDFT on such a system as H,O, Au, Auy.
Then we will try to answer some important questions concerning TDDFT calculations,
convergency problems and the fitting basis set. We will explain all the command lines
of the RESPONSE part of the input file of PARAGAUSS.

Typical strategies for using TDDFT in PARAGAUSS

With the new version of PARAGAUSS it is no more required to calculate the integrals
separately after the ground state calculations. PARAGAUSS will start the TDDFT sub-
routines automatically (of course if one intends to calculate with TDDFT). The TDDFT
part will calculate the desired response properties.
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A typical calculation of the vertical excitation energies would proceed like this:
Standard PARAGAUSS preparation:

e choosing the appropriate symmetry for the system

e optimization of the geometry (optional, one could use the experimental one)
e choosing an appropriate exchange-correlation functional

e for the open-shell there is no need to specify the type of the transitions

TDDFT specification:

e for a closed-shell system one should decide to calculate singlet-singlet (5—S) or
singlet-triplet (S—T) excitation or both types of transitions

e for oscillator strength calculations the dipole moments should be calculated as
well

e how many levels of the vertical excitation energies need to be calculated?

¢ depending on the desired accuracy one could involve cutoffs for the core levels
and/or the unoccupied levels.

Some useful notes for TDDFT calculations, before the initial run:

Normally the calculation of TDDFT system with heavy atoms and with large basis
sets is time and memory consuming. It is advisable to calculate such a system on
machines with sufficient amount of memory. The necessary integrals can be stored
and used for further calculations, e. g. if one wants to calculate the same system, but
only valence electron transitions, or to calculate singlet-triplet transitions in additional.

One should check the exchange-correlation potential for TDDFT. It is possible to
use one exchange-correlation potential for the SCF and another for the TDDFT part of
the calculation. One should be careful!

The initial PARAGAUSS run

Choose a suitable version of PARAGAUSS, build a suitable input file according to the
rules of PARAGAUSS.

Command  line  parameters relevant for  response  calculations:
[ -datadir <dir> ]. The results can be found in the output directory.

Examples: Au calculation, symmetry Ij,, open shell; Au; calculations, symmetry
Dygy,, closed-shell S—S and S—T transitions, HyO calculation, symmetry C,, closed
shell 5—S and S—T transitions

Prerequisites:

e A directory with a batch files samples/script



e In that directory inputs Au/input, Au2/input, h2o/input

A suitable batch script then looks like this:

opt01:/home/<your dir>> cat script
#!/bin/csh

#$ -cwd

#$ -q short

#$ -pe make 1

cd <work directory>

ttfs_V3.0 $1 -vers V<new version> -mpi -datadir $1.resp
It is submitted using the gsub command,

gsub script Au
In general the gsub command takes the following syntax:

Usage: qsub [ options ] [ command | -- [ command_args ]] job.name

107

Having submitted the job you can check its status using the gstat -f command,

which will create an output like this on the screen:

opt01 /home/<you dir>> gstat -f

queuename qtype used/tot. load_avg arch states
opt01 BIP 0/1 0.00 1x24-amd64 d
short. .. BIP 0/1 0.00 1x24-amd64

B L B g g g
- PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS
B g R R R R R R R R

17354 0.60500 scriptQ genest qw 06/14/2005 11:10:52 6
18078 0.55668 scr2_opt bussai qw 06/28/2005 16:49:19 2
18090 0.55444 scr2_opt bussai qw 06/29/2005 09:18:12 2

Possible queues on Opteron clusters are as follows:

Queue Slots Limit Purpose

short 1 1 hour Queue for short jobs. Please use

normally not more than 1 slots
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opt01 - opt09 2 | notlimited | Prioritized queue for parallel
jobs with up to 4 GB memory

opt10 - opt33 2 | notlimited | Prioritized queue for parallel
jobs with up to 2 GB memory

opt34 - opt39 4 | notlimited | Prioritized queue for parallel
jobs with up to 8 GB memory

quadl-quad3 | 4 | notlimited | Prioritized queue for parallel
jobs with up to 16 GB memory

quad4 8 | notlimited | Prioritized queue for parallel

jobs with up to 16 GB memory

After the run the output files are located in the directory Au for gold atom and Au2
for gold molecule, h2o for water. In the start directory, in which the batch file script is
located, now also the files with the redirected standard output and standard error can
be found.

