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V

Abstract

The geodetic twin satellite mission GRACE delivers gravity field models of the Earth of unprecedented
accuracy. However, the originally defined mission baseline is not (yet) reached. Among others, defi-
ciencies in the gravity field sensor system or the related signal processing could be responsible for the
degraded performance.

In this work the GRACE gravity field sensor system is subject to an integrated sensor analysis.

First, models of the satellites’ environment are derived, including models for the direct gravitational
accelerations caused by the Earth, the Sun and the Moon and indirect effects like Earth and ocean tides.
Among the non-gravitational forces air drag, solar radiation pressure and Earth albedo are investigated.
The purpose of this part of the work is to model what the gravity sensor system should ’feel’.

The second part contains mathematical models of the individual elements of the gravity field sensor
system, the star sensor, the accelerometer,the K-band ranging system and the GPS receiver, to derive
an understanding of how the sensors detect their environment.

The third part consists of the analysis of the raw instrument data. The real measurement signals are
analyzed and the measurement performance in terms of a noise level is derived. They are compared to
the model output and the derived noise level to the one specified by the instruments’ manufacturers.

Finally the processing of the raw instrument data to the level that is used for the gravity field deter-
mination is investigated. A main processing step for all sensors is the application of an anti-aliasing
low-pass filter. Alternative filters are tested and evaluated against the filter used for the official data
processing.

Zusammenfassung

Die Satellitenmission GRACE liefert Schwerefeldmodelle bisher nicht verfügbarer Qualität. Aber die
vor dem Start anvisierte Genauigkeit ist (noch) nicht erreicht worden. Neben anderen möglichen Ur-
sachen könnten Fehler im Schwerefeldmesssystem und in der dazugehörigen Signalverarbeitung für die
reduzierte Genauigkeit verantwortlich sein.

In dieser Arbeit wird das GRACE Schwerefeldmesssystem einer integrierten Sensoranalyse unterzogen.

Zunächst werden Modelle der Satellitenumgebung vorgestellt. Unter den direkten gravitativen Kräften
werden die Erdanziehung sowie die Anziehung von Sonne und Mond modelliert, unter den indirekten
gravitativen Kräften werden Erd- und Ozeangezeiten vorgestellt. Unter den nicht-gravitativen Kräften
werden der Luftwiderstand, der Strahlungsdruck der Sonne und Erdalbedo untersucht. Diese Modelle
geben Auskunft darüber, was das Schwerefeldmesssystem detektieren soll.

Im zweiten Teil werden mathematische Modelle der einzelnen Sensoren des Schwerefeldmesssystems erar-
beitet. Im einzelnen werden der Beschleunigungsmesser, der Sternsensoren, das K-band Abstandsmesssys-
tem und der GPS-Empfänger modelliert, um eine Vorstellung darüber zu erlangen, wie die Satelliten
ihre Umgebung wahrnehmen.

Im nächsten Teil werden die rohen Messdaten der Instrumente untersucht. Die Messsignale werden
analysiert und die Qualität der Sensoren, wie auch die der Messung, wird über das Fehlerniveau bes-
timmt. Die gemessenen Signale werden mit den Erwartungen aus den Modellen verglichen, insbesondere
wird das aus den Messungen abgeleitete Rauschniveau mit den durch die Intrumentenhersteller gegebe-
nen Spezifikationen verglichen.

Schließlich wird die Prozessierung von Rohdaten zu Daten, die für die Schwerefeldbestimmung verwendet
werden, untersucht. Ein Hauptschritt der Umwandlung ist die Anwendung eines Tiefpassfilters um die
Datenrate ohne das Auftreten von Aliasingeffekten reduzieren zu können. Verschiedene alternative
Filter werden diskutiert und miteinander verglichen.





Contents 1

Contents

Abstract V

Zusammenfassung V

I. Introduction 5

1. Overview of the GRACE mission 7

2. Definition of integrated sensor analysis 9

3. Goals and topics of the work 11

II. Force models 13

4. Gravitational forces 15

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2. Earth gravity field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3. Gravitational forces of third bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.1. Direct tides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.2. Indirect tides of third bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.3. Ocean tides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.4. Solid Earth pole tides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5. Non-gravitational forces 23

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2. Macro-model of the GRACE satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3. Air drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.2. Air density models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.3. Velocity of the satellite relative to the atmosphere . . . . . . . . . . . . . . . . . 31

5.3.4. Force models for the derivation of the drag coefficient . . . . . . . . . . . . . . . 31

5.4. Solar radiation pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.2. Shadow of the Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



2 Contents

5.4.3. Force model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5. Earth albedo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5.2. Force model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6. Comparison of the model results with real data . . . . . . . . . . . . . . . . . . . . . . . 65

III. Sensor models 71

6. Introduction 73

7. Overview of the relevant sensor systems 75

8. Accelerometer 77

8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.2. Logical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.3. Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.4. Measurement model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.5. Dynamic measurement model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9. Star sensor 87

9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.2. Logical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.3. Measurement model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.4. Error model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10.K-band system 99

10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.2. Logical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.3. Measurement model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.4. Error model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

11.GPS Receiver 107

11.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.2. Measurement models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11.2.1. Pseudorange measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11.2.2. Carrier phase measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11.3. Error model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

IV. Real data processing and analysis 113

12.Data levels overview 115

13.Data products overview 117



Contents 3

13.1. Science data products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

13.2. Housekeeping data products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

13.3. Data set description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

14.Level 1a data analysis 119

14.1. Analysis of the star tracker data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

14.2. Analysis of the accelerometer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

14.2.1. Twangs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

14.2.2. Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

14.2.3. Thruster events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

14.2.4. Accelerometer performance estimation . . . . . . . . . . . . . . . . . . . . . . . . 130

14.2.5. Linear acceleration measurement performance estimation . . . . . . . . . . . . . 131

14.2.6. Angular accelerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

14.3. Analysis of the K-band and Ka-band ranging data . . . . . . . . . . . . . . . . . . . . . 136

15.Level 1a to level 1b processing 139

15.1. K-band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

15.2. Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

15.3. Star Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

16.Level 1b analysis 163

16.1. GPS receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

16.2. K-band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

16.3. Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

16.3.1. Disturbance effects: peaks, twangs and thruster events . . . . . . . . . . . . . . . 168

16.3.2. Performance assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

16.4. Star Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

16.5. Combined analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

17.Conclusions and discussion 175

17.1. Gravitational forces on the satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

17.2. Non-gravitational forces on the satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

17.3. Gravity field sensor system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

18.Outlook 181

18.1. Non-gravitational forces on the satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

18.2. Level 1a to level 1b data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Acknowledgement 183

A. Discrete Fourier transform and discrete filters 185

A.1. Discrete Fourier Transform (DFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.2. Discrete filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.3. Low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



4 Contents

A.4. High-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.5. Differentiator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.6. Double differentiator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.7. Filter scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B. Power spectral density (PSD) and standard deviation 193

C. Orientation representations and coordinate transforms 195

D. Coordinate frames 199

D.1. Inertial reference frame (IRF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

D.2. Orbit fixed reference frame (ORF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

D.3. Earth-fixed reference frame (EFRF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

D.4. Satellite fixed reference frame (SRF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

D.5. Instrument frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



Part I.

Introduction

5





1. Overview of the GRACE mission

GRACE (Gravity Recovery And Climate Experiment) is a joint project of the National Aeronautics
and Space Administration (NASA) and the German Space Center (DLR). The mission has been pro-
posed in 1996 jointly by the University of Texas at Austin, Center for Space Research (UTCSR), the
GeoForschungsZentrum Potsdam (GFZ), the Jet Propulsion Laboratories (JPL), Space Systems/Loral
(SSL), the Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), and Astrium GmbH. The GRACE
mission is successor to the CHAMP mission and was selected as the second mission in NASA’s Earth
Science System Pathfinder project (ESSP). The Principal Investigator is Prof. Byron Tapley (UTCSR),
the Co-Principal Investigator of the mission is Prof. Ch. Reigber of the GeoForschungsZentrum Pots-
dam. The goal of the mission is to derive highly accurate models of the Earth gravity field for a period
of at least five years. As an additional goal, GPS measurements are used to recover profiles of the
ionosphere and the troposphere by limb sounding.

Unlike the single satellite mission CHAMP, the GRACE mission consists of two identical satellites,
GRACE A and GRACE B, resp. Tom and Jerry. The satellite constellation is depicted in figure 1.1.

Figure 1.1: Overview of the GRACE satellites configuration. Considering the satellite in the front, the GPS antenna and
the star sensor baffles are visible. The K-band microwave link is indicated as a blue ray. On the back side of the satellite,
the ion thruster used for orbit maintenance is visible.

Each satellite is equipped with a GPS Turbo Rogue Space Receiver that allows precise orbit determi-
nation. In order to be able to take into account the effect of non-gravitational forces, both satellites are
equipped with ultra-sensitive Super STAR capacitive accelerometers. An absolute novelty is the use of
a K-band microwave link between the satellites to measure the inter-satellite distance with micrometer

7



8 1 Overview of the GRACE mission

accuracy.

To guarantee sufficient power supply and to enable operation of the K-band system, the attitude of the
satellites is observed by star sensors and controlled by cold gas attitude thrusters and magnetic torque
rods.

The GRACE satellites were successfully launched on March 17, 2002 from Plesetsk Cosmodrome in
Russia. The inclination of the satellites orbits is about 89◦ , the semi-major axis was about 6870 km,
the eccentricity was almost zero: 0.001. Since then the orbit decayed to an altitude of about 460 km.
The nominal distance between the two satellites is 220 ±50 km.



2. Definition of integrated sensor analysis

The subject to the integrated sensor analysis is a complex system consisting of several individual sensors.
The purpose of the integrated sensor analysis is to understand

• the functionality of each individual sensor,

• the interaction between the individual sensors and their operation as a sensor system.

The former is achieved by deriving mathematical models of the measurement process of each sensor. A
common way is to model the signal that is to be sensed and then to model the error behavior of the
sensor. The error behavior of the sensor is usually given by the manufacturer. The combination of the
simulated signal and simulated error is a good approximation of the real measurement behavior.

The latter is reached by combining the individual models to form the ’integrated’ model: The signal
flow in the sensor systems is derived, thus the dependencies can be modeled. Also the processing steps
necessary to transform between the individual data levels are investigated.

9





3. Goals and topics of the work

This work consists of three parts:

• The description of the forces acting on the GRACE satellites,

• the description of the GRACE system simulator and

• the description of the real data processing and analysis.

The first part describes models for volume forces and surface forces that act on the GRACE satellites
including models for gravitational forces like the gravity of the Earth or the effects caused by third
bodies like the Sun or the Moon. Among the surface forces atmospheric drag models, models for solar
radiation pressure and for Earth albedo are analyzed. Special emphasis is put on the analysis of the
atmospheric drag models, as at the orbit height of GRACE air drag is the dominant surface force.

The second part describes how the GRACE gravity field sensor system ’feels’ its environment. Measure-
ment models for the sensors that constitute the gravity field sensor system, namely the star sensor, the
accelerometer, the K-band ranging system and the GPS receiver are derived as mathematical models.

The third part is devoted to the analysis of the real satellite data. Performance estimates for the
individual instruments are derived and compared to the theoretical performance estimated in the second
part. Also the transformation from raw satellite data to the data level that is used for the gravity field
determination is investigated.

11
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4. Gravitational forces

4.1. Introduction

The gravitational forces are by far the strongest forces that act on the satellites and mainly determine
their orbits and relative motion. In the following sections the different kinds of gravitational forces will
be briefly introduced. In terms of magnitude one expects that the gravitational forces of the Earth are
strongest, followed by the forces caused by Moon, Sun and the solid Earth and ocean tides.

4.2. Earth gravity field

The gravitational accelerations are the first derivative of the gravitational potential of the Earth. The
potential and its first order derivatives can be expressed in the following way:

Vi =
GM

r

lmax∑

l=0

λi

(
R

r

)l l∑

m=0

p (α cos(mλ) + β sin(mλ)), (4.1)

with

differentiation w.r.t λi p α β

none 1 P̄lm C̄lm S̄lm

r − (l+1)
r P̄lm C̄lm S̄lm

θ 1 P̄ ′
lm C̄lm S̄lm

λ 1 mP̄lm S̄lm −C̄lm

The normalized associated Legendre functions and their derivatives are computed by recursive formulas.

For convenience, the following substitutions were made: Plm = P̄lm(cos θ), P ′
lm = ∂P̄lm(cos θ)

∂θ .

Plm = η cos θPl−1,m − σPl−2,m, (4.2)

Pl,l−1 = τ cos θPl−1,l−1, (4.3)

Pll = ν sin θPl−1,l−1, (4.4)

P ′
lm = η(cos θP ′

l−1,m − sin θPl−1,m) − σP ′
l−2,m, (4.5)

P ′
l,l−1 = τ(cos θP ′

l−1,l−1 − sin θPl−1,l−1), (4.6)

P ′
ll = ν(sin θP ′

l−1,l−1 + cos θPl−1,l−1), (4.7)

with the normalization factors:
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16 4 Gravitational forces

η =

√
(2l + 1)(2l − 1)

(l + m)(l − m)
, σ =

√
(l + m)(l − m)

(2l + 1)(2l − 1)
, τ =

√
2l + 1, ν =

√
2l + 1

2l
. (4.8)

The initial values are: P0,0 = 1, P1,0 =
√

3 cos θ, P1,1 =
√

3 sin θ, P ′
0,0 = 0, P ′

1,0 = −
√

3 sin θ,

P ′
1,1 =

√
3 cos θ.

To obtain the accelerations in cartesian coordinates, the first order derivatives in spherical coordinates
have to be transformed using the chain rule:

ẍe =
∂V

∂x
=

∂V

∂r

∂r

∂x
+

∂V

∂θ

∂θ

∂x
+

∂V

∂λ

∂λ

∂x
, (4.9)

ÿe =
∂V

∂y
=

∂V

∂r

∂r

∂y
+

∂V

∂θ

∂θ

∂y
+

∂V

∂λ

∂λ

∂y
, (4.10)

z̈e =
∂V

∂z
=

∂V

∂r

∂r

∂z
+

∂V

∂θ

∂θ

∂z
, (4.11)

where the partial derivations are simply derived from geometry:

∂r/∂x = sin θ · cos λ, (4.12)

∂r/∂y = sin θ · sinλ, (4.13)

∂r/∂z = cos θ, (4.14)

∂θ/∂x = cos θ · cos λ/r, (4.15)

∂θ/∂y = cos θ · sinλ/r, (4.16)

∂θ/∂z = − sin θ/r, (4.17)

∂λ/∂x = − sinλ/(r · sin θ), (4.18)

∂λ/∂y = cos λ/(r · sin θ). (4.19)

For simulation purposes or for orbit integration it is necessary to transform these accelerations from
the earth-fixed system to the inertial system.

Figure 4.1 shows the resulting accelerations in the Inertial Reference Frame (IRF). The magnitude
is about 8.4 m/s2 or about 84% of the acceleration on the Earth’s surface. We notice a modulation
with the orbit frequency, as the distance from the satellite to the Earth and its velocity vary during a
revolution. The first term of the spherical harmonic expansion of the gravity field, i.e. l=0, accounts
for 99% of the gravitational acceleration, a expansion up to degree 2, i.e. including the effect of the
Earth’s oblateness, represents about 99.99% of the characteristics of the gravitational acceleration of
the Earth. Thus an expansion up to degree 2 seems to be sufficient for most purposes except gravity
field determination studies of course.
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Figure 4.1: The top panel shows the gravitational accelerations induced by the Earth. The different lines show the
accelerations resulting from an evaluation of the spherical harmonic series up to a certain degree. The bottom panel shows
the change in acceleration from one evaluation level to the other. It seems that it is sufficient to evaluate the Legendre
series up to degree 2 for simulations, as the change for higher degrees is very small.
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4.3. Gravitational forces of third bodies

Gravitational forces caused by third bodies the gravitational forces caused by all other celestial bodies
than the Earth. In terms of magnitude the tidal forces of Sun and Moon are dominating.

4.3.1. Direct tides

The gravitational acceleration of a third body can be described as the acceleration of a point mass M ,
cf. Montenbruck and Gill (2000):

r̈sat,i = GM · rbody − rsat

|rbody − rsat|3
, (4.20)

with

rbody the geocentric position vector of the body,
rsat the geocentric position vector of the satellite,
GM the gravitational constant times the mass of the attracting body.

In an earth-fixed coordinate system the acceleration of the satellite is derived as the difference between
the acceleration of the satellite caused by the body and the acceleration of the Earth caused by the
body:

r̈sat,e = r̈sat,i − r̈Earth,i

= GM

(
rbody − rsat

|rbody − rsat|3
− rbody

|rbody|3
)

. (4.21)

Figure 4.2 shows the tidal acceleration of the ’satellite relative to the Earth’-two body system due to

rsat,e

-..

rEarth,i

-..

rsat,i

-..

rsat,e

-..
rsat,e

-..

rsat,e

-..

Earth 3rd body

Figure 4.2: Tidal ellipse of relative acceleration with respect to the center of an accelerated coordinate system. In this
example the resulting acceleration on a satellite caused by a third body like the Sun or the Moon in the earth-fixed
coordinate system is shown.

a third body. It has the form of a tidal ellipse. We realize that the satellite is accelerated away from
the Earth if it is in front of or behind the Earth and that the resulting acceleration is directed towards
the Earth if the satellite is above or below the Earth.

This equation can not only be applied to a satellite orbiting the Earth, it also describes the relative
acceleration of mass elements of a body with respect to its center of mass. Equation (4.21) therefore
also describes the solid Earth tidal deformation due to Sun and Moon.
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4.3.2. Indirect tides of third bodies

As mentioned above, the tidal forces of the other planets of our solar system deform the Earth. The
deformation depends on the local properties of the Earth’s crust. The so called ’Love numbers’ reflect
the elasticity of the Earth’s crust. The deformation leads to a change of the mass distribution of the
Earth in an earth-fixed coordinate system and therefore has to be taken into account when modeling
the forces acting on a satellite. As this effect is not caused directly by the gravitating body, it is called
indirect. In principle not only the Earth is deformed by this effect, but also all the other planets. For
satellites orbiting the Earth this effect is neglected, as the other planets are assumed to be point masses.

The change in the mass distribution of the Earth causes a change of the geopotential. It is expanded
in a series of spherical harmonic coefficients and described in more detail e.g. in McCarthy (2006). We
will give here only a brief outline:

∆C̄nm − i∆S̄nm =
knm

2n + 1

3∑

j=2

GMj

GME

(
RE

Rj

)
P̄nm(sin Φj)e

−imλj , (4.22)

where

knm is the nominal Love number for degree n and order m,
RE is the equatorial radius of the Earth,
GMj is the gravitational parameter for the Moon (j = 2) and the Sun (j=3),
GME is the gravitational parameter for the Earth,
Rj is the distance from geocenter to Moon or Sun,
Φj is the body fixed geocentric latitude of the Moon or the Sun,
λj is the body fixed geocentric longitude of the Moon or the Sun,
and P̄nm are the normalized associated Legendre functions.

The redistribution of the masses depends also on the frequency band affected by the different tidal
effects, therefore a ’frequency dependent correction’ to the equation above has to be derived:

∆C̄nm − i∆S̄nm =
∑

f(n,m)

A(f(n, m)) · eiθf(n,m) , (4.23)

where

f(n, m) is the frequency of the excitation,
A(f(n, m)) is the amplitude of the excitation,
θf(n,m) accounts for the Earth rotation and the type of the tide.

The needed amplitudes and frequencies are tabulated in McCarthy (2006).

4.3.3. Ocean tides

The oceans react to the tidal forces as well. There are two effects:

1. the change in the mass distribution of the Earth due to the movement of the water,

2. the change in the mass distribution of the Earth due to the changed load on the Earth’s crust
caused by the changing water load.

The effect on the geopotential is again formulated as a change in the spherical harmonic coefficients:

∆C̄nm − i∆S̄nm = Fnm

∑

s(n,m)

−∑

+

(C±
snm ∓ S±

snm)e±iθsnm ), (4.24)
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where

Fnm accounts for the changed load on the crust,
C±

snm, Spm
snm are the ocean tide coefficients for the tide type s,

θsnm is the argument of the tide type s.

The summation over + and - denotes the respective addition of the retrograde and prograde waves.

The interested reader may consult McCarthy (2006) for a more detailed description.

4.3.4. Solid Earth pole tides

The pole tides are generated by the centrifugal effect of the polar motion. They affect only the geopo-
tential coefficients C21 and S21:

∆C̄21 = C1 · (m1 − C2 · m2), (4.25)

∆S̄21 = C1 · (m1 + C2 · m2), (4.26)

where

C1 = 1.333 · 10−9,
C2 = 0.0115,
m1, m2 are the wobble variables directly related the polar motion variables (xp, yp).

A detailed description is to be found in McCarthy (2006).
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Figure 4.3: Tidal accelerations due to Sun and Moon over one day for a GRACE satellite.

Figure 4.3 shows the tidal accelerations on a GRACE satellite caused by Sun and Moon in an earth-
fixed inertial reference frame over one day. We notice a strong signal on twice per revolution for all
constituents. The direct tidal acceleration caused by the Moon is strongest at a level of 7 · 10−7 m/s2

followed by the direct tidal acceleration caused by the Sun at a level of about 3 · 10−7 m/s2, i.e. the
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Figure 4.4: Power spectral density of the tidal accelerations caused to Sun and Moon for a GRACE satellite.

tidal force of the Moon is about three times stronger than the tidal force caused by the Sun. The
ratio between the forces of Sun and Moon depends on the orientation of the orbit with respect to the
positions of Sun and Moon. Here the orbit normal points towards the Sun, i.e. the distance between
the satellite and the Sun is almost constant, therefore the force is also almost constant. The orbit plane
is aligned with the direction to the Moon, therefore the exerted force by the Moon varies strongly.

The magnitude of the indirect tidal accelerations caused by the Moon are at level of about 2 ·10−7 m/s2,
those caused by the Sun are at level of about 8 ·10−8 m/s2 . The accelerations caused by the ocean tides
vary between 1 · 10−8 m/s2 and 1 · 10−7 m/s2. The magnitude of the frequency dependent corrections
is about 1.5 · 10−8 m/s2, the pole tide varies between 3 · 10−9 m/s2 and 2 · 10−8 m/s2 and shows also a
semidiurnal period. All effects can be detected by the GRACE sensor system, as its sensitivity is about
3 · 10−10 m/s2.

In order to compare the variations of the different effects, we consider figure 4.4, where the tidal
accelerations are displayed in the frequency domain as a power spectral density. We notice that the
dominant frequencies are harmonics of the orbit frequency. The dominant amplitudes are found on
twice per revolution. Concerning the magnitude of the different effects, the direct tides of the Moon are
strongest, followed by the ocean tides, the indirect tides of the Moon, the direct tides of the Sun, the
indirect tides of the Sun, the pole tides and the frequency dependent corrections. The ocean tides show
a less strong correlation with harmonics of the orbit frequency, they seem to be rather independent
from the satellite’s position.





5. Non-gravitational forces

5.1. Introduction

The non-gravitational forces acting on the satellites are significantly smaller than the major gravitational
ones. Depending on the orbit height, either the solar radiation pressure (as for high orbiting GPS
satellites) or the atmospheric drag and earth albedo (as for low orbiting satellites) have significant
influence on the forces acting on the satellites. As the GRACE satellites are low orbiting satellites, we
expect dominant influence of the atmospheric drag, followed by the earth albedo and the solar radiation
pressure.

We did not investigate the effects of anisotropic thermal emission, the recoil from the radiowave beams
used for the data downlink, electrostatic effects and others that are considered negligible.

The main emphasis was put on the analysis of different air drag models, as the air drag is the dominant
non-gravitational force. A general idea was to assess if the accelerometer measurements can be replaced
by model outputs.

In the following sections we will first present a macro model of the GRACE satellites, that is a prereq-
uisite for all force models, and then present the individual models.

23
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5.2. Macro-model of the GRACE satellites

Figure 5.1 shows an engineering drawing of the view from the front and figure 5.2 shows the view from
the side of a GRACE satellite.

Boom

Starboard inner

Starboard outer

Top

Bottom

Port outer

Port inner

Figure 5.1: Engineering drawing of the front of a GRACE satellite. Image from Bettadpur (2007).

Front Rear

Top

Bottom

Figure 5.2: Engineering drawing of the side of a GRACE satellite. Image from Bettadpur (2007).

Table 5.2 shows the properties of the individual surface elements of the used macro-model of the GRACE
satellites. The surface element location, area, normal vector in the SRF, the coefficients describing the
interaction with visible light and infra-red radiation and the type of material is given.
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Table 5.1: Parameters of the surface model of the GRACE satellites from Bettadpur (2007).

# location A[m2] n̂ Cs Cd Cir
s Cir

d material

1 Front 0.96




+1.00
+0.00
+0.00



 0.40 0.26 0.23 0.15 SiOx/Kapton

2 Rear 0.96




−1.00
+0.00
+0.00



 0.40 0.26 0.23 0.15 SiOx/Kapton

3 Starboard (outer) 3.16




+0.00
+0.77
−0.64



 0.05 0.30 0.03 0.16 Si Glass Solar Array

4 Starboard (inner) 0.23




+0.00
−0.77
+0.64



 0.40 0.26 0.23 0.15 SiOx/Kapton

5 Port (outer) 3.16




+0.00
−0.77
−0.64



 0.05 0.30 0.03 0.16 Si Glass Solar Array

6 Port (inner) 0.23




+0.00
+0.77
+0.64



 0.40 0.26 0.23 0.15 SiOx/Kapton

7 Nadir 6.07




+0.00
+0.00
+1.00



 0.68 0.20 0.19 0.06 Teflon

8 Zenith 2.17




+0.00
+0.00
−1.00



 0.05 0.30 0.03 0.16 Si Glass Solar Array

9 Boom 0.05
only for forces in
x and y direction

0.40 0.26 0.23 0.15 SiOx/Kapton
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5.3. Air drag

5.3.1. Introduction

Air drag is the force acting on the surface of a body caused by interaction with the surrounding gas
mixture consisting of one or more atomic or molecular species.

Both GRACE satellites are Low Earth Orbiters (LEOs) at an altitude of less than 500 km above the
Earth’s surface. In this case air drag is the major non-gravitational force acting on the satellites, cf.
Klinkrad and Fritsche (1998).

As both GRACE satellites are identical, the analysis is confined to one satellite, it is assumed that the
results are applicable to the other one as well. The potential effect of the leading satellite shielding the
following one is not investigated.

As a general formula we give according to e.g. Sagirov (1970):

Fdrag =
1

2
ρ V 2 A C, (5.1)

where

Fdrag is the air drag force vector,
A is the area of the surface,

C is the ballistic coefficient vector,
ρ is the density of the ambient air,
V is the magnitude of the velocity of the satellite relative to the atmosphere.

The ballistic coefficient vector C reflects the properties of the interaction of the incoming molecules with
the surface. It is the sum of two vectorial components defined either in the {pressure,shear} system
with the unit vectors {n̂, t̂} or in the system {drag,lift} defined by the unit vectors {ûD, ûL}:

C = −(CD · ûD + CL · ûL) (5.2)

and

C = −(Cn · n̂ + Ct · t̂). (5.3)

The unit vectors for the decomposition of the forces are given as:

ûD =
V

V
= V̂, (5.4)

ûL =
n̂ − ûD · cos φ

sinφ
, (5.5)

t̂ = n̂ × (V̂ × n̂)

sin φ
, (5.6)

where

V̂ is the unit vector of the relative velocity,
n̂ is the surface normal unit vector,

t̂ is the surface tangent unit vector,
φ is the angle between the vector of relative velocity and the surface normal.
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Figure 5.3: Depiction of the decomposition of the air drag force into a component dF p in opposite direction of the surface
normal, bn and a component dF t in the opposite direction of the tangent, bt. The angle between the surface normal and
the relative velocity is φ, the angle between the relative velocity and the surface tangent is θ. It is also common to split
up the force into a component dFD in opposite direction of the relative velocity V and a component dFL perpendicular
to V . The corresponding unit vectors buD and buL have the opposite direction as the components of the acting force.

The different ballistic coefficients can be transformed from one system to the other by the following
formulas:

(
CD

CL

)
=

(
cos(−φ) sin(−φ)

− sin(−φ) cos(−φ)

)
·
(

1 0
0 −1

)
·
(

Cn

Ct

)

=

(
Cn · cos φ + Ct · sinφ
Cn · sinφ − Ct · cos φ

)
, (5.7)

(
Cn

Ct

)
=

(
1 0
0 −1

)
·
(

cos(φ) sin(φ)
− sin(φ) cos(φ)

)
·
(

CD

CL

)

=

(
CD · cos φ + CL · sin φ
CD · sinφ − CL · cos φ

)
. (5.8)

Also by definition we get:

C =
Fdrag

1
2 ρ V 2 A

. (5.9)

The ballistic coefficients are thus just a scaling for the dynamic pressure 1
2 ρV 2, that is well known from

Bernoulli’s equation.

As a first conclusion we see that the magnitude of the air drag depends on:

1. the density of the ambient air,

2. the velocity of the satellite with respect to the atmosphere,

3. the area of the surface,
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4. and the ballistic coefficient vector.

In the following sections we give a detailed derivation of the involved quantities, except the area of the
surface, which does not need explanation.

5.3.2. Air density models

Air density models deliver the number densities of different atmospheric species as well as the ambient
air temperature. As an example for an air density model, MSIS 86 is briefly introduced.

MSIS86

The Mass Spectrometer Incoherent Scatter Model 1986 (MSIS86) is an improved version of MSIS83
and is described in Hedin (1987). Special emphasis is put on the representation of the morphology of
the polar regions under both quiet and disturbed magnetic conditions. MSIS86 computes the density
of H, He, O, N2, O2, Ar and N from the following quantities:

• time,

• altitude,

• longitude and latitude,

• solar flux (F107A and F107),

• geomagnetic activity (three hour AP-values.)

The data used for this model is derived from various satellites and also includes data from rocket probes
and ground stations.

Table 5.2: Relative density of the different atmospheric species delivered by MSIS86 at 500 km height.

Atmospheric species relative density [%]

H < 5%

He < 25%

O > 75%

N2 < 25%

O2 < 5%

Ar < 5%

N < 5%

The total air density at the height of GRACE is at a level of 0.2 to 1.4·10−12 kgm−3, which is very low
compared to the density at sea level of about 1 kgm−3. There is a seasonal as well as a daily period,
as shown in figure 5.4 for the daily period and figure 5.5 for the seasonal period. It is interesting that
the bulge of maximum density arrives at about 14h local time, i.e. about two hours after noon. The
temperature at satellite height varies between 700 and 1300◦K, cf. figure 5.6. The relative densities of
the different constituents are given in table 5.2. We notice that by far the most important contributor
is atomic oxygen, followed by helium and nitrogen. The contribution of each of the other atmospheric
constituents to the total mass density is below 5 % for all local times and seasons.
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Figure 5.4: Total air mass density over one day at 500 km height at three hour intervals for 1st of January.
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Figure 5.5: Total air mass density over one year at 500 km height at 90 day intervals for 0 h local solar time.
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Figure 5.6: Ambient air temperature at 500 km height for 1st of January.
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5.3.3. Velocity of the satellite relative to the atmosphere

The velocity of the satellite with respect to the atmosphere is defined by (cf. Gerstl (1998)):

V = Vsat − Vatmos = Vsat − (ω × xsat + Vwind), (5.10)

where

Vsat is the velocity of the satellite

Vatmos is the velocity of the atmosphere
ω is the vector of the angular velocity of the earth
xsat is the position of the satellite

Vwind is the wind vector.

The expression for the velocity of the atmosphere can be split up into two parts. The first arises
from the assumption that the atmosphere rotates with the Earth. The rotation velocity reaches its
maximum at the equator and decreases towards the polar regions. The second part takes into account
that, in addition to this rotation, there are also winds in the thermosphere. A common wind model is
the Horizontal Wind Model 1993 (HWM93) described in Hedin et al. (1988), Hedin et al. (1991) and
Hedin et al. (1996). HWM93 is an empirical model. Data used for this model stem from Dynamics
Explorer 2 and Atmosphere Explorer E as well as from terrestrial data from incoherent scatter radar
and Fabry-Perot optical interferometers.

HWM93 describes the wind vector field by a spherical harmonic expansion of two vector fields: an
irrotational field and an solenoidal field. Hence four coefficients are needed for each harmonic degree
and order. Using these coefficients, amplitude and phase of the meridional and zonal winds can be
computed. Formulas are given in the appendix of Hedin et al. (1988).
HWM93 computes the meridional (N-S) and the zonal (E-W) wind-speed from the same quantities as
the air density is derived from.

Vertical wind speed, which is generally less than 1 cm/s, see ESA (2000), can be neglected. The
horizontal winds show a strong daily variation but almost no seasonal variation. At the height of
GRACE, the horizontal wind speed can reach up to 300 m/s, cf. fig 5.7. The main effects take place at
polar regions.

5.3.4. Force models for the derivation of the drag coefficient

Introduction

Before a force model is derived, some assumptions about the kind of flow regime the satellite encounters
have to be made. A characteristic quantity for separating the different kinds of flow regimes is the
Knudsen number:

K =
λ

L
, (5.11)

where λ is the mean free molecular path and L is the characteristic length of the considered body.
The mean free molecular path is a measure of the path a molecule can travel after reflection without
colliding with other molecules. If K ≫ 1, the theory of free molecular flow is applicable. The GRACE
orbit height fulfills the conditions for the free molecular flow, cf. Koppenwallner (1988). In the free
molecular flow regime the molecular character of the air is pronounced. Additionally we make the
following assumptions:

• There are no multiple reflections,

• the velocity of the satellite relative to the atmosphere molecules is V.
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Figure 5.7: Meridional and zonal wind speed computed from HWM93 over one day at 500 km height
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Figure 5.8: Interaction of a molecule with a surface element. In the first row the decomposition of the force is depicted, in
the second row the case of specular reflection is displayed, in the third row the case of diffuse reflection is shown.

Interaction of a molecule with a surface element

Figure 5.8 shows the basic situation of all described force models: the impact of a molecule on a surface
element of the satellite. The molecule’s velocity is V, the relative velocity of the satellite with regard to
the atmosphere. There are two types of reflection which describe the extreme possibilities of the action
after the impact. We have diffuse reflection if the atmospheric molecule accommodates on the surface
of the satellite and its kinetic energy is transformed into heat until the residual kinetic energy equals
the energy it would have at the temperature of the surface element. The atmospheric molecule is then
re-emitted in an arbitrary direction with a velocity corresponding to the temperature of the surface
element. In case of diffuse reflection, the force exerted on the surface element has a component in the
opposite direction of the surface normal (pressure) and in direction of the surface tangent (shear). If
no energy is transformed into heat, we have specular reflection, i.e. the tangential component of the
velocity of the molecule remains unchanged, the normal component changes its sign as the impacting
molecule is instantly reflected at the surface element molecules. In case of specular reflection the exerted
force acts only in the opposite direction of the surface element normal.
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Basic force model

For the most simplified and also most common force model it is assumed that the incoming particles
are reflected mainly diffusely. The force is split up into the direction of the relative velocity and
perpendicular to it (drag and lift), but it is assumed that the lift is zero. Furthermore it is assumed
that the ballistic coefficient has a fixed value and that for all molecules the relative velocity is V:

FSat =
1

2
ρV 2AC, (5.12)

C = −2.2 · cos φ · V̂. (5.13)

This very simple force model may not be sufficient to model all occurring effects, thus more complex
models are derived in the following subsections.

Standard two parameter force model

In this subsection we derive a standard force model for both extreme possibilities of interaction of the
incoming molecule with the surface element:

• The molecule is reflected specularly or

• the molecule is reflected diffusely.

The derivation is based on Newton’s second law:

∆F =
∆p

∆t
(5.14)

and Newton’s third law

F = −F
′
. (5.15)

The first case is depicted in figure 5.9. For practical reasons the collision is split up into two parts:

Figure 5.9: Specular reflection
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impact and reflection, i.e. we will derive the change of impulse from after the impact to before the
impact and from after the reflection to before the reflection:

∆pi = pai − pbi, (5.16)

∆pr = par − pbr, (5.17)

∆p = ∆pi + ∆pr. (5.18)

We get:

pbi =

(
−V · cos φ
−V · sinφ

)
m, (5.19)

pai =

(
0
0

)
m, (5.20)

=⇒ ∆pi =

(
+V · cos φ
+V · sinφ

)
m (5.21)

and

pbr =

(
0
0

)
m, (5.22)

par =

(
+V · cos φ
−V · sin φ

)
m, (5.23)

=⇒ ∆pr =

(
+V · cos φ
−V · sin φ

)
m, (5.24)

which leads to

∆p =

(
+V · cos φ
+V · sinφ

)
m +

(
+V · cos φ
−V · sinφ

)
m, (5.25)

=

(
+2V · cos φ

0

)
m, (5.26)

with

V magnitude of the relative velocity vector,
φ angle between the relative velocity and the surface normal,

≡ angle of incidence,
m mass of the incoming molecule.

