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Abstract:
This thesis considers several models that connect different areas of particle physics
and cosmology. Our first discussion in this context concerns a baryogenesis sce-
nario, in which the baryon asymmetry of our universe is created through the
dynamics of a dark energy field, thereby illustrating that these two topics might
be related. Subsequently, several neutrino mass models are analyzed, which make
use of an extra-dimensional setting to overcome certain problems of their four-
dimensional counterparts. The central discussion of this thesis concerns a lep-
togenesis model with many standard model singlets. Amongst other things, we
show that the presence of these states can lower the standard bound for the nec-
essary reheating temperature of the universe by at least one and a half orders of
magnitude. To further motivate this approach, we also discuss an explicit, extra-
dimensional leptogenesis scenario that naturally yields many of the ingredients
required in this context.

Zusammenfassung:
Diese Dissertation behandelt mehrere Modelle, die verschiedene Gebiete inner-
halb der Teilchenphysik und Kosmologie miteinander verbinden. Als erstes wird
hierbei ein Baryogenese-Szenario diskutiert, in welchem die Baryon-Asymmetrie
unseres Universums mittels der Dynamik eines Dunkle-Energie-Feldes erzeugt
wird, und welches hierdurch einen möglichen Zusammenhang dieser Themenge-
biete veranschaulicht. Daran anschließend werden verschiedene Neutrinomassen-
Modelle analysiert, die innerhalb eines extra-dimensionalen Rahmens mögliche
Probleme der entsprechenden vier dimensionalen Modelle überwinden. Die zen-
trale Diskussion dieser Dissertation betrifft ein Leptogenese-Modell mit vielen
Standard Modell Singlets. Unter anderem wird gezeigt, dass die Anwesenheit
vieler Singlet Zustände die untere Schranke für die notwendige Reheating Tem-
peratur des Universums in Bezug auf das Standard-Szenario um mindestens
eineinhalb Größenordnungen herabsetzen kann. Um diesen Ansatz weiter zu
motivieren, diskutieren wir zusätzlich ein konkretes, extra-dimensionales Lepto-
genese-Szenario, welches viele der, in diesem Zusammenhang, notwendigen Vo-
raussetzungen in natürlicher Weise bereitzustellen vermag.
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Introduction

Within the search for a more fundamental theory of nature, physics at the smallest
and the largest accessible length scales have both been studied with ever-growing
precision. In the corresponding fields of physics, i.e. particle physics and cosmol-
ogy, this has led to the development of respective standard models, which suc-
cessfully describe a large number of phenomena. Especially the standard model
of particle physics (SM) can be considered as a truly great achievement. Being
based on very few assumptions, it has undergone extensive experimental tests
for more than three decades now and has been able to account for all observed
phenomena at high-energy collider experiments, even predicting particles that
were later on observed. The standard model of cosmology (the ΛCDM-model)
is somewhat more empirical. Nevertheless, it has been found to nicely describe
the large scale behavior of our universe in terms of very few parameters and has
therefore also become established.

Yet, in spite of the huge success of these two standard models, we know today
that their simple combination cannot give a complete description of nature. This
is due to several reasons, one of them being the fact that the SM cannot account
for the observed dark matter in our universe, which is a key ingredient of the
ΛCDM-model. Another reason is the inability of the SM to explain neutrino
oscillations, which have been observed by a number of different experiments today.
In fact, both of these phenomena seem to indicate new physics at higher energies.
In particular, dark matter can be explained by weakly interacting particles with
masses beyond the reach of previous particle physics experiments, while neutrino
oscillations can be explained by tiny neutrino masses, which in turn seem to be
suppressed by even larger energy scales.

Moreover, even several observations that can be accommodated within the
two standard models can be seen as hints for new physics at higher energies.
One of these potential hints comes from the baryon asymmetry of our universe,
which cannot be created dynamically within the SM. In the respective framework,
it would therefore have to be included into early universe dynamics as an initial
parameter. Yet, this rather unattractive feature can be avoided within extensions
of the SM that operate at higher scales. Another hint of this kind comes from
the observed vacuum energy density in our universe. While this phenomenon
can be accounted for within the standard model of cosmology, its tininess seems
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6 INTRODUCTION

Figure 1: This diagram illustrates the various connections of different areas of physics in the
models considered in this thesis.

to require a further motivation, which neither of the two standard models can
provide.

Due to all these indications (and several others), physics beyond the electro-
weak scale is a very active area of research. Typically, it is further assumed
that such new physics will help to simplify our view of physics at lower energies
by unifying interactions and phenomena that previously seemed unrelated. If
this assumption is true, we might also use this principle in reverse and attempt
to receive hints about these new physics by trying to connect previously rather
unrelated areas of research.

This combination of different topics of particle physics and cosmology is the
main idea behind this thesis. In several models we present possible connections
of miscellaneous areas of physics, namely the baryon asymmetry of our universe,
dark energy, neutrino masses, and extra dimensions, as also illustrated in Fig. 1.

The present work will therefor be divided into an introductory part (chapters
1 to 4), in which several relevant topics of particle physics and cosmology are
presented in some detail, and a central part (chapters 5 to 7), which mainly
reviews the research of the author and his respective collaborators.

More precisely, we will give a brief introduction to several topics of cosmology
in chapter 1, which will consist of two parts. In the first part, we will mainly
discuss the basics of early universe dynamics and the established history of our
universe, while we will focus on more advanced topics in the second part of this
chapter. These more advanced topics include the cosmic microwave background,
inflation, and quintessence fields. Subsequently, we give a brief overview over
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the the standard model of particle physics, its Lagrangian and its motivations
in chapter 2. This is followed by a more detailed discussion of neutrino masses
in chapter 3 concerning their theoretical background, related experimental data
and several approaches for model builders that address the smallness of neutrino
masses as well as the structure of their masses and mixings. These approaches
include the see-saw mechanism in four and five dimensions, single right-handed
neutrino dominance, and family symmetries. In the final chapter of the intro-
ductory part (chapter 4), we review the baryon asymmetry of our universe and
different scenarios that can create this asymmetry dynamically. In this context,
we put a stronger focus on baryogenesis via leptogenesis, which will be especially
relevant in the second part of the thesis.

The second part of the thesis starts with chapter 5 and an introduction to the
idea of leptonic dark energy and baryogenesis, where we consider a baryogenesis
mechanism that hides a B−L asymmetry in a dark energy field, which compen-
sates for an opposite asymmetry in the visible sector. In particular, we dicuss
the particle content and the general dynamics of the model as well as further
subtleties.

In chapter 6, we then consider a class of extra-dimensional neutrino mass
models which combine single-right handed neutrino dominance and family sym-
metries to account for neutrino masses and mixings. Here, the extra-dimensional
setting helps to avoid the cancellation of essential hierarchies that typically ap-
pear within the corresponding four-dimensional models. In addition to a more
general discussion of the models, we also present explicit parameter values that
yield the desired neutrino data in each case.

Chapter 7, finally, contains the central discussion of this thesis, in which we
consider leptogenesis with many neutrinos. More precisely, we study the possible
impact of many neutrino singlets on thermal leptogenesis scenarios via approxi-
mative, analytical formulae as well as numerical simulations. This analysis also
includes a discussion of the possible impact of these states on bounds from the
standard setting. To further motivate the idea of leptogenesis with many neutri-
nos, we also present a realization of a corresponding scenario within a concrete
extra-dimensional model that can naturally yield singlet states with all the re-
quired features.

Subsequently, this is followed by the conclusions of this thesis, where we sum-
marize the results of the different discussions and also address open questions of
the presented models.

Moreover, in the appendix, we provide the interested reader with related back-
ground information, where the corresponding discussions address orbifolds, Boltz-
mann equations for leptogenesis, reaction rates of leptogenesis processes, and the
Davidson-Ibarra bound in the presence of many singlets.



8 INTRODUCTION



Conventions and Notation

In order to avoid the necessity of somewhat over-exact remarks during the pre-
sented calculations, we will fix some of the used notation, here.

In particular, if not indicated otherwise we will work in natural units through-
out the whole paper, which implies c = ~ = kB = 1.

Moreover, In an inertial frame, the metric tensor g will be given by a diagonal
matrix of the form diag(1,−1,−1,−1).

Considering spinors, we will work in the chiral basis where the γ-matrices take
the form

γµ =

(

0 σµ
σ̄µ 0

)

, γ5 = iγ4 =

( 12×2 0
0 −12×2

)

,

with σµ = (12×2,−σi) , σ̄µ = (12×2, σi), and the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, and σ3 =

(

1 0
0 −1

)

.

Further, we will frequently use the anti-symmetric matrix

ǫ ≡ iσ2 =

(

0 1
−1 0

)

,

and the right- and left-handed projection operators will, as usual, be given by

PR/L ≡ 14×4 ± γ5

2
.

Occasionally, we will also make use of the 2-norm of a matrix M , which will be
denoted by

||M || ≡
√

∑

i,j

|Mij|2 .

9
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Chapter 1

The Early Universe

The history of our universe and its interplay with particle physics is the primary
subject of this thesis. The purpose of this chapter is therefore to provide the
reader with some background material on this area, which can be helpful in the
context of the more detailed discussions in the following chapters.

In particular, we will review the standard formal background for early universe
dynamics in the following three sections and thereafter present the established
picture of its more recent history in section 1.4.

For more comprehensive reviews on the early universe, we refer the reader to
standard textbooks, e.g. Ref. [1].

The second half of this chapter will be dedicated to more advanced topics. In
section 1.5 we will discuss the anisotropies of the cosmic microwave background
and some of the information that can be inferred from them. This will be followed
by a discussion of inflation in section 1.6, which is favored by large parts of
the scientific community as the explanation for several conceptual problems of
the early universe. The final section of this chapter will then be devoted to
dark energy. In particular, to the conceptual problems of dark energy due to a
cosmological constant and to quintessence as a possible solution to the cosmic
coincidence problem.

1.1 Early Universe Thermodynamics

During large parts of its history, our universe can be considered as a thermal bath
of different particle species in local thermal equilibrium (with some important
deviations). This section is therefore concerned with the statistical properties of
these particles, which will be crucial in the following sections, when we consider
the corresponding dynamics of our universe more closely.

The relevant quantity from which one can deduce all the required statisti-
cal properties of a homogeneously distributed particle species is its phase space
distribution fi(~p). In particular, the respective particle density ni, the energy

11



12 CHAPTER 1. The Early Universe

density ρi and its corresponding pressure pi can be derived via

ni =
1

(2π)3

∫

fi(~p) d3p , (1.1)

ρi =
1

(2π)3

∫

Ei(~p)fi(~p) d3p , (1.2)

pi =
1

(2π)3

∫ |~p|2
3Ei

fi(~p) d3p , (1.3)

with Ei ≡ (m2
i + |~p|2)1/2, where mi is the rest mass of the corresponding particle

species.
To determine the respective phase space distributions, we note that particles

that are not in local thermal equilibrium (LTE) in the early universe are typically
still assumed to be in kinetic equilibrium. In both of these cases the phase space
distribution is given by

fi(~p) =
gi

exp [(Ei − µi)/Ti + τi]
, (1.4)

where gi is the number of internal degrees of freedom of the considered species,
Ti is the corresponding temperature, µi is the corresponding chemical potential,
and τi can take the values 1 (Fermi-Dirac statistics), -1 (Bose-Einstein statistics),
and 0 (Maxwell-Boltzmann statistics).

In the relativistic limit (Ti ≫ mi, µi) this leads to [1, 2]

ni =

{

ζ(3)
π2 gi T

3
i (Bose-Einstein),

3
4
ζ(3)
π2 gi T

3
i (Fermi-Dirac),

(1.5)

ρi =

{

π2

30
gi T

4
i (Bose-Einstein),

7
8
π2

30
gi T

4
i (Fermi-Dirac),

(1.6)

pi =
ρi
3
, (1.7)

where ζ(3) ≈ 1.202 is the Riemann zeta function of 3.
In the non-relativistic limit, on the other hand, one finds for Bose-Einstein

and Fermi-Dirac statistics alike [1]

ni = gi

(

miTi
2π

)3/2

exp[−(mi − µi)/Ti] , (1.8)

ρ = mini , (1.9)

p = niTi ≪ ρi . (1.10)

Moreover, in the case of Maxwell-Boltzmann statistics the number density is for
all temperature ranges given by [2]

ni = gi
T 3
i e

−µi/Ti

2π2

(

mi

Ti

)2

K2

(

mi

Ti

)

, (1.11)
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where K2(x) represents the corresponding modified Bessel function of the second
kind.

From Eq. (1.8) we can see that the abundance of non-relativistic species in
thermal equilibrium is exponentially suppressed. For many cases it is therefore
a good approximation to assume that only the relativistic degrees of freedom
contribute to the energy density ρ and the pressure p of the universe, which are
in this case given by

ρ =
π2

30
g∗ T

4 , (1.12)

p = ρ/3 . (1.13)

Here, T is the temperature of the photons, and g∗ is the number of relativistic
degrees of freedom defined by

g∗ =
∑

bosons

gi

(

Ti
T

)4

+
7

8

∑

fermions

gi

(

Ti
T

)4

, (1.14)

where the sums only run over relativistic species with respective temperature Ti.
As long as the universe is in LTE, the entropy in a comoving volume will

remain constant. Therefore, it is often convenient to specify the abundance of
some quantity per comoving volume in terms of its density compared to the
entropy density, where the latter is defined by the relation

s ≡ ρ+ p

T
. (1.15)

From this definition we see that the entropy is typically dominated by relativistic
particles as well. Similarly to Eq. (1.12) we can therefore write

s =
2π2

45
g∗S T

3 , (1.16)

in these cases, with

g∗S ≡
∑

bosons

gi

(

Ti
T

)3

+
7

8

∑

fermions

gi

(

Ti
T

)3

. (1.17)

In this context, we also note that all relativistic species in our universe had the
same temperature during the early periods of our universe, which implies g∗ = g∗S
for these stages.

1.2 Early Universe Dynamics

Due to the short range of the strong and weak interaction of the standard model
of particle physics and the electric neutrality of our universe on large scales, its
behavior is basically determined by gravity, the weakest of all known interactions.



14 CHAPTER 1. The Early Universe

Gravity, in turn, has been found to be well described by the theory of general
relativity. Therefore, the dynamics of the universe are determined by the Einstein
equations, which can be written in the simple form

Rµν −
1

2
R gµν = 8πGTµν . (1.18)

Here, gµν is the metrical tensor of the system, Rµν is the Ricci tensor, which
depends on the metrical tensor and its derivatives, and R ≡ Rµνg

µν is the so-
called Ricci scalar. The right-hand side of this equation can be considered as the
source term of the system and contains Newton’s constant G and the stress-energy
tensor Tµν .

In spite of the simple form of Eq. (1.18), the corresponding solutions are
typically complicated, which can, in parts, be ascribed to the complex dependence
of Rµν and R on the metric. This makes it generally hard to get an intuitive
feeling for the solutions of the Einstein equations. However, in many cases the
complexity of these equations can be greatly reduced by symmetries.

The cosmological principle, which claims that the universe is homogeneous
and isotropic on large scales, renders such simplifying symmetries (cf. e.g. [3]).
In fact, using spherical coordinates (r, ϑ, ϕ) the metric can be expressed via

ds2 ≡ gµνx
µxν = dt2 − a(t)2

[

1

1 − k r2
dr2 + r2 dϑ2 + r2 sin2(ϑ) dϕ2

]

, (1.19)

in this case. This metric is referred to as the Robertson-Walker metric. It contains
the cosmic scale factor a(t) and the free parameter k, where r is typically rescaled
in such a way that k takes one of the values 1, 0, and -1.

It is therefore fortunate that the discovery of the cosmic microwave back-
ground and its high degree of isotropy by Penzias and Wilson in 1965 [4] indeed
indicates a high degree of isotropy and homogeneity of our observable patch of
the universe at the time of photon decoupling (cf. section 1.4) and justifies the
assumption that our universe obeys the cosmological principle.

Moreover, the homogeneity and isotropy of our universe do not only help to
simplify the metric within the relevant Einstein equations but also the stress-
energy tensor, which can now be written as

T µν = diag(ρ,−p,−p,−p) , (1.20)

with energy density ρ and pressure p.
Additionally, general covariance, the symmetry principle of general relativity,

yields a conservation law for the stress-energy tensor, which implies

d(ρa3) = −p d(a3) , (1.21)

in this case. We note that this relation states the (intuitively clear) fact that the
energy loss in a comoving volume is equal to its change in physical physical size
times the corresponding pressure.
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Defining the equation of state parameter ω by

p ≡ ωρ , (1.22)

we see from Eq. (1.7) that radiation yields a constant ω = 1/3, while Eq. (1.10)
tells us that ω = 0 for matter. Additionally, Eq. (1.20) yields ω = −1, if the
energy momentum tensor is dominated a cosmological constant Λ (T µν = Λgµν).
Energy-sources that effectively yield such a cosmological constant are also referred
to as vacuum energy.

If ω is time-independent (as for all three cases considered above), we can
integrate Eq. (1.21) to

ρ ∝ a−3(1+ω) , (1.23)

which leads to different scaling laws for the various energy forms, namely

ρ ∝ a−4 (radiation),
ρ ∝ a−3 (matter),
ρ ∝ const. (vacuum energy).

(1.24)

Moreover, Eqs. (1.19) and (1.20) also help to simplify the Einstein equations.
E.g., the 0-0 component of Eq. (1.18) can now be written as

ȧ2

a2
+
k

a2
=

8πG

3
ρ , (1.25)

which is called the Friedmann equation.
For later convenience, we also define the Hubble parameter

H =
ȧ(t)

a(t)
, (1.26)

in this context.
Additionally, we note that, if ω is known, Eqs. (1.21) and (1.25) already suffice

to completely describe the dynamics of the expansion and can be combined to
the simple equation

ä

a
= −4πG

3
(ρ+ 3p) . (1.27)

Now, we even see that it depends solely on the value of the equation-of-state
parameter ω whether the universe decelerates (ω > −1/3) or accelerates (ω <
−1/3).

Due to the fact that our universe is found to be approximately flat [5], which
implies k/a(t)2 ≈ 0, we can even give simple analytic expressions for the behavior
of the scale-factor in several important special cases. In particular, in a flat,
expanding universe (ȧ > 0) with a fixed ω > −1 Eqs. (1.23) and (1.25) lead to

a

a0

=

[

3

2
(1 + ω)H0(t− t0) + 1

]2/[3(1+ω)]

(1.28)
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as well as

H =

[

3

2
(1 + ω)(t− t0) +H−1

0

]−1

. (1.29)

Here, the index 0 denotes the respective values of a and H at t = t0.

At late times (t− t0 ≫ H−1
0 ) these expressions can be further simplified to

a ∝ (t− t0)
1/2, H = 1

2(t− t0)
(rad. dom. universe),

a ∝ (t− t0)
2/3, H = 2

3(t− t0)
(mat. dom. universe).

(1.30)

For a universe dominated by vacuum energy, on the other hand, the same condi-
tions lead to

a

a0
= exp [H0(t− t0)] and H = H0 = const. . (1.31)

Further, in a flat universe (k = 0) the Friedmann equation tells us that the
Hubble parameter and the energy density are related by

H2 =
8πG

3
ρc , (1.32)

where ρc is called the critical density.
From Eq. (1.12), we therefore see that a flat universe completely dominated

by radiation

H ≈ 1.66 g1/2
∗

T 2

MPl
, (1.33)

where MPl = 1/G1/2 is the Planck mass.

As we live in an approximately flat universe, its various energy components
are frequently specified in terms of fractions of the critical energy density, namely
by

Ωi ≡
ρi
ρc
, (1.34)

where Ωrad corresponds to radiation, Ωb corresponds to baryons, Ωm corresponds
to non-relativistic matter, Ωdm corresponds to dark matter, and ΩΛ corresponds
to vacuum energy.

1.3 Particle Kinematics

Now that we are more familiar with the expansion behavior of our universe, we
will take a closer look at the effects of this expansion on the kinematics of the
particles in our universe.
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As the universe expands, the respective wavelengths λ of all particles increase
by the same factor

λ(t0)

λ(t1)
=
a(t0)

a(t1)
≡ 1 + z , (1.35)

where the last equation defines the so-called red-shift z, which is often used
as a measure of time in the early universe. In fact, it is the observation that
more distant galaxies undergo a higher red-shift that tells us that our universe is
expanding.

As energy and momentum of massless particles are proportional to the in-
verse of their respective wave-lengths, the redshift implies that they scale with
a−1. Further, if these particles are decoupled, their density scales with a−3. Com-
bining these scaling laws, one can infer that a decoupled massless species whose
distribution function is at some point of the form as in Eq. (1.4) will be described
by the same distribution function at later times with a different temperature. In
particular, the temperature will obey a scaling law of the form

T ∝ a−1 for a decoupled, massless species. (1.36)

Non-relativistic, decoupled particles (T ≪ m) also undergo the same red-shift
and dilution. Yet, since their (kinetic) energy depends on p2, they they will be
described by the phase space distribution in Eq. (1.4) at later times, with

T ∝ a−2 for a decoupled, non-relativistic species, (1.37)

if they obeyed Maxwell-Boltzmann statistics before they decoupled. Additionally,
their distribution function also acquires a time-dependent chemical potential to
ensure particle number conservation.

1.4 A Short History of our Universe

Let us now give a brief review over the history of our universe as far as it will be
needed in the context of this thesis.

For this purpose, we will go backwards in time by means of Eqs. (1.21) and
(1.25). In principle, going back in time in such a way can always be questioned,
since the universe could also have started at some given instant with appropriate
initial conditions. Today, we would obviously not be able to distinguish between
such a universe and one that started much earlier. However, the fact that theory
can nicely explain many features of our universe, seems to show the validity of
our treatment, at least up to quite early times.

Before we get more detailed about the various epochs in the history of our
universe, let us briefly consider its age. We therefore note that going backwards in
time in an expanding universe also means going to smaller scale factors a(t) and
thereby to higher temperatures, as we can see from Eq. (1.24). This increasing
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temperature implies that more and more particle species will become relativistic
and our universe will sooner or later be dominated by radiation (going backwards
in time). Hence, we can employ Eqs. (1.28) and (1.29), which show that a vanishes
and H becomes divergent, as we approach t → t0 − (2H0)

−1. Of course, this
argument only holds if the universe has been dominated solely by radiation during
these early epochs. In this case the point t = t0 − (2H0)

−1 is referred to as “big
bang”. Moreover, if the universe started with the big bang and was from then on
governed by radiation its age is given by the simple relation [1]

t = (2H)−1 ≈
(

MeV

T

)2

sec , (1.38)

as long as the dominant energy component in the universe does not change, due
to Eq. (1.33). In fact, even if the universe started from a later point, or if it
was matter dominated after some time as in the realistic case, Eq. (1.38) can
typically still serve as a rough estimate. Plugging in the temperature of the
cosmic microwave background, which we will discuss later on, one therefore finds
an approximate age of our universe around 100 billion years. The actual value is
somewhat lower, due to the fact that our universe was not radiation dominated
during the most recent times. In particular, Ref. [5] finds a value of approximately
14 billion years in a more precise analysis.

At this point, one should however also note, that in case of an early phase in
which our universe was dominated by vacuum energy (as in inflationary scenar-
ios), the age of our universe could in principle be much older. Yet, in this case
Eq. (1.38) still gives an estimate for the time since reheating (cf. Sec. 1.6), which
is the more relevant quantity in many contexts.

We further note that the history of our universe crucially depends on the fact
that certain processes are in in equilibrium, while it is of equal importance that
certain other processes are not. Eq. (1.33) can also be helpful in this context,
since processes with a typical reaction time Γ−1 that is larger than the age of
the universe cannot be in thermal equilibrium. Therefore Γ−1 > (2H)−1 usually
characterizes an out-of-equilibrium process, whereas Γ−1 < (2H)−1 typically in-
dicates a process in equilibrium. In many cases this naive approximation works
remarkably well. However, if this treatment of non-equilibrium phenomena is not
precise enough, one typically makes use of Boltzmann equations to describe the
dynamics of the corresponding system (cf. appendix B).

Let us now consider some of the different epochs in the history of our universe
in more detail. The earliest time that is (indirectly) accessible by observation, is
the epoch of big bang nucleosynthesis (BBN), when protons and nucleons started
to form nuclei. This period took place between 0.01 seconds and 100 seconds
after the big bang, which corresponds to a temperature range from 10 MeV to
0.1 MeV. The corresponding theory nicely predicts the abundances of the light
elements D, 3He, 4He, and 7Li solely depending on the baryon-to-photon ratio
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ηB as the single input parameter and is therefore well established. For a more
comprehensive review on this topic, we the reader is referred to the corresponding
literature, e.g. Ref. [6].

Shortly, after this time the temperature of the universe fell below the mass of
electrons and positrons and their abundances became exponentially suppressed.
Therefore the entropy stored in these particles had to be transferred to the ther-
mal bath. Moreover, since the neutrinos had decoupled from the thermal bath
around a temperature of 1 MeV, this entropy increase of the photon sector did
not affect the neutrinos and therefore the temperature of photons has afterwards
been higher than the temperature of the neutrinos.

As the temperature was in the eV range the free electrons and protons started
to form Hydrogen atoms and quickly all free charges vanished. This time is
referred to as recombination and is accompanied by the decoupling of the photons,
which could now freely propagate due to the lack of free charge. This lead to the
cosmic microwave background (CMB), which we can still observe today. Due to
the red-shift the photons had to endure since then, the temperature of the CMB
is today approximately 2.73 K (cf. e.g. Ref. [7]).

