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Preface

The myriad of chemical and biological systems, their macroscopic properties and functionality,
the numerous natural phenomena people encounter, are manifestations of the collective behavour
of matter constituents, atoms and molecules, governed by a fascinating subtle interplay between
several types of interactions at microscopic level. This model on how the nature is built up recog-
nizes the notion that complexity grows out of simplicity. That is why, for a better understanding
of many physical, chemical, and biological processes, and optimization of various applications
relevant to biotechnologies, medicine, and industry, a profound insight into the microworld is
indispensable.

The interactions between atoms lead to the formation of a qualitatively new objects, molecules,
whose properties are completely different in chemical aspect from the ones of their building
components. This type of interaction was called covalent . Covalent interactions were ade-
quately described as early as 1916 by Lewis [1], five years prior to the formulation of the laws of
quantum mechanics. The modelling of covalent chemical bonds has drawn a significant interest
and has become a subject of intense experimental and theoretical research over the years thus
ultimately leading to a consistent theory which has turned into the pivot of modern chemistry.
Along with covalent interactions, there exists another class of interactions termed noncovalent
(nonbonded, weak). They were first discovered by the Dutch physicist J. D. van der Waals [2] in
the end of the 19th century. Nowadays, it is well established that covalent interactions lead to the
formation of classical molecules, crystals, etc., and the nonbonded ones are responsible for the
formation of molecular clusters (molecular complexes), liquids, and for solvation processes. It
has been found that noncovalent interactions are one-two orders of magnitude weaker compared
to covalents ones, and for this reason, the traits of the molecules building up a molecular cluster
remain relatively unaffected compared to their isolated state. Still, however, some small changes
in the subsystems occur, which can serve as a signature for the cluster formation. It was not
until the 1970s when the significance of the noncovalent interactions was recognized in physics,
chemistry, and biology-related disciplines. This marked the onset of an active exploration of
weak interactions, which is still a hot topic in present time due to its relevance to diverse fields
ranging from biochemical and pharmacological research through material sciences.
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Most of the processes interesting for chemistry and biology occur in the condensed phase where
noncovalent interactions come to the fore and gain additional significance. Noncovalent interac-
tions play an important role in liquids, solvation phenomena, secondary structures of biological
macromolecules such as DNA and proteins, molecular recognition, supramolecular chemistry,
crystal packing, etc. It has been shown (for a comprehensive review, see [3]) that molecular
conformations determine the reactivity and functionality of biomolecules. Molecular shapes on
the other hand are stabilized by intramolecular noncovalent interactions. For a number of chemi-
cal and biological phenomena such as solvation, molecular transport, and molecular recognition,
pertinent to transport through membranes, neurotransmission, drug-receptor matching, virus de-
tection, enzyme catalysis, etc., not only the conformations of the involved molecules are impor-
tant but also the interactions with the molecules of the surrounding environment, which comprise
the intermolecular weak interactions. Thus, in real biochemical systems, the ultimate conforma-
tional shape and reactive properties of the molecules are determined by the delicate balance
between intra- and intermolecular interactions. This aspect has not been yet fully studied and
needs further elucidation. supramolecular chemistry is another realm of noncovalent interactions.
It has been aptly defined by Lehn [4, 5] as ”chemistry beyond the molecule”. The so-called non-
covalently assisted synthesis is used to produce molecules with predefined shape, respectively
properties, employing the stabilization provided by the recognition binding sites embedded in
the precursors. It provides a convenient means for targeted synthesis of varios supramolecular
structures. Depending on the particular system, various types of nonbonded interactions can be
harnessed: hydrogenbonds (H-bonds), charge-transfer interactions, electrostatic interactions, hy-
drophobic interactions, stacking interactions, metal coordination [6]. By noncovalently assisted
synthesis special new materials can be produced, which meet specific requirements. Thus, for
instance, polymers whose molecules are bound by both covalent and noncovalent interactions
manifest novel and drastically different physical, chemical, electrochemical, photochemical, op-
tical, thermal, and catalytic properties in comparison with the classical polymers, based only
on covalent bonds. The applications of targeted synthesis cover diverse fields: drug design [7],
catalysis [8, 9], molecular electronics [10].

The detailed study of nonbonded interactions necessitates investigation of well-defined finite-
sized isolated model systems of molecules and molecular complexes. This has provided a great
impetus for the development of techniques for production of the aforementioned model systems
in the gas phase. The most advantageous and robust method for isolating molecules and molecu-
lar clusters in the gas phase is the supersonic jet expansion leading to the formation of molecular
beams [11]. In cold molecular beams, the translational and internal degrees of freedom are
cooled down [11, 12] and as a result, along with the isolated molecules, weakly bound com-
plexes held by nonbonded intermolecular interactions are formed. These complexes survive on a
timescale of several microseconds after the adiabatic expansion. An additional asset of molecular
jet expansion is that it allows, through varying of certain parameters, for an efficient control of
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the cluster formation process, thus making possible the formation of complexes of different size
ranging from two to tens of molecules in a frigid state, which is on the grey line between the gas
phase and bulk condensed phase [13]. In the cold molecular beam, the species do not interact
with each other and thus can be considered as nonperturbed by external influences.

Laser spectroscopy provides versatile and powerful, yet nondemolishing and gentle, means for
probing of isolated species. So far, a great number of spectroscopic techniques have been de-
veloped to investigate various aspects of the structure and dynamics of isolated molecules and
molecular complexes. Because of the low density and total number of species in the molecular
beam, the spectroscopy of electronic states is often preferred compared to microwave and in-
frared spectroscopy. The UV electronic excitation of an isolated species can be relatively easily
detected. The simplest way is to monitor the spontaneous fluorescence emission from the ex-
cited electronic state. This technique is commonly known as laser induced fluorescence (LIF).
Measuring the fluorescence decay in the time domain, one can readily obtain information on the
dynamics of the respective electronically excited state. Such type of measurement is not attain-
able by microwave and infrared spectroscopy due to the small spontaneous emission probability
stemming from the ν3 law (for review, see [14]). A powerful UV laser spectroscopy technique,
particularly suitable for detection of electronically excited complexes in the cold molecular beam,
is the resonance enhanced two-photon ionization (R2PI) spectroscopy, in which a further photon
is absorbed in the electronically excited state leading to ionization of the species. This techniques
provides an additional experimental advantage compared to LIF; this is the mass selectivity. This
feature is particularly important when many different species are present in the cold molecular
beam, as is usually the case. On top of the exerimental advantages R2PI spectroscopy yields
important information on the dynamics and energy transfer occurring upon deposition of a cer-
tain amount of energy in the electronically excited states, resulting in a fragmentation of the
species. For noncovalently bound complexes it is interesting to observe the energy redistribution
from excited intramolecular vibronic modes to intermolecular modes. This is closely related to
the stability of weakly bound complexes in electronically excited states since if the deposited
vibronic energy exceeds the cluster dissociation energy, this will lead to a fragmentation of the
complex (for review, see [15]). Such experiments are of paramount importance in photochem-
istry, particularly concerning the stability of biological systems such as DNAs.

R2PI UV spectroscopy with spectral resolution of several tenths of a cm−1 is referred to as vibra-
tional (low-resolution) since it can resolve only the vibronic structure of the excited electronic
state but not the rotational one. It has provided over the years a wealth of valuable information
on the vibrational structure of many molecules and molecular complexes [16]. The change of the
binding energy of molecular clusters upon electronic excitation can be obtained by measuring
the frequency shift of the rotationless transition due to the complexation [17–19]. The width
of vibronic bands can also serve as a source of information on the energetics and dynamics of
molecular complexes [20, 21]. Further, a detailed and accurate information, particularly on the
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structure of isolated molecules and molecular complexes, can be retrieved from the experimen-
tal technique combining i) rotationally resolved (high-resolution) R2PI UV spectroscopy and ii)
mass selectivity. This method features several important assets:

• it enables a selection of the particular molecular complex to be studied.

• it provides a resolution of the rotational structure and hence, the values of the molecular
inertial parameters and transition moment ratio.

• it makes possible on the basis of the obtained molecular parameters, the geometrical struc-
tures of the observed species to be reliably assigned, even in the case of complex molecular
systems.

For high-resolution spectroscopy it is necessary that the Doppler broadening be eliminated. It
is known that the Doppler broadening is the limiting factor in room- temperature measurements
since it mars the spectral resolution and the rotational lines are concealed under the envelope of
the Doppler width. That is why, cold supersonic molecular beams provide advantages also in
this case. They inherently reduce the transverse velosity distribution of the species and hence,
the Doppler broadening [22–24]. Rotationally resolved R2PI UV spectroscopy with mass selec-
tivity is helpful also in the analysis of isomerization and fragmentation processes occurring upon
electronic excitation.

For a successful and reliable analysis and interpretation of highly resolved spectra of large
molecules and molecular complexes, which are composed of densely spaced and partially over-
lapping rotational lines, a special fitting routine based on genetic algorithms has been developed
in our group. It is able to determine the rotational constants, the transition moment ratio, and
other molecular parameters, from spectra with densely spaced peaks or low signal-to-noise ratio.

The structures of molecular conformations are encoded in their highly resolved spectra. It is
well-known, however, that for molecular systems with complex shape, the rotational constants
alone, respectively principal moments of inertia, obtained from the high-resolution spectra do
not provide unique information on the structure of the observed molecule or molecular . To
assign molecular structures, the experimental results have to be combined with theoretical sim-
ulations based, in most cases, on ab initio quantum chemistry calculations. Quantum chemistry
calculations of large molecules and molecular complexes bound by noncovalent forces were
almost intractable or unreliable due to the intrinsic flexibility of such systems [25–30]. An ad-
ditional challenge posed to this type of systems is often the very flat and anharmonic potential
energy surface. The rapid development of numerical algorithms combined with the progress in
computational power available, however, has significantly enhanced the reliability and expanded
the applicability of quantum chemistry computations of the energetics, structure, dynamics, and
frequency analysis of structures stabilized by weak interactions. Thus, the strategy successfully
demonstrated in the present work employs the synergism between high-resolution R2PI UV spec-
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troscopy with mass selectivity and high-level quantum chemistry ab initio calculations: theory
predicts possible geometrical structures and the experimental results show which of them are
observed under the experimental conditions.

The most widely studied molecules are the aromatic ones, and their clusters in the gas phase.
There are two reasons for considering such systems. The first one is that the aromatic rings are
present in a great deal of organic and biologically relevant molecules. They are typical examples
for molecules containing delocalized electrons, which play an important role in nonbonded in-
teractions. The second argument to focus on benzene-containing molecules is that they are good
chromophores and thus are suitable for laser spectroscopy investigations.

The purpose of the present work is to present a systematic investigation of various noncova-
lent intra- and intermolecular interactions and the subtle interplay between them with a special
emphasis on the following issues highlighted in the respective chapters:

• The effect of the π-electron conjugation on the structure of an aromatic molecule contain-
ing a side chain covalently bound to a benzene ring. This phenomenon is manifested in
styrene, described in Chap. 7.

• Formation of a nonconventional C-H· · · π bond. Binding preferences and binding pattern
of the complex between styrene and acetylene. The issue on how the π-electron system
of the acetylene molecule interacts with the two conjugated π-electron systems of styrene,
whether in the complex acetylene acts as a proton donor or as a proton acceptor, is eluci-
dated also in Chap. 7.

• Weak van der Waals dispersion interactions in a system with conjugated π-electron sys-
tems: Ar binding to styrene. The discussion on this topic is in Chap. 8.

• The effect of a strongly electronegative substituent on the electronic distribution of a
molecule with conjugated π electrons. Competing phenomena: mesomeric vs. electron-
withdrawing effects. Formation of a classical intermolecular hydrogen bond. Favoured
binding site and cluster pattern of the singly hydrated complex of p-fluorostyrene (see
Chap. 9).

• The effect of intramolecular weak interactions for the stabilization of biologically relevant
molecules: the neurotransmitter molecule, ephedrine (Chap. 11), and neurotransmitter ana-
logue, 2-phenylethanol (Chap. 10).

• Interplay between intramolecular O-H· · · π bond and an intermolecular dispersion interac-
tion present in the model cluster between 2-phenylethanol and Ar (Chap. 10).

• Conformationally selective fragmentation: the neurotransmitter molecule, ephedrine (Chap. 11).
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Chapter 1

Molecular Interactions

This chapter presents the molecular interactions and their most important
characteristics. It makes a classification of the weak intermolecular bonds
along with examples of their typical occurrrences. Stabilization of molecular
structures and binding patterns of molecular clusters resulting from the subtle
interplay between various weak interactions are highlighted.

1.1 Chemical Bonds

The formation of chemical bonds is a quantum mechanical phenomenon manifesting itself in the
interaction of two atoms and resulting in the building of more complex objects such as molecules
and solids. Chemical bonds can be subsumed into three main categories: covalent (homopolar),
ionic, and metallic [31].

• Covalent bonds are formed by sharing an electron pair between two atoms, thus leading
to a minimization of the total energy of this system. When two identical atoms form a
covalent bond, for instance H2, O2, etc., the electron density is distributed symmetrically
between them and the bond in this case is referred to as nonpolar. In general, however, the
two atoms participating in the covalent bond formation have different electron affinities,
and hence the electron density is shifted towards the one with higher electronegativity,
thus resulting to a polar bond: HCl, HF, etc.

• In the extreme case, when the difference of electron affinities of the two atoms is very
large, the electon pair is shifted to the strongly electronegative atom, thus giving rise to
the formation of two electric charges which are held together by Coulomb electrostatic
attraction. In this way the strongly polar covalent bond transforms into an ionic bond such
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18 Molecular Interactions

as in the case of NaCl, for instance. The border between strongly polar covalent and ionic
bonds, however, is not rigorously set.

• Metallic bonds are strongly delocalized. They result from sharing the valent electrons,
which are in the conduction band, between all atoms, thus forming the so-called electron
gas.

Chemical bond energies range between 1 and 10 eV, and their typical distances are between 1
and 3 Å. They determine the ‘skeletal‘ structure of molecules.

1.2 Weak Molecular Interactions

In isolated molecules the negatively charged electron shell shields off the positively charged
molecular core, thus yielding a neutral system. When molecules are close to one another, how-
ever, their electron shells experience not only the influence of their own positive cores but also
the presence of the electron shells of the surrounding molecules. This brings about a deformation
and redistribution of the electron charge within the molecules, leading to an incomplete shielding
of the positive cores and, respectively, to the appearance of locally charged molecular species.
Thus, molecules interact with one another by electrostatic forces acting between the positively
charged molecular cores and the negatively charged shells. Weak molecular interactions are also
referred to as nonbonding or noncovalent to distinguish them from chemical (also called bond-
ing) interactions. Nonbonding interactions are two types: attractive and repulsive. Attractive
weak molecular interactions are classified as electrostatic, inductive, and dispersion. Repulsive
interactions stem from the Pauli exclusion principle.

1.2.1 Attractive Molecular Interactions

Permanent-Charge-Distribution Interactions

Static charge distributions can be expanded in a series of multipole moments. Thus, two molecules,
A and B, interact with each other through the interaction of the static multipole moments of their
charge distribution. That is why, this type of intermolecular interaction is referred to as elec-
trostatic, and the resulting interaction energy is designated as Eel. This type of intermolecular
interactions is subject of the first-order perturbation theory . The electrostatic energy can be
presented in the following way:

Eel =
qAqB

|r| +
qA|µB|

r2
+

qB|µA|
r2
+
µA · µB

|r|3 +
qAQB

|r|3 +
qBQA

|r|3 +
µA · QB

r4
+
µB · QA

r4
+

QA · QB

|r|5 +· · · (1.1)
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where q, µ, Q, and r stand for the electric charge, electric dipole moment, electric quadrupole
moment, and the position vector of the second molecule relative to the first one, respectively. It is
important to emphasize that the energy, Eel depends not only on the magnitude of the multipoles
but also on their mutual orientation (this is encoded in the dot products in Eq. 1.1). That is
why, in natural systems the molecules are oriented such as to minimize the total electrostatic
energy. It is obvious from Eq. 1.1 that the magnitude of the higher-order terms in the multipole
expansion dwindles down very rapidly with the intermolecular distance (inverse power law) and
for this reason, the interaction energy can be described fairly accurately only by retaining the
first nonvanishing terms in the multipole series. Some molecules, due to symmetries, do not have
low-rank permanent multipoles, and hence necessitate the inclusion of higher-order terms. There
exist also molecular systems, e.g., complexes with rare gas atoms, that do not have permanent
multipoles at all, and for them the electrostatic interactions do not come to the scene.

Induction Interactions

The induction interaction between two molecules, A and B, originates from the interaction be-
tween the permanent dipole moment of one of the molecules with the induced dipole moment
(it induces) in the other one. The magnitude of the induced dipole moment depends on the
magnitude of the permanent dipole moment, the spacing between the two molecules, and the
polarizability α of the molecule in which the dipole moment is induced. This model constitutes
the so-called second-order perturbation theory . The potenatial energy of induction interactions,
Eind, can be presented in the form:

Eind = −1
2
αB

(
q2

A

r4
+ f1(µA,µB)

µ2
A

r6
+ f2(µA,µB)

Q2
A

r8

)
, (1.2)

where α, q, µ, and Q designate the polarizability, the electric charge, the electric dipole moment
, and the electric quadrupole moment , respectively. The molecule with permanent multipoles
is denoted by A, and the one with induced multipoles by B. Functions f1 and f2 depend on the
mutual orientation of the two molecules, A and B.

Dispersion Interactions

Dispersion interactions constitute the third type of attractive intermolecular interactions. They
derive from the mutual polarization of the instantaneous electron density distributions of the two
monomers, A and B. They were for the first time rationalized and described by London [32], and
hence called also London inetractions. The potential energy of such an interaction, Edisp, can be
cast in the form
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Edisp = −C6

r6
− C8

r8
− C10

r10
− · · · (1.3)

C6, C8, C10, etc. are empirical constants, and r is the position vector of the molecule B relative
to molecule A. London [32] has discovered a relation between the above-mentioned constants
and the polarizabilities αA and αB of the two interacting molecules, A and B, and their ionization
energies. Notwithstanding it is the weakest among the attractive interactions, the dispersion
interaction gains importance in nonpolar molecular complexes where it gives rise to the only
binding force. Hence, it is of paramount importance in large molecules with large polyrizability,
and in complexes containing a noble-gas atom, as will be shown in this work.

1.2.2 Repulsive Molecular Interactions

The only repulsive intermolecular interaction arising when two molecules, A and B, are close to
each other stems from the exchange interaction. The latter is a manifestation of the fundamental
Pauli exclusion principle, which precludes the penetration of electrons from one of the molecular
moieties into the occupied orbitals of the other one. The description of the exchange interaction
is based completely on quantum mechanics. The resulting energy, Eexch has been mathematically
formulated by Heitler and London [31–33] through an exponential or inverse power law :

Eexch = A · e− 2r
a0 (1.4)

Eexch =
B
rn

(1.5)

In Eq. 1.4 a0 is the Bohr radius of the hydrogen atom, and A is an empirical constant. In Eq. 1.5
B is an empirical constant, and the power n ranges between 10 and 20. The inverse-power low
describes the exchange repulsion in cases of very small separation distances between the two
molecules, A and B.

1.3 The Concept of Weak Molecular Bonds

Weak molecular interactions (descibed above) are not isolated but usually co-exist and act co-
operatively. The net effect of the concurring weak interactions is a result of a delicate balance
between them, ultimately leading to the formation of a weak bond whose nature, however, is dif-
ferent from the nature of chemical bonds (see Sec. 1.1 above) altogether. Its strength is typically



1.3 The Concept of Weak Molecular Bonds 21

from one to two orders of magnitude weaker compared to the one of chemical bonds, depending
on the nature of the particular molecular system and the weak interactions involved. Usually, the
energy of weak molecular bonds, Ebond, is in the range of 0.01-1 eV, and the interatomic distances
are longer (2-5 Å) than the ones in the case of chemical bonds.
The total energy of a weak molecular bond, Ebond can be presented as a sum of the energies of
the interactions involved

Ebond = Eattr + Erep = Eel + Eind + Edisp + Eexch (1.6)

The interaction potential and its two constituents, the repulsive and the attractive potentials, are
presented schematically in Fig. 1.1

Figure 1.1: Schematic representation of a weak two-atom molecular interaction potential com-
posed of a repulsive and attractive potentials. r0 designates the interatomic distance correspond-
ing to the the minimum of the potential well, and D0 is the depth of the potential well.

It is interesting to observe that due to the balance between the attractive and repulsive potentials,
in most cases, there exists an equilibrium interatomic distance, r0, at which the net interaction
energy has minimum. It may happen, however, that the attractive potential cannot make up for
the action of the repulsive potential at any point, thus leading to a nonbonding potential, i. e.,
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a potential that do not pertain a minimum. In this case no weak bond can be formed. It is im-
portant, however, to point out that for a bond to be formed, not only must the potential have a
minimum, but also the zero-point vibrational level must be below the dissociation energy.
Very often, for practical needs, the shape of the interaction potential must be known. Obtaining
the shape of the potential starting from first principles and considering all types of interactions
involved is quite demanding, and in most cases, untractable problem. Another approach to solv-
ing the problem is to devise a model potential, i.e., a special function containing free parameters,
as the ones shown in Fig. 1.1, and to fit those parameters to experimental data. The simplest, yet
sustainably popular one, was suggested by Morse [34] in 1929. It is a zeroth-order approxima-
tion to experimental potentials. To more accurately describe real potentials, one has to resort to
more complex potentials, the most commonly used one being the famous Lennard-Jones poten-
tial [31, 35, 36]. It includes two terms accounting for repulsive and the attractive interactions.
In real systems, the interactions are not constrained to two-body ones. For an adequate desscrip-
tion of weak molecular interactions involving more than two particles, the many-body interaction
is reduced to a two-body interaction, wherein the above-discussed treatment applies.

1.4 Classification of Weak Molecular Bonds

The combination of the various types of weak molecular interactions gives rise to a big variety of
bonding patterns. Though there is no rigorous borderline between them, a general classifcation
according to the nature of the interactions involved, bond energies, and bond lengths can be
made.

1.4.1 Hydrogen Bonds

Hydrogen bonds (H-bonds) are one of the most abundant and important types of weak molecular
interactions in nature. They determine the properties and behaviour of liquids and biological
systems. Hydrogen bonds have the general motif X-H· · ·Y, where the X-H group is a proton
donor , and Y is a proton acceptor . Usually, X is an electronegative atom (O, N, Cl, F, etc.),
and Y is most typically either an atom possessing a lone electron pair or it is a π-electron sys-
tem (benzene ring, or double or triple chemical bond), which has an excess of electron density.
Weak hydrogen bonds involving a π-electron system have attracted scientists’ attention for more
than 60 years since Dewar’s work [37] appeared, and their significance has been recognized in
many biologically relevant systems. It was not until recently, when the importance of another
specific type of hydrogen bonds was realized; these are the C-H· · ·Y (nonconventional) hydro-
gen bonds [38–42], which play an important role for the stabilization of molecular structures.
Usually, Y is an electronegative atom or a π system. They are much weaker compared to the
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conventional hydrogen bond, and with respect to the binding energy they are at the borderline
between hydrogen bonds and dispersion bonds (see below).

The most significant features and properties of hydrogen bonds are highlighted in the following.

• Hydrogen bonds are stabilized by a subtle interplay between electrostatic, induction (charge-
transfer), and dispersion interactions [43]. The most important contribution, however, is
the electrostatic one, realized mainly through dipole-charge and dipole-dipole coupling.
This brings about the next traits of hydrogen bonds.

• Hydrogen bonds provide a typical example of a two-body interaction. Due to the electro-
static attraction the H-bond length is shorter than the sum of the van der Waals radii of the
two atoms, X, and Y.

• Directionality. Hydrogen bonds are strongly directional, i. e., the three atoms, X, H, and
Y, lie down a straight line.

• Typical H-bond lengths range between 2 and 3 Å.

• The energy of H-bonds varies between 0.1 and 1 eV, depending on the nature of X and Y
atom (groups), and consequently, on the relative contributions of the constituting interac-
tions. Thus, some H-bonds render themselves at the brink of chemical bonds

Altogether hydrogen bonds can be subsumed into three major groups: proper (red-shifting),
improper (blue-shifting), and dihydrogen bonds.

Proper Hydrogen Bonds

Proper (red-shifting) hydrogen bonds weaken the covalent X-H bond thus leading to its elonga-
tion, and respectively, to a red shift of the X-H stretching vibrations . The nature of this effect
has been explained on the basis of bond orbital analysis [43, 44]. The latter shows that a charge
transfer takes place from the lone electron pair or the π-electron system of the proton acceptor
to the antibonding orbitals of the proton donor. This leads to an increase of the electron density
in the antibonding orbitals, which causes the weakening of the X-H chemical bond, and to its
elongation.

Improper Hydrogen Bonds

Improper (blue-shifting) hydrogen bonds [43,45] exhibit behaviour opposite to the one of proper
hydrogen bonds (see above), i. e., upon the formation of such weak bonds the chemical X-H
bond shortens and the frequency of the X-H vibration increases. Blue-shifting hydrogen bonds
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were theoretically predicted for carbon proton donor-benzene complexes [46] and later on, their
existence was experimentally verified for the model system chloroform-fluorobenzene complex
[47]. As in the case of red-shifting bonds, a charge transfer process underlies the observed
phenomena. In this case, however, the charge transfer is directed to the remote part of the X-H
bond, followed by a structural change in the proton-donor molecule.

Dihydrogen Bonds

Dihydrogen bonds [43, 48] have the pattern X-H· · ·H-Y, where X is an atom of a metal element,
and Y is an electronegative atom. They were discovered only recently in a hydrogen-bonded
complex containing Ir [49]. The mechanism of these bonds was rationalized a bit later [50], and
it is quite straightforward. The metal atom donates electron density to the covalently attached to
it H atom, thus creating a partial negative charge upon it. On the other hand the electronegative
atom Y withdraws the electron density from the adjacent H atom so that the latter becomes
positively charged. In this way the dihydrogen bond is stabilized by a multipole interaction.

1.4.2 Quadrupole-Quadrupole Bonds

The occurence of quadrupole-quadrupole bonds is limited to systems containing benzene rings.
They determine the T-shape structure of the benzene dimer, and play an important role for the
stabilization of secondary and tertiary structures of macromolecules.

1.4.3 Charge-Transfer Bonds

Charge-transfer (CT) bonds emerge when one of the bonded moieties is a good electron donor
(it has a low ionization potential), and the other one has high electron affinity. Donors pertain
antibonding orbitals designated as n, σ, and π, respectively, and acceptors have vacant orbitals
labelled as v*, σ*, and π*, respectively. The strongest of the so-formed CT complexes are the
ones of n-v type.

1.4.4 Ion-Mediated Bonds

Ion-mediated bonds stem from the presence of metallic cations, which have high electron affinity,
and hence form polar bonds on the basis of multipole interactions.
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1.4.5 Hydrophobic Interactions

Hydrophobic interactions are a special class of interactions representing associations of non-
polar groups in polar solvents. It has been found [43, 51, 52] that the change of the enthalpy is
almost vanishing, and the driving force for the reorganization of the molecules in a solution is
the entropy. This is their most distinctive feature compared to the above-described bonds, which
are formed as a result of an energy minimization.

1.4.6 Dispersion Bonds

Dispersion bonds are formed when the interacting moieties do not have permanent charge distri-
bution, and hence only the dispersion term in the attractive potential is accounted for. Dispersion
bonds lack directionality and help for the stabilization of molecules and molecular complexes.
Their manifestation is most pronounced in molecular complexes containing a noble-gas atom.
Examples for the formation of such a bond are discussed in Chap. 8 and Chap. 10 of this work.

1.5 Binding Motifs

Weak interactions and weak bonds can be intramolecular or intermolecular. Intramolecular weak
bonds play an important role for the stabilization of molecular structures, in particular, those
that have many internal degrees of freedom and can assume different conformational shapes.
The most abundant intramolecular bonds are the hydrogen ones, though quadrupole-quadrupole
bonds are also observed. The most typical occurrence of such bonds is in biologically relevant
molecules, as will be discussed in Chap. 10 and Chap. 11. Intermolecular bonds are responsible
for the formation of supramolecular structures . When benzene-ring-containing molecules are
involved in the formation of a complex with another molecule, two binding patterns are possible.
A bond that is formed between an atom/molecule and the π electrons of the host molecule is
referred to as a π bond. A bond that is realized between an atom/molecule and a benzene-ring
substituent is termed a σ bond. An example for an intermolecular σ bond is presented in Chap. 9.
A π-bonding motif of a C-H· · · π bond is discussed in Chap. 7.

The molecular interactions and molecular bonds are summarized and presented with their inter-
connections schematically in Fig. 1.2.
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Figure 1.2: Schematic representation of the various types of molecular interactions and molec-
ular bonds, and the interconnections between them.



Chapter 2

Ab Initio Quantum Chemistry Calculations:
Structure, Energetics, and Frequency
Analysis of Isolated Molecular Species

The interpretation of the experimental results is greatly underpinned by the-
oretical studies. The theoretical prediction of molecular properties has ever
been a challanging task. Many models describing one or a few aspects of
the molecular behaviour have been developed over the years. Until recently,
many theoretical studies even on small molecules were untractable due to
their, mainly, mathematical complexity. The rapid enhancement of computa-
tional power, however, has stimulated the development of sophisticated algo-
rithms, and enabled the treatment of medium-sized and large molecules and
molecular complexes [53–55]. The existing methods for the calculation of
molecular structures and properties can be grouped in four categories, which
are descibed in the following. The main emphasis, however, is put on the
quantum-mechanical methods, which will be presented in more details [56].

2.1 Semiempirical Methods

Semiempirical models use for the description of molecules a simpler Hamiltonian than the real
one, and employ a set of parameters whose values are adjusted to match the experimental data,
and hence the name semiempirical. A typical example of such a model is the Hückel molecular
orbital model (for definition of MO see Sec. 2.2.1), which employs a one-electron Hamiltonian,
and the bond integrals play the role of the adjustable parameters.

27
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2.2 Ab Initio Quantum Chemistry Calculations

Ab initio quantum chemistry calculations are based on the use of the ’first principles’ and the
fundamental physical constants. They employ the true molecular Hamiltonian, which accounts
for all the interactions within the molecular system. It should be pointed out, however, that due
to the approximations inevitably introduced in the solving of the Schrödinger equation, ab initio
calculations do not provide the exact solution to the treated problem. The main idea on how the
Schrödinger equation can be solved along with some important concepts are desribed below.