Equation (5.26) gives us the impulse change of one particle. To derive the total force, we first have to
know how many particles hit the satellite per unit time and per unit area. This number is given by:

Ninc = Nvol · V cos φ, (5.27)

with

Ninc the number of incoming molecules [ 1
s·m2 ],

Nvol the number of molecules per cubic meter [ 1
m3 ],

Nvol is given by the air density model.

As

∆F =
∆p

∆t
, (5.28)
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we get for the total force exerted on the molecules:

∆F = +

(
2V · cos φ

0

)
m · Ninc · A (5.29)

= +

(
2V · cos φ

0

)
m · Nvol · V cos φ · A (5.30)

= +

(
2
0

)
(V · cos φ)2 · ρ · A, (5.31)

with ρ the mass density of the incoming molecule species. The satellite exerts this force on the molecules.
According to Newton’s third law, the force on the satellite is the same as on the molecules but with
opposite sign:

∆Fsat = −
(

2
0

)
(V · cos φ)2 · ρ · A. (5.32)

For the vector C we get, if we use definition (5.3):

C = −4 · (cos φ)2 · n̂ + 0 · t̂. (5.33)

So for specular reflection the ballistic coefficients have a maximal value of 4, which is much higher than
the standard value of 2.2. It is to be noted that for this model no force in direction of the tangent is
exerted, but only in direction of the surface normal.

The second case of diffuse reflection is depicted in figure 5.10. We get:

Figure 5.10: Diffuse reflection

pbi =

(
−V · cos φ
−V · sinφ

)
m, (5.34)

pai =

(
0
0

)
m, (5.35)

=⇒ ∆pi =

(
V · cos φ
V · sinφ

)
m (5.36)
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and

pbr =

(
0
0

)
m, (5.37)

par =

(
Vr

0

)
m, (5.38)

=⇒ ∆pr =

(
Vr

0

)
m, (5.39)

which leads to

∆p =

(
V · cos φ
V · sin φ

)
m +

(
Vr

0

)
m (5.40)

=

(
V · cos φ + Vr

V · sinφ

)
m. (5.41)

For the force on the molecules we get:

∆F =

(
V · cos φ + Vr

V · sinφ

)
V cos φ · ρ · A (5.42)

and for the force on the satellite:

∆Fsat = −
(

(cos φ)2 + Vr
V · cos φ

sinφ · cos φ

)
V 2 · ρ · A. (5.43)

This leads to a C:

C = −2 ·
[(

(cos φ)2 +
Vr

V
· cos φ

)
· n̂ + (sinφ · cos φ) · t̂

]
. (5.44)

We note that the ballistic coefficients in case of diffuse reflection are smaller than in case of specular
reflection. In direction of the surface normal, the maximal value is four, however the ratio Vr

V is smaller
than one if one assumes realistic values for the temperature of the reflected stream. In direction of the
tangent, the maximal value is one for φ = 45◦ because of the cos φ · sinφ term. In contrast to the case
of specular reflection the force has also a component in the direction of the surface tangent.
These two extreme possibilities of reflection do not reflect reality. In reality, the reflection is partly
specular and partly diffuse. Let us now assume that a part (1 − σ) is reflected specularly and that a
part σ is reflected diffusely. σ is the accommodation coefficient and describes which part of the incoming
particles takes part in an energy exchange with the struck surface. We then get:

∆Fsat = −
[
(1 − σ)

(
2(cos φ)2

0

)
(5.45)

+ σ

(
(cos φ)2 + Vr

V · cosφ
sin φ · cos φ

)]
V 2 · ρ · A, (5.46)

= −
[
(2 − σ)

(
(cos φ)2

0

)
+ σ

(
Vr
V · cosφ

sinφ · cos φ

)]
V 2 · ρ · A (5.47)

and

C = −2 ·
[(

(2 − σ)(cos φ)2 + σ
Vr

V
· cos φ

)
· n̂ + σ (sinφ · cosφ) · t̂

]
. (5.48)

If we assume that there is a separate accommodation coefficient for the normal and the tangential
energy exchange, we get:

C = −2 ·
[(

(2 − σn)(cos φ)2 + σn
Vr

V
· cos φ

)
· n̂ + σt (sinφ · cos φ) · t̂

]
. (5.49)
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This is identical to the formulation given in Mazanek et al. (2000). The given formulation does still
not take into account that the incoming molecules have, in addition to the macroscopic velocity V, a
microscopic velocity u. This velocity is different for each molecule, but the distribution is according to
a Maxwell-Boltzmann distribution:

f(u) =
ρ

mπ
3
2 ṽ3

exp

(
−mu2

2kT

)
, (5.50)

with

m molecule mass,
ṽ most probable velocity in the distribution,
k Boltzmann constant,
T ambient air temperature.

The velocity of the molecules relative to the surface element is then

w = V + u (5.51)

and

u = w − V. (5.52)

So the distribution function becomes:

f(w, V) =
ρ

mπ
3
2 ṽ3

exp

(
−m(w − V)2

2kT

)
(5.53)

=
ρ

mπ
3
2 ṽ3

exp

(
−w2 − V

2
+ 2 · w · V

ṽ2

)
(5.54)

=
ρ

mπ
3
2 ṽ3

exp

(
−w2

ṽ2

)
(5.55)

· exp
(
−S2

)
· exp

(
2
S

ṽ
· (wx cosφ + wy sinφ)

)
, (5.56)

with S the molecular speed ratio: S = V
ṽ , ṽ =

√
2kT
m and V =




V · cos φ
V · sinφ

0



.

The number of incoming particles is now given by:

Ninc =

∫ +∞

−∞
dwz

∫ +∞

−∞
dwy

∫ +∞

0
wx · fdwx. (5.57)

It is clear that only molecules that have a positive velocity component wx can hit the surface and only
those have to be accounted for. The force due to the incoming molecules in direction of the surface
normal is then given by:

dFi,n = −
∫ +∞

−∞
dwz

∫ +∞

−∞
dwy

∫ +∞

0
wx · wx · fdwx · A · m · n̂ (5.58)

= −ρV 2A

[
1

2
√

πS2
Π(S cos φ)

]
· n̂, (5.59)

where

Π(S cos φ) = S cos φ exp(−S cos φ2) +
√

π
(
0.5 + S cos φ2

)
[1 + erf(S cos φ)] (5.60)

is the pressure function. Note that as ρ is the total mass density the pressure function is a measure for
that fraction of the total number of molecules in a unit volume that hit the surface and have a velocity
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component in direction of the surface normal. For the force in the direction of the tangent we get:

dFi,t = −
∫ +∞

−∞
dwz

∫ +∞

−∞
dwy

∫ +∞

0
wy · wx · fdwx · A · m · t̂ (5.61)

= −ρV 2A

[
S sin φ

2
√

πS2
χ(S cos φ)

]
· t̂, (5.62)

χ(S cos φ) = exp(−S cos φ2) +
√

π S cos φ [1 + erf(S cos φ)] (5.63)

is the particle flow function. Similarly to the pressure function, the particle flow function is a measure
for the fraction of the molecules that hit the surface and have a velocity component in direction of the
surface tangent. For the reflected molecules in case of specular reflection we get:

dFr,spec,n = −
∫ +∞

−∞
dwz

∫ +∞

−∞
dwy

∫ +∞

0
wx · wx · fdwx · A · m · n̂ (5.64)

= −ρV 2A

[
1

2
√

πS2
Π(S cos φ)

]
· n̂ (5.65)

and for the force in direction of the tangent:

dFr,spec,t = +

∫ +∞

−∞
dwz

∫ +∞

−∞
dwy

∫ +∞

0
wy · wx · fdwx · A · m · t̂ (5.66)

= +ρV 2A

[
S sinφ

2
√

πS2
χ(S cos φ)

]
· t̂. (5.67)

In the case of diffuse reflection we get:

dFr,diff,n = −
∫ +∞

−∞
dwz

∫ +∞

−∞
dwy

∫ +∞

0
wx · fdwx · Vr

V
· A · m · n̂ (5.68)

= −ρV 2A

[
S

2
√

πS2
· Vr

V
χ(S cosφ)

]
· n̂ (5.69)

and for the force in direction of the tangent:

dFr,diff,t = 0. (5.70)

In the case of diffuse reflection it is assumed that all reflected molecules have the same velocity Vr, the
distribution function f is only required to get the number of the incoming molecules, which is the same
as the number of reflected molecules. Vr is identical to the most probable velocity in the Maxwellian
velocity distribution. The tangential force for diffusely reflected molecules is zero because in the sum
the individual tangential effects of the reflected molecules cancel themselves. If we again assume that a
fraction of the particles is reflected diffusely and the complement is reflected specularly, we get:

∆Fsat = −
{[(

(2 − σ)

2
√

πS2
Π(S cos φ)

)
+

σS

2
√

πS2
· Vr

V
· χ(S cosφ)

]
n̂ (5.71)

+

[
σS sinφ

2
√

πS2
· χ(S cos φ)

]
t̂

}
V 2 · ρ · A. (5.72)

Again assuming normal and tangential accommodation coefficients and knowing that

Vr

V
=

√
π

2S

√
Tw

T
, (5.73)

we get:

∆Fsat = −
{[(

(2 − σn)

2
√

πS2
Π(S cos φ)

)
+

σn

2S2
· 1

2

√
Tw

T
· χ(S cos φ)

]
n̂

+

[
σtS sin φ

2
√

πS2
· χ(S cos φ)

]
t̂

}
V 2 · ρ · A. (5.74)
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So far the equations assumed only one atmospheric species and one surface element. From now on the
notation will take into account that there are several atmospheric constituents and surface elements.
For the atmospheric constituent i and the surface element k the total force is given by:

∆F
(i,k)
sat = −









(

(2 − σ
(i,k)
n )

2
√

πS2
(i)

Π(S(i) cos φ(k))

)
+

σ
(i,k)
n

2S2
(i)

· 1

2

√
T

(k)
w

T
· χ(S(i) cos φ(k))



 n̂(k)

+

[
σ

(k)
t S(i) sinφ(k)

2
√

πS2
(i)

· χ(S(i) cos φ(k))

]
t̂(k)

}
V 2 · ρ(i) · A(k). (5.75)

For the vector of ballistic coefficients we find:

C
(i,k)

= −
(
C(i,k)

n · n̂(k) + C
(i,k)
t · t̂(k)

)
, (5.76)

C(i,k)
n = 2




(

(2 − σ
(i,k)
n )

2
√

πS2
(i)

Π(S(i) cos φ(k))

)
+

σ
(i,k)
n

2S2
(i)

· 1

2

√
T

(k)
w

T
· χ(S(i) cos φ(k))



 , (5.77)

C
(i,k)
t = 2

[
σ

(i,k)
t S(i) sinφ(k)

2
√

πS2
(i)

· χ(S(i) cos φ(k))

]
, (5.78)

which is identical to the formulation given in Schaaf and Chambre (1961).

Alternative two parameter force model

Another alternative is to decompose the force into the directions of the relative velocity and the surface
normal. We start from equation (5.74).

Let

t̂(k) sinφ(k) = V̂ − n̂(k) cos φ(k), (5.79)

S(i,k)
n = S(i) cos φ(k), (5.80)

then

∆F
(i,k)
sat = −A(k) ρ(i)V 2

2








2 − σ
(i,k)
n√

πS2
(i)

Π(S(i,k)
n ) +

σ
(i,k)
n

2S2
(i)

√
T

(k)
w

T
χ(S(i,k)

n )

− σ
(i,k)
t cos φ(k)

S(i)
√

π
χ(S(i,k)

n )

]
n̂(k)

+

[
σt

(k)

S(i)
√

π
χ(S(i,k)

n )

]
V̂

}
. (5.81)

Let

Γ1(S
(i,k)
n ) =

1

2
√

π

[
χ(S(i,k)

n )
]
, (5.82)

Γ2(S
(i,k)
n ) =

1

2
√

π

[
Π(S(i,k)

n )
]
, (5.83)

then

∆F
(i,k)
sat = −A(k) ρ(i)V 2








2 − σ
(i,k)
n

S2
(i)

Γ2(S
(i,k)
n ) +

σ
(i,k)
n

2S2
(i)

√
T

(k)
w

T

√
π Γ1(S

(i,k)
n ) (5.84)

− σ
(i,k)
t cos φ(k)

S(i)
Γ1(S

(i,k)
n )

]
n̂(k) +

[
σ

(k)
t

S(i)
Γ1(S

(i,k)
n )

]
V̂

}
.
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Let

V
(i,k)
r

V
=

√
π

2

√
T

(k)
w

T

1

S(i)
, (5.85)

⇒

√
T

(k)
w

T
=

V
(i,k)
r

V

2√
π

S(i), (5.86)

then

∆F
(i,k)
sat = −A(k) ρ(i)V 2

{[
2 − σ

(i,k)
n

S2
(i)

Γ2(S
(i,k)
n ) +

σ
(i,k)
n

S(i)

V
(i,k)
r

V
Γ1(S

(i,k)
n )

− σ
(i,k)
t cos φ(k)

S(i)
Γ1(S

(i,k)
n )

]
n̂(k) +

[
σ

(i,k)
t

S(i)
Γ1(S

(i,k)
n )

]
V̂

}
. (5.87)

Equation (5.87) is identical to the formulation of the force due to air drag in Thalhammer (1989). In
contrast to the previous formulation the force is not split up into perpendicular components:

∆F
(i,k)
sat =

1

2
ρ(i)V 2 A(k) C

(i,k)
, (5.88)

where

C
(i,k)

= −
(
C(i,k)

n n̂(k) + C
(i,k)
D V̂

)
, (5.89)

C(i,k)
n = 2

[
2 − σ

(i,k)
n

S2
(i)

Γ2(S
(i,k)
n ) +

σ
(i,k)
n

S(i)

V
(i,k)
r

V
Γ1(S

(i,k)
n ) − σ

(i,k)
t cos φ(k)

S(i)
Γ1(S

(i,k)
n )

]
, (5.90)

C
(i,k)
D = 2

[
σ

(i,k)
t

S(i)
Γ1(S

(i,k)
n )

]
. (5.91)

Force model using only one accommodation coefficient

A more simplified form of the force model can be derived if it is assumed that the normal and tangential
accommodation coefficients are equal. We start again from equation (5.74).

Then, with

σ(i,k)
n = σ

(i,k)
t = σ(i,k), (5.92)

we find

∆F
(i,k)
sat = −A(k) ρ

(i)V 2

2S2
(i)








(2 − σ(i,k))√
π

Π(S(i,k)
n ) +

σ(i,k)

2

√
T

(k)
w

T
χ(S(i,k)

n )



 n̂(k)

+

[
σ(i,k)

√
π

S
(i,k)
t χ(S(i,k)

n )

]
t̂(k)

}
. (5.93)
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Now the acting force is decomposed into a part due to diffuse reflection and a part due to specular
reflection. We derive:

∆F
(i,k)
sat =

1

2
ρ(i)V 2 A(k)C

(i,k)
, (5.94)

C
(i,k)

= −
[
σ(i,k) C

(i,k)
d + (1 − σ(i,k)) C

(i,k)
s

]
, (5.95)

C
(i,k)
d =

1

S2
(i)








 1√
π

Π(S(i,k)
n ) +

1

2

√
T

(k)
w

T
χ(S(i,k)

n )



 n̂(k)

+

[
1√
π

S
(i,k)
t χ(S(i,k)

n )

]
t̂(k)

}
, (5.96)

C
(i,k)
s =

1

S2
(i)

{[
2√
π

Π(S(i,k)
n )

]
n̂(k)

}
, (5.97)

which is identical to Klinkrad and Fritsche (1998).

Force model using the thermal accommodation coefficient

The following force model is based on a slightly different concept. To describe the interaction of the
incoming molecules and the surface element, only the thermal accommodation coefficient α is used:

α =
Ei − Er

Ei − Ew
=

Ti − Tr

Ti − Tw
. (5.98)

It is defined as the ratio between the amount of energy that has actually been exchanged between the
surface element and the incoming molecule and the amount of energy that could have been exchanged
if perfect accommodation occurred (Tw is the wall temperature). For perfect accommodation, α = 1,
all incoming molecules are reflected diffusely; for the case of vanishing energy exchange, α = 0, all
molecules are reflected specularly.

According to Gerstl (1998) the thermal accommodation coefficient α can be described in dependence
of the mass of the incoming molecule species and the mass of the surface element molecules:

α(i,k) =
4mimk

(mi + mk)2
, (5.99)

with

mk mass of the molecules of surface element k,
mi mass of the atmospheric constituent i impacting on surface element k.

A molecule that hits the surface element k under an angle θ
(k)
I , that is defined as the angle between the

relative velocity and the surface tangent, is reflected diffusely inside a cone with a cone angle of ν
(i,k)
r .

The angle between the axis of the cone and the surface element is θ
(i,k)
R (see figure 5.11). It is

cos θ
(i,k)
R =

(
cos θ

(k)
I

)1/(1−α(i,k))
2

, (5.100)

ν
(i,k)
R ≈ cos(0.535185 arcsinαik). (5.101)

We get for the drag coefficient C
(i,k)
D :

C
(i,k)
D = 2

(
1 −

√
1 − α(i,k) ν

(i,k)
R cos(θ

(k)
I + θ

(i,k)
R )

)
. (5.102)
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qR
(i,k)qI

(k)

nR

(i,k)

qI

(k)
qR

(i,k)

Figure 5.11: One parameter accommodation model. Diffuse reflection is assumed. The incoming molecule is reflected
within a cone of certain aperture. Depicted are the angle θ

(i,k)
I , the cone angle ν

(i,k)
r and the angle between the cone and

the surface element θ
(i,k)
R .

For the lift coefficient C
(i,k)
L we get:

C
(i,k)
L = 2

(√
1 − α(i,k) ν

(i,k)
R sin(θ

(k)
I + θ

(i,k)
R )

)
. (5.103)

Finally, we derive for the total force due to drag and lift ∆F
(i,k)
sat :

∆F
(i,k)
sat =

1

2
ρ(i) V 2A(k) · C(i,k)

, (5.104)

with

C
(i,k)

= −
(
C

(i,k)
D · ûD + C

(i,k)
L · ûL

)
. (5.105)

Empirical model

The model formulation from Mazanek et al. (2000) has been derived before, we just repeat it for
completeness:

∆F
(i,k)
sat =

1

2
ρ(i)V 2A(k)C

(i,k)
, (5.106)

C
(i,k)

= −
(

C(i,k)
n n̂(k) + C

(i,k)
t t̂(k)

)
, (5.107)

C(i,k)
n = 2

[
(2 − σ(i,k)

n ) cos2 φ(k) + σ(i,k)
n

V
(i,k)
r

V
cos φ(k)

]
, (5.108)

C
(i,k)
t = 2

[
σ

(i,k)
t cos φ(k) sinφ(k)

]
, (5.109)
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where

σ(i,k)
n = an − bn exp(−cnE(i) cos2 φ(k)), (5.110)

σ
(i,k)
t = at − bt exp(−ctE

(i) sin
3
4 φ(k)), (5.111)

with

an, bn, cn normal accommodation curve fit parameters -
nominally 1.0, 0.9, 0.28,

at, bt, ct tangential accommodation curve fit parameters -
nominally 1.67, 1.67, 0.147,

E(i) collision activation energy in [eV].

The collision activation energy is given by

E(i) =
1

2
m(i)V 2, (5.112)

where m(i) is the mass of the incoming particle species in [kg]. Equation (5.112) gives the energy in [J],
to get it in [eV] as required, the result has to be scaled by 1.6 · 10−19. The speciality of this model is
that in contrast to, e.g., the standard two parameter force model the numerical values for the normal
and tangential accommodation coefficients can be estimated and have not to be guessed.

Model comparison and discussion

We have derived now a series of drag models with different levels of sophistication and based on different
assumptions. Let us now compare them. The basic force model shall be denoted as simple model. The
model using the thermal accommodation coefficient from Gerstl (1998) shall be denoted model G, the
model from Schaaf and Chambre (1961) shall be denoted model S&C, the model from Thalhammer
(1989) shall be denoted model T, the model from Klinkrad and Fritsche (1998) shall be denoted model
K and finally the model from Mazanek et al. (2000) shall be denoted model M.

Table 5.3: Different force models for air drag derivation.

model input quantities unknown inputs force split up velocity equations
distribution

simple V, A, ρ none drag and lift no (5.13)

G mi, V, mk, n̂, A, ρ none drag and lift no (5.102):(5.105)

S & C mi, V, n̂, A, ρ, σn, σt, Tw σn, σt, Tw pressure and shear yes (5.71):(5.78)

T mi, V, n̂, A, ρ, σn, σt, Tw σn, σt, Tw drag and pressure yes (5.87)

K mi, V, n̂, A, ρ, σ, Tw σ, Tw pressure and shear yes (5.94):(5.97)

M V, n̂, A, ρ, E, Tw Tw pressure and shear no (5.106):(5.109)

The derived models can be divided into three groups:

1. Models that require no unknown inputs like the simple model and model G,

2. analytical models like S & C, T and K that represent the standard two, respectively one parameter
accommodation models; they can be transformed into each other analytically and require the
surface reflection coefficients and the surface temperature as an input,

3. experimental models like model M that derives the surface reflection coefficients from experimental
data. It requires the surface temperature as input.
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The comparison will be done in terms of the vector of ballistic coefficients. We will use the decomposition
of forces in the direction of the relative velocity and perpendicular to it, meaning drag and lift. The
simple force model introduced in the first place will also be included in the comparison. However as it
assumes fixed values for CD and CL, only differences to the other models will be shown. For the results
presented here, T = 1100◦ K and ρ = 10−12 kg/m3 was used.

Derivation of the surface temperature Tw

The derivation of the surface temperature is complicated as the GRACE satellites are not rotating but
kept in a nominal attitude, i.e. it is very likely that there will be temperature gradients. In this study
this effect is neglected. For the results in this subsection Tw = 450◦K will be used.

Derivation of the normal and tangential accommodation coefficients

For the models S & C, T and K the numerical values of the accommodation coefficients need to be
defined. In order to make the results comparable to the other models, the definition of the thermal
accommodation coefficient from model G is used. The normal and tangential accommodation coefficient
are set equal to the derived thermal accommodation coefficient for each atmospheric species.

Model G
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Figure 5.12: Thermal accommodation coefficient αik depending on the surface type and the incoming molecule type.

Apart from the ’standard’ inputs, which are relative velocity, outward surface normal and density, model
G requires the atomic masses of the atmospheric molecules and the surface element material. These two
quantities m(i) and m(k) are then used to derive the thermal accommodation coefficient αik. Typically
7 types of atmospheric constituents are considered: H, He, O, N2, O2, Ar and N . Atomic oxygen
accounts for more than 75 % of the constituents, followed by helium and nitrogen, that each contribute
more than 20 %, see table (5.2). Helium is a rather light species, its atomic mass is 4u, atomic oxygen
and nitrogen are rather heavy species with a mass of 16u and 28u per molecule. The GRACE surface
elements consist of three different kinds of materials: aluminium (front and rear), silicon dioxide (side
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panels and top) and teflon (bottom). Figure 5.12 shows the thermal accommodation coefficient for the
three different kinds of surfaces and for all atmospheric constituents in the order of their relative atomic
mass. One notices that except for H, He and Ar the accommodation coefficient has a value above
0.9 for all surfaces, i.e. the incoming molecules are mainly reflected diffusely. For H the value of the
accommodation coefficient is around 0.2, i.e. the incoming molecules are mainly reflected specularly. For
He the value of the accommodation coefficient is around 0.5-0.6, i.e. the incoming molecules are reflected
specularly and diffusely in equal parts. The next quantities that are derived are the angle between the

axis of the reflection cone and the surface element θ
(i,k)
R (shown on the left panel of figure 5.13) and the

cone angle ν
(i,k)
r (shown on the right panel of figure 5.13). Concerning θ

(i,k)
R it can be stated that for

an angle of incidence of 90◦ the value is zero regardless of the considered atmospheric constituent. For

angles of incidence between 0◦ and 90◦, θ
(i,k)
R varies depending the atmospheric constituents: Except for

H and He, θ
(i,k)
R is mostly 90◦, i.e. we have diffuse reflection. For these two atmospheric constituents

θ
(i,k)
R is proportional to the angle of incidence φ(k), as for them specular reflection is applicable. The

cone angle ν
(i,k)
r varies between 42◦ and 57◦, taking on its largest value for H (specular reflection) and

its lowest value for O (diffuse reflection).
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Figure 5.13: Left panel: Angle between the surface element and the reflection cone θ
(i,k)
R depending on the atmospheric

constituents and the angle of incidence φ(k). Right panel: Cone angle ν
(i,k)
r depending on the atmospheric constituents
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Figure 5.14: Left panel: CD from model G, depending on the atmospheric constituent and the angle of incidence φ(k).
Right panel: CL from model G, depending on the atmospheric constituent and the angle of incidence φ(k).
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Based on these values CD and CL are derived, cf. figure 5.14. We note that the CD values for H and
He (specular reflection) are again proportional to the angle of incidence, the maximum value being 4.0
for H and an angle of incidence of 90◦. We also note that for the other five atmospheric constituents
(diffuse reflection) the CD value ranges from 2.0 to 2.5, which agrees with the standard value of 2.2
given e.g. in Sagirov (1970), except for angles of incidence above 80◦. The values of CL for all angles of
incidence are below 0.4 for all atmospheric constituents (diffuse reflection) except H and He (specular
reflection). For H, CL takes on values of up to 1.8 for angles of incidence between 30◦ and 60◦. The
values of H and He depend on the angle of incidence.

Models S & C, T and K
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Figure 5.15: Sn from model S & C, depending on the angle of incidence φ(k) and the atmospheric constituents

As the three models are identical in principle, we only show the results of the model from Schaaf and
Chambre (1961). The first quantity to be derived for these models is the molecular speed ratio Sn scaled
by cos φ. It is defined as the ratio between the magnitude of the relative velocity and the most probable
velocity of the incoming molecules, cf. figure 5.15. We note that Sn is proportional to the square root
of the atomic mass of the atmospheric constituents and to the cosine of the angle of incidence φ. It
takes on values from 0 to 12, i.e. the satellite is up to 12 times faster than the molecules themselves.
Sn is input for the next quantities to be derived: the pressure function and the particle flow function,
depicted in figure 5.16. The pressure function values range from 0 to 450 and show the same behavior as

the S
(i,k)
n values: proportionality to the square root of the atomic mass of the atmospheric constituents

and to the cosine of the angle of incidence. The particle flow function values magnitude is only one
tenth of the magnitude of the values of the pressure function, they range from 0 to 40 and show again

the same behavior as S
(i,k)
n .

From the pressure function and the particle function the values of C
(i,k)
D and C

(i,k)
L can be derived.

They are shown in figure 5.17. We note that the C
(i,k)
D vary again from 0 to 4.0, taking on maximal

values for low angles of incidence and for the constituents H and He (specular reflection). For the
remaining atmospheric constituents (diffuse reflection) the values are lower than 2.5 and decrease with

increasing angle of incidence in contrast to the behavior of model G. The C
(i,k)
L values are significantly
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Figure 5.16: Left panel: Pressure function Π(S
(i,k)
n ) as a function of the angle of incidence φ(k) and the atmospheric

constituents. Right panel: Particle flow function χ(S
(i,k)
n ) as a function of the angle of incidence φ(k) and the atmospheric

constituents
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Figure 5.17: Left panel: C
(i,k)
D of model S & C, as a function of the angle of incidence φ(k) and of the atmospheric

constituents. Left panel: C
(i,k)
L of model S & C, as a function of the angle of incidence φ(k) and of the atmospheric

constituents

smaller with a maximal value of 1.8 at 45◦ angle of incidence and decreasing towards 0◦ and 90◦. It
is interesting that for the atmospheric constituents that are diffusely reflected (all but H and He), the
values are rather low (below 0.2) and seemingly independent from the angle of incidence. Therefore it
can be stated that the lift forces are about 10 % in magnitude of the drag forces. Here model S & C
and model G behave very similar.

Model M

For model M, the normal and tangential accommodation coefficients originally taken from Knechtel and
Pitts (1973) are determined empirically. The tangential accommodation coefficients have been corrected

to yield a C
(i,k)
D value of 2.2 for a spherical satellite.

The left panel of figure 5.18 shows the normal accommodation coefficients. As expected their maximum
value is one. In contrast to the previous models, they show a direct correlation to the angle of incidence
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Figure 5.18: Left panel: σ
(i,k)
n for model M, as a function of the angle of incidence φ(k) and the atmospheric constituents.

Right panel: σ
(i,k)
t for model M, as a function of the angle of incidence φ(k) and the atmospheric constituents

and to the mass of the atmospheric constituent. Only a rather small part of the particles is reflected
mainly diffusely. The right panel of figure 5.18 shows the tangential accommodation coefficients. Their
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Figure 5.19: Left panel: C
(i,k)
D from model M, depending on the angle of incidence φ(k) and the atmospheric constituents.

Right panel: C
(i,k)
L from model M, depending on the angle of incidence φ(k) and the atmospheric constituents

maximum value is not one, as expected, but about 1.4. The reason lies in the correction that was applied
to the coefficients. For the main contributor to the atmospheric drag, O, the values are smaller than
one and consequently physically meaningful. For the constituents heavier than O, the accommodation
coefficient is larger than one and thus no longer physically meaningful.

The left panel of figure 5.19 shows the derived values for C
(i,k)
D . The maximal values are up to 4.0

again, they are reached for H and He, similar to the other models. For the diffusely reflected species

the C
(i,k)
D value is smaller than 2.5. It decreases with increasing angle of incidence unlike model G. The

right panel of figure 5.19 shows the derived values for C
(i,k)
L . The maximal values are up to 1.6, which

is smaller than for model G and for model S & C. There is no clear separation between the specularly
reflected H and He and the other atmospheric constituents, at least not as pronounced as for the other
models.
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Model differences
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Figure 5.20: Left panel: Comparison of C
(i,k)
D from model G with C

(i,k)
D from model S & C. Right panel: Comparison of

C
(i,k)
D from model G with C

(i,k)
D from model M.

In order to compare the output of the different models the differences between the C
(i,k)
D and C

(i,k)
L

values as a function of the angle of incidence φ(k) and of the atmospheric constituents are formed. The
ballistic coefficients are just a scaling of the dynamic pressure 1

2ρV 2. For GRACE, V = 7.3 km
s and

ρ = 1 · 10−12 kg
m3 is assumed, therefore the dynamic pressure is about 2.5 · 10−5 N

m2 , or, in terms of
acceleration, if we assume a mass of 450 kg, it is about 6 · 10−8 m

s2
1

m2 .

The left panel of figure 5.20 shows the difference in the C
(i,k)
D value between model G and model S &

C. We notice that for angles of incidence up to 50◦, the differences are below 0.4, but start to rise to
a level of up to 1.8 for large angles. Only for H the differences remain low, regardless of the angle of
incidence. In terms of acceleration the differences rise up to about 8.4 · 10−8 m

s2
1

m2 . The right panel of
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Figure 5.21: Left panel: Comparison of C
(i,k)
L from model G with C

(i,k)
L from model S & C. Right panel: Comparison of

C
(i,k)
L from model G with C

(i,k)
L from model M.

figure 5.20 shows the difference in the C
(i,k)
D value between model G and model M. The differences are

very similar to the differences between model G and model S & C.

The left panel of figure 5.21 shows the difference in the C
(i,k)
L value between model G and model S
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& C. The differences are throughout below 0.2 except for some higher differences for He at angles of
incidence between 60◦ and 80◦ that amount to a maximum value of 0.8. So in terms of acceleration the
differences are in essence below 2.4 · 10−9 m

s2
1

m2 ; only for He they rise up to 4.8 · 10−8 m
s2

1
m2 . The right
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Figure 5.22: Left panel: Comparison of C
(i,k)
D from model S & C with C

(i,k)
D from model M. Right panel: Comparison of

C
(i,k)
L from model S & C with C

(i,k)
L from model M

panel of the figure shows the difference between models G and M for the value of C
(i,k)
L . It reaches its

maximum of 1 for H at angles of incidence between 60◦ and 80◦ .

The left panel of figure 5.22 shows the difference in the C
(i,k)
D value between model M and model S & C.

The differences are throughout below 0.2, except for H. At low angles of incidence the differences rise
up to 0.8. Also for high angles of incidence for N and O, the differences are up to 0.6. The differences
in terms of accelerations amount up to a level of 4.8 · 10−8 m

s2
1

m2 . The right panel of figure 5.22 shows

the difference in the C
(i,k)
L value between model M and model S & C. Maximum differences of up to 0.6

occur for an angle of incidence between 20◦ and 70◦ for N and O and for H for an angle of incidence
between 50◦ and 90◦ . The acceleration differences per unit area are at a level of 4.8 − 6 · 10−8 m

s2
1

m2 .

Conclusions:

• Concerning the C
(i,k)
D values, there are significant differences between model G and model S

& C and between model G and model M, mainly for larger angles of incidence. The differences
between model S & C and model M are much smaller despite the fact that different accommodation
coefficients are used.

• Concerning the C
(i,k)
L values, there are again significant differences between model G and model

S & C and model G and model M, mainly for H and He. The differences between model S & C
and model M are smaller but none the less significant, as they reach a level of 4.8 · 10−8 m

s2
1

m2 for
O and N .

In order to evaluate how close each model is to reality, their output together with the output of the
other models for non-conservative forces is compared to the real GRACE accelerometer measurements
in section (5.6). In the following we will also compare the model output in terms of the total force
acting on the satellite.

Derivation of the total force on the satellite

The force models presented so far deliver the force per unit area and per particle species. In order to get
the total force on the whole satellite, one has to sum up the effects of the individual molecular species
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Table 5.4: Statistic parameters of the different air drag models.

model σ m/s2 mean m/s2 min m/s2 max m/s2

simple x: +5 · 10−08 x: −1 · 10−07 x: −2 · 10−07 x: −3 · 10−08

y: +3 · 10−10 y: −2 · 10−10 y: −1 · 10−09 y: +7 · 10−10

z: +6 · 10−10 z: +1 · 10−09 z: +3 · 10−10 z: +3 · 10−09

M x: +6 · 10−08 x: −2 · 10−07 x: −3 · 10−07 x: −5 · 10−08

y: +2 · 10−09 y: −3 · 10−10 y: −7 · 10−09 y: +5 · 10−09

z: +7 · 10−10 z: +9 · 10−10 z: −2 · 10−09 z: +6 · 10−09

S & C x: +7 · 10−08 x: −2 · 10−07 x: −4 · 10−07 x: −5 · 10−08

y: +6 · 10−09 y: −9 · 10−10 y: −2 · 10−08 y: +1 · 10−08

z: +5 · 10−09 z: +6 · 10−09 z: −1 · 10−08 z: +2 · 10−08

G x: +6 · 10−08 x: −1 · 10−07 x: −3 · 10−07 x: −4 · 10−08

y: +7 · 10−09 y: −1 · 10−09 y: −2 · 10−08 y: +1 · 10−08

z: +2 · 10−09 z: +2 · 10−09 z: −6 · 10−09 z: +2 · 10−08

over all areas. The surface model of the GRACE satellites was presented in section 5.2 and is used now
to determine the individual area. The total force is:

Ftotal =
1

2
ρ(i)V 2

∑

k

A(k) ·
∑

i

C
(i,k) · N

(i)
d∑

i N
(i)
d

. (5.113)

N
(i)
d is the number density of the constituent i and ρ is now the total mass density of all incoming

molecules.

Figure 5.23 and table 5.4 show a comparison of the different models. Let us first take a look at the
along-track accelerations shown in the upper two panels of the figure. The top left panel shows the
different model outputs in the time domain. They behave similar in terms of magnitude, offset and
variability: The magnitude varies between −4 · 10−8 m/s2 and −3 · 10−7 m/s2. The standard deviation
is about 6 · 10−8 m/s2 and the mean value is −1 · 10−7 m/s2, cf. table 5.4. The top right panel shows
the corresponding root PSD. Again the models behave similar. It is interesting that a strong signal is
not only visible at once per revolution (at 2 · 10−4 Hz), but also at 1 · 10−4 Hz, that is caused by the air
density variations. The signal at once per revolution is dominant. At high frequencies all PSDs level
out at about 1 · 10−7 m/s2/

√
Hz.

