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Abstract

This work deals with a new type of analog signal processing in the forward error
correction (FEC) decoder of a digital communication system. Such analog FEC
decoders are studied based on a comprehensive simulation environment including
system-level and circuit-level simulation models. Different decoder architectures
are considered. This includes fully parallel decoders and decoders based on a new
sequential technique for complexity reduction, which is examined for the example
of the UMTS turbo code. A library of analog transistor circuits is presented which
is suited for the realization of arbitrary analog decoders. As a proof of concept two
prototypes of analog decoders were successfully fabricated in 0.25 µm BiCMOS
and 0.25 µm SiGe. Finally, analog low-density parity-check (LDPC) decoders in
0.18 µm CMOS are investigated for an application in the next generation wireless
local area network IEEE 802.11n.

Zusammenfassung

Diese Arbeit beschäftigt sich mit einer neuartigen analogen Signalverarbeitung im
Kanaldecoder eines digitalen Kommunikationssystems. Zur Untersuchung solcher
analoger Kanaldecoder wurde eine Simulationsumgebung entwickelt, welche ver-
schiedene Simulationsmodelle auf System- und Schaltungsebene beinhaltet. Neben
parallelen Decoderarchitekturen werden auch neue sequentielle Verfahren zur Kom-
plexitätsreduzierung betrachtet und am Beispiel des Turbocodes für UMTS näher
untersucht. Es wird eine Bibliothek von analogen Transistorschaltungen vorgestellt,
mit der sich beliebige analoge Decoder realisieren lassen. Das Grundkonzept der
analogen Decodierung wurde durch die erfolgreiche Fertigung zweier Prototypen
in 0,25 µm BiCMOS und 0,25 µm SiGe nachgewiesen. Zum Schluss werden
analoge LDPC-Decoder in 0,18 µm CMOS untersucht, die auf eine Anwendung
in zukünftigen drahtlosen Netzwerken nach IEEE 802.11n zielen.



1
Introduction
It is nowadays common practice to transmit and store information of any kind in the form of
binary digits, so-called bits. Analog signals as they are naturally available in the real world
are therefore converted into a digital signal representation. Digital signals allow the application
of powerful signal processing techniques like source coding and data compression so that the
redundancy in the signal can be removed. It is then possible to represent analog signals with a
minimum number of bits in the digital domain. Another important advantage of digital signals
is that so-called forward error correction (FEC) can be applied. FEC is an integral part of al-
most all digital communication systems in order to guarantee a reliable bit transmission despite
the presence of noise and other disturbances in the communication channel. It contributes two
additional signal processing blocks to the communication system, an encoder at the transmitter
and a channel decoder at the receiver. The encoder adds redundancy to the bit sequence in a
well-defined manner. This redundancy can then be exploited by the channel decoder in order
to detect and correct transmission errors. The use of FEC is also referred to as channel coding.
It not only reduces the number of transmission errors but also facilitates an extended operating
range and/or a reduced transmit power. The fundamental limits for channel coding were origi-
nally derived by Claude E. Shannon [Sha48] in 1948. He defined the theoretical limit, which he
termed channel capacity, for the reliable transmission of information over a given noisy com-
munication channel. Shannon further stated that there exists a FEC scheme which achieves an
arbitrary small bit error probability as long as the transmission rate does not exceed the channel
capacity. The only hint to the construction of suited channel codes was that the code needs to
span a large number of bits. The pioneering work of Shannon triggered a several decade long
effort to identify such codes.

In the meantime, several FEC schemes have been identified which closely approach the
theoretical limits of data transmission over noisy communication channels. These include low-
density parity-check (LDPC) codes [Gal62] and turbo codes [BGT93]. To date, the application
of these coding schemes has been mainly limited by the availability of powerful and energy-
efficient signal processing in the receiver. The increasing data rates in modern communication
systems with hundreds of megabits per second or even gigabits per second make it even more
challenging to implement decoders for such FEC schemes by means of digital signal process-
ing. In fact, for many high-speed applications it is nowadays not feasible to implement digital
decoders for powerful FEC schemes due to area (i.e., cost) and power constraints. Power con-
sumption is critical for both wireless and wire-line applications because of battery life and/or
heat dissipation in highly integrated circuits. Furthermore, processing delay is often constrained
by the application. One of the reasons for the complexity of the signal processing in the decoder
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is that, in order to unfold its optimal performance, a decoder needs to operate on the real num-
bers provided by the channel in the form of analog signals. It is one of the lessons learned in
communications engineering that a hard decision on the transmitted bits should be avoided in
the receiver until the original source signal is being reconstructed. A state-of-the-art digital re-
ceiver therefore needs to work with quantized versions of these real numbers in all stages of the
receiver, which, for a sufficiently large number of quantization levels then facilitates near-peak
performance.

Analog Viterbi decoders were probably the first to address the operations of the channel de-
coder through analog signal processing, see, e.g., [AG78], [MS93], [SJM94], [SJM98], [DT98],
[HC00]. Signal processing in the analog domain has some fundamental advantages compared
to conventional digital decoder implementations. Analog decoders are in general more area-
and power-efficient than their digital counterparts and require no analog-to-digital conversion
at the input. The latter allows us to capture the full error correcting performance of the channel
decoder since there is no performance loss due to quantization at the input. Analog Viterbi
decoders involve additional digital signal processing and in particular digital memory. They
only provide sequences of bits at their output. In the late 1990s, Hagenauer [Hag97b], [Hag98],
[HW98] and Loeliger et al. [LLHT98] independently proposed new types of purely analog
channel decoders which also provide analog outputs for the individual bits. This analog output
represents reliability information about the bits which can then be further exploited in subse-
quent stages of the receiver. These publications triggered a great deal of research activity in this
area since this type of analog decoder is naturally suited for the information exchange between
different components in the receiver based on the turbo principle [Hag97a]. This information
exchange is also a fundamental part of all state-of-the-art coding schemes such as LDPC codes
and turbo codes. The corresponding decoders are conventionally realized in the digital domain
using an iterative exchange of (essentially analog) information between two or more component
decoders. In such a scenario analog decoders are expected to outperform iterative decoders by
up to several orders of magnitude in terms of speed, area and/or power consumption.

The pioneering work of Hagenauer and Loeliger et al. raised numerous questions in the
coding community about the error correcting capabilities of analog decoders. Some of these
questions relate to the time-continuous behavior of analog decoders which is in clear contrast to
the time-discrete operation of digital decoders. Furthermore, many popular coding schemes also
introduce feedback loops into the analog decoding network. Is analog decoding equivalent to
digital decoding or is it better? Other concerns focus on the imperfectness of analog integrated
circuits including noise effects and variations in device size, process and temperature. What is
the effect of these impairments on overall decoder performance? Further questions originate
from a more practical background: Are analog decoders suited for commercial applications?
Can they be integrated together with other digital components of the receiver? What is the
overall decoder performance in case there are digital input and output interfaces so that digital-
to-analog and analog-to-digital converters are required? All these questions directly led to
first prototype developments by two research groups around Hagenauer and Loeliger. The first
successful chip implementations of these groups attracted a lot of attention and many more
researchers started to work in this exciting new area. In the meantime analog decoder chips have
been fabricated for a variety of different coding schemes and technologies [LHL+99a], [Lus00],
[WDK+01], [WDL+01], [XVG+02], [GG03b], [GG03a], [Gau03], [WDY+04], [NWGS04],
[ABM+04], [FLL+04], [Win04], [Ama04], [VGN+05], [ABM+05], [FLMS05], [WNGS06],
[Arz06] and [HBP06]. The goal of this thesis is to contribute answers to the above questions
and beyond.

The thesis is organized as follows: Chapter 2 provides a short overview of a basic digital
communication system. The overall transmission system is then reduced to a time-discrete sim-
ulation model with a channel encoder at the transmitter and a channel decoder at the receiver.
We summarize different channel codes which are considered for an analog decoder implemen-
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tation. Chapter 3 covers graphical models for the visualization of channel codes. These graphs
visualize the structure of the code which is also exploited by the associated channel decoder.
In this work we pay particular attention to code graphs introduced by Forney. This is because
these code graphs, after some modifications, represent our analog decoding networks in a man-
ner similar to a block diagram. In Chapter 4 we formulate the general decoding problem and
present different decoding algorithms in the context of a general message passing decoding
algorithm based on Forney graphs. Both optimal and suboptimal decoding algorithms are con-
sidered. We also summarize a powerful technique for the analysis of iterative decoding which
we later utilize for the analysis of analog decoders and the optimization of circuit-level parame-
ters thereof. Analog decoders with digital input interfaces necessitate a quantization of the input
values which is also investigated here. Chapter 5 investigates the performance of various differ-
ent analog decoding networks in terms of the bit error rate. We start with an introduction of our
unified simulation environment for analog decoders which includes different time-continuous,
time-discrete and circuit-level simulation models. This allows the evaluation of a given decoder
or input configuration with different simulation models providing different levels of accuracy.
Our simulation environment is also exploited for the development of accurate and fast simula-
tion models at a higher-level which can directly be validated against more detailed simulation
models. We highlight different decoder architectures for state-of-the-art turbo codes and LDPC
codes. Of particular interest is a novel sequential decoder architecture for turbo codes which
circumvents some of the limitations of analog decoders. Furthermore, we also comment on the
equivalence between analog and digital decoding. In Chapter 6 we introduce our circuit design
for analog decoding networks. We demonstrate that based on the exponential characteristic of
bipolar transistors, the blocks realize the ideal decoder operations. We cover the circuit design
of the main building blocks and demonstrate how the building blocks can be interconnected
using different interfacing circuits. Different decoder examples are given in order to outline the
construction of analog decoders based on our building blocks and the interfacing circuitry. We
then analyze the complexity of turbo decoders and LDPC decoders. Chapter 7 presents some
of the highlights of this thesis. We summarize the measurement results of two successfully
implemented analog decoder chips which were fabricated in 0.25 µm BiCMOS and 0.25 µm
SiGe technology, respectively. Both decoders are for a simple tailbiting convolutional code and
are intended as proof of concept rather than for a commercial application. Our measurement
results include the measured bit error rates as well as an analysis of the dynamic behavior of
the decoder chips. To the best of our knowledge, the BiCMOS decoder represents the world’s
first fully operational analog decoder chip while the SiGe decoder appears to be the fastest ana-
log decoder chip to date. In Chapter 8 we give an outlook to a commercial application in the
emerging wireless local area network (LAN) standard IEEE 802.11n. We investigate the im-
plementation of different analog LDPC decoders in 0.18 µm CMOS technology. A realization
in CMOS is particularly interesting because the transistors do not exhibit an exponential char-
acteristic, and so the operations of the building blocks significantly diverge from the desired
behavior. We cover the overall architecture of such a solution, including digital input and out-
put interfaces. Various different impairments of such CMOS implementations are investigated.
This includes the error introduced by the building blocks, noise, supply voltage variations, de-
vice mismatch and process variations. We estimate the performance and the speed of the analog
LDPC decoders for different temperatures and include detailed estimations of transistor count,
area and power consumption of the overall LDPC decoder. The thesis concludes with Chap-
ter 9 where we summarize the main achievements of this work and also indicate directions for
further research.

Parts of the material presented in this work have already been published in [HOMM99],
[HMO00b], [MGYH00], [HMO00c], [MHO00], [HMO00a], [HMS02], [Moe02], [SSM+03a],
[Moe03], [SSM+03b], [Moe04a], [Moe04b], [Moe05] and [Moe06]. Related material which
goes beyond the scope of this thesis can be found in [Moe01], [MSO01], [MSOH01].



2
Fundamentals

This chapter starts with a brief overview of the basic elements of a digital communication sys-
tem including the used notation. The overall transmission system is then reduced to a time-
discrete simulation model which includes the modulation in the transmitter, the physical trans-
mission channel and the demodulation in the receiver. We pay particular attention to forward
error correction (FEC) and give a short overview of different channel codes which are consid-
ered in this work. This section is followed by a primer on analog FEC decoders. The chapter
concludes with the theoretical limits for channel coding as set out by Claude E. Shannon in
1948.

2.1 Digital Communication System
Fig. 2.1 depicts the basic elements of a digital communication system where some arbitrary in-
formation is transmitted from the information source to the information sink. The information
at the source may be available in the form of an analog or a digital signal. Analog signals need
to be transformed into a sequence of time-discrete samples which are represented with a finite
number of quantization levels. These samples can then also be treated as digital signal. The task
of the source encoder is to represent this information with as few bits as possible. This process is
therefore also referred to as data compression. An ideal source encoder removes all redundancy
which is typically present in the input signal and generates statistically independent and equally
likely output bits. These bits form the sequence of information bits {uk} which is applied to the

signal 
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{yi}

{uk} {ci}

{ûk}

s(t)

r(t)

Figure 2.1: Block diagram of a digital communication system.
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input of the channel encoder. The channel encoder adds a certain amount of redundancy to the
information bits in a way that transmission errors which may occur during the signal transmis-
sion can be detected and also be corrected in the receiver. In general, more redundancy improves
the error correcting capability. The output of the channel encoder is given by the sequence of
code bits {ci}. In order to transmit this digital information over an essentially analog communi-
cation channel we need to map this information onto analog waveforms. This is achieved in the
modulator. In this work we restrict ourselves to binary modulation where each code bit ci is rep-
resented by a dedicated analog waveform sci

(t). The sequence of the analog waveforms sci
(t)

then forms the signal s(t). This signal is transmitted over the physical communication channel
which links the transmitter with the receiver. The communication channel is characterized by
various different physical phenomena which distort the transmitted signal, such as noise and
interference. In the receiver, the demodulator processes the distorted signal r(t) and extracts
information about the sequence of code bits in the form of a sequence of samples {yi} for the
transmitted symbols. These samples are time-discrete but value-continuous. At this point it is
important that the detection of a received symbol, i.e., a hard decision, is avoided in order to
preserve the reliability information about the symbols in the receiver [Mas74], [Hag94]. The
channel decoder attempts to estimate the sequence of information bits based on the sequence of
noisy samples {yi}which include the redundant information added by the channel encoder. The
sequence of estimated information bits {ûk} is then provided to the source decoder which tries
to reconstruct the information at the input of the source encoder. This work focuses on the chan-
nel decoding part of the communication system in Fig. 2.1 and here in particular on the use of
analog signal processing therein. We therefore restrict ourselves to a simplified model of a dig-
ital communication system as shown in Fig. 2.2. We assume that there is a digital source which

model

channel
decoder

encoder
channel

source
digital

digital
sink

distortions

signal channel

{ûk}

{uk} {ci}

{yi}

Figure 2.2: Simplified model of a digital communication system.

generates a sequence of statistically independent and equally likely information bits {uk}. This
block replaces the information source and the ideal source encoder in Fig. 2.1. Similarly, a dig-
ital sink replaces the source decoder and the information sink. The modulator and demodulator
are combined together with the physical communication channel into a mathematical channel
model. This channel model reflects the physical phenomena on the communication channel and
directly relates the sequence of received samples {yi} to the sequence of code bits {ci}. In the
following section we focus on a particular channel model as it is assumed throughout this work.

2.2 Time-Discrete Channel Model
This section introduces a simple time-discrete channel model as it is commonly used for the
simulation and evaluation of channel codes. The channel model in Fig. 2.2 incorporates a mod-
ulator, a mathematical description for the characteristics of the communication channel and a
demodulator as shown in Fig. 2.3. We restrict ourselves to binary phase shift keying (BPSK)
modulation where a binary code symbol ci, ci ∈ {0, 1}, is mapped onto the antipodal ana-
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demodulatormodulator
BPSK {yi}s(t) r(t)

n(t)

{ci}

Figure 2.3: Simple channel model.

log waveform sci
(t) with s1(t) = −s0(t). Both waveforms are bounded to the corresponding

symbol interval 0 < t ≤ TS . The sequence of waveforms sci
(t) then yields the transmitted

signal s(t). A simple mathematical model for memoryless communication channels is the ad-
ditive white Gaussian noise (AWGN) channel. This channel model is commonly used for the
design, the analysis and the simulation of different communication systems. Here, the received
waveform r(t) is distorted according to r(t) = s(t) + n(t) with n(t) as a sample function of
a stationary Gaussian process with zero mean and two-sided power spectral density N0/2. We
assume that the receiver is perfectly synchronized with the transmitter and fully recovers the
phase of the signal. The demodulator then processes the received waveform r(t) in order to
provide the sequence of noisy samples {yi}. The optimum demodulator for the AWGN channel
utilizes a filter which is matched to the pulse shape of the transmitted signal. Such a demodula-
tor is optimal in the sense that it maximizes the signal-to-noise ratio (SNR) at the output of the
matched filter at the sampling instant t = TS [Pro95]. The SNR is then given as

SNR =
2ES

N0

, (2.1)

with ES as the energy per transmitted symbol. The channel model in Fig. 2.3 can then be re-
placed with the normalized time-discrete AWGN channel model shown in Fig. 2.4. The input to

c̃i ∈ {+1,−1}

ni

σ2
n = N0

2ES

ỹi = c̃i + ni

Figure 2.4: Normalized AWGN channel model.

this normalized channel model is determined by the modulated code symbols c̃i, c̃i ∈ {+1,−1},
which are obtained from the code symbols ci, ci ∈ {0, 1}, through the bijective map 0 ↔ +1
and 1 ↔ −1. The channel output is given as ỹi = c̃i + ni with ni as a realization of a Gaussian
distributed random variable with zero mean and variance

σ2
n =

N0

2ES

. (2.2)

Note that the output ỹi of the time-discrete channel model in Fig. 2.4 differs from the output yi

in Fig. 2.3 due to the normalization of the channel input, i.e., the signal component, to ±1. This
normalization also affects the noise component so that the SNR in (2.1) remains unchanged.

In order to allow a fair comparison between a communication system with and without
channel coding we assume that both systems have the same amount of energy available for the
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transmission of the information bits. For a coded transmission system where a sequence of K
information bits is encoded into a sequence of N code bits (N > K) this implies that the energy
divides equally among a larger number of code bits. We therefore obtain for the energy of one
transmitted symbol

ES =
K

N
Eb = REb, (2.3)

with Eb as the energy per information bit and R = K/N as the rate of the code.

The distribution of the channel output ỹi can be described by the conditional probability
density functions (pdfs)

p(ỹi|c̃i = ±1) =
1√
2πσ2

n

e
− (ỹi∓1)2

2σ2
n , (2.4)

with mean mỹ = c̃i = ±1 and variance σ2
ỹ = σ2

n = N0/2ES . For a simple detector which
only provides the hard decisions for the transmitted symbols it suffices to detect the sign of ỹi.
In case of ỹi ≥ 0 we obtain c̃i = +1 and the output is c̃i = −1 for ỹi < 0. With the inverse
mapping used in the modulator we then obtain the corresponding code bit ci. The probability
of a transmission error on the AWGN channel is determined by

Pb =
1

2
erfc


 mỹ√

2σ2
ỹ


 =

1

2
erfc

(√
ES

N0

)
, (2.5)

with

erfc(x) =
2√
π

∞∫

x

e−t2dt (2.6)

as the complementary error function [Pro95].

The soft output of the AWGN channel is conveniently characterized in terms of the log-
likelihood ratio [Hag94]

L(ỹi|c̃i) = ln
p(ỹi|c̃i = +1)

p(ỹi|c̃i = −1)
= ln

e
− (ỹi−1)2

2σ2
n

e
− (ỹi+1)2

2σ2
n

(2.7)

= 4
ES

N0

ỹi = Lc ỹi, (2.8)

where ln denotes the natural logarithm. The factor Lc = 4ES/N0 in (2.8) represents the chan-
nel state information (CSI) which acts as a SNR dependent measure for the reliability of the
communication channel. This log-likelihood ratio is also referred to as L-value obtained from
the channel.

All of the following considerations of this work are based on the normalized and time-
discrete AWGN channel model in Fig. 2.3. It is implicitly understood that code bits ci, ci ∈
{0, 1}, are mapped onto the symbols c̃i, c̃i ∈ {+1,−1}, before transmission over the AWGN
channel. This step is therefore omitted for simplicity. Also, the output ỹi of the normalized
AWGN channel model is simply referred to as matched filter output yi.
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2.3 Forward Error Correction (FEC)
Forward error correction (FEC) codes are nowadays commonly used in order to mitigate the
effects of noise and interference encountered during the transmission of signals over a commu-
nication channel. FEC codes are therefore also referred to as channel codes. Popular applica-
tions include digital video broadcast (DVB), wireless LANs and mobile phones. The main goal
of channel coding is to achieve a reliable communication at data transmission rates close to the
capacity of the communication channel [Sha48]. Channel codes can be grouped into the class
of block and convolutional codes depending on whether the information bits are encoded one
block at a time or in a more continuous fashion. A special case are tailbiting convolutional codes
[SvT79], [MW86] which can also be treated as block codes. In 1966 Forney demonstrated that
powerful codes can be generated based on a concatenation of simple component codes [For66].
The key advantage of this approach is that sequential processing of the component codes in
the receiver has only a moderate complexity compared to processing the overall code in one
step. Serially concatenated codes found their first application in the area of deep space com-
munications [CHIW98]. A major breakthrough was achieved with the parallel concatenation of
recursive systematic convolutional codes by Berrou et al. in 1993 [BGT93]. This class of codes
was termed turbo codes. The discovery of turbo codes raised a lot of attention in the research
community and Spielman et al. [SS96] and MacKay et al. [MN95] rediscovered LDPC codes.
LDPC codes were invented by Gallager [Gal62], [Gal63] in the early sixties. However, soon
afterwards they were largely forgotten because the excellent error correcting performance of
these codes could not be demonstrated on early computers with very limited processing power.
LDPC codes are essentially block codes, but can also be interpreted as a serial concatenation of
very simple block codes.

In this work we follow the common practice to use the bit error rate (BER) for the perfor-
mance evaluation of channel codes.

2.3.1 Simple Block Codes
We assume that a continuously running sequence of information bits is divided into blocks of
K information bits

u = (u0, u1, . . . , uk, . . . , uK−1) (2.9)

and mapped (encoded) to code words

c = (c0, c1, . . . , ci, . . . , cN−1), (2.10)

where N denotes the block length of the code. We solely restrict ourselves to binary codes with
uk ∈ F2 and ci ∈ F2. A binary (N,K) block code C can then be defined as the set of 2K binary
code words c, c ∈ C. A code is linear when the sum of two code words again yields a code word.
The set of all possible binary N -tuples x forms the symbol configuration space X with C ⊆ X .
The Hamming distance dH(c,x) is then determined by the number of different bit positions
between N -tuples c and x. An important parameter for the characterization of block codes
is the minimum distance dmin. The minimum distance is defined as the minimum Hamming
distance between two arbitrary code words c and c′. It therefore mainly determines the error
correction capability of the code. Further information about the error correcting performance
of a code can be gathered from the distribution of the Hamming distance over the set of all
code words and, in particular, from the number of code word pairs with minimum distance. The
receiver can only guarantee to detect the correct code word when there are less than dmin/2
transmission errors.

The encoder of block code C performs a linear and time-invariant bijective (one-to-one)
mapping from the set of 2K information vectors u to the set of code words c

u ∈ (F2)
K → c ∈ (F2)

N , (2.11)
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where (F2)
K and (F2)

N denote the K- and N -dimensional vector space over the binary field
F2. The code rate R of the code (or the encoder) is defined as

R =
K

N
(2.12)

and represents the fraction of information bits carried in the sequence of code bits. The remain-
ing fraction 1 − R represents the amount of redundancy which is available for error detection
and error correction in the receiver. The linear encoding rule can be expressed in vector matrix
notation as

c = uG, (2.13)

with G as the K×N generator matrix of the code. Each code word c can therefore be expressed
as a linear combination of the linearly independent row vectors in G, which form a basis of the
code. A given code C can be encoded using different generator matrices, i.e., different encoders.
We speak about identical codes when two codes share the same set of code words. Different
generator matrices for an identical code are referred to as equivalent generator matrices. Two
codes C and C ′ are considered to be equivalent when the bit positions in code word c ∈ C
are simply a rearrangement of the bit positions in code word c′ ∈ C ′. One can always find a
systematic generator matrix Gsys in the form

Gsys = [IK |P ] , (2.14)

where IK represents the K ×K identity matrix and P refers to a K × (N −K) matrix. The
systematic generator matrix in (2.14) guarantees that the K information bits appear unchanged
among the first K bit positions in the code word.

For every linear block code C encoded with generator matrix G there exists an associated
(N−K)×N matrix H with full rank where the row vectors are orthogonal to every code word
c. The code C can therefore also be characterized by

HcT = 0, (2.15)

where H acts as parity-check matrix of the code . Each row of H imposes a parity-check on
code word c and a valid code word satisfies all N − K parity-checks. In case of a systematic
generator matrix as in (2.14) we can easily obtain a parity-check matrix in the form

H = (P T |IN−K), (2.16)

with IN−K as (N −K)× (N −K) identity matrix.

A simple example of a linear block code is the (N, K, dmin) = (3, 2, 2) code C with
C = {000, 011, 101, 110} and rate R = 2/3. This code can for example be encoded using
the systematic generator matrix

G =

(
1 0 1
0 1 1

)
, (2.17)

so that the first K = 2 code bits represent the information bits and the last code bit is obtained
from a parity-check performed on the two information bits. This code is therefore also referred
to as single parity-check (SPC) code. With (2.16) we obtain for the corresponding parity-check
matrix of the code

H =
(

1 1 1
)
. (2.18)

When this parity-check matrix is used as generator matrix we obtain the associated dual code
C⊥ with C⊥ = {000, 111}, i.e., the (3,1,3) repetition code with rate R⊥ = 1/3. The codes C and
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C⊥ of this example can be extended to the family of (N,N − 1, 2) SPC codes and (N, 1, N)
repetition codes, respectively.

Other examples of simple linear block codes are the (7,4,3) Hamming code and the (8,4,4)
extended Hamming code. The systematic generator matrix of the (7,4,3) Hamming code is
given as

G =




1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


 , (2.19)

with the corresponding parity-check matrix according to (2.16)

H =




0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


 . (2.20)

The systematic generator matrix of the (8,4,4) extended Hamming code expands the generator
matrix of the (7,4,3) Hamming code in (2.19) by one additional column, i.e.,

G =




1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0


 . (2.21)

The additional code bit increases the minimum distance of the code from three to four. The
corresponding parity-check matrix can again be obtained from (2.16)

H =




0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1


 . (2.22)

Note that the (8,4,4) extended Hamming code is self-dual, i.e., C = C⊥.

2.3.2 Low-Density Parity-Check (LDPC) Codes
A particularly important class of binary linear block codes are LDPC codes [Gal62], [Gal63].
LDPC codes are defined by a (N −K) × N parity-check matrix H according to (2.15). It is
characteristic to LDPC codes that the total number of ones in H is small with respect to the
overall size of the matrix, i.e., the density of the ones in the matrix is particularly low. In the
following we refer to the rows and columns of H with j and i, respectively. We assume that
there are dc,j ones in row j and dv,i ones in column i. Row j and column i of the parity-check
matrix are illustrated in Fig. 2.5 a) for an example with dc,j = 3 and dv,i = 3. We speak about
regular LDPC codes when there is an equal number of ones in each row and each column, i.e.,
dc,j = dc, ∀j, and dv,i = dv, ∀i. Otherwise the codes are considered to be irregular. LDPC
codes can be both systematic as well as non-systematic depending on whether the information
bits are transmitted or not.

LDPC codes are conveniently visualized by a graphical model as shown in Fig. 2.5 b). Here,
code bits and parity-checks are represented as circles. The node of a code bit is connected to
the node of a parity-check whenever it participates in the corresponding parity-check equation.
For our example in Fig. 2.5 a) with dc,j = 3 and dv,i = 3 this implies that the j-th parity-check
node is connected to the nodes representing the first, the i-th and the last code bit. On the other
hand, the node for the i-th code bit participates in the j-th parity-check node as well as the first
and the last parity-check node.

The representation of codes with code graphs is further investigated in Chapter 3.
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Figure 2.5: Example of a row and a column in the parity-check matrix of a LDPC code with
dc,j = 3 and dv,i = 3 in a) and the corresponding graph representation of the code in b).

2.3.3 Convolutional Codes
A convolutional encoder operates on a continuously running sequence of information bits

u = (u0,u1, . . . , uk, . . .) =
(
u

(1)
0 , . . . , u

(k0)
0 , u

(1)
1 , . . . , u

(k0)
1 , . . . , u

(1)
k , . . . , u

(k0)
k , . . .

)
(2.23)

and generates a continuously running sequence of code bits

c = (c0, c1, . . . , ck, . . .) =
(
c
(1)
0 , . . . , c

(n0)
0 , c

(1)
1 , . . . , c

(n0)
1 , . . . , c

(1)
k , . . . , c

(n0)
k , . . .

)
. (2.24)

This is in clear contrast to block codes where one block of information bits is encoded at a time.
The encoding of convolutional codes is a linear operation which can be described by

ck = ukG0 + uk−1G1 + . . . + uk−mGm, (2.25)

with the k0 × n0 matrices Gl, l ∈ {0, . . . , m}. The semi-infinite code sequence c can then be
generated according to

c = uG, (2.26)
with

G =




G0 G1 G2 · · · Gm

G0 G1 G2 · · · Gm

G0 G1 G2 · · · Gm

. . . . . . . . . . . .


 (2.27)

as semi-infinite generator matrix of the code. Note that whenever there are empty areas as in
(2.27) the matrix is assumed to be filled with zeros. Equivalent to block codes a convolutional
code can also be generated using various different encoders, i.e., generator matrices. The only
difference is how the sequence of information bits is mapped onto the sequence of code bits.
One sub-matrix of the generator matrix in (2.27) is determined by the binary k0 × n0 matrix

Gl =




g
(1)
1,l g

(2)
1,l . . . g

(n0)
1,l

g
(1)
2,l g

(2)
2,l . . . g

(n0)
2,l

...
...

...
g

(1)
k0,l g

(2)
k0,l . . . g

(n0)
k0,l




. (2.28)
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In many cases it is convenient to express the generator matrix in terms of the delay operator
D [JZ99]. This allows the representation of the generator matrix in (2.27) with the k0 × n0

polynomial generator matrix

G(D) =




g
(1)
1 (D) g

(2)
1 (D) · · · g

(n0)
1 (D)

g
(1)
2 (D) g

(2)
2 (D) · · · g

(n0)
2 (D)

...
...

...
g

(1)
k0

(D) g
(2)
k0

(D) · · · g
(n0)
k0

(D)


 . (2.29)

The entries in row η, η ∈ {1, . . . , k0}, and column ξ, ξ ∈ {1, . . . , n0}, describe the impact of
the η-th information bits within the k0-tuples of information bits on the ξ-th code bits within the
n0-tuples of code bits. The code rate of the convolutional code (or encoder) is then defined as

R =
k0

n0

. (2.30)

The constraint length for the η-th input of the convolutional encoder is determined by the max-
imum degree of the polynomials gξ

η(D), i.e.,

νη = max
1≤ξ≤n0

{deg(gξ
η(D))}. (2.31)

The maximum constraint length is then referred to as the encoder memory

m = max
1≤η≤k0

{νη}, (2.32)

while the overall constraint length is the sum of all constraint lengths

ν =

k0∑
η=1

νη. (2.33)

The Hamming distance and the minimum Hamming distance of convolutional codes are defined
analogous to block codes.

We now focus on the realization of a single entry in the polynomial generator matrix in
(2.29) so that we can skip the row and column index. In general, each entry in (2.29) represents
a rational transfer function

g(D) =
f(D)

q(D)
=

f0 + f1D + . . . + fmDm

1 + q1D + . . . + qmDm
, (2.34)

with f(D) and q(D) as the polynomials for the feedforward and the feedback path of the en-
coder, respectively. The rational transfer function in (2.34) can be realized in controller canoni-
cal form as shown in Fig. 2.6. Note that this encoder solely describes the impact of information
bits at a particular bit position within the k0-tuple on the code bits at a particular bit posi-
tion within the n0-tuple. In the overall convolutional encoder other information bits within the
k0-tuple at the input may also contribute to the calculation of these code bits. Convolutional
encoders utilizing the general encoder structure in Fig. 2.6 with q(D) 6= 1 are referred to as
feedback encoders or recursive encoders. The input to the shift register is then not only de-
termined by the encoder input uk but also by the content of the shift register. For the special
case when there is no feedback in the encoder, i.e., q(D) = 1, we obtain a feedforward encoder
where the content of the shift register simply represents the delayed inputs uk−1, . . . , uk−m. Ex-
amples of a feedforward and a feedback encoder for a convolutional code with memory m = 2
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Figure 2.6: Realization of the rational transfer function g(D) in controller canonical form.
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Figure 2.7: Encoder realizations for a rate R = 1/2 and memory m = 2 convolutional code
(feedforward encoder in a) and recursive systematic encoder in b) ).

and rate R = 1/2 are shown in Fig. 2.7. The feedforward encoder in Fig. 2.7 a) is based on the
polynomial generator matrix

G(D) =
(
1 + D + D2 1 + D2

)
, (2.35)

while the feedback encoder in Fig. 2.7 b) realizes

Gsys(D) =
1

1 + D + D2
G(D) =

(
1

1 + D2

1 + D + D2

)
. (2.36)

Note that both encoders generate the same code, i.e., the same set of code words. The only
difference is the way the sequence of information bits is mapped onto the sequence of code bits.
The recursive encoder in Fig. 2.7 b) is also called a systematic encoder since the information
bits appear unchanged among the code bits. Such a systematic encoder with the associated sys-
tematic generator matrix exists for every convolutional code [JZ99]. The systematic generator
matrix in (2.36) can simply be obtained from the polynomial generator matrix in (2.35) through
the multiplication with 1/(1 + D + D2).

The encoding process of a convolutional encoder can also be described using the state space
representation of linear systems. A state space representation is characterized by the equations

sk+1 = skA + ukB, (2.37)
ck = skC + ukD, (2.38)

where A is the (m ×m) state matrix, B the (k0 ×m) input (control) matrix, C the (m × n0)
output (observation) matrix and D is the (k0 × n0) transition matrix. The state vector

sk =
(
s
(1)
k , . . . , s

(m)
k

)
(2.39)
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represents internal encoder states, i.e., the content of the m internal memory elements, at time
k. A convolutional encoder has thus a total number of 2m possible states. The encoder output ck

is determined by the internal encoder state sk and the encoder input uk. Typically, the encoding
process starts in the all-zero state with s0 = 0, i.e., all internal memory elements are initialized
with zeros. When the output ck is calculated the encoder changes from state sk to state sk+1.
Again, this transition depends on the internal encoder state sk and the encoder input uk. The
state space representation of convolutional codes directly leads to a graphical representation of
the code in the form of a code trellis. This trellis representation plays a fundamental role when
it comes to decoding of convolutional codes. More details about this can be found in Section
4.4.2.

There are also punctured convolutional codes. Here, particular code bits are removed from
the code sequence so that the effective code rate increases accordingly. This for example allows
the adjustment of the code rate dependent on the quality of the communication channel while
using only a single encoder and decoder. A special case of punctured codes which are of partic-
ular practical importance are rate-compatible punctured convolutional (RCPC) codes [Hag88].

2.3.4 Tailbiting Convolutional Codes
Convolutional codes are defined for semi-infinite sequences of information bits. However, al-
most all practical applications require that the information bits are divided into separate blocks
of finite size which can be processed independent of each other. A very simple and straight-
forward method is to stop the encoding process after K information bits. This is called direct
truncation of the convolutional code. The main disadvantage of this technique is that the error
protection towards the end of the code block becomes inferior. It is therefore more common
to terminate the convolutional code by inserting dummy bits into the encoder after a block of
K information bits has been encoded. These dummy bits control the encoder in a way that it
reaches a pre-defined state, typically the all-zero state. Clearly, this termination of the convo-
lutional code comes at the expense of a rate loss. The termination of the feedforward encoder
in Fig. 2.7 a) can simply be achieved by adding m zeros to the K information bits. In case
of the feedback encoder in Fig. 2.7 b) the termination works differently. Here, the termination
bits depend on the encoder state after encoding the K information bits. This state is referred
to in the following as sK0 . There are a total number of 2m possible m-tuples for sK0 which
require dedicated termination bits. It is sufficient to identify these termination bits once and to
store them together with the possible ending states in a look-up table. The main advantages
of tailbiting codes [SvT79], [MW86] are that there are no such termination bits required (and
therefore no rate loss occurs) and that all code bits are protected equally (which is not the case
for direct truncation). This makes tailbiting codes particularly interesting for applications which
demand codes with short block lengths. Tailbiting codes require that the state of the encoder
at the beginning and the end of the encoding process is identical, i.e., s0 = sK0 . The encoder
may start in any state as long as it is guaranteed that it also ends in this state. This tailbiting
condition is easily fulfilled for the feedforward encoder in Fig. 2.7 a). Here, the convolutional
encoder is simply initialized at the beginning of the encoding process with the last m bits of the
block of K information bits. These bits are also stored in the encoder after encoding. For the
feedback encoder in Fig. 2.7 b) it is more difficult to find the appropriate starting state. This
is because in this case the starting state s0 depends on the entire block of information bits. A
solution for such recursive convolutional encoders can be found in [WBRC98], [Wei02]. This
solution is based on the superposition of the zero-input solution s

[zi]
k and the zero-state solution

s
[zs]
k with sk = s

[zi]
k + s

[zs]
k . The starting state of the encoder is then determined by

s0

(
AK0 + Im

)
= s

[zs]
K0

, (2.40)
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with Im as the m×m identity matrix. It becomes apparent in (2.40) that the use of a feedback
encoder places restrictions on the block length of the tailbiting code. This is because (AK0+Im)
needs to be invertible and thus det (AK0 + Im) 6= 0. In the following we always assume that
the block length is chosen appropriately. Encoding of a tailbiting code with a recursive encoder
then proceeds as follows. In a first step the encoder starts with the all-zero state s0 = 0 and
determines the zero-state response s

[zs]
K0

based on the given block of information bits. The output
of the encoder is ignored. In the second step the encoder starts with the appropriate starting state
s0 which satisfies (2.40) and encodes the tailbiting convolutional code. The appropriate starting
states of the encoder can be pre-computed according to (2.40) based on the given block length of
the tailbiting code and the 2m possible realizations of the zero-state response s

[zs]
K0

. The starting
states can be stored in a look-up table together with the corresponding zero-state response.