Open-shell example: Au atom

A very simple system that one can calculate is an atom, e.g. the Au atom. It is an open-
shell system, the system is well studied [122]. We will calculate the system with help
of I, symmetry, but one could choose any other symmetry (Cy, Oy, ... etc).

One of the possible variations of input file is shown on the next table:

In the TASKS part of the input, we choose
dipole calculation for the oscillator strength
&TASKS ) )
and “Response” for the TDDFT.
TASK = “Response”
DIPOLE = TRUE

/TASK

Here we have a choice to calculate either

open shell or closed shell. Let us start with
&MAIN_OPTIONS .
the open shell, later we will calculate closed

SPIN_RESTRICTED = FALSE shell systems.

/MAIN_OPTIONS
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&SYMMETRY_GROUP

POINT_GROUP ="IH"

/SYMMETRY_GROUP

The point group I, better to use the optimal
point group of symmetry for each system, it
allows to calculate faster and in a very effi-

cient way.

&UNIQUE_ATOM

NAME ="Au"

Z=79.0

N_EQUAL_ATOMS =1

/UNIQUE_ATOM 0.0 0.0 0.0

Only one unique atom “Au” is present, it is
situated in the center of coordinate system
(0.0,0.0,0.0). The nuclear charge is 79.0.

&RESPONSE_CONTROL

TARGET ="SSST"

XALPHA_RESP =F

VWN_RESP =F

BECKEX_RESP =T

PERDEWC_RESP=T
noRI=T

CALC_ALL=F

CALC_N_LOW =30

CALC_OSC_STRENGTH =T

/RESPONSE_CONTROL

Here we want to specify what exactly we
need to calculate: in the field target, for ex-
ample, we can put “SS” for singlet - sin-
glet transition or “ST” for singlet - triplet
transitions or “SSST” to calculate both cases
(for open shell this field can be omitted),
also we will turn on the BP GGA exchange-
correlation functionals (BECKEX_RESP and
PERDEWC_RESP fields). We will calcu-
late the gold atom without resolution of the
identity for exchange-correlation function-
als to avoid the numerical instabilities (for
more information see Sec. 3.3.4); therefore
we set the noRI field to TRUE. We will cal-
culate the first 30 transitions; CALC_ALL is
FALSE and CALC_N_LOW equal 30. We
want to calculate the oscillator strengths as
well; CALC_OSC_STRENGTH is TRUE.
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For the ground state calculation we choose
the BP GGA exchange-correlation func-

&XC_CONTROL tional [13,14].

XC = llbp"

/XC_CONTROL

After finishing the calculations, we obtain output and exc_SS_#irrep.dat files in our
work directory samples/Au. The begin of response part of the output file is as follows:

response_main: main response calculations (START)
init_start: call df_data_read_header()
init_start: call df_data_read_header()
df _data_read_header: read header of interface file...
TDDFT: HEADER

* proceeding open  shell...

* IRREPS = b5

* EXCHANGE = "BECKE"
* CORRELATION = "PERDEW"
* MAX_ITER = 30

* CALC_ALL = FALSE

* LANCZOS = FALSE

* noRI = TRUE

* S_APP = FALSE

* CALC_N_LOW = 30

* MAX_SP_TRANS = 10

* CALC_OSC_STR = TRUE

init_start: call df_data_read_eps_eta()
dav_solve_main: call Davidson iterative eigensolver...
Iteration 1
Iteration 2
Iteration 3
Iteration 4
dav_solve_main: after call of DVDSON
Davidson eigensolver converged:
Matrix accesses : 4

Matrix-Vector products: 65

This section of the output file contains the following information: what system

we calculated (open-shell system in our case), how many irreducible representations



111

(irreps) our system has (five), which kind of exchange-correlation functionals do we
use for response calculations (BP GGA [13, 14]), and some necessary commands (e.g.,
CALC_ALL and CALC_OSC_STR), how many transitions we need to calculate (30),
etc. Also it contains the information about the calculation, iterations and some eigen-
solver data.