Now we take a look at the cross-track accelerations in the time domain shown in the middle left panel.
Here model G and model S & C agree well. The outputs of the simple model and model M are different
from them and from each other. Comparing table 5.4, we see that the simple model delivers the smallest
output. Here the mean value of −2 · 10−10 m/s2, as well as the variability of 3 · 10−10 m/s2 is smallest,
followed by model M showing a larger variability of 2·10−9 m/s2. The models G and S & C show a mean
value of −1 · 10−9 m/s2 and a standard deviation of 6 · 10−9 m/s2. The maximal values for them range
between −2 · 10−8 m/s2 and 1 · 10−8 m/s2. The middle right panel shows the root PSD of the model
cross-track accelerations. Now all models except the simple model show a dominant signal at once per
revolution, as for the simple model only forces in direction of the relative velocity are considered. The
simple model shows the smallest signal, followed by model M and then models G and S & C.

The radial model accelerations time series is shown in the lower left panel. Here the simple model and
model M agree well. Model G and model S & C behave differently than the simple model and model
M. Among them, they are similar, but the mean value is different. Concerning the variability, the
simple model and model M show a similarly small value of 6 · 10−10 m/s2, followed by model G with
2 · 10−9 m/s2. Model S & C shows the largest standard deviation of 5 · 10−9 m/s2. The mean value of
6 · 10−9 m/s2 from model S & C is largest. The simple model and model M show mean values around
1 · 10−09 m/s2.



5 Non-gravitational forces 53

0 5000 10000 15000
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−7

time [s]

[m
/s

2
]

along

simple

M

S & C

G

10
−5

10
−4

10
−3

10
−2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

frequency [Hz]

[m
/s

2
/s

q
rt

(H
z
)]

along

simple

M

S & C

G

0 5000 10000 15000
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−8

time [s]

[m
/s

2
]

cross

simple

M

S & C

G

10
−5

10
−4

10
−3

10
−2

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

frequency [Hz]

[m
/s

2
/s

q
rt

(H
z
)]

cross

simple

M

S & C

G

0 5000 10000 15000
−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−8

time [s]

[m
/s

2
]

radial

simple

M

S & C

G

10
−5

10
−4

10
−3

10
−2

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

frequency [Hz]

[m
/s

2
/s

q
rt

(H
z
)]

radial

simple

M

S & C

G

Figure 5.23: Comparison of the different air drag models. The left panels show along-track, cross-track and radial component
in the time domain, the panels to the right show the corresponding root PSDs.

Conclusions

In principle the different models agree well, especially for the dominant along-track component. Here
the use of more sophisticated models like model S & C or model G seems not be necessary, the difference
to the most simple model is small. Concerning the cross-track and radial components, the differences
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between the models are more pronounced. During the comparison with the real measurements it will
be difficult to decide which one performs better, as here solar radiation pressure and earth albedo are
the dominant effects.
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5.4. Solar radiation pressure

5.4.1. Introduction

Solar radiation pressure is caused by the illumination of a body by the Sun. At a first glance it
may sound strange that the Sun’s light causes a significant pressure on such a relatively small object
as a satellite, but apart from the gravitational forces and the air drag, solar radiation pressure has a
significant influence. The measured accelerations are mainly due to air drag and solar radiation pressure.

We will first introduce a simple model of the shadow of the Earth, before we continue to present the
model for the solar radiation pressure induced accelerations on the satellite.

5.4.2. Shadow of the Earth

We will model the shadow of the Earth in this work as simple as possible and therefore use a cylin-
drical shadow model, cf. Wermuth (2000) and figure 5.24. Input quantities are the position vector of
the satellite in the IRF and the current position of the Sun in the IRF given as right ascension and
declination. The distance to the Sun is assumed to be infinite, therefore the incoming sunlight rays are
parallel. The Earth then casts a shadow of a cylindrical form and infinite extent. As a next step, the
IRF satellite position is rotated by the right ascension α of the Sun about the z-axis and then by the
negative declination δ of the Sun about the (new) y-axis:

rsatJ = R2(−δJ)R3(α
J) · rsat

i . (5.114)

The position of the satellite is now given in a coordinate system {eJ=1, e
J

=2, e
J

=3} of which the
positive x-axis is pointing towards the Sun. Using simple conditions, it can now be determined wether
the satellite is inside or outside the shadow of the Earth: if xsatJ > 0, the satellite is between Earth and

Sun and therefore not inside the shadow. If the Earth is in front of the satellite (xsatJ < 0), we check if
the satellite position is inside the cylindrical Earth shadow, i.e. if

y2J
,sat + z2J

,sat ≤ r2
E . (5.115)

In reality, the transition between sunlight and shadow is smooth, because before entering the shadow,
the so-called penumbra is passed. Inside the penumbra, the satellite is illuminated by a part of the
normal solar radiation, as in these regions the Sun is only partly visible.

5.4.3. Force model

The model presented here can be found in Wertz (1991). The pressure acting on a sunlit surface is the
solar flux incident on the surface divided by the speed of light:

P =
Fe

c

[
kgm2

s3m2
· s

m
=

kg

ms2

]
, (5.116)

with

Fe the solar flux, Fe ≈ 1370W/m2,
c the velocity of light.

One part of the incoming radiation is absorbed, the other part is reflected. As for air drag, the reflection
can be either specular or diffuse. We first determine the force due to absorption as:

dF
(k)
abs = −PC(k)

a cos φ(k) Ŝ dA(k) (0 ≤ φ ≤ 90◦)

[
kg

ms2
· m2 =

kgm

s2
= N

]
, (5.117)
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Figure 5.24: Cylindrical Earth shadow model, cf. Wermuth (2000)

where

Ŝ = rSun−rsat

|rSun−rsat| is the unit vector pointing from the satellite to the Sun,

cos φ(k) = n̂(k) · Ŝ the cosine of the angle between the surface normal and the direction to the Sun,

C
(k)
a is the absorption coefficient,

dA(k) is the area of the surface element k.

If cos φ(k) is negative, the surface is not illuminated and the radiation pressure thus is zero. The force
due to specular reflection can be determined as:

dF
(k)
spec = −2PC(k)

s cos2 φ(k) n̂(k) dA(k) (0 ≤ φ(k) ≤ 90◦). (5.118)
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Figure 5.25: Impact geometry and reflection types for the solar radiation pressure. The second panel shows the case of
specular reflection, the third panel shows the case diffuse reflection.

C
(k)
s is the fraction of the incoming radiation that is reflected specularly. For specular reflection, the

incoming radiation and the reflected radiation cause the same pressure in direction of the surface normal,
but a pressure opposite in sign in direction of the tangent. Therefore only two times the pressure in
direction of the surface normal remains. For the part that is reflected diffusely, there is a component
acting in direction of the incident radiation due to the impact and a component acting in direction of
the surface normal:

dF
(k)
diff = PC

(k)
d

(
−2

3
cos φ(k) n̂(k) − cos φ(k) Ŝ

)
dA(k) (0 ≤ φ(k) ≤ 90◦). (5.119)

C
(k)
d is the diffusely reflected part of the incoming radiation. In reality, all three possibilities of reflection

occur simultaneously:

dF̄
(k)
total = −P

∫ [(
1 − C(k)

s

)
Ŝ + 2

(
C(k)

s cosφ(k) +
1

3
C

(k)
d

)
n̂(k)

]
cos φ(k) dA(k), (5.120)
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where C
(k)
a + C

(k)
s + C

(k)
d = 1. C

(k)
s and C

(k)
d are derived from the macro-model of the satellites. As the

surface elements are flat, the area is A(k) and the total force on the surface element k is:

F
(k)

= −P

[(
1 − C(k)

s

)
Ŝ + 2

(
C(k)

s cos φ(k) +
1

3
C

(k)
d

)
n̂(k)

]
cos φ(k) A(k). (5.121)

The total force on the satellite due to solar radiation is then given by:

Fsrad =
∑

k

F
(k)

. (5.122)

Figure 5.26 shows the solar radiation pressure converted to an acceleration over one day in the satellite
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Figure 5.26: Solar radiation pressure over one day in the satellite body frame.

fixed coordinate system. For this simulation, the orbit plane is aligned with the direction to the
Sun. As expected, then the radial component dominates, followed by the cross-track and along-track
component. The magnitudes are up to 7 · 10−8m/s2 for the radial component and around 3 · 10−8m/s2

for the along-track and cross-track components. One can also identify the phases of shadow transit
where the acceleration is zero.

5.5. Earth albedo

5.5.1. Introduction

In our albedo model we will consider Earth albedo as radiation re-emitted by the Earth. A comprehen-
sive description in given in Kandel (1980). Earth albedo is caused by short-wave radiation emitted by
the Sun, cf. figure 5.27. The radiation re-emitted by the Earth can be divided into short-wave radiation
and long-wave or infrared radiation. The short-wave radiation results from the part of incoming solar
radiation, about 25 %, that is reflected back to space at the clouds in the troposphere. The long-wave
part of the re-emitted radiation results from the part of the incoming solar radiation that has been
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transmitted to the Earth’s surface and been absorbed there. After absorption, this radiation is then
re-emitted to space as long-wave radiation in the infrared part of the electromagnetic spectrum. In
our model we will only consider these two main effects, although reality is more complex. Parts of the
short-wave as well as the long-wave radiation are absorbed in the different layers of the atmosphere.
Other parts are transmitted to ground and then reflected back at cloud layers in the troposphere, there
is also an energy flow between the short- and long-wave radiation, cf. Kandel (1980) and figure 5.27 for
more details. In the following we will present models for short- and long-wave albedo.

Figure 5.27: Top panel: Global radiative equilibrium. The spectrum of the incoming solar radiation and the radiation
emitted by the Earth is shown. The energy of the re-emitted radiation is concentrated at longer wavelengths rather than
that of the incoming radiation. Also the spectrum of the re-emitted radiation does not fully correspond to a black body
spectrum. Note that the spectrum of the short-wave radiation that is reflected at the clouds of the troposphere is identical
to the one of the incoming solar radiation. Lower panel: Energy budget of the Earth as a three layer model. Both figures
from Kandel (1980).
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5.5.2. Force model

Short-wave albedo

Concerning the short-wave albedo, we will use the model described in Bhanderi and Bak (2005). First,
the amount of incoming radiation from the Sun has to be determined. It is modeled as the spectrum
emitted by a body with a surface temperature of 5777 K using Planck’s law. The main part of the
resulting radiation’s wavelength is smaller than 2 µm and covers the visible part of the spectrum up to
UV radiation.

Ein =
r2
Sun

1AU2

∫ + inf

0
ESun(λ, T )dλ = 1366.5 W/m2, (5.123)

with rSun the Sun’s mean radius. The incoming radiation then hits a surface element on Earth. The

Figure 5.28: Principle albedo model. The amount of reflected radiation depends on the surface element area and the angles
between the directions to the Sun and the satellite and the surface normal.

situation is depicted in figure 5.28. The radiant flux of the incoming radiation depends on the surface
area dA and the angle β between the cell surface element normal n̂ and the direction to the Sun r̂Sun:

Pc = Ein · dA · cos β = Ein · dA · (̂rSun · n̂). (5.124)

The reflection is assumed to be Lambertian, i.e. we have diffuse reflection that is independent of the
incident angle of the incoming reflection. The reflected radiant flux is a fraction of the incoming flux:

Pr = ρ · Pc. (5.125)

ρ is the mean reflectivity of the considered surface element. The irradiance of the surface element is
then given by:

Er =
Pr

π
. (5.126)

The irradiance that reaches the satellite depends on the angle between the cell normal vector and the
vector from the cell to the satellite as well as on the distance of the surface element from the satellite.
The irradiance decreases proportional to the square of the distance from the irradiance source:

E
sw
sat,c =

Er · cos α

|rc
sat|2

· r̂c
sat, (5.127)

where rc
sat is the vector from the cell c to the satellite position and cosα is the angle between the cell

normal vector n̂ and rc
sat. The total irradiance on the satellite is given as the sum of all cell irradiances
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that are in daylight and visible from the satellite’s position:

E
sw
sat,total =

∑

c

E
sw
sat,c. (5.128)

The irradiance can be converted to a pressure by division by the velocity of light:

P
sw
alb =

E
sw
sat,total

c
. (5.129)

For the model computations, the mean reflectivity of the surface elements of the Earth’s surface is
required. Reflectivity data are available from the Total Ozone Mapping Spectrometer (TOMS) project
and deliver ρ.

Long-wave albedo

The second constituent of the Earth albedo is the long-wave albedo. The Earth’s radiation can be
modeled as that of a black body with a surface temperature of 288 ◦K. The spectrum of the resulting
radiation is different from the one of the incoming radiation, it is mainly infrared. The radiation exitance
for the Earth is about Elw = Ein/4 = 410 W/m2, cf. Kim (2000). The irradiance on the satellite from
one cell of the Earth’s surface is then given as:

E
lw
sat,c =

edir · Elw · cos α · dA

|rc
sat|2

· r̂c
sat, (5.130)

cos α = n̂ · r̂c
sat. (5.131)

dA is the cell area. elw is the emissivity of the considered cell and is given as:

elw = e0 + e1(t)P10(sin φc) + e2P20(sinφc), (5.132)

e1(t) = ē + e1c cos(ωe · (t − t0)) + e1s sin(ωe · (t − t0)). (5.133)

The reference epoch t0 is the epoch at the beginning of the year for which the calculation is to be carried
out. e1(t) considers the annual variation of the Sun’s declination. ωe not the Earth rotation rate but
the Earth revolution rate. Pn0 are Legendre polynomials for m = 0. The numerical values for the used
parameters are presented in table 5.5. The total irradiance on the satellite is then given as the sum of

Table 5.5: Numerical values for the parameters to be used in the long-wave albedo model, from Kim (2000).

Parameter value

e0 0.68

ē 0.00

e1c -0.07

e1s 0.00

e2 -0.18

all cell irradiances that are visible from the satellite’s position:

E
lw
sat,total =

∑

c

E
lw
sat,c. (5.134)

The irradiance can be converted to a pressure by division by the velocity of light:

P
lw
alb =

E
lw
sat,total

c
. (5.135)
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Total albedo

The total albedo is given as the sum of the long- and the short-wave albedo. The resulting force on the
satellite is derived in the same way as for the solar radiation pressure:

F
(k)
sw = −P sw

alb

[(
1 − C(k)

s,sw

)
P̂sw

alb + 2

(
C(k)

s,sw cos φ(k) +
1

3
C

(k)
d,sw

)
n̂(k)

]
cos φ(k) A(k), (5.136)

F
(k)
lw = −P lw

alb

[(
1 − C

(k)
s,lw

)
P̂lw

alb + 2

(
C

(k)
s,lw cos φ(k) +

1

3
C

(k)
d,lw

)
n̂(k)

]
cos φ(k) A(k). (5.137)

The total force on the satellite due to albedo radiation is given by the sum over all satellite surface
elements k:

Falb =
∑

k

(
F

(k)
sw + F

(k)
lw

)
. (5.138)

In equations (5.136) and (5.137), φ(k) is the angle between the incoming radiation and the surface
element normal; A(k) is the surface element area. The pressure vectors are usually given in the EFRF
and have to be transformed to the SRF. The reflectivity coefficients Cs/d,sw and Cs/d,lw are given in
table 5.1, where the values for the long-wave albedo are denoted with ir because the radiation takes
place in the infrared part of the electromagnetic spectrum. The values for the short-wave albedo are
the same as for the solar radiation pressure.

Figure 5.29: Mean reflectivity for 2005.

Let us now take a look at the short-wave albedo:

Figure 5.29 shows the mean reflectivity for the year 2005. We notice higher reflectivity over the ice
covered areas of Antarctica and Greenland and lower reflectivity over the areas around the equator
except for the intertropical convergence.

Figure 5.30 shows the Sun’s field of view for an chosen epoch (left panel) and the corresponding satellites
field of view for a realistic GRACE orbit (right panel). Figure 5.31 shows the sunlit field of view of the
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Figure 5.30: Left panel: Solar field of view. Right panel: Satellite field of view

satellite (left panel) and the resulting albedo matrix (right panel). The contribution of each cell has to
be added up. The sunlit field of view is the intersection of the satellites field of view and the Sun’s field
of view.

Figure 5.31: Left panel: Sunlit satellite field of view. Right panel: Short-wave albedo for a single epoch.

Figure 5.32 shows the resulting magnitude of the acceleration from the long-wave as well as the short-
wave albedo. We realize that the long-wave albedo is always present and has a mean value of about
1.4 ·10−8 m/s2. The short-wave albedo is zero whenever the field of view of the satellite is in the shadow
of the Earth. Generally speaking the short-wave albedo is smaller by a factor of two approximately.
Both effects show a strong once per revolution signal.

Figure 5.33 shows the resulting acceleration over one day given in the satellite fixed body frame. The
radial component is strongest and also biased because of the omnipresent long-wave radiation. Its
magnitude is about 1.5 · 10−8 m/s2 with a variation of about 1 · 10−8 m/s2. The acceleration in along-
track direction or cross-track direction is smaller by about an order of magnitude and shows no bias.
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Figure 5.32: Long-wave and short-wave albedo magnitudes.
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Figure 5.33: Earth albedo induced acceleration in the satellite fixed body system.
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5.6. Comparison of the model results with real data

In this section, two important questions shall be answered:

Can the measured accelerations be replaced by modeled ones?

Which models have to be improved and how can this be done?

Linear acceleration

Figure 5.34 gives the comparison of the modeled surface forces with actual accelerometer measurements.
As the results are similar for both satellites, the analysis is confined to the data of GRACE A. The
left panels show the time series of the measured L1b linear accelerations in blue and the output of the
surface force models discussed above. As we described only one model for solar radiation pressure and
albedo, the use of the different air drag models produces different model outputs.

If we take a look at the top left panel showing the along-track accelerations in the SRF, we realize that
the general features of the measured accelerations are reproduced and that the air drag magnitude is
much higher those of solar radiation and albedo. However, there remain significant differences. All
models show extra oscillations at frequencies of 2-4 cycles per revolution, not visible in the time series
of the measured accelerations. The top right panel that shows the root PSD of the difference to the
measured signal that confirms the observations in the time domain. The blue line represents the root
PSD of the measurement. Only at the orbit frequency, the difference between the models and the
measurement is smaller than the measured signal, at all other frequencies the models show effects that
are not contained in the measurement. Although the models M and S & C perform slightly better in
terms of magnitude of the difference to the measurements at the orbit frequency than the others, they
perform slightly worse at the other frequencies.

The middle panel at the left shows the time series of the cross-track accelerations. The picture is the
same as for the along-track accelerations: The order of magnitude is correct. Important features like
the entry and exit of the Earth shadow seem to be modeled correctly, but significant differences remain.
This is confirmed by the root PSDs (right panel) of the differences between models and measurements.
Again the differences are at the level of the measurement, except at the orbit frequency. Here model
M and model S & C show the smallest differences to the measurement. At the other frequencies, the
performance of the different models seems to be similar.

The lower left panel shows the time series of the radial accelerations. Here the agreement between
modeled accelerations and measurements seems to be better. All models perform very similar, in
general the model values seem to be slightly too high. The root PSD of the differences confirms this
assumption. The performance of the different models is very similar, here the difference at harmonics
of the orbit frequency is smaller than the measurement itself. The difference at the other frequencies is
again as large as the measured signal.

The statistic properties of the measured linear accelerations and modeled ones given in table 5.6 confirms
these results.

Differential acceleration

The large differences between the modeled linear accelerations and the measured ones may decrease
when the differential accelerations are analyzed. The differential acceleration magnitude should be
smaller, as the two satellites are close to each other and therefore the encountered environment should
be similar.

Figure 5.35 gives the comparison of the measured differential acceleration and the modeled ones, using
again different air drag models.
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Figure 5.34: Comparison of the modeled surface forces and the actual measurement of the accelerometer. The left panels
show time series of modeled accelerations for the along-track, cross-track and radial axis of the SRF and the corresponding
measurements. The modeled surface forces have been derived using the different air drag models. The right panels show
the root PSDs of the measured accelerations (blue) and the difference between measured accelerations and the modeled
ones.
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Figure 5.35: Comparison of the modeled differential acceleration and the actual measured differential acceleration. The
left panels show time series of the modeled differential accelerations for the along-track, cross-track and radial axis of the
SRF and the corresponding measurements. The right panels show the root PSDs of the measured differential accelerations
(blue) and the difference between measured differential accelerations and the modeled ones.
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Table 5.6: Statistic parameters for the measured linear acceleration on GRACE A and different models. The values are
given in the SRF.

model σ m/s2 mean m/s2 min m/s2 max m/s2

measured x: +6 · 10−08 x: +1 · 10−06 x: +1 · 10−06 x: +1 · 10−06

y: +8 · 10−09 y: −3 · 10−05 y: −3 · 10−05 y: −3 · 10−05

z: +2 · 10−08 z: +6 · 10−07 z: +5 · 10−07 z: +6 · 10−07

simple x: +6 · 10−08 x: +1 · 10−07 x: +2 · 10−08 x: +3 · 10−07

y: +1 · 10−08 y: −1 · 10−08 y: −3 · 10−08 y: +5 · 10−10

z: +3 · 10−08 z: +2 · 10−08 z: −2 · 10−08 z: +8 · 10−08

M x: +7 · 10−08 x: +2 · 10−07 x: +4 · 10−08 x: +4 · 10−07

y: +8 · 10−09 y: −1 · 10−08 y: −3 · 10−08 y: −1 · 10−10

z: +3 · 10−08 z: +2 · 10−08 z: −2 · 10−08 z: +8 · 10−08

S & C x: +8 · 10−08 x: +2 · 10−07 x: +5 · 10−08 x: +4 · 10−07

y: +5 · 10−09 y: −1 · 10−08 y: −2 · 10−08 y: −3 · 10−10

z: +3 · 10−08 z: +1 · 10−08 z: −3 · 10−08 z: +8 · 10−08

G x: +7 · 10−08 x: +1 · 10−07 x: +3 · 10−08 x: +3 · 10−07

y: +5 · 10−09 y: −1 · 10−08 y: −2 · 10−08 y: −8 · 10−10

z: +3 · 10−08 z: +2 · 10−08 z: −2 · 10−08 z: +8 · 10−08

The top panel at the left shows the time series of the along-track component. The mean values are
smaller by an order of magnitude, at a level of −3 · 10−10 m/s2 to 1 · 10−08 m/s2 for all models, cf.
table 5.7. The measurement’s true mean value is unknown, it has therefore been detrended. The main
features are represented by all models, but the simulated accelerations show additional oscillations.
Concerning the variability, only the simple model agrees with the measurement, the other models show
a higher standard deviation. Among themselves, the models G, S & C and M agree, but not with
the simple model also in terms of mean, minimum and maximum values. The top panel at the right
shows the root PSD of the measured differential acceleration and the difference to each model. All
model differences show a signal slightly below once per revolution. It originates from the density model.
At once per revolution the simple model performs best, the difference to the measured acceleration is
lowest. The other model differences are at or above the magnitude of the measurement, also for the
remaining frequencies.

The middle left panel shows the time series of the cross-track component. Here the main difference
results from the fact that the models do not contain the thruster effects. The other features are
reproduced well, but there are again oscillations in the models that are not real. The middle right
panel shows the root PSD of the cross-track measurement and the corresponding differences between
the models and the measurement. The differences are almost identical to the measurement, meaning
that the dominant thruster effects have to be included in the models for a realistic model output. The
models among themselves perform similar.

The lower panel at the left shows the time series of the radial component. There are significant differences
between models and measurement. Again the effect of thruster events is not contained in the models,
but shows up strongly in the measurement. There are also periods where the models show effects that
are not contained in the measurements. The lower right panel shows the corresponding root PSD. The
differences to the models are as large as the measurement itself.

The statistics of the comparison of the modeled differential acceleration and the measured one can be
found in table (5.7).
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Table 5.7: Statistic parameters for the measured differential acceleration and different models. The values are given in the
SRF.

model σ m/s2 mean m/s2 min m/s2 max m/s2

measured (detrended) x: +7 · 10−09 x: 0 x: −3 · 10−08 x: +5 · 10−08

y: +7 · 10−09 y: 0 y: −4 · 10−08 y: −6 · 10−08

z: +4 · 10−08 z: 0 z: −6 · 10−08 z: +1 · 10−07

simple x: +5 · 10−09 x: −3 · 10−10 x: −1 · 10−08 x: +2 · 10−08

y: +1 · 10−09 y: −3 · 10−10 y: −1 · 10−08 y: +7 · 10−09

z: +6 · 10−08 z: +4 · 10−08 z: −3 · 10−08 z: +2 · 10−07

M x: +1 · 10−08 x: +1 · 10−09 x: −5 · 10−08 x: +8 · 10−08

y: +8 · 10−10 y: −8 · 10−11 y: −9 · 10−09 y: +7 · 10−09

z: +6 · 10−08 z: +4 · 10−08 z: −3 · 10−08 z: +2 · 10−07

S & C x: +1 · 10−08 x: +1 · 10−08 x: −4 · 10−08 x: +6 · 10−08

y: +1 · 10−09 y: −3 · 10−10 y: −1 · 10−08 y: +1 · 10−08

z: +6 · 10−08 z: +4 · 10−08 z: −4 · 10−08 z: +2 · 10−07

G x: +8 · 10−09 x: +1 · 10−09 x: −4 · 10−08 x: +7 · 10−08

y: +1 · 10−09 y: −4 · 10−10 y: −9 · 10−09 y: +7 · 10−09

z: +6 · 10−08 z: +4 · 10−08 z: −3 · 10−08 z: +2 · 10−07

Conclusions

We can conclude that the model performance for the linear accelerations is poorest on the along-track
axis, followed by the cross-track axis and it is best for the radial axis. The signal on the along-track axis
is mainly determined by air drag. The signal on the radial axis is mainly determined by solar radiation
pressure for the considered data. The signal on the cross-track axis contains both effects and they are
of the same order of magnitude. It seems that the model for the solar radiation pressure and Earth
albedo are realistic and that there are problems in the air drag models.

For the differential acceleration, the signal magnitude of effects common to both satellites (air drag,
solar radiation pressure and albedo) is reduced by a order of magnitude at least. The signal magni-
tude of effects only affecting one satellite, like thruster events, is unchanged; they now dominate the
measurement signal on the cross-track and radial axis. The model performance is bad on all axes.

The first question posed at the beginning of this section, if the accelerometer measurements can be
replaced by model output, can be answered as no, at least not with the models in the current state. For
the differential acceleration to be modeled correctly, it is necessary to include a model of the thruster
events effect on the linear acceleration.

Concerning the second question, which models can be improved, it seems that the air drag models are
primarily the models to be improved.

The air drag models consist of two parts: the air density model and the model for the interaction of the
molecules with the surface. As the different models perform very similar when compared to the simple
model, it seems that the problem lies in the air density model. As a conclusion we find that for modeling
air drag, the most simple model is sufficient as long as the air density models are not improved. The
more complicated models deliver additional detail, that seems not to be exploitable at the moment,
as the disagreement between model and reality is still to large. Figure 5.36 shows the geographical
distribution of the differences between the model S & C as an example and the measurement. The
difference magnitude seems to be increased at the poles. The differences at northern latitudes higher
than 60◦ are larger than the differences at the South Pole. The results are similar for the other air drag
models. This may indicate deficiencies in the air density model at these regions.

Possible strategies for an improvement of the density models are discussed in the outlook at the end of
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the work.

Another candidate for improvement would be the wind model. It influences mainly the derivation of the
relative velocity for the air drag models. The simple model does not use the wind model and performs
as well as the other models, so it seems to be more promising to improve the density model first and
then perhaps consider an improvement of the wind model.
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Figure 5.36: Geographical distribution of the difference between model S & C and the measured accelerations.



Part III.

Sensor models
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6. Introduction

So far we have described the forces that act on the satellites. Now we think about how the on-board
sensor systems detect these forces. The following sensors are modeled: the accelerometer, the star
sensor, the K-band measurement system and the GPS receiver.

The first chapter gives a brief overview of the relevant sensor systems and their interaction.

In the subsequent chapters, the sensors are described each separately in terms of mathematical and
logical measurement models.
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7. Overview of the relevant sensor systems

In figure 7.1 the overview of the sensor system is shown. We start from the top. There are two kinds
of forces that act on the satellite: the gravitational forces, denoted as GA (green), act on the center of
mass of the satellite causing linear accelerations. The gravitational forces also cause torques due to the
inhomogeneous mass distribution inside the satellite. As the gravitational forces are body forces, they
act as well on the proof mass of the accelerometer, i.e. an accelerometer placed at the center of mass
of the satellite does not ’feel’ the gravitational forces. An accelerometer, that is not located exactly at
the center of mass, measures additional linear accelerations caused by gravity gradients. The surface
forces, denoted as FA (blue), act on the surface of the satellite. These forces can as well be imagined
to act at the center of mass of the satellite. They also act on the center of pressure of the satellites
causing rotational torques (M). The torques result in angular velocities (Ω) and angular accelerations
(Ω̇), their magnitude depends on the inertia tensor (Iij). Angular velocity and angular acceleration
lead to a change in the orientation of the satellite, that is measured by the star sensors. Angular
velocity and the angular acceleration cause linear accelerations of the proof mass, if the accelerometer
is not perfectly placed at the center of mass. The star sensor measurements are input to the attitude
control system. It applies control torques via the cold-gas thrusters and the magnetic torque rods.
The linear accelerations measured by the accelerometer are downsampled as their bandwidth is limited,
corresponding to a sampling rate of 10 Hz by the application of a low-pass filter and are converted from
analog to digital. The position of the satellite is measured by the GPS receiver. Last but not least, the
K-band system measures the differential range between the two GRACE satellites.

Figure 7.1: Overview of GRACE sensor system.
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Figure 7.2 shows a detailed view of the satellite’s interior. The abbreviations have the following meaning:

Figure 7.2: Detailed view of the different sensor systems and their location inside the satellites.

ACC ICU SuperSTAR accelerometer interface control unit
ACC SU SuperSTAR accelerometer sensor unit
GPS NAV antenna GPS navigation antenna
GPS BKUP antenna GPS backup antenna
GPS OCC antenna GPS occultation antenna
IPU Instrument processing unit
KBR assembly K-band ranging system assembly
MTE Center of mass trim assembly electronics
MTM Center of mass trim assembly mechanism
MTQ Magnetorquers
OBDH On-board data handling
PCDU Power control and distribution unit
RFEA Radio frequency and electronics assembly
SCA +Y, SCA -Y Star camera sensor heads
USO-1 Ultra stable oscillator

The accelerometer is located at the center of mass of the satellite. Above the accelerometer, the star
sensor heads and the GPS navigation antenna is located. The mass trim mechanism and the magnetic
torquers are located at the front and back shear panel. The gas tanks for the cold gas thrusters are
placed symmetrically around the center of mass. At the front of the satellite, the equipment for the
K-band ranging system are located: the K-band ranging system assembly, the K-band horn and the
ultra stable oscillator (USO). At the back of the satellite, the on-board data handling unit, the radio
frequency and electronics assembly and the GPS occultation antenna are located.

In the following chapters we will present mathematical models for the sensors that form the gravity field
sensor system: the accelerometer, the star sensor, the K-band ranging system and the GPS receiver.



8. Accelerometer

8.1. Introduction

Figure 8.1: Picture of the SuperSTAR accelerometer manufactured by ONERA (image courtesy of ONERA).

The SuperSTAR accelerometer is a three-axis capacitive accelerometer. There are two high-sensitive
axes and one less-sensitive axis. The proof mass is a gold-coated titan cube, its size is about 40 x 40 x
10 mm3, its mass is 70 g. The purpose of the accelerometer is to measure the non-conservative forces
acting on the satellites. If the accelerometer is not located at the center of mass of the satellite, the
measured linear accelerations also contain contributions due to angular velocities, angular accelerations
and gravity gradients. In principle the accelerometer consists of two parts: a position detector, that
detects the position of the proof mass inside the cage and the servo mechanism, that keeps the proof
mass at its nominal position.

In the following sections, the functionality for one axis will be explained, it is the same for the other
two axes.

Table 8.1: Specifications of the SuperSTAR accelerometer from Hudson (2003).

Axis (SRF) range accuracy

x ±5 · 10−5 m/s2 1 · 10−10 m/s2/
√

Hz

y ±5 · 10−4 m/s2 1 · 10−9 m/s2/
√

Hz

z ±5 · 10−5 m/s2 1 · 10−10 m/s2/
√

Hz

ω̇x ±1 · 10−2 rad/s2 5 · 10−6 rad/s2/
√

Hz

ω̇y ±1 · 10−3 rad/s2 2 · 10−7 rad/s2/
√

Hz

ω̇z ±1 · 10−2 rad/s2 5 · 10−6 rad/s2/
√

Hz

77



78 8 Accelerometer

Figure 8.2: Three dimensional view of the proof mass and the electrodes. The axes refer to the accelerometer frame. Here
the less-sensitive axis is the X−axis (courtesy of ONERA).

8.2. Logical model

E1
E2

d

-V +V

control

actual position
nominal position

V =V +Vt d p

x

Figure 8.3: Concept of a capacitive accelerometer for one axis.
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Figure 8.3 shows the schematic design for one axis. The proof mass is located between two electrodes,
charged with voltage +V and −V , respectively. The proof mass is charged with a voltage Vt consisting
of the polarization voltage Vp and an alternating current, the detection voltage Vd:

Vt = Vp + Vd(t). (8.1)

The frequency of the detection voltage is about 100 kHz, too high to affect the motion of the proof mass.
The nominal position of the proof mass is in the middle between the electrodes, with no off-set, i.e.
x = 0. Between the walls of the proof mass and the electrodes, two electric fields E1 and E2 are forming.
If V and Vt are assumed to be positive and constant, the proof mass will start to move towards the
electrode charged with −V . The gap between proof mass and electrode reduces, increasing the field and
the attraction. In this configuration the accelerometer system is inherently unstable and servo control
of the proof mass motion is mandatory. A capacitive detector measures the position of the proof mass
by comparing the capacitances. A feedback loop including a PID (Proportional Integrative Derivative)
controller determines the control voltage V and keeps the proof mass motionless at its nominal position.

8.3. Mathematical model

In this section the equation of motion of the proof mass is derived. First, we have to find a linear
expression for the capacitive force acting on the proof mass. This expression can then be linked to the
non-gravitational forces acting on the satellite. For the capacitive force, according to Coloumb’s law,
we have:

Fcap,i =
1

2
ǫ0AE2

i for i = 1, 2, (8.2)

where

ǫ0 the dielectric constant,
A electrode area [m2],
E electric field force [J].

As the attraction of field E1 is opposite to the attraction of field E2, the overall capacitive force is:

Fcap =
1

2
ǫ0A(E2

1 − E2
2). (8.3)

Considering E = U
s , where U is the voltage between proof mass and electrode and s = d + x is the

distance between proof mass and electrode, and averaging Vd(t) over time we get, according to Josselin
et al. (1999) and Touboul et al. (1999):

Fcap =
1

2
ǫ0A

(
(V 2 − 2V Vp + V̄ 2

t )

(d − x)2
− (V 2 + 2V Vp + V̄ 2

t )

(d + x)2

)
, (8.4)

with

V̄ 2
t = V 2

p + V̄ 2
d , (8.5)

V̄d =
max(Vd(t))√

2
. (8.6)

This expression is nonlinear both in the displacement x of the proof mass and in the control voltage
V , but becomes linear in the voltage V for x = 0. Expansion into a Taylor series for small x/d and
neglecting higher order terms yields:

Fcap(V, x) = −2ǫ0A

d2

[
V Vp −

x

d
V̄ 2

t

]
. (8.7)



80 8 Accelerometer

As mentioned before, the control voltage V is not constant, it is controlled by a PID controller. After
Smit (2000) it is:

V (x) = KPID ω2
0(ẋ/ωd + x + ωi

∫ t

x dt), (8.8)

with

KPID overall gain,
ω2

0 natural frequency of PID-controller,
ωd characteristic frequency for derivative part,
ωi characteristic frequency for integral part.

The capacitive system is used as an accelerometer. It is exposed to an external force Fext, resulting
from the non-conservative forces acting on the satellite. The control voltage V is adjusted, so that the
proof mass stays in its nominal position. The equation of motion of the proof mass can now be stated
as:

Mẍ = Fext + Fcap(V (x), x). (8.9)

Insertion of the linearized expressions from eqs. (8.7) and (8.8) yields:

ẍ = −2ǫ0AVpKPID

Md2
ω2

0

(
ẋ/ωd + x + ωi

∫
x dt

)

+
2ǫ0AV̄ 2

t

Md3
x + Fext/M. (8.10)

This expression is in agreement with the one given by Stanton et al. (1998).