Independently, the energy density stored in matter became comparable to the
radiative energy density around the time of recombination. Due to the different
scaling laws (cf. Eq. (1.24)) the universe was thereafter matter dominated and
structure formation started, which finally resulted in the galaxies, stars, and
planets, which we can observe today.

In its very late history (z ≤ 0.5), our universe seems to have started an
age of accelerated expansion, as implied by several independent astrophysical
data sets. This fact requires a new form of energy, which is often referred to as
dark energy. It will be discussed in some more detail in section 1.7. For this
section, we restrict ourselves to the statement that, today, we live in a universe
which is well described by the so-called ΛCDM model, i.e. a flat universe that
is very homogeneous and isotropic on large scales and whose energy density is
composed of baryonic matter, dark matter, and vacuum energy due to a (effective)
cosmological constant. Recent best-fit values for the respective energy densities
are Ωb = 0.04, Ωdm = 0.20, and ΩΛ = 0.76 [5].

So far, we have only reviewed the history of our universe since BBN. Since,
it is unlikely that the universe started with this epoch, the previous times are of
course also interesting. However, going to earlier and earlier times bares a serious
problem: due the rising temperatures we discussed earlier, we will sooner or later
encounter epochs, in which the relevant energies on our way backwards in time
will be beyond the energy scales accessible in experiment, today. Therefore, we do
not have any experimentally established knowledge about the physics governing
these times.

On the other hand, this also has the benefit that the early universe might give
us some hints about physics far beyond the reach of our experiments. Examples
for periods that are likely to have taken place at such early times are inflation
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Figure 1.1: The ”Internal Linear Combination” (ILC) map of CMB anisotropies from 3-year
WMAP data [8].

and baryogenesis, which we will discuss in section 1.6 and chapter 4, respectively.
Nevertheless, one needs to keep our limited knowledge about these energies in
mind and be cautious with one’s assumptions about the universe at these early
stages.

1.5 The Cosmic Microwave Background

In section 1.2 it was stated that the homogeneity of the CMB can be taken as
an indication for the homogeneity and isotropy of our universe (see also section
1.4). However, one cannot only gain valuable information from the isotropy of
the CMB, but also from its anisotropies shown in Fig. 1.1. In particular, these
fluctuations are important data sources for the determination of the baryon den-
sity and the dark energy of our universe. This section therefore briefly discusses
the CMB anisotropies and the inferred data that we will use at later points.

Let us first consider some of the physical reasons for CMB anisotropies. The
earliest causes for these fluctuations are the so-called primary fluctuations, which
include the following three imprints of the region where the respective photons
were last scattered (see e.g. Refs. [9–11]):

(a) photons emitted from regions of higher density will (on average) have short-
er wave-lengths, due to the higher temperatures in these regions,

(b) photons that were last scattered in a potential well experienced an addi-
tional gravitational red-shift,
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(c) photons last scattered by matter with a non-zero peculiar velocity (i.e. the
velocity with respect to the cosmic rest frame) will receive a Doppler shift.

For angles larger than one degree, the biggest contribution to the anisotropies
comes from a combination of points (a) and (b) in this list and is referred to as
the Sachs-Wolfe effect [12]. Such large angles can be used to probe modes that
are bigger than the Hubble scale at the time of decoupling.

However, in the context of this thesis we are more interested in the anisotropies
corresponding to smaller angles. In this context, it is a good approximation to
assume that, just before the time of decoupling, our universe was made up of
non-relativistic dark matter and a baryon-photon plasma. This plasma can be
treated as a perfect fluid, and it can therefore perform acoustic oscillations. Due
to point (c) in the above list, these oscillations, then, leave their imprint on the
anisotropies of the CMB, which can be observed on smaller angles.

Several cosmological parameters will therefore have an impact on the corre-
sponding fluctuations (cf. e.g. Ref. [10]), as the acoustic oscillations depend on
the respective sound horizon, which, in turn, depends mainly on Ωdm and Ωb. Ad-
ditionally, the angle under which we can observe the fluctuations today depends
on the behavior of the scale factor since decoupling, and in the ΛCDM-model
therefore on ΩΛ and Ωm.

Hence, fitting these parameters (and several others) to the three year WMAP
data, Ref. [5] finds the best-fit values Ωb = 0.04, Ωdm = 0.20, and ΩΛ = 0.76
under the assumption of a flat universe.

We see therefore that CMB data indicates that our universe is dominated
by dark energy today. Additionally, we can also infer the size of the baryon
asymmetry parameter nB from this data set, if we assume that there is effectively
no antimatter in the universe (cf. chapter 4).

1.6 Inflation

Even though the big bang model described so far, nicely explains the behavior of
our universe, there are still several conceptual problems that concern the initial
conditions of the ΛCDM-model.

These problems include (cf. e.g. Ref. [13]),

• the flatness problem:
The Friedmann equation (1.25) can be rewritten in the form Ω − 1 =
k/(aH)2. Using Eq. (1.30) we see that the term 1/(aH)2 becomes larger
and larger in a radiation or matter dominated universe. This implies that
the universe becomes less and less flat if k 6= 0, which, in turn, indicates a
fine-tuning problem for our scenario, since only very small deviations from
a flat universe at initial times would allow us to observe a universe which
is still rather flat, today.
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• the horizon problem:
As we already mentioned in section 1.2, the cosmic microwave background
is very isotropic. However, the causally connected region at the time of
last scattering only takes up an angle of approximately one degree in the
sky. Therefore, the isotropy over the full sky cannot be explained within a
radiation and matter dominated universe.

• unwanted relics:
If the universe was initially very hot, the production rate of magnetic
monopoles during the spontaneous breaking of grand unified theories and
the production rate of gravitinos (cf. chapter 4) in super-gravity theories
would have become large and corresponding effects should typically have
been observed.

We see that the initial conditions of the ΛCDM model have to face challenges of
rather different nature. It is therefore amazing that all these different conceptual
problems (and several more) can be solved by a phase of accelerated expansion in
the early universe [14–17]. Such a period is called an inflationary phase, or simply
inflation. In particular, such a phase would imply ä > 0, which would decrease the
term 1/(aH)2 during this period, thereby solving the flatness problem. Also, the
horizon problem would be solved, since the blow-up of the scale factor a would
expand a formerly causally connected patch of our universe over the (almost)
complete horizon and the homogeneity of the CMB would therefore no longer be
a mystery. Finally, unwanted relics would also be diluted away during such a
period, due to the fact that their density is proportional to a−3 or even a−4, if
they are relativistic and in thermal equilibrium.

As we already stated in the context of Eq. (1.27), an accelerated expansion
requires an equation-of-state parameter ω < −1/3. In the simplest case, this
is realized by a scalar field φ, the so-called inflaton, with potential V (φ) in the
following way.

We first note that he energy density of the inflaton is given by

ρφ =
1

2
φ̇2 + V (φ) , (1.39)

whereas its pressure pφ is given by

pφ =
1

2
φ̇2 − V (φ) . (1.40)

We therefore see, that the condition 1
2
φ̇2 ≪ V (φ), which implies a slowly rolling

scalar field, naturally leads to ω = −1 and thereby to an inflationary phase of
our universe, if φ is the dominating energy source of the universe.

Since the equation of motion for the inflaton is given by the Euler-Lagrange
equation

φ̈+ 3Hφ̇+
dV

dφ
= 0 , (1.41)
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Figure 1.2: This figure shows the qualitative potential of an inflaton field. During early times
the field slowly roles down the flat part of the potential, which leads to an effective cosmological
constant and thereby to a period of accelerated expansion. Later on the inflaton performs damped
oscillations in the potential well and coherently produces particles.

a slow-roll of φ can easily be achieved by a flat enough potential of the inflaton.

However, as the universe must not remain in an inflationary phase for all
times, the potential must become steeper later on. Further, since the universe
is effectively empty after an inflationary phase, it is typically assumed that, af-
terwards, the inflaton undergoes damped oscillations in a potential well, thereby
coherently producing particles (cf. Ref. [18]). A qualitative picture of a typical
inflaton potential can also be found in Fig. 1.2, which helps to illustrate the differ-
ent phases of inflation. This period of coherent particle production in inflationary
scenarios is referred to as reheating, and the maximal temperature after inflation
in a universe dominated by radiation is referred to as the reheating temperature.
It is important to note that this is not necessarily the maximal temperature af-
ter inflation, since the universe might also be in a matter dominated phase at
the beginning of the reheating phase due to the oscillations of the inflaton (this
depends on the exact shape of the potential).

The reheating temperature is a very important parameter in the potential
history of our universe, since it may not have been to too high to avoid the
re-production of the unwanted heavy relics that have been washed out by the
accelerated expansion. On the other hand, there are also lower bounds on this
parameter from BBN and, potentially, from baryogenesis scenarios (cf. chapter 4).
Moreover, if the decay rate of the inflaton is given by Γφ, the reheating tempera-
ture can be easily estimated by the relation Γφ = H and Eq. (1.33), which yields
Tr ≈ (10ΓφMPl)

1/2 (cf. e.g. Ref. [19]).
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For completeness, let us also mention that we mainly followed the historic
motivation for an inflationary period of our universe in this section. Today, the
most important aspect of inflationary scenarios is often considered to be the
generation of initial inhomogeneities from quantum fluctuations of the inflaton
field. These lead to density fluctuations and form the seeds of structure formation
at later times. The statistical properties of these fluctuations can be tested via
the CMB and large scale structure and have been found to match the predictions
of a slow-roll inflation to high accuracy [5].

1.7 Dark Energy

As one can see from the discussion in section 1.5, CMB measurements indi-
cate that our universe is has recently started an era of accelerated expansion.
Moreover, independent measurements from type-Ia supernovae also yield similar
results, e.g. Ref. [20]. This expansion is usually ascribed to the fact that our
universe is dominated by vacuum energy. However, the origin of this vacuum
energy, which is also referred to as dark energy, is still a mystery. One of the
most pressing questions in this context is, if this energy is due to a cosmological
constant or to a dynamical Λ-term in the Einstein equations.

In this section will therefore briefly discuss some of the conceptual problems
of dark energy due to a cosmological constant. This is followed by a brief intro-
duction to quintessence fields as a possible alternative.

More comprehensive reviews on dark energy can be found in Refs. [10,11,21],
on which some of the presented materials is also based.

1.7.1 Conceptual Problems of a Cosmological Constant

As discussed in the previous section, cosmological data implies a vacuum energy
density of the order of the critical density ρc. Of course, one can now simply assign
the corresponding parameter value to the cosmological constant in the Einstein
equations and thereby describe the behavior of our universe, as it is done in the
ΛCDM-model.

However, several conceptual problems remain in this case:

• Since Λ is a constant from general relativity and its mass dimension is four,
one would naively expect ρΛ ∼ M4

Pl for a non-zero Λ, which would also be
implied by naive considerations of the vacuum corrections of the standard
model of particle physics. However, the measured value is more than one
hundred orders of magnitude smaller. This is most likely the largest dis-
crepancy between the expected non-zero value of a physical parameter and
its observed size. While supersymmetric theories expect somewhat smaller
values for ρΛ due to the cancellations of diagrams, the discrepancy still
remains huge in this case.
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• From the various phase transitions of the universe (e.g. electro-weak sym-
metry breaking, chiral symmetry breaking) one would expect contributions
to the cosmological constant of the order M4

br, where Mbr is the respec-
tive breaking scale. Somewhat miraculously, these contributions are also
canceled by Λ to a very high precision.

• It is also far from obvious, why the scale of dark matter and the scale of
dark energy are of the same order of magnitude today, since their scaling
laws are completely different, if the vacuum energy is due to a cosmological
constant (cf. Eq. (1.24)). This problem is also referred to as the cosmic
coincidence problem.

• In addition to the previous point, it is also striking that dark energy has
only very recently become the dominant energy form in our universe. This
issue is referred to as the ”why now?” problem, and it has also not been
solved so far.

1.7.2 Quintessence

Quintessence offers a very simple solution to the cosmic coincidence problem
described in the last section. Namely, if the vacuum energy density scales in
the same way as the dominating background energy density, both of them can
naturally be of the same order of magnitude for large periods in the history of our
universe. In the case of quintessence, the time-dependence of the vacuum energy
is due to the dynamics of a homogeneous, scalar field φ, and in the following we
will try to understand the corresponding dynamics a little better.

If the potential of φ is V (φ), the Euler-Lagrange equations of motion yield

φ̈+ 3Hφ̇+
dV

dφ
= 0 , (1.42)

similarly to the inflaton.
Further, the corresponding energy density and pressure are also given by

ρφ =
1

2
φ̇2 + V (φ) and pφ =

1

2
φ̇2 − V (φ) , (1.43)

respectively, whereas the dynamics of the universe are now determined by the
relation

H2 =
8πG

3
(ρbgr + ρφ) , (1.44)

where ρbgr is the energy density due to the dominant background component.
In general the behavior of the quintessence field and the universe is now fixed

by V (φ) and its initial conditions. For a certain class of potentials, however,
the late-time dynamics of the system are relatively independent of the initial
conditions of φ. This is a typical feature of quintessence fields.
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A typical example for such a potential is given by the exponential form [22–26]

V (φ) = V0 exp

(

−λ φ

mPl

)

, (1.45)

with the reduced Planck mass mPl ≡ 1/
√

8πG.
In a universe in which the equation of state of the background is given by

pbgr = ωbgrρbgr this potential yields two so-called attractor solutions, where Ωφ ≡
ρφ/ρc approaches a fixed value at late times for a large range of initial conditions.

In particular,

• for λ2 > 3(ωbgr + 1) the energy density of the quintessence field mimics the
behavior of the background with ωφ = ωbgr and Ωφ = 3(ωbgr + 1)/λ2,

• whereas for λ2 < 3(ωbgr + 1) the scalar field gets to dominate the universe,
i.e. Ωφ = 1, with ωφ = −1 + λ2/3.

However, both of these parameter ranges face serious conceptual problems. In
the first case, the energy density due to the quintessence field becomes naturally
comparable to the background energy density. However, since it also has the
same equation of state, it cannot serve as a dark energy candidate. This is not
a problem for the second parameter range, in which case the quintessence field
can be a suitable dark energy candidate. However, since the quintessence field
should not dominate the universe too early, the initial conditions would need to
be fine-tuned in such a way that there would hardly be any benefits with respect
to a cosmological constant.

Luckily, the benefits of both scenarios can be combined, if one uses a potential
of the form

V (φ) = V0

(

e
−α φ

mPl + e
−β φ

mPl

)

, (1.46)

where α is in the first parameter range and β is in the second one.
This way the described problems of each single parameter range can be avoid-

ed, as the quintessence field now behaves like radiation and matter during early
times, but like a cosmological constant (or similar to it) at late times, as required
by observation.

However, one should, however mention that, in this case, V0 would need to
be adjusted in such a way, that the energy density due to the quintessence field
is of the observed order of magnitude at late times. Since ρφ does not change
much, once the quintessence field starts to dominate the universe, V0 might need
to be fine-tuned. Therefore, one might say that this potential only yields a
possible explanation for the cosmic coincidence problem but not for the ”why
now?” problem.

Another option for a quintessence potential that yields a sub-dominant be-
havior at early times and a dominant behavior at late times is given by an inverse
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power law [23, 27], i.e.

V (φ) =
M4+α

φα
. (1.47)

This kind of potential has the advantage that the energy density of the corre-
sponding field only scales approximately as the dominant background component.
In fact, the field can eventually gets to dominate the universe just by itself, in
this case. However, the late time behavior of such a universe is dominated by an
equation of state parameter ω > −0.8 [27] which conflicts with the recent bound
from combined astronomical data of ω ≤ −0.86 at the 3σ level [28].

Independently of the exact shape of the quintessence potential, there are also
strong constraints on the couplings of the quintessence field to SM particles.
This is due to the fact that our universe is governed by an effective cosmological
constant at late times, which implies H2 ≈ GV (φ), if the vacuum energy is due
to a quintessence field. Since MPl is typically the only dimensionful quantity
in the quintessence potential, the mass of the quintessence field at late times is
approximately given by m2

φ = d2V (φ)/dφ2 ≈ H2. Therefore, quintessence would
be a very light field today, which would mediate new long-range interactions
between the SM particles, if the corresponding couplings were strong enough. Yet,
since such interactions have not been observed these couplings must obviously be
very small.
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Chapter 2

The Standard Model of Particle
Physics

The standard model of particle physics (SM) describes remarkably well all ob-
served interactions of the known elementary particles, with the exception of neu-
trino masses. In this chapter we will briefly review this model as far as it will be
needed in the course of this thesis.

For a more comprehensive introduction to the topic the reader is referred to
the standard textbooks, e.g. Refs. [29,30]. Further background material on spinors
in relativistic field theories will also be discussed in the context of neutrino masses
in chapter 3.

2.1 Gauge Symmetries

The SM is based on the idea of symmetries. In particular, it assumes that the
fields describing the fermionic particles are arranged in representations of sym-
metry groups and that the corresponding action of the system is invariant under
the respective transformations. More exactly, the symmetry group of the SM is
the group SU(3)c×SU(2)L×U(1)Y and its fermions transform under this group
according to table 2.1.

It is further assumed that these symmetries are so-called gauge symmetries,
which implies that the corresponding transformations can independently be per-
formed at each point in space-time. Since simple derivative terms in the La-
grangian are not invariant under such transformations, one needs to introduce a
covariant derivative, in this case, denoted by the operator

Dµ ≡ ∂µ + i gsG
a
µ Fa + i gW a

µ Ta + i g′Bµ
Y

2
. (2.1)

Here, Fa, Ta, and Y are the generators of the respective symmetries SU(3)c,
SU(2)L, and U(1)Y , that still depend on the particular representation on which

29
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SU(3)c SU(2)L U(1)Y

ℓLi

(

νeL
eL

) (

νµL
µL

) (

ντL
τL

)

1 2 -1

eRi eR µR τR 1 1 -2

qLi

(

uL
d′L

) (

cL
s′L

) (

tL
b′L

)

3 2 1
3

uRi uR cR tR 3 1 4
3

dRi dR sR bR 3 1 −2
3

Table 2.1: The fermions of the SM and their respective behaviors under the symmetry trans-
formations of the corresponding gauge groups.

they are applied. Further, Ga, W a, and B are the gauge fields, which ensure that
the covariant derivative of a multiplet transforms like the multiplet itself under the
respective symmetry transformations, and gs, g, and g′ are the coupling constants
of the respective gauge groups.

The gauge invariant kinetic term of any fermionic multiplet ψL of left-handed
Weyl spinors can then be written as

Lkin,f = ψ†
L iσµDµ ψL , (2.2)

while the kinetic term of any multiplet ψR of right-handed Weyl spinors reads

Lkin,f = ψ†
R i σ̄µDµ ψR , (2.3)

with σµ ≡ (1, ~σ), σ̄µ ≡ (1,−~σ), and σi being the Pauli matrices.
In order to also have kinetic terms for the gauge fields we introduce the cor-

responding field-strength tensors. In particular, for the fields Ga, this tensor is
given by

Ga
µν ≡ ∂µG

a
ν − ∂νG

a
µ − gfabcG

b
µG

c
ν , (2.4)

where f bca are the structure constants of SU(3)c defined by

[

Fa,Fb
]

= ifabcF
c . (2.5)

The kinetic terms for the corresponding gauge fields can then be written as

Lkin,b = −1

4
Ga
µνG

µνa. (2.6)

The field-strength tensors W a
µν and Bµν and the kinetic terms for W µ and Bµ can

be obtained in the same manner and are therefore not presented explicitely.
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2.2 The Higgs Mechanism

Since all of the fermions in the SM are massive (with the exception of neutrinos),
its Lagrangian obviously needs to contain mass terms for these fields (cf. section
3.1.1). However, due to the fact that the SM gauge symmetries do not allow for
explicit mass terms for these particles, the SM contains an additional scalar field
φ, the so-called Higgs field, which transforms as (1, 2, 1) under the SM symmetry
group SU(3)c×SU(2)L×U(1)Y . In the following we will briefly sketch, how this
introduction leads to masses for the fermions.

We first note that the transformation behavior of the Higgs fields allows for
corresponding kinetic and potential terms in the Lagrangian density, which can
be written as

LHiggs = (Dµφ
†)(Dµφ) − V (φ) , (2.7)

with the Higgs potential

V (φ) = −µ2φ†φ+ λ(φ†φ)2 . (2.8)

In the SM, it is, now, assumed that µ2, λ > 0, which leads to the fact the potential
has a global minimum at |〈φ〉|2 = µ/

√
2λ. As the gauge freedom allows us to

put 〈φ〉 = (0, φ0)
T everywhere, with φ0 ≥ 0, one can see that the the vacuum

expectation value (VEV) of the Higgs field breaks the gauge symmetry of the SM
down to SU(3)c × U(1)em, where U(1)em is a sub-group of SU(2)L × SU(1)Y .
This effect is also referred to as spontaneous symmetry breaking.

In addition to the kinetic and potential terms, the transformation behavior
of the Higgs field also allows for Yukawa coupling terms with the SM fermions,
which are invariant under the SM gauge symmetries. These terms read

LYuk = gℓij e
†
Ri φ

† ℓLj + gdij d
†
Ri φ

† qLj + guij u
†
Ri φ

c† qLj + h.c. , (2.9)

where the Yukawa couplings gℓij, g
d
ij,and guij are essentially free parameters of the

theory. Moreover, we made use of φc ≡ −iσ2φ
∗, which is the charge conjugate field

of φ and transforms in the same way as φ under SU(3)c×SU(2)L but has opposite
hypercharge (i.e. the charge under the U(1)Y ). Now, plugging 〈φ〉 = (0, φ0)

T

into Eq. (2.9), one can see that the Higgs VEV gives masses to the fermions.
Even further, plugging it into Eq. (2.7), one can see that the gauge bosons of
the spontaneously broken symmetries also acquire masses. In this context, it is
interesting to note that the fermion masses are free parameters of the theory due
to the newly introduced Yukawa couplings. The masses of the gauge bosons, on
the other hand, only depend on the size of the VEV of the Higgs field and on the
gauge coupling constants and can therefore not be freely adjusted.

With the addition of the Higgs field, the SM is therefore complete. As we
already mentioned, many of the predictions of the SM have so far been observed.
Yet, one of its most important components, namely the Higgs field, has not been
found yet, and the search for it is therefore still going on. For information on the
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already measured parameter values of the SM, namely the couplings constants,
the fermion masses, etc., we refer the reader to Ref. [31].



Chapter 3

Neutrino Masses

Neutrinos are the only massless fermions in the standard model. Within the last
ten years, however, it has become clear that at least some of them need to be
massive in order to explain observational data. This is especially exciting, since
neutrinos do not possess any charge, and therefore the nature of their masses
might be fundamentally different from that of the other SM particles. Moreover,
neutrino masses might also be relevant for baryogenesis, as we will see in section
4.5.

Therefore, we will review some of the theoretical and phenomenological back-
ground of neutrino masses in this chapter. In particular, we will briefly review the
different possible mass terms for neutrinos as well as neutrino mixing in the first
section of this chapter, before presenting the corresponding experimental data in
section 3.2. The second part of this chapter will be concerned with the model
building aspects of neutrino masses. More precisely, we will introduce family
symmetries as a possible explanation for mass hierarchies in section 3.3, while we
we will afterwards discuss the see-saw mechanism in four and five dimensions as
well as the concept of single right-handed neutrino dominance in section 3.4.

For a comprehensive review on neutrino masses, on which parts of the pre-
sented material is based, the reader is referred to Ref. [32].

3.1 Formal Background

3.1.1 Dirac and Majorana Mass Terms

As we already stated in the introduction, neutrinos might have masses that are
fundamentally different from the ones of all other known particles. In this subsec-
tion, we will therefore briefly review the different kinds of fermionic mass terms
in relativistic field-theories.

Let us start with the remark that any relativistic field theory is by definition
Lorentz invariant. Furthermore, since the proper orthochronous Lorentz group

33
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is equivalent to the group SL(2,C)/Z2, the action of any relativistic field theory
has to be invariant under the corresponding symmetry transformation.1

In this context, we note that there are two two-dimensional representations
of SL(2,C)/Z2, namely

ξ → exp

(

i
~σ

2
· ~θ +

~σ

2
· ~ϕ
)

ξ , (3.1)

η̄ → exp

(

i
~σ

2
· ~θ − ~σ

2
· ~ϕ
)

η̄ , (3.2)

which will be referred to as left- and right-handed Weyl-spinors, respectively.
Here, the σi are the well-known Pauli matrices, θ is the angle of a corresponding
rotation and ϕ is the rapidity of a corresponding boost.

For completeness, we also remark that SL(2,C)/Z2 is essentially a product
of two SU(2) subgroups, with respect to which the above representations can
also be written as (1

2
, 0) and (0, 1

2
). Moreover, ξ̄ ≡ −ǫ ξ∗ transforms as (0, 1

2
) and

η ≡ ǫ η̄∗ as (1
2
, 0), with ǫ ≡ iσ2.

In order to have a relativistic field theory, we can now combine these spinors
to Lorentz invariant terms in the corresponding Lagrangian density. An example
therefor are the kinetic terms

ξ†iσµ∂µξ and η̄†iσ̄µ∂µη̄ , (3.3)

with σµ ≡ (1, ~σ) and σ̄µ ≡ (1,−~σ).
However, such terms alone can only describe massless fermions. To describe

massive particles, we need to add terms to the Lagrangian which are by definition
quadratic or bi-linear in the corresponding fields. An example for such a term is
given by the so-called Majorana mass term

1

2
mM ξ̄†ξ + h.c. =

1

2
mM ξT ǫ ξ + h.c. , (3.4)

which can be considered quadratic in ξ or bi-linear in its components.
We can see from Eqs. (3.1) and (3.2) this term is indeed Lorentz-invariant,

as we required. However, if some U(1) charge is associated with the field ξ, a
Majorana mass term would break the corresponding symmetry, as we easily see
from the right-hand side of Eq. (3.4). In such a case, a Majorana mass term
would therefore be forbidden.