The output and the files exc_SS_#irrep.dat contain the information about transi-

tions:
======== EXCITATIONS AND OSCILLATOR STRENGTHS S->S ==========
SP N SYM ENERGY INIT FINA AMPLT OSCSTR 0SCX ... DELTA
[eV] [au] [au] [eV]
B 1 AG 6.1614 6AG TAG 0.99 0.0000 0.0000 6.2093
B 1 AG 6AG 8AG -0.11 6.7136
A 1 AG 3HG 4HG -0.01 10.0548
B 1 AG 3HG 4HG 0.01 10.0847
B 1 AG 3HG 5HG 0.01 19.3564
A 1 AG 3HG BHG -0.01 19.6716
B 1 AG 6AG 9AG -0.01 8.4445
A 1 AG 3HG 6HG 0.00 50.2848
B 1 AG 3HG 6HG 0.00 49.9864
B 1 AG 4T10 5T1U 0.00 59.3133
B 2 AG 6.6719 6AG 8AG -0.99 0.0000 0.0000 6.7136
B 2 AG 6AG 7AG -0.11 6.2093
A 2 AG 3HG 4HG 0.02 10.0548
B 2 AG 3HG 4HG -0.02 10.0847
B 2 AG 3HG BHG -0.01 19.3564
A 2 AG 3HG 5HG 0.01 19.6716
B 2 AG 6AG 9AG -0.01 8.4445
B 2 AG 3HG 6HG 0.00 49.9864
A 2 AG 3HG 6HG 0.00 50.2848
B 2 AG 4T10 5T1U 0.00 59.3133

Here SP refers to the spin (A or B), for the closed-shell calculation spin is only A. N
is the number of the transition, in the case of our input for Au atom the number will be
from 1 to 30. SYM is the symmetry term of the final state. ENERGY is the transition
energy given in eV. INIT and FINA refers to the transition irreps and the indices of
orbitals, transition goes from INIT(initial) to FINA(final). AMPLT(amplitude) is the
eigenvectors, it refers to the contributions of the different transitions to corresponding
energy. The quantities OSCSTR, OSCX, OSCY, OSCZ are the oscillator strengths and
the X, Y and Z contributions to the oscillator strength, respectively. DELTA is the
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exact difference between the energy of the target orbital and the source orbital, it was
implemented mostly for debugging, but it is sometimes useful.

The eigensolver finds the solution of the eigenvalue problem,

Axi = Aixi, (Gl)

where A; are a few of the lowest or highest (optional) eigenvalues of matrix A, and x;
their corresponding eigenvectors.

The Davidson eigensolver provides an iterative solution [48,49,51]:

Eigenvalues Eigval Differences Residuals
0.512683121683425D-01 0.3865033293D-12 0.5919909716D-06
0.601155754186356D-01 0.1448841047D-13 0.9477959485D-06
0.957791792117141D-01 0.3474720511D-12 0.1528327442D-05
0.132130325552504D+00 0.7202849428D-12 0.1022594699D-03
0.162329702998792D+00 0.9872935802D-12 0.1746734014D-03
0.468099075147801D+00 0.2132183319D-12 0.6274785392D-06
0.776733552973428D+00 0.1698641228D-12 0.1566062548D-04

The relevant information for deciding if and how well the iteration converged one

can find in the output file. One sees here each eigenvalue A; and the eigenvalues dif-

(

' —1 . . .
ference | ]xlgj ) — x) )\ | which is an unbiased measure of the eigenvector convergence.

The second measure is provided by the residuals,
Res(e)I[ =~ (14 = Adl| ] = il G2)

The residual norm is a useful convergence criterion, but it does not measure the
relative error.

The strategies of convergence will be explained below.