The proof mass is kept almost motionless in the center of the electrode cage. We get:

ẍ = Fcap/M + Fext/M, (8.11)

≈ 0

⇒ Fcap/M ≈ −Fext/M. (8.12)

The actual measurement of the accelerometer is the control voltage that has to be applied on the proof
mass to keep it at its nominal position. The displacement x from the nominal position is very small, so
we can say that:

Fcap/M ≈ −2ǫ0AVpKPID

Md2
ω2

0

(
ẋ/ωd + x + ωi

∫
x dt

)
≈ −Fext/M, (8.13)

meaning that the external force is related to the control voltage V (x) by:

Fext/M ≈ 2ǫ0AVp

Md2
V (x) ≈ Gel · V (x). (8.14)

Gel is the so called electrostatic gain, i.e. the scale factor that has to be applied to the control voltage in
order to transform it into an acceleration. For each electrode pair, one control voltage is measured. The
measured voltages are transformed into accelerations by applying the appropriate electrostatic gains.
In case there is more than one electrode pair per degree of freedom, the individual values are averaged.
We get for the vector of measured linear accelerations γa in the accelerometer reference frame (ARF):

γa =




(GX1 · VX1 + GX2 · VX2 + GX3 · VX3)/3

(GY 1 · VY 1 + GY 2 · VY 2)/2
GZ · VZ



 ≈ γDrag. (8.15)
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8.4. Measurement model

In the measurement model, we will first take a closer look at the effects contributing to the linear
acceleration measurement. If there is a displacement of the accelerometer relative to the center of mass
of the satellite, not only accelerations due to the nonconservative forces but also accelerations due to
gravitational forces and angular motion act on the proof mass. The basic equation is, cf. Hudson
(2003):

γA = (Gij + ΩjkΩik + Ω̇ik)δr + γDrag, (8.16)

with

γA vector of measured accelerations,
Gij matrix of gravity gradients,

Ωik matrix of angular velocities of satellite,

Ω̇ik matrix angular accelerations of satellite,
δr vector containing the displacements of accelerometer

from center of mass,
γDrag vector of accelerations due to nonconservative forces (drag).

A time variability of the center of mass offset is neglected. The location of the center of mass varies in
time due to fuel consumption, but the rate of this variation is very slow. It is assumed that the mass
trim assembly is able to keep the center of mass within its specified range of 100 µm to the proof mass of
the accelerometer, cf. Stanton et al. (1998) and Wang (2003). The effects of the individual contributors
are displayed in figure 8.4. We realize that the acceleration caused by the gravity gradients and the
angular velocity is smaller than the specified measurement error of the accelerometer. The acceleration
caused by the angular acceleration is larger than the accelerometer measurement error but smaller than
the K-band measurement error. Therefore it seems that the displacement of the accelerometer proof
mass from the satellite center of mass can be neglected. Thus the acceleration on the proof mass caused
by the external forces becomes:

γa = γDrag. (8.17)

Next the connection between external accelerations and the measurement of the accelerometer is in-
vestigated. The assumption that the internal forces equal the external ones perfectly is not fully true.
Oberndorfer (2000) states as measurement model:

Fcap/M = K0,A + K1,AγA + K lm,AγA + K2,AγAγA + noise, (8.18)

with

K0,A bias,

K1,A scale factor (linear),

K2,A quadratic factor,

K lm,A coupling and misorientation matrix,

noise measurement noise.

The bias term is mainly caused by that term in equation (8.10) that only depends on the displacement
of the proof mass from its nominal position.

In this study, we neglected the quadratic factor and the coupling and misorientation of the accelerometer
axes. The quadratic factor is specified to be about 10 s2/m, cf. Stanton et al. (1998), assuming
a variation of the linear acceleration at a level of about 5 · 10−7 m/s2, the resulting error is below
2.5 · 10−12 m/s2. The misalignment and coupling is specified to be below 1 · 10−4 rad, cf. Stanton et al.
(1998), the resulting error is below 1 · 10−10 m/s2.

The noise consists of two terms: acceleration noise and position noise. Acceleration noise is white with
an additional 1/f component below a corner frequency f0:

noisea(f) = Aa

√
1 + f0/f

[
m/s2/

√
Hz
]
. (8.19)
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Figure 8.4: Influence of a 0.1 mm offset of the accelerometer proof mass from the satellite’s center of mass. The top row
shows the acceleration caused by the gravity gradient. The second row shows the acceleration caused by the angular
velocity and the third row shows the acceleration caused by the angular acceleration. All effects are below the specified
error for the accelerometers resp. for the K-band.
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f0 = 0.1 for the less-sensitive axis and f = 0.005 for the sensitive axes.

Position noise is white:

noisep(f) = Ap

[
m/s2/

√
Hz
]
. (8.20)

Thus, we arrive at the simplified model:

Γa = K0,A + K1,AγA + noisea(f) + noisep(f). (8.21)

Table 8.2 shows the error specifications for the accelerometer. The noise term specified is the sum of
position and acceleration noise.

Table 8.2: SuperSTAR error specifications for the linear acceleration measurement.

parameter sensitive axes less-sensitive axis

bias < 2 · 10−6 m/s2 < 50 · 10−6 m/s2

scaling factor 1 ± 0.02 1 ± 0.02

noise
√

(1 + 0.005/f) · 10−10 m/s2
√

(1 + 0.1/f) · 10−9 m/s2

8.5. Dynamic measurement model

Figure 8.5: Dynamic measurement model for one axis.

The above mentioned measurement model does not reflect the dynamics of the measurement process. To
model the dynamics, we have implemented eq. (8.10) in SIMULINK, a MATLAB toolbox used for the
simulations. Figure 8.5 shows the dynamic model. External accelerations enter to the left and are then
passed to the block denoted as ’TM’, that represents the proof mass dynamics, i.e. the transfer from
accelerations on the proof mass to a new position of the proof mass. The position detection mechanism
is simulated by adding position noise (’PN’) to the proof mass position. This position is then passed to
the block denoted as ’PID’, that implements the PID-controller. Via feedback the controller exerts a
corrective acceleration on the proof mass to move it back to its nominal position. The acceleration noise
enters the model as white noise in the block ’AN’. The block ’TFAN’ than transforms this white noise
into colored noise fulfilling the specifications in table 8.2. At the output of the accelerometer a third
order butterworth filter (’BF’) is applied for the purpose of anti-aliasing. Let us now have a look at the
dynamic error due to noise, see Fig. 8.6. The rise at low frequencies is caused by acceleration noise.
The acceleration noise of the sensitive axes is lower than that of the less-sensitive axis. Acceleration
noise combines all effects that induce parasitic accelerations on the proof mass: stiffness of the gold
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Figure 8.6: Root PSD of the dynamic acceleration measurement error due to noise. Upper line represents less-sensitive
axis, lower line sensitive axes. The vertical black line is the Nyquist frequency (5 Hz) corresponding to the accelerometer
output sampling rate (10 Hz). The error rises at high frequencies due to position noise and at low frequencies due to
acceleration noise.

wire, Lorentz force1, influence of the Earth’s magnetic field and others. The rise at high frequencies
is caused by position noise. We notice that the position noise of the sensitive axes is higher than
that of the less-sensitive axis. The black line indicates the Nyquist frequency (5 Hz) of the designated
output frequency of the accelerometer (10 Hz). We note that there is much energy in the error signal
at frequencies of 5 Hz and above. If the signal had been sampled unchanged, aliasing would occur and
spoil the measurement. That is the reason for the implementation of an anti-aliasing filter at the output
of the accelerometer, a third order butterworth filter with a cut-off frequency of 3 Hz. The effect of
this filter is depicted in figure 8.7. The anti-aliasing filter effectively reduces the signal energy at high
frequencies, so that no degradation of the measurement will occur. The resulting instrument noise rises
at low frequencies with a rate of 1/

√
f in the root PSD. At high frequencies, the noise is white at a

level of 1 · 10−9 m/s2/
√

Hz for the less-sensitive axis and 1 · 10−10 m/s2/
√

Hz for the sensitive axes.

1The Lorentz force is the force exerted on a charged particle in an electromagnetic field. In this case the proof mass is
the charged particle moving in the magnetic field of the Earth.



8 Accelerometer 85

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

frequency [Hz]

e
rr

o
r 

[m
/s

2
/s

q
rt

(H
z
)]

 

 

less sens. axis

sens. axis

Figure 8.7: Root PSD of the dynamic measurement error at the output of the accelerometer. The blue line represents less-
sensitive axis, the red line the sensitive axes. The vertical black line is the Nyquist frequency (5 Hz) of the accelerometer
output sampling rate (10 Hz). In contrast to figure 8.6, the signal energy at frequencies of 3 Hz and above is diminished
through the application of the butterworth filter.





9. Star sensor

9.1. Introduction

Figure 9.1: The star sensor, consisting of the two sensor heads and the processing unit.

The purpose of the star tracker is to determine the absolute orientation of the satellite with respect to
an inertial system. In order to accomplish this task, digital star images taken by each of the two sensor
heads are processed. The observed stellar constellations are compared to stellar maps and catalogues
(e.g. the HIPPARCOS catalogue) inside the processing unit by means of image processing. The derived
orientation is the orientation with respect to the reference frame of the used star catalogue. The star
sensor or Advanced Stellar Compass (ASC) used on the GRACE satellites is identical to the star sensor
used for the CHAMP mission. It is manufactured by the department of automation of the Technical
University of Denmark (DTU). It was used and tested for the missions Teamsat, ASTRID 2 und Ørsted.
The database contains 13 000 of the brightest stars from the HIPPARCOS catalogue. An orientation
that deviates more than 10 arcseconds from the star catalogue data is rejected. The typical duration
of an attitude acquisition is about 200 ms. The attitude is given as a set of quaternions.

9.2. Logical model

In this section we describe the logical measurement model of the star sensor. The described method
corresponds to the ’geometric method’ described in Wertz (1991). As described before, in principle the
star sensor is a digital camera taking images of its field of view. How are these images converted into an
orientation of the satellite? First of all, the star sensor does not deliver the orientation of the satellite
fixed coordinate system with respect to the inertial coordinate system, but the orientation of its own
instrument coordinate system, the star sensor reference system, with respect to the inertial coordinate
system underlying the used star catalogue. Consequently, as an additional measurement the orientation
of the star sensor reference frame with respect to the satellite fixed reference frame is required. This
will introduce an additional error to be accounted for later in the description of the level 1a to level 1b
processing of the star sensor data.

Let us now set up the logical steps that lead from the digital image of the sky to the derived orientation.
The first step consists in comparing the taken image to known patterns of star constellations from the

87
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star catalogue contained in the star sensor processing unit. We will not go into details about the image
recognition strategy, cf. Wertz (1991), let us just assume that the stars on the taken image have been
identified correctly. Assume now that a set of inertial coordinates of the stars and a corresponding set
of coordinates in the star sensor reference frame in the form of pixel coordinates are available, see figure
9.2. The next step is to transform the coordinates of the stars to angle measurements corresponding
to the angle between the position vector of the stars on a unit sphere and the z-axis of the SSRF.
This transformation can only be achieved by an on ground calibration of the star sensor cameras: The
camera is rotated by a known angle and the coordinate change of a target is recorded, see figure 9.3.
With this set of angle measurements, the vector components of the z-axis of the star sensor reference
frame (SSRF) can be determined:

X^̂

aa

S

X

YY

Z

d

x s

y s

zs

Figure 9.2: Overview of the star sensor reference frame and the inertial reference frame.

yIRF

zIRF

zSSRF

CCD plane
g

dx-

Figure 9.3: Mapping of the coordinates of an observed star to an angle measurement.
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X̂IRF
S1

· ẐIRF
SSRF = cos(γS1),

X̂IRF
S2

· ẐIRF
SSRF = cos(γS2),

X̂IRF
S3

· ẐIRF
SSRF = cos(γS3), (9.1)

...
...

X̂IRF
Sn

· ẐIRF
SSRF = cos(γSn)

or writing explicitly the dot products:

XS1 · Xz + YS1 · Yz + ZS1 · Zz = cos(γS1),

XS2 · Xz + YS2 · Yz + ZS2 · Zz = cos(γS2),

XS3 · Xz + YS3 · Yz + ZS3 · Zz = cos(γS3), (9.2)

...
...

XSn · Xz + YSn · Yz + ZSn · Zz = cos(γSn),

where we define:

X̂IRF
Sn

=




XSn

YSn

ZSn



 =




cos(δSn) cos(αSn)
cos(δSn) sin(αSn)

sin(δSn)



 , (9.3)

ẐIRF
SSRF =




Xz

Yz

Zz



 , (9.4)

where αSn and δSn are the azimuth and declination of the observed stars given in the inertial reference
frame. The equations can then be rewritten as a standard linear least squares estimation problem:

A · x = y, (9.5)

with the matrix of the partial derivatives

A =




cos(δS1) cos(αS1) cos(δS1) sin(αS1) sin(δS1)
cos(δS2) cos(αS2) cos(δS2) sin(αS2) sin(δS2)
cos(δS3) cos(αS3) cos(δS3) sin(αS3) sin(δS3)

...
...

...
cos(δSn) cos(αSn) cos(δSn) sin(αSn) sin(δSn)




, (9.6)

the vector of unknowns

x =




Xz

Yz

Zz



 (9.7)

and the vector of observations

y =




cos(γS1)
cos(γS2)
cos(γS3)

...
cos(γSn)




. (9.8)

The unknown components of the Z-axis of the SSRF are then given by:

x =
(
AT · A

)−1 · AT · y. (9.9)
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Now the Z-axis of the SSRF is defined. In order to define the full orientation of the SSRF with respect
to the IRF, we have to derive the components of either the X- or Y-axis of the SSRF in the IRF,
as the third axis can be derived through completion of the orthonormal system. We follow the same
approach as before: we derive angles between the position vectors to stars and the coordinate axis whose
components we want to derive. As both the X- and Y-axis lie in the plane of the CCD-Sensor, it is
not possible, as for the Z-axis, to measure the angles directly through the measured coordinates of the
digital image, we have to derive virtual measurements by forming the cross product between the Z-axis
and the position vectors of the detected stars, thus creating a set of vectors that all lie in the CCD
plane, see figure 9.4. The cross products are formed in the SSRF using the measured CCD coordinates
and in the IRF:

zssrf
^

S1̂S1
^ ẑssrfzssrf

^xx S1
-

S1

-

S1
^

S1
-

S1

-
xx ẑssrfzssrf

^

Figure 9.4: Derivation of the virtual vectors in the CCD plane for the derivation of the X- and Y-axis of the SSRF

V
SSRF
S1

= X
SSRF
S1

× ẐSSRF
SSRF ,

V
SSRF
S2

= X
SSRF
S2

× ẐSSRF
SSRF ,

V
SSRF
S3

= X
SSRF
S3

× ẐSSRF
SSRF , (9.10)

...
...

V
SSRF
Sn

= X
SSRF
Sn

× ẐSSRF
SSRF

is the set of virtual vectors in the SSRF and

V̂IRF
S1

= X̂IRF
S1

× ẐIRF
SSRF ,

V̂IRF
S2

= X̂IRF
S2

× ẐIRF
SSRF ,

V̂SIRF
3

= X̂IRF
S3

× ẐIRF
SSRF , (9.11)

...
...

V̂IRF
Sn

= X̂IRF
Sn

× ẐIRF
SSRF

is the set of virtual vectors in the IRF. Now the angles between the X- or Y-axis and the virtual vectors
in the SSRF can be derived by forming the dot products between the virtual axes and the coordinate
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axis whose components are to be derived:

V
SSRF
S1

|VSSRF
S1

|
· X̂SSRF

SSRF = cos(γS1),

V
SSRF
S2

|VSSRF
S2

|
· X̂SSRF

SSRF = cos(γS2),

V
SSRF
S3

|VSSRF
S3

|
· X̂SSRF

SSRF = cos(γS3), (9.12)

...
...

V
SSRF
Sn

|VSSRF
Sn

|
· X̂SSRF

SSRF = cos(γSn).

The derived angles can then be used to set up a system of equations similar to the one used for the
derivation of the components of the Z-axis in the IRF. From this system of equations, the components
of the coordinate axis to be determined can be estimated as described above, here as an example for
the X-axis. Finally the third missing coordinate axis is derived by forming the cross product between
the two already derived ones:

ŶIRF
SSRF = −(X̂IRF

SSRF × ẐIRF
SSRF ), (9.13)

here as an example for the Y-axis. The reason why the orientation of the Z-axis of the SSRF can be
determined much more accurately than the orientation of the X- or Y-axes is that their orientation is
determined using the described virtual vectors. The accuracy of these vectors is depending not only on
the accuracy of the derived star coordinates but also on the accuracy of the derived Z-axis components.
But there is an additional aspect to be considered: if you imagine that the star sensor is rotated about
its line of sight, it is clear that the position change of the observed stars depends on their distance from
the line of sight. This means that it makes a difference which stars are used for the derivation of the
virtual vectors and thus the X- and Y-axes; preferably stars at the border of the image should be used.
This is in contrast to the derivation of the Z-axis orientation; there the position of the observed stars
has no influence, as the position change due to a rotation about either the X- or Y-axis of the SSRF is
the same for all observed stars.

9.3. Measurement model

The actual measurement of the star sensor are the pixel coordinates of the observed stars, that are
then transformed into the orientation of the SSRF with respect to the IRF as described above. The
orientation can be parameterized as a Direction Cosine Matrix (DCM) , that has the following properties:

XSSRF = RIRF SSRF · XIRF , (9.14)

i.e. it transforms a vector from the IRF to the SSRF. According to Wertz (1991) we get for RIRF SSRF :

RIRF SSRF =




X̂SSRF · X̂IRF X̂SSRF · ŶIRF X̂SSRF · ẐIRF

ŶSSRF · X̂IRF ŶSSRF · ŶIRF ŶSSRF · ẐIRF

ẐSSRF · X̂IRF ẐSSRF · ŶIRF ẐSSRF · ẐIRF


 , (9.15)

where

X̂IRF , ŶIRF , ẐIRF are the base vectors of the source system, here the IRF,

X̂SSRF , ŶSSRF , ẐSSRF are the base vectors of the target system, here the SSRF.
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We will think of X̂SSRF , ŶSSRF , ẐSSRF , the base vectors of the target system in the source system, as
the actual measurements. The base vectors of the source system given in the source system have the
simple form:

X̂IRF =




1
0
0



 , ŶIRF =




0
1
0



 , ẐIRF =




0
0
1



 . (9.16)

Thus equation (9.15) simplifies to:

RIRF SSRF =




x1 x2 x3

y1 y2 y3

z1 z2 z3



 , (9.17)

when

X̂SSRF =




x1

x2

x3



 , ŶSSRF =




y1

y2

y3



 , ẐSSRF =




z1

z2

z3



 . (9.18)

The star sensor delivers the measured orientation not as a DCM but in terms of a quaternion (cf. Wertz
(1991)):

q4 = ±1

2

√
(1 + x1 + y2 + z3), (9.19)

q1 =
1

4q4
(y3 − z2), (9.20)

q2 =
1

4q4
(z1 − x3), (9.21)

q3 =
1

4q4
(x2 − y1). (9.22)

9.4. Error model

As demonstrated before, the measured orientation can be represented as a measurement of the coordi-
nate axes of the SSRF in the IRF. A measurement error can thus be represented as a deviation of the
measured coordinate axes from the true axes:

X̂meas = X̂true + δx. (9.23)

It is to be noted that the measured vector as well as the true vector are unit vectors, but the error
vector is not a unit vector. Thus we get for the DCM:

RIRF SSRF =




(
X̂true + δx

)
· X̂IRF

(
X̂true + δx

)
· ŶIRF

(
X̂true + δx

)
· ẐIRF(

Ŷtrue + δy
)
· X̂IRF

(
Ŷtrue + δy

)
· ŶIRF

(
Ŷtrue + δy

)
· ẐIRF(

Ẑtrue + δz
)
· X̂IRF

(
Ẑtrue + δz

)
· ŶIRF

(
Ẑtrue + δz

)
· ẐIRF


 . (9.24)

Again we can simplify to:

RIRF SSRF =




(x1 + δx1) (x2 + δx2) (x3 + δx3)
(y1 + δy1) (y2 + δy2) (y3 + δy3)
(z1 + δz1) (z2 + δz2) (z3 + δz3)



 , (9.25)

where

X̂true =




x1

x2

x3



 , Ŷtrue =




y1

y2

y3



 , Ẑtrue =




z1

z2

z3



 (9.26)
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Figure 9.5: Star sensor error model, picture of the measured and true coordinate axes.

and

δx =




δx1

δx2

δx3



 , δy =




δy1

δy2

δy3



 , δz =




δz1

δz2

δz3



 . (9.27)

q4 = ±1

2

√
(1 + x1 + δx1 + y2 + δy2 + z3 + δz3), (9.28)

q1 =
1

4q4
(y3 + δy3 − z2 − δz2), (9.29)

q2 =
1

4q4
(z1 + δz1 − x3 − δx3), (9.30)

q3 =
1

4q4
(x2 + δx2 − y1 − δy1). (9.31)

The requirements for the star sensor derived orientation are given in Stanton et al. (1998) in terms of
pointing accuracy of the measured coordinate axes. The requirement for the roll axis is tighter than
for the pitch/yaw axis, as it is crucial for the K-band measurement quality that the two K-band horns
point at each other as accurately as possible. The influence of a misalignment of the pitch/yaw axis on
the K-band measurement quality is significantly smaller resulting in a less tight requirement. Let us
now discuss the contributors to the star sensor measurement error. Considering figure 9.6, it is clear
that first of all the measurement error depends on the accuracy of the star positions. By taking the
image, an additional error arises, because each optical system is subject to image errors that result from
imperfections of the used optical components. This abberation can be corrected for, as it is systematic,
but there remains an error. The analog image delivered by the optical system is digitized by the CCD
sensor, that has only a finite resolution. Therefore an additional error arises. The total measurement
error can thus be described as:

δx = δxSC + δxOS + δxCCD, (9.32)

where
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CCD

lens

zSSRF

star

Figure 9.6: Overview of the star camera and image taking process.

δxSC is the error component due to the position errors in the star catalogue,
δxOS is the error component due to the optical system,
δxCCD is the error component due to the image digitization of the image by the CCD sensor.

This error is then propagated depending on the method used for the determination of the orientation,
that has not necessarily to be the same as the one outlined in the logical model section. Therefore no full
error propagation from the level of the pixel coordinates to the derived orientation will be conducted.
We will assume that the star sensor just delivers an orientation with a certain error. According to
Jørgenson (1999), the error term can also be characterized in the following way:

• Noise Equivalent Angle (NEA): this is the RMS noise of successive attitude updates when the
star tracker is repeatedly taking the same image,

• relative accuracy: the accuracy of the star tracker taking an image series obtained from a known
attitude motion pattern,

• absolute accuracy: long term accuracy

and in its combination is assumed to be white noise. There is certainly a correlation between the
subsequently derived attitudes, but this correlation is neglected in this work.

For error simulation, the measurement error can be treated as the angle ε between the true and the
measured axis, and thus the error vectors δx, δy, δz can be determined as

cos ε = X̂true · (X̂true + δx) = X̂true · X̂meas, (9.33)

where the true axes are known. Figure 9.5 depicts the measured and the true axes.

From the instrument manufacturer only the maximum values for the angles between the true and
measured axes, εx, εy and εz are known. The direction towards which the measured axis is tilted is
arbitrary. We will now show the derivation of the error vectors δx, δy, δz. Considering figure 9.7, the
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Figure 9.7: Geometric relations between measured and true axes, shown here for the x-axis.

following vectors can be derived:

δx′ =




0

tan εx · cos αx

tan εx · sinαx



 , (9.34)

δy′ =




tan εy · cos αy

0
tan εy · sinαy



 , (9.35)

δz′ =




tan εz · cos αz

tan εz · sin αz

0



 . (9.36)

Now the measured axes can be derived as:

X̂meas =
X̂true + δx′

|X̂true + δx′|
, (9.37)

Ŷmeas =
Ŷtrue + δy′

|Ŷtrue + δy′|
, (9.38)

Ẑmeas =
Ẑtrue + δz′

|Ẑtrue + δz′|
(9.39)

and

δx =
X̂true + δx′

|X̂true + δx′|
− X̂true, (9.40)

δy =
Ŷtrue + δy′

|Ŷtrue + δy′|
− Ŷtrue, (9.41)

δz =
ẑtrue + δz′

|Ẑtrue + δz′|
− Ẑtrue. (9.42)

For error simulation we can assume that the axes of the true system and the IRF are collinear, meaning

X̂IRF = X̂true =




1
0
0



 , ŶIRF = Ŷtrue =




0
1
0



 , ẐIRF = Ẑtrue =




0
0
1



 . (9.43)
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Thus we derive:

δx =
1√

1 + tan2 εx




1 −

√
1 + tan2 εx

tan εx · cos αx

tan εx · sin αx



 , (9.44)

δy =
1√

1 + tan2 εy




tan εy · cos αy

1 −
√

1 + tan2 εy

tan εy · sinαy



 , (9.45)

δz =
1√

1 + tan2 εz




tan εz · cos αz

tan εz · sinαz

1 −
√

1 + tan2 εz



 . (9.46)

The pointing accuracy requirements for GRACE are 30 µrad or 6 arcseconds for the x-axis and 240 µrad
or 50 arcseconds for the orientation of the y- and z-axis, i.e. εx = 30 µrad and εy = εz = 240 µrad.
The measured quaternions are then given as:

q4 = ±1

2

√√√√
(

4 +
1 −

√
1 + tan2 εx√

1 + tan2 εx

+
1 −

√
1 + tan2 εy√

1 + tan2 εy

+
1 −

√
1 + tan2 εz√

1 + tan2 εz

)

= ±1

2

√√√√
(

1 +
1√

1 + tan2 εx

+
1√

1 + tan2 εy

+
1√

1 + tan2 εz

)
, (9.47)

q1 =
1

4q4

(
(tan εy sinαy)√

1 + tan2 εy

− (tan εz sinαz)√
1 + tan2 εz

)
, (9.48)

q2 =
1

4q4

(
(tan εz cos αz)√

1 + tan2 εz

− (tan εx sinαx)√
1 + tan2 εx

)
, (9.49)

q3 =
1

4q4

(
(tan εx cos αx)√

1 + tan2 εx

− (tan εy cos αy)√
1 + tan2 εy

)
. (9.50)

Since for small angles tanx ≈ x, we can simplify the above equations without loss of generality to:

q4 = ±1

2

√√√√√



1 +
1√

1 + ε2
x

+
1√

1 + ε2
y

+
1√

1 + ε2
z



, (9.51)

q1 =
1

4q4



(εy sinαy)√
1 + ε2

y

− (εz sinαz)√
1 + ε2

z



 , (9.52)

q2 =
1

4q4

(
(εz cos αz)√

1 + ε2
z

− (εx sinαx)√
1 + ε2

x

)
, (9.53)

q3 =
1

4q4



(εx cos αx)√
1 + ε2

x

− (εy cos αy)√
1 + ε2

y



 . (9.54)

Figure 9.8 gives an example of simulated star sensor noise. The component q4 is cos(Φ) and the other
three components q1 to q3 are the rotation vector. For q4 an error angle can be derived directly, for the
vector components the angle between the true and measured vector is derived. The figure shows the
component error angle in arc seconds. We notice that the error is about 1 ·10−8 rad for cos(Φ) or about
11 arcseconds for the rotation angle Φ and 1 · 10−4 rad or about 9 arcseconds for the rotation vector
elements.
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Figure 9.8: Simulated quaternion noise expressed in arcseconds resp. arcseconds/
√

Hz. For all components the noise is
similar in the spectral and in the time domain.

Table 9.1: Standard deviation of the simulated quaternion components expressed in arc seconds.

component σ [arcseconds]

q4 11

q1 9

q2 9

q3 9





10. K-band system

Figure 10.1: Schematic view of the K-band microwave-link system, Thomas (1999)

10.1. Introduction

The K-band ranging system (KBR) is the key instrument of the GRACE mission. A schematic overview
is shown in figure 10.1. Each satellite is equipped with a horn used for transmission and reception of
the intersatellite dual-band µ-wave signals at 24 GHz for K-band and 32 GHz for Ka-band. The horns
are based on the type of feed horns used in JPL’s Deep Space Network. The transmitted signals on
the K- and Ka-band are sinusoidal. On each band there is a frequency offset between the two satellites
signals of 0.5 MHz. The signals are generated by an ultra stable oscillator (USO). Upon reception the
signals of each band are down-converted to 0.5 MHz using the transmitted signal of the same band as a
reference. In the instrument processing unit (IPU) the phase is extracted and delivered to the on-board
data handling (OBDH) computer at a nominal sample rate of 10 S/s.

10.2. Logical model

The purpose of the phase measurements is to measure the biased distance between the two GRACE
satellites. The phase measurement itself is the measurement of the phase difference between the signal
received from satellite B and a reference signal at satellite A or vice versa. But how can this phase
difference be used to derive the range between two satellites? Let us assume that the two satellites are
separated by a certain distance. On each satellite there is an oscillator. Let us further assume that
the two oscillators are perfectly synchronized, i.e. their phases agree perfectly, and that they run at
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identical frequencies. If now the signal from the oscillator on satellite A is sent over the distance A/B and
received at satellite B, the phase difference between signal A and signal B will give information about the
distance: If the phase difference was zero, we would know that the distance is an integer multiple of the
wavelength of the sent signal, if the difference was different from zero, we would know that the separation
distance is an integer multiple of the signal wavelength plus the measured phase difference converted
into a residual distance using the velocity of light. This would require that somehow the integer number
of wavelengths is known, in order to derive an absolute value for the inter-satellite distance. In reality
this value is not known, i.e. using only the phase measurement, one can only determine a biased range.
In addition, the assumptions made before do not hold in reality: The oscillators of the two satellites are
not perfectly synchronized, there is an offset (clock error), which leads to a systematic phase difference
between the two satellite signal phases. In addition, the frequencies of the oscillators are not constant,
there are frequency errors that also lead to unwanted phase differences. Also the travel through the
medium from one satellite to the other influences the phase of the emitted (received) signal: Depending
on the amount of electrons along the signal path, the phase is changed more or less. The received
signal consists not only of the directly received signal, but contains contributions from reflections at
the satellites surfaces, which also leads to unwanted phase alterations. Additionally, there are errors
resulting from the necessary analog to digital conversions, the phase extraction itself and the cable
delay. These considerations are formulated mathematically in the next section in order to arrive at the
measurement model.

10.3. Measurement model

The measurement model formulation is given in Kim (2000). We get for the extracted phase values at
a nominal epoch t:

φB
A = φA(t + ∆tA) − φB(t + ∆tA) + NB

A + IB
A + dB

A + ǫB
A , (10.1)

φA
B = φB(t + ∆tB) − φA(t + ∆tB) + NA

B + IA
B + dA

B + ǫA
B, (10.2)

with

φB
A differential phase measurement at GRACE A,

φA
B differential phase measurement at GRACE B,

t nominal reception time,
∆tA, ∆tB clock errors on GRACE A and GRACE B,
φA(t + ∆tA) GRACE A receiver reference phase,
φB(t + ∆tA) GRACE B transmitted phase received by GRACE A,
φB(t + ∆tA) GRACE B receiver reference phase,
φA(t + ∆tB) GRACE A transmitted phase received by GRACE B,
NB

A , NA
B integer ambiguities,

dB
A , dA

B phase shift due to neutral atmosphere, instrument offset, multipath a.s.o.,
ǫB
A , ǫA

B random measurement noise.

GRACE A is the leading satellite and GRACE B is the trailing satellite. The unit of the phase
measurement is cycles. Each reference phase consists of the true reference phase φ̄ and the phase error
δφ due to oscillator drift:

φA = φ̄A + δφA, (10.3)

φB = φ̄B + δφB. (10.4)

The received phase can also be described in terms of the transmitted phase using the transmission time
τA
B from satellite A to satellite B:

φA(t) = φA(t − τA
B ). (10.5)
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The transmission time is different for each satellite, as they are moving: the leading satellite flies ’away’
from the signal, the trailing satellite flies ’into’ the signal wave. Substitution of eq. (10.3) to (10.5) into
eq. (10.1) and (10.2) yields:

φB
A = φ̄A(t + ∆tA) + δφA(t + ∆tA) − φ̄B(t + ∆tA − τB

A ) − δφB(t + ∆tA − τB
A )

+ NB
A + IB

A + dB
A + ǫB

A , (10.6)

φA
B = φ̄B(t + ∆tB) + δφB(t + ∆tB) − φ̄A(t + ∆tB − τA

B ) − δφA(t + ∆tB − τA
B )

+ NA
B + IA

B + dA
B + ǫA

B. (10.7)

The phase at measured reception time t + ∆tA can be linearized at the nominal time t as:

φ̄A(t + ∆tA) ≈ φ̄A(t) + ˙̄φA(t) · ∆tA. (10.8)

Also the phase at the transmit time t + ∆tA − τA
B can be linearized at the nominal time t as:

φ̄A(t + ∆tB − τB
A ) ≈ φ̄A(t) + ˙̄φA(t) · ∆tB − ˙̄φA(t) · τA

B . (10.9)

The phase error can be linearized in the same way:

δφA(t + ∆tA) ≈ δφA(t) + δφ̇A(t) · ∆tA,

δφA(t + ∆tB − τA
B ) ≈ δφA(t) + δφ̇A(t) · ∆tB − δφ̇A(t) · τA

B . (10.10)

The rate of phase change ˙̄φA(t) is equivalent to the nominal frequency fA, the rate of phase change
error δφ̇A(t) is therefore equivalent to the frequency error δfA. These results lead to:

φB
A = φ̄A(t) + fA · ∆tA + δφA(t) + δfA · ∆tA − φ̄B(t) − fB · ∆tA + fB · τB

A

− δφB(t) − δfB · ∆tA + δfB · τB
A + NB

A + IB
A + dB

A + ǫB
A

= φ̄A(t) − φ̄B(t) + δφA(t) − δφB(t) + (fA − fB) · ∆tA + (δfA − δfB) · ∆tA

+ (fB + δfB) · τB
A + NB

A + IB
A + dB

A + ǫB
A , (10.11)

φA
B = φ̄B(t) + fB · ∆tB + δφB(t) + δfB · ∆tB − φ̄A(t) − fA · ∆tB + fA · τA

B

− δφA(t) − δfA · ∆tB + δfA · τA
B + NA

B + IA
B + dA

B + ǫA
B

= φ̄B(t) − φ̄A(t) + δφB(t) − δφA(t) + (fB − fA) · ∆tB + (δfB − δfA) · ∆tB

+ (fA + δfA) · τA
B + NA

B + IA
B + dA

B + ǫA
B. (10.12)

The time tag error ∆tA can be expressed in terms of the phase error δφA as, cf. Kim (2000):

∆tA = −δφA(t)

fA
, (10.13)

which yields:

φB
A = φ̄A(t) − φ̄B(t) + fB · τB

A +

(
1 − fA − fB

fA
− δfA − δfB

fA

)
· δφA(t) − δφB(t),

+ δfB · τB
A + ǫA

system + NB
A + IB

A + dB
A (10.14)

= φ̄A(t) − φ̄B(t) + fB · τB
A + ǫA,B

uso + ǫA
system + NB

A + IB
A + dB

A . (10.15)

The measured phase value consists of the difference of the two reference phases, a term depending on
the transmission time and error terms. The phase error consists of five terms:

1. Error due to USO instability,

2. error due to system noise,

3. error due to phase ambiguity,

4. error due to Ionosphere delay,

5. error due to phase shift due to atmosphere, multipath and others.
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10.4. Error model

Error due to USO instability

ǫA,B
uso =

(
1 − fA − fB

fA
− δfA − δfB

fA

)
· δφA(t) − δφB(t) + δfB · τB

A . (10.16)

The error due to USO instability consists of five terms. The first three terms are a scaling of the phase
error δφA(t) of the receiving satellite, depending on the phase error itself, the frequency difference
fA − fB of the two satellites USOs and the frequency error difference δfA − δfB. The error due to
frequency difference and frequency error difference is expected to be smaller than the phase error itself,
as they are scaled by the nominal frequency. As fourth term, the phase error δφB(t) due to USO
instability from the sending satellite enters the error equation linearly. The last term consists of the
frequency error δfB of the sending satellite’s USO times the transmission time τB

A .