More details on tailbiting convolutional codes can be found in, e.g., [Wei02], [JZ99].

2.3.5 Parallel Concatenated Convolutional Codes
In 1993 Berrou et al. [BGT93] demonstrated that the parallel concatenation of recursive sys-
tematic convolutional codes in combination with an iterative processing of the component codes
in the receiver achieves an unprecedented error correcting performance close to the theoretical
limits. Such concatenations of codes were therefore termed turbo codes. The encoder for the
example of the parallel concatenation of two rate R = 1/2 convolutional codes with recursive
systematic encoder is depicted in Fig. 2.8. There is a separate encoder for component code C1

Π
encoder for C2

encoder for C1{uk}

{pC1k }

{uk}

{pC2k }

Figure 2.8: Encoder for the parallel concatenation of two rate R = 1/2 convolutional codes
with recursive systematic encoder.

and component code C2. Both encoders process the same sequence of information bits {uk}.
The encoder for C1 uses the given bit order of the information bits while the encoder for C2

works with a permuted version of these bits. This permutation is achieved with the interleaver
Π. The turbo code then comprises the sequence of information bits {uk} and the output of the
two recursive systematic encoders {pC1k } and {pC2k } as the parity bits with ck =

(
uk, p

C1
k , pC2k

)
.

Note that the systematic output of the component encoders only needs to be transmitted once.
The code rate of the turbo code is then determined by the code rates RC1 and RC2 of the compo-
nent codes according to

R =
1

1
RC1

+ 1
RC2

− 1
. (2.41)

Turbo codes were first standardized for a commercial application in the third generation
mobile communication system UMTS [ETS00]. Here, the two component codes C1 and C2

are encoded with recursive systematic convolutional encoders with rate R = 1/2 and memory
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m = 3. The component encoders are characterized by the polynomial generator matrix

GUMTS(D) =

(
1

1 + D + D3

1 + D2 + D3

)
. (2.42)

The block length of this turbo scheme is in the range 40 ≤ K ≤ 5114 information bits. Both
component codes are terminated so that the overall code rate is R = K/N = K/(3K+12) with
R ranging from 0.3030 to 0.3331. Depending on the block length of the turbo code different
interleavers are specified [ETS00].

Turbo codes are also standardized for the DVB interaction channel for satellite distributed
systems [ETS03]. Here, the parallel concatenation of two recursive systematic tailbiting convo-
lutional codes with memory m = 3 is utilized. The component encoders are described by the
polynomial generator matrix

GDV B(D) =

(
1 1

1 + D2 + D3

1 + D + D3

1 + D3

1 + D + D3

)
. (2.43)

This standard specifies different block lengths as well as different code rates which are obtained
through puncturing of the component codes. A rate R = 1/2 turbo code for example requires
two rate 2/3 component codes, compare (2.41). In this case the second parity bit obtained from
the generator matrix in (2.43) is punctured.

The above turbo codes for UMTS and DVB are further investigated in Chapter 5.

2.4 A primer on analog FEC decoders
The task of a FEC decoder is to reconstruct the vector of information bits u based on the vector
of noisy received samples y. It exploits the redundancy present in the transmitted code word
c in order to correct potential transmission errors. FEC decoders are commonly implemented
on signal processors operating in the digital domain. In this work we deal with a new approach
where FEC decoders are realized by means of analog signal processors. The use of analog
signal processing promises higher operating speed, lower power consumption and/or smaller
area compared to a conventional digital realization. Analog decoders rely on the time- and
value-continuous operation of analog transistor circuits which is in clear contrast to the plain
switching operation between zero and one of digital circuits. A digital FEC decoder requires
that the L-values Lcyi received from the communication channel, i.e., the matched filter output
yi weighted with the channel state information Lc, are converted into a digital signal representa-
tion. For this, the L-values need to be represented by a sufficiently large number of bits in order
to preserve an adequate amount of reliability information about the received samples. Analog
signal processing in the FEC decoder naturally captures the complete information contained in
the received samples so that there is no quantization loss. Furthermore, reliability information
is preserved throughout the decoder. The computational cores of our analog decoding networks
are based on two elementary transistor circuits as shown in Fig. 2.9 [MGYH00], [MHO00].
It is characteristic to our circuit design that L-values are represented in terms of differential
voltages. When we apply such a differential voltage ∆V to the input of a differential transistor
pair as shown in Fig. 2.9 a) it determines how the bias current I is split up into the currents I0

and I1. We will demonstrate later in more detail that the two transistors effectively transform
the L-value (interpreted as differential voltage ∆V ) into the associated probabilities P (ci = 0)
and P (ci = 1) represented by I0/I and I1/I , respectively. The pair of diode-connected tran-
sistors in Fig. 2.9 b) performs the inverse operation of the circuit in Fig. 2.9 a). It transforms
the two input currents I0 and I1 into the differential output voltage ∆V . When we treat the two
input currents as probabilities as in the above we find that ∆V again represents the associated
L-value. Generalizations of the two elementary transistor circuits in Fig. 2.9 are sufficient in
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a) b)

I1I0I

I1I0

∆V

∆V

L-value: ∆V ∝ Lcyi I0/I = P (ci = 0) I1/I = P (ci = 1)

Figure 2.9: Conversion of a L-value into the corresponding probabilities in a) and the conver-
sion of the probabilities back to a L-value in b).

order to construct arbitrary computational cores for our analog decoders. It will unfold in the
course of this thesis that very simple configurations of these analog circuits implement the ideal
decoder operations while digital decoder realizations need to rely on approximations in order
to reduce complexity, see, e.g., [RVH95], [Daw96]. Analog decoders may thus achieve optimal
decoder performance in terms of the BER since quantization loss and the approximation of ex-
act computations is avoided.

2.5 Mutual Information and Channel Capacity
The mutual information of two continuous random variables X and Y with joint pdf p(x, y) and
marginal pdfs p(x) and p(y) is given as

I(X; Y ) =

∫ +∞

−∞

∫ +∞

−∞
p(x)p(y|x) log2

p(y|x)p(x)

p(x)p(y)
dx dy. (2.44)

It is a measure for the information available about X in case Y has been observed. The mutual
information ranges between zero and one and the unit is bit. For statistically independent X
and Y we have I(X; Y ) = 0 while for I(X; Y ) = 1 the variable X is completely described
by the observation Y . In case of a time-discrete communication channel with binary input
x ∈ {+1,−1} and analog output y we obtain

I(X; Y ) =
∑

x∈{+1,−1}

∫ +∞

−∞
P (x)p(y|x) log2

p(y|x)

p(y)
dy. (2.45)

The mutual information in (2.45) is maximized for equally likely input bits with P (x = +1) =
P (x = −1) = 0.5, thus

I(X; Y ) =
1

2

∑

x∈{+1,−1}

∫ +∞

−∞
p(y|x) log2

p(y|x)

p(y)
dy (2.46)

=
1

2

∑

x∈{+1,−1}

∫ +∞

−∞
p(y|x) log2

2p(y|x)

p(y|x = +1) + p(y|x = −1)
dy. (2.47)



18 Chapter 2 ¥ Fundamentals

In 1948 Claude E. Shannon defined the capacity of the communication channel as the max-
imum mutual information [Sha48], i.e.,

C = max
P (x)

{I(X; Y )}, (2.48)

where the maximization is carried out over all distributions P (x) at the input. The channel
capacity C is fundamental part of Shannon’s celebrated noisy channel coding theorem [Sha48]
where it is stated that there exists a reliable transmission with an arbitrarily small error proba-
bility as long as

R < C. (2.49)

On the other hand, when the code rate R exceeds the channel capacity a reliable transmission is
not possible. Shannon demonstrated that a noisy communication channel only limits the trans-
mission rate of the information in bits per channel use and not the quality of the transmission.
This theorem was revolutionary since the noise was commonly expected to limit the reliability
of a transmission. It was clear that the channel capacity can only be approached when codes
with large block lengths are used, i.e., N → ∞. Unfortunately, no further hint was given for
the design of such codes.

The channel capacity C of the AWGN channel is evaluated numerically in Fig. 2.10 and
Fig. 2.11 over ES/N0 in dB and Eb/N0 in dB, respectively.
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Figure 2.10: Channel capacity of the binary input AWGN channel over ES/N0.
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Figure 2.11: Channel capacity of the binary input AWGN channel over Eb/N0.



3
Codes on Graphs

Codes are conveniently described and visualized by graphical models. These models comprise
a set of symbol variables and a set of local constraints which are connected to each other in
the code graph. The LDPC codes of Gallager [Gal62], [Gal63] were probably the first codes
which utilized a code graph. Here, the symbol variables correspond to code bits and the local
constraints are defined through parity-check equations. The work on code graphs was further
elaborated by Tanner [Tan81], who also introduced generalized constraint nodes. The introduc-
tion of state variables into the Tanner graph by Wiberg et al. [Wib96], [WLK95] was a major
step in establishing a link to code trellises and turbo codes. This contribution directly led to
what is nowadays known as factor graphs [FKLW97], [KFL01]. Later, Forney imposed some
degree restrictions on the variables in the factor graph. These restrictions gave rise to a funda-
mental duality theorem where the same graph topology can be facilitated for a code C and its
dual code C⊥ [For01]. Such graphs are referred to as normal graphs. The intense interest in
code graphs is also motivated by the fact that many popular decoding algorithms are based on
graphical code descriptions. In the scope of this work normal graphs are particularly important
since they can be utilized for the representation of analog decoders in a manner similar to a
block diagram. There are many different normal graphs for a given code which exhibit different
topologies and may involve loops of different size. This is demonstrated in the following for
the example of the (8,4,4) extended Hamming code. Note that, in general, decoders based on
different code graphs yield a different decoder performance.

After the definition of some mathematical notation in Section 3.1 we start with Tanner
graphs in Section 3.2. We then turn to factor graphs and normal graphs in Section 3.3 and
Section 3.4, respectively. Normal graphs are then transformed in a way that each node in the
code graph is only connected to three neighboring nodes, i.e., the degree is three. This step is
motivated by the circuit implementation of analog decoders as we will see later in Chapter 6.

3.1 Mathematical Notation
Let us introduce some mathematical notation [For01] which is useful for the description of
codes on graphs. We refer to variables by upper case letters and to the values, i.e., realizations,
of the variables by the corresponding lower case letters. The alphabet of a variable is denoted
by the corresponding upper case script letter. The variable Ai can then take on values ai ∈ Ai

whereAi can be either a vector space over a finite field, e.g., the set (F2)
n of all binary n-tuples,

or a finite Abelian group. A collection of symbol variables Ai defined by the discrete (and finite)
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index set i ∈ IA forms the symbol configuration space A which is obtained by the Cartesian
product

A =
∏
i∈IA

Ai. (3.1)

Here, the elements a ∈ A represent possible symbol configurations.

We can define a code as a subset C ⊆ A of the symbol configuration space where the
elements c ∈ C represent valid symbol configurations, i.e., the code words of the code. We talk
about a linear code C when each symbol alphabet Ai is a vector space over a (usually finite)
field F and about a binary code when the field is F2, i.e., {0, 1}. When each symbol alphabet
Ai is a group we obtain a group code C. The check whether a given symbol configuration is a
valid code word or not is commonly performed using a set of local constraints, or local codes,
Cj with the associated discrete index set j ∈ IC , which is not necessarily related to the index
set IA of the symbols. Such a local constraint Cj involves only a subset of the symbol variables
indexed by a subset IA(j) of the symbol index set IA. The local code is then defined as a subset
of the local symbol configuration space

Cj ⊆ Aj =
∏

i∈IA(j)

Ai. (3.2)

The subset C ⊆ A can be defined by a set of local constraints introduced by, e.g., a set of
parity-check equations according to cHT = 0 such that

C = {cHT = 0|c ∈ (F2)
N}. (3.3)

The local code Cj is then defined by the j-th row of H with j ∈ IC as the row index. The
positions of the ones in row j define the subset of symbol variables Ai, i ∈ IA(j) involved in this
local constraint. Each local constraint Cj determines a set of valid local symbol configurations

a|IA(j) = {ai, i ∈ IA(j)}, (3.4)

where a|IA(j) denotes the projection of a symbol configuration a onto the symbols Ai indexed
by IA(j). The overall code C is then defined as the set of all symbol configurations which satisfy
all local constraints

C = {a ∈ A|aIA(j) ∈ Cj,∀j ∈ IC}. (3.5)

3.2 Tanner Graphs
A (N, K) block code C can be represented by a so called Tanner graph [Tan81] which is a
graphical representation of the (N −K)×N parity-check matrix H of the code. This implies
that the Tanner graph is not unique since there are many different parity-check matrices for a
given code. The Tanner graph consists of binary variable nodes Xi with xi ∈ Xi, Xi = F2,
for the code bits and binary check nodes for the parity-check equations of the local codes Cj .
Variable nodes and check nodes are indexed with i ∈ IX , IX = {1, . . . , N}, and j ∈ IC ,
IC = {1, . . . , N − K}, respectively. The variable nodes are represented in the code graph as
circles while the ⊕ symbol is used for check nodes. Variable node Xi is connected to check
node j whenever the variable (code bit) participates in the parity-check equation of the local
code Cj , i.e., i ∈ IX (j). The degree of check node j is given by dc,j = |IX (j)| and determines
the number of variable nodes connected to the j-th check node, i.e., the number of ones in the
j-th row of H . Similarly, the degree of variable node Xi is defined as the number of ones in the
i-th column of H .
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X4

X2

X5

X3

X6

X7

X1

Figure 3.1: Tanner graph representation of the (7,4,3) Hamming code.

The Tanner graph representation of the (7,4,3) Hamming code with the parity-check matrix

H =




0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1




is shown in Fig. 3.1. The code bits c = (x1, x2, x3, x4, x5, x6, x7) occur in the graph as variable
nodes X1 to X7. Here, the first four bits and the last three bits represent the information bits
and the parity bits, respectively.

In the following sections we exploit the example of the (8,4,4) extended Hamming code in
order to demonstrate that different graph representations of a code are possible. We start with
the systematic generator matrix of the (8,4,4) extended Hamming codes as given in (2.21), i.e.

G =




1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0


 . (3.6)

We now derive a minimum span generator matrix (MSGM) from (3.6) using a simple algorithm
based on row operations [McE96]. For this, we define the span of a row vector as the index
of the rightmost nonzero entry minus the index of the leftmost nonzero entry. We then obtain
the MSGM for code C by minimizing the overall span of all rows in the generator matrix. It
is apparent that the systematic generator matrix in (3.6) with a total span of 21 is clearly not a
MSGM. Applying the algorithm from [McE96] we obtain the MSGM for this code with a total
span of 16. Such a MSGM can be found for any linear block code. The total span can be further
reduced when we allow the permutation of the 4-th and the 8-th column in (3.6). This leads to
a generator matrix of an equivalent code. When we apply the algorithm again we obtain

GMSGM =




1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0


 (3.7)

with an overall span of only 14. Since the (8,4,4) extended Hamming code is self-dual this ma-
trix is equivalent to the minimum span parity-check matrix (MSPCM) of the code. The Tanner
graph representation of the minimum span matrix in (3.7) is depicted in Fig. 3.2. Note that the
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X4X1 X2 X3 X8 X5 X6 X7

Figure 3.2: Tanner graph representation of the (8,4,4) extended Hamming code based on
GMSGM with a minimum loop size of four.

minimum girth, i.e., the minimum loop size, of this code graph is four. Minimum span (gen-
erator or parity-check) matrices play an important role when it comes to trellis representations
with a minimum number of states and branches. Such a minimal trellis representation of the
(8,4,4) extended Hamming code is derived in the next section.

3.3 Factor Graphs
It is characteristic of Tanner graphs [Tan81] that variable nodes correspond to code symbols
which can be observed as part of the code word. Tanner graphs were generalized by Wiberg
et al. [WLK95], [Wib96] by introducing latent (or hidden) state variables into the code graph.
These state variables represent internal states, e.g., internal encoder states, which are not trans-
mitted as part of the code word. A typical example of a code graph which naturally exhibits
state variables is the trellis representation of a code. Symbol and state variables are in general
non-binary. This necessitates the definition of generalized constraint nodes which were in a
similar fashion also introduced by Tanner [Tan81]. These constraint nodes can be seen as gen-
eralizations of the LDPC codes of Gallager [Gal62]. More recent work summarized these ideas
in a graphical model called factor graph [FKLW97], [KFL01].

We start with Tanner graphs and derive different code graphs including trellis and tailbiting
trellis representations. For this, we introduce state variables into the code graph which, in gen-
eral, lower the degree of constraint nodes, i.e., the number of variable nodes they are connected
to. In the context of this thesis we will exploit state variables in order to obtain constraint nodes
with a degree of no more than three. We distinguish between code graphs with binary sym-
bol and state variables and code graphs with non-binary variables. First, we present a simple
algorithm based on the parity-check matrix H which introduces state variables in a way that
the binary graph structure is maintained. We then formulate another algorithm which leads
to non-binary variable nodes and generalized constraint nodes. Based on the minimum span
parity-check matrix of the (8,4,4) extended Hamming code we then derive the minimal trellis
and the minimal tailbiting trellis of the code.

3.3.1 State Variables
In the following we extend the notation to the general case of code graphs with state variables
[For01]. Here, the code C ⊆ X is now defined through a set of local codes Cj , j ∈ IC which
involve besides the symbol variables Xi, i ∈ IX , also state variables Sl, l ∈ IS . The index sets
IC , IX and IS are in general unordered and not directly related to each other. Each local code
Cj includes a subset of the symbol and state variables indexed by a subset IX (j) and IS(j) of
the index sets IX and IS , respectively. Again, we define the symbol configuration space as the
Cartesian product

X =
∏
i∈IX

Xi (3.8)
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and the state configuration space as the Cartesian product

S =
∏

l∈IS

Sl. (3.9)

The set of all global symbol and state configurations satisfying

B = {(x, s) ∈ X × S| (x|IX (j), s|IS(j)

) ∈ Cj, j ∈ IC} (3.10)

is referred to as the full behavior B ⊆ X × S which defines a set of extended code words
c̃ = (x, s) combining symbol and state variables. The code itself is then the projection C = B|X
onto the symbol variables. This removes all internal state variables so that we obtain the set of
original code words again. The local code Cj is defined as a subset

Cj ⊆ =


 ∏

i∈IX (j)

Xi


×


 ∏

l∈IS(j)

Sl


 (3.11)

of the corresponding local Cartesian product configuration space and defines the set of valid
local symbol and state configurations

(
x|IX (j), s|IS(j)

)
= {{xi, i ∈ IX (j)}, {sl, l ∈ IS(j)}} ∈ Cj. (3.12)

In general, the factor graph consists of non-binary variable nodes for symbol and state variables
and local check nodes. In order to distinguish between symbol and state variables in the factor
graph we represent them with circles and double circles, respectively. Local check nodes are
illustrated by either the ⊕ symbol or simply by a black box depending on the required opera-
tions and the alphabet of the participating variables. Symbol variables Xi and state variables
Sl are connected to check node j whenever the variables participate in the local code Cj with
i ∈ IX (j) and l ∈ IS(j). The degree of a local check node j is given by |IX (j)| + |IS(j)| as
the number of symbol and state variables connected to it. The degree of a symbol node i and a
state node l is defined equivalently as the number of local check nodes connected to it.

For now, we restrict ourselves to binary symbol and state variables, i.e., Xi = F2, i ∈ IX
and Sl = F2, l ∈ IS . In this case, the full behavior B can be defined as

B =
{

c̃H̃T = 0|c̃ ∈ (F2)
|IX |+|IS |

}
(3.13)

using an |IC| × (|IA|+ |IS |) extended parity-check matrix H̃ . We now derive such an extended
parity-check matrix for the simple example of a (5,4,2) SPC code. This code is defined by the
parity-check matrix

H = (11111) , (3.14)

with c = (u1, u2, u3, u4, p) and p = u1 ⊕ u2 ⊕ u3 ⊕ u4. The corresponding factor graph is
depicted in Fig. 3.3 a). Note that in this case the factor graph is equivalent to the Tanner graph.
We now introduce two state variables S1 and S2 whose values are determined by s1 = u1 ⊕ u2

and s2 = u4 ⊕ p, hence s1 ⊕ s2 = u3. This expands the original parity-check matrix in (3.14)
in both horizontal and vertical direction and we obtain for H̃

u1 u2 u3 u4 p s1 s2

1 1 1
1 1 1

1 1 1

. (3.15)
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Figure 3.3: Two different factor graph representations of the (5,4,2) SPC code.

We use this table format instead of conventional matrix notation and only show the ”1”s in the
matrix. The row and column weight is here defined as the number of ”1”s in the corresponding
row and column of the matrix, respectively. We notice that the single parity-check of degree
five is now replaced by three local parity-checks of degree three. The associated factor graph
is depicted in Fig. 3.3 b). In general, any (N,N − 1, 2) SPC code can be split up into N − 2
check nodes of degree three using N−3 internal state variables. We now introduce a simple and
straightforward algorithm which generates extended parity-check matrices by introducing new
state variables. These state variables are added in a way that the degree of all check nodes in the
code graph is limited to three. This algorithm is referred to in the following as the C3 Algorithm.

The C3 Algorithm is divided into three steps:

• STEP 1: Identify all rows in the original matrix with dc,j > 3, j ∈ IC .

• STEP 2: Add dc,j − 3 new rows for each row identified in STEP 1. Distribute the dc,j

ones in the original row over the resulting dc,j − 2 rows in a way that the first (i.e., the
original) and the last row has weight two and all other rows have weight one. Maintain
the column position of the ones.

• STEP 3: Add dc,j − 3 new columns for each row identified in STEP 1. Add two ones in
each of these columns so that all the dc,j − 2 rows obtained from one row in the original
matrix are linked pairwise in sequential order, i.e., the 1st and the 2nd, the 2nd and the
3rd, and so forth. All rows in the matrix then have weight three.

Note that STEP 2 and 3 expand the matrix in vertical and horizontal direction, respectively.
Each row of the expanded matrix represents a degree three parity-check and each column added
in STEP 3 corresponds to a new state variable. STEP 2 and STEP 3 can be reversed by adding up
all rows which originated from one row in the parity-check matrix H . This yields the original
rows of H and all columns added in STEP 3 have only zero entries, i.e., the corresponding state
variables become redundant.

When we apply the C3 Algorithm to the (8,4,4) extended Hamming code with the minimum
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span matrix in (3.7) we obtain the 8× 12 matrix H̃

x1 x2 x3 x8 x5 x6 x7 x4 s1 s2 s3 s4

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

. (3.16)

The expanded code vector is given by

c̃ = (c, s) = (x1, x2, x3, x8, x5, x6, x7, x4, s1, s2, s3, s4) (3.17)

with H̃c̃T = 0. Here s = (s1, s2, s3, s4) represent possible realizations of state variables S1

to S4. Note that the position of the 4-th and 8-th code bit are interchanged with respect to the
systematic generator matrix in (3.6).

We now extend the C3 Algorithm by two optional steps:

• STEP 4: Perform row operations in order to reduce the row weight to two, if possible. In
this case the two ”1”s typically occur in the section for state variables.

• STEP 5: A row weight of two obtained in STEP 4 indicates identical state variables.
Replace the two state variables with a single state variable, i.e., replace the corresponding
columns with the sum of the two. Remove the row with weight two.

STEP 4 of the C3 Algorithm yields the 8× 12 matrix

x1 x2 x3 x8 x5 x6 x7 x4 s1 s2 s3 s4

1 1 1
1 1 1

1 1
1 1 1

1 1
1 1 1

1 1 1
1 1 1

. (3.18)

This matrix is obtained by replacing the third row in (3.16) with the sum of the second and third
row, and the fifth row in (3.16) with the sum of the forth and fifth. We find that the third and the
fifth row in (3.18) have a row weight of two with s1 = s2 and s2 = s3, respectively. When we
apply STEP 5 of the above algorithm to the fifth row in (3.18) we obtain the 7× 11 matrix

x1 x2 x3 x8 x5 x6 x7 x4 s1 s2 s3

1 1 1
1 1 1

1 1
1 1 1

1 1 1
1 1 1

1 1 1

. (3.19)
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Note that we omit STEP 5 of the C3 Algorithm for the third row in (3.18) which would lead to
a column weight of four. This is because we also restrict the degree of variable nodes in Section
3.4.2. Further note that the total number of ”1”s in the matrix reduces from 24 in (3.18) to 20
in (3.19) while the minimum girth increases from four to six. The corresponding factor graph
representation of the code is depicted in Fig. 3.4.

S1

X4X7X6X5X8X3X2X1

S2

S3

Figure 3.4: Factor graph representation of the (8,4,4) extended Hamming code with minimum
girth six.

3.3.2 Generalized Constraint Nodes
Symbol and state variables in factor graphs are in general non-binary. Such non-binary variables
necessitate more generalized constraint nodes as they are, e.g., required for the representation
of convolutional codes where Xi = (F2)

n0 and Sl = (F2)
m. Generalized constraint nodes differ

from constraint nodes in Tanner graphs in a way that usually more than one parity-check equa-
tion is required in order to fully specify the local code. In the following we derive a factor graph
for the trellis representation of the (8,4,4) extended Hamming code. There are different ways
to derive a trellis representation of a linear block code using either the generator matrix or the
parity-check matrix. Based on a matrix with minimum span we obtain the corresponding mini-
mal trellis representation of the code which minimizes the number of states [McE96], see also
[KS95], [KDM+96]. In order to obtain generalized constraint nodes we can use the following
simple algorithm:

• STEP 1: Divide the code bits, i.e., the columns of the original matrix, into sub-groups of
n bits and associate each group with a symbol group index i′. The group span of a row
vector is then defined as the index of the rightmost group with a non-zero entry minus the
index of the leftmost group with a non-zero entry.

• STEP 2: Starting with the first non-zero symbol group in each row of the original matrix,
write each group including intermediate groups with all-zero entries into a separate row
until the last non-zero group is reached.

• STEP 3: Link the symbol groups in the different rows originating from one row in the
original matrix by inserting a new dedicated binary state variable which is placed between
the neighboring symbol groups i′ and i′ + 1. This state variable is then labelled with the
state group index l = i′.

• STEP 4: Repeat STEPS 2 and 3 for all rows in the original matrix.
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STEP 2 expands the original matrix in vertical direction and STEP 3 expands it in horizontal
direction. The use of dedicated state variables in STEP 3 implies a column weight of two for
each binary state variable. The total number of state variables in group l (between neighboring
symbol variable groups i′ and i′ + 1) depends on the number of rows in the original matrix with
overlapping group span. This determines the alphabet of state variable Sl and thus the state
complexity in the trellis representation of the code. Note that STEP 1 implies Xi′ = (F2)

n. As
we will see later, this determines the branch complexity in the trellis representation.

When we apply the above algorithm to the example of the minimum span matrix for the
(8,4,4) extended Hamming code in (3.7) and use duo-binary symbol variables with n = 2, we
obtain the 10× 14 matrix

x1 = s1 = x2 = s2 = x3 = s3 = x4 =

(x1 x2) (s
(1)
1 s

(2)
1 ) (x3 x4) (s

(1)
2 s

(2)
2 ) (x5 x6) (s

(1)
3 s

(2)
3 ) (x7 x8)

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1
1 1 1

1 1 1
1 1

(3.20)

with xi′ ∈ Xi′ , Xi′ = (F2)
2 and sl ∈ Sl, Sl = (F2)

2. Each symbol variable Xi′ now participates
in exactly one local code Cj sharing the same index, i.e., j = i′. The local code Cj involves be-
sides the symbol variable Xj also the preceding and succeeding state variables so that the local
code words are defined according to (3.12) as (x1, s1) ∈ C1, (s1,x2, s2) ∈ C2, (s2,x3, s3) ∈ C3

and (s3,x4) ∈ C4. The local codes are fully described by the local parity-checks in (3.20)
involving only the corresponding subset of symbol and state variables. The trellis represen-
tation of the code is then a graphical representation of all local codes and thus the set of all
code words. Based on (3.20) we can easily derive the time-varying trellis representation of the
(8,4,4) extended Hamming code with a state space dimension profile of (1,4,4,4,1) as shown in
Fig. 3.5 a). The corresponding factor graph representation is shown in Fig. 3.5 b). Symbol and
state variables are illustrated in the factor graph with circles and a double circles, respectively.
Generalized constraint nodes are simply represented with a black box so that the local code and
the complexity of the node is not revealed. Note that the two additional state variables S0 and
S4 appear in Fig. 3.5. These state variables at the beginning and the end of the code graph are
required because the conventional trellis representation assumes that all branches start in one
state (S0) and also end in one state (S4). However, the inclusion of these state variables into
(3.20) and the corresponding local codes C1 and C4 is dispensable since they only have a fixed
value, i.e., s0 = 0 and s4 = 0. Due to the use of a matrix with minimum (group) span we obtain
a trellis representation with a minimum number of trellis states, i.e., the minimal trellis of the
code.

Note that the factor graph of a trellis representation naturally features constraint nodes with
degree three while symbol and state variables typically have degree one and two, respectively.

3.3.3 Tailbiting Realizations
The state complexity of conventional trellis representations of block codes can in general be
reduced by using tailbiting trellises. In a tailbiting representation of a code the beginning and
the end of the code graph are connected together so that it forms a loop. In order to derive such
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Figure 3.5: Minimal trellis representation of the (8,4,4) extended Hamming code with a state
space dimension profile of (1,4,4,4,1) in a) and the associated factor graph in b).

a tailbiting trellis we modify the definition of a minimum span matrix as given in Section 3.2.
Instead of defining the span as the index of the rightmost nonzero entry in the matrix minus the
index of the leftmost nonzero entry we now work with a circular definition of the span. The
overall cyclic span of a matrix may be smaller than the overall span thus leading to a trellis
representation with a more favorable state space dimension profile. In case symbol variables
are grouped together the span is replaced with the corresponding group span. The loop structure
of the code graph allows the definition of local codes across the tailbiting joint. This typically
reduces the state complexity near the middle of the conventional trellis.

Again, we use the example of the (8,4,4) extended Hamming code with the minimum span
matrix in (3.7) in order to derive a tailbiting trellis representation of the code. When we group
two symbol variables together into duobinary symbol variables, i.e., n = 2, we notice that both
the group span and the cyclic group span in (3.7) is six. The matrix therefore also exhibits a
minimum cyclic group span. When we apply the algorithm from Section 3.3.2 with the cyclic
definition of the group span to (3.7) we obtain the 11× 15 matrix

x1 = s1 = x2 = x3 = s3 = x4 =

s0 (x1 x2) (s
(1)
1 s

(2)
1 ) (x3 x4) s2 (x5 x6) (s

(1)
3 s

(2)
3 ) (x7 x8) s0

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1
1 1 1

1 1
1 1 1

1 1

. (3.21)

The first six rows in (3.21) originate from the first three rows in (3.7) and are essentially identical
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to (3.20). The forth row in (3.7) now exploits the loop structure so that the first and second
symbol group are connected to the third and fourth symbol group through the additional state
variable S0 at the tailbiting joint. Note that state variable S0 appears twice in (3.21) and equality
is achieved with a degree two parity-check. The local codes Cj involve, besides the symbol
variable Xj , also the preceding and succeeding state variables so that the local code words
are defined according to (3.12) as (s0, x1, s1) ∈ C1, (s1,x2, s2) ∈ C2, (s2,x3, s3) ∈ C3 and
(s3,x4, s0) ∈ C4. The local codes are fully described by the local parity-checks in (3.21)
involving only the corresponding subset of symbol and state variables. The cyclic structure
allows the use of a binary state variable S2 in (3.21) instead of the duo-binary state variable in
(3.20) at the expense of an additional binary state variable S0. This leads to a minimal tailbiting
trellis representation with 4 trellis sections and a state space dimension profile of (2,4,2,4,2) as
illustrated in Fig. 3.6 a). Such a minimal tailbiting trellis was already presented in [CFV99] for
a different bit ordering. The corresponding factor graph representation is shown in Fig. 3.6 b).
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Figure 3.6: Minimal tailbiting trellis representation of the (8,4,4) extended Hamming code with
a state space dimension profile of (2,4,2,4,2) in a) and the associated factor graph in b).
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3.4 Normal Graphs
Normal graphs were derived from factor graphs by Forney [For01]. One of the main differences
lies in the representation of variables in the code graph. Factor graphs represent variables as
nodes while normal graphs use edges. The usage of edges implies that variables can only
participate in up to two constraint nodes. We differentiate between (visible) symbol variables
and (hidden or internal) state variables. A symbol variable is represented by a half edge or a
cut edge similar to an input/output (I/O) port. Symbol variables thus only participate in a single
constraint node. This is in contrast to state variables which are represented as ordinary edges
between two local constraint nodes. Half edges can directly be connected to other half edges
thus generating ordinary edges. Similarly, an ordinary edge can be cut into two half edges.
The key advantage of normal graphs is that all computations associated with the local codes
concentrate in the corresponding nodes while edges are solely used for the communication
between the nodes. The nodes can then be interpreted as local node processors and the edges
become the connecting wires between them. This special characteristic of normal graphs forms
the basis for the representation of FEC decoders in the subsequent chapters.

In the following we describe how factor graphs are converted into normal graphs. This con-
version introduces new equality constraint nodes which are then also transformed into nodes
with a degree of no more than three as outlined in Section 3.3.

3.4.1 Conversion of Factor Graphs
A factor graph can easily be converted into the corresponding normal graph representation
using the conversion rules in Fig. 3.7. Whenever a symbol variable Xi is involved in more

a) b)

Sl

Si,2

Si,1 Si,3

Si,2

Sl

Sl Sl,1

Xi

Xi Sl,3

Sl,2

Xi

Xi

Xi

Xi

Si,1

Figure 3.7: Conversion of symbol and state variable nodes in factor graphs into the correspond-
ing normal graph representation.

than one constraint node or a state variable Sl participates in more than two constraint nodes,
the corresponding variables are duplicated and connected to the original variables through an
equality constraint node. Such an equality constraint node forces all variables, i.e., edges, to be
identical. It is thus illustrated in the normal graph as rectangle with an equality sign inside as
shown in Fig. 3.7. Each symbol variable is then only connected to one constraint node. State
variables are connected to exactly two constraint nodes, i.e., the newly introduced equality
constraint node and the original constraint node. In general, each symbol variable Xi with
degree dv,i > 1 in the factor graph is duplicated by dv,i state variables Si,ν = Xi with ν ∈
{1, . . . dv,i}. Similarly, each state variable Sl with degree dv,l > 2 in the factor graph is replaced
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by dv,l new state variables Sl,ξ = Sl with ξ ∈ {1, . . . , dv,l}. No equality constraint nodes
are necessary for degree one symbol variables and degree two state variables. In this case, the
symbol variables simply become half edges and the state variables translate into ordinary edges.
Generalized constraint nodes in factor graphs do not require any conversion. They are therefore
also represented in the normal graph with a black box. For the special case of the exclusive OR
(XOR) operation of binary variables we use ¢ instead of ⊕.

When we apply the conversion rules from Fig. 3.7 to the binary factor graph for the (8,4,4)
extended Hamming code in Fig. 3.4 we obtain the associated normal graph in Fig. 3.8. A simi-

X2X1 X3 X5 X7X6X8 X4

S1 S2

S3

Figure 3.8: Normal graph representation of the (8,4,4) extended Hamming code with minimum
girth six.

lar code graph can be found in [For01]. The two non-binary factor graphs for (8,4,4) extended
Hamming code presented in Fig. 3.5 and Fig. 3.6 can also directly be converted into normal
graphs. The state variables S0 and S4 in Fig. 3.5 are special cases since they are connected to
only one constraint node. These state variables can either be represented in the normal graph
with a half edge or, alternatively, annexed to the neighboring constraint nodes since they have
only one fixed state.

3.4.2 Degree Restriction on Nodes
In this section we transform normal graphs in a way that the degree of all nodes in the code
graph is three. In the following we focus on binary code graphs based on the parity-check
matrix of the code. It is assumed that the rows and columns of the parity-check matrix H are
indexed with j and i, respectively, and that row j of the parity-check matrix has a row weight of
dc,j and that column i has a column weight of dv,i. This notation is consistent with Section 2.3.2.
The j-th row of the parity-check matrix translates into a parity-check node in the normal graph
with degree dc,j . Here, the degree of a node is defined as the number of edges connected to it.
The columns of the parity-check matrix represent equality nodes of degree dv,i+1 in the normal
graph. The difference between the column weight and the degree of the corresponding equality
node is due to the additional half edge used for symbol variables in the normal graph. Note that
this differs from the degree of symbol variable nodes in Tanner graphs or factor graphs.

