
Lehrstuhl für Bauinformatik
Fakultät für Bauingenieur- und Vermessungswesen

Technische Universität München

Computational Steering of CFD Simulations on
Teraflop-Supercomputers

Petra Wenisch

Vollständiger Abdruck der von der Fakultät für Bauingenieur- und Vermessungswe-
sen der Technischen Universität München zur Erlangung des akademischen Grades
eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. habil. Michael Manhart
Prüfer der Dissertation:

1. Univ.-Prof. Dr. rer. nat. Ernst Rank
2. Univ.-Prof. Dr. rer. nat. Ulrich Rüde,

Friedrich-Alexander Universität Erlangen-Nürnberg

Die Dissertation wurde am 7. November 2007 bei der Technischen Universität
München eingereicht und durch die Fakultät für Bauingenieur- und Vermessungswe-
sen am 7. Februar 2008 angenommen.

für Heike und Hella

Abstract

Computational methods have by now become established techniques of every-
day workflow in civil engineering, especially in the field of structural mechanics.
Another field of application with increasing importance is computational fluid
dynamics (CFD), where it is most prominently used for simulations in the con-
text of hydraulics or for investigations with respect to fluid-structure interactions
such as wind loads on bridges, skyscrapers.

In building construction practice the use of simulations for the analysis of in-
door air-flow is much less common, because especially during the planning phase
of unique constructions like non-standard buildings, the limited time available to
the engineer often does not allow detailed simulation series. Hence, these obvi-
ously helpful early simulation studies cannot be carried out at all and rules of
thumb are still used instead. Should it turn out during the building phase that
a redesign is inevitable, the costs are considerably higher than those for a re-
design during the planning phase. Taken together, the need for simulations and
the lack of time during design phase led to a desire for an alternative tool giv-
ing the engineer the possibility of performing case studies of the qualitative flow
behavior through short-cycle simulation runs. By providing means of monitor-
ing and interactive steering the running simulation, the engineer can watch the
developing flow, adjust parameters according to his needs, and receive instant
feedback to his interactions. This kind of steerable simulation and on-the-fly vi-
sualization of simulation results represent the defining features of computational
steering. With the general availability of affordable high-performance computing
systems and perpetually increasing CPU power, computational steering applica-
tions have become possible even in so computation- and resource-intensive fields
as computational fluid dynamics in these days.

This thesis focuses on the design of a computational steering framework uti-
lizing supercomputers for the numerical fluid dynamics simulations and high-
end Virtual-Reality visualization workstations for online monitoring and steer-
ing of the simulation. The computational steering tool iFluids, which has been
developed based on this framework, opens a whole range of new applications
in different fields — not particularly restricted to civil engineering. iFluids rep-
resents an interactive tool as a means of exploratory short-term investigation for
checking ventilation designs in their basic functionality and qualitative behav-
ior — as such meeting at least part of the engineer’s requirements during the
design phase. In particular, the engineer can explore and watch develop a flow
configuration during the running simulation and can interactively adjust global
flow parameters, define or modify boundary conditions and even change the ge-
ometrical setup without the need to re-preprocess and rerun as with most other
simulations. The adaptation of the flow as well as transient effects until a steady
state is reached can be watched on a steering and visualization terminal on the
fly. In this way, it is possible to perform virtual experiments to quickly gain an
intuitive understanding of a given ventilation problem.

iFluids is based on the Lattice-Boltzmann method, which has only been ap-
plied for some twenty years in fluid dynamics research. It offers several signif-

6

icant advantages over other classical methods of tackling fluid dynamics prob-
lems. The present thesis describes the specializations and optimizations of the
implementation of this method which provide the key to enabling the user to
easily change boundary conditions, flow parameters, and the geometric layout of
the simulated scene during the on-going computation.

However, the simulations often need to be run with a coarser discretization
on current mid-level hardware such as workgroup clusters and, accordingly, are
not always able to resolve all details of the fluid behavior. Additionally, the com-
putational model must still be kept simple with respect to boundary conditions
or turbulence models. Nevertheless, it enables small case-study simulations for
feasibility analyses and for testing the behavior in question. The requirements
arising when developing a full-grown computational steering application and
how these can be addressed represent an important aspect, which is specifically
concentrated on in the text. In particular, details are given on how computational
steering software can be developed on today’s high-performance computers and
high-end visualization facilities. Also, the currently achievable performance is
benchmarked and limitations with regard to the current hardware technology
are pointed out.

To demonstrate the applicability of the computational steering framework to
the study of indoor ventilation systems, iFluids is used for analyzing a real-case
operating room as an example. Results of the interactive simulation tool are com-
pared with more detailed simulations to show what kind of statements can be
made through using this tool. Finally, the applicability of the computational steer-
ing framework in other fields will be touched.

Zusammenfassung

Rechnergestützte Simulationen haben sich mittlerweile im Bauwesen und ins-
besondere im Bereich der Strukturmechanik als feste Hilfsmittel im Arbeitsalltag
etabliert. Ein weiteres Anwendungsgebiet, in dem die Bedeutung numerischer
Simulationen im Bauwesen zunimmt, ist die Fluiddynamik. Hier liegt der Schwer-
punkt jedoch mehr auf Fragestellungen der Hydraulik und Gewässerkunde oder
Fluid-Struktur-Interaktionen, wie sie bei umströmten exponierten Bauwerken wie
Wolkenkratzern oder Brücken auftreten.

In der Praxis des konstruktiven Ingenieurwesens ist die Simulation von In-
nenraumströmungen noch eher unüblich, da die relativ kurze Entwurfsphase
von größeren Bauwerken meistens nicht den zeitlichen Spielraum für detaillierte
Simulationsreihen gewährt. Daher werden solche Berechnungen nur sehr sel-
ten durchgeführt und meist lediglich Erfahrungswerte für die Planung herange-
zogen. Stellt sich während der Bauausführung jedoch heraus, dass eine Über-
arbeitung des Konzeptes unumgänglich ist, fallen die damit verbundenen Kosten
deutlich höher aus, als es während der Entwurfsphase der Fall gewesen wäre.

Der trotz des engen zeitlichen Rahmens grundsätzlich bestehende Bedarf an
Simulationen erzeugt auf Ingenieursseite den Wunsch nach einem anderen als
den bislang zugänglichen Simulationswerkzeugen: Ein derartiges Werkzeug muss

7

einem Ingenieur die Möglichkeit bieten, eine Reihe von Fallstudien innerhalb
kurzer Zeit durchzuführen, um ein qualitatives Strömungsverhalten bestimmen
zu können. Durch die gleichzeitige Visualisierung aktueller Strömungsdaten und
interaktiver Steuerung während der Simulation soll der Anwender die zeitliche
Entwicklung einer Strömung beobachten und durch die Anpassung von Para-
metern in die laufende Simulation eingreifen können. Die Auswirkungen seiner
Veränderungen müssen anschließend in der zur Berechnung parallel laufenden
Visualisierung unmittelbar sichtbar werden. Diese Verschmelzung von steuer-
barer Simulation und gleichzeitiger Visualisierung nennt man Computational Steer-
ing. Aufgrund der heute verfügbaren und nach wie vor rasant wachsenden Re-
chenleistung bei Hoch- und Höchstleistungsrechnern ist es mittlerweile möglich
geworden, Computational Steering sogar in so rechenintensiven Gebieten wie der
Fluiddynamik zu verwirklichen.

Die vorliegende Arbeit beschreibt den allgemeinen Aufbau einer Computa-
tional Steering-Applikation und zeigt, wie sich eine derartige Anwendung durch
die Verwendung von Höchstleistungsrechnern für die numerische Fluidsimula-
tion und Virtual-Reality Visualisierungsanlagen zur Darstellung der Ergebnisse
sowie zur Steuerung der Berechnung realisieren lässt. Anhand der Beispielan-
wendung iFluids wird ein interaktives Werkzeug zur Untersuchung von Innen-
raumluftströmung erläutert, das in kurzer Zeit erlaubt, qualitative Aussagen über
ein Belüftungssystem zu treffen und seine grundsätzliche Funktion zu prüfen.
Somit kann iFluids dem Ingenieur als Hilfsmittel während der Planungs- und
Entwurfsphase dienen, das den wesentlichen Teil der oben genannten Ansprüche
abdeckt. So kann man während der laufenden Berechnung die Strömungsent-
wicklung beobachten und interaktiv globale Strömungsparameter, Randbedin-
gungen oder sogar den geometrischen Aufbau der Problemstellung verändern.
Im Gegensatz zu den meisten heute verfügbaren Simulationswerkzeugen ist nach
derartigen Interaktionen kein Neustart der Berechung mehr erforderlich. Die An-
passung der Strömung ebenso wie transiente Effekte bis zu einem möglichen
Gleichgewichtszustand können an der Steuerungs- und Visualisierungsanlage
unmittelbar betrachtet werden. Auf diese Weise können ”virtuelle Experimente”
mit geringem Zeitaufwand durchgeführt werden und dadurch ein intuitiver Ein-
druck des Strömungsverhaltens bei einer gegebenen Belüftungsfragestellung ge-
wonnen werden.

iFluids berechnet die Strömungssimulation mittels der Lattice-Boltzmann Me-
thode, die ein noch relativ junges Verfahren auf diesem Gebiet darstellt. Ihr
Einsatz bietet im Vergleich zu anderen numerischen Methoden einige Vorteile
für die Computational Steering-Anwendung. Die vorliegende Arbeit geht daher
auf die Spezialisierung und Optimierung dieser Methode ein, die die interak-
tive Veränderung von Randbedingungen, Strömungsparametern und des geome-
trischen Aufbaus während der laufenden Simulation möglich machen.

Insbesondere auf weniger leistungsfähigeren Rechnern wie z.B. Arbeitsgrup-
pen-Clustern, müssen zur Beschleunigung der Simulationen die geometrischen
Objekte meist weniger fein diskretisiert bleiben. So können häufig nicht alle
Strömungsphänomene voll aufgelöst werden. Auch hinsichtlich der Randbedin-

8

gungen oder für die Turbulenzmodellierung müssen oft vereinfachte Modelle
verwendet werden. Dennoch können mit dieser Art von Simulation Fallstu-
dien durchgeführt werden, die die grundsätzliche Verwendbarkeit und Funk-
tionsweise von geplanten Belüftungssystemen prüfen. Darüber hinaus geht die
Arbeit auch auf die Anforderungen ein, die während der Entwicklung der Com-
putational Steering-Anwendung deutlich werden, und zeigt, wie man diesen ge-
recht werden kann. Insbesondere wird beschrieben, wie Computational Steering-
Software auf heutigen Höchstleistungsrechnern im Zusammenspiel mit moder-
nen Visualisierungsanlagen entwickelt werden kann. Schließlich wird auch die
derzeit mit iFluids erreichbare Berechnungsleistung untersucht und die daraus
ersichtliche Limitierung bezüglich heutiger Hardware herausgearbeitet.

Um die Anwendbarkeit dieser Computational Steering-Lösung im Bereich der
Innenraum-Strömungssimulation zu beurteilen, wird mithilfe von iFluids das Bei-
spiel eines realen Operationssaals simuliert. Die Ergebnisse aus der interaktiven
Simulation werden hierbei mit denen einer herkömmlichen Simulation verglichen,
um herauszustellen, welche Art von Aussagen man durch Einsatz von Computa-
tional Steering treffen kann. Um die Flexibilität der entstandenen Software zu
demonstrieren, wird abschließend gezeigt, dass iFluids nicht nur auf Probleme
aus dem Bauwesen beschränkt ist, sondern ein breites Spektrum verschiedenster
Anwendungen abdecken kann.

Contents

1 Computational Steering 11
1.1 Introduction . 11
1.2 Related Work . 13
1.3 Fields of Application . 15
1.4 Computational Steering in Civil Engineering 17

2 iFluids - Interactive Fluid Simulations 20
2.1 Architectural Software Concept . 20
2.2 Interactive Numerical Kernel . 23
2.3 The Visualization and Steering Front-End 24
2.4 Requirements of Interactive Simulation Software 25

3 Computational Fluid Dynamics Using the Lattice-Boltzmann Method 27
3.1 Computational Fluid Dynamics . 27
3.2 Lattice-Boltzmann Method . 28
3.3 Implementation of the LBM Solver 34

4 Fluid Simulation on Supercomputers 36
4.1 High-Performance Computing . 36
4.2 Hitachi SR8000-F1 System Architecture 39
4.3 Parallelization of the Lattice-Boltzmann Solver 43
4.4 Optimization of the Simulation Kernel 46
4.5 Porting and Optimizing the Solver for SGI Altix Systems 52

5 Interactive Data Exploration 56
5.1 Scientific Visualization . 56
5.2 Visualization within iFluids . 57

6 Interactive Problem Definition and Grid Generation 62
6.1 Steering of Global Simulation Parameters 62
6.2 Interacting with the Geometric Model 63
6.3 3D User Interface . 69
6.4 Grid Generation . 72

9

10 CONTENTS

7 Realization Aspects with Respect to Computational Steering 81
7.1 Communication Layout . 81
7.2 Framework Performance . 83
7.3 Visualization and Steering on Multiple Clients 88

8 General Applicability — A Case Study 89
8.1 Ventilation Systems of Operating Rooms 89
8.2 Simulation Studies with Varying Grid Resolutions 96

9 Universal Applicability of iFluids — Computational Steering Frame-
work 100
9.1 Vascular reconstruction . 100
9.2 Extensions of iFluids for Blood Flow Simulations 100

10 Summary 105

Chapter 1

Computational Steering

This chapter shall serve as a short introduction to the topic of computational steer-
ing. First, the term ’computational steering’ is defined and an overview of the
current state of the art is presented by providing sketches of a selection of re-
lated work. Then, possible fields of application are given by way of an example
followed by a detailed discussion on the application range in civil engineering.

1.1 Introduction

Traditionally, computational engineering studies in high-performance computing
are carried out in a sequence of steps. At the beginning one has to supply the
geometric modeling (i.e. CAD, mesh or grid generation) and the definition of
simulation specific start and boundary conditions, which has become practical on
standard desktop machines. This is referred to as the pre-processing step which
is followed by the actual simulation and a concluding post-processing step to
extract and evaluate particular results (see Figure 1.1).

Preprocessing

Computation

Post-
processing

time/ optimization

Computation Computation

Post-
processing

Post-
processing

Modification
Modi-

fication

Figure 1.1: Iteration of work steps for optimization problems in engineering
studies: In the traditional approach, the steps of pre-processing, simulation and
evaluation of the simulation results are traversed sequentially and iterated in
a drawn-out loop. Assuming the best-case scenario, potential waiting times
for required resources have been ignored in this scheme. Furthermore it is as-
sumed that a modification of the simulated model does not require the whole
pre-processing procedure and is therefore cut short in each optimization cycle.

Regarding the computational effort, engineering problems still belong to the
most challenging numerical simulations with substantial resource requirements

11

12 Computational Steering

that arise as more and more physical details are taken into consideration. Accord-
ingly, it is often advantageous to perform the computation on a supercomputer
or cluster. On this type of machine a simulation most commonly has to be sub-
mitted to a queuing system as a batch job which ’has to wait’ until the requested
resources become available before it can be executed. At the end of the simula-
tion, the results are usually stored on a filesystem and, occasionally, have to be
transferred to an adequate post-processing front-end, which may be located on a
different, more suitable system. There, the results obtained are finally evaluated
in the post-processing step by means of appropriate analysing and visualization
techniques. When studying several test cases of a simulation scenario this often
tedious and lengthy chain of processes is rather inconvenient for the engineer
without the possibility of immediate interaction with his ’experiments’.

According to Johnson et al. (1999), the first published statements indicating
the desire for computational steering, which integrates these single steps of a
pipeline into one single process cycle, appeared in the late 1980s. McCormick
et al. (1987) reflected that scientists want to be able to interact with simulations
close to real-time. Correspondingly, Johnson and Parker (1994) have defined
Computational Steering as the ’capacity to control all aspects of the computational
science and engineering pipeline’. This comprises the steps of pre-processing,
computation, and post-processing as mentioned above (cf. Figure 1.2).

Preprocessing

Computation

Post-
processing

time/ optimization

Modification
Modi-

fication

Figure 1.2: Closing the loop: Compared with the traditional form of sequential
steps, as shown in Figure 1.1, the optimization of three iteration steps is speeded
up considerably by using a computational steering application. For one thing,
preprocessing, computation and postprocessing can be done in parallel. For an-
other, the visualization and computation times are reduced since these processes
usually benefit from previous results and do not necessarily need to be restarted
from the very beginning.

Since the articulation of these early visions, the power of computers has in-
creased severalfold and was paralleled by the development of interactive simu-
lation applications. However, most of these focused on the post-processing and
visualization step and did not allow direct interaction with the computation (van
Liere et al., 1996). As a matter of fact, computational steering — even today —
is often mis-interpreted as ’online monitoring’ with only basic functionalities like
stopping, pausing and resuming a simulation. Despite offering the first step to-
wards real computational steering, these basic features clearly fall short of repre-
senting a fully developed interaction with the simulation during runtime. Com-
putational steering in its explicit meaning, however, enables the scientists to di-
rectly change some or all of the parameters of the simulation process during its

1.2. Related Work 13

execution and the availability of a front-end to analyze the effects of these inter-
actions immediately Mulder et al. (1999).

1.2 Related Work

The following section outlines some examples representing the state-of-the-art in
the field of computational steering. These projects can be classified into libraries,
problem solving environments and application frameworks.

Libraries

The gViz library (Brodlie et al., 2004) allows users to visualize data in a post-
processing step or on-the-fly during a simulation. Both scenarios support the
use of grid computing and collaborative working facilities. In addition to the
visualization capabilities parameters can be sent to the underlying simulation in
case the changing of parameters during runtime is supported by the simulation
kernel.

In the RealityGrid (Brooke et al., 2003; Pickles et al., 2004) project an appli-
cation is typically structured into the client, the simulation and the visualization
module communicating by means of a steering library. The library is designed to
simplify the changes required to make an existing code ’computationally steer-
able’. A key requirement for extending the application in this way is the insertion
of check- and break-points where modified parameters are fetched and the sim-
ulation has to be restarted, respectively. With RealityGrid simulations are either
monitored in a read-only mode or steered by modifying parameters or previously
registered data sets. The user may pause, resume, detach and stop the simulation
or run it from a checkpoint. RealityGrid separates visualization and steering,
which makes it possible to investigate current results with arbitrary hardware
such as high-end visualization workstations, laptops or PDAs.

Another library has been developed within the CAVEstudy project, cf. Re-
nambot et al. (2001). In contrast to the libraries described above the original sim-
ulation code does not need to be adapted at all. Instead, information about a sim-
ulation’s input and operations is placed in a file describing the way commands
are issued. The CAVEstudy library enables visualization and remote steering
within Virtual Reality (VR) environments like a cave.

Problem Solving Environments

As opposed to the computational steering libraries, SCIrun is a so-called problem
solving environment (PSE) (Parker et al., 1999). A problem solving environment
is a computational system that provides a complete and convenient set of high-
level tools for solving problems from a specific domain (Abrams et al., 2007).
In such PSEs applications are often composed through a visual programming
interface similar to the widely-known AVS front-end (Advanced Visualization
Systems Inc (AVS Inc., 2007)), for example. The user has to set up a network of

14 Computational Steering

modules and interacts via their corresponding graphical user interface. Several
parameters can be changed during the simulation without the need to stop it.
The affected module is re-executed and sends updated output to all connected
modules, which react accordingly. Other changes with a deeper impact on the
simulation require an automatic cancellation and restart of the simulation.

COVISE (Covise, 2007) is a collaborative visualization and simulation envi-
ronment. COVISE rendering modules support a wide range of Virtual Reality
environments for analyzing datasets intuitively. This distributed environment
integrates simulation, post-processing and visualization functionalities, the dif-
ferent processing steps being represented by modules. In Wössner et al. (2005)
these modules are extended to support the setup of an interactive CFD simula-
tion. The main focus hereby is to investigate the feasibility of using a tangible
interface as an intuitive input device. In a Virtual Reality environment obstacles
attached with special markers are placed within the Virtual Reality setup. A set
of cameras tracks the position of these markers to determine the position and ori-
entation of the associated obstacles. If the representatives in the real world are
moved, the scene has to be remeshed for the following simulation cycle. This has
to be triggered by the user by pressing a button.

Application Frameworks

In Georgii and Westermann (2005) an approach to realize interactive simulation
on a consumer PC is presented. Here, external forces can be applied to de-
formable bodies during runtime. The simulation is based on a multi-grid solver
running on a PC’s CPU while the render engine is run in parallel on the GPU1 on
its graphics card. Within a pre-processing step a certain scenario is set up once
and, during runtime, the simulation engine consecutively displaces the underly-
ing finite element mesh of the deformable body according to the user’s interac-
tion.

VFReal (Kühner, 2003) was a precursor application to this thesis’ approach
making the first steps towards an interactive CFD simulation for indoor comfort
studies. It is designed as a monolithic application running a Lattice-Boltzmann
solver with on-the-fly visualization. The steering possibilities comprise the place-
ment of several basic geometry primitives as fluid obstacles into the scene. How-
ever, the underlying simulation grid for these objects is required in a pre-ge-
nerated form at simulation time.

The insights that have been made during the process of porting the VFReal
application onto a supercomputer and connecting it to a Virtual Reality environ-
ment played an active part in developing the new approach presented in this
thesis. In the present form the user can now interact with each of the three pro-
cessing steps even when run distributed on a visualization and simulation ma-
chine. Boundary conditions can be set or adjusted interactively, as is common
in offline preprocessing front-ends. In addition, the geometry of the simulated

1The graphics processing unit (GPU) is the dedicated graphics rendering device on modern
graphics boards which, in special applications, is also used for general purpose computations.

1.3. Fields of Application 15

scene can be modified during runtime. In contrast to Wössner et al. (2005) arbi-
trary geometries can be inserted throughout the simulation run by loading from
the filesystem without pre-meshing or any other kind of pre-processing. Regard-
ing the simulation, the numerical model and method can be adjusted during ex-
ecution time and, of course, interaction with the visualization of current results
for post-processing issues is supported. The event-based framework works fully
automatically, i.e the interactions are incorporated without any extra actions like
starting a remeshing process, restarting the simulation or updating visualization
data. Further details of the application and its features are described in Chapter 2.
In Borrmann (2007) this application framework was extended for a multiple client
version to support collaborative engineering.

1.3 Fields of Application

Computational steering has a wide, and still increasing range of potential ap-
plication areas. To show the high versatility of this method a few examples of
different fields of interest benefiting from computational steering are presented
below.

Non-Invasive Vascular Reconstruction

A relatively new field of application for computational steering can be found in
medical engineering. The numerical simulation of blood flowing through blood
vessels is a popular matter of interest in this respect. The non-invasive vascular
reconstruction as discussed in Sloot et al. (2004) may serve as a typical example
from this field.

Arteries and veins are increasingly affected by a growing number of vascu-
lar diseases. Two categories of vascular dysfunction have to be differentiated:
aneurisms and stenoses. An aneurysmal disease refers to balloon-like swellings
in the artery, whereas stenosis represents a narrowing or blockage of the artery.
A vascular reconstruction intervention aims at treating these abnormal vessels
through surgery. In the case of aneurysms this means adding shunts, bypasses,
and placing stents or, for stenosis, applying thrombolysis techniques such as bal-
loon angioplasty, bypasses, etc. It is obvious that finding the optimal treatment is
far from trivial and a simulation tool to support the verification of a planned
operation may prove to be a valuable supplement to classical approaches. A
group of researchers under Prof. Sloot at the University of Amsterdam has de-
veloped a grid-based problem solving environment to test several treatments in
this respect. However, they still have to process the whole sequential pipeline of
pre-processing, computation and post-processing. Nevertheless, the application
achieves almost real-time simulations.

16 Computational Steering

Simulation of Manufacturing Systems

Recent developments in the simulation of manufacturing systems also offers pos-
sibilities for interactive simulation within a computational steering framework.

For the optimization of manufacturing systems a traditional simulation cycle
consists of preparing input variables, selecting simulation parameters and run-
ning the simulation, which is followed by reviewing the results after the com-
putation. Because of the complex ’what-if-scenario’ analysis, several simulation
cycles are needed before any initial results of sufficient interest or value are ob-
tained. Therefore, Sudhir and Kesavadas (2000) propose to utilize computational
steering concepts within an interactive virtual environment. In this way, on-the-
fly visualization of results delivered by a manufacturing simulation could be used
to allow for instant feedback from the system after modification within the vir-
tual environment. A simple conceptual system has already been implemented to
study this approach with promising initial results.

Helios - Computer Aided Lighting Technologies

To improve and speed up the developmental cycle, computer-aided technologies
(CAx) are extensively used in automotive design and construction and often com-
putational steering can be helpful in various ways. One interesting application is,
e.g., the design of automotive lighting in Computer Aided Lighting (CAL) sys-
tems, which can be integrated straightforwardly into the development process.
CAL may be seen as a virtual lighting laboratory where the work is again di-
vided into the three steps of pre-processing, simulation of the construction and
post-processing. All of these issues are addressed by the CAL application Helios
developed by Hella KG (Hella KG, 2007) for testing automotive lights in a simu-
lated environment (Biermann and Kalze, 1996). The above-mentioned develop-
ment cycle is repeated until the specific lighting requirements are met so that a
prototype can be built. Integrating the virtual lighting laboratory into a computa-
tional steering framework could probably improve and speed up the computer-
aided testing process and, moreover, would allow for an intuitive modification of
lighting designs.