Usually the error behavior of an oscillator is specified in terms of an Allan variance, but it is more
convenient to specify the error in terms of a power spectral density. From Thomas (1999) we get for
the phase noise of the oscillators in terms of [rad2/Hz]:

Sδφ = 3.16 · 10−16 +
8.38 · 10−13

f2
+

5.74 · 10−14

f3
+

6.39 · 10−17

f4
. (10.17)

The frequency error is the time derivative of the phase error, as

δf = δφ̇(t) = 2πfδφ. (10.18)

So we get for the frequency error PSD:

Sδω = (2πf)2 · (Sδφ)

= (2πf)2 ·
(

3.16 · 10−16 +
8.38 · 10−13

f2
+

5.74 · 10−14

f3
+

6.39 · 10−17

f4

)
. (10.19)

The phase and frequency error pertain to the USO normal frequency f0. To scale them to K resp. Ka
Band and to transform from [rad2] to [cycle2], we get:

S
fK/Ka

δφ =

(
fK/Ka

2π · f0

)2

· Sδφ, (10.20)

S
fK/Ka

δf =

(
fK/Ka

2π · f0

)2

· (2πf)2 · (Sδφ). (10.21)

As the error is random, differentiation of the phase errors of the two satellites does not cancel but
double them, thus we can rewrite eq. (10.16) and specify the PSD of the phase error:

SK/Ka
ǫuso

=



2 +

(
∆f

fK/Ka

)2

+



2S
fK/Ka

δf

fK/Ka




2

 · SfK/Ka

δφ + S
fK/Ka

δf · τB
A . (10.22)

Figure 10.2 shows the root PSD of the phase noise due to the USO error. As expected, it increases
strongly at low frequencies and levels out to white noise at high frequencies. Figure 10.3 shows the
root PSD of the frequency noise due to the USO error. As the frequency noise is the time derivative
of the phase noise, it shows a 1

f behavior at low frequencies and also rises proportional to f at high
frequencies. Figure 10.4 shows the root PSD of the contributions of all phase noise sources. It can be
stated that the largest contributor by far is the phase noise itself, only at frequencies above 100 Hz the
frequency error scaled by the transmission time is dominating. The error due to the frequency offset
of the two satellites oscillators is five orders of magnitude smaller than the phase error, the error due
to the frequency error is even ten orders of magnitude smaller. For error simulations, it is sufficient to
consider the phase noise and the frequency error scaled by the transmission time.
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Figure 10.2: Root PSD of the phase noise due to USO instability. The phase noise shows a 1

f 2 behavior at low frequencies
and then converges into white noise at high frequencies.
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Figure 10.3: Root PSD of the frequency noise due to USO instability. The frequency noise is the time derivative of the
phase noise. The frequency error increases at low as well as at high frequencies.

Error due to system noise

The system noise consists mainly of two effects: the background noise and the thermal noise, i.e. the
measurement error caused by the K-band system itself due to ,e.g., the analog to digital conversion,
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Figure 10.4: Root PSD of the phase measurement error contributors due to USO noise. The largest contributors are the
phase errors and the frequency errors scaled by the transmission time between the two satellites, followed by the error
contribution dependent on the frequency offset between the two satellites. The contribution of the frequency errors is
smallest.

the phase measurement process and the error caused by temperature variations. According to Thomas
(1999), the system noise is white and can be approximated by the following equation:

ǫsystem =
1

2πSNR
[cycles], (10.23)

in units of cycles, which corresponds to a system noise error of 53 µcycles 1-σ standard deviation for 1
s data with a typical value for the Signal to Noise Ratio (SNR) of SNR = 2800.

Error due to phase ambiguity

From the incoming signal not only the phase with respect to the internal signal is derived, but there
is also a counter that counts the integer number of cycles received. The distance between the two
satellites can be expressed as an integer number of cycles plus the length corresponding to the phase
difference. The recorded number of cycles differs from the true number of cycles by an integer number,
the so-called integer phase ambiguity NA.

Error due to ionosphere delay

On its way between the two satellites, the K-band signal is delayed depending on the density of free
electrons along the signal path. The Total Electron Content (TEC) is a measure for this quantity. The
electrons lead to a phase shift, i.e. a phase error that is inversely proportional to the carrier frequency
and directly proportional to the TEC along the signal path:

IA =
TECA

B

fB
[cycles]. (10.24)
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The error varies from epoch to epoch and is dependent on the actual state of the ionosphere. As the
actual frequencies of the satellite oscillators can be estimated, a ionosphere free linear combination can
be formed and thus the error can be eliminated, see chapter 15, and is therefore not explicitly modeled
here.

Error due to phase shift caused by the atmosphere and multipath

According to Kim (2000), the error due to multipath can be neglected, as it is well below the level of
one micrometer. This is only true if the mutual orientation of the GRACE satellites stays within certain
boundaries. For this work, it is assumed that the attitude control system fulfills the requirements and
that the effect of multi-path can therefore be neglected.

Total phase error

Figure 10.5 shows the total phase error. The total phase error is the sum of the above discussed
individual error sources; here the error is specified as a root PSD, thus the error due the phase ambiguity
does not contribute as it is a constant that is visible on the zero frequency of the PSD. The error due
to the ionosphere is not included. We note that at low frequencies the error due to USO instability
dominates and leads to a 1/f2 rise. At high frequencies the system noise dominates as white noise
with a level of about 53 · 10−6 cycles/

√
Hz. Especially the strong rise at low frequencies in the total
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Figure 10.5: Total phase measurement error due to the phase noise and system noise. The USO noise dominates at low
frequencies and rises with a 1

f2 slope, i.e. it causes a strong drift in the phase measurements. At high frequencies, the
white system noise is the dominating phase error contributor.

error would deteriorate the use of the phase measurements for range determination; only through the
combination of the phase measurements of the two satellites an inter-satellite range of a considerable
quality can be derived, see chapter 15.





11. GPS Receiver

Figure 11.1: Black-Jack GPS receiver flight model, from www.gfz-potsdam.de.

11.1. Introduction

On both GRACE satellites a space approved Black-Jack Global Positioning System (GPS) receiver is
installed, see figure 11.1. In contrast to the K-band ranging system, the GPS receiver is a passive
ranging system, i.e. it does no emit electromagnetic signals, it only receives them via the GPS antenna.
The signal source are the GPS satellites. We will not give a detailed description of the GPS, the
interested reader may consult Rothacher (2001), also for additional literature. We will only give a brief
overview of the different available signals and give simple measurement models for the code and phase
measurements. Figure 11.2 shows an overview of the different signals emitted by the GPS satellites.
All signals are driven by an oscillator running at a frequency of 10.23 MHz. The two carrier signals
L1 at 1575.42 MHz and L2 at 1227.60 MHz are generated by a scaling of the oscillator frequency. The
L1 and L2 signals are used for the phase measurements. Both carrier signals are modulated by the
code signals: L1 is modulated by the Clear Access / Coarse Aquisition (C/A) code at 1.023 MHz and
the Protected/Precise code P1 at 10.23 MHz. L2 is modulated by the P2 code at 10.23 MHz. There
is no C/A code on L2. The satellite message contains additional information needed for the position
determination process: the GPS satellite position, the satellite clock error, the health status of the
satellite and others.
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Figure 11.2: Overview of the Signal emitted by the GPS satellites, from Rothacher (2001).

11.2. Measurement models

We will now give the measurement models for the pseudorange and phase measurements from Rothacher
(2001).

11.2.1. Pseudorange measurements

Figure 11.3: Pseudorange or Code measurement, from Blewitt (2006).

The measurement principle of the pseudorange measurements is shown in figure 11.3. The received
signal from the GPS satellite is compared to a reference signal generated by the receiver. Assuming
that both the receiver and the satellite clock are perfectly synchronized and that the signal travels
through vacuum, the time shift between the two signals determined by the receiver correlator is the
transmission time of the received signal from the GPS satellite to the receiver. The signal speed is the
velocity of light, so the distance between satellite j and the receiver A is given by:

P j
A = c · (Tr − T s), (11.1)

with
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P j
A measured range between satellite j and the receiver A,

c velocity of light,
Tr epoch of signal reception,
T s sending epoch.

In reality, the satellite and receiver clock are not synchronized, the signal travels not through vacuum
and there are additional error sources including the measurement noise. The measured range is not the
true one and is therefore called pseudorange. A more realistic measurement model is:

P j
A = ρj

A − δρj
A,ion + δρj

A,rel + δρj
A,mul,C + cδtA + cδtj + cβj + cβA + ǫj

A,C , (11.2)

with

P j
A pseudorange measurement between satellite j and the receiver A,

ρj
A geometric distance between satellite j and the receiver A,

δρj
A,ion influence of the ionosphere,

δρj
A,rel relativistic correction due to the velocity and potential difference between receiver and satellite,

δρj
A,mul,C the influence of multipath on the code measurement,

cδtA range error due to the receiver clock error,
cδtj range error due to the satellite clock error,
cβj signal delay on satellite j (from signal generation until emission),
cβA signal delay in the receiver (from the antenna to the correlator),

ǫj
A,C code measurement error.

11.2.2. Carrier phase measurements

Figure 11.4: Carrier phase measurement, from Blewitt (2006).

During a uniform rotation with the frequency f , the phase angle or phase increases linearly with time
(cf. figure 11.4):

Φ = f · t + Φ0, (11.3)

where Φ0 is the unknown initial phase. The carrier phase measurement of the receiver is the phase
difference between the receiver reference phase and the received phase from satellite j:

φj
A = Φ0,r − Φj

GPS,r, (11.4)

with

φj
A phase measurement of the receiver A to satellite j,

Φ0,r reference phase at signal reception time Tr,

Φj
GPS,r received phase from GPS satellite j at signal reception time Tr.
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The receiver can only measure the fractional phase of the received signal from the GPS satellite, therefore
the emitted signal differs from the receipt signal by an integer number of cycles:

Φj
GPS,r = ΦGPS,s

j − N j
A, (11.5)

with

ΦGPS,s
j GPS phase (cycles) emitted by satellite j at Ts,

N j
A integer number of full cycles contained in ΦGPS,j

j , so called ’integer phase ambiguity’.

The phase ambiguity has to be solved, if the true distance between satellite and receiver is to be derived,
otherwise the phase measurement delivers only a biased range.

Using equation (11.3), we rewrite the expressions for the reference phase of the receiver and the phase
received from the GPS satellite:

Φ0,r = fTr + αA,

Φj
GPS,r = fT s + αj − N j

A,

where αj is the signal delay on satellite j from generation till emission and αA is the signal delay in the
receiver from the antenna to the correlator.

The measurement model then becomes:

φj
A = Φ0,r − Φj

GPS,r

= fTr + αA − (fT s + αj − N j
A)

= f(Tr − T s) + αA − αj + N j
A. (11.6)

We can transform the phase measurement in cycles into a distance measurement by multiplication by
the nominal wavelength λ = c/f :

Lj
A = λφj

A

= c(Tr − T s) + λ(αA − αj + N j
A). (11.7)

This measurement model is again not realistic as it makes the same assumptions as the simple model
for the pseudorange measurement. A realistic model is given by:

Lj
A = ρj

A + δρj
A,ion + δρj

A,rel + δρj
A,mul,φ + cδtA + cδtj + λ(N j

A − αj + αA) + ǫj
A,φ, (11.8)

with

Lj
A measured range between satellite j and the receiverA,

ρj
A geometric distance between satellite j and the receiver A,

δρj
A,ion influence of the ionosphere,

δρj
A,rel relativistic correction due to the velocity and potential difference between receiver and satellite,

δρj
A,mul,φ the influence of multipath on the phase measurement,

cδtA range error due to the receiver clock error,
cδtj range error due to the satellite clock error,

ǫj
A,φ phase measurement error.
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11.3. Error model

The error model we will use for the data analysis is simple, we model the phase measurement error and
the code measurement error as white noise of a certain power. The other error sources are neglected as
they are not random but systematic, at least over short time intervals. During the real data analysis,
only consecutive epochs, where the same satellite has been tracked, are used. The noise specifications
are given in table (11.1).

Table 11.1: Noise level specifications for the Black-Jack GPS receiver from Stanton et al. (1998).

observation type noise level 1σ [cm] 10 s sampling error [
√

PSD cm/s2/
√

Hz]

code measurements 100 400

phase measurements 1 4





Part IV.

Real data processing and analysis
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12. Data levels overview

Figure 12.1: Overview of the different data levels

In figure 12.1 an overview over the different data levels is shown. In principle, there are three data levels:
level 0, level 1 and level 2. Level 0 corresponds to the raw instrument data, level 2 corresponds to the
level of products like gravity fields for a large user community. The intermediate level 1 can be split
up into level 1a and level 1b. Level 1a represents the calibrated instrument data given in their native
coordinate frames, see section D.5, and at their original sample rate. Here ’calibrated’ means converted
into engineering units and arranged to cover one day per file. The original level 0 data is dumped by
the satellites at each fly-by at the ground stations in Weilheim and Neustrelitz and therefore available
in chunks covering about one revolution of the satellites. Several processing steps are necessary to
transform the calibrated instrument data (level 1a) to the gravity field determination input data (level
1b).
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13. Data products overview

13.1. Science data products

Figure 13.1: Overview of the GRACE data products of the main elements fo the sensor system.

The description of the GRACE data products can be found in Bettadpur (2007). In figure 13.1, the
data products for the science data stream are depicted. The accelerometer data products for level 1a
are labeled ACC1A, the products for level 1b are labeled ACC1B. As there is one accelerometer on
each satellite, there is a separate product for each satellite. The star sensor data are labeled SCA1A
for level 1a and SCA1B for level 1b. Each satellite possesses two star sensor heads. The data from
the two heads are contained separately in the level 1a product. The level 1b product contains the
orientation resulting from the combination of the two sensor heads. Again there is one product for each
satellite. The K-band ranging data products are labeled KBR1A for the level 1a and KBR1B for the
level 1b. The level 1a contains the phase measurements for the Ka and the K-band, there is one product
for each satellite. The level 1b product contains the derived intersatellite range, range rate and range
acceleration. Therefore there is only one product for the two satellites.

13.2. Housekeeping data products

The housekeeping data products contain ancillary data. For this work, the following housekeeping
products were used, description from Bettadpur (2007):
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Name Description

TIM1B On-board data handler to GPS time mapping

CLK1B Precise clock solution

USO1B Ultra stable oscillator frequency estimate

THR1B Thruster activation data

MAG1B Magnetometer and magnetotorquer data

13.3. Data set description

The data set investigated covers August in 2003. For the star tracker, the accelerometer and the K-band
ranging system, L1a data as well as L1b data were available. For the GPS receiver data, only L1b data
were available. Concerning auxiliary data like thruster activation data, magnetic torque rods activation
data and others, only the L1b data are considered.



14. Level 1a data analysis

The measurements of each instrument are analyzed in order to identify the performance of the in-
strument. The analysis also aims at a thorough understanding of the instruments’ data. Unexpected
behavior shall be identified and, if possible, also the underlying reasons. For the GPS receiver no L1a
data were available for analysis.

14.1. Analysis of the star tracker data

The L1a star tracker data product contains the data from both sensor heads of the star tracker of
each satellite. The delivered quaternions represent the transformation from the inertial reference frame
(IRF) to the star sensor reference frame (SSRF). In order to compare the measurements of both heads,
it is necessary to transform them into quaternions representing the rotation from the IRF to the science
reference frame (SRF):

Q
srf
irf = Q

ssrf
irf ⋆ Q

srf
ssrf . (14.1)

The information about the orientation of the SSRF w.r.t. the SRF is derived pre-launch, as well as
post-launch, during calibration maneuvers. It is also interesting to analyze the angular rates derived
from the quaternions and to assess their performance, as they may be combined with the accelerometer
measurements in the L1a to L1b processing. For details about the derivation of the angular rates from
an orientation representation, see appendix C for more details.

Figure (14.1) shows the time series of the star tracker measurements of GRACE A and B for a sample
day. Let us first take a look at the data from GRACE A shown in the left panels. First we realize that
the data delivered by head 2 show a sinusoidal behavior. The period of the oscillation is about once every
two revolutions. At a first glance this may seem strange, as usually all the sensor measurements show a
strong signal at the orbit frequency. The reason lies in the definition of the quaternions. They depend
on the square root of the change of the coordinate axes. The axes change with the orbit frequency, the
square root of this change is then an oscillation at half the orbit frequency. The data of head 1 are
different. Once every revolution all quaternion elements change their sign simultaneously and have the
opposite sign of the data delivered by head 2 until the next change happens. Then the signs of the data
agree until the next change and so on. The reason is that for this sample day the orbit of GRACE A is
oriented towards the Sun/Moon in such a way, that once every revolution the sunlight/moonlight blinds
head 1 and interrupts the data delivery, marked as invalid data in the figure. When the data delivery
recommences, the quaternions have either the same or the opposite sign as the quaternions from head
2. A change of sign of all quaternion components does not change the represented orientation, therefore
head 1 and 2 give the same orientation during times of simultaneous data delivery.

The right panels of figure 14.1 show the same period for the data delivered by the star sensor heads
of GRACE B. As GRACE B is rotated by 180◦ about the z-axis compared to GRACE A, head 1
delivers data continuously and head 2 is blinded by the Sun/Moon every revolution, interrupting the
data delivery (marked again as invalid data).

The top panels of figure 14.2 show the root PSD of the star tracker quaternions of GRACE A. Let us
first take a look at the root PSD of the data from head 1 (top left panel). The frequency range at low
frequencies is limited because of the multiple Sun/Moon intrusions. At high frequencies, the root PSD
becomes white noise at a frequency of about 2− 3 · 10−2 Hz. The noise level seems to be slightly better
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Figure 14.1: Left panels: Time series of the star tracker quaternions of GRACE A, head 1 and head 2, for a sample day.
Right panels: Time series of the star tracker quaternions of GRACE B.

than specified. The frequency range at low frequencies of the root PSD of the data from head 2 (top
right panel) is larger, as for this example head 2 is not blinded by the Sun/Moon and delivers data
continuously. Therefore we note a strong signal on half the orbit frequency at about 9 − 10 · 10−5 Hz.
Concerning the behavior at high frequencies, the same conclusions hold as for the data from head 1:
The noise level is slightly better than specified.

The two lower panels show the root PSD of the data delivered from the star sensor heads on GRACE
B. As here head 1 (lower left panel) delivers data continuously and head 2 (lower right panel) is blinded
regularly by the Sun/Moon, the frequency range of the root PSD of the data from head 2 is limited
and therefore the signal at half the orbit frequency is not resolved. Concerning the noise level, it seems
that the data delivered from head 1 do not meet the required noise level. The reason is that the data
from head 1 are interrupted due to invalid measurements, although this occurs much less often than
on head 2. In order to derive the root PSD for a full day, the gaps were filled by interpolation. The
interpolated data differ significantly from the measured ones and cause a noise level that is higher than
specified. We will determine the noise level later, when we analyze the difference of both heads.

Let us take a look at the angular rates derived from the quaternions in figure 14.3.

First, we analyze the angular rates on GRACE A in the time domain, shown in the top left three
panels. As expected, the rates about the x- and the z-axis show no bias, but the y-axis does show a
bias of about 1.1 ·10−3 rad/s, that corresponds to a full rotation about the y-axis during one revolution.
The satellites rotate about their y-axis once per full revolution, as the attitude control maintains the
satellite earth pointing. Intervals of invalid data exhibit strong oscillations. The noise of the rate about
the x-axis is significantly smaller than the noise of the angular rates about the y- and z-axis. It is
smaller because this rotation is perfectly perpendicular to the line of sight of each star camera head.
The rotations about the y- and z-axis are only partly perpendicular to the line of sight of the camera
heads and therefore determined less well.

The root PSD of the angular rates on GRACE A are shown in the top right panel. For all axes, there is
peak at the orbit frequency. The x- and z-axis show a second peak at about 1 ·10−3 Hz. A third peak is
visible at about 5−6 ·10−3 Hz, that is most prominent for the y-axis and less pronounced for the x- and
z-axis. The cause seems to lie in the attitude control system, that causes angular accelerations through
the magnetic torque rods and the cold gas thrusters, we will investigate this later. The constant angular
velocity about the y-axis does not show up in the root PSD. Starting from about 1 · 10−2 Hz, noise
starts to dominate the spectrum and rises to a level of about 5 ·10−4 rad/s/

√
Hz. The noise level at the
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Figure 14.2: Top panels: root PSD of the star tracker quaternions of GRACE A, head 1 (left) and head 2 (right), for a
sample day. Bottom panels: root PSD of the star tracker quaternions of GRACE B, head 1 (left) and 2 (right).

high frequencies is higher than the signals from the attitude control system, therefore one recognizes
only noise in the time series of the angular rates.

The time series of the angular rates on GRACE B is shown in the lower left three panels. The observa-
tions made for GRACE A seem also to be true for GRACE B. The noise level of the angular rate about
the x-axis is significantly smaller than that of the rates about the other axes. It is interesting that it
seems as if the noise level of the rates derived from head 2, that is regularly blinded by the Sun/Moon,
is significantly lower than that of the rates derived from head 1. That is not true, the reason lies in
different sampling rates: the data from head 1 are sampled at 1 Hz, the data from head 2 at 0.2 Hz.
Due to the reduced bandwidth of the data from head 2, its noise level is also reduced significantly.

The root PSD of the angular rates from GRACE B in the lower right panel shows the same behavior
as the root PSD of the angular rates from GRACE A.

Another possibility to assess the performance of the star sensor heads is to compare their data directly.
In principle they should provide the same orientation, if one neglects systematic errors resulting, e.g.,
from imperfect knowledge of the orientation of the respective sensor head with respect to the satellite
body frame. The difference of the sensor head measurements should give an indication of an upper limit
of the sensor error, as random noise adds up when being subtracted. Figure 14.4 shows the difference
of the sensor head measurements.

The top left panel shows a period where data from both heads on GRACE A are available. It seems that
the difference depends on the time difference to the epoch where the Sun/Moon blinds sensor head 1.
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Figure 14.3: Top left three panels: time series of the star tracker derived angular rates of GRACE A, head 1 and head 2.
Top right panel: root PSD of star tracker derived angular rates of GRACE A. Lower left three panels: time series of the
star tracker derived angular rates of GRACE B, head 1 and head 2. Lower right panel: root PSD of star tracker derived
angular rates of GRACE B.

The closer the Sun/Moon intrusion, the larger the oscillation of the difference. We assume that the data
quality of the sensor head that is not blinded regularly by the Sun/Moon remains constant. It seems
then sensible to assume that the data quality of the sensor had that is blinded regularly varies with
time. For a possible sensor head’s data combination, only epochs at a certain distance from Sun/Moon
intrusions should be used or the data should be weighted accordingly.

The top right panel shows the root PSD of the difference. The observations made in the time domain
are confirmed. One would expect only white noise for the difference, assuming a white noise behavior
of the sensor error. But the PSD shows a slight rise towards low frequencies. This drift results from the
deterioration of the data of the regularly blinded sensor head towards the full Sun/Moon intrusions.
The noise level is estimated to be lower than 2 · 10−4 rad/s/

√
Hz, which agrees with the specification.

The comparison of the data of both sensor heads on GRACE B (see lower left and lower right panel of
figure 14.4) delivers the same results.
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Figure 14.4: Top left panel: Difference of the measurements of sensor head 1 and 2 on GRACE A in the time domain.
Top right panel: root PSD of the difference of the measurements of sensor head 1 and 2 on GRACE A. Lower left panel:
Difference of the measurements of sensor head 1 and 2 on GRACE B in the time domain. Lower right panel: root PSD of
the difference of the measurements of sensor head 1 and 2 on GRACE B.
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14.2. Analysis of the accelerometer data

The purpose of the accelerometers is to measure the surface forces that act on the satellites. The K-band
measurements, that contain both the effects of the gravitational forces and the surface forces, can then
be corrected for the latter. From the surface force models for air drag, solar radiation pressure and
albedo, we know that air drag is the dominating surface force with a magnitude of several 1 · 10−7 m/s2

for the along-track component, one order of magnitude less for the cross-track component and the radial
component for an orbit height between 450 and 500 km. The analysis of the accelerometer data will be
conducted in two steps:

• Comparison of the measurements with drag models.

• Analysis of different events like twangs, peaks and thruster firings.

The accelerometer measurements consist of the measured linear accelerations and the measured angular
accelerations. Let us first take a look at the linear accelerations. One would expect the signal shown in
the two top panels of figure 14.5 from simulations: In terms of magnitude, the along-track component
should be strongest, followed by the radial component and the cross-track component. All components
should show a strong once per revolution signal in the root PSD. In addition, the along-track component
should be biased at a level of about 2 · 10−7 m/s2. The measurements seem to be different, cf. the two
middle and bottom panels of figure 14.5.

Concerning the cross-track component, it can be stated that the increased magnitude is caused by the
effect of the thruster events.

We also notice that the radial component’s magnitude is larger by far than the magnitude of the along-
track or cross-track components. Apart from linear accelerations acting on the satellite surface, any
effect that causes a movement of the accelerometer cage against the proof mass is a possible candidate
to explain the difference between model and actual measurement:

• Angular accelerations and velocities: they map into the linear accelerations as Coriolis and cen-
trifugal accelerations, if the accelerometer is not perfectly placed at the center of mass. In this
category the attitude control system is included as well. The thruster firings play a dominant
role, as they cause the strongest and abrupt angular accelerations of all types of attitude control.

• Vibrations of the satellite body due to thermal effects. During the design of the satellite struc-
ture, great efforts were made to minimize the thermal expansivity of the satellite structure, but
remaining effects could be detected by the accelerometers, assuming a sufficient magnitude of the
vibrations.

• Electromagnetic effects resulting from the operation of heater switches of the satellite.

The effects dominating the radial component seem to be irregular and not correlated with thruster
events. So we can exclude angular effects to be the cause. The large magnitude suggests that the
reason lies in the second candidate and that the origin of the effects lies in vibrations of the satellite.
Taking a closer look in figure 14.6, the dominating feature, so called twangs, are visible. They are
strongest on the radial component of the linear accelerations.

The situation is similar for GRACE B, see lower panels in figure 14.5. We can draw the same conclusions
as for GRACE A: The signal of the radial component is dominating and larger than the signal of the
other components. Concerning the root PSD, the signal at 1 Hz, that is very pronounced for GRACE
A, is less pronounced. When we take a closer look at the features of the radial component in figure
14.6, we realize that again the twangs are likely the dominant effect.

Therefore, we will now investigate the ’twangs’ in more detail.
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Figure 14.5: Upper left panel: Time series of simulated surface forces including air drag, solar radiation pressure and Earth
albedo. Upper right panel: root PSD of the simulated surface forces. Middle left panel: Time series of the measured linear
accelerations on GRACE A. Middle right panel: Root PSD of the linear accelerations on GRACE A. Lower left panel:
Time series of the measured linear accelerations on GRACE B. Lower right panel: Root PSD of the linear accelerations
on GRACE B.

14.2.1. Twangs

In Hudson (2003) and in Flury (2004), this phenomenon has been investigated in detail. Figure 14.7
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Figure 14.6: Close-up of the measured linear accelerations on GRACE A and B. The measurement is dominated by ’twangs’,
that are analyzed in a separate section. The twangs occur mainly on the radial component of the linear accelerations, but
also on the along and cross-track components.

shows some examples of twangs. In general, they look like a damped oscillation, their duration is about
5 s, their magnitude varies from 1 · 10−5 − 1 · 10−7 m/s2. According to Flury (2004), about 30 %
of the observed radial accelerations, about 3 % of the cross-track accelerations and about 1% of the
along-track observations are affected by twangs. Figure 14.8 shows the root PSD of the sample twangs.
We notice that there is a maximum at about 4 Hz, that was also seen by Hudson (2003). It is assumed
that the rise at low frequencies is due to the underlying acceleration signal. The relevant question is:
are the twangs actual accelerations acting on the satellites or not. In Hudson (2003) it is assumed that
the reason for the twangs are thermal effects of the foil that covers the bottom of the satellites. The
thermal effects could consist in an expansion or contraction of the foil caused by solar illumination, that
would cause vibrations of the satellite frame and thus show up in the accelerometer measurements. As
the vibrations are not caused by surface forces acting on the satellite, these signals can be seen as a
measurement error affecting the measurement performance. For the determination of the accelerometer
performance, only periods can be used where no twangs occur.

As the foil covers the bottom of the satellites that always points towards the Earth, the Earth radiation
variation could be correlated with the twang events. In order to test this hypothesis, the Earth albedo
model described earlier was used to simulate long and short-wave albedo for a given GRACE orbit. The
result is shown in figure 14.9. There seems to be a correlation between the maxima of the long-wave
albedo, the Earth shadow exit and entry and the twang events. Considering table (5.1), one realizes
that about 80 % of the IR radiation are absorbed by the bottom, i.e. are transformed into heat. At
the maxima of the long-wave albedo, the foil temperature should also be increased. This seems to
agree with the observation in Hudson (2003), where increased twang activity has been observed during
periods of increased foil temperature. This assumption is very speculative however.

14.2.2. Peaks

Twangs are not the only disturbance visible in the acceleration measurements, that is supposedly not
caused by real accelerations. Figure 14.10 shows examples of peak effects for GRACE A and B.

We notice that all axes are affected equally and that also the magnitudes are equal: about 4 − 6 ·
10−8 m/s2. According to Flury et al. (2007), these effects are correlated with switches of the heating
system of the satellites. They affect about 40% of the along-track measurements and about 30 % of the
cross-track and radial measurements. The assumption is that the change in the current of the heater
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Figure 14.7: Examples for ’twangs’ on GRACE A (upper three rows) and GRACE B (lower three rows). The left panels
show the linear accelerations, the right panels show the angular accelerations.

circuits has an effect on the linear acceleration measurement. This would mean that the effects are again
not caused by surface forces acting on the satellites and would then contribute to the measurement error
budget. For the accelerometer performance determination, periods containing the peaks should not be
used.
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Figure 14.8: Root PSD of sample twangs. We notice a large maximum at 4 Hz, a smaller one between 1 and 2 Hz and a
rise at low frequencies. The signal power is about 1 · 10−6 m/s2/
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Figure 14.9: Correlation of twang events with Earth albedo for GRACE A and B. Direct albedo is the IR radiation emitted
by the Earth, short-wave albedo is the radiation caused by diffuse reflection of solar radiation incident on the Earth. The
satellite is outside the Earth shadow if the green stars are on the zero line.

14.2.3. Thruster events

Thruster events are part of the angular control system. Therefore thruster events map into the measured
linear accelerations only if:

• the proof mass of the accelerometer is not perfectly placed in the center of mass,

• there is a misalignment between the thrusters of a thruster pair, different thrust forces or reaction
times.

In the first case, the effect visible in the measurement is not caused by a real acceleration on the satellite,
in the second case, there is an actual linear acceleration on the satellite. Figure 14.11 shows the time
series and the root PSD of sample thruster events on GRACE A and B. The thruster events show up
as a sudden spike in the accelerometer measurements. The magnitudes are about 1 − 2 · 10−6 m/s2 for
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Figure 14.10: Close-up of linear acceleration measurements on GRACE A and B showing the peak effects. We notice that
the effects are visible on all axes. The magnitudes seem to be equal on all axes. In the considered period no thruster
events occur.

the cross-track component, followed by about 2 − 4 · 10−7 m/s2 for the radial component and about
2 − 4 · 10−8 m/s2 for the along-track component. The mass trim assembly and regular center of mass
determination calibration maneuvers ensure that the offset of the center of mass of the GRACE satellites
to the accelerometer proof mass stays within 100 micrometers, cf. Wang (2003). Therefore it can safely
be assumed that the mapping of the thruster events into the linear accelerations is due to thruster
misalignment. The measured signal then represents an actual acceleration and it is necessary that it is
measured as it will be contained in the K-band measurements as well.

In order to understand not only the effect of the thruster events on high frequencies of the spectrum
of the measurements, but also the long term effects, a time series of thruster events was generated
from the thruster activation data of a sample day and then passed through a filter that is similar to
the on-board filter that is applied in course of the analog to digital conversion process. Figure 14.12
shows the time domain representation and the root PSD of the filtered and unfiltered thruster events
time series. We realize that the filter increases the interval of the thruster events and also alters the
amplitudes. When we analyze the root PSD, a prominent peak at 1 Hz is visible, that is also visible in
the accelerometer measurements. It seems that this peak is caused by the thruster events mapping into
the linear accelerations. The thruster events occur always at the same fractional epoch, i.e. the time
difference between two thruster events is an integer number of seconds. At low frequencies, the signal
caused by the thruster events is white noise at a level of about 1 · 10−8 m/s2

√
Hz. At frequencies higher

than 3 Hz, the signal amplitude is damped by the applied anti-aliasing filter.
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Figure 14.11: Thruster events in the time domain (left panels) and in the frequency domain (right panels) for GRACE A
and B. We notice that the cross-track linear accelerations are affected most, followed by the radial linear accelerations
and the along-track linear accelerations. Taking a look the root PSD, we realize that the magnitude of the effects of the
thruster events range from 1 · 10−8 m/s2/

√

Hz to 1 · 10−7 m/s2/
√

Hz , significantly above the error specifications of the
accelerometer. The peaks in the time domain show up as horizontal lines in the frequency domain as expected. The decay
starting at about 2-3 Hz is due to the on-board butterworth filter.

14.2.4. Accelerometer performance estimation

For the performance determination of the accelerometers itself, only periods where no twangs, peaks
or thruster events occur can be used. The analysis of periods that supposedly are only affected by the
accelerometer noise delivers the results presented in table (14.1). As for the gravity field determination
the differential acceleration is needed, we present an estimate of its performance as well. It seems that
the accelerometer performance on the sensitive axes (along-track and radial) is about 5 times worse
than specified, the performance of the less-sensitive axes (cross-track) seems to agree with the specified
performance. The performance of the differential acceleration measurement should be about

√
2 times

the performance of the along-track components, which approximately seems to be the case, its overall
performance is about two times the specified level. Of course the selected periods may be affected by
other effects than only the measurement noise, so the numbers presented are only estimated and should
be considered as an upper limit.
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Figure 14.12: Left panel: thruster events in the time domain before and after the filtering of the on-board anti-aliasing
filter. Right panel: root psd of thruster events before and after the application of the anti-aliasing filter.

Table 14.1: Estimated single accelerometer errors for GRACE A and B and estimated error of the differential acceleration
measurements.

observation type σ [m/s2] σ spec. [m/s2] PSD [m/s2/sqrtHz] PSD spec. [m/s2/
√

Hz]

GRACE A

along-track 1 · 10−09 2 · 10−10 5 · 10−10 1 · 10−10

cross-track 2 · 10−09 2 · 10−09 9 · 10−10 1 · 10−09

radial 1 · 10−09 2 · 10−10 6 · 10−10 1 · 10−10

GRACE B

along-track 9 · 10−10 2 · 10−10 4 · 10−10 1 · 10−10

cross-track 2 · 10−09 2 · 10−09 1 · 10−09 1 · 10−09

radial 1 · 10−09 2 · 10−10 6 · 10−10 1 · 10−10

Differential
acceleration 1.4 · 10−09 6 · 10−10 6 · 10−10 3 · 10−10

14.2.5. Linear acceleration measurement performance estimation

For the determination of the performance of the linear acceleration measurement, the differential linear
acceleration is investigated, as it is used later for the gravity field determination, cf. figure 14.13. The
signal looks very noisy and there seems to be no clear once per revolution signal. The order of magnitude
is about 2 − 4 · 10−7 m/s2. The right panel shows the root PSD of the differential acceleration and the
major constituents arising not from surface forces. We notice a peak at once per revolution that is less
prominent as for the linear accelerations themselves. The signal then decreases to about 2−3 ·10−2 Hz,
where the signal seems to level out into white noise. Looking at the root PSD of the thruster events of
the same day, one realizes that the thruster events seem to be responsible for the flat spectrum. The
characteristic peak at 1 Hz and multiples is also caused by the thruster events. The peak effects mainly
cause an effect at frequencies higher than 2−3 ·10−2 Hz and rise to a level of about 1 ·10−8 m/s2/

√
Hz.

At frequencies lower than 2 − 3 · 10−2 Hz the peak effect is below the specified measurement accuracy.
The twangs seem to affect high frequencies mainly as well. The magnitude of their effect rises to a
level of about 1 · 10−8 m/s2/

√
Hz. At frequencies lower than 2 · 10−1 Hz, the twang effect is below the

specified measurement accuracy. One should also keep in mind that during the L1a to L1b processing
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Figure 14.13: Left panel: Time series of the differential accelerations for a sample day. Right panel: Root PSD of the
differential acceleration and the major constituents arising not from surface forces.

the bandwidth of the measurement is reduced to about 0.1 (5 s sampling) resp 0.5 Hz (1 s sampling).
The effects visible in the differential acceleration measurement caused by the thruster events represent
real accelerations, assuming the K-band measurements contain them as well, they do not contribute to
the error budget of the measurement. The peak and twang effects contribute to the error budget of
the measurement, as they are supposedly no real accelerations. As their influence for a 5 s sampling
is below the measurement error specification, it seems that they can be neglected. For a 1 s sampling
however, it seems that they would rise the measurement error to a level of about 1 · 10−9 m/s2/

√
Hz, so

it may be worthwile to think about a way of correcting these effects. As conclusion, we can state that
the performance of the linear acceleration measurement is about 6 ·10−10 m/s2/

√
Hz, i.e. about 2 times

higher than the performance specification, if 5 s data is used. If 1 s data is used and the effects of the
twangs and peaks are not corrected for, the performance is estimated to be about 1 · 10−9 m/s2/

√
Hz

or about 3 times the specified performance.