Prominent examples of codes based on a binary graphs are LDPC codes. The normal graph
of a generic LDPC code based on the (N −K) × N parity-check matrix of the code is shown
in Fig. 3.9. On the left hand side of the code graph we observe K binary symbol variables
Xi, i ∈ {1, . . . , N} which are duplicated dv,i times in the corresponding equality constraint
nodes. On the right hand side of the code graph we have a total number of N −K parity-check
constraint nodes where constraint node j, j ∈ {1, . . . , N−K} has degree dc,j . The total number
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Figure 3.9: Normal graph representation of a generic LDPC code.

of branches (i.e., state variables) in the interleaver network Π is then determined by

N∑
i=1

dv,i =
N−K∑
j=1

dc,j. (3.22)

The transformation of the normal graph in Fig. 3.9 into a normal graph with degree three
nodes proceeds as follows. Every check node with degree dc,j > 3 is split up into dc,j−2 check
nodes of degree three. This can be achieved by applying the C3 Algorithm from Section 3.3.1 to
the parity-check matrix of the code. Here, we assume that the C3 Algorithm does not generate
state variables with a column weight of more than three. Similarly, every equality constraint
node for symbol variables with more than three edges connected to it, i.e., dv,i > 2, is split up
into dv,i− 1 equality constraint nodes with degree three. This degree limitation of equality con-
straint nodes can be accomplished with the V3 Algorithm which is similar to the C3 Algorithm
in Section 3.3.1.

The V3 Algorithm is divided into three steps:

• STEP 1: Identify all columns in the matrix corresponding to symbol variables with dv,i >
2, i ∈ IX .

• STEP 2: Add dv,i − 2 new columns for each column identified in STEP 1. Distribute the
dv,i ones in the original column over these dv,i−1 columns in a way that the first (i.e., the
original column) and the following dv,i − 3 new columns have weight one and only the
last column has weight two. Maintain the row positions of the ones.

• STEP 3: Add dv,i − 2 new rows for each column identified in STEP 1. Add two ones
in each of these rows so that all the dv,i − 1 columns obtained from one column in the
original matrix are linked pairwise in sequential order, i.e., the 1st and the 2nd, the 2nd
and the 3rd, and so forth. The original column then has weight two and all new columns
generated in STEP 2 have weight three.

Note that STEP 2 and 3 expand the matrix in horizontal and vertical direction, respectively.
The column weight for symbol variables is then two and the column weight for state variables
is limited to three. Hence, the degree of all equality constraint nodes in the normal graph is
limited to three. Step 2 and 3 can be reversed by adding up all columns which originated from
one column in the original matrix. This yields the original columns and all rows added in STEP
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3 have only zero entries, i.e., the corresponding degree two parity-checks become redundant.

When we apply both the C3 Algorithm from Section 3.3.1 and the above V3 Algorithm to
the parity-check matrix of a LDPC code we obtain a matrix representation of the transformed
normal graph. An example of such a transformed normal graph of a generic LDPC code is
depicted in Fig. 3.10. Note that all equality constraint nodes and parity-check constraint nodes
feature degree three.

. . . . . .

. . . . . .

row j in H

Π

column i in H

Figure 3.10: Transformed normal graph of a generic LDPC code with degree three nodes.



4
Decoding Based on Graphs

Many popular decoding algorithms can be interpreted as message passing decoding based on
code graphs. Several different types of code graphs were covered in Chapter 3. In the context
of this thesis we prefer normal graphs because of their similarity to block diagrams of FEC
decoders. Normal graphs will be heavily used in the next chapters in order to represent our
analog decoding networks. All computations of the decoder are concentrated in the nodes of
the normal graph while the edges are solely used for the communication between adjacent node
processors. Half edges for symbol variables are used for the input of channel values and the
output of the decoding result. Depending on the structure of the normal graph, the used message
format, the local computations in the node processors and the scheduling of the messages it is
possible to view various known decoding algorithms as message passing on normal graphs.
These include the sum-product and min-sum (or max-sum) algorithms, the Viterbi algorithm
[Vit67], the BCJR algorithm [BCJR74] and iterative decoding of LDPC codes [Gal62] or turbo
codes [BGT93]. The message passing algorithm is exact, i.e., optimal, only on cycle-free code
graphs, but there are many cases in which the message passing algorithm gives remarkably good
results even in cases where the code graph has loops. In general, decoding based on code graphs
with loops allows the approximation of optimal decoding with a reduced decoder complexity.
A code graph with cycles can be split up into two or more possibly cycle-free graph fragments
which are decoded separately. The information exchange between these graph fragments then
occurs in several iterations. Typical examples are iterative decoders for LDPC codes or turbo
codes. The code graph may also be split up into several segments which are processed in the
decoder in a sequential fashion in order to reduce decoding delay and storage requirements. An
example of this is sliding window decoding of convolutional codes.

We start with the formulation of the general decoding problem in Section 4.1 and then intro-
duce the general message passing decoding algorithm in Section 4.2. We differentiate between
message passing decoding based on binary and non-binary code graphs which are covered in
Section 4.3 and 4.4, respectively. Different optimal and suboptimal decoding algorithms are
considered. Section 4.5 summarizes a powerful technique for the analysis of iterative decoding
based on mutual information. In Section 4.6 we then pay attention to the quantization of soft
information.
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4.1 General Decoding Problem
For the formulation of the general decoding problem we assume that a vector of information
bits u is encoded into a vector of code bits c ∈ C and transmitted over a noisy communication
channel. At the receiver we then acquire the corresponding vector y of sampled matched filter
outputs, which we simply refer to as channel values. The task of the channel decoder can
be defined as finding the most likely code word ĉ which minimizes the word or block error
probability

Pw =
∑

y

P (ĉ 6= c|y)P (y) =
∑

y

P (û 6= u|y)P (y), (4.1)

with P (y) as the probability of the received vector of channel values. Note that the estimated
information bits û can directly be obtained from the estimated code bits ĉ using the inverse
encoder mapping. For a given vector y it is sufficient to minimize P (ĉ 6= c|y) or equivalently
maximize P (ĉ|y) by finding the most likely code word ĉ given that y is received. A decoder
decision based on this criterion represents the optimal solution to the general decoding problem
and the corresponding decoder is then called a maximum a posteriori (MAP) sequence decoder.
With Bayes’ rule we obtain

P (ĉ|y) =
P (y|ĉ)P (ĉ)

P (y)
. (4.2)

When we assume equally likely code words we find that maximizing P (ĉ|y) is equivalent to
maximizing P (y|ĉ). A decoder which uses this criteria for making a decoder decision is called
maximum likelihood (ML) sequence decoder. In this case the ML decoder leads to the same
word or block error probability as the MAP decoder. Note that ML decoding is equivalent
to minimum distance (MD) decoding which chooses the code word ĉ which is closest to the
received vector y in terms of the Hamming distance. A decoder based on the above rules is
also referred to as a sequence estimator since it finds the sequence of code bits, i.e., a valid code
word, which was most likely transmitted over the communication channel. In many cases it is
desirable to minimize the (information) symbol error probability rather than the word or block
error probability. Similar to the above, the symbol-by-symbol a posteriori probability (APP)

P (uk|y) (4.3)

represents the probability of information bit uk ∈ F2, k ∈ IU , given the received vector of chan-
nel values y. The optimum symbol estimator then finds the most likely symbol ûk according
to

ûk = arg max
uk∈F2

P (uk|y). (4.4)

This decision criterion is known as the symbol-by-symbol MAP decoding rule and the decoder
which outputs ûk is referred to as the symbol-by-symbol MAP decoder. The difference between
the MAP decoder and the APP decoder is that the APP decoder not only provides the hard
decision ûk but also some reliability information about this bit decision, e.g., P (ûk|y). Let
us assume that every information bit uk corresponds to bit xi in the vector of possible symbol
configurations x ∈ X with C ⊆ X and i ∈ IX . This means that we have a systematic code
where the information bits appear among the code bits. The APP decoder output in (4.3) can
then be expressed as

P (uk|y) = P (xi|y) =
P (xi,y)

P (y)
=

∑
x∈C,xi

P (y|x)P (x)

P (y)
. (4.5)
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It is convenient to express the APP decoder output in terms of the log-likelihood ratio [HOP96]

L(X̂i) = ln
P (xi = 0|y)

P (xi = 1|y)
= ln

∑
x∈C,xi=0

P (y|x)P (x)

∑
x∈C,xi=1

P (y|x)P (x)
(4.6)

= ln

∑
x∈C,xi=0

|IX |∏
η=1

p(yη|xη)P (xη)

∑
x∈C,xi=1

|IX |∏
η=1

p(yη|xη)P (xη)

(4.7)

= ln
p(yi|xi = 0)

p(yi|xi = 1)︸ ︷︷ ︸
Lcyi

+ ln
P (xi = 0)

P (xi = 1)︸ ︷︷ ︸
La(Xi)

+ ln

∑
x∈C,xi=0

|IX |∏
η=1,η 6=i

p(yη|xη)P (xη)

∑
x∈C,xi=1

|IX |∏
η=1,η 6=i

p(yη|xη)P (xη)

︸ ︷︷ ︸
Le(Xi)

. (4.8)

Note that the common factor 1/P (y) in (4.5) cancels out in when we use log-likelihood ratios.
The APP decoder output in (4.8) can be simply expressed as the sum of the weighted channel
value Lcyi, the a priori information La(Xi) and the extrinsic information Le(Xi) according to

L(X̂i) = Lcyi + La(Xi) + Le(Xi). (4.9)

The sign of L(X̂i) is equivalent to the hard decision of the symbol-by-symbol MAP decoder
and the magnitude |L(X̂i)| provides a reliability measure for the bit decision. In case there is
no a priori information available we gain P (xi = 0) = P (xi = 1) = 0.5 and thus La(Xi) = 0.

For many interesting coding schemes including LDPC codes and turbo codes the exact cal-
culation of the APP decoder output is computational intractable. In this case we need to rely on
suboptimal solutions to the decoding problem as discussed later in this chapter.

4.2 General Message Passing Decoding Algorithm
Many popular decoding algorithms can be seen as instances of a general message passing decod-
ing algorithm which operates on normal graphs. We differentiate between different realizations
of the message passing decoding algorithm based on the following properties:

• Structure of the code graph
The structure of the normal graph determines the paths for the bidirectional message
exchange in the decoder without specifying the message format, the local computations
in the node processors and the scheduling of the messages. There are various different
normal graphs for a given code which form the basis for different decoding algorithms.
In general, a different structure of the code graph yields a different decoder performance.
A cycle-free normal graph facilitates optimal decoder performance while a normal graph
with cycles implies a suboptimal decoder performance. However, code graphs with loops
may lower the computational complexity in the associated decoder.

• Message representation
The messages which are passed along the edges of the normal graph may have various dif-
ferent message formats. This includes likelihoods, log-likelihoods, log-likelihood ratios
and soft bits. A message may consist of a single real number or a vector of real numbers
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depending on the message format and the alphabet of the associated variables in the nor-
mal graph. In a digital decoder implementation the messages need to be represented with
a finite number of quantization levels.

• Computations in the node processors
The computations in the node processors are determined by the associated local codes
and the selected message format. When the messages are represented by likelihood vec-
tors the node processors perform multiplications and summations and we obtain the well
known sum-product algorithm. Digital decoder implementations typically use vectors
of log-likelihoods (or negative log-likelihoods) in order to replace the multiplication of
messages with summations, which are easier to implement. It is also common practice in
digital designs to replace the exact decoding operations in the node processors with ap-
proximations in order to reduce decoder complexity [RVH95]. A typical example is the
suboptimal max-sum (or min-sum) algorithm. A special case of this algorithm is the well
known Viterbi algorithm [Vit67] for ML decoding which performs these computations
only in one direction1 along the normal graph representing the trellis.

• Scheduling of the computations and the message exchange
There are various different schedules for the computation of the messages and the mes-
sage exchange on the normal graph. At the beginning of the decoding process all half
edges belonging to symbol variables are initialized according to the received channel val-
ues and all state variables are initialized so that all possible states are equiprobable. A
simple schedule may for example require that a node processor calculates or updates its
output whenever there is a new message on at least one of the corresponding inputs. The
output is then propagated along an edge in the normal graph to a connected node processor
where it then triggers another local computation. Such a schedule typically leads to more
computations than necessary so that it is in general not very efficient. This is because
a new message on one of the inputs may not alter the output of a generalized constraint
node processor, e.g., when another input belonging to a state variable is still initialized as
described in the above. This schedule can be modified in a way that the output of a node
processor is calculated or updated only when all inputs associated with a state variable
provide new messages. Based on a cycle-free normal graph this leads to a very efficient
decoding algorithm since the messages only need be computed once for each direction of
the edges. When the normal graph represents the conventional code trellis this schedul-
ing leads to a message exchange in both forward and backward direction as dictated by
the BCJR algorithm [BCJR74]. Decoding then naturally terminates as soon as all node
processors have calculated their outputs. Decoding based on normal graphs with loops
is only suboptimal and lacks such a clear termination. An example of this is a decoder
based on the normal graph of a tailbiting trellis representation of the code. Here, the mes-
sages propagate in forward and backward direction around the tailbiting ring as described
by the tailbiting APP algorithm [AH98]. Decoding then stops after a certain number of
wraps around the tailbiting ring. Another example is iterative decoding of LDPC codes
[Gal62]. In this case, the decoder works with a very similar schedule which distinguishes
between equality node processors and check node processors. In the first half of an iter-
ation all equality node processors compute their outputs which are then passed on to the
check node processors. The check node processors then calculate the new messages for
the equality node processors in the second half of the iteration. This iterative message
exchange continues for a certain number of iterations, or, until another stopping criteria
is fulfilled, e.g., a valid code word has been found. Normal graphs of turbo codes also
exhibit loops. Decoding of turbo codes [BGT93] relies on two (or more) component de-
coders which exchange their messages in several iterations similar to a LDPC decoder.

1An additional trace back for the surviving path is required.
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It is somehow surprising that message passing decoding of LDPC codes and turbo codes
allows a remarkable good decoder performance close to the Shannon limit despite the
presence of cycles in the code graph.

In the following sections we cover different decoding algorithms based on binary and non-
binary normal graphs in more detail.

4.3 Decoding based on Binary Graphs
We start with message passing decoding based on binary code graphs. Binary code graphs are
typically obtained from a parity-check matrix (or an extended parity-check matrix) of the code.
The most prominent example of codes based on binary code graphs are LDPC codes. Here, the
code graph has loops of different size so that message passing decoding becomes suboptimal
and iterative. However, iterative decoding of these class of codes exhibits excellent error cor-
recting performance and channel capacity may be closely approached. The associated decoder
consists of equality node processors and check node processors. In the following we cover
different message representations for binary random variables and the associated computations
in the node processors of the decoder. We then summarize iterative decoding of LDPC codes
based on normal graphs.

4.3.1 Message Representations for Binary Random Variables
A binary random variable X with the two possible outcomes x ∈ F2 can be described by the
two probabilities PX(x = 0) and PX(x = 1) with PX(x = 0) + PX(x = 1) = 1. The
log-likelihood of PX(x) is defined as ln(PX(x)) = lx(X), where ln denotes again the natural
logarithm. Binary random variables can then be described with the probability vector

( PX(0), PX(1) ), (4.10)

or the vector of log-likelihoods

( ln(PX(0)), ln(PX(1)) ) = ( l0(X), l1(X) ). (4.11)

For some message representations it is convenient to work with antipodal realizations of binary
random variables, i.e., x ∈ {+1,−1}. Here, we always assume the mapping 0 ↔ +1 and
1 ↔ −1 which is consistent with the mapping used for the BPSK modulation of the transmitted
signals in Section 2.2. In the following we will no longer distinguish between x ∈ {0, 1} and
x ∈ {+1,−1}. We can then use a single real number, e.g., the likelihood ratio

LR(X) =
PX(+1)

PX(−1)
, (4.12)

or, the log-likelihood ratio

L(X) = ln
PX(+1)

PX(−1)
, (4.13)

= l+1(X)− l−1(X), (4.14)

in order to fully characterize the binary random variable. The log-likelihood ratio L(X) is also
referred to as the L-value of variable X . The sign of L(X) represents the hard decision for the
bit, i.e., x̂ = sign(L(X)), while the magnitude |L(X)| represents a measure for the reliability
of the bit decision. The larger the magnitude the more reliable is the bit decision. Note that the
log-likelihood ratio at the output of the APP decoder in (4.9) is composed of three independent
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L-values. Alternatively, random variable X is also fully described by the soft bit λ(X), which
is defined as the expectation of the random variable according to

λ(X) = E{X} = (+1)PX(+1) + (−1)PX(−1),

=
eL(X) − 1

eL(X) + 1
,

= tanh

(
L(X)

2

)
. (4.15)

Again, we have x̂ = sign(λ(X)) with |λ(X)| as reliability measure for the bit decision. This
non-linear transformation from the L-value L(X) to the soft bit λ(X) limits the range of the
messages to values between −1 and +1. In the following we use a simplified notation for the
probabilities where the index of the random variable X is skipped whenever there is no danger
of confusion.

The conversion from one message representation to another message representation is sum-
marized in Fig. 4.1.

from
to

P (x = −1) = 1−λ(X)
2

P (x) LR(X) L(X)

LR(X) = 1+λ(X)
1−λ(X)

λ(X) = LR(X)−1
1+LR(X)

P (x = −1) = 1
1+eL(X)

P (x = +1) = 1+λ(X)
2

P (x = +1) = LR(X)
1+LR(X)

P (x = −1) = 1
1+LR(X)

λ(X) = P (x = +1)

−P (x = −1)

λ(X)

LR(X) = P (x=+1)
P (x=−1) L(X) = ln P (x=+1)

P (x=−1)

= 2 tanh−1(λ(X))

L(X) = ln(LR(X))

P (x)

λ(X)

LR(X)

L(X)

L(X) = ln 1+λ(X)
1−λ(X)

λ(X) = eL(X)−1
eL(X)+1

LR(X) = eL(X)

= tanh
(

L(X)
2

)P (x = +1) = eL(X)

1+eL(X)

Figure 4.1: Conversion table for different message representations.

4.3.2 Binary Constraint Node Processors
Binary normal graphs consist of edges representing binary random variables and two types of
constraint nodes, i.e., equality constraint nodes and parity-check constraint nodes. Fig. 4.2 de-
picts these two types of node processors with degree three and a message flow exposed towards
random variable X3. Depending on the used message format we obtain different computations
inside the node processors. The corresponding computations are listed in Fig. 4.2 in terms of
likelihood vectors, soft bits λ(Xi), likelihood ratios LR(Xi) and log-likelihood ratios L(Xi)
with i ∈ {1, 2, 3} and xi ∈ {0, 1}. On binary code graphs we pay particular attention to
message representations in terms of log-likelihood ratios. Here, a processor for an equality
constraint node performs the summation of L-values while the processor for a parity-check
constraint node involves the tangent hyperbolic and the inverse tangent hyperbolic functions as
listed in Fig. 4.2. This nonlinear operation is commonly referred to as the Boxplus operation of
L-values which is abbreviated in the following with the ¢ symbol [HOP96].
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L(X3) = 2 tanh−1
[
tanh

(
L(X1)

2

)
tanh

(
L(X2)

2

)]
= L(X1) ¢ L(X2)

(
P (x3 = 0)
P (x3 = 1)

)
=

(
P (x3 = 0)
P (x3 = 1)

)
=

(
P (x1 = 0)P (x2 = 0) + P (x1 = 1)P (x2 = 1)
P (x1 = 0)P (x2 = 1) + P (x1 = 1)P (x2 = 0)

)

1+LR(X1)LR(X2)
LR(X1)+LR(X2)

LR(X3) =

λ(X1)+λ(X2)
1+λ(X1)λ(X2)

λ(X3) =

(
P (x1=0)P (x2=0)

P (x1=0)P (x2=0)+P (x1=1)P (x2=1)
P (x1=1)P (x2=1)

P (x1=0)P (x2=0)+P (x1=1)P (x2=1)

)

X3

X2

X1

X3

X2

X1

LR(X3) = LR(X1)LR(X2)

L(X3) = L(X1) + L(X2)

λ(X3) = λ(X1)λ(X2)

Figure 4.2: Computations in binary constraint node processors for different message represen-
tations.

4.3.3 Iterative Decoding of LDPC Codes
Iterative decoding of LDPC codes relies on binary constraint node processors. In the following
we assume that the decoder is based on the normal graph of the (N − K) × N parity-check
matrix H of code C with j ∈ IC and i ∈ IX as the row and column index of H , respectively. The
generic normal graph of a LDPC code in shown in Fig. 3.9. The associated decoding network
consists of equality constraint nodes and parity-check constraint nodes which are connected to
each other through an interleaver network. The corresponding node processors were already
introduced in Section 4.3.2 for the case of nodes with degree three. These node processors will
later be utilized in our analog decoders. In this section we do not impose any degree restrictions
on the nodes in order to describe the iterative decoding process independent of a particular
implementation. Decoding based on binary code graphs is conveniently described in terms
of log-likelihood ratios. The equality node processor then simply performs the summation of
incoming L-values while the check node processor performs the Boxplus operation of L-values,
compare Fig. 4.2. The typical scheduling of the messages in the decoder dates back to Gallager
[Gal62], [Gal63] and a brief summary is given below.

The LDPC decoder is divided into the set of equality node processors and the set of check
node processors which form the two component decoders. The received vector of L-values Lcy
with y = (y1, . . . , yN) corresponding to the vector of code bits x = (x1, . . . , xN) is stored
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Xi,2
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Figure 4.3: Normal graph of an equality node processor for symbol variables in a) and a check
node processor in b).

at the input of the decoder. Furthermore, there is additional internal memory in order to store
the extrinsic information generated and exchanged by the two component decoders. Due to the
bidirectional message exchange on the normal graph there are two storage elements for each
edge in the code graph. Note that the number of edges in the normal graph (with respect to
the interleaver) is determined by the number of ones in the corresponding H matrix. At the
beginning of the decoding process new channel values are loaded and all the extrinsic memory
is reset to zero. The messages in the decoder are scheduled in a way that in the first half of an
iteration every equality node processor i with degree dv,i + 1 as shown in Fig. 4.3 a) calculates
the outgoing extrinsic information on edge η according to

Le(Xi,η) = Lcyi +

dv,i∑

ξ=1,ξ 6=η

La(Xi,ξ), (4.16)

with η ∈ {1, . . . , dv,i}. This calculation is based on the channel value Lcyi associated with
symbol variable Xi and the incoming a priori information La(Xi,ξ) obtained from the connected
check node processors. Note that the incoming message from the edge on which the message is
send out, i.e., ξ = η, is omitted in the calculation of (4.16). Further note that in the first iteration
all the a priori information is zero so that only the channel values Lcyi are send to the check
node processors. In the second half of the iteration every check node processor j with degree
dc,j as shown in Fig. 4.3 b) calculates the outgoing extrinsic information on edge ν according to

Le(Xj,ν) =

dc,j∑

ξ=1,ξ 6=ν

¢ La(Xj,ξ), (4.17)

with ν ∈ {1, . . . , dc,j}. Here, the incoming a priori information La(Xj,ξ) corresponds to the
interleaved version of the extrinsic information as calculated by the equality node processors
in the first half of the iteration. The extrinsic output of the check node processors is then
de-interleaved and passed back to the equality node processors where it is used as a priori
information in the next iteration. This iterative decoding process typically terminates after a
predefined number of iterations, or, as soon as a valid code word has been found. The decoder
output for symbol variable Xi is then determined by

L(X̂i) = Lcyi +

dv,i∑

ξ=1

La(Xi,ξ). (4.18)

The only difference compared to (4.16) is that now all the incoming a priori information con-
tributes to the calculation of the decoder output.

There is an alternative method for the calculation of the extrinsic output Le(Xi,η) of equality
node processor i on edge η. Instead of (4.16) we can first calculate the overall decoder output
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according to (4.18) and then subtract the a priori information La(Xi,η) obtained from edge η,
i.e.,

Le(Xi,η) = L(X̂i)− La(Xi,η). (4.19)

Depending on the degree of the equality constraint nodes this alternative computation may re-
duce decoder complexity. Furthermore, the calculation in (4.19) can be exploited by a modified
message passing where the equality node processors only calculate the decoder output accord-
ing to (4.18) which is then also passed on to all connected check node processors. The subtrac-
tion in (4.19) is then performed locally in the different check node processors. This technique
was, e.g., adopted in [DCK05] in order to reduce the complexity of the interconnects between
equality and check node processors.

There are further message passing schedules for LDPC codes which exhibit a special code
structure. This includes layered message passing decoding of specially constructed LDPC codes
[MS03], [Hoc04] and decoding based on the repeat accumulate structure of certain LDPC codes
[DJM98], [JKM00], [KLW06].

4.4 Decoding based on Non-Binary Graphs
In many cases normal graphs include non-binary variables and generalized constraint nodes.
Typical examples of such non-binary graphs are trellis representations of codes and graph repre-
sentations of turbo codes. Non-binary variables necessitate non-binary message representations
in the decoder. Depending on the implementation of the decoder one message representation or
the other may be preferable. The messages form message vectors which are processed in gener-
alized constraint node processors. Examples of decoding algorithms based on non-binary code
graphs include the well known BCJR algorithm [BCJR74], the tailbiting APP decoding algo-
rithm [AH98] for tailbiting codes and iterative decoding of turbo codes [BGT93]. All of them
are covered in this section. We then summarize a commonly used sliding window technique
which is later adapted to analog decoding. Iterative decoding of turbo codes is of particular
importance since channel capacity may be closely approached despite the presence of cycles in
the code graph.

4.4.1 Messages Representations for Non-Binary Random Variables
Message representations for non-binary random variables are obtained by a straightforward
generalization of the binary message representations in Section 4.3.1. In the following we
consider a discrete random variable X with x ∈ X and X = {0, . . . , J − 1}, where the total
number of possible outcomes is J . The probability that random variable X takes on values
x is denoted by PX(x) with

∑
x∈X PX(x) = 1. The log-likelihood of probability PX(x) is

defined as ln(PX(x)) = lx(X). A log-likelihood ratio of the discrete random variable X can be
expressed by using two arbitrary outcomes x and x′ [Ber00]

Lx,x′(X) = lx(X)− lx′(X) = ln
PX(x)

PX(x′)
, (4.20)

where Lx,x′(X) = −Lx′,x(X), Lx,x(X) = 0 and Lx,x′(X) = L0,x′(X) − L0,x(X). The log-
likelihood ratio Lx,x′(X) is then referred to as the L-value of random variable X based on
the outcomes x and x′. The random variable X is fully described by J distinct probabilities
or log-likelihoods as illustrated in Fig. 4.4. This information can be represented as vector of
probabilities

( PX(0), PX(1), . . . , PX(J − 1) ) , (4.21)

or as vector of log-likelihoods

( l0(X), l1(X), l2(X), . . . , lJ−1(X) ) . (4.22)
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Figure 4.4: Illustration of log-likelihoods and L-values for non-binary variables.

Alternatively, we can also use (J − 1) L-values as depicted in Fig. 4.4 with x = 0 as common
reference. We then obtain the vector of L-values

( L0,1(X), L0,2(X), . . . , L0,J−1(X) ) . (4.23)

In case of scaled probabilities according to κ PX(x) with
∑

x∈X κ PX(x) = κ we obtain

ln(κ PX(x)) = ln(κ) + lx(X) = ψ + lx(X), (4.24)

where the additive constant ψ corresponds to the natural logarithm of the scaling factor κ. Note
that the L-values in (4.23) are not affected by such a scaling factor.

The probability of outcome x can be calculated based on the log-likelihood ratios according
to

PX(x) =
e−Lx′,x(X)

∑J−1
ν=0 e−Lx′,ν(X)

= A(X) e−Lx′,x(X), (4.25)

where the outcome x′ is used as common reference to be freely chosen within the set of possible
outcomes, e.g., x′ = 0 in Fig. 4.4. Note that the scaling factor A(X) in (4.25) cancels out when
we convert the probabilities back to L-values.

4.4.2 Trellis Decoding
In this section we focus on the symbol-by-symbol APP decoding algorithm based on the trellis
representation of codes [BCJR74]. This decoding algorithm is also known as BCJR algorithm
according to the initials of the authors in [BCJR74]. The APP decoding algorithm can be viewed
as a special case of message passing decoding on a cycle-free code graph where the messages
and the constraint nodes are in general non-binary. The normal graph of a terminated convolu-
tional code is depicted in Fig. 4.5 a) together with the corresponding trellis representation for
the example of a memory m = 2 code in Fig. 4.5 b). Note that all constraint nodes in the normal
graph have degree three. One node processor of the associated decoder is exposed in Fig. 4.5 a)
illustrating the bidirectional message exchange on the code graph. The decoder output is given
in terms of log-likelihood ratios [HOP96] as

L(Ûk) = ln
P (uk = 0|y)

P (uk = 1|y)
= ln

∑
(s,s′),uk=0

p(s, s′,y)

∑
(s,s′),uk=1

p(s, s′,y)
, (4.26)

where y denotes the sequence of received values and s and s′ are possible realizations of state
variables S and S ′ at time k and k +1, respectively. For a memoryless transmission channel we
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b)
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Figure 4.5: Normal graph of a terminated convolutional code with an exposed message flow
for generalized constraint node k in a) and the equivalent trellis representation for the example
of a memory m = 2 code in b).

can define three independent probabilities [BCJR74], [HOP96]

αk(s) = p(s, yt<k), (4.27)
γk(s, s

′) = p(s′,yk|s) = P (s′|s)p(yk|s, s′), (4.28)
βk+1(s

′) = p(yt>k|s′). (4.29)

This allows the substitution of p(s, s′, y) in the numerator and denominator of (4.26) with

p(s, s′,y) = αk(s)γk(s, s
′)βk+1(s

′). (4.30)

The transition from state s to state s′ in (4.28) is determined by

γk(s, s
′) =

n∏
ν=1

γ
(ν)
k (s, s′) (4.31)

with

γ
(ν)
k (s, s′) =





1
1 + e−Lcy

(ν)
k

P (x
(ν)
k = 0) if x

(ν)
k = 0,

e−Lcy
(ν)
k

1 + e−Lcy
(ν)
k

P (x
(ν)
k = 1) if x

(ν)
k = 1.

(4.32)

Here, Lcy
(ν)
k denotes the L-value associated with the ν-th code bit in the k-th trellis section

which is obtained from the channel. The probabilities P (x
(ν)
k = 0) and P (x

(ν)
k = 1) in (4.32)

represent additional a priori information which may be available for the corresponding bit po-
sition. The α values in (4.27) are calculated in a forward recursion starting from the beginning
of the trellis with

αk+1(s
′) =

∑
s

αk(s)γk(s, s
′), (4.33)

while the β values in (4.29) are calculated in a backward recursion starting from the end of the
trellis with

βk(s) =
∑

s′
γk(s, s

′)βk+1(s
′). (4.34)
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The algorithm is therefore also referred to as forward-backward algorithm. In the following we
assume that all paths in the code trellis start in the all-zero state and also end in the all-zero
state. In this case, the α and the β recursions are initialized with α0(0) = 1 and βend(0) = 1,
respectively. With (4.26) and (4.30) we obtain for the a posteriori decoder output for the ν-th
bit position in trellis section k

L(X̂
(ν)
k ) = ln

∑
(s,s′),x(ν)

k =0

αk(s)γk(s, s
′)βk+1(s

′)

∑
(s,s′),x(ν)

k =1

αk(s)γk(s, s′)βk+1(s′)
. (4.35)

The expressions for the a posteriori decoder output in (4.35) can be split up into three indepen-
dent terms [HOP96]

L(X̂
(ν)
k ) = Lcy

(ν)
k + La(X

(ν)
k ) + Le(X

(ν)
k ), (4.36)

where Lcy
(ν)
k represents the L-value obtained from the channel and La(X

(ν)
k ) as the optional a

priori information. The third term Le(X
(ν)
k ) reflects the extrinsic output of the decoder which

is gathered from the information available about the other bit positions in the code word. In
case of systematic codes the decoder output L(Ûk) for the k-th information bit is determined by
the corresponding code bit. When the information bit Uk appears in state S ′ of the k-th trellis
section the expression in (4.35) simplifies to

L(Ûk) = ln

∑
s′,uk=0

αk+1(s
′)βk+1(s

′)

∑
s′,uk=1

αk+1(s′)βk+1(s′)
. (4.37)

This output calculation for example applies to convolutional codes with feedforward encoder.

In order to establish the link to message passing decoding we define the row vector αk and
the column vector βk according to

αk = ( αk(0), . . . , αk(2
m − 1) ) (4.38)

and
βk = ( βk(0), . . . , βk(2

m − 1) )T , (4.39)

respectively. Both vectors have a total number of 2m elements and represent the probabilities
of trellis state S in the forward and backward recursion. Furthermore, we define a 2m × 2m

transition matrix Γk with elements γk(s, s
′). Transitions which are not present in the trellis

are represented with a zero entry in Γk. The forward and backward recursion of the decoding
algorithm can then be defined in vector matrix notation as

αk+1 = αkΓk (4.40)

and
βk = Γkβk+1, (4.41)

respectively. This formulation allows the interpretation of the APP decoding algorithm as mes-
sage passing decoding based on the normal graph in Fig. 4.5 a). The vectors in (4.38) and (4.39)
represent the messages while (4.40) and (4.41) define the local computations in the node pro-
cessors. The messages are scheduled in a way that the output of a node processor is calculated
as soon as the corresponding inputs become available. With the appropriate initialization of the
message vectors at the beginning end the end of the terminated trellis this leads to a propagation
of the messages in forward and backward direction along the code graph. A node processor
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can calculate the decoder output according to (4.35) or (4.37) as soon as the messages from the
forward and backward recursions are available.

A straightforward implementation of the algorithm in the digital domain uses only a single
node processor for each recursion. One starts at the beginning of the trellis and processes the
information in the forward recursion and stores all intermediate α vectors until the end of the
trellis is reached. As soon as the channel values of the overall code block have been received the
second processor can start from the end of the trellis and calculate the β vectors in the backward
recursion. The results of this recursion are then combined with the stored vectors of the forward
recursion and the channel values in order to calculate the decoder output. This procedure guar-
antees optimal decoder performance, but introduces a considerable amount of decoding delay,
in particular for codes with large block lengths. Furthermore, the sequence of all channel values
(or γ values equivalently) and α vectors need to be stored along the trellis, which uses up lots
of memory. It is therefore common practice to utilize a sliding window decoder as described in
the next section.

4.4.3 Generalized Sliding Window Decoding
A digital decoder is commonly implemented using a sliding window technique [DGM93],
[BDMP96], [Vit98] (and the references therein) in order to reduce decoding delay and stor-
age requirements. This approach can be thought of as message passing decoding on a fragment
of the code graph rather than the overall code graph. For the formulation of the generalized slid-
ing window decoding algorithm we assume that such a fragment consists of W = L + D + L
consecutive trellis sections as shown in Fig. 4.6. Typically, W spans significantly less code bits

output

β
α

DL L

Figure 4.6: Generalized sliding window decoder with a window size of W = D + 2L.

than the overall code trellis. The W trellis sections are referred to in the following as the decod-
ing window. The APP decoding algorithm from Section 4.4.2 is now applied to such decoding
windows. In general, there is no information available about the distribution of the α and β
vectors at the beginning and the end of the decoding window. Here, sliding window decoding
relies on the fact that the recursions approximate the distributions of the α and β vectors in
the APP decoder after a sufficiently large number of trellis sections independent of the starting
distribution. This number of trellis sections is referred to as stabilization length L. As a rule
of thumb, the stabilization length is typically five to six times the encoder memory. We always
assume that the sliding window decoder starts with a uniform distribution of state probabilities
unless there is some other information available, e.g., at the beginning and the end of a conven-
tional trellis. In case the stabilization length L is required for both recursions we can decode
D = W − 2L trellis sections within each decoding window. Typically, the decoding window
slides along the code trellis as the channel values are received. There is also the possibility
of decoding more than one window in parallel since all decoding windows are independent of
each other. The speed of the decoder then scales linearly with the number of windows pro-
cessed in parallel. The generalized sliding window decoder allows a significant reduction of
both decoding delay and storage requirements at the expense of a computational overhead in-
troduced by the stabilization length L. We will see later that the generalized sliding window
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a) APP decoding
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decoder output

1st window

2nd window

last window

b) Sliding window decoding
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Figure 4.7: APP decoding of a terminated convolutional code in a) and corresponding sliding
window decoding with W = D + L in b).

decoder, although being suboptimal, in many cases closely approaches the performance of the
APP decoder.

A similar technique was utilized earlier for high-speed Viterbi decoding [FM91] and the
equalization of inter-symbol interference (ISI) channels [AF70], [EPG94].

In the following we investigate two instances of generalized sliding window decoding. The
first realization of this technique applies to terminated convolutional codes. Conventional APP
decoding and sliding window decoding of such a code is illustrated in Fig. 4.7 a) and Fig. 4.7 b),
respectively. The decoding window of size W = D+L with D = L starts at the beginning of the
code trellis and then slides along the code trellis. The α recursion in the first decoding window is
initialized according to the APP decoder in Section 4.4.2 so that there is no stabilization length
L required. The β recursion is initialized with a uniform distribution of state probabilities as
described in the above. Note that this recursion can start much earlier than the β recursion
in the APP decoder, compare Fig. 4.7 a). Further note that the α recursion is only performed
for D trellis sections while the β recursion runs over L + D trellis sections. After the first
D = W −L trellis sections are decoded the decoding window is shifted by D trellis sections to
the right in order to decode the next D trellis sections. The α recursion in the second decoding
window is now initialized with the result of the α recursion in the first decoding window and
the β recursion proceeds as described for the first decoding window. The last decoding window
benefits from the know starting distribution for the β recursion at the end of the code trellis so
that up to D + L trellis sections can be decoded. In order to achieve a more continuous decoder
output there can be one processing unit for the forward recursion and two processing units for
β recursion. While one unit calculates β vectors used for the decoder output, the other unit
already builds up reliable β vectors in the next decoding window. When the last output of one
decoding window is calculated the decoder can then continue with output calculations in the
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a)

b)

c)

D

WT trellis sections

L

α
β

α

β

ring size WT = D

L

Figure 4.8: a) Unwrapped trellis of a tailbiting code. b) Decoding of a tailbiting code as a
special case of the generalized sliding window decoding algorithm. c) Decoding of a tailbiting
code with the wrap around algorithm.

next decoding window.
The second realization of generalized sliding window decoding applies to tailbiting con-

volutional codes. Optimal decoding of tailbiting convolutional codes requires to run the APP
decoding algorithm from Section 4.4.2 for each of the 2m possible starting states in the trellis.
This is because the state at the beginning and the end of the tailbiting trellis is not necessarily
the first, i.e., the all-zero state. Instead, any state is possible with the only constraint that the
first and the last state in the trellis is the same for the set of all code words. This implies that the
optimal decoder for a tailbiting convolutional code is roughly by a factor of 2m more complex
than the decoder for a terminated convolutional code. The key challenge in decoding tailbit-
ing convolutional codes is the unknown starting distribution of the recursions at the beginning
and the end of the trellis. This problem can efficiently be solved with the generalized sliding
window decoding algorithm from above. For this, the parameter D is chosen according to the
number of trellis sections in the tailbiting ring. The stabilization of the forward and backward
recursions then occurs on the last and the first L trellis sections of the tailbiting trellis, respec-
tively. The unwrapped trellis of a tailbiting convolutional code with WT trellis sections is shown
in Fig. 4.8 a). Fig. 4.8 b) illustrates how the decoding window of size W = L+WT +L derives
from Fig. 4.8 a). We then start the forward and the backward recursions with a uniform distri-
bution of state probabilities and calculate the decoder output for the D = WT trellis sections of
the tailbiting convolutional code.