2.2.1 Self-Consistent Field Hartree-Fock (SCF-HF) Method

The purely electronic nonrelativistic Hamiltonian for a polyatomic molecule is presented in the
form

Ĥel = −1
2

∑
i

∇2
i −

∑
i

∑
a

Za

|r|ia +
∑

i

∑
i≥ j

1
|r|i j

, (2.1)

where the second term in the Hamiltonian represents the interaction of the electrons with the
nuclei, and the third member describes the interelectronic interaction. It can be shown [57] that
if the interelectronc repulsions are neglected, the zeroth-order wave function is the product of
one-electron spatial functions [56]. The one-electron spatial functions are referred to as molec-
ular orbitals. Taking into account the electron spin and the Pauli exclusion principle leads to
the zeroth-order wave function, which is the antisymmetrized product of molecular-spin orbitals,
each molecular-spin orbital being a product of a spatial MO and a spin function. Hartree-Fock
self-consistent field (HF SCF) [58] function is the best function that has the form of an anti-
symmetrized product of spin-orbitals. It does not account for the interelectronic repulsion. It is
convenient for the MOs to be expressed as a linear combination of basis functions. If the set of
the basis functions is large enough then the so-presented MOs are an accurate approximation to
the HF MOs. Molecular orbitals that have the same energy form a shell.

2.2.2 Basis Functions

The idea of decomposition of the HF function into basis functions was introduced by Roothan
[59]. The one-electron function can be presented by expansion over basis functions in the fol-
lowing way:
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φi =
∑

k

cikχk, (2.2)

The representation of molecular orbitals through basis functions is not unique. For practical
reasons, two types of basis functions are commonly used, the Slater-type (ST) and the Gaussian-
type (GT) basis functions, the latter being more commonly employed. The Gaussin-type basis
functions were suggested in 1950 by Boys [60]. A Cartesian Gaussian basis function centred on
atom a has the form

gi jk = Nxi
ay

j
az

k
a.e
−αr2

a , (2.3)

where i, j, and k are nonnegative integers, α is a positive orbital exponent, and xa, ya, and za

are Cartesian coordinates with origin pinned at the nucleus a. N is a normalization factor that
satisfies the condition:

N =

(
2α
π

) 3
4

·
√

(8α)i+ j+ki! j!k!
(2i)!(2 j)!(2k)!

(2.4)

Depending on whether the sum of the integers i, j, and k is 0, 1, or 2, the Gaussian functions are
referred to as s, p, and d type, respectively. A Gaussian function does not have a cusp at the origin
of the coordiante system, and for this reason, it fails to describe correctly the atomic orbitals for
small values of ra. That is why, rarely are Gaussian functions themselves used, however, as basis
functions instead, it is customary to form the basis function as a normalized linear superposition
of several primitive Gaussians:

χk =
∑

l

dklgl. (2.5)

In this linear combination, the primitive Gaussian functions have the same values for i, j, and k,
but different values for the orbital exponents, α. Usually, dkl is termed a contraction coefficient.
A great variety of basis sets has emerged over the years. The correct choice of the basis set
depends on the particular problem to be solved and on the computational resources available.
More extended basis sets, in principle, provide more accurate theoretical results, but on the other
hand are computationally more demanding. Thus, the choice of the ”best” basis set for a certain
problem is often a matter of trade-off between accuracy and time spent. A comprehensive survey
on ab initio basis sets can be found in the following compendium [61].
There are four sources of errors in ab initio calculations:

• Neglect of or approximate treatment of electron correlation.
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• Incompleteness of the basis set used. This leads to the so-called basis set truncation error.

• Omission of relativistic effects.

• Break down of the Born-Oppenheimer approximation (See Sec. 4.1 of this chapter).

In most cases the first two factors render the biggest contribution to the theoretical errors. The
interaction between the electrons in a molecule leads to an electron correlation, i.e., the wave
function of an electron is not independent of the wave functions of the other electrons in the
considered system. There are various approaches to account for the electron correlation. The first
one is to include the interelectronic distances, ri j, between every two electrons in the molecular
system. This is the most straigthforward way but it is limited only to small systems containing a
few electrons.
Nowadays there exist several ab initio methods that employ different approaches to the solution
of the complete Schrödinger equation trying to minimize the errors, in particular, those stemming
from the electron correlation and the incompleteness of the basis sets. They are presented briefly
in the following sections.

2.2.3 Configuration Interaction (CI)

It has been shown [56] for the He atom that the first and higher-order corrections to the wave
function mix in contributions from excited electronic configurations. This effect is known as
configuration interaction or configuration mixing, and it is present in all many-electron systems.
The configuration interaction is calculated by employing the variational method . The SCF MOs,
φi, are presented as a linear superposition of the basis functions in a basis set. The expansion
coefficients are found by solving the HF set of equations [56]. The number of the SCF MOs,
φi, is the same as that of the basis-set functions used. The lowest-energy MOs are the occupied
orbitals for the ground electronic state, and the remaining unoccuupied orbitals are referred to
as vacant orbitals. From the one-electron spin-orbitals one can form multielectron functions, Φi,
having different electron occupancies. These many-electron functions are called configuration
state functions (CSF) or just configuration functions. It can be proved that the true wave function
of the system under consideration is a linear combination of the above-described CSF:

ψ =
∑

i

ciΦi (2.6)

The above equation can be viewed upon as a variation function with respect to the coefficients ci

aiming at the minimization of the variational integral
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∫
ψ∗ Ĥψ dv∫
ψ∗ ψ dv

(2.7)

which leads to the secular equation

det(Hi j − ES i j) = 0, (2.8)

where Hi j ≡ 〈Φi | Ĥ | Φi〉, and S i j ≡ 〈Φi | Φ j〉. The secular equation 2.8 is then solved for the
energy and the associated linear equations yield the values of the coefficients ci in Eq. 2.6.

2.2.4 Configuration Interaction Singles (CIS)

The configuration interaction singles (CIS) (also known as Tamm-Dancoff) is a simple and com-
putationally inexpensive method for modelling excited electronic states of molecules and molec-
ular complexes [62]. The methodology used can be described briefly in the following way. The
geometry of the molecule is optimized for the ground electronic state. Then, a single-determinant
SCF MO, Φ0, is calculated for the gound electronic state at the already optimized geometry. As
it was shown above, the so-obtained SCF MO wave function contains also vacant orbitals. This
allows for the CIS wave variational function ψi to be presented as a linear combination of singly
excited occupied orbitals:

ψCIS =
∑
i, j

ci jψ
j
i , (2.9)

where ψ j
i designates that the occupied spin-orbital i is repalaced by the vacant spin-orbital j. The

ψCIS function is repalced in the secular equation whose roots are an approximation to the energy
of the excited electronic states at the given geomtry. It has been shown, however, that the CIS
method yields poor approximation to the excited state energy but it can model accurately the
geometric structure and the vibrational frequencies of electronically excited states [63].
It is worth to draw the attention to the following important difference between the ordinary CI
and the CIS calculations. While in the ordinary CI calculations the reference function is the
one of the respective state under consideration, in the CIS method the reference function for
the calculation of an excited state is the one of the ground state, and it does not appear as a
component in the linear decomposition of the ψCIS. This is an important issue since the ψCIS

function for the excited state and the ground-state reference function Φ0 are orthogonal and this
precludes the excited-state calculations from relaxing to the ground electronic state.
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2.2.5 The Møller-Plesset Perturbation Theory

The Møller-Plesset (MP) perturbation theory [64] is a particular case of the many-body per-
turbation theory when the interelectronic repulsion is treated as a perturbation to the interaction
energy between the nuclei and the electrons of a molecular system. The first practical applica-
tions of the MP theory came to the scene only in 1975 with the work Pople and co-workers [65].
Nowadays, it is widely used for accurate modelling of molecules and molecular complexes, and
it is of particular significance when electron correlations must be accounted for. The overview
presented below is restricted only to closed-shell ground-state molecules. For practical reasons,
the spin-orbitals, rather than the spatial orbitals, are used. For spin-orbitals, the HF equations for
electron m in an n-electron molecule have the form

f̂ (m)ui(m) = εiui(m) (2.10)

The spin-orbital Hamiltonian can be cast in the following form

f̂ (m) ≡ −1
2
∇2

m −
∑

i

Zi

rmi
+

n∑
j=1

[ ĵ j(m) − k̂ j(m)]. (2.11)

ĵ and k̂ are the Coulomb and the exchange operators, respectively . They are defined as

ĵ j(α) f (α) = f (α)
∫
| φ j(β) |2 1

r αβ
dvβ (2.12)

k̂ j(α) f (α) = φ j(α)
∫ φ∗j(α) f (β)

rαβ
dvβ (2.13)

In both definitions above, the integration is performed over the whole space, f is an arbitrary
function, and α and β label the electrons. The Coulomb operator shows the interaction of electron
α with the spread-out charge of electron β. The exchange operator does not have an intuitive
physical meaning. It originates from the condition of of the wave function upon the exchange of
two electrons.
It can be proved that the sum of the zeroth- and first-order energies equals the HF energy. That
is why, the first significant improvement in the MP energy is introduced through the inclusion
of the second-order energy correction. For a comprehensive discussion on the matter, the reader
is referred to Levine’s textbook on quantum chemistry [56]. The second-order correction to the
energy is
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E(2)
0 =

∑
s�0

| 〈ψ(0)
s | Ĥ′ | Φ0〉 |2
E(0)

0 − E(0)
s

(2.14)

where the summation is performed over the excitation of the zeroth-order wave function, i. e.,
single, double, etc. excitations.

2.2.6 The Coupled-Cluster Method

The coupled-cluster (CC) method was invented in 1958 by Coester and Kümmel. A nice discus-
sion on this method can be found in [65]. The fundamental equation the coupled-cluster method
is founded on is,

ψ = eT̂Φ0 (2.15)

In this formula, ψ is the exact nonrelativistic ground-state molecular electronic wave function,
and Φ0 is the normalized ground-state HF function. The exponential operator is presented by its
taylorization,

eT̂ ≡ 1 + T̂ +
T̂ 2

2!
+

T̂ 3

3!
+ · · · =

∞∑
k=0

T̂ k

k!
(2.16)

T̂ is referred to as a cluster operator, and T̂ = T̂1 + T̂2 + · · · + T̂n, where n stands for the number
of electrons in the molecule. Only the low-order cluster operators are of practical importance.
The two most commonly used cluster operators are the one-particle excitation operator, T̂1, and
the two-particle excitation operator, T̂2, which are defined as

T̂1Φ0 =

∞∑
a=n+1

n∑
i=1

taiΦ
a
i (2.17)

T̂2Φ0 =

∞∑
b=a+1

∞∑
a=n+1

n∑
j=i+1

n−1∑
i=1

tab
i j Φ

ab
i j (2.18)

In the above definitions, Φa
i , and Φab

i j designate singly-, and doubly-excited Slater determinants,
where the occupied spin-orbital ui is replaced by the vacant orbital ua, and the occupied spin-
orbitals ui j are replaced by the vacant orbitals uab, respectively. The coefficients tai , and tab

i j are
named amplitudes. The goal of a CC calculation is to find the amplitudes. It is worth pointing
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out that two important approximations are present in the CC calculations: i) the basis set is not
infinite but has some finite number of members included; ii) only the first couple of terms in
the cluster-operator expansion are considered. Theory shows that the main contribution to T̂ is
provided by T̂2, and hence the approximation

T̂ ≈ T̂2 (2.19)

is justified. With the approximations made, the ground-state wave function ψ becomes

ψCCD = eT̂2Φ0 (2.20)

Coupled-cluster methods provide very accurate treatment of electron correlations, but they are
also quite computationally expensive, and hence are applied predominantly to small and medim-
sized molecules.

2.3 Density-Functional Theory

Density-functional theory (DFT) emerged in 1964 with the Hohenberg-Kohn theorem [66]. The
theorem states that the ground-state energy, E0, the wave function, and all molecular properties
are uniquely determined by the the electron probability density. Mathematically, this means that
the ground-state energy is a functional of the electron density distribution, ρ0. The latter depends
on the three spatial coordiantes x, y, and z.

E0 = E0[ρ0(x, y, z)] (2.21)

This relation between the molecular properties in the ground state and the electron probability
density lays the ground for the development of the DFT. The approach of the DFT is to derive
ground-state molecular properties from the electron probability density.
In the DFT the potential nuclei create on electrons is considered as an external potential since it
comes from outside the electron system. It is clear that the ground-state energy depends on the
types of the nuclei and on their configuration, hence the electronic ground-state energy can be
presented in the following manner

E0 = Ev[ρ0] =
∫

ρ0(r)v(r) dr + T [ρ0] + Vee[ρ0] =
∫

ρ0(r)v(r) dr + F[ρ0] (2.22)
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The index v shows that the energy depends on the nuclear potential, and F is a functional that
depends on the average kinetic energy of the electrons and on the interelectronic interactions,
but it does not depend on the external potential. This result as a stand-alone does not have any
practical application since the functional F[ρ] and the probability distribution are unknown. To
harness Eq. 2.22 for practical needs, Hohenberg and Kohn have proven the following theorem.
Let be given a trial electron probability density, ρtr(r), that obeys the relations

∫
ρtr(r) dr = n (n is

the total number of electrons in the molecular system), and ρtr(r) ≥ 0. For every trial probability
density ρtr, the following inequality holds

E0 = E[ρ0(r)] ≤ Ev[ρtr(r)], (2.23)

where ρ0 is the true molecular electron probability density. The inequality can be also reenun-
siated that the true molecular electron probability distribution minimizes the energy functional
Ev[ρtr(r)]. This theorem is a step ahead towards the practical implementation of the DFT since it
claims that in principle all ground state molecular properties descend from the electron density
distribution but, it still does not provide a recipe on how to do that. The practical aspect of the
problem was resolved by Kohn and Sham [67]. Many functionals have been proposed for F, and
they have proved themselves to be efficient in describing a great variety of molecular systems.
The most typical and widely used functional is the B3LYP one [68].

2.4 Molecular Mechanics

The molecular mechanics (MM) method is not a quantum mechanical method. It treats molecules
as a system of atoms held together by ellastic bonds characterized by force constants, and obeying
the equations of classical mechanics. On the basis of the force constants, the molecular energy
and the vibrational frequencies are calculated. This method is computationally cheap, and hence
sometimes provides a good starting point to quantum-mechanical calculations.

2.5 Molecular Geometry

2.5.1 Equilibrium Geometry

Finding of the equilibrium geometry of a molecule is one of the major goals of the theoretical
calculations. The equilibrium geometry of a molecule represents the arrangement of the atomic
nuclei that minimizes the molecular energy, E, including also the internuclear repulsions. The
task of finding the equilibrium geometry becomes more challanging with the increase of the
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molecular size. The problem is aggravated by the fact that polyatomic molecules have very
many degrees of freedom, and often several different atomic arrangements may result in a sim-
ilar molecular energy, which poses very stringent requirements on the accuracy of the energy
calculations.

2.5.2 Potential Energy Surface

The geometrical structure of a molecule is uniquely determined by defining 3N-6 independent
coordinates, where N stands for the number of atoms in the molecule. As mentioned in the pre-
ceding section, the energy of a molecule depends on the atomic configuration. That is why, it
is convenient to present the molecular energy, E, as a function of the 3N-6 independent coordi-
nates. This will result to a hypersurface (potential energy surface (PES)) in the 3N-6-dimensional
space. It can be formally written as E = −E(r). The minima on this surface correspond to stable-
equilibrium structures of the molecule. The lowest-energy minimum is referred to as the global
minimum . All other minima are called local minima. The potential-surface maxima correspond
to unstable-equilibrium structures that relax to the nearest minimum. There are also points on the
PES corresponding to minima for 3N-7 coordinates, and to a maximum for one coordinate. Such
points are referred to as saddle points. The calculation of the energy at a fixed conformation is
called a single point energy calculation .
The set of the dihedral angles about all bonds in a molecule defines its conformation. The con-
formation corresponding to an energy minimum (local or global) is termed a conformer . The
larger the molecule, the bigger the number of conformers it has. That is why, the prediction of
molecular conformers is one of the major goals of the theoretical calculations.

2.5.3 Geometry Optimizations

A geometry optimization or energy minimization is the procedure of finding the molecular con-
formation correscponding to an energy minimum in vicinity of some initially defined molecular
geometry (conformation). From the view point of mathematics, this is the problem of the multidi-
mensional optimization. There exist various algorithms to handle the problem. The most efficient
ones are the gradient method , the Newton-Raphson method, the steepest-descend method, etc.
To find different molecular conformers, one has to probe different starting geometries, and locally
search for the energy minimum. The problem is aggravated in molecules with many internal de-
grees of freedom, which may have many different conformers. The finding of the global energy
minimum is not a trivial task, and in general, this problem has not been solved yet. The guess of
the starting conformation in the vicinity of which the global energy minimum is expected might
be misleading since often it may happen that the most stable conformer (this is the conformer
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corresponding to the global energy minimum) is rather unconventional. This necessitates the
development of algorithms for global optimization.

2.5.4 Conformational Search

Many algorithms have been invented to treat the problem of the global optimization though, none
of them can provide a complete reliability. For this reason, sometimes, a combination of different
algorithms is used to solve a particular problem. The general name of these algorithms is global
optimizers. In the following, they are listed without presenting the details on how they work. A
comprehensive survey of these techniques can be found in [56].

• Systematic (grid) search method.. This is one of the commonly used techniques for
global-energy-minimum search. This method samples the PES with a certain step and
at each sample point it calculates the single point energy. For practical reasons usually
only a few molecular coordianes are scanned (most typically dihedral angles), while the
other coordinates are kept fixed at their initial values. Then a local seacrh is applied to the
lowest-energy sample point. In this way the global energy-minimum can be found.

• Random (Stochastic or Monte Carlo) search method.

• Distance-geometry method. In this method the molecule is described as a distance matrix
whose elements, di j, are the distances betwee atoms i and j.

• Genetic algorithm. This method is described in detail in Sec. 6.3 in conjunction with the
analysis of highly resolved molecular spectra.

• Molecular dynamics search.

• Metropolis (Monte Carlo) method.

• The diffusion-equation method.

• The low-mode conformational search.

2.6 Molecular Vibrational Frequencies

The conformational search and the geometry optimization of a molecule provide the electronic
energy of this molecule. Since, however, atomic nuclei are never at rest but perform small os-
cillations about their equilibrium positions, it is of importance to calculate also the molecular
vibronic frequencies.
The energy of a harmonic oscillator Evib is
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Evib =

(
v +

1
2

)
hν (2.24)

where v stands for the vibrational quantum number that can take on values from 0 to infinity,
and ν is the vibrational frequency. The vibrational energy corresponding to v = 0 is known as
the zeroth vibrational energy . For a 3N-atomic molecule there are 3N-6 vibrational modes if
the molecule is not planar, and 3N-5 modes if the molecule is linear. Each of the modes has a
frequency vn, which is called a fundamental ferequency . In the harmonic approximation, the
total vibrational energy of a molecule is the sum of the vibrational energies of all vibrational
modes presented as indiviadual harmonic oscillators

Evib =

M∑
n=1

(
vn +

1
2

)
hνn, (2.25)

where M = 3N − 6 in the general case, and M = 3N − 5 for linear molecules. The sum of all
the zeroth vibrational energies yields the the so-called zero-point vibrational energy (ZPVE).
This is the lowest energy level a molecule can occupy for a certain conformer. In practice, the
fundamental vibrational frequencies of a 3N-atomic molecule are determined through the mass-
weighted force-constant matrix elements . Force constants are also called Hessians,

Fi j =
1√

mimj

(
∂2U
∂xi∂x j

)
(2.26)

The real treatment of molecules requires also the inclusion of anharmonic corrections. The
methodology is desribed in very detail by Wilson, Decius, and Cross [69].

2.7 Programme Packages for Theoretical Molecular Investi-
gations

Various commercial programmes for modelling of molecular structures and properties, and the-
oretical investigation of molecular phenomena are available nowadays. One of the most prolif-
erated programme packages is G [70]. It has been used also to provide the theoretical re-
sults in this work. Other, also powerful, programmes are M [71], T [72], GAMESS
(General Atomic and Molecular Electronic Structure System), Q-C, which is optimized for
calculation of large molecules containing several hundred atoms, J, ACES II, CADPAC,
SPARTAN.



Chapter 3

Interaction between Light and Matter

Spectroscopy deals with transitions between states in atoms and molecules actuated by an exter-
nal electromagnetic field (light, in the case of laser spectroscopy). The studied quantum systems
(atoms or molecules) start from some stationary state, and as a result of the interaction with
the light, they end up in some other stationary state. Quantum transitions are described by the
time-dependent Schrödinger equation

i�
∂ψ(q, t)
∂t

= [Ĥ]ψ(q, t), (3.1)

where q designates the 3N spatial and the N spin coordiantes of a system consisting of N parti-
cles, and t is time. The Hamiltonian of the joint system molecule-electromagnetic wave can be
presented as the sum of the isolated-molecule Hamiltonian H(0) and the Hamiltonian describing
the interaction between the molecule and the external field Hint (the lower-case index ’int’ stands
for ’interaction’), i. e.

Ĥ = Ĥ(0) + Ĥint(t) (3.2)

As seen from Eq. 3.2, the interaction Hamiltonian depends on time. It can be shown [73, 74]
that the time-dependent wave function ψ(q, t) can be expanded in terms of the time-independent
(stationary-state) wave function corresponding to Hamiltonian Ĥ(0),

ψ(q, t) =
∑

i

ai(t)ψi(q) (3.3)

After some standard mathematical trasformations, and bearing in mind that the stationary-state
wave functions ψi(q) are orthonormal, constitute a complete basis, and Eq. 3.2 can be transformed
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into its equivalent form,

dcm

dt
= − i

�

∑
n

cke
iωmnt〈ψ(0)

m | Ĥint | ψ(0)
n 〉,m = 1, 2, 3, ... (3.4)

where

ωmn ≡ E(0)
m − E(0)

n

�
(3.5)

Eq. 3.4 is solved on the basis of the theory of perturbations. The interaction Hamiltonian is
treated as a perturbation to the molecular Hamiltonian. If the perturbation is applied to the
molecule at the time t = 0 in stationary state n then at t = 0, ψ(q, 0) = ψn(0), and from Eq. 3.3,
it can be inferred that cn(0) = 1, and ci(0) = 0, for i � n. Assuming also that the perturbation is
small and acts for short time from t = 0 to t = t1, it is reasonable to infer that dcm

dt is also small,
and hence the coefficient cm is obtained as

cm(t1) = − i
�

∫ t1

0
eiωmnt〈ψ(0)

m | Ĥint | ψ(0)
n 〉 dt (3.6)

where cm(0) = δmn. The probability for the system to commute from the initial quantum state n
into a new state m is given by | cm(t) |2. This formula is the onset for the derivation of the famous
Fermi’s golden rule [75], which calculates the transition rate (probability of transition per unit
time) from a certain energy eigenstate of a quantum system into a continuum of eigenstates,
caused under the action of perturbation. This rule applies when there is no depletion of the
initial-state population. Fermi’s golden rule has the form

Tn→ f =
2π
�
δ(E f − En) | 〈 f | Ĥpert | n〉 |2 ρ (3.7)

In the formula above n is the initial state, f designates the continuum of states, and ρ shows the
density of the destination states.
Formula 3.6 is irrelevant of the nature of the perturbation applied. The interaction of light with
quantum systems is rationalized in the frame of the semiclassical theory, wherein light is treated
as an electromagnetic wave. The interaction between light and atoms/molecules can be viewed
upon as an interaction between an electromagnetic wave and the dipole it induces in molecules.
This is the so-called electric dipole approximation . The interaction Ĥint has the form

Ĥint = −µ · E(t) (3.8)
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E(t) represents the electric-field vector as a function of time. It is convenient to represent a time-
varying electric field as a supeposition of plane-polarized waves with different frequencies, ωi,
time-dependent amplitudes, fi(t), and planes of polarization e. The expansion in terms of plane
waves is described by the next formula

E(t) =
∞∑

i=1

ei fi(t)e
−iωit (3.9)

On the basis of formulae 3.6 and 3.7, the following important for spectroscopy conclusions can
be drawn.

• An optical transition is possible only when the energy of the photon equals the energy
difference between the two levels, n and m. This is the so-called resonance condition.

• If the resonence condition is met, the intensity of the transition depends on the matrix
element | 〈ψ(0)

m | Ĥint | ψ(0)
n 〉 |2. There are two cases when a transition may be resonance-

allowed but the intensity of the transition may be zero, or very small. i)When the interac-
tion Hamiltonian Hint is very small due to the small induced dipole moment µ the above
matrix element is also small. ii) Because of molecular-symmetry considerations, the ma-
trix element may vanish even in cases when the induced dipole moment is not zero. This
lays the ground for the establishment of selection rules, i. e., there are allowed and for-
bidden transitions [73]. The particular selection rules that apply to rotationally resolved
spectroscopy are discussed in Chap. 4.
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Chapter 4

Molecular Quantum Mechanical
Characteristics and Molecular Structure

Molecules are complex quantum-mechanical objects. For the understanding of their structures
and properties, the entangled interactions between their constituents have to be explained. The
Hamiltonian of a molecule with m nuclei and n electrons is

Ĥ = ĤN + ĤE + ĤNN + ĤEE + ĤNE (4.1)

In this formula ĤN is the kinetic energy of the nuclei, ĤE is the kinetic energy of the electrons,
ˆHNN is the interaction energy of the nuclei, ĤEE stands for the inetarction between the electrons,

and the last term describes the interaction between the nuclei and the electrons.
The substitution of the above Hamiltonian into the equation!Schrödinger (see Chap. 3), and
the solution of the latter, in principle, yields all the information on the energy levels and wave
functions of this molecule. Due to the complicated form of the Hamiltonian, however, the so-
produced Schrödinger equation does not render itself to a direct solution. That is why, some
reasonable assumptions have to be made in order to make the solution tractable.

4.1 Born-Oppenheimer Approximation

The most straightforward and widely-used approximation, when treating molecules quantum-
mechanically, is the Born-Oppenheimer approximation [76]. Electrons are ca. 2000 times lighter
than protons/neutrons. This means that for a small to medium-sized molecule containing several
tens of atoms, the ratio between the mass of the electrons and that of the nuclei is in the range
10−3 − 10−5. Due to the higher, mass nucleons are intrinsically more inert than electrons, and
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hence their response to forces is slower. This implies that at every instant of time the electrons in
a molecule experience a static potential created by the nuclei. Thus, the electronic wavefunction
reacts adiabatically to any change in the nuclear configuration, i. e., the nuclear configuration is
”encoded” in the electronic wave function. Actually, the equilibrium configuration of the atomic
nuclei in a molecule is the one that yields minimum of the sum of the energies resulting from
the interaction between the nuclei, ENN, between the electrons, EEE, and between the nuclei and
the electrons, ENE. The binding of atoms to form a molecule brings forth the electronic energy
of a molecule, Eel. The atomic nuclei in a molecule oscillate about their equilibrium positions,
so these oscillations have vibrational energy, Evib. Molecules also rotate with rotational energy,
Erot. When considering molecular properties, the overall translation of the molecule is irrelevant,
and hence it is omitted.
Thus, the Born-Oppenheimer approximation states that the electronic motions, the vibrations,
and the rotations of a molecule can be treated separetaly, and the total energy of a molecule
(excluding its translational component) is the sum of its electronic (the potential that keeps the
atoms bound together), vibrational, and rotational energies:

E = Eel + Evib + Erot (4.2)

There is a relation between the magnitudes of the electronic, vibrational, and rotational energies:

Erot ≈
√

m
M

Evib ≈ m
M

Eel (4.3)

The energies differ by two-three orders of magnitude from each other. It is seen also that the
electronic energy constitutes the largest contribution to the total energy.
It is important to point out that the Born-Oppenheimer approximation is not always valid. There
are cases which cannot be described correctly within this approximation. Such cases are re-
ferred to as the Born-Oppenheimer approximation break-down. Typical examples of the Born-
Oppenheimer approximation break-down are the vibration-rotation interaction through the Cori-
olis coupling [77], or the interaction between the electronic wave functions and the vibrations,
which is known as the Herzberg-Teller effect [78].

4.2 Rotation of Molecules

The analysis and interpretation of rotatianally resolved molecular spectra necessitates cognizance
of the theory of the molecular rotation. This theory relates in an elegant way the structure of
molecules with their rotational spectra.
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4.2.1 Molecular Rotational Energy

If one assumes that the interatomic distances in a molecule are fixed to some vibrationally av-
eraged values, then the molecule can be treated as a rigid body and hence the energy levels
corresponding to its overall rotations can be calculated. The assumption of rigidity is well justi-
fied in many cases. When, however, this assumption fails due to molecular distortions, the latter
are accounted for by an explicit inclusion of distortion coefficients.
Every rigid molecule is characterized by its tensor of inertia Î [79, 80]

Î =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 (4.4)

The matrix elements are defined in the following way

Ixx ≡
∑

i

mi(y
2
i + z2

i ) etc., Ixy ≡
∑

i

mixiyi etc. (4.5)

where xi, yi, and zi are the coordinates of atom i with respect to an arbitrary coordinate system,
and mi is the atomic mass. When this tensor is diagonalized (all off-diagonal elements Ixy become
zeros), it yields the three principal moments of inertia , designated as Ia, Ib, and Ic, about the three
principal axes of inertia, a, b, and c, respectively. The principal axes of inertia are labelled so
that to produce the inequality

Ia ≤ Ib ≤ Ic (4.6)

With respect to their principal moments of inertia molecules can be divided into four groups.

• Spherical top. Ia = Ib = Ic, for instance CH4

• Prolate symmetric top. Ia < Ib = Ic, for instance CH3Br. Linear molecules constitute a
particular case of prolate symmetric tops when Ia = 0 and Ib = Ic. All diatomic molecules
belong to this class of molecules.

• Oblate symmetric top. Ia = Ib > Ic,

• Asymmetric top. Ia � Ib � Ic

The rotational kinetic energy Hamiltonian of a rigid molecule can be expressed through its tensor
of inertia and angular velosity
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Ĥrot =
1
2

Ii jωiω j (4.7)

In the principal coordinate system, the rotations about the three principal axes of inetria are de-
coupled and the total rotational kinetic energy becomes the sum of the rotational kinetic energies
about the three axes

Ĥrot =
1
2

(Iaω
2
a + Ibω

2
b + Icω

2
c) = AP2

a + BP2
b +CP2

c (4.8)

The coefficients A, B, and C are called rotational constants, and obey the inequality A ≥ B ≥ C.
They are inversely proportional to the moments of inertia, and are defined by the expressions

A =
�

2

2Ia
B =

�
2

2Ib
C =

�
2

2Ic
(4.9)

As will be shown in the subsequent chapters, rotational constants play an important role in the
analysis of rotationally resolved spectra, and the assignement of molecular structures on the basis
of spectroscopic data. The quantities Pα, α = a, b, c, are the angular momenta of the molecule
relative to its principal axes of inertia.