14.2.6. Angular accelerations

The angular accelerations are measured by forming differences between the control voltages of the indi-
vidual electrode pairs and scaling the difference with the appropriate electrostatic gain that transforms
from [V] to [rad/s2].

The angular acceleration measurements will not be investigated as thoroughly as the linear acceleration
measurements, as their role for the gravity field determination process is limited to the attitude de-
termination. Figure 14.14 shows the time series of the angular acceleration measurements on GRACE
A and B. We notice many spikes caused by thruster events, but also effects that are caused by the
magnetic torquers. The root PSD is almost flat, apart from peaks at once and twice per revolution
and at about 5 · 10−3 Hz, the latter one is caused by the magnetic torquers, cf. figure 14.15. At high
frequencies, the signal decreases and reaches minima at 1 Hz and multiples. This seems to be caused
by the fact that the original sampling rate of the rotational accelerations is 1 Hz and not 10 Hz as for
the linear acceleration measurements, cf. Bettadpur (2007). The two lower panels show the time series
and root PSD of the angular accelerations measurements on GRACE B. They are similar to those on
GRACE A, except for the peak at about 0.1 Hz in the root PSD of the cross-track component. Its
origin is unknown. Figure 14.16) shows a close-up of the angular accelerations. The peaks are caused
by thruster events.

The thruster events’ effect on the angular accelerations is strongest for rotations about the along-track
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Figure 14.14: Top left panel: Time series of the rotational acceleration measurement on GRACE A. Top right panel:
Root PSD of the rotational acceleration measurement on GRACE A. Bottom left panel: Time series of the rotational
acceleration measurement on GRACE B. Bottom right panel: Root PSD of the rotational acceleration measurement on
GRACE B.

axis, followed by the angular accelerations about the radial axis. The rotation about the cross-track
axis is controlled almost entirely by the magnetic torquers, cf. table 14.2. The rotations about the
cross-track and the radial axis can be controlled by the magnetic torquers due to the orientation of the
magnetic field of the Earth. The magnetic torquers exert the following torque on the satellite:

Tm = D × B, (14.2)

with

Tm the resulting torque,

D the dipole moment of the torquer,

B the field vector of the magnetic field.

The magnetic field vector is usually oriented parallel to the along-track direction, therefore most of the
time only the rotations about the y- and the z-axis can be controlled by the magnetic torquers.
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Figure 14.15: Root PSD of the angular accelerations induced by the magnetic torquers on the cross-track axis. It seems
that the torquer activities are responsible for the characteristic peak at 5 · 10−3 Hz. It is suspected that the discrepancy
of the torquer induced angular accelerations and the measured ones results from the fact that also the surface forces and
gravitational torques cause angular accelerations. The measurement is the sum of all effects.
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Figure 14.16: Close-up of the angular acceleration measurements. We notice that mainly the accelerations about the along-
track axis are affected by thruster events, followed by the accelerations about the radial axis. The number of thruster
events on the cross-track axis is significantly smaller as mainly the magnetic torquers are used to control the rotation
about this axis.
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Table 14.2: Thruster activation times on GRACE A and GRACE B for a sample day. Most thruster events occur on the
along-track axis, followed by the radial axis and the cross-track axis. The cross-track axis is controlled by the magnetic
torquers.

Thruster pair # Rotation axis On time [ms]

GRACE A

1 - radial 8000

2 + cross 50

3 + radial 6500

4 - cross 180

5 - along 28000

6 + along 23000

GRACE B

1 - radial 6000

2 + cross 30

3 + radial 6500

4 - cross 30

5 - along 43500

6 + along 43500
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14.3. Analysis of the K-band and Ka-band ranging data
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Figure 14.17: Left panels: Time series of K- and Ka-band measurements, where the receiver wrapping has been removed. As
expected, the measurements look like a straight line. The contained variation due to the relative motion of the satellites
is not visible. Right panels: Root PSD of the K-band and the Ka-band measurements. The green line represents the
respective error specification. We notice a peak at once per revolution. As the time series, that can be analyzed, is rather
short due to phase breaks, the frequency resolution is limited. At high frequencies, the root PSD should approach the
error specification, but at about 4 · 10−2 Hz and multiples, peaks are visible.

The K-band and Ka-band measurements are the principal measurements of the GRACE satellites. K-
band and Ka-band phases are measured separately on each satellite and then combined in the ground
processing to form the ionosphere-free dual one-way biased range. The phase measurement consists of
the full number of incoming waves received plus the measurement of the actual phase angle, i.e. one
expects that the phase measurement is a straight line, its magnitude increasing towards infinity. As
the numerical resolution of the receiver is limited, a wrap around occurs when the phase measurements
magnitude exceeds a certain value, meaning that the phase counter is reset to the smallest resp. largest
number the receiver can represent. The wrap around value is usually an integer number of cycles, for
the GRACE receivers it is 108 cycles. A wrap around occurs usually every 200 seconds. Figure 14.17
shows the time series and the root PSD of the phase measurements for both satellites. As expected the
phase measurements are a straight line in the time domain, after the receiver wrapping is removed. But
the root PSD reveals more. It shows a peak at once per revolution, but there are also peaks at 4 · 10−2

Hz and multiples. In order to display this effect, the first and second time derivative of the phase
measurements are investigated. Figure 14.18 shows the first derivative of the phase measurements.
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Figure 14.18: Time series of the K-band (left panel) and Ka-band (right panel) phase rate. No effect at 4 · 10−2 Hz is
visible.

There is no effect visible, that could cause a peak at 4 · 10−2 Hz, so we take a look at the second
derivative, the phase acceleration.
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Figure 14.19: Close-up of the second derivative of the K-band and Ka-band phase measurements. The effect causing the
signal at 4 · 10−2 Hz is visible in the measurements of both satellites. The magnitude is identical, the sign opposite.

Figure 14.19 shows a close-up of the K-band and Ka-band phase acceleration. The effect causing the
signal at 4 · 10−2 Hz or every 25 seconds is visible there. It is contained in the data of both satellites
on both the K-band and the Ka-band measurements. The magnitude of the effect on one band seems
to be the same on both satellites, but the sign is opposite. The possible cause is a regular deviation
of the USO of one satellite from its nominal frequency: A clock error will affect both, the K-band and
Ka-band, as the USO drives both of them and would show up in the measurements of both satellites
with opposite sign, as from the incoming phase the reference phase is subtracted.

Phase measurement performance assessment

In order to assess the performance of the phase measurements, only periods shorter than 25 seconds
can be used, because of the regular clock jump contained in the measurements. The requirement of
about 1 · 10−4 cycles/

√
Hz derived from Thomas (1999) is met for both K- and Ka-band measurements
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on both satellites, actually they seem to perform slightly better. A thorough performance analysis will
be conducted on the level 1b data, as there the range, range rate and range acceleration is available for
analysis.



15. Level 1a to level 1b processing

In this part of the work, the processing steps from level 1a to level 1b are reviewed for each instrument
and possible alternatives are evaluated. The propagation of the original instrument errors into the
derived products is investigated as well, in order to yield a realistic error budget for each instrument.
The processing steps and algorithms that are applied by JPL are described in Wu et al. (2006).

15.1. K-band

The principal processing steps are shown in figure 15.1. First, the time tags of the measurements have

Figure 15.1: Processing steps for the derivation of L1b K-band data from L1a K-band data.

to be corrected for various effects:

• Missed interrupts,

• constant offsets,

• satellite clock errors.

Missed interrupts

Missed interrupts can occur for both K-band and Ka-band measurements on both satellites indepen-
dently. If the IPU misses a hardware interrupt, it causes a constant time tag error. In the so called
Sequence of Events File (SOE), the offset due to missed interrupts for both K- and Ka-band measure-
ments is recorded.

139
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Constant offsets

Due to a software problem in the onboard software until version 147 (cf. Wu et al. (2006)), there is an
additional constant offset to be accounted for in the time tag correction.

Satellite clock errors

As the satellite clock is driven by the USO, the derived time tags are erroneous due to the frequency
instability of the USO. The corresponding corrections are determined during the precise orbit deter-
mination process. The clock corrections are given typically at a sampling rate of 5 minutes and have
thus to be interpolated to the corresponding measurement epochs. It is important to apply first the
corrections for the missed interrupts and the constant offsets to the original time tags and then these
’corrected’ time tags can be used for the interpolation.

The corrected time tags are thus derived as:

tcorr = tmeas + ∆tmi + ∆toffset + ∆tclock. (15.1)

The next processing step is the interpolation to multiples of 0.1 s. The following steps are conducted:

• Unification of the receiver wrapping,

• Identification of outliers and phase breaks.

Unification of the receiver wrapping

The onboard receiver of the GRACE satellites can only store values within ±108 cycles. This leads to a
wrap around of the phase measurements every 200 seconds. The wrap around is corrected by comparing
the difference of two consecutive phase measurements against a threshold. If the threshold is reached,
108 cycles are either added or subtracted. The phase measurements then fulfill the condition:

−0.5 · 108 ≤ (φn − φn−1) ≤ 0.5 · 108. (15.2)

Identification of outliers and phase breaks

An outlier occurs, if the measurement of a single epoch is an anomalous value. Outliers can be identified
in the case of two frequency measurements by analyzing the so called ’range free’ observation:

φtest = φK − fK

fKa
· φKa. (15.3)

The phase measurements are the fractional number of received cycles. Depending on the frequency of
the signal, the slope of the phase measurement varies. By scaling the Ka-band measurement to the
K-band frequency, the slope of the scaled Ka-band measurements is adopted to that of the K-band
measurements. The difference of the two should then be only a constant, as the individual initial phase
counter values are different. Outliers are identified by comparing the first derivative to a threshold.

Phase breaks are a different matter. During a phase break, the signal is lost and the cycle counter is
reset to an arbitrary value, resulting in a step in the measured data. In order to identify phase breaks,
the data is separated into subsets of a certain length. The first value of the subset is selected as a
reference. The difference to the other values in the chunk is formed. If the difference is larger than a
threshold, starting from a certain epoch until the end of the chunk, a phase break has been identified.
Again the ’range free’ observation is used. As the range free observation is a combination of the K-band
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and the Ka-band observation, it can not be identified if the outlier or phase break occurs in both bands.
In order to correct for the effects of the ionosphere, a ionosphere free linear combination of the K-band
and Ka-band observables has to be formed at a later stage. Therefore always both measurements have
to be available.

As a next step, the data from GRACE A and B is combined through the following substeps:

• Derivation of the DOWR for K- and Ka-band,

• elimination of the influence of the ionosphere.

Derivation of the DOWR for K- and Ka-band

In order to derive the dual one way range, the phase measurements of the same band from both satellites
are added. We continue from equation (10.12):

ΦAB = φB
A + φA

B = φ̄A(t) − φ̄B(t) + fB · τB
A + ǫA

uso + ǫA
system + NB

A + IB
A + dB

A

+ φ̄B(t) − φ̄A(t) + fA · τA
B + ǫB

uso + ǫB
system + NA

B + IA
B + dA

B

= (fB · τB
A + fA · τA

B ) + (ǫA
uso + ǫB

uso) + (ǫA
system + ǫB

system)

+ (NB
A + NA

B ) + (IB
A + IA

B ) + (dB
A + dA

B). (15.4)

Note that fA and fB are either the K-band or the Ka-band frequency of satellite A or B, i.e. the
formulation is applicable to both the K-band and the Ka-band measurements. We notice that the
phases themselves cancel out and that, as the measurement, the frequencies times the transmission
time remain plus the sums of the individual error terms. The sum of the phase measurements is still a
phase measurement. To transform it into a range measurement, the following step is necessary, cf. Kim
(2000):

RAB =
c

fA + fB
· ΦAB. (15.5)

Let us take a closer look at the range term and neglect the error terms for the time being:

RAB =
c

fA + fB
· (fB · τB

A + fA · τA
B ) =

1

fA + fB
· (fB · ρB

A + fA · ρA
B). (15.6)

The range ρB
A is the magnitude of the vector between the position of satellite B at the epoch t − τB

A

and the position of the satellite A at epoch t, the range ρA
B is the magnitude of the vector between the

position of satellite A at the epoch t − τA
B and the position of satellite B at epoch t. Both differ from

the range ρ between the positions at epoch t, the so called ’instantaneous range’, that is the observable
desired for the gravity field determination. ρB

A is too short, as satellite B is moving towards the signal
emitted by satellite A during the measurement, ρA

B is too long, as satellite A is moving away from the
signal emitted by satellite B. Figure 15.2 shows the geometric situation between the instantaneous range
and the measured ranges. In order to derive the instantaneous range, a straightforward idea would be
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Figure 15.2: Geometric relations between the instantaneous Range and the measured ranges from Kim (2000).
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to directly derive it using GPS derived positions. The position accuracy of the GPS based GRACE
orbits are on the level of about 1 cm, cf. Kim (2000), and therefore not accurate enough to be used
directly. Using the geometric situation, we can define the measured ranges as:

ρA
B =

√
(ρ − ∆A)T · (ρ − ∆A), (15.7)

ρB
A =

√
(ρ + ∆B)T · (ρ + ∆B). (15.8)

The vectors ∆̄A and ∆̄B are the position differences between the satellites positions at the sending
epochs t−τA

B resp. t−τB
A and the nominal epoch t. In reality, their magnitude is about 15 m compared

to a mean distance between the satellites of 200 km. The right hand side can be expanded into a Taylor
series around ∆̄A = 0, resp. ∆̄B = 0:

ρA
B =

√
ρ2 +

∂

∂∆A

[√
(ρ − ∆A)T · (ρ − ∆A)

]

∆A=0

· ∆A

= ρ +




1
2 · 2 · (ρ − ∆A) · −1√
(ρ − ∆A)T · (ρ − ∆A)





∆A=0

· ∆A

= ρ − ρ

ρ
· ∆A

= ρ − êAB · ∆A, (15.9)

ρB
A = ρ + êAB · ∆B. (15.10)

The displacement vectors ∆̄A and ∆̄B can be approximated using the satellite velocity vectors:

∆̄A = ṙA · τA
B , (15.11)

∆̄B = ṙB · τB
A . (15.12)

So we get for the measured range:

RAB =
1

fA + fB
· (fB · ρB

A + fA · ρA
B)

=
1

fA + fB
·
(
fB · (ρ + êAB · ṙB · τB

A ) + fA · (ρ − êAB · ṙA · τA
B )
)

= ρ −
(

fA

fA + fB
· êAB · ṙA · τA

B − fB

fA + fB
· êAB · ṙB · τB

A

)

= ρ − ∆Rttc,

⇒ ρ = RAB + ∆Rttc, (15.13)

êAB =
rB − rA

|rB − rA|
. (15.14)

In order to derive the instantaneous range ρ, we have to add the transmission time correction ∆Rttc

to the measured range RAB. The transmission time correction has to be derived from positions and
velocities derived in the precise orbit determination. These quantities can be seen as observations with a
corresponding observation error. We will now estimate the magnitude of the error using the assumptions
about the quality of the derived positions and velocities displayed in table 15.1.

In order to estimate the magnitude of the error, it is assumed that fA = fB. So we get for the error of
the transmission time correction:

δ∆Rttc ≃ 2 · 1

2
·
(
δêAB · |ṙB| · |τB

A | + |̂eAB| · δṙB · |τB
A | + |̂eAB| · |ṙB| · δτB

A

)
(15.15)

≃ 2 · 1

2
·
(
8.0 · 10−7 + 2.0 · 10−7 + 1.0 · 10−14

)
m

≤ 1.0 µm.
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Table 15.1: Magnitudes and accuracies of the input quantities used for the derivation of the transmission time correction.

quantity magnitude accuracy (σ)

line of sight unit vector êAB 1.0 < 5.0 · 10−8

velocity of satellite A,B ṙA,B < 7700 m/s < 0.1 · 10−3 m/s

transmission time τA,B
A,B < 2 · 10−3 s < 1 · 10−11 s

As the error is below the micrometer level, it is assumed that the correction can be derived in post
processing with sufficient accuracy. It can be neglected in the error model. The transmission time
correction we derived differs from the one given in Kim (2000). There, the range rate derived from GPS
observations is used. The formulation provided here has the advantage that it is based on quantities
that are given in the L1b orbit files (GNV1B).

The transmission times are derived using the given positions and velocities: From the positions at the
nominal epochs, a transmission time is derived. Using the given velocities and the transmission time,
a new position is derived and so on. This iterative procedure converges very fast, as the velocity of the
satellites is relatively small compared to the velocity of light.

Let us now take a closer look at the range noise resulting from the USO noise. The resulting range
noise is the sum of the USO noise given in equation (10.16):

δRuso =
c

fA + fB
· (εA

uso + εB
uso)

=
c

fA + fB
·
[(

1 − fA − fB

fA
− δfA − δfB

fA

)
· δφA(t) − δφB(t) + δfB · τB

A

+

(
1 − fB − fA

fB
− δfB − δfA

fB

)
· δφB(t) − δφA(t) + δfA · τA

B

]

=
c

fA + fB
·
[(

−fA − fB

fA
− δfA − δfB

fA

)
· δφA(t) + δfB · τB

A

+

(
−fB − fA

fB
− δfB − δfA

fB

)
· δφB(t) + δfA · τA

B

]
. (15.16)

It is noteworthy that the combination of the two phase measurements eliminates the direct influence of
the phase error; only the phase error scaled by the carrier frequency difference, the phase error scaled
by the frequency error and the frequency error scaled by the transmission time remains. As shown in
figure 10.4, the contribution of the phase error scaled by the frequency error can be neglected without
loss of generality. In addition, we neglect the difference in the times of flight. We examine now the
range error due to one oscillator:

δRuso =
c

fA + fB
·
(

δf · τ − fA − fB

fA
· δφ
)

. (15.17)

In analogy to Kim (2000) and Thomas (1999), we can now derive the transfer function G(f) from the
oscillator phase noise to the range noise, i.e. we examine the influence of the derivation of the range on
the resulting range error. A transfer function is defined as the ratio of the spectrum of the output and
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the spectrum of the input, in our case the ratio of the spectra of the range noise and the phase noise:

√
G(f) =

F(δRuso)

F(δφ)

=
F
[

c
fA+fB

·
(
δf · τ − fA−fB

fA
· δφ
)]

F(δφ)
(15.18)

=
c

fA + fB
·
[
F(δφ̇) · τ − fA−fB

fA
· F(δφ)

F(δφ)

]
(15.19)

=
c

fA + fB
·
[

i2πf · F(δφ) · τ − fA−fB
fA

· F(δφ)

F(δφ)

]
(15.20)

=
c

fA + fB

[
fB

fA
− (1 − i2πf · τ)

]
, (15.21)

which is identical to the formulation given by Kim (2000) and Thomas (1999), they give for the transfer
function: √

G(f) =
c

fA + fB

[
fB

fA
− (e−i2πf ·τ )

]
. (15.22)

As τ is very small (< 1 · 10−3) and the considered frequency range is below 5 Hz, the exponential
function can be approximated as

e−ix = cos(x) − i sin(x) = 1 − ix. (15.23)

Insertion yields then
√

G(f) =
c

fA + fB

[
fB

fA
− (1 − i2πf · τ)

]
, (15.24)

which is identical to the result we derived. The transfer function for the oscillator error PSD is the
square of the transfer function for the spectrum, so we get for the range error PSD due to the oscillator
noise, assuming the same phase noise for both satellites:

SδRuso = 2 · G(f) · SfK/Ka

δφ

= 2 ·
(

c

fA + fB

)2

·
[
fB

fA
− (1 − i2πf · τ)

]2

· SfK/Ka

δφ . (15.25)

If the time tag errors of both satellite clocks are corrected and thus the time scales of the satellites
are synchronized to a common time scale like the IGS time scale, the time tag error difference can
assumed to be zero, meaning that in the above equation the frequencies fB and fA can be assumed to
be identical:

fA = fB and

SδRuso = 2 ·
(

c

fA + fB

)2

· [1 − (1 − i2πf · τ)]2 · SfK/Ka

δφ

= 2 ·
(

c

fA + fB

)2

· [+(i2πf · τ)]2 · SfK/Ka

δφ . (15.26)

For error simulations, we may neglect the frequency offset ∆f = fA − fB and assume fA = fB, but
only for the c

fA+fB
term. Then the expressions of the range error due to the oscillator noise simplify to:

SδRuso =

(
c√

2 · fK/Ka

)2

·
[
fB

fA
− (1 − i2πf · τ)

]2

·
(

fK/Ka

2π · fo

)2

Sδφ

=

(
c√

2 · 2π · fo

)2

·
[
fB

fA
− (1 − i2πf · τ)

]2

· Sδφ, (15.27)
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Figure 15.3: Transfer function that is applied to the oscillator phase noise by the combination of the phase measurements
of the individual satellites. The pink curve shows the error of the approximate form of the transfer function.

for the use of USO time tags and

SδRuso =

(
c√

2 · 2π · fo

)2

· [+(i2πf · τ)]2 · Sδφ, (15.28)

for the use of GPS time tags, i.e. in this approximated form the range error due to oscillator noise is
the same for both K-band and Ka-band measurements, which is important in the next processing step.

Figure 15.3 shows the transfer function that is applied to the oscillator noise by the combination of
the phase measurements for the use of USO time tags and for the use of GPS derived time tags. We
notice that the combination reduces the phase noise substantially at low frequencies. The reduction is
much stronger, if GPS derived time tags are used, i.e. the time tag errors of the satellites are derived
in the course of the orbit determination. In this case only the frequency error remains. Therefore the
transfer function is a straight line corresponding to 2πf . If the USO time tags are used, the transfer
function converges to fB/fA at low frequencies. We also notice that the quality of the approximated
transfer function is sufficient for the purpose of error simulations. Regardless which time tags are
used, the reduction of the phase error is significant and without this reduction the quality of the phase
measurements would be degraded at low frequencies. For the real data processing the GPS time tags
will be applied; therefore the corresponding error will be used subsequently.

Elimination of the influence of the ionosphere

After the previous processing step, we have now derived a range for each the K-band and the Ka-band.
The advantage of a two frequency measurement is that the influence of the ionosphere can be eliminated.

The phase delay due to the influence of the ionosphere is given by

IA =
TECA

B

fB
, (15.29)
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for the received signal at satellite A. In principal the TEC is different for both satellite signals, as they
move during the measurement, but we will neglect this small effect here, so we can say that:

TECA
B = TECB

A . (15.30)

For the range error due to ionosphere we get:

δRiono =
c

fA + fB
·
(

TEC

fA
+

TEC

fB

)

=
c

fA + fB
·
(

(fA + fB) · TEC

fA · fB

)

= c · TEC

f̄2
, where f̄2 = fA · fB. (15.31)

f is either the K-band or the Ka-band effective frequency. Reconsidering eq. (15.29) we see that

IK =
TEC

f̄2
K

, (15.32)

IKa =
TEC

f̄2
Ka

. (15.33)

So there is a relation between IK and IKa,

IK =
f̄2

Ka

f̄2
K

· IKa, (15.34)

that enables us to form the so called ’ionosphere free’ linear combination:

R =
f̄2

K · RK − f̄2
KaRKa

f̄2
K − f̄2

Ka

. (15.35)

Insertion yields:

R =
1

(f̄2
K − f̄2

Ka)
·
[
(f̄2

K − f̄2
Ka) · ρ − (f̄2

K · ∆RK
tof − f̄2

Ka · ∆RKa
tof )

+ (f̄2
K · f̄2

Ka

f̄2
K

· IKa − f̄2
Ka · IKa) + (f̄2

K − f̄2
Ka) · δRuso + (f̄2

K · δRK
system − f̄2

Ka · δRKa
system)

]

= ρ − ∆Riono free
ttc + δRuso +

(f̄2
K · δRK

system − f̄2
Ka · δRKa

system)

(f̄2
K − f̄2

Ka)
, (15.36)

with
∆Riono free

ttc = (f̄2
K · ∆RK

ttc − f̄2
Ka · ∆RKa

ttc ), (15.37)

the for the effect of the ionosphere corrected transmission time correction. The oscillator noise passes the
ionosphere correction unaffected, as it is independent of the carrier frequency using the above described
simplifications.

Let us now take a closer look at the range error due to the system noise:

δRsystem =
(f̄2

K · δRK
system − f̄2

Ka · δRKa
system)

(f̄2
K − f̄2

Ka)
. (15.38)

For the error PSD for both satellites, assuming the same system noise, we get:

SδRsystem = 2 ·

[
(f2

K)2 ·
(

c
2·fK

)2
+ (f2

Ka)
2 ·
(

c
2·fKa

)2
]
· Ssystem

(
f2

K − f2
Ka

)2

=

[
f2

K + f2
Ka

]
(
f2

K − f2
Ka

)2 ·
(

c√
2

)2

· Ssystem, (15.39)
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Figure 15.4: Total range error after the ionosphere free linear combination.

which gives a standard deviation of about 1 µm for a 1 s sampling.

Figure 15.4 shows the resulting overall range error after the ionosphere correction. We notice that the
error resulting from the phase noise has been efficiently reduced by the combination of the satellite
measurements forming the dual one way range. At high frequencies the error is dominated by the
system noise.

Application of the low-pass filter

As the original data rate of 10 Hz for the K-band measurements is much higher than the desired output
data rate of 0.2 Hz (5 s data), a low-pass filter has to be applied to the data in order to prevent aliasing
effects on the resampled data. Moreover, not only the range derived from the K-band measurements,
but also the range rate and range acceleration are to be derived. This is the reason why an analytic
form of the applied filter is chosen, that can be differentiated in a closed form. We will briefly describe
the derivation of the filter presented in Thomas (1999), but also discuss possible alternatives.

As the derived ranges are filtered during post-processing on ground, there are no restrictions on the
used filter type, i.e. also filters that require ’future’ measurements can be used. For the design of the
required low-pass filter, the window method is used. We want a filter with a linear phase delay. A
linear phase delay means that the filtered data is shifted by half the filter length in time compared to
the unfiltered data. Therefore a FIR (Finite Impulse Response) filter is designed.

Filtering a signal in the time domain corresponds to a multiplication of the signal spectrum with
the spectrum of the desired filter in the frequency domain. An optimal low-pass filter spectrum is a
rectangle, meaning that up to a certain frequency, the so called ’cut-off frequency’, the spectrum of the
original signal is left unchanged. For frequencies larger than the cut-off frequency, the original spectral
coefficients are set to zero. In the time domain, this operation corresponds to the convolution of the
signal time series with the inverse Fourier transform of the rectangle, the sinc-function. Such a perfect
low-pass filter cannot be realized, because the sinc-function is defined for the interval [−∞, +∞], i.e. in
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Figure 15.5: Impact of the chosen window function on the realization of a low-pass filter with the window method. Here, as
an example, the window function chosen to limit the extend of the sinc-function is a rectangle. The left hand side shows
the operation in the time domain, the right hand side the operation in the frequency domain.

order to conduct the filtering properly, it would be necessary to have a time series of infinite length. This
is neither possible nor desirable for the practical data processing. In order to limit the sinc-function
to an interval of finite extent, it is multiplied by a window function, that is zero outside the chosen
interval and not zero inside the chosen interval. The length of this interval is the chosen filter length.
A multiplication in the time domain corresponds to a convolution in the frequency domain, i.e. our
optimal filter, the rectangle, is convolved with the Fourier transform of the window function, that was
chosen to limit the width of the sinc-function in the time domain. Figure 15.5 shows the effect of the
chosen window function on the optimal filter realization: As an example, a rectangle is chosen as the
window function. The Fourier transform of the rectangle is again the sinc-function, so, if we consider
the frequency domain, the optimal filter, the rectangle, is convolved with the sinc-function. Clearly
the result is no longer a rectangle; there are unwanted oscillations in the pass-band as well as in he
stop-band. This effect is well known as ’Gibbs effect’. Thus the deviation of the resulting filter from
the optimal filter directly depends on the chosen window function. As we see with this example, the
rectangle seems not to be suited as a window function, at least not for the K-band processing, as we
want to preserve the high accuracy of the measurement, i.e. any oscillations due to filtering in the
pass-band (also called ’ripple’) should be as small as possible.

As the measurements are discrete and not continuous, a Discrete Fourier Transform (DFT) is applied
and a rectangular window is not transformed into a sinc function but into a function of the kind of sin x

sin y
(cf. Best (1991), for details see appendix A. Let us now return to the problem of choosing a window
function in order to limit the width of the time domain representation of the optimal low-pass filter.

In Thomas (1999), the chosen window function used to limit the time response of the ideal low-pass filter
is a rectangle of width TR that is convolved with itself Nc times. If TR is chosen in a way that NR, the
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number of samples of the basic rectangle, is odd, then the filter length Tf becomes NR ·Nc/dt = Nf/dt,
where dt is the sampling interval. The ’Nc times self convolution’ in the time domain can be expressed
as a ’Nc times multiplication’ in the frequency domain:

W [ω] = W [k · 2π/Tf ] =




sin
(
k · 2 · π · TR

2·Tf

)

sin
(
k · 2 · π · dt

2·dt·Nf

)




Nc

=




sin
(
k · 2 · π · Tf

2·Tf ·Nc

)

sin
(
k · π · 1

Nf

)




Nc

=




sin
(
k · π · 1

Nc

)

sin
(
k · π · 1

Nf

)




Nc

, (15.40)

with TR = Tf/Nc. Thereby is ω the frequency in [rad/s] and W [ω] is the frequency response of the
window function, that has to be multiplied with the time domain representation of the optimal low-pass
filter. In Thomas (1999) and Wu et al. (2006) it is suggested to conduct this operation in the spectral
domain as a convolution, we suggest to conduct it as multiplication in the time domain. We get for the
filter representation HLP [n] in the time domain:

HLP [n] = W [n] · LP [n]

HLP [n] = W [n] · sin
(
n · dt · B

2

)

sin
(
n · dt · dω

2

) · 1

Nf

= W [n] · sin
(
n · dt · B

2

)

sin
(
n · dt · π

Tf

) · 1

Nf
. (15.41)

The time domain representation of the window function W [n] is derived as the inverse discrete Fourier
transform of the frequency response of the window function:

W [n] = IDFT [W [ω]]. (15.42)

Let us now take a closer look at the window function, that has been chosen in Thomas (1999). As
said before, in the time domain the window function is generated by a Nc times self convolution of a
rectangle of width TR. The final window function then has a width of Nc ·TR and is shown in blue in the
upper panel of figure 15.6. This convolution is a multiplication in the spectral domain, multiplication in
the spectral domain means filtering, i.e. this window function evolves from a rectangular window that

is low-pass filtered by a cascade of filters with the DFT of a rectangle, namely the
(

sin x
sin y

)Nc

-function.

The window function we propose is the Kaiser window. It has the advantage that the drop-off level of
the first side lobe can be selected as well as the transition width between pass-band and stop-band.

In order to assess the quality of the filter proposed by Thomas (1999) or our proposed filter, we first
have to define the requirements for the filter. For the K-band measurements, the requirement is that
the filter error should be smaller or equal to the measurement error we derived. Figure 15.6 shows a
comparison of different window functions. In order to assess the performance of the window functions,
we take a look at their frequency response. The perfect window would have a frequency response that
consists of a Dirac function, the neutral element of convolution. This would require a rectangle of
unlimited extend in the time domain, which is not realistic. So what we hope to achieve is a narrow
and steep main lobe and well attenuated side lobes. When we take a look at the figure, we realize
that in terms of a narrow and steep main lobe, the hamming and hanning window perform very well.
They reach their first minimum at about 2 · 10−3 Hz and therefore perform better in this respect than
the Kaiser window or the convoluted rectangle window, but their side-lobe attenuation is much too
high. So only the Kaiser window remains as candidate for an alternative filter. Figure 15.7 shows the
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Figure 15.6: Comparison of the different window functions in order to limit the time response of the sinc function.
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Figure 15.7: Relative filter error of the different filter candidates.

relative filter error of the filter candidates. We notice that the Kaiser filter performs significantly better
than the convoluted rectangle filter. We also notice that our assumptions about the performance of the
hamming and hanning filter are confirmed. Their performance is significantly worse than that of the
Kaiser filter or the convoluted rectangle filter. The last step now consists in deriving the absolute error
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Figure 15.8: Absolute filter error of the Kaiser filter and the convoluted rectangle filter.

of the different filters. This is done by multiplying the relative filter error with the signal magnitude.
Figure 15.8 shows the absolute filter error of the Kaiser filter and the convoluted rectangle filter. The
black line represents the nominal K-band measurement performance for the range measurement. We
notice that the original filter performs sufficiently, its absolute filter error is below the measurement
error. Only at frequencies around once per revolution, where the signal is strongest, the filter error is
close to the instrument error. The Kaiser filter performs significantly better, as its error is several orders
of magnitude smaller than the nominal instrument error. The instrument error around frequencies of
once per revolution is mainly determined by the phase noise of the oscillators, if they would perform
better than specified, an improvement in data quality could be expected from the use of the Kaiser
filter. The drawback of the Kaiser filter is the increased filter length, its length is twice that of the
convoluted rectangle filter. A larger filter length means that more data is lost in case of gaps, as half
the filter length has to be discarded if a gap is encountered. As conclusion, we state that the convoluted
rectangle filter is adequate and efficient.

Derivation of the range rate and range acceleration

The range measurement is the basic quantity provided by the K-band system. As additional mea-
surement types, the range rate and the range acceleration are provided by differentiation of the range
measurement:

Ṙfilt =
dRfilt

dt
= IDFT

[
HD[ω] · DFT [R]

]
, (15.43)

R̈filt =
dṘfilt

dt
=

d2Rfilt

dt2
= IDFT

[
HDD[ω] · DFT [R]

]
. (15.44)

The theoretical derivation of a first and second order differentiator is given in appendix A. We will now
compare the convoluted rectangle single differentiator filter with the Kaiser single differentiator filter.
The filter quality will not only be assessed in terms of the filter magnitude, but also in terms of the
filters’ phases. For a first order differentiator, the inflicted phase-angle change is expected to be +π/2.
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Figure 15.9: Comparison of the Kaiser and the convoluted rectangle filter in term of absolute filter error (left) and inflicted
phase-angle change (right).

The comparison is shown in figure 15.9. We notice that for the absolute error magnitude the same ob-
servations hold as for the low-pass filter: the Kaiser filter performs better than the convoluted rectangle
filter, but also the absolute error of the convoluted rectangle filter is still below the expected measure-
ment error. Only for frequencies around once per revolution there might be some improvement from
the use of the Kaiser filter, depending on the actual oscillator performance. Concerning the inflicted
phase change, both filters perform equally well, in both cases it is exactly as expected. The results for
the double differentiator are similar and are therefore not shown explicitly.

As a conclusion, we find that the Kaiser filter performs significantly better than the convoluted rectangle
filter, but only at the cost of an increased filter length, which results in an increased data loss in case of
gaps. The absolute filter error for both filters is below the specified instrument error and may therefore
be neglected for the derivation of the error budget.

In order to filter the input signal, the derived ranges, with the filters LP [n], D[n] and DD[n], there are
again two possibilities: a convolution in the time domain or a multiplication in the frequency domain.
We suggest to conduct the operation in the spectral domain. So we get for an input time series of range
measurements R[n] after the application of the respective filter:

Rfilt[n] = IDFT

[
HLP [ω] · DFT [R[n]]

]
, (15.45)

Ṙfilt[n] = IDFT

[
HD[ω] · DFT [R[n]]

]
, (15.46)

R̈filt[n] = IDFT

[
HDD[ω] · DFT [R[n]]

]
. (15.47)

Reduction of the measurements to the center of mass

The actual range measurement is the length (magnitude) of the vector between the KBR antenna phase
centers of both satellites. For the gravity field determination, the magnitude (and its first and second
derivative) of the vector between the centers of mass of both satellites is required. Therefore derived
range, range rate and range acceleration have to be corrected. The situation is depicted in figure 15.10.
The range between the centers of mass of the two satellites is given as:

RCoM = drA + drB + rAB, (15.48)
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Figure 15.10: Reduction of the measured range to the distance between the centers of mass of the two GRACE satellites.

where

drA is the projection of the vector between the center of mass of satellite A
and the phase center of the K-band horn of satellite A on the line connecting
the centers of mass of both satellites,

drB is the projection of the vector between the center of mass of satellite B
and the phase center of the K-band antenna of satellite B on the line connecting
the centers of mass of both satellites,

rAB the projection of the measured range between the two satellites K-band antennas
on the line connecting the centers of mass of both satellites.