Interactive Physics-Based Simulations

A topic that closely related to computational steering is the more and more popu-
lar interactive physics-based simulation of real-time scenarios in computer games
or other virtual ’worlds’. This type of simulation does not quite satisfy the defi-
nition of computational steering, since in these worlds the goal is not the steering
of the simulation itself. In fact, the actual intention is to simulate a real or ficti-
tious world in a realistic way, i.e., to respect physical laws and the behavior of
the scenario depending on all influences, also including the user in this world.
The remarkably sophisticated genre of computer games is the most prominent
representative of this category.

1.4. Computational Steering in Civil Engineering 17

However, there are also academic examples such as the simulation of rivers, as
described in Kipfer and Westermann (2006). Here, water can spring from several
sources, flow over a height field to form rivers or to cluster into lakes, perpetually
influenced by gravitation, wind and, of course, terrain obstacles. The simulation
is based on smoothed-particle hydrodynamics with surface extraction running
on the GPU.

Related examples can be found in Thürey et al. (2005) and Tölke (2006), where
fluids with a free surface are animated based on the Lattice-Boltzmann method.
Thürey et al. (2005) mainly presents drops and fluid streams falling into a pool
of fluid. The authors state that due to the use of the Lattice-Boltzmann method
it is comparatively easy to set boundary conditions. Therefore, it is possible to
interactively place drops of fluid above a bowl-shaped obstacle, into which these
drops splash in complex shapes driven by gravity. Similarly, albeit not steerable,
Tölke (2006) simulate the free surface flow over a barrage with its hydraulic jump
and a surf wave.

Another spectacular example of a distributed and parallel graphics applica-
tion utilizing Virtual Reality is the FlowVR application framework (Allard and
Raffin, 2006). It is capable of simulating rigid bodies, mass-spring objects and an
approximation of fluid behavior by an inviscid, multi-body simulation (Eulerian
fluid) using a 32 processor cluster for computation and a 22 processor visualiza-
tion cluster plus 5 FireWire cameras for tracking in VR. The position of the freely
moving user is tracked to consider his influence due to collisions with the virtual
bodies in the simulation.

1.4 Computational Steering in Civil Engineering

One aspect of this thesis is the evaluation of the applicability of computational
steering for civil engineering problems. After presenting a series of general ex-
amples of computational steering, the following section concentrates on the field
of civil engineering, which stands out from most other engineering disciplines
because of the lack of designing prototypes.

Industry sectors with large-scale production such as the automotive industry
usually invest considerable amounts of time and money in the design phase of the
prototype for a new product. In this planning and testing phase, extensive simu-
lations are conducted, frequently leading to repeated re-designing of the concept.
Nevertheless, prototypes are also built and tested. After a fairly long period, se-
rial production commences and the costs of planning and design are recuperated
by high sales figures.

In contrast, the specialty of civil engineering is the construction of unique
copies. Therefore, the design phase has to be much shorter and less extensive
to be profitable. As shown in Figure 1.3 the possible influence of the design of the
project and its cost is significantly higher during the planning phase than during
the construction phase. The development pattern of the project costs is the ex-
act opposite. Therefore, a good and coherent concept for the planning phase is
required, since later changes will cause difficulties and result in high additional

18 Computational Steering

costs (Seidenschwarz, 1997).

pre-design
phase

design phase
pre-construction

phase
con-

struction
project closure/
utilisation phase

degree of implementation

degree of influencing
investments and follow-up costs

Figure 1.3: Influences on a building project during the planning and construc-
tion phases: This graph shows the high degree of influence on a planned con-
struction in the project preparation phase. The further the implementation of the
project has proceeded, the less flexible is the design. Since changes at later phases
result in higher additional costs, the importance of a well thought-out concept is
evident (Seidenschwarz, 1997). (taken from Diederichs (1984))

Due to the lack of time for detailed simulations during the planning phase,
often only empirical rules are used for designing instead. Nevertheless, it is well
known that short-comings still occur and the belated elimination of these is diffi-
cult and cost intensive. This leads to the desire for an interactive simulation tool
for preliminary investigations, which makes it possible to run short simulation
cycles to prove or find the basic concept, possibly followed by a few carefully
selected simulation setups for more detailed investigations. This is a classical
situation where computational steering can find its appliance.

Conceivable tasks in the field of civil engineering that might benefit from in-
teractive simulations are, for example, the analysis of the spread of pollution due
to natural winds, escape route simulation during various emergency scenarios,
traffic simulation, flood simulation, or the broadening of fire and smoke in build-
ings.

The use case for this thesis is the simulation of fluid dynamics for indoor air
flow, e.g. for ventilation systems in rooms. In this instance, the points of interest
are whether the ventilation affects all parts of the room which need to be circu-
lated, and whether the flow velocities are small enough to prevent uncomfortable
air movements or even sickness of the occupants.

The computational steering framework developed in this thesis for the issues
of indoor CFD simulation is based on the Lattice-Boltzmann method (Succi, 2001;
Kafczyk, 2001). To shorten the computation cycle, the numerical model is simpli-
fied compared to current state-of-the-art implementations, which usually include

1.4. Computational Steering in Civil Engineering 19

advanced methods such as spatial and temporal adaptivity, multiple scales, and
boundary layer models. An additional, but also the most significant accelera-
tion is achieved by using supercomputers. Therefore, special emphasis is placed
on high-performance aspects of computational steering, especially with regard to
the systems available during this thesis, namely the Hitachi SR8000-F1 pseudo-
vector supercomputer and the SGI Altix 3700/4700 of the Leibiniz Computing
Center (LRZ) in Munich.

The computational steering framework iFluids for indoor air-flow simulations
is introduced in chapter 2. Chapters 3–7 gives a detailed introduction to the devel-
opment of a distributed computational steering framework, i.e. the theory of the
underlying Lattice-Boltzmann method, its parallelization and optimization for
supercomputers, followed by a description of the visualization and steering mod-
ule and the efficient coupling through a suitable communication concept. Subse-
quently, the applicability of an interactive simulation tool in civil engineering is
investigated taking an operating theatre as the main example. Finally, the flexibil-
ity of the modular software concept is demonstrated by applying the framework
to a completely different problem, namely the interactive blood flow simulation
within an artery.

Chapter 2

iFluids - Interactive Fluid
Simulations

This chapter serves as an introduction to the computational fluid dynamics ap-
plication iFluids, which will only briefly be presented with regard to its charac-
teristic architecture and features to provide an overview of the main objective in
this thesis. The detailed description will be given in later chapters.

iFluids is an application which has been developed mainly as a tool for indoor
fluid flow simulations but it is also easy to extend for simulation studies in other
fields with a focus on geometric setup. What distinguishes it from other com-
putational fluid dynamics applications is its layout as a computational steering
framework for high-performance computers. Its user is able to visualize current,
near real-time simulation results on-the-fly and to interact with the simulation
while it is still running. Besides basic interaction options such as (re-)starting,
stopping, and pausing the computation, the user can modify the geometry of the
simulated scene as well as its boundary conditions in a standard desktop or a
high-end virtual reality user interface (Fig. 2.1). It is also possible to adapt the
computational kernel in terms of the numerical model or the best optimization
available for a particular hardware platform.

The following section describes the functional concept of iFluids. First, the
structural characteristics of the simulation kernel are given followed by a presen-
tation of the steering and visualization terminal. Finally, the special requirements
needed to achieve an interactive simulation tool providing the required rapid re-
sponses to user interactions are summarized.

2.1 Architectural Software Concept

To utilize top-level hardware such as supercomputers for simulation and virtual
reality environments for visualization and steering in an efficient way, the iFluids
framework has been designed as a set of independent modules that can be run
(optimized) on many different platforms. An additional benefit of this architec-
ture is the possibility of running iFluids distributed on several inhomogeneous
hardware setups.

20

2.1. Architectural Software Concept 21

Figure 2.1: This sequence of snapshots shows the simulated development of air
flow in an office room over time. The first frame depicts the steady-state air
flow through the room and its underlying boundary conditions, which have been
defined beforehand through the application’s VR user interface. The flow field is
visualized by stream lines while the boundary conditions on the walls are color-
coded from blue, representing resting air, to red for air moving with maximum
speed. From the left side of the room air enters through an open door streaming
directly to an open window in the opposite wall. In the second frame a desk
has been added to the scene and one can clearly see how the flow adjusts to the
new interior design after only a few seconds of simulation. This enables the
user to investigate a series of scenarios interactively and observe their impact on
the resulting flow configuration straight away. The investigating engineer can
not only change the external view of the scene but also employ different modes of
navigation such as walking and flying through the virtual room in his interactive
study.

22 iFluids - Interactive Fluid Simulations

The schematic diagram in Figure 2.2 shows the module concept of iFluids: the
visualization and steering front-end is run on suitable selected graphics hardware
ranging from standard laptops to high-end visualization environments, receiv-
ing results from the simulation kernel that computes the current flow configura-
tion in the background. Optimally, the simulation kernel would not be executed
on the visualization machine but on an additional PC, cluster or supercomputer,
depending on the model size, level of detail, and the available hardware. The
graphics setups used during this thesis were the holobench at the Leibniz Com-
puting Center (LRZ), the Powerwall at the Lehrstuhl für Bauinformatik, and a
notebook with good 3D graphics capabilities. The simulation was either run on
a single Linux PC, the Bauinformatik Linux Cluster, or the Hitachi SR8000 super-
computer at LRZ, depending on performance requirements and hardware avail-
ability. In addition to data exploration, the user can — within the same front-end
— intuitively adapt the geometrical setup of the simulated model to precisely the
setup he is interested in. The steering terminal forwards the relevant interaction
events to the simulation kernel. The kernel immediately incorporates the changes
and sends back the adapted flow data set to the user front-end showing an initial
trend of the new configuration in the scene almost without delay. As mentioned
above, the simulation is preferably run on appropriate ’number crunching’ hard-
ware, which is most often different from the visualization and steering terminal.

Steering parameters

Simulation results

Figure 2.2: Module concept and data transfer: at the visualization client the
user can explore the continuously updated flow data interactively and control
the running simulation by modifying geometry, boundary conditions or general
flow parameters at the same time. The user’s modifications are transmitted to
the solver, which immediately incorporates the new setup and, after a single time
step of computation, sends back a first trend of the new flow configuration almost
without delay. The CFD kernel continues the simulation and transfers current
data sets to the visualization and steering client in regular intervals until the
next user interaction occurs.

2.2. Interactive Numerical Kernel 23

2.2 Interactive Numerical Kernel

The simulation kernel behind an interactive engineering application has to be de-
signed to meet several special requirements. To provide a convenient level of
interactive simulation a specially adapted numerical solver is needed, which has
to be able to take into account user modifications fully automatically. Further-
more, the solver must be fast enough to generate useful information describing
the flow configuration within a short space of time and give at least an initial
trend of the flow behavior within a sub-second time frame. Needless to say, this
flexibility comes at a cost and is usually reflected in constraints such as a reduced
resolution and complexity of the model.

In order to support different simulation scenarios, the kernel should be able to
handle arbitrary geometric setups. In this respect iFluids covers a comparatively
wide range of applications as it has been used for the simulation of engine rooms
of freight ferries, offices, and blood vessels (cf. Fig. 2.3). It is accordingly advan-
tageous that no special data preparation like pre-generation of grids is necessary
to permit the immediate use of such geometries in the computational steering
framework.

Figure 2.3: Examples of geometries simulated with iFluids: the top picture
shows the model of an office, where the flow field develops within the extension
of the room. The picure bottom left shows a separator room of a big cargo ferry
(Flensburger Schiffbau Gesellschaft, 2007). Here, a comparatively complex ge-
ometry dominates the scene. A completely different application of iFluids is
shown on the right, where an artery ’defines’ the region of bloodflow in its inte-
rior (data kindly provided by the University of Amsterdam: Section Computa-
tional Science (2007)).

While the simulation is running, the user can enable or disable the accounting

24 iFluids - Interactive Fluid Simulations

of a turbulence model, he can change the simulated scene with regard to its geom-
etry, its boundary conditions and all relevant flow parameters. Advanced users
can also interactively tune the performance of the kernel by choosing adequate
optimization strategies depending on the hardware architecture in use.

The solver in iFluids is based on the Lattice-Boltzmann method, which has
emerged as a complementary technique for the computation of fluid flow phe-
nomena (see e.g. Succi (2001); Kafczyk (2001); Wolf-Gladrow (2000)). Typically,
the Lattice-Boltzmann method is implemented on cartesian grids representing the
spatial discretization of the simulation domain, thus permitting a fast and fully
automatic grid generation. In each time step the Lattice-Boltzmann algorithm
computes the collision of microscopic, ‘virtual particles’ modeled statistically by
a number of distribution functions at each grid point and ’migrates’ the distri-
bution functions of these particles to neighboring lattice sites in the so-called
propagation step. Fortunately, the computation of the collision does not require
any data exchange with neighboring grid nodes and only directly adjacent cells
are affected through propagated distributions. Therefore, the Lattice-Boltzmann
method allows for an efficient parallelization of the simulation kernel.

2.3 The Visualization and Steering Front-End

Within a computational steering application like iFluids the visualization and
steering front-end as the central interface between user and simulation is of par-
ticular importance. To provide a natural and intuitive way to explore the simula-
tion data and to interact with the running simulation, the user interface for visu-
alization and steering has been combined into a single client front-end. Results
are visualized with both the geometry of the investigated scene and its bound-
ary conditions to allow for a better understanding and to support accurate and
well-directed interaction. In addition to the conventional desktop interface the vi-
sualization client has been implemented to support virtual reality environments
with multiple projection screens and tracking of the positions of the user’s head
and of input devices to allow a better immersion into the simulated scene.

Mercury’s OpenInventor (Mercury Computer Systems, Inc., 2007b) is used
for visualization and scene-graph manipulation of object geometry and position,
navigation, and menu handling. It supports various modifications of objects,
such as translation, rotation, and scaling, as well as the transformation of mapped
data such as the seed points of a particle tracing for example. Data visualization is
realized with the help of the DataViz extension libraries of OpenInventor, which
provides a range of standard techniques like streamlines, iso-surfaces, and cross
sections.

The main task of the steering interface is to provide user interaction facilities to
manipulate the simulation run. Another optional feature allows the initial setup
for fluid parameters and start-up geometry to be predefined together with the
corresponding boundary conditions before the simulation starts. In this case, the
preprocessing module integrated in the computational steering framework can
be run as a stand-alone application (Kollinger, 2007).

2.4. Requirements of Interactive Simulation Software 25

During the simulation a context-based 3D menu for improved usability in
VR environments supports direct access to object parameters like boundary con-
ditions and intuitive interactions with post-processing objects (Marcheix, 2004).
New fluid obstacles can be imported from the file system and existing objects can
be transformed or removed from the simulated scene. Analogously, it is possible
to add and modify boundary conditions during the ongoing simulation.

The visualization and steering clients are again realized as encapsulated mod-
ules interacting via clearly defined interfaces to simplify the exchange with other
visualization tools. This interface concept is also the prerequisite for extensions
such as the adaptation of the single-user application to collaborative multi-client
sessions.

Finally, the performance of the communication initiated by forwarding a user
interaction from the steering interface to the simulation kernel is of vital impor-
tance for a responsive computational steering application.

2.4 Requirements of Interactive Simulation Software

As mentioned, computational steering may be defined as the fusion of the tradi-
tionally separated steps of preprocessing, computation and postprocessing into
a closed loop. The computational steering application should enable a user to
run a simulation and monitor current results to estimate the state or trend of the
simulation. In addition, the minimum interaction options should comprise paus-
ing, stopping, and restarting the simulation. An advanced level of interaction is
provided by modifying some (fairly simple) simulation parameters. Finally, true
computational steering supports a multitude of repeated modifications without
the need to restart the simulation. This implies, in particular, that the geometry
of the simulated scene can be modified together with boundary conditions, and
general flow parameters. To realize a computational steering project of this de-
scription, several fundamental prerequisites are identified, as described in brief
below.

• Numerical method: The underlying numerical method should allow for the
easy incorporation of user-initiated modifications. Accordingly, it should be
based on a grid or mesh that is suitable for fast generation and modification.
Furthermore, the feasibility of on-the-fly visualization of simulation results
must be ensured.

• Computation: To allow the user to watch the adaptation of the fluid to his
geometrical manipulations, the simulation needs to be fast enough. This re-
quires a highly optimized solver running preferably in parallel on adequate
hardware architecture.

• Data visualization: Current results have to be available and must be dis-
played with minimum delay. The data visualization module should enable
interactive exploration of the resultant data. Displaying the geometry of the

26 iFluids - Interactive Fluid Simulations

simulated scene along with the simulation results makes for a better under-
standing of the physical behavior.

• Steering and problem definition: Steering the application requires an in-
terface which should be combined with the visualization, preferably in a
single terminal to provide a more intuitive interaction with the simulation.
The main part of the steering process is the problem definition comprising
the geometric setup and manipulation as well as setting the boundary con-
dition.

• Communication: Regarding the usability of the computational steering ap-
plication, the communication coupling the modular building blocks has to
be flexible and efficient as the user not only expects to be shown continually
updated simulation results during data exploration but also wants to have
instant responses to his modifications.

In the following chapters the modules making up the computational steering
framework will be introduced with special attention paid to the requirements
listed above.

Chapter 3

Computational Fluid Dynamics
Using the Lattice-Boltzmann Method

This chapter gives a short general introduction into computational fluid dynam-
ics (CFD) followed by a brief derivation of the Lattice-Boltzmann method (LBM)
which has been used for the numerical simulations in this thesis. The third sec-
tion of this chapter describes the simulation kernel implemented for the compu-
tational steering project iFluids.

3.1 Computational Fluid Dynamics

The conventional form of describing fluid phenomena in CFD is based on the fa-
mous Navier-Stokes equations. They can be summarized as two sets of equations
to express both mass and momentum conservation. Often, only the simplified
Navier-Stokes equations for describing an incompressible Newtonian fluid, i.e.
ρ = const, are used. They can be found in literature as

∂uα

∂xα

= 0 (3.1)

∂uα

∂t
+ uβ

∂uα

∂xβ

=
1

ρ

∂p

∂xα

+ ν
∂

∂xβ

(
∂uα

∂xβ

)
(3.2)

with the density ρ, pressure p, velocity u and the kinematic viscosity ν. Note,
that terms containing repeated Greek indices have to be interpreted according to
the Einstein summation convention, i.e. xαyα =

∑D
α=1 xαyα.

There are numerous methods of solving these equations numerically, some
classical approaches are for example (wikipedia, 2007a):

Finite Differences Method (FDM): Applying this method the derivatives in
the transport equation are approximated by Taylor expansions at discrete
points usually on a regular grid. Accordingly, the discretization error is
given by the difference between the values on the discrete grid and the exact
solution. It is possible to reduce this error by taking terms of higher order

27

28 Computational Fluid Dynamics Using the Lattice-Boltzmann Method

in the Taylor approximation into consideration (Noll, 1993). A problem of
this method is that the solution of the difference equations is not necessarily
conservative, i.e. it can happen that inward and outward fluxes of a given
domain are not in balance (Schönung, 1990).

Finite Volume Method (FVM): FVM may be seen as the classical or standard ap-
proach as it is used most often in commercial software and research codes.
Here, the computational domain is discretized into so-called control vol-
umes over which the differential equations are integrated. From these vol-
ume integrals or their corresponding surface integrals one can derive bal-
ance equations which guarantee a conservative discretization. The advan-
tage over the FDM lies in the conservative discretization, which allows non-
equidistant and curvilinear meshes (Noll, 1993; Schönung, 1990).

Finite Element Method (FEM): This method is particularly popular for struc-
tural analysis of solids, but it is also applicable to fluid dynamics (Schönung,
1990). Instead of solving the partial differential equations directly, solu-
tions to a ’weak formulation’ of the equations are sought by minimizing an
integral. This method can be applied to unstructured grids consisting of
triangles or quadrangles, the latter also being preferred for fluid dynamic
problems.

The above-mentioned methods are all based on the discretization of the Navier-
Stokes differential equations. An alternative approach to simulate fluid dynamics
is the Lattice-Boltzmann method (LBM) (Wolf-Gladrow, 2000). Instead of solving
the Navier-Stokes equations directly, LBM can be seen as a discrete microscopic
model which conserves mass and momentum by construction. The correspond-
ing macroscopic quantities are obtained through a multi-scale analysis.

3.2 Lattice-Boltzmann Method

The Boltzmann equation is the central equation of transport theory in statistical
mechanics and is used, e.g., to describe the distribution of particles in a fluid. It
describes the time evolution of the distribution function f(x, u, t) of the number
of particles in the phase-space volume d3x d3u at time t, where x and u are posi-
tion and velocity, respectively. Considering changes in the particle distributions
due to external forces F or through internal collisions Ω between particles, the
Boltzmann equation reads

∂f

∂t
+

∂f

∂xα

uα +
∂f

∂uα

Fα = Ω(f). (3.3)

Beginning with a discretized version of the Boltzmann equation, the LBM ap-
proach computes the dynamics of such statistical particle distributions for a dis-
crete number of velocities on a computational grid or lattice (cf. Fig. 3.1). The

3.2. Lattice-Boltzmann Method 29

8

0

5

4

2

3 1

6

7

Figure 3.1: Two-dimensional lattice site in the LBM: This scheme shows nine
discrete velocity vectors for a grid point in a 2D lattice, which represent the 8
velocities to the neighboring nodes and the resting ’velocity’ 0 in the center of
the cell. This is just one example in a number of lattice models DkQb , the most
popular ones being D2Q9, D3Q15, and D3Q19. In this notation introduced
by Qian et al. (1992), k denotes the spatial dimension of simulation space and b
refers to the number of lattice velocities. In choosing an appropriate lattice model
it is important to bear in mind that a sufficient symmetry of the lattice is guar-
anteed, otherwise the LBM cannot correctly reflect the Navier-Stokes equations
(Frisch et al., 1986).

statistical description also represents the main improvement of the LBM over its
historical origin, the Lattice-Gas automata (LGA)1.

By design, the LBM method conserves the quantities of mass and momentum
to fulfill the hydrodynamic laws. The Lattice-Boltzmann algorithm computes the
’collision’ of microscopic, virtual particles and updates the velocity distribution
functions in each simulation time-step followed by a ’propagation’ step where the
migration of these distribution functions to neighboring cells takes place. Typi-
cally, the LBM is implemented on uniform Cartesian grids, which makes it par-
ticularly well-suited for taking advantage of parallelization and/or vectorization
capabilities of high-performance supercomputers and allows to handle complex
geometries.

Although the LBM represents a relatively modern approach it has already
been extended in many ways. There are (mainly research) codes for multiphase
or free surface flow (Ginzburg and Steiner, 2003; Thürey and Rüde, 2004; Tölke,
2001; He et al., 1999; Shan and Chen, 1993), thermal fluid simulations (van Treeck,
2004; Lallemand and Luo, 2003; Mezrhab et al., 2004; van Treeck et al., 2006),
acoustic simulations (Lallemand and Luo, 2003; Haydock and Yeomans, 2003;
Neuhierl, 2006), and medical simulations (Bernsdorf et al., 2006; Hirabayashi

1A lattice gas automaton is a special type of cellular automaton, which is defined by a lat-
tice of cells with a local update rule determining each cells’s state. This update rule is applied
simultaneously to all cells and only uses information of a cell’s current state and that of certain
neighboring cells. Each cell can either be empty or occupied by a single particle, this restriction
being the characteristic difference from LBM.

30 Computational Fluid Dynamics Using the Lattice-Boltzmann Method

et al., 2003; Artoli, 2003; Götz, 2006; Sloot et al., 2004). By now, LBM is a well
understood and accepted method of simulating fluid dynamics and is also real-
ized in the commercial product PowerFLOW developed by Exa Corporation (Exa
Corporation, 2007).

As mentioned above, the LBM has been developed from the Lattice-Gas au-
tomata. The main motivation for the transition from LGA to LBM was the desire
to remove the statistical noise by replacing the Boolean particle number in a lat-
tice direction by its ensemble average, the so-called density distribution function
(wikipedia, 2007b). This replacement has to be accompanied by a consecutive
modification of, the discrete collision rules to a continuous function — the colli-
sion operator.

There are numerous ways of introducing the Lattice-Boltzmann equation (LBE).
Following Chen and Doolen (1998), the starting point is the discrete version of
the kinetic Equation (3.3) for the particle distribution function neglecting exter-
nal forces:

fi(x + ei4x, t +4t) = fi(x, t) + Ωi(fi(x, t)), (i = 0, 1, .., N) (3.4)

where fi represents the particle velocity distribution function along the ith direc-
tion (cf. Figure 3.1); Ωi is the collision operator expressing the rate of change of
fi due to collision. fi(x, t) is the probability density of particles in x at time t.
Therefore, the macroscopic density ρ(x, t) can be computed as the zero-th order
velocity moment

ρ(x, t) =
N∑

i=0

fi(x, t). (3.5)

Moreover, the fluid momentum is the first order velocity moment

ρ(x, t)u(x, t) =
N∑

i=0

fi(x, t)ci (3.6)

with the macroscopic velocity u(x, t) and the mesoscopic lattice velocity ci.