4.2.2 Molecular Rotational Energy Levels

To obtian the energy levels of a rigid molecule, it is convenient to represent the quantum-
mechanical Hamiltonian through the angular momenta of the molecule as shown in the last
equality of Eq. 4.8. Several important properties and relations of the rigid-molecule angular
momenta are highlighted in the following. The detailed derivation of these properties and re-
lations can be found, for instance, in [73, 81, 82]. Let XYZ be a space-fixed coordinate system
with its origin in the centre of mass of the molecule, and abc be the coordinate system of the
principal axes of inertia of the molecule. Then the following relations between the projections of
the squared angular momentum, P̂2, onto the axes X, Y , and Z, and a, b, and c, and the rotational
Hamiltonian Hrot hold
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P̂2 = P̂2
a + P̂2

b + P̂2
c = P̂2

X + P̂2
Y + P̂2

Z (4.10)

[P̂X, P̂Y] = i�P̂Z etc. (4.11)

[P̂a, P̂b] = −i�P̂c etc. (4.12)

[P̂2, P̂c] = 0 etc. (4.13)

[P̂2, P̂Z] = 0 etc. (4.14)

[P̂Z, P̂c] = 0 etc. (4.15)

[Ĥrot, P̂
2] = 0 etc. (4.16)

[Ĥrot, P̂Z] = 0 etc. (4.17)

It can be shown that for every rotor, there exist some fundamental relations

P̂2ψ = J(J + 1)�2ψ, J = 0, 1, 2, ... (4.18)

P̂Zψ = K�ψ, K = 0,±1, ...,±J (4.19)

where
√

J(J + 1)� is the magnitude of the total rotational angular momentum and K� is its com-
ponent along a space-fixed axis.
The energy levels for the different types of moleculs, spherical top, symmetric top, and asym-
metric top, are listed below.

Spherical-Top Energy Levels

E = AJ(J + 1) (4.20)

where A = B = C is the rotational constant of the molecule.

Symmetric-Top Energy Levels

E(J,K) = BJ(J + 1) + (C − B)K2 oblate top (4.21)

J = 0, 1, 2, ... K = 0,±1,±2, ...,±J

E(J,K) = BJ(J + 1) + (A − B)K2 prolate top (4.22)

J = 0, 1, 2, ... K = 0,±1,±2, ...,±J

E = BJ(J + 1) linear (4.23)
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As seen from the above formulae, the rotational energy of symmetric tops depends not only on J
but also on a second quantum number, K, which determines the projections of the total angular
momentum along a molecule-fixed axis of the symmetric top.

Asymmetric-Top Energy Levels

The formulae for the energy levels of asymmetric-top molecules are quite complicated, and the
energy levels can be obtained analytically only for small values of J. For large values of J, the
energy levels are calculated numerically. An important parameter in the analysis of asymmetric
rotors is the Ray’s asymmetry parameter , defined as

κ =
2B − A −C

A −C
(4.24)

This parameter shows the deviation of the particular asymmetric top from either the prolate or the
oblate symmetric top. The energy levels of an asymmetric top are, usually, designated as JKprKob ,
where Kpr and Kob designate the the values of K for the prolate and oblate symmetric tops,
respectively, that correlate with the asymmetry-top level under consideration. It is important to
emphasize, however, that Kpr and Kob are not true quantum numbers for the asymmetric top. An
alternative notation for the asymmetric energy levels is Jτ, where τ = Kpr − Kob.
The following table (taken from Ref. [80]) shows the analytical solutions for the first few energy
levels of an asymmetric top.

JKprKob τ = Kpr − Kob E(J,Kpr,Kob)
000 0 0
110 1 A + B
111 0 A +C
101 -1 B +C

220 2 2A + 2B + 2C + 2
√

(B −C)2 + (A −C)(A − B)
221 1 4A + B +C
211 0 A + 4B +C
212 -1 A + B + 4C

202 -2 2A + 2B + 2C − 2
√

(B −C)2 + (A −C)(A − B)

Table 4.1: Rigid asymmetric-top energy levels
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4.2.3 Electric Dipole Transition Moment

It is proved [73] in the electric dipol approximation (see Chap. 3) that the transition probability
of a molecule from state n to state m under the action of plane-polarized (in the x direction)
monochromatic light with electromagnetic energy density ux at frequency νmn for a time T is

| cmn(T ) |2= 2π�−2T | 〈m | µ̂x | n〉 |2 ux(νmn) (4.25)

In the above equation µx is the x component of the molecular dipole moment. The matrix element
| 〈m | µ̂x | n〉 | can be written in the more general form

| 〈m | µ̂ | n〉 |2=| 〈m | µ̂x | n〉 |2 + | 〈m | µ̂y | n〉 |2 + | 〈m | µ̂z | n〉 |2 (4.26)

where µ̂ = iµ̂x + jµ̂y + kµ̂z. | µ̂〉 is called transition dipole moment or transition moment. The
transition moment is a vector quantity, and it is usually defined with respect to the principal axes
of inertia of the molecule. Depending on whether the transition dipole moment is oriented along
the the a, b, or c principal axis of inertia, one distinguishes between three types of transitions,
a−, b−, and c−type.

4.2.4 Selection Rules

Not all transitions between the energy levels of an asymmetric top are possible. One-photon
transitions are allowed only for transitions for which ∆J = 0,±1. In a set of transitions those for
which ∆J = −1 form the P branch, those for which ∆J = 0 give rise to the Q branch, and ∆J = +1
form the R branch. For two-photon transitions, the selection rules are different from those for
one-photon transitions. In this case ∆J = −2,+2, corresponding to O and S branches [83].

4.2.5 Transition Intensity

Transition intensities are determined by statistical weights depending on the degeneracy in the
quantum number K, nuclear spin, the polarization of the light inducing the transition, and on the
thermal distribution of the species given by the Boltzmann formula

exp

(
−∆Emn

kTrot

)
(4.27)
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where ∆Emn is the energy difference between levels m and n, k is the Boltzmann constant , and T
is the rotational temperature .

4.2.6 Deviations from the Born-Oppenheimer Approximation

The discussion hitherto was on rigid molecules obeying the Born-Oppenheimer approximation
(see Sec. 4.1). Sometimes, however, these approximations break down, and one has to eleborate
different models to treat the molecular behaviour properly. The most typical deviations from the
above approximations are listed here.

• Centrifugal distortion. When considering high values of J, molecular bonds stretch and
hence molecules can be no longer treated as rigid objects. In this case, their rotational
energy levels are calculated by including in the respective rigid-molecule-approximation
formulae a correction for the centrifugal distortion expressed by centrifugal distortion con-
stants [73, 81]

• Coriolis coupling. The Coriolis coupling in molecules results from the coupling between
the molecular vibrations and the overall rotation of the molecule. The Coriolis-coupling
correction in the Born-Oppeheimer approximation is introduced through the theory of per-
turbations.

• Herzberg-Teller effect. The Herzberg-Teller effect [78] is the gain of intensity by an elec-
tronically forbidden but vibronically allowed transition from another both electronically
and vibronically allowed transition through vibrational coupling.

• Jahn-Teller effect. If at a certain symmetrical nonlinear nuclear configuration of a poly-
atomic molecule, two electronic states are degenerate, the latter can be lifted by some
nuclear distortion. The splitting of the electronic degeneracy by a nuclear distrosion ac-
companied by the interaction between the rotation-vibration levels of the two electronic
states is referred to as the Jan-Teller effect [84].

4.3 Rotational Constants and Structure of Molecular Species

From the rotationally resolved spectroscopy one can derive the values of molecular rotational
constants, which are related to the principal moments of inertia of the studied species. Unfortu-
nately, rotational constants do not provide unique information on the molecular structure since
it may happen that different structures may have very similar rotational constants. That is why,
it is necessary to find a method to assign structures on the basis of the experimentally observed
rotational constants.
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Molecular structures are determined by defining the interatomic distances, planar, and dihe-
dral angles . Regarding bond lengths, the following bond-length definitions have to be distin-
guished [80].

• re is the bond legth that corresponds to a hypothetic vibrationless state of the molecule.

• r0 is the effective bond length corresponding to a ground-state vibtation. It is these dis-
tances that are involved in the measured rotational constants.

• rs is the bond length corresponding to an isotopic substitution. The so-defined bond length
is discussed in conjuction with the Kraitchman equations [85]

• 〈r〉 is an averaged bond length corresponding to some atom positions resulting from partial
correction to the vibrational effects.

• rm is the mass-weighted bond length derived from the averaging of the bond lengths of a
large number of isotopically substituted species.

Kraitchman equations [80, 85, 86] are a convenient analytical tool for determining the coordi-
nates of an isotopically substituted atom in a rigid molecule with respect to the center-of-mass
(COM) principal axis system of the parent molecule (the molecule before the isotopic substitu-
tion). Kraitchman equations allow the coordinates of the substituted atom to be found on the
basis of the measured rotational constants for the particular molecular species before and after
the isotopic substitution. This approach has been successfully applied to the analysis of many
noble-gas clusters of benzene (Bzn) and benzene derivatives [87–89]. The coordinates of an iso-
topically substituted atom with respect to the principal-axis system of the parent molecule are
calculated by the formulae
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where µ is the reduced mass of the molecular species

µ =
M∆m

M + ∆m
(4.29)
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M is the mass of the molecule before the isotopic substitution, and ∆m is difference of the masses
before the substitution.

Px, Py, and Pz in Eq. 4.3 are defined as

Px =
1
2

(−Ix + Iy + Iz)

Py =
1
2

(−Iy + Iz + Ix) (4.30)

Pz =
1
2

(−Iz + Ix + Iy)

Ix, Iy and Iz designate the principal moment of inertia of the unsubstituted molecule. Differences
∆ of parameter P in Eq. 4.3 are defined as

∆Px = P′x − Px

∆Py = P′y − Py (4.31)

∆Pz = P′z − Pz

The primed parameters in the above definitions correspond to the molecular species after the
isotopic substitution.
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Chapter 5

The Concept of Spectroscopy

Spectroscopy provides information on the quantum-mechanical energy levels
of physical systems. It is an efficient experimental tool for the investiga-
tion of molecular structure and dynamics. Over the years, spectroscopy has
diversified, and nowadays, there exists a great variety of spectroscopic tech-
niques [3,13,22,43,90–96]. It is difficult that all spectroscopic techniques be
encompassed and described in detail. This chapter aims at providing a general
overview of the existing advanced spectroscopic methods that are relevent to
the investigation of weak molecular interactions, molecular conformations,
cluster patterns, and molecular ionization and fragmentation. Their advan-
tages and drawbacks are briefly discussed along with the main realms of their
applicability.

5.1 Survey on Molecular Spectroscopy Techniques

For weak interactions to be studied, it is important that the model systems (molecules or molec-
ular complexes) should be isolated and unperturbed by external influences. There are several
methods to produce isolated molecular species.

• Molecular beams. A convenient and powerful method for production of molecular species
in the gas phase is the supersonic jet expansion [11, 14, 97–103]: the studied species are
entrained in some carrier gas (usually He, Ne, Ar), and the mixture is expanded through
a pulsed nozzle into vacuum, thus yielding a cold molecular beam. The cooling process
compells the species to occupy the lowest-energy conformations; thereupon only the most
stable conformations can be experimentally identified. An additional phenomenon stem-
ming from the adiabatic cooling is the formation of weakly bound clusters [11, 14, 101].
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The details on the supersonic molecular jet expansion are presented in the next chapter.

• Matrix isolation. Matrix isolation is an experimental technique used to embed molecular
species in an unreactive matrix [104, 105]. Usually the guest sample is diluted in the ma-
trix host material and the so-produced mixture is cooled down to less than 10 K. Thus, the
studied species is trapped in the matrix formed by the condensed host material. Most fre-
quently, noble gases and nitrogen are used as host materials. The matrix isolation technique
was suggested in 1954 by Pimentel and co-workers [104], and since that time, it has de-
veloped as one of the techniques employed to isolate molecules and molecular complexes.
It has been applied also to the investigation of biologically relevant molecules [106].

• Helium droplets. An advanced technique for the investigation of molecular conformations
is the spectroscopy in heluim droplets [107–110]. It is an alternative to the collisional cool-
ing in supersonic jet expansions [111]. The studied molecular species is embedded in a
helium droplet that provides an isothermal environment achieved by evaporative cooling
down to 0.37 K (4He droplets), or 0.15 K (3He droplets) [110]. Because of the super-
fluidity of helium at these low temperatures, the helium-droplet environment mimics the
gas-phase conditions, but at very low temperature. The helium-droplets technique has been
shown to be a promising technique for the exploration of even large biologically significant
molecules [112].

For convenience, the spectroscopic techniques that have been elaborated to study isolated molec-
ular species can be devided into several categories [13]: electronic [13, 113], near-infrared
[114, 115], far-infrared [116, 117], microwave [118], Raman [119, 120], rotational coherence
[119, 121, 122], gas electron diffraction [123], zero electron kinetic energy (ZEKE) [124], mass
analysed threshold ionization (MATI) [125].

5.2 Molecular Electronic Spectroscopy

5.2.1 UV Laser Induced Fluorescence

In the UV laser induced fluorescence (LIF) experiments, the molecules are excited from their
ground electronic state to an excited electronic state. Then the total fluorescence is measured.
Through scanning the frequency of the excitation laser, one can chart the excited-state energy
levels. Depending on the excitation-laser resolution, LIF spectroscopy may be low-resolution
(laser linewidth ∆ν ≥ 0.05 cm−1 FWHM (Full Width at Half Maximum)) allowing for dis-
tinguishing single vibrational bands or rotational band contours in the first excited electronic
state [126–129], and high-resolution (laser linewidth ∆ ≤ 0.005 cm−1 (FWHM)) resolving sin-
gle rotational lines or clumps of rotational lines. Low-resolution LIF experiments are routinely



5.2 Molecular Electronic Spectroscopy 57

conducted in many laboratories. They employ pulsed excitation . High-resolution UV LIF ex-
periments are more sophisticated, and, in order to achieve high spectral resolution, the excitation
is performed by continuous-wave (cw) laser light. Such experiments are carried out by Pratt and
co-workers [130–136], and Meerts and co-workers [137–141]. LIF spectroscopy is a sensitive
technique but it lacks mass selectivity, and hence spectra originating from different molecular
species in the cold molecular beam may overlap and impede the analysis of the so-obtained
results.

5.2.2 UV Resonance Enhanced Multiphoton Ionization

The UV resonance-enhanced multiphoton ionization (REMPI) spectroscopy can be also two
types, low- and high-resolution. This technique has been used to obtain the results presented in
this work; therefore it is very coprehensively described in the next chapter.

5.2.3 Spectrosopy of Resolved High Rydberg States

The spectrosopy of high-lying Rydberg states [142, 143] is important for the understanding the
behaviour of highly excited molecules, and it paves the way to the investigation of molecules and
molecular complexes in the ionic state. Employing a specially developed fitting technique [143],
one can obtain the Rydberg series limits. The spectroscopy of high Rydberg states has been
applied to various molecules and molecular complexes [144–146].

5.2.4 Zero Kinetic Energy (ZEKE) and Mass Analysed Threshold Ioniza-
tion (MATI) Spectroscopies

Both zero electron kinetic energy (ZEKE) and mass analysed threshold ionization (MATI) spec-
troscopies explore the energy levels in the cation. They exploit the same fundamental principles
but differ in the type of the detected particles. After ionization, ZEKE spectroscopy detects elec-
trons, whilst MATI detects ions. For charting the energy levels in the cationic state, however,
the frequency scan alone does not suffice: increasing the frequncy of the ionization laser pulses
leads only to higher kinetic energy of the ejected electrons. That is why, an additional parameter
besides the laser frequency must be also fixed. This parameter is the kinetic energy of the ejected
electrons. The underlying idea in ZEKE and MATI spectrosopies is that every cationic state
is the limit of a converging Rydberg series of neutral states. Thus, a selective excition of high
Rydberg states, followed by a pulsed-filed ionization results in spectrally resolved energy levels
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of the cation. ZEKE spectroscopy came to existence in 1984 with the work of Schlag, Müller-
Dethlefs, and Sander [147, 148], and it has been applied to many molecular systems [149–151].
MATI spectroscopy has the advantage of mass selectivity. This technique emerged in 1991 with
the work of Zhu and JohnsonS [125, 152]. It has provided valuable information on the structure
and properties of various molecular monomers and complexes in their ionic state [153–156].

5.2.5 Double Resonance Spectroscopy

Double resonance spectroscopy is a technique that allows for the separate identification of dis-
tinct molecular conformations or isomers in the cold molecular beam or can be used also to
study the vibrational dynamics in liquids [3, 157–159]. There are two types of double resonance
spectroscopy: UV-UV hole-burning, and IR-UV ion-depletion. In the former, two UV lasers are
used, one probe laser whose frequency is fixed to a certain transition from the ground electronic
state to a vibrational level in the excited electronic state, and a second, UV ”burn”, laser whose
frequency is scanned across the vibrational spectrum of the excited electronic state. The probe
laser is delayed relative to the ”burn” laser. Thus, transitions originating from the species that
brings forth the transition the probe laser is tuned to will burn out its population in the ground
state and this will bring about intensity drops in the signal originating from the probe laser. When
the UV-UV hole-burning spectrum is compared with the REMPI spectrum, the vibronic bands
associated with different species are discriminated. UV-UV hole-burning experiments have been
used to distinguish between different conformations of small biological molecules [160–162].
The other alternative to the UV-UV hole-burning spectroscopy, the IR-UV one, employs also
two lasers, one IR ”burn” laser which is fixed to a certain vibrational transition in the ground
electronic state, and a second, UV probe, laser whose frecuecy is scanned across the vibrational
levels of the excited electronic state. The IR ”burn” laser depopulates the ground state of only
one of the species in the cold molecular beam; thereby, the electronic transitions associated with
this species will be greatly reduced or removed from the LIF/REMPI spectrum [13, 163–165].
A type of double resonance spectrosscopy is also the coherent ion-dip spectroscopy [142, 166].
It is more important from the view point of molecular dynamics rather than for determination of
molecular structures.

5.3 Near- and Far-Infrared Laser Spectroscopy

Near-infrared (near-IR) spectroscopy is used to measure the vibrational spectra of molecules and
molecular complexes. Infrared lasers with optical parametric oscillators (OPOs) and frequency
mixers are used as tuneable light sources [40, 167, 168]. The spectra are measured by moni-
toring the depletion of the fluorescence [169, 170] or the ionization [40] signal as a function of
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the frequency of the IR laser. Important improvements in the sensitivity of the near-IR spec-
trosopy have been brought by IR absorption in slit jets [171, 172] and cavity ring-down (CRD)
spectroscopy [173–176]. Slit jets are used to increase the interaction path between the molecular
species and the laser beam/pulses. Cavity ring-down spectroscopy is an absorption spectrosopy
with very high sensitivity. It is not affected by fluctuations in the laser-source intensity because it
measures the absorption rate rather than the absorption magnitude of light pulses travelling back
and forth between two plano-concave mirrors forming a high-Q cavity. Since the light pulses in
the cavity traverse through multipassing enormous distance (several kilometers), even very small
absorptions can be readily detected.
The far-infrared (far-IR) spectroscopy covers the spectral range 20-150 cm−1. It is also referred
to as a vibration-rotation tunnelling spectroscopy since its main application area is the investiga-
tion of the transitions between vibration-rotation tunnelling states. This technique was pioneered
by Saykally [177], and successfully applied by Winnewisser and co-workers [178].

5.4 Microwave Spectroscopy

Microwave spectroscopy plays a very important role in structural assignments since it provides
very accurate rotational and distrorsion constants of the studied species [80]. It has been used
to study isolated molecules [179–181] and molecular complexes [182, 183]. The assignment
of molecular structures, however, is not straightforward since usually the parameters needed to
unambiguously assign the molecular structure are more than the data provided by microwave
spectroscopy. This warrants microwave spectroscopy to be combined with other techniques.
Another limitation of microwave spectroscopy is that it can investigate molecular species only in
their ground electronic state.

5.5 Raman Spectroscopy

Notwithsatnding Raman spectroscopy is applied to the condensed phase rather than to the gas
phase, it is listed here because it is a source of important information on the low-frequency
vibrational modes of molecules in a solution. It uses a laser to excite the molecules and the
subsequent Stokes or anti-Stokes emission is detected [119, 120].
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5.6 Rotational Coherence Spectroscopy

Rotational coherence (RC) spectroscopy was invented by Zewail and co-workers [121]. It yields
the moments of inertia of freely rotating molecular species from the measurements of their char-
acteristic rotational times. The so-measured moments of inertia in conjunction with theory can
provide information on the molecular structure. The characteristic rotational times are measured
by a pump-probe spectroscopy. A linearly polarized pump laser pulse excites all species whose
transition dipole moments are aligned parallel to the laser polarization. Some time after the
excitation the initial alignment breaks due to the different characteristic rotational times of the
different species. The initial alignment, however, recurs after a certan time period that depends
on the rotational constants. This characteristic time period is probed by a second time-delayed
laser pulse [119,122]. This technique has been demonstrated to yield rotational constants which,
along with theoretical predictions, can be used for the assignement of molecular structures [184].

5.7 Gas Electron Diffraction

The gas electron diffraction is a particular case of the electron diffraction [123]. It is applied for
the determination of molecular structures in the gas phase. The electron diffraction pattern is a
fingerprint of the molecular structure, i. e., from the observed electron diffraction pattern one
can reconstruct the molecular structure that brings it forth. The physics behind this technique is
based on the wave-particle duality nature of electrons. What is recorded is the total scattering
intensity, which depends on the electron momentum transfer, i. e., the difference between the
momentum vector of the impingent electron beam and that of the scattered one. The electron
momentum transfer consists of an atomic and molecular component. The former does not dis-
play any structure. The molecular component, however, has a pattern which results from the
interference between the spherical electron waves scatterred from the individual atoms building
up the molecules of the studies species. Thus, the molecular structure is encoded in the interfer-
ence pattern and hence can be worked back once the interference pattern is known. It is worth
to point out that for large molecules the determination of their structures only on the basis of
gas electron diffraction measurements is not always straightforward; it is often necessary in such
cases, information from other types of spectroscopy to be adduced [185].



Chapter 6

Resonance Enhanced Two-Photon
Ionization Spectroscopy in Molecular
Beams

S. C, P. Q. W, R. K, T. C, J. E. B,
 H. J. N P. SPIE 5830, 246 (2005).
High-resolution Doppler-free resonance enhanced two-photon ionization
(R2PI) spectroscopy with mass selection of jet-cooled (2-12 K) molecular
species is renowned as a powerful experimental technique for studying of
isolated molecules and molecular complexes in the gas phase. It allows ro-
tationally resolved (FWHM = 70 MHz) spectra of the vibronic bands of the
S1 ←− S 0 electronic transition of the studied molecular systems to be mea-
sured at their mass channel. The so-obtained spectra are analysed by a spe-
cially designed computer-assisted fitting routine based on genetic algorithms
and thus accurate rotational constants in the ground, S0 and the first excited, S1

electronic state, respectively, and the transition moment ratio of the observed
species can be determined.
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Figure 6.1: Resonant two-photon ionization (R2PI) scheme.

6.1 Resonance Enhanced Two-Photon Ionization (R2PI) UV
Laser Spectroscopy

UV R2PI spectroscopy of jet-cooled molecular species explores the transitions between the elec-
tronic ground, S0, state and the first excited, S1, state. All of the studied molecular systems are
produced at low rotational temperature via supersonic jet expansion. The R2PI technique em-
ploys one excitation photon to promote the molecules from their ground, S0, electronic state to
the first excited, S1, electronic state and a second photon to ionize them. The energy scheme is
presented in Fig. 6.1.

There are two types of R2PI experiments: one-colour (see Fig. 6.1a) and two-colour (see Fig. 6.1b).
In the first type, two photons with the same energy (ν1) from a single light source are used both
for the excitation and ionization steps. The drawback of this scheme is that when scanning a
broad region in the S1 electronic state, the total photon energy (2ν1) may exceed the dissociation
energy in the ion and thus lead to an undesired fragmentation of the studied species, especially in
case of weakly bound complexes. This shortcoming is overrun by using a two-colour ionization
scheme, in which one photon with energy ν1 is employed to excite the molecules from their elec-
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tronic ground state to the first excited electronic state and a second photon with a constant energy
(ν2 = const) is used to ionize the already excited molecules. The energy of the excitation photon
is scanned and the one of the ionization photon is fixed to a value which exceeds (typically 100
cm−1) the ionization limit but is below the dissociation energy of the cluster ion. The excitation
and the subsequent ionization occur only if the resonance condition is fulfilled (see Eq. 6.1).

∆E = hν1 = En − Em (6.1)

With respect to the linewidth of the scanned laser, R2PI spectroscopy may be low- and high-
resolution. The low-resolution R2PI spectroscopy is used to find the position of the vibrational
transitions, and the high-resolution spectroscopy yields the rotational structure of the respective
vibronic bands.

6.2 Experimental Set up

The experimental set up comprises three functional units: vacuum equipment with pulsed heat-
able nozzle for production of jet-cooled molecular species [11, 101, 102] and a coupled time-
of-flight mass spectrometer with an ion detector, a laser system for low- and high-resolution
spectroscopy, and a data acquisition system. They are described in detail in the following sub-
chapters.

6.2.1 Cold Supersonic Molecular Beams

The supersonically jet-cooled molecules and molecular complexes are produced by adiabatic ex-
pansion through a pulsed nozzle into vacuum. The vacuum chamber consists of two differentially
pumped subchambers: a forechamber and an interaction chamber (see Fig. 6.2).

The forechamber contains the pulsed nozzle, and the cold molecular beam is produced there.
It is evacuated by a turbomolecular pump (Balzers TPU 2200, 3200 l/s) maintaining vacuum
in nozzle-nonoperating regime of 9.10−9 mbar. When the nozzle is operating, the pressure can
increase up to 5.10−5 mbar. The interaction chamber is connected to the forechamber through a
skimmer with a clearance of 1.5 mm, through which the molecular beam passes. The interaction
chamber is the place where the interaction between the molecules and the laser pulses takes place.
It is also the receptacle of the time-of-flight mass spectrometer. The vacuum in this subchamber
is produced by a turbomolecular pump (Balzers TPU 510, 510 l/s). On two of the opposite walls
of this subchamber, there are quartz windows that transmit the counterpropagating UV laser
pulses.
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Figure 6.2: Schematic view of the molecular-beam set up and the time-of-flight mass spectrom-
eter set up.

The cold molecular beam [11, 101, 102] is produced by expansion of the investigated species
entrained in a carrier gas through a heatable (up to 120◦ C) nozzle with an orifice diameter
of 300 µm. The sample is contained in a small cup inside the nozzle, just before the orifice.
This allows for the vapours of the sample to mix with the carrier gas prior to the expansion.
The container can be heated and the temperature can be maintained stable (within 0.5◦ C) by a
programmable electronic thermocontroller (H G 901). Solvent molecules (such as
water, acetylene, methanol, etc.) can be introduced together with the buffer gas. In this case,
the buffer gas is mixed with the solvent molecules in a metal cylinder. In this way, the partial
pressure of the two components (buffer gas and solvent) can be precisely controlled (within
several mbar). The so-obtained gas mixture is supplied to the nozzle where it homogenizes with
the investigated species. The carrier gas is usually Ar since it favours the collisional cooling due
to its large atomic mass. Ne can also be used, though the cooling process in this case is not very
efficient. The stagnation pressure of the carrier gas inside the nozzle is typically in the range
2-4 bar. The molecular beam is laced through a conical skimmer (see Fig. 6.2). The skimmer
position is fixed but the nozzle position is adjustable so that the nozzle to-skimmer distance
can be optimized as a trade-off between the ion signal intensity and the Doppler broadening.
Table 6.1 (Taken from [36]) presents the Doppler broadening at a skimmer orifice diameter of
1.5 mm as a function of the buffer gas and the nozzle-to-skimmer distance.

Usually, the Doppler broadening is reduced down to 40-50 MHz. The ions produced as a result
of the interaction between the molecular beam and the laser pulses are mass selected with a
homebuilt [186, 187] linear Wiley-McLaren [188] time-of-flight (TOF) mass spectrometer (see
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Carrier gas Nozzle-to-skimmer distance Doppler broadening
mm MHz / cm−1

Ne 50 85 / 0.0028
Ne 100 40 / 0.0013
Ar 50 60 / 0.0020
Ar 100 30 / 0.0010

Table 6.1: Doppler broadening at a skimmer orifice diameter of 1.5 mm as a function of the
carrier gas and the nozzle-to-skimmer distance. For comparison, the Doppler broadening of
C6H6 in a gas cell at room temperature is 1600 MHz (0.053 cm−1) [36].

Fig. 6.2). The ion optics of the spectrometer consists of three elements (deflectors), which create
an electric field deflecting the ions from the initial straight trajectory of the molecular beam in
a direction perpendicular to the plane defined by the molecular beam and the path of the laser
pulses. Thus, the ions are targeted at the detector, which is on top of the interaction chamber. The
deflector comprises two regions: the ion extraction region and the ion steering region. The laser-
generated ions are extracted by the electric field created between the repeller plate (bottom plate
in Fig. 6.2), to which a voltage of +300 V is applied, and the diafragm (middle ring in Fig. 6.2),
to which a voltage of +220 V is applied. The upward trajectory of the extracted ions is corrected
by the weaker electric field formed by the diafragm and the mesh (grounded) (upper plate in
Fig. 6.2). The ions pass through a drift region of 20 cm and then are detected by microchannel
plates whose amplification ranges between 106 and 108. It is well-known that the nonrelativistic
kinetic energy of charged particles is proportional to the charge and the potential difference.
Mathematically, this relationship is expressed by the equation:

1
2

mv2 = eU (6.2)

Since the R2PI experiments are concerned with singly ionized molecules and molecular com-
plexes and the applied electric field in the TOF is the same for all ions, the above equation can be
recast to demonstrate that the arrival time of the ions at the detector is proportional to the square
root of their mass:

t ∝ √m (6.3)

Thus, the measured arrival time can be easily transformed into ionic mass. By using referent
molecular systems (e. g. C6H6), the proportionality constant has been determined to be 2.70
µs.u−2.
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6.2.2 Laser System

The laser equipment encompasses two functional laser units, presented schematically in Fig. 6.3.

• broadband tuneable dye laser, which is used as a source both for the excitation and ioniza-
tion photons in one-colour low-resolution experiments, and as a source for the ionizsation
photons in two-colour high-resolution experiments.

• pulsed amplified narrow-band single-mode continuous wave (cw) ring dye laser, which
provides the excitation photons for the two-colour high-resolution measurements.

 

Ar+ laser Ring Dye laser
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Figure 6.3: Schematic representation of the laser system for low- and high-resolution resonance
enhanced two-photon ionization experiments.