The individual quantities are given as:

drA = |PCA| · cos α, (15.49)

drB = |PCB| · cos β, (15.50)

rAB = Rfilt · cos γ. (15.51)

For the derivation of the angles α, β, γ, the satellites’ positions rA and rB are needed:

cos α = êAB · P̂CA, (15.52)

cos β = êAB · P̂CB, (15.53)

cos γ = êAB · P̂CAB (15.54)

êAB =
rB − rA
|rB − rA|

, (15.55)

P̂CAB =
rB + PCB − rA − PCA

|rB + PCB − rA − PCA|
. (15.56)

In order to perform these operations, the different vectors have to be available in the same coordinate
system. It seems to be straightforward to use the IRF for the derivation of the correction. We will
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Figure 15.11: Variations of the different corrections to be applied on the measured range to derive the range between the
CoM.

now assess the magnitude of the different corrections in order to determine their relevance. For the
derivation of the correction, real GRACE L1b data, orbits and star sensor data was used. Figure 15.11
shows the variations of the different corrections. As the measured range is biased, not the mean value
of the corrections, but only the variation is of importance. We realize that only the correction drA and
drB have to be applied, the variation of the difference between rAB and Rfilt is well below the error of
the measured range. Let us now determine the influence of these corrections on the error budget. Table
15.2 shows the assumed accuracies of the relevant input quantities. We get for the errors of the angles
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Table 15.2: Accuracies and magnitudes of the input quantities used for the derivation of the center of mass reduction.

quantity magnitude accuracy (σ)

line of sight unit vector êAB 1.0 < 5.0 · 10−8 m

unit vector between the phase centers P̂CAB 1.0 < 5.0 · 10−8 m

α and β:

δ(cos α) ≈ δ(êAB) · |P̂CA| + |̂eAB| · δ(P̂CA) ≈ 1.5 · 10−7, (15.57)

δ(cos β) ≈ δ(êAB) · |P̂CB| + |̂eAB| · δ(P̂CB) ≈ 1.5 · 10−7. (15.58)

We get for the errors of the range corrections:

δdrA ≈ δ|PCA| · cos α + |PCA| · δ cos α ≈ 5 · 10−7 m, (15.59)

δdrB ≈ δ|PCB| · cos β + |PCB| · δ cos β ≈ 5 · 10−7 m. (15.60)

Again, it seems that the corrections can be derived accurately enough and therefore they will not
be included in the error budget. The corrections can only be derived with sufficient accuracy, if the
variations of the K-band antennas phase center position is below one micrometer.
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15.2. Accelerometer

The processing steps for the accelerometer data are shown in figure 15.12. First, the time tags have to
be corrected for different errors.

Figure 15.12: Processing steps for the derivation of L1b accelerometer data from L1a accelerometer data.

Correction of the accelerometer clock

The accelerometer data is time tagged using the time derived from the On Board Data Handler (OBDH)
One Pulse Per Second (1PPS) generator, cf. Wu et al. (2006). This time scale is also used to derive
the time tags of the housekeeping data. In order to convert the OBDH time tags to receiver time, it is
necessary to apply a correction to the original accelerometer time tags. In general the OBDH time is
synchronized to the receiver time, meaning that the correction then is zero. Only during reboots of the
IPU, the synchronization between the OBDH time and the receiver time is lost, then correction has a
non-zero value:

ttrec
acc = ttOBDH

acc + corrrec
OBDH . (15.61)

The correction is derived from the product TIM1B.

Correction of the satellite clock

The accelerometer time tags are now converted to receiver time. In order to convert them to GPS time,
the receiver clock error has to be corrected. In addition, the delay of the butterworth low-pass filter
used in the on-board processing has to be considered:

ttgps
acc = ttrec

acc + corrgps
rec + corrbutter. (15.62)

The corrections are derived via linear interpolation of the clock corrections given in CLK1B. The
correction of the butterworth delay is a constant: 0.14 s.

The data is then interpolated to time tags that are integer multiples of 0.1 s. In the course of this
interpolation, also data gaps are filled, using a cubic interpolation.
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Application of the low-pass filter

For the accelerometer data processing, the same low-pass filter can be used as for the K-band processing.
The requirements on the accuracy inside the pass-band are lower than for the K-band measurements, as
the amplitudes of the accelerometer signal are significantly smaller. Assuming a maximum amplitude of
1 · 10−6 m/s2 and a measurement error of 1 · 10−10 m/s2 for the sensitive axes, a relative error of about
1 · 10−4 is the requirement for the accuracy in the pass-band for the low-pass filter. This requirement
can easily be met by the filter we proposed for the K-band data processing. In Wu et al. (2006) the
bandwidth of the low-pass filters (35 mHz) differs from the one used for the K-band data (0.1 Hz). This
seems to be inconsistent. For the gravity field determination, the K-band data has to be corrected for
the effect of the non-gravitational forces using the accelerometer data. In our opinion, the accelerometer
data should be provided with the same bandwidth as the K-band data. Again it is suggested to conduct
the filtering in the frequency domain:

afilt = IDFT

[
HLP [ω] · DFT [araw]

]
. (15.63)

The filtered data are compared to the unfiltered data and epochs, where the residuals are larger than
a threshold, are marked.

The data is then resampled at intervals of 5 s. The last processing step consists of a transformation
from the accelerometer frame to the satellite body fixed frame by switching the coordinate axes:

X̂srf = Ẑarf , (15.64)

Ŷsrf = X̂arf , (15.65)

Ẑsrf = Ŷarf . (15.66)
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15.3. Star Sensor

Figure 15.13 shows the processing steps for the star sensor data.

L1a star sensor data @ 10 Hz

Correction of the satellite clock

Interpolation to integer multiples
of  1 s

Apply low pass to prevent aliasing

Resample to 5 s data interval

L1b star sensor data @ 0.2 Hz

Linear
interpolated clock
corrections

Combination of the two sensor
heads

Figure 15.13: Processing steps for the derivation of L1b SCA data from L1a SCA data.

Conversion to the Satellite Reference Frame

The measured quaternions represent the orientation of the respective Star Sensor Reference Frame
(SSRF) of each sensor head with respect to the Inertial Reference Frame (IRF), i.e. they represent
a rotation that transforms from the IRF to a SSRF. For the data processing, the orientation of the
Satellite Reference Frame (SRF) is desired. Therefore the measured quaternions have to be transformed,
cf. equation (14.1):

Q
srf
irf = Q

ssrf
irf ⋆ Q

srf
ssrf . (15.67)

The quaternions Q
srf
ssrf , describing the orientation of the SSRF w.r.t. SRF, are derived during calibration

maneuvers resp. have been determined pre flight on ground and are given in the Sequence of Events
file (SOE). It is assumed that the accuracy of these quaternions is sufficient in order to neglect them in
the error budget.

Outlier detection

In order to detect outliers in a measurement, a reference to which the measurements can be compared
to has to be available. For the star sensor measurements, a reference can be generated using the orbit
information, cf. appendix (D.2). The general idea is that there are no abrupt changes in the attitude
data, so that any sudden change of the attitude exceeding a threshold is considered as an outlier.
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Retain continuity

A simultaneous change in the sign of all quaternions does not change the orientation they represent.
Discontinuities of this kind have to be removed. They are identified by formation of the first time
derivative. An identified discontinuity is removed by multiplying the identified quaternion and all
following ones by -1.

Apply time tag correction

The star sensor time tags are given in receiver time. In order to convert them to GPS time, the receiver
clock error has to be corrected:

ttgps
str = ttrec

str + corrgps
rec . (15.68)

The corrections are derived via linear interpolation of the clock corrections given in CLK1B.

Combination of the data of the two sensor heads

Each of the two star tracker camera heads data is used to derive an orientation of the satellite, i.e.
there are two time series of the satellite’s orientation available. In order to exploit this redundancy,
the data of both sensor heads are combined. The algorithm of the combination is described in Wu
et al. (2006), the theory is discussed in Romans (2003). It is based on the fact that both star sensor
heads should deliver the same orientation. The difference between both orientations is used to derive a
correction for each orientation delivered by head 1 or head 2 in a least squares sense. The correction
takes into account, that rotations about the line of sight of the star sensor are determined less accurate
than rotations perpendicular to the line of sight. The ’difference’ quaternion is:

∆Q12 =
(
Q

(1)
irf,srf

)−1
⋆ Q

(2)
irf,srf =

(
1,

1

2
∆12

)
. (15.69)

The corrected quaternion is, cf. Wu et al. (2006):

Q
corr
irf,srf = Q

(1)
irf,srf ⋆

(
1, M · 1

2
∆12

)
, (15.70)

M =
1

2




1 0 0
0 1 −λ
0 −λ 1



 , (15.71)

λ =
κ2 − 1

κ2 + 1
, κ = 8. (15.72)

The formal error for rotations about the boresight of the sensor heads is about a factor κ greater than
for rotations perpendicular to the boresight. The matrix M is a scaling of the difference vector 1

2∆12,

whose components can be interpreted as difference angles δφx

2 ,
δφy

2 , δφz

2 between the orientation delivered
by head 1 and head 2, as the difference is assumed to be small. The scaling matrix M takes also into
account that the z-axes of the star sensor reference frames are orthogonal. For κ = 1, the correction is
just the mean of the difference of the quaternions. This combination strategy does not take into account
a possible degradation of data quality of a sensor head in the vicinity of Sun/Moon intrusions.

Combination with accelerometer data

The official data processing described in Wu et al. (2006) does not foresee the combination of the
star sensor data and the accelerometer data. The general idea is to take advantage of the fact that
the accelerometers not only measure linear accelerations, but also angular accelerations. To use this
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Figure 15.14: Overview of the combination of star sensor data with accelerometer data.

information for the orientation determination, a relation between angular acceleration and quaternions
has to be established. The first step is to integrate the angular acceleration to get the angular velocity:

ωacc =

∫
ω̇accdt. (15.73)

From the level of angular velocities, the quaternions can be derived using the formulas given in appendix
(C). The combination with the information from the star tracker takes place on the level of the angular
rate. We start with a comparison of the angular rates from star tracker and accelerometer. Figure
15.15 (left panel) shows the time series of the angular rate about the x-axis of the SRF derived from
the star tracker (red) and the accelerometer. The angular rate of the star tracker is noisy, but shows
the expected behavior: a zero mean value. The angular rate derived from the accelerometer (green)
behaves differently, it shows a long periodic signal but is less noisy. These observations are confirmed
when we consider the right panel of the figure, that shows the root PSD of the angular rate. The
PSD of the angular rate from the accelerometer (green) behave more or less like a straight line rising
at low frequencies and dropping at high frequencies. The one from the star tracker is different: it is
horizontal until it starts to rise at about 1 · 10−2 Hz. The PSDs agree in a region from 5 · 10−4 Hz
to about 3 · 10−2 Hz. It is known that the accelerometer drifts, i.e. that the quality of accelerometer
data decreases at low frequencies. The star sensor data are reliable at low frequencies but show low
quality at high frequencies in terms of an increased noise level. The idea of the combination is to take
the information at low frequencies from the star tracker and to take the information at high frequencies
from the accelerometer by application of a high-pass respectively low-pass filter. The spectra of the
filtered data are then added to yield the spectrum of the improved angular rate. The vertical black
line in the right panel of the figure shows the proposed cut-off frequency: 3 · 10−2 Hz. The principle is
shown in figure 15.14.

The results of this procedure are shown in figure 15.16. The left panel shows the original measurements
and the combined angular rate in blue. The filtered data from the star tracker (black) and from the
accelerometer (magenta) are displayed as well. The combined angular rate is very similar to the filtered
rate from the star tracker and is less noisy. The right panel shows the root PSDs. The filtered data
show the effect of the applied low-pass respectively high-pass filter: for the star tracker data, only the
low-frequency part of the spectrum remains, for the accelerometer, only the high-frequency part of the
spectrum. The spectrum of the combined angular rate is the sum of both spectra.

For the resulting quaternion, we could expect that its spectrum shows the same behavior as the altered
angular rate: a reduced noise level and therefore a damping of the high frequencies of its spectrum.
This is not the case, as quaternions are not simply the integral of the angular rate, the relation between
them is more complicated, compare appendix (C) for details.

The left panel of figure 15.17 shows the time series of one component of the resulting quaternion. The
results for the other components are similar, they are therefore not shown. The difference (green)
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Figure 15.15: Left panel: Time series of the angular rate about the x-axis of the SRF derived from the star tracker
measurements (red) and from the accelerometer measurements (green).
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Figure 15.16: Left panel: Time series of the combined angular rate about the along-track axis in comparison to the original
and filtered one. Right panel: Root PSD of the combined angular rate and the angular rates from the star tracker and
the accelerometer before and after application of the high-pass and low-pass filter.

between the original (blue) and the combined (red) quaternion is small, it is at a level of 1 · 10−4 rad.
The right panel shows the root PSD of the resulting quaternion, the original one and the difference.
The difference is larger than the quaternion noise level of about 1 · 10−4 rad/

√
Hz only between 5 · 10−5

and 1 − 2 · 10−4 Hz. At frequencies higher than 3 · 10−2 Hz, the noise level is reduced.

As conclusion, we find that the combination of star tracker and accelerometer data improves the derived
orientation at low as well as at high frequencies of the spectrum. The resulting orientation is smoother
than the one derived from the star tracker measurement.

Application of the low-pass filter

For the star sensor data processing the same low-pass filter as the one that is used for the K-band
processing can be used. The requirements on the accuracy inside the pass-band are lower than for the
K-band measurements, as the amplitudes of the quaternions are significantly smaller than those of the
K-Band measurements. Assuming a maximum amplitude of 1 and a measurement error of 1 · 10−4 rad,
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Figure 15.17: Left panel: Time series of the star tracker delivered quaternion (blue), the quaternion derived from the
combined angular rate (red) and their difference scaled by a factor of 1000 (green). Right panel: Root PSD of the
quaternions from the star tracker (blue) and the one derived from the combined angular rate (red) and their difference
(green). Only at low frequencies the difference is larger than the quaternion noise level.

a relative error of about 1 · 10−4 is the requirement for the accuracy in the pass-band for the low-pass
filter. This requirement can easily be met by the filter we proposed or by the convoluted rectangle filter.
Again it is suggested to conduct the filtering in the frequency domain:

Qfilt = IDFT

[
HLP [ω] · DFT [Qraw]

]
. (15.74)



16. Level 1b analysis

In this chapter the L1b data are analyzed. For the accelerometer data, the difference between L1a data
and L1b data consists mainly in a reduced bandwidth. For the K-band data, the bandwidth has been
reduced, but also range rate and range acceleration have been derived from the range measurements.
The L1b star sensor data also has a reduced bandwidth compared to the L1a star sensor data. In
addition, the data from the sensor heads has been combined.

For the K-band, it will be tested if the difference in the pass-band of the applied low-pass filter is smaller
than the specified measurement error. Especially for the accelerometer data, we will investigate if the
peak and twang effects are still present in the L1b data. For the star sensor data, we will investigate
the effect of the combination of the data from the two sensor heads. In addition, the performance of
the K-band measurements and of the star sensor data will be assessed.

163
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16.1. GPS receiver

We will give only a very brief analysis of the GPS data. For a thorough quality assessment, it would be
necessary to conduct a precise orbit determination in order to correct the measurements for the error
terms in equations (11.2) and (11.8) in chapter (11). There are six available observables: the C/A, P1
and P2 code measurements and the C/A, L1 and L2 phase measurements. By forming the difference
between the C/A and P1 range measurements, respectively the C/A and L1 phase measurements, the
noise level for the code and phase measurements can be assessed, cf. Jäggi and Svehla (2007). In order
to assess the quality of the GPS measurements, we will estimate a noise level from their root PSD and
compare it to the specification from Stanton et al. (1998), see table 16.1. The noise time series are

Table 16.1: Noise level specifications for the Black-Jack GPS receiver from Stanton et al. (1998).

observation type noise level 1σ [cm] 10 s sampling error
√

PSD cm/s2/
√

Hz

code measurements 100 400

phase measurements 1 4

derived from the following differences:

noiseL1
code = PL1

C/A − PL1
P1 , (16.1)

noiseL1
phase = LL1

C/A − LL1
P1. (16.2)

It is to be noted, that by the subtraction of the observations the derived noise level is increased by a
factor of two on the level of the PSD, respectively by a factor of

√
2 on the level of the root PSD.
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Figure 16.1: Left panel: Root PSD of the GPS measurements on GRACE A. Right panel: Root PSD of the GPS measure-
ments on GRACE B.

The right panel of figure 16.1 shows the root PSD for GPS measurements on GRACE A to GPS satellite
11 as an example. The results for other satellites are similar. The root PSDs level out into what seems
to be white noise at about 3 · 10−3 Hz. The assumed noise levels are about 10 cm/

√
Hz for the range

measurements and about 1 mm/
√

Hz for the phase measurements and therefore significantly below the
requirements. The situation is the same for the measurements on GRACE B, displayed in the right
panel of figure 16.1.

From Jäggi and Svehla (2007), it is known that the measurement performance derived from precise
orbit determination is similar, it seems therefore that the derived noise level is realistic.
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Conclusion

We can state that the performance of the GPS measurements fulfils the requirements, as the assumed
noise level is considered as an upper limit for the real measurement noise. A noise level could be derived
only for the measurements on the L1 carrier. It is not possible to derive a realistic noise level for the
measurements on the L2 carrier, as on this frequency only one phase respectively code measurement is
available. The measurement performance on L2 can only be determined in the course of a precise orbit
determination.
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16.2. K-band

The L1b K-band range measurements evolve from the combination of the L1a phase measurements of
both satellites on both the K-band and the Ka-band. Therefore, there is only one product for both
satellites. The range rate and the range acceleration are derived from the measured range in the course
of the L1a to L1b processing, therefore they can not be compared with corresponding L1a data. Figure
16.2 shows the comparison of the L1a and L1b data. The upper left panel shows the time series of
the range measurement. We recognize that the range measurement is very smooth. It varies with a
magnitude of about 2.5 km. At a first glance, no difference between the L1a range and the L1b range is
visible. The upper right panel shows the corresponding root PSD. As expected, the root PSD of the L1a
and L1b range are almost identical up to the cut-off frequency of the applied low-pass filter. The filter
proposed by Thomas (1999) has been applied. The difference inside the pass-band is slightly below the
error specification for the range measurement. The peaks at 4 · 10−2 Hz and 8 · 10−2 Hz identified also
in the L1a phase data is still visible, but with a reduced magnitude of about 4 · 10−5 m/

√
Hz. That

means that the combination of the measurements during the L1b processing diminishes this effect but
does not fully remove it. At frequencies of about 2 ·10−2 Hz, noise seems to dominate the measurement.
The noise agrees well with the error specification, except for the peaks mentioned before. The peaks
increase the standard deviation from the specified 3 · 10−7 m to 4 · 10−7 m or by 33% for 5 s data. As
the effect is limited to two frequencies, the impact on the gravity field model determination is to be
investigated.

The middle left panel shows the range rate, that varies with a magnitude of about 2.5 m/s. The middle
right panel shows the corresponding root PSD, that is just the root PSD of the range multiplied by ω.

The lower left panel shows the range acceleration, the second derivative of the range. It varies with a
magnitude of about 3 · 10−3 m/s2. The lower right panel shows the corresponding root PSD.

Performance assessment

Concerning the measurement performance, it can be stated that the K-band data fulfils the require-
ments, except for the effect at 4 ·10−2 Hz and 8 ·10−2 Hz. This effect deteriorates the performance, as if
the noise would be higher by 33 % than specified or about 1.3 · 10−6 m/

√
Hz for 5 s data. We conclude

that it may be sensible to reduce the bandwidth of the applied low-pass filter to about 2 − 3 · 10−2 Hz
and thus remove this effect from the data. The findings for the measurement performance of the range
measurement are applicable to the range rate and the range acceleration measurement as well, as they
are just derivatives of the range measurement.
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Figure 16.2: Comparison of the L1a and L1b K-band data. The left panels show the time series of the range, range rate
and range.
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16.3. Accelerometer

As the results for the analysis of the L1b data are similar for GRACE A and GRACE B, this analysis
is restricted to the data from GRACE A. The L1b accelerometer data mainly evolves from the L1a
accelerometer data through the application of an anti-aliasing low-pass filter. Therefore, one expects
the L1b data to be a smoothed version of the L1a data. Figure 16.3 shows the comparison of the L1a
and L1b data. The top row shows the measured along-track linear accelerations. The L1a data are
dominated by the peak effects and thruster events. In this time series, no periodic behavior is visible.
The magnitude is about 3·10−7 m/s2. The L1b data however show a periodic signal with a period of one
revolution with a magnitude smaller than 2 · 10−7 m/s2. The periodicity is caused by the fact that all
surface forces are caused by effects that are stationary compared to the motion of the satellite relative to
the Earth. From one revolution to the other, the satellite encounters almost the same environment and
therefore the measured acceleration is periodic with the orbit frequency. The top right panel shows the
root PSD of the L1a and L1b data. There is no difference between the two up to the cut-off frequency
of the low-pass filter. The signals are strongest at once and twice per revolution, then decaying until at
about 2 · 10−2 Hz the signal of the thruster events dominates the measurement. The signal at 1 Hz and
multiples caused by the thruster events is slightly visible. The middle left panel shows the time series
of the measured cross-track linear accelerations. The L1a signal is dominated by the twang effects and
thruster events, its magnitude reaching up to 3 · 10−6 m/s2. That is one order of magnitude larger than
the supposedly stronger signal of the along-track component. The L1b data is smaller by two orders
of magnitude, reaching up to 0.2 · 10−7 m/s2, cf. figure 16.4. The middle panel at the right shows the
root PSD of the cross-track linear accelerations. Again there is no difference between L1a and L1b data
until the cut-off frequency of the applied low-pass filter. In both data, a strong once per revolution
signal is visible. At about 2 · 10−2 Hz, the signal seems to evolve into white noise at a level of about
1 · 10−7 m/s2/

√
Hz. In the L1a data, the signal at 1 Hz and multiples caused by the thruster events is

visible.

The lower left panel shows the time series of the L1a and L1b radial linear acceleration measurements.
Here, the L1a data’s magnitude is largest, reaching up to 2 · 10−5 m/s2. The L1b signal magnitude
is significantly smaller, reaching up to 0.5 · 10−7 m/s2, cf. figure 16.4. The L1a data is completely
dominated by the twang effect and therefore shows no periodicity. In the L1b data, the orbital period is
clearly visible, as expected. The lower left panel shows the root PSD of the measured radial accelerations.
In both data, the signal at once per revolution is visible. At high frequencies, the L1a data is dominated
by the twangs, reaching magnitudes of up to 1 · 10−6 m/s2/

√
Hz. The signal caused by the thrusters is

not visible.

In section 14.2, we showed that the peaks and the twangs may have no effect on the lower frequencies,
but the thrusters have. We will now compare sample periods of L1a data containing these effects with
corresponding epochs of L1b data.

16.3.1. Disturbance effects: peaks, twangs and thruster events

We start with the peak effects. Figure 16.5 shows an example. It looks as if the peaks disappear
after the low-pass filtering. The underlying long periodic signal is present, both in the L1a and L1b
measurements. The results from section 14.2 confirm this assumption. The possible cause of the peak
effects is the operation of switches used for the heating of the accelerometer, cf. Flury et al. (2007).

For the twangs, the findings of the section 14.2 concerning the influence on the lower frequencies of
the accelerometer measurements are confirmed. The low-pass filtered L1b data seems not to show the
twang effects, cf. figure 16.6.

As discussed in section 14.2, the thruster events influence the total spectrum, i.e. there should be an
effect visible after the low-pass filtering. Figure 16.7 seems to confirm this assumption. The sharp peaks
of the thruster events visible in the L1a data are still visible, but smoothed and smeared out in the L1b
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Figure 16.3: Comparison of L1a and L1b accelerometer data for GRACE A. The top row shows the measured along-track
accelerations in the time and frequency domain, the middle row the measured cross-track accelerations and the bottom
row the measured radial accelerations.

data. There is a part of the thruster events signal affecting only low frequencies that is preserved in the
L1b data.
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Figure 16.4: L1b accelerometer data for GRACE A.
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Figure 16.5: Comparison of a period of L1a along-track data containing the peak effect with the corresponding period of
the L1b along-track data.

16.3.2. Performance assessment

Since the two effects that represent no actual acceleration on the satellites, the peaks and the twangs,
are removed almost completely through the application of the low-pass filter, they do not contribute to
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Figure 16.6: Comparison of a period of L1a radial data containing a twang with the corresponding period of the L1b radial
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Figure 16.7: Comparison of a period of L1a radial data containing thruster events with the corresponding period of the
L1b radial data

the measurement error significantly. The signal introduced into the linear acceleration measurement by
the thruster activations represents an actual acceleration on the satellites, therefore it is desired that
the accelerometers measure it. It does not contribute to the measurement error budget. In conclusion,
the L1b measurement performance is close to the accelerometer performance derived during the L1a
data analysis in table 14.1.
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16.4. Star Sensor
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Figure 16.8: Comparison of the L1a and L1b star tracker data. The left panel shows the comparison in the time domain,
the right panel shows the comparison in the frequency domain. The original data from both star sensor heads is compared
to a simple mean and the result for different values of κ.

The star sensor L1b data is derived from the star sensor L1a through the combination of the data of
both sensor heads if possible. The combination takes into account, that the orientation measurement is
more accurate for rotations perpendicular to the line of sight of the star tracker. Figure 16.8 shows the
comparison of the L1a and L1b data. On the left hand, the time series is shown. The blue lines represent
original data from the two sensor heads. The red line represents the mean of both observations. We
notice that if the scaling factor κ = 1, the mean values and the combined values agree, as described in
section (15.3). The difference visible in the figure results from the different sampling rates of the L1a
data (1 Hz) and the L1b data (0.2 Hz).

The black line represents the combined data for a realistic value of κ = 8. We realize that the combined
data is different from the simple mean. We observe that for some time the combined data is more close
the data of head 1, for other times, it is closer to the data of head 2.

The right panel shows the root PSD. As the extent of the analyzed time series is limited, the resolution
at low frequencies is limited. When we compare the root PSD of the simple mean with the original
spectra, we realize that the measurement noise could be reduced by a factor of about

√
2 as expected.

When we compare the root PSD of the combined data with the spectra of the original data, we realize
that the noise reduction reduction factor is about 5 times that of the simple mean.

Performance assessment

The specified performance for the star sensor data before the combination is about 1 ·10−4 rad/
√

Hz for
quaternion components. The use of the most simple combination method, the derivation of the mean,
would improve it to 1√

2
· 10−4 rad/

√
Hz. The optimal combination seems to reduce the measurement

noise to a level of about 1 ·10−5 rad/
√

Hz at frequencies above 10−2 Hz. This noise level can be reduced
further by the combination of the star tracker measurements with the accelerometer measurements,
that is not applied during the standard data processing.
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16.5. Combined analysis
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Figure 16.9: Combined analysis showing the differential linear acceleration and the K-band range acceleration measurement
and models.

For gravity field analysis, the primary observable, the range / range rate / range acceleration, has to be
corrected for the non-gravitational effects from the differential accelerometer measurements. The dif-
ferential accelerometer measurement vector is derived as the difference of the measurements of GRACE
B and A:

ad = aB − aA. (16.3)

Range, range rate and range acceleration are scalar measurements defined along the line between the
mass centers of the two satellites. Therefore the differential acceleration vector measurement has to be
projected on the line between the mass centers as well:

ac = |ad| · (êAB · âd) . (16.4)

êAB is the unit vector between the mass centers.

Figure 16.9 shows the comparison of the measured K-band observation, the measured differential accel-
eration, the corresponding models and error specifications on the level of the differential acceleration,
i.e. the K-band observable used is the range acceleration.

Concerning the K-band, we realize that the model and the measurement agree very well, except for the
peaks at 4−5 ·10−2 Hz and 9 ·10−2 Hz. The order of magnitude of the differential acceleration measured
by the K-band instrument is about 1 ·10−1 m/s2/

√
Hz. The signal to noise ratio of 1 is reached at about

2 · 10−2 Hz, from there on the noise dominates the measurement. The noise of the real measurement
seems to agree well with the specification.

Concerning the differential acceleration, we realize that the model and the measurement do not agree
well. The magnitude of the differential acceleration is about five orders of magnitude smaller than that
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of the K-band measurements. It is about 1 ·10−6 m/s2/
√

Hz. The signal to noise ratio of 1 is reached at
about 2·10−2 Hz. The disagreement of the measured differential acceleration noise level and the specified
noise is related to the thruster events mainly. It is assumed that the measurement performance agrees
with the specification. The reason for the difference between the modeled acceleration measurement
and the real one is twofold: on the one hand, the thruster events are not included in the model, on the
other hand it seems that the used air density model is not accurate enough.

The curve of the specified error for the K-band intersects the differential acceleration measurement signal
also at about 2 ·10−2 Hz, i.e. the accelerometer measurements can contribute up to this frequency to the
reduction of the K-band measurement for the surface forces. This frequency corresponds to resolution
in terms of spherical harmonics of up to degree and order 100. In order to eliminate the influence of
the supposedly erroneous effect on the K-band measurements at 4 − 5 · 10−2 Hz and 9 · 10−2 Hz, it is
suggested to apply a low-pass filter with a cut-off frequency of 2 ·10−2 Hz to both the accelerometer and
the K-band data. Currently, filters with a different cut-off frequency are applied (cf. Wu et al. (2006)).

The conclusion of the combined analysis is that the K-band measurements as well as the accelerometer
measurements provide meaningful information up to a frequency of about 2 · 10−2 Hz over one day.
During static gravity field analysis, when time series spanning months or years are used, the resolution
may be improved, but it seems that it makes no sense to provide data with a higher sampling rate
than the standard sampling rate of 0.2 Hz of the L1b products. We recommend to use the same cut-off
frequency for the low-pass filter applied to the K-band data as for the filter applied to the accelerometer
measurements: 2 · 10−2 Hz.

Concerning the peak and twang effects, it can be concluded that they are not significant if the ac-
celerometer data is used in combination with the K-band data as the K-band measurement noise level
is higher than the magnitude of these effects.



17. Conclusions and discussion

In the following conclusions are drawn for each part of the work.

17.1. Gravitational forces on the satellites

Concerning the acceleration of the satellites caused by gravitational forces, the acceleration caused by
the Earth is strongest, followed by the acceleration caused by the Moon, the Sun, the indirect tides by
the Sun and the Moon, the ocean and pole tides and the frequency-dependent corrections to the solid
Earth tides in terms of the mean value of the acceleration. An analysis in the frequency domain shows
that the main power is at twice per revolution, as the satellites pass through the tidal ellipse. Only for
the gravitational acceleration caused by the Earth, the main power is on once per revolution. Table
17.1 shows a comparison of the magnitude of the different effects in terms of an acceleration.

Table 17.1: Comparison of the gravitational accelerations caused by different sources.

Source mean power on σ
twice per rev

[m/s2] [m/s2/
√

Hz] [m/s2]

Earth 8.4 3 · 10−2 (on 1cpr) 2 · 10−2

Direct Sun 4.5 · 10−7 1 · 10−5 1 · 10−8

Direct Moon 5.5 · 10−7 4 · 10−6 2 · 10−7

Indirect Sun 1.3 · 10−7 5 · 10−6 2 · 10−9

Indirect Moon 1.6 · 10−7 8 · 10−5 6 · 10−8

Ocean 5 · 10−8 2 · 10−6 2 · 10−8

Pole 1 · 10−8 6 · 10−7 5 · 10−9

Freq. dep. corr. 1 · 10−8 5 · 10−9 2 · 10−9

17.2. Non-gravitational forces on the satellites

The non-gravitational forces, that act on the satellites, directly affect the K-band measurement as
differential accelerations. As for gravity field determination only the gravitational forces by the Earth
are the desired quantity, the non-gravitational forces are measured by the accelerometers in order to
correct the K-band observations. In this work the forces caused by air drag, solar radiation pressure
and Earth albedo have been investigated. The analysis in the spectral domain shows that, apart from
a mean value, the main power is at once per revolution. Table 17.2 shows a comparison of the different
effects in the satellite fixed reference frame. Air drag is the most dominant source of non-gravitational
accelerations, followed by solar radiation pressure and by Earth albedo. Air drag causes a constant
acceleration in the along-track direction plus a variation that is dependent on the air density and the
satellite’s velocity. Solar radiation pressure acts strongest in direction of the radial axis, as the orbit
plane was aligned with the direction to the Sun for the analyzed time span. There is no bias due to the
Earth shadow entry and exit of the satellite. Earth albedo also acts strongest in direction of the radial

175



176 17 Conclusions and discussion

Table 17.2: Comparison of the non-gravitational accelerations caused by different sources.

Source along cross-track radial
[m/s2] [m/s2] [m/s2]

Air drag (−1.5 ± 1) · 10−7 (0 ± 1) · 10−8 (0.25 ± 1) · 10−8

Solar drag (0 ± 2) · 10−8 (0 ± 3) · 10−8 (0 + 7) · 10−8

Albedo (0 ± 1) · 10−9 (0 ± 1) · 10−9 −(1.5 + 1) · 10−8

axis, there is a constant acceleration due to the long-wave albedo caused by the IR radiation emitted
by the Earth.

The comparison with the accelerometer measurements shows significant differences between the models
and the measurement, regardless of the used air drag models. It is assumed that the challenge lies not
in the force models themselves, i.e. the physical model describing the interaction of the atmospheric
species and the satellite, but in the used air density model. Of course, there could also be a problem
in the solar radiation pressure or the albedo model, but the magnitude of these effects is one order of
magnitude smaller than that of the effects caused by the air drag and therefore of less concern.

Concerning the differential acceleration, it seems necessary to include the effect of the thruster events
into the drag models, as this effect is a major constituent of the differential acceleration measurement.
At low frequencies, the error of the air drag models and the air density model is responsible for the
occurring differences.

The magnitude of the difference between the models and the measurement varies geographically. It
seems that the largest differences occur close to the polar regions at latitudes higher respectively lower
than ±60◦.

A way to improve the air density model would be to estimate the air density from the accelerometer
measurements. They have to be corrected for bias, scale factor and the influence from the thruster
events. It may also be worthwhile to estimate the accommodation coefficients of the force models.
The bias and scale factor of the accelerometers has to be determined during the orbit determination
process: first the true orbit is determined, then a second orbit is determined by numerical integration
of gravitational accelerations provided by models and of the accelerometer acceleration measurements.
The accelerometer scale factor and bias can be determined from the difference of these two orbits.

17.3. Gravity field sensor system

The elements of the mathematical model of the gravity field sensor system are the GPS receiver, the
K-band measurement system, the star sensor and the accelerometer.

For data analysis, there are two types of data available: the L1a data and the L1b data.

The L1a data is the unprocessed instrument data at the original sample rates of the corresponding
instruments. The high data rate is used to identify the dominant effects in the measurements as well
as the measurement and instrument performance.

The L1b data is the processed instrument data given at a reduced sample rate of 0.2 Hz. The sample
rate is reduced to smooth the data and thereby remove effects that would deteriorate the quality of the
derived gravity fields. A practical aspect is that the required storage space is reduced drastically by
about 80 %.
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Star sensor

For the star sensor, the measurement noise is assumed to be white. The noise magnitude depends on
the direction of the observed rotation: rotations perpendicular to the line of sight of a star camera are
determined more accurately than rotations about the line of sight. The measurement itself is delivered
as quaternions. Their noise level is about 10 as/

√
Hz.

The star sensor measurement performance was found to be nominal. Depending on the orbit geometry,
Sun/Moon intrusions occur once per revolution on one of the two sensor heads. It seems that the quality
of the data from the blinded sensor head deteriorates in the vicinity of the Sun/Moon intrusions.

The processing of the star sensor data offers an interesting opportunity: Both sensor heads of one star
sensor deliver the same orientation. Therefore it is possible to combine these measurements. The data
from both sensor heads is combined in an optimal way, taking into account the difference in data quality
for the derived orientation about the line of sight and perpendicular to the line of sight of the sensor
head. The proposed combination method assumes constant data quality.

The L1b star sensor data evolves from this combination of data. It seems that the combination can
reduce the noise level by a factor of 5-10 to a level of 10−5 rad/

√
Hz compared to the noise level of the

original measurement of 10−4 rad/
√

Hz.

We could also show that by combination of the accelerometer and the star sensor data, the noise level
could be reduced and that also at lower frequencies an improvement at the order of some 1·10−4 rad/

√
Hz

could be achieved.