Hence, a single left-handed field ξ alone cannot describe charged, massive
particles. Instead, one needs a second, right-handed field η̄ for this purpose, with
the same charge under the corresponding symmetry group as ξ. In this case, one
can write down a so-called Dirac mass term via

mD η̄
†ξ + h.c. = mD η

T ǫ ξ + h.c. . (3.5)

1SL(2,C)/Z2 is the group of complex 2× 2 matrices with unit determinant, where matrices
that differ by a factor of −1 are identified.
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In the presence of such a mixing term ξ and η̄ are no longer eigenstates of the
Hamiltonian. However, the mixing disappears, if one combines them into one
representation of the Lorentz group. Namely, the so-called Dirac spinor

ψ ≡
(

ξ
η̄

)

. (3.6)

In this case, the Lagrangian of the corresponding particle can be written in the
well-known form

L = ψ γµ∂µψ +mD ψψ , (3.7)

with ψ ≡ ψ†γ0.
Now, we can also see the possible difference of neutrinos with respect to the

other SM particles. Namely, since neutrinos are singlets under the unbroken part
of the SM gauge group SU(3)c × U(1)em, their masses might actually be of the
Majorana kind, whereas all other mass terms in the SM Lagrangian are Dirac
mass terms. In this case, we would only need two degrees of freedom to describe
the neutrino fields in spite of their masses. Moreover, the neutrino could be
considered as its own anti-particle in this case.

3.1.2 Mixing Matrices

In models with several generations of particles, mixing effects can naturally occur.
As such mixings might contain hints about the underlying theory, they are an
important topic for model builders, and we will, therefore, review this topic in
in the following. In fact, our dicsussion will be quite detailed, as the explicit
formulae at the end of this subsection will be needed to understand the concept
of single right-handed neutrinos dominance in section 3.4.2.

Let us first consider mxing in case of Dirac fields. Suppose we have several
left- and right-handed fields ξi and η̄i which all have the same quantum numbers.
In this case, we can write down Dirac mass terms for all different combinations
of η̄i and ξj, namely

mD,ij η̄
†
i ξj + h.c. . (3.8)

In general mD,ij is an arbitrary matrix, which can therefore be diagonalized by
two unitary matrices UR and UL, via

U †
RmDUL = diag(m1, m2, . . . ) , (3.9)

with mi ≥ 0.
If the rest of the Lagrangian is completely symmetric under unitary transfor-

mations of the ξi and η̄j, one can perform a change of basis and the off-diagonal
mass-terms can be rotated away. In this case, the matrices UL and VR are not
physical.
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However, in many cases, further interactions are not symmetric under such
unitary transformations. In this case, the mixing matrices UR and UL are indeed
physical and reappear in these interaction terms, if one switches to the physical
basis, where all mass matrices are diagonal.

It can also happen (e.g. in the quark sector of the SM), that one may perform
a change of basis in the right-handed sector, while one only has the freedom of
multiplying different fields with different phases in the left-handed sector. In this
case, it is convenient to go to a basis in which Eq. (3.8) becomes

η̄† V † diag(m1, m2, . . . )V ξ + h.c. , (3.10)

since this can then be written as

ψ V † diag(m1, m2, . . . )V ψ , (3.11)

if one describes the system by means of Dirac spinors.
In the case of three generations of left- and right-handed particles V can, in

fact, be parametrized by three mixing angles θ12, θ13, and θ23 and one phase δ via

V † =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12c23 − s12c23s13e
iδ c23c13



 , (3.12)

where sij ≡ sin θij and cij ≡ cos θij .
The possible existence of such a mixing matrix was first discussed in the

quark sector [33, 34] and the quark mixing matrix V † is also referred to as the
CKM-matrix.

Let us now consider the case of several left-handed fields ξi without any con-
served quantum numbers. In this case, we can write down Majorana mass terms
for all possible bilinear combinations of ξi, namely

1

2
ξ̄i
T mM,ij ǫ ξj + h.c. . (3.13)

Due to the symmetry ξTi ǫ ξj = ξTj ǫ ξi only the symmetric part of the arbitrary ma-
trix mM,ij is relevant and therefore it can be considered as a (complex) symmetric
matrix. In this case, we can rewrite Eq. (3.13) as

1

2
ξT UT diag(m1, m2, . . . ) ǫ U ξ + h.c. , (3.14)

where U is a unitary matrix. As before it depends on the other parts of the
Lagrangian if this matrix is physical or if it can be rotated away.

If neutrino masses are of the Majorana type, one needs two more phases
to parameterize the matrix U compared to the parametrization of V (for three
neutrinos). Namely, U can be written as

U † = V † diag(eiφ1/2, eiφ2/2, 1) , (3.15)
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in this case, where φ1 and φ2 are the so-called Majorana phases.

In this context, we also note that, independent of Dirac- or Majorana-type
masses, the mixing matrix in the neutrino sector is also referred to as PMNS-
matrix [35] (see also Ref. [36]).

With respect to following sections, it will also be helpful to establish a connec-
tion between the mixing angles and the eigenvalues of a mass matrix., which we
will do in the following. This analysis will be along the corresponding discussion
in Ref. [37].

Let us ignore possible CP-violating effects for the moment and assume that
the neutrino mass matrix is real. In the context of mixing angles it is further
not relevant if the mass matrix is of Dirac- or Majorana-type and we will there-
fore only refer to the neutrino mass matrix as mν . Moreover, mν can then be
diagonalized by the real, orthogonal mixing matrix V , defined by

md
ν = VmνV

T , (3.16)

with md
ν ≡ diag(m1, m2, m3) and m1 ≥ m2 ≥ m3.

Disentangling Eq. (3.12), one can, therefore, also write

V T = R23R13R12 , (3.17)

with the three rotations

R23 ≡





1 0 0
0 c23 s23

0 −s23 c23



 , R13 ≡





c13 0 s13

0 1 0
−s13 0 c13



 , R12 ≡





c12 s12 0
−s12 c12 0

0 0 1



 .

(3.18)
On the other hand, V can also be expressed via the three eigenvectors of mν ,
namely

V T = (~v1, ~v2, ~v3) , (3.19)

where each ~vi is the normalized eigenvector corresponding to the respective eigen-
value mi.

This yields the relation

RT
12R

T
13R

T
23(~v1, ~v2, ~v3) = diag(1, 1, 1) (3.20)

and therefore

RT
13R

T
23~v3 =





0
0
1



 and RT
12R

T
13R

T
23~v2 =





0
1
0



 , (3.21)

from which we can consecutively determine the θij , as we will see in the following.
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First, we note that R23 has to fulfill the relation

RT
23~v3 =







v3,x

0

±
√

v2
3,y + v2

3,z






, (3.22)

where the sign in front of the expression is the same as the one of v3,z.
This fixes θ23 through

tan(θ23) =
v3,y

v3,z

. (3.23)

Then, we can fix R13 via

RT
13







v3,x

0

±
√

v2
3,y + v2

3,z






=







0
0

±
√

v2
3,x + v2

3,y + v2
3,z






, (3.24)

which, in turn, leads to

tan(θ13) = ± v3,x
√

v2
3,y + v2

3,z

. (3.25)

In this equation, the sign in front of the expression is again the same as the one
of v3,z.

2

Finally, from the relation

RT
13R

T
23~v2 =





c13v2,x − s13(c23v2,z + s23v2,y)
c23v2,y − s23v2,z

c13(c23v2,z + s23v2,y) + s13v2,x



 , (3.26)

and the second condition in Eq. (3.21) the angle θ12 can also be determined
through

tan(θ12) =
cos(θ13)v2,x − sin(θ13)[sin(θ23)v2,y + cos(θ23)v2,z]

cos(θ23)v2,y − sin(θ23)v2,z
. (3.27)

While this is a rather complex expression, we see that it simplifies to the relation

tan(θ12) ≈
√

2
v2,x

v2,y − tan(θ23)v2,z

, (3.28)

if we approximate c13 ≈ 1, s13 ≈ 0 and c23 ≈ s23 ≈ 1/
√

2, which agrees well with
the experimental data presented in the next section.

2Of course, a negative sign of θ13 could, in principle, always be absorbed by a CP-phase δ
in a more general consideration.
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3.2 Neutrino Data

Let us now discuss some of the experimentally determined parameters in the
neutrino sector.

As we already mentioned at the beginning of this chapter, neutrinos are mass-
less in the standard model. Up to a certain accuracy this is indeed a good ap-
proximation. In fact, the analysis of the spectra in tritium β-decay experiments
yields very low upper bounds for the mass of the electron anti-neutrino [38, 39].
In particular, at 95% confidence level Ref. [39] finds

mνe ≤ 2.3 eV. (3.29)

From cosmology there comes an even more stringent bound, which limits the sum
of all light neutrino masses. In particular, through the analysis of CMB data and
further astronomical data sets, Ref. [5], e.g., reports an upper bound of

∑

mν ≤ 0.66 eV, (3.30)

also at 95% confidence level. Yet, since this bound is due to CMB data, it is
obviously also dependent on our cosmological model.

In spite of these low bounds for neutrino masses, there have been observations
that indicate that neutrinos are indeed massive, as we will briefly discuss in the
following. As wesaw in section 3.1.2, the neutrino flavor basis does not have
to coincide with the eigenvectors of a possible neutrino mass matrix. In this
case a pure flavor state will be made up of different mass eigenstates, and these
mass eigenstates will interfere differently at different times as a result of the
Schrödinger equation. Therefore, a state of some definite flavor might actually
evolve to a state of different flavor due to this mixing. In fact, in a two neutrino
model with mixing angle θ0 the transition probability from one pure flavor state
to the other one is given by

P (νe → νµ, t) = sin2(2θ0) sin2

(

∆m2

4E
t

)

, (3.31)

for relativistic neutrinos with energy E and ∆m2 ≡ m2
2 −m2

1.
As we stated earlier, such transitions have indeed been observed in many

experiments, by now, and we, therefore, know that at least two of the neutrinos
do have masses. Yet, we also see from Eq. (3.31) that the transition probability
in this formula disappears in case of two degenerate neutrinos. This is due to
the fact that one can always find coinciding flavor and mass eigenvectors in this
case. Therefore, neutrino oscillations can only help to determine mass squared
differences and mixing angles but not their absolute mass scale.

Nevertheless, detecting solar, atmospheric, and reactor neutrinos, oscillation
experiments have been powerful tools for pinning down neutrino parameters in
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the recent past. In particular, in December of 2004, Ref. [40] found through a
global fit of neutrino oscillation data the bounds [40]

∆m2
21 = (7.1 − 8.9) · 10−5 eV2 ,

|∆m2
31| = (1.4 − 3.3) · 10−3 eV2 ,

sin2 θ12 = 0.23 − 0.38 ,
sin2 θ23 = 0.34 − 0.68 ,
sin2 θ13 < 0.051

(3.32)

on the 3σ level.
While this confirms our earlier statement that at least two of the three neu-

trinos have tiny masses, it is also noteworthy that the mixing in several of the
neutrino sectors is rather large and quite different from the corresponding values
in the quark sector.

The data set in Eq. (3.32) was the data that was used during our analysis of
the neutrino mass models in chapter 6, and we will therefore mainly refer to this
data set in the later parts of this thesis. For completeness, however, we note that
in June of 2006, the online version of Ref. [40] was updated and found

∆m2
21 = (7.1 − 8.9) · 10−5 eV2 ,

|∆m2
31| = (2.0 − 3.2) · 10−3 eV2 ,

sin2 θ12 = 0.24 − 0.40 ,
sin2 θ23 = 0.34 − 0.68 ,
sin2 θ13 < 0.040 ,

(3.33)

which slightly improves the above data set thanks to new experimental data.

3.3 Family Symmetries

For all known types of particles, one has found mass hierarchies among the mem-
bers of different generations. While these hierarchies can be accommodated by
hierarchical Yukawa couplings, their conceptual understanding is still missing. A
possible explanation for such hierarchies are family symmetries, which we will
briefly review in this section.

Family symmetries were first introduced to explain mass hierarchies in the
quark sector [41]. The typical feature of these additional symmetries is that
particles of different generations and chiralities transform differently under them.
Therefore, they will typically not allow for explicit mass terms of the SM fermions.
However, similar to the Higgs mechanism in the standard model (cf. section 2.2),
the spontaneous breaking of these symmetries might lead to effective mass terms
for these particles. As we will illustrate in the following toy-model, the different
transformation properties of particles can then induce a hierarchy among their
masses.
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Our toy-model contains a left-chiral field ψL and a right-chiral field ψR, with
SM quantum numbers that would allow for an effective mass term of the form

g〈φ〉ψ†
RψL + h.c. , (3.34)

in combination with the SM Higgs field φ and some Yukawa coupling constant
g. However, we further introduce an additional family symmetry U(1)F , under
which ψL and ψR have the respective family charges qL and qR. Obviously, an
explicit mass term as in Eq. (3.34) is now forbidden by the family symmetry, if
qL− qR 6= 0. Yet, we also add a scalar field φF with charge qF = 1 under the new
symmetry to the particle content. If this field develops a VEV 〈φF 〉, an effective
mass term of the form

g〈φ〉
(〈φF 〉∗
MNP

)qL−qR
ψ†
RψL + h.c. (3.35)

might arise, where MNP is a scale of new physics.
We see from Eq. (3.35) that differently charged generations of fermions nat-

urally receive mass terms that correspond to different powers of 〈φF 〉∗/MNP and
are therefore typically of different size. Obviously, similar arguments also work for
Majorana mass terms. This mechanism for the creation of hierarchical couplings
is also referred to as the the Frogatt-Nielsen mechanism [41].

Let us also note that, in general, family symmetries can be global or local.
However, both types yield side-effects that need to be controlled. In particu-
lar, in case of a global symmetry the couplings of the newly arising Goldstone
boson (familon) due to the broken family symmetry must be small enough (see
e.g. Refs. [42–47]), while in the case of a spontaneously broken, local family sym-
metry possibly emerging anomalies need to be canceled (e.g. by additional heavy
particles).

3.4 The See-Saw Mechanism

As we saw in section 3.2, we know by now that at least two of the SM neutri-
nos have tiny non-zero masses. The smallness of these masses can be elegantly
explained within the standard see-saw mechanism [48–50], which we will there-
fore briefly review in section 3.4.1. This mechanism makes use of the fact that a
possible Majorana mass term for right-handed neutrinos is not bounded by the
electro-weak scale, which, in turn, can be used to suppress the scale of an effective
Majorana mass matrix for the light neutrinos. If combined with the concept of
single right-handed neutrino dominance, the see-saw mechanism can even account
for light neutrino mass hierarchies and for their observed mixings, as we show in
section 3.4.2.

However, since right-handed neutrinos are SM gauge singlets, they might have
further interesting features. One of them is the possibility that they might be
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able to propagate in more dimensions than the standard model particles. In this
case a Kaluza-Klein tower of particles can affect the see-saw mechanism and the
standard formulae gets significantly altered, as we will discuss section 3.4.3.

3.4.1 The See-Saw Mechanism in 4D

In the SM, the quantum numbers of the neutrinos (cf. section 2) neither allow
for explicit neutrino mass terms nor for renormalizable Yukawa coupling terms
between them and the Higgs field. Therefore, the observation of neutrino masses
requires an extension of the SM in one or the other way.

A suitable simple extension, in this context, is the addition of three right-
handed fermions NRi with quantum numbers that allow for Yukawa coupling
terms between these fermions, the SM neutrinos and the Higgs field. This way
neutrinos can aquire masses via spontaneous symmetry breaking, as described in
section 2.2. Similarly, to Eq. (2.9), the corresponding terms in the Lagrangian
would then be

gνij N
†
Rj φ

c† ℓLi + h.c. . (3.36)

Due to the transformation behavior of the left-handed leptons and the Higgs
doublet, the requirement that these terms are invariant under the SM symmetries
implies that the NRi are complete singlets under the SM gauge group. Therefore,
the complete Lagrangian can also contain a Majorana mass term of the form

1

2
(MN

ij )†NT
Ri ǫNRj + h.c. (3.37)

for these particles.
Rewriting the neutrino sector in a purely left-handed basis (νLi, N

c
Rj ≡ −ǫN∗

Rj)
we then find one large Majorana mass matrix for these particles, namely3

1

2
(νTLi ǫ, N

cT
Rj ǫ)

(

0 −(mT
D)in

−mD
jm MN

jn

)(

νLm
N c
Rn

)

+ h.c. , (3.38)

with mD
ij ≡ gνij φ0.

Since the size of MN is not restricted by the electro-weak scale, it can be much
larger than mD. If this is indeed the case, we can diagonalize the above Majorana
mass matrix perturbatively and find [48–50] (cf. also Ref. [51] for notation)

1

2
(ν ′TLi, N

′cT
Rj )

(

−(mT
DM

−1
N mD)im 0
0 MN

jn

)(

ν ′Lm
N ′c
Rn

)

+ O(ǫ2D) + h.c. , (3.39)

with ǫD ≡ ||mDM
−1
R || and

(

ν ′Li
N ′c
Rj

)

≡
( 1im (mDM

−1
N )in

(M−1
N mT

D)jm 1jn )(

νLm
N c
Rn

)

+ O(ǫ2D) . (3.40)

3We will use D and N as indeces or superscripts according to convenience in each case.
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Figure 3.1: This Feynman graph illustrates the well-known see-saw mechanism, where we work
in a basis in which the heavy Majorana mass matrix is diagonal. One can see that the large
masses in the propagator of the right-handed neutrinos naturally lead to a suppression of the
corresponding light neutrino masses.

Thus, the effective light neutrino mass matrix is then given by

mν = mT
DM

−1
N mD , (3.41)

and is therefore typically strongly suppressed with respect to the electro-weak
scale. Due to this suppression, it is therefore easy for the see-saw mechanism to
explain light neutrino masses.

For later convenience, we further note that the see-saw mechanism can also
be illustrated via Feynman diagrams, as shown in Fig. 3.1.

3.4.2 Single Right-Handed Neutrino Dominance

While the see-saw mechanism alone can be a nice explanation for the smallness
of the light neutrino masses, it neither explains their (possible) hierarchy nor
the sizes of the mixing angles, which differ drastically from the quark sector
(cf. section 3.2).

In the framework of the see-saw, single right-handed neutrino dominance [52,
53], on the other hand, can nicely lead to a hierarchy between the heaviest of the
light neutrinos and the other two. Additionally, it can account for a large mixing
in the 23-sector. If extended to sequential right-handed neutrino dominance [37],
it can even account for a complete mass hierarchy in the light neutrino sector as
well as a large 12-mixing (under the assumption that the mixing in the 13-sector
is small). We will therefore briefly review this topic, here. For convenience, the
extension to sequential right-handed neutrino dominance will in the following
be tacitly included, when we refer to single-right handed neutrino dominance or
SRND.

The main idea behind SRND is rather elementary and therefore quite at-
tractive, since it is simply assumed that the contributions to the effective light
neutrino mass matrix by the various right-handed neutrinos are of different sizes.
To illustrate the implications of this assumption, let us for the moment work in
the basis where the Majorana mass matrix of the right-handed neutrinos is di-
agonal MN = diag(M1,M2,M3) and parameterize the Dirac mass matrix of the
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neutrinos by

mD =





a a′ a′′

b b′ b′′

c c′ c′′



 ≡ (~u, ~u′, ~u′′) . (3.42)

If we now assume that there is a hierarchy in the right-handed neutrino masses,
which is not compensated by the respective Yukawa couplings, we can see from
Eq. (3.41) that the light neutrino mass matrix is approximately of rank one.
Namely, we find

mν ≈M−1
1





a
b
c



⊗ (a, b, c) . (3.43)

Since a matrix of order one only has one non-zero eigenvalue, this naturally
implies a mass hierarchy between the heaviest of the light neutrinos and the
other two. Moreover, as the suppressed contribution of the second-lightest heavy
neutrino will give mass to the second-lightest light neutrino (and so on), we will
typically find the mass ratios of the light neutrinos m3 : m2 : m1 to be around
M−1

1 : M−1
2 : M−1

3 , in this case. Therefore, SRND can naturally induce a hierachy
for the light neutrino masses.

We also note that (a, b, c)T approximately equals the eigenvector of mν that
corresponds to m3 (cf Eq. (3.43)). From Eq. (3.23), we, therefore, see that the
condition b ∼ c ensures a large 23-mixing as required by observation. Addition-
ally, if the first generation Yukawa coupling to the lightest of the heavy neutrinos
is suppressed with respect to the other ones (i.e. a≪ b, c), Eq. (3.25) tells us that
we will also find a tiny mixing in the 13-sector as observed in experiments.

Finally, since the eigenvectors of a symmetric matrix are orthogonal, we can
use ~u′ − 〈~u′, ~u〉~u/|~u|2 as an approximation for the eigenvector that corresponds
to m2. Under the assumption of maximal mixing in the 23-sector and vanishing
mixing in the 13-sector, Eq. (3.28) then yields a′ ∼ b′ − c′ as a condition for a
large 12-mixing, as also observed.

Thus, except for the fact that the above discussion seems to imply a ≪ b
but a′ ∼ b′, which corresponds to different hierarchies of the Yukawa couplings
of different generations, the concept of SRND can explains the observed neutrino
data rather naturally.

3.4.3 The See-Saw Mechanism in 5D

Even though the see-saw mechanism in four dimensions is a very attractive ex-
planation for small neutrino masses due to its simplicity, it is not necessarily the
end of the story. A possible extension of this mechanism is its five dimensional
realization, where right-handed neutrinos can propagate in an additional dimen-
sion. In this case, each mode of the Kaluza-Klein tower will contribute to the
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mass of the light neutrinos. Based on the work of Refs. [54–57] we will give a
brief introduction to this topic, here, similarly to our discussion in Ref. [58].

Our model is set in five-dimensions, where the SM particles live in a four-
dimensional sub-space, also referred to as 3-brane. Further, the extra dimension
is compactified on an orbifold S1/Z2 with radius R. (cf. appendix A), where
the coordinates on the brane will be denoted by xµ, while the extra-dimensional
coordinate will be denoted by y.

The behavior of the SM particles is determined by the usual four-dimensional
Lagrangian density of the SM LSM

SSM =

∫

d4x dyLSM δ(y) (3.44)

and possible couplings to particles living in the bulk, which we will specify during
the course of this section.

Now, we introduce three additional SM gauge singlets Ψi, that can propagate
in the extra dimension, and define the corresponding charge conjugate fields Ψc

i

through the relation

Ψc
i ≡

(

0 ǫ
ǫ 0

)

Ψ∗
i . (3.45)

Under the parity transformation P5 : y → −y the Ψi are assumed to transform
as

P5Ψi = γ5Ψi . (3.46)

Neglecting their couplings to the SM for the moment, their most general behavior
can then be described by the bulk action

Sbulk =

∫

d4x dy

[

Ψiiγ
α∂αΨi −

1

2
(MS

ijΨ
c
iΨj +MV

ijΨ
c
iγ5Ψj + h.c.)

]

, (3.47)

with the scalar-like Majorana mass MS and vector-like Majorana mass MV .4

As we already mentioned, one can additionally allow for Yukawa coupling
terms between Ψ and the SM. These are given by

Sbrane =

∫

d4x dy

[

− gij√
M5

ΨiPLφ
c† ((0, 0), ℓTj

)T
+ h.c.

]

δ(y) + SSM , (3.48)

where M5 is a new mass scale and the gij are the usual Yukawa coupling con-
stants. Further, we denoted the SM fields as in chapter 2. Later on, one can
see that M5 will be the suppression scale that leads to small neutrino masses,
and therefore we assume it to be rather heavy. Its actual size will also depend
on the size of the various Yukawa coupling constants. If one wishes to make the

4As in similar cases before, we will write S and V as indeces or superscripts according to
convenience in each case.
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considered models more restrictive, one can additionally assume M5 to be the
five-dimensional Planck scale, in which case M5 and the four-dimensional Planck
scale M4 are typically taken to be related through the radius R of the extra
dimension by M3

5R ≈M2
4 [59, 60].

Due to these Yukawa couplings, the Higgs VEV 〈φ〉 = (0, φ0)
T then yields

Dirac mass terms for the left-handed SM neutrinos νj and the two lower com-
ponents of Ψi. Further, the above transformation rules (Eq. (3.46)) allow us to
write

Ψi(x, y) =
1√
πR







1√
2
Ψ

(0)
R,i(x) +

∞
∑

n=1

cos(ny/R) Ψ
(n)
R,i(x)

∞
∑

n=1

sin(ny/R) Ψ
(n)
L,i(x)






, (3.49)

where Ψ
(n)
R/L,i(x) are right- and left-handed Weyl spinors, respectively.

If we now perform the integration over the fifth dimension in the action, the
part responsible for neutrino masses becomes

S =

∫

d4x

[ ∞
∑

n=0

Ψ̂
c(n)†
R,i iσµ∂µΨ̂

c(n)
R,i +

∞
∑

n=1

Ψ
(n)†
L,i iσ

µ∂µΨ
(n)
L,i

+

( ∞
∑

n=1

n

R
Ψ̂
c(n)T
R,i ǫΨ

(n)
L,i +

gijφ0√
2πRM5

Ψ̂
c(0)T
R,i ǫ νj +

∞
∑

n=1

gijφ0√
πRM5

Ψ̂
c(n)T
R,i ǫ νj

−
∞
∑

n=0

1

2
(M∗

S,ij +M∗
V,ij)Ψ̂

c(n)T
R,i ǫΨ̂

c(n)
R,j

−
∞
∑

n=1

1

2
(−MS,ij +MV,ij)Ψ

(n)T
L,i ǫΨ

(n)
L,j + h.c.