Ionization Laser

The ionization photons are produced by frequency doubling in abeta-barium-borate (BBO) or
potassium-dihydrophosphate (KDP) crystal of the output pulses of a commercial tuneable broad-
band dye laser (L P FL2002) with a linewidth of 0.4 cm−1 (FWHM) . This laser has
an oscillator and an amplifier. The frequency tuning is performed by tilting of a diffraction
grating, which plays also the role of a high-reflective rear mirror of the oscillator. Both oscillator
and amplifier are pumped transversely by a XeCl excimer laser (L P EMG 203 MSC)
generating pulses at 308 nm with an energy of 230 mJ and duration of ca. 18 ns (FWHM). The
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frequncy-doubled dye laser pulses have an energy of the order of 1 mJ. The so-produced UV
laser pulses pass through a telescopic system before they enter the vacuum chamber. This allows
for the laser spot size at the interaction point with the molecular beam to be controlled.

Single Mode cw Ring Dye Laser

The narrow-band single-mode cw laser is a ring dye laser (C CR-699-21) operating
with Rhodamine 6G for the range between 550 and 610 nm, and with Coumarin 521 for the
range between 510 and 550 nm. It generates cw laser beam with a bandwidth of 2 MHz and
an output power ranging from 200 to 500 mW, depending on the pump laser power and the dye
used. Single seamless scans within 30 GHz (1 cm−1) are routinely performed. The pump source
for the ring laser is an Ar+ ion laser (C I 400) operating at its strongest lines at 488
nm (for Rhodamine 6G) and 514 nm (for Coumarin 521). The pump power varies between 4 W
and 6 W.

Pulsed Amplification

Pulsed amplification was invented by Hänsch and Wallenstein [189, 190], first realized by Sa-
lour [191], and applied to molecular spectroscopy by Riedle et al. [192]. The output of the
single-mode ring laser is pulsed amplified in a three-stage homebuilt amplifier. The latter con-
sists of three dye cells. The seeding cw beam goes through the three cells where it is transversely
amplified by the pulses of the excimer laser described above (see Sec. 6.2.2). The energy of the
excimer-laser pulses is not distributed evenly at the three cells but in proportion 10:20:70 start-
ing from the first one. There are pinholes and interference filters down the seeder beam path to
prevent generation of amplified spontaneous emission . The so-amplified high-resolution laser
pulses are coupled into a (BBO / KDP) for second harmonic generation (SHG). The frequency
doubled pulses are nearly Fourier [193–195]. Their frequency bandwidth is ca. 70-100 MHz,
pulse duration 18-20 ns and maximum energy 0.5-1.0 mJ. They are then laced through a tele-
scopic system, similar to the one used for the broadband laser pulses (see Sec. 6.2.2), prior to
being steered into the vacuum chamber (see Sec. 6.2.1 and Fig. 6.2) where they counterpropagate
with the pulses from the broad-band dye laser and overlap with them in space and time at the
crossing point with the molecular beam.

Frequency Measurement and Relative Calibration

The absolute frequency of the spectra is measured automatically with a wavemeter (A 007),
which is characterized by a precision of ∆ν/ν=10−8 and absolute frequency measurement of
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0.003 cm−1. The relative calibration of the high-resolution spectra is performed by simultaneous
recording of the fringe pattern of a confocal Fabry-Perot interferometer whose free spectral range
is 150.09590 MHz.

6.2.3 Control of the Experiment. Data Acquisition System

For the laser pulses and the cooled molecules to arrive simultaneously at the interaction point, the
opening of the nozzle and the excimer laser pulse generation must be concerted. The coordination
is realized by a master trigger that sends trigger pulses to the nozzle controller (it can control the
nozzle opening (typically 50 µs) and hence, the quantitity of the ejected molecular species) and a
delay generator (S R S DG 535). The latter determines the time after the
nozzle opening at which the excimer laser must produce a shot. This is the time necessary for the
ejected from the nozzle molecules to drift the distance from the nozzle to the interaction point
with the laser pulses. This delay can be manually controlled and optimized for every particular
case. To minimize the effect of the temporal jitter of the excimer laser, its pulses activate a
photodiode, which serves as a trigger setting time zero for the TOF and the data acquisition
system.
The data acquisition system consists of three boxcar integrators (S   SR
280) and a personal computer (PC). The boxcar integrator integrates the ion signal within the
specified time gate whose width is usually 50 ns or 100 ns. The signal is digitized and recorded
on a PC.
The laser scan (both for low- and high resolution experiments), the recording of the absolute
frequency markers, the relative calibration with the Fabry-Perot interferometer, and the data
acquisition system are controlled by a homemade software operating in LabVIEW environment.

6.3 Data Analysis of Dense Highly Resolved Spectra:
Computer-Aided Rotational Fit Based on Genetic Algo-
rithms

The high-resolution UV spectra of the vibronic bands of large-sized molecules are usually quite
congested. They normally feature densely spaced peaks which are formed by aggregation of
rotational lines. That is why, the conventional method of single rotational line assignment is not
feasible. For the correct interpretation of the experimental data and extraction of relevant scien-
tific information such as rotational constants and transition moment (TM)!ratio, one has to resort
to special computer-assisted fitting techniques. There exist several approaches to the fitting of
experimental spectra, and all of them employ well-established procedures for finding maxima
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in a multidimensional parameter space. They include simulation annealing, downhill simplex
method, gradient method, etc. [196]. These methods have been successfully implemented in the
analysis of highly resolved spectra of isolated molecules and molecular complexes in the gas
phase [197–199]. Usually, they provide very reliable and accurate data on rotational constants,
transition moment (TM)!ratio, rotational temperature, etc. in cases when the cross correlation
between the experimental and theoretical spectra manifests a prominent maximum. This occurs,
mostly, when the experimental spectra are not too dense and exhibit a well-expressed structure.
A drawback of these algorithms is that they may adhere to a local maximum and miss the global
one, which makes them strongly dependent on the choice of the starting values of the parameters.
A step further to overcome this problem, is the development of fitting routines based on genetic
algorithms (GA), which have been successfully applied to the analysis of highly resolved spectra
with densely spaced peaks or with a low signal-to-noise ratio [139, 200–205], and it has been
even applied to the high-resolution spectra of pliant biologically relevant molecules and their
complexes [201, 205]. A new software package employing genetic algorithms has been devel-
oped in our group. The methodology of the computer-aided rotational fitting routine based on
genetic algorithms is schematically described in Fig. 6.4.
As an initial step, the program generates several trial solutions based, in most cases, on arbitrary
values of the participating parameters. Any trial solution is referred to as an individual. Any set
of trial solutions is termed population. The size of the population, i.e., the number of solutions
in a given set, is a free parameter and it can be user-defined. Normally, this number depends on
the particular problem and varies between several tens to several hundreds. After a population
has been created, there comes the second step, the evaluation. The quality can be ranked and a
special number called fitness is used as an indicator for the quality. Usually, the fitness is nor-
malized and it takes on values in the range between zero and one. As a figure of merit for the
quality of the trial solutions is used the comparison of any of the simulated spectra with the ex-
perimental one. The comparison is based, usually, either on cross correlation or on least squares
fit. Experience shows, however, that cross correlation yields better results. When the spectra are
completely different, the fitness tends to zero, and vice versa, when the spectra are very similar,
the fitness converges to one. When the quality estimation is over there comes the selection step,
in which of all initially generated spectra only the fittest ones are selected and subjected to a fur-
ther treatment. The number of selected and preserved spectra is a free parameter. The selected
spectra are allowed to bring forth a new generation through the processes of reproduction [200].
This process generates two new solutions; each of them having features from either of the parent
ones. Some mutations using random number generator are applied to the new generation. This
operation is necessary since it exploits the whole multidimensional space and prevents clinging
of the solution to a local maximum. When the described procedure is repeated iteratively, it
ultimately yields the best solution. Very often, it is necessary that the contribution of the peaks
in P and R branches, respectively, be emphasized. For this purpose, the experimental spectrum
is multiplied by a specially designed weighting function prior to being cross correlated with any
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of the synthesized spectra. This approach has turned out to be successful in many cases. To
augment the efficiency of the fitting routine, the explored multidimensional volume can be re-
stricted by imposing some constraints to the possible values of the fitted parameters. To enhance
the power of this method, in principle, several auxiliary techniques can also be employed [200].
They include elitism and hybridization. The elitism prevents the best individuals from a cer-
tain generation from crossover and mutation and passes them on to the next generation intact.
This option increases the efficiency of the global optimization algorithm. The hybridization is a
combination of several optimizing strategies depending on the particular optimization problem.
The hybridization may considerably enhance the capability of the program when some specific
features of the task are utilized.
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Figure 6.4: Block diagram of the computer-assisted rotational fit routine based on genetic algo-
rithms.
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Chapter 7

Evidence for a C-H· · ·π Type Weak
Ineraction: 1:1 Complex of Styrene with
Acetylene

S. C, P. Q. W, J. E. B, T. C,  H. J. N,
P. C. C. P. 9, 837, (2007).
The 1:1 complex of styrene with acetylene has been studied by mass selec-
tive low- and high-resolution UV R2PI spectroscopy combined with genetic-
algorithm-based computer-aided fit of the spectra with partial rotational res-
olution and high level ab initio quantum chemistry calculations. Two stable
conformeric geometries of the 1:1 complex of styrene with acetylene have
been theoretically found: one with acetylene binding to styrene as a proton
donor and one with acetylene acting as a proton acceptor. From the analysis
of the vibronic structure of the S 1 ←− S 0 spectrum and the fit of the highly
resolved spectrum of the 00

0 origin band of the complex, it is shown that the
favoured conformation is the one in which acetylene binds to the benzene
ring of styrene through formation of a nonconventional hydrogen bond of C-
H· · · π type with no marked change of the transition moment orientation of
styrene. The styrene moiety remains planar and the acetylene molecule is
tilted by a small angle of 4◦ relative to the C6 symmetry axis of the benzene
ring, most likely, due to the reduced symmetry of the benzene ring π electrons
rather than to a direct interaction with the vinyl group.
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7.1 Introduction

Dimeric molecular complexes which are bound by weak π-hydrogen bonding interactions, a
classical prototype of which is the benzene-water mixed dimer, have attracted a lot of attention
for spectroscopic investigation in recent years. The species serve as models to investigate the
details of the π-hydrogen bonding interaction potentials, which are believed to play a vital role
in supramolecular assemblies and crystal engineering [206, 207]. The weakest of this noncon-
ventional hydrogen bonding is the C-H· · · π type, wherein a CH group is the hydrogen bond
donor [39]. The delicateness of the interaction can be recognized by comparing the acid dis-
sociation constants of alkanes, e.g., the pKa of methane is 49 [208], with those of conventional
hydrogen bond donors, e.g., OH of water (pKa = 15.74). A recent high level ab initio calculation
on hydrogen-bonded acetylene-ethane complex, performed by Tsuzuki et al. [209], predicts that
the binding energy is only 1.82 kcal/mol (629 cm−1). Thus, hardly can the species be distin-
guished from a typical van der Waals complex and hence can be placed at the borderline of the
two categories of interactions. Nevertheless, there are experimental evidences for the existence
of such a C-H· · · π hydrogen bond; it is supposed to be important in crystal packing and molec-
ular recognition [39, 210]. The acidity of CH groups is largely enhanced in alkynes e.g., pKa

of acetylene is 25 [208]. Thus, the dimeric complex of acetylene (C2H2) with benzene (Bzn)
is easily formed in a supersonic jet expansion and the complex has been the subject of several
spectroscopic studies in recent years [38, 41, 211, 212]. Fujii et al. [41] have recently performed
an IR-UV double resonance spectroscopy measurement on the Bzn·C2H2 mixed dimeric com-
plex and their results reveal that the antisymmetric C-H stretching vibration of the C2H2 moiety
exhibits a large red shift (22 cm−1) in the complex and the shift shows a positive correlation with
the π-electron density of the phenyl ring, which in turn indicates that the C-H bond of C2H2

is bound to the π-electrons of the ring. Quantum chemistry calculations predict that the C2H2

moiety is placed on the C6 axis of the benzene ring and calculated stabilization energy (MP2
calculation extrapolated at the basis set limit incorporating coupled cluster CCSD(T) correction
terms) is 2.83 kcal/mol (978 cm−1). In the present study, the vibronically and rovibronically re-
solved electronic spectra for the S 1 ←− S 0 transition of a 1:1 complex of acetylene (C2H2) with
styrene (ST) has been measured in a supersonic jet expansion. The goal is to explore how the
intermolecular interaction potential, which is manifested in the resolved electronic spectrum, is
affected on increasing the acceptor π-electron density of the phenyl group by vinyl substitution.
The structure and the atom labels of the ST·C2H2 complex are shown in Scheme 7.1.

In the case of the 1:1 complex of acetylene with Bzn, the 61
0 transition of the latter shows only

a single peak in both FE [211] and R2PI spectra [38, 211, 212]. The upper limit of the bind-
ing energy of the complex in the S1 state has been estimated to be 680 cm−1 by comparing the
dispersed fluorescence spectral features of the complex as a function of the excitation excess
energy. In contrast, the R2PI spectrum of the 1:1 Bzn·H2O complex is complicated because of
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Figure 7.1: Atom labels of the ST·C2H2 complex. O is the geometrical centre of the benzene
ring.

large-amplitude tumbling motion of the water molecule on the surface of the benzene ring [213].
With vinylbenzene (ST) as the hydrogen bond acceptor and H2O as donor, the one-colour R2PI
spectra for the S 1 ←− S 0 transition of the clusters have been measured recently by Mahmoud
et al. [214]. The signal for the 1:1 complex appears very weak. The 00

0 band shows a blue shift
of 22 cm−1 compared to bare ST, which can be compared with +50 cm−1 shift for the Bzn·H2O
1:1 complex. The large-sized clusters exhibit extensive fragmentation following the two-photon
ionization and this behaviour is similar to that of the Bzn·H2O large-sized clusters.
On the other hand, we have recently shown that on substituting the para position of ST by a
fluorine atom, the fragmentation channel following the two-photon ionization of the 1:1 ST·H2O
complex is completely blocked and the intensity of the vibronic bands of the 1:1 complex ap-
pears to be quite strong [203].
In the present case, there are several possible sites for binding of the C2H2 molecule with ST. We
have discerned these possibilities using high-resolution spectroscopy. Quantum chemistry cal-
culations at the MP2 and B3LYP level of theory with an extended basis set have been performed
to substantiate the experimental results.
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7.2 Experiment and Data Processing

The low-resolution spectra of ST and its single and double complexes with C2H2, as well as
the high-resolution spectra of ST and the ST·C2H2 complex have been measured by R2PI spec-
troscopy with mass selection in a supersonic jet-cooled molecular beam!supersonic using the
experimental set up thoroughly descrbed in Sec. 6.2. ST was bought from Fluka with a purity of
96% and used without further purification. No heating was used. The ST vapours were entrained
in Ar mixed with C2H2 at a backing pressure of 3 bar. The Ar+ ion laser was operating at 514
nm yielding output power of 4 W necessary to pump the ring dye laser. The latter was using
Rhodamine 6G dye achieving an output power of 300 mW.
For the analysis and interpretation of the measured highly resolved spectra of the ST monomer
and the ST·C2H2 complex, the computer-assisted fitting routine based on genetic algorithms (see
Sect. 6.3) has been employed. For the fits of both spectra, 500 generations with 500 individuals
in each have been used. The attained best-fit cross correlations are 98% and 95% for the ST
monomer and the ST·C2H2 complex, respectively.

7.3 Results

7.3.1 Ab initio Calculations

Ab initio quantum chemistry calculations both for the styrene monomer and its complex with
C2H2 have been performed at the MP2 and B3LYP DFT level of theory for the ground, S0,
electronic state, and at CIS for the excited, S1, electronic state, respectively, with 6-311++G(d,
p) basis set using Gaussian 03 programme package [70]. The structural and inertial parameters
of the ST monomer for the ground, S0, and the first excited, S1, electronic state, respectively, and
the transition moment ratio, are listed in Table 7.1.

To find the energetically most preferred binding sites of C2H2 to ST, a grid search with a single
point energy calculation was performed for the ground, S0, electronic state. In this search the
position of the C2H2 moiety was scanned along two mutually orthogonal circumferences with
a common origin located at the centre of the benzene ring thus mapping a sphere around the
ST molecule. The azimuthal angle about the long benzene axis, C(1)-C(4), was scanned from
0 to 180◦ by a step of 20◦, and the azimuthal angle about the short axis was scanned from 0 to
360◦ by a step of 20◦. Totally 360 points were explored. The two lowest-energy conformations
were selected and subjected to a full structural optimization. The resulting structures include one
out-of-plane, herein referred to as Conformer I, and one in-plane, designated as Conformer II.
In Conformer I, C2H2 is located above the benzene ring of ST in an upright position and acts
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(a)
Conformer I (0.0)

(b)
Conformer II (0.15 kcal/mol)

Figure 7.2: Electronic ground state, S0, structures for the two lowest-energy conformers of the
ST·C2H2 complex optimized at the B3LYP/6-311++G (d, p) level of theory. The relative energies
(kcal/mol) calculated at the same level are given in parentheses. Details and comparison with the
MP2/6-311++G (d, p) calculations are presented in Table 7.1.

as a donor!proton. In Conformer II, C2H2 is almost perpendicular to the plane of the benzene
ring and binds to the latter sideways, acting as a . (see Fig. 7.2). The most important structural
parameters obtained from the geometry optimization both for ground, S0, and the first excited, S1,
electronic state, respectively, and the binding energy without and with counterpoise correction
[215] for the basis set superposition error (BSSE) for the two conformations are summarized
in Table 7.1. Conformer II is less stable than Conformer I by 1.07 kcal/mol (MP2) and 0.15
kacl/mol (B3LYP), respectively. For the optimized structures, I and II, in the excited, S1,
electronic state, the vibrational frequencies have been calculated. For Conformer II, however,
one negative frequency (-3.4 cm−1) was obtained and though the applied stringent constraints
on the energy threshold the negative frequency persisted. This is an indication that most likely
the observed structure corresponds to a on a very flat excited state potential surface resulting in
a small negative frequency. The frequencies corresponding to the excited state of Conformer I
are positive, and they are compared with the observed vibrational bands in the low-resolution
spectrum of ST·C2H2.
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Figure 7.3: Low-resolution one-colour R2PI spectra of the S1 ←−S0 electronic transition of
jet-cooled ST and its complexes with C2H2 measured at their mass channels: (a) ST monomer
(m/z = 104), 00

0 origin band is at 34 758 cm−1; (b) ST·C2H2 complex (m/z = 130 cm−1), 00
0

origin band is at 34868 cm−1; (c) ST·(C2H2)2 complex (m/z = 156), 00
0 origin band is at 34

903 cm−1. They have been normalized to the intensity of the main band of the ST monomer.
Corresponding peaks are designated by vertical dashed lines.

7.3.2 Vibronic Spectra of the ST·C2H2 Cluster

Figure 7.3 shows the low-resolution one-colour R2PI spectra of the S 1 ←− S 0 electronic transi-
tion of a) ST monomer (m/z = 104), b) ST·C2H2 complex (m/z = 130), c) ST·(C2H2)2 complex
(m/z = 154). The vertical dashed lines indicate the corresponding peaks in the ST monomer
spectrum descending from fragmentation of its complexes with C2H2.

The blue-shifted bands in the ST spectrum at 110 cm−1, 122 cm−1, and 126 cm−1 result from
fragmentation of the ST·C2H2 complex and the one at 144 cm−1 descends from fragmentation of
the ST·(C2H2)2 complex. The ST monomer spectrum compares well with the one from Mahmoud
et al. [214]. The origin band of the ST·C2H2 complex is 110 cm−1 blue-shifted relative to the
origin band of the ST monomer. This means that in the first excited, S1, electronic state the
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Figure 7.4: Low-resolution one-colour R2PI spectra of the S 1 ←− S 0 electronic transition of jet-
cooled ST·C2H2 complex (top) recorded at m/z = 130 mass channel and ST monomer (bottom)
recorded at m/z = 104 mass channel as a function of the relative excitation energy above the
individual electronic origin. The S1 ←− S 0, 00

0 origin band of the St·C2H2 complex is located
at 34 867 cm−1 and the one of ST is at 34 759 cm−1. The experimental band positions are
summarized in Table 7.2.

complex is destabilized compared to the ground electronic state. This effect is typical also for
the hydrated complexes of ST [214] in contrast to the van der Waals clusters, as can be observed
in the case of the ST·Ar complex [216, 217].

In Fig. 7.4, the low-resolution R2PI spectra of the ST monomer and the ST·C2H2 complex are
plotted with a common origin position as a function of the relative excitation energy. In this
way the features arising from the intermolecular vibrations in the ST·C2H2 complex can be eas-
ily identified. It is obvious that all peaks in the low-frequency region up to ca. 100 cm−1 in
the spectrum of the ST·C2H2 complex do not have counterparts in the vibronic spectrum of the
ST monomer and hence can be attributed to intermolecular vibrational bands of the cluster. The
peaks at 11 cm−1 and 60 cm−1 have been assigned to the vibronic band 291

1 and the cross-sequence
band 411

0420
1 of ST, respectively [214]. The experimental vibrational frequencies of the ST·C2H2

complex are listed in Table 7.2, where the corresponding theoretical frequencies obtained from
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the vibrational analysis of the excited, S1, electronic state of Conformer I are also shown. A

Peak No Exp.position, cm−1 Calc. position, cm−1 Conformer I Assignment
1 0 0 00

0

2 12.7 11 A Bending
3 17.8 13 B Bending
4 25.0 22 2A
5 28.7 24 A + B
6 31.1 34 C Stretching
7 34.9 - Fragmentation
8 45.6 45 D Swinging
9 50.1 48/52 B + C or 3B
10 55.2 56 A + D
11 60.2 58 E Swinging
12 68.4 69 A + E
13 78.3 78 C + D
14 84.8 - Fragmentation
15 89.9 90 2D
16 99.4 98 F
17 104.4 103 D + E

Table 7.2: Experimental and calculated(CIS/6-311++G (d, p)level of theory) intermolecular
vibrational frequencies of the ST·C2H2 complex. A uniform scale factor of 0.94 has been applied
to all vibrational frequencies of Conformer I. Capital Latin letters from A through E designate
the fundamental vibrational modes. F refers to the intramolecular bending mode of the vinyl
group in ST. For details of the assignment, see text.

uniform scale factor of 0.94 has been used for all theoretically predicted vibrational frequencies.
There is a good agreement between the experimental and the theoretical band positions of Con-
former I. The strongest single peak has been assigned as the origin band of the ST·C2H2 complex.
The vibrational assignments of the observed vibronic bands are presented in the last column of
Table 7.2.

7.3.3 High Resolution Spectrum of the 00
0 Origin Band of ST·C2H2

ST Monomer

As a first step towards the investigation of the ST·C2H2 complex, we measured the high-resolution
R2PI spectrum of the ST monomer. The resulting R2PI spectrum of the S 1 ←− S 0 band of the
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Figure 7.5: High-resolution two-colour UV R2PI spectrum of the S 1 ←− S 0, 00
0 origin band

of ST recorded at m/z=104 mass channel with the rotationless transition located at 34 758.79(1)
cm−1. Upper trace: experimental spectrum. Lower inverted trace: the best-fit simulated spectrum
yielding the constants listed in Table 7.3. For details, see text.

ST monomer located at 34758.79(1) cm−1 measured at its mass (m/z=104) channel is depicted
in Fig. 7.5 (upper trace).

Its structure measured at spectral resolution of 110 MHz is very similar to that measured previ-
ously using fluorescence detection [218]. The obtained best-fit rotational constants are in a very
good agreement with the ones from microwave [219] and fluorescence detection [218] experi-
ments. They produce only a small inertia defect (-0.68 amuÅ and 0.20 amuÅ for the ground, S0,
and the first excited, S1, electronic state, respectively). This result affirms the planar structure
of the ST monomer both in the ground and the first excited electronic state. The relatively large
error in the values of the experimental rotational constants corroborate the conclusion of Lom-
bardi and co-workers [220] that the spectrum is not sensitive to changes in the absolute values
of the rotational constants. The best-fit spectrum is shown in Fig. 7.5 (lower inverted trace).
The achieved cross correlation in this case is as high as 98%. Though not apparent from the
appearance of the spectrum, it is almost completely a type with a very small b contribution. The
rotational temperature has been found to be 13 K and this is the reason for the relatively broad
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spectrum spanning over more than 5 cm−1. The final results of the GA fit of the high-resolution
spectrum are summarized in Table 7.3.

Rotational constant Ground State S0 Excited State S1

GHz cm−1 GHz cm−1

A 5.175(130) 0.1726(43) 4.993(128) 0.1666(43)
B 1.546(37) 0.0516(13) 1.532(37) 0.0511(12)
C 1.193(33) 0.0398(11) 1.173(34) 0.0391(11)
∆I=I0

c − I0
a − I0

b , amuÅ2 -0.68 -0.20
Transition moment ratio µ2

a : µ2
b : µ2

c 97:3:0
Origin ν0 , cm−1 34758.79(1)
Temperature T , K 13.6(7)
Best-fit cross correlation (%) 98

Table 7.3: Experimental rotational constants, transition moment ratio, origin band position, and
rotational temperature of the ST monomer from the GA- based computer-aided fit of the highly
resolved spectrum (Fig. 7.5) of the S 1 ←− S 0 00

0 origin band (see Fig. 7.3and Fig. 7.4) of ST
(for details, see text). The numbers in parentheses represent one standart deviation in units of the
least significant quoted digit. The uncertainty of the relative values of µ2

a, µ2
b, and µ2

c is 2%.

ST·C2H2 Complex

The highly resolved spectrum of the ST·C2H2 complex is shown in Fig. 7.6 (upper trace). Its
quality is not so good as the one of the ST monomer because of the low signal intensity. The
spectrum is superimposed on a background and covers more than 3.5 cm−1. It differs completely
in structure from the spectrum of the ST monomer in Fig. 7.5.

The spectrum can be referred to as a hybrid a and b type, the latter being the dominating con-
tribution. It has a narrow central dip, a weak Q branch, and well expressed P and R branches
with irregularly densely spaced aggregations of rotational peaks with a minimum linewidth of ca.
250 MHz (FWHM). As in the case of the ST monomer, we employed the GA fitting routine to
analyse this spectrum. The stick spectrum was generated using asymmetric top Watson Hamilto-
nian [221–223]. The maximum rotational quantum number J considered for the calculations was
40. The simulated spectrum was obtained by convolution of the stick spectrum with a Gaussian-
shaped line with a linewidth of 150 MHz (FWHM). The optimum linewidth used to fold the stick
spectrum is slightly broader than the spectral resolution of our experiment [110 MHz (FWHM)].
We tentatively attribute this to saturation effects rather than to a short lifetime of the excited, S1,
electronic state. The rotational temperature has been determined to be 9.2 K, which is lower than
that of the ST monomer. A plausible explanation is that only the sufficiently cold species of the



86 Evidence for a C-H· · ·π Type Weak Ineraction: Styrene-Acetylene Complex

Figure 7.6: High-resolution two-colour UV R2PI spectrum of the S 1 ←− S 0, 00
0 origin band

of the ST·C2H2 complex recorded at m/z = 130 mass channel with the rotationless transition
located at 34 867.36(2) cm−1. Upper trace: experimental spectrum. Lower inverted trace: the
best-fit simulated spectrum yielding the constants listed in Table 7.4 (for details, see text).

complex of ST and C2H2 survive under molecular beam conditions and hence can be observed.
The experimentally deduced transition moment ratio is 22:78:0, which is a clear manifestation
of the hybrid character of the spectrum. The resulting rotational constants for both ground, S0,
and first excited, S1, electronic state together with the other molecular parameters are presented
in Table 7.4.

7.4 Discussion

The planarity of the ST monomer has been a subject of debate and extensive experimental
[218–220, 224–228] and theoretical [229–232] investigations for a long time. Our experimental
high-resolution results convincingly support the conclusion of Pratt and co-workers [218] that
ST is planar in both ground, S0, and first excited, S1 electronic state. The inertia defect from
our experiment (-0.68 amuÅ as well as those from microwave experiments [219] and highly re-
solved fluorescence excitation experiments [218] only slightly deviate from zero. This finding is
in line with the predicted flat torsional potential about the C(1)-C(α) bond of ST in the ground
state [30,219,229,231] and might be an indication that the energy minimum is at a nonszero but
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Rotational constant Ground State S0 Excited State S1

GHz cm−1 GHz cm−1

A 1.3731(330) 0.0458(11) 1.3671(360) 0.0456(12)
B 0.905(23) 0.03018(75) 0.894(20) 0.02982(66)
C 0.6886(69) 0.02297(23) 0.687(18) 0.02292(61)
Transition moment ratio µ2

a : µ2
b : µ2

c 22:78:0
Origin ν0, cm−1 34 867.36(2)
Temperature T , K 9.2(5)
Best-fit cross correlation (%) 95

Table 7.4: Experimental rotational constants, transition moment ratio, origin band position, and
rotational temperature of the ST·C2H2 complex from the GA- based computer-aided fit of the
highly resolved spectrum (Fig. 7.6) of the S1 ←−S0 00

0 origin band (see Fig. 7.3and Fig. 7.4) of
ST (for details, see text). The numbers in parentheses represent one standart deviation in units of
the least significant quoted digit. The uncertainty of the relative values of µ2

a, µ2
b, and µ2

c is 5%.

small torsional angle. Theoretically, planarity of ST in the ground electronic state, however, has
been found only by DFT B3LYP calculations (cf. Table 7.1). The calculation at the MP2 level
with 6-311++G(d, p) basis set yields nonplanar structure. The theoretical modelling of ST in the
first excited electronic state at CIS/6-311++G (d, p) level of theory predicts completely planar
geometry. The rotationally resolved spectrum of the ST monomer is sensitive to alterations of
the transition moment ratio [201, 218]. The experimentally found orientation of the TM vector
is in line with the predictions of our ab initio calculations on the excited electronic state. This
demonstrates that the CIS method with 6-311++G (d, p) basis set can adequately describe the
electronic excitation in a system with an unsaturated group covalently bonded to a phenyl ring.