Applying the conservation of mass and momentum to the equations, two con-
straints on the collision operator are found:

N∑
i=0

Ωi(f) = 0 (3.7)

N∑
i=0

ciΩi(f) = 0 (3.8)

To transform the discrete LBE into a continuous equation accurate up to second
order in 4t, a Taylor expansion is applied:

3.2. Lattice-Boltzmann Method 31

fi(x + ci4t, t +4t) = fi(x, t) +
∂fi(x, t)

∂xα

ciα4t +
∂fi(x, t)

∂t
4t

+
1

2

∂2fi(x, t)

∂xα∂xβ

ciαciβ4t2 +
1

2

∂2fi(x, t)

∂t2
4t2 (3.9)

+
∂2fi(x, t)

∂t∂xα

ciα4t2 + O(4t3)

After that, the particle distribution functions are expanded by the equilibrium
distribution function f eq

i using the Chapman-Enskog multi-scale expansion, i.e.

fi = f eq
i + εf

(1)
i + ε2f

(2)
i + O(ε3) (3.10)

= f eq
i + εf

(neq)
i

with the non-equilibrium distribution function f
(neq)
i = f

(1)
i + εf

(2)
i + O(ε2).

In analogy to Equations (3.5) and (3.6), f eq
i should satisfy∑

i

f eq
i = ρ,

∑
i

f eq
i ci = ρu, (3.11)

requiring for the non-equilibrium parts f
(k)
i with k = {1, 2} that∑

i

fk
i = 0,

∑
i

fk
i ci = 0. (3.12)

Taylor expansion of Ωi(f) about f eq assuming fneq � f eq yields

Ωi(f) = Ωi(f
eq)+

N∑
j=0

∂Ωi(f
eq)

∂fj

fneq
j +

1

2

N∑
j=0

N∑
k=0

∂2Ωi(f
eq)

∂fi∂fk

fneq
j fneq

k +O(|fneq|3) (3.13)

From Equation (3.4) we see that Ωi(f
eq) = 0 for ε → 0. By keeping only terms

linear in fneq
i Equation (3.13) can be simplified to the linearized collision operator

Ωi(f) =
N∑

j=0

∂Ωi(f
eq)

∂fj

fneq
j =

N∑
j=0

Mij(fj − f eq
j) (3.14)

where Mij ≡ ∂Ωi(f
eq)

∂fj
satisfying the constraints (Benzi et al., 1992)

N∑
j=0

Mij = 0,
N∑

j=0

ciMij = 0. (3.15)

Assuming that the local particle distribution relaxes to an equilibrium state with
a single rate 1/τ we have Mij = − 1

τ
δij and the BGK collision term (Bhatnagar

et al., 1954)

32 Computational Fluid Dynamics Using the Lattice-Boltzmann Method

Ωi = −1

τ
(fi − f eq

i), (3.16)

which leads to the LBGK equation

fi(x + ei, t + 1) = fi(x, t)− fi − f eq
i

τ
. (3.17)

The following section shows that the macroscopic velocity u obtained from the
solution of this equation fulfills the Navier-Stokes equation up to second order
accuracy.
In addition to Equation (3.10), the Chapman-Enskog expansion is employed to
obtain

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
,

∂

∂x
= ε

∂

∂x1

. (3.18)

Combining the continuous Taylor-expanded LBE (3.9) and the linearized collision
operator (3.14) we get

∂fi

∂t
+

∂fi

∂xα

ciα +
1

2
4t(

∂2fi

∂xα∂xβ

ciαciβ +
∂2fi

∂t2
+ 2

∂2fi

∂t∂xα

ciα) =
1

4t

N∑
j=0

Mij(fj − f eq
j)).

(3.19)
Applying the Chapman-Enskog expansions (3.10) and (3.18) now leads to

∂f eq
i

∂t1
+

∂f eq
i

∂x1α

ciα =
1

4t

N∑
j=0

Mijf
(1)
j (3.20)

to order ε0 and to

∂f eq
i

∂t2
+

∂f
(1)
i

∂t1
+

∂f
(1)
i

∂x1αciα

+
1

2
4t(

∂2f eq
i

∂x1α∂x1β

ciαciβ+
∂2f eq

i

∂t21
+2

∂2f eq
i

∂t1∂x1α

ciα) =
1

4t

N∑
j=0

Mijf
(2)
j

(3.21)
to order ε1. After some algebra the first order equation can be simplified to

∂f eq
i

∂t2
+

N∑
j=0

(δij +
1

2
Mij)(

∂f
(1)
j

∂t1
+

∂f
(1)
j

∂x1α

ciα) =
1

4t

N∑
j=0

Mijf
(2)
j . (3.22)

Now the zero-th order velocity moments of Equation (3.20) and (3.22) are calcu-
lated and recombined with respect to their time scale, i.e.

∂ρ

∂t
+

∂ρuα

∂xα

= 0, (3.23)

which is the mass conservation satisfied by the LBE up to second order accuracy.

3.2. Lattice-Boltzmann Method 33

In the next step the first order velocities are calculated accordingly and after re-
combining the scales we arrive at

∂ρuα

∂t
+

∂

∂xβ

Π = 0 (3.24)

with the momentum flux density tensor

Π =
N∑

i=0

ciαciβ(f eq
i +

N∑
j=0

(δij +
1

2
Mij)εf

(1)
j). (3.25)

Finally, we need to specify the equilibrium distributions corresponding to the
lattice structure. To simplify the derivation without loosing generality, we take a
look at a two-dimensional square lattice (cf. 3.1, Chen and Doolen (1998)).
Therefore, nine lattice velocities are defined:

ei = (cos(
π

2
(i− 1), sin(

π

2
(i− 1)), for i = 1, 2, 3, 4;

ei =
√

2(cos(
π

2
(i− 1) +

π

4
), sin(

π

2
(i− 1) +

π

4
)), for i = 5, 6, 7, 8; (3.26)

e0 = 0 for the zero-speed velocity.

According to Chen et al. (1992) the general form of the equilibrium distribution
function can be written to O(u2) as

f eq
i = ρ(a + bei · u + c(ei · u)2 + du2 (3.27)

with the lattice constants a, b, c, and d. It is only for small Mach numbers and by
obeying the constraints in (3.11) that these constants can be determined as

f eq
i = ρωi(1 +

ciαuα

c2
s

+
1

2c2
s

(
ciαciβ

c2
s

− δαβ)uαuβ) (3.28)

with a sound speed cs = 1√
3

and ω0 = 4
9
, ω1..4 = 1

9
, and ω5..8 = 1

36
.

Inserting the equilibria into the flux tensor (3.25) we obtain

Π
(0)
αβ =

N∑
i=0

ciαciβf eq
i = pδαβ + ρuαuβ, (3.29)

Π
(1)
αβ =

N∑
i=0

ciαciβ

N∑
j=0

(δij +
1

2
Mijεf

(1)
j) = ν(

∂ρuα

∂xβ

+
∂ρuβ

∂xα

)

where the pressure p = ρ
3

and the kinematic viscosity ν = (2τ−1)
6

.
The resulting momentum equation is now

ρ(
∂uα

∂t
+ uβ

∂uα

∂xβ

) =
∂p

∂xα

+ ν
∂

∂xβ

(
∂ρuα

∂xβ

+
∂ρuβ

∂xα

)
, (3.30)

which resembles the Navier-Stokes equation as long as the density variation δp is
small enough.

34 Computational Fluid Dynamics Using the Lattice-Boltzmann Method

3.3 Implementation of the LBM Solver

The Lattice-Boltzmann kernel implemented for the computational steering appli-
cation iFluids is a BGK solver based on a D3Q15 lattice.

The 15 velocities are defined as

ci=0,..,14 = cs

 0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 1 −1 0 0 1 −1 1 −1 −1 1 −1 1
0 0 0 0 0 1 −1 1 −1 −1 1 1 −1 −1 1

 ,

and the corresponding equilibria can be found to be

f eq
0 =

2

9
ρ

(
1− 3

2
uu

)
,

f eq
i =

1

9
ρ

(
1 + 3eiu +

9

2
(eiu)− 3

2
uu

)
, for i = 7, .., 14

f eq
i =

1

72
ρ

(
1 + 3eiu +

9

2
(eiu)− 3

2
uu

)
, for i = 7, .., 14,

where ei = 1
cs

ci.

For high Reynolds numbers (see (3.31)) an optional turbulence model is inte-
grated into the solver to take unresolved sub-grid phenomena into account. To
decide whether a turbulence model is needed or not the Reynolds number must
be estimated as

Re =
uL

ν
(3.31)

with u the mean fluid velocity, L the characteristic length, and ν the kinematic
fluid viscosity.

Laminar flow occurs at low Reynolds numbers (i.e. Re / 2100), while turbu-
lent flow occurs at high Reynolds numbers (i.e. Re ' 4000). The transition be-
tween laminar and turbulent flow is often indicated by a critical Reynolds num-
ber which depends on the exact flow configuration.

Assuming a typical indoor ventilation setup, the air velocity can be estimated
as ≈ 0.13m/s to keep the room climate comfortable. A ceiling height of 2.75m is
taken to be the characteristic length, which leads to a Reynolds-number of Re ≈
23800 for a kinematic fluid viscosity of 1.5 · 105 (at a temperature of 20oC).

A popular turbulence model is the Large Eddy Simulation (LES) using the
Smagorinsky sub-grid model. This model has also been implemented for the
Lattice-Boltzmann solver within the iFluids computational steering application.
The advantage of this model is its relatively low computational cost, compared
to the large parameter stability improvement of the solver. Simulations on com-
paratively coarse grids, in particular, are made possible with this enhancement
(Thürey and Rüde, 2005).

3.3. Implementation of the LBM Solver 35

The key idea of the Smagorinsky sub-grid model is the concept of an eddy
viscosity νt as a synthetic indicator of the damping effects on large scales caused
by small scales. νt is related to the local strain tensor as (Succi et al., 1995; Kafczyk,
2001; Hartmann, 2005)

νt = C2
s

√
S2 (3.32)

with
Sαβ =

1

2
(∂αuβ + ∂βuα) . (3.33)

Cs is the empiric Smagorinsky constant. An obvious advantage of the LBM
using this turbulence model is the local availability of the strain tensor at each
lattice site and is obtained by (cf. Thürey and Rüde (2005); Artoli (2003)):

Sαβ =
14∑
i=0

eiαeiβ(fi − f eq
i). (3.34)

Chapter 4

Fluid Simulation on Supercomputers

After a short introduction into High-Performance Computing (HPC) in general,
this chapter describes the optimization and parallelization strategies for the Lat-
tice-Boltzmann solver in the computational steering framework iFluids. The sol-
ver has mainly been optimized for the Hitachi SR8000 system at LRZ but has
also been ported to SGI Altix 3700/4700 systems. Therefore, the architecture of
the Hitachi SR8000 and its features will be introduced first, followed by a detailed
discussion of the methods applied for parallelization and optimization. Then, the
architecture of the SGI Altix will be sketched to be able to motivate the main dif-
ferences in the parallelization and optimization approach. Finally, the simulation
performance of both machines will be compared.

4.1 High-Performance Computing

High-Performance Computing refers to the utilization of supercomputers for per-
forming numerical simulations. In the late 1980s, the US Government defined
supercomputers as systems having one or more processors capable of achiev-
ing an aggregate performance of more than 100 MFlops/s1 (Standish, 2006). In
an industrial sector developing so fast that its cumulative performance doubles
almost every year (see Figure 4.1) it is obvious that definitions like this are unten-
able. Even today’s PCs (2006) already reach up to 5 GFlops. Another approach
defines supercomputers as computing resources which provide more than an or-
der of magnitude higher computing power than is usually available on modern
PCs (Standish, 2006).

Even with this definition, HPC systems span the range from departmental
clusters of off-the-shelf workstations up to the largest and fastest supercomputers
in the world. Traditionally, HPC is used in scientific and engineering fields such
as Computational Fluid Dynamics, Molecular Dynamics, and Quantum Chromo-
Dynamics. Due to their scientific origin HPC codes are still mainly written in
Fortran, much fewer in C. Newer implementations also use object-oriented lan-
guages such as C++ and even Java.

1MFlops = Mega Flops = 106 Floating Point Operations per Second

36

4.1. High-Performance Computing 37

Figure 4.1: This chart shows the performance development of the top 500 su-
percomputers during the last decade. The peak performance of the fastest super-
computer on the list is marked by the red line, while the performance the weakest
is represented by the purple line. The green line shows the accumulated peak
performance of all supercomputers on the list (taken from TOP500 (2007)). Ev-
idently, the performance of these systems nearly doubles every year.

As described in Standish (2006) and Dowd and Severance (1998), high-perfor-
mance computers are usually classified into three categories according to their
processing architecture:

• Vector computers: The CPUs of vector machines provide instructions with
vector operands that allow the CPU to efficiently exploit the vector hard-
ware with its multiple arithmetic units. By organizing memory in banks and
using fast memory technology running at CPU clock speed the bandwidth
between CPU and memory can be increased dramatically. Optimizing com-
pilers are able to transform certain data access patterns into series of vector
operations, thus allowing some legacy code to be used without change. The
downside of such sophisticated memory subsystems and custom proces-
sors is their cost. Vector computers are 20 to 40 times more expensive per
peak MFlop than commodity processors. One also has to keep in mind that
vector systems are highly proprietary architectures and as such depend on
specialized software. Due to the resulting portability issues they suffer from
a restricted range of available software.

• Symmetric Multi Processor (SMP) and Shared-Memory Systems: SMP
computers use commodity or RISC-based processors sharing the main mem-
ory of the system. By having multiple processors attempting to access mem-
ory concurrently, the memory bottleneck of commodity workstations is com-
pounded, so that modern SMP designs arrange the connection between
memory and CPU via so-called crossbars. Here, memory is laid-out in ’lo-
cal’ segments for each CPU which other CPUs can access only ’remotely’
through the crossbar network with a small communication overhead. In

38 Fluid Simulation on Supercomputers

addition, technical measures need to be implemented to ensure memory
consistency between the processors’ caches. Besides the increased band-
width, the biggest advantage with this technology is that large amounts of
memory are available to single processors. However, there is also a possible
performance penalty with regard to data placement: For optimal perfor-
mance a program does not only need a high locality of (cache) references,
the amount of data moved between CPUs also has to be minimized due to
the overhead of the cache-coherence mechanism.

• Clusters of workstations or PCs or Distributed-Memory Systems: In prin-
ciple, clusters offer ultimate scalability — if you need more CPU power, just
add another PC at commodity cost2. However, the number of networking
components per CPU will increase logarithmically with the total number
of CPUs in the cluster, and will eventually dominate the cost. In practice,
machines with 1000s of CPUs are possible in this way. The downside of
distributed-memory machines is that exploitation of parallelism must be
handled explicitly by the programmer.

Besides the different kind of high-performance resources in use, the perfor-
mance gain achievable through parallelization depends on the simulation prob-
lem. As a quantitative measure the parallel speedup has been introduced, which
refers to the factor indicating how much faster the parallel program version can
be executed as compared to its serial counterpart. Accordingly, the speedup is
defined by

S(np) =
t1
tnp

(4.1)

where t1 and tnp represent the running time of the serial application on one
processor and the parallel version using np processors, respectively. From Equ.
(4.1) the parallel efficiency is derived

E(np) =
S(np)

np

=
t1

tnpnp

. (4.2)

It assesses the per-processor utilization for the parallel program as a fraction
of the serial execution speed.

Different algorithms usually are not equally suited for parallelization, depend-
ing on their fraction of non-parallelizable code. To estimate the maximum theo-
retical speedup which can be achieved with a given amount of resources, Am-
dahl’s Law can be used, namely

S(np) =
1

α + 1−α
np

. (4.3)

2At the current state of the art the scalability in systems with a commodity interconnect (Giga-
bit Ethernet) is limited to approximately 1000 CPUs

4.2. Hitachi SR8000-F1 System Architecture 39

Here, np refers to the number of processors in use and α measures the serial, i.e.
non-parallelizable, fraction of time of the code, which is usually non-trivial to de-
termine. In the limit of an infinite number of processors this leads to a maximum
speedup of

Smax =
1

α
, (4.4)

which cannot be exceeded.
In practice, the theoretical maximum speedup through parallelization is fur-

ther impaired by the so-called parallel overhead due to thread creation and schedul-
ing, communication, and synchronization. This overhead introduces further terms
into Amdahl’s Law. It then typically takes the form

S(np) =
1

(α + β) + 1−α
np

+ knp

. (4.5)

with positive parameters β and k which depend on the specific communica-
tion pattern of the application and the interconnect hardware. Both parameters
worsen the speed-up; the k term in fact degrades performance for a sufficiently
large np.

The quantities introduced above allow to describe the possible improvements
due to parallelization. In addition, different kinds of resources can be validated
with respect to their suitability for the specific numerical problem.

4.2 Hitachi SR8000-F1 System Architecture

In 2000, the Leibniz Computing Center (LRZ) in Munich installed the first Bavar-
ian High-Performance Supercomputer, a Hitachi SR8000-F1 pseudo-vector ma-
chine. This system was targeted to serve as one of three federal German top-level
compute servers. At the time of installation it was the fastest supercomputer in
Europe and the first TFlop/s machine for general purpose research in the world.
It ranked at position 5 of the Top 500 Supercomputer List (TOP500, 2007) in June
2000. In early 2002 the installation was upgraded in a second installation phase
and reached rank 14 of the Top 500 list in June 2002 (TOP500, 2007) with a LIN-
PACK performance of 1.65 TeraFlop/s (2 TeraFlop/s peak performance).

Although LRZ’s Hitachi SR8000 was shut down in 2006, this machine and the
optimizations with regard to the implementation of iFluids will be described in
the following, because insights gained on this machine can easily be transferred
to current vector or pseudo-vector machines. To this day, this class of supercom-
puters is still the best-suited for Lattice Boltzmann applications (Wellein et al.,
2006).

40 Fluid Simulation on Supercomputers

Hardware Description

The Hitachi SR8000 at LRZ consisted of 168 nodes, each being a RISC-based3

Symmetric Multiprocessor4 derived from IBM’s PowerPC architecture with eight
compute CPUs and one CPU dedicated to the operating system. Each CPU of-
fered a peak performance of 1.5 GFlop/s producing a theoretic total of 12 GFlop/s
per node (8 CPUs with 1.5 GFlop/s), while the real application performance of
the SR8000 reached on average 1.5 to 2.5 GFlop/s per node. The nodes were
equipped with either 8 or 16 GBytes of shared memory and could be accessed
with the (still) striking bidirectional bandwidth of 32 GBytes/s.

The SR8000 was a representative of the rather unusual pseudo-vector archi-
tecture. This type of machine enables the use of both the vector (PVP mode)
and the (parallel) scalar programming paradigm (COMPAS mode) for suitably
structured codes, especially codes designed for classical vector systems (Leibniz
Rechenzentrum München, 2007). The different paradigms can easily be activated
by the programmer through compiler directives. In the following these two spe-
cial modes are described in more detail.

Co-Operative Micro Processors in Single Address Space

Co-Operative Micro Processors in Single Address Space (COMPAS) is Hitachi’s name
for the automatic distribution of computational work among the 8 CPUs of an
SMP node by the compiler (see Figure 4.2) or manually by the user through inser-
tion of parallelization directives. In order to achieve optimal performance when
processing loops — even for loops with comparatively small granularity — a
rapid simultaneous start-up of processes is provided. Cache coherency is guaran-
teed automatically when a fork or a join sequence is executed. This is important,
because the data stored by a processor might be referred to by another processor
executing a succeeding part (Tamaki et al., 1999).

Pseudo-Vector Processing

Traditionally, a vector CPU executes operations in a vector pipeline which deliv-
ers one or more memory references per cycle to the multi-element vector registers
of the CPU. In this way, the arithmetic units are continuously fed with data re-
quiring, however, an expensive interleaved and pipelined memory subsystem.

Aiming particularly at scientific computing, Hitachi extended IBM’s PowerPC
RISC architecture to 160 floating point registers and added pre-load and pre-fetch
capabilities to fully exploit the available memory bandwidth and thus alleviate
the typical main deficit of RISC-based systems in comparison to vector CPUs. Hi-
tachi refers to this extension as Pseudo-Vector Processing (PVP). Through its PVP

3A Reduced Instruction Set Computer (RISC) is based on a processor architecture with reduced
chip complexity by using simpler instructions. Thus, the microcode layer with its associated
overhead can be eliminated to improve performance (answers.com, 2007).

4Symmetric Multiprocessing (SMP) is a multiprocessor computer architecture where two or
more identical processors are connected to a single shared main memory (wikipedia, 2007d)

4.2. Hitachi SR8000-F1 System Architecture 41

Figure 4.2: The parallel structure of the DO-loops is a forkjoin, which consists of
a serial execution part and parallel execution part appearing one after the other.
The serial part is assigned to one thread and executed on one processor, the par-
allel parts are assigned to multiple threads and executed on multiple processors
(taken from Tamaki et al. (1999)).

features the SR8000 can schedule the fetching of memory in a pipelined man-
ner timely before arithmetic execution, allowing for non-blocking execution in a
manner comparable with vector processors.

Pre-fetch transfers requested cache lines of data asynchronously from the main
memory to the cache, whereas pre-load transfers requested element data — again
asynchronously — from memory directly to the registers. Both pre-fetch and pre-
load (see Fig. 4.3) are useful mainly for codes with small or no cache reuse ratio
(for in cache loads indeed than is a small performance penalty), i.e. memory-
bound codes. Whether a pre-fetch or pre-load is more efficient depends on how
the memory references are organized within the code.

Pre-fetch is the preferred method for referencing contiguous memory areas,
whereas pre-load will give better performance for discontiguous (e.g. stride lon-
ger than 2) accesses. The reason for this is that, in the latter case, pre-fetch will
induce transfers which for the most part deliver unreferenced data to the cache,
while for contiguous data pre-fetch will deliver double the bandwidth of pre-
load. The compilers choice between pre-fetching and pre-loading can (and some-
times must) be overridden (or suppressed) by a directive in the code.

By accessing the cache when data is in the cache but accessing the main mem-
ory in a pseudo-vector manner when data is not in the cache the PVP architecture
provides a stable and high data-reference throughput (Tamaki et al., 1999).

42 Fluid Simulation on Supercomputers

Figure 4.3: Depending on the memory reference organization within the code,
pre-fetch or pre-load is used for data access. Pre-fetch is efficient for contiguous
data, since whole cache lines are transferred. For single data pre-load the memory
is directly accessed and copied into the CPU registers (taken from Tamaki et al.
(1999)).

Iteration

PF Latency Use dataLD1

Use dataLD

Use dataLD

Use dataLD

2

3

4

PF Latency Use dataLD

Use dataLD

5

6

PL Latency Use data1

Latency Use data

Latency Use data

Latency Use data

Latency Use data

Latency Use data

2

3

4

5

6

PL

PL

PL

PL

PL

Iteration

Figure 4.4: Pre-fetch and pre-load: On the left side of this figure the data use
by pre-fetch is sketched, on the right its pre-load counterpart. Pre-fetch loads a
complete cache line (of contiguous data) into the cache from where data elements
can be loaded and processed in vector manner by the CPU. With a pre-load single
data elements are delivered from the memory directly to the CPU (taken from
Lanfear (2000)).

4.3. Parallelization of the Lattice-Boltzmann Solver 43

4.3 Parallelization of the Lattice-Boltzmann Solver

As described above, the Hitachi SR8000 offers possibilities of parallelization on
several levels (cf. Figure 4.5). Between computing nodes the computation can
be distributed using message passing, typically via the MPI library5. Within a
node the workload can be distributed over the 8 computation CPUs via OpenMP
or Hitachi’s COMPAS-mode. Finally, after careful manual optimization of the
innermost loops the computation can be vectorized to fully exploit the PVP capa-
bilities of the hardware. In this way, a natural hierarchy of parallelization meth-
ods is given by the SR8000 architecture with MPI providing work sharing on the
coarsest level.

Instruction level (PVP)Multi-thread
(COMPAS)

Node 1 Node 2

Message passing (MPI)

Figure 4.5: Three levels of parallelization: Communication via MPI exchanges
data between nodes of 8 CPUs each. On each node the computational work is
processed in COMPAS mode by 8 threads in parallel in a shared-memory envi-
ronment. Due to the pseudo-vectorization capabilities of the Hitachi SR8000,
the loops can be executed vector-wise (taken from Lanfear (2000)).