)]

+ SSM , (3.50)

where Ψ̂
c(k)
R,i ≡ −ǫ(Ψ(k)

R,i)
∗ is the left-handed Weyl spinor corresponding to the

right-handed Ψ
(k)
R,i.

In the completely left-handed basis (ν, Ψ̂
c(0)
R,i , . . . ,Ψ

(n)
L,i , Ψ̂

c(n)
R,i , . . . ) we can there-

fore combine all neutrino mass terms to one large Majorana mass matrix, namely



















0 −mD/
√

2 · · · 0 −mD · · ·
−mT

D/
√

2 M∗
S +M∗

V · · · 0 0 · · ·
...

...
. . .

...
...

. . .

0 0 · · · −MS +MV −n/R · · ·
−mT

D 0 · · · −n/R M∗
S +M∗

V · · ·
...

...
. . .

...
...

. . .



















, (3.51)

with the Dirac mass mD,ij ≡ gjiφ0/
√
πRM5.

5

5For reasons of convenience, the indices in this definition have been switched.
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The exact diagonalization of this matrix is a non-trivial task, but if mD is
small enough compared to MS or MV one can make a perturbative approach. To
quantify this condition, we first define the Majorana sub-matrix

M sub
n ≡

(

−MS +MV −n/R
−n/R M∗

S +M∗
V

)

(3.52)

for each pair Ψ
(n)
L,i , Ψ̂

c(n)
R,j , which, in turn, enables us to define the perturbation

parameters

η0 ≡ −(M sub
0 )−1 m

T
D√
2
, ηn ≡ −(M sub

n )−1

(

0
mT
D

)

, (3.53)

with M sub
0 ≡ (M sub

n )22.
Since the see-saw is a sum over an infinite amount of states in this case, it is

not enough to require ||ηi|| ≪ 1. Instead, we make the more stringent constraint

η2 ≡ ||η0||2 +
∞
∑

n=1

||ηn||2 ≪ 1 . (3.54)

If this condition is fulfilled, we can make a change of basis defined by

Ψ̂
c(0)′

R ≡ Ψ̂
c(0)
R + η0ν , (3.55)

(

Ψ
(n)′

L

Ψ̂
c(n)′

R

)

≡
(

Ψ
(n)
L

Ψ̂
c(n)
R

)

+ ηnν , (3.56)

ν ′ ≡ ν − η†0Ψ̂
c(0)
R −

∞
∑

n=1

η†n

(

Ψ
(n)
L

Ψ̂
c(n)
R

)

, (3.57)

with implicit flavor indices.
Then, the mass part of the Lagrangian is, to leading order, given by

Lmass = −1

2
ν ′Tm′ǫν ′−1

2
Ψ̂
c(0)′T
R M sub

0 ǫΨ̂
c(0)′

R −1

2

∞
∑

n=1

(

Ψ
(n)′

L

Ψ̂
c(n)′

R

)T

M sub
n

(

ǫΨ
(n)′

L

ǫΨ̂
c(n)′

R

)

+h.c. ,

(3.58)
with the light neutrino mass matrix

m′ ≡ −1

2
mD(M sub

0 )−1mT
D −

∞
∑

n=1

(0, mD) (M sub
n )−1

(

0
mT
D

)

. (3.59)

In the case MV = 0, we can additionally make the transformation

UTMSU ≡ diag(MS
1 ,M

S
2 ,M

S
3 ) , (3.60)
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with MS ≥ 0, which leads to the light neutrino mass matrix.

m′ = −mDU
∗πR

2





coth(πM1R) 0 0
0 coth(πM2R) 0
0 0 coth(πM3R)



U †mT
D .

(3.61)
Accordingly, for MS = 0, one finds

m′ = −mDU
∗πR

2





cot(πM1R) 0 0
0 cot(πM2R) 0
0 0 cot(πM3R)



U †mT
D , (3.62)

with UTMV U ≡ diag(MV
1 ,M

V
2 ,M

V
3 ) and MV

i ≥ 0 in this case.
These are the five-dimensional extensions of the see-saw formula for the models

we will consider in chapters 6 and 7. Aside from the (hyperbolic) cotangent
functions, the biggest difference compared to the standard case is the fact that the
suppression scale of the light neutrino masses is typically not given by the masses
of the heavy singlets, in this case, but by the scale M5, as we also mentioned
earlier. This can be seen, if we note that mD ∝ (RM5)

−1/2, which implies the
cancellation of the compactification scale in Eqs. (3.61) and (3.62).



Chapter 4

Baryogenesis

The observation that our universe seems to be almost solely made up of baryons
and no anti-baryons is also called the baryon asymmetry of our universe (BAU).
Moreover, its (potential) transition from a baryon symmetric to a baryon asym-
metric one is referred to as baryogenesis.

Since baryogenesis is one of the central topics of this thesis, we will consider
it in this section more deeply. We will therefor first discuss the observational
evidence for a baryon asymmetry in our part of the universe in section 4.1. This
will be followed by some general remarks on baryogenesis in section 4.2 and a
discussion of sphaleron processes in section 4.3. In the subsequent sections, we will
then focus on several popular baryogenesis scenarios, namely GUT-baryogenesis,
baryogenesis via leptogenesis, and Affleck-Dine baryogenesis. Our treatment of
baryogenesis via leptogenesis will be more detailed than the treatment of the
other scenarios, as we will use large parts of the corresponding analysis in our
treatment in chapter 7.

More comprehensive reviews on baryogenesis can also be found in Refs. [61,62].

4.1 The Baryon Asymmetry of our Universe

Before focusing on baryogenesis itself, we will briefly review some of the observa-
tions that seem to indicate that our universe is indeed baryon-asymmetric. There-
for our treatment will be based on the corresponding discussions in Refs. [1, 63].

Let us first start with several observations of our immediate vicinity in the
universe. For this purpose, we note that the fact that no anti-matter has been
found on earth obviously implies that our planet is made up of matter. As we
do not observe annihilation radiation from solar winds and the other planets, one
can further infer that all other planets in our galaxy consist of matter. And, since
solar cosmic rays seem to imply that our sun is also made up of matter, we can
deduce that at least the visible part of our galaxy seems to consist almost purely
of baryons.

49
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Moreover, the fact that we do not observe a γ-ray flux from nearby galaxy
clusters is evidence that these clusters are also maximally baryon-asymmetric. Of
course, this could also mean that a cluster solely consists of anti-matter. However,
the possibility of a baryon-symmetric universe consisting of regions of matter and
regions of anti-matter seems to be excluded by the observed value of the baryon-
density, which we will discuss a little later in this section. Here, we only note that
a separation of matter and anti-matter that would lead to the observed baryon
density would have had to take place around the time when the temperature of
the universe was 38 MeV. Otherwise, the annihilation of matter and anti-matter
would not allow for a large enough (anti-)baryon-density. Yet, at such early times
a causally connected region contained only 10−7 solar masses, whereas a lower
bound for the separation scale would be given by the discussed galaxy clusters
which contain 1014 solar masses. This indicates that also the observed galaxy
clusters consist almost purely of matter, and we conclude that the visible part of
our universe appears to be maximally baryon-asymmetric.

Due to the thermal abundance of anti-matter in the early universe the asym-
metry was not always maximal and one therefore usually quantifies the baryon
asymmetry in terms of the net baryon-to-photon ratio ηB or baryon-to-entropy
ratio nB, given by

ηB ≡ nb − nb̄
nγ

and nB ≡ nb − nb̄
s

, (4.1)

respectively, where nb(nb̄) is the (anti-)baryon density. We also note that these
quantities are related by ηB = 7.04nB after recombination.

If our universe does not contain anti-matter, it is sufficient to measure the
baryon density in order to determine the exact value of the baryon asymmetry.
We can therefore use the fact that the CMB anisotropies are dependent on the
baryon asymmetry as we discussed in section 1.5. In fact, some of the most
precise measurements of the BAU come from a combination of CMB data, large
scale structure, and Lyman α forest. In particular, at 1σ-confidence level Ref. [64]
finds

ηB = 6.1+0.3
−0.2 · 10−10 , (4.2)

while there are also also independent constraints on this number from big bang
nucleosynthesis which yield comparable results (cf. e.g. [65]).

4.2 Basics of Baryogenesis

The fact that the universe which we observe today is baryon-asymmetric can
have several reasons. The simplest possibility is, of course, that the universe has
always been baryon-asymmetric. While this option does not seem very attractive
from a symmetry point of view, it has to be considered a realistic option. Another
possibility is, of course, that the universe started from a baryon-symmetric initial
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state and subsequently underwent a phase during which an asymmetry between
baryons and anti-baryons has been created. As we already mentioned, such a
process is referred to as baryogenesis.

While a period of baryogenesis is already attractive due to symmetry argu-
ments, it is also required by inflational models. This can be ascribed to the fact
that inflation basically yields an empty universe at the end of its phase of accel-
erated expansion, where all existing particles have been strongly diluted. As an
empty universe is necessarily baryon-symmetric, the requirement for a period of
baryogenesis is evident in this case.

Due to these strong motivations for such a period, baryogenesis has been an
active field of research for the last decades and is still extensively studied. In
fact, already forty years ago Sakharov pointed out three general conditions for a
baryogenesis scenarios, the so-called Sakharov conditions [66]:

• Baryon number violation: This is, of course, an obvious condition for
any scenario in which a true baryon asymmetry is created, since the cre-
ation of baryons does not allow baryon number to be a conserved quantum
number.

• C- and CP-violation: Here, C and CP stand for charge conjugation and
charge conjugation combined with a parity transformation, respectively.
In the case in which these quantities were conserved, particles and anti-
particles would be generated at the same rates, even if baryon number was
violated. Therefore, the same amounts of matter and anti-matter would
be produced, which, obviously, contradicts the definition of a baryogenesis
process.

• Deviation from thermal equilibrium: This condition can be explained
by the fact that thermal equilibrium requires a maximization of entropy,
which, in turn, implies the vanishing of all chemical potentials that cor-
respond to non-conserved quantum numbers. Additionally, we note that
in any relativistic quantum field theory particles and anti-particles have
the same masses due to the CPT-theorem. Therefore, thermal equilibrium
would imply the same abundances of particles and anti-particles, which
again conflicts with the definition of a baryogenesis process.

It is important to note that, even though the SM already features baryon
number violation (cf. section 4.3) and C- and CP-violation (through the Yukawa
couplings), it cannot generate the observed baryon asymmetry of our universe
by itself. Therefore, baryogenesis requires an extension of the SM and can be
considered as a test for possible new physics.

Let us also briefly mention that there exist models that realize an evolution of
our universe from a baryon symmetric initial state to the one we observe today,
without respecting all of the Sakharov conditions. One possibility, in this context,
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is the option that we actually live in a baryon-symmetric universe with hidden
anti-baryons. An example for such a model is given in Ref. [67], and the model
considered in chapter 5 is also related to this idea. Additionally, the condition
of thermal non-equilibrium can be evaded in models where CPT-invariance is
effectively broken. A corresponding example is given in Ref. [68], where this
happens due to early universe effects that can also be interpreted as the source
of additional chemical potential terms [61].

4.3 Sphalerons

As we already mentioned in the previous section baryon number (B) and lepton
number (L) are violated within the SM. While the corresponding processes are
strongly suppressed today and will most likely never be observed, the situation
was dramatically different in the early universe, where so-called sphaleron pro-
cesses [69,70] might have played a key role. We will therefore briefly discuss this
topic in this section, based on the reviews in Ref. [62, 71].

Even though B and L are conserved in the SM on the classical level, certain
quantum effects do not obey the corresponding symmetries. Therefore, B and L
are so-called anomalous symmetries.

In fact, these anomalies are a part of the aftermath of the famous Adler-Bell-
Jackiw anomaly [72,73], which is a result of the breakdown of the chiral symmetry
in chiral gauge theories. In particular, for a gauge groupG with coupling constant
gG and corresponding field-strength tensor Ga

µν , the Adler-Bell-Jackiw anomaly
leads to different divergences of the left- and right-chiral currents, namely

∂µψ̄Lγ
µψL = −cL g2

32π2G
a
µνG̃

aµν

∂µψ̄Rγ
µψR = +cL

g2

32π2G
a
µνG̃

aµν

(4.3)

where we used the chiral fields ψL/R ≡ PL/Rψ and the dual tensor G̃aµν ≡
ǫµναβGa

αβ/2. Here, ǫµναβ is the totally antisymmetric tensor with ǫ0123 = 1. Fur-
ther, the cL and cR depend on the representation of ψL and ψR.

Let us also define the baryon and lepton currents of the SM

JBµ =
1

3

∑

q

ψqγµψq and JLµ =
1

3

∑

ℓ

ψℓγµψℓ , (4.4)

where the ψq are the quark fields, and the ψℓ are the lepton fields.
Plugging all the baryons and leptons of the standard model into Eq. (4.3), the

different transformation behavior of left- and right-chiral fields under SU(2)L ×
U(1) then yields

∂µJBµ = ∂µJLµ =
3

32π2

(

−g2W a
µνW̃

aµν + g′2BµνB̃
µν
)

. (4.5)
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Figure 4.1: This picture from Ref. [71] shows a qualitative slice through the vacuum structure
of the SM, where different ground states correspond to different values of B + L. To get from
one vacuum to another, the fields can either tunnel through the energy barrier or take the way
over the barrier, if they are thermally excited.

We see that baryon and lepton number are indeed violated in the SM. However,
we also see that their difference B − L is still conserved by the corresponding
processes.

One can further show, that a change of B +L in the context of Eq. (4.5) cor-
responds to a transition from one ground state of the SM to another. In fact, one
can show that the SM possesses an infinite number of ground states with different
values of B + L (cf. Fig. 4.1). To get from one vacuum to another, the system
can either tunnel through the energy barrier in between them or take the way
over this barrier through thermal effects. The tunneling process is also referred
to as an instanton process, whereas the latter one is called a sphaleron process.1

Both of these processes are strongly suppressed today and will most likely never
be observed. However, when the temperature of the universe was above the
scale electro-weak scale, sphaleron processes might have been frequently observ-
able [69, 70]. In fact, before the time of electro-weak symmetry breaking, the
only relevant scale for these processes was given by the magnetic screening length
4π/(g2T ). On dimensional grounds one can therefore estimate the transition rate
of such processes to be

ΓSph = κ

(

4π

g2T

)4

. (4.6)

The factor κ is a dimensionless constant, which has to be calculated within a
more quantitative analysis. Ref. [74], e.g., finds κ = (25.4 ± 2.0)g2/(4π). One
can therefore see, that sphalerons were in equilibrium during large parts of the
history of our universe.

In this context, we also note that the fact that sphalerons were in equilibrium
at early times implies the erasure of any B + L asymmetry in the left-handed
sector during those periods. Additionally, it also implies the partial conversion

1Here, one should note that the corresponding transition point with the highest energy is
also sometimes called sphaleron.
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of a potential lepton asymmetry in this sector into a baryon asymmetry during
these epochs. Indeed, these effects will be important in sections 4.4 and 4.5,
respectively.

It is however also important to keep in mind that sphalerons only couple to
the left-handed particles of the standard model, which implies that they are not
necessarily able to erase B + L asymmetries in the right-handed sector. This,
in turn, depends on the size of the corresponding Yukawa couplings and the
interested reader is referred to Refs. [75–77] for deeper discussions of this topic.

4.4 GUT Baryogenesis

Due to the fact that grand unified theories arrange baryons and leptons in the
same multiplets, they naturally provide baryon number violating mechanisms.
The possibility for baryogenesis in the context of such theories was, therefore, first
addressed in Ref. [78] and in the context of heavy particle decays in Ref. [79] (see
also [80]). In this section we will briefly discuss some of the features and problems
of the corresponding scenarios. We will therefor remain on a qualitative level,
since many of the technicalities of baryogenesis via the decay of heavy particles
are similar to the corresponding details of leptogenesis, which will be discussed
in section 4.5.

Further, reviews on GUT baryogenesis can be found in Refs. [61, 62, 81].
As we already mentioned, baryon number violation is natural in GUT models,

since baryons and leptons appear in the same multiplets. Therefore, the decay
of heavy bosons (e.g. Higgs bosons) with complex couplings to the SM fermions,
can easily produce a baryon asymmetry. The abundance of such particles after
inflation might therefore be the reason for the observed BAU. However, it is
important to note that a B − L conserving GUT can generally not produce the
observed BAU, since it can only produce B+L asymmetries, which will be erased
by the sphaleron processes introduced in the previous section.

A more general problem of GUT-baryogenesis scenarios is the required abun-
dance of the heavy bosons after inflation. Typically, the reheating temperatures
in inflationary scenarios are lower than the GUT scale, which is around 1016GeV,
and therefore the corresponding production rate is suppressed after reheating.
Additionally, typical inflaton masses are around 1014GeV, which implies that they
cannot simply decay into the heavy bosons that would yield GUT baryogenesis.

A possible solution to this problem might be given by the fact that the reheat-
ing temperature is not necessarily the maximal temperature after the inflationary
period, but only the temperature at which the universe starts to be radiation dom-
inated, as we also discussed in section 1.6. In fact, the temperature at the earliest
stages of reheating might have been high enough to produce those particles. Of
course, they would have been subsequently diluted, however, this dilution might
have been weak enough for these particles to remain significantly abundant [82].
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Yet, more stringent bounds on the reheating temperature come from super-
gravity theories. These theories feature a fermionic super-partner of the graviton,
which is called the gravitino. The couplings of the gravitino are fixed by the the-
ory and their production rate can therefore be calculated. Though suppressed by
the Planck scale, these rates can indeed put strong constraints on the reheating
temperature, since an overproduction of them can over-close the universe (if sta-
ble) or destroy the successful predictions of BBN (if unstable). Typical bounds
for the reheating temperature Tr in these models are Tr . 109−1010GeV [83,84],
which make the combination of supergravity and GUT baryogenesis rather diffi-
cult.

However, a possible way out of this potential problem might be given by
the so-called pre-heating phase, which can take place during the early times
of re-heating [85, 86]. During this phase, the oscillations of the inflaton field
can resonantly induce oscillations of another scalar condensate X, which may
be heavier than the inflaton. These oscillations can already re realized on the
classical level. In fact, the oscillations of the inflaton make the mass of X time-
dependent in this case and there will be short periods when the mass of X (or
some of its modes) is lighter than the inflaton. Ref. [87] illustrates that this effect
can also be used to populate heavy states in the context of GUT baryogenesis.

Therefore, GUT baryogenesis might still have been the way in which the BAU
we observe today has been produced.

4.5 Leptogenesis

Baryogenesis via leptogenesis is another very attractive baryogenesis scenario,
since it can be realized naturally in see-saw models (cf. section 3.4) without any
further additions to the particle content. In this case, the addition of heavy
right-handed neutrinos to the SM would help to explain two previously unrelated
phenomena, namely the smallness of neutrino-masses and the baryon-asymmetry
of our universe.

Since standard thermal leptogenesis is an important topic in the context of this
thesis, we will review here in more detail than the other models. Therefore, we will
first introduce some basic material and notation in section 4.5.1. Afterwards, we
will consider weak wash-out and strong wash-out scenarios in sections 4.5.2 and
4.5.3, respectively. This will be followed by a discussion of the parameter bounds
from leptogenesis in section 4.5.4 and further complications of our treatment in
section 4.5.5.

4.5.1 Fundamentals of Standard Thermal Leptogenesis

In this subsection, we will discuss the groundwork of standard thermal lep-
togenesis with three hierarchical heavy neutrinos as it has been developed in
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Figure 4.2: This figure shows the relevant decay-diagrams for standard thermal leptogenesis,
where the interference of the tree-level diagram with the wave-function- and the vertex-correction
diagram can lead to CP violation and a net lepton-number production per decay. Due to the
different projection operators, the wave-function-correction diagram with charge flow in the
opposite direction can only contribute at higher orders of M1/Mk.

Refs. [88–96].
As leptogenesis is a feature of see-saw scenarios, we will work with the same

Lagrangian as in section 3.4. However, for simplicity we will now work in the basis,
where the right-handed neutrino mass matrix is diagonal. For the neutrinos, the
mass and Yukawa part of the Lagrangian then read

L = −1

2
MiN

cT
Ri ǫN

c
Ri − gijN

cT
Ri φ

c†ǫ ℓj + h.c. . (4.7)

The addition to the SM Lagrangian does not only render masses for the light
neutrinos, it also opens new possibilities for CP-violation, e.g. in the decay of the
heavy singlets, where an interference of tree-level and loop diagrams, as illustrated
in Fig. 4.2, can lead to different decay rates for the channels N → ℓφ∗ and N →
ℓ̄φ.2 In particular, in the case of hierarchical heavy neutrinos (M1 ≪ M2 ≪M3)
one finds for the decay of N1 [97]

ε1 ≡
Γ(N1 → ℓL + φ) − Γ(N1 → ℓ̄L + φ∗)

Γ(N1 → ℓL + φ) + Γ(N1 → ℓ̄L + φ∗)
≈ − 3

16

∑

k

Im
[

(gg†)2
1k

]

(gg†)11

M1

Mk
. (4.8)

One can show that there exists an upper bound for this parameter [98, 99], the
so-called the Davidson-Ibarra bound, which is given by3

|ε1| .
3M1

16πφ2
0

(m3 −m1) ≈ 3M1∆m
2
31

16πφ2
0(m3 +m1)

, (4.9)

where ∆m2
31 = m2

3−m2
1 is approximately the atmospheric mass-squared difference

as given in section 3.2. We see that Eq. (4.9) is maximized by m1 = 0, which
leads to ∆m2

31 = m2
3 and

|ε1| .
3

16π

M1m3

φ2
0

≈ 10−7
( m3

0.05eV

)

(

M1

109GeV

)

(4.10)

2In the following we will drop the subscript R from NR for simplicity.
3In the original paper, there is an additional factor of 2, due to the supersymmetric treat-

ment.
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where m3 is fixed around 0.05 eV due to m1 = 0 and the oscillation data from
section 3.2.

As pointed out in Ref. [96] the possible CP-violation within ∆L = 1 scatter-
ings, such as tcq → Nℓc, can also be relevant for leptogenesis. There, it is also
shown that the CP-asymmetry produced in these scatterings exactly equals the
asymmetry of the corresponding decay processes presented here in the case of
hierarchical heavy singlets.

Let us now consider the dynamics of the scenario. At the beginning, we as-
sume to be in a homogenous and isotropic universe (possibly after an inflationary
period) dominated by the SM particles, which are all in thermal equilibrium with
temperature Tr. The initial abundance of the right-handed neutrinos is typically
assumed to be zero. Their abundance at later times is then determined by the
differential Boltzmann equation [2, 89]

dNN1

dz
= − 1

Hz
(ΓD + Γ∆L=1) (NN1

−N eq
N1

) , (4.11)

where z ≡M1/T is effectively a reparametrization of time in a background dom-
inated universe. Further, NN1

is the average abundance of the lightest right-
handed neutrinos in a comoving volume containing one photon at early times,
N eq
N1

is the corresponding value for the equilibrium distribution, ΓD is their decay
rate, and Γ∆L=1 the rate for the 2 ↔ 2 scattering processes, which violate lepton
number by one (e.g. N1ℓ ↔ tq). The explicit values we used for the different
reaction rates can be found in appendix C.

The other important equation in this context is the one for the B − L asym-
metry NB−L [2, 89, 96] in the same comoving volume

dNB−L
dz

= − 1

Hz

[

ε1(ΓD + Γ∆L=1) (NN1
−N eq

N1
) + ΓWNB−L

]

, (4.12)

where ΓW is the reaction rate for wash-out processes consisting of inverse decays
and ∆L = 1, 2 scattering. Again, the explicit formulae for these rates that were
used for the corresponding calculations can be found in appendix C.

As discussed in section 4.3, sphalerons will partially transform a lepton asym-
metry into a baryon asymmetry until the baryons until the entropy of the corre-
sponding system is maximized. In the present case, the baryon asymmetry per
comoving volume will, therefore, be given by NB = 28/79 · NB−L [69, 70]. To
find the final baryon asymmetry per photon (ηB) in a late universe, one needs
to consider this sphaleron factor as well as the late time production of photons.
Combining these two effects, we find (cf. Ref. [95])

ηB ≈ 10−2NB−L(t→ ∞) . (4.13)

Equations (4.11) and (4.12) have been extensively studied numerically as well as
analytically in Refs. [88–96]. In the analysis of the following sections, we will
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rather aim at understanding the corresponding dynamics qualitatively, which
will also help to conceive the effect of many decaying neutrinos in chapter 7. For
reasons of simplicity we will therefor adopt the treatment of Ref. [95] and restrict
our considerations at this point to decays, inverse decays and ∆L = 1 scatterings
involving the top quark. We will discuss further effects, which we will neglect in
our treatment, in section 4.5.5.

Yet, before discussing the dynamics explicitely, we will introduce some con-
venient definitions. Let us first define the so-called decoupling parameter

K =
ΓD(z → ∞)

H(z = 1)
. (4.14)

This parameter gives a measure for the decoupling of the right-handed neutrinos
at the time when their equilibrium abundances start being suppressed with re-
spect to photons. One can therefore use this parameter to distinguish between
the so-called weak wash-out and strong wash-out regime (K ≪ 1 and K ≫ 1,
respectively).