The origin band of the ST·C2H2 complex is blue-shifted by 110 cm−1 relative to the origin band of
the ST monomer. This is a typical behaviour for π-bonded systems [13, 25–27, 29, 30, 233–241],
which suggests that most likely C2H2 binds to ST via formation of a C-H· · · π hydrogen bond
between the terminal C-H group of C2H2 and the π electrons of the phenyl ring in ST. On the
grounds of the ab initio calculated binding energies, the structure where C2H2 is the proton
donor (Conformer I) is the favoured one. The good agreement between the predicted theoretical
frequencies (see Table 7.2) and the observed vibronic bands (see Fig. 7.3 and Table 7.2) is a
further argument in addition to the energy considerations that Conformer I produces the mea-
sured spectrum. This finding is in accord with the results for similar weakly bound molecular
complexes [41, 43, 45, 211, 214, 242]. The blue shift in the case of the ST·C2H2 complex is big-
ger compared to the corresponding blue shifts in the ST·H2O complex [214]. This demonstrates
that upon electronic excitation the ST·C2H2 cluster is destabilized more than the ST·H2O com-
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plex. As seen, the ST·C2H2 complex (m/z=130) undergoes an efficient fragmentation into the
mass channel of ST (m/z=104) similar to the ST·H2O cluster (m/z=122) [214]. In the case of
one-colour experiments the most straightforward explanation for the fragmentation might be the
high excess energy of the ionization photon above the dissociation limit in the cluster ion. The
observed efficient fragmentation also in the case of the two-colour high-resolution experiments
suggests that the fragmentation mechanism of the ST·C2H2 complex is the same as in the case
of ST·H2O, i.e., the fragmentation results from a structural change between the neutral and the
ionic cluster [214] as the polarizable part of the C2H2 π electrons confined between the two car-
bon atoms would try to reorient the ST species. This leads automatically to high excess energy
after an efficient ionization resulting in a subsequent fragmentation. From the analysis of the
fragmentation pattern and the frequency assignments, we can infer that C2H2 binds to ST as a
proton donor forming a C-H· · · π bond with its CH group and the π electrons of the benzene ring.
The alternative structure, in which C2H2 acts as a proton acceptor and bonds via its delocalized π
electrons to one H atom from the benzene ring and one H atom from the vinyl group (Conformer
II), has not been observed in our experiment. It is worthwhile to note that a similar binding pat-
tern has been theoretically predicted also for Bzn·C2H2 complex [43,45]. This structure has been
found to pertain a very flat potential surface and it corresponds to a local potential minimum .
Very small negative values for the lowest vibrational frequencies of stationary point structures in
vicinity of the minimum have been observed, which correlates well with the ab intio predicted
negative vibrational frequency for Conformer II of the ST·C2H2 complex (see Sec. 7.3.1).

The most stringent and detailed information on the structure of the C-H· · · π bound complex of
ST and C2H2 can be retrieved from the analysis of its highly resolved UV spectrum with par-
tial rotational resolution. As seen from Table 7.1, the theoretical investigations at the MP2 and
B3LYP model theories predict different values for the tilting angle (α3 n· · ·C(16)-C(17)) of the
C2H2 moiety and the torsion of the vinyl group (τ1 C(β)C(α)C(1)/C(α)C(1)C(2)) for the more
stable Conformer I. It merits discussion whether the torsion of the side chain predicted by the
MP2 calculation results from an interaction between the attached C2H2 moiety or it is a com-
putational effect similar to the one in the case of the ST monomer where the MP2 theory fails
to predict the experimentally confirmed planarity. In the MP2 calculated structure of Conformer
I, the torsion of the vinyl group is accompanied also by a significant tilting of C2H2 relative to
the perpendicular n to the benzene ring plane in direction to the side chain. This suggests an
interaction between the π electrons of the vinyl group with the ones of C2H2. The inertial pa-
rameters of this structure, however, deviate noticeably from the ones deduced from the fit of the
highly resolved spectrum of ST·C2H2. The experimental rotational constants for the electronic
ground state, on the other hand, agree best with the ones resulting from the B3LYP calculations.
In the latter, the C2H2 moiety is only slightly tilted from the perpendicular to the benzene ring
plane. Obviously, in this geometry the relevant binding interaction is that between C2H2 and
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the π electrons of the benzene ring. It is worth to note that the torsion of the side chain in the
MP2 optimized geometries both for ST and ST·C2H2 is almost the same (cf. Table 7.1), which
eliminates a possible influence of C2H2 on the torsion of the side chain in ST. This observation,
in conjunction with the discrepancy between the experimental and the MP2 theoretical constants
for Conformer I, leads to the implication that the vinyl group bending out of the benzene ring
plane is a computational artefact. Thus, we can confidently conclude that the structure of the
ST·C2H2 complex observed under conditions of molecular jet expansion is closest to the one
predicted at the B3LYP level of theory.

The transition moment ratio found from the fit of the highly resolved spectrum (µ2
a:µ2

b:µ2
c =

22:78:0) is substantially different from the one of ST (µ2
a:µ2

b:µ2
c = 97:3:0) but is in excellent

accord with the one theoretically predicted for the ST·C2H2 complex, Conformer I. Since C2H2

is a nonpolar molecule and the interaction with the π electrons of the ring is weak, it is antic-
ipated that the formation of a complex between ST and C2H2 will not alter the orientation of
the transition moment vector of ST. To probe this statement, we calculated the projections of the
ab initio found TM vector of the ST·C2H2 onto three mutually perpendicular unit vectors with
a common origin at the centre of the benzene ring. The three unit vectors have been defined to
be collinear with the short and long benzene ring axes, and the C6 symmetry axis, respectively.
The result is that in Conformer I, the TM vector is polarized almost completely along the long
axis of the phenyl ring, i.e., no deviation of the TM vector upon complexation between ST and
C2H2 occurs within the accuracy of the experiment. Thus, the different TM ratio of the ST·C2H2

complex is a pure mass effect coming about because of the rotation of the principal axis system
due to the attachment of C2H2.

It is instructive also to compare the binding pattern and the interactions in ST·C2H2 with those of
similar systems. Mahmoud et al. [214] have shown that in the case of the ST·H2O complex H2O
binds out of the plane of the benzene ring along the C(1)-C(α) bond. It interacts both with the π
electrons of the phenyl ring and with those of the vinyl group, the latter interaction being slightly
stronger. The stronger interaction of H2O with the vinyl group determines the small blue shift
(21.5 cm−1) [214]. Unlike the case of the Bzn·H2O complex [243], in ST·H2O, the water moiety
is strongly shifted towards the side chain due to the additional interaction with the vinyl group.
This clearly demonstrates that ST provides two binding sites for proton donors: the π electrons of
the phenyl ring and the π electrons of the vinyl group. The discussed binding pattern of ST·H2O is
similar to the one characterizing the T-shaped structure observed in Bzn·(C2H2)2 [41]. Regarding
π electrons, the vinyl group is similar to C2H2 where the π electron density forms a ring around
and perpendicular to the C(16)-C(17) bond [45, 244]. This similarity lends a ground for treating
the interactions in the ST·C2H2 complex in a fashion similar to the Bzn·(C2H2)2complex. It has
been found [45, 244] that the most stable structures of the Bzn·(C2H2)2 complexes when both
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C2H2 moieties are on the same side of the benzene ring are the T-shaped ones: the two C2H2

molecules form a bond between the C-H group of one of the moieties and the π electrons of
the other one. We would expect a similar interaction also between C2H2 and the vinyl group,
if such existed, i.e., one of the C-H groups of C2H2 should point to the π electrons of the vinyl
group. The lack of an H atom directed towards the π electrons of the vinyl group precludes the
formation of an H· · · π vinyl group bond in the case of ST·C2H2. This brings the conclusion
that in the conjugated system of the benzene ring and the vinyl group in ST, the benzene ring
is the stronger proton acceptor from nonpolar molecules such as C2H2. In a simpler complex,
Bzn·C2H2, the C2H2 moiety lies on the C6 symmetry axis binding to Bzn through a C-H· · · π
bond [45, 242], a pattern established also for the case of ST·C2H2. The tilting of the C2H2

moiety in ST·C2H2 relative to the perpendicular axis to the benzene ring is brought about by
the asymmetry of the π electron density of the benzene ring due to their conjugation with the
π electrons of the vinyl group rather than to a direct interaction between C2H2 and the vinyl
group. The stronger interaction of the C2H2 moiety with the benzene ring in ST·C2H2 compared
to ST·H2O determines also the bigger blue shift.

7.5 Summary and Conclusions

The weakly bound complex of ST with C2H2 has been studied by mass selective low- and high-
resolution UV R2PI spectroscopy in combination with computer-assisted rotational fit analysis
and high-level ab initio calculations with extended basis sets. Two stable conformers of the
ST·C2H2 complex have been found by a grid search and subsequent structural optimization in
the ground state at the MP2/6-311++G (d, p) and B3LYP/6-311++G (d, p) level of theory, re-
spectively. In the lowest-energy conformer, C2H2 donates a proton to the π electrons of the
benzene ring of ST thus forming a nonspecific hydrogen bond of C-H· · · π type. In the second
lowest-energy geometry, C2H2 binds to ST sideways being a proton acceptor from two benzene-
ring H atoms. Only one conformational structure has been identified in the molecular beam from
the fit of the highly resolved spectrum of ST·C2H2 measured at its parent mass (m/z = 130)
channel and has been assigned to the ST·C2H2 conformer in which C2H2 is a proton donor. All
other bands of reasonable intensity have been assigned as vibrational states of the ST monomer
by comparison with the results from the CIS/6-311++G (d, p) calculations. In neither of the two
conformers, however, does the binding pattern of C2H2 to ST make the interaction between C2H2

and the vinyl group of ST feasible. The experimental results on the ST·C2H2 complex are satis-
factorily reproduced by the B3LYP-optimized structure where the C2H2 moiety is slightly tilted
to the benzene ring plane with ST being planar. The latter is in agreement with the planarity of
the ST monomer again confirmed by our high-resolution experiment. The observed small tilting
of the C2H2 moiety descends from the asymmetry of the π electrons of the benzene ring due to
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their conjugation with the ones of the vinyl group. No change of the TM orientation of ST has
been observed upon the cluster formation with C2H2. The different TM ratio in the ST·C2H2

complex compared to that in ST is a mass effect arising from the attachment of C2H2. The bind-
ing pattern of C2H2 to ST, the formation of a C-H· · · π-type hydrogen bond, and the traits of such
type of interaction support the results obtained for similar systems, e.g., Bzn·C2H2. This result
clearly demonstrates that though the conjugation and the competition between the two π-electron
systems, the one of the phenyl ring and the one of the vinyl group, the phenyl ring remains the
preferred binding site for C2H2.
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Chapter 8

van der Waals Bonding to a Molecule with
π-electron Conjugation: Complex Between
Styrene and Ar

S. C, P. Q. W, T. C, H. J. N, Z. P. C.
221, 1 (2007).

Combining high-resolution mass-selective resonance-enhanced two-photon
ionization spectroscopy analysed by genetic-algorithm-based computer-
assisted rotational fit and high-level ab initio calculations we were able to
determine the structure and the transition moment orientation of the styrene-
Ar complex. The results demonstrate that Ar binds to the benzene ring of
styrene. The binding site of Ar is 3.42 Å above the benzene-ring plane and is
close to the C6 symmetry axis of the aromatic ring, but slightly shifted to the
vinyl group, which implies that the binding pattern is perturbed by the pres-
ence of the bonded to the benzene ring vinyl group. The transition moment
ratio of the styrene-Ar complex is considerably different from the one of bare
styrene, this being a purely mass effect stemming from the reorientation of
the principal axes of inertia upon the cluster formation. The red shift of the
00

0 origin band of the styrene-Ar2 complex is almost twice that of the single
complex, indicating that the red-shift additivity rule holds in this case. On
this basis we conclude that the second Ar atom is bound to the opposite side
of the benzene ring.
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8.1 Introduction

Complexes between substituted benzene molecules and noble-gas atoms serve as prototype sys-
tems for exploration of microsolvation processes and weak van der Waals interactions with π-
electron systems, which play an important role in liquids and supramolecular assemblies. These
systems have been a subject of intense scientific interest over the last two decades [14, 17, 27,
210, 245–248]. A considerable insight into the nature of this type of weak interactions has been
achieved both by spectroscopic experiments [17–19,23,88,205,245,247,249–259] and advanced
theoretical modelling [258, 260–266]. Most of the systems considered to date include clusters
between a noble-gas atom and a molecule with a single π-electron system. Thus, in this case,
the binding pattern of the noble-gas atom to the host molecule is predominantly determined by
the aromatic ring that contains the π electrons, and is weakly perturbed by the presence of the
benzene ring substituent. Molecules containing an unsaturated carbon bond in a side chain co-
valently bound to a single benzene ring constitute an interesting class of species whose intrinsic
properties are determined by the conjugation and further delocalization of the two π-electron
systems [42]. Such molecules pose an interesting issue on the preferred binding site of the noble
gas atom, which can serve as a signature for the degree of electronic conjugation. The simplest
among the above-mentioned class of molecular species is styrene, which consists of a benzene
ring and a vinyl group covalently bound to it. It is known that ST exhibits a strong mesomeric ef-
fect and hence due to the electronic density delocalization the benzene ring is no longer expected
to be the only possible nesting site for a van der Waals bonded noble-gas atom. On the other
hand, a binding site off the benzene-ring plane can serve as a convenient probe for the planarity
of ST, which has been debated for a long time.

In this chapter, the investigations of the complex of ST and Ar and ST and two Ar are presented.
The experimental results include one-colour low-resolution R2PI spectra measured at the mass
channels of the ST monomer and the ST·Ar complexes as well as the rotationally resolved two-
colour spectrum of the of the origin band of ST·Ar along with the fitted spectrum. To support
the experimental findings, we performed high-level quantum chemistry ab initio calculations on
the structure and the energetics of the ST·Ar complex in both ground, S0, and first excited, S1,
electronic state. The π-electron interaction in ST is a challenge to ab initio calculations because
of the orbital delocalization. A possible consequence is the torsion of the side chain, which has
been discussed for a long time [219,220,225,226,228,229,232]. Microwave and high-resolution
UV spectroscopy have been used to investigate the planarity of the ST monomer. Here, we
suggest a much simpler method to check the planarity based on the possible slightly different
binding sites of an Ar atom (up and down) in case of an out-of-plane tilted side chain. It is
based on the nonequal binding energies in case of two different out-of-plane binding sites of Ar,
which should lead to a small splitting of the red-shifted electronic origin bands. In this work we



8.2 Experiment and Data Processing 95

demonstrate the application of this very accurate and sensitive approach to the case of ST.

8.2 Experiment and Data Processing

Both low-resolution spectra of ST, ST·Ar, and ST·Ar2 complexes as well as the high-resolution
spectrum of the ST·Ar complex have been measured by R2PI with mass selectivity in a super-
sonic molecular beam. The experimental set up has been described in detail in Sec. 6.2. ST
was bought from Fluka with a purity of 96% and used without further purification. The low-
resolution spectra of the three species, ST, ST·Ar, and ST·Ar2, were recorded under the same
experimental conditions, whereas the highly resolved spectrum of the ST·Ar complex was ob-
tained after an optimization of the backing pressure and the nozzle-to-skimmer distance. The
backing pressure was varied in the range between 2 and 3 bar, and a nozzle orifice of 300µm was
used. The skimmer-to-nozzle distance was optimized within the limits of 5 and 7 cm. The Ar+

ion laser was operating at 514 nm yielding output power of 4 W necessary to pump the ring dye
laser. The latter was using dye achieving an output power of 300 mW.

The analysis of the highly resolved spectrum of the ST·C2H2 spectrum has been performed with
the computer-assisted fitting routine based on genetic algorithms, described in detail in Sec. 6.3.
A stick spectrum was generated employing the asymmetric top Watson Hamiltonian [221, 222]
and a maximum quantum number J equal to 20. The best-fit spectrum of the ST·Ar complex was
produced after a fit using 200 iterations with 200 individuals. The achieved cross correlation is
96%.

8.3 Ab Initio Calculations

Ab initio quantum chemistry calculations at the MP2/cc-pVTZ level of theory for the structure
and at the MP2/6-311++G (d, p) level of theory for the frequencies in the ground, S0, electronic
state of the ST·Ar complex have been performed using Gaussian 03 programme package [70].
The present study involves weak van der Waals interactions and this warrants electron correla-
tion methods with extended basis sets to be used. The torsional angle about the C(1)-C(α) (see
Fig. 8.1) bond was kept fixed (0 deg) during the ground state structural optimization. The opti-
mized structure of the ST·Ar complex in the ground, S0, electronic state is depicted in Fig. 8.1.
The most important structural parameters obtained from the ab initio calculations for the ground,
S0, electronic state are summarized in Table 8.1. The three lowest vibrational frequencies along
with their assignments are also presented in Table 8.1 for comparison with the frequencies of the
three blue-shifted bands observed in the one-colour low-resolution spectrum in Fig. 8.2.
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Structural and inertial parameters Vibrational analysis
MP2/cc-pVTZ MP2/6-311++G (d, p)

Frequency, cm−1 Assignment
h, A 3.42 11.7 Long axis bending
s1, A 0.24 26.2 Short axis bending
s2, A 0.02 34.2 Stretching
A, GHz/cm−1 1.34753/0.04495
B, GHz/cm−1 1.02483/0.03418
C, GHz/cm−1 0.75026/0.02503

Table 8.1: Structural and inertial parameters: distance from the Ar atom to the benzene-ring
plane, h, projections of the Ar atom onto x and y axes of the benzene-ring-fixed coordinate
system, s1, and s2, respectively, and rotational constants for the ground, S0, electronic state of
the ST·Ar complex calculated at the MP2/cc-pVTZ level of theory. Vibrational analysis: the
three lowest intermolecular vibrational frequencies of the ST·Ar complex and their assignments
calculated at the MP2/6-311++G(d, p) level of theory.

Figure 8.1: Electronic ground state, S 0, structure of the ST·Ar complex optimized at the MP2/cc-
pVTZ level of theory. The xyz coordinate system is the benzene-ring-fixed coordinate system
with its origin pinned at the centre of the benzene ring. The z axis is parallel to the C6 symmetry
axis of benzene. For details, see Table 8.1.
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8.4 Experimental Results

8.4.1 Low Resolution Spectra

Figure 8.2 shows the mass discriminated low-resolution one-colour R2PI spectra of the S 1 ←−
S 0 electronic transition of a) ST monomer when measured at the mass of m/z = 104, b) ST·Ar
complex (m/z = 144), and c) ST·Ar2 complex (m/z = 184). The vertical dashed lines indicate the
corresponding red-shifted bands in the ST monomer spectrum originating from fragmentation
of its complexes with Ar. The 00

0 origin band of the ST·Ar complex is red-shifted by 31 cm−1

relative to that of bare ST, and the origin band of the ST·Ar2 complex is red-shifted by 64 cm−1.
It is seen that a detachment of a single Ar atom brings about the small red-shifted band observed
at the mass channel of the ST·Ar complex. The observed red shift of the ST·Ar complex is in
a good agreement with the one observed by Jortner and co-workers [216]. The low-resolution
spectra of both ST·Ar and ST·Ar2 exhibit bands to the high energy side of the respective origins
corresponding to low-frequency intermolecular vibrations of the complexes. The blue-shifted
bands of the ST monomer have been discussed in a recent publication by our group [42].

8.4.2 High Resolution Spectrum

For determination of the structure of the ST·Ar complex, the high-resolution spectrum of the
00

0origin band has been recorded and analysed. The experimental spectrum with partial rotational
resolution of the ST·Ar complex is presented in Fig. 8.3 (upper trace). The spectrum sits on a
background and spans over 3 cm−1. Its overall profile is significantly different from that of
the ST monomer spectrum [42]. The spectrum can be referred to as a hybrid type. It has a
prominent Q branch, a weak central dip, and well pronounced P and R branches composed of
irregularly spaced clumps of rotational lines with a minimum linewidth of 250 MHz (FWHM). To
analyse the spectrum, we employed the GA fitting routine described in Sec. 8.2. The simulated
spectrum was obtained after convolution of the stick spectrum with a Gaussian-shaped line with
a linewidth of 220 MHz (FWHM), which is larger than the spectral resolution of our experiment
(110 MHz (FWHM)). We attribute this to saturation effects. The rotational temperature has been
determined to be 6 K, which is lower than that for the ST monomer [42]. We propose two
reasonable explanations: either the observed ST·Ar complex descends from fragmentation of
larger clusters (ST·Arn, n≥2) and the obtained temperature is a result of evaporative cooling or
this is an indication that only sufficiently cold cluster species can survive under molecular jet
conditions. The transition moment ratio, µ2

a : µ2
b : µ2

c , is 47:52:1. The inertial parameters for the
ground and the first excited electronic state along with the molecular characteristics are listed in
Table 8.2.
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Figure 8.2: Low-resolution one-colour R2PI spectra of the S1 ←−S0 electronic transition of jet-
cooled ST and its complexes with Ar measured at their mass channels: a) ST monomer (m/z =
104), 00

0 origin band is at 34 758 cm−1; b) ST·Ar complex (m/z = 144), 00
0 origin band is at 34727

cm−1. The blue-shifted intermolecular vibronic bands are designated by 1, 2, and 3, respectively;
c) ST·Ar2 complex (m/z = 184), 00

0 origin band is at 34 693 cm−1. The vertical dashed lines
indicate the fragmentation of the clusters leading to a signal at the ST·Ar and the ST monomer
mass channel.

8.5 Discussion

The planarity of the ST monomer has been a subject of intense debate over the past three decades.
Microwave experiments have shown that ST is planar in the ground electronic state [219]. This
has been confirmed also by rotationally resolved LIF experiments [218] and high-resolution R2PI
experiments in our laboratory [42]. The latter have ascertained planarity of ST also in the first
excited electronic state. It is reasonable to assume that due to the weak van der Waals interaction,
the attachment of an Ar atom to a molecule does not alter the structure of the latter neither does
its transition moment orientation [205]. For this reason, the complexation with Ar can serve as a
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Parameter Ground state S0 Excited state S1

GHz cm−1 GHz cm−1

A 1.337(14) 0.04461(46) 1.3179(81) 0.04396(27)
B 1.0343(78) 0.03450(26) 1.1152(87) 0.03720(29)
C 0.7600(66) 0.02535(22) 0.7198(63) 0.02401(21)
TM ratio
µ2

a : µ2
b : µ2

c 47:52
Origin, ν0, cm−1 34726.597(3)
Temperature T , K 7.5(3)
Best-fit
cross correlation (%) 96

Table 8.2: Experimental rotational constants, transition moment ratio and band origin frequency
of the ST·Ar complex resulting from the fit of the rotational structure of the S 1 ←− S 0 electronic
transition (see Fig. 8.3). The numbers in parentheses represent one standard deviation in units of
the least significant quoted digit. The uncertainty for the relative values of µ2

a, µ2
b, and µ2

c in the
transition moment ratio is 2%.

very sensitive probe for planarity of aromatic molecules. If such a molecule is nonplanar, the two
binding sites of Ar on both sides of the benzene ring are not completely equivalent thus leading
to slight differences of the binding energies for the two conformers, as we have recently demon-
strated for the case of the complex between 2-phenylethanol and Ar [205]. This shows up as two
different S 1 ←− S 0 origin band transitions of the complex separated by 2 cm−1 corresponding
to the two binding patterns. For the shorter side chain of ST, even a smaller splitting should be
expected, particularly for a small torsional angle about the C(1)-C(α). On the contrary, if the
host molecule is completely planar, the two binding sites of Ar on both sides of the benzene ring
are completely undistinguishable leading to the appearance of a single origin band. In the case
of ST·Ar neither splitting of the 00

0 origin band nor appearance of a second peak in the vicinity
of the first one in the low-resolution spectrum measured at the cluster mass channel have been
observed. However, a small splitting can be recognized only under high resolution conditions
as has already been shown for the case of the complex between 2-phenylethanol and Ar [42].
Figure 8.3 clearly shows that the measured rotational structure is explained by a single vibronic
band and no splitting is observed within the effective linewidth of 250 MHz. This is a clear
evidence for the planarity of the ST monomer. The three blue-shifted vibronic bands 1, 2, and
3, in the low-resolution spectrum of the ST·Ar cluster (see Fig. 8.2) are satisfactorily reproduced
by the frequency analysis of the theoretically optimized structure of the complex (see Sec. 8.3
and Table 8.1), and they are assigned as long-axis (along y axis) bending , short-axis (along x
axis) bending, and stretching (parellel to z axis) vibrations, respectively. This result is a further
confirmation for the structural assignment of the observed ST·Ar complex. The small differ-
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Figure 8.3: High-resolution two-colour UV R2PI spectrum of the S 1 ←− S 0, 00
0 origin band

of the ST·Ar complex recorded at m/z=144 mass channel with the rotationless transition located
at 34726.597(3) cm−1. Upper trace: experimental spectrum. Lower inverted trace: the best-fit
simulated spectrum yielding the constants listed in Table 8.2 (for details, see text).

ence between the experimental and theoretical vibrational frequencies is not surprising bearing
in mind the pronounced of this type of intermolecular vibronic modes, which ususally mars the
accuracy of the theoretical predictions.

The origin band of the ST·Ar2 complex is red-shifted twice (64 cm−1) as much as the red shift
of the ST·Ar complex (31 cm−1). This is a clear manifestation of the additivity rule, which holds
when no three-body interaction is present, i.e., the second Ar atom binds to the opposite side
of the benzene ring of ST without being affected by the presence of the other Ar atom through
a deformation of the π electrons of the benzene ring. It is obvious that upon ionization the
ST·Ar2 complex undergoes an efficient fragmentation which brings forth the red-shifted peak at
the ST·Ar mass channel.
Since ST possesses two π-electron systems, it provides two possible out-of-plane binding sites
for Ar. The observed red shift of the origin band of the ST·Ar complex, however, is typical for
Ar complexes in which the Ar atom is bound to the benzene ring, e.g., toluene [267]. More
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detailed information on the structure of the complex can be obtained from the analysis of the
highly resolved spectrum in conjunction with quantum chemistry ab initio calculations. The
rotational constants found from the fit of the high-resolution spectrum are in accord with the
ones predicted by the MP2/cc-pVTZ theory for the structure where Ar is situated above the
benzene ring. The analysis of this structure reveals that the Ar atom does no longer lie on the C6

symmetry axis of the benzene ring but is shifted by 0.24 Å towards the vinyl group. There is no
appreciable displacement along the short axis of benzene. We attribute the shift along the long
axis of the benzene ring to the reduced symmetry of the benzene ring π-electron system due to
the conjugation with the π electrons of the vinyl group rather than to a direct interaction between
the Ar atom and the vinyl group. The TM ratio of the complex (µ2

a : µ2
b : µ2

c = 47 : 52 : 1) is
different from the one of the ST monomer (µ2

a : µ2
b : µ2

c = 97 : 3 : 0) [42]. We have proved that
this is a pure mass effect resulting from the attachment of Ar and leading to an axis switching,
and the binding of Ar does not influence the orientation of the TM relative to the frame of the
benzene ring.

8.6 Summary and Conclusions

The van der Waals complex between ST and Ar has been studied by high-resolution mass se-
lective R2PI spectroscopy combined with rotational fitting spectral analysis based on genetic
algorithms and high-level ab initio quantum chemistry calculations. The results show that the
Ar atom is located above the benzene ring of styrene in vicinity to the C6 symmetry axis of the
aromatic ring. The complex is bound by a weak van der Waals interaction between the Ar atom
and the π electrons of the benzene ring. The complexation pattern is slightly affected by the
presence of the bonded to the benzene ring vinyl group and the π electronic delocalization of
the styrene moiety. The manifestation of this influence is the shorter distance from the Ar atom
to the benzene ring compared to the benzene·Ar complex and the small shift of Ar in direction
to the vinyl group. It has been shown that the orientation of the transition moment of styrene
remains unaffected by the complexation with Ar. The comparison between the observed blue-
shifted vibronic bands in the low-resolution spectrum of the ST·Ar complex with the results of
the theoretically calculated vibronic frequencies of the cluster ascertains that those bands corre-
spond to intermolecular bending and stretching vibrations . No splitting of the main band of the
ST·Ar complex has been observed neither in the low- nor in the high-resolution spectrum, which
demonstrates that styrene is planar. In addition to the ST·Ar complex, the structure of the ST·Ar2

complex has been briefly discussed on the basis of the experimentally observed red shift of its 00
0

electronic transition. The latter is almost twice as much as the one of the single cluster, which
implies that the additivity rule applies in this case. This is an indication that the second Ar atom
binds to the other side of the benzene ring with a neglible through-ring interaction with the first
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Ar atom.
In conclusion, we have demonstrated that the combination of high-resolution mass selective
resonance-enhanced two-photon ionization spectroscopy, rotational analysis based on genetic
algorithms, and ab initio quantum chemistry calculations is a powerful approach towards the
investigation of weakly bound complexes. It is capable of providing reliable information on
the structure of such complexes and thus allows for the understanding of the subtle interplay
between the effects involved in the stabilization of the complex. In addition, the attachment
of a noble-gas atom to a molecule provides an efficient and sensitive method for probing its
planarity/nonplanarity by detecting under high resolution a possible small splitting of the ori-
gin band electronic transition observed in case of nonequivalent binding sites for nonplanar
molecules.



Chapter 9

Evidence for a σ-type Hydrogen-Bonded
Dimer: High Resolution UV Spectroscopy
of p-Fluorostyrene-Water

S. C, P. Q. W, J. E. B, S. G, H. J. N, C. K.
N,  T. C, J. C. P. 122, 244312 (2005).
Ab initio calculations predict four stable conformational structures of the
singly hydrated cluster of p-fluorostyrene: two out-of-plane with π- and
two in-plane with σ-type intermolecular hydrogen bonding between p-
fluorostyrene and water. Mass selective resonance enhanced two-photon ion-
ization high-resolution (100 MHz FWHM laser bandwidth) spectroscopy has
been employed to partially resolve the rotational structure of the 00

0 origin
band of the S 1 ←− S 0 electronic transition. A computer-aided fit based on
genetic algorithms has been used to analyse the experimental high-resolution
spectrum and to determine the observed conformational structure. The good
agreement between the experimental and the simulated spectra of the 00

0 band
and the assignment of the other prominent bands as inter- and intramolecular
vibrational progressions clearly demonstrates that the anti in-plane conformer
is the most abundant one in the molecular beam. The existence of the σ-type
hydrogen bond between p-fluorostyrene and water manifests that the electron
attracting effect of fluorine dominates over the releasing mesomeric effect of
the vinyl group and thus a π-type hydrogen bonding with the aromatic ring is
not favoured in this case.
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9.1 Introduction

Gas-phase clusters consisting of aromatic molecules and protic solvents have attracted a lot of at-
tention aiming at the understanding of the microscopic details of hydrophobic interactions, which
play a vital role in determination of the structure and function of proteins, micelles and biological
membranes. In this context, aromatic molecule-water clusters are the most studied prototypical
systems, and considerable amount of spectroscopic and computational data concerning the struc-
ture and dynamics of such clusters have been accumulated over the years [3, 13, 240, 268]. For
a comparative estimate of interactions between different groups and their effects on structures,
it is essential to investigate aromatic systems with various substitutions at different sites of the
aromatic ring. The investigations of fluorine-substituted compounds are of particular interest
because, in spite of being the highest electronegative element, the crystal structure data indi-
cate that covalently bonded fluorine atoms in organic molecules are very poor hydrogen bond
acceptors [269]. Therefore, it is essential to investigate the hydrogen bonding with fluorinated
compounds at molecular level. This chapter reports on our gas-phase spectroscopic studies of
water binding to p-fluorostyrene (p-FST) in a cold supersonic jet expansion. This cluster is a
suitable prototype for the investigation of molecular systems manifesting competing types of in-
teraction. Two mutually counteracting effects are expected: the mesomeric effect of the vinyl
group and the electron attraction by the electronegative fluorine atom.
The vibronically resolved S 1 ←− S 0 electronic spectrum of the 1:1 dimeric complex of p-FST
and water was measured by one-colour R2PI method in a linear time-of-flight mass spectrometer.
For theoretical predictions of possible structures of the complex in the electronic ground state,
ab initio quantum chemistry calculations taking into account electron correlation have been per-
formed. Theoretical calculations for the electronically excited state using the CIS method have
been also performed. To identify the structure of the experimentally observed p-FST·H2O cluster,
a high-resolution two-colour R2PI experiment with mass selection has been carried out. It will
be demonstrated that a comparative analysis of the partially rotationally resolved spectroscopic
results with the theoretical predictions greatly enhances the unambiguous determination of the
realized experimental structure and elucidates the influence of the fluorination on the hydrogen-
bonding properties of this class of molecules.