In comparison to other approaches to simulate fluid dynamics the Lattice-
Boltzmann method is particularly well-suited for parallelization. As described
in Chapter 3 the collision step can be computed without the need for interac-
tion with neighboring grid points, since the collision operator requires only data
which are locally available. Therefore, the calculation of this step can be con-
ducted without communication between different nodes. In the propagation step
the advection of particle distributions comprises only the migration of distribu-

5The Message Passing Interface (MPI) is a standardized communication library (MPI-Forum,
2007) covering basic point-to-point (send/receive) and advanced (collective) functionality. It is
the most common method of programming multi-processor systems with distributed memory.
In basic message passing, the processes are coordinated by explicit communication, i.e., sending
and receiving of data (Pacheco, 1996)

44 Fluid Simulation on Supercomputers

tions from one grid point to its next neighbors corresponding to their directions
and the Lattice-Boltzmann model in use. The required communication can be
kept simple, since only cells at the borders of each domain boundary have to be
exchanged (only point to point communication between domain boundaries is
required).

Domain Decomposition

Since MPI communication has been designed for parallelization on distributed-
memory systems, its use, by nature, requires partitioning of the computational
work through domain decomposition. An appropriate domain decomposition
results in equal distribution of the workload over all nodes (load balancing), and
tries to keep inter-node communication as efficient as possible since here is the
most sensitive spot for introducing performance-limiting latencies. Depending
on the problem characteristics domain decomposition can be far from trivial and,
thus, has emerged into a research field in its own right (Domain Decompostion,
2007).

Specifically for the Lattice-Boltzmann method, several approaches for domain
decomposition have been taken. An approach presented in Freudiger et al. (sub-
mitted 2007) is based on hierarchical grids and uses the free METIS library (METIS,
2007). METIS is a partitioning tool for irregular graphs and FE-meshes. For exam-
ple, this library has been used by Schulz et al. (2002) for the simulation of porous
media with the Lattice-Boltzmann method, since the data reference layout for
cell information in their approach is based on lists because a major part of the
simulation volume is no longer referenced. When using regular grids as in iFlu-
ids, cuboidal subdomains are often more advantageous. Satofuka and Nishioka
(1999) have found that on a Hitachi SR2201 pseudo-vector machine a 2D domain
decomposition into slices is more efficient than into boxes (the authors are not
sure about the reason for this). Figure 4.6 shows different cuboidal decomposi-
tions, which divide the domain along one, two, or three axes to demonstrate the
impact on the number of a process’ communication partners and the amount of
communication data. iFluids supports user-defined domain decomposition, i.e.
one can define how many subdivisions should be created along each axis. For
determining the best domain decomposition one has to consider many aspects.
The efficiency of the decomposition possibilities depends on factors like the to-
tal number of processes available, the hardware in use; whether it is possible to
exploit optimization features within the reduced problem, whether the memory
layout influences performance (latency and bandwith capabilities, distributed or
shared memory). Furthermore, it depends on the MPI implementation (e.g. effi-
ciency of derived data types or dependencies between communication partners)
and, of course, on the characteristics of the simulation. The three-level paral-
lelization particular to the Hitachi SR8000 suggested a standard decomposition
into slices for iFluids.

As mentioned above, a decomposition aspect besides the communication vol-
ume is load balancing. It is clear that dividing a domain into regular cuboids

4.3. Parallelization of the Lattice-Boltzmann Solver 45

does not necessarily achieve optimal load balance. Load balance, however, is not
(yet) considered within the iFluids computational steering framework, because
due to the often-changing geometry during the simulation this would require the
domain to be re-decomposed after each geometry modification. Also, the idea of
an adaptive decomposition was not considered within this thesis.

Figure 4.6: Different layouts of domain decomposition: The yellow-colored do-
mains represent the communication partners of a singled-out process (colored
blue) in an LBM simulation (e.g. the D3Q15 model). It is evident that the more
cubical the domains are divided up, the smaller is the communication volume
and more communication partners are involved.

MPI Communication

After partitioning the computational work and assigning it to different processes,
the next aspect to consider is the MPI layout for inter-process communication. To
achieve the best possible communication performance between the SMP nodes of
the Hitachi SR8000, its vendor-optimized MPI libraries are used. The interprocess
communication consists of multiple sends and receives which have been imple-
mented using non-blocking MPI routines to avoid waiting times as in the case of
forced communication order. The data to be exchanged during a propagation step
is illustrated for a 2D example in Figure 4.7. Usually, this data is not stored con-
tiguously and has to be specially prepared for sending. There are basically three
methods (when using C/C++) to prepare the sending process. One approach,
for example, defines derived datatypes as MPI struct. Here, the memory loca-
tions of the relevant data collected for a send are described once and can be used
as a “stencil“ for each call. On distributed-memory systems MPI copies these
data into internal buffers for sending. Another possibility is to use MPI pack and
MPI unpack, which is, however, less comfortable to implement. Likewise, the
data in this case is also usually copied into internal buffers before sending. The
third option is to manually copy the data into a continuous vector and send it to
the communication partner. Luecke and Wang (2005) investigated three possibili-
ties with regard to their performance and found the use of derived MPI datatypes
most efficient. However, this result probably depends on the hardware and the
MPI implementation. Within iFluids derived MPI data types are used as the stan-
dard method.

Domain decompositions into slices offer a fourth option of data transfer with
overlapping domains (see Figure 4.8) as has been demonstrated by Pohl et al.

46 Fluid Simulation on Supercomputers

Figure 4.7: Data Exchange in two dimensions: The red arrows represent distri-
butions of domain boundary nodes which have to be sent to neighboring domains.
As there is no simple linear data layout to store these distributions contiguously
in memory, one has to design specific mechanisms for sending this data efficiently
via MPI.

(2004). For geometric dimensions of dimx x dimy x dimz and N subdomain slices
orthogonal to the x-axis this increases the total number of cells by a factor of
1 + 2(N−1)

dimx
. By overlapping the domains it is possible to exchange the complete

data set of all particle distribution as a contiguous data set. Although the com-
munication volume increases approximately by a factor of 2 in this approach, this
ansatz still leads to an overall performance gain.

For additional parallelization within an MPI process, the main computing loops
were distributed over the 8 CPUs of a node by insertion of COMPAS or OpenMP
directives. For exploiting this additional option of parallelization, the code needed
to be adapted as described along with further optimizations in the following sec-
tion.

4.4 Optimization of the Simulation Kernel

Besides parallelizing the computational kernel, the main computing loops in their
original form needed rewriting and manual optimization to fully exploit Hitachi’s
vectorizing and software-pipelining capabilities. Figure 4.9 shows the striking
performance gain of an optimized version of the original straight-forward paral-
lel Lattice-Boltzmann kernel that had been used in Kühner (2003).

Collision and Propagation

The LBM is usually divided into the steps of collision and propagation (see Chap-
ter 3), which — at first glance — implicates a code structure of separated loops
for collision and propagation. To reduce the data transfer between main memory
and processor and for better cache utilization, these steps can be fused into one

4.4. Optimization of the Simulation Kernel 47

CPU n

CPU n+1

Figure 4.8: Overlapping domains: Slice subdomains can be overlapped at their
boundaries. In the figure white arrows depict distributions which are not avail-
able within a process and have to be received from the neighboring domain.
There, the required distributions in question are marked red, while black refers
to distributions which are computed within the domain independently. By ex-
changing the complete row before the last one (stored contiguously in memory)
to the next domain, black distributions are overwritten by identical values and
red ones fill in the gaps.

compute nodes (8 CPUs each)

Figure 4.9: Comparison of performance before and after manual optimizations.
By paying special attention to the capabilities and characteristics of the Hi-
tachi SR8000 it was possible to achieve a considerable performance gain over
a straight-forward parallel Lattice-Boltzmann implementation.

48 Fluid Simulation on Supercomputers

loop (Wilke et al., 2003; Wellein et al., 2006). In order to simplify the code struc-
ture with respect to propagation, two arrays are used, which hold the distribution
densities of successive timesteps t and t + 1. Correspondingly, there is no need
to care about the order of updating the neighboring cells in the propagation step
anymore, and a complex code structure can be avoided.

There are two possibilities of implementing the propagation and collision loop:
the so-called pull and push version. In the push version collision is computed first
and the new distributions are propagated to the neighboring cells. In contrast,
the pull version collects the relevant distributions from the neighboring cells first
and then computes the collision on this basis. For the modeling of boundary
conditions the pull-version is advantageous (see Crouse (2003)), but (as claimed
by Pohl et al. (2004)) the push version performs better on the Hitachi SR8000 due
to the different memory access patterns and is therefore implemented within the
Lattice Boltzmann solver presented in this thesis.

Data Layout and Access

Regarding the computation of the collision step it is advantageous to store all
distributions of a cell contiguously in memory due to the line-fetching cache ac-
cess. In C/C++ the last index of an array addresses memory locations in linear
succession and should thus be traversed in the inner-most loops. Correspond-
ingly, the array layout reads f[x][y][z][i], where x, y and z are the dimen-
sions of the simulation domain and i refers to the number of distributions per
cell (cf. Fig. 4.10). For the immediately following propagation this data layout
causes loads from memory locations distant from the location of the current cell
distributions. Because of Hitachi’s pre-fetch capabilities combined with its high
bandwidth from the main memory this disadvantage can be compensated, how-
ever.

……

… …

f[i][x][y][z]

f[x][y][z][i]

Figure 4.10: On the left the distribution functions of a lattice site in a 2D ex-
ample have been sketched. Two different memory patterns of storing a node’s
distribution functions within an array are visualized on the right. The top pat-
tern has the distribution functions for one node arranged consecutively, whereas
the bottom layout stacks the arrays of the different distribution functions.

4.4. Optimization of the Simulation Kernel 49

In trying to improve the efficiency of data access, pointer arithmetic has been
eliminated as far as possible. For example, the three distinct indices x, y and z
have been merged into a combined running loop index xyz, i.e., f[x][y][z]
[i]→f ptr[xyz+i]. As a result, the compiler is able to analyze and optimize
the simplified loop structure in this code version much more efficiently with re-
gard to vectorization.

Vectorization and Software Pipelining

Pseudo-vectorization (Fig. 4.11) and software pipelining (Fig. 4.12) refer to special
hardware capabilities of the Hitachi SR8000, which are not generally available on
other architectures. By these two means code can be sped up considerably on
the Hitachi, but only at the cost of careful code tuning and through assisting the
compiler.

To benefit from pseudo-vectorization the data layout has been designed such
that loops operate on long linear arrays. In particular, long innermost loops are
advantageous with regard to pseudo-vectorization (Hager et al., 2003).

To make the code accessible to software pipelining, conditional statements for
handling the different boundary conditions have been removed. In case of a pre-
dominant number of fluid nodes, the if-statements get replaced by equivalent
arithmetic floating point operations, i.e., Boolean expressions are mapped onto
real-valued coefficient arrays for multiplication as shown in Figure 4.13. Because
of the data locality of the collision (see Chapter 3) and the usage of two arrays
for the timesteps t and t+1 (see above) no data dependencies between two loops
cycles occur, which would decrease the software pipelining’s efficiency or even
prohibit it completely.

This, of course, causes extra computational cost. Nevertheless, an amazing
performance gain can still be achieved with this method, because the avoidance
of the even costlier branching instructions — as introduced by the standard im-
plementation of conditionals — turns out to be several times more effective.

Another optimization approach especially suited for fluid scenarios character-
ized by a high percentage of wall nodes (e.g. porous media) is to introduce lists
storing nodes of the same type of boundary condition. This method requires ex-
tra memory and, additionally, the velocity distributions of one node and those of
the next one in the list may be located far away from each other in memory. An
additional performance gain apart from software pipelining and vectorization
is achieved by these lists by skipping the large fraction of internal nodes in non-
fluid volume areas. The simulation of blood flow within an artery (see Figure 2.3)
may serve as an example which benefits strongly from this kind of optimization
as here the fraction of fluid nodes to all nodes within the bounding box typically
lies in the range from 5% to 15%.

50 Fluid Simulation on Supercomputers

VST

A(:) = A(:) + N

Vector Pseudo-Vector

PF Lat LD + ST

LD + ST

LD + ST

LD + ST

PF Lat LD + ST

LD + ST

LD + ST

VADDVLD

Figure 4.11: This picture compares the addition of a constant to a vector on a
vector machine (left) and on a pseudo-vectorization architecture (right). With
its special memory interconnect of pipelined and interleaved memory access the
vector computer can load vectorial data to its registers very efficiently. Mak-
ing use of these large registers, the vector addition is processed in parallel by
multiple arithmetic units. Subsequently, the resulting data vector is stored in
memory again (Dowd and Severance, 1998). In case of pseudo-vectorization a
software-assisted pre-fetch function is used to enable a hardware-based memory
lookahead mechanism. In this way, waiting times between successive instruc-
tions are eliminated by pipelining data fetches from memory. In the CPU several
arithmetic units process the vector addition in parallel. Finally, the results are
stored to memory again. (Lanfear (2000))

I=1 I=2 I=3

No SWPL

I=1

I=2

I=3

Infinite resource

Recurrence

a=

=a a=

=a a=

=a I=1

I=2

I=3

Resources:

registers, f.p. units,
instruction issue,
memory bandwidth etc

I=1

I=2

I=3

Finite resource

Initiation interval

Figure 4.12: Without software pipelining, each iteration of a loop has to be pro-
cessed in serial and, only in principle, infinite resources (i.e., registers, arithmetic
units, etc.) would allow all loop cycles to be conducted in one step as long as there
is no data dependency between iteration steps. In reality, however, the loop cy-
cles can be executed in a pipelined (partially overlapping) manner depending on
the available resources and the data dependency between iteration steps (Lanfear
(2000))

4.4. Optimization of the Simulation Kernel 51

f = coll(f,f_eq) ·Σ ●●
 + f_eq ·Σ ●●
 + func2(f) ·Σ ●

f_eq(p,v)
p = p ·Σ ● + p(f) ·Σ ●●●●
v = v ·Σ ● + v(f) ·Σ ●●●●

f = f·Σ●●●●
 + func1(f) ·Σ●

○ universal

f = func2(f)f ● wall

f = f_eqf_eq(p,v)p, v(f)f ● pressure

f = f_eqf_eq(p,v)p(f), vf● velocity

f = coll(f,f_eq)f_eq(p,v)p(f), v(f)f = func1(f) ● slip

f = coll(f,f_eq)f_eq(p,v)p(f), v(f)f ● fluid

t+1t

Figure 4.13: This table shows in its left column various boundary conditions,
while the three columns in the middle show whether the values of the distribution
function f , the local macroscopic density p(f), and the local macroscopic veloc-
ity v(f) are directly available or whether they need to be computed at timestep t.
The last column shows for which boundary condition ’collision’ has to be com-
puted or where only the equilibrium distributions (feq) have to be defined to get
to timestep t + 1. Using the row with the ’velocity’ condition as an example, the
table conveys that the distribution functions are available at time t and that the
density p is a function of f , while the velocity v needs to be set to a certain value.
In general, equilibrium distributions are functions of the local macroscopic den-
sity p and of the local macroscopic velocity v. In proceeding to timestep t + 1,
all distribution functions are set to the equilibrium distributions. Finally, to
avoid conditional ’if’ branches within loops over all grid points of a domain, a
universal approach for all boundary conditions is shown in the last row. De-
pending on whether a boundary condition is set or not, a blending factor of 1 or
0 is introduced, respectively. These blending factors of each boundary condition
are multiplied by the corresponding formulae for f , p, v, feq at time t and f at
time t + 1 to activate them if needed. To improve the clearness of presentation,
the blending factors have been substituted by colored dots in the last row of the
table.

52 Fluid Simulation on Supercomputers

4.5 Porting and Optimizing the Solver for SGI Altix
Systems

To prove the portability of the computational framework, iFluids has been ported
to an SGI Altix Linux system. This was done on the Altix 3700 machine at Sara
Computing Center in Amsterdam and the whole computational steering appli-
cation was benchmarked on this system which is very much different from the
Hitachi architecture. Experiences made during the porting process could directly
be applied on the new Altix 4700 supercomputer at the Leibniz Computing Cen-
ter in Munich.

Hardware Description

The SGI Altix 3700 machine at Sara Computing Center consists of 416 Intel Ita-
nium2 CPUs (1.3 GHz, 3MB Cache) and hosts 832 GB of main memory. Each CPU
has access to 2 GB of local memory, which can be accessed very fast. In addition,
all CPUs of a node (theoretically up to 512 CPUs) can access the whole memory
of this node via ccNUMA (cache-coherent Non Uniform Memory Access) links.
However, memory access through ccNUMA is slower as compared to direct ac-
cess of local memory 6. The peak total performance of the Amsterdam SGI Altix
3700 is benchmarked as 2.2 TFlops/s.

Data Layout and Access

In contrast to the Hitachi SR8000 the performance on Altix systems can be in-
creased further by a slightly modified data layout. Donath (2004) compared three
layouts of data (f[x][y][z][i],f[i][x][y][z], and f[x][i][y][z]) and
found f[x][i][y][z] performing best, because in the computation the den-
sity distributions labelled through i are located closer to each other. The same is
true for the locations where the updated density distribution has to be copied to
during the propagation.

Wilke et al. (2003); Donath (2004), in addition, suggest grid merging and grid
compression. Instead of using two grids for the timesteps t and t+1 an interleaved
grid is used to improve spatial locality (see Figure 4.14).

Grid compression, again, increases the spatial locality of memory access and
saves main memory. Since for the propagation the computation only requires the
direct neighbors, the idea is to shift the grid one unit in each direction. Therefore,
one common grid can be used extended by some ”ghost layers” (see Figure 4.15).
The direction of the shift then determines the sequence in which the cells will
need to be updated to avoid overwriting cell information which is still required.

6The ccNUMA link allows for data-transfer at a rate of 0.25 to 0.5 % compared to local memory
access. Depending on how many router hops need to be taken the latency is increased (about 50
cycles per hop). The main problem of this architecture is a potential congestion of the ccNUMA
link in pparallelprograms

4.5. Porting and Optimizing the Solver for SGI Altix Systems 53

Figure 4.14: A 2D example of grid merging is shown in this figure: To improve
data locality in the propagation step, the two — originally separate — arrays
for storing the distribution functions at timesteps t and t + 1 are stored as an
interleaved array after merging.

Figure 4.15: Grid compression is used to further improve spatial locality of the
data needed for collision and propagation, and to save memory. The array hold-
ing the distributions at timestep t (left) is colored blue, while the yellow array is
the target for storing the distributions after the propagation. Since the two ar-
rays are translated by one unit in each direction, no relevant data is overwritten.
For the following timestep t + 1 (right) the shifted arrays need to be processes in
a different order.

54 Fluid Simulation on Supercomputers

Parallelization Strategy

The hybrid parallelization model as shown in Figure 4.5 was used to optimize
iFluids on the Hitachi SR8000, combining MPI and COMPAS parallelization. On
the SGI Altix only MPI parallelization has been applied and, hence, the shared-
memory capabilities of this supercomputer are only exploited where SGI’s vendor-
optimized MPI library can make use of this architecture.

Besides the usual pitfalls one has to keep in mind when using OpenMP, us-
ing it efficiently on the SGI Altix NUMA system requires careful programming.
To achieve good performance one has to obey the ’first-touch placement’ rule
when accessing memory or data. Since each processor has its own local memory,
which can be accessed very fast, it is strongly recommended to place data that will
mainly be used by one processor in its corresponding local memory. The first-
touch placement ’pins’ the data to that CPU’s local memory which touches the
data first (usually done during data initialization) (Wellein et al., 2006). Wellein
et al. (2006) found good parallel efficiency for AMD Opteron NUMA architec-
tures due to their separate paths to memory. Accordingly, on Intel Xeon multi-
processor systems the flat memory model causes a memory bottleneck. Bella et al.
(2002) investigated parallelization of the LBM using OpenMP on an SGI Origin
3200 and found a good speed-up behavior.

Performance Comparison SGI Altix Systems versus Hitachi SR8000

Fortunately, many code optimizations that had been implemented with the Hi-
tachi architecture in mind also performed well on the Altix right from the start,
since many optimization aspects are also valid for this system. An example is
the fusion of collision and propagation into one loop (Wellein et al., 2006; Wilke
et al., 2003). Altix-specific optimizations can be activated via option flags within
iFluids. The performance of the application on both machines is compared in
Figure 4.16. The performance gain achieved by using the Altix 3700 as compared
to the SR8000 lies at about 70%, while both codes show a good speed-up on their
machine.

4.5. Porting and Optimizing the Solver for SGI Altix Systems 55

5 10 15 20 25 30 35 40 45 50 55 60

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

SGI Altix 3700

Hitachi SR8000

Number of CPUs

M
Lu

p/
s

Figure 4.16: This graph shows the performance of the Lattice-Boltzmann kernel
running on Hitachi SR8000 (green) and SGI Altix 3700 (blue). Both codes show
good speed-up behavior on the respective machine. The performance gain seen
after porting the kernel to the Altix was about 70% when using 40 processors on
both machines.

Chapter 5

Interactive Data Exploration

After the development of a fast CFD solver, the next step towards a computa-
tional steering application is the implementation of on-the-fly visualization of
data (online monitoring), which will be covered in this chapter. First, the term
scientific visualization will be introduced, followed by a brief description of the
supported hardware within the computational steering framework iFluids and
the presentation of the visualization module that has been developed.

5.1 Scientific Visualization

Scientific visualization refers to visualization of scientific data sets. In this context
we will now focus on the generation of visual representations from the results of
scientific simulations in the field of fluid dynamics.

With increasing computational resources the resulting data sets are growing as
well. Especially simulations in the field of CFD frequently produce huge amounts
of data that have to be postprocessed. Modern visualization techniques provide
powerful tools for data exploration.

According to Bellemann (2003) one has to differentiate between static and dy-
namic environments. Static environments are used for investigating time invari-
ant data such as in classical postprocessing of precomputed data. In the case of
dynamic environments an external process generates new data. For both cases
interactive data exploration is a compulsory feature of modern visualization in-
terfaces. It is important to note that in this context user interaction refers to the
visualization process only and not to any computational steering interactions in-
fluencing a simulation. A prerequisite of achieving interactive data exploration
is that the visualization is fast enough (i.e., at least 10 frames per second) without
sacrificing important details. In addition, fast responses to user interactions are
required to allow an accurate control of the visualization and to avoid uncertainty
on the user’s side.

A modern visualization environment should offer an intuitive means of inter-
action to permit a user to modify parameters controlling the presentation in order
to be able to extract qualitative and quantitative information from the investi-
gated data sets. Accordingly, the interaction methods should not require any ex-

56

5.2. Visualization within iFluids 57

planation or user guides to avoid a possibly long familiarization phase (Norman,
1988; Sanders and McCormick, 1993).

The first breakthrough fulfilling the above requirements is due to Bryson and
Levit (1992) who set up a virtual wind tunnel. They developed a virtual-reality
environment to explore precomputed unsteady flow fields in 3D (cf. Fig. 5.1).
Their virtual-reality environment allowed a user to explore flow data similar to
the way it is done in a real windtunnel by, e.g., placing smoke traces into the fluid
to visualize streamlines. One important advantage of the virtual windtunnel was
the close observation of the flow without disturbances due to measurement facil-
ities as in a real-life tunnel.

Figure 5.1: The virtual wind tunnel: Flow visualization around a space shut-
tle within a virtual-reality environment. Within this virtual windtunnel the
user wears a head-tracked stereo display, effectively displaying 3D information,
and an instrumented glove for intuitive positioning of flow visualization tools.
(taken from Bryson and Levit (1992))

5.2 Visualization within iFluids

As found by Bryson and Levit (1992), immersive visualization is the best suited
method for intuitive data exploration. Therefore, the computational steering
framework iFluids has been designed to allow connections to several virtual envi-
ronments. Standard displays such as used for workstation PCs and Laptops are
also supported (see Fig. 5.2).

Virtual Environments

• Desktop System: In this case iFluids uses a conventional desktop monitor
as a window to the virtual world. Traditionally, this is a ’flat’ projection of
3D graphics of a data set. Through the use of a set of LCD shutter glasses,
visualization can be extended to support stereoscopic viewing. This method

58 Interactive Data Exploration

is called active-stereo as the display on the screen alternates between a left
and right eye view of the 3D scene and, in accordance, the shutter glasses
switch between opaque and transparent alternating for the right and left
eye. The switching occurs fast enough to let the brain fuse the two views to
a stereoscopic view.

• Passive Stereo Projection: A passive stereo backprojection system installed
at the Chair for Bauinformatik (TU München) has also been used for the
computational steering setup. It consists of a special-made screen in front
of two projectors which are equipped with two orthogonally oriented po-
larization filters. One projector displays the view for the right eye and the
other the corresponding view for the left eye. When using orthogonally
oriented polarization filter glasses the two superimposed views from the
projectors are filtered for the dedicated eye to receive the corresponding
stereoscopic view.

• Holobench: The third integrated option for the interactive fluid simulation
is offered by the holobench at the LRZ. This is a combination of two pro-
jection screens mounted at a right angle to form an L-shaped visualization
workbench. Ideally, it is meant for creative teamwork for groups of 2 or 3
people. Again, with LCD shutter glasses a sterescopic image generates ac-
tive stereo. Additionally, the master user’s head is tracked and the view of
the virtual world is adapted accordingly to the position of this user. This
enhances the impression of 3D objects in front of the spectator.

Figure 5.2: Supported Environments: Within the standard desktop environ-
ment (left) conventional 3D graphics and stereoscopic views are supported. A
large passive stereo backprojection screen (middle) offers more immersive data
exploration. One step further into immersive environments can be achieved by
using a 2-screen holobench (right, taken from ConceptCar (2007)) together with
head tracking and a tracked input device for improved intuitive interaction fea-
tures.