In this context, it can also be helpful to denote K in terms of

K ≡ m̃1

m∗
, (4.15)

where the parameter

m̃1 ≡
(mDm

†
D)11

M1

(4.16)

is also called the effective neutrino mass and the quantity

m∗ ≡
16π

5
2
√
g∗

3
√

5

φ2
0

MPl
≈ 10−3eV (4.17)

is referred to as the equilibrium neutrino mass.

4.5.2 The Weak Wash-out Scenario

As we already mentioned, we distinguish between two quite distinct parameter
regions of thermal leptogenesis, namely the weak and strong wash-out regimes.
In this section we will discuss the first of these scenarios, while the latter will be
discussed in the following section.

In weak wash-out scenarios (K ≪ 1) none of the relevant processes that
involve right-handed neutrinos is in equilibrium at early times. Therefore, the
thermal production of neutrino singlets will be strongly suppressed and only a
small number of them will be produced. Moreover, since all wash-out effects
involve right-handed neutrinos, these are also strongly suppressed.

Yet, the wash-out effects are still crucial, as the decays and inverse decays
of the heavy singlets (as well as the corresponding ∆L = 1 scatterings) create
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B−L asymmetries of opposite sign but equal magnitude. If there were no wash-
out processes, this would imply that the asymmetry which is created during the
production of the heavy singlets would be exactly canceled by the asymmetry
generated by the decay of these particles, later on. Therefore, it is important to
note that the wash-out processes erase a small part of the first asymmetry, in spite
of being suppressed. This small deficit then prevents the complete cancellation
of the asymmetries and is responsible for the observed BAU at later times.

With this picture in mind, let us now be more quantitative and make some
rough estimations for the reaction rates mainly based on dimensional analysis.

As long as T & M1, we can approximate the relevant reaction rates by [2]

ΓD ≈ ΓID ≈ 1

8π
(gg†)11M1

M1

T
(4.18)

Γ∆L=1 ≈ |gtop|2
π3

(gg†)11 T
z∼1≈ 1

2
ΓD (4.19)

where gtop is the Yukawa coupling constant of the top quark.
Due to their weak couplings, the right-handed neutrinos will not reach equilib-

rium abundance until this value is strongly suppressed. Therefore, we can assume
N eq
N1

−NN1
≈ N eq

N1
, while z . 1. Using Eq. (4.11) we can then approximate

NN1
(z ≈ 1) ≈

(ΓD + Γ∆L=1)N
eq
N1

H(z = 1)
≈ K , (4.20)

with N eq
N1

= 3/4 (at early times).
Without wash-out effects the B−L asymmetry around this time would, there-

fore, be NB−L(z = 1) ≈ −ε1NN1
(z ≈ 1). However, due to our earlier considera-

tions the wash-out effects cannot be neglected, and in order to find the fraction of
the produced asymmetry that has been washed out, we approximate the wash-out
rate to be

ΓW ≈ 1

2
ΓID +

2

3
Γ∆L=1 ≈ ΓD . (4.21)

Here, the factor 1/2 is due to the fact that half of the inverse decays will finally
end up as the original states and the factor 2/3 pays tribute to the fact that the
s-channel processes are suppressed more strongly in the weak wash-out before
z ≈ 1 [89].

Using Eq. (4.12), we can now estimate the B − L asymmetry ate z = 1 by
(cf. Ref. [95])

NB−L(z = 1) ≈ ε1NN1
(z ≈ 1) exp

(

− ΓW
H(z = 1)

)

(4.22)

≈ ε1K exp (−K) (4.23)

≈ ε1K (1 −K) . (4.24)
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Figure 4.3: This figure illustrates a typical example for a weak wash-out scenario. The
green/dashed line shows the equilibrium density of the right-handed neutrinos N1 per relativistic
photon Neq

N1
, while the red/solid line shows their actual density as calculated from the Boltzmann

equations NN1
. The blue/dotted line shows the absolute amount of the corresponding B − L

asymmetry |NB−L|. Further, the graph was plotted with the parameters K = 10−2, M1 = 107

GeV, Tr = M1, ε1 = 10−9, and a Higgs boson mass of 10−1M1 (cf. App. C). One can see
that the N1 states become mainly populated until z ≈ 0.5 and that the final B − L asymmetry
is much smaller than it is around z ≈ 1 due to the discussed cancellations. For the final value
of |NB−L| the numerics yield 1.0 · 10−13, which agrees well with our approximative value from
Eq. (4.25).

After the temperature has dropped below M1, inverse decays and ∆L = 1 scat-
terings will be suppressed and the particles will decay around H ≈ ΓD/2, which
corresponds to z ≈ K−1/2. As stated earlier, the decaying heavy singlets will
then produce an asymmetry of the same amount but opposite sign as the inverse
decays and scatterings did, when they populated these states. Therefore the first
term in Eq. (4.24) will be exactly canceled, and the final B −L asymmetry then
amounts to

NB−L(z = ∞) ≈ −ε1K
2 . (4.25)

An example for a numerically calculated solution of the corresponding Boltzmann
equations can be found in Fig. 4.3, which supports our approximative treatment
and helps to further illustrate the principles of weak wash-out leptogenesis.

4.5.3 The Strong Wash-out Scenario

Let us now consider the strong wash-out scenario, where K ≫ 1 implies that the
relevant processes that include the right-handed neutrinos are in equilibrium at
early times, which has several competing effects.
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In particular, the strong coupling ensures that the singlets will reach equilib-
rium abundances and will therefore be present in much larger numbers, at early
times, than in the weak wash-out regime. Additionally, the larger wash-out rates
lead to the fact that the B − L asymmetry from the production of the singlets
will be washed out before they decay again, thereby preventing the cancellation
of asymmetries from the previous section.

On the other hand, the large K also leads to the fact that the wash-out
processes are still active, when the majority of the singlets decays. Since this
means, that the corresponding asymmetry is washed-out, the final asymmetry
is only due to the small fraction of particles that decay after the freeze-out of
the wash-out processes. Yet, this number is exponentially suppressed, and it is
therefore not immediately clear if the strong wash-out regime can yield a larger
asymmetry than the weak wash-out regime.

To find an estimate for the final asymmetry in this case, we will again make
some approximations. We therefore note that the wash-out processes will get
an additional exponential suppression factor after z ≈ 1, since the right-handed
neutrinos now have masses larger than the temperature and need to be produced
on-shell in all the wash-out processes considered here.4 With regard to Eq. (4.21)
we therefore find (cf. Ref. [1])

ΓW ≈
(

1

2
· 1

8π
(gg†)11M1 +

|gtop|2
π3

(gg†)11 T

)

z3/2e−z , (4.26)

for z & 1, which shows that we can neglect the term due to scatterings (the
second term in the brackets) at late times.

In a naive approximation, we could assume that the wash-out processes will
no longer be in thermal equilibrium and therefore not be able to erase a produced
asymmetry when the condition ΓW . 2H is fulfilled. However, due to the rapid
suppression of this term we can make a better approximation, as presented in the
following.

As a result of the wash-out processes, the dynamical behavior of an initial
asymmetry will be given by

NB−L(t) = NB−L(t0) exp

(

−
∫ t

t0

ΓW (t)dt

)

= NB−L(z0) exp

(

−
∫ z

z0

ΓW (z)

H(z)z
dz

)

. (4.27)

Since ΓW is suppressed very quickly, the exponential term can be neglected as
soon as the integrand is smaller than one. Therefore, a better condition for the

4The off-shell contributions due to ∆L = 2-scatterings will be discussed further in section
4.5.4.
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Figure 4.4: Here, we see a typical example for leptogenesis in the strong wash-out scenario.
The green/dashed line shows the equilibrium number of the right-handed neutrinos N1 per rel-
ativistic photon Neq

N1
and almost perfectly matches the red/solid line, which illustrates their

actual abundance NN1
as calculated from the Boltzmann equations. The blue/dotted line shows

the absolute amount of the corresponding B − L asymmetry |NB−L|. For this graph, we used
K = 102 and all other parameter values as in the example in Fig. 4.3. For the final value of
|NB−L| we find 1.5 · 10−12, which matches our approximative value in Eq. (4.31) to a rough
factor of 3.

“time” z∗ at which the wash-out processes become ineffective is

ΓW
z∗

≈ H (4.28)

⇒ z5/2
∗ e−z∗ ≈ K−1 . (4.29)

By this time, the equilibrium number of right-handed neutrinos in our comoving
volume has already decreased, and we find

N(z∗) ≈ N eq(z∗) ≈ z3/2
∗ exp(−z∗)/2 ≈ (2z∗K)−1 ≈ 0.05

K
, (4.30)

for the remaining particles.

Hence, our final result for the B − L asymmetry is approximately given by
the formula

NB−L(z = ∞) ≈ −ε1N(z∗) ≈ −ε1
0.05

K
. (4.31)

An example for a numerical solution of the corresponding Boltzmann equations
is given in Fig. 4.4, which supports the rough estimations in this section.
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4.5.4 Bounds From Leptogenesis

The assumption that the baryon asymmetry of our universe is due to standard
thermal leptogenesis places bounds on several parameters from cosmology and
particle physics, in particular, the reheating temperature after inflation and the
quadratic mean of the light neutrino masses. As we will see in the following, both
of these bounds are a result of the Davidson-Ibarra bound in Eq. (4.9).

Let us first consider the bound for the reheating temperature. Combining
the Davidson-Ibarra bound with Eq. (4.13) and our estimates for the B − L
asymmetry from the Boltzmann equations (Eqs. (4.25) and (4.31)), we find

ηB .











10−9K2
(

m3
0.05eV

)(

M1

109GeV

)

for weak wash-out,

5 · 10−11K−1
(

m3
0.05eV

)(

M1

109GeV

)

for strong wash-out.
(4.32)

We therefore see that the region around K ≈ 1 will give the largest baryon
asymmetry. However, since none of our approximations is valid in this parame-
ter regime it is hard to give an exact value for the final asymmetry from these
estimates. Within a more quantitative treatment Ref. [93] finds

M1 & 2 · 109GeV (4.33)

as the lowest bound for the lightest of the singlet neutrino masses in case of zero
initial abundance, which also implies

Tr & M1 & 2 · 109GeV (4.34)

for the reheating temperature.
Unfortunately, this bound creates a problem for supergravity, since the corre-

sponding theories typically yield an upper bound on the reheating temperature
around Tr . 109 − 1010GeV [83, 84], as we already mentioned in the context of
GUT baryogenesis. Therefore, supergravity and standard thermal leptogenesis
seem only marginally compatible.5

However, the bound from Eq. (4.34) is only valid in the standard scenario
of thermal leptogenesis, i.e. for three right-handed neutrinos with hierarchical
masses and zero initial abundance. In the case of similar or degenerate masses
of the right-handed neutrinos this bound does not hold [100, 101], since the
Davidson-Ibarra bound loses its validity in these cases. Also the initial presence
of right-handed neutrinos in non-thermal scenarios, e.g. via inflaton decay [102],
can alter these bounds significantly (cf. e.g. Ref. [103]).

Let us now discuss the bound for the light neutrino masses derived by Refs.
[70, 104–106], where we argue along the lines of the semi-quantitative approach
of Ref. [107].

5Our treatment, here, has been in the non-supersymmetric framework. Yet, the supersym-
metric treatment yields similar results (cf. e.g. Ref [94]).
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Since we are interested in an upper bound, it is reasonable to assume (quasi-)
degenerate neutrinos and a rather large m ≡

√

m2
1 +m2

2 +m2
3. This implies [108]

m1 ≈ m̃1 ≈ m3 ≈ m/
√

3 and therefore K ≈ m√
3m∗

≪ 1 . (4.35)

Thus, we only need to consider the strong wash-out regime. In these scenarios,
the freeze-out of ∆L = 2 scatterings around z = 1 and especially at later times
is crucial to avoid the wash-out of the generated B − L asymmetry and has so
far been neglected. We now estimate the rate for these processes to be

Γ∆L=2 ≈
m2T 3

π3〈φ〉4 . (4.36)

In this case, the corresponding freeze-out condition Γ∆L=2(z ≈ 1) ≪ H(z ≈ 1)
translates into an upper mass limit for M1, namely

M1 .

(

eV

m

)2

5 · 1010GeV. (4.37)

Additionally, Eq. (4.35) allows us to transform the Davidson-Ibarra bound from
Eq. (4.9) to

ε1 .
3M1∆m

2
31

16π〈φ〉2m . (4.38)

Combining the last two equations with Eqs. (4.2), (4.13), (4.31), and (4.35) we
are then led to the rough upper mass limit

m√
3

. 0.1eV (4.39)

for the light neutrinos.
In a more precise analysis Refs. [95, 109] find comparable bounds, which are

only slightly higher.

4.5.5 Complications

Several effects have been neglected in the previous treatment, and we therefore
comment on some of the more important ones in this section.

• ∆L = 1 scatterings with gauge bosons:
In the previous considerations, we have neglected ∆L = 1 scatterings that
include gauge bosons. Adopting the point of view from Ref. [95], we assume
that these processes contribute at most in the way of the scatterings that
involve the top quark. Since we are mainly concerned with orders of mag-
nitude in our analysis, these effects should therefore not have an important
impact on our results.6

6As also mentioned by Ref. [95], the neglect of the running of the top Yukawa coupling
should, in fact, partially compensate for this.
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• Spectator Processes and Flavor effects:
The presented standard treatment for leptogenesis ignores the fact that
sphalerons are already in equilibrium during the early times of leptogenesis
as well as the possible change of several chemical potentials. These effects
can contribute an order one suppression as shown in Ref. [110].

Lately, much progress has been made concerning flavor effects in leptogen-
esis scenarios, e.g. in Refs. [92,96,100,107,111]. In particular, in our treat-
ment, we ignored the fact that below temperatures around Tr . 1012GeV
the Yukawa couplings of the third-(and sometimes second-) generation lep-
tons can be in thermal equilibrium at the times relevant for leptogenesis.
This enables the system to distinguish between different lepton flavors and
demands a more complex system of coupled Boltzmann equations. Typi-
cally, this can yield an additional factor of three for the final baryon asym-
metry, while larger discrepancies can also appear. Nevertheless, Ref. [112]
found that the overall lower bound for M1 cannot be relaxed by flavor ef-
fects.

• Quantum effects:
Quantum effects can also be more important for leptogenesis than indicated
by our treatment.

Examples in this context are the running of coupling constants [113], which
can have order one effects on the final asymmetry, and thermal quantum
effects as described in Ref. [94].

Moreover, our semi-classical approach via Boltzmann equations is of limited
validity compared to the full quantum dynamics described by Kadanoff-
Baym equations (see e.g. Ref. [114]). So far, the Boltzmann equations
for leptogenesis could be derived from the corresponding Kadanoff-Baym
equations [115]. Yet, a full quantum mechanical treatment of leptogenesis
in terms of Kadanoff-Baym equations still seems far away.

4.6 Affleck-Dine Baryogenesis

A completely different approach to explain the BAU has been introduced by
Affleck and Dine in Ref. [116], where a B − L asymmetry is produced by the
dynamics of a scalar condensate instead of heavy particle decays. Since this
scenario was one of the motivations for the model in chapter 5, we will briefly
review it in this section.

The principle of Affleck-Dine (AD) baryogenesis is easily illustrated in a toy
model of a scalar field φ with the potential [116]

V (φ) = m2|φ|2 + λ(φ4 + φ∗4) , (4.40)
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where possible further terms (e.g. to stabilize the potential) have been omitted
for simplicity.

For small values of φ, namely |λφ2| ≪ m2, this potential has an approxi-
mate U(1) symmetry, which we identify with baryon number. Due to Noether’s
theorem, the baryon density nb is then given by

nb =
i

2
(φ̇∗φ− φ∗φ̇) = |φ|2θ̇ , (4.41)

where θ is defined by φ ≡ |φ|eiθ.
We further note, that a field that starts with the initial values φ(t = 0) = φ0

and φ̇(t = 0) = 0 will typically receive an acceleration in phase space due to the
CP-violating λ term. Since the system starts with zero baryon density in this
case, this acceleration already ensures the creation of a baryon asymmetry as we
can see from Eq. (4.41).

Affleck and Dine applied this simple idea to flat directions [116], which fre-
quently occur in models using supersymmetry (SUSY). Such flat directions are
linear combinations of various elementary scalar fields that do not have a poten-
tial as long as SUSY is not broken. Therefore, a large VEV of such a flat direction
does not contribute to the vacuum energy of the system in unbroken SUSY and
might occur naturally after inflation. Yet, once SUSY breaking is turned on, po-
tentials that include terms as in Eq. (4.40) might arise and a baryon asymmetry
can be produced in the previously described manner. Later on, this scalar conden-
sate will then decay due to further couplings and thereby transfer its asymmetry
to the observed sector.

An important additional ingredient for this scenario has been considered in
Ref. [117]. Based on the fact that the finite energy density of the early universe
can also break SUSY (see e.g. Ref. [118]), it is shown that a previously flat
direction can acquire a potential that has a global minimum at φ 6= 0 at early
times and a minimum at the origin at later times. Additionally, the CP violating
terms of the potential can also depend on the Hubble rate and are therefore
effectively time-dependent. This can naturally lead to a large VEV of the field
after inflation and to a subsequent phase-kick of the scalar field as it tracks
the potential minimum on its way towards the origin. As before, this phase kick
generates a baryon (or lepton) asymmetry, and the subsequent decay of the scalar
transfers this asymmetry to the SM.

Due to the non-thermal creation of the BAU in these baryogenesis scenarios,
they typically yield much less stringent bounds for the reheating temperature
than the scenarios that need to thermally produce heavy particle. Ref. [117], e.g.,
gives examples for models that work at a reheating temperature around 106 GeV,
which is well below the gravitino bound mentioned in section 4.4. In addition to
the fact that flat directions occur naturally in supersymmetric theories, this is
one of the reasons why AD baryogenesis is also a popular baryogenesis scenario
among model builders.



Chapter 5

Leptonic Dark Energy and
Baryogenesis

As we have seen in the previous chapters, scalar fields might have played key roles
in the history of our universe. Not only are they necessary in inflationary models,
they might also be responsible for dark energy via quintessence and the baryon
asymmetry of our universe through the Affleck-Dine mechanism. This raises the
question, if it is possible that a single scalar field is responsible for several of these
rather distinct phenomena.

Based on Ref. [119], we therefore present a model which establishes a connec-
tion between a dark energy field and the BAU in this chapter. The manner in
which this is done here, was first suggested in Ref. [120] and features a scenario
that hides a B − L asymmetry in the dark energy sector, thereby compensating
for an opposing asymmetry in the fermionic sector of our universe.

Since the major point of the presented work is to establish a potential con-
nection between two distinct phenomena, and the model itself can be considered
as a toy-model, we will restrict ourselves to a rather qualitative treatment here.
For more quantitative results the reader is referred to Ref. [119].

In particular, we will discuss the newly introduced scalar sector of the model
and its dynamics in section 5.1, whereas section 5.2 will be concerned with the
couplings between these scalar fields and the standard model particles. In sec-
tion 5.3, we briefly discuss some further points and conclude the analysis. For
concluding remarks on this model in a more general context, we refer the reader
to the conclusions at the end of this thesis.

5.1 The Model

As already mentioned in the introduction of this chapter, the key idea of the
presented baryogenesis model is the generation of the BAU via a dark energy
field. The scenario therefore starts at the beginning of reheating after an infla-
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tionary period (cf. sec 1.6). Aside from a newly introduced dark energy field φ,
it also includes a scalar field χ, that mediates between the dark energy and the
visible sector, thereby avoiding possible constraints for time-varying masses and
additional forces.

Ignoring fermionic couplings for the moment the Lagrangian of the new scalar
sector is given by

L = 1
2
(∂µφ)∗(∂µφ) − V (|φ|) + 1

2
(∂µχ)∗(∂µχ)

−1
2
µ2
χ|χ|2 − 1

2
λ1|φ|2|χ|2 − 1

4
λ2(φ

2χ∗2 + h.c.) , (5.1)

where we require λ1 ≥ λ2 ≥ 0 for stability reasons. We further assume that all
interactions of φ are already included in its potential V (φ) and the couplings to χ,
which implies that its behavior can be completely inferred from the corresponding
Euler-Lagrange equations.

For the quintessence potential V (φ) we choose an exponential form, as dis-
cussed in section 1.7.2 but for a complex field now, which reads

V (|φ|) = V0(e
−ξ1|φ|/mPl + ke−ξ2|φ|/mPl) (5.2)

with the reduced Planck mass mPl ≡ 1/
√

8πG and typical quintessence parameter
values (ξ1 = O(10), ξ2 = O(1), k ≪ 1) that yield the common tracker behavior.

We note that the Lagrangian in Eq. (5.1) has a U(1) symmetry. Later on,
we will choose the fermionic couplings of these fields in a way that identifies this
symmetry with lepton number and assigns L = −2 to both fields. Thus, the
corresponding symmetry of the complete model will be B − L (cf. section 4.3).

In concordance with Eq. (4.41) the lepton number density stored in the quint-
essence condensate is now

nφ = i(φ̇∗φ− φ∗φ̇) = −2|φ|2θ̇ , (5.3)

where φ ≡ |φ|eiθ, while the lepton number per comoving volume is

Aφ = −2|φ|2θ̇
(

a(t)

a(t0)

)3

, (5.4)

with the cosmic scale factor a(t), as before, and analogous definitions for nχ and
Aχ with χ ≡ |χ|eiσ.

Neglecting the fermionic couplings just a littler longer, the conservation of
lepton number would imply

Aφ + Aχ = 0 . (5.5)

We therefore see that it is in principle possible to create opposing lepton asymme-
tries in the two scalar sectors. Of course, this formula alone does not imply that
the dynamics of the system will ever lead to non-zero Aφ andAχ. Yet, at this point
we note that the last term in Eq. (5.1) can be written as −1

2
λ2|φ|2|χ|2 cos(2α)
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with α ≡ θ − σ being the relative phase of the fields. Thus, if the scenario starts
with an initial α0 which does not equal a multiple of π/2, it will be accelerated
towards its potential minimum. Since this implies non-zero phase velocities for
both fields (cf. Eqs. (5.4) and (5.5)), such an initial CP-violation naturally leads
to a lepton asymmetry for this model.

The exact dynamics of the system are given by the Euler-Lagrange equations
that can be derived from Eq. (5.1). However, due to the fermionic couplings of
χ and the fact that it will be oscillating in its potential, we include an additional
damping factor in the corresponding equation (cf. Refs. [18, 86]). The equations
of motion, therefore, take the form

φ̈+ 3Hφ̇ = −2
dV

dφ∗ − λ1|χ|2φ− λ2φ
∗χ2, (5.6)

χ̈+ 3Hχ̇+ Γχ̇ = −(µ2 + λ1|φ|2)χ− λ2χ
∗φ2 , (5.7)

with Γ ≡ g2mχ/(8π). In this context g2 is assumed to be the sum of the squares
of the various coupling constants of the fermionic interactions of χ and mχ ≡
(µ2

χ + λ1|φ|2)1/2 is its effective mass.
As the decay of a χ particle to fermions transfers its lepton number to this

sector, this damping factor also appears in the conservation law of the leptonic
charge, and Eq. (5.5) takes the more general from

d

dt
(Aφ + Aχ) + ΓAχ = 0 . (5.8)

On a qualitative level the dynamics of a typical baryogenesis scenario in this
setting can then take the following form. We assume that both initial field values
are of the order of the Hubble scale at the end of inflation HInf. Since the scalar
mixing terms are in this case typically also of the order of the Hubble scale, order-
of-magnitude considerations imply that the system will not be over-damped and
that the phase space velocities will increase, thereby creating a lepton asymmetry
in both scalar condensates. Since the typical quintessence behavior of φ will lead
to a rapid increase of its VEV, the effective mass of χ will also start to grow, and
with it its decay rate Γ. Thus, the corresponding condensate will subsequently
decay due to the fermionic couplings around the time Γ ≈ H . As we already
discussed, these decays will then transfer the lepton asymmetry of the χ-field
to the fermionic sector, where it will be partially transformed into a baryon
asymmetry via B − L conserving sphaleron processes (cf. section 4.3).

Later on, the VEV of φ will typically be in the Planck range and therefore
also the mass of the χ field. This leads to an effective decoupling of the dark
energy sector and the SM, and the asymmetries will not be able to cancel each
other. According to Eq. (5.8), the final B − L number per comoving volume in
the fermionic sector will then be given by

Aferm ≡ −Aφ|t→∞ =

∫ ∞

0

dtΓAχ . (5.9)
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In addition to the presented qualitative treatment, a quantitative approach
based on numerical and analytical studies of Eqs. (5.6) and (5.7) has been per-
formed in Ref. [119]. This approach supports the considerations of this section
and finds it easy to generate a baryon asymmetry of the observed order of mag-
nitude.

5.2 Fermionic Couplings

So far, we have not specified the ways in which one can couple the χ field to the
fermionic sector. In fact, finding appropriate couplings is a more subtle task than
one might naively expect, and we will need to make some additional assumptions
in this context.

Since the mass of the χ field is more or less given by the VEV of φ, which is
in the Planck range, the difficulties in finding appropriate couplings do not come
from direct experimental bounds. Yet, the fact that χ is a gauge singlet does not
leave much room for appropriate couplings, since direct couplings to SM particles
with lepton number (e.g. left-handed neutrinos ν) of the form

g′νTL ǫ νL χ+ h.c. , (5.10)

would break the SM gauge symmetry and therefore seem unattractive (even
though they might in principle be able to do the job).