9.2 Experiment and Data Processing

Both low- and high-resolution experimental spectra of the p-FS·H2O complex were measured
through R2PI spectroscopy with mass selection in a supersonic jet-cooled molecular beam. The
experimental set up is described in detail in Sec. 6.2. The cold molecular beam was produced by
adiabatic expansion of the mixture of p-FST and water vapours at room temperature seeded in
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Ar buffer gas at a backing pressure of 3 bar through a pulsed nozzle with an orifice diameter of
300 µm. The molecular beam was passed through a skimmer with an orifice diameter of 1.5 mm
before reaching the interaction point with the laser beams 5cm downstream from the skimmer.

The highly resolved two-colour R2PI spectrum of the p-FST·H2O complex was analized by em-
ploying the computer-aided rotational fitting technique based on genetic algorithms descripbed
in Sec. 6.3. The values of the parameters used in this particular case are as follows: the number of
generations was 1000, and the number of individuals was 1500. The achieved cross correlation
was as high as 96%.

9.3 Results and Discussion

9.3.1 Ab Initio Calculations

For a detailed discussion of the high-resolution spectra of the experimentally observed 1:1 p-
FST·H2O cluster, ab initio quantum chemical calculations were started from various chemically
reasonable binding sites of water to the p-FST molecule. The geometries were calculated at
the RHF, B3LYP DFT and at the level using Gaussian 03 suite of programmes [70]. A full
optimization of the geometries was carried out using 6-311G (d, p) basis set. Figure 9.1 shows
the optimized structures of the four lowest-energy conformers. The basis set superposition errors
(BSSE) in the binding energy in each case was corrected by the counterpoise method of Boys and
Bernardy [215]. The energy minima corresponding to these structures are verified noting that all
vibrational frequencies calculated by the DFT method using B3LYP/6-311+G (2d, 2p) basis set
are positive. Calculated energies at different levels and some key geometrical parameters of the
isomeric species are presented in Table 9.1.

It is seen that compared to the π-hydrogen species, the in-plane σ- hydrogen bonded complexes
are more stable at all levels of theory.
It is well-known that the explicit inclusion of electron correlation is essential to get more reliable
geometries of benzene-containing complexes. That is why we, performed our calculation at the
MP2 level, too. But as far as the binding energy is concerned for the 1:1 p-FST·H2O conformers,
the B3LYP level of calculation is more reliable than the others. From Table 9.1 one can see
that for conformer III and conformer IV (here, the OH group of the water molecule is involved
in the formation of a six-membered ring with the F-C-C-H of the aromatic ring of the p-FST
molecule) the binding energy is almost the same but for the two out-of-plane conformers the
binding energy is smaller by 0.54 kcal/mol for conformer II and 0.74 kcal/mol for conformer
I. Recently, Brutschy and coworkers [270] have shown that the in-plane structures for the 1:1
fluorobenzene·water and p-difluorobenzene·water clusters are more stable than the out-of-plane
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(a)
Conformer I
(0.74 kcal/mol)

(b)
Conformer II
(0.54 kcal/mol)

2.162

2.442

(c)
Conformer III
(0.0 kcal/mol)

2.159

2.444

(d)
Conformer IV
(0.02 kcal/mol)

Figure 9.1: Geometries of the four lowest-energy conformers of the 1:1 p-FST·H2O complex,
optimized at the B3LYP/6-311G (d, p) level of theory. The relative energies (kcal/mol) calculated
at the same level are given in parentheses.
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π hydrogen-bonded structures. In the case of the p-FST·H2O complex, the same result is found
for the in-plane conformers for all levels of calculation. The strength of stabilization of the
in-plane conformers is due to the electrostatic interactions of the fluorine atom with the water
hydrogen atom. Though the vinyl group acts as an electron donor to the aromatic ring, the
fluorine atom pulls over the electron density from the benzene ring. As a result, the π-electron
cloud density is decreased in the fluorinated styrene and hence the binding energy is smaller for
the π-bonded out-of-plane conformers.

In conformer I, one of the O-H bonds of water is π-hydrogen bonded. The distance of the H atom
of water from the aromatic plane is 2.423 Å, 2.480 Å, 2.428 Å at the MP2, HF, and B3LYP levels,
respectively, which is comparable to the previous experimental values from the high-resolution
spectroscopy of the centre-of-mass separations between benzene and water: 3.32±0.07 Å [271],
3.329 [272], and 3.347±0.005 [273], given the O-H bond length in water is 0.96 Å [273]. The
centre of mass of the water molecule is shifted towards the vinyl group. In conformer II, both
H atoms of the water molecule are directed towards the π electrons of the aromatic ring and the
centre of mass is shifted towards the vinyl group. The distance of the oxygen atom from the
aromatic ring in this conformation is 3.14 Å. In conformers III and IV, the complex is nearly
planar, the oxygen atom is only 0.3 Å off the plane of the aromatic ring and one of the water H-O
bonds points to the electronegative fluorine atom. The F· · ·H distance in both conformers is the
same, 2.186, 2.190, 2.161 Å at the MP2, HF, and B3LYP levels, respectively, and these values are
similar to what has been calculated by Tarakeshwar etal. in the case of the fluorobenzene· · ·water
(FBzn·H2O) complex [270]. The rotational constants are also listed in Table 9.1.

For the excited state calculation, the CIS method with the same basis set, 6-311G (d, p), was
used. For the geometry optimization in the excited state, the ground state geometries were taken
as inputs for each of the conformers. The binding energies predicted by such calculations for the
four isomeric geometries of the cluster are presented in Table 9.1. The calculation shows that the
excited-state binding energies for all the discussed conformers are smaller than the ones of the
ground state thus demonstrating that the complex destabilizes in the excited state compared to the
ground state. In summary, from the theoretical calculations, one expects that a planar structure
will be the most stable one. However, because of the small differences in the binding energies of
the predicted conformers, in particular of conformers III and IV, a reliable identification of the
realized structure in the beam cannot be made. For this reason, a high-resolution experiment of
the 00

0 origin band of the S 1 ←− S 0 electronic transition of the cluster was carried out.

9.3.2 Vibronic Spectra of the p-FST·H2O Cluster

Figure 9.2 (upper trace) shows the one-colour R2PI spectrum of the S 1 ←− S 0 electronic transi-
tion of p-FST·H2O up to an excess energy of 900 cm−1 recorded by selecting the ion signal at the
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parent (m/z = 140) mass channel. The R2PI spectrum of the p-FST monomer (m/z = 122) [274]
(see Fig. 9.2 (lower trace)) was measured to identify the additional features arising due to the
intermolecular vibrations of the cluster. Both spectra are shown with a common origin position
as a function of the relative excitation energy. The spectrum for the mass channel of m/z = 158,
which corresponds to the p-FST·(H2O)2 cluster, was also recorded simultaneously (not shown
here) to check whether part of the signal at m/z = 140 resulted from fragmentation of larger
clusters. In this way, it was verified that all the sharp features in the top spectrum (Fig. 9.2 (upper
trace)) are exclusively due to p-FST·H2O. The 00

0 band of the p-FST·H2O complex (34416 cm−1)
is blue-shifted by 104 cm−1 from that of the p-FST monomer (34312 cm−1). The low-frequency
bands at 51, 84 and 102 cm−1 are due to intermolecular vibrations. The 102 cm−1 band can be
assigned as the overtone of the mode bringing forth the 51 cm−1 band, and the feature at 84 cm−1

must correspond to a different mode. Our DFT/B3LYP/6-311+G (2d,2p) calculations predict for
conformer III that in the ground state, the lowest two intermolecular vibrational frequencies of
the complex are 42 and 74 cm−1, and they correspond to the out-of-plane and in-plane twisting
of the two molecular moieties. Thus, the 51 and 84 cm−1 bands can be assigned to these two
intermolecular modes . The vibronic bands corresponding to the intramolecular modes of the
solute p-FST in the complex are indicated by dotted vertical lines. It is seen that the frequencies
of these vibrations are rather insensitive to water binding.

Another notable feature of the spectrum is that the electronic origin (00
0) and other vibronic bands

(e. g. 84 and 89) of the cluster appear as doublet. The separation between the two subbands at the
origin is ca. 5 cm−1. An immediate explanation of the splitting is that it can be due to an internal
rotation of the weakly bound water molecule, similar to what has been observed before in the
case of benzene-water clusters [269, 275]. To test this the one-colour R2PI spectrum of the p-
FST·D2O complex was measured at its parent mass (m/z = 142) channel. Part of this spectrum,
containing the 00

0 origin band profile of the S 1 ←− S 0 electronic transition of p-FST·D2O at
34421.0 cm−1, is shown in the inset of Fig. 9.2. It shows that the splitting in the deuterated
complex is 5 cm−1, and is the same as that of the hydrated cluster. Therefore, the possibility
that an internal rotation or tunnelling are the reason for the observed splitting is ruled out. Other
reasons could be sequence transitions or transitions corresponding to a different conformer of
the complex. We have measured the spectrum under various cooling conditions of the nozzle
expansion and noticed that the relative intensities of the subbands remain practically unaltered.
Therefore, it is possible that the two subbands correspond to the electronic origin of two different
conformational isomers of the dimeric species. Such an assignment would be consistent with our
ab initio calculations predicting two planar conformers with almost the same binding energy (see
next Section).

The resonant two-photon ionization spectra of unsubstituted styrene-water complexes (ST·(H2O)n)
have been measured recently by Mahmoud et al. [214]. The S 1 ←− S 0 origin of the complex
exhibits a blue shift by only 21 cm−1 with respect to the isolated monomer. This shift is five times
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Figure 9.2: R2PI spectrum of the S 1 ←− S 0 transition of jet-cooled p-FST (top) recorded at
m/z = 140 mass channel and pFST·H2O (bottom) recorded at m/z = 122 mass channel as a
function of the relative excitation energy. The S 1 ←− S 0 00

0 origin band of the p-FST·H2O
complex is at 34 416 cm−1. The inset shows the profile of the S 1 ←− S 0 origin band of p-
FST·H2O at 34 421 cm−1 recorded at m/z = 142 mass channel.

smaller than that in the p-FST·H2O cluster. Furthermore, the higher ST·(H2O)n clusters [n > 1]
show extensive fragmentations and the band intensities of the 1:1 cluster appear in the spectrum
very weakly [214]. Such fragmentation behaviour has been also reported for benzene-water
clusters. On the contrary, the 1:1 p-FST·H2O cluster is quite stable and no fragment signal was
noticed in the monomer mass channel when the excitation frequency of the laser was scanned
across the 00

0 band of the p-FST·H2O complex. This provides an indication that the binding pat-
tern of water to p-FST is different from that ofs ST. Mahmoud et al. have performed an ab initio
quantum chemistry calculation for structural prediction of the ST·H2O complex using a relatively
low level of theory (HF/6-31+G (2d, p)), which favoured a π-hydrogen-bonded complex where
both of the water hydrogen atoms point to the aromatic π-electron cloud. To our knowledge, no
high level theoretical calculation has been attempted so far on the ST·H2O cluster system.

It is instructive to compare the observed spectral blue shift of the 00
0 band of the p-FST·H2O dimer

(104 cm−1) with the ones of the fluorobenzene·water (+118 cm−1) [270,276], p-difluorobenzene·water
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(+167 cm−1) [277], and benzene-water (+50 cm−1) 1:1 complexes [275]. Because of the increas-
ing blue shift, it appears that fluorination of the aromatic ring destabilizes the excited electronic
states of the above 1:1 clusters with water, compared to their respective ground states. Re-
cently, we have performed a complete active space self-consistent field (CASSCF) calculation
on p-FST and related systems in the ground and excited states. The results show that the partial
charge on the electronegative F atom in p-FST monomer is smaller in S1 than in S0 electronic
state [278]. Thus, the prediction of the CASSCF calculation provides a qualitative explanation
for the observed blue shifting of electronic transition energy of the p-FST·H2O complex, as-
suming that the O-H bond of water is σ-hydrogen-bonded to the F atom of the p-FST in the
complex. A more rigorous calculation is required to explain the trends of the blue shift among
the different fluorobenzene·water clusters mentioned here. Recently, Brutschy and co-workers
have investigated the binding of water molecules to fluorobenzene using infrared ion-depletion
spectroscopy [276]. In the FBzn·H2O cluster, the IR spectral features of the water ν1 and ν3

modes are quite simple, and unlike the benzene-water complex, no splitting of these bands has
been observed. In the latter complex, the antisymmetric stretching mode (ν3) of the water ex-
hibits a complex spectral splitting due to its simultaneous rotation and rocking motions about
the six-fold axis of the benzene ring [213]. On the basis of these contrasts in spectral pattern
in the two systems, the authors have inferred that the water molecule in the FB·H2O complex
is symmetrically placed on top of the ring wherein both hydrogen atoms point to the aromatic
π-electron cloud. The simple IR spectrum of the FBzn·H2O complex was interpreted as due
to hindrance of the water rotation by the local dipole moment induced by the fluorine atom.
However, in a later theoretical study, Tarakeshwar, et al. suggested a co-planar structure for the
complex, in which the O-H of the water molecule forms a six-membered H-bonded (σ-type) ring
system with the F-C-C-H of the phenyl ring. In the present case of the p-FST·H2O system, the
reduced π-electron density on the ring due to the electron attracting fluorine atom can be partially
compensated by the electron releasing mesomeric effect of the vinyl group. As a consequence,
the π- and σ- type hydrogen bonding of water with the solute p-FST could be equally probable
and this is consistent with the predictions of only a small energy difference made by our ab initio
theoretical calculations (see Table 9.1). From the calculation of the binding energies alone, it
is not possible to identify the structure of the p-FST·H2O cluster present in the molecular beam.
To identify the realized structure and to provide additional information to the ongoing discus-
sion on the type of the hydrogen bonding in fluorinated aromatic molecule-water complexes,
high-resolution experiments on p-FST·H2O were performed.
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9.3.3 High Resolution Spectrum of the 00
0 Origin Band of the p-FST·H2O

Cluster

The high-resolution spectrum of the 00
0 origin band of the p-FST·H2O cluster located at 34416.004(5)

cm−1 and measured at its mass (m/z = 140) channel is depicted in Fig. 9.3 (upper trace). The
spectrum is characterized by well-pronounced P and R branches, and a weak central Q branch.
It features a prominent central dip and a typical periodic structure in the P branch. The spectrum
is referred to as a hybrid a and b type [94]. The observed peaks are formed by aggregations
of single rotational lines and their smallest width is about 300 MHz. This necessitated the ap-
plication of the computer-assisted fit (see Sect. 6.3) of the experimental spectrum to derive the
rotational constants and the transition moment ratio. To aid the GA fit, described in Sec. 6.3, the
four positions of the water molecule with respect to the benzene ring as predicted by the ab initio
calculations were assumed and used as starting geometries: two in-plane, and two out-of-plane,
respectively. In the first step, a reasonable fit was achieved only for the anti in-plane conformer.
For further improvements, a planarity condition for this conformer was imposed to the fitting
program as a physical constraint restricting the multidimensional search space. The result of
this fit is also presented in Fig. 9.3 (lower inverted trace). It was obtained by convoluting the
theoretical stick spectrum by a Gaussian profile with a linewidth of 220 MHz.

The rotational energy levels were calculated on the basis of the asymmetric top Watson Hamilto-
nian [221–223]. Both rotational band contour and most of the typical features of the experimental
spectrum are well reproduced by the simulation. The broad linewidth of 220 MHz necessary to
convolute the stick spectrum making it match the experimental one is tentatively ascribed to a
saturation of the observed transitions rather than to a lifetime broadening. The resulting rota-
tional constants for the ground, S0, and the first excited, S1, electronic states, and the transition
moment ratio are listed in Table 9.2.

The rotational temperature has been found to be 5.5 K. The transition moment ratio is µ2
a : µ2

b : µ2
c

= 55:45:0, which agrees with the hybrid character of the spectrum. On the basis of the best fit of
our highly resolved spectrum obtained by employing the parameters of conformer III as starting
conditions for the fit, one infers that the measured signal of the 00

0 origin band of the p-FST·H2O
cluster originates from this conformer. This is in accord with the theoretical predictions showing
that this is the most stable conformer. The experimentally found transition moment ratio of the
p-FST·H2O complex (a:b = 55:45) is different, though not very much, from the one of the bare
molecule (µ2

a : µ2
b : µ2

c = 67:33:0) [279]. This finding can be interpreted merely as a mass effect
causing a rotation of the coordinate frame due to the attachment of the water molecule. The
direction of the transition moment with respect to the aromatic ring is not changed by the σ-
hydrogen-bonding of the water molecule. This explanation asserts that there are no pronounced
electronic effects involved in the microsolvation by the attachment of one water molecule, and
what is observed is a local excitation of the p-FST monomer remaining unaffected by the water
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Figure 9.3: Highly resolved spectrum of the 00
0 origin band of the S 1 ←− S 0 electronic transition

of the pFST·H2O cluster at ν0 = 34416.004(5) cm−1 recorded at m/z = 140 mass channel. Upper
trace: experimental spectrum. Lower inverted trace: the best-fit simulated spectrum yielding the
constants listed in Table 9.2. For details, see text.

Rotational Constant Ground state S0 Excited state S1

MHz cm−1 MHz cm−1

A 3215(12) 0.10924(40) 3211(15) 0.10713(52)
B 592(15) 0.01977(51) 586(16) 0.01957(55)
C 502(11) 0.01674(37) 496(12) 0.01655(40)

TM ratio, µ2
a : µ2

b : µ2
c 55:45:0

Origin ν0, cm−1 34 416.004(5)

Table 9.2: Experimental rotational constants of the p-FST·H2O cluster giving rise to the 00
0

origin band of the S 1 ←− S 0 electronic transition (see Fig. 9.2). The rotational constants and the
transition moment ratio were obtained through computer-aided fit of the highly resolved spectrum
(Fig. 9.3) of this conformer (for details, see text). The numbers in parentheses represent one
standard deviation in units of the least significant digit. The uncertainty for the relative values of
µ2

a, µ2
b, and µ2

c in the TM ratio is 4%.
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complex formation. This conclusion conforms to the recent high-resolution results of Pratt and
coworkers [133] on the p-difluorobenzene·water complex where the structure of the complex
is also planar and the attachment of water does not influence the orientation of the transition
moment relative to the monomer reference frame. To explain the nature of the second peak of
the origin band located 5 cm−1 to the blue side (34421 cm−1) of the main peak, a high-resolution
experiment also for this peak was carried out. The lower ion signal intensity, however, did
not allow us to measure a well-resolved spectrum and for this reason, the rotational fit analysis
described above was not applicable in this case. Comparing the measured rotational contour
of this band with the ones simulated with the parameters for the two out-of-plane conformers
(I and II) and for conformer IV without making a fit, it was found that the spectrum of the in-
plane conformer IV exhibits the closest similarity with the experimental result. On this basis,
we tentatively assert that the blue-shifted sub-band can be the origin band of the gauche in-plane
conformer (conformer IV).

9.4 Summary and Conclusions

Both low- (0.4 cm−1) and high-resolution (0.003 cm−1) R2PI spectra with mass selection of
the singly hydrated cluster of p-fluorostyrene have been presented. Calculations at the RHF,
B3LYP and MP2 levels of theory using 6-311G (d, p) basis set predict four stable conformers:
two out-of-plane and two in-plane , the latter being more stable than the former by an energy
of only about 0.5 kcal/mol. A reasonable fit of the high-resolution spectrum of the 00

0 origin
band of the S 1 ←− S 0 electronic transition was only produced by employing the rotational
constants of the anti in-plane conformer (conformer III) as starting parameters. For this reason,
we infer that conformer III is the most abundant one in the molecular beam. From the measured
transition moment ratio we find that the binding of water does not cause a reorientation of the
transition moment with respect to the aromatic ring, which implies that σ-bound water does not
induce a noticeable π-electron structure rearrangements. The gross rotational structure of the
second 5 cm−1 blue-shifted peak of the main band is more similar to the rotational structure
characteristic for an in-plane configuration rather than to the more different rotational contour of
a π-hydrogen bonded out-of-plane conformer. In this way, we rule out the possibility of an out-
of-plane conformer and tentatively explain the origin of this sub-band either as due to a sequence
transition of the anti in-plane conformer or due to the gauche in-plane conformer. This means
that due to the subtle interplay between the electron attraction of the electronegative fluorine
atom and the electron releasing mesomeric effect of the vinyl group both π- and σ-type hydrogen
bonding of water with p-fluorostyrene are feasible but the energetically slightly favoured σ-type
hydrogen bonding of the water proton with the fluorine atom is dominating in this case.



Chapter 10

Specific and Nonspecific Interactions in a
Flexible Molecule: 2-phenylethanol and its
Complex with Argon

S. C, R. K, J. E. B, H. J. N, S. S. P, 
T. C, J. C. P. 124, 234302 (2006).
The conformational structure and transition moment orientation in 2-
phenylethanol and its 1:1 clusters with argon have been determined by high-
resolution R2PI spectroscopy in combination with genetic-algorithm-based
computer-aided rotational fit analysis and ab initio quantum chemistry cal-
culations. The results clearly demonstrate that the gauche structure of 2-
phenylethanol, which is stabilized by the intramolecular π-hydrogen bond
between the folded side chain and the benzene ring, is the most abundant in
the cold molecular beam. In this conformer the transition moment is rotated
by 18◦ from the short axis of the aromatic ring. Two distinct 1:1 complexes
of 2-phenylethanol with argon in a cis- and trans- configuration with respect
to the side chain have been found. By employing the Kraitchman analysis it
has been found that the structure of the 2-phenylethanol moiety and the ori-
entation of the transition moment do not change after the complexation with
argon within the experimental accuracy. From the measured band intensities,
it can be concluded that in addition to the dispersion interaction of the argon
atom with the aromatic ring a hydrogen-bond-type interaction with the termi-
nal OH group of the side chain stabilizes the cis structure of the 1:1 complex
of 2-phenylethanol with argon.
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10.1 Introduction

2-phenylethanol (2-PE) is the hydroxy analogue of the simplest aromatic amine neurotransmit-
ter, 2-phenylethylamine. The molecule consists of an aromatic ring and a flexible side chain
with a terminal alcoholic group. In recent years, much effort has been devoted to understand-
ing the conformational behavior of a variety of such flexible biomolecules in the gas phase.
Under isolated conditions, the molecular conformation is determined by a balance of interac-
tions between different groups within the molecules. However, to perform biological functions,
the molecule has to dock to a receptor site where the binding, mostly, occurs through nonco-
valent interactions, like hydrogen bonding as well as pure dispersion interactions. Therefore,
it is of paramount importance to know not only the most favorable conformations of the bare
biomolecules [126, 127, 129, 180, 201, 280–287] but also their conformational preferences in the
presence of other species [126, 129, 160, 280, 288].
In the case of bare 2-PE, recent spectroscopic measurements and theoretical calculations [126,
160, 283, 284, 287] indicate that its most favoured conformation in the electronic ground state
corresponds to a gauche geometry. The primary factor that stabilizes this conformeric structure
is a nonclassical π-hydrogen bonding of the terminal alcoholic group of the side chain with the
aromatic ring. Calculations indicate that the binding energies of such hydrogen bonds are nearly
an order of magnitude smaller compared to the classical X-H· · ·Y type hydrogen bonds (see
Sec. 1.4). However, recent measurements in our group using mass selective threshold ioniza-
tion spectroscopy have shown that the binding energy of the intermolecular π- hydrogen-bonded
indole-benzene complex is in the range of ca. 1600 cm−1, which is similar to the classical
hydrogen bond energy [153, 289]. A direct identification and assignment of the gauche struc-
ture of 2-PE by rotationally resolved UV spectroscopy is still missing. Here, high-resolution
measurements of the main band allowing for an unequivocal identification of the respective con-
formational structure of 2-PE are presented. Furthermore, in the present study, as a first step,
the 1:1 complex of 2-PE with Ar has been chosen as a convenient model system to learn how
the subtle balance of π- hydrogen bonding and dispersion interactions determine the preferred
conformation of this dimeric adduct. The method of high-resolution UV spectroscopy has been
used here for the first time to investigate the structure of the 1:1 Ar complex of such a flexi-
ble side-chain-containing biologically relevant molecule. In this way, one is able to compare
this result with previous high-resolution spectroscopy results of clusters of benzene (Bzn) with
Ar [248, 253]. For the latter, it has been demonstrated that a (1|1) type conformation in which
one Ar atom is on top of either side of the aromatic ring is favoured over the (2|0) type confor-
mation, even though the (2|0) configuration may be stabilized by the Ar-Ar interaction [253]. In
the Bzn·Ar case, both sites are completely equivalent. Similarly, in the present case of 2-PE, for
the preferred binding site, we have to consider not only the nonspecific interaction of Ar with the
aromatic ring but also the specific hydrogen-bond-type interaction with the OH group of the side
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chain [160, 288]. There are three distinct possibilities that must be considered: i) preserving the
gauche conformation of the side chain, the Ar atom can bind to the aromatic ring at the opposite
side of the OH, ii) the Ar atom is attached to the ring on the same side of the OH group, and
iii) the Ar atom binding to the aromatic ring makes the side chain change its structure, assuming
an extended geometry. To ascertain which scenario(s) is realized in the conditions of the cold
molecular beam, high-resolution experiments have been carried out.

10.2 Experiment and Data Processing

The low-resolution spectra of 2-PE and its complexes with Ar as well as the high-resolution
spectra of 2-PE and the 2-PE·Ar complex have been measured by R2PI spectroscopy with mass
selection in a supersonic jet-cooled molecular beam using the experimental set up thoroughly
descrbed in Sec. 6.2. The Ar+ion laser was operating at 488 nm yielding output power of 4 W
necessary to pump the ring dye laser. The latter was using Coumarin 521 dye achieving an output
power of 250 mW.

For the analysis and interpretation of the measured highly resolved spectra of the 2-PE monomer
and the 2-PE·Ar complex, the computer-assisted fitting routine based on genetic algorithms (see
Sec. 6.3) has been employed. For the fits of both spectra, 500 generations with 500 individuals in
each were used. The attained best-fit cross correlations are 97% and 95% for the 2-PE monomer
and the 2-PE·Ar complex, respectively.

10.3 Experimental Results

10.3.1 Low Resolution Spectrum

The low-resolution one-colour R2PI spectrum in the vicinity of the origin of the S 1 ←− S 0

electronic transition of the 2-PE monomer is shown in Fig. 10.1. It was recorded under water-
free conditions by selecting the ion signal at the parent (m/z = 122) mass channel. During
the scan, no signal at smaller mass channels was observed, which demonstrates that (unlike
ephedrine [201]) 2-PE does not fragment upon ionization even under the conditions of a one-
colour experiment with a total excitation energy of 75200 cm−1. This is not surprising since an
excess energy of 3690 cm−1 above the adiabatic ionization energy (AIE) is expected from the
data for the AIE (71550 cm−1) published recently by Weinkauf et al. [290]. The absorption of
several photons in the 2-PE cation is not expected for the small laser intensities that were used.
The spectrum in Fig. 10.1 is dominated by a high-intensity peak A, which has been interpreted
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Figure 10.1: One-colour R2PI spectrum of the S 1 ←− S 0 electronic transition of 2-PE seeded
in Ar, and recorded at the monomer (m/z=122) mass channel. Peak A is the strongest band in the
S 1 ←− S 0 spectrum. For explanation of peak B, see text.

as the origin band of the most abundant conformer of the 2-PE monomer [126, 160, 284, 287]. A
number of weaker features on the blue side (not shown in Fig. 10.1) have also been observed,
and they are supposed to originate from vibrational modes of the same conformer, from different
conformers, or else, from hydrated complexes [160,287]. It is interesting to observe also a weak
band B, which is red-shifted by ca. 30 cm−1 with respect to the main band. There are two possible
explanations for its appearance: i) due to hot bands or ii) resulting from the 2-PE·Ar complex
after fragmentation since no signal at the 2-PE·Ar mass (m/z=162) channel was detected. The
red shift of this band is similar to the red shifts measured for other aromatic molecule-Ar clusters
[87], and for this reason, the second explanation appears to be more plausible. Experiments using
He as a carrier gas were attempted but in this case the band in question was not observed. To
demonstrate the gauche structure of the 2-PE monomer giving rise to the main band A and to
investigate the structure of the 2-PE·Ar complex, high-resolution R2PI experiments of the two
discussed bands combined with ab initio calculations were performed.
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Figure 10.2: High-resolution two-colour UV R2PI spectrum of peak A in Fig. 10.1. It is assigned
as the S 1 ←− S 0 00

0 origin band of the gauche conformer of 2-PE with the rotationless transition
centred at 37621.296(3) cm−1. The spectrum is recorded at m/z=122 mass channel. Upper
trace: experimental spectrum. Lower inverted trace: the best-fit simulated spectrum yielding the
constants listed in Table 10.1 (for details, see text). The inset shows a magnified portion of the
experimentally highly resolved spectrum and the best-fit simulated spectrum.

10.4 High Resolution Spectra

10.4.1 Main Band

The highly resolved UV spectrum of the strongest band A at 37621 cm−1 of the 2-PE monomer is
shown in Fig. 10.2 (upper trace). It manifests a pronounced rotational structure covering a range
of about 10 cm−1, indicating a relatively high rotational temperature in the molecular beam. It
is worth to point out, however, that the excitation of high J levels did not deteriorate the quality
of the rotational structure of the band. The spectrum is characterized by a central dip, a weak
central Q branch on the red side of the dip, and very well pronounced P and R branches. The
spectrum reveals a hybrid a-, b-, and c- type character with the b contribution dominating. It
does not feature single rotational lines but rather aggregations of the latter forming sharp peaks
with FWHM of about 150 MHz. The rotational constants for the ground, S0, and the first
excited, S1, electronic state as well as the transition moment ratio, the rotational temperature
and the 00

0 position, ν0, have been determined by the computer-assisted procedure described
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in Sec. 6.3. The fit was started with the rotational constants in the ground state known from
microwave experiments [283] and restricting the search space for these constants within 0.5 % of
their initial value. The search space for the rotational constants in the excited state and that for the
other parameters was retained broader. The resulting theoretical stick spectrum was convoluted
using a Gaussian line shape with a FWHM of 150 MHz. The best-fit simulated spectrum is also
shown in Fig. 10.2 (lower inverted trace). There is a close match in both peak positions and
peak intensities, as seen in the inset of Fig. 10.2, showing a magnified part of the spectrum. The
experimentally obtained values of the rotational constants, the transition moment ratio, and the
rotational temperature are detailed in Table 10.1.