The problem of finding the appropriate starting state in the tailbiting trellis of the code can
also be formulated as eigenvalue problem

α0P (y) = αL = α0Γ1 . . .ΓWT
, (4.42)

where the starting distribution α0 corresponds to the normalized left eigenvector of the matrix
Γ1 . . .ΓWT

/P (y) [AH98]. Similarly, the backward recursion can be initialized with the right
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eigenvector of the matrix. The calculation of these eigenvalues can be avoided due to the fact
that the repeated multiplication of an arbitrary starting distribution α0 with a positive matrix
converges to the principal eigenvalue of that matrix [Dei91]. This means that we reasonably
well approximate these eigenvalues and thus the desired starting distributions for the recursions
when we perform the forward and backward recursions several times around the tailbiting trellis.
Typically, we do not have to perform several recursions around the tailbiting trellis unless the
block length is very short with respect to the encoder memory, i.e., WT < L. Fig. 4.8 c) depicts
the generalized sliding window decoder based on the tailbiting trellis of the code. The ring
structure of the code naturally connects the beginning and the end of the decoding window and
therefore provides the required stabilization length at the beginning and the end of the window
automatically. Depending on the stabilization length L and the block length WT the recursions
wrap more or less around the decoder ring. The algorithm is therefore also referred to as the
wrap-around decoding algorithm.

An analog decoder implements such a ring for both the forward and the backward recursion.
In this case, neither the stabilization length is limited to L trellis sections, nor the recursions
start with a uniform distribution of the α and the β values. Instead, the signals propagate freely
around the tailbiting trellis until a stable state is reached. The analog tailbiting convolutional
decoder is covered in more detail in Section 5.2.3.

Note that the decoding window in Fig. 4.8 b) can also be split up into several decoding win-
dows.

4.4.4 Iterative Decoding of Turbo Codes
The parallel concatenation of block or convolutional codes is a particularly interesting example
of codes based on non-binary graphs. Such a code construction was first devised by Berrou,
Glavieux and Thitimajshima for the case of two parallel concatenated convolutional codes to-
gether with a very powerful iterative decoding algorithm [BGT93]. Due to their unprecedented
good error correcting performance these codes were termed turbo codes. The normal graph of
such a code concatenation is based on the normal graphs of the two component codes which
are connected to each other through equality constraint nodes and an interleaver network Π
as shown in the lower part of Fig. 4.9. The scheduling of the messages on this code graph is
summarized below.

The turbo decoder is divided into the set of the upper and lower node processors which
form the decoders for the two component codes. The bidirectional message exchange within
the first component decoder and between the two component decoders is exposed in the upper
part of Fig. 4.9 for the example of two rate R = 1/2 convolutional codes. The input values
Lcy

(1)
k and Lcy

(2)
k represent the channel values for the k-th information bit uk = x

(1)
k and the

corresponding parity bit x
(2)
k associated with the k-th node processor (trellis section) of the first

component decoder. The node processors of the component codes are in general non-binary
and involve the branch metric computation, the calculations associated with the forward and
backward recursions and the calculation of the extrinsic output as outlined in Section 4.4.2. At
the beginning of the decoding process a new block of channel values Lcy is received and all
decoder internal L-values are reset to zero, i.e.

Le,ξ(Uk) = 0, ∀k and ξ ∈ {1, 2}. (4.43)

One iteration of the iterative decoding process is then divided into the following steps. In the
first half of the iteration the equality node processors provide

Lin,1(Uk) = Lcy
(1)
k + Le,2(Uk), ∀k, (4.44)

to the input of the first component decoder. This includes the channel information Lcy
(1)
k about

the systematic bit and the extrinsic output Le,2(Uk) of the second component decoder, which acts
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Figure 4.9: Normal graph of a turbo code which consists of a parallel concatenation of two rate
R = 1/2 convolutional codes.

as a priori information for the first component decoder. The channel values Lcy
(2)
k associated

with the first set of parity bits are applied concurrently. The first component decoder then
calculates its extrinsic output Le,1(Uk) according to the scheduling of the messages in Section
4.4.2. This extrinsic output is passed back to the equality node processors. The equality node
processors then provide

Lin,2(Uk) = Lcy
(1)
k + Le,1(Uk), ∀k, (4.45)

to the interleaver. This includes the channel information Lcy
(1)
k about the systematic bit and

the extrinsic output Le,1(Uk) of the first component decoder, which acts as a priori information
for the second component decoder. In the second half of the iteration the interleaved version
of Lin,2(Uk) is applied to the input of the second component decoder. The channel values
associated with the second set of parity bits originating from the second component encoder
are applied concurrently. The second component decoder then calculates its extrinsic output
Le,2(Uk) according to the scheduling of the messages in Section 4.4.2. This extrinsic output
is then de-interleaved and passed back to the equality node processors. This step completes
one iteration of the turbo decoder. The decoding process than continues for a fixed number
of iterations, or, until a certain stopping criteria is fulfilled, see, e.g., [Rob94]. After the last
decoder iteration the equality node processors provide the extrinsic output of the overall turbo
decoder, i.e.,

Le(Uk) = Le,1(Uk) + Le,2(Uk), ∀k, (4.46)

or, alternatively, the overall decoder output

L(Ûk) = Lcy
(1)
k + Le,1(Uk) + Le,2(Uk), ∀k. (4.47)
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4.5 Extrinsic Information Transfer Charts
The extrinsic information transfer (EXIT) chart was introduced by ten Brink in 1999 [tB99].
EXIT charts are nowadays a commonly used tool for the analysis of iterative decoding and the
design of new codes. They rely on the mutual information as introduced in Section 2.5. One
of the key advantages is that the convergence of iterative decoding can be predicted solely by
investigating the component decoders instead of the overall iterative decoder. This significantly
simplifies the analysis and allows the selection of component codes with matching properties.
Every component decoder is described by a characteristic curve in the EXIT chart. In case the
received channel values are applied to the input of the component decoder this characteristic
curve depends on the channel SNR. The distribution of the L-values obtained from the channel
can be derived from the distribution of the matched filter output y using the transformed random
variable y′ = Lcy with the conditioned pdf

py′(Lcy|x = ±1) = py(1/Lc y′|x = ±1)
1

Lc

=
1√

4πLc

e−
(y′∓Lc)2

4Lc

=
1√

2πσ2
y′

e
− (y′∓my′ )

2

2σ2
y′ . (4.48)

We obtain a Gaussian distribution with mean my′ = ±Lc = 2/σ2
n and variance σ2

y′ = 2Lc =

4/σ2
n. The conditioned pdf in (4.48) is symmetric, i.e., p(−y′|x) = p(y′| − x), and for equally

likely inputs with P (x = +1) = P (x = −1) satisfies the consistency condition [RU01]

p(−y′|x) = e−y′xp(y′|x). (4.49)

Note that the consistency condition is fulfilled for a Gaussian distribution only if σ2
y′ = 2my′ .

This implies that the L-values from the channel are fully characterized by the SNR, or, alterna-
tively, by the mean or the variance of the distribution. Another possible characterization is the
mutual information. For the symmetric (and consistent) pdf in (4.48) we obtain for the mutual
information [TH02]

I(X; Y ′) = 1−
∫ ∞

−∞
p(y′|x = +1) log2(1 + e−y′) dy′ (4.50)

= 1− E{log2(1 + e−y′)|x = +1}. (4.51)

When we replace the expectation E{.} with the time average over a sufficiently large number
of L-values we obtain the approximation

I(X; Y ′) ≈ 1− 1

NI

NI∑
i=1

log2(1 + e−xiy
′
i). (4.52)

The simulation of one component decoder independent of the other requires that the a priori
information is modeled appropriately. It is common practice in the EXIT chart analysis to
assume that the L-values La at the a priori input of the decoder are also distributed according to
(4.48). We then obtain

La =
σ2

a

2
x + σa, (4.53)
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with mean ma = ±σ2
a/2 and variance σ2

a of a consistent Gaussian distribution. The mutual
information at the a priori input can be expressed in terms of σa as

IA(σa) = I(X; La) = 1−
∫ ∞

−∞

1√
2πσ2

a

e
− (La−σ2

a/2)2

2σ2
a log2(1 + e−La) dLa, (4.54)

which can be solved numerically. It is monotonically increasing in σa so that there is a unique
σa for a given IA(σa).

The characteristic curve of a component decoder illustrates the mutual information IE =
I(X; Le) at the extrinsic output of the component decoder as a function of the mutual infor-
mation IA(σa) at its a priori input. We now summarize the simulation of a characteristic curve
for a given Eb/N0. Randomly generated information bits are encoded and transmitted over an
AWGN channel with

σ2
n =

N0

2ES

=
N0

2REb

, (4.55)

where R refers to the code rate of the concatenated coding scheme. The mutual information
at the input of the component decoder is chosen so that 0 ≤ IA(σa) ≤ 1. A selected IA(σa)
value then determines σa as described in the above. This allows the modeling of the L-values
at the a priori input with a Gaussian (and consistent) distribution according to (4.53). After the
calculation of the L-values at the extrinsic output of the component decoder we can determine
the mutual information IE according to (4.52). The simulations are then repeated so that a
sufficiently large number of L-values is available for the calculation of the mutual information.

The performance of an iterative decoder can be predicted based on the plot of the character-
istic curves of the two component decoders. The mutual information IE1 at the extrinsic output
of the first component decoder represents the mutual information IA2 at the a priori input of the
second component decoder. The mutual information at the extrinsic output IE2 of the second
component decoder then forms the mutual information IA1 at the a priori input of the first com-
ponent decoder. The characteristic curves are therefore combined in a way that IA1 and IE2 are
plotted on the x-axis while IE1 and IA2 are represented on the y-axis of the EXIT chart. The
trajectory of the iterative decoder can then be determined graphically based on the plot of the
two characteristic curves. The first component decoder starts with IA1 = 0 and provides its
extrinsic output to the a priori input of the second component decoder, i.e., IA2 = IE1. The
second component decoder then feeds back its extrinsic output to the a priori input of the first
component decoder, i.e., IA1 = IE2, and a new iteration starts. This process then continues for
a certain number of iterations. The zig-zag line in the EXIT chart which illustrates this itera-
tive exchange of mutual information represents the estimated trajectory of the overall decoder.
This estimation improves with increasing block length of the code. Depending on the SNR of
the channel the characteristic curves of the two component decoders may intersect or not. In
case the curves do not intersect and there is an open tunnel in the EXIT chart from the point
(IA1 = 0, IA2 = 0) to the point (IE1 = 1, IE2 = 1) the zig-zag line may reach the upper right
corner with increasing number of iterations. At the point (IE1 = 1, IE2 = 1) the decoder has
perfect knowledge about the transmitted bits, i.e., the bit error probability is zero.

More details on the EXIT chart analysis of serially concatenated codes and parallel concate-
nated codes can be found in [tB00] and [tB01], respectively.

4.6 Quantization of Soft Information
This section focuses on the quantization of soft information as it is necessary in all digital re-
ceivers. Here, the performance of a floating point implementation can be closely approached by
a realization which uses only a finite number of quantization levels. The number of quantiza-
tion levels in a digital decoder determines the computational complexity of the node processors
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and the size of the memory in the decoder. The goal is therefore to use a minimum number
of quantization levels while maintaining an acceptable decoder performance. An analog im-
plementation theoretically works with an infinite number of quantization levels, i.e., the true
soft values. However, device mismatch, temperature dependencies and other impairments may
cause an effect similar to quantization. Sensitivity to quantization would thus also indicate a
sensitivity to such impairments. Quantization of soft information is also particularly impor-
tant since in most applications analog decoders need to interface to other digital components
in the receiver. This implies that there are digital-to-analog (D/A) and analog-to-digital (A/D)
converters at the input and the output of the analog decoder, respectively. The number of bits
which need to be processed in the D/A and A/D converter directly impact area and power con-
sumption of these converters. In many practical applications it may also be required to store
soft information inside the decoder in order to facilitate sequential decoder architectures. An
example of this is the sliding window turbo decoder architecture in Section 5.4.2 where the
extrinsic output of the component decoders can optionally be stored in the digital domain. In
this case the required number of bits for the internal A/D and D/A conversion is of particular
importance since these converters need to operate at a multiple of the block rate. This is be-
cause one iteration requires the A/D conversion of all extrinsic outputs and the corresponding
D/A conversion after interleaving or de-interleaving. The number of quantization levels is also
important for analog decoders where the input from the channel or the extrinsic information is
stored on analog memory elements, e.g., as voltage on a capacitor. Here, the digital resolution
gives an indication for the required accuracy of the analog storage elements, e.g., the size of the
capacitor.

In the following we summarize a nonlinear quantization technique which is based on the
computational cutoff rate [Mas74], [JZ99]. The computational cutoff rate R0 provides, in con-
trast to the Shannon limit, a more practical measure for the achievable information rate in a
communication system with moderate decoder complexity [Fri95]. This quantization technique
is optimal in the sense that it maximizes R0 for all possible quantization schemes using an iden-
tical number of quantization levels. The computational cutoff rate for a discrete memoryless
channel (DMC) with binary input x and q-ary output ȳ(ν), ν ∈ {1, . . . , Q}, is given by

R0 = − log2


min

P (x)





Q∑
ν=1

(∑
x

√
P (ȳ(ν)|x)P (x)

)2





 , (4.56)

where the minimization is carried out for all distributions P (x) at the input [Mas74]. In our
context, the output of the DMC represents the different quantization levels ȳ(ν) while P (ȳ(ν)|x)
denotes the transition probability from input x to quantization level ȳ(ν). For equally likely
input bits, i.e., P (x = +1) = P (x = −1) = 0.5, the expression in (4.56) is maximized and we
obtain

R0 = 1− log2

(
1 +

Q∑
ν=1

√
P (ȳ(ν)|x = +1)P (ȳ(ν)|x = −1)

)
. (4.57)

In this case the computational cutoff rate only depends on the transition probabilities P (ȳ(ν)|x)
which are determined by the selection of the quantization thresholds Tν . Here, we assume that
Tν represents the threshold between the quantized outputs ȳ(ν) and ȳ(ν+1). The quantization is
assumed to be optimal when the selected quantization thresholds maximize the computational
cutoff rate and thus minimize the sum in (4.57). A necessary condition for this can be formu-
lated according to [Mas74], [JZ99] as

L(y = Tν |X) =
1

2

(
L(ȳ(ν)|X) + L(ȳ(ν+1)|X)

)
, (4.58)



4.6 Quantization of Soft Information 55

with

L(y = Tν |X) = ln
p(y = Tν |x = +1)

p(y = Tν |x = −1)
(4.59)

and

L(ȳ(ν)|X) = ln
P (ȳ(ν)|x = +1)

P (ȳ(ν)|x = −1)
. (4.60)

The quantization thresholds Tν can be found with a simple algorithm [Mas74], [JZ99]. Start
with an arbitrarily selected T1 which determines L(y = T1|X) and L(ȳ(1)|X). Choose T2 so
that L(ȳ(2)|X) satisfies (4.58). Then choose T3 so that L(ȳ(3)|X) satisfies (4.58) and so on. In
case a TQ−1 is found which also satisfies (4.58) the approach was successful. Otherwise, the
procedure needs to be repeated for a different T1.

The above algorithm determines the quantization thresholds Tν for the matched filter output
y depending on the distribution of the channel values, i.e., the channel SNR. Table 4.1 lists the
optimal quantization thresholds together with the corresponding quantized L-values L(ȳ(ν)|X)
for the example of ES/N0 = 0 dB. The corresponding values for the computational cutoff rate
are also added in Table 4.1. Alternatively, the quantization thresholds can also be calculated
based on the distribution of L-values py′(Lcy|x) in (4.48). In this case the quantization thresh-
olds in Table 4.1 need to be scaled with Lc while the quantization levels remain unchanged.

The channel values at the input of the decoder can directly be quantized according to Ta-
ble 4.1. However, in Section 5.4.2 we cover a sliding window turbo decoder which necessitates
the storage of the extrinsic output of the component decoders. In this case, the information
can be stored on either analog or digital memory elements. The latter immediately raises the
question about the appropriate quantization of the extrinsic L-values since the distribution of the
extrinsic values differs from the distribution of the channel values. We demonstrate in Section
5.4.2 that an excellent decoder performance can be achieved when the scaled extrinsic output
Le(X)/Lc, with Lc = 4ES/N0, is quantized according to Table 4.1. This observation is also
supported by the fact that a precise estimation of the channel SNR is not required for a good
decoder performance.
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5
Analog Decoding

FEC decoders are traditionally implemented using digital signal processors (DSPs), field pro-
grammable gate arrays (FPGAs) or digital application specific integrated circuits (ASICs). Digi-
tal decoder implementations operate on discrete messages in discrete time and require the distri-
bution of clock signals within the decoder. In order to achieve a good performance, the decoder
needs to process soft information. This requires that the channel values at the decoder input
and the values inside the decoder are represented by a sufficiently large number of quantization
levels. Many applications require that the decoder also provides soft information at its output.
This soft output also plays an essential role when the decoder is used as a component decoder
for state-of-the-art LDPC codes or turbo codes. Here, a significant number of iterations are nec-
essary for decoding a single code word, during which the extrinsic output from one component
decoder is fed back as a priori information to the input of the other component decoder.

However, looking at the basic concept of such a soft-in/soft-out decoder, it seems to be far
more obvious and straightforward to use an analog signal processor instead of a digital one.
An analog decoder naturally accepts and delivers soft values represented by voltages and cur-
rents in analog transistor circuits without any quantization loss. Here, decoding takes place in a
completely unsynchronized and time-continuous fashion without the need for any internal clock
signals. Compared to conventional iterative decoding, the iterations vanish and the extrinsic in-
formation is exchanged in a time-continuous fashion. Consequently, new information is passed
on to neighboring node processors as soon as it becomes available in one part of the decoder.
Overall decoder performance may thus be improved. This is in clear contrast to digital decod-
ing where information is first calculated according to the decoding rule and then exchanged in
one full step. The time- and value-continuous analog behavior could be modeled in the digital
domain by using only small message increments instead of the calculated messages. Both the
messages and the time axis would then be represented with a finer resolution. This would clearly
increase the complexity of such a digital decoder implementation. Analog signal processing in
the decoder naturally achieves a time- and value-continuous message exchange and thus cap-
tures potential performance gains at no extra cost. After a certain time, the voltages and currents
in the analog network settle and the decoding result is available at the output. The settling speed
is not only determined by the parasitics in the decoding network and the temperature, but also
by the channel SNR and the configuration of channel values for a particular decoding scenario.
An increasing channel SNR leads to a smaller probability for channel errors and thus speeds
up the decoding process in general. However, certain decoding situations may still require a
significantly longer amount of time. This effect needs to be carefully considered when analog
decoders are simulated and in particular when the speed of these networks is being estimated.
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Given the time-continuous characteristic of analog decoders we find that decoder performance
always degrades gracefully when there is not enough time for the settling of the network.

The time-continuous exchange of information inside the decoder raises questions about the
performance of an analog decoder compared to a digital decoder implementation. This question
is particularly interesting when it comes to an analog implementation of an iterative decoding
algorithm where the underlying code graph typically involves cycles. Here, the equivalence of
an analog and a digital decoder is in general impossible to prove analytically. In most cases it
will therefore only be possible to evaluate decoder performance by other means such as BER
simulations or EXIT chart analysis.

This leads us to one of the greatest challenges, the appropriate simulation of analog decoders
on digital (and in particular time-discrete) computer systems. We therefore pay particular at-
tention to the simulation of analog decoders, as covered in Section 5.1. We will introduce a
new unified design and simulation environment which allows the utilization of different time-
continuous, time-discrete and circuit-level simulation models. Different analog decoding net-
works will be presented in the course of this chapter. All analog decoders are based on (trans-
formed) normal graphs where the degree of the nodes is three. After the investigation of some
basic analog decoding networks in Section 5.2, we will introduce a new analog sliding window
technique which operates on only a small sub-graph of the overall code. Different architectures
of analog decoders for state-of-the-art turbo codes and LDPC codes are covered in Section 5.4.
This chapter concludes with comments on the possible equivalence between analog and digital
decoding in Section 5.5.

5.1 Simulation of Analog Decoders
The simulation of analog decoders requires significantly more attention than the simulation of
digital decoders. In the analog domain it is particularly important to capture the dynamics of
the time-continuous message exchange within the decoding network appropriately. It directly
impacts the quality of the soft output and hence the BER performance of the decoder. This
dynamic behavior is mainly determined by the structure of the directed normal graph on which
the analog decoder is based, the design and placement of the node processors on the chip and
the routing of the interconnects. This introduces parasitic resistor and capacitor values in the
decoding network which not only depend on the size of the selected transistors but also on
the physical layout of the decoder. This includes the length and width of the interconnects,
the selected layer of metal and the number of vias required in order to connect from one layer
of metal to another. These parasitics cause processing and propagation delays which clearly
limit the potential speed of the analog decoding network.1 The most accurate simulations are
thus achieved after the parasitics are extracted from the physical layout of the decoder chip and
provided as input to the circuit-level simulator for post-layout simulations. Clearly, this adds
additional complexity and thus further increases simulation time. Analog decoders typically
reach a complexity which prohibits circuit-level simulations of the overall decoding network.
Circuit-level simulations are then restricted to small sub-blocks of the overall decoder. Only
very small analog decoders may be simulated for a few selected decoding configurations. A
more detailed performance evaluation, in particular in terms of the BER, thus needs to rely on
high-level simulation models. It is therefore essential to capture the main characteristics of the
analog decoder in sufficient enough detail while at the same time reducing the complexity in
order to facilitate Monte Carlo simulations for the BER.

In the following we introduce our comprehensive design and simulation environment which
has been developed as part of this thesis. This design and simulation environment is illus-
trated in Fig. 5.1. The basic communication system, including the generation of random code

1Note that the pads, bonding, packaging and the printed circuit board (PCB) add more parasitics which may
further limit the potential speed of analog decoders.
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Figure 5.1: Design and simulation environment.

words, encoding, BPSK modulation, AWGN channel model and the calculation of the chan-
nel values Lcy is implemented in MATLAB. Different decoder models can then be facilitated
by MATLAB. These decoder models include time-continuous models in SIMULINK, time-
discrete models implemented in C/C++ or MATLAB and even circuit-level simulations using
the Spectre simulator as part of the CADENCE design environment. Using a configuration
file for the Spectre simulator it is also possible to specify a Verilog-A model instead of the
transistor-level netlist. This allows us to develop and simulate decoder models on different
levels of abstraction within a unified environment. Furthermore, circuit-level parameters can
easily be optimized in order to minimize the error introduced by the circuit implementation.
Both bottom-up and top-down design approaches are supported.

In order to allow a fair comparison between different simulation models all the following
simulations were run on the same set of channel values as the corresponding reference decoder.

5.1.1 Time-Continuous Simulation Model
We start with our time-continuous simulation model which allows us to accurately capture the
dynamic behavior of analog decoders. Such dynamic networks are conveniently modeled in
SIMULINK, an extension toolbox for MATLAB. The time-continuous simulation model con-
sists of a node processor for each directed node in the normal graph followed by lumped resistor-
capacitor (RC) elements for each signal component, see Fig. 5.2. This simulation model dates

elements

node 
processor RC

Figure 5.2: Time-continuous simulation model for a directed node in the code graph.

back to the early days of analog decoding and was used by Hagenauer et al. in, e.g., [Hag98],
[Win98], and [HW98]. When each node processor in the decoder performs the exact decod-
ing operations we obtain an ideal analog decoding network. This ideal network is used as our
analog reference decoder whenever decoder complexity and thus simulation time permits. The
ideal operations in the node processor can easily be replaced by a more enhanced description
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Figure 5.3: Basic RC element consisting of a resistor and capacitor.

which captures the characteristics of analog transistor circuits more accurately. Such a model
may be derived from and validated against circuit-level simulation results which can easily be
obtained within the same simulation environment.

The RC elements include all the parasitics associated with the node processor and the con-
necting wires to consecutive node processors. We will see later in Chapter 6 that all signals
communicated between node processors are voltage signals. The thick lines in Fig. 5.2 refer to
vector signals, i.e., represent voltage vectors, where the length of the vectors corresponds to the
number of inputs and outputs of the node processor. For each component of this voltage vector
there is a dedicated RC element as shown in Fig. 5.3. In the following we analyze such an RC
element in more detail. We derive two possible descriptions of RC elements as they are used in
the SIMULINK implementation of our simulation model. With v1(t) = v2(t) + i(t) R and

i(t) = C
d v2(t)

dt
(5.1)

we obtain the first order differential equation

d v2(t)

dt
=

1

τ
(v1(t)− v2(t)), (5.2)

with τ = RC. Given a constant input voltage v1(t) = v1 we obtain as solution for this differential
equation

v2(t) = v2(t0) e−(t−t0)/τ + v1

(
1− e−(t−t0)/τ

)
. (5.3)

When we further assume that v2(t0) = 0 this expression simplifies to

v2(t) = v1

(
1− e−(t−t0)/τ

)
. (5.4)

The Fourier transform of (5.2) yields

U1(ω) = U2(ω) + jωτU2(ω), (5.5)

with ω = 2πf . With the definition of the transfer function

H(ω) =
U2(ω)

U1(ω)
(5.6)

then follows
Re {H(ω)} =

1

1 + (ωτ)2
. (5.7)

A set of identical RC elements is conveniently described using the state space representation

d s(t)

dt
= As(t) + Bv1(t), (5.8)

v2(t) = Cs(t) + Dv1(t), (5.9)
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where v1(t) and v2(t) describe the voltage vectors at the input and the output of the RC element,
respectively. Equation (5.8) and (5.9) represent the time-continuous equivalent of the state space
representation introduced in Chapter 2. With τ = RC we obtain for the state matrix

A = −2

τ
IN (5.10)

and the input matrix

B =
1

τ
IN , (5.11)

where IN denotes the N ×N identity matrix with N as the the size of the input/output voltage
vectors. Furthermore, we obtain C = 2IN and D = 0.

For simplicity, the parasitics of all nodes in the code graph are assumed to be identical.
Different RC values for the interconnects between analog component decoders are investigated
in [Sch05] and Gaussian distributions of the RC delays are considered in [HB04]. However, the
results indicate that there is only a negligible impact on decoder performance in terms of BER
when the outputs have settled.

A special time-continuous simulation model for tailbiting convolutional decoders is covered
in Section 5.2.3.

5.1.2 Time-Discrete Simulation Model
The time-continuous simulation model from above leads to a computational complexity which
only allows the simulation of small analog decoding networks. For the simulation of larger
analog decoders we need to rely on faster simulation models operating in discrete time. More
precisely, we do not change the simulation model as such. The difference is how the differential
equations defined by the node processor and the RC elements in Fig. 5.2 are solved numerically.
The time-continuous SIMULINK model in Section 5.1.1 relies on advanced numerical methods
with variable step size in order to numerically solve the differential equation in (5.2). In our
time-discrete model we apply the Euler-Cauchy method (see, e.g., [MV91]) with a fixed step
size. This one-step algorithm can be expressed as

v2(k + 1) = v2(k) +
∆t

τ
(v1(k)− v2(k)), (5.12)

where k is the discrete time index and h = ∆t/τ the (variable) step size of the model. For the
special case of ∆t/τ = 1 we obtain

v2(k + 1) = v1(k). (5.13)

This means that the output voltage of the RC element in the next time step, i.e., after time
∆t = τ , equals the input voltage of the RC element. The RC element then degrades to a simple
delay element which shifts the output of the node processor by one discrete time instant. The
results of the node processor are then available as input to consecutive nodes in the next time
step. This special case of the simulation model corresponds to the conventional (time-discrete)
message passing algorithm.

Whenever the time-discrete solution in (5.12) yields identical results as the time-continuous
decoder model from Section 5.1.1 it can be applied in order to reduce simulation time. The
fastest simulations are obtained with h = 1, but smaller values of h capture the time-continuous
message exchange in the analog decoder more accurately. Further comments on the equivalence
of analog and digital decoders can be found in Section 5.5.
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5.1.3 Circuit-Level Simulations
The most detailed and accurate simulation results of analog decoders are obtained from circuit-
level simulations of the overall decoding network. This is in particular true for post layout
simulations including the parasitics extracted from the physical layout of the decoder chip.
However, such circuit-level simulations are up to several orders of magnitude more complex
and time consuming than simulations based on the decoder models in Sections 5.1.1 and 5.1.2.
In fact, for most interesting coding schemes these simulations are impractical. In this case only
small sub-blocks of the overall decoder can be simulated and verified on circuit-level.

We use the CADENCE design environment which incorporates powerful tools such as
schematic capture, layout editing, simulation and physical verification. The circuits are de-
signed using a schematic editor which allows the generation of a netlist file for the Spectre
circuit simulator. Besides the netlist file the circuit simulator also requires stimuli and analysis
files which define the inputs to the circuit and the type of analysis, respectively. Both are gen-
erated using interactive graphical interfaces. The main drawback here is that input stimuli need
to be entered manually, which can be tedious when there are a large number of input signals.
This requires a lot of manual interaction before a new simulation can be started with a different
input configuration. Also, the integrated results browser does not allow a direct comparison
with high-level simulation results in MATLAB.

Our new environment in Fig. 5.1 allows a significant acceleration of the design and sim-
ulation process. A detailed diagram of our link between the MATLAB and the CADENCE
environments is shown in Fig. 5.4. The transistor circuits are designed using the CADENCE

netlist

stimuli

files tools

CADENCE

write

start

write

MATLAB

analysis

simulator

Spectre

parameter

resultsread results browser

write

stimuli editor

schematic entry

Figure 5.4: Link between MATLAB and the CADENCE design environment.

schematic entry tool. The schematic of an analog decoder or a single decoder building block
is then translated into a netlist file where important design parameters can be specified as vari-
ables. The simulation of this transistor configuration is then fully controlled by MATLAB
scripts which generate the input stimuli file, the analysis file and the optional parameter file.
The Spectre circuit simulator is then invoked from MATLAB and, after the simulation run is
terminated, MATLAB also reads the results file generated by Spectre in order to process and
evaluate the simulation results. The circuit simulator thus becomes an additional simulation
engine of MATLAB. This new environment allows us to run repeated simulations with different



5.2 Basic Analog Decoding Networks 63

input signals and to sweep certain design parameters. Different circuit-level parameters can
be optimized and the simulation results can directly be validated against the results obtained
from high-level simulation models. The direct link between the circuit-level simulator and the
system level simulator allows us to develop high-level simulation models based on circuit-level
simulation results. We can then evaluate the performance of analog decoders with very ac-
curate simulation models on system level. Possible measures for the the performance are the
BER or the trajectories in EXIT charts. The results of these system level simulations can be
used in order to optimize certain parameters in the circuit design. Parameter sweeps can then
be performed on system level rather than on circuit-level as it is common practice in standard
electronic design automation (EDA) tools. This approach appears to be novel. It will be heav-
ily utilized in Section 8.2 in order to optimize the circuit-level parameters of an analog LDPC
decoder implemented in CMOS technology.

5.2 Basic Analog Decoding Networks
Analog decoding networks are best described by normal graphs. Every node in the normal
graph represents a node processor and the interconnects are solely used for communication
between node processors. Motivated by our circuit implementation of these node processors,
which is presented in the next chapter, we assume that all nodes in the normal graph have degree
three. Any node with a degree larger than three can easily be transformed into nodes of degree
three as described in Section 3.4. Due to the bidirectional message exchange in the decoder we
then transform normal graphs into directed normal graphs. These directed normal graphs then
represent a detailed model of the analog decoder, similar to a block diagram.

In the following we describe some basic analog decoding networks for various different
codes. We start with check node and variable node decoders which can be used for decoding
SPC codes and repetition codes, respectively. These two simple decoders represent the compo-
nent decoders for all codes with binary code graphs. We then turn our focus to the decoding
of simple block codes like the (7,4,3) Hamming code and the (8,4,4) extended Hamming code.
We present different decoding networks based on binary and non-binary normal graphs which
may include short cycles. In general, different code graphs give rise to different decoder perfor-
mance. We introduce further modifications of normal graphs which allow us to closely approach
the performance of the APP decoder despite small cycles in the decoding network. Finally, we
investigate the important case of analog decoders for tailbiting convolutional codes where the
code graph includes a single loop of rather large size.

5.2.1 Check Node and Variable Node Decoders
The check node and the variable node decoders are the most basic analog decoding networks.
They can be employed for decoding of very simple codes like SPC codes and repetition codes,
or, can be utilized as component decoders for any code with a binary code graph. These de-
coders are solely based on the Boxplus operation and the summation of L-values as introduced
in Section 4.3.2.

We start with a general check node decoder which can be used for decoding of a (N, N −
1, 2) SPC code. This code can be represented by a normal graph with N − 2 parity-check
nodes of degree three as shown in the lower part of Fig. 5.5. Note that this normal graph
represents the memory one trellis of the SPC code where the parity bit terminates the code
trellis. Each node in this code graph represents a bidirectional check node processor which
calculates the outgoing extrinsic values for each of the three branches based on the incoming
messages according to (4.17). The directed view of such a degree three check node processor is
depicted in the upper part of Fig. 5.5. Here, every check node in the conventional (bidirectional)
normal graph translates into three directed Boxplus elements with two inputs and one output.
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Figure 5.5: General check node decoder with a directed view of one check node processor.

The SPC decoder thus requires a total number of 3(N − 2) such Boxplus operations. The
received value y associated with code bit x is multiplied in the receiver with the channel state
information Lc in order to obtain the L-value Lcy which is used as decoder input. Further inputs
are Lα(S) and Lβ(S ′) from the neighboring check node processors. The check node processor
then calculates the outputs Lα(S ′) and Lβ(S) and passes them on in forward and backward
direction along the code graph. Furthermore, the check node processor evaluates the extrinsic
decoder output Le(X) for the corresponding code bit. Additional equality constraint nodes are
added in the directed view in order to maintain degree two state variables as required in normal
graphs. These equality constraint nodes simply provide two copies of the input signal at the
output and do not perform any computations. Such nodes may be used in the analog decoder
for the adjustment of certain signal characteristics in order to match the input requirements of
the consecutive block. Note that the Boxplus operation of all input values represents a syndrome
former which indicates a satisfied parity-check and thus a valid code word as soon as the output
becomes positive. This can be realized in the check node decoder with only one additional
Boxplus element.

Figure 5.6: Check node decoder arranged in a tree structure.

Alternatively, the check node decoder in Fig. 5.5 can also be arranged in a tree structure
as shown in Fig. 5.6. The number of blocks and thus the complexity of the analog decoder is
identical to the one in Fig. 5.5, but the maximum span of the code graph is reduced. In many
cases, such a structure leads to faster analog decoders.
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A general variable node decoder is obtained when the parity-check nodes in Fig. 5.5 and
Fig. 5.6 are replaced by equality nodes. Such a variable node decoder can be used for decoding
a (N, 1, N) repetition code. The N − 2 nodes in the normal graph then represent bidirec-
tional equality node processors of degree three which calculate the outgoing extrinsic values
for each of the three branches based on the incoming messages, see Fig. 4.2. The overall vari-
able node decoder then comprises 3(N − 2) directed equality node processors with two inputs
and one output. Each of these directed equality node processors performs the summation of
two L-values so that there are a total number of 3(N − 2) pairwise summations. Instead of the
extrinsic information Le(X) the variable node decoder can also provide the overall decoder out-
put L(X̂) = Lcy + Le(X). This can be achieved without any additional complexity by simply
changing the wiring in the node processor. Again, the additional equality constraint nodes with
one input and two outputs are present in the directed view in order to maintain degree two state
variables.