5.2. Visualization within iFluids 59

Data Exploration

For a better understanding of the data and to assist the user’s orientation in the
virtual world data representation objects and CAD-generated geometry of the
simulated scene are visualized at the same time. Occlusion of objects is counter-
acted by providing a mode with transparent visualization.

An intuitive exploration of a scene is enabled via three navigation modes. The
most unconstrained is the ’fly mode’, in which a user can freely move through
the scene in all directions and the viewpoint is adjusted accordingly. The ’walk
mode’ is thought to support a realistic inspection of rooms and buildings in that
the user’s point of view is fixed to an adjustable z-level, whereas he can still freely
move in x and y direction. In both modes the view representing the user’s direc-
tion of gaze can be rotated freely so that observation from his current position is
not otherwise constrained. The third navigation mode is the classical bird’s eye
view. Here the user’s position is fixed and instead of modifying the user’s point
of view the scene is transformed by rotation, translation and zooming in and out.
During the interactive data exploration the user can switch to any mode at any
time, depending on his requirements.

For visualization of fluid data a series of standard techniques for visual analy-
sis have been implemented:

• Vector planes and fields visualize the direction of the flow’s velocity field
at a location in space through an arrow and the velocity value determines
it’s length and color. Vector planes orthogonal to the room’s axes can be
inserted, translated and rotated interactively. Vector fields are displayed in
a cuboid with interactively definable extensions.

• Streamlines are integrated paths along the velocity vectors of the flow field.
The starting points of integration are inserted into the scene with the help
of geometric ’seed objects’ such as rectangles, lines, or circles. These repre-
sentatives can be transformed arbitrarily and the number of starting points
can be adjusted. The velocity is represented through the coloring of the
streamline along its path.

• Motion particles are animated particles moving along the streamlines from
the location where they were inserted into the scene. Inserting the particles
is done analogously to the insertion of streamline starting points.

• Isosurfaces can be used for the evaluation of scalar quantities. An isosur-
face is a surface displaying all points in a data field with a certain value.
Within iFluids an isosurface can be applied to pressure and temperature
fields or velocity components. The value determining the surface can be
adjusted continuously and the quantity visualized can be changed at any
time. The color at a particular point on the isosurface stands for the corre-
sponding magnitude of the displayed value.

• Cross-sections also display scalar values using a color map. They can be
inserted and transformed in the same way as vector planes.

60 Interactive Data Exploration

All data representation objects can be added to or removed from the scene at
any time and as often as needed. Figure 5.3 shows some screenshots of example
visualizations.

Figure 5.3: Data exploration: On the left cutting planes depict the x-component
of the velocity field, while the right screenshot shows streamlines following the
fluid flow. Within both screenshots the coloring ranges from blue to red repre-
senting the minimum and maximum values, respectively.

Besides the transformation all parameters of the visualization objects can be
adjusted interactively to facilitate easy and comfortable exploration of the data,
in particular, a context-based menu has been implemented for controlling the
different functions. For all these interactions different kinds of input devices can
be used or combined with each other. So far, conventional desktop keyboards
and mice are supported, as are 3D Spacemice and a Wand device, which is used
for visualization and navigation especially in virtual reality environments (see
Figure 5.4).

Figure 5.4: 3D Spacemouse and the Polhemus ’Stylus’ Wand

Within the computational steering application the data is continuously varying
over time (dynamic environment). Therefore, the visualization module needs to
update the data fields automatically to allow for an intuitive visualization and

5.2. Visualization within iFluids 61

steering terminal. In the following the design of the visualization module will be
presented.

Design of the Visualization Front-End

The visualization frontend has been implemented using Mercury’s OpenInventor
3D scene graph libraries (Mercury Computer Systems, Inc., 2007b). To guaran-
tee smooth interactive data exploration, a multithreaded viewer is used (see Fig-
ure 5.5). Multithreading is necessary to allow interaction with data representation
objects while, concurrently, the data is processed for visualization in a separate
thread. This is especially important for time-varying data sets, which prevail in
computational steering applications.

Thread
for

Interaction

Thread
for

Visualization

Thread
for

Receiving
Flow Data

I
N
T
E
R
F
A
C
E

Viewer

Figure 5.5: Design of the visualization module: The multithreaded viewer per-
mits concurrent postprocessing of data and user interactions. The visualization
thread communicates with the thread receiving the external flow data via a spe-
cial interface. An internal mechanism takes care of the automatic update of the
data representation objects in the visualization.

In addition, the multithreaded design needs to be extended with a mechanism
to guarantee the automatic update of currently received external data. Therefore,
the scene graph is built with special visualization nodes, which are connected to
so-called Property Objects, to avoid copying data sets into these nodes. Through
this connection the visualization objects listen on their property links and are
automatically updated as soon as new data arrive. In contrast to the data rep-
resentation objects in the scenegraph, these property classes work with pointers
and are notified of changes via calls of an update routine.

The visualization front-end has been designed as a module with interfaces for
data exchange and is therefore encapsulated from other structures. This, addi-
tionally, enables a connection of the visualization to other data services, as well as
making the application ready for multi-client extensions (Borrmann et al., 2006).

Chapter 6

Interactive Problem Definition and
Grid Generation

The previous chapters described the simulation kernel and the interactive data
exploration of iFluids. Those are the central components of an online monitored
simulation. To achieve real computational steering and thus allow the user to
interact with the simulation during its execution, an additional steering envi-
ronment is required. This chapter will therefore introduce the important as-
pects of steering in the context of a CFD simulation, which comprises basic, grid-
independent steering options, the definition of boundary conditions as well as
the online modification of the geometric model. Furthermore, the user interface
of the interactive simulation will be briefly described. Since the incorporation of
geometric modifications into the simulation model is central to enabling full in-
teraction, the focus in the second part of this chapter will be put on a specially
optimized grid generator.

6.1 Steering of Global Simulation Parameters

The simplest level of interaction with a simulation is to stop, pause or restart the
simulation run. This can be extended rather easily to changes of global parame-
ters and physical constants, e.g., the viscosity in the case of fluid simulations. At
this point the interaction facilities of most other computational steering frame-
works end. The main characteristic of these types of interaction is that their influ-
ence on the simulation is grid-independent. Some of the more sophisticated inter-
action types offered by iFluids are the possibility to activate turbulence modeling
and to choose between several optimization strategies for the main computation
routines so as to be able to adjust quickly and easily to the different strengths of
the presently used hardware.

These basic interactions are accessible through a context-based 3D menu which
can be used with stereoscopic visualization systems as well as with conventional
desktop workstations. The supported input devices are conventional desktop
mice with standard keyboards, the Polhemus Stylus wand, and 3D Spacemice,
which have been described in Chapter 5.

62

6.2. Interacting with the Geometric Model 63

6.2 Interacting with the Geometric Model

One of the key features of iFluids distinguishing it from other computational
steering applications is the possibility of interactive modifications of the geomet-
ric setup and its boundary conditions during ongoing computation. The geomet-
ric model will now be introduced as a starting point of the description of this
characteristic.

Geometric Model

The geometric model used in iFluids is based on boundary representation objects
(Brep), stored in the STL stereolithography file format. This format contains a
description of a triangulated surface, namely the coordinates of the vertices and
the normal of each facet (wikipedia, 2007c). STL files can be obtained easily since
this format is a standard export option in most CAD systems and, in addition,
numerous tools allow converting most of the well-established formats such as
3DS, DXF, OBJ, IV, AM, and VRML into STL.

Figure 6.1: Working place scenario stored in the STL file format: This figure
shows triangulated surfaces stored in STL format. One file can contain several
distinct objects, which can be loaded and stored as a group.

An STL file is able to hold the description of several distinct objects and as
such permits grouping of objects. For example, an office working place can be de-
scribed by a group of objects comprising a desk, a chair, a telephone, a desktop PC
etc. (see Fig. 6.1). For use within iFluids (and between iFluids sessions) the stan-
dard STL file format can be supplemented by several fluid mechanical attributes
without losing its compatibility to standard STL readers or import software. This
has been achieved through the use of special ’magic keyword’ comments which
are only evaluated by iFluids and otherwise ignored. With the functionalities of

64 Interactive Problem Definition and Grid Generation

grouping objects and attaching corresponding fluid mechanical attributes it is
possible to define a complete scenario of a room with doors, windows, ventila-
tion facilities and furniture, which can be loaded at application start to generate
the initial geometry setup and boundary conditions. This shortens the interactive
initialization phase as compared to starting from scratch without any initial start
up description, where the hardcoded startup is a simple cuboid room with a door
and a window as inlet and outlet, respectively.

Offline Preprocessor iFluidsPre

To extend standard STL files with fluid mechanical attributes and to be able to
group and split objects for the initial starting scene, the preprocessing tool iFlu-
idsPre has been developed (Kollinger, 2007). iFluidsPre has been implemented as
a module of the general-purpose 3D and VR visualization system Amira (Ad-
vanced 3D Visualization and Volume Modeling (Mercury Computer Systems,
Inc., 2007a)).

Within iFluidsPre a complete scene of a fluid simulation can be constructed. By
loading STL files with the geometric configuration for an indoor simulation of a
room, the fluid domain and its boundary condition is defined through the room’s
walls, complemented by more details such as the basic furnishing, ventilation
facilities or other inner fluid obstacles.

As already mentioned, the room’s geometric configuration is based on object
groups stored in a single STL file. The objects building up the group in this con-
text will be referred to as subobjects in the following. When double clicking on an
object (group), iFluidsPre enters the so-called ’Subobject Mode’ of such a group
and displays the individual subobjects in different colors as shown in Fig. 6.2.

Figure 6.2: A composition of facilities and devices needed in a surgery room is
shown. The different colors indicate the individual subobjects of this grouped set
of geometrical representations.

6.2. Interacting with the Geometric Model 65

iFluidsPre allows the user to group several objects from different STL files and
to store this group of objects in a new file. Within existing objects or subobjects
the user can furthermore define a group of facets which can be stored as a new
subobject. Besides defining new subobjects, it is also possible to merge several
subobjects into one object or to delete unneeded subobjects or single facets.

As a module of Amira iFluidsPre, in addition, offers Amira’s full functionality
with regard to modifying the geometry of facet surfaces. This comprises coars-
ening and refining areas of a facet mesh, removing selected triangles, as well as
modifying the orientation of their normals or coordinates.

The main objective of iFluidsPre, however, is the assistance in defining fluid
mechanical attributes for whole objects or groups of facets. Therefore, groups of
facets can be defined and tagged by boundary conditions and material parame-
ters (see Figure 6.3). Currently, boundary conditions of the following types can
be chosen (one per group):

• At boundaries a no-slip condition states that the fluid’s velocity vanishes
along the boundary. Following He et al. (1997) this has been implemented
as a bounce-back condition in the Lattice Boltzmann solver of iFluids.

• At frictionless boundaries a slip condition is implemented, which does not
influence the velocity along the boundary but sets the velocity orthogonal
to it to zero.

• At flow inlets as given, for example, at ventilation facilities, a velocity con-
dition can be set. To determine the correct value for the Lattice Boltzmann
Model, similarity considerations have to be taken into account, e.g., by us-
ing the Reynolds number (see Equation (3.31)).

• It is also possible to set a pressure condition at a boundary. In case the
boundary face is orthogonal to a coordinate axis, the pressure condition can
be enhanced by determining missing distributions following Zou and He
(1997).

• In addition, a temperature and a temperature gradient condition can be
attached to the surfaces of the investigated model to support currently on-
going developments of iFluids which will consider thermal phenomena for
indoor fluid simulations and comfort studies (van Treeck et al., 2007).

• To be prepared for future extensions stubs for a user defined condition has
also been implemented.

Combinations of boundary conditions are naturally supported, however, the
user himself must take care to limit himself to meaningful combinations. For ex-
ample one should consider that the combination of pressure and velocity cannot
be set at the same boundary without already knowing the solution of the problem
(Tölke, 2001). Furthermore, mass conservation must be guaranteed if only ve-
locity conditions are used. Besides the boundary conditions already mentioned,
further attributes and material parameters such as the specific heat or the surface
coefficient of heat transfer can be set as well .

66 Interactive Problem Definition and Grid Generation

Figure 6.3: This figure shows the embedding of the iFluidsPre module into
Amira. On the left an object set is displayed in a view where its subobjects
are represented in different colors. The currently selected subobject (the yellow
inlet of ventilation installed at the ceiling) is marked with facets outlined in red.
On the right the current settings of the boundary conditions are shown and can
be adjusted according to the user’s wishes.

6.2. Interacting with the Geometric Model 67

Interactive Geometry Modifications

As mentioned above the key feature of iFluids is the possibility to modify the ge-
ometric model and to define or change associated boundary conditions during a
running simulation. Concerning the interactions with the geometry itself, addi-
tional objects can be loaded (i.e., inserted) from additional STL files, which may
optionally be prepared with iFluidsPre. The context-based 3D menu supports the
loading process by displaying previews of the contents of the STL files within
the currently selected directory. Objects or whole groups of objects loaded to the
scene can be translated, scaled, distorted or rotated within the scene, or they can
be added to or removed from it (see Figure 6.4). The same modifications can be
done within object groups, i.e. subobjects can be transformed relative to other
subobjects of its group, or can be deleted.

Figure 6.4: Interaction with the geometric model: The upper left screenshot
shows the original object group. Its selection is represented by displaying a
bounding box with draggers which enable control of various transformations.
In the upper right screenshot a translation in the x-z-plane is shown. In the
lower left the object group is distorted in several directions by using the scaling
draggers, while the lower right picture demonstrates a rotation transformation.

Such interactions with the geometry are realized either by using OpenInventor
draggers (see Figure 6.4) for all transformations with a conventional mouse or 3D
Wand, or by using a 3D Spacemouse to access the objects directly for all possible
transformations.

These modifications are immediately and automatically incorporated into the
running simulation and the results of the simulation kernel adapt to the updated
configuration, accordingly.

68 Interactive Problem Definition and Grid Generation

Interactive Definition of Boundary Conditions

Besides the modifications of the geometrical layouts a central aspect within the
computational steering framework iFluids is how boundary conditions are de-
fined or adjusted during a running simulation. The scene can be modified by re-
arranging inner objects with ’regions’ carrying certain boundary conditions, e.g.
windows, doors or ventilation inlets in an office room.

The confining surfaces of the simulation domain can be marked with the at-
tribute ’hull’ and will then be displayed in a transparent manner whenever they
would cover the user’s view onto inner parts of the scene as shown in Figure 6.5.
As already mentioned, subobjects of a selected object are colored differently and,
in addition, an informative pop-up message conveying the current properties of
the picked subobject is displayed (see also Figure 6.5).

object: office_door
boundary conditions:
velocity_x: 0.050
velocity_y: 0.000
velocity_z: 0.000

object: office_door
boundary conditions:
wall
attributes:
hull

Figure 6.5: This figure shows a simple setup of an office room. The boundaries
of the room are defined through walls, a door and a window, which are assembled
into one group of subobjects. In addition, the walls have been marked with the
’hull’ attribute, which causes the display of only those parts of the room con-
finement, which do not hide other parts of the scene. This effect is best observed
by comparing two different views of the same scene. Furthermore, the different
colors of the subobjects are shown as well as the properties information of either
the door (left screenshot) or the walls (right screenshot).

Frequently, boundary conditions are represented by geometries coplanar to
faces of the basic geometry, e.g. windows in a wall. This modeling shortcut is
made possible through assigning a priority level to these boundary conditions
which can - so to speak - ’overwrite’ other settings with lower priority. However,
the coplanarity of the facets involved usually makes it difficult for them to be
selected unambiguously. Therefore, ’Explosion Mode’ can be activated, which
temporarily moves apart or explodes all coplanar faces with respect to the object’s
center and in this manner allows an easy selection as shown in Figure 6.6.

To set new boundary conditions or to modify existing ones, dialogs have been
implemented, which can be displayed in either 2D, or 3D for either normal desk-
top environments, or environments offering stereoscopic views. The dialogs offer

6.3. 3D User Interface 69

Figure 6.6: Overlapping planes: These screenshots show exploded planes to
simplify selection (left) and the correctly selected but partly hidden subobject
(right).

means of naming the boundary conditions, of choosing their type, and of setting
the corresponding values. In addition, the above-described hull attribute can be
set, and for overlapping boundary conditions a priority can be defined to specify
which condition should overwrite others (cf. Fig. 6.7).

In comparison to the offline preprocessor iFluidsPre the only unsupported func-
tions are coarsening or refining the faceted surface or changing the orientation of
the triangle normals. Thelatter rely on Amira-internal calls and would have to be
separately implemented.

6.3 3D User Interface

As already mentioned in the previous chapter (see Chapter 5), it is advantageous
for computational steering applications to be run in a virtual-reality environment.
To support an intuitive steering of the simulation in virtual reality a specially
adapted user interface is required. Therefore, an immersive and intuitive 3D
user interface avoiding classical 2D interaction has been developed. It serves as a
context-controlled 3D console assisting a virtual fluid-flow experiment while still
preserving the possibility to perform computational steering of the application
via a standard 2D workstation mouse and keyboard.

To be able to stick to simple (and possibly also single) interaction devices such
as mouse or wand, two major modes of operation have been introduced: The first
is called ’direct mode’ and provides the possibility of direct interaction with and
navigation within the scene by using the standard input devices Wand, Space-
mouse, and desktop mouse. In the second mode (’menu mode’) a menu panel is
displayed in the lower part of the viewport giving access to a variety of control
possibilities.

70 Interactive Problem Definition and Grid Generation

object: office_door
boundary conditions:
velocity_x: 0.050
velocity_y: 0.000
velocity_z: 0.000

object: office_door
boundary conditions:
wall
attributes:
hull

object: office_door
boundary conditions:
velocity_x: 0.050
velocity_y: 0.000
velocity_z: 0.000

Figure 6.7: This figure shows the dialog for setting or modifying boundary con-
ditions of a selected object or subobject.

Direct Mode

The application is started in ’direct mode’, where the user - again - can choose
between two navigation and two selection modes. To explore the scene, he may
fly through or examine it from a fixed point of view, for example, by rotating the
corresponding 3D model. The first selection mode allows to choose between the
different objects representing the configuration of the simulation, i.e. fluid obsta-
cles and boundary conditions. In the second mode the user can switch the selec-
tion between the data visualization objects i.e., cutting planes, streamlines, vector
planes, and isosurfaces. Once an object has been selected, it may be moved to a
different position. Depending on the current interaction (either navigating within
the scene, or selecting data visualization objects or simulation objects, obstacles
or boundary conditions), a context-based menu can be invoked, which appears
with appropriate options.

Menu Mode

As already mentioned, there are three different menu categories according to the
current context. The first one (’Scene Menu’) is called while exploring the scene
in navigation mode. This menu offers the insertion of new fluid obstacles, new
boundary conditions, data representations, or a legend as well as the modification
of global fluid flow parameters.

When adding a new obstacle, for example, the menu allows browsing through
the file system to load the geometric description of a CAD-generated object. The

6.3. 3D User Interface 71

file browser makes use of the capabilities of the 3D visualization in that it shows
a small rotating preview of the currently browsed object.

A context-based menu offers the advantage that the user can navigate directly
through the menu without having to search for the respective submenu. This
allows faster access and a more intuitive way of working as compared to user
interfaces with deep menu trees. Furthermore, the menu information and graph-
ical representation is reduced to its essential minimum to prevent annoying oc-
clusions of the scene. If the selection of an option calls another menu branch the
precedent menu will be replaced with the new one. Since the menu can be acti-
vated or left at any time we decided it to be displayed view-fixed regardless of
the users current point of view, which may change during navigation. As shown
in Figure 6.8, the menu has been arranged in front of the user similar to a console
or panel. This preserves the view onto the scene even while controlling the menu
in a fully immersive manner.

Another helpful detail is the highlighting of the currently selected menu item
to give the user feedback which option would be selected in the menu. The menu
options can be selected either by using the arrow keys on the keyboard, rotations
of the space mouse knob, or by pointing at and clicking on them with a wand or
the desktop mouse.

For complex settings as is the case when defining boundary conditions, the 3D
menu switches to a 2D shape (also view-fixed) to be able to see all settings options
at one glance in an efficient way (see Fig. 6.7).

Figure 6.8: This screen capture shows the ’Scene Menu’ offering the user options
to add obstacles or data representations, to control flow parameters and other
configuration options of the simulation.

72 Interactive Problem Definition and Grid Generation

6.4 Grid Generation

As already mentioned, a key-feature of iFluids making it stand out from other
computational steering applications is the possibility to change the geometry and
its associated boundary conditions during a simulation. The few applications
which are also capable of handling interaction with the geometry are restricted
to predefined and parameterized objects. Within iFluids arbitrary geometry can
be loaded at any time into the currently investigated simulation scene without
particular preparations and can be freely manipulated. This is due to a powerful
grid generator which maps the geometry onto the computational grid of the Lat-
tice Boltzmann simulation at comparatively little computational costs. In addi-
tion, the lattice sites of the computational grid contain object-specific information
about the boundary conditions needed for the fluid simulation.

Voxelization

The process of converting the surface representation of a geometric object or scene
to a 3D volume discretization on a grid of a given resolution is referred to as vox-
elization. The elementary unit volume within such a grid is called a voxel in anal-
ogy to the pixel in 2D-scanline conversion for raster graphics displays. Depending
on the grid resolution and type of geometry, the voxelized object most often is not
an equivalent representation of the original but only an approximation.

Even so, there are several fields of application, in which a volume-based rep-
resentation of an object is necessary or advantageous. For example, voxelization
methods have been used for volume visualization (Jones, 1996)), radiosity and
ray tracing (Krumhauer et al., 1999), volumetric model repair (Kolb and John,
2001), and collision detection (Gibson, 1995). Furthermore, measurements in
medical, physical, or engineering applications often result in volumetric data.
Finally, certain types of numerical simulation are computed on Cartesian grids
requiring the transformation of point or surface data into a volume representa-
tion.

For fluid simulations based on the Lattice-Boltzmann method Cartesian grids
are used quite typically. The handling of complex CAD geometry data is thus
comparatively simple, but ’brute-force’ voxelization of a scene with several 10 to
100 thousands of surface describing polygons remains a computation-intensive
task. It is therefore worthwhile to try to speed up the voxelization process by
applying a space-partitioning algorithm to generate a volume representation via
an octree. An octree is a hierarchical data structure with one root node and —
depending on a certain criterion — with either eight or no child nodes. The latter
may themselves be father nodes to follow-up trees or end the tree as leaves if
without children (see Fig. 6.9).

An octree is especially well suited for space partitioning problems in 3D space
since it is obvious to identify the eight children of the root node with the eight
cartesian octants of an object’s or a scene’s bounding cube. Subdividing the oc-
tants which still contain parts of the geometry can be repeated a specified number

6.4. Grid Generation 73

of times, whereby the number of recursions determines the level of refinement of
the octree (Fig. 6.9).

Figure 6.9: This scheme shows two refinement steps of how to get from a single
root-node octant (left) to a level 2 octree (right).

The voxelization algorithms used in iFluids work on triangulated surfaces as
input, which most CAD systems offer as a standard export option. In iFluid’s grid
generation module the common STL stereolithography file format (wikipedia,
2007c) is supported. For a given surface the STL file contains a list of its triangles
vertex coordinates and normal vector.

There are a series of approaches to voxelization, the three most relevant meth-
ods have been presented, e.g., by Stolte and Kaufman (2001), Haumont and Warzee
(2002), and Mundani (2006). The method of grid generation applied within the
computational steering framework iFluids is related to these in so far as surfaces
are converted into a volumetric representation using octree data structures. Al-
though Stolte and Kaufman (2001) also concentrate on a fast conversion, their
ansatz is limited to objects described analytically through an implicit definition.
The other study by Haumont and Warzee (2002) uses polygons as input, how-
ever, their focus lies on model repair, visibility determination, collision detection,
and complete interior/exterior classification of all voxels with very high compu-
tational cost. This leads to a voxelization process too complex for interactive use.
The third method (Mundani, 2006) converts surfaces into an octree description
using half space partitioning. This algorithm relies on convex objects defined by
closed polygonal surfaces and, accordingly, is very efficient for basic geometrical
shapes. iFluids offers two methods of grid generation, one for creating a uniform
Cartesian grid, the other to produce hierarchical Cartesian grids.

74 Interactive Problem Definition and Grid Generation

Uniform Cartesian Grids

The Lattice-Boltzman solver (described in 3) currently used in iFluids is based on
a uniform Cartesian grid. Accordingly, the grid generation process starts with an
empty grid without any geometry data or boundary conditions. To map the geo-
metrical data with its corresponding boundary condition information efficiently,
a root octant is computed for each triangle. Depending on the size and oriention
of the facet, these root octants are usually rather small. The size of the root oc-
tant and the grid resolution also defines the level of refinement needed. It can be
determined through

octlevel = dlog2lenghtmaxe+ 1, (6.1)

where octlevel is the maximum level of refinement in the octree and lenghtmax

represents the maximum length of the bounding box of a facet in grid units. Note
that this level of refinement creates sub-grid leaves as shown in Figure 6.10 to
improve the geometry’s approximation.