Accelerometer

For the accelerometers, there are two dominant noise sources: the acceleration noise, i.e. parasitic
accelerations on the proof mass of the accelerometers and the position noise due to deficiencies in the
position detection of the proof mass. The accelerometer has two sensitive axes with a noise level of
10−10 m/s2/

√
Hz and a less-sensitive axis with a noise level of about 10−9 m/s2/

√
Hz.

The analysis shows that the linear accelerometer measurements are dominated by three effects, apart
from the ’normal’ linear accelerations:

• thruster events,

• peaks,

• twangs.

The thruster events have the strongest impact on the measurement, followed by the peaks and the
twangs. Only the thruster events seem to have an influence also on the lower frequencies of the mea-
surement spectrum, while the effect of the peaks and twangs seems to be limited to frequencies above
10−2 Hz. As conclusion, we can state that the performance of the linear acceleration measurement is
about 6 · 10−10 m/s2/

√
Hz, i.e. about 2 times higher than the performance specification, if 5 s data is

used. If 1 s data is used and the effects of the twangs and peaks are not corrected, the performance
is estimated to be about 1 · 10−9 m/s2/

√
Hz or about 3-4 times above the specified performance. The

effect on monthly gravity field models is estimated to be larger than that for static gravity field models,
as there a longer time span is analyzed.

Concerning the rotational acceleration measurement, it was discovered that the thruster events and the
magnetic torquers are the main contributors to the measured signal. The rotation about the along-track
axis of the SRF is mainly controlled by the thrusters, followed by the rotation about the radial axis.
The rotation about the cross-track axis - the highest rotational component - is mainly controlled by the
magnetic torquers using the Earth’s magnetic field.
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The requirements for the accelerometer data for the data processing are not very high, the signal
magnitude is several 10−7 m/s2, the instrument accuracy about 10−10 m/s2, i.e. a relative accuracy
of about 10−4 is sufficient. If the peaks and twangs had an effect on the lower frequencies of the
measurement, sophisticated processing algorithms would be needed in order to remove them in a sensible
way, but it seems that their effect is limited to the frequencies higher than 1− 2 · 10−2 Hz, at least at a
level significant above the instruments accuracy.

The L1b accelerometer data differs from the L1a data mainly in terms of its reduced bandwidth.
Concerning the three dominant effects, the thruster events, the peaks and the twangs, it seems that
only the thruster events have an effect on the L1b linear acceleration measurement. The effects of the
twangs and the peaks seem to be smaller or at maximum at the level of the accuracy specified for the
sensitive axes. For the official data processing, the bandwidth of the accelerometer data is different
from the bandwidth of the K-band data: 3.5 · 10−2 Hz vs. 0.1 Hz. The measurement performance is
estimated to be about 3-4 times the error specification of 10−10 m/s2/

√
Hz for the sensitive axes and in

agreement with the error specification of 10−9 m/s2/
√

Hz for the less-sensitive axis. This measurement
performance assessment assumes that both the twangs and peaks are no real accelerations acting on
the satellites and therefore have to be considered as an error. The performance of the accelerometers
themselves seems to be significantly better but still slightly above the specifications.

K-band measurement system

For the K-band measurement system the phase noise and the system noise are the dominant noise
sources.

Concerning the K-band measurement system, the performance was found to be nominal except for an
periodic effect occurring about every 25 s. This effect is visible in the data of both satellites. The origin
is unknown, it is assumed that a frequency change in the USO of one satellite is responsible for this
effect. Concerning the measurement performance, the standard deviation is increased by 33%.

The K-band data is subject to the most demanding requirements for the data processing in terms of
accuracy due to the large dynamic range (several km) and the high accuracy (1 µm). The K-band and
Ka-band measurements of both satellites are combined in order to form a ionosphere-free biased range.
Range rate and range acceleration are derived through application of a differentiator respectively double
differentiator filter on the original range measurement. In order to reduce the bandwidth, the design of
low-pass filters and single and double differentiators was investigated. As a filter type, the FIR filter
was chosen and the window method for the design. It seems that the Kaiser window performs best as
a window function. The relative accuracy of the derived filter is about 10−15, but at the cost of an
increased filter length, which means an increased amount of data loss in case of gaps. The filter, that
is used for the official processing, performs worse but still sufficient, as the absolute filter error is just
below the measurement accuracy. An important point for the reduction of the measurement to the line
between the mass centers of the satellites is the knowledge of the phase center variations of the K-band
antennae. It is assumed that the variation is below 1 µm.

The L1b K-band data still show the effect with a period of 25 s, although it is smaller than in the
L1a data. Apart from it, the performance is slightly better than the expected 1 · 10−6

µm/
√

Hz.
Including this effect, the performance would correspond to a noise level of about 1.3 · 10−6

µm/
√

Hz.
The performance for the range rate and the range acceleration is similar, as they are just the derivatives
of the measured range, their error level is also increased by 33%.

The combined analysis of the accelerometer and the K-band data showed that the accelerometer mea-
surements can be used to reduce the K-band measurements for the effects of non-gravitational acceler-
ations up to a frequency of about 2 · 10−2 Hz.

The peak and twang effect seem to be not significant for the combination of the accelerometer data
with the K-band data as the measurement noise of the K-band is higher than the magnitude of these
effects.



17 Conclusions and discussion 179

GPS receiver

The noise level we derived is significantly below the requirements: about 1 mm/
√

Hz for the phase
measurement on L1 and about 10 cm/

√
Hz for the code measurement on L1. A realistic measurement

performance for the L2 measurements can only be derived in the course of a precise orbit determination.





18. Outlook

We close with some suggestions for future research.

18.1. Non-gravitational forces on the satellites

It seems that concerning the non-gravitational forces, the quality of the available air density models
might not be sufficient. A possible solution could be to use the accelerometer measurements to esti-
mate the air density together with the accommodation coefficients for each surface element. First, the
accelerometer bias and scale factor have to be determined in the course of the orbit determination. An
improved model for the air drag could be used to fill data gaps in the accelerometer measurements in
a sensible way.

18.2. Level 1a to level 1b data processing

Applied low-pass filter

In order to eliminate the effect in the K-band measurements at 4 · 10−2 Hz we suggest to use a low-
pass filter with a cut-off frequency of 2 · 10−2 Hz. We also suggest to use the same filter for all
observation types, especially for the accelerometer measurements and the K-band measurements, as
they are combined directly for the gravity field determination. The filter we derived is very accurate at
the cost of an increased filter length. It might be worthwile to investigate a different filter type, e.g. IIR
filters. They would have the advantage that they usually require a smaller filter length for achieving
the same results as a FIR filter.

Attitude determination

The algorithm used in the official processing of the star sensor data does not take into account that
the data from the head which is occasionally blinded by the Sun/Moon is degraded in the vicinity of
the Sun/Moon intrusions. It does not use the possibility to combine the star tracker measurements
with the accelerometer angular acceleration measurements. The method we used for the combination
is simple, it might be worthwhile to investigate more elaborate methods, e.g. using a kalman filter. It
would then be sensible to conduct both, the combination of the data from the two sensor heads and of
the data from the accelerometer, inside one process. The advantage of the kalman filter would be that
the current quality of the input data is estimated as well and the weighting is adjusted accordingly, so
that the effect of the Sun/Moon intrusions or any other perhaps unknown effects deteriorating the data
quality could be considered.
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A. Discrete Fourier transform and discrete filters

A.1. Discrete Fourier Transform (DFT)

The discrete spectrum X[k] of a time series x[n] of N elements given at sampling intervals dt and
spanning the interval T = N · dt is given by the Discrete Fourier Transform (DFT):

X[k] =

Nh∑

n=−Nh

x[n] · e−i2π· k
T
·n·dt. (A.1)

Nh = (N − 1)/2 for odd N and Nh = N/2 for even N is half the number of samples. The time series
x[n] corresponding to a spectrum X[k] is given by the Inverse Discrete Fourier Transform (IDFT):

x[n] =
1

N

Nh∑

k=−Nh

X[k] · ei2π· k
T
·n·dt. (A.2)

A.2. Discrete filters

Figure A.1: Impact of the chosen window function on the realization of a low-pass filter with the window method. Here, as
an example, the window function chosen to limit the extent of the sinc-function is a rectangle. The left hand side shows
the operation in the time domain, the right hand side the operation in the frequency domain.
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There are several filter types and design methods, cf. e.g. Best (1991). We use only FIR filters designed
with the Window method, as there is no need for real-time processing and a linear phase delay, i.e. a
constant time delay corresponding to half the filter length for the filtered data is required. The principle
is shown in figure A.1. The desired frequency response of the filter is designed in the frequency domain.
The corresponding function in the time domain usually has an unlimited extent. In order to limit
the time response of the ideal filter, it is multiplied by a window function. In the figure, an ideal
low-pass filter is designed in the frequency domain as a rectangle. The corresponding time domain
representation is a function similar to sin x

sin y with unlimited extent. The window function chosen to limit
the time response is a rectangle. A multiplication in the time domain is a convolution in the frequency
domain, i.e. the DFT of the rectangle is convolved with the ideal low-pass filter. The resulting filter
deviates from the ideal one depending on the chosen window function.

In the following sections ideal low-pass, differentiator and double differentiator filters are derived.

A.3. Low-pass filter

Let us assume that the desired bandwidth of the low-pass filter is B and that the frequency sampling
is dω = 2π

Tf
where Tf = Nf · dt is the length of the filters’ time response. The rectangle representing

the filter shall be centered around the zero frequency. The time response of the filter LP [n] at sample
n can then be described as:

LP [n] =
1

Nf

Nh∑

k=−Nh

1 · ei2π· k
Tf

·n·dt
, (A.3)

where B = (2 · Nh + 1) · dω. This equation can be rewritten as:

LP [n] =
1

Nf

[
Nh∑

k=0

1 · e−ik·dω·n·dt +

Nh∑

k=0

1 · eik·dω·n·dt − 1

]
. (A.4)

Both series in the above equation are limited geometric series:

N∑

n=0

xn =
xN+1 − 1

x − 1
. (A.5)

Therefore we get:

LP [n] =
1

Nf

[
ein·dt·dω·(Nh+1) − 1

ein·dt·dω − 1
+

e−in·dt·dω·(Nh+1) − 1

e−in·dt·dω − 1
− 1

]

=
1

Nf

[[
ein·dt·dω·(Nh) − ein·dt·dω·(Nh+1) − e−in·dt·dω + 1

]

1 − ein·dt·dω − e−in·dt·dω + 1

+

[
e−in·dt·dω·(Nh) − e−in·dt·dω·(Nh+1) − ein·dt·dω + 1

]

1 − ein·dt·dω − e−in·dt·dω + 1

+

[
−1 − 1 + ein·dt·dω + e−in·dt·dω

]

1 − ein·dt·dω − e−in·dt·dω + 1

]

=
1

Nf

[[
ein·dt·dω·(Nh) + e−in·dt·dω·(Nh) −

(
ein·dt·dω·(Nh+1) + e−in·dt·dω·(Nh+1)

)]

2 − (ein·dt·dω + e−in·dt·dω)

]
. (A.6)

Using Euler’s identity eiφ = cos(φ) + i sin(φ), we see that the imaginary parts cancel out and that two
times the real parts remain. The time response of the optimal low-pass filter becomes purely real, as
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expected:

LP [n] =
1

Nf

[
2 · cos(dω · (Nh) · n · dt) − 2 · cos(dω · (Nh + 1) · n · dt)

2 − 2 cos(n · dt · dω)

]

=
1

Nf

[
cos(dω · (Nh) · n · dt) − cos(dω · (Nh + 1) · n · dt)

1 − cos(n · dt · dω)

]
. (A.7)

Knowing that cos(x) − cos(y) = −2 sin(x+y
2 ) · sin( (x−y)

2 ) and 1 − cos(2x) = 2 sin2(x), we get:

LP [n] =
1

Nf

[
−2 sin(2Nh+1

2 · dω · n · dt) · sin(−1 · dω
2 · n · dt)

2 sin2(n · dt · dω
2 )

]

=
1

Nf

[
sin(n · dt · (2Nh+1)·dω

2 )

sin(n · dt · dω
2 )

]

=
1

Nf

[
sin(n · dt · B

2 )

sin(n · dt · dω
2 )

]
. (A.8)

This result differs significantly from the results given e.g. in Meyer (1998), where as the inverse discrete
Fourier transformation of the optimal low-pass filter the sinc-function is given. There it is assumed
that the time series’ extent is unlimited, which is never the case for practical applications.

The derived expression has a singularity for n = 0. As sin(x) = x for small x we get:

lim
n→0

(
1

Nf

[
sin(n · dt · B

2 )

sin(n · dt · dω
2 )

])
=

1

Nf

[
n · dt · B

2

n · dt · dω
2

]
=

1

Nf

[
B

dω

]
. (A.9)

The derived expression for the inverse discrete Fourier transform of a rectangle in the spectral domain
allows us to derive the expression for the discrete Fourier transform of a rectangle in the time domain
because of the duality of the frequency and the time domain by exchanging dt with dω and B with TR,
the time span of the rectangle:

RECT [k] =

Nh∑

n=−Nh

1 · e−i·kdω·ndt =
sin(k · dω · TR

2 )

sin(k · dω · dt
2 )

, (A.10)

RECT [0] =
TR

dt
. (A.11)

The time domain representation of the filter is derived by multiplication with the chosen window
function:

HLP [n] = W [n] · LP [n]. (A.12)

A.4. High-pass filter

The high-pass filter can be specified easily in the frequency domain:

HHP [k] = 1 − HLP [k]. (A.13)

The high-pass filter is kind of an inverse of the low-pass filter. The pass-band of the low-pass filter is
the stop-band of the high-pass filter and vice versa.
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The time domain representation can be derived in the following way, using equation (A.4):

HP [n] =
1

Nf




−Nh−1∑

k=−Nhf

1 · ei2π· k
Tf

·n·dt
+

Nhf∑

k=Nh+1

1 · ei2π· k
Tf

·n·dt





=
1

Nf




Nhf∑

k=−Nhf

1 · ei2π· k
Tf

·n·dt −
Nh∑

k=−Nh

1 · ei2π· k
Tf

·n·dt





=
1

Nf

[
sin(n · dt · (2Nhf+1)·dω

2 ) − sin(n · dt · B
2 )

sin(n · dt · dω
2 )

]
, (A.14)

HP [0] =
1

Nf

[
2Nhf + 1 − B

dω

]
= 1 − 1

Nf

[
B

·dω

]
. (A.15)

and the other results derived for the low-pass filter. 2Nh + 1 is the number of samples contained in the
stop band of the filter, 2Nhf + 1 = Nf is the number of samples of the spectrum/time response of the
filter. The time domain representation of the filter is derived by multiplication with the chosen window
function:

HHP [n] = W [n] · HP [n]. (A.16)

A.5. Differentiator

Differentiation in the time domain corresponds to a multiplication in the frequency domain with iω.
We will now use the same approach as for the design of the low-pass filter: First, the time domain
representation of the ’optimal’ differentiator will be derived.

D[n] = IDFT [D[ω]] =
1

Nf
·

Nh∑

k=−Nh

1 · ik · dω · eik·dω·n·dt

=
d

d(n · dt)
[LP [n]] =

d

dt
[LP [n]], (A.17)

which is the time derivative of the optimal low-pass filter. The time domain representation of the
optimal differentiator is then given by:

D[n] =
d

d(n · dt)

(
sin
(
n · dt · B

2

)

sin
(
n · dt · dω

2

)
)

· 1

Nf

=
B
2 cos(n · dt · B

2 ) · sin(n · dt · dω
2 ) − dω

2 · cos(n · dt · dω
2 ) · sin(n · dt · B

2 )

sin2(n · dt · dω
2 )

· 1

Nf
, (A.18)

D[0] =
B
2 · 1 · n · dt · dω

2 − dω
2 · 1 · n · dt · B

2

(n · dt · dω
2 )2

· 1

Nf
= 0. (A.19)

As a second step, this time domain representation will again be limited by a multiplication with a
window function:

HD[n] = W [n] · D[n]. (A.20)
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A.6. Double differentiator

A double differentiator is derived in the same way: First, we get the time domain representation of the
optimal double differentiator as the derivative of the optimal differentiator:

DD[n] =
1

Nf
· d

d(n · dt)

(
B
2 cos(ndt · B

2 ) · sin(ndt · dω
2 ) − dω

2 · cos(ndt · dω
2 ) · sin(ndt · B

2 )

sin2(ndt · dω
2 )

)

=
1

Nf
·

(
dω2

4 − B2

4

)
· sin(ndt · B

2 ) · sin(ndt · dω
2 ) · sin2(ndt · dω

2 )

sin4(ndt · dω
2 )

− 2 sin(ndt · dω

2
) · cos(ndt · dω

2
) · dω

2

·
(
cos(ndt · B

2 ) · sin(ndt · dω
2 ) · B

2 − dω
2 · cos(ndt · dω

2 ) · sin(ndt · B
2 )
)

sin4(ndt · dω
2 )

=
1

Nf
·

(
dω2

4 − B2

4

)
· sin(ndt · B

2 )

sin(ndt · dω
2 )

− 2 · cos(ndt · dω
2 ) · dω

2 ·
(
cos(ndt · B

2 ) · sin(ndt · dω
2 ) · B

2 − dω
2 · cos(ndt · dω

2 ) · sin(ndt · B
2 )
)

sin3(ndt · dω
2 )

.

(A.21)

The value for n = 0 is then given by:

DD[0] =
1

Nf
·

(
dω2

4 − B2

4

)
ndt · B

2

ndt · dω
2

−

(
2 ·
(
cos(ndt · B

2 ) · sin(ndt · dω
2 ) · B

2 · dω
2 −

(
dω
2

)2 · cos(ndt · dω
2 ) · sin(ndt · B

2 )
))′

(
sin3(ndt · dω

2 )
)′

=
1

Nf
·
([

dω

2

]2

−
[
B

2

]2
)

· B

dω

−
2 ·
(
− sin(ndt · B

2 ) · sin(ndt · dω
2 ) ·

(
B
2

)2 · dω
2 +

(
dω
2

)3 · sin(ndt · dω
2 ) · sin(ndt · B

2 )
)

3 sin2(ndt · dω
2 ) · cos(ndt · dω

2 ) · dω
2

=
1

Nf
·
([

dω

2

]2

−
[
B

2

]2
)

· B

dω

− 2

3
· (ndt)2 ·

(
dω
2

)4 ·
(

B
2

)
− (ndt)2 ·

(
B
2

)3 ·
(

dω
2

)2

(ndt)2 ·
(

dω
2

)3

=
1

Nf
·
([

dω

2

]2

−
[
B

2

]2
)

· B

dω

− 2

3

[(
dω

2

)
·
(

B

2

)
−
(

B

2

)3

·
(

2

dω

)]

=
1

Nf
· 1

3
·
([

dω

2

]2

−
[
B

2

]2
)

· B

dω
. (A.22)

The time domain representation of the filter is derived by multiplication with the chosen window
function:

HDD[n] = W [n] · DD[n]. (A.23)
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Figure A.2: Optimal low-pass filter, differentiator and double differentiator in the time and the frequency domain. The left
hand panels show the time domain representation of the optimal low-pass filter, differentiator and double differentiator.
The right hand panels show the corresponding representation in the frequency domain. Differentiation in the frequency
domain corresponds to a multiplication with a straight line, double differentiation corresponds to a multiplication with a
parabola.

A.7. Filter scaling

So far an important problem has not been addressed: the derived filters have to be scaled in order to
approximate the optimal filters as good as possible. The scaling has to be a constant and independent
of the frequency, as otherwise the multiplication by a frequency dependent scaling function would result
in an undesired convolution of the time domain representation of the filter.
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Figure A.3: Convolution of the optimal low-pass filter with the spectrum of the chosen window function. The rightmost
figure shows the resulting spectrum (red) after the convolution.

Let us first return to the optimal low-pass filter. In the frequency domain, it is a rectangle of a certain
extent with height one, cf. figure A.2. When the extent in the time domain is limited to the desired filter
length, this rectangle is convolved with the frequency representation of the chosen window function. It
is now assumed that the window function is symmetric and that the number of epochs covered is odd.
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Then the spectrum of the unscaled filter is given as:

HLP [ω] =

Nh∑

j=−Nh

LP [ω + j · dω] · W [j · dω]. (A.24)

During this convolution, the spectrum of the window function is moved against the spectrum of the
low-pass filter. There are two principal situations, cf. figure A.3:

• The spectrum of the window function is completely inside the pass-band.

• The spectrum of the window function is partly outside the pass-band.

The speciality of the low-pass filter is that its value inside the pass-band is independent of the frequency,
as it is one. So we get for frequencies where the first case is true:

HLP [ω] = 1 ·
Nh∑

j=−Nh

W [j · dω]

= LP [ω] ·
Nh∑

j=−Nh

W [j · dω]. (A.25)

That means that the correct value, one, is replaced by the sum of the spectrum of the window function.
The correct scaling factor is then just this number.

SFLP =

Nh∑

j=−Nh

W [j · dω], (A.26)

Hs
LP [ω] =

HLP [ω]

SFLP
. (A.27)

For the second case, where the spectrum of the window function is partly outside of the pass-band, the
correct scaling becomes frequency dependent and is therefore not applied.

The spectrum therefore deviates from one in the frequency range close to the cut-off frequency, compare
figure A.3.

For the high-pass filter, the same scaling factor as for the low-pass filter is applicable.
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Figure A.4: Convolution of the optimal differentiator filter with the spectrum of the chosen window function. The rightmost
figure shows the resulting spectrum (red) after the convolution.

Let us now derive the optimal scaling factor for the differentiator. As for the low-pass filter, only the
case where the window function spectrum fully covers the pass-band has to be considered. If we now
consider the spectrum of the optimal differentiator inside the pass-band across the window width, we
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realize that it is symmetric, as it is a linear function of the frequency, cf. figure A.4:

HD[ω] =

Nh∑

j=−Nh

D[ω + j · dω] · W [j · dω]

=

Nh∑

j=−Nh

ω · W [j · dω] + j · dω · W [j · dω]

=

Nh∑

j=−Nh

ω · W [j · dω]

= D[ω] ·
Nh∑

j=−Nh

W [j · dω]. (A.28)

The scaling factor is the same as for the low-pass filter:

SFD = SFLP =

Nh∑

j=−Nh

W [j · dω], (A.29)

Hs
D[ω] =

HD[ω]

SFD
. (A.30)

Things are different for the double differentiator filter:

HDD[ω] =

Nh∑

j=−Nh

DD[ω + j · dω] · W [j · dω]

=

Nh∑

j=−Nh

−(ω + j · dω)2 · W [j · dω]

= −
Nh∑

j=−Nh

ω2 · W [j · dω] −
Nh∑

j=−Nh

2 · ω · j · dω −
Nh∑

j=−Nh

(j · dω)2

= DD[ω]

Nh∑

j=−Nh

W [j · dω] −
Nh∑

j=−Nh

(j · dω)2

= DD[ω]

Nh∑

j=−Nh

W [j · dω] − 1

3
(dω)2 · (Nh(Nh + 1)(2Nh + 1)). (A.31)

It is not possible to correct the effect of the application of the window function by a simple scaling:

Hs
DD[ω] =

HDD[ω] + 1
3(dω)2 · (Nh(Nh + 1)(2Nh + 1))
∑Nh

j=−Nh
W [j · dω]

. (A.32)

Although the applied corrections are constants, the values of the corrected filter in the stop band are
no longer zero. A possible solution is to low-pass filter the corrected filter, but this seems not to be
straightforward. The window method itself might not be suited ideally to design a double differentiator.
In Wu et al. (2006) and Thomas (1999), the design of the differentiator and the double differentiator is
proposed differently. There, the idea is to apply the derived low-pass filter on the ideal differentiator
and the ideal double differentiator:

HD[n] = IDFT [HLP [ω] · iω], (A.33)

HDD[n] = IDFT [HLP [ω] · −ω2]. (A.34)

These operations are the same as taking the first respectively second order time derivative of the
windowed low-pass filter.



B. Power spectral density (PSD) and standard
deviation

The Power Spectral Density (PSD) of a discrete signal can be derived from its spectrum by, cf. Müller
(2001), Oppenheim and Schafer (1989), Oppenheim and Schafer (1975) and Stoica and Moses (1997):

P [k · ∆f ] = X[k · ∆f ]2 · ∆t

SF
, k = [−N/2; N/2], (B.1)

for a two-sided PSD and

P [k · ∆f ] = X[k · ∆f ]2 · 2∆t

SF
, k = [0;N/2], (B.2)

for a one-sided PSD. The unit of the PSD is unit2

Hz , where unit is the physical unit of the input signal.
Two-sided means that also negative frequencies are considered, one-sided means that only the positive
frequencies are considered. In this latter case, the spectrum has to be multiplied by two in order to
obtain the full power. SF is a scaling factor depending on the chosen window function that is used to
scale the time series. Usually a rectangle with height one and length N · ∆t is used, then

SF =

N−1∑

n=0

|window[n · ∆t]|2 =

N−1∑

n=0

|RECT [n · ∆t]|2 = N. (B.3)

The square of the standard deviation or variance of a certain bandwidth is approximated by the discrete
integral over this band:

σ2
bw =

k=b∑

k=a

P [k · ∆f ] · ∆f. (B.4)

Two practical issues occur in the error modeling of sensors:

1. The standard deviation shall be approximated from a given (white) noise PSD.

2. The (white) noise PSD shall be approximated from a given standard deviation.

Now the considered band is the Nyquist interval, i.e. k = [0;N ] for the two-sided PSD respectively
k = [0;N/2] for the one-sided PSD, disregarding the difference between odd or even N , as a large N is
assumed. We will only consider the commonly used one-sided PSD. From a given (white) noise PSD

with a noise level of A[unit2

Hz ], we estimate the variance and standard deviation as:

σ2
A =

N/2∑

k=0

A[k · ∆f ] · ∆f =
N

2
· A · 1

N · ∆t
=

A

2∆t
, (B.5)

σA =

√
A

2∆t
. (B.6)

The PSD corresponding to a given standard deviation of σB can be approximated by the inverse relation
as:

PB[k · ∆f ] = 2∆t · σ2
B. (B.7)
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In MATLAB, the function randn can be used to simulate white noise with a certain standard deviation.
As an example, let us assume that we want to simulate white noise with a power of 1·10−18 m2

s4Hz
with a 1

s sampling. The corresponding standard deviation would then be σ ≈ 7 ·10−10m/s2. The corresponding
noise time series of length N can then be generated by

noise=7e-10*randn(N,1).

If one forms the difference between two uncorrelated noise signals, the noise does not cancel out but
adds up in terms of noise power. If one considers the root PSD, the noise is increased by a factor of√

2.



C. Orientation representations and coordinate
transforms

Direction cosine matrix

An orientation representation is the description of the orientation of a coordinate system (target system)
with respect to another coordinate system (source system). A very common way of representation is
the direction cosine matrix (DCM). It is defined as (cf. Wertz (1991)):

Rt
s =




X̂s′
t

Ŷs′
t

Ẑs′
t


 =




Xs

t,1 Xs
t,2 Xs

t,3

Y s
t,1 Y s

t,2 Y s
t,3

Zs
t,1 Zs

t,2 Zs
t,3



 , (C.1)

where

X̂s
t =




Xt,1

Xt,2

Xt,3



 , (C.2)

Ŷs
t =




Yt,1

Yt,2

Yt,3



 , (C.3)

Ẑs
t =




Zt,1

Zt,2

Zt,3



 (C.4)

are the unit base vectors of the target coordinate system expressed in the source coordinate system. If
the vectors are arranged row wise as described above, the resulting matrix Rt

s transforms a vector from
the source system to the target system by a multiplication from the left:

Vt = Rt
s · Vs. (C.5)

The inverse transformation is given by:

Vs = (Rt
s)

−1 · Vt, (C.6)

where

(Rt
s)

−1 = (Rt
s)

′ =




Xs

t,1 Y s
t,1 Zs

t,1

Xs
t,2 Y s

t,2 Zs
t,2

Xs
t,3 Y s

t,3 Zs
t,3



 . (C.7)

The inverse of the rotation matrix is just its transpose as it is orthonormal. Consecutive rotations can
be represented as a single rotation matrix:

Rc
a = Rc

b · Rb
a. (C.8)
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Quaternions

The quaternion representation of a rotation involves the Euler symmetric parameters. Originally they
were introduced by Hamilton and Whittaker; the following description is from Wertz (1991). A quater-
nion is a hypercomplex number, having one real part and three complex parts:

Q
t
s = (q0 + iq1 + jq2 + kq3)

= (cos(
Φ

2
) + sin(

Φ

2
) · ex + sin(

Φ

2
) · ey + sin(

Φ

2
) · ez), (C.9)

(Q
t
s)

−1 = (−q0 + iq1 + jq2 + kq3) = (q0 − iq1 − jq2 − kq3). (C.10)

q0 = cos(Φ/2) depends on the rotation angle Φ and q1 to q3 on the axis of the rotation. ex, ey, ez are
the components of the rotation axis. Consecutive rotations are represented by the multiplication of the
quaternions representing the rotations from the right, not from the left as for the representation by the
DCM:

Q
′′

= Q ⋆ Q
′
, (C.11)




q′′1
q′′2
q′′3
q′′0


 =




q′0 q′3 −q′2 q′1
−q′3 q′0 q′1 q′2

q′2 −q′1 q′0 q′3
−q′1 −q′2 −q′3 q′0


 ·




q1

q2

q3

q0


 . (C.12)

The transformation of a vector can be accomplished by the following operation:

Vt = (Q
t
s)

−1 ⋆ Vs ⋆ Q
t
s, (C.13)

where

Vs =




xs

ys

zs

0


 , Vt =




xt

yt

zt

0


 . (C.14)

Direction cosine matrix to quaternion

From a direction cosine matrix Rt
s, the corresponding quaternion Q

t
s can be derived in the following

way, cf. Wu et al. (2006) and Wertz (1991):

q0 =
√

1 + R1,1 + R2,2 + R3,3/2, (C.15)

q1 = −(R2,3 − R3,2)/4q0, (C.16)

q2 = −(R3,1 − R1,3)/4q0, (C.17)

q3 = −(R1,2 − R2,1)/4q0, (C.18)

Q
t
s =




q1

q2

q3

q0


 . (C.19)

Quaternion to direction cosine matrix

From a given quaternion Q
t
s, the corresponding direction cosine matrix Rt

s can be derived in the following
way, cf. Wu et al. (2006) and Wertz (1991):

Rt
s =




q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3



 . (C.20)
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Attitude dynamics

The dynamics of a body’s attitude are reflected in the time dependency of its orientation. There are
two possibilities for representing a change in the orientation:

• the source system changes,

• the target system changes.

The logic of dealing with changes of orientation depends on the application: If the source system
changes, one transforms first back from the changed, ’new’ source system to the original,’old’ source
system and then, using the original orientation, to the target system. If the target system changes one
transforms to the ’old’ target system by using the original orientation and then to the changed, ’new’
target system.

Here, we will consider only the option of changing the target system. There are in principal two practical
applications:

• The angular rates of the target system (satellite fixed body system) are known and the change in
the orientation is to be derived,

• The time series of the orientation of the target system is given and the corresponding angular
rates are to be derived.

Both aspects are treated by the ’kinematic equations’ describing the connection between the orientation
of a body and its angular velocity.

First, we will give formulations for the change in orientation resulting from known angular rates. If the
orientation is represented by quaternions, we get the following formulation, cf. Wertz (1991):

Q(t + ∆t) =





cos

∆Φ

2
· 1 + sin

∆Φ

2
·




0 ez −ey ex

−ez 0 ex ey

ey −ex 0 ez

−ex −ey −ez 0








· Q(t)

=





cos

∆Φ

2
· 1 +

sin ∆Φ
2

ω
·




0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0








· Q(t). (C.21)

∆Φ =
√

ω2
x + ω2

y + ω2
z · ∆t = ω · ∆t is the rotation angle during ∆t and 1 is a 4 × 4 identity matrix.

The angular velocities ωx, ωy, ωz refer to the respective body axes. We simplify to get:

Q(t + ∆t) = Q(t) ⋆




sin(∆Φ
2 ) · ωx

ω

sin(∆Φ
2 ) · ωy

ω

sin(∆Φ
2 ) · ωz

ω

cos(∆Φ
2 )




= Q(t) ⋆ Υ(t). (C.22)
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From a given time series of quaternions, the angular rates can be derived in the following way:

Υ(t) = Q(t)−1 ⋆ Q(t + ∆t) =




υ1

υ2

υ3

υ4


 , (C.23)

∆Φ = 2 · arccos(υ4), (C.24)

ω = ∆Φ/∆t, (C.25)

ωx = υ1 ·
ω

sin(∆Φ
2 )

, (C.26)

ωy = υ2 ·
ω

sin(∆Φ
2 )

, (C.27)

ωz = υ3 ·
ω

sin(∆Φ
2 )

. (C.28)

If we assume ∆t and/or ω is small, we can use the small angles approximations

cos(
∆Φ

2
) ≈ 1,

sin(
∆Φ

2
) ≈ 1

2
ω · ∆t

to obtain

Q(t + ∆t) =





1 +

1

2
· ∆t ·




0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0








· Q(t)

= Q(t) +
1

2
· ∆t · Q(t) ⋆




ωx

ωy

ωz

0




=
1

2
· ∆t · Q(t) ⋆




ωx

ωy

ωz
2

∆t




=
1

2
· ∆t · Q(t) ⋆ Ω(t). (C.29)

For the inverse task, the derivation of angular rates from a time series of quaternions, we obtain:

Ω(t) = 2 · Q−1
(t) ⋆

Q(t + ∆t)

∆t
. (C.30)

For the orientation representation by DCM, we get:

R(t + ∆t) = Rω · R(t)

=








1

∆t ωz −ωy

−ωz
1

∆t ωx

ωy −ωx
1

∆t



 · ∆t



 · R(t)

=
[
Ω′(t) · ∆t

]
· R(t). (C.31)

The angular rates can then be obtained from:

Ω′(t) =
R(t + ∆t)

∆t
· R−1(t) =

R(t + ∆t)

∆t
· R′(t). (C.32)



D. Coordinate frames

D.1. Inertial reference frame (IRF)
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Figure D.1: Earth centered inertial reference frame

The origin of the inertial reference frame is the mass center of the Earth. The x-axis is defined by the
Vernal Equinox, the z-axis is the rotation axis of the Earth at a reference epoch. The y-axis completes
the right hand triad.

D.2. Orbit fixed reference frame (ORF)

Figure D.1 also shows the orbit fixed reference frame (in red). There are two types of ORFs:

1. Nadir/radial pointing ORF

2. Velocity pointing ORF

Both types can be derived from a orbit given in the IRF in the following way:
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Nadir/radial pointing ORF

ẐORF = −X̂sat
IRF , (D.1)

ŶORF = ẐORF × ˙̂
X

sat

IRF , (D.2)

X̂ORF = ẐORF ×−ŶORF . (D.3)

Velocity pointing ORF

X̂ORF =
˙̂
X

sat

IRF , (D.4)

ŶORF = Ẑsat
IRF × X̂ORF , (D.5)

ẐORF = X̂ORF × ŶORF . (D.6)
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D.3. Earth-fixed reference frame (EFRF)
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Figure D.2: Earth-Fixed Reference Frame (EFRF).

The origin of the earth-fixed reference frame is the mass center of the Earth. The direction of the
x-axis is defined by the Greenwich meridian. The z-axis is the current rotation axis of the Earth. The
y-axis completes the right hand triad. The transformation between EFRF and IRF is described e.g. in
McCarthy (2006) and is not described here.
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D.4. Satellite fixed reference frame (SRF)

Figure D.3: Satellite fixed reference frame (SRF). The frame of GRACE A and B are oriented towards each other.

The Satellite fixed reference frame has its origin in the center of mass of the satellite. The x-axis is
defined by the direction to the K-band horn, the z-axis is positive towards the radiator/nadir, the y-axis
completes the right hand triad, cf. Bettadpur (2007). The relative orientation of the SRF of GRACE
A and B is shown in the upper panel of figure D.3. For the leading satellite, the x-axis of the SRF is
oriented opposite to the flight direction, for the trailing satellite, the x-axis points into flight direction.
The lower panel of figure D.3 shows that the x-axes of the SRF of each satellite are not perfectly parallel
to their velocity vectors. As the distance between the satellites is smaller than 200 km, this deviation
is small.
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D.5. Instrument frames

Figure D.4: Star sensor reference frame (SSRF) and accelerometer reference frame (AF).

The accelerometer frame (AF) is derived from the SRF only by a switching of axes, see figure D.4:

X̂srf = Ẑarf ,

Ŷsrf = X̂arf ,

Ẑsrf = Ŷarf .

The star sensor reference frames (SSRF) are identical to the SRF, except for a rotation by ±45◦ about
the x-axis. The z-axis of the SSRF defines the line of sight of the individual star sensor head.
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