An alternative method for the calculation of the extrinsic output of an equality node pro-
cessor is to first sum up all incoming messages and then subtract the incoming message from
the branch on which the extrinsic information is being sent out, see (4.19). Here, the sum of
all incoming L-values requires N − 1 pairwise summations. The N required subtractions can
be treated as summations with a sign inversion of the corresponding inputs. We then obtain a
total number of 2N − 1 summations in the decoder for the repetition code. A comparison with
the trellis based approach in Fig. 5.5 and the tree based approach in Fig. 5.6 yields that this
alternative method is less complex for N > 5. An example of such a variable node decoder is
given in Fig. 5.7 for the case of a (4,1,4) repetition code with N = 4.2 Fig. 5.7 a) shows the
normal graph of the code and Fig. 5.7 b) depicts the directed view of the corresponding decod-
ing network as described above. Note that there are again two different types of equality nodes

a) b)

Figure 5.7: Variable node decoder in a) with alternative implementation in b).

in Fig. 5.7 b). Equality nodes with two inputs and one output calculate the sum of the corre-
sponding L-values while nodes with one input and two outputs perform no computations. These
nodes are used in order to maintain degree two state variables in the normal graph as in Fig. 5.5
and simply provide two copies of the input signal at the output. As already pointed out earlier,
such nodes are used in the analog decoder for the adjustment of certain signal characteristics
in order to match the input requirements of a consecutive block. The variable node decoder in
Fig. 5.7 thus requires a total number of 2N − 1 = 7 pairwise summations. A minus sign next
to the input of an equality node indicates a sign inversion of the corresponding input which can
simply be achieved in the circuit implementation by interchanging the wires of the differential
input signal. Note that the blocks for the summation of all incoming values are arranged in a
tree structure.

Unfortunately, such an alternative computation method is not available for the check node
decoder due to the lack of an inverse for the Boxplus operation.

2This example is chosen for simplicity and not in order to demonstrate a possible complexity reduction.
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These check node and variable node decoders suffice in order to construct analog decod-
ing networks for all codes based on binary graphs, including LDPC codes. Some examples are
given in the next sections. The circuit implementation of check node and variable node decoders
is covered in Section 6.4.1.

5.2.2 Decoders for Simple Block Codes
In this section we investigate different analog decoding networks for simple block codes like
the (7,4,3) Hamming code and the (8,4,4) extended Hamming code. These codes are partic-
ularly interesting since the corresponding graphs include very short loops. Such small loops
in the code graph are known to cause a performance degradation in case of message passing
decoding. However, we demonstrate in this section that the presence of small cycles does not
necessarily degrade decoder performance. We derive different normal graph representations of
these codes which represent different analog decoding networks. These analog decoders are
then evaluated in terms of the BER performance by using our different time-continuous and
time-discrete simulation models introduced in Section 5.1.

The Tanner graph of the (7,4,3) Hamming code in Fig. 3.1 contains three loops of size four
and one loop of size six. In order to obtain a suitable representation of the analog decoding
network we transform the code graph into a normal graph with degree three nodes. This is
achieved in two steps. We start with the 3 × 7 parity-check matrix of the code in (2.20). First,
we restrict the degree of the check nodes (rows of H) to three by introducing (hidden) state
variables. This can be achieved by applying the C3 Algorithm from Section 3.3.1 to (2.20). We
then obtain the 6× 10 matrix

X1 X2 X3 X4 X5 X6 X7 S1 S2 S3

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

(5.14)

with the three state variables S1, S2, and S3. Instead of the conventional matrix notation we
again use a table format in order to clearly point out the correspondence between the symbol
and state variables and the columns of the matrix. Note that only the ”1”s in the matrix are
shown. In a second step, we restrict the degree of the equality nodes in the normal graph to
three by applying the V3 Algorithm from Section 3.4.2. This step only effects column four in
(5.14) and leads to the 7× 11 extended parity-check matrix

X1 X2 X3 X4 X5 X6 X7 S1 S2 S3 S4

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1

(5.15)

using the additional state variable S4. Note that the V3 Algorithm leads to a matrix structure
where the column weights for symbol and state variables are limited to two and three, respec-
tively. This implies that the nodes in the corresponding normal graph have a maximum degree
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Figure 5.8: Decoding network for the (7,4,3) Hamming code based on the 7× 11 extended H
matrix.

of three. The corresponding normal graph of the extended 7× 11 parity-check matrix in (5.15)
is depicted in Fig. 5.8. Note that the minimum girth has increased from four to six.

We now investigate the BER performance of the analog decoding network for the (7,4,3)
Hamming code in Fig. 5.8. The simulation results obtained from our time-discrete simula-
tion model with h = 1, i.e., conventional iterative decoding, and h = 0.1 are depicted in
Fig. 5.9 for 100 and 1000 decoder iterations, respectively. The simulation results are compared
with the BER obtained from the time-continuous decoder model in SIMULINK. Note that all
three simulation models yield almost identical BER results with marginally better results for
the time-discrete simulation model with h = 0.1 and the time-continuous simulation model in
SIMULINK. All results lie within 0.25 dB of the corresponding APP decoder.
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Figure 5.9: Decoding of the (7,4,3) Hamming code based on the 7× 11 extended H matrix.
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In the following we further modify the normal graph in Fig. 5.8 in a way that decoder
performance improves. For this, we introduce a redundant parity-check equation into the parity-
check matrix of the (7,4,3) Hamming code in (2.20) which is simply the sum of the three original
rows, i.e. 


0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1
0 0 0 1 1 1 1


 . (5.16)

Instead of applying the C3 and the V3 Algorithm to (5.16) we extend the matrix in (5.15) with
the redundant check, i.e., the forth row in (5.16), and then apply the C3 and the V3 Algorithm
to this matrix. This leads to the 10× 13 parity-check matrix

X1 X2 X3 X4 X5 X6 X7 S1 S2 S3 S4 S5 S6

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1
1 1 1

1 1 1
1 1

(5.17)

with the two additional state variables S5 and S6. Applying the C3 and the V3 Algorithm to
(5.16) would yield a similar matrix which only differs by some row and column permutations.
The corresponding normal graph of the parity-check matrix in (5.17) is depicted in Fig. 5.10.
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S3

S4

X6 X7X5X2 X4X3X1

S1 S2

Figure 5.10: Decoding network for the (7,4,3) Hamming code based on the 10 × 13 extended
H matrix with a redundant parity-check.

The BER simulations results for the decoding network in Fig. 5.10 are shown in Fig. 5.11.
We notice a significant performance improvement compared to Fig. 5.9 and also compared
to the performance of a conventional iterative decoder based on the original 3× 7 parity-check
matrix. All three simulation models, i.e., the time-discrete simulation model with h = 1 and 100
iterations, the one with h = 0.1 and 1000 iterations, and the time-continuous SIMULINK model
yield almost identical simulation results. All lie within less than 0.1 dB of the corresponding
APP decoder. Again, the iterative decoder with h = 0.1 and the time-continuous SIMULINK
decoder are marginally better than the conventional iterative decoder based on the same matrix.
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Figure 5.11: Decoding of the (7,4,3) Hamming code based on the 10× 13 extended H matrix
with a redundant parity-check.

This remarkably good decoder performance is somehow surprising since the normal graph in
Fig. 5.10 involves more loops than the one in Fig. 5.8.

A similar good performance of an analog decoder can be achieved with a modified mes-
sage passing algorithm based on the Tanner graph and a special initialization of some messages
[HOMM99].

Analog decoding networks based on graphs with loops are now further investigated for the
example of the (8,4,4) extended Hamming code. Similar to the above, we use different code
graphs which represent different decoding networks. At the beginning, we restrict ourselves to
binary code graphs so that the check node and variable node decoders from Section 5.2.1 can be
used as component decoders. The decoding networks are again evaluated in terms of the BER
performance by using our different time-continuous and time-discrete simulation models.

We start with an analog decoder based on the 7× 11 extended parity-check matrix as given
in (3.19). This matrix leads to the normal graph representation with a minimum girth of six
as shown in Fig. 3.8. The simulation results obtained from the time-discrete simulation model
with h = 1, i.e., conventional iterative decoding, and h = 0.1 are depicted in Fig. 5.12 for
100 and 1000 decoder iterations, respectively. These simulation results are compared with the
BER performance obtained from our time-continuous simulation model in SIMULINK. All of
them lead to virtually identical BER results around 0.2 dB away from the results of the APP
decoder. We also plotted the simulation results for a conventional iterative decoder based on
the 4× 8 parity-check matrix in (2.22) for comparison. Here, the corresponding code graph has
a minimum girth of four. This decoder shows a very poor performance and is around 0.65 dB
away from the results for the APP decoder.

Fig. 5.12 also shows the simulation results for the tailbiting wrap-around decoder from
Section 4.4.3 based on the tailbiting trellis representation in Fig. 3.5. This tailbiting trellis was
derived in Section 3.3 from the MSGM of the (8,4,4) extended Hamming code by using non-
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Figure 5.12: Decoding of the (8,4,4) extended Hamming code based on different code graphs.

binary state-variables. A stabilization length of L = 40 is assumed which corresponds to ten
wraps around the tailbiting trellis. It is interesting to note that this decoder closely approaches
the performance of the APP reference decoder despite the small size of the tailbiting ring with
only four trellis sections.

Note that the use of non-binary state variables also allows the construction of cycle free
code graphs, i.e., conventional trellis representations of codes. The decoder based on such a
code graph is then a APP decoder. However, code graphs with loops are more interesting to
analyze and all code graphs of state-of-the-art turbo codes and LDPC codes involve loops.

5.2.3 Tailbiting Convolutional Decoders
Tailbiting convolutional codes play an important role in analog decoding. In fact, most of the
analog decoder implementations so far are for tailbiting convolutional codes or codes based on
the tailbiting trellis representation, see, e.g., [LHL+99a], [MGYH00], [WDL+01], [ALS+05].
The main advantages of tailbiting convolutional codes are that there is no rate loss due to the
termination of the code and that there is no weaker error protection of the last code bits as it
is the case when the convolutional code is truncated. This makes them ideal candidates for
applications which require codes with short block lengths. The main drawback of tailbiting
codes is an increased decoder complexity in the digital domain, see Section 4.4.3. In the analog
domain there is no additional complexity in terms of transistor count or area since the required
additional computations come for free due to feedback in the fully parallel analog decoding
network. The class of tailbiting codes is also particularly interesting because the code graph
and thus the analog decoding network involves a single, rather big loop.

The decoding network for a tailbiting convolutional code is depicted in Fig. 5.13. Note that
the individual nodes in this code graph correspond to sections in the tailbiting trellis representa-
tion of the code. Each node represents an analog node processor which performs a forward and
backward recursion as well as the calculation of the decoder output. Two possible implemen-
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Figure 5.13: Decoding network for a tailbiting convolutional code.

tations of such a node processor are depicted in Fig. 5.14. We assume a code rate of R = 1/2

so that Lcy
(1)
k and Lcy

(2)
k are available at the input of the k-th node processor. Additional inputs

are the αk and βk+1 vectors from preceding and succeeding node processors, respectively. The
node processor calculates the set of branch metrics γk which are required for the calculation of
the αk+1 and βk vectors in the forward and backward recursion of the decoder. Note that these
recursions are performed in two separate ring networks which share the same input information
from the channel. The decoder output is then calculated based on the results of the α and β
recursions. Fig. 5.14 a) represents a straightforward implementation of the decoding algorithm
as described in Section 4.4.2. This node processor provides either the overall decoder output
L(Ûk) or only the extrinsic information Le(Uk) depending on the calculations in the output

a) b)

γk γk
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Figure 5.14: Implementation of a node processor in a convolutional decoder for codes with
systematic feedback encoder in a) and for codes with feedforward encoder in b).
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node. The alternative implementation of the node processor in Fig. 5.14 b) can be facilitated
for convolutional codes with feedforward encoder where the information bit appears in state S ′.
In this case the output L(Ûk) can be calculated based on the vectors αk+1 and βk+1 according
to (4.37). This typically leads to significantly reduced complexity of the node processor. The
circuit implementations of the node processors in Fig. 5.14 are covered in Section 6.4.2.

The ring structure of the tailbiting code allows a very efficient implementation of the time-
continuous simulation model in SIMULINK as illustrated in Fig. 5.15. This simulation model

output

module
calculation

trellis
module

calculation

shift
left

forward loop

backward loop

branch
metric

calculation

values
channel

decoder

shift
right

output
calculation

trellis

Figure 5.15: Time-continuous simulation model of an analog tailbiting convolutional decoder.

requires only one node processor instead of one for each node in the code graph. The individual
operations of this node processor involve branch metric computation, the calculations in the two
trellis modules, and the calculation of the decoder output. All computational blocks are assumed
to perform exact, i.e., ideal, decoder operations. The thick lines in Fig. 5.15 represent large
signal vectors which combine the corresponding signal vectors of all node processors. Each
module in Fig. 5.15 consequently performs matrix vector operations for the overall block length
at the same time. This technique allows the exploitation of fast matrix vector computations
in SIMULINK which significantly speeds up the simulations. Note that each computational
block in Fig. 5.15 is followed by a lumped RC element which affects all signal components.
In order to allow signal propagation along the forward and backward loop in the decoder we
need to appropriately shift the outputs of the trellis modules. A shift of the signal vector to
the right guarantees that the output of a trellis calculation in the forward recursion is applied
to the input of the consecutive trellis section. The shift to the left feeds back the output of the
trellis calculation in the backward recursion to the input of the preceding trellis section. The
RC elements are conveniently described together with the cyclic shift operation using the state
space representation from (5.8) and (5.9). Matrices A and B are taken from (5.10) and (5.11),
respectively, and the output matrix C is adopted by applying a circular shift operation. For the
forward recursion the matrix 2IN is shifted by one column to the right and for the backward
recursion it is shifted by one column to the left. Again, we have D = 0.

Note that this simulation model requires only one node processor independent of the block
length of the code, which allows an easy reuse of this simulation model for codes with different
block lengths.

The time-continuous simulation model in Fig. 5.15 can also be utilized for terminated con-
volutional codes. In this case, the simulation model is slightly modified in a way that the forward
and the backward recursions can be initialized appropriately at the beginning and the end of the
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Figure 5.16: Decoding of the (32,16) tailbiting code with memory two.

code graph. This effectively cuts the ring structure of the simulation model while the advantage
of faster simulations is still maintained. The simulation model then represents an efficient time-
continuous implementation of the APP decoding algorithm.

The simulation results for the (32,16) tailbiting convolutional code with memory two and
generator polynomials (7,5) are depicted in Fig. 5.16. The time-continuous simulation model
in SIMULINK achieves virtually identical BER results as the APP decoder for this code. The
results are compared with the performance of the tailbiting wrap-around decoder from Section
4.4.3. A stabilization length L of 8, 32 and 48 is considered, which corresponds to 1/2, 2
and 3 wraps around the tailbiting ring. All three decoder configurations closely approach the
performance of the APP decoder. Note that the soft output of the decoder may have a poor
quality which is not necessarily reflected in the measured BER. This effect is further investigated
later in this chapter by measuring the distributions of the L-values at the decoder output and
simulating the characteristic curves of the decoders.

The circuit implementation of the analog decoder for the (32,16) tailbiting convolutional
code from above is covered in Section 6.4.2.

5.3 Analog Sliding Window Decoding
Various different analog decoder implementations are reported in the literature. Most of these
decoders are for codes with a block length of only a few bits and the largest reported analog
decoder so far is for a block size of 256 information bits [Win04]. The block size of these
decoders is kept small since these decoder chips are intended as proof of concept rather than
for a commercial application. However, the feasible block length in analog decoding is also
limited by the fully parallel decoder architecture. So far, we assumed that the overall code graph
needs to be implemented in analog transistor circuits. This implies that decoder complexity
increases roughly linearly with the block length. In most practical applications this approach
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leads to an excessive transistor count and consequently a large chip size. Furthermore, a large
amount of parallelism in the decoder enables data rates which may not be required by the
application. Analog decoding may then not be competitive with digital decoders which are
easier to adjust to given requirements of the application. Another shortcoming of fully parallel
analog decoder architectures is that a particular decoder chip can only be used for a fixed block
length. This practically rules out coding schemes working with different block lengths like in
UMTS [ETS00] since every block length would require a dedicated decoder chip.

In this section we present a concept on architecture level which allows us to break the lin-
ear relationship between block length and decoder complexity by adopting the sliding window
technique well known from digital decoder implementations. Here, parallel decoding of the
overall code block is replaced by sequential decoding of typically consecutive code fragments.
Decoding then takes place in a comparable small analog decoder core which moves along the
code graph until the overall code block is decoded. This approach does not only reduce decoder
complexity, but also introduces flexibility into the design process of analog decoders. This
is particularly important for the design of area- and power-efficient analog decoders for given
speed requirements. Another advantage is that such an analog decoder core can be utilized
in different ways so that a variety of different block lengths may be supported. Clearly, the
complexity reduction and the increase in flexibility come at the expense of some computational
overhead and additional memory may be required in order to store the decoder output.

In the following sections we establish a link between the basic analog sliding window de-
coder as introduced in [Vei02] and an analog tailbiting convolutional decoder. We analyze the
shortcomings of this approach and develop a new solution which improves the soft output and
hence the BER performance of analog sliding window decoders. This is achieved in conjunc-
tion with a significant reduction in the computational overhead. Some parts of this section have
been published in [Moe04a], [Moe06].

5.3.1 Basic Concept of the Ring Decoder
The basic concept of analog sliding window decoding relies on a decoder ring as illustrated
in Fig. 5.17 a). This decoder implements only a small window of size W = D + 2L trellis
sections rather than the overall code trellis. For codes with large block lengths this leads to a
significant complexity reduction in the analog decoder. Fig. 5.17 depicts the example of D = 1
and W = 2L+1. An arbitrary position of the decoding window within the overall code block is
shown in Fig. 5.17 b). The beginning and the end of this decoding window are then tied together
in order to form a ring structure as shown in Fig. 5.17 c). With a free message exchange at this
joint this structure is equivalent to a tailbiting convolutional decoder. In fact, an analog tailbiting
convolutional decoder can be used as analog sliding window decoder for a code with the same
generator polynomials (either terminated or tailbiting) but a much larger block length. The main
difference lies in the way the decoder is loaded and unloaded, i.e., how the decoder inputs are
applied and how the decoder output is read. The ring size of the analog tailbiting convolutional
decoder in Fig. 5.13 then corresponds to the window size W of the analog sliding window
decoder in Fig. 5.17 a). Note that this window size is also related to the window size of the
generalized sliding window decoding algorithm in Section 4.4.3.

The operation of the analog sliding window decoder can be described as follows. There are
analog storage elements at the input of the sliding window decoder as indicated in Fig. 5.17 a)
with small capacitors. We assume that channel values Lcyk−L, . . . , Lcyk, . . . , Lcyk+L−1 are
already stored and that input Lcyk+L is currently being loaded onto the network. Note that
Lcyk+L represents the vector of channel values associated with the node processor at the end
of the decoding window. This new input then impacts the messages propagating in both the
forward and backward recursion of the decoder. After the settling time of the decoding network
we can then read out the decoder output L(Ûk) from the center of the decoding window. Pro-
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Figure 5.17: Basic concept of the ring decoder with D = 1 and W = 2L + 1.

vided that L is sufficiently large with respect to the memory of the code this leads to a good
approximation of the true APP decoder output in both sign and magnitude. This observation
is based on the fact that the decoder output is mainly determined by the neighboring L trellis
sections to the left and to the right and that any inputs further away do not (significantly) alter
the decoder output. Loading and unloading occurs at opposite sides of the decoder ring and
both proceed in clock-wise direction around the ring structure as illustrated with the pointer in
Fig. 5.17 a). Whenever the position of the decoding window changes another input is loaded
onto the network and an old value is overwritten in the cyclic buffer structure. The ring struc-
ture of the decoder reduces the number of loading operations to a minimum since the channel
values remain stored in the decoding network as long as they contribute to any decoder output.
Note that this is in contrast to a digital sliding window decoder where channel values may be
reloaded repeatedly.

In general, the parameter D, D ≥ 1, determines the number of trellis sections which are
decoded in parallel. It is chosen based on complexity and speed considerations for a particular
application. The selection of L directly impacts the performance of the sliding window decoder
as we will see later. The ring structure of the decoder implies that the beginning and the end of
the decoding window are tied together. This allows the recursions to freely propagate around
the ring network without any initialization of the forward and backward recursions at the be-
ginning and end of the decoding window. In this case, the usually used starting distribution,
e.g., the uniform distribution of state probabilities, can not be achieved. This requires the sta-
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Figure 5.18: Decoding of the (512,256) tailbiting convolutional code with different configura-
tions of the ring decoder.

bilization length L to be significantly larger than in the case of an appropriate initialization of
the recursions. The lack of such an initialization is also the reason why the decoder produces a
large number of bit errors at the beginning and end of terminated convolutional codes.

In the following we analyze the performance of the ring decoder for the example of a
(512,256) tailbiting convolutional code with memory two and generator polynomials (7,5).
Fig. 5.18 shows the BER simulation results for two different decoder configurations with D = 8,
L = 10 and D = 1, L = 15 and a ring size of W = 28 and W = 31, respectively. Note that
the selection of D has almost no impact on the BER performance. The parameter D determines
the amount of parallelism and thus the speed of the decoder. The two ring decoders are now
simulated with the tailbiting wrap-around algorithm from Section 4.4.3. We assume three wraps
around the ring of the first decoder configuration and two wraps around the ring of the second
decoder. The second decoder configuration is also simulated with our time-continuous simu-
lation model in SIMULINK.3 We find that both the tailbiting wrap-around algorithm and the
time-continuous simulation model yield identical BER results which lie within less than 0.1 dB
of the corresponding APP decoder. This is in contrast to the decoder configuration with D = 8,
L = 10 which achieves a clearly suboptimal BER performance.

We now investigate the soft output of the ring decoder. First, we compare the distributions
of different type of L-values between a ring decoder with parameters D = 8, L = 10 and the
APP decoder. The distributions of absolute L-values are shown in Fig. 5.19. The dashed curve
represents the distribution of the L-values at the decoder input, i.e., |Lcy|, which is identical for
both decoders. A Eb/N0 value of 3 dB is assumed. The distributions of the extrinsic output
|Le(U)| and the overall decoder output |L(Û)| are illustrated using dash-dotted and solid lines,
respectively. We recognize slightly different distributions at the output of the ring decoder than

3The simulated BER at the Eb/N0 value of 6 dB has been omitted because of a too long simulation time.
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Figure 5.19: Comparison between the distributions of absolute L-values of the ring decoder
with D = 8, L = 10 and the APP decoder at a Eb/N0 value of 3 dB.

Table 5.1: Mean and variance of the different distributions in Fig. 5.19.

APP ring decoder
D = 8, L = 10

type mean variance mean variance
|Lcy| 3.99 7.98 3.99 7.98
|Le| 9.18 17.58 8.46 17.76
|L(Û)| 13.17 25.57 12.45 25.75

for the APP decoder. Mean and variance of the different distributions are summarized in Ta-
ble 5.1. Note that the ring decoder produces a smaller mean in conjunction with a marginally
increased variance for both |Le(U)| and |L(Û)| which consequently leads to an increased BER.
The L-values obtained from the channel clearly satisfy the consistency condition for Gaussian
distributions, see (4.49), but this is not the case for the distributions at the decoder output.
These distributions are, however, well approximated by Gaussian distributions with the calcu-
lated mean and variance from Table 5.1 as it can be seen in Fig. 5.20. Note that the Gaussian
assumption at the decoder output does not hold for small SNR values.

The soft output of the ring decoder is now further investigated by means of EXIT chart anal-
ysis. Fig. 5.21 shows the characteristic curves of different decoders for the (512,256) tailbiting
convolutional code. A Eb/N0 value of 1 dB is assumed. The APP decoder shows the expected
behavior and reaches the upper right corner of the EXIT chart. It is surprising to see that the
two ring decoder configurations with D = 1, L = 15 and D = 8, L = 10 show decreasing IE

values when IA is increased beyond 0.8 or 0.85. A closer analysis reveals the reason for this
bending-off effect of the characteristic curves. The channel values are typically rather small for
the considered Eb/N0 values, here with a mean of 2.52. However, large values of IA produce
an a priori input with very reliable L-values, e.g., with a mean of 9.97 for IA = 0.95. Starting
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Figure 5.20: Comparison between the distributions in Fig. 5.19 and Gaussian distributions
according to Table 5.1.
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at around IA = 0.8 the output of the ring decoder is sometimes smaller than the L-values at the
decoder input. This leads to an extrinsic output Le(U) = L(Û) − La(U) − Lcy with inverted
sign, but only a small magnitude. For IA close to one this effect occurs more often and may
even result in a negative IE . Such a bending-off effect was also found for suboptimal decoders
for low-density parity-check convolutional codes [Sch05]. This effect clearly prohibits a good
performance in case such a decoder is used as a constituent decoder in a turbo scheme. Note
that at least the ring decoder with D = 1 and L = 15 performs reasonably well in terms of the
BER, see Fig. 5.18. This can also be expected due to similar IE values for IA = 0 in Fig. 5.21.

The soft output of the ring decoder improves with increasing stabilization length L. A rea-
sonable good soft output can only achieved when L is increased beyond twice the stabilization
length required in case the recursions are initialized appropriately. For small D, i.e., a small
number of trellis sections decoded in parallel, this leads to a considerable computational over-
head which may not be tolerated.

The ring decoder can also be applied to terminated convolutional codes. Here, the perfor-
mance is rather poor due to a lack of appropriate initializations of the forward recursion and
backward recursions at the beginning and the end of the code trellis. The decoder then produces
an increased BER at the beginning and the end of the code block which is independent of the
stabilization length. In the following section we modify the ring decoder in a way that the re-
cursions can be initialized appropriately within each decoding window. This improves the soft
output and also reduces the required stabilization length and thus the computational overhead.

5.3.2 Initialization of the Recursions
We now advance the basic concept of the ring decoder in a first step by adding some addi-
tional control hardware in order to initialize the forward and the backward recursions in every
decoding window. These initializations effectively cut the ring structure of the decoder at the
initialization point while the advantages of the cyclic buffer structure are still maintained, i.e.,
only D trellis segments need to be loaded onto the decoder when the window moves from one
position to the next. This type of decoder can be seen as a cyclic implementation of the gen-
eralized sliding window decoding algorithm in Section 4.4.3. In the following this decoder is
referred to as SwinDec decoder. Fig. 5.22 depicts such a SwinDec decoder with D = L = W/3
for the case of a terminated convolutional code. The loading and unloading phases of the first,
the second and the last decoding window of the overall code block are shown.

The main difference compared to the basic concept of the sliding window decoder in Section
5.3.1 is that both the forward and backward recursion allow an appropriate initialization at the
beginning end the end of the decoding window. The upper part of the figure illustrates the
loading phase of the decoder with the channel values, while the lower part shows the output
phase of the decoder after the output has settled. In the first decoding window the channel values
corresponding to the first W trellis segments are loaded onto the decoder in clockwise direction
starting at the top until the cyclic input buffer is filled completely. The forward recursion is now
controlled in a way that it starts in the initial encoder state (typically the all-zero state) while
the backward recursion is initialized with a uniform distribution. Note that each of the shown
rings represents both the forward and the backward recursions of the decoder, which need to
be implemented separately. After the settling time of the decoder we can read out the results
from the first D + L trellis sections as shown in the lower part of Fig. 5.22 a). Typically, we
would read out the results of only D = W − 2L trellis sections, but due to the known starting
distribution of the α values at the beginning of the code trellis, no stabilization length is required
for the α recursion in the first window. For decoding of the second window in Fig. 5.22 b),
the channel values for the next D trellis segments are loaded in clockwise direction onto the
decoder in a way that the input buffer corresponding to the first D segments in the first decoding
window is overwritten. Now, both the forward and the backward recursion are initialized with
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Figure 5.22: Loading and unloading of the SwinDec decoder with D = L = W/3 for the case
of a terminated convolutional code.

a uniform distribution. After the settling time of the decoder we can read out the results for
the next D trellis sections from the upper left part of the decoder. Note that the decoder output
is always read out L trellis sections behind the decoder input loaded last in order to ensure
proper convergence of the backward recursion within the stabilization length L. The decoding
process continues the same way as demonstrated for the second decoding window for all the
other decoding windows until we reach the end of the overall code block. For ease of exposition
we assume that the overall block length (including code termination) is an integer multiple of
D (and D = L). As soon as the channel values for the last L trellis sections are loaded onto
the SwinDec decoder, the forward recursion is again initialized with a uniform distribution and
the backward recursion is here controlled in a way that it starts in the state of the trellis after
termination (usually again the all-zero state). After the settling time of the decoder network we
can read out the results for the remaining D + L trellis sections, since no stabilization length
is required for the backward recursion at the end of the code block due to the termination of
the code. An unwrapped and more detailed view of the decoding process is given in Fig. 5.23,
which illustrates the separate recursions within the SwinDec decoder.

The SwinDec decoder can also be deployed for tailbiting convolutional codes. In this case
the stabilization length L is required for the forward and the backward recursions of all decod-
ing windows including the first and the last one. There are D trellis sections decoded within
each window and the recursions are always initialized with a uniform distribution. The first L
trellis sections of the code can only be decoded after the channel values corresponding to the
last L trellis sections of the tailbiting code have been received. Similarly, the channel values
corresponding to the first L trellis section need to be stored for decoding the last L trellis sec-
tions of the tailbiting code. This is because these values are required in order to build up reliable
values in the forward and the backward recursion at the beginning and the end of the tailbiting
trellis, respectively.

The appropriate initialization of the recursions in the SwinDec decoder dramatically im-
proves the BER performance for terminated convolutional codes. Furthermore, the stabilization
length L reduces by more than a factor of two for both terminated and tailbiting convolutional
codes, i.e., to 5-6 times the encoder memory, as it is used in digital sliding window decoding.
The computational overhead is reduced accordingly. Since the settling time of the SwinDec
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Figure 5.23: Unwrapped view of the SwinDec decoder in Fig. 5.22 showing the forward and
backward recursions.

decoder directly depends on the stabilization length L this leads to analog decoders which are
more than two times faster and less complex. Alternatively, for a given window size W , i.e., a
given decoder complexity, D can be increased so that more bits are decoded in parallel. This
also increases the speed of the decoder.

5.3.3 Offset of Forward and Backward Ring
The complexity of the SwinDec decoder as introduced in the previous section can be further
reduced by allowing an offset between the forward and backward ring of the decoder. This step
solely reduces computational complexity and has no impact on decoder performance. We start
with the SwinDec decoder as shown in Fig. 5.22 where the window size amounts to W = 2L+D
trellis sections. There are independent forward and the backward recursions within this decoder
as illustrated in Fig. 5.23 and each of them needs to be implemented separately. Note that
the windows for the forward and backward recursions are lined up so that both recursion are
performed for the overall window size. However, we can notice in Fig. 5.23 that it is sufficient
to perform these recursions only for D + L trellis sections instead of the overall window size
of W = D + 2L sections. This is because the forward and backward recursions require a
stabilization length only on the left and right hand side of the decoding window, respectively.
The results of the computations for the remaining L trellis sections do not contribute to the
decoder output and the calculations are therefore redundant. We can thus remove these L trellis
sections in each recursion and work with a window size of only W ′ = D + L trellis sections.

Fig. 5.24 depicts such a modified SwinDec decoder with D = L = W ′/2 for the case of
a terminated convolutional code. The loading phases for the forward and backward rings are
shown separately for the first, the second and the last decoding window of the overall code
block. The unwrapped view of this decoder is depicted in Fig. 5.25. We notice that the two
rings for the forward and backward recursions in Fig. 5.24 are now shifted against each other.
In the first decoding window the channel values corresponding to the first D trellis segments
are loaded onto the forward ring in clockwise direction. Similarly, the channel values for the
first W ′ = D+L trellis segments are loaded onto the backward ring in clockwise direction. We
assume that both recursions are appropriately initialized as described in the previous section.
After the settling time of the decoder we can read out the results from the first D trellis sections
as shown in Fig. 5.25. In the second decoding window the channel values for the next L and D
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Figure 5.24: Loading of the modified SwinDec decoder with D = L = W ′/2 for the case of a
terminated convolutional code.

trellis segments are loaded in clockwise direction onto the forward and backward decoder ring,
respectively. The forward ring is now loaded completely while the D segments in the backward
ring of the first decoding window are updated with new channel values. Note that for the special
case of D = L the role of the corresponding decoder sections are interchanged when we move
on from one decoding window to the next. After the settling time of the decoder we can read
out the results for the next D trellis sections as shown in Fig. 5.25. The decoder output is always
read out L trellis sections behind the decoder input loaded last onto the backward ring in order
to ensure proper convergence of the backward recursion within the stabilization length. The
decoding process continues the same way as demonstrated for the second decoding window for
all the other decoding windows until we reach the end of the overall code block. For ease of
exposition we assume that the overall block length (including code termination) is an integer
multiple of D. After the settling time for the last decoding window we can read out the results

Figure 5.25: Unwrapped view of the modified SwinDec decoder in Fig. 5.24 showing the offset
between the forward and backward windows.



5.3 Analog Sliding Window Decoding 83

for the remaining D trellis sections.
Similar to Section 5.3.2, the modified SwinDec decoder can also be deployed for tailbiting

convolutional codes. In this case, the forward recursion in the first decoding window and the
backward recursion in the last decoding window also require a stabilization length of L trellis
sections. All decoding windows are then initialized with a uniform distribution. The first L
trellis sections of the code can only be decoded after the channel values corresponding to the
last L trellis sections of the tailbiting code have been received. Similarly, the channel values
corresponding to the first L trellis section need to be stored for decoding the last L trellis sec-
tions of the tailbiting code. This is because these values are required in order to build up reliable
values in the forward and the backward recursion at the beginning and the end of the tailbiting
trellis, respectively.

This modified version of the SwinDec decoder allows a reduction in the computational com-
plexity of the SwinDec decoder by a factor of (2L + D)/(L + D) compared to the decoder in
Section 5.3.2 while maintaining the same decoder performance in terms of BER and speed. In
case separate storage elements are used for the forward and backward recursions this approach
requires 2(D + L) such elements instead of D + 2L. However, the reduction in computational
complexity is more significant. The complexity of the SwinDec decoder can be reduced fur-
ther when we allow arbitrary initializations of the forward recursion instead of only the two
initializations discussed in Section 5.3.2. We can then use the result of the forward recursion in
one decoding window in order to initialize the forward recursion in the next decoding window.
This enables the window for the forward recursion to move on continuously without any stabi-
lization length. The forward recursion then requires only D trellis sections instead of L + D.
Compared to the decoder in Section 5.3.2 the computational complexity is then reduced by a
factor of 2(2L + D)/(2D + L) and the computational overhead in the SwinDec is identical to
digital sliding window decoding.

In the following we analyze the performance of the SwinDec decoder for the (512,256)
tailbiting convolutional code with memory two and generator polynomials (7,5). Note that the
performance of the SwinDec decoder in Section 5.3.2 is identical to the modified SwinDec
decoder presented in this section. Fig. 5.26 shows the simulated BER for a SwinDec decoder
with parameters D = 8 and L = 10. We find that this decoder configuration clearly outperforms
the ring decoders in Fig. 5.26 and closely approaches the BER performance of the corresponding
APP decoder. The characteristic curves of different SwinDec decoder configurations with D =
8 and a stabilization length L of 10, 12, and 15 are depicted in Fig. 5.27. A Eb/N0 value of
1 dB is assumed. It is apparent that the soft output of all configurations is significantly better
than for the ring decoders in Fig. 5.21. For IA = 0 all decoders yield almost identical IE values
as the corresponding APP decoder. This observation is consistent with the results in Fig. 5.26
where the configuration with the shortest stabilization length already closely approaches the
BER performance of the APP decoder. With increasing IA values the characteristic curves for
the SwinDec decoders are slightly shifted towards lower IE values.

A more detailed EXIT chart analysis of the SwinDec decoder can be found in Section 5.4.2
where it is used as component decoder for the parallel concatenation of convolutional codes.
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Figure 5.26: Decoding of the (512,256) tailbiting convolutional code with the SwinDec de-
coder.
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5.4 Decoder Architectures
After the introduction of some basic analog decoding networks in Section 5.2 and the SwinDec
decoder in Section 5.3 we now turn our focus to more powerful analog decoders for turbo codes
and LDPC codes. These two classes of codes are known to provide excellent error correcting
performance when iterative decoding algorithms are utilized. In the following we distinguish
between fully parallel decoder architectures where the overall code graph is implemented in
analog transistor circuits and an architecture where only a fragment of the overall code graph is
implemented.

Fully parallel decoder architectures are very attractive for turbo codes and LDPC codes.
Here, the component codes are decoded concurrently and there is a time-continuous message
exchange between the analog component decoders. There are no internal storage elements or
clock signals required and the information exchange is fully asynchronous without any itera-
tions. This architecture provides the maximum throughput of the decoder due to the maximum
amount of parallelism in the decoding network. It is particularly suited for codes with short
block length since decoder complexity increases roughly linearly with the block length of the
code. With increasing block length of the code such analog decoders can be up to several orders
of magnitude more complex than the decoders described in the previous sections. This poses
problems not only for the implementation of analog decoders but also for the simulation. Fully
parallel decoder architectures are covered in Section 5.4.1 and Section 5.4.3 for the example of
turbo codes and LDPC codes, respectively.

An alternative to such a fully parallel decoder architecture is presented in Section 5.4.2 for
the example of a sliding window turbo decoder. In this case, fully parallel processing on the
overall code graph is replaced by sequential decoding of sub-blocks of the code. For this the
SwinDec decoder from Section 5.3 is employed for decoding the component codes. This al-
lows a significant reduction in the overall decoder complexity at the expense of computational
overhead and additional storage elements in the decoder for the extrinsic information. Further
advantages of this architecture are that the SwinDec decoder can handle various different block
lengths and the speed can easily be scaled with the window size. The use of storage elements
allows a flexible realization of different interleaver structures by simply changing the way the
storage elements are addressed. In this architecture the message exchange between the analog
component decoders is again time-discrete and iterative.