Rotational constant Ground State S0 Excited State S1

GHz cm−1 GHz cm−1

A 3.3380(74) 0.11134(25) 3.2377(54) 0.10800(18)
B 1.0835(71) 0.03614(24) 1.0673(69) 0.03560(23)
C 0.9589(54) 0.03199(18) 0.9340(57) 0.03116(19)
TM ratio µ2

a : µ2
b : µ2

c 18:74:8
Origin ν0 , cm−1 37621.296(3)
Temperature T , K 12.5(3)
Best-fit cross correlation (%) 97

Table 10.1: Experimental rotational constants, transition moment ratio, origin band position ν0,
and rotational temperature, T , of the gauche conformatin of the 2-PE monomer resulting from the
GA- based computer-aided fit of the highly resolved spectrum of the S 1 ←− S 0 00

0 origin band
(see Fig. 10.1 and Fig. 10.2) (for details, see text). The numbers in parentheses represent one
standard deviation in units of the least significant quoted digit. The uncertainty for the relative
values of µ2

a, µ2
b, and µ2

c in the transition moment ratio is 4.

The deviation of our experimental ground state rotational constants from those found from mi-
crowave experiments [283] is within the accuracy of the fit of our experiment. There is a very
good agreement between the values of the rotational constants in Table 10.1 and those found by
ab initio calculations for the gauche conformer [126, 283] for both the ground, S0, and the first
excited, S1, electronic state. On the other hand, the experimental transition moment ratio from
this high-resolution R2PI experiment (µ2

a : µ2
b : µ2

c = 18:74:8) differs considerably from the one
theoretically predicted at the CIS/6-31G (d) level [126] (µ2

a : µ2
b : µ2

c = 2:96:2). It differs also
from the theoretical predictions at the CIS/6-31G (d, p) level (see Table 10.3), the theoretical
results asserting that the transition moment ratio is oriented along the b principal axis of inertia.
The transition moment ratio obtained on the basis of the low-resolution rotational band contour
analysis of Ref. [160] (µ2

a : µ2
b : µ2

c = 0:88:12) also differs from the discussed high-resolution
spectroscopy result, though the disagreement in this case is less pronounced. It is interesting to
point out the discrepancy in the a and c contributions. While the low-resolution band contour
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analysis states there is no a type contribution and there exists a weak c type, the high-resolution
results clearly show that there are both a and c -type components of the highly resolved spectrum.
To explain the discrepancies of the transition moment orientation, ab initio quantum chemistry
calculations with an extended basis set of the S1 excited electronic state of the 2-PE monomer
at the CIS/6-311++G (d, p) level of theory were performed. The transition moment ratio in this
case is µ2

a : µ2
b : µ2

c = 19:72:9, and it conforms very well to the experimental result obtained from
the fit of the highly resolved spectrum.

10.4.2 Red-shifted Band

In Fig. 10.3, the weak band B at 37589 cm−1 is shown when measured under high resolution at
m/z=122. Assuming that it originates from a 1:1 complex of 2-PE with Ar, an attempt was made
to measure the high-resolution spectrum of this band at the 2-PE·Ar complex mass (m/z = 162)
channel. Unfortunately, even under the conditions of the two-colour experiment with a stepwise
decrease of the energy of the ionization photon, a strong enough signal at this mass channel was
not sobserved, and for this reason, the highly resolved spectrum of band B was recorded at the
2-PE monomer mass (m/z = 122) channel. Only under high resolution, it becomes apparent that
this band consists of two subbands, shown in the upper trace of Fig. 10.3 a) and in Fig. 10.3
b), respectively, which are not resolved as separate features in the low-resolution spectrum of
Fig. 10.1. Their rotational structures are similar to each other but completely different from the
one of the strongest peak A, shown in Fig. 10.2. Both highly resolved spectra in Fig. 10.3 feature
a very intense central Q branch. The stronger peak, shown in Fig. 10.3 a), has a steep rise on
the red side and a typical shading on the high-energy side. In addition, it features weak P and
R branches composed of very well-resolved regularly spaced features. Therefore, the spectrum
in Fig. 10.3 a) can be referred to as a predominantly c type, which is completely different from
the b-type main band A in Fig. 10.2. The Q branch of the weaker subband seems to have a
reversed shading with the steep rise on the blue-energy side (See Fig. 10.3). In this case, the P
and R branches are very weak and noisy, and with a somewhat different, less regular, structure
compared to that of the stronger subband but the overall profile is very similar to the one of the
spectrum in Fig. 10.3 a), and the weaker subband can be assigned also as a predominantly c type.

To analyse both spectra, the automated fit based on genetic algorithms described in Sec. 6.3 was
applied. The first step is to find reasonable starting values for the rotational constants. Constraints
on the starting values of the rotational constants in the ground state were imposed. This was done
in the following way: A plausible reason for the different rotational structure is a switching of the
principal axes of inertia if a heavy atom is attached to the 2-PE molecule in an out-of-benzene-
ring-plane position. Then, the c axis of the complex does no longer coincide with the c axis of
the monomer. This implies that even if it is assumed that no change of the orientation of the tran-
sition moment relative to the 2-PE molecular framework occurs upon complexation with Ar, the
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(a)

(b)

Figure 10.3: High-resolution two-colour UV R2PI spectrum of peak B in Fig. 10.1. The
disclosed two subbands are assigned to two different 2-PE·Ar complexes: (a) cis-complex
(ν0 = 37588.040(1)cm−1) and (b) trans-complex (ν0 = 37590.5cm−1). Upright spectra in (a)
and (b): experimental spectra. Inverted spectrum in (a): the best-fit simulated spectrum yielding
the constants listed in Table 10.2
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projections of the transition moment onto the principal axes of inertia of the 2-PE·Ar cluster will
be different, which leads to a different transition moment ratio and hence to a different rotational
band structure [94]. Assuming that the two subbands originate from fragmentation of a 2-PE·Ar
complex, two feasible positions of the Ar atom with respect to the benzene ring are reasonable:
i) the Ar atom is atop of the benzene ring on the side of the side chain (cis cluster conformer) ,
and ii) the Ar atom is on the other side of the benzene ring located on its C6 symmetry axis (trans
cluster conformer) . The distance between the Ar atom and the benzene ring was taken from
Refs. [87, 291]. For these two configurations, two sets of rotational constants were obtained,
which were used to calculate the corresponding rotational band structures. The so-produced two
spectra exhibit the same rotational band type but their rotational structures are different for the
two sets of starting values: the one with the Ar adjacent to the side chain (cis configuration)
displaying a regular structure with peak spacing close to the one of the experimental spectrum
of the stronger subpeak (Fig. 10.3 a) while the calculated spectrum for the trans configuration
of Ar showing irregularly more closely spaced peaks in both P and R branches, resembling the
pattern of the weaker experimental sub-band (Fig. 10.3 b). These two sets were used as starting
parameters for the GA fits of the experimental spectra. The FWHM of the Gaussian line used to
convolute the stick spectra was 150 MHz. Unfortunately, because of the insufficient quality of
the experimental spectrum, the fit of the weaker (higher-energy) subband did not yield reliable
results. The rotational constants from the fit of the band in Fig. 10.3 a) for the ground, S 0, and the
first excited, S 1, electronic states , respectively, the transition moment ratio, the rotational tem-
perature, T , and the exact position of the 00

0 transition for the cis configuration are summarized
in Table 10.2. The best-fit spectrum for this configuration is presented in Fig. 10.3 a) (lower

Rotational constant Ground State S0 Excited State S1

GHz cm−1 GHz cm−1

A 1.018(10) 0.03396(34) 1.0451(92) 0.03486(31)
B 0.954(11) 0.03182(38) 0.9330(56) 0.03112(19)
C 0.6187(51) 0.02064(17) 0.6293(52) 0.02099(17)
TM ratio µ2

a : µ2
b : µ2

c 14:3:83
Origin ν0 , cm−1 37588.040(1)
Temperature T , K 2.2(3)
Best-fit cross correlation (%) 95

Table 10.2: Experimental rotational constants, transition moment ratio, origin band position ν0,
and rotational temperature T of the cis conformatin of the 2-PE·Ar complex resulting from the
GA- based computer-aided fit of the highly resolved spectrum of the S 1 ←− S 0 00

0 origin band
(see Fig. 10.3) (for details, see text). The numbers in parentheses represent one standart deviation
in units of the least significant quoted digit. The uncertainty for the relative values of µ2

a, µ2
b, and

µ2
c in the transition moment ratio is 5.
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inverted trace) along with the respective experimental spectrum (upper trace). It reveals a very
close match to the experimental one both in peak positions and peak intensities. The found tran-
sition moment ratio for this peak is µ2

a : µ2
b : µ2

c = 14:3:83. In the case of the weaker subband, a
reasonable visual agreement between the experimental spectrum and a spectrum simulated with
the rotational constants of the trans structure of the 2-PE·Ar complex with transition moment
orientation fixed to that of the 2-PE monomer is observed. On this basis and by the red shift, one
can tentatively assign the trans 2-PE·Ar complex as giving rise to the second subband. It is inter-
esting to point out that the rotational temperature found for the cis 2-PE·Ar complex (T = 2.2K)
(by the appearance of the spectrum it is very likely that the rotational temperature of the weaker
subband is similar) is significantly lower than that for the 2-PE monomer (T = 12.5K). The
explanation of this finding is that in the case of the 2-PE·Ar complex, due to the low binding
energy only the sufficiently cold species survive under the conditions of the molecular beam and
give rise to the observed spectrum.

10.5 Theoretical Results

10.5.1 Ab Initio Results

To support the structural analysis of the 2-PE·Ar complex, a series of ab initio structural op-
timizations using Gaussian 03 suit of programmes [70] were performed. The high-resolution
experiments of this work clearly demonstrate that the strongest band A in the UV spectrum
originates from the most stable and the most abundant conformation of 2-PE, i.e., the gauche
structure, in which the side chain is bent towards the benzene ring (see Fig. 10.4 ). Because of
the red shift of bands B from the main band A (gauche structure), it is plausible to assume that
the Ar atom is attached to the gauche structure of 2-PE. Two feasible binding sites of the Ar atom
to the gauche 2-PE have been considered: i) Ar located in vicinity to the C6 symmetry axis of
the benzene ring adjacent to the side chain (cis conformer, Fig. 10.5 a), and ii) Ar situated close
to the C6 symmetry axis of the benzene ring on the side opposite to the side chain (trans con-
former, Fig. 10.5 b). As a first step, a full structural optimization of the ground state of the 2-PE
gauche conformation of the monomer at the MP2/6-31G (d, p) level of theory was performed.
The theoretical results at this level agree well with those present in the literature [126, 283]. In
addition, a full structural optimization of the gauche conformation of 2-PE for the first excited,
S 1, state at the CIS/6-31G (d, p) level of theory was carried out. The results of these optimiza-
tions, including some typical distances, planar and dihedral angles characterizing the shape and
position of the side chain, are listed in Table 10.3. The dihedral angles defining the structure of
the side chain are depicted in Fig. 10.4. The so-optimized structure of the 2-PE monomer was
used as a starting point for the optimization of its dimers with Ar at the MP2/6-31G (d, p) level



10.5 Theoretical Results 125

Figure 10.4: Electronic ground state, S 0, structure of the gauche conformer of 2-PE optimized
at the MP2/6-31G (d, p) level of theory. The xyz coordinate system is the benzene-ring-fixed co-
ordinate system with its origin set in the centre of the benzene ring. The curved arrows designate
the orientation of the dihedral angles defining the geometry of the side chain (see Table 10.3).
The bold arrow shows the orientation of the transition moment relative to the benzene ring.

of theory, the same as for the monomer, so that a direct comparison of the results is possible.

The optimized structures of the 2-PE·Ar complexes are shown in Fig. 10.5, and the results of the
calculations are summarized in Table 10.4. It is obvious that in both structures the Ar atom is not
displaced much from the benzene ring symmetry axis. Comparing the results of the structural
optimizations of the 2-PE monomer and its two dimers with Ar, it is worth pointing out that
the planar and the dihedral angles relevant to the side chain remain unchanged in both 2-PE·Ar
conformers, cis and trans . This is a strong indication that the interaction of the Ar atom is
predominantly with the π electronss of the benzene ring and the side-chain structure remains
almost intact by the cluster formation. Furthermore, from the ab initio calculations, the distance
of the Ar atom from the benzene ring plane, and the projections of the Ar atom upon the short and
the long axis of the benzene ring for the two 2-PE·Ar complexes have been found. In both binding
sites of Ar to 2-PE, this distance is larger (3.75 Å for the cis conformer and 3.68 Å for trans
conformer, respectively) compared to the one in Bzn·Ar (3.58 Å (Ref. [291])), this difference
being more expressed in the case of Ar binding next to the side chain (cis conformation). This
result is not surprising from the viewpoint of the interaction of the benzene ring with the side
chain moiety in the 2-PE monomer (cis conformer), as will be discussed in the next section.
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Ground state, MP2/6-31G (d, p) Excited state, CIS/6-31G (d, p)
r(H(15)-C(1)), Å 2.55 2.74
α1(C(2)C(7)C(8)), deg 111 113
α1(C(7)C(8)O(9)), deg 112 113
α1(C(8)C(9)C(15)),deg 106 109
τ1(C(3)C(2)C(7)/C(2)C(7)C(8)), deg 88 90
τ2(C(2)C(7)C(8)/C(7)C(9)O(9)), deg 61 65
τ1(H(15)O(9)C(8)/O(9)C(8)C(7)), deg 299 297
A, Ghz / cm−1 3.3359 / 0.11127 3.3584 / 0.11202
B, Ghz / cm−1 1.1118 / 0.03709 1.0631 / 0.03546
C, Ghz / cm−1 0.9637 / 0.03215 0.9192 / 0.03066
TM, µ2

a : µ2
b : µ2

c · · · 1:98:1

Table 10.3: Theoretical interatomic distances, r, planar angles, α, dihedral angles, τ, and ro-
tational constants for the ground, S0, and the first excited, S1, electronic state of the gauche
conformer of the 2-PE monomer calculated at the MP2/6-31G (d, p) and CIS/6-31G (d, p) level
of theory, respectively. The transition moment ratio, TM, was obtained from a CIS/6-31G (d, p)
calculation for the optimized excited state geometry of the 2-PE monomer.

(a) (b)

Figure 10.5: Electronic ground state, S 0, structure of the cis (a) and trans (b) conformer of the
2-PE·Ar complex optimized at the MP2/6-31G (d, p) level of theory.

10.5.2 Kraitchman Equations

The Kraitchman equations (see Sec. 4.3) have been successfully applied to the analysis of many
noble-gas clusters of benzene and benzene derivatives [87–89]. In the case of the flexible side
chain molecule 2-PE, this method is also expected to provide reasonable results as the ab initio
calculations show that the 2-PE molecule indeed does not undergo structural changes due to the
complexation with Ar (see Table 10.4). The use of the Kraitchman equations and the comparison
of the so-obtained results with those of the ab initio calculations can elucidate two important
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cis conformer,MP2/6-31G (d, p) trans conformer, CIS/6-31G (d, p)
r(H(15)C(1)), Å 2.55 2.55
α1(C(2)C(7)C(8)), deg 111 111
α1(C(7)C(8)O(9)), deg 112 112
α1(C(8)O(9)H(15)),deg 106 107
τ1(C(2)C(3)C(7)/C(2)C(7)C(8)), deg 89 88
τ2(C(2)C(7)C(8)/C(7)C(8)O(9)), deg 61 61
τ1(H(15)O(9)C(8)/O(9)C(8)C(7)), deg 298 299
r(ArC(5)), Å 70 65
α4(ArC5C2), deg 70 66
τ4(ArC5C2/C5C2C6), deg 3 -1
h, Å 3.74 3.68
s1, Å 0.26 -0.02
s2, Å 0.08 -0.23
A, Ghz / cm−1 0.9779 / 0.0326 1.4409 / 0.0481
B, Ghz / cm−1 0.9675 / 0.0323 0.5824 / 0.0194
C, Ghz / cm−1 0.6143 / 0.0205 0.5017 / 0.0167

Table 10.4: Theoretical interatomic distances, r, planar angles, α, dihedral angles, τ, distances
from the Ar atom to the benzene ring plane, h, projections of the Ar atom onto x and y axes
of the benzene-ring-fixed coordinate system, s1 and s2, respectively, and rotational constants for
the ground, S0, and the first excited, S1, electronic state for the cis and trans conformers of the
2-PE·Ar complex calculated at the MP2/6-31G (d, p) level of theory.

aspects: i) whether indeed the 2-PE molecule retains its structure after the cluster formation,
and ii) to confirm the theoretical predictions. To use the Kraitchman equations, the rotational
constants of the 2-PE monomer and the 2-PE·Ar complex must be known. As a first step, the ab
initio rotational constants of the 2-PE monomer and 2-PE·Ar complex were used to calculate the
Ar atom position from the Kraitchman equations. The resulting Ar position was compared with
the theoretically predicted one and this comparison was used as a kind of test for the applicability
of the Kraitchman equations in this case. The very good agreement between the two results
reveals that the use of the Kraitchman equations is indeed justified in the present study. As a
second step, the Kraitchman equations were employed to calculate the experimental Ar atom
position using the experimental rotational constants of the 2-PE monomer (main band A) and its
cis Ar complex (red-shifted band B) , respectively, obtained from the fits of the highly resolved
spectra (see Figs. 10.2 and 10.5 a). There exist 8 positions of the substituted atom with respect
to the parent molecule, all of them yielding the same set of rotational constants for the cluster.
However, not all of these 8 positions are chemically feasible and hence some of them can be
ruled out. That is why, only the position of the Ar atom which matches the one theoretically
predicted has been considered. The coordinates of the Ar atom with respect to the COM principal
axis system of the parent molecule were then transformed into three coordinates relative to the
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cis conformer trans conformer
El. state S0 S1 S0

Method Theor. Expt. Expt. Theor.
h, Å 3.74 3.63(32) 3.53(29) 3.68
s1, Å 0.26 [0.37] [0.43] -0.02
s2, Å 0.08 [0.11] [0.04] -0.23

Table 10.5: Distances from the Ar atom to the benzene ring plane, h, projections of the Ar
atom onto x and y axes of the benzene-ring-fixed coordinate system, s1 ans s2, respectively,
for the ground, S0, and the first excited, S1, electronic state for the cis conformer of the 2-
PE·Ar complex obtained from the experimental results by employing the Kraitchman equations.
The theoretical values of the above parameters for the ground, S0, state for the cis and trans
conformers, respectively, obtained from ab initio calculations at MP2/6-31G (d, p) level of theory
are presented for comparison. The numbers in parentheses represent one standard deviation in
units of the least significant quoted digit. The experimental values of the displacements s1 and s2

are given in square brackets: they are characterized by large deviations (more than 50%) and are
presented in the table for completeness.

benzene ring: distance from the benzene ring, h, and displacement along the short and the long
axes of the benzene ring, s1, and s2, respectively. All these results for the cis 2-PE·Ar complex
conformation are summarized in Table 10.5. Within the accuracy the agreement between the
Ar position relative to the benzene ring derived from the Kraitchman equations and the one
obtained from the ab initio calculations confirms the result from the ab initio calculations that no
observable structural changes in the 2-PE monomer occur upon complexation with Ar.

10.5.3 Transition Moment Orientation

The orientation of the TM in a molecule or molecular complex is of importance since it provides
information on the electron density distribution. The change of the transition moment orientation
may be indicative for the presence of particular types of intra- and intermolecular interactions
[292] and hence implications on the conformational structure of the species can be made. To in-
vestigate alterations of the TM orientation induced either by conformational distortions or by the
attachment of another atom or molecule, one has to eliminate the mass effects, i.e., changing of
the principal axes of inertia and hence the projections of the TM caused by the different mass dis-
tribution. Towards this end, in the case of the 2-PE monomer the projections of both theoretically
predicted (ab initio calculations) and experimentally found (GA fit of the rotational structure) TM
onto the three mutually orthogonal and normalized axes of a 2-PE molecular-framework-fixed
coordinate system were calculated. The same approach was applied to the experimental TM of
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2-PE monomer 2-PE·Ar cis conf.
Theor. Expt. Expt.

∠x, deg 18 17(5) 15(5)
∠y, deg 108 106(3) 104(3)
∠z, deg 91 92(4) 93(6)

Table 10.6: Angles between the transition moment vector and the three unit vectors, x, y, and z
of the benzene ring for the 2-PE monomer and the cis conformer of the 2-PE·Ar complex (for
details, see text). The numbers in parentheses represent one standard deviation in units of the
least significant quoted digit.

the 2-PE·Ar cluster. In the case of the 2-PE monomer, among the 8 principally possible orienta-
tions of the TM yielding the experimentally found TM ratio only one that matches the theoretical
predictions was found and it was assigned to be the true TM. For the 2-PE·Ar complexes, no re-
liable ab initio results can be obtained at the level of calculation presented here. However, there
exists an orientation of the transition moment deduced from the experimentally determined TM
ratio of the cis 2-PE·Ar complex that coincides with that of the monomer (See Table 10.6). This
result is very unlikely to be explained by an arbitrary coincidence. This means that the van der
Waals interaction is too weak to cause a reorientation of the TM itself relative to the molecular
framework due to the attachment of the Ar atom. As seen from Table 10.6, the theoretical TM
angles relative to the aromatic-ring-fixed axes of the gauche conformation of the 2-PE monomer
conform very well to the experimental ones within 1◦. Their orientation is shown in Fig. 10.4.
The observed clockwise rotation of 18◦ of the transition moment relative to the short benzene
axis or the b principal axis of inertia of the 2-PE monomer gives rise to the appearance of the
a-type contribution in the highly resolved spectrum in Fig. 10.2. The deviation of the TM from
the short benzene axis can be explained by the interaction of the side-chain hydroxyl group with
the π electrons of the benzene ring, which also stabilizes the gauche conformer . This interaction
brings forward a redistribution of the electron density of the π electrons of the benzene ring,
which induces the observed rotation of the transition moment. Such effect is not expected in the
case of extended side chain conformations [126], as is shown for the similar system, 3-phenyl-
1-propionic acid [292], where the electron density remains the same as in pure benzene. The
deviation of the TM away from the short benzene axis can be considered as another evidence for
the gauche structure of the 2-PE monomer .
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10.6 Discussion

The analysis of the highly resolved rotational band structure of the main peak A in the S 1 ←− S 0

spectrum of 2-PE clearly demonstrates that it originates from the gauche conformer of 2-PE. Fur-
thermore, the high-resolution spectroscopic investigation of the red-shifted peaks in the spectrum
yields important information on the influence of the side chain on the Ar attachment, and vice
versa. It has been shown that the two peaks are assigned to the S 1 ←− S 0 electronic origins of the
1:1 van der Waals complexes of 2-PE with Ar, and it is plausible to assume that they appear in the
spectrum following fragmentation of the cluster ions generated by vertical ionization leading to
a high excess energy above the adiabatic ionization energy and the dissociation threshold of the
ionic complex, which is expected from the MATI measurements of the binding energy of Bzn·Ar
complexes [293] to be around 575 cm−1. The binding situation may be compared with that of the
fairly related system consisting of 1:1 complex of 2-PE with water [160, 288]. Since there a wa-
ter molecule is involved, the favorable binding sites are likely to be determined by suitability of
specific hydrogen bond formations, while in the case of Ar binding to 2-PE, the nonspecific dis-
persion interaction must be considered. The IR-UV double resonance spectrum of the 2-PE·H2O
species indicates a formation of two isomeric hydrogen-bonded structures [160, 288]. In the
first structure, the π-HO hydrogen bond of the gauche form of 2-PE is preserved and the water
molecule binds to one of the lone pairs of the alcoholic oxygen atom. In the second conformer,
the π hydrogen bond between the aromatic ring and the alcoholic OH is bridged by an interca-
lated water molecule. Ab initio quantum chemistry calculation at the MP2/6-31+G (d, p) level
of theory predicts that the two isomeric forms are isoenergetic [160]. In view of these examples
where the theoretical information on the energetics is not always sufficient to predict the realized
structure, precise high-resolution measurements are necessary, as shown for the 2-PE·Ar com-
plex. Now, the experimental results are compared with the ones of other known Ar complexes of
monosubstituted benzene derivatives. The complex with the out-of-plane attachment of Ar used
for the spectral simulation is in agreement with the spectral red shift for the S 1 ←− S 0 electronic
excitation energy in comparison to other substituted and unsubstituted Bzn·Ar complexes having
the same out-of-plane position of the Ar atom [87,294]. The high-resolution scan reveals that the
30 cm−1 red-shifted peak in the low-resolution R2PI spectrum actually consists of two adjacent
peaks at 33.256 and 30.8 cm−1 with an intensity ratio of approximately 2:1. If one interprets
the intensity ratio as resulting from a Boltzmann population, it can be inferred that the stronger
peak reflects the more stable 2-PE·Ar conformer. This is in line with the somewhat larger red
shift pointing to a slightly stronger binding energy. The stronger subband has been identified
as the conformer with the Ar atom bound to the aromatic ring on the side of the side chain (cis
conformer) by analysing the rotational band structure and comparison with the ab initio results.
It is instructive to compare this spectral shift of the S 1 ←− S 0 transition energy with other Ar
complexes of benzene derivatives. For example, the red shifts of the 1:1 and 1:2 complexes of
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benzene (Bzn) with Ar are 21 and 41 cm−1 [253, 291], for the 1:1 complex of toluene , the shift
is 26 cm−1 [295], for the 1:1 complex of p-fluorotoluene, the shift is 35 cm−1 [154], and for
phenol, it is 33 cm−1 [296]. The result for the red shift of the peak at 31cm−1 of this work fits
best to the one for phenol·Ar. From the experience of the 1:2 Bzn·Ar complex [253], one may
assume initially that the Ar atom may prefer to bind with the aromatic ring on the opposite side
of the OH group. However, there are two arguments against this possibility. The OH group of
the side chain of this molecule is not oriented directly on top of the aromatic ring and there is
room to accommodate an Ar atom on the side of the side chain. Secondly, spectroscopic mea-
surements and theoretical calculations indicate that the Ar atom forms ”hydrogen bonds” with
water [296,297]. Therefore, in the present case, the Ar binding to the ring on the same side of the
OH group is stabilized by dispersion interactions with the ring π-electron cloud and, possibly,
also by the hydrogen bonding with the OH group of the alcoholic chain. On the other hand, only
the dispersion interactions would be responsible for the binding stability of the trans conformer
with Ar on the other side of the side chain . Thus, the minor species, which shows a smaller
red shift of 30.8 cm−1, and has been identified as the second isomeric form (trans conformer),
is the one with the smaller binding energy and, expectedly, its red shift is very close to that of
the toluene·Ar complex. Ab initio calculations at the MP2/6-31G (d, p) level of theory show that
the two (cis and trans) structures of the 2-PE·Ar complex are almost isoenergetic, the trans one
being with slightly higher binding energy (44 cm−1). The so-calculated binding energy differ-
ence between the cis and trans conformations , however, is smaller than the expected accuracy
at this level of theory. Therefore, one cannot use this theoretical result for making reliable ener-
getic considerations and conclusions on the conformational preferences. This mode of binding
can also be compared with those observed in phenol·water·Ar ternary complexes [297, 298]. As
mentioned before, in the 1:1 Ar complex with phenol, the Ar atom binds with the π cloud of
the aromatic ring and shows a red shift of 33 cm−1 in the electronic spectrum. However, in the
phenol·water hydrogen-bonded dimer, wherein the water molecule binds at the phenolic OH site,
the incoming Ar atom in the ternary complex prefers to attach at the hydrogen-bonded site and
exhibits anomalous spectral shifts. The same situation can also arise in the present OH-π in-
ternally hydrogen-bonded molecule 2-PE: the Ar atom prefers to bind at the hydrogen-bonded
site in lieu of the alternative possibility. However, the magnitude of the effect is expected to
be smaller because of the much weaker OH-π hydrogen bond energy. It is assumed [126, 283]
that the 2-PE gauche conformer is stabilized by a nonspecific interaction between the side chain
and the benzene ring. This interaction causes a decrease of the electron density in the benzene
ring thus weakening the van der Waals interaction with the Ar atom. Since the side chain in-
duces a non-symmetrical change of the electron density of the benzene ring, this will lead to a
displacement of the Ar atom from the C6 symmetry axis, which is observed in the results from
the ab initio calculations (See Table 10.5). The accuracy of the experimental displacements of
the Ar atom found from the Kraitchman equations is not sufficient to clearly demonstrate this
effect. The values of the displacements given in brackets in Table 10.5 are presented only for



132 Dispersion and H- Bonding: The Complex between 2-phenylethanol and Ar

completeness.