Figure 6.10: Recursive refinement for a 2D example: The black grid points are
set to approximate the triangle while the blue grid points indicate which points
would have been set additionally without the sub-grid leaves created by the extra
refinement.

6.4. Grid Generation 75

Figure 6.11 shows the octree structure for the described algorithm. For each
triangle an individual octree has been created and recursively been refined.

Figure 6.11: In this example a Pentakis dodecahedron has been voxelized on a
uniform Cartesian grid. For each triangle the generated root octants with their
tree structure with 64x64x64 grid resolution are displayed.

Hierarchical Cartesian Grids

Lattice-Boltzmann solvers can also be performed on hierarchical grids as pro-
posed by (Crouse et al., 2003; Tölke et al., 2006; Thürey, 2007). An important op-
tion accessible with this kind of grid is the simple realization of patches of higher
resolution around critical parts of the geometry. An extreme variant of this can
be used for blood flow simulations as proposed in Götz (2006). The octree ansatz
can be utilized to identify regions around the geometry (the artery with the in-
terior flow) for setting up the compute cells, while the remaining grid outside
these boxes is ’discarded’. To also support such solvers, a modified algorithm has
been developed. Here, the algorithm starts with one root octant for the whole
simulation scene, which is refined to the same level of refinement as obtained by
Equ. 6.1. In contrast to the algorithm described above, all triangles have to be
tested for the octants and a list of triangle ’candidates’ intersecting the current oc-
tant will be given to the next generation of child octants. In addition to the level
of refinement, a second criterion to stop the refinement of the current octant, then,
is an empty candidate list. Since the triangles have to be tested several times for

76 Interactive Problem Definition and Grid Generation

intersection with the octants (although it may turn out that they have to be set
by another part of the octree), this algorithm is slower than the above-described
version for uniform Cartesian grids.

Figure 6.12 shows the octree structure, serving as the basis for the hierarchical
grid. To obtain a grid which can be used for a Lattice-Boltzmann simulation, the
octree constructed through this method needs to be smoothed, i.e., the level of
refinement of neighboring cells must not differ more than a given limit (often
required 1).

Figure 6.12: Again, a Pentakis dodecahedron has been voxelized on a 64x64x64
grid. In contrast to Fig. 6.11 one root octant has been created for the whole object
and was then recursively refined. The octree obtained can be used as a basis for a
hierarchical Cartesian computational grid.

Optimizations and Performance Evaluation

In both algorithms described above, the main computation is the test of whether
a triangle intersects an octant, lies completely in its interior, or outside. For this
intersection test a highly optimized routine based on code developed by Akenine-
Moeller (2001) has been used.

This test routine relies on the separating axis’ theorem (Gottschalk et al., 1996;
Möller and Haines, 1999; Eberly, 2000) which states that two convex polyhedra,
A and B are disjoint if they can be separated along either an axis parallel to a
normal of a face of A or B, or along an axis formed from the cross product of an

6.4. Grid Generation 77

edge of A and an edge of B. To simplify these tests, the box and the triangle are
transformed in a way that the center of the box coincides with the origin and the
faces are axis-aligned.

After the initial transformation, three tests are performed:

• Test the minimal bounding box of the triangle against the octant: Here it is
checked whether the minimum and maximum coordinate-components in
x-, y-, and z-direction are located outside the octant’s minima and maxima
or not.

• Test the intersection of the triangle’s plane against the octant: Here the plane
of the triangle, defined by one vertex and the triangle normal, is tested
against the octant according to Möller and Haines (1999) and Haines and
Wallace (1994).

• The last test computes the nine cross products of all combinations of the
edge vectors of the triangle and the normals of the octant. By projecting the
coordinates of the triangle and the octant onto it, it is determined, whether
the projected triangle lies outside the projected octant or not.

When all tests are passed, the triangle intersects the octant and the next it-
eration of refinement can be started. The above tests can be implemented very
efficiently (Akenine-Moeller, 2007). For the special case of iFluids the algorithm
can be further optimized, since the normal of a triangle is already known and the
octants are always axis-aligned boxes. Furthermore, vectors computed once for
a triangle can be stored temporarily and reused during the following refinement
steps.

Compared to the fluid computations, the voxelization of even complex scenes
with high grid resolutions takes only a comparatively short time (typically on the
order of a second for 2563 voxels and 106 facets). Additionally, voxelization is
only required on the occasion of geometry or boundary condition changes due
to user interaction. Still, one might want to speed up this process even more
and therefore, after the optimization considerations regarding performance of the
grid generator on a single processor, the time consumption of the voxelization
process can be reduced through parallelization.

Regarding the technical realization of the implementation one can choose be-
tween several ways of parallelization such as the MPI message passing library or
OpenMP compiler directives as examples of distributed or shared-memory ap-
proaches. Since parallelization via MPI always requires a certain effort of adap-
tation of the source code’s structure and, especially on shared-memory archi-
tectures, tends to introduce additional communication overhead1, plain shared-
memory communication using the OpenMP programming paradigm was chosen
on both machines, the Hitachi SR8000 and the SGI Altix 4700.

1If not perfectly optimized (’zero-copy’ transfers) MPI communication is slowed down
through additional buffer copying as compared to direct shared-memory communication (Gropp
and Thakur, 2005)

78 Interactive Problem Definition and Grid Generation

The parallelization strategy itself firstly depends on whether a uniform Carte-
sian or a hierarchical Cartesian grid is used. Regarding uniform Cartesian grids,
the different threads perform their work on the same, shared grid points and the
triangles are distributed among them. In contrast, for the hierarchical Cartesian
grid the triangles are shared and the grid is distributed to the threads. With re-
spect to the former approach one has to keep in mind that multiple processes
have to write onto the same grid (necessarily in an ordered manner), while the
latter variant requires only simultaneous read access. In both cases data place-
ment needs to be taken into account to minimize memory access penalties.

To evaluate the voxelization performance the ’Dragon’ test geometry has been
used which is quite popular in this context. The respective geometry is shown in
Fig 6.13 together with its voxel approximation computed by iFluids‘ grid genera-
tor.

The performance of the two algorithms described above has been compared
on an AMD Dual Opteron 2.4 GHz system for two different grid resolutions and
varying numbers of triangles approximating the Dragon. The single processor
voxelization times of both methods are shown in Fig 6.14. Of course, the compu-
tation time of the voxel representation depends on the one hand on the number
of triangles constituting the geometric object and, on the other hand, on the grid’s
fineness.

Finally, the first method has also been benchmarked in a parallelized version
using two CPUs on the Opteron. Fig 6.15 compares the voxelization times when
using one or two CPUs for the same test case as in Fig 6.14.

The performance evaluation reveals overwhelming results particularly for the
voxelization on uniform Cartesian grids. This enables iFluids to map even de-
tailed and complex geometries onto fine grids within a fraction of a second. To
optimize Lattice-Boltzmann solvers, especially the idea of using patches with
higher resolution or boxes for a reduced grid could be of interest for interactive
applications. Here, a combination of both voxelization methods would lead to
the most performant voxelization within iFluids.

6.4. Grid Generation 79

Figure 6.13: Here, the ’Dragon’ test geometry is shown, which has been used for
performance evaluation of iFluids’ voxelization. On the top a dragon geometry
taken from The Stanford 3D Scanning Repository (2007) is shown, which is
defined by 499870 triangles. The bottom picture shows the voxel discretization
of this model on a 512x512x512 grid.

80 Interactive Problem Definition and Grid Generation

hierarchical grid (256x256x256)hierarchical grid (128x128x128)uniform grid (256x256x256)uniform grid (128x128x128)
19974 3.76 1.05 0.36 0.16
49929 4.15 1.37 0.51 0.27
99938 4.79 1.85 0.72 0.42

199856 5.99 2.78 1.08 0.68
499870 9.16 5.43 1.93 1.39
871414 12.9 8.39 2.79 2.12

Facetten

0 200000 400000 600000 800000 1000000
0

1

2

3

4

5

6

7

8

9

10

11

12

13

hierarchical grid
(256x256x256)

hierarchical grid
(128x128x128)

uniform grid
(256x256x256)

uniform grid
(128x128x128)

number of triangles

tim
e

[s
ec

]

Figure 6.14: Using the algorithm for hierarchical grids, the upper graphs (blue
and green) show the voxelization time for the Dragon test geometry in depen-
dence on the number of triangles for a grid resolution of 256x256x256 and
128x128x128, respectively. Only for uniform grids it is possible to use the faster
algorithm and the voxelization time can be reduced to about 22% for the finer
(orange) and to 25% of the coarser (grey) grid.

Figure 6.15: The parallelization graph shown here demonstrates the speedup
achieved by performing the voxelization with two as compared to one processor.
For this benchmark the ’Dragon’ shown in Fig. 6.13 was used, composed of vary-
ing numbers of facets. The voxel grid’s resolution was set to 512 points in each
direction

Chapter 7

Realization Aspects with Respect to
Computational Steering

In the last four chapters the main components of the computational steering
framework underlying iFluids have been described, namely the simulation ker-
nel, the grid generator and the visualization and steering client.

To facilitate real computational steering on a high-end system configuration
with a Teraflop supercomputer and an external visualization and steering front-
end, these components need to be connected in an efficient way. This chapter will
show how the modules have been connected with each other and evaluates the
overall performance of the online steerable application iFluids.

7.1 Communication Layout

As described in Chapters 5 and 6, the visualization workstation provides the
functionality to display the current simulation data and to interact with the sim-
ulated scene at the same time. In the following, focus will be put on how an
appropriate design of communication between the individual modules can be
laid out to meet these special technical challenges of computational steering.

When a user interaction has occurred, the corresponding modifications are
sent to the simulation engine, where the information is incorporated into the sim-
ulation model immediately. On the supercomputer new results are computed
based on the updated simulation configuration. As soon as they are available the
data are sent to the visualization client, where the user can observe the adaptation
of the fluid in a series of flow updates (see Fig. 7.1).

A closer view onto the details of the models and their data streams is shown
in Figure 7.2.

On the visualization (VIS) and steering (STEER) side an additional communi-
cation thread (COM) has been included to uncouple the checking for incoming
results and the sending of user modifications and to not interrupt steering and
post-processing. To keep the data transfer as short and infrequent as possible,
only modifications to the setup are forwarded. Therefore, the transmission pro-
cess is not triggered until after the user has completed any modifications. Since

81

82 Realization Aspects with Respect to Computational Steering

Simulation
Results

Steering
ParametersSteering

&
Visualization

Simulation

Figure 7.1: On the visualization and steering workstation the user can visualize
the current flow data received from the simulation running concurrently on the
supercomputer. On the occasion of user interactions the specific modifications
are sent to the supercomputer where they are incorporated into the simulation
model immediately.

VIS

STEER C
O
M

SIM

SIM

SIM

SIM

SIM

MASTER

Com
pu

tat
ion

al
Grid

 &

Sim
ula

tio
n P

ar
am

ete
rs

Sim
ulation Results

Simulation Results

Steering Parameters

Figure 7.2: On the left the steering and visualization front-end is shown. It
consists of three threads, one for visualization (VIS), one for user interaction
(STEER), and the communication (COM) thread. On the right the simulation
master (MASTER) and the simulation slaves (SIM) are shown. Between COM
and MASTER steering parameters and simulation results are exchanged, often
in a distributed and heterogeneous hardware setup. Within the supercomputer
simulation results of the slaves’ computational domains are sent to the MAS-
TER, which incorporates the steering parameters into the computational model
and, accordingly, forwards decomposed grids containing all simulation data to
the slaves.

7.2. Framework Performance 83

the results are not necessarily sent at regular intervals either, the receipt of data is,
in essence, an event-driven process in both directions. In contrast to this Kühner
(2003) used a communication layout with fixed intervals for sending and receiv-
ing neglecting any occurring events.

The simulation master (MASTER) can be seen more or less as the core of the
computational steering framework connecting the visualization and steering fron-
tend to the simulation. When the master receives modifications due to user inter-
action, they are incorporated into the computational model, using the powerful
grid generator described in section 6.4. Then it performs the domain decompo-
sition and sends the computational grid and all further necessary information to
the simulation salves (SIM). The results computed by the slaves are gathered by
the master and are prepared for being sent back to the visualization and steering
client.

The slave processes (SIM) on the supercomputer mainly perform the Lattice-
Boltzmann computation. To achieve good performance, it is essential to use
vendor-optimized intra-machine (and possibly inter-machine) MPI for the com-
munication with other processes. As long as no interaction has occurred, the
slaves send current results at user-defined, regular intervals and check for up-
dated computational grids. In the event of interaction, a new grid is received and
new results can be sent after just a few time-steps to give the user fast initial feed-
back depending on his manipulations. Consequently, the transmission intervals
are not necessarily regular throughout the run.

Since the visualization is usually conducted on an external graphics worksta-
tion with a different hardware architecture from that of the supercomputer, an ap-
propriate MPI derivate is needed for the inter-machine communication, between
master and visualization and steering front-end, which also enables the slaves to
use vendor-optimized MPI. In this respect, the Globus MPICH-G2 (MPICH-G2,
2007) and PACX-MPI (Pacx-MPI, 2007) libraries have been tested within iFluids.
Unfortunately, all efforts to port MPICH-G2 to the SR8000 with vendor-MPI en-
abled have not been successful. At the time the measurements were done for the
SGI Altix, Globus MPICH-G2 was not yet available on this system. Therefore,
all performance data presented in the following section are based on the PACX-
MPI library. In this context it is important to note one drawback of PACX-MPI,
namely the fact that it starts two extra MPI processes on each system for internal
purposes. In the case of the Hitachi, which has only eight interactive nodes, only
six nodes could be used for the application, accordingly. In addition, we observed
that performance decreased by approximately 5 % due to the overhead caused by
PACX-MPI Keller (2005). In the absence of other competitive alternatives one has
to simply accept this for the time being.

7.2 Framework Performance

After all involved modules are connected to the computational steering frame-
work, the overall performance is investigated and solutions for problems which
could be detected are discussed in the following.

84 Realization Aspects with Respect to Computational Steering

Overlapping Communication and Computation

As shown in Figure 7.2, the master process uncouples the communication be-
tween visualization and steering terminal and simulation, to avoid communi-
cation dependencies between simulation slaves and steering terminal. The de-
coupling of computation and communication is shown in Figure 7.3 for a trace
collected with the Intel Trace Analyzer (intel, 2007).

Another important task for the master is to collect results from the slaves and
send them, combined in a single message, to the visualization client to avoid
additional latencies. This is especially important when the network connection
between supercomputer and visualization client is limited by routers, firewalls,
and slow connections — maybe even in ’competition’ with other users.

Figure 7.3: This trace depicts the distribution of computation and communica-
tion. In this case, five processes were recorded, namely visualization (process 0),
simulation master (process 1), and three slaves (processes 2-4). The timeline is
given on the abscissa and covers 11 time-steps starting from the application’s
initialization. Red marks represent MPI function calls while green shows pe-
riods of computation or other application-specific processing. Frequent checks
for user interaction and time-consuming communication to an external machine
can be taken off the computation processes by introducing a master node.

Finally, Figure 7.3 also reveals the main advantage of introducing a ’collec-
tor’ node: During the time-consuming transfer of results (from process 1 to 0),
the slave processes (2-4) are able to overlap computation with communication as
long as the computation time is longer than the communication time. It is also
necessary to point out that using non-blocking MPI communication on the SR8000
(and several other MPI implementations, cf White III and Bova (1999)) does not
allow this overlap.

The impact of this fact on the performance of the application is also shown in
Figure 7.4, which compares the performance of the application with and without
this master node. The measurements have been carried out with the computation

7.2. Framework Performance 85

running on the Hitachi SR8000 at LRZ and the visualization on an external Dual
Opteron Linux PC at the Chair for Bauinformatik.

1 2 3 4
ideal scaling 18.9 37.8 56.7 75.6
data update interval 40 18.9 36.1 46.4 46.1
data update interval 60 18.9 36.2 50.5 68.8
data update interval 80 18.9 36.3 51.5 68.5

1 2 3 4
ideal scaling 18.9 37.8 56.7 75.6
data update interval 40 18.8 27.6 31.6 34
data update interval 60 18.9 29.8 35.9 40.2
data update interval 80 18.8 31.4 39 44.5

1 2 3 4 5 6
15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

ideal scaling

data update
interval 40

data update
interval 60

data update
interval 80

compute nodes (8 CPUs each)

M
Lu

p/
s

1 2 3 4 5 6
15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

ideal scaling

data update
interval 40

data update
interval 60

data update
interval 80

compute nodes (8 CPUs each)

M
L

u
p

/s

Figure 7.4: The two graphs show the scaling behavior for various data update in-
tervals in dependence on the number of computation nodes used. Performance is
measured in MLup/s (million lattice site updates per second) at the visualization
process. The left-hand panel refers to runs with a simulation master. Runs with
update intervals of 60 or more time steps show good scaling already, whereas
shorter intervals have a negative influence. On the right-hand panel, the same
measurements were performed without a simulation master and the application
shows poor scaling efficiency (<50%) in all cases.

Furthermore, the right graph in Figure 7.4 shows the dependency on the data
update intervals. True scaling of the application could only be achieved using a
master node in combination with long update intervals of the visualized scene.
The saturation of performance is caused due to only a small amount of computa-
tional work per slave while the communication between master and visualization
front-end takes more time than the computation by the slaves. After a few cycles
already, the master is still transferring data while the slaves have to wait until
being able to send new results to their master. Evidently, this has severe impact
on the performance and may be identified as a ’network bottleneck’, which will
be discussed in more detail in the following section.

Network Bottleneck

When recognizing the impaired scaling behavior during the performance mea-
surements with short update intervals, we looked for possible explanations and
found that the network connection of the SR8000 to any other computer was fairly
unsatisfactory. It turned out that the maximum throughput on its single Gigabit

86 Realization Aspects with Respect to Computational Steering

Ethernet line achieved only 230 MBits/sec maximum. To get an idea of the in-
fluence of the network connection, the same measurements have also been per-
formed on Sara’s SGI Altix 3700 and were benchmarked there additionally.

To be able to compare these measurements the offline performance (i.e. per-
formance without a connection to a visualization and steering terminal) has been
measured on both systems (see Chapter 4) and is shown again in Figure 7.5.

5 10 15 20 25 30 35 40 45 50 55 60

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

SGI Altix 3700

Hitachi SR8000

Number of CPUs

M
Lu

p/
s

Figure 7.5: This graph shows the performance of the Lattice-Boltzmann kernel
running on Hitachi SR8000 (green) and SGI Altix 3700 (blue). Both codes show
good speed-up behavior on the respective machine. The performance gain seen
after porting the kernel to the Altix was about 70% when using 40 processors on
both machines.

For the setup at Sara, an external visualization client was connected to the
Altix machine also via Gigabit Ethernet. It was synthetically benchmarked to
a bandwidth of 720 Mbits/sec. Comparing the saturation performances on the
SR8000 and the Altix 3700 showed a performance gain of 210% as compared to
70% (see Figure 7.6). This corresponds to data updates every 13 seconds on Hi-
tachi’s SR8000 and only 4 seconds on the SGI Altix for 380x355x122 grid points
of the example room with dimensions of 7.6m x 7.1m x 2.24m. The graphs in
Figure 7.6 also show that even with a higher performance of the computational
kernel data updates every 13 seconds cannot be surpassed with the network con-
nection provided in the setup of SR8000 with external visualization. Only the
superior efficiency of the network at Sara is able to further decrease the data up-
date time significantly.

To further improve the application with respect to the network bottleneck
even for high update rates and high resolution grids, compressed data transfer

7.2. Framework Performance 87

between computation and visualization should be investigated. If possible the
amount of data sent to the visualization and steering front-end should be min-
imized. This is, for example, an option for porous media, where the boundary
nodes need not be sent. Data reduction as suggested in Kühner et al. (2001)
does not seem to solve the problem per se, since the message size can only be
decreased by a small amount inevitably accompanied by (considerable) compu-
tational costs.

1 8 16 24 32 40 48 56
ideal scaling Altix 37003.82 30.57 61.14 91.71 122.28 152.85 183.42 213.99
data update interval 403.82 30.57 58.68 84.56 110.69 132.53 140.52 142.81
data update interval 603.83 30.66 58.61 85.45 111.87 133.37 157.62 178.19
data update interval 803.84 30.68 58.68 85.36 112.88 133.85 159.37 179.03
ideal scaling SR8000 18.9 37.8 56.7 75.6
data update interval 4018.9 36.1 46.4 46.1
data update interval 6018.9 36.2 50.5 68.8
data update interval 8018.9 36.3 51.5 68.5

0 8 16 24 32 40 48 56
0

20

40

60

80

100

120

140

160

180

200

220

ideal scaling Altix 3700

data update interval 40

data update interval 60

data update interval 80

ideal scaling SR8000

data update interval 40

data update interval 60

data update interval 80

Number of CPUs

M
Lu

p/
s

Figure 7.6: These pairs of graphs show the performance gain in dependence on
the number of time steps between result updates to the visualization for runs
on the SR8000 and Altix 3700, respectively. Both machines show performance
saturation when frequently updating results, because communication time then
exceeds computation time. Updating less often than every 40 time steps quickly
restores good scaling behavior. It is evident that the SGI can make much better
use of its outgoing Gigabit ethernet network than the older Hitachi system.

Still another way of bypassing the bottleneck would be to move the post-
processing and graphics computation onto the supercomputer (maybe even in
a parallel version). This, in fact, seems to be the most promising solution for the
dilemma, but may not always be applicable. Especially on the Hitachi SR8000
this ansatz was infeasible, as this machine was not well-suited to support post-
processing or visualization due to its bad performance in non-vectorizable code.
An alternative solution would be a coupled system of a high-performance com-
puter (well-suited for the Lattice-Boltzmann method such as vector computers)
and a high-end graphics workstation (such as an SGI Prism or a visualization

88 Realization Aspects with Respect to Computational Steering

cluster) which are connected via specialized and dedicated networks at the same
computing center. Then, the visualization data could be transferred as a (com-
pressed) video stream as suggested, e.g., in Heinzlreiter (2005). Although first
projects in this direction have already started and products in this direction are
already available (remote visualization services such as SGI OpenViz Server, IBM,
HP, SUN, ..., VNC), they currently do not yet address all requirements sufficiently.
For instance, immersive environments cannot be used with this approach yet.

7.3 Visualization and Steering on Multiple Clients

The modules building the computational steering framework are strictly coupled
and implemented with interfaces that allow combining them and interacting with
each other. Therefore, it is possible to exchange modules or insert additional
modules as has been done in Borrmann (2007). This example implemented an
extension to iFluids to allow for collaborative engineering.

As it is shown in Figure 7.7 a collaboration server has been inserted between
the simulation master and the visualization and steering client. After extending
the communication module (COM) on the client side for some additional collab-
oration parameters, all other modules were reused. The collaboration server is
designed in a way that enables the framework to be connected to different sim-
ulation servers at a time and to attach or detach an arbitrary number of clients
during a collaborative session (see also Borrmann et al. (2006)).

VIS

STEER C
O
M

SIM

SIM

SIM

SIM

SIM

Com
pu

ta
tio

na
l G

rid
 &

Sim
ul

at
io

n
Par

am
et

er
s

Sim
ulation R

esults

Simulation
Results

Steering
Parameters

MASTERCollaboration
Server

VIS

STEER C
O
M

VIS

STEER C
O
M

VIS

STEER C
O
M

Steering Parameters

Sim
ul

at
io

n
Res

ul
ts

Figure 7.7: For collaborative engineering a collaboration server has been in-
serted into the original layout shown in Fig. 7.2. In this way, multi-client
computational steering is made possible.

Chapter 8

General Applicability — A Case
Study

This chapter investigates the applicability of a computational steering environ-
ment for the study of indoor ventilation problems. To this end, a test case has
been simulated as a batch job on a grid with high resolution to serve as a high-
accuracy reference. It is then compared with simulations on (increasingly) coarser
grids such as the resolutions used in interactive online simulations. This ap-
proach has been taken to help determine the minimum grid resolution needed
for a preliminary study or estimation of an indoor air flow problem and which is
the maximum grid resolution that can be handled interactively. The test case in
this study has been the simulation of a ventilation system as it is used in a real
setup of an operating room at the Klinikum Rechts der Isar in Munich.

8.1 Ventilation Systems of Operating Rooms

Modern operating rooms set high requirements with regard to aseptic conditions
of the working place and, in particular, in the vicinity of the patient and the oper-
ation site. Especially for operations lasting several hours the risk of the patient’s
wound becoming infected by bacteria must be reduced as much as possible. Since
the completely bacteria free operating room is not feasible for technical reasons,
a ventilation system is used for applying freshly filtered abacterial air onto the
patient’s wound to push the room’s air aside. Therefore, the stream of filtered
air should be directed straight onto the wound so as to avoid any contact with
human beings or operating facilities as far as possible.

At the Klinikum Rechts der Isar, two operating rooms with different ventila-
tion systems have been inspected and modeled accordingly. The two rooms (OP I
and OP II) are of roughly similar size, namely 6.3m x 6.25m x 3.5m and 5.45m x
6.25m x 3.1m. Figure 8.1 and 8.2 show photographs of these rooms, while Fig-
ure 8.3 and 8.4 show a close-up of the different ventilation facilities of each room.