5.4.1 Fully Parallel Turbo Decoder
We start with a fully parallel turbo decoder architecture for the parallel concatenation of two
convolutional codes. The normal graph of such a turbo code is depicted in the lower part of
Fig. 4.9. The nodes in this code graph represent analog node processors and the connectivity
of the analog decoding network is defined by the edges of the code graph. The set of the upper
and lower analog node processors represent the two component decoders. These component
decoders are separated by equality node processors and the interleaver Π (or de-interleaver
depending on the direction). The bidirectional message exchange within the first component
decoder and between the two component decoders is exposed in the upper part of Fig. 4.9 for
the example of rate R = 1/2 component codes. A more detailed view of a node processor
in the component decoders is given in Fig. 5.14 a). The fully parallel analog turbo decoder
performs concurrent message passing on the overall code graph according to a flooding schedule
without any timing or iterations. This process is fully asynchronous and does not require any
internal clock signals. Any node processor in the decoding network immediately passes on
its dynamically changing extrinsic output to neighboring nodes, even if they are located in the
code graph of the other component code. The neighboring nodes directly benefit from any new
information and themselves update their extrinsic output and pass it further on to other nodes.
The propagation delay between the blocks and thus the speed of the decoder is only limited by
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parasitic resistors and capacitors within the transistors and in the wiring network. The parasitics
are modeled in the simulations as lumped RC elements as described in Section 5.1.1. This
message exchange in the analog turbo decoder is in contrast to iterative decoding where during
the first half iteration the first component decoder calculates the extrinsic output in one full step
and then passes it on all at once to the other component decoder. The second component decoder
then performs the corresponding decoding operations during the second half of the iteration and
passes back its extrinsic information to the first decoder. The fundamentally different message
passing in the analog turbo decoder raises the question about the equivalence of the decoder
output and the BER performance. This is investigated in more detail shortly.

Fully parallel decoder architectures facilitate decoder implementations providing maximum
throughput. Given the maximum amount of parallelism in the decoding network we can reduce
the power (and thus speed) per node processing compared to the sequential approach covered
in the next section. All extrinsic values are inherently stored in the analog decoding network so
that no storage elements are required for the extrinsic information. However, complexity and
thus area increase roughly linearly with the block length. This means that this decoder archi-
tecture is only suited for blocks lengths of no more than a few hundred bits.

In the following we evaluate the performance of the fully parallel turbo decoder architecture
for the example of two turbo codes. Fig. 5.28 shows the simulation results for the (192,64)
turbo code originating from the parallel concatenation of two (128,64) tailbiting convolutional
codes with generator polynomials (7,5). The performance of the analog turbo decoder is com-
pared with a conventional iterative decoder with 10 and 20 iterations. We find that the BER
performance of the iterative decoder approaches the performance of the analog turbo decoder
with increasing number of iterations. The second example is for a (192,96) turbo code as it is
standardized for the return channel in DVB [ETS03]. It is based on the parallel concatenation
of two (144,96) tailbiting convolutional codes with memory three and rate 2/3. The simula-
tion results for the analog turbo decoder and a conventional iterative decoder with 10, 15 and
20 iterations are compared in Fig. 5.29. Again, the BER performance of the iterative decoder
approaches the performance of the analog turbo decoder with increasing number of iterations.
Note that a reduced number of iterations is analogous to a shorter time allowed for the settling
of the outputs in the analog turbo decoder. Both increases the BER.

These presented turbo decoders already reach a complexity which limits the use of our time-
continuous simulation model from Section 5.1.1. The simulation time for large SNR values
increases here to several weeks on a Pentium IV processor. The BER results for the analog
turbo decoder in Fig. 5.28 and Fig. 5.29 are therefore omitted at 3.5 dB. The simulation of
higher SNR values or more complex coding themes thus needs to rely on faster time-discrete
simulation models.

Similar simulation results as in the above are reported for a slightly modified DVB code
in [ALJS04], [ALS+05] and other codes in [HMO00b]. A time-discrete simulation model for
turbo codes with h < 1 was investigated in [MA00] without finding a considerable gain. A
fully parallel turbo decoder is also investigated in [XVG+02] and in the context of concatenated
magnetic recording schemes in [AMNX02]. An example of a fully parallel turbo decoder with
programmable interleaver can be found in [GGG02], [GG03b], [GG03a].

5.4.2 Sliding Window Turbo Decoder
An interesting alternative to fully parallel turbo decoders are sliding window turbo decoders.
This type of turbo decoder relies on SwinDec component decoders as introduced in Section
5.3 in order to decode the component codes. There are several advantages of such a decoder
architecture. First, decoder complexity can be significantly reduced since only a small fraction
of the overall code graph needs to be implemented. This complexity reduction comes at the
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Figure 5.28: Decoding of the (192,64) turbo code with memory two tailbiting codes as compo-
nent codes.
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Figure 5.29: Decoding of the (192,96) DVB turbo code with memory three tailbiting convolu-
tional codes as component codes.
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expense of additional storage elements for the extrinsic information of the component decoders.
These storage elements can be implemented either in the analog or the digital domain. In the
latter, additional A/D and D/A conversions are required at the extrinsic output and the a priori
input of the component decoder. The design of these A/D and D/A converters is extremely
important since they are required to operate at a multiple of the block rate. An example of a
very area- and power-efficient realization of such a D/A converter is presented later in Chapter
8. The use of storage elements has the advantage of realizing different interleaver structures
simply by changing the way the storage elements are addressed. This is not possible with
the hard-wired interleaver of a fully parallel decoder. Another advantage is that the SwinDec
component decoders can be used very flexibly in order to decode various different block lengths.
This feature is mandatory for coding schemes like in UMTS [ETS00] since it is not feasible to
use a dedicated turbo decoder implementation for each standardized block length. Also, the
speed of the component decoder and thus the speed of the turbo decoder can be scaled with the
window size of the SwinDec according to the requirements of the application. Note that the
information exchange between the analog component decoders is here iterative which makes
this architecture easier to analyze.

In the following we investigate the performance of a sliding window turbo decoder for the
example of the (1932,640) UMTS turbo code with rate R = K/(3K + 12) and K = 640
information bits. Before we investigate the BER performance of different turbo decoder config-
urations we start with an EXIT chart analysis of the component decoders as shown in Fig. 5.30
for a Eb/N0 value of 0.5 dB. The characteristic curves of different SwinDec decoders are de-
picted. All configurations decode a fix number of D = 8 information bits within each decoding
window and the stabilization length L is chosen to be either 16, 20 or 24. The corresponding
curves for an APP decoder are added as reference. We notice that with decreasing values for the
stabilization length and increasing IA values the SwinDec decoder output generates lower IE

values as the APP decoder. This narrows the available tunnel for the trajectory and thus leads
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Figure 5.30: EXIT chart analysis of the (1932,640) UMTS turbo code decoded with different
SwinDec component decoders at a Eb/N0 value of 0.5 dB.
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Figure 5.31: Decoding of the (1932,640) UMTS turbo code with different SwinDec component
decoder configurations.

to an increased BER of the turbo decoder. Note that the characteristic curves for the different
component decoders exhibit almost identical IE values for IA = 0. This indicates that the com-
ponent decoders will yield almost identical BER performance when no a priori information is
available. The simulated trajectory for a sliding window turbo decoder using SwinDec com-
ponent decoders with parameters D = 8, L = 16 and 20 iterations is also added in Fig. 5.30.
The end of the corresponding trajectory for a turbo decoder with APP component decoders is
also included as reference. This point is closer to the upper right corner (IA = 1, IE = 1) and
thus indicates a lower BER. The results of the corresponding BER simulations for the sliding
window turbo decoder are shown in Fig. 5.31 for 10 iterations. Here, a SwinDec decoder con-
figuration with D = 8 and L = 24 closely approaches the performance of a turbo decoder with
APP component decoders.

We now turn our focus to the effect of quantization of soft-information on the performance
of sliding window turbo decoders. This is because of two reasons. First, in most practical ap-
plications the analog turbo decoder is preceded by some digital signal processing. It is then
required to convert the available quantized soft information into analog inputs for the decoder.
The second reason is that there are internal storage elements in the sliding window decoder
which may optionally be implemented in the digital domain. Clearly, the complexity of the
required D/A and A/D conversions heavily depends on the number of bits used for the quanti-
zation. In the following we assume the non-linear and SNR dependent quantization as described
in Section 4.6 and investigate the impact on decoder performance for the example of the above
UMTS turbo code. We start with an EXIT chart analysis as depicted in Fig. 5.32 for a Eb/N0

value of 0.5 dB. The characteristic curves of an APP component decoder with 3 bit and 4 bit
channel quantization are shown together with the corresponding curves in case both the chan-
nel information and the internal extrinsic information are quantized with 3 bit and 4 bit. The
quantization of internal information is performed based on the channel SNR and not the inter-
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Figure 5.32: EXIT chart analysis of the (1932,640) UMTS turbo code decoded with different
component decoders and quantization of soft information at a Eb/N0 value of 0.5 dB.

nal SNR in the turbo decoder.4 In case of quantization the characteristic curves appear to be
shifted towards lower IE values. This effect again narrows the available tunnel for the trajectory
of the turbo decoder which then causes an increased BER of the turbo decoder. Quantization
leads to smaller IE values, even for IE = 0. This in contrast to Fig. 5.30 and implies that the
BER performance of the component decoders is also degraded. The simulated trajectory for a
turbo decoder with 3 bit channel quantization, 3 bit internal quantization and 20 iterations is
also added in Fig. 5.32. The end of the corresponding trajectory for a turbo decoder with APP
component decoders and no quantization is again included as reference. As expected, this point
is closer to the upper right corner (IA = 1, IE = 1) than in case of quantization thus indicating
a lower BER.

We now investigate the performance of a turbo decoder with SwinDec component decoders
in conjunction with the quantization of soft information. This combines the effects investigated
in Fig. 5.30 and Fig. 5.32. We assume a SwinDec component decoder with D = 8, L = 24
and four bit channel quantization as it is, e.g., provided by a digital input interface. The BER
performance of such a sliding window turbo decoder is depicted in Fig. 5.33 for 10 decoder
iterations. A decoder with four bit channel quantization and (ideal) analog storage elements for
the (internal) extrinsic information is compared to a decoder where both channel information
and extrinsic information are quantized with four bits, i.e., digital storage elements are used.
We recognize a small performance degradation in comparison with the corresponding curve of
a turbo decoder with APP component decoders and no quantization. The quantization of the
channel values with four bit at the input of the SwinDec decoder configuration causes an offset
of around 0.04 dB. The additional quantization of internal extrinsic information with four bit
leads to an additional shift of 0.08 dB. The overall performance degradation compared to the
reference decoder is here 0.12 dB.

4The use of the internal SNR may slightly improve the BER performance of the turbo decoder.
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Figure 5.33: Decoding of the (1932,640) UMTS turbo code with different component decoders
and 4 bit quantization.

The effect of quantization on the performance of a digital turbo decoder is investigated in,
e.g., [WW99], [JH99], [MWW00] and [MW01].

A related sliding window turbo decoder where the time-continuous exchange of extrinsic
information between the component decoders is partly maintained can be found in [ALS+05],
[ALSJ05] [ASLJ06] and [Arz06]. Here, the sliding window technique is applied to the code
graph of the overall turbo code rather than the component code.

5.4.3 Fully Parallel LDPC Decoder
LDPC codes are naturally suited for fully parallel decoder architectures. Typically, the block
size of LDPC codes is rather large. This leads to fairly complex analog decoders which are
difficult to simulate. In the following we use examples of rather short LDPC codes as they
are proposed for the emerging IEEE standard 802.11n [IEE05]. We focus on the (648,324)
LDPC code with rate R = 1/2 and the (648,540) LDPC code with rate R = 5/6. These codes
can be represented by a normal graph based on the parity-check matrix as shown in Fig. 3.9.
In order to obtain the normal graphs for the representation of the analog decoding networks
we transform the normal graphs as outlined in Section 3.4.2. For this, we apply both the C3
Algorithm from Section 3.3.1 and the V3 Algorithm from Section 3.4.2 to the corresponding
parity-check matrices of the codes. For the rate R = 1/2 and rate R = 5/6 codes we then
obtain 2808×3132 and 3240×3780 expanded parity-check matrices, respectively, which utilize
additional (internal) state variables. These matrices are simply referred to as H3, where the
index reflects the degree of the nodes in the associated normal graph. The generic view of an
analog LDPC decoder based on the transformed normal graph is depicted in Fig. 5.34. Note
that every column i in H with weight dv,i is split up into dv,i − 1 equality node processors and
that every row j in H with weight dc,j is split up into dc,j − 2 check node processors.

The performance of the fully parallel analog LDPC decoders is now evaluated with our
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Figure 5.34: Generic view of an analog LDPC decoder.

different time-discrete simulation models. Note that for these codes our time-continuous de-
coder model in SIMULINK becomes too complex and time-consuming. Fig. 5.35 depicts the
simulated BER for the rate R = 1/2 LDPC decoder as a function of the number of iterations.
Three different simulation models are compared. The first simulation model represents conven-
tional iterative decoding based on the original parity-check matrix of the code and the other two
simulation models are based on the extended parity-check matrix H3 with h = 1 and h = 0.1,
respectively. All simulation models were run on the same set of channel values in order to allow
a fair comparison of the simulation results. Different Eb/N0 values of 1.5 dB, 1.75 dB and 2 dB
are depicted in Fig. 5.35. We recognize that decoding on the extended parity-check matrices H3

requires significantly more iterations in order to converge than decoding based on the original
H matrix. Furthermore, when the step size h in the simulation model is decreased from 1 to 0.1
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Figure 5.35: Simulated BER of different LDPC decoder simulation models for the (648,324)
LDPC code at Eb/N0 values of 1.5 dB, 1.75 dB and 2 dB.
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the number of iterations needs to be increased accordingly. Here, it is important to emphasis
that a larger number of iterations in the simulation model does not imply a longer settling time
of the analog decoding network or increased complexity. More iterations simply originate from
a finer time-resolution in the used simulation model. We can conclude from Fig. 5.35 that all
three simulation models converge to quite comparable BER results for the different simulated
SNR values. Neither the degree restriction on the nodes in the normal graph nor the step size
of the simulation model significantly alters the BER performance. This behavior is somehow
surprising since the decoders are based on two different code graphs and the message exchange
in the decoding networks is also different. These results are in contrast to the results in [HB04]
and [HB06] where a different BER performance is reported for different simulation models (and
different codes).

In the following we further investigate the BER performance of fully parallel LDPC de-
coders for the (648,324) LDPC code with rate R = 1/2 and the (648,540) LDPC code with rate
R = 5/6. For this, the decoders are evaluated with the time-discrete simulation model based on
the extended parity-check matrix H3 with h = 1 and 250 iterations. These restrictions are nec-
essary in order to limit the computational complexity. The corresponding simulation results are
depicted in Fig. 5.36 together with an iterative reference decoder based on the original parity-
check matrix H with 50 iterations. Note that both simulation models yield almost identical
BER results for each of the two code rates.

In most practical applications the analog LDPC decoder is preceded by some digital signal
processing. It is then required to convert the available quantized soft information into analog
inputs for the decoder. The complexity of this conversion heavily depends on the number of bits
per input sample. In the following we assume the non-linear and SNR dependent quantization
as described in Section 4.6 and investigate the impact on the performance of the two LDPC
decoders. For this, we use the time-discrete simulation model based on the H matrix of the
codes, i.e., conventional iterative decoding, with 50 iterations. The simulation results for a
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Figure 5.36: Decoding of the (648,324) LDPC code with rate R = 1/2 and the (648,540)
LDPC code with rate R = 5/6 based on the corresponding H and H3 matrices.
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Figure 5.37: Decoding of the (648,324) LDPC code with rate R = 1/2 and the (648,540)
LDPC code with rate R = 5/6 based on the H matrices with a quantization of the decoder
input.

quantization of the decoder input with three and four bits are depicted in Fig. 5.37. With a
quantization of three bit we observe a loss of 0.12 dB for the rate R = 1/2 code and a loss of
0.1 dB for the rate R = 5/6 code. The use of four bits reduces the loss in both cases to less
than 0.05 dB. In this fully parallel decoder architecture the (internal) extrinsic information is
inherently stored in the analog decoding network so that no internal quantization needs to be
considered.

A realization of these analog LDPC decoders including digital input and output interfaces
is further investigated in Chapter 8. The implementation of a simple analog LDPC decoder is
reported in [HBP05] and [HBP06].

5.5 On the Possible Equivalence between Analog and Digital
Decoding

The advent of analog decoding in [Hag97b], [Hag98], [HW98] and [LLHT98] gave rise to ques-
tions about the equivalence between analog and digital decoding. Analog decoding is implicitly
understood as operating with analog, i.e., value-continuous, messages in continuous time. The
analog decoder considered in this Chapter relies on the time-continuous simulation model from
Section 5.1.1 where all node processors perform the ideal decoder operations. The speed of the
analog decoder is only limited by the parasitics which are modeled by lumped RC elements.
We furthermore assume that the output of the analog decoder is sampled after the decoding net-
work has settled completely. In our context digital decoding performs the same ideal decoder
operations but passes on the results in one full step to neighboring node processors. The mes-
sage exchange is thus time-discrete and iterative. However, a digital message representation
with a limited number of quantization levels is not considered. Hence, both analog and digital
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decoders are simulated with a floating point message representation.
In this section we are more interested in a statistical evaluation of decoder performance

in terms of the BER rather than proving equivalence in terms of identical soft outputs for all
possible input configurations. In particular, we do not try to prove equivalence analytically. For
many analog decoder configurations it is in fact easy to demonstrate that they are not equivalent
to a conventional time-discrete decoder in a narrower sense. This is for example the case when
analog and digital decoders are based on different code graphs.

In the following we differentiate between different types of code graphs which are consid-
ered in this work and summarize the results from the previous sections of this Chapter. The
reader is also referred to the comments made on the equivalence between analog and digital
decoding in [Sch05].

5.5.1 Code Graphs without Loops
Decoding networks based on code graphs without loops are easy to analyze. Possible exam-
ples include code graphs which form a tree or conventional trellis descriptions of block codes
and terminated convolutional codes. Another example is the SwinDec decoder from Section
5.3 which implements only a small cycle-free sub-graphs of the overall code graph. The time-
continuous message exchange on such code graphs does not alter the final decoder decision and
the output of both analog and digital decoders is identical in both sign and magnitude.

5.5.2 Tailbiting Representations of Codes
Tailbiting representations of codes are a special case of code graphs with loops since there is
only one typically large loop in the decoding network. We investigated tailbiting decoders for
the (8,4,4) extended Hamming code in Section 5.2.2 and the (32,16) tailbiting convolutional
code in Section 5.2.3. Our results suggest that analog tailbiting decoders yield identical BER
results as the tailbiting wrap-around algorithm when the stabilization length is sufficiently large.
The soft output may vary slightly depending on the chosen stabilization length in the digital de-
coder. The BER performance of the analog tailbiting decoder hereby closely approaches the
BER performance of the APP decoder, even when the tailbiting loop is as small as four trellis
sections as in case of the tailbiting representation of the (8,4,4) extended Hamming code. More
comments on the equivalence between the tailbiting wrap-around decoder and the APP decoder
can, e.g., be found in [AH98].

5.5.3 Code Graphs with Loops
Decoders based on code graphs with loops are more difficult to analyze. Here, we distinguish
between decoders based on binary and non-binary code graphs. We start with binary code
graphs as they are for example obtained from the parity-check matrix of the code. Analog and
digital decoders based on such graphs are in general not equivalent in a narrower sense. This
is because the normal graph needs to exhibit nodes with degree three in order to represent an
analog decoding network. The normal graph thus typically needs to be transformed so that
analog and digital decoders are based on essentially different code graphs. Examples for this
are the (7,4,3) Hamming code and the (8,4,4) extended Hamming code5 in Section 5.2.2 and
the LDPC codes in Section 5.4.3. However, no evidence was found that this transformation
of the code graph impacts decoder performance in terms of the BER. Other modifications of
the normal graph, however, may improve the performance of both analog and digital decoders.
This was also demonstrated in Section 5.2.2 for the example of the (7,4,3) Hamming code
and the (8,4,4) extended Hamming code. It is particularly interesting to see that the modified

5The results are not plotted.
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decoder for the (7,4,3) Hamming code closely approaches the BER performance of the APP
decoder despite the presence of small cycles, see Fig. 5.10. For a given normal graph with
degree three we found that different time-continuous and time-discrete simulation models yield
almost identical BER results. Simulation results for this can be found in Section 5.2.2 and in
Section 5.4.3. At this point it needs to be emphasized that different time-discrete simulation
models require a significantly different number of iterations for convergence, see in particular
Fig. 5.35. If this is not considered carefully one may be tempted to argue that one simulation
model or decoder implementation is better than the other.

We now turn our focus to decoders based on non-binary code graphs with loops. A typical
example of such codes are turbo codes. Turbo codes naturally lead to degree three nodes in
the normal graph, see Fig. 4.9, so that there are no modifications of the code graph required.
In Section 5.4.1 we presented examples of a (192,64) turbo code and a (192,96) turbo code
as standardized for DVB [ETS03]. We found that a conventional iterative turbo decoder ap-
proaches the BER performance of a fully parallel analog turbo decoder with increasing number
of iterations. These results are somehow surprising since the timing of the message exchange
in the decoder is completely different. In case the turbo code is decoded with the analog slid-
ing window turbo decoder from Section 5.4.2 the performance is equivalent to a turbo decoder
which uses digital sliding window decoders with the same stabilization length.

Note that decoders based on code graphs with loops in general tend to overestimate the
reliability of the decoder output. However, this effect is not further investigated since both
analog and digital decoders are affected.

It is important to emphasis that digital decoders are based on a message representation with a
finite number of quantization levels. This includes the channel values, the extrinsic information
as well as all decoder internal messages. It is furthermore common practice to approximate the
computations in the node processors in order to lower decoder complexity, see, e.g., [RVH95],
[Daw96]. A digital decoder realization will thus not achieve the simulated BER performance of
the ideal digital decoder assumed throughout this work. A carefully designed analog decoder
can therefore be expected to outperform a digital decoder in terms of the BER.



6
Integrated Circuits for Analog
Decoding

There is a happy match between the various different message representations used in decod-
ing algorithms and voltages or currents in analog integrated circuits. During the course of this
chapter we demonstrate that a probability P (x = i) is naturally represented by a normalized
current Ii/Ib, with Ib as sum current. The soft bit λ(X) is then determined accordingly as the
normalized differential current ∆I/Ib. Similarly, normalized voltages represent messages in
the logarithmic domain. Here, a single-ended voltage Vi normalized by a constant VT can be
interpreted as log-likelihood with offset ψ and inverted sign. A normalized differential voltage
∆V/VT then corresponds to a log-likelihood ratio L(X). A summary of these relationships is
given in Table 6.1. The equivalence between message representations and normalized voltages

Table 6.1: Happy match between different message representations and normalized voltages or
currents.

message representation short notation range circuit quantity short notation
probability P (x = i) 0 . . . 1 norm. current Ii/Ib

soft bit λ(X) −1 . . . + 1 norm. diff. current ∆I/Ib

log-likelihood+const. li(X) + ψ −∞ . . . 0 norm. voltage −Vi/VT

log-likelihood ratio L(X) −∞ . . . +∞ norm. diff. voltage ∆V/VT

and currents is based on an exponential characteristic of bipolar transistor circuits. For many
applications it may be desirable to use complementary metal oxide semiconductor (CMOS)
transistors rather than bipolar transistors. In general, CMOS devices exhibit a different char-
acteristic which only roughly approximates the desired exponential behavior. We therefore use
bipolar transistors in the following derivation of different decoder building blocks.

In Section 6.1 we introduce some elementary transistor circuits including relevant transistor
models and derive the main building blocks for check node and variable node processors. We
then generalize these building blocks to the case of non-binary node processors with non-binary
message representations in Section 6.2. The interfacing circuits which are required in order to
interconnect different building blocks are covered in Section 6.3. In Section 6.4 we give some
examples of complete node processors and analyze the complexity of different decoder archi-
tectures for turbo codes and LDPC codes.
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6.1 Elementary Transistor Circuits
This section introduces some elementary transistor circuits used in our analog decoding net-
works. This, for example, includes the differential pair and the pair of diode-connected tran-
sistors. The differential pair transforms the differential input voltage, interpreted as a L-value,
into two output currents interpreted as the associated probabilities. The natural inverse to this
circuit is the pair of diode-connected transistors. It transforms two input currents, interpreted
as probabilities, into a differential output voltage representing the corresponding L-value. We
demonstrate that a stacked configuration of differential pairs yields a probability multiplier and
that different wiring networks at the output of such a multiplier lead to different decoder build-
ing blocks [MGYH00]. We start with the basic description of bipolar and CMOS transistor
models and derive step-by-step the circuit implementations of check node and variable node
processors. These transistor circuits are heavily used in any analog decoder implementation
based on binary code graphs.

6.1.1 Transistor Models
A bipolar npn transistor is depicted in Fig. 6.1 together with the corresponding sign convention.
The three terminals are denoted with collector (C), base (B) and emitter (E), respectively. This

+

−
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E

IC

IE

VBC

−
+

VCE

+

−

IB

VBE

Figure 6.1: A bipolar npn transistor with sign convention.

transistor is biased to operate in the forward-active region, i.e., with a forward-biased B-E junc-
tion and a reverse-biased C-B junction. This mode of operation is typical for most applications
and will be assumed throughout this work. The Ebers-Moll DC (large signal) model describes
the relationship between the collector current IC and the B-E voltage VBE as

IC = IS

(
e

VBE
VT − 1

)
, (6.1)

with IS as constant to describe the transfer characteristic of the transistor. Typical values of IS

are 10−14 to 10−16 A [GM93]. VT is the thermal voltage, which is equal to kT/q with k being
Boltzmann’s constant (k = 1.3807 × 10−23 VAs/◦K), T the absolute temperature in degrees
Kelvin and q the charge of an electron (q = 1.6 × 10−19 As). At room temperature (T = 300◦

K) we obtain VT ≈ 26 mV. For VBE À VT , (6.1) reduces to

IC = IS e
VBE
VT . (6.2)

The base current IB is related to the collector current IC according to

IB =
IC

βF

=
IS

βF

e
VBE
VT , (6.3)
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Figure 6.2: The diode-connected npn transistor.

where βF is the forward current gain of the transistor. Typical values of βF for npn transistors
are between 50 and 500 [GM93]. The emitter current is the sum of the base and collector
currents, i.e.

IE = IC + IB = IC +
IC

βF

=
IC

αF

, (6.4)

with αF = βF

1+βF
, which is typically between 0.98 and 0.998 for npn transistors. For transistors

with high current gain it is common practice to use the approximation αF ≈ 1. When base and
collector terminals of a npn transistor are shorted as shown in Fig. 6.2, the transistor behaves
like a single pn diode. In this case we can reformulate (6.2) and express the voltage drop across
the pn junction as

V = VT ln

(
I

IS

)
. (6.5)

Such a diode-connected transistor exhibits a logarithmic characteristic as it can be used for
transforming a probability represented as input current I into a log-likelihood (plus a constant)
represented as voltage drop V across the diode.

For many applications it is desirable to work with CMOS devices rather than bipolar tran-
sistors. The CMOS equivalent of a npn transistor is the nMOS transistor shown in Fig. 6.3. It
has four terminals denoted with drain (D), gate (G), source (S) and bulk (B). Here, we need
to differentiate between three different operating regions, namely weak inversion, moderate in-
version and strong inversion [Tsi99]. In weak inversion (or sub-threshold mode of operation)
the drain current ID is due to diffusion and is exponentially related to the gate-source voltage
VGS similar to a bipolar transistor. This is, however, no longer the case in moderate or strong
inversion. Strong inversion is characterized by VGS > Vth with Vth as the process dependent
threshold voltage of the transistor. In this region the drain current ID is due to drift and for
saturated devices with VDS > VGS − Vth it is approximately quadric in VGS . A simplified and
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S IS

B

VGD
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−

+

+
VBS

−
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IG

+
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−

−
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D

Figure 6.3: nMOS transistor with sign convention.
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commonly used transistor model for this operation region is given by

ID =
1

2
µ Cox

W
L

(VGS − Vth)
2 , (6.6)

where µ denotes the surface mobility of the electrons and Cox the oxide capacitance per unit
area. The parameters W and L refer to the width and length of the channel, respectively. In
moderate inversion the current is a result of of both drift and diffusion and is thus neither expo-
nential nor polynomial. This region extends over several orders of magnitude in drain current
and thus plays an important role in analog decoding. The fact that the behavior of CMOS de-
vices for the important case of moderate inversion is neither exponential nor quadric makes it
extremely difficult to analyze decoder performance analytically. In Section 8.3 we will evaluate
the error of some decoder building blocks implemented with nMOS devices and estimate the
expected performance when such blocks are used in large analog decoding networks.

Note that npn and nMOS transistors can always be replaced by their complementary pnp
and pMOS transistors which exhibit a very similar characteristic. We then obtain complemen-
tary building blocks which can be used in, e.g., folded circuit architectures. In the following
sections we use the more common npn transistors in order to introduce our transistor circuits.
For a CMOS implementation of the decoder we simply substitute npn transistors with nMOS
transistors.

6.1.2 Differential Pair
The differential pair (or differential amplifier) shown in the lower part of Fig. 6.4 is a widely
used transistor configuration and plays a fundamental role in analog decoding. For matched
transistors Q0 and Q1 we assume αF0 = αF1 = αF and IS0 = IS1 = IS . Hence,

Ib = IE0 + IE1 =
IC0

αF

+
IC1

αF

. (6.7)

Using (6.2), the two output currents IC0 and IC1 can be expressed in terms of the two input
voltages V0 and V1 according to

IC0 = IS e
V0−V

VT (6.8)

and
IC1 = IS e

V1−V
VT , (6.9)

with V as the voltage at the common emitter. Equation (6.7) may now be written as

Ib =
IS

αF

e
− V

VT

(
e

V0
VT + e

V1
VT

)
. (6.10)

Solving for e
− V

VT yields

e
− V

VT = αF
Ib

IS

1

e
V0
VT + e

V1
VT

. (6.11)

When we substitute this expression in (6.8) and (6.9) we obtain for the output currents

IC0 = IS e
V0
VT e

− V
VT = αF Ib

e
V0
VT

e
V0
VT + e

V1
VT

= αF
Ib

1 + e
−V0−V1

VT

, (6.12)

and

IC1 = IS e
V1
VT e

− V
VT = αF Ib

e
V1
VT

e
V0
VT + e

V1
VT

= αF
Ib

1 + e
V0−V1

VT

. (6.13)
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Figure 6.4: Differential pair (bottom) and pair of diode-connected transistors (top).

With ∆V = V0 − V1 we obtain

IC0 = αF
Ib

1 + e
−∆V

VT

(6.14)

and
IC1 = αF

Ib

1 + e
+∆V

VT

. (6.15)

When ∆V is larger than about 200 mV transistor Q0 is almost completely switched on and Q1 is
almost completely switched off, i.e., IC0 ≈ Ib and IC1 ≈ 0. With ∆V less than about −200 mV
we observe the opposite behavior and Q1 is switched on and Q0 is switched off. The difference
between the two output currents IC0 and IC1 is given as

∆IC = IC0 − IC1 = αF
Ib

1 + e
−∆V

VT

− αF
Ib

1 + e
+∆V

VT

= αF Ib
e

∆V
VT − 1

e
∆V
VT + 1

. (6.16)

Using the identity tanh
(

u
2

)
= eu−1

eu+1
, this equation results in

∆IC = αF Ib tanh

(
∆V

2VT

)
. (6.17)

It unfolds in (6.17) that the differential pair provides a very efficient implementation of the
hyperbolic tangent which is heavily used in decoding based on binary graphs. In the following
we always assume transistors with high current gain so that αF = 1 is a reasonable good
approximation. We then obtain from (6.14) and (6.15)

IC0 =
Ib

1 + e
−∆V

VT

and
IC1 =

Ib

1 + e
+∆V

VT

,
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respectively. When we compare these equations with the message representations for binary
random variables in Section 4.3.1 we can conclude that

IC0 = Ib P (x = 0) (6.18)

and
IC1 = Ib P (x = 1) , (6.19)

where
∆V = VT L(X). (6.20)

This reveals that the normalized output currents IC0/Ib and IC1/Ib represent the correspond-
ing probabilities for bit X when the normalized differential input voltage ∆V/VT represents
the corresponding L-value. The differential amplifier can therefore be used for the conversion
of L-values into the corresponding probabilities. We can further conclude that the normalized
differential output current ∆IC/Ib in (6.17) represents the associated soft bit λ(X). Also, the
normalized single-ended input voltages V0/VT and V1/VT can be interpreted as the associated
log-likelihoods l0(X) and l1(X) plus an additive constant.

6.1.3 Pair of Diode-Connected Transistors
The pair of diode-connected transistors shown in the upper part of Fig. 6.4 forms the natural in-
verse to the differential pair described in the last section. Here, the single-ended output voltages
can be expressed as

V ′
0 = VDD − VT ln

(
IE0

IS

)
(6.21)

and

V ′
1 = VDD − VT ln

(
IE1

IS

)
, (6.22)

with VDD as supply voltage. Similar to the differential pair we can interpret the two normalized
input currents IE0/Ib and IE1/Ib as the two probabilities P (x = 0) and P (x = 1), respectively.
When the voltage drops VDD − V ′

0 and VDD − V ′
1 generated across the two diode connected

transistors are normalized with VT we obtain the corresponding log-likelihoods l0(X) and l1(X)
plus an additive constant. With IE0 = Ib/2 + ∆IC/2 and IE1 = Ib/2 − ∆IC/2 we obtain for
the differential output voltage

∆V ′ = V ′
1 − V ′

0 = −VT ln

(
Ib/2−∆IC/2

IS

)
+ VT ln

(
Ib/2 + ∆IC/2

IS

)
(6.23)

= VT ln

(
Ib/2 + ∆IC/2

Ib/2−∆IC/2

)
= VT ln

(
1 + ∆IC

Ib

1− ∆IC

Ib

)
. (6.24)

Note that the differential output voltage ∆V ′ in (6.23) is defined differently compared to the
differential input voltage of the differential pair in the last section, i.e., a sign inversion occurs.
Using the identity tanh−1(u) = 1

2
ln

(
1+u
1−u

)
equation (6.24) yields

∆V ′ = 2VT tanh−1

(
∆IC

Ib

)
. (6.25)

Like the differential pair provides an efficient means of implementing the hyperbolic tangent,
this circuit is an efficient circuit implementation for the inverse hyperbolic tangent. We can
prove the duality of the two transistor circuits by directly connecting the current outputs of the
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differential pair with the current inputs of the pair of diode-connected transistors in Fig. 6.4.
With (6.17) and (6.24) we obtain

∆V ′ = 2VT tanh−1

(
tanh

(
∆V

2VT

))
= ∆V. (6.26)

It unfolds that the normalized differential output voltage ∆V ′/VT again represents L(X). This
connected circuit configuration thus performs the conversion of an L-value into the correspond-
ing probabilities and then back again from the probabilities to the L-value.

In the following sections we use the differential pair and the pair of diode connected tran-
sistors in order to design some elementary building blocks for decoders based on binary code
graphs.

IC1

Q0

IC3IC2

Q2 Q3

IC4 IC5

Q5Q4

Q1

Ib

V20

V21

V10

V11

IC0

Figure 6.5: Stacked configuration of differential pairs.

6.1.4 Stacked Configuration of Differential Pairs

The last two sections covered the differential pair and the pair of diode-connected transistors.
These circuits can be employed in order to transform L-values into the corresponding probabil-
ities and vice versa. In this section, we introduce the stacked configuration of differential pairs
which not only transforms one signal representation into another, but also features multiplica-
tion and facilitates extremely low complexity summation of probabilities as we will see in the
following. A stacked configuration of differential pairs is depicted in Fig. 6.5. Here, the output
currents IC0 and IC1 of the lower differential pair (Q0, Q1) with the differential input voltage
∆V1 = V10 − V11 provide the biasing currents for the upper two differential pairs (Q2, Q3) and
(Q4, Q5). A second differential input voltage ∆V2 = V20 − V21 is applied concurrently to the
upper two differential pairs as shown in Fig. 6.5. We assume that all devices are matched, i.e.,
have identical αF and IS . The four output currents of this stacked configuration can now be



104 Chapter 6 ¥ Integrated Circuits for Analog Decoding

expressed in terms of the two differential input voltages as

IC2 =
IC0

1 + e
−∆V2

VT

=
Ib(

1 + e
−∆V1

VT

)(
1 + e

−∆V2
VT

) , (6.27)

IC3 =
IC0

1 + e
+

∆V2
VT

=
Ib(

1 + e
−∆V1

VT

)(
1 + e

+
∆V2
VT

) , (6.28)

IC4 =
IC1

1 + e
−∆V2

VT

=
Ib(

1 + e
+

∆V1
VT

)(
1 + e

−∆V2
VT

) , (6.29)

IC5 =
IC1

1 + e
+

∆V2
VT

=
Ib(

1 + e
+

∆V1
VT

)(
1 + e

+
∆V2
VT

) . (6.30)

Again, we interpret the normalized differential input voltages ∆V1/VT and ∆V2/VT as L(X1)
and L(X2), respectively. Based on Section 6.1.2 and (6.27) to (6.30) we can then conclude that
the normalized output currents satisfy

IC0

Ib

= P (x1 = 0), (6.31)

IC1

Ib

= P (x1 = 1), (6.32)

IC2

Ib

= P (x1 = 0)P (x2 = 0), (6.33)

IC3

Ib

= P (x1 = 0)P (x2 = 1), (6.34)

IC4

Ib

= P (x1 = 1)P (x2 = 0), (6.35)

IC5

Ib

= P (x1 = 1)P (x2 = 1). (6.36)

It becomes apparent that the stacked configuration of differential pairs transforms the input
L-values into the corresponding probabilities and then performs a pairwise multiplication of
them. The four possible probability products are then available as normalized output currents.
The current output of this circuit allows a simple summation of the results according to Kirch-
hoff’s current law. Depending on the required function of the circuit we can simply connect
output wires together. Two particularly important wiring configurations are covered in the fol-
lowing sections.