Therefore, it seems better to couple the χ-field to the right-handed neutrinos
NR, which are SM gauge singlets. This could be realized by a term of the form

gNT
RǫNR χ+ h.c. . (5.11)

However, since our model is B − L conserving it does not allow for a see-saw
scenario (cf. section 3.4) and the light neutrino masses therefore require tiny
Yukawa couplings. This, in turn, would prevent a transfer of the asymmetry
in the right-handed neutrino sector to the SM particles before the sphaleron
processes freeze out (cf. Ref. [77]). Therefore, one needs to find some other way
to transfer the asymmetry from the right-handed neutrino sector to the SM, in
this case. One way that seems suitable for this task makes use of an additional
scalar field S, that has the same quantum numbers as the SM Higgs, a quadratic
potential, and mass mS in the range HInf ≫ mS ≥ O(TeV). In this case, one can
allow for a coupling term of the form

g′Sc†N †
RℓL + h.c. , (5.12)

and if S starts with a VEV around the size of HInf, this value will remain frozen
in, until H ∼ mS. Therefore, the VEV could catalyze a left-right equilibration
of the asymmetry at early times. Later on the field S would start to oscillate
in its potential and decay into leptons. At this time, the energy density due to
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the S-field is typically around m2
SH

2
Inf, which is much smaller than the energy

density of the universe at this time, which is around m2
SM

2
Pl. Therefore, the

entropy produced by the decay of the condensate can be neglected.

5.3 Concluding Remarks

With respect to our discussion from the previous sections and the more quan-
titative results from Ref. [119], one can therefore say that the presented model
is indeed capable of producing the observed baryon asymmetry of our universe,
and that the latter quantity might thus be related to the charge of a dark energy
field.

For completeness, we note that the dynamics of the system have also been
checked for instabilities in Ref. [119]. In particular in the context of Q-balls [121],
this is a crucial test for any model that features a complex dark energy field, and
it is therefore vital for the considered scenario that these instabilities were found
to be under control within a linearized treatment.

Nevertheless, to render the model more realistic, future research needs to
address some of its open points. In particular, the sizes of the different initial
VEVs are crucial in this model and wait for a deeper motivation. Furthermore,
on a conceptual level it would also be desirable if the new scalar sector could be
embedded in a more natural framework.
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Chapter 6

Single Right-Handed Neutrino
Dominance in Five Dimensions

As we have seen in section 3.4.1, the standard see-saw mechanism can nicely
explain the smallness of neutrino masses. If combined with the concept of single
right-handed neutrino dominance (SRND) (cf. Sec. 3.4.2) it can even explain the
mass hierarchy in the light neutrino sector and the corresponding mixing angles.
Yet, SRND also postulates a mass hierarchy in the right-handed neutrino sector as
well as certain hierarchies among the Yukawa couplings, which need to be further
motivated. Therefore it has to be considered an intermediate step towards a more
fundamental theory.

One can assume that a motivation for these hierarchies might be provided by
an appropriate family symmetry (cf. section 3.3), as it has, e.g., been done in
Ref. [37]. However, the combination of family symmetries and SRND can yield
problems for certain classes of models, since the same charges that lead to a
mass hierarchy in the right-handed sector can induce a hierarchy in the Yukawa
couplings that cancels the first one. In particular, a large family charge of a
right-handed neutrino typically induces a relatively light Majorana mass for this
particle, which would seem to make it a good candidate for the particle that
gives the leading contribution in SRND. However, the same large family charge
can also induce relatively small Yukawa couplings of this particle which exactly
cancel the first effect.

While this is not a problem of all models that try to combine family sym-
metry and SRND, it is interesting to see that affected models can be “revived”
in five dimensions due to the non-linearity of the see-saw presented in section
3.4.3. Additionally, it is of course also interesting in its own right to consider the
combination of family symmetry and SRND in such extra-dimensional models.

Based on Ref. [58], which itself is an ammendment to Ref. [122], the present
chapter is, therefore, dedicated to this topic. It considers the combination of a
U(1) family symmetry and SRND in five dimensions for a class of family charge
assignments and different natures of the five-dimensional Majorana mass term.
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The structure of this chapter will be the following. First, we will briefly adapt
the treatment from section 3.3 on family symmetries to our extra-dimensional
setting in section 6.1. This will be followed by quantitative discussions of two
classes of neutrinos mass models with different types of Majorana mass terms in
sections 6.2 and 6.3. Each presented analysis includes both general considerations
about these classes of models and explicit parameter values that yield observed
neutrino data via SRND. Afterwards, we will draw some brief conclusions in
section 6.4, while we, again, also refer to the conclusions in the final part of this
thesis for remarks in a more general context.

For related discussions of further models the reader is referred to the, already
mentioned, original references [58, 122].

6.1 Family Symmetry in 5D

As already mentioned, we will work within the setting presented in section 3.4.3.
To be applicable for this chapter’s analysis, the treatment from section 3.3 there-
fore needs to be adapted to the extra-dimensional environment. In particular,
while we still assume to have an additional family symmetry U(1)F , we now
assume it to be spontaneously broken by the VEV of a scalar field φF in the
bulk.

If φF has family charge qφF = −1, and the gauge singlets have the respective
charges qΨ

i , the Frogatt-Nielsen mechanism might then induce effective Majorana
mass terms for the singlets of the form

−1

2

(

〈φ∗
F 〉

M
3/2
5

)qΨ
c

i +qΨ
c

j

(MS
ijΨ

c
iΨj +MV

ijΨ
c
iγ5Ψj) + h.c. , (6.1)

with qΨc

i = −qΨ
i . Additionally, we made the simplifying assumption that all new

effects are suppressed by powers of M5 in this setting. We also note that the
power of the suppression scale had to be adapted with respect to the treatment
in four dimensions due to the different mass dimensions of bulk fields.

With respect to Eq. (3.48), we may also allow for Dirac mass terms of the
form

− gij√
M5

(

〈φF 〉
M

3/2
5

)qΨ
c

i +qℓj

ΨiPLH
T
(

(0, 0), (ǫℓj)
T
)T
δ(y) + h.c. , (6.2)

if the SM lepton doublets have the respective charges qℓj under the new family
symmetry.

In this context, we also define

〈φF 〉
M

3/2
5

≡ ε , (6.3)
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which will enable us to express the orders of magnitude of the various Majorana
and Dirac mass terms as powers of the perturbation parameter ε.

6.2 SRND and Vector-Like Majorana Masses

The model we consider in this section is a simple example that nicely illustrates
how potential difficulties in combining SRND and family symmetry can arise and
be circumvented in five dimensions. To keep things simple, we will make several
additional assumptions in the corresponding analysis. In the following section we
will consider a model with a scalar Majorana mass term, but otherwise identical.
There, we will not make these simplifying assumptions and the corresponding
analysis can, in this sense, be considered more general.

In the present model, we assume the nature of the Majorana mass terms in
Eq. (6.1) to be vector-like (i.e. MS = 0) and assign the U(1)F charges

Ψc
1 : r , Ψc

2 : s , Ψc
3 : 0 ,

ℓ1 : v , ℓ2 : w , ℓ3 : w ,
(6.4)

to the respective particles, while we additionally assume r > s > 0 and v > w.
Combining this with our discussion in section 6.1, we see that the Frogatt-

Nielsen mechanism might generate a vector-like Majorana mass matrix M for the
SM gauge singlets with entries of the order

M ≈MΨ





ε2r εr+s εr

· ε2s εs

· · 1



 . (6.5)

Typically, the eigenvalues of this matrix are given by M1 ≈MΨε
2r, M2 ≈MΨε

2s,
M3 ≈ MΨ, and it can be diagonalized by a unitary matrix U , which has entries
of the order

U ≈





1 εr−s εr

εr−s 1 εs

εr εs 1



 . (6.6)

For the corresponding Dirac mass matrix mD, we can expect entries of the order
(cf. Eq. (6.2))

mD ≈ 〈φ〉√
πRM5





εv+r εv+s εv

εw+r εw+s εw

εw+r εw+s εw



 , (6.7)

where φ still denotes the standard model Higgs field as in the previous chapters
and is not to be confused with the family symmetry breaking φF .

With respect to Eq. (3.62) it is also important to note that

mDU
∗ ≈ mD (6.8)
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in terms of orders of magnitude.
For simplicity, let us assume that M3 is approximately equal to an uneven

multiple of 1/(2R) to a degree, where we can neglect its contribution to Eq. (3.62).
In this case, Eq. (3.62) yields an effective Majorana mass matrix for the light
neutrinos with entries of the order

mLL ≈ 〈φ〉2ε2w

2M5

[

cot(πM1R) ε2r





εv−w

1
1



⊗ (εv−w, 1, 1)

+ cot(πM2R) ε2s





εv−w

1
1



⊗ (εv−w, 1, 1)

]

. (6.9)

This equation nicely helps to illustrate the problems of the corresponding four-
dimensional model, whose relevant features, in this context, can be reproduced by
taking R−1 to infinity. In this case, we can make the substitution cot(πMiR) →
(πMiR)−1, from which one can see that the different pre-factors (ε2r and ε2s) in
Eq. (6.9) will be exactly canceled by the hierarchy of the different eigenvalues of
the Majorana mass matrix in Eq. (6.5). The same would also be true for the term
that corresponds to M3 in this case. In spite of the desired hierarchy in the heavy
sector, the corresponding four-dimensional model does, therefore, not naturally
yield SRND.

Yet, things are obviously different in five dimensions: if we are in a regime in
which at least M2 is comparable to R−1, the two remaining contributions from
the Majorana mass terms are typically not of the same order of magnitude, but
are related by the relative factor

α ≡ ε−2(r−s) cot(πM2R)

cot(πM1R)
, (6.10)

which makes SRND easily realizable in this setting.
Even though we have so far only considered orders of magnitude, we can gain

a lot of information from Eq. (6.9), as we will see in the following.
Since α can be considered as a measure for the deviation from rank one of the

effective light neutrino mass matrix, it also gives an estimate for the ratio of the
two heavier of the light neutrino masses, i.e. m2/m3 ∼ α (if α < 1).

Further, we can see that the eigenvector that corresponds to the heaviest of
the eigenvalues will have entries of the relative ratios εv−w : 1 : 1, in terms of
orders of magnitude, which is exactly what we need to create a large 23-mixing
and a tiny 13-mixing (cf. section 3.4.2). Unfortunately, we can also see that it
will require some tuning to create a large 12-mixing, since the second eigenvector
will typically also have entries of the relative ratios εv−w : 1 : 1, while a large
12-mixing requires an approximate equality of the first entry and the difference
of the two other ones, as we saw in section 3.4.2.
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Yet, to explicitely derive the observed values for neutrino mixing angles and
masses, we need to rewrite Eq. (6.9) in terms of explicit matrix entries. Let us
therefore write

mLL = ε2(w+r) 〈φ〉2
2M5

cot(πM1R)

×









a2δ2 abδ acδ
abδ b2 bc
acδ bc c2



+ α





e2δ2 efδ egδ
efδ f 2 fg
egδ fg g2







 . (6.11)

According to our previous treatment we will assume that the parameters de-
noted by Latin letters (a, b, c, e, f, and g) are of order one, while we will treat
the parameters denoted by Greek letters (δ ≡ εv−wand α) as small perturbation
parameters.1

In Ref. [58], we also present the results of an approximate diagonalization of
this matrix. These approximate formulae indeed confirm that the relative ratio of
the two heavier eigenvalues is given by α. Unfortunately, they also confirm that
the ratios of the entries of the second eigenvector are of the order εv−w : 1 : 1,
which implies some tuning to find a large 12-mixing as we also discussed earlier.
Nevertheless, these formulae can be used to find suitable parameter values in
Eq. (6.11), as we also discuss there.

Here, we will restrict ourselves to the presentation of such a parameter set,
that yields a mass hierarchy and mixings for the light neutrinos within the bounds
of Eq. (3.32), namely

a = 0.5 , b = 1 , c = 1 , e = 3.2 , f = 1 , g = −0.5 , δ = 0.2 , α = 0.3 , (6.12)

which leads to the neutrino parameters

tan(θ23) ≈ 1.17 , tan(θ13) ≈ 0.12 , tan(θ12) ≈ 0.57 , m2/m3 ≈ 0.21 , (6.13)

One can see that these values indeed agree with the data from Eq. (3.32).
Additionally, as we treat M5 as a free parameter, and we can always fix it in

a way that leads to the required absolute mass scale for the light neutrinos.

6.3 SRND and Scalar-Like Majorana Masses

The model from the previous section can also be considered with a scalar-like
mass term in Eq. (6.1) and MV = 0, which seems more attractive from a Lorentz
symmetry point of view. We will see that it is also easy to a a SRND in this case.

1The assumption that α is small also implies that M2 is close to an uneven multiple of
1/(2R). However, if this was not the case, it would typically only lead to the fact that the
contribution of M2 would become the dominant one without changing much of the following
results after a corresponding relabeling of the parameters.
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Further, the simpler behavior of the hyperbolic cotangent function in Eq. (3.61)
allows for an analysis that is, in some sense, more general without a greater
extension of our previous analysis.

In fact, the treatment from the previous section remains valid up to Eq. (6.8).
However, we now need to make use of Eq. (3.61), instead of Eq. (3.62), to deter-
mine the effective light neutrino mass matrix and therefore find

mLL ≈ v2

2M5

[

coth(πM1R)ε2(w+r)





εv−w

1
1



⊗ (εv−w, 1, 1)

+ coth(πM2R)ε2(w+s)





εv−w

1
1



⊗ (εv−w, 1, 1)

+ coth(πM3R)ε2w





εv−w

1
1



⊗ (εv−w, 1, 1)

]

. (6.14)

At this point we note that it seems only natural to assume that the scale of
the right-handed neutrino masses and the compactification scale are in general
of different orders of magnitude, and we will, therefore, assume R−1 ≪ Mi in
this section. In this case all the hyperbolic cotangent functions turn to one, and
we immediately find a hierarchy among the various contributions to the light
neutrino mass matrix. In particular, the ratios between these contributions will
be of the relative orders 1 : ε2s : ε2r, thereby naturally leading to SRND.

For large enough r we can typically neglect the smallest of the three contri-
butions in Eq. (6.14), which implies a treatment that is similar to the one from
section 6.2. However, the important difference, here, is that the ratio of the re-
maining two contributions is now not a free parameter, but approximately given
by ε2s. Thus, if we assign the parameters a, b, c, e, f, g, α and δ in the manner of
Eq. (6.11), α and δ are not completely independent anymore.

Yet, it is still not particularly hard to find suitable parameter values. All one
needs to do is to fix ε, s, and v − w in such a way that the parameters α and
δ from Eq. (6.12) are approximately reproduced. An example for such a case is
given by ε = 0.58, s = 1, v − w = 3, which yields α ≈ 0.34, δ ≈ 0.20 and

tan(θ23) ≈ 1.20 , tan(θ13) ≈ 0.12 , tan(θ12) ≈ 0.55 , m2/m3 ≈ 0.23 , (6.15)

if we do not change the other parameters from Eq. (6.12). Again, these values
nicely agree with the data in Eq. (3.32).

In Ref. [58] we additionally considered the (supposedly) less natural option
M3R ≤ 1, which typically leads to M1,M2 ≪ R−1. Here, we only note that
the first two contributions to the light neutrino masses in Eq. (6.14) are typically
suppressed with the same strength in this case, which leads to a more complicated
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light neutrino mass matrix due to the increased number of relevant parameters.
Nevertheless, this increase only enlarges the number of suitable parameter sets,
and it is therefore still easy to realize SRND in this regime, as we also show in
the above reference.

6.4 Concluding Remarks

From the analysis in the previous section we can see that the extra-dimensional
setting of the models can indeed help to realize SRND scenarios rather naturally.
In particular, the hierarchy among different contributions to the light neutrino
mass matrix can be easily implemented in this framework. Moreover, the pre-
sented family charge assignments can also nicely motivate the smallness of θ13.

Yet, our analysis also shows that the presented models generically require
some tuning in order to find a large 12-mixing. It would therefore be desirable, if
the corresponding parameter relations could be ascribed to some deeper principle.
On more general grounds, the model would also benefit from a further motivation
for the specific family charges and for the size of the suppression scale M5, that
is related to the absolute mass scale of the light neutrinos (see also Ref. [123] for
recent progress in the latter context).

Hence, there are several conceptual challenges for this model, which will hope-
fully find a solution in the future. Nevertheless, even without these further moti-
vations, the considered models show attractive features and help to illustrate the
tremendous possible impact of extra-dimensions for phenomenology and model
building.
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Chapter 7

Leptogenesis With Many
Neutrinos

As we have seen in section 4.5 leptogenesis is a very attractive explanation for the
baryon asymmetry of our universe, that owes its popularity mainly to the fact
that it can be realized within the standard see-saw scenario and does therefore
not require any extensions of the SM, other than right-handed neutrinos.

Yet, we have also seen that leptogenesis in its simplest version is only marginal-
ly compatible with supergravity, due to its constraints on the reheating tempera-
ture. This fact has cost leptogenesis some of its popularity and makes it obviously
desirable to find leptogenesis models in which the corresponding bounds get re-
laxed with respect to the standard case.

As we also mentioned in section 4.5, previous approaches in this direction
typically included non-thermal production of right-handed neutrinos or the in-
crease of the average CP-violation per decay of a right-handed neutrino through
the interference with another right-handed neutrino of comparable mass.

Based on Ref. [124], this section presents a different approach to the problem
by considering leptogenesis scenarios with many right-handed neutrino singlets,
which is, in particular, motivated by the fact that many singlets can naturally ap-
pear in extra-dimensional and string models (cf. section 3.4.3 and Refs. [125,126],
respectively). While non-thermal or resonance effects might also be incorporated
in the respective scenarios, we will show that the presence of many right-handed
neutrinos can already lower the standard bounds for thermal leptogenesis signif-
icantly, without these effects.

The structure of this chapter is the following: after presenting the basic equa-
tions of the setup in section 7.1, we will separately consider the possible impact
of many right-handed neutrino states on strong and weak wash-out scenarios in
sections 7.2 to 7.4. Thereafter, we will discuss the corresponding alteration of
the bounds for standard thermal leptogenesis, which includes discussions on the
Davidson-Ibarra bound, the lower bound for the reheating temperature, as well
as the upper mass bound for light neutrinos, in section 7.5. In section 7.6, we will
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then apply our analysis to an explicit extra-dimensional model, which naturally
yields many singlets to further motivate our approach. We will close this chapter
with several concluding remarks in section 7.7, again also referring the reader
to the conclusions at the end of this this thesis for remarks in a more general
context.

As in our treatment of standard thermal leptogenesis in section 4.5, there
are some more subtle points, whose treatment is beyond the scope of the pre-
sented work. For further comments on these topics we refer the reader to the
corresponding discussions in section 4.5.5 and Ref. [124].

7.1 Basic Equations

Due to the additional right-handed neutrino states the relevant equations for lep-
togenesis from section 4.5 need some adjustment to be applicable for our treat-
ment. Therefore, we present the adapted equations in the following.

Not surprisingly, the Lagrangian of the neutrino sector still looks like the one
in Eq. (4.7) in our new setting, namely

L = −1

2
MiN

cT
Ri ǫN

c
Ri − gijN

cT
Ri φ

c†ǫℓj + h.c. . (7.1)

Yet, the index i is now running from 1 to nN (the number of right-handed neutrino
states) instead of from 1 to 3, as it does in the standard case.

As long as our perturbative treatment remains valid, the change of the range
of the index j in Fig. 3.1 is also the only thing that needs to be modified, when
we consider the see-saw mechanism. Therefore, the effective light neutrino mass
matrix is still given by

mν,ik = gTijM
−1
j gjk〈φ〉2 , (7.2)

with the difference that g is now a nN × 3-dimensional matrix.
In this context, we also remark that, due to the increased number of cor-

responding diagrams, the Yukawa couplings can now be smaller than in the
standard case, if the mass scale of the right-handed neutrinos is not changed
(cf. Ref. [126] for a related argument). This in turn implies that the weak wash-
out regime can become more natural in models with many singlets.

Generalizing Eq. (4.8), we further define

εi =
Γ(Ni → ℓL + φ) − Γ(Ni → ℓ̄L + φ∗)

Γ(Ni → ℓL + φ) + Γ(Ni → ℓ̄L + φ∗)
(7.3)

as the average CP asymmetry per decay of the respective singlet.
Moreover, the Boltzmann equations from section 4.5.1 are now also easily

generalized to

dNNn

dz
= − 1

Hz
(ΓD,n + Γ∆L=1,n) (NNn −N eq

Nn
) , (7.4)
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and

dNB−L
dz

= − 1

Hz

neff
∑

n=1

[

εn(ΓD,n + Γ∆L=1,n) (NNn −N eq
Nn

) + ΓW,nNB−L
]

. (7.5)

Here, neff is the number of right-handed neutrino states that actively participate
in the leptogenesis scenario, i.e. the number of states whose masses are around the
scale of the reheating temperature or lower. The reaction rates ΓD,n, Γ∆L=1,n, and
ΓW,n can be calculated as in the standard case, with the corresponding interchange
of masses and coupling constants as discussed in appendix C.

7.2 The Strong Wash-Out Scenario

Let us first consider leptogenesis with many singlets in the strong wash-out
regime, i.e. Ki ≫ 1, where Ki denotes the straight-forward generalization of
Eq. (4.14). In this case, it is sufficient to consider the lightest of these states and
the ones with comparable masses, as the corresponding particles will wash-out
any asymmetry produced by earlier decays.1 We will therefore discuss the case
of neff quasi-degenerate right-handed neutrinos, here.

Starting from our considerations in section 4.5.3, it is easy to see that the
additional states will have two competing effects on the scenario. The first one is
the increase of the number of decaying neutrinos, which would result in an increase
of the the total amount of the produced B − L asymmetry, if this was the only
change. However, the total wash-out rate will also increase due to the sum in
Eq. (7.5), which in turn implies that the time after which a produced asymmetry
is not washed-out will be shifted to a later point. Obviously, this second effect
would lead to a reduction of the final B − L asymmetry and therefore might
cancel the first one.

To find out which of these effects will be the dominating one, let us make
some approximations in the manner of section 4.5.3. Now, the averaged wash-out
rate will be (cf. Eq. (4.26))

ΓW ≈
neff
∑

i=1

(

1

2
· 1

8π
(gg†)iiMi +

|gtop|2
π3

(gg†)ii T

)

z
3/2
i e−zi , (7.6)

with zi ≡Mi/T .
Hence, the freeze-out“time”of wash-out processes z∗ is defined by the equation

z5/2
∗ e−z∗ ≈

(

neff
∑

i=1

Ki

)−1

, (7.7)

1This argument is only valid in the one-flavor treatment see Ref. [127] for additional effects
in the flavored case.
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in this case.
As we are in the strong wash-out regime, the number density of each species of

right-handed neutrinos at this time will still be simply given by the corresponding
equilibrium value. Therefore, we find

Ni(z∗) =
1

2z∗

1
∑

Ki
≈ 0.05
∑

Ki
, (7.8)

for the corresponding value, which leads to the approximate final B − L asym-
metry per photon

NB−L(z = ∞) ≈ −
∑

εiNi(z∗) ≈ −0.05

∑

εi
∑

Ki
. (7.9)

Since we assumed that all the particles are in the strong wash-out regime, this
expression is maximized by the conditions Ki = Min({Kj, 1 ≤ j ≤ neff}) and
εi = Max({εj, 1 ≤ j ≤ neff}) for all i, which would make the different particle
states identical within our treatment. However, as long as the CP asymmetry is
not increased with respect to the standard case, Eq. (7.9) shows that the final
asymmetry would (at best) not be reduced, since we would get a factor of neff

in the numerator and the denominator of Eq. (7.9). In fact, a closer look at
Eq. (7.8) shows that even in the extreme case considered above the asymmetry
will be slightly reduced compared to the one-particle case due to the factor z−1

∗ ,
which also tends to smaller values, now.

Thus, at least in the case εi ≤ ε1 the presence of many right-handed neutrinos
will not be able to increase the final asymmetry in a strong wash-out scenario.

A numerical example that verifies these considerations is shown in figure 7.1,
where we consider the scenario from section 4.5.3 with 10 identical neutrinos.

7.3 The Weak Wash-Out Scenario I

As we have seen in the previous section, the presence of many heavy neutrinos
could not alter the bounds for thermal leptogenesis in the strong wash-out regime
with respect to the corresponding standard case (excluding possible effects on
the CP-asymmetry). This was due to the competing effects of the singlets on
particle number and the wash-out rate. In the weak wash-out regime, however,
the wash-out processes were the crucial ingredients that prevented the complete
cancellation of the asymmetries from the production and the decays of the singlets
(cf. section 4.5.2). This is quite exciting, since the effects of many right-handed
neutrinos on particle density and wash-out rate would therefore not mainly cancel
each other in this case, but would both amplify the final asymmetry.

To test this statement, let us be more quantitative and consider the case where
all our decaying particles are in the weak wash-out regime, i.e. Ki ≪ 1. For
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Figure 7.1: This figure shows the numerical solutions for a scenario with 10 decaying singlets,
which is in all other aspects identical to the setup in in figure 4.4. The green/dashed line shows
the equilibrium abundance per comoving volume of one of the particle species Neq

Ni
, the red/solid

line shows the its actual abundance as calculated from the Boltzmann equations NNi
, and the

blue/dotted line shows the absolute amount of the corresponding B −L asymmetry in the same
volume |NB−L|. For the final value of the latter quantity we find 1.2 · 10−12 and therefore a
slightly smaller value than in the corresponding one-particle scenario, which agrees with our
considerations in the text.

simplicity, we will additionally assume that all decaying states are approximately
of the same mass as we did in section 7.2.