89

90 General Applicability — A Case Study

Figure 8.1: OP I: This operating room is equipped with a ventilation system
entering from the ceiling. The photograph shows the standard setup just before
an operation starts.

8.1. Ventilation Systems of Operating Rooms 91

Figure 8.2: OP II: In contrast to OP I this room has ventilation systems entering
from one wall. The photograph also shows the classical arrangement of facilities
before an operation.

92 General Applicability — A Case Study

Figure 8.3: OP I: Two rectangular ventilation inlets are placed at the ceil-
ing around the area of the operating table. The velocity of the instreaming
air is adjusted to 0.24 m/s which corresponds to a ventilated air volume
of 2780 m3/h.

8.1. Ventilation Systems of Operating Rooms 93

Figure 8.4: OP II: Almost the whole wall is used as the horizontal venti-
lation inlet. The air is blown with a velocity of 0.28 m/s corresponding
to a ventilation volume of 14035 m3/h.

94 General Applicability — A Case Study

During an operation three to five people are usually working together within
the aseptic zone. Moreover, at least one table with surgical instruments is placed
at the end of the patient’s table. Because of the many people involved and, addi-
tionally, the lighting facilities placed close to the operative situs, the impact of the
ventilation and, therefore, the bacteria concentration at the wound is not easily
predictable. Typical operation scenes are shown for both rooms in Figures 8.5 and
8.6

Figure 8.5: A standard scene during an operation in OP I. Here, a mobile ven-
tilation facility is used in addition to the ceiling ventilation.

8.1. Ventilation Systems of Operating Rooms 95

Figure 8.6: A standard scene during an operation in OP II. As opposed to OP I
the position of the operation table with the patient can be freely placed for an
optimal ventilation.

96 General Applicability — A Case Study

8.2 Simulation Studies with Varying Grid Resolutions

The two operating rooms, OP I and OP II, have been modeled with their cor-
responding boundary conditions1. By doing a series of simulations with dif-
ferent grid resolutions, the minimum resolution has been determined which is
needed to still allow physically meaningful predictions but, at the same time, is
still runnable as an interactive simulation. Figures 8.7 and 8.8 show the models
of the operating rooms I and II during an operation, while Figures 8.9 and 8.10
give the simulation results of theses scenes.

Figure 8.7: This snapshot shows the simulated surgery scene in OP I.

After simulating the operation rooms OP I and OP II the configuration of OP II
with the additional ventilation device has been run with different grid resolu-
tions. The simulation series shows that already a resolution of ’only’ 126x70x125
voxels results in non-negligible deviations. For a resolution of 180x100x179, i.e.,
one grid point every 3.5 cm, the results agree quite well with the results of the
reference solution. After 2500 to 3000 Lattice-Boltzmann timesteps the results os-
cillate around the steady state. Nevertheless, the qualitative behavior of the flow
can already be predicted after about 1500 timesteps.

Running this setup at the minimum resolution of 180x100x179 grid points on
the SGI Altix 3700 (connected to a standard laptop for steering over Gigabit Eth-

1The geometry of the operating room is based on models taken from the archives
www.turbosquid.com, www.3dcafe.com, and www.lightscape.com/VRML/lib/or.wrl

8.2. Simulation Studies with Varying Grid Resolutions 97

Figure 8.8: Here, the simulation model for OP II during a surgery is shown.

ernet as done in the benchmarks in Chapter 7), a data update after 60 Lattice-
Boltzmann steps would arrive at the visualization and steering frontend with a
rate of 1 frame/s. Therefore, 1500 timesteps would take about 25 seconds to com-
pute and the first reliable predictions can be made. This also marks the point in
time, when the first modifications to the setup are starting to make sense. Af-
ter an additional 25 seconds or 3000 Lattice-Boltzmann steps, the results allow to
predict the principle flow.

Taking into account that even more powerful systems are already available
(such as LRZ’s SGI Altix 4700 together with their new visualization cluster and
a dedicated 10 Gigabit Ethernet connection), these results seem quite satisfactory
from an engineering standpoint. Accordingly, the bottom line of the investiga-
tion in this chapter is that a computational steering application such as the one
developed and presented in this work can, in fact, be a helpful supplement in the
engineering practice to the current state of the art.

98 General Applicability — A Case Study

Figure 8.9: This figure presents the simulation results for OP II for a grid res-
olution of 545x625x310. The stream lines display the fluid streaming from the
ventilation inlet on the back wall to the ajar door in the front. Some of the ven-
tilation arrives at the patient’s situs, but the main fluid stream flows around the
surgery zone.

8.2. Simulation Studies with Varying Grid Resolutions 99

Figure 8.10: The upper snapshot shows the ventilation in OP I coming from
the ceiling. It can be seen in this setup that the filtered air is deflected through
the lamps and, accordingly, the patient’s wound is not as well ventilated as in
OP II. The bottom snapshot represents a scene where an additional ventilation
device has been inserted. This device can be freely adjusted as needed and, evi-
dently, is able to compensate the missing air flow onto the operation situs. Both
simulations were run with a grid resolution of 630x625x350.

Chapter 9

Universal Applicability of iFluids —
Computational Steering Framework

This chapter shows the computational steering framework underlying iFluids be-
ing applied on a completely different field of application, thus demonstrating its
capability and suitability to handle a whole variety of computational engineering
problems. In this case, the framework was used for interactive blood flow simula-
tion with respect to vascular reconstruction, which has been done in cooperation
with the Institute for Computational Science at the University of Amsterdam.

9.1 Vascular reconstruction

A special field of expertise of the Institute for Computational Science at the Uni-
versity of Amsterdam is the research on computational hemodynamics as needed
for vascular reconstruction simulations. Vascular reconstruction includes sur-
gical operations like adding shunts, bypasses and placing stents (in the case of
aneurysm) or applying thrombolysis techniques, balloon angioplasty, bypasses,
etc. for a stenosis. To find the best treatment is far from trivial and a simula-
tion tool to support the verification of the operation plan may serve as a good
supplement to classical approaches. In collaboration with this institute the com-
putational framework was applied to this kind of simulation.

To evaluate the flexibility of the computational steering framework the aim
was to allow, in principle, an online simulation of blood flow within a part of
an artery. Again, the underlying simulation kernel was based on the Lattice-
Boltzmann method but did not incorporate details of hemodynamics as described
in Artoli (2003).

9.2 Extensions of iFluids for Blood Flow Simulations

In the adaption of the original standard fluid simulation to blood flow simulation,
the layout of iFluids could be completely reused. Only two central changes had
to be made. Firstly, the grid generator needed to be extended to provide a filling

100

9.2. Extensions of iFluids for Blood Flow Simulations 101

algorithm which also sets voxels in the interior of an object. This was necessary,
since in contrast to the indoor simulations the blood flow simulation takes place
within the objects, .i.e. the arteries and shunts, added to the scene. Secondly, due
to simulation efficiency the data layout needed to be adapted, because in a blood
flow simulation the grid points most often are only sparsely populated — cells
representing blood represent only a fraction in the range between 5% to 15% of
the scene’s bounding box volume (see 9.1).

Figure 9.1: On the left this figure shows the triangulated surface of the aorta.
On the right its voxel representation is depicted. The underlying grid resolution
was 433x206x126 and 127432 voxels were set as boundary nodes (including
boundary conditions like inlet and outlet) and 403734 fluid nodes in the interior.
Therefore, the percentage of ’relevant’ grid nodes is 4.73%. The voxelization was
done in 0.68 sec using a single CPU on an SGI Altix 4700 (1.6 GHz).

To replicate the obstruction of a blood vessel and its surgical remedy two sim-
ple forms of interaction during the blood flow simulation are supported. On the
one hand blockers to the interior of the artery for narrowing or completely block-
ing the flow can be added to the scene. On the other hand artificial bypasses can
be added or removed from the artery, as can be seen in Figure 9.2.

102 Universal Applicability of iFluids — Computational Steering Framework

Figure 9.2: This figure shows three screenshots taken during an interactive sim-
ulation session. On the left the unmodified artery with blood flow in its interior
is shown. In the middle picture one branch of the aorta is blocked. Finally, on
the right a bypass is inserted to supply the blocked part of the artery through this
artificial vessel.

Grid Generation

Objects added to a scene during an indoor simulation are, by definition, inter-
preted as fluid obstacles, which may have boundary conditions on their surfaces
such as, e.g., a personal computer as a heat source or velocity boundaries of a
tabletop ventilator. Therfore, the interior of the obstacles can be neglected. How-
ever, in case of the blood flow simulation especially the interior of the artery is
of interest and the surrounding nodes are neglected. To cope with this situation
the grid generator marks all nodes of the outside of the artery as neglectable, the
boundary nodes with their corresponding boundary conditions, and the interior
as fluid nodes. An important extension in this respect is the capability of inter-
sections of objects with each other. This, for instance, is needed when modeling
the adding of a bypass such that the boundary nodes of the bypass which ex-
tend into the aorta are removed on both sides and the aorta is opened where the
bypass enters it. When adding a blocker these boundary nodes are attributed a
higher priority and are therefore not replaced by fluid nodes. This special form
of intersection functionality is demonstrated in Figure 9.3 for a smaller part of
the aorta shown in Figure 9.1, which has been extracted and scaled up for this
purpose (see Figure 9.4).

9.2. Extensions of iFluids for Blood Flow Simulations 103

Figure 9.3: These two figures show the boundary conditions for a small part of
the aorta. In the upper part the original aorta can be seen, while in the lower part
a bypass has been added. The red color refers to the inlet condition and the green
color to the outlet. Fluid nodes are colored blue, the wall nodes black, and the
neglectable nodes outside the artery are depicted in grey. The triangulated aorta
surface is shown in Figure 9.4

Figure 9.4: This figure shows a small part of the aorta with streamlines visual-
izing the interior blood flow.

104 Universal Applicability of iFluids — Computational Steering Framework

Data Layout

Since an artery usually is a rangy structure with multiple and increasingly deli-
cate branches, the fraction of fluid nodes within the bounding box ranges approx-
imately between 5% to 15%. This fact allows a special form of optimization of the
simulation kernel and has been implemented as an additional option, which skips
all non-fluid nodes and performs the Lattice-Boltzmann update on a list structure
of fluid and boundary nodes only.

Additionally, the network traffic between the supercomputer and an external
visualization and steering terminal is reduced by only transferring these relevant
nodes and their location within the simulation field. As stated in (Artoli, 2003),
a Reynolds’ number of approximately 500 is sufficient for blood flow simulation
within an abdominal aorta. To resolve this kind of flow situation for the exem-
plary artery shown in Figure 9.1, a moderately fine grid is sufficient. In this case
the transfered data volume causes no bottleneck. The described aorta simulation
could be run on an SGI Altix 3700, while the steering and visualization was per-
formed on a laptop (Intel 2.13 GHz processor with ATI Mobility FireGL V5000).
Interaction with the simulation and its response was, by subjective impression,
swift and fluent.

Chapter 10

Summary

In this thesis the central aspects, problems, and principle approach to realizing
a computational steering framework have been elaborated on. In particular, the
utilization of supercomputers for fluid simulations and high-end visualization
techniques like immersive Virtual-Reality Environments for a remote visualiza-
tion and steering frontend have been covered in detail. It has been shown that
within the iFluids computational steering framework a user is enabled to inter-
act with the simulation during its execution without the need of interrupting or
restarting it. The main feature distinguishing it from all currently known com-
putational steering approaches is its powerful interaction possibility with regard
to the geometrical layout. It is possible to load arbitrary geometries exported
from CAD systems or similar software from the filesystem without any special
preparations. Other approaches, so far, support only predefined parameterized
objects — if geometry can be changed significantly at all. Besides interacting with
the geometry, the user can modify flow parameters, define new or change exist-
ing boundary conditions during runtime. For advanced users or benchmarking
purposes even optimization options can be changed during runtime.

By using an integrated front-end for simultaneous visualization and steering
augmented through a Virtual-Reality Environment the usage of this kind of inter-
active simulation tool becomes intuitive and allows to quickly gain insights even
when studying complex flow phenomena.

The simulation kernel underlying the framework is based on the Lattice-Boltz-
mann method and has been optimized for two types of supercomputers that have
been available at the Leibniz Computing Center during the time of this thesis,
namely the Hitachi SR8000 and the SGI Altix 37001. These machines represent
the oppositional architectures of a pseudo-vector and a shared-memory system,
respectively.

When running the simulation on the SGI Altix and the visualization on an
external graphics workstation, both connected via Gigabit Ethernet, an updated
data set typically could be received and visualized every 4 seconds. In compar-
ison, the performance achievable with the SR8000 connected with a remote vi-

1The code has also been tuned for performance on the LRZ Linux Cluster, where the applica-
tion framework has been mainly developed on.

105

106 Summary

sualization was only about 25% of this value, even though the performance of
the kernel running ’offline’ lay at about 60%. It turned out that the reason for
this finding was due to a network bottleneck between visualization and compu-
tation in so far as Hitachi’s outgoing network connection could only provide 230
MBits/sec maximum bandwith.

The new system setup at the LRZ consisting of an SGI Altix 4700 and a visu-
alization system based on a SUN x4600 Multi-Core Opteron system connected
through a dedicated 10 Gigabit Ethernet interface promises an enormous perfor-
mance gain for our computational steering application. Just the same, data up-
dates every 4 seconds seems already quite satisfactory as compared to the usual
waiting times of (several) minutes or even hours for general purpose commercial
codes.

The applicability of the presented computational steering application has been
tested by simulating real operating rooms modeled after two rooms at the Klini-
kum Rechts der Isar in Munich. These have been simulated with a very fine grid
resolution to obtain a “reference solution“ for comparison with interactive simu-
lations on varying discretization grid sizes. It was found that already for moder-
ately fine grids (e.g., a room of 6mx6mx3.5m, discretized to one grid point every
3.5cm) a good qualitative estimation of the flow can be made after 50 seconds (us-
ing a visualization laptop connected to the SGI Altix 3700 via Gigabit Ethernet).
This enables an engineer to quickly test several setups and experiment with them
interactively during the simulation within only a short amount of time. After ex-
amining the principle fluid behavior, a few carefully selected test cases can be run
additionally in a more detailed offline simulation for quantitative analysis.

To evaluate the flexibility of the iFluids computational steering framework it
has been applied exemplarily to a simplified artery simulation, where the user
is able to (partially) block an artery or add bypasses during simulation runtime.
After only a few adaptations interactive simulations could be performed for ad-
equate grid resolutions using the SGI Altix 3700 and a laptop (Intel 2.13 GHz
processor with ATI Mobility FireGL V5000) for visualization.

Hopefully, this thesis could show that a computational steering application as
developed within this work can be a valuable enrichment for engineers during
the construction design phase. However, there are still some open requirements
with respect to computational steering. To be able to use a computational steer-
ing application like iFluids in real life on the supercomputer or cluster, the cor-
responding necessary resources on the machine must be available for exclusive
interactive access during an engineer’s working time. Especially in the case of
a concurrent collaborative session, it is indispensable that the required resources
are available at the time of appointment. This could be (and partially is already)
realized through an enhanced scheduling system offering the possibility of re-
serving resources for a certain day and time of an appointment. This feature is
referred to as ”advanced reservation“ which, understandably, is only hesitantly
used in computing centers and not made publicly available or accessible to the
general user.

Furthermore, when working with large computational grids and correspond-

107

ingly large visualization data sets, the communication between computation, vi-
sualization and steering front-end can become a bottleneck, especially between
remote sites. To counter this network bottleneck, some sort of middleware would
be needed, which supports (remote) visualization on specialized hardware that is
connected to the supercomputer powerfully enough and transfers precomputed
visualization data to the client — perhaps as a simple video stream. Two final re-
quirements in this respect would be that also Virtual-Reality Environments with
their special types of input device and collaborative engineering with indepen-
dent views onto the simulated scene are supported. First products or projects in
this direction (SGI OpenViz Server, IBM, HP, SUN, ..., VNC) have started and are
becoming available already. However, they currently do not yet address these
requirements sufficiently.

Future developments of iFluids will investigate these current techniques of re-
mote visualization in more detail. It will be interesting to find out, how they
could help to further improve the computational steering experience or at least
partially solve the issues mentioned.

To extend the field of application for indoor simulations, the computational
kernel of iFluids will be improved by using a more detailed physical model. In
particular, this effort will be continued within the research project ComfSim (SIE-
MENS AG, 2006), which aims at developing an interactive CFD environment al-
lowing an analysis of local thermal comfort by utilizing high-performance super-
computing facilities and Virtual-Reality techniques.

Bibliography

Abrams, M., Allison, D., Kafura, D., Ribbens, C., Rosson, M. B., Shaffer, C., and
Watson, L. http://research.cs.vt.edu/pse/intro.html (2007).

Akenine-Moeller, T. Fast 3D triangle-box overlap testing. Journal of Graphics Tools,
Vol. 6(1):pp. 29–33 (2001).

Akenine-Moeller, T. http://www.cs.lth.se/home/Tomas Akenine
Moller/ (2007).

Allard, J. and Raffin, B. Distributed physical based simulations for large VR ap-
plications. In VR ’06: Proceedings of the IEEE Virtual Reality Conference (VR 2006),
p. 12. IEEE Computer Society, Washington, DC, USA (2006). ISBN 1-4244-0224-
7. doi:http://dx.doi.org/10.1109/VR.2006.53.

answers.com. http://www.answers.com/topic/risc (2007).

Artoli, A. M. Mesoscopic Computational Haemodynamics. PhD thesis, Universiteit
van Amsterdam (2003).

AVS Inc. http://www.avs.com (2007).

Bella, G., Filippone, S., Rossi, N., and Ubertini, S. Using OpenMP on a hydrody-
namic Lattice-Boltzmann code. In Proceedings of EWOMP 2002 (2002).

Bellemann, R. Interactive Exploration in Virtual Environments. PhD thesis, Univer-
sity of Amsterdam (2003).

Benzi, R., Succi, S., and Vergassola, M. The lattice Boltzmann equation: theory
and applications. Physics Reports, Vol. 222:pp. 145–197 (1992).

Bernsdorf, J., Harrison, S. E., Smith, S. M., Lawford, P. V., and Hose, D. R. Numer-
ical simulation of clotting processes: a lattice Boltzmann application in medical
physics. Math. Comput. Simul., Vol. 72(2-6):pp. 89–92 (2006). ISSN 0378-4754.

Bhatnagar, P., Gross, E., and Krook, M. A model for collision processes in gases.
Physical Review, Vol. 94(3):pp. 511–525 (1954).

Biermann, G. and Kalze, F.-J. Helios - computer aided lighting, the path from
simulation to prototype. In 29th ISATA Conference. Florenz, Italy (1996). ISBN
0-7803-8431-8.

108

BIBLIOGRAPHY 109

Borrmann, A. Computerunterstützung verteilt-kooperativer Bauplanung durch In-
tegration interaktiver Simulationen und räumlicher Datenbanken. PhD thesis,
Lehrstuhl für Bauinformatik, TU München (2007).

Borrmann, A., Wenisch, P., van Treeck, C., and Rank, E. Collaborative com-
putational steering: Principles and application in HVAC layout. Integrated
Computer-Aided Engineering (ICAE), Vol. 13(4):pp. 361–376 (2006).

Brodlie, K., Wood, J., Duce, D., and Sagar, M. gViz: Visualization and computa-
tional steering on the grid. In UK e-Science All Hands Meeting, pp. 54 – 60 (2004).
ISBN 1-904425-21-6.

Brooke, J. E., Coveny, P. V., Harting, J., Jha, S., Pickles, S. M., Pinning, R. L., and
Porter, A. R. Computational steering in RealityGrid. In UK e-Science All Hands
Meeting (2003).

Bryson, S. and Levit, C. The virtual wind tunnel. Computer Graphics and Applica-
tions, Vol. 12(4):pp. 25–34 (1992). ISSN 0272-1716.

Chen, H., Chen, S., and Matthaeus, W. H. Recovery of the Navier-Stokes equa-
tions using a lattice-gas Boltzmann method. Physical Review A, Vol. 45:pp. 5339–
42 (1992).

Chen, S. and Doolen, G. D. Lattice Boltzmann method for fluid flows. Annual
Review of Fluid Mechanics, Vol. 30:pp. 329–364 (1998).

ConceptCar. http://features.conceptcar.co.uk/
psa-design-centre/design-centre-2.php (2007).

Covise. http://www.hlrs.de/organization/vis/covise (2007).

Crouse, B. Lattice-Boltzmann Strömungssimulationen auf Baumdatenstrukturen. PhD
thesis, Lehrstuhl für Bauinformatik, TU München (2003).

Crouse, B., Krafczyk, M., Tölke, J., and Rank, E. A LB-based approach for adap-
tive flow simulations. International Journal of Modern Physics B, Vol. 17(1-2):pp.
109–112 (2003).

Diederichs, C. J. Kostensicherheit im Hochbau. Deutscher Consulting Verlag, Essen
(1984).

Domain Decompostion. http://www.ddm.org (2007).

Donath, S. On Optimized Implementations of the Lattice Boltzmann Method on
Contemporary Architectures. Bachelor’s Thesis (2004). Betr. Wellein, Hager,
Zeiser, F. Deserno.

Dowd, K. and Severance, C. High Performance Computing. O’Reilly & Associates,
Inc., Sebastopol, CA, USA (1998). ISBN 156592312X.

110 BIBLIOGRAPHY

Eberly, D. 3D game engine design: a practical approach to real-time computer graphics.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000). ISBN 1-
55860-593-2.

Exa Corporation. http://www.exa.com (2007).

Freudiger, S., Hegewald, J., and Krafczyk, M. A parallelization concept for a
multi-physics lattice Boltzmann prototype based on hierarchical grids (submit-
ted 2007).

Frisch, U., Hasslacher, B., and Pomeau, Y. Lattice-gas automata for the Navier-
Stokes equation. Physical Review Letters, Vol. 56:pp. 1505–1508 (1986).

Georgii, J. and Westermann, R. Interactive simulation and rendering of heteroge-
neous deformable bodies. In Vision, Modeling and Visualization 2005 (2005).

Flensburger Schiffbau Gesellschaft. http:www.fsg-ship.de (2007).

Gibson, S. F. Beyond volume rendering: Visualization, haptic exploration, and
physical modeling of voxel-based objects. In Visualization in Scientific Comput-
ing’95, pp. 10–24. Springer-Verlag, New York (1995).

Ginzburg, I. and Steiner, K. Lattice Boltzmann model for free-surface flow and its
application to filling process in casting. J. Comput. Phys., Vol. 185(1):pp. 61–99
(2003). ISSN 0021-9991.

Gottschalk, S., Lin, M. C., and Manocha, D. OBBTree: a hierarchical structure
for rapid interference detection. In SIGGRAPH ’96: Proceedings of the 23rd an-
nual conference on Computer graphics and interactive techniques, pp. 171–180. ACM
Press, New York, NY, USA (1996). ISBN 0-89791-746-4.

Götz, J. Numerical Simulation of Bloodflow in Aneurysms using the Lattice Boltz-
mann Method. Master’s thesis, Lehrstuhl für Informatik 10 (Systemsimulation),
Friedrich-Alexander-Universität Erlangen-Nürnberg (2006).

Gropp, W. and Thakur, R. An evaluation of implementation options for MPI one-
sided communication. In Lecture Notes in Computer Science: Recent Advances
in Parallel Virtual Machine and Message Passing Interface, Vol. 3666, pp. 415–424.
Springer (2005).

Hager, G., Deserno, F., and Wellein, G. Pseudo-vectorization and RISC optimiza-
tion techniques for the hitachi SR8000 architecture. In High-Performance Scien-
tific and Engineering Computing, Munich 2003 (2003). ISBN 3-540-00474-2.

Haines, E. and Wallace, J. Shaft culling for efficient ray-traced radiosity. In Euro-
graphics Workshop on Rendering. Springer-Verlang, Berlin, Germany (1994).

Hartmann, H. Detailed Simulations of Liquid and Solid-Liquid Mixing: Turbulent
agitated flow and mass transfer. PhD thesis, Technische Universiteit Delft (2005).

BIBLIOGRAPHY 111

Haumont, D. and Warzee, N. Complete polygonal scene voxelization. Journal of
Graphics Tools, Vol. 7(3):pp. 27–41 (2002).

Haydock, D. and Yeomans, J. M. Lattice Boltzmann simulations of attenuation-
driven acoustic streaming. J. Phys. A: Math. Gen., Vol. 36:pp. 5683–5694 (2003).

He, X., Chen, S., and Zhang, R. A lattice Boltzmann scheme for incompressible
multiphase flow and its application in simulation of Rayleigh-Taylor instabil-
ity. J. Comput. Phys., Vol. 152(2):pp. 642–663 (1999). ISSN 0021-9991.

He, X., Zou, Q., Luo, L.-S., and Dembo, M. Analytic solutions of simple flows
and analysis of nonslip boundary conditions for the lattice Boltzmann BGK
model. Journal of Statistical Physics, Vol. 87(1-2):pp. 115–136 (1997). ISSN 0022-
4715 (Print) 1572-9613 (Online).