6.1.5 Boxplus Circuit
Our first analog decoder building block is the Boxplus circuit which performs the operations of
a degree three check node processor. It is based on the well-known Gilbert multiplier [Gil68],
[GM93] and relies on a stacked configuration of differential pairs as introduced in the previous
section. The Gilbert multiplier is obtained when the four outputs are connected together as
shown in Fig. 6.6. The two output currents of the Gilbert multiplier are then given as IC25 =
IC2 + IC5 and IC34 = IC3 + IC4 . With (6.33) to (6.36) we obtain for the two normalized output
currents of the Gilbert multiplier

IC25

Ib

= P (x1 = 0)P (x2 = 0) + P (x1 = 1)P (x2 = 1), (6.37)

IC34

Ib

= P (x1 = 1)P (x2 = 0) + P (x1 = 0)P (x2 = 1). (6.38)
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Figure 6.6: The Boxplus circuit consisting of a Gilbert multiplier and a pair of diode-connected
transistors stacked on top.

This proves that this circuit configuration performs the basic operations of a check node proces-
sor with degree three, see Fig. 4.2. The normalized differential output current is given as

∆IC

Ib

=
IC25 − IC34

Ib

=
1 + e

∆V1+∆V2
VT − e

+
∆V1
VT − e

+
∆V2
VT(

1 + e
+

∆V1
VT

)(
1 + e

+
∆V2
VT

)

=

(
1− e

+
∆V1
VT

) (
1− e

+
∆V2
VT

)

(
1 + e

+
∆V1
VT

) (
1 + e

+
∆V2
VT

) . (6.39)

Using the identity tanh
(

u
2

)
= eu−1

eu+1
we yield the well-known description of the Gilbert multi-

plier
∆IC

Ib

= tanh

(
∆V1

2VT

)
tanh

(
∆V2

2VT

)
. (6.40)

Provided that the two differential input voltages are small enough, we can use the linear ap-
proximation of the hyperbolic tangent. In this case, the Gilbert multiplier performs the linear
four-quadrant analog multiplication according to

∆IC

Ib

≈
(

∆V1

2VT

)(
∆V2

2VT

)
. (6.41)

However, this approximation only holds for a very restricted range of the differential input
voltages with ∆V1 and ∆V2 ¿ VT . There are solutions available in the literature to circumvent
this limitation due to the inherent non-linearity [Gil68]. It is interesting to note that exactly
this non-linearity of the circuit is exploited in analog decoding, thus leading to very area- and
power-efficient decoder implementations.
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For the Boxplus circuit diode-connected transistors are stacked on top of the two rows of
differential pairs as shown in Fig. 6.6. The voltage drop across each diode-connected transistor
is proportional to the natural logarithm of the current through the device, see (6.5). Stacking
the pair of diode-connected transistors on top of the Gilbert multiplier and defining the current
components I = Ib/2 and ∆IC = (IC25 − IC34)/2 yields for the normalized differential output
voltage

∆V ′

VT

=
V ′

1 − V ′
0

VT

= 2 tanh−1

(
IC25 − IC34

2

2

Ib

)

= 2 tanh−1

[
tanh

(
∆V1

2VT

)
tanh

(
∆V2

2VT

)]
. (6.42)

This expression corresponds to a reformulation of the Boxplus equation in terms of differential
voltages. With ∆V1/VT = L(X1) and ∆V2/VT = L(X2) we obtain ∆V ′/VT = L(X3), where
L(X3) = L(X1) ¢ L(X2). Note that the definition of the differential output voltage in (6.42)
as ∆V ′ = V ′

1 − V ′
0 is different compared to the definition of the differential input voltages

∆V1 = V10− V11 and ∆V2 = V20− V21. This is because the output reflects the difference of the
single-ended output voltages (with respect to ground) rather than the difference of the voltage
drops across the diodes. In the binary case we thus need to change the polarity of the differential
output voltage as described in the above.
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Figure 6.7: The summation circuit.

6.1.6 Summation Circuit
The second analog decoder building block is the summation circuit which performs the op-
erations of a degree three variable node processor. Similar to the Boxplus circuit in Section
6.1.5 it is also relies on a stacked configuration of differential pairs with an additional pair of
diode-connected transistors stacked on top. The only difference compared to the Boxplus cir-
cuit in Fig. 6.6 lies in the connectivity. When we apply the two currents IC2 and IC5 to the
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diode-connected transistors as shown in Fig. 6.7 we obtain for the differential output voltage

∆V ′ = V ′
1 − V ′

0 = VT ln

(
IC2

IS

)
− VT ln

(
IC5

IS

)

= VT ln




(
1 + e

+
∆V1
VT

)(
1 + e

+
∆V2
VT

)

(
1 + e

−∆V1
VT

)(
1 + e

−∆V2
VT

)




= ∆V1 + ∆V2. (6.43)

With ∆V1/VT = L(X1), ∆V2/VT = L(X2) and ∆V ′/VT = L(X3) we observe the desired
behavior L(X3) = L(X1)+L(X2). Note that not all output currents contribute to the calculation
of the output voltage ∆V ′. Unused output currents are either connected directly to VDD as
shown in Fig. 6.7 or through other diode-connected transistors which are used as dummy load.

A subtraction of L-values can be achieved when the output currents IC3 and IC4 are applied
to the diode-connected transistors, or, when the polarity of the corresponding differential input
voltage is changed. This can be realized by simply interchanging the associated input wires.

6.2 Generalized Building Blocks
The Boxplus and the summation circuits introduced in Sections 6.1.5 and 6.1.6 are the main
building blocks for analog decoders based on binary code graphs where the messages are con-
veniently represented as L-values. In many cases the graph representation of a code is not binary
and therefore requires more generalized building blocks. In the following we therefore extend
the circuits introduced in Section 6.1 to non-binary code graphs with non-binary message rep-
resentations. Based on the differential pair in Section 6.1.2 and the pair of diode connected
transistors in Section 6.1.3 we obtain the probability multiplexor and the inverse probability
multiplexor, respectively. A stacked configuration of such probability multiplexors then leads
to a general probability multiplier circuit. In combination with some connectivity at its output
and the inverse probability multiplexor stacked on top we obtain a general decoder building
block which applies to arbitrary node processors. The basic principles of this section are al-
ready published in [MHO00].

. . . . . . 
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Figure 6.8: Probability multiplexor (pMUX) consisting of emitter coupled transistors.

6.2.1 Probability Multiplexor
The generalization of an emitter coupled pair to more than two transistors is depicted in Fig. 6.8.
The arrangement of J emitter coupled transistors Qj with j ∈ {0, . . . , J − 1} allows the repre-
sentation of a random variable X with J possible outcomes. The bias current Ib is split up into
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J output currents Ij depending on the set of single-ended input voltages Vj with

Ij = Ib
e

Vj
VT

∑J−1
ν=0 e

Vν
VT

. (6.44)

This expression is a straightforward generalization of (6.14) and (6.15). Following the results
in (6.18) and (6.19) we can interpret the output currents Ij as the corresponding probabilities
weighted with the bias current Ib, i.e.

Ij = Ib P (x = j), (6.45)

with
∑J−1

j=0 Ib P (x = j) = Ib. The circuit configuration in Fig. 6.8 is therefore also referred
to as probability multiplexor (pMUX). The single-ended input voltages Vj represent the log-
likelihood values of the corresponding probabilities according to

Vj = lj(X) VT + Ψ, (6.46)

with Ψ as common DC voltage offset. The voltage Ψ in (6.46) is chosen so that the appropriate
voltage levels are provided at the input of the circuit without changing the differential charac-
teristic. The differential input voltages Vi,j = Vi − Vj in Fig. 6.8 represent the log-likelihood
ratios of random variable X according to

Vi,j = li(X) VT − lj(X) VT = VT Li,j(X). (6.47)

Note that the binary equivalent of (6.47) is stated in (6.20) with ∆V = V0,1.
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Figure 6.9: Inverse probability multiplexor (pMUX−1) consisting of diode-connected transis-
tors.

6.2.2 Inverse Probability Multiplexor
The arrangement of J diode-connected transistors as shown in Fig. 6.9 is the natural inverse
of the probability multiplexor in Fig. 6.8. This configuration is a generalization of the diode-
connected transistor pair in Fig. 6.4 in order to represent random variables with J possible
outcomes. The single-ended output voltages V ′

j are determined by the input currents Ij with
j ∈ {0, . . . , J − 1} and the supply voltage VDD according to

V
′
j = VDD − VT ln

(
Ij

IS

)
(6.48)

= −VT ln(Ij) + VDD + VT ln (IS) . (6.49)
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We assume that the input currents Ij represent the probabilities of a random variable X as in
(6.45). The single-ended output voltages V ′

j then represent the corresponding log-likelihoods
according to

V ′
j = −lj(X) VT + Ψ′, (6.50)

with Ψ′ as common DC voltage offset. Note the negative sign of lj(X) in (6.50). The differential
output voltages V ′

i,j = V ′
i − V ′

j in Fig. 6.9 are then determined by

V ′
i,j = lj(X) VT − li(X) VT . (6.51)

A comparison with (6.47) yields

V ′
i,j = −Vi,j = −VT Li,j(X). (6.52)

The circuit thus transforms probabilities represented as normalized input currents into the corre-
sponding negative log-likelihoods plus an additive constant which are represented as normalized
output voltages. The normalized differential output voltages then represent non-binary L-values
similar to (6.47), but with inverted sign. It unfolds that the pair of diode-connected transistors
in Fig. 6.9 essentially performs the inverse operation of the pMUX in Fig. 6.8. The circuit is
thus also referred to as pMUX−1.

In order to obtain the desired input for a consecutive stage we need to manipulate the voltage
output of the pMUX−1. For the binary case with J = 2 we only need to change the polarity of
the differential output voltage by interchanging the output wires as described in Section 6.1.3.
For J > 2 an additional inverter stage consisting of a pMUX and a pMUX−1 becomes neces-
sary as outlined in Section 6.4.

pMUX

pMUX pMUXpMUXpMUX
. . . . . . 

Ib

V1

V2

Figure 6.10: The stacked configuration of probability multiplexors for probability multiplica-
tion.

6.2.3 Generalized Multiplier Circuit
The probability multiplication of two in general non-binary random variables X1 and X2 can
be achieved by a stacked configuration of probability multiplexors as shown in Fig. 6.10. The
binary version of this multiplier is depicted in Fig. 6.5. Each output of the lower pMUX is
connected to a pMUX in the upper row. We assume that the two random variables X1 and X2

have A and B possible outcomes, respectively. The inputs are then conveniently described by
the voltage vectors

V1 = [V10, V11, . . . , V1a, . . . , V1(A−1)] (6.53)
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and
V2 = [V20, V21, . . . , V2b, . . . , V2(B−1)], (6.54)

with a ∈ {0, . . . , A−1} and b ∈ {0, . . . , B−1}. Vector V1 is applied to the pMUX in the lower
row and V2 is applied concurrently to each pMUX in the upper row. For ease of exposition the
routing of the vector signals is illustrated in Fig. 6.10 with thick lines. Using (6.46) we can
interpret the two voltage vectors V1 and V2 as vectors of scaled log-likelihoods with the DC
voltage offsets Ψ1 and Ψ2, respectively. Hence,

V1 = [(l0(X1)VT + Ψ1), (l1(X1)VT + Ψ1), . . . , (la(X1)VT + Ψ1), . . . , (lA−1(X1)VT + Ψ1)]
(6.55)

and

V2 = [(l0(X2)VT + Ψ2), (l1(X2)VT + Ψ2), . . . , (lb(X2)VT + Ψ2), . . . , (lB−1(X2)VT + Ψ2)].
(6.56)

The multiplier in Fig. 6.10 then calculates C = AB output currents Ic according to

Ic = Ib
e

V1a
VT

∑A−1
ν=0 e

V1ν
VT

e
V2b
VT

∑B−1
µ=0 e

V2µ
VT

, (6.57)

with c = aB + b and c ∈ {0, . . . , AB− 1}. The expression in (6.57) is the straightforward gen-
eralization of (6.27) to (6.30) to non-binary random variables. We then find that the normalized
output currents represent the products of the associated probabilities, i.e.

Ic

Ib

= P (x1 = a)P (x2 = b), (6.58)

which is the generalization of (6.33) to (6.36).

6.2.4 General Block Structure
The structure of our general decoder building block is depicted in Fig. 6.11. It relies on the
stacked configuration of probability multiplexors (pMUX) for the multiplication of probabil-
ities as introduced in the previous section. Again, we assume that the input voltage vectors
V1 and V2 represent random variables with A and B possible outcomes, respectively, refer to
(6.53), (6.54) and (6.55), (6.56). Similar to the binary building blocks in Sections 6.1.5 and
6.1.6 there is a connectivity block and an inverse probability multiplexor for the generation of
the output voltages. The connectivity element simply consists of a wiring network which allows
the summation of arbitrary output currents according to Kirchhoff’s current law. Depending on
the connectivity different probability products can be summed up in order to achieve the desired
function of the building block. It is important to note that the stacked configuration of pMUX
always calculates all AB possible probability products. This is because each pMUX requires
all signal components of the corresponding input vector for internal probability normalization.
However, not all of the probability products may contribute to the output of the block. Un-
used outputs can directly be connected to VDD or through a diode-connected transistor used as
dummy load. The C ′, C ′ ≤ C, current outputs of the connectivity element are applied to an
inverse probability multiplexor (pMUX−1) which transforms the input currents into C ′ output
voltages represented by vector V ′. The elements of V ′ have the form of (6.50). Note that
the sum current in the pMUX−1 may be smaller than Ib which leads to a scaling of the output
currents. However, this scaling only affects the probabilities and not the differential output volt-
ages representing log-likelihood ratios. The general concept of stacking pMUX for probability
multiplication can be further extended to stacks with more than two rows of pMUX, i.e., more
then two input variables. This approach, however, is limited by the supply voltage.
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Figure 6.11: Structure of the general decoder building block.

The general decoder building block in Fig. 6.11 requires a total number of

A(1 + B) + C ′, (6.59)

transistors. In case the outputs of two or more transistors in a pMUX do not contribute to the
output calculation the transistors can be replaced by a single transistor with dedicated input
voltage [Win04]. However, this approach does not necessarily lead to a complexity reduction
since additional circuity is required in order to generate this input. In this work we will make
heavy use of the general decoder building block as shown in Fig. 6.11.

In the following we discuss different interfacing stages in order to connect the output of one
building block to the input of another building block.

6.3 Interfacing between Blocks
Analog decoding networks consist of node processors which are interconnected according to the
corresponding normal graph representation of the code. In order to connect the voltage output
of one node processor to the voltage input of another node processor we typically utilize special
output buffer stages. The purpose of such output buffer stages is twofold. First, the output
voltage levels of a block need to be lowered in order to provide the appropriate voltage levels
expected at the input of a consecutive block. The required shift of the single-ended voltages
has the effect of adding a different constant to the corresponding log-likelihood values without
changing the differential characteristic, i.e., the log-likelihood ratios, see (6.46). Second, the
effect of a current drawn by a consecutive block on the voltage outputs of the current block
needs to be minimized. A typical effect of such a leakage current in the node processor is
a decreased voltage swing at the output of the block which causes a distortion of the output
signals.
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In the following we discuss three different types of output stages for the example of the
Boxplus circuit in Section 6.1.5.

VDD

Q1

Q3 Q4 Q6Q5

Q2

Ib

V3

V4

V1

V2

Q8

Q′7 Q′8

Q7

V ′1

V ′2

V ′′2

V ′′1

Q9

Q10 Q12

Q11

Figure 6.12: The (modified) Boxplus circuit with CMOS voltage-dividing output stage.

6.3.1 CMOS Voltage-Dividing Output Stage
The first type of output stage is the CMOS voltage-dividing output stage shown in Fig. 6.12.
Note that this output stage requires the Boxplus circuit to be expanded with two additional
diode-connected transistors Q′

7 and Q′
8. The reason for this is explained shortly. The left part of

the output stage formed of transistors Q9 and Q10 can be approximated for saturated devices by

(V ′′
1 − Vth10)

(V ′
1 − V ′′

1 − Vth9)
=

√
W9L10

L9W10

, (6.60)

which relates the input voltage V ′
1 and the output voltage V ′′

1 to the device sizes and the corre-
sponding threshold voltages Vth9 and Vth10 . A similar expression can be derived for the right
part of the output stage consisting of devices Q11 and Q12. It can be concluded from (6.60) that
the single-ended voltage levels of the Boxplus circuit are lowered by means of a voltage divi-
sion which consequently also reduces the (differential) voltage swing. For equal device sizes of
Q9 to Q12 and equal threshold voltages it can be found that V ′′

1 /V ′
1 = 1/2 and V ′′

2 /V ′
2 = 1/2.

This scaling effect can be compensated for by increasing, i.e., doubling, the voltage swing at
the input of the buffer stage. This is achieved in Fig. 6.12 by using two diode loads per output
instead of only one.

The devices in the output stage may be sized differently in order to minimize the error of the
overall building block, e.g., due to the effect of short channel lengths in the output stage. Fur-
thermore, one or more consecutive building blocks may pull load currents from the output stage
which then also need to be provided by Q9 and Q11. This effect can also be partly compensated
for by adjusting the device sizes in the output stage.
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This CMOS voltage-dividing output stage has been utilized in our BiCMOS decoder imple-
mentation described in Section 7.2.
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Figure 6.13: The Boxplus circuit with CMOS voltage-shifting output stage.

6.3.2 CMOS Voltage-Shifting Output Stage
The next output stage is the CMOS voltage-shifting output stage shown in Fig. 6.13. It is very
similar to the voltage-dividing output stage in Fig. 6.12. The main difference is that the two
diode-connected transistors Q10 and Q12 in Fig. 6.12 are replaced by two current sources Ib2

which dominate the drain currents of Q9 and Q10. In this case no modification of the Boxplus
circuit is required, i.e., there is only one diode-connected transistor for each output. This is
because this output stage generates a voltage shift without affecting the voltage swing. The
achievable voltage shift is determined by the gate-source voltage drop of Q9 and Q10. The
gate-source voltage drop of Q9 is given for saturated devices as

VGS9 =

√
2Ib2 L9

µ CoxW9

+ Vth9 . (6.61)

An equivalent expression can be derived for the right part of the output stage. The voltage shift
can be adjusted by changing the device sizes in the output stage and the bias current Ib2 . These
parameters can be optimized in the design process in order to minimize the overall error of the
building block and to reduce the effect of load currents pulled from the output stage.

6.3.3 Bipolar Voltage-Shifting Output Stage
The CMOS voltage-shifting output stage in Fig. 6.13 can also be realized using bipolar tran-
sistors as depicted in Fig. 6.14. The voltage shift of this configuration is determined by the
base-emitter voltage drop of transistors Q9 and Q10, which is in the order of 0.7 to 0.8 V de-
pending on the bias current Ib2 . The main disadvantage of such a bipolar voltage level shifter
is due to the currents drawn by the output stage which are not negligible as it was the case for
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Figure 6.14: The Boxplus circuit with bipolar voltage-shifting output stage.

the CMOS output stages discussed in Sections 6.3.1 and 6.3.2. When we neglect a load current
pulled from the output stage these currents amount to Ib2/β and need to be provided by the
diode-connected transistors in the Boxplus circuit. This causes a reduced (differential) voltage
swing at the output.

A solution for this problem is to compensate for the base current drawn by the output stage.
This can be achieved by means of the additional transistors Q11 to Q15 as shown in Fig. 6.15. In
order to generate the required compensation current we apply a copy of the bias current Ib2 used
in the output stage to transistor configuration Q11 and Q12. The collector current of transistor
Q12 then equals Ib2/β. This current is applied to the pMOS current mirrors Q13, Q14 and Q15,
which copy the current to the input of the buffer stage. The overall error of the building block
can be further minimized by a small variation in this compensation current. This is can easily
be achieved by selecting a slightly different transistor size for Q13 than for Q14 and Q15.

The bipolar voltage-shifting output stage with load current compensation has been utilized
in our SiGe decoder implementation described in Section 7.3.

6.4 Decoder Examples
The decoder examples in this section are intended to give some insight into the basic principles
in order to allow the reader to develop decoding networks for arbitrary codes. The previous
sections covered building blocks and different interfacing circuits for analog decoders. We now
demonstrate how these blocks can be used in order to construct some basic analog decoding
networks. We in particular highlight the required interfacing and voltage level shifting involved
between the building blocks. In principle, any of the voltage level shifters from Section 6.3 can
be used. In the following we assume, however, that the output of a voltage level shifter provides
the appropriate voltage levels for the upper input of a consecutive building block. We start with
check node and variable node decoders which can be employed for decoding SPC codes and
repetition codes, respectively. We then turn our focus to a decoder for convolutional codes.
These decoder examples can be utilized as component decoders for state-of-the-art turbo codes
and LDPC codes.
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Figure 6.15: The Boxplus circuit with bipolar voltage-shifting output stage including load
current compensation.

6.4.1 Check Node and Variable Node Decoders
Our first example of an analog decoding network is a check node decoder for a (N, N − 1, 2)
SPC code. The decoder is best described by a normal graph representation of the code, where
the degree of the nodes is limited to three as shown in the lower part of Fig. 6.16. One check
node processors is exposed as block diagram in the upper part of Fig. 6.16. Note that Fig. 6.16 is
essentially identical to the check node decoder in Fig. 5.5. The only difference is that two equal-
ity constraint nodes become redundant in the following decoder implementation. The channel
value Lcy corresponds to code bit X and represents the input to the check node processor. The
α and β modules perform the forward and backward recursions within the check node proces-
sor while the σ module calculates the extrinsic decoder output Le(X). The decoder internal
log-likelihood ratios Lα(S) and Lβ(S ′) represent the results of the Boxplus operation of all
preceding and succeeding decoder input values, respectively, while Lα(S ′) = Lα(S)¢Lcy and
Lβ(S) = Lcy ¢ Lβ(S ′).

In the following we focus on the circuit implementation of a check node processor as shown
in the upper part of Fig. 6.16. The input Lcy is represented as voltage vector

VLcy =
[
V

(1)
Lcy V

(2)
Lcy

]
, with V

(1)
Lcy − V

(2)
Lcy = VT Lcy. (6.62)

Note that the channel value is represented by the differential input voltage and not the single-
ended input voltages V

(1)
Lcy and V

(2)
Lcy. These single-ended input voltages can be chosen freely

in order to match the input requirements of the module. The voltage vector VLcy is applied
concurrently to the lower inputs (input A) of the α and β modules as shown in Fig. 6.17 a).
Note that the associated equality node for this input becomes redundant in Fig. 6.16. This is
because the lower inputs of the α and β modules accept the same vector VLcy of single-ended
input voltages. All replicas at the output of the equality node are then identical to the input and
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Figure 6.16: Block diagram of a check node decoder for a SPC code.

no voltage level shifting is required. The inputs Lα(S) and Lβ(S ′) to the α and β modules are
represented by the voltage vectors

VLα(S) =
[
V

(1)
Lα(S) V

(2)
Lα(S)

]
, with V

(1)
Lα(S) − V

(2)
Lα(S) = VT Lα(S) (6.63)

and
VLβ(S′) =

[
V

(1)
Lβ(S′) V

(2)
Lβ(S′)

]
, with V

(1)
Lβ(S′) − V

(2)
Lβ(S′) = VT Lβ(S ′). (6.64)

These voltage vectors are applied to the upper inputs (input B) of the α and β modules as
illustrated in Fig. 6.17 a). Furthermore, the inputs in (6.63) and (6.64) also need to be applied
to the upper and lower inputs of the σ module, respectively. In order to connect to the lower
input we need to adjust the single-ended voltage levels of VLβ(S′). This voltage level shift is
achieved through the equality module in Fig. 6.18 which is represented as equality constraint
node in Fig. 6.16. Here, the output voltage levels are shifted by the DC voltage drop Ψ across
the resistor according to

V ∗
Lβ(S′) =

[
V

(1)
Lβ(S′) −Ψ V

(2)
Lβ(S′) −Ψ

]
, (6.65)

without changing the differential characteristic. The computational cores of the α, β and σ
modules in Fig. 6.17 a) are identical to the Boxplus circuit introduced in Section 6.1.5. The
computation is followed by an output stage as described in Section 6.3. Note that each pair of
output wires needs to be interchanged in order maintain the correct polarity of the differential
output voltages, see Section 6.2.2 and the definition of the output voltage in (6.42). Such a stage
is thus referred to as interchanging level shifter. The α and β modules provide the output volt-
age vectors VLα(S′) and VLβ(S), respectively. Each voltage vector consists of two single-ended
voltages as in (6.63) and (6.64) which are appropriate for input B of a consecutive module. The
output Le(X) of the check node processor is calculated in the σ module and represented as
voltage vector

VLe(X) =
[
V

(1)
Le(X) V

(2)
Le(X)

]
, with V

(1)
Le(X) − V

(2)
Le(X) = VT Le(X). (6.66)
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Figure 6.17: Schematic of the α, β and σ modules in a check node processor in a) and an
equality node processor in b).
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Figure 6.18: Schematic of the equality module in the SPC decoder (voltage level shifter).
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A general variable node decoder for a (N, 1, N) repetition code can be obtained by simply
replacing the check node processor in Fig. 6.17 a) with the corresponding equality node proces-
sors as shown in Fig. 6.17 b). This module is identical to the summation circuit introduced in
Section 6.1.6.

We now investigate the complexity of a check node processor (CNP) and a variable node
processor (VNP). Both bipolar technology and CMOS technology is considered. For the bipo-
lar implementation we employ the voltage-shifting output stage with load current compensation
from Fig. 6.15 while the CMOS implementation uses the CMOS equivalent of the voltage-
shifting output stage in Fig. 6.14. The transistor count of the individual modules and the overall
check node or variable node processor is summarized in Table 6.2. The bipolar implementation
requires 56 transistors1 while 39 devices are sufficient in case of CMOS (transistors for biasing
the circuits are included). The 30 percent smaller transistor count in the CMOS implementation
is due to less transistors in the output stage (-2) and the omitted equality module (-11).

Table 6.2: Transistor count of a check node processor (CNP) and a variable node processor
(VNP).

# of transistors
bipolar technology CMOS technology

α module 15 13
β module 15 13
σ module 15 13
equality module 11 -
CNP / VNP 56 39

6.4.2 Convolutional Decoder
The second decoder example is for a rate R = 1/2 convolutional code with memory two and
generator polynomials (7,5). A tailbiting version of this code was already introduced in Section
5.2.3. We restrict ourselves to a single node processor for trellis section k as shown in Fig. 6.19.
The overall convolutional decoder is then simply obtained by connecting as many such node
processors together as there are nodes in the code graph. When the beginning and the end of
the code graph is connected together as shown in Fig. 5.13 we obtain a tailbiting convolutional
decoder. With an appropriate initialization of the forward and backward recursions at the begin-
ning and the end of the decoder we obtain a decoder for a terminated convolutional code, or, in
case only a small fragment of the overall code graph is implemented, a SwinDec decoder. Two
possible implementations of a node processor are depicted in Fig. 6.19. Note that the two block
diagrams are essentially identical to Fig. 5.14. The only difference is that most of the equality
constraint nodes in Fig. 5.14 become redundant in the following decoder implementation.

We first start with a description of the node processor in Fig. 6.19 a) which can be used
for convolutional codes with systematic feedback encoders. The channel values Lcy

(1)
k and

Lcy
(2)
k represent the input to the node processor. The γ module performs the branch metric

calculations and the α and β modules perform the forward and backward recursions within
the node processor. The σ1 and σ2 modules are used in order to calculate the decoder output.
We assume that the decoder is used as component decoder in a turbo scheme so that only the
extrinsic information Le(U) needs to be calculated.

1Plus one resistor. No resistors are required in the CMOS implementation.
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Figure 6.19: Block diagram of a node processor for convolutional codes with systematic feed-
back encoders in a) and feedforward encoders in b).

The inputs Lcy
(1)
k and Lcy

(2)
k are represented by the voltage vectors

V
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(i)
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=

[
V

(1)

Lcy
(i)
k

V
(2)
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]
, with V

(1)

Lcy
(i)
k

− V
(2)

Lcy
(i)
k

= VT Lcy
(i)
k , (6.67)

with i ∈ {1, 2}. Note that the L-values obtained from the channel only determine the differential
characteristic of the input voltages and not the single-ended input voltages. The single-ended
input voltages can be chosen freely in order to match the input requirements of the module.
The two voltage vectors in (6.67) are applied to the γ module in Fig. 6.19. The circuit imple-
mentation of the γ module is depicted in Fig. 6.20. It is assumed that the voltage levels are
appropriate in order to connect to the lower and upper inputs of the module. The γ module cal-
culates the four branch metrics associated with the trellis section according to (4.32) and (4.31).
The computation of the branch metrics is followed by a voltage level shifter as introduced in
Section 6.3 with four inputs and outputs. Note that the level shifter maintains the same order of
input and output wires. It is followed by an inverter stage consisting of pMUX and pMUX−1 in
order to obtain the desired output voltages. This inverter stage becomes necessary because the
single-ended output voltages of the branch metric computation are proportional to the negative
logarithm of the probabilities so that they cannot directly be applied to the input of another
module. Note that in the binary case of the SPC decoder in Section 6.4.1 it was sufficient to
simply interchange the output wires. A resistor is added on top of the pMUX−1 in the inverter
stage in order to lower the single-ended voltage levels at the output by the DC voltage drop
across the resistor, see Fig. 6.18 and (6.65). This is because the output of the γ module V ∗

γk
is

connected to the lower inputs of the α, β and σ1 modules.
The α and β modules in Fig. 6.19 perform the calculations in (4.40) and (4.41), respectively.

The circuit implementation of these modules is depicted in Fig. 6.21 and Fig. 6.22. The upper
inputs of these modules are determined by the voltage vectors Vαk

and Vβk+1
which represent

the four state metrics in the forward and backward recursions of the decoder. More precisely,
Vαk

and Vβk+1
represent vectors αk and βk+1 from (4.38) and (4.39) in the log-likelihood

domain including a common DC voltage offset as in (6.50). The main difference between the
α and β modules lies in the wiring network on top of the analog multiplier. Whenever output
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Figure 6.20: Schematic of the γ module in the convolutional decoder.

currents (calculated probability products) do not contribute to the output of the module, i.e.,
the corresponding transitions are not present in the trellis diagram, the output is connected to
the supply voltage. Similar to the γ module, an inverter stage is used in both the α and β
modules. The voltage outputs Vαk+1

and Vβk
of these modules are used as upper inputs for

neighboring node processors so that there is no resistor on top of the inverter stage. Note that
no probability normalization is required at the output of the α and β modules. This is due to the
use of differential output voltages where any scaling cancels out.

The extrinsic output of the decoder is calculated in the σ1 and σ2 modules. The calculation
is based on the inputs from the forward and the backward recursions of neighboring node pro-
cessors and the output of the γ module. The circuit implementation of these modules is depicted
in Fig. 6.23 a) and Fig. 6.23 b). The σ1 module calculates eight probability products based on
the voltage vector Vαk

from the forward recursion and the voltage vector V ∗
γk

provided by the γ
module. Note that V ∗

γk
generates four output currents in the corresponding pMUX which need

to be summed up pairwise as shown in Fig. 6.23 a) in order to yield the desired behavior. This
is because Lcy

(1)
k does not contribute to the calculation of the extrinsic information.2 Similar to

the γ module a resistor is added on top of the inverter stage in order to lower the output voltage
levels so that the output can be connected to the lower input of the σ2 module in Fig. 6.23 b).
The σ2 module multiplies each of the eight probabilities with the corresponding β values thus
generating a total of 32 probability products while only eight of them contribute to the decoder
output. The voltage vectors Vαk

, Vβk+1
propagate through the convolutional decoder and the

output voltages in VLe(Uk) attain steady-state values after the settling time of the network. The
extrinsic output Le(Uk) of the convolutional decoder is then represented by the voltage vector

VLe(Uk) =
[
V

(1)
Le(Uk) V

(2)
Le(Uk)

]
, with V

(2)
Le(Uk) − V

(1)
Le(Uk) = VT Le(Uk). (6.68)

Note that the sign inversion in the calculation of the differential output voltage in (6.68) which
is due to the omitted interchanging level shifter in Fig. 6.23 b). The overall decoder output
can be obtained by simply adding the L-value of the corresponding systematic code bit, i.e.,
L(Ûk) = Le(Uk) + Lcy

(1)
k . Alternatively, L(Ûk) could be calculated directly with slightly mod-

ified σ1 and σ2 modules.

2Alternatively, the channel information about the second code bit V
Lcy

(2)
k

could be used as lower input to the
σ1 module (after appropriate voltage level-shifting).
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Figure 6.21: Schematic of the α module in the convolutional decoder.
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Figure 6.23: Schematic of the σ1 module in a) and the σ2 module in b) for the calculation of
the extrinsic output in a convolutional decoder (systematic feedback encoder).

The implementation of the node processor in Fig. 6.19 b) can be facilitated for convolutional
codes with feedforward encoders. This node processor uses identical γ, α and β modules as
the node processor in Fig. 6.19 a) and calculates the overall decoder output L(Ûk) instead of
the extrinsic output. It exploits the fact that for feedforward encoders the information bit ap-
pears in state S ′ of trellis section k. This allows the calculation of the decoder output in the σ
module based on the voltage vectors V ∗

αk+1
and Vβk+1

. The implementation of this σ module
is depicted in Fig. 6.24. For this, the voltage output Vαk+1

of the α module needs to be shifted
to lower voltage levels. This is simply achieved with an additional output stage in the equality
node of Fig. 6.19 b) rather than the equality module in Fig. 6.18. Note that the σ module of this
node processor has a significantly lower complexity than the σ1 and σ2 modules in other node
processor which consequently decreases overall complexity.

The complexity of the two node processors in Fig. 6.19 is now further investigated for the
more general case of rate R = 1/2 codes with memory m. This allows us to easily scale the
complexity to other code memories. We assume a bipolar technology and the use of voltage-
shifting output stages with load current compensation from Fig. 6.15. The transistor count of
the individual modules and the overall node processors is summarized in Table 6.3. It is ap-
parent that the complexity of the node processor increases exponentially with the memory of
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Figure 6.24: Schematic of the σ module for the calculation of the decoder output in a convolu-
tional decoder (feedforward encoder).

Table 6.3: Transistor count of different node processors for rate R = 1/2 convolutional codes
with memory m.

module core shifter 1 inverter shifter 2 total
γ 11 12 9 12 44
α 5 (2m + 1) 3 · 2m 2 · 2m + 1 3 · 2m 13 · 2m + 6
β 5 (2m + 1) 3 · 2m 2 · 2m + 1 3 · 2m 13 · 2m + 6
σ1 4 · 2m + 5 6 · 2m 4 · 2m + 1 6 · 2m 20 · 2m + 6
σ2 2

(
22m + 2m

)
+ 3 - - - 2

(
22m + 2m

)
+ 3

σ 22m + 2m + 3 - - - 22m + 2m + 3
equality - 3 · 2m - - 3 · 2m

node processor in Fig. 6.19 a) with γ, α, β, σ1 and σ2 modules 2 · 22m + 48 · 2m + 65
node processor in Fig. 6.19 b) with γ, α, β, equality and σ modules 22m + 30 · 2m + 59

Table 6.4: Evaluation of the transistor count of different node processors for rate R = 1/2
convolutional codes with memory m.

code transistor count
memory node processor in Fig. 6.19 a) node processor in Fig. 6.19 b)
m = 2 289 195
m = 3 577 363
m = 4 1345 795
m = 5 3649 2043
m = 6 11329 6075
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the code. With the memory m = 2 code from above we obtain 289 transistors3 for the node
processor in Fig. 6.19 a) and 195 transistors4 for the node processor in Fig. 6.19 b) (transistors
for the biasing of the circuits are included). Further code memories are evaluated in Table 6.4.
Note that a CMOS implementation typically requires a smaller number of transistors, see Sec-
tion 6.4.1.

6.4.3 Complexity of Turbo Decoders and LDPC Decoders
In the following we analyze the complexity of the different decoder architectures introduced
in Section 5.4. We restrict ourselves to the complexity of the analog decoder core in terms of
the transistor count. This number is particularly interesting since it allows the estimation of the
overall chip area for a given technology. This estimation is particularly suited for fully parallel
decoder architectures where the overall chip area is dominated by the transistor count in the
decoder core. In case of a sliding window turbo decoder we need to take additional control
and storage elements into account and, depending on the realization of these storage elements,
may also need to consider internal A/D and D/A converters. The decoder examples in Sections
6.4.1 and 6.4.2 are chosen so that they can directly be facilitated as component decoders. The
complexity analysis relies on the transistor count of individual check node and variable node
decoders in Table 6.2 and the transistor count of a node processor in a convolutional decoder as
summarized in Table 6.3.

We start with a fully parallel turbo decoder for the popular example of the rate R = 1/3
UMTS turbo code [ETS00] which is based on the parallel concatenation of two rate R = 1/2
convolutional codes with systematic feedback encoder. This example is particularly interesting
since this turbo code is not only standardized for UMTS, but also commonly used as reference
for the evaluation of turbo codes or the comparison between turbo codes and LDPC codes. The
overall bipolar transistor count of a node processor for one trellis section is specified in Table 6.3
with 2 · 22m + 48 · 2m + 65. A node processor for the required memory m = 3 convolutional
decoder then consists of 577 transistors. The supported block lengths for the turbo code in
UMTS range between 40 and 5114 information bits. The number of node processors in each
component decoder can be reasonably well approximated by the number of information bits.
This is because the computations at the beginning and the end of the terminated code trellis
are less complex. We therefore simply omit the node processors for the termination bits. A
fully parallel analog UMTS turbo decoder would hence require between 46.2 k transistors and
about 5.9 million transistors for the maximum block length of 5114 information bits. A CMOS
implementation of a fully parallel turbo decoder for the 40 bit UMTS turbo code can be found in
[VGN+05]. The reported transistor count of the decoder core is 30 k. This number is 35 percent
lower than our bipolar transistor count given above. This complexity reduction is comparable
to the 30 percent lower transistor count achieved through the CMOS implementation of the
check node and variable node decoders in Section 6.4.1. However, both bipolar and CMOS
implementations reach its limitations when the block length increases beyond a few hundred
information bits.