Closed-shell examples: Au; and H,O molecules

As another example we discuss the Auy molecule. It is a closed-shell system. For Aup
we will use the point group Dgy,. The system is also well studied [123].

The field SPIN_RESTRICTED is TRUE. We will calcu-

late a closed-shell system.
&MAIN_OPTIONS

SPIN_RESTRICTED =
TRUE

/MAIN_OPTIONS
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&SYMMETRY_GROUP

POINT_GROUP ="D8H"

/SYMMETRY_GROUP

The point group symmetry is Dgy,.

&UNIQUE_ATOM

NAME ="Au"

Z=79.0

N_EQUAL_ATOMS =2

/UNIQUE_ATOM 0.0 0.0
2.382

We have to put only one Au atom, the second will be
generated according to the symmetry rules.

&RESPONSE_CONTROL

TARGET ="SSST"

/RESPONSE_CONTROL

Here it is important to set the TARGET field. In our
case we want to calculate both type of transitions (5—S
and S—T). By default we will calculate only S—S tran-

sitions.

When the calculation is finished, we obtain the files output, exc_SS_ or

exc_ST_#irrep.dat in our work directory samples/Au2.

The output will contain not only S—S transitions, but also S—T transitions. The

different transitions will be separated as follows:

Another example which can be found in example suite is the molecule H,O. The

geometry of HyO, was taken from Ref. [124]. H,O is a closed-shell system and the

point group symmetry of a water molecule is Cp,. All TDDFT fields in the input file

can be chosen as for Aus.
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How to avoid problems and carry out TDDFT calculations

in an efficient way

In this section we will describe the strategy of stability and efficiency. Also we will
summarize our own experience with TDDFT calculations and try to answer common

questions, which could be very helpful when starting TDDFT calculations.

What should I do if the eigensolver did not converge?

First of all, one should check the eigval difference (most important) and the residu-
als. According to those data one could analyze how close the eigenvalues are to the
expected precision. If one puts the eigensolver_criterion to 107 a.u. but some eigen-

values converged to 10~° a.u, it could be also a good convergency for almost all tasks.

Another possibility for saving time is to introduce a cutoff of occupied and unoc-
cupied orbitals. Normally the core electrons do not affect much the excitations of the
valence electrons, see Sec. 3.5, but is prudent to test the influence of the cutoff for each
target system first. If one can exclude the core electrons and possibly high unoccupied
orbitals without much influence on the results, the convergence may improve and the

calculations will be faster and more efficient.

The last possibility is to increase the number of iterations for the eigensolver.

What should I do if I observe numerical instability?

During our work with TDDFT code we found two reasons of numerical instability.
First, it is the numerical instability due to the fitting basis set. PARAGAUSS uses the
same fitting basis set for SCF calculations and for TDDFT calculations. Symmetry cal-
culations in TDDFT are very sensitive to the fitting basis set. A large fitting basis set

could cause a numerical instability. Reasons are not fully clarified yet.

A second reason for numerical instability is the usage of the resolution of the iden-
tity for the exchange-correlation kernel, see Section 3.1.1. It is not always possible
to rely on TDDFT results obtained with the resolution of the identity (RI-TDDFT),
see Section 3.1.1. For extended system we observed artifacts resulting in unstable or
even imaginary transition energies when applying the RI-TDDFT method. We were
motivated to implement an accurate numerical quadrature scheme for the exchange-
correlation response kernel, see Section 3.3.4. This approach avoids the usage of an
auxiliary basis set and the results become numerically stable. To avoid such a numeri-
cal instabilities it is necessary to set the “noRI” field to “TRUE”.
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How can I construct the appropriate fit basis?