If the reheating temperature is of the order of the singlet masses or higher, we
can then use Eq. (4.20) to estimate the particle abundance of each singlet state
via

NNi(z ≈ 1) ≈
(ΓD,i + Γ∆L=1,i)N

eq
Ni

H(z = 1)
≈ Ki . (7.10)

Moreover, since the wash-out rate is the sum over the rates of all possible inverse
decays and ∆L = 1-scatterings (with appropriate pre-factors), we can write

ΓW ≈
neff
∑

i=1

1

2
ΓID,i +

2

3
Γ∆L=1,i ≈

neff
∑

i=1

ΓD,i , (7.11)

for T & Mi.
Similarly to the same manner in which we reached Eq. (4.24), we can therefore

estimate the B − L asymmetry around z = 1 by

NB−L(z = 1) ≈
neff
∑

i=1

εiNNi(z ≈ 1) exp

(

− ΓW
H(z = 1)

)

(7.12)

≈
(

∑

εiKi

)

exp
(

−
∑

Ki

)

, (7.13)
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with the important difference that we are generally not allowed to linearize the
exponential function around zero this time. This is due to the fact the sum over
the Ki can be now bigger than one, even though each Ki is much smaller.

As the decays of the thermally produced particles yield an asymmetry of the
size −

∑

εiNNi(z ≈ 1) (cf. sec.4.5.2), the sum of the B − L asymmetries from
production and decay therefore reads

NB−L(z → ∞) ≈
(

∑

εiKi

) [

exp
(

−
∑

Ki

)

− 1
]

. (7.14)

While this yields

NB−L(z → ∞) ≈ −
(

∑

εiKi

)(

∑

Ki

)

, (7.15)

if
∑

Ki ≪ 1, we can approximate

NB−L(z → ∞) ≈ −
∑

εiKi , (7.16)

if
∑

Ki > 1.

In the context of the latter equation, we note that the phrase “weak wash-
out” might be confusing, here, since the combined wash-out processes are in
equilibrium around z ≈ 1, in this case. However, as the combined processes will
typically still be frozen out by the time the singlets decay, we will keep referring
to this scenario as a weak wash-out scenario.

From Eqs. (7.15) and (7.16) it is now evident that many right-handed neutri-
nos can indeed easily increase the final B − L asymmetry in the weak wash-out
regime. In particular, in the case of similar masses and couplings, the asymmetry
increases proportional to n2

eff for smaller neff and has a linear dependence on neff

as soon as the condition
∑

Ki > 1 is fulfilled. This is also illustrated by the
numerical solutions shown in figure 7.2.

Yet, we already stress, that the treatment from this section is only valid,
as long as the energy density of the right-handed neutrinos does not become
comparable to the background energy density that governs the expansion of the
universe. Once these energies become comparable, the analysis becomes more
complex, and we will consider this case in section 7.4. In the present context,
it is sufficient to remark that our present treatment remains sensible as long the
number of actively participating singlet states neff obeys the rough upper bound

neff .
90√
K
, (7.17)

as we show in Ref. [124].
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Figure 7.2: These two graphs illustrate the numerical solutions of two weak wash-out scenarios
with many singlets. Except for the increased number of singlet states (10 in the first graph, 100
in the second), we used the same parameter values as in the setup considered in figure 4.3. As
in earlier figures, the red/solid line shows the abundance of particles of one singlet species in
a comoving volume containing one photon NNi

, whereas the green/dashed line illustrates the
abundance of the corresponding equilibrium value Neq

Ni
. The blue/dotted line still represents

the absolute amount of the corresponding B − L asymmetry |NB−L|. For the first scenario we
found a final value of |NB−L(t → ∞)| = 1.0 · 10−11, which is by a factor of 102 larger than the
corresponding one-particle scenario, as suggested by our approximative approach in Eq. (7.15).
In the second scenario the wash-out processes are in equilibrium around z = 1 and the final
asymmetry was found to be |NB−L(t → ∞)| = 7.2 · 10−10. This also matches roughly our
corresponding estimation in Eq. (7.16).

7.3.1 Weak and Strong Wash-Out

As we have seen, the increase of the wash-out rate at early times can have a large
impact on leptogenesis in the weak wash-out regime. In the previous section, this
was achieved via the addition of many weak wash-out states. However, in the
case of less singlet states in the weak wash-our regime, this can also be achieved
by the addition of a few states in the strong wash-out regime. These states can
also wash-out the asymmetry produced during the creation of the weakly coupled
particles and thereby prevent a cancellation of asymmetries, when these particles
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decay again. In fact, one strong wash-out state can do the job of hundreds of
weak wash-out states in this context.

To formulate this more quantitatively, let us also consider the case, where
parts of our set of thermally excited right-handed neutrinos have Ki ≪ 1 and
others Ki ≫ 1. We will refer to the corresponding numbers of particle species
neff,w and neff,s and further assume that all of these particles are within the same
mass range.

Combining our above considerations with our estimates from the previous
sections, we can now approximate the final asymmetry by

NB−L(z = ∞) ≈ −0.05

∑neff,s

i=1 εi
∑neff,s

i=1 Ki

−
neff,w
∑

i=1

εiKi , (7.18)

where the sums in the two terms obviously run over different particle species.
We note again that, due to the wash-out of the strongly coupled particles, the
asymmetry produced by the decays of the weakly coupled singlets is not canceled,
here.

In figure 7.3 we give a numerically calculated example for one strongly coupled
and ten weakly coupled particles, which nicely agrees with this estimate.

7.4 The Weak Wash-Out Scenario II

In section 7.3, we have seen that one can indeed increase the final baryon asymme-
try of leptogenesis scenarios by increasing the number of right-handed neutrinos.
However, the approximative formulae in Eqs. (7.16) and (7.18) correspond to the
Boltzmann equations (7.4) and (7.5) and are therefore only valid in a universe
which is dominated by background radiation, and where the energy loss of this
background due to the production of the singlet states can be neglected. As we
already mentioned in section 7.3, this is ensured as long as neff . 90/K1/2.

Yet, once we start to consider larger numbers of singlets, we have to include the
dynamics of the universe into our system of differential equations (cf. section 1.2).
Additionally, once the energy density stored in the singlets becomes comparable
to the background energy density, we can no longer neglect the fact that a further
production of singlets reduces the latter quantity. Otherwise, we would be able
to produce an infinite number of massive singlets from a finite energy, which is
obviously not possible.

As already mentioned, we can therefore no longer use Eqs. (7.4) and (7.5)
to describe the dynamics of our model in this case. Nevertheless, we are still
interested if the final B − L asymmetry can get further increased in this regime,
and for our numerics we will therefore make use of the more complex system of



7.4 The Weak Wash-Out Scenario II 89

1 2
log10HzL

100

10-2

10-4

10-6

10-8

10-10

10-12

10-14

Ni

1 2
log10HzL

100

10-2

10-4

10-6

10-8

10-10

10-12

10-14

Ni

Figure 7.3: This figure illustrates the numerical results of a leptogenesis scenario with one
strongly coupled right-handed neutrino (K = 102) and ten weakly coupled ones (K = 10−2).
All the other parameter values were chosen as in the previously considered numerical examples.
Once again, the green/dashed line shows the thermal equilibrium abundance of each of the species
in a comoving volume containing one photon Neq

Ni
. The corresponding actual abundances NNi

are illustrated by the red/solid lines, whereas the absolute amount of the B − L asymmetry in
the same volume |NB−L| is shown by the blue/dotted line and takes the final value 1.3 · 10−10.
We see, that the strongly coupled singlet closely follows the equilibrium value and washes out the
B − L asymmetry produced during the population of the weakly coupled states. At later times
the latter particles decay and the main part of the final asymmetry is produced.

differential equations

dNNn

dt′
= − 1

H0
(ΓD,n + Γ∆L=1,n) (NNn −N eq

Nn
) , (7.19)

dNB−L
dt′

= − 1

H0

neff
∑

n=1

[

εn(ΓD,n +Γ∆L=1,n) (NNn −N eq
Nn

) +ΓW,nNB−L
]

,(7.20)

d(ργa
3)

dt′
= −(ργa

3)
H(t′)

H0
−
∑ d(NNn)

dt′
〈En〉 , (7.21)

da

dt′
=

H(t′)

H0
a(t′) , (7.22)

where t′ ≡ tH0 is the time measured in units of H0 ≡ 1.66g
1/2
∗ M2

1 /MPl, and a
now represents a comoving length scale, where the volume a3 contains one photon
at early times (of course, the number of photons in this volume can now change
with time due to the production and decay of the singlets). Further, NNn is the
abundance of particles of the species Nn in the same comoving volume, and NB−L
is the corresponding value for the B − L asymmetry.
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Additionally, we also make use of the relations

H(t′) =

√

8π

3

1

MPl

√

π2

30
g∗T 4 +

∑ NNn

R3
〈En〉 , (7.23)

〈En〉 = 3T +Mn
K1(Mn/T )

K2(Mn/T )
, (7.24)

T =

(

30

π2
g−1
∗ ργ

)
1
4

, (7.25)

where 〈En〉 is the mean energy [2] of the species Nn, which is assumed to be in
kinetic equilibrium and described and Maxwell-Boltzmann distribution.2

In addition to a numerical treatment of these quite complex equations, we can
again make some approximations in the manner of the previous sections, that can
help us to estimate the final lepton asymmetry of the corresponding scenarios.
We therefor note that it makes limited sense to consider values of neff beyond
the point where the energy density stored in the right-handed neutrinos becomes
comparable to the energy density of the radiative background, if we are mainly
interested in maximizing the final B−L asymmetry. This is due to the fact that
there will not be enough energy left to significantly increase the number density
of the right-handed neutrinos if neff is increased further. In fact, for larger values
of neff the radiation energy might even be transferred to the singlet sector so
quickly that there will not be enough time for the wash-out processes to prevent
the cancellation of the asymmetries which have been produced during creation
and decay of the singlets. If this was the case, it would most likely lead to a
decrease of the final asymmetry.

Hence, we restrict our considerations to scenarios, where the number of singlet
states does not surpass the value discussed in the previous section. This condition
can be quantified by the relation ρN (T ≈ M1) . ργ(T ≈ M1), which in turn
implies

neffKM
4
1 .

π2

30
g∗M

4
1 , (7.26)

if all significantly abundant singlet states have masses around M1.

If this condition is fulfilled, the corresponding number density of each singlet
state per photon around T ≈M1 is still given by Eq. (7.10). Moreover, with the
help of Eqs. (1.5) and (7.10) we can also estimate the absolute particle number

2Since the singlets are only weakly coupled to the SM lepton doublets and have no further
interactions, the assumption of kinetic equilibrium is only considered as an approximation in
this context.
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density of each state at the time of its decay to be

nN(t = Γ−1) = nN(z = 1)

(

a(z = 1)

a(t = Γ−1)

)3

, (7.27)

≈ neffK

(

2
ξ(3)

π2
M3

1

)(

3

2
K−1

)−2

, (7.28)

≈ 0.1 · neffK
3M3

1 . (7.29)

We further note that, just before these particles decay, they will be the dominant
component of the energy density. Therefore, we cannot neglect the photons pro-
duced by these decays, if we want to determine the final baryon-to-photon ratio.
From the energy density of the singlets

ρN ≈M1nN , (7.30)

we therefore approximate the entropy density after their decay by [1]

s ≈ 4

3
g1/4
∗ ρ3/4 . (7.31)

Together with Eq. (1.16) we can, then, approximate the number density of pho-
tons after the singlets decay by

nγ(t = Γ−1) ≈ 2
ξ(3)

π2

45

2π2g∗
s ≈ 0.4 · 10−2 n

3
4

eff K
9
4 M3

1 . (7.32)

Hence, our estimate for the maximal final value of the B − L asymmetry per
photon (at early times) reads

nB−L
nγ

≈ −ε1
nN(t = Γ−1)

nγ(t = Γ−1)
≈ −ε1 25n

1
4

effK
3
4 . (7.33)

We see that the linear dependence of the B − L asymmetry on neff from the
previous section does no longer hold, once the singlets become the dominant
energy source in the universe. In additional, we remind the reader, that this

dependence one n
1
4

eff is also only valid as long as neff remains within the bounds
of Eq. (7.26).

A numerical solution using Eqs. (7.19)-(7.25) for this scenario is also shown
in Fig. 7.4, which roughly matches our approximation from Eq. (7.33).

7.5 Parameter Bounds

In this section, we want to briefly discuss the possible impact of many right-
handed neutrinos on the bounds presented in section 4.5. We will therefore first
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Figure 7.4: These graphs illustrate the numerically calculated dynamics of the leptogenesis
scenario in a singlet dominated universe from the text. For both graphs, the parameters K =
10−2 and neff = 3000 were used, with all other parameters as in the previously considered cases.
The upper graph shows the equilibrium abundance of the singlets (green/dashed) per photon
neq

Ni
/nγ, their corresponding actual abundance (red/solid) nNi

/nγ and the absolute amount of

the B − L asymmetry (blue/dotted) per photon |nB−L/nγ |, which is found to be 8.4 · 10−9 at
the end of the calculation. This roughly agrees with our estimate in Eq. (7.33). The time t was
chosen such that t = 0 corresponds to the singular point in the previously radiation dominated
universe. The lower graph shows the radiation energy in a comoving volume that contains one
photon at early times ργa3 (green/dotted) and the corresponding energy stored in the singlets
ρNa3(red/solid) in GeV. We therefore see on this graph that the singlets, indeed, get to dominate
the universe before their decay.

discuss their possible effect on the Davidson-Ibarra bound, which is a crucial
parameter for the bounds in the corresponding standard cases and therefore ob-
viously also important in the present discussion. Yet, already independently of
a possible relaxation of the Davidson-Ibarra bound the upper bound for the nec-
essary reheating temperature gets significantly relaxed in our setting, as we will
discuss afterwards. Subsequently, we will also consider the possible impact of the
singlets on the upper bound for the light neutrino masses in the approximative
manner of section 4.5.4.
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7.5.1 The Davidson-Ibarra Bound Revisited

The Davidson-Ibarra bound presented in Eq. (4.9) gives an upper bound for the
net CP-asymmetry per decay of the lightest of three right-handed neutrinos with
hierarchical masses. In the case of many decaying singlets it is therefore important
to know, if such an upper bound also exists for the corresponding CP-asymmetries
defined in Eq. (7.3).

However, in this context we note that in the scenarios we discussed in this
chapter, we considered the case of many singlets with quasi-degenerate masses.
Since the original Davidson-Ibarra bound is only valid for hierarchical masses,
these quasi-degenerate particles could already render this bound invalid in the
standard three-singlet scenario (cf. Refs. [100, 101]). Yet, the particles of com-
parable masses might also have similar Yukawa couplings. In this case, the CP-
asymmetries which are due to the interference of the corresponding diagrams can
become negligible, as it will be the case in the extra-dimensional scenario we
present in section 7.6. In such scenarios, the relevant CP-asymmetries come from
loop diagrams that include heavier singlets with different Yukawa couplings. In
this case, it is not so obvious what happens to the Davidson-Ibarra bound and
we will therefore discuss this in more detail, here.

We first note that, under the above assumptions, the average CP-violation
per decay of one of the right-handed neutrinos εi is still given by the interference
of the diagrams in Fig. 4.2, where only the indices need some adaption and the
number of the diagrams is increased by the larger number of singlets that can
propagate in the respective loops.3 Therefore, we can simply use Eq. (4.8) to
determine the various εi and thereby find

εi = − 3

16π

∑

k

Im
[

(gg†)2
ik

]

(gg†)ii

Mi

Mk

+ O
(

M2
i

M2
k

)

(7.34)

= − 3

16π

Mi

〈φ〉2
1

(gg†)ii
Im
[

(gm†
νg

T )ii
]

+ O
(

M2
i

M2
k

)

(7.35)

with k running from 1 to nN , now.
As we only needed to increase the range of certain indices, our analysis has

been almost identical to the three-singlet case, up to this point, and the corre-
sponding formulas therefore still look very similar. However, in the case of more
than three singlets it is, nevertheless, no further possible to derive the Davidson-
Ibarra bound from Eq. (7.35) [128]. In fact, as we show in appendix D, Eq. (7.35)
now leads to the weaker relation

|ε1| .
3

16π

M1m3

〈φ〉2 ≈ 10−7
( m3

0.05eV

)

(

M1

109GeV

)

. (7.36)

3In principle, the large number of possible diagrams in this case can invalidate the pertur-
bative approach via Feynman diagrams. However, for Yukawa couplings that yield the light
neutrino masses without delicate cancellations this is typically not the case.
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At first glance, this equation seems to match Eq. (4.10). Yet, in the latter equation
m3 is fixed around 0.05 eV. In the presence of many singlets, instead, m3 is in
general a free parameter in Eq. (7.36), and therefore the standard Davidson-Ibarra
bound can be considerably weakened.4

However, as we shall also see in section 7.6, the original Davidson-Ibarra bound
in Eq. (4.9) is still valid in many cases. This is due to the fact that the number
of free parameters for the Yukawa couplings can be reduced by symmetries. In
particular, the condition of maximal CP asymmetries for all decaying particles
from our previous considerations might further motivate such effects. Moreover,
in spite of our discussion in section 7.5.3, it is also not perfectly clear what happens
to the upper mass bound for the light neutrinos, in many-singlet scenarios. If this
upper mass bound remains comparable to the standard bound, m3 (and with it
εi) will only be allowed to increase by an approximate factor of two or three.

Therefore, we will remain conservative at this point and not consider possi-
ble CP asymmetries beyond the original Davidson-Ibarra bound in the following
subsections. Nevertheless, it should be kept in mind, that there might be possi-
bilities to further relax the following bounds due to the arguments given in this
subsection.

7.5.2 Lower Bounds for M1 and Tr

Let us now discuss the the possible impact of leptogenesis with many singlets
on the necessary reheating temperature, which is of special relevance due to the
bounds from gravitino production, we mentioned in section 4.5.4.

As we saw in the previous sections, the presence of many right-handed neutri-
nos can only help to increase the final baryon asymmetry in the weak wash-out
regime, if the Davidson-Ibarra bound is not relaxed. With respect to our discus-
sion at the end of section 7.5.1, it will thus be sufficient to consider this parameter
region, here.

Among these scenarios, we found the largest final asymmetry in the case
where neff was maximized with respect to Eq. (7.26). If we therefore combine
this equation with Eqs. (4.10),(4.13), and (7.33), we find the approximate upper
bound

ηB . 5 · 10−8
√
K
( m3

0.05eV

)

(

M1

109GeV

)

, (7.37)

for the final baryon asymmetry.

As K has to fulfill the additional condition K ≪ 1 in this relation, we can
use K ≈ 10−2 to find an approximate lower bound for the reheating temperature
around of Tr ≈M1 & 108 GeV. We further note that an increase of K by an order

4The analysis in Ref. [96] that shows the the CP-asymmetries of decays and ∆L = 1 scat-
terings are identical in the case of hierarchical heavy neutrinos is independent of the number
of singlet states. Therefore, it is sufficient to consider the decay asymmetries at this point.
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of magnitude or so, would slightly increase the result of this formula. However,
the corresponding numerics show that we would not be allowed to neglect the
wash-out processes around the corresponding decay-time anymore, in this case,
and that the corresponding final asymmetry already tends to smaller values in
the respective parameter range.

Numerically we were, nevertheless, able to push the lower bound for M1 and
Tr a little further. More precisely, we were able reproduce the observed BAU
with the parameter values K = 10−2, neff = 104 and

Tr = M1 = 6.5 · 107GeV. (7.38)

As we can see, this relaxes the corresponding lower bound in Eq. (4.33) for stan-
dard thermal leptogenesis by approximately one and a half orders of magnitude.
Even more, we note that this result was achieved using the standard Davidson-
Ibarra bound. Within the context of our discussion in section 7.5.1, an even
further relaxation of this bound might therefore actually be possible.

7.5.3 Upper Bound for Light Neutrino Masses

Let us now consider the possible impact of many singlets on the upper mass
bound for the light neutrinos in leptogenesis scenarios.

We therefore note that the corresponding analysis for the three-singlet case
in section 4.5.4 needs significant adjustment in the present case. This is due to
the fact that we cannot draw the conclusion that we are in the strong wash-
out regime from the fact that we have three degenerate light neutrinos, now. In
particular, three degenerate light neutrinos can easily be realized by a model with
three singlets which are in the strong wash-out regime and many more singlets
that are weakly coupled. In this case it might be possible that the latter ones
determine the size of the final baryon asymmetry while the strongly coupled
singlets determine the size of the light neutrino masses (cf. also section 7.3.1). In
spite of the relatively large masses for the light neutrinos within the discussion
of the corresponding upper bound, we will therefore assume to be in the weak
wash-out regime.

As we saw in section 4.5.4, the upper mass bound for light neutrinos is due to
∆L = 2 scatterings in the early universe. It is therefore important to note that
the corresponding reaction rate does not get modified in the presence of many
singlets, since the relevant Feynman diagrams are the same as the ones that yield
neutrino masses and the sum of these diagrams is therefore fixed.

As we also discussed in section 4.5.4, these ∆L = 2 scatterings need to be
frozen out at the time of the decay of the singlets. In the following we will
therefore require them to be frozen out around T = M1, which is obviously quite
conservative in the weak wash-out regime.
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Nevertheless, if we now combine Eqs. (4.37), (4.38), (4.13), and (7.33), we
find

(

m

eV

)

. 6n
1
12

eff K
1
4 , (7.39)

as a rough upper bound for the quadratic mean of the light neutrino masses.

Thus, even obeying the original Davidson-Ibarra bound, our approximations
indicate that the bound on the absolute neutrino mass scale from leptogenesis
with many singlets becomes less stringent than the corresponding bounds from
other areas (cf. section 3.2).

This is very interesting in the context of our discussion in section 7.5.1. How-
ever, so far our results come from a rather qualitative approach, and therefore
this result will need to be confirmed by a more thorough analysis.

7.6 An Extra-Dimensional Example

In this section we will present a realization of leptogenesis with many neutrinos
within a concrete model. Therefore, we will employ the extra-dimensional setting
that was introduced in section 3.4.3 and also used in the neutrino mass models
in chapter 6. Hence, we will assume that the SM particles are constrained to
a 3-brane, while three additional SM singlets can propagate in the bulk of a
compactified extra dimension. As we will see, this setting can easily provide many
quasi-degenerate neutrino singlets through Kaluza-Klein excitations of the bulk
states, which makes it a promising setting for leptogenesis with many neutrinos.

We will therefore first discuss the relevant features of this model in the context
of leptogenesis in some detail. Afterwards, we will use large parts of our previous
analysis, to describe the dynamics of the corresponding leptogenesis scenario and
to get an estimate for the lower bound for the reheating temperature in this
setting.

Further leptogenesis scenarios that also consider leptogenesis in extra-dimen-
sional settings can be found in Refs. [129–132]. Even though these scenarios also
include many right-handed states, the respective working principles are quite
different, which we discuss more thoroughly in Ref. [124].

7.6.1 The Setting

As already stated, we will work within the setting introduced in section 3.4.3.
Additionally, we will assume a scalar-like Majorana mass terms for the singlets,
which implies MV = 0 in Eq. (3.47).

As before, we can formally integrate over the extra-dimension and are after-
wards left with an effective four-dimensional theory that contains the SM particles
and a Kaluza-Klein tower of singlet modes. In the basis in which the sub-matrix
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in Eq. (3.52) is diagonal and positive, the infinite Majorana mass matrix of the
neutrino sector in Eq. (3.51) can then reads5





















0 −mT
0 · · · −imT

n,− −mT
n,+ · · ·

−m0 M · · · 0 0 · · ·
...

...
. . .

...
...

. . .

−imn,− 0 · · ·
√

M2 + n2/R2 0 · · ·
−mn,+ 0 · · · 0

√

M2 + n2/R2 · · ·
...

...
. . .

...
...

. . .





















. (7.40)

with

(m0)ij =
mD,ji√

2
and (mn,±)ji = ±mD,ij√

2

√

1 ± Mi
√

M2
i + n2/R2

(7.41)

and
(

√

M2 + n2/R2
)

ij
= δij

√

M2
i + n2/R2 . (7.42)

We see that the Kaluza-Klein tower consists of pairs of fields with degenerate
masses, in this case. We further note that many different pairs will, additionally,
have quasi-degenerate masses, if the condition MiR ≫ 1 is fulfilled. Since this
is a rather natural condition, the effective four dimensional theory can therefore
naturally yield many quasi-degenerate singlet states, as we claimed earlier.

From the matrix in Eq. (7.40), we can also infer the Yukawa couplings of the

different modes Ψ
(n)
±,i to the SM leptons. These are given by the relations

(Y0)ij ≡
(

m0

〈φ〉

)

ij

=
gij√

2πRM5

, (7.43)

(Y+,n)ij ≡
(

mn,+

〈φ〉

)

ij

= +
gij√

2πRM5

√

1 +
Mi

√

M2
i + n2/R2

, (7.44)

(Y−,n)ij ≡
(

imn,−
〈φ〉

)

ij

= −i
gij√

2πRM5

√

1 − Mi
√

M2
i + n2/R2

. (7.45)

In this context, we remark that the coupling strengths of the Ψ
(n)
+,i and Ψ

(n)
−,i modes

become similar for n≫MiR, whereas we find

(Y+,n)ij ≈ +
gij√
πRM5

(

1 − 1

8

[

n

MiR

]2
)

, (7.46)

(Y−,n)ij ≈ − gij

2
√
πRM5

n

MiR
, (7.47)

5The author would like to thank Naoyuki Haba for related, private notes on the five dimen-
sional see-saw (with vector-like masses) [133], that inspired the presented treatment.
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for 0 < n ≪ MiR, which illustrates the (later on) important effect that the

couplings of the lighter modes of Ψ
(n)
−,i can be strongly suppressed with respect to

their “partner” modes Ψ
(n)
+,i, if the condition Mi ≫ R−1 is fulfilled.