Heinzlreiter, P. Interactive result visualization on the grid. In Grid Computing for
Complex Problems, pp. 20–21. VEDA, VEDA (2005). ISBN 80-969202-1-9.

Hella KG. http://www.hella.com (2007).

Hirabayashi, M., Ohta, M., Rüfenacht, D. A., and Chopard, B. Characteriza-
tion of flow reduction properties in an aneurysm due to a stent. Phys. Rev.
E, Vol. 68(2):p. 021918 (2003).

intel. http://www.intel.com/software/products/cluster/
tcollector/index.htm (2007).

Johnson, C. R. and Parker, S. G. A computational steering model for problems in
medicine. In Supercomputing ’94, pp. 540–549. IEEE Press (1994).

Johnson, C. R., Parker, S. G., Hansen, C. D., Kindlmann, G., and Livnat, Y. In-
teractive simulation and visualization. IEEE Computer, Vol. 32(12):pp. 59–65
(1999).

Jones, M. W. The production of volume data from triangular meshes using vox-
elisation. Computer Graphics Forum, Vol. 15(5):pp. 311–318 (1996).

Kafczyk, M. Die Gitter-Boltzmann-Methode: Von der Theorie zur Awendung. Habil-
tionsschrift, Lehrstuhl für Bauinformatik, TU München (2001).

Keller, R. Personal communication (2005).

Kipfer, P. and Westermann, R. Realistic and interactive simulation of rivers. In GI
’06: Proceedings of the 2006 conference on Graphics interface, pp. 41–48. Canadian
Information Processing Society, Toronto, Ont., Canada, Canada (2006). ISBN
1-56881-308-2.

Kolb, A. and John, L. Volumetric model repair for virtual reality applications. pp.
249–256. EUROGRAPHICS (2001).

112 BIBLIOGRAPHY

Kollinger, M. Definition strömungsmechanischer Randbedingungen für interaktive
CFD Simulationen. Diplomarbeit, Lehrstuhl für Bauinformatik, TU München
(2007).

Krumhauer, P., Tsygankov, M., Reich, C., and Evgrafov, A. Efficient volume ren-
dering using octree space subdivision. In Visual Data Exploration and Analysis
VI, Vol. 3643, pp. 211–219. The International Society for Optical Engineering
(1999).

Kühner, S. Virtual Reality-basierte Analyse und interaktive Steuerung von
Strömungssimulationen im Bauwesen. PhD thesis, Lehrstuhl für Bauinformatik,
TU München (2003).

Kühner, S., Rank, E., and Krafczyk, M. Efficient reduction of 3D simulation re-
sults based on spacetree data structures for data analysis in Virtual Reality en-
vironments. In Applied Virtual Reality in Engineering and Construction. Goteborg,
Sweden (2001).

Lallemand, P. and Luo, L.-S. Theory of the lattice Boltzmann method: Acous-
tic and thermal properties in two and three dimensions. Physical Review E,
Vol. 68(036706) (2003).

Lanfear, T. SR8000 concept. http://research.ac.upc.edu/HPCseminar/
SEM9900/SR8000 concept.ppt (2000).

Leibniz Rechenzentrum München. http://www.lrz-muenchen.de (2007).

van Liere, R., Mulder, J. D., and van Wijk, J. J. In , pp. 696–702 (1996).

Luecke, G. and Wang, Y. Sending non-contiguous data in MPI programs. Techni-
cal Report, Iowa State University (2005).

Marcheix, L. A 3D User Interface for a Virtual Environment. Diplomarbeit, Lehrstuhl
für Bauinformatik, TU München (2004).

McCormick, B. H., DeFanti, T. A., and Brown, M. D. Spessial issue on visualiza-
tion in scientific computing. Computer Graphics, Vol. 21(6) (1987).

Mercury Computer Systems, Inc. http://www.amiravis.com (2007a).

Mercury Computer Systems, Inc. http://www.tgs.com (2007b).

METIS. http://glaros.dtc.umn.edu/gkhome/views/metis (2007).

Mezrhab, A., Bouzidi, M., and Lallemand, P. Hybrid lattice-Boltzmann finite-
difference simulation of convective flows. Computers and Fluids, Vol. 33:pp.
623–641 (2004).

Möller, T. and Haines, E. Real-time rendering. A. K. Peters, Ltd., Natick, MA, USA
(1999). ISBN 1-56881-101-2.

BIBLIOGRAPHY 113

MPI-Forum. http://www.mpi-forum.org/docs/docs.html (2007).

MPICH-G2. http://www3.niu.edu/mpi (2007).

Mulder, J. D., van Wijk, J. J., and van Liere, R. A survey of computational steering
environments. Future Gener. Comput. Syst., Vol. 15(1):pp. 119–129 (1999). ISSN
0167-739X. doi:http://dx.doi.org/10.1016/S0167-739X(98)00047-8.

Mundani, R.-P. Hierarchische Geometriemodelle zur Einbettung verteilter Simulation-
saufgaben. PhD thesis, Technische Universität München (2006).

Neuhierl, B. Mehrfeldsimulation von Strömungsvorgängen,
strömungsakustischen Phänomenen und Schallwellenausbreitung mit der
Lattice-Boltzmann-Methode (2006). Eingeladener Vortrag, Lehrstuhlseminar,
Lehrstuhl für Bauinformatik, TU München.

Noll, B. Numerische Strömungsmechanik: Grundlagen. Springer-Verlag (1993). ISBN
3-540-56712-7.

Norman, D. A. The Psychology of Everyday Things. Basic Books, New York (1988).
ISBN 0-465-06709-3.

Pacheco, P. S. Parallel programming with MPI. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (1996). ISBN 1-55860-339-5.

Pacx-MPI. http://www.hlrs.de/organization/pds/projects/
pacx-mpi (2007).

Parker, S. G., Miller, M., Hansen, C. D., and Johnson, C. R. Computational steer-
ing and the SCIRun integrated problem solving environment. In Dagstuhl ’97,
Scientific Visualization, pp. 257–266. IEEE Computer Society, Washington, DC,
USA (1999). ISBN 0-7695-0505-8.

Pickles, S. M., Haines, R., Pinning, R. L., and Porter, A. R. Computational steering
in RealityGrid. In UK e-Science All Hands Meeting (2004). ISBN 1-904425-21-6.

Pohl, T., Thürey, N., Deserno, F., Rüde, U., Lammers, P., Wellein, G., and Zeiser, T.
Performance evaluation of parallel large-scale Lattice Boltzmann applications
on three supercomputing architectures. In Proceedings of the IEEE/ACM SC2004
Conference (Supercomputing Conference ’04, Pittsburgh, 06. - 12.11.2004), pp. 1–13
(2004). ISBN 0-7695-2153-3.

Qian, Y.-H., D’Humiers, D., and Lallemand, P. Lattice BGK model for Navier-
Stokes equation. Europhysics letters, Vol. 17:pp. 479–484 (1992).

Renambot, L., Bal, H. E., Germans, D., and Spoelder, H. J. W. CAVEStudy: An
infrastructure for computational steering and measuring in virtual reality en-
vironments. Cluster Computing, Vol. 4(1):pp. 79–87 (2001).

Sanders, M. S. and McCormick, E. J. Human Factors in Engineering and Design.
McGraw-Hill (1993). ISBN 0-07-054901-X.

114 BIBLIOGRAPHY

Satofuka, N. and Nishioka, T. Parallelization of lattice Boltzmann method for
incompressible flow computations. Computational Mechanics, Vol. 23:pp. 164–
171 (1999).

Schönung, B. E. Numerische Strömungsmechanik: Inkompressible Strömungen mit
komplexen Berandungen. Springer-Verlag (1990). ISBN 3-540-53137-8.

Schulz, M., Krafczyk, M., Tölke, J., and Rank, E. Parallelization strategies and ef-
ficiency of CFD computations in complex geometries using Lattice-Blotzmann
methods on high-performance computers. In High-Performance Scientific and En-
gineering Computing,Proceedings of the 3rd International FORTWIHR Conference on
HPSEC, pp. 115–122 (2002).

University of Amsterdam: Section Computational Science. http://www.
science.uva.nl/research/scs/index.html (2007).

Seidenschwarz, W. Nie wieder zu teuer!: 10 Schritte zum Marktorientierten Kosten-
management. Schäffer-Poeschel Verlag, Stuttgart (1997). ISBN 3-7910-1019-0.

Shan, X. and Chen, H. Lattice Boltzmann model for simulating flows with multi-
ple phases and components. Phys. Rev. E, Vol. 47(3):pp. 1815–1819 (1993).

SIEMENS AG. Interaktive, lokale Komfortsimulation in einer VR-Umgebung.
Pictures of the Future, issue spring 2006 (2006).

Sloot, P. M. A., Tirado-Ramos, A., Hoekstra, A. G., and Bubak, M. An interac-
tive grid environment for non-invasive vascular reconstruction. In 2nd Inter-
national Workshop on Biomedical Computations on the Grid (BioGrid’04) in conjunc-
tion with Fourth IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid2004). Chicago, Illinois, USA (2004). ISBN 0-7803-8431-8.

Standish, R. Introduction to high performance computing. http://www.ac3.
edu.au/edu/hpc-intro/ (2006).

Stolte, N. and Kaufman, A. Novel techniques for robust voxelization and visual-
ization of implicit surfaces. Graph. Models, Vol. 63(6):pp. 387–412 (2001). ISSN
1524-0703.

Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford
University Press (2001). ISBN 0-19-850398-9.

Succi, S., Amati, G., and Benzi, R. Challenges in lattice Boltzmann computing.
Journal of Statistical Physics, Vol. 81:pp. 5–16 (1995).

Sudhir, A. and Kesavadas, T. Computational steering of manufacturing steer-
ing using virtual reality. In ICRA ’00: International Conference on Robotics and
Automation, Vol. 3, pp. 2654–2658. San Francisco, CA, USA (2000). ISBN 0-7803-
5886-4.

BIBLIOGRAPHY 115

Tamaki, Y., Sukegawa, N., Ito, M., Tanaka, Y., Fukagawa, M., T.Sumimoto, and
N.Ioki. Node architecture and performance evaluation of the hitachi super
technical server SR8000. In 12th International Conference on Parallel and Dis-
tributed Computing Systems, pp. 487–493 (1999). ISBN 1-880843-9-3.

The Stanford 3D Scanning Repository. http://graphics.stanford.edu/
data/3Dscanrep (2007).

Thürey, N. Physically based Animation of Free Surface Flows with the Lattice Boltz-
mann Method. PhD thesis, University of Erlangen-Nuremberg (2007).

Thürey, N. and Rüde, U. Free surface Lattice-Boltzmann fluid simulations with
and without level sets. In MPI for Computer Science: VMV 04 Proceeding, pp.
199–208. Max Planck Center for Visual Computing and Communication (2004).

Thürey, N. and Rüde, U. Technical report on turbulent free surface flows with
the Lattice Boltzmann method on adaptively coarsened grids. Technical Re-
port, Lehrstuhl für Informatik 10 (Systemsimulation), Friedrich-Alexander-
Universität Erlangen-Nürnberg (2005).

Thürey, N., Rüde, U., and Körner, C. Interactive free surface fluids with the Lat-
tice Boltzmann method. Technical Report, Lehrstuhl für Informatik 10 (Sys-
temsimulation), Friedrich-Alexander-Universität Erlangen-Nürnberg (2005).

Tölke, J. Gitter-Boltzmann-Verfahren zur Simulation von Zweiphasenströmungen.
PhD thesis, Lehrstuhl für Bauinformatik, TU München (2001).

Tölke, J. Modellvergleich Surfwelle: Lattice-Boltzmann Methoden. In Berichte des
Lehrstuhls und der Versuchsanstalt für Wasserbau und Wasserwirtschaft, 104, p. 260
(2006).

Tölke, J., Freudiger, S., and Krafczyk, M. An adaptive scheme using hierarchical
grids for lattice Boltzmann multi-phase flow simulations. Computers and Fluids,
Vol. 35(8-9):pp. 820–830 (2006).

TOP500. http://www.top500.org (2007).

van Treeck, C. Gebäudemodell-basierte Simulation von Raumluftströmungen. PhD
thesis, Lehrstuhl für Bauinformatik, Technische Universität München (2004).

van Treeck, C., Rank, E., Krafczyk, M., Toelke, J., and Nachtwey, B. Extension of a
hybrid thermal lbe scheme for Large-Eddy simulations of turbulent convective
flows. Computers and Fluids, Vol. 35:8-9:pp. 863–871 (2006).

van Treeck, C., Wenisch, P., Borrmann, A., Pfaffiger, M., Wenisch, O., and Rank, E.
ComfSim - Interaktive Simulation des thermischen Komforts in Innenräumen
auf Höchstleistungsrechnern. Bauphysik, Vol. 29(1):pp. 2–7 (2007).

116 BIBLIOGRAPHY

Wellein, G., Lammers, P., Hager, G., Donath, S., and Zeiser, T. Towards optimal
performance for lattice boltzmann applications on terascale computers. In Par-
allel Computational Fluid Dynamics: Theory amd Applications, Proceedings of the
2005 International Conference on Parallel Computational Fluid Dynamics, pp. 31–40
(2006).

White III, J. B. and Bova, S. W. Where’s the overlap? An analysis of popular MPI
implementations. In MPI Developers Conference (1999).

wikipedia. http://en.wikipedia.org/wiki/Computational fluid
dynamics (2007a).

wikipedia. http://en.wikipedia.org/wiki/Lattice Boltzmann
(2007b).

wikipedia. http://en.wikipedia.org/wiki/STL (file format)
(2007c).

wikipedia. http://en.wikipedia.org/wiki/Symmetric
multiprocessing (2007d).

Wilke, J., Pohl, T., Kowarschik, M., and Rüde, U. Cache Performance Optimiza-
tions for Parallel Lattice Boltzmann Codes. Lecture Notes in Computer Science
(LNCS) Vol. 2790 In Proc. of the EuroPar-03 Conf., pp. 441–450. Springer (2003).

Wolf-Gladrow, D. A. Lattice-Gas Cellular Automata and Lattice Boltzmann Models:
An Introduction. Springer-Verlag (2000). ISBN 3-540-66973-6.

Wössner, U., Becker, M., and Lang, U. Tangible interfaces for interactive flow
simulation. In The 2nd Russian-German Advanced Research Workshop on Compu-
tational Science and High Performance Computing (2005).

Zou, Q. and He, X. On pressure and velocity boundary conditions for the lattice
Boltzmann BGK model. Physics of Fluids, Vol. 9(6):pp. 1591–1598 (1997).

117

Acknowledgments

This thesis ’emerged’ during my work as a scientific assistant at the chair for
Bauinformatik at the TU München and in cooperation with the Leibniz Comput-
ing Center, Munich. My research project was funded by the Competence Net-
work for Technical, Scientific High-Performance Computing in Bavaria (KON-
WIHR). In addition, the HPC Europe program supported a research visit of six
weeks to the University of Amsterdam, Netherlands.

First of all, I would like to thank my promotor Prof. Ernst Rank who gave me
the opportunity to work on the topic of computational steering and writing my
thesis at his institute. He has always been a challenging and, therefore, construc-
tive discussion partner and supported me by giving me the freedom to intensify
my interests in various areas. I also want to express my gratitude with regard to
having been able to visit many international conferences, to meet numerous inter-
esting people, and to keep myself updated to recent devolpments in my research
field. Besides research, Prof. Rank gave me the opportunity to further develop
myself with respect to my teaching abilites, supervision of students as well as
organizing an Elite Masters program and several other duties to smooth the way
to a successful and efficient Postdoc period.

I owe many thanks to Prof. Ulrich Rüde, my thesis’ second examiner. He
inspired me — especially in the last one to two years of my work — in which
direction I would like to develop myself. He also gave me interesting insights
into computer science research, which has become a main aspect of my thesis.
In particular, I would like to thank him for arranging the contact to Prof. Peter
Sloot’s group in Amsterdam.

I also want to express my gratitude to Prof. Peter Sloot and Alfons Hoekstra
for hosting me during my research visit in Amsterdam at Prof. Sloot’s Institute
for Computational Science and for giving me the opportunity to learn so many
things from a number of interesting people in his group.

I would like to thank all the people who supported me during the time of
learning Lattice-Boltzmann theory. Foremost, I need to refer to Alfons Hoekstra,
who explained to me the whole story of the LBM theory — and everything that was
left was just algebra. Jos Derksen, Jonas T”olke, and Thomas Zeiser have also been
very patient and helpful in answering my questions.

For their very kind support of my work, which caused extra effort especially
due to the interactive way of using supercomputers, I would like to thank Oliver
Wenisch, Reinhold Bader, Helmut Heller, Irene Geiseler, Leonhard Scheck and
Matthias Brehm at the Leibniz Computing Center in Munich, as well as Willem
Vermin, Laura Leistikov and Huub Stoffers at the Sara Computing Center in Am-
sterdam and Thomas Zeiser, Georg Hager, and Gerhard Wellein at the Computing
Center in Erlangen. I also want to thank Timothy Lanfear for the insight and dis-
cussions on Hitachi’s supercomputer features and many clues on how to program
efficent code on this machine.

I have always enjoyed working with my students: Daniel Alfreider, Miha Gan-
tar, Laurent Marcheix Nikola Cenic, Christian Liefhold, and Michael Kollinger,

118 Acknowledgments

and I am thankful for their support in teaching and implementing.
Thanks to all my collegues who were responsible for the friendly working at-

mosphere at our institute. I especially want to emphazise the true friendship I en-
joyed (and still enjoy) with my roommate Uli Heisserer. Special thanks I would
like to express to Christoph van Treeck, who has supported me as my group
leader and has shared his experience in running LBM simulations.

To enable the modeling and running of the simulations of the operating rooms
at the Klinikum rechts der Isar, Rainer Burgkart lead me through the rooms and
demonstrated the inportance of the installed ventilation systems. I would like to
thank him for his enthusiasm, great support, and his interest in my work.

Although there have been many people who supported me, the most impor-
tant backing has been my husband Oliver. He was my main cooperation partner
at the Leibniz Computing Center, always on the spot to help me with hardware
problems and to take care of the newest software updates. He also supported me
during implementing, was an excellent discussion partner and my most discern-
ing and constructive lector.

119

List of Publications

1. Wright, H., Crompton, R. H., Kharche, S., and Wenisch, P.: Steering and Visu-
alization: Enabling Technologies for Computational Science. Future Generation
Computer System (submitted).

2. Wenisch, P., van Treeck, C., Scheck, L., and Rank, E.: Computational Steering:
Interactive Flow Simulation in Civil Engineering. Inside, Vol. 5(2) (2007).

3. van Treeck, C., Wenisch, P., Borrmann, A., Pfaffinger, M., Egger, M., and
Rank, E.: Computational Steering of Thermal Comfort Perception. In 2nd GACM
Colloquium on Computational Mechanics. TUM, Munich, Germany (2007).

4. van Treeck, C., Wenisch, P., Borrmann, A., Pfaffinger, M., Egger, M., and
Rank, E.: Utilizing High Performance Supercomputing Facilities for Interactive
Thermal Comfort Assessment. In Proc. 10th Int. IBPSA Conference Building
Simulation. Bejing, China (2007).

5. Wenisch, P., van Treeck, C., Borrmann, A., Rank, E., and Wenisch, O.: Com-
putational Steering on Distributed Systems: Indoor Comfort Simulations as a Case
Study of Interactive CFD on Supercomputers. International Journal of Parallel,
Emergent and Distributed Systems, Vol. 22(4):pp. 275–291 (2007).

6. Wenisch, P.: Interactive Fluid Simulations: Computational Steering on Supercom-
puters. In Science and Supercomputing in Europe - report 2006: pp. 453-460
(2007). ISBN 978-88-86037-19-8

7. van Treeck, C., Wenisch, P., Borrmann, A., Pfaffinger, M., Wenisch, O., and
Rank, E.: Comfsim interaktive Simulation des thermischen Komforts in Innenräumen
auf Höchstleistungsrechnern. Bauphysik, Vol. 29(1):pp. 2–7 (2007).

8. van Treeck, C., Wenisch, P., Borrmann, A., Wenisch, O., Kuehner, S., Toelke,
J., Krafczyk, M., and Rank, E.: Computational Steering of Lattice-Boltzmann
based CFD Simulations in Virtual Reality (hlrb i). In Research projects HLRB I
(Hitachi SR8000) (2006).

9. van Treeck, C., Wenisch, P., Borrmann, A., Pfaffinger, M., Egger, M., Wenisch,
O., and Rank, E.: Towards Interactive Indoor Thermal Comfort Simulation In
Proceedings of ECCOMAS CFD 06, European Conf. on Computational
Fluid Dynamics, Egmond aan Zee, The Netherlands (2006).

10. van Treeck, C., Wenisch, P., Borrmann, A., Pfaffinger, M., Wenisch, O., and
Rank, E.: Comfsim interaktive Simulation des thermischen Komforts in Innen-
raeumen auf Hoechstleistungsrechnern. In Tagungsband BauSIM 2006, pp.
205–207. IBPSA Germany, München, Germany (2006). ISBN 978-3-00-019823-
6.

11. Borrmann, A., Wenisch, P., van Treeck, C., and Rank, E.: Collaborative Com-
putational Steering: Principles and Application in HVAC Layout. Integrated
Computer-Aided Engineering (ICAE), Vol. 13(4):pp. 361–376 (2006).

120 List of Publications

12. Wenisch, P., Wenisch, O., and Rank, E.: Harnessing High-Performance Com-
puters for Computational Steering. In Lecture Notes in Computer Science: Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface,
Vol. 3666, pp. 536–543. Springer (2005).

13. Borrmann, A., Wenisch, P., van Treeck, C., and Rank, E.: Collaborative HVAC
Design using Interactive Fluid Simulations: A geometry-focused Collaboration
Platform. In Proceedings of the 12th International Conference on Concur-
rent Engineering. Fort Worth, Texas, USA (2005).

14. Wenisch, P., Borrmann, A., Rank, E., van Treeck, C., and Wenisch, O.: Colla-
borative and Interactive CFD Simulation using High Performance Computers.
In 18th Symposium AG Simulation (ASIM) and EuroSim, pp. 145–151.
SCS Publishing- House e.V. Erlangen, Erlangen, Germany (2005). ISBN 3-
936150-41-9.

15. Rank, E., Borrmann, A., Duester, A., Niggl, A., Nuebel, V., Romberg, R.,
Scholz, D., van Treeck, C., and Wenisch, P.: From Adaptivity to Computational
Steering: The long Way of Integrating Numerical Simulation into Engineering
Design Processes. In ADMOS 2005. CIMNE, Barcelona, Spain (2005).

16. Wenisch, P., Wenisch, O., and Rank, E.: Optimizing an Interactive CFD Simu-
lation on a Supercomputer for Computational Steering in a Virtual Reality Envi-
ronment. In High Performance Computing in Science and Engineering, pp.
83–93. Springer (2005).

17. Borrmann, A., Wenisch, P., van Treeck C., and Wenisch, O.: Eine verteilte
Architektur fuer synchrones kooperatives Arbeiten mit einer interaktiven Stroemu-
ngssimulation. In 16. Forum Bauinformatik. Shaker Verlag, Aachen, Ger-
many (2004). ISBN 3-8322-3233-8.

18. Wenisch, P., van Treeck, C., and Rank, E.: Interactive Indoor Air Flow Analysis
using High Performance Computing and Virtual Reality Techniques. In 9th Inter-
national Conference on Air Distribution in Rooms (RoomVent2004). Coim-
bra, Portugal (2004).

19. Wenisch, P. and Wenisch, O.: Fast Octree-based Voxelisation of 3D Bound-
ary Representation-Objects. Technical Report, Lehrstuhl fuer Bauinformatik,
Technische Universität München (2004).

20. Wenisch, P.: Kopplung von Hochleistungsrechner und Virtueller Realitaet. KON-
WIHR Quartl, Vol. 37 (2003).

21. Hardt, P., Kuehner, S., Rank, E., and Wenisch, O.: Interactive CFD Simulations
by Coupling Supercomputers with Virtual Reality. Inside, Vol. 1(2):pp. 12–13
(2003).

22. Hardt, P., Kuehner, S., Wenisch, O., and Rank, E.: Interactive CFD Simulation
by Coupling Supercomputers with Virtual Reality. In High Performance Com-
puting in Science and Engineering. Springer (2004). ISBN 3-540-44326-6.

121

23. Kuehner, S., Hardt, P., Krafczyk, M., and Rank, E.: Computational Steering
of a Lattice-Boltzmann based CFD-solver in Virtual Reality. In Conference on
Construction Applications of Virtual Reality. Virginia, USA (2003).

24. Hardt, P. and Crouse, B.: Präprozessor für einen computergestützten Windkanal.
Fortschritt-Berichte Vol. 4 In 14. Forum Bauinformatik, pp. 165–172. VDI
Verlag, Bochum, Germany (2002). ISBN 3-18-318104-5.

25. Hardt, P.: Entwicklung eines Moduls zur Definition von stroemungsmechanis-
chen Randbedingungen als Attribute von 3D CAD-Geometrien. Diploma thesis,
Lehrstuhl fuer Bauinformatik, TU Muenchen (2001).