Unfortunately, there is no universal recipe for creating an appropriate fitting basis,
which will allow one to avoid numerical instabilities for all systems. Therefore, we
normally use the procedure which was explained in Ref. [11]. This procedure is used
for normal PARAGAUSS calculations and it can be used for TDDFT calculations as well.
The scheme is as follows:

e The exponents for the s(7?)-type functions are obtained by multiplying the s(p)-
type exponents of the orbital basis by a factor of 2.

e The exponents for the p-type polarization functions are taken as geometric se-
quence a, = g"ag with g = 2.5 and a9 = A -0.04, where the scaling factor A
is used to model the contraction of the electron density with increasing nuclear
charge Z. For carbon A¢ = 1.0 was chosen, and for other atoms X

T’S(C) )2
rs(X)

Ax =Ac-(

was used, where 75(C) and rs(X) are the effective atomic radii determined by J.
Slater [125].

e Finally, the d-type exponents are obtained by simply doubling the p-type expo-

nents.

The problem of auxiliary basis sets deserves to be investigated further.

PARAGAUSS input for TDDFT

The TASK field:
NAME | DEFAULT VALUE DESCRIPTION
TASK “Response” Calculate response
DIPOLE TRUE Need to be TRUE for dipole calculations,
the dipoles are necessary for oscillator
strengths
The RESPONSE field:

NAME DEFAULT VALUE DESCRIPTION




116 APPENDIX G. USAGING THE TDDFT MODULE OF PARAGAUSS

TARGET “SS”
only need to be specified for
closed shell: SS, ST or SSST
transition
XALPHA_RESP TRUE EXCHANGE = X,
VWN_RESP FALSE
CORRELATION = VWN
BECKEX_RESP FALSE EXCHANGE = BECKE
PERDEWC_RESP FALSE CORRELATION = PERDEW
PW91X_RESP FALSE EXCHANGE = PW91
PW91C_RESP FALSE CORRELATION = PW91
PBEX_RESP FALSE EXCHANGE = PBE
PBEC_RESP FALSE CORRELATION = PBE
REVPBEX_RESP FALSE EXCHANGE = PBEN
PBENX_RESP FALSE EXCHANGE = revPBE
PW_LDAC_RESP FALSE CORRELATION = PW(LDA)
CALC_ALL FALSE if TRUE all transitions will be
calculated
LANCZOS FALSE if TRUE the Lanczos
eigensolver procedure will be
started instead of Davidson (be
careful, the options did not
tested properly)
SAVED_XC FALSE if TRUE the program will take
the exchange correlation
integrals which were stored
previously
SAVED_2C_Q FALSE The same as for SAVED_XC,
but for two-center Coulomb
integrals
SAVED_3C_Q FALSE The same as for SAVED_XC,
but for three-center Coulomb
integrals
noRI FALSE if TRUE it will turn the
resolution of identity procedure
for XC integrals off




S_APP

FALSE

if TRUE it will turn the simple
approximation on (warning; it

is only for debugging!)

CALC_N_LOW

30

Number of lowest excitations to

be calculated

MAX_SP_TRANS

10

the number of single-particle
transitions (eigenvectors) to be

printed in the output

MAX_ITER

30

Maximal number of iterations

in the convergence cycle

CALC_OSC_STRENGTH

FALSE

if TRUE the oscillator strength

will be calculated

RHO_CUTOFF

10716

if the electron density

p(r) <RHO_CUTOFF then

fxelp(r)]:=0

EIGENSOLVE_CRITERION

10716

convergence criterion for

eigensolver

UNOCCUPIED_LEVEL_CRITERION

10710

If fractional charges # are
allowed for single MO orbitals,
in this case the response
module uses #gcriterion in such
a way (occupation):
fully: 7 > 2 -1
partially: 170 <7 <2 —119

empty: 17 < 1o

LIMIT_UNOCCUPIED_LEVELS

FALSE

if TRUE then only a “lower
part” of the MO spectrum will
be used for calculating the

integrals

MAX_LEVEL_INDEX

the index of the largest allowed

virtual orbital

MIN_LEVEL_ENERGY

—103

the lowest allowed orbital
energy in eV (considered only if

MAX_LEVEL_INDEX = -1)

MAX_LEVEL_ENERGY

10%

the largest allowed orbital
energy in eV (considered only if

MAX_LEVEL_INDEX =-1)