10.7 Summary and Conclusions

2-PE, the hydroxy analogue of the neurotransmitter molecule, 2-phenylethylamine and its 1:1
complex with Ar have been investigated by high-resolution resonance-enhanced UV two-photon
ionization spectroscopy combined with ab initio quantum chemistry calculations. The results
on the 2-PE monomer unambiguously demonstrate that its gauche conformation is the most
abundant one in the jet-cooled molecular beam. This conformer is stabilized by a nonclassical π-
type hydrogen bond between the folded side chain and the benzene ring. This statement is further
supported by the finding from the high-resolution experiments that in this case the transition
moment is rotated by 18◦ away from the short benzene axis, this being in a good agreement with
the results of the extended basis set ab initio calculations (CIS/6-311++G (d, p)). This is a clear
indication for a redistribution of the π-electron density in the benzene ring, which originates from
the interaction between the OH group of the side chain with the benzene ring. Such effect is not
expected in the case of the anti conformer of the same species , as demonstrated for p-hydroxy-
3-phenyl-1-propionic acid [292], since the side chain is far away from the benzene ring moiety
and the transition moment orientation remains parallel to the short axis of benzene, as is the
case of unsubstituted benzene. Two closely spaced bands red-shifted from the origin band of the
gauche conformer of the 2-PE monomer have been disclosed by high-resolution spectroscopy.
They have been assigned to two distinct 1:1 complexes of the gauche 2-PE with Ar: Ar atom
situated close to the C6 symmetry axis of benzene on the side of the side chain (cis structure) ,
and Ar sitting close to the C6 symmetry axis of benzene but on the opposite side of the side chain
(trans structure). An important question in the description of protein folding is the influence
of the surrounding on the molecular structure. It has been frequently discussed whether the
attachment of atoms or molecules to a molecular moiety by intermolecular interactions can lead
to a structural change in a molecule, particularly when it is flexible. Here, a prototype molecule
with a flexible side chain has been investigated. Ab initio calculations and the application of
the Kraitchman equations to the experimental rotational constants demonstrate that there occurs
no structural change of the 2-PE monomer upon the cluster formation with Ar. The position
of the Ar atom in both configurations (cis and trans) manifests that Ar binds to 2-PE via a
dispersion interaction with the π electrons of the benzene ring. The small displacements of the
Ar atom from the benzene-ring C6 symmetry axis, mainly in the cis configuration , are a result
from the interaction of the 2-PE side chain with the benzene ring leading to a breaking of the
symmetry of the π electron density of the latter. It is worth pointing out that the theoretically
found distance between the Ar atom and the benzene ring is slightly bigger in the case of the
cis structure which points to a weaker dispersion interaction between the two moieties. This is a
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reasonable result from the point of view that in this case the electron density on this side of the
benzene ring is decreased due to the electronegativity of the side-chain OH group. This effect
is less pronounced on the opposite side of the benzene ring. It is puzzling, however, that it is
the cis structure which is more abundant in the molecular beam. One can tentatively explain
this fact by assuming the existence of an additional hydrogen-bond type interaction between the
Ar atom and the side-chain OH group, which contributes to probably higher binding energy in
this case. To summarize, it has been shown that the attachment of a moiety bound by dispersion
interaction does not noticeably change the structure of 2-PE, a molecule with a flexible side chain.
From this finding, one may infer that the additional nonspecific dispersion interaction involving
the π electrons of the aromatic ring does not interfere with the intramolecular hydrogen bonds
stabilizing the conformational structure of the flexible molecule. This seems to be the case also
for the hydrogen-bond type interaction of the Ar atom with the OH group of the side chain.
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Chapter 11

Fragmentation and Conformation Study of
Ephedrine by Low and High Resolution
Mass Selective UV Spectroscopy

S. C, P. Q. W, J. E. B,  H. J. N, J. C. P.
121, 7169 (2004).
The neurotransmitter molecule, ephedrine, has been studied by mass-
selective low- and high-resolution UV resonance enhanced two-photon ion-
ization spectroscopy. Under all experimental conditions, an efficient frag-
mentation upon ionization has been observed. The detected vibronic peaks in
the spectrum are classified according to the efficiency of the fragmentation,
which leads to the conclusion that there exist three different species in the
molecular beam: ephedrine·water cluster and two distinct conformers. The
two-colour two-photon ionization experiment with a decreased energy of the
second photon leads to an upper limit of 8.3 eV for the ionization energy of
ephedrine. The high-resolution (100 MHz) spectrum of the strongest vibronic
peak in the spectrum measured at the fragment (m/z = 58) mass channel dis-
plays a pronounced and rich rotational structure. Its analysis by the use of
a specially designed computer-aided rotational fit yields accurate rotational
constants for the S0 and S1 states and the transition moment ratio, providing
information on the respective conformational structure.
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11.1 Introduction

In nature there exist many small and medium-sized molecules acting as regulators of vari-
ous biochemical processes. A prominent class of such molecules comprises neurotransmit-
ters [299, 300], which communicate information between neurons and play an important role in
human body. Typical representatives of these molecules are dopamine, epinephrine (adrenalin),
norepinephrine (noradrenalin), serotonin, histamine, glycine, glutamate, aspartate, and the class
of ephedra, including ephedrine (EPD), norephedrine, and pseudoephedrine, etc. They have
been a subject of intense investigations for more than 80 years since the first neurotransmit-
ter, acetylcholine was discovered, and as a result, a wealth of information on their chemi-
cal and pharmacological properties is available nowadays. Neurotransmitters are very flexible
molecules and this determines the variety of conformational structures they can assume. It is
worth pointing out that the conformational structure can change drastically the properties of the
respective molecule and its physiological action. For a better understanding of the interaction
mechanisms between neurotransmitters and their receptors [301, 302] and for drug synthesis,
a detailed study of the structure and the conformational preferences with precise experimental
methods at molecular level is indispensable. A feasible experimental approach in this direc-
tion is the implementation of spectroscopic techniques of isolated molecules in the gas phase.
On the other hand, the enhancement of the computational power provides a good opportunity
for making theoretical predictions for most of the studied systems. In recent years, the use of
various spectroscopic methods and ab initio calculations has yielded new results on a series of
neurotransmitters, such as phenethylamine (PEA) [126,180,280–282,287] and its hydrated clus-
ters [288], 2-phenylethanol [126,282,287], phenylalanine [129], etc. Ephedrines comprise an in-
teresting class of neurotransmitters. Simons and co-workers have explored ephedrine [127,286],
norephedrine [285], and pseudoephedrine [127], and their hydrated clusters [128] using mass-
selected R2PI spectroscopy with conventional resolution, UV hole-burning, and IR ion-dip spec-
troscopy coupled with ab initio calculations. The authors have identified four conformational
structures from the theoretical calculations and assigned them to the peaks observed in the vibra-
tionally resolved R2PI spectrum.
This work presents new results on the mass-selected R2PI low- and the first high-resolution UV
spectra of the ephedrine (C10H15NO) monomer. The low-resolution spectrum simultaneously
recorded at two mass channels (parent (m/z = 165) and fragment (m/z = 58)) allows for classi-
cation of the bands with respect to their fragmentation ratio. In this way, the new investigation
complements the existing information and provides new experimental data on the identification
of the peaks. Furthermore, it provides the first high-resolution spectrum of the strongest band of
the EPD monomer. On the basis of this spectrum with the help of computer assisted fitting algo-
rithm, very accurate values of the rotational constants for the ground, S0, and the first excited, S1,
electronic state, and reliable values of the transition moment ratios have been determined, which
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provides a critical test for the theoretically predicted structures.

11.2 Experiment and Data Processing

The low-resolution spectra of EPD as well as its high-resolution spectrum were measured by
R2PI with mass selectivity in a supersonic molecular beam. The experimental set up has been
described in detail in Sec. 6.2. The species was heated up to 110◦ to produce it in a sufficient
concentration in the molecular beam. Ar was used as a carrier gas at a stagnation pressure of 3
bar. The diameter of the used nozzle orifice was 300 µm.
The analysis of the highly resolved spectrum of the the EPD monomer was performed with the
computer-assisted fitting routine based on genetic algorithms, described in detail in Sec. 6.3.
The best-fit spectrum of the EPD monomer was produced after a fit using 650 iterations with 250
individuals. The achieved cross correlation is 96%.

11.3 Results and Discussion

11.3.1 Low Resolution Spectra

First, low-resolution (∆ν ca. 0.4 cm−1) R2PI experiments with mass selectivity have been carried
out to investigate the vibrational structure of the S 1 ←− S 0 spectrum of the EPD monomer. They
reveal that the EPD monomer undergoes an efficient fragmentation upon ionization even in the
case of a two-colour experiment. The resulting fragmentation has the mass of the side chain
[CH(CH3)NHCH2] containing the amino group (m/z = 58). Such kind of fragmentation seems
to contradict the general rule that the charge is located in the larger fragment with the lower
ionization energy, yet however, it is typical for molecular systems containing methylmethyl group
and amino groups in their side chains, since the presence of these groups leads to a stabilization
of the side-chain cation [127, 303].

Ionization Energy

The initial explanation of the fragmentation behaviour of the EPD monomer was that the frag-
mentation occured in the cation, resulting from very high excess energy because the ionizsing
photon in the R2PI led to a total excitation energy above the dissociation limit in the ionic state.
This is likely the case in one-colour experiments, where the energy of the second photon is large
and fixed [127]. To test this assumption, R2PI two-colour experiments with different smaller



138 Fragmentation and Conformational Preferences of Ephedrine

Figure 11.1: Low-resolution one-colour R2PI spectra of ephedrine (EPD) measured at the parent
(m/z165) (upper trace) and fragment (m/z=58)(lower trace) mass channels, respectively. Corre-
sponding peaks are designated by vertical dashed lines.

energies of the second photon were performed whereas the energy of the excitation photon was
fixed to that of the strongest peak, 3, in the S 1 ←− S 0 spectrum (Fig. 11.1, lower trace). The
energy of the second photon was decreased stepwise to the lowest possible limit (32260 cm−1)
so that ion signal still could be observed. This gives an upper limit of the ionization energy of
69812 cm−1 (8.3 eV). For all energies of the second photon, even for the lowest one, however,
the fragmentation of the ephedrine parent ion could not be avoided. A plausible interpretation
of this result in the two-colour experiment is that the absorption coefficient for the second pho-
ton around 32300 cm−1 in the ground ionic state of ephedrine is much higher than that for the
ionizing step from the S1 state, this leading to the absorption of a further photon within the EPD
cation immediately after it has been produced. This ladder switching process has been shown to
lead to an efficient fragmentation of the benzene cation [304, 305].
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Fragmentation Behaviour

To investigate the fragmentation behaviour in more detail, the low-resolution one-colour R2PI
spectra of the EPD monomer were measured simultaneously at the parent (m/z = 165) and frag-
ment (m/z = 58) mass channels, respectively. The resulting spectra are shown in Fig. 11.1 on a
different vertical scale. Most of the peaks in the spectrum measured at the parent mass correlate
with the results of Simons and co-workers [127,128]. The spectra feature well-resolved vibronic
structure and display several intense vibronic bands, labelled as 1-10 in Fig. 11.1. Corresponding
peaks in the two mass channels are indicated by dashed vertical lines. It can be clearly seen that
the relative height of most of the corresponding peaks differs in the two spectra. For example,
peak 10 has nearly the same height in both spectra while peak 3 is much higher in the fragment
(m/z = 58) mass channel (lower trace), and peak 5 is higher in the parent (m/z = 165) mass chan-
nel spectrum (upper trace). A closer inspection reveals that the peaks may be subsumed into
three groups with respect to their intensity ratio, defined as the quotient of the intensity measured
at the fragment (m/z =58) mass channel and that measured at the parent (m/z =165) mass channel
for a certain peak. The summarized information on all of the peaks is presented in Table 11.1,
where the last column shows the corresponding peaks from Butz et al. [128]. Group I contains
only peak 3, where the fragmentation ratio is 58. Group II comprises peaks 2, 7, 8, and 10,
characterized by a fragmentation ratio between 10 and 17. Group III encompasses peaks 1, 4, 5,
6, and 9 with a ratio of around 3. The different fragmentation ratio indicates different origins of
the three groups of bands; i.e., there are overlapping spectra of three different species, e.g., con-
formers or clusters produced in the molecular beam contributing to the observed mass channels.
The measured fragmentation behaviour represents new information for the identification of the
nature of the species observed.

The weakest fragmentation is observed for the peaks in group III. One member of this group,
peak 5, has been assigned as originating from an EPD·H2O cluster [128]. This is an evidence for
the presence of water in the vacuum chamber even after the attempts to avoid it. The inefficient
fragmentation of the EPD cation in this case can be explained by energy considerations. For the
dissociation of the EPD·H2O cation, energy of about 0.5-1.0 eV [306] is necessary. Thus, the
energy released as kinetic energy of the fragments and the internal energy of the water molecule
decrease the amount of energy available for the subsequent dissociation of the EPD cation leading
to a higher EPD cation signal. As a consequence, a less efficient fragmentation of the EPD cation
is indeed observed (Fig. 11.1 and Table 11.1). From their identical fragmentation behaviour,
it is inferred that all of the peaks 1, 4, 5, 6, and 9 of group III originate from the EPD·H2O
cluster. The more efficient fragmentation behaviour observed for the peaks in group I and group
II brings forward the hypothesis that they come from two distinct EPD conformers. There are
four peaks in group II. The efficient fragmentation of the species bringing forth peak 7 has been
explained by a special conformer with a weak intramolecular interaction of the benzene ring
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Peak Group Peak position, cm−1 Ratio, 58/165 Assignmenta

1 II 37514.1 4.6 · · ·
2 II 37527.6 12 · · ·
3 I 37552.7 59 A
4 III 37566.3 3.4 · · ·
5 III 37572.4 2.8 B
6 III 37582.4 3.6 C
7 II 37600.0 16 X
8 II 37607.3 15 D
9 III 37613.0 6.2 · · ·

10 II 37627.5 11 E
aTaken from Refs. [128, 285]

Table 11.1: Classification of the observed vibrational bands in the low-resolution one-colour
two-photon R2PI spectrum of the EPD monomer of Fig. 11.1

with the side chain (CH(CH3)NHCH3, m/z = 58) [127]. This peak has been attributed to an
anti-gauche conformational structure [127]. Thus, it is reasonable to propose that also the other
peaks, 2, 8, and 10 of group II originate from the same conformer. Peak 3 from group I has the
most pronounced fragmentation behaviour but there is no other prominent (detectable) peak of
this category observed in the spectrum. This peak has been assigned by Butz et al. to another
anti-gauche conformer on the basis of a band contour analysis. As a further step in the study of
the conformational structure of ephedrine, in the next section, the high-resolution spectrum of
this band is presented to complement the existing results with precise information and to check
the assignment.

11.3.2 High Resolution Spectrum

The experimental high-resolution UV spectrum of the EPD monomer is depicted in Fig. 11.2
(upper trace). It unveils the rovibronic structure of peak 3 in Fig. 11.1 at 37552.116(1) cm−1.
The spectrum was measured at the side-chain (CH(CH3)NHCH3, m/z = 58) fragment mass chan-
nel only since due to the efficient fragmentation upon ionization the signal intensity at the parent
mass channel is too weak, which hinders the attainment of a satisfactory signal-to-noise ratio.
The rotational temperature has been found to be 8 K, which is relatively high and is, most prob-
ably, due to nonoptimized cooling conditions. The band is characterized by prominent P and R
branches in the wings and a small contribution from the Q branch in the centre. The central dip
is not pronounced due to a relatively strong a type feature present in the spectrum. The spectrum
is classified as a and b hybrid type [94]. The spectrum does not exhibit single rotational lines
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but regularly spaced peaks with FWHM of about 300 MHz formed by aggregation of rotational
lines. The rotational constants and the transition moment ratio for the ephedrine monomer have
been found by using the computer-assisted routine described in Sec. 6.3. The fitting procedure
was initiated with arbitrary starting values of the rotational constants. The resulting best-fit theo-
retical spectrum is also shown in Fig. 11.2 (lower inverted trace). It was obtained by convoluting
the theoretical stick spectrum with a Gaussian line with FWHM of 120 MHz. There is a very
good agreement in the peak positions (see Fig. 11.2, inset). The slight mismatch in the peak
intensity between the experimental and the simulated spectra is, probably, due to saturation of
the induced transitions. Saturation rather than a fast dynamics is assumed also to be responsible
for the frequency width of 120 MHz needed for the convolution of the calculated stick spectrum
to acquire agreement with the peak width in the experimental spectrum. This width is larger than
the frequency width of the exciting laser of ca. 100 MHz. The difference in the total intensity
in the left side of the experimental and theoretical spectra is tentatively ascribed to a drop of
the laser power in the end of the experiment. The obtained values of the rotational constants
for the ground and excited state, respectively, and the transition moment ratio, are summarized
in Table 11.2. There is a surprisingly good agreement within less than 1% between the values
of the rotational constants for the ground, S0, and the first excited, S1, electronic states, respec-
tively, obtained from the fitting of our high-resolution spectrum and those calculated by Butz et
al. [127]. The experimental rotational constants for the ground and the first excited electronic
state differ by only 1.5%, which manifests that the investigated conformer is a relatively sta-
ble system and it does not experience substantial structural changes when electronically excited.
This could be interpreted as a result of the hydrogen bonds that are supposed to stabilize this
conformational structure [127, 303]. The fitted transition moment ratio is µ2

a : µ2
b : µ2

c = 35:65:0.
This result complies with the hybrid type of the spectrum discussed above. The absence of a c
type contribution is a plausible and an expected feature having in mind that most of the mass
of the molecule is in the plane of the phenyl ring, where the a and b principal axes of inertia
lie. The transition moment ratio found on the basis of the fitting of the high-resolution spectrum
disagrees with the result obtained from ab initio calculations [127], which is 62:34:4. This is a
striking result in view of the good agreement of the experimental and the theoretically predicted
rotational constants and demonstrates the problem associated with the calculation of the excited
state parameters, in particular charge distributions.

11.4 Summary and Conclusions

Both low- (0.4 cm−1) and high-resolution (0.003 cm−1) resonantly enhanced two-photon ion-
ization spectroscopy studies with mass selection on the EPD monomer have been conducted.
The molecule is characterized by an effective fragmentation when ionized, leading to the side-
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Figure 11.2: Highly resolved spectrum of peak 3 in Fig. 11.1 of EPD at ν0=37552.116(1) cm−1

recorded at the fragment (m/z=58) mass channel. Upper trace: experimental spectrum. Lower
inverted trace: the best-fit simulated spectrum based on the parameters listed in Table 11.2. Inset:
magnified part of the spectrum.

Ground state S0 Excited state S1

Rotational constant GHz cm−1 GHz cm−1

A 1.9966(42) 0.06660(14) 1.9639(51) 0.06551(17)
B 0.5303(33) 0.01769(11) 0.5231(27) 0.01745(9)
C 0.4941(60) 0.01648(20) 0.4929(48) 0.01644(16)
Transition moment ratio
µ2

a : µ2
b : µ2

c 35:65:0
Origin ν0, cm−1 37552.116(1)

Uncertainty of the last significant figure(s) is given in parentheses.

Table 11.2: Experimental rotational constants of the EPD monomer conformer giving rise to
peak 3 in Fig. 11.2. The rotational constants and the transition moment ratio have been obtained
through computer-aided fit of the highly resolved spectrum (Fig. 11.2) of this conformer.
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chain ((CH(CH3)NHCH3, m/z = 58)) cation containing the amino group. In the measured range
between 37500 and 37650 cm−1 of the low-resolution spectrum 10 peaks have been identified.
They are subsumed into three groups showing different fragmentation behaviour. On the ba-
sis of the fragmentation ratios, the peaks are suggested to originate, either from dissociation of
the EPD·H2O clusters or from two distinct conformational structures. This demonstrates that
not only the difference in the ionization energies but also the different fragmentation efficiency
of the ionic conformers can provide an important information on distinguishing conformational
structures. The high-resolution spectrum has yielded accurate information on the values of the
rotational constants of the EPD monomer for the ground, S0, and the first excited, S1, state, re-
spectively. The found values of the rotational constants are in surprisingly good agreement with
those obtained from ab initio calculations by Simons and co-workers [127]. On the other hand,
the transition moment ratio found from the fitting of the presented in this work high-resolution
spectrum, departs significantly from that of Ref. [127]. From this, one can conclude that ab
initio calculations with the present level of precision alone are not sufficient to yield undeniable
data on the conformational preferences of biological molecules and, in particular, their transi-
tion moment ratio, which is determined by their conformational structure. This brings forward
the necessity of high-resolution spectroscopic data for reliable assignment of the structural and
transition moment parameters of complicated molecular structures such as ephedrine and other
sneurotransmitters.
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Summary and Conclusions

Molecular interactions and the concept of molecular bonds are the underlying fundament for the
understanding of the properties and functionality of chemical and biological systems. Whilst
chemical interactions are well-studied, weak molecular interactions have not been complteley
elucidated yet. It has been realized, however, that weak molecular interactions and the subtle
balance between them are responsible for the conformational stabilization of flexible molecules
and play a key role in solavation processes, which are ubiquitous in the living nature. Thus, the
profound knowledge on weak interactions is an indispensable prerequisite for the proper descrip-
tion and prediction of molecular shapes and behaviour. The most fruitful approach to getting an
insight into weak molecular interactions is the co-operation between high-level theory and exper-
imental spectroscopic investigations of isolated molecular systems in a mutually complementary
fashion. Towards this end, the present work describes new results on model molecular systems,
including flexible molecules and weakly bound molecular complexes obtained for the first time
through the promising combination of high-resolution resonance-enhanced two-photon ioniza-
tion spectroscopy with mass selectivity, genetic-algorithm-based rotational fitting technique, and
high-level ab initio quantum chemistry calculations. These results shed light on some particular
aspects of weak interactions and their consequences on the molecular shape and binding pattern.
As a first step, a general survey of the theoretical fundamentals has been presented. The types of
molecular interactions have been briefly discussed and classified. The concept of weak molecu-
lar bonds has been introduced and the distinction between weak molecular interactions and weak
molecular bonds has been emphasized. The types of weak chemical bonds have been given along
with a discussion on their most typical occurrences.
The practical application of the theories describing weak interactions is realized through quantum-
chemistry calculations, which are an important tool for simulation and prediction of molecular
structures and properties, and have gained significance in the interpretation and disambiguation
of experimentl data. That is why, an overview of the most commonly used theoretical methods
along with the most popular commercially available programmes for ab initio calculations has
been given.
To bridge the gap between the abstract description of molecular interactions and observables ob-
tained from spectroscopy, the interaction between light and matter has been considered within
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the framework of the semiclassical model. The Born-Oppenheimer approximation has been elu-
cidated and its use has been argumented. The important concept of the rigid rotor, and the
associated with it molecular energy levels, transition moment vector, transition selection rules,
and transition intensities have been described.
Spectroscopy provides a nondemolishing and gentle means for probing of various molecular
characteristics. That is why, it is most often the method of choice for the investigation of molec-
ular species. Nowadays, there exists an enormous variety of spectroscopic techniques. The most
advanced of them which are relevent to the topic discussed in this work have been presented.
The resonance-enhanced two-photon ionization laser spectroscopy with mass selectivity has been
employed to obtain the results presented in this work. This technique has been thoroughly de-
scribed along with the details of the experimental set up in our laboratory. Particular emphasis
has been put on the production of supersonic molecular beams, the laser system and the auto-
mated control of the laser experiment, and the genetic- algorithm- based fitting routine. The latter
has been developed in our group. It has been rendered a due consideration in this work since this
advanced fitting routine of molecular specrtra with partial rotational resolution provides accurate
values for the rotational constants and the transition moment ratio of the studied species and
hence reliable implications on the structure of those species can be inferred.
The presented results can be divided into two main groups. The first one considers the proper-
ties and behaviour of aromatic molecules that pertain a double covalent bond in their side chain,
and various types of complexes with those molecules. The second group of results encom-
passes the investigation of flexible molecules, including 2-phenylethanol and the neurotransmit-
ter molecule, ephedrine.
Several important types of weak interactions and the interplay between them have been eluci-
dated through the investigation of styrene and its comolexes with acetylene and argon, and the
para fluorinated styrene and its singly hydrated complex.
It has been confirmed by high-resolution experiments and rotational fit based on genetic algo-
rithms that the conjugation between the π-electron systems, the one of the benzene ring and the
one of the vinyl group, in bare styrene yileds a planar structure for both ground and the first
excited electronic state.
The nonconventional C-H· · · π- type hydrogen bond has been addressd through the investigation
of the weakly bound complex between styrene and acetylene, the latter being also a molecule
with a π-electron system. It has been found that the preferred geometry of the complex is the
one in which acetylene binds to the benzene ring of styrene as a proton donor, which brings the
implication that notwithstanding the π-electron delocalization in styrene, the proton affinity of
the aromatic ring is still high enough to favour the formation of a weak hydrogen bond and thus
the aromatic ring remains the preferred binding site. The structure in which the acetylene moiety
is a proton acceptor from the aromatic ring of styrene is less favoured. No evidences for an in-
teraction between the π electrons of acetylene and those of the vinyl group of styrene have been
found. The reduced electron density symmetry of the benzene ring in styrene results in a tilting



149

of the acetylene moiety relative to the C6 symmetry axis of the aromatic ring. The formation of a
weak C-H· · · π bond does not bring about an observable change of the transition moment vector
of the chromophore, as it has been demonstrated for the complex between styrene and acetylene.
The effect of the electron conjugation on the van der Waals bond has been studied through the
model complex bewteen styrene and argon. It has been shown that the binding pattern in this case
is very similar to the one in the complex between benzene and argon. The distance between the
argon atom and the aromatic ring in the case of the styrene-argon complex is shorter compared
to the one in the benzene-argon complex. This implies that the electron conjugation in this case
leads to a strengthtening of the van der Waals bond.
The formation of van der Waals complexes provides a convenient means for testing the planarity
of the host molecule through a detection of spectral splittings in the resonance enhanced two-
photon ionization spectrum of the complex. The lack of a splitting of the origin band of the
styrene-argon complex even under high-resolution conditions has served as an additional evei-
dence for the planarity of styrene.
The competition between the mesomeric and the electron attraction effects and their influence on
the formation of hydrated complexes and their binding motifs have been explored by studying
the singly hydrated complex of the para fluorinated styrene. Due to the subtle interplay between
the electron attraction of the electronegative fluorine atom and the releasing mesomeric effect of
the vinyl group, both σ and π hydrogen bonding of water to fluorostyrene are feasible. It has
been found, however, that in this case water binds to styrene through the formation of two σ

hydrogen bonds: one to the fluorine atom, in which water is the proton donor, and a second one
between the water oxygen atom and a hydrogen atom from the benzene ring of styrene, a pattern
drastically different from the π bonding in the benzene-water complex.
The importance of the intramolecular hydrogen bonds for the conformational stabilization of
flexible molecules has been highlighted through the investigation of the 2-phenylethanol monomer.
It has been demonstrated through high-resolution resonance enhanced two-photon ionization
spectroscopy combined with rotational fit based on genetic algorithms and quantum chemistry
calculations that the most abundant in the cold beam, gauche, structure is stabilized by an in-
tramolecular nonconventional hydrogen bond between the OH group of the bent side chain and
the π electrons of the aromatic ring.
The concurrence of intramolecular hydrogen bonds and van der Waals interactions has been elu-
cidated through the ivestigation of the complex between 2-phenylethanol and argon. It has been
found that in the most abundant configuration, the argon atom binds to the aromatic ring of 2-
phenylethanol on the side of the side chain, giving rise to the cis conformation of the cluster. The
less favoured, trans, geometry, in which the argon atom binds to the opposite side of the benzene
ring, has also been detected in the molecular beam. A tentative conclusion on the existence of a
weak ”hydrogen bond”- type interaction between the side-chain OH group and the argon atom
has been drawn to explain the additional stabilization of the cis geometry.
For the first time, a bilogically active molecule has been studied by resonance enhanced two-
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photon ionization high resolution spectroscopy with mass selectivity. The experiments on ephedrine
have shown that the molecule undergoes a very efficient fragmentation upon ionization. The clas-
sification of the observed bands according to their fragmentation efficiency have led to the idea
of conformer- or state-selective fragmentation. The structure of the most abundant conformation
of the ephedrine monomer has been determined on the basis of the high-resolution experimental
results and their analysis by a rotational fitting routine employing genetic algorithms. The latter
has yielded also an accurate value for the transition moment orientation. The obtained accurate
inertial parameters of the ephedrine monomer manifest that even large flexible molecules with
many degrees of freedom have well-defined shapes owing to the intramolecular weak hydrogen
bonds that stabilize the respective geometries.
The review of the attained results renders confidence that the combination of mass-resolved
high-resolution resonance-enhanced two-photon ionization spectroscopy supported by rotational
fitting techniques based on genetic algorithms and high-level quantum chemistry calculations
provides a powerful but yet gentle approach for the investigation of weak intra- and intermolec-
ular interactions and the subtle interplay between them. The so-obtained results bring important
implications both for the fundamental underastanding of the properties and behaviour of various
chemical and biological systems and, on the other hand, provide the basis for some practical
applications, such as chemical synthesis, molecular design, material science, pharmacology, etc.



Outlook and Perspectives

This work has demonstrated the potential power of the combination of the highly resolved reso-
nance enhanced two-photon ionization spectroscopy with mass selectivity, rotational fitting rou-
tine based on genetic algorithms, and high-level quantum chemistry calculations for the investi-
gation of weak molecular interactions. The presented in this work new results provide an insight
into some aspects of weak intra- and intermolecular interactions. To rationalize, however, the
properties and phenomena governed by weak interactions, the latter must be investigated in their
complexity and interconnection. Towards this end, in addition to the discussed results, some
possible advanced studies aiming at getting a broader view on weak interactions are proposed.
To produce molecules with low vapour pressure in the gas phase, laser desorption can be used as
an alternative to the heating. To study the dynamics of the first excited electronic state by a reso-
nance enhanced two-photon ionization, a controllable variable delay of the ionization laser pulses
with respect to the excitation pulses can be introduced. To increase the spectral resolution and
at the same time to retain the mass selectivity, a combination between high-resolution resonance
enhanced two-photon ionization and laser induced fluorescence experiments is a promising ap-
proach. The idea includes a simultaneous scan of both high-resolution spectra. This technique is
expected to be helpful in cases when an efficient fragmentation upon ionization takes place.
A possible upgrade of the existing fitting computer programme based on genetic algorithms is
the inclusion of an option allowing for the fit of two or more overlapping spectra. An inclusion
of corrections in the molecular Hamiltonian accounting better for the molecular nonrigidity is
also beneficial.
The pending molecular systems include molecules with π-electron systems and unsaturated
bonds (similar to styrene), flexible molecules containing an electronegative atom at different
positions, e.g., fluorinated 2-phenylethanol, to study the effect of the substitution on the con-
formational preference of the species, and stereoisomers of a certain molecule, e.g. ephedrine,
pseudoephedrine, and norephedrine, and their hydrated complexes. The idea behind studying
isomers is to explore how the sterical arrangement of molecular groups affects the properties of
the respective species. The used approach is promising for providing interesting results even
on large systems and hence it can be extended to the study of base pairs and amino acids. The
ambition for studying hydrated complexes is targeted at polyhydrated clusters containing more
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than two water molecules, which are anticipated to yield information on weak interactions and
the resulting conformational shapes and binding patterns.
The ultimate purpose of such experiments is to mimic and investigate the behaviour of biologi-
cally active species in an environment close to their natural one and,s in a more general concept,
to get an insight into the interesting properties taking place at the borderline between the micro-
scopic and mesoscopic world.
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[88] T. M. Korter, J. Küpper, and D. W. Pratt, J. Chem. Phys. 111, 3946 (1999).

[89] K. Siglow and H. J. Neusser, Chem. Phys. Lett. 343, 475 (2001).

[90] G. Herzberg, Molecular Spectra and Molecular Structure, I. Spectra of Diatomic
Molecules (Van Nostrand, New York, 1950), Vol. I.

[91] G. Herzberg, Molecular Spectra and Molecular Structure, II. Infrared and Raman Spectra
of Polyatomic Molecules (Krieger, Malabar, 1991), Vol. II.



160 BIBLIOGRAPHY

[92] G. Herzberg, Molecular spectra and molecular structure, III. Electronic spectra and elec-
tronic structure of polyatomic molecules (Krieger Publishing Company, Malabar, 1991),
Vol. III.
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[263] O. Bludský, V. Špirko, V. Hrouda, and P. Hobza, Chem. Phys. Lett. 196, 410 (1992).
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