7.6.2 CP-Asymmetries

In the previous section, we have seen that our setting can naturally yield many
quasi-degenerate neutrinos, which makes this model interesting for leptogene-
sis with many neutrinos. Therefore, we will now determine the average CP-
asymmetry ε±,i per decaying singlet Ψ±,i. With the Yukawa couplings from
the previous section and our considerations from section 7.5.1, this is now fairly
straight-forward.6

Let us in the following assume M3 ≥ M2 ≫M1 ≫ R−1. Applying Eq. (7.35),
we then find

ε
(n)
±,i = − 3

16π

Mi,n

〈φ〉2
1

[(Y±,n)(Y±,n)†]ii
Im
[

(Y±,n)m
†
ν(Y±,n)

T )
]

ii
, (7.48)

with Mi,n =
√

M2
i + n2/R2, which leads to the CP asymmetries

ε
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[gg†]ii
Im
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ε
(n)
−,i =

3

16π

Mi,n

〈φ〉2
1

[gg†]ii
Im
[

(gm†
νg

T )
]

ii
= −ε(n)

+,i , (7.50)

after some further transformations.
Thus, each mode features two particle species of the same mass, that yield

exactly opposite CP-asymmetries. Further, the CP asymmetries only depend
on the five dimensional wave number n through the proportionality factor Mi,n,
which shows that the dependence of the Yukawa couplings on n does not appear
in the CP-asymmetries.

Let us also stress, that in the case M3 ≥M2 ≫M1 ≫ R−1, in which we have
many quasi-degenerate neutrinos, we do not get any resonance or higher-order
effects that further increase the various ε

(n)
±,i. Therefore, our use of Eq. (7.35) was

perfectly valid, here. The absence of these effects is in turn due to the fact that
all the quasi-degenerate particles with masses around M1 have the same Yukawa
couplings (except for a purely real or imaginary overall factor).

Furthermore, as we also show in Ref. [124], the simple relations between the
various Yukawa couplings in this model also ensure that the original Davidson-
Ibarra bound from Eq. (4.9) is still valid, here, instead of the relaxed version in
Eq. (7.36).

6Since there are cancellations between the various contributions to the see-saw in this model,
the perturbative approach using Feynman diagrams might generally encounter problems in this
setting. However, if the cut-off for our extra-dimensional theory is around the scale M5, this
problems seems to vanish.
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7.6.3 Leptogenesis

We will now consider the actual leptogenesis process in this model, still assuming
M3 ≥ M2 ≫M1 ≫ R−1 ≫ 1.

As we already noted in the context of Eq. (7.50), the various pairs Ψ±,i will
yield B − L asymmetries of the exact same size but opposite sign, when they
decay. This implies that it might be hard to find a significant net asymmetry, if
they are all strongly coupled. However, since Eqs. (7.44) and (7.45) show that the
‘+’- and ‘-’-modes couple to the SM leptons with different strengths, we will find
different abundances of the corresponding particles in the weak wash-out regime.
This can be considered as a lucky coincidence, since our previous treatment has
shown that many singlet states can only increase the final BAU in the weak
wash-out regime (if the Davidson-Ibarra bound holds).

Let us be more quantitative, now, and define the respective decoupling pa-
rameters of the different Ψ±,i by

Kn,± ≡ ΓD,n,±(T → 0)

H(T = M1)
=

[

(Y±,n)(Y±,n)
†]

11
M1,n/(8π)

1.66g∗M2
1 /MPl

=

(

1 ± M1

M1,n

)

K0 ,

(7.51)
for n ≥ 1, with a corresponding definition for K0.

Similarly, to our previous treatments, we now assume a reheating temperature
around T = M1. In this case, there are of the order of M1R quasi-degenerate
neutrinos with masses aroundM1 which will reach significant particle abundances.
Moreover, as long as M1R, and thereby neff, does not exceed the bound from
Eq. (7.26), the maximal abundances per photon of these particles will be given
by their respective decoupling parameters Kn,±, as long as we are in the weak
wash-out regime (cf. Eq. (7.10)).

Therefore, it is important to note that all the ‘+’-particles will have compa-
rable decoupling parameters Ki,+ ≈ K0, while all the relevant ‘-’-particles will
have significantly smaller decoupling parameters Ki,− < K0, as we can see from
Eq. (7.51). Thus, within a rough treatment, we can neglect the abundance of the
‘-’-particles and simply assume that we have M1R identical ‘+’-particles. In this
case, we can use Eqs. (7.16) and (7.33) to find the estimates

NB−L ≈ 10−7
( m3

0.05eV

)

(

M1

109GeV

)

(M1R)K0 , (7.52)

or
nB−L
nγ

≈ 2.5 · 10−6
( m3

0.05eV

)

(

M1

109GeV

)

(M1R)
1
4 K

3
4

0 (7.53)

for the final B − L asymmetry.
Which of these two formulae we need to apply depends on the number of

singlets and therefore on the size of M1R (cf. Eq. (7.17)). If M1RK0 is smaller
than one, we might even have to use Eq. (7.15), instead.
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Figure 7.5: This graph shows the numerical solution for M1R pairs of particles with parameter
values as described in the text. In particular, the green/dashed line represents the equilibrium
abundance of each of the particle species per photon neq

Ni
/nγ. The red/solid line shows the

corresponding value for a “+”-mode nNi,+
/nγ, while the density of the corresponding “-”-mode

nNi,−
/nγ is illustrated by the orange/dashed-dotted line. We see that the suppressed number of

“-”-mode-particles is not able to erase the asymmetry produced by the decays of the “+”-modes.
The absolute amount of the B−L density nB−L/nγ is again represented by the blue/dotted line
and reaches a final value of 7.8 · 10−8.

Further, to find the baryon asymmetry at very late times, we additionally
need to include the dilution factor from Eq. (4.13) in Eqs.(7.52) and (7.53). Once
this is done, one can see that parameters such as M1 = 2 · 108 GeV, R−1 = 105

GeV, and K0 = 10−2 in Eq. (7.53) seem to yield a baryon asymmetry of the
right order of magnitude. Within our rough treatment, we therefore see that M1

(and with it the reheating temperature) would already be one order of magnitude
below the corresponding bound from standard thermal leptogenesis, in this case.

For a numerical treatment, we note that pairs of modes with higher wave-
numbers (that still reach significant numbers) tend to contribute slightly less
to the final baryon asymmetry (cf. Ref. [124]). For a conservative numerical
estimate, we therefore simulated 2 ×M1R states that are identical to the modes
Ψ±,n=M1R in Fig. 7.5. In the corresponding analysis, we were able to produce
a final baryon asymmetry that was even slightly larger than the observed value
with R−1 = 105 GeV, K0 = 10−2, and

Tr = M1 = 2 · 108GeV, (7.54)

assuming maximal CP asymmetry.
Therefore, both approximations indicate a relaxation of the bound for the re-

heating temperature by an order of magnitude within this explicit model. More-
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over, since our corresponding assumptions seem rather conservative, this bound
might even be relaxed further within a more precise numerical calculation.

Of course, lower values for the reheating temperature seem also possible if one
considers smaller compactification scales (R−1 < 105 GeV), as this could further
increase the number of actively participating singlet states neff. However, due to
our arguments in Ref. [124], this option seems to conflict with bounds from the
production of extra-dimensional gravitons.

7.7 Concluding Remarks

Let us briefly summarize the results of this chapter.
Considering leptogenesis scenarios with many singlets, we have found that

the presence of these additional states can increase the final baryon asymmetry
with respect to the standard case and that the corresponding lower bound for
the reheating temperature can be significantly relaxed. In particular, within a
numerical treatment we were able to relax this bound by one and a half orders of
magnitude without the need for any resonance effects. Especially in the context
of gravitino bounds, leptogenesis scenarios with many singlets are therefore an
interesting option.

To implement this idea into a realistic setting, we additionally considered an
extra-dimensional model, which naturally yields many right-handed neutrinos.
Within a somewhat more approximative treatment of the corresponding lepto-
genesis scenario, our analysis still indicated a relaxation of the standard bound
for the reheating temperature by at least one order of magnitude, in this more
explicit model.

Furthermore, we also gave arguments that indicate the relaxation of the upper
mass bound for the light neutrinos from standard leptogenesis, in the presence
of additional singlets. This is especially interesting, since the Davidson-Ibarra
bound does not generally hold in the considered context but was found to be
proportional to the light neutrino mass scale. The combination of these two
effects might therefore even further relax the previously discussed bound for the
reheating temperature.

As a final remark, we also note that we have made a few simplifying as-
sumptions within our analysis and the inclusion of further effects might therefore
have additional interesting consequences. Especially, the inclusion of flavor ef-
fects might be an interesting topic in this context and leaves room for further
investigation.
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Conclusions

If nature is indeed governed by one simple underlying theory, we can expect to
find more and more connections of different areas of physics on our way towards
this unified description. In this thesis, we therefore discussed several models that
comprise such possible connections. In particular, they relate different sub-sets
of the topics baryogenesis, neutrino masses, dark energy and extra dimensions.

In view of these topics, the thesis started with reviews on selected background
material from cosmology and particle physics. Subsequently, the first model was
presented, which featured a connection between the baryon asymmetry of our
universe and its observed accelerated expansion. This was achieved through the
introduction of two new scalar fields, where one of them was the source of a
dynamical dark energy term in the Friedmann equations, while the other acted
as a mediator between this sector and the standard model particles. Within
a B − L conserving scenario, these two fields dynamically developed opposing
asymmetries at early times, followed by the decay of the mediating field and
the involved transfer of its asymmetry to the observable sector. In addition
to a discussion of the Lagrangian of this scenario and the corresponding key
dynamics, we also discussed different couplings between the mediating field and
the observable sector.

As a second possible connection of distinct areas of physics we considered a
class of models that features an interplay of extra-dimensions and family symme-
tries in order to explain the observed pattern of neutrino mass hierarchies and
mixings. Here, the alteration of the see-saw formula, due to additional Kaluza-
Klein modes of right-handed neutrinos, could help to overcome the cancellation
of hierarchies that are needed within the concept of single right-handed neutrino
dominance. We considered different natures of the extra-dimensional mass terms
and presented explicit parameter values that yielded the desired neutrino data in
each case.

The central work of this thesis was the discussion of leptogenesis with many
neutrinos, which naturally establishes a connection between the baryon asym-
metry of our universe and the masses of the light neutrinos, as all leptogenesis
scenarios do. In the corresponding analysis, we were able to use much of the
material from our introductory discussion of standard thermal leptogenesis to
illustrate the possible effects of additional heavy singlet states in the weak and
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strong wash-out regime. In particular, within a generalization of the presented
standard treatment, we illustrated that the final baryon asymmetry of weak wash-
out scenarios can be significantly enhanced without any increase of the respective
CP asymmetries. Additionally, we confirmed this result numerically and found
that the lower bound for the necessary reheating temperature in such scenarios
could be relaxed by one and a half orders of magnitude within our treatment.
Therefore, leptogenesis with many neutrinos might significantly relax the ten-
sion between leptogenesis and bounds from gravitino production in supergravity
theories.

Moreover, as the standard Davidson-Ibarra bound for the net CP asymmetry
per heavy particle decay does not generally hold in the presence of more than
three right-handed neutrinos, we also derived a new corresponding bound for our
setting, which was found to be proportional to the light neutrino mass scale.
This is in particular interesting, as we additionally gave arguments that indicate
the relaxation of the upper mass bound for the light neutrinos in scenarios with
many singlets. Therefore, the combination of these effects might yield an even
lower bound for the necessary reheating temperature in the respective scenarios,
without any need for resonance effects.

To further motivate leptogenesis with many neutrinos, we then discussed a
more explicit, extra-dimensional scenario, which operates in the same framework
as the neutrino mass models that we considered earlier. In particular, we were
able to show that the respective model can naturally yield many quasi-degenerate
singlets and is, in this aspect, an almost ideal setting for the considered type of
leptogenesis scenarios. Furthermore, we analyzed the corresponding dynamics
within rather conservative estimations and again found a significant relaxation of
the respective lower bound for the reheating temperature.

Thus, all the considered models offer attractive features and illustrate the
enormous amount of possibilities for an interplay of different areas of particle
physics and cosmology. Yet, there are, of course, also several open questions that
remain within their context, and we will therefore briefly discuss a selection of
them in the following.

In particular, in the model connecting dark energy and baryogenesis a further
motivation for the introduction of the additional scalar sector would be desirable.
However, this is already a problem in simpler quintessence models and should
therefore probably be addressed in a more general context first. Another open
point in this scenario are the initial VEVs of the different scalar fields, which
have a strong impact on the size of the final baryon asymmetry and could also
not be ascribed to a deeper principle so far.

In the context of the extra-dimensional neutrino mass model, it would be de-
sirable to further motivate the various family charges of the different generations.
Yet, this can again be seen as a problem of a larger class of models and should
probably also be addressed in a more general framework. On a similar conceptual
level, the necessary tuning of some of the Yukawa couplings in these scenarios
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likewise waits for a deeper motivation.
In addition to such conceptual questions, leptogenesis with many neutrinos

also features more concrete open issues. In particular, the indication for a relaxed
upper bound for the light neutrino masses makes a more detailed analysis of
this subject desirable. Moreover, the potential interplay of this effect and the
relaxed Davidson-Ibarra bound is an interesting topic of its own, as it might
relax the lower bound for the reheating temperature even further. Additionally,
flavor effects have also not been considered so far and might have interesting
consequences.

We therefore see that each of the considered models also offers questions for
interesting future research, and it is the hope of the author that one or more of
these will find an answer in the not too far future.
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Appendix A

Orbifolds

Here, we will briefly review some of the characteristics of orbifolds, as they were
used in the extra-dimensional models in chapters 3, 6, and 7.

A one-dimensional orbifold can be considered as a circle S1, that has been com-
pactified by a discrete symmetry condition. Namely, if the circle is parametrized
by an angle φ ǫ [−π, π], the points φ and −φ are identified. Mathematically one-
dimensional orbifolds are denoted by S1/Z2, as it is also illustrated in Fig. A.1

In field-theories such an orbifold is often parameterized by y ≡ πRφ, where
R is the radius of the corresponding circle. Further, an extra-dimensional action
that respects this orbifold symmetry can be expressed as a field theory on a circle
which is invariant under the parity transformation P5 : y → −y. Since the kinetic
term of the five-dimensional action of a fermion Ψis given by

S =

∫

d4x dyΨγα∂αΨ , (A.1)

we see that a fermionic field may not transform trivially under P5, due to the term
Ψγ5∂5Ψ, which would acquire a minus sign with respect to the other derivative
terms. This can be prevented by the transformation behavior

P5Ψi = γ5Ψi , (A.2)

which we also used in section 3.4.3.
Since, each field of the theory also has to fulfill the circular periodicity condi-

tion,
Ψ(xµ, y + 2πR) = Ψ(xµ, y) , (A.3)

we can decompose the field Ψ into Fourier modes. However, due to the different
transformation laws of the upper and the lower components of Ψ in Eq. (A.2)
they are made up of different Fourier modes, namely

Ψ(x, y) =
1√
πR







1√
2
Ψ

(0)
R (x) +

∞
∑

n=1

cos(ny/R) Ψ
(n)
R (x)

∞
∑

n=1

sin(ny/R) Ψ
(n)
L (x)






, (A.4)
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φ=0
φ=+π

φ=−π Identify
+φ with −φ

(i.e. x5 with −x5)

φ=0 φ=π

φ=0

x5=0

φ=π

x5=πR

Figure A.1: This figure from Ref. [134], nicely illustrates the “orbifolding” of a circle to an
interval.

with the respective left- and right-handed fields Ψ
(n)
L/R.

Thus, the lowest mode of a Dirac spinor in five dimensions can be a two-
component Weyl spinor. In fact, orbifolding an extra dimension is a popular way
to induce chirality in five-dimensional theories, which is especially important in
theories with universal extra dimensions due to the chirality of the SM.



Appendix B

Boltzmann Equations

Boltzmann equations represent a semi-classical approach to describe non-equilib-
rium dynamics in many areas of physics, including several processes in the early
universe. In this thesis, we used a simplified version of the Boltzmann equation
in the context of leptogenesis in chapters 4 and 7. Based on Refs. [1, 2, 89], we
will review this topic in some more detail here.

For a phase space distribution fψ(pµ, xµ) of some particles species ψ, the
corresponding Boltzmann equation reads

L̂[fψ] = Ĉ[fψ] , (B.1)

with collision operator Ĉ and the Liouville operator

L̂ ≡ pα
∂

∂xα
− Γαβγp

βpγ
∂

∂pα
, (B.2)

where Γαβγ is the affine connection of the metric.

In the Friedmann-Robertson-Walker model space is assumed to be homoge-
neous and isotropic. In this case, we can use Eq. (1.1) to transform the Boltzmann
equation to

dn

dt
+ 3Hn =

g

(2π)3

∫

Ĉ[fψ]
d3pψ
Eψ

, (B.3)

where a process of the type ψ + a + · · · ↔ i+ j + . . . yields the collision term

g

(2π)3

∫

Ĉ[fψ]
d3pψ
Eψ

= −
∫

dΠψdΠa . . .dΠidΠj . . . (B.4)

×(2π)4δ4(pψ + pa · · · − pi − pj . . . )

×
[

|Mψ+a+···→i+j+...|2fa . . . fψ(1 ± fi)(1 ± fj) . . .

−|Mi+j+···→ψ+a+...|2fifj . . . (1 ± fa) . . . (1 ± fψ)
]

.
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Here, M is the Matrix element corresponding to the process and the ± depends
on the fact if the respective particle species is bosonic or fermionic. We also used
the phase-space differential

dΠk ≡ gk
1

(2π)3

d3pk
Ek

, (B.5)

with gk being the respective number of internal degrees of freedom.
In the case of Maxwell-Boltzmann statistics we can drop all the (1± f) terms

in Eq. (B.4), and, if we further assume that all the particle species are in kinetic
equilibrium (not necessarily chemical equilibrium), their phase space distribution
can be written

f(E) =
n

neq
e−

E
T . (B.6)

Under these assumptions the Boltzmann equation corresponding to the above
process can be simplified to

dn

dt
+ 3Hn = − nψna . . .

neq
ψ n

eq
a . . .

γ(ψ + a+ · · · → i+ j + . . . )

+
ninj . . .

neq
i n

eq
j . . .

γ(i+ j + · · · → ψ + a + . . . ) , (B.7)

with

γ(ψ + a+ · · · → i+ j + . . . ) ≡
∫

dΠψdΠa . . .dΠidΠj . . .

×(2π)4δ4(pψ + pa · · · − pi − pj . . . )f
eq
ψ f

eq
a |Mψ+a+···→i+j+...|2 . (B.8)

In the case of CP-conserving decays and inverse decays ψ ↔ i+j . . . , this relation
can, then, be further simplified to

γ(ψ ↔ i+ j . . . ) = neq
ψ ΓD = neq

ψ

K1(mψ/T )

K2(mψ/T )
Γ0 . (B.9)

Here, mψ is the rest mass of ψ and Γ0 is its zero-temperature decay rate, while
the Ki are modified Bessel functions of the second kind.

For two-body scatterings ψ + a↔ i+ j, on the other hand, Eq. (B.8) yields

γ(ψ + a↔ i+ j) =
T

64π4

∞
∫

(mψ+ma)2

ds
√
sK1

(√
s

T

)

σ̂(s) , (B.10)

with the reduced cross-section σ̂, which is related to the regular total cross section
σ by [91]

σ̂(s) =
8

s

[

(pψ · pa)2 −m2
ψm

2
a

]

σ(s) . (B.11)



Appendix C

Leptogenesis Reaction Rates

For the numerical solutions of the Boltzmann equations in chapters 4 and 7, we
used the following reaction rates, as they can mostly be found in Ref. [95].

The decay rate of a single heavy neutrino of massM and decoupling parameter
K is given by [2]

D ≡ ΓD
Hz

= K z
K1(z)

K2(z)
, (C.1)

with z ≡ M/T (T being the temperature) and the modified Bessel functions of
the second kind Ki(z).

Further, the ∆L = 1 scattering rates for the s- and t-channel processes of the
same particles are given by [91]

Ss ≡ Γ∆L=1,s

Hz
= 2 · KS

12
fs(z) , (C.2)

St ≡ Γ∆L=1,t

Hz
= 2 · 2 · KS

12
ft(z) , (C.3)

with

KS ≡ m̃1

mS
∗
, mS

∗ ≡ 8π2

9

m2
t

v2
m∗ ≈ 10m∗ (C.4)

and

fs/t(z) ≡
∫∞
z2
dψgs/t(ψ/z

2)
√
ψK1(

√
ψ)

z2K2(z)
(C.5)

as well as

gs(x) ≡
(

x− 1

x

)2

(C.6)

gt(x) ≡ x− 1

x

[

x− 2 + 2ah
x− 1 + ah

+
1 − 2ah
x− 1

log

(

x− 1 + ah
ah

)]

. (C.7)

Here, a Higgs mass (ah ≡ (mh/M1)
2) had to be introduced to regularize the

infrared divergences of the t-channel diagrams. In fact, the quantitative results
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are not very dependent of the exact value of the Higgs mass, and in all other
equations the Higgs boson and all other particles (except for the right-handed
neutrinos) were, therefore, assumed to be massless.

To cut down the time needed for the numerical calculations we only calculated
fs/t(z) at a fixed number of points (20-30) and then linearly extrapolated the
functions.

Furthermore, the used wash-out rate due to the right-handed neutrinos is
given by

W =
ΓW
Hz

= WID +W∆L=1 (C.8)

with

WID ≡ 1

2
D
N eq
N1

N eq
ℓ

=
1

4
Kz3K1(z) (C.9)

and

W∆L=1 = St
N eq
N1

N eq
ℓ

+ Ss
NN1

N eq
ℓ

, (C.10)

where NN1
is the actual abundance of the right-handed neutrinos in a comoving

volume containing one photon, N eq
N1

= 3z2K2(z)/8 is the corresponding value
for an equilibrium distribution, and N eq

ℓ = 3/4 is the corresponding value for
massless leptons.

The generalization to the case of many decaying the neutrinos is, now, simple,
since all one has to do is to do the interchange M1 → Mn and K → Kn for each
singlet state. However, since we do not consider the reaction rates Γi in Eqs. (7.4)
and (7.5), but the ratio Γi/(Hz), we have to remember that the factor Hz in the
denominator is, obviously, the same for all different states. To find the correct
rates we, therefore, make the transformations

D → Dn : D(z) → D

(

z
Mn

M1

)

M1

Mn

, (C.11)

in the respective equations of this appendix. This can, now, be generalized in
a straight-forward manner to find the S and W terms (this also includes the
substitution ah → ah(M1/Mn)

2).
With these considerations it is, further, also simple to find the rates for the

system described by Eqs. (7.19) to (7.25), where we simply use

ΓD,n(Mn, T )

H0
= Dn(Mn, T )

T

M1
, (C.12)

combined with similar adjustments for S and W .



Appendix D

The Davidson-Ibarra Bound
With Many Singlets

In this part of the appendix we generalize the treatment from Ref. [99] to find an
upper bound for the CP-asymmetry for a setup with nN heavy singlets and three
light neutrinos as it is used in section 7.5.1.

In the case of many singletse, one needs to generalize the Casas-Ibarra para-
metrization [135] of the Yukawa couplings to

g =
1

〈φ〉2D
√
MRD

√
mU

† , (D.1)

where D√
M and D√

m are diagonal matrices that contain the masses of the heavy
and light neutrinos, respectively. Further, we work in the basis where the heavy
mass matrix is diagonal and U is the mixing matrix of the light neutrinos. Addi-
tionally, R is a complex nN × 3 matrix that fulfills the condition

RTR = 13×3. (D.2)

Let us use a mathematical trick and introduce nN − 3 additional light neutrinos
with zero couplings. We can easily do this, since these particles do not show up in
any particle physics experiment. Now, the Yukawa couplings can be parametrized
by

g =
1

〈φ〉2D
√
MR

′D′√
mU

′† , (D.3)

with D′√
m

= diag(m1, m2, m3, 0, . . . , 0) and

U ′ ≡
(

U 0
0 1(nN−3)×(nN−3)

)

. (D.4)

Most importantly, R′ is now an arbitrary complex orthogonal nN × nN matrix
with

R′TR′ = 1nN×nN . (D.5)
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Due to this orthogonality Eq. (7.3) can now be transformed in the same way as
in the 3 × 3 case [99], and we, therefore, find

εi ≈
3

16π

Mi

〈φ〉2

∑

jm
2
j Im(R′2

1j
)

∑

jmj |R′
1j
|2 , (D.6)

with mk = 0 for k > 3, as they correspond to the particles with zero couplings.
Using

∑

j R
′2
1j = 1 from Eq. (D.5) we, then, find

|εi| .
3

16π

Mi

〈φ〉2
Max({m2

j}) − Min({m2
j})

Max({mj}) + Min({mj})
=

3

16π

Mi

〈φ〉2 m3 , (D.7)

where m3 is essentially a free parameter and which we used in Eq. (7.36).
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