NUM_SPECTRUM_LEVELS

300

The number of levels can be ad-

justed by this parameter

117
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Appendix H

Basis sets

Table H.1: Orbital basis of Cu (Z=29) (16s,13p,7d)
Reference: s, p, d [87]
Contraction: (16513p7d — 7s5p4d)

s p d

oy 0.012237 0.021537 0.042600
o 0.040791 0.046199 0.149100
a3 0.113303 0.099100 0.528322
0y 0.330500 0.265000 1.727430
s 0.964080 0.711445 5.103920
X 2.578480 1.906670 15.074700
w7 9.393570 4.693820 53.647800
ng 22.298300 11.743500
g 67.359100 27.055100

10 158.399000 65.323900

Q11 395.099000 172.195000

a1 1071.970000 532.106000

x13 3239.820000 2245.290000

K14 11373.400000
a15 50072.900000
K16 337200.000000
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Table H.2: Orbital basis of Ag (Z=47) (19515p9d)
Reference: s, p, d [88]
Contraction: (19515p9d —8s6p5d)

S p d

oy 0.014877 0.012615 0.110795
%) 0.041876 0.032649 0.288070
o3 0.117872 0.084500 0.836802
oy 0.237900 0.218700 2.133270
s 0.480114 0.565839 5.101889
N 1.094527 1.464069 11.892642
w7 2.137443 3.394228 28.986678
ng 5.641230 7.419325 77.125699
g 11.102996 15.808571 260.669120
a1 30.194935 34.255544

a1 67.292480 74.964904

a1 173.467880 175.506230

x13 393.966470 458.347310

N4 954.427580 1426.664200

a15 2531.374300 6116.674200

X16 7559.239300

a1y 26465.705000

a1 116697.350000

®19 782615.550000




Table H.3: Orbital basis of Au (Z=79) (22520p11d7f)

Reference: s, p, d, f [89]

Contraction: (22s20p11d7 f —9s7p6d4f)

121

s p d f
oq 0.004545 0.001644 0.560000 0.170000
%3 0.010000 0.003781 0.140000 0.420000
a3 0.022000 0.008696 0.350000 1.100000
oy 0.056000 0.020000 0.880000 3.338172
o5 0.140000 0.046000 2.200000 9.912050
Kg 0.340000 0.100000 5.546597 27.750359
ay 0.840000 0.210000 14.003830 86.824371
ng 2.100000 0.455000 36.861912
X9 5.153470 1.000000 90.5377960
a1 13.352700 2.250000 243.203201
11 26.245510 4.956507 816.721557
x1p 58.480511 10.799290
a3 113.614098 26.133190
o4 233.439102 55.268070
a5 621.276978 127.800003
K16 1429.497930 285.456513
K1y 3491.379880 677.790772
n1g 9358.392580 1773.843990
X19 28274.941400 54591.240200
o 99928.789100 23072.800800
ao1 446529.500000
a) 3095417.000000
Table H.4: Orbital basis of O (Z=8) (13s8p1d)
Reference: s, p, d [30]
Contraction: (13s8p1d —6s55p14d)
s p d

nq 0.028000 0.016000 0.350000

%3 0.055000 0.035000

a3 0.107685 0.074345

oy 0.366937 0.236822

a5 1.140320 0.747159

Xg 2431070 2.337090

ay 5.182860 7.914690

ng 13.672800 35.296900

a9 37.635700

&0 113.263000

K13 11496.600000
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Table H.5: Orbital basis of Mg (Z=12) (15s10p14d)
Reference: s, p, d [30]
Contraction: (15510p1d —6s5p1d)

S p d

K1 0.025820 0.038910 0.293000
%3 0.059280 0.090400

X3 0.136120 0.210050

Ky 0.284090 0.488050

X5 0.592910 1.304830

Xe 1.526710 3.500190

Ky 4.089940 9.441500

ng 9.937210 26.175400

X9 28.131900 80.877000

10 79.727200 337.610000

a11 236.710000

X12 727.345000

X13 2005.820000

K14 6406.130000

15 39283.400000
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