One of the main disadvantages of the fully parallel turbo decoder is that complexity in-
creases linearly with the block length. With increasing block length of the turbo code the
transistor count (and thus chip area) becomes unacceptable. Furthermore, the rather low speed
requirements of only 2 Mbps (or 10 Mbps in the HSDPA extension) do by no means necessitate
full parallelization in the decoder. Another disadvantage is that every block length requires a
dedicated decoder chip with a fixed wiring network for the interleaver which rules out most
practical applications. Our solution to these problems is the sliding window turbo decoder ar-

3Plus two resistors.
4Plus one resistor.
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Figure 6.25: Required modules for the different sections of the SwinDec decoder.

chitecture presented in Section 5.4.2. We demonstrated that SwinDec component decoders with
parameters D = 8 and L = 24 closely approach the BER performance of the (digital) reference
decoder, see Fig. 5.31. The following complexity analysis is based on the SwinDec decoder
with an offset of the forward and backward ring as introduced in Section 5.3.3. Due to this
offset of the decoding windows not all modules of a node processor contribute in each section
of the SwinDec decoder, see Fig. 6.25. Based on the complexity of the individual modules in
Table 6.3 there are a total number of

2D · 22m + (48D + 26L)2m + 65D + 100L (6.69)

bipolar transistors in each SwinDec decoder. With D = 8, L = 24 and m = 3 we obtain a total
number of about 12 k transistors. Here, we assume a stabilization length for both the forward (α)
and backward (β) recursions as shown in Fig. 5.25. The complexity of the SwinDec decoder can
be reduced when we store the result of the forward recursion in order to appropriately initialize
the forward recursion in the following decoding window. We can then remove the stabilization
length in the forward window as indicated with the dashed box in Fig. 6.25. In this case the
SwinDec decoder requires

2D · 22m + (48D + 13L)2m + 65D + 50L (6.70)

bipolar transistors. The parameters from above yield a total number of 8310 transistors in
each SwinDec decoder. When two of these SwinDec decoders are instantiated in the turbo
decoder we then obtain roughly 24 k or 16.6 k transistors depending on the initialization of the
α recursion. Hence, the computational complexity is reduced by a factor of 245 or even 355
compared to a fully parallel decoder implementation for the maximum block length. Clearly, the
advantages of this architecture come at the expense of additional control hardware and storage
elements for the extrinsic information. This memory can be implemented either in the analog
or the digital domain. The latter necessitates A/D and D/A converters which are utilized in each
iteration of the decoder. Both increase chip area and power consumption. However, the results
of our more detailed analysis of A/D and D/A converters in Chapter 8 indicate that the additional
area and power consumption of these converters may be rather low in comparison with the
analog decoder core. The use of storage elements in the turbo decoder has also the big advantage
that routing between the component decoders is eased. This is particularly important since the
routing of a large bidirectional interleaver network poses a major challenge in the design process
of a fully parallel turbo decoder. Furthermore, different interleaver structures can then simply be
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realized by changing the way the memory elements are addressed. Together with the SwinDec
decoder we achieve the required flexibility in order to process various different block lengths
and thus interleavers with one single decoder chip. Also, the speed of the component decoders
and thus the speed of the overall turbo decoder can easily be scaled through parameter D in
the SwinDec decoder. This allows us to match the given speed requirements of the application
while operating in a region with a good trade-off between power and speed. The sliding window
turbo decoder architecture is thus key for addressing commercial applications like UMTS.

An alternative approach of a fully programable interleaver without memory was success-
fully demonstrated for a turbo code with 16 information bits in [GGG02], [GG03b], [GG03a].
However, this approach does not appear to be feasible for such large block lengths as in UMTS.
There is also related work on the complexity reduction of analog turbo decoders which exploits
the special structure of some turbo codes [ALS+05], [ALSJ05], [ASLJ06] and [Arz06].

We now turn our focus to the complexity analysis of analog LDPC decoders as introduced
in Section 5.4.3. The transistor count of LDPC decoders is dictated by the (N −K)×N parity-
check matrix H on which the decoder is based. We first determine the number of variable
node and check node processors in such a decoder. Due to the degree restrictions of analog
node processors every column i in H with weight dv,i is split up into dv,i − 1 variable node
processors. Similarly, every row j in H with weight dc,j is split up into dc,j − 2 check node
processors. See Fig. 5.34 for the associated normal graph of such a decoding network. We then
obtain for the total number of check node processors (CNP) in the decoder

#CNP =
N−K∑
j=1

(dc,j − 2) . (6.71)

Here,
∑N−K

j=1 dc,j represents the number of ones in the parity-check matrix. Using the abbrevi-
ation cH =

∑N−K
j=1 dc,j we obtain

#CNP = cH − 2(N −K). (6.72)

Similarly, the total number of variable node processors (VNP) is determined by

#VNP =
N∑

i=1

(dv,i − 1) = cH −N, (6.73)

which allows us to calculate either the extrinsic information Le(X) or the overall decoder output
L(X̂) for all code bits as described in Section 5.2.1. Again, cH =

∑N
i=1 dv,i represents the

number of ones in the parity-check matrix. The overall transistor count of a LDPC decoder for
a given code can then easily be determined based on the calculated number of variable node and
check node processors in (6.72) and (6.73), respectively, and the number of transistors for each
node processor as given in Table 6.2.

Analog LDPC decoders are further investigated for an application in the next generation
wireless LAN [IEE05] in Chapter 8.



7
Manufactured Decoder Chips

It is common practice in both academia and industry to verify analog integrated circuits through
chip implementations and measurement results. This is in contrast to digital circuit design
where computer simulations, in general, allow us to accurately predict the performance. Ana-
log implementations typically require several fabrication runs in order to modify and tune the
circuits so that optimal performance and robustness is achieved for a given technology. In fact,
it can not be taken for granted that the first chip implementation is fully operational. There
are several examples available in the literature where the malfunction of a small component or
a tiny error in the physical layout of the chip caused an analog decoder to fail. In this chap-
ter we present two prototypes of analog decoders which originated from a joint cooperation
with Bell Laboratories, Lucent Technologies. Both decoder chips are for a simple tailbiting
convolutional code in order to prove the basic concept of analog decoding. The first decoder
was designed for a 0.25 µm BiCMOS technology as part of a diploma thesis [Moe99] and was
then tested as part of this work. The details of this chip implementation including measure-
ment results are given in Section 7.2. The results are also published in [MGYH00]. To the
best of our knowledge, this implementation represents the world’s first fully operational analog
decoder chip. After this successful verification of our circuit design and the basic concepts of
analog decoding we designed a second analog decoder chip. The goal of this implementation
was to further enhance the performance of the decoder and in particular to boost decoder speed.
This goal was achieved by means of an optimized circuit design and also by using a 0.25 µm
SiGe technology which facilitates faster transistors. The details of this SiGe decoder imple-
mentation are presented in Section 7.3. This decoder chip appears to be the world’s fastest
analog decoder chip to date, despite the fact that only eight bits are decoded in parallel, i.e., the
level of parallelization is rather low. The core building blocks of both decoder implementations
solely consist of bipolar npn transistors because of superior speed and matching characteristics
compared to CMOS devices. The CMOS output stages in the building blocks of the BiCMOS
implementation have been replaced in the SiGe implementation by npn output stages. All inter-
nal signals are fully differential so that temperature and noise effects are minimized. One of the
main differences between our circuit design and other work in this area is that we use (differ-
ential) voltage signals at the input and the output of the decoder as well as between the individ-
ual building blocks. This approach was later also adopted in [ALSJ05], [ALS+05], [ASLJ06]
and [Arz06]. Further chip implementations can be found in [LHL+99a], [Lus00], [WDK+01],
[WDL+01], [XVG+02], [GG03b], [GG03a], [Gau03], [WDY+04], [NWGS04], [ABM+04],
[FLL+04], [Win04], [Ama04], [VGN+05], [ABM+05], [FLMS05], [WNGS06] and [HBP06].
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Figure 7.1: Simulated BER for the (16,8,3) tailbiting convolutional code.

We start with the introduction of an ideal analog decoder for the considered tailbiting con-
volutional code. This decoder acts as our reference throughout this chapter. We highlight some
important input configurations which were used for the performance evaluation of the decoder
chips through circuit-level simulations as well as measurement results. We present the mea-
sured BER of both decoder implementations and estimate the speed of the chips based on the
measured transient behavior of the chips. The key parameters of our chip implementations are
summarized in Section 7.4.

7.1 Tailbiting Convolutional Decoder
Both implemented analog decoder chips are for the (16,8,3) tailbiting convolutional code with
memory one and two trellis states. A systematic feedforward encoder is assumed. This code
has been selected because of its simplicity and regularity in order to verify the basic concept of
analog decoding rather than implementing a very powerful decoder with a practical application.
The tailbiting structure of the code allows us to exploit fully parallel signal processing in the
analog decoder and to investigate the effect of feedback in the analog ring network. This code
is also particularly interesting since each trellis section can be implemented as a serial concate-
nation of a check node and a variable node processor. These node processors are also utilized in
analog LDPC decoders and are therefore of particular importance. Fig. 7.1 shows the simulated
BER performance of an ideal analog tailbiting convolutional decoder which is used as reference
for the evaluation of our chip implementations. This ideal analog decoder is simulated with the
time-continuous simulation model in SIMULINK and achieves the BER performance of the
corresponding APP/MAP decoder.

In the following two sections we introduce some selected input configurations which will
be used for the evaluation of the transient response of the decoder chips.
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Figure 7.2: Transient behavior of the L-values at the output of the ideal analog decoder for the
reference input configuration in a) and the L-values weighted with the information word u in
b).

7.1.1 Reference Input Configuration
The transient behavior of the analog tailbiting convolutional decoders is investigated using an
exceptionally input configuration of channel values. This input configuration is particularly
demanding since the decoder requires around 5-10 times the average decoding time to correct
the last transmission error. We selected such a configuration of channel values out of thousands
of high-level simulation runs using random code words. This decoder input is then assumed to
lead to the worst-case decoding delay which may be used for speed estimations of the analog
decoder chips. This reference input configuration is described by the information word u =
(+1,−1, +1, +1, +1,−1,−1,−1) which is mapped onto the code word

c = ((+1,−1), (−1,−1), (+1,−1), (+1, +1), (+1, +1), (−1,−1), (−1, +1), (−1, +1)).
(7.1)

Note that the first bit in each group of code bits equals the corresponding information bit. The
associated channel values after transmission over the AWGN channel at a Eb/N0 value of 1 dB
are given by

Lcy = ((+0.42, +0.50), (+0.81,−3.93), (−1.73,−2.82), (+3.82, +3.97),

(+1.30, +6.03), (−0.80,−3.30), (−1.32, +6.78), (−2.99, +0.55)). (7.2)

When we compare the sign of the channel values in (7.2) with (7.1) we recognize transmis-
sion errors in the second and third information bit and the first parity bit, respectively. When
we apply the channel values in (7.2) to the input of the time-continuous simulation model in
SIMULINK we obtain a transient response at the decoder output as shown in Fig. 7.2 a). After
the settling time of the decoding network we acquire at the output of the ideal analog decoder

Ldec = (+0.88,−0.93, +1.46, +4.97, +5.03,−4.94,−4.92,−3.24), (7.3)
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which leads to the correct decoder decision û = u = (+1,−1, +1, +1, +1,−1,−1,−1). The
correction of the information bits can also be observed when the L-values at the decoder output
as plotted in Fig. 7.2 a) are multiplied with the corresponding information bits. We then obtain
a transient response as depicted in Fig. 7.2 b) where all values are positive at the end of the
decoding, i.e., the sign of the L-values coincides with the sign of the information bits.

7.1.2 Switching between Code Words
The dynamic behavior is further analyzed by switching between the two code words

ca = ((+1, +1), (+1, +1), (+1, +1), (+1, +1), (+1, +1), (+1, +1), (+1, +1), (+1, +1))

and

cb = ((−1, +1), (−1, +1), (−1, +1), (−1, +1), (−1, +1), (−1, +1), (−1, +1), (−1, +1)),

which correspond to the information words

ua = (+1, +1, +1, +1, +1, +1, +1, +1) and (7.4)
ub = (−1,−1,−1,−1,−1,−1,−1,−1),

respectively. These two code words are particularly interesting since all outputs of the decoder
are required to switch polarity. Both of our chip implementations use 16 single-ended input
voltages in combination with a common reference voltage Vref . This allows the reduction of
the number of input pins on the chip compared to the use of fully differential inputs. The
channel values are then represented by the difference between the single-ended input voltages
and the reference voltage. Updating the input of the decoder is typically achieved by modifying
the 16 single-ended input voltages. For this particular input configuration we use a trick which
significantly simplifies the measurement setup for the high-speed chip test. Instead of changing
a large number of single-ended input voltages, i.e., all eight inputs for the systematic bits, we
switch between the two code words ca and cb simply by manipulating the common reference
voltage Vref . For this, the voltage levels for the following decoder simulations and the later
measurement setup are selected as follows. The single-ended input voltages for the information
bits and the parity bits are set to 1.7 V and 2.0 V, respectively. The reference voltage Vref

is generated by a high-speed signal generator which outputs a rectangular waveform with a
lower voltage level of 1.6 V and an upper voltage level of 1.8 V. For Vref = 1.6 V the channel
values for the information bits and the parity bits are represented at the decoder input with
+100 mV and +400 mV, respectively. The sign of the channel values then equals code word
ca. When the reference voltage changes from 1.6 V to 1.8 V the channel values for the parity
bits are represented with +200 mV while the channel values for the information bits are then
represented with −100 mV. The sign of the corresponding channel values then equals code
word cb. In order to demonstrate the correction of a transmission error in the decoder chip a
transmission error is introduced in the first bit position of cb, i.e., the first information bit in
ub. This is achieved by clamping the corresponding single-ended input also to 2.0 V as it is the
case for the parity bits. The switching between these two input configurations with the single
bit error in cb is illustrated in Fig. 7.3 in terms of the corresponding L-values. We assume that
VT = 26 mV. Note that the input for the first information bit with the transmission error exhibits
the same characteristic as the channel values for the eight parity bits. Here only the magnitude
of the inputs changes but not the sign. The channel values for the remaining information bits
change only the sign and maintain the magnitude.

When we apply the channel values from Fig. 7.3 to the input of the time-continuous decoder
model in SIMULINK we obtain a transient response at the decoder output as shown in Fig. 7.4.
All decoder outputs clearly change the sign from one interval to the next so that the transmission
error is corrected successfully.



7.1 Tailbiting Convolutional Decoder 131

0 20 40 60 80 100 120
−4

−2

0

2

4

6

8

10

12

14

16

Simulink simulation time

D
ec

od
er

 in
pu

t (
L−

va
lu

es
)

info bit 1
info bits 2 − 8
parity bits 1 − 8

Figure 7.3: Switching between the channel values for code word ca and cb with a transmission
error in the first bit position of cb.
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the switching input configuration in Fig. 7.3 (transmission error in the first bit position of ub is
corrected).



132 Chapter 7 ¥ Manufactured Decoder Chips

7.2 BiCMOS Decoder Implementation
This section describes our BiCMOS decoder implementation of the tailbiting convolutional de-
coder in Section 7.1. The shaded region of Fig. 7.5 a) shows the core building block of this
decoder implementation that consists of a stacked configuration of emitter coupled transistors,
equivalently a Gilbert circuit, connected to diode loads through a connectivity element. The
interconnectivity in this element determines the functional response of the block. Balanced
nMOS level shifters are used to interface to the core building block. Several Types (I, II and III)
of complete building blocks are indicated in Fig. 7.5. The connectivity of Fig. 7.5 b) creates a
Boxplus or Type I block, while Fig. 7.5 c) illustrates an adder or Type II/III block. Note that in
the Type III block, the lower nMOS current source is removed, see Fig. 7.5 a).

Type II/III

b) Type I

c)

a)

III

c o n n e c t i v i t y

Figure 7.5: a) Decoder building block, b) Connectivity for Type I block, c) Connectivity for
Type II/III block (III without lower nMOS current source).

The decoding network is illustrated in Fig. 7.6. Soft input values Lcy1, . . . , Lcy16 are ap-
plied to the top of the network and they represent a noisy code word consisting of alternating
information and parity bits. Additional a priori information could be used by adding it to the
corresponding input values. A tailbiting forward and a backward loop are constructed using the
Type I and II blocks. The 16 inputs are applied concurrently to both loops while eight outputs of
each loop are combined in a Type III block to generate the soft outputs L(Û1), . . . , L(Û8). Thus,
input soft values from the channel (and a priori information) can be used directly to generate
soft output values in parallel and simultaneously by using both extrinsic and intrinsic informa-
tion. The sign and magnitude of the soft output value provides the hard decision (digital value)
and the reliability of the bit, respectively.

The transient response obtained from circuit-level simulations of the BiCMOS decoder chip
for the reference input configuration from Section 7.1.1 is depicted in Fig. 7.7. The differential
output voltages represent the a posteriori decoder output L(Ûi), i ∈ {1, . . . , 8}. Note the simi-
larity between Fig. 7.7 and Fig. 7.2. It can be seen that the last transmission error is corrected
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Figure 7.6: Block diagram of the BiCMOS decoder chip.

after 50 ns and that the decoder output is settled after around 150 ns.

Fig. 7.8 shows the simulated and measured BER of the chip versus the signal-to-noise ra-
tio. The BER for uncoded transmission is the upper dashed line and is indicated as a reference
plot. Two additional simulated sets of curves are plotted: the analog decoder and a conventional
MAP decoder. Finally, the measured results of the decoder chip are given. Note that the last
three curves overlay one another from 0 to 7 dB. The measurements were performed at room
temperature on a HP 8400 test system. A measured transient response of the decoder is shown
in Fig. 7.9. Waveform A changes polarity which indicates that a correction has occurred, while
waveform B initially changes sign but reverts back to its correct sign. These results agree with
simulations. The waveforms are resolved and corrected in less than 20 ns (see decision thresh-
old in Fig. 7.9) and the values are stable at 50 ns. Thus, this decoder will operate robustly at a
coded bit rate of 320 Mbps and could potentially support rates approaching 800 Mbps.

The die shown in Fig. 7.18 was fabricated using a 0.25 µm BiCMOS process. The area of
the I/O bound chip is 1.680 mm2 while the active area is approximately 0.120 mm2. The input
stage and the core of each module were biased with 80 µA and 200 µA, respectively. The total
power consumption was measured at 20 mW with a power supply voltage of 3.3 V. The entire
decoding network contains 441 npn transistors of minimal size and 356 nMOS transistors. The
use of differential circuits throughout the chip reduces temperature and noise effects. Also,
power drawn from the supply is constant. Since all modules are biased with the same currents
and the power consumption is low the same temperature on the whole chip can be assumed.

An equivalent digital implementation in the probability domain requires 208 multiplication
and 64 summation operations per decoding run. A trellis section can be formed in the digital
domain using six multipliers and two adders (6x 2+). One instance of this physical component
will be used in both the forward and backward loops. Looping back on itself eight times with
the appropriate new digital values is equivalent to one pass through the analog path. But to
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Figure 7.7: Circuit simulation of the BiCMOS decoder chip at 0◦ C (reference decoding situa-
tion).

achieve a stable output value, the digital implementation needs another eight loops through the
component. This digital architecture reduces the area usage of the multipliers and adders at the
expense of memory and should be a fair comparison. As illustrated in Table 7.1, the estimated
digital period, power and area is compared against the measured results of the analog decoder.
If a resolution of 8 bits is assumed, then the digital equivalent decoder would have an overall
performance degradation of 3.3x, a power dissipation increase of 8x and an area increase of
5.2x. As is the case for a digital design, one of these parameters can be decreased at the expense
of the other two parameters.

Table 7.1: Comparison between the measured analog decoder and an equivalent estimated
digital implementation.

type type Raw rate # of time total total Area Comments
of occur /section period power

blocks (Mb/sec) (#) (nsec) (nsec) (mW) (10−3mm2)
DIGITAL Estimation
forward 6x 2+ 100 1 10 160 70.4 189.2 A/D not included
backward 6x 2+ 100 1 10 160 70.4 189.2
output 2x 200 8 5 5 18.8 246
aggregate total 165 159.6 624
ANALOG Measurement

320 1 50 20 120 analog input signals
reduction 3.3x 8x 5.2x
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Figure 7.8: Simulated and measured BER of the BiCMOS decoder chip.

Figure 7.9: Measured transient response of the decoding network showing the correction of
two bit errors.
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7.3 SiGe Decoder Implementation
In this section we introduce our SiGe decoder implementation of the tailbiting convolutional
decoder in Section 7.1. The core building block of this decoder implementation is shown in
Fig. 7.10. Similar to the BiCMOS decoder implementation in Section 7.2 the core consists of
a stacked configuration of emitter coupled transistors, equivalently a Gilbert circuit, connected
to diode loads through a connectivity element. The main difference compared to Fig. 7.5 is that
there is only a single diode load per output. The connectivity element determines the functional
response of the block. Two types (A and B) of complete blocks are indicated in Fig. 7.10. Note
that Type A and Type B blocks are based on the same connectivity as illustrated in Fig. 7.5 b)
and Fig. 7.5 c), respectively. The connectivity of Type A creates a Boxplus block while Type B
implements an adder block. The voltage-shifting output stage with load current compensation
from Section 6.3.3 is used to interface to the upper inputs of consecutive building blocks.

Figure 7.10: Decoder building block with connectivity for Type A and Type B blocks.

The decoding network is illustrated in Fig. 7.11. It is consists of eight identical units which
are connected together forming a tailbiting forward and backward loop. These units correspond
to the individual trellis modules in the decoder. Each trellis module consists of a Type A and
Type B block in both the forward and the backward direction as well as an additional Type
B block for the computation of the differential output voltage. The inputs for the parity and
the information bit are provided as single-ended voltages which are internally converted into
differential voltages by Type C blocks. Such a Type C block is depicted in Fig. 7.12. It con-
sists of a differential pair with diode loads where Vref is the common reference voltage for all
single-ended input voltages. A resistor is added on top of the diodes in order to lower the output
voltage by around 600 mV. The same output stage as in the Type A and B blocks is utilized in
order to interface to the lower inputs of consecutive blocks. The Type C* block in Fig. 7.11 is
identical to the Type C block but uses a differential input.

Fig. 7.13 shows the transient response obtained from circuit-level simulations of the SiGe
decoder chip for the reference input configuration from Section 7.1.1. The differential output
voltages represent the a posteriori decoder output L(Ûi), i ∈ {1, . . . , 8}. Note that the dynamic
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Figure 7.11: Block diagram of the SiGe decoder chip.

Figure 7.12: Type C decoder building block.

behavior in Fig. 7.13 is almost identical to Fig. 7.2. After 540 ps the last transmission error is
corrected and after 1.6 ns the decoder output is almost settled.

The circuit-level simulation results for the code word switching as described in Section 7.1.2
are shown in Fig. 7.14. Similar to Fig. 7.4 all outputs change the sign and the introduced trans-
mission error in the first bit position of ub is corrected successfully. The main difference is that
the differential output voltages saturate at a magnitude of around 300 mV. This effect is best
observed for positive differential output voltages. Here, the soft output for the first information
bit is almost identical to the soft output for the other information bits. The simulation results for
the ideal analog decoding network in Fig. 7.4 yield L(Û1) ≈ 46 and equal L-values of around
34.5 for the other information bits. Furthermore, we notice in Fig. 7.14 that even after 100 ns
the decoder output is not settled completely. Here, the settling of the decoder output requires
at least two orders of magnitude longer compared to the 1.6 ns in Fig. 7.13. The main reason
for this is the large magnitude of the differential outputs in Fig. 7.14. This output needs to be
provided by Type B blocks, see Fig. 7.11. A large differential output implies that effectively
the whole bias current of this block is forced through one diode while the current through the
other diode needs to be decreased to almost zero. The latter is extremely time consuming but
does not alter the decoder decision. On the other hand, we find that going back to equal currents
in both diodes, i.e., achieving a zero differential output voltage, is achieved quickly. In gen-
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Figure 7.13: Circuit-level simulation of the SiGe decoder chip at 25◦ C (reference decoding
situation).
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Figure 7.14: Circuit-level simulation for the switching input configuration in Fig. 7.3 (trans-
mission error in the first bit position of ub is corrected).
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eral, the decoder reaches its maximum speed around the decision threshold where all transistors
operate with relatively large currents. Note that this effect is not appropriately reflected in the
time-continuous simulation model with the lumped RC elements. Hard decisions can thus be
obtained very fast while extremely reliable bit decisions are particularly time-demanding. We
can then argue that the settling of the analog decoder occurs in general faster towards lower
SNR values since the magnitude of the decoder output, i.e., the reliability, is typically smaller.
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Figure 7.15: Simulated and measured BER of the SiGe decoder chip.

A packaged version of the decoder chip was soldered on a test board and then tested at room
temperature. The measurement setup included two laptop computers equipped with National
Instruments D/A and A/D converters in the PC card slots. The first laptop generated the 16
single-ended input voltages using two DAQ cards 6715. It then triggered the second laptop
to measure the eight differential output voltages using a DAQ card 6062E and to evaluate the
measurement results. Fig. 7.15 depicts the simulated and measured BER of the SiGe decoder
chip. The measurement results nicely approximate the performance of the ideal analog decoder
up to a Eb/N0 value of 3 dB. When the SNR is increased further we recognize an increasing
gap between the measured and the simulated BER values. At the lowest measured BER we
observe an offset of 0.75 dB. This offset may increase further at larger SNR values. Lower
BER values could not be measured due to a loss of synchronization between the two laptop
computers whenever a large number of voltage vectors was acquired. In the following we
try to identify the cause for this suboptimal behavior towards lower BER values. We noticed
in the measurement setup of the decoder chip that all-zero inputs (in terms of L-values) did
not generate all-zero outputs as expected. For this test, we generated input voltages with the
DAQ cards which were equal to the reference voltage Vref . We then measured the differential
output voltages we found signals with a magnitude of as large as 10 mV. Such an offset at the
output shifts the decision threshold and thus leads to an increased BER. We tried to calibrate
the measurement setup by subtracting the measured offset voltages from the decoder outputs,
but this did not improve the BER performance. A closer analysis of the measured BER values
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reveals that individual measured outputs produce a significantly different number of bit errors.
The number of bit errors for each bit position of the decoder output is listed in Table 7.2 for the
relevant Eb/N0 values of 4 dB, 5 dB and 6 dB. Despite the small number of overall bit errors
we can clearly recognize that the most bit errors occur for information bits u3 and u4. This
effect appears to be independent of the SNR and is most prominent for a Eb/N0 value of 6 dB
where the gap between the simulated and the measured BER curves is large. Here, we count up
to 5.5 times the number of bit errors for these bit positions compared with the bit position with
the smallest number of bit errors. The distribution of the bit errors at the output of the ideal
analog decoder in Fig. 7.15 is listed in Table 7.3 for comparison. Given the small number of
samples this distribution can be considered as a reasonable good approximation of a uniform
distribution.

Table 7.2: Distribution of measured bit errors at different SNR values.

# of bit errors
Eb/N0 bit position total average

u1 u2 u3 u4 u5 u6 u7 u8

4 dB 17 18 30 30 19 19 20 14 167 20.9
5 dB 10 30 49 32 27 27 25 15 215 26.9
6 dB 21 39 71 58 51 18 13 13 284 35.5

Table 7.3: Distribution of bit errors at the output of an ideal analog decoder at a Eb/N0 value
of 6 dB.

# of bit errors
Eb/N0 bit position total average

u1 u2 u3 u4 u5 u6 u7 u8

6 dB 15 15 14 17 14 15 14 9 113 14.1

Fig. 7.16 depicts the measured BER for the individual bit positions in comparison with the
(average) measured BER of the decoder chip. Note that due to the small number of bit error
for the individual bit positions the corresponding BER can only be considered as a rough ap-
proximation of the true BER values, i.e., the plotted values exhibit a large variance. However,
Fig. 7.16 also clearly demonstrates that the increased BER of the measured decoder chip is
dominated by the outputs for information bits u3 and u4. Given the fact that only a small num-
ber of decoder outputs degrade the overall BER performance makes it to appear unlikely that
the suboptimal performance is design or the fabrication related. It is important to emphasis that
each decoder output originates from essentially identical trellis modules. The layout of such a
trellis module was generated only once and then simply replicated on chip. Furthermore, the use
of differential circuits throughout the chip reduces temperature and noise effects. Also, power
drawn form the supply is constant. Since all modules are biased with the same currents and
the power consumption is rather low the same temperature on the whole chip can be assumed.
We therefore conclude that the suboptimal decoder performance originates in the measurement
setup. The offset of the differential output voltages for all-zero inputs (in terms of L-values)
may be caused by various effects. This includes the soldering joint between the packaged chip
an the test board, the wiring between the test board and the DAQ cards including intermediate
screw connectors as well as the calibration of the DAQ cards. However, the ultimate cause could
not be identified.
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Figure 7.16: Measured BER of the SiGe decoder chip together with the measured BER for the
individual bit positions.

Figure 7.17: Transient response of the decoder output for u1 for the switching between code
words ca and cb with a transmission error in u1.
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Further measurements included the switching between the two code words ca and cb where
a transmission error is assumed in the first bit position of cb, i.e., the first bit position of ub, as
described in Section 7.1.2. For this, the single-ended input voltages were again generated with
the two DAQ cards and then kept constant during the measurements. The switching between
the two input configurations was then realized by means of a 25 MHz signal generator which
applied an approximately rectangular pulse to the input for the reference voltage Vref . This
setup allowed us to switch every 20 ns from one input configuration to the other according to
Fig. 7.3. The measured differential output voltage for the first information bit, i.e., the bit with a
transmission error, is depicted in Fig. 7.17. It is important to note that the test board was not ap-
propriately shielded during these measurements. Despite the heavy distortion of the measured
output we find that the output reliably switches between a positive and a negative voltage as
predicted by Fig. 7.14. This indicates that the information bit is decoded correctly for both code
words despite the introduced transmission error. Note that the required time for changing the
polarity of the differential output voltage including error correction is only in the range of 3-4
ns so that the decoder chip could potentially support coded bit rates approaching 4 Gbps. When
we allow 10 ns for decoding a code word the decoder reaches a coded bit rate of 1.6 Gbps. In
this context it should be mentioned that this particular test setup has not been considered during
the design process. The input for the reference voltage Vref was assumed to carry a DC input
signal instead of a high frequency signal. The corresponding wire was therefore implemented
in the layout as a large ring within the decoder chip which lies above a ground plate. This intro-
duces a significant capacitance which limits the speed of the transient response in this particular
measurement setup. However, this effect is considered to give reasonable ample margin for our
speed estimations in the above.

The die shown in Fig. 7.18 was fabricated using the IBM6HP 0.25 µm SiGe process. The
area of the I/O bound chip is 1.638 mm2 while the decoder occupies only 0.53 mm2. The chip
has been packaged in a 40 lead, 6 mm x 6 mm Amkor Micro Leadframe (MLF) package. The
core and output stage of each block were biased with 400 µA and 100 µA, respectively. The
total power consumption was measured at 127 mW with a power supply voltage of 3.3 V. The
entire decoding network contains 611 npn transistors of minimal size, 129 pMOS, 130 nMOS
transistors and 24 resistors.
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7.4 Summary of Key Parameters

Table 7.4: Comparison of our BiCMOS and SiGe decoder chips.

1st prototype 2nd prototype
year of fabrication 1999 2001
code (16,8,3) tailbiting convolutional code
process 0.25 µm BiCMOS 0.25 µm SiGe
overall chip area 1.680 mm2 1.638 mm2

# of transistors
- npn 441 611
- nMOS 356 130
- pMOS - 129
- total 797 870

power supply voltage 3.3 V 3.3 V
bias currents

- input stage 80 µA -
- core 200 µA 400 µA
- output stage - 100 µA

measured power consumption 20 mW 127 mW
throughput (info bits)

- estimated 160 Mbps 800 Mbps
- potentially 400 Mbps 2 Gbps

energy per info bit
- estimated 0.125 nJ/bit 0.159 nJ/bit
- potentially 0.050 nJ/bit 0.064 nJ/bit

The key parameters of our analog decoder implementations are summarized in Table 7.4.
The two decoder chips allow a direct comparison since they are for the same (16,8,3) tailbit-
ing convolutional code with memory one. Given the limitations of the available measurement
equipment we were not able to determine the BER at full decoder speed. Instead, the measured
transient behavior of the chips was used in order to estimate the speed of the decoders. The
measured transient response of the decoder chips indicates that the BiCMOS decoder easily
handles a throughput of 160 Mbps in terms of information bits while the SiGe decoder achieves
800 Mbps. Potentially, the decoder chips support data rates approaching 400 Mbps and 2 Gbps,
respectively. When we compare the circuit-level simulation results in Fig. 7.13 with the results
in Fig. 7.7 we could expect that the SiGe decoder is around 90 times faster than the BiCMOS
decoder. This is true for both the correction of the last bit error as well as the settling of the
decoder outputs. However, based on the measured transient response it is estimated that the
SiGe decoder chip operates only five times faster than the BiCMOS decoder. This may be
caused by the large capacitance of the Vref input and the measurement setup with the packaged
chip soldered on a test board. The decoder chips exhibit almost an identical chip area and have
comparable transistor count. Both use a supply voltage of 3.3 V. The power consumption of
the SiGe decoder is with 127 mW around six times higher than in the BiCMOS decoder. The
estimated energy per information bit is 0.125 nJ/bit for the BiCMOS decoder and 0.159 nJ/bit
for the SiGe decoder. Die micrographs of our two decoder chips are shown in Fig. 7.18 and
Fig. 7.19.
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Figure 7.18: Die micrograph of our BiCMOS decoder implementation.

Figure 7.19: Die micrograph of our SiGe decoder implementation.



8
Outlook to Real World
Applications - Example IEEE
802.11n

One of the key questions in analog decoding is whether it can be applied to real world appli-
cations and what performance gain can be expected in terms of speed, area and power con-
sumption compared to digital decoder implementations. At present no conclusive answers are
available. The intension of this chapter is to highlight these questions and also to identify areas
for further study. In the following we investigate analog LDPC decoders for the emerging new
standard IEEE 802.11n [IEE05] for wireless LANs. Our investigations are based on the fully
parallel analog LDPC decoder architecture as introduced in Section 5.4. We restrict ourselves
to the (N,K) = (648, 324) and (N, K) = (648, 540) LDPC codes with code rates of R = 1/2
and R = 5/6, respectively. The BER performance of these two coding schemes is shown in
Fig. 5.36 and the effect of quantized input values is demonstrated in Fig. 5.37. We examine
an implementation of these two analog LDPC decoders in the 0.18 µm CMOS technology as
offered by the Taiwan Semiconductor Manufacturing Company (TSMC). The supply voltage
is 1.8 V. The Boxplus (BPX) and summation (SUM) building blocks from Sections 6.1.5 and
6.1.6 are here implemented with nMOS transistors. The voltage-shifting output stage from Sec-
tion 6.3.2 is utilized in order to interconnect the blocks. The CMOS implementation of such
complex analog LDPC decoders poses two major challenges. First, the BPX and SUM build-
ing blocks implemented in CMOS are suboptimal. This is due to the non-exponential behavior
of nMOS transistors as outlined in Section 6.1.1. It is therefore not clear to what extend this
impacts the performance of such a large analog decoder implementation at system level. This
directly leads to the second big challenge, the large size of these LDPC decoders. This not only
causes severe problems for the simulation of these decoders but also for the physical layout
because of routing complexity. Furthermore, real world applications typically require that the
analog decoder is integrated into a digital receiver where the decoder input is provided in the
form of quantized soft information and the decoder outputs hard decisions. This motivates the
investigation of digital input and output interfaces with the associated D/A and A/D converters,
respectively. These converters are commonly assumed to be critical in terms of area and power
consumption.

We introduce the different components of an analog LDPC decoder including the input and
output interfaces in Section 8.1. We then estimate the BER performance of CMOS implemen-
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Figure 8.1: Block diagram of the analog LDPC decoder with digital input and output interfaces.

tations in Section 8.2 and investigate various possible impairments in Section 8.3. This chapter
concludes with a speed estimation of the LDPC decoders and an estimation of decoder perfor-
mance in terms of transistor count, chip area and power consumption.

8.1 Block Diagram of an Analog LDPC Decoder
The block diagram of the complete LDPC decoder is shown in Fig. 8.1. At the input of the
decoder there is a digital input interface which receives quantized soft information. We demon-
strated in Section 5.4.3 that a quantization of the channel values with r = 3 and r = 4 bits
already yields satisfactory results, see Fig. 5.37. With a quantization of three bit there is a loss
of 0.12 dB and 0.1 dB for the rate R = 1/2 and R = 5/6 codes, respectively. In case of a
quantization with four bits the loss reduces to less than 0.05 dB in both cases. The incoming bit
stream is de-multiplexed and then converted into analog inputs for the LDPC decoder core. The
decoder core processes the overall block length at the same time. The soft output of the decoder
core is then converted into hard decisions. The decoded information bits are then multiplexed
and provided as sequential bit stream at the output of the overall decoder. The additional cir-
cuitry for controlling the input and output interfaces including the provision of clock signals is
neglected in our estimations. In the following sections we investigate the different blocks of the
analog LDPC decoder in Fig. 8.1 in more detail.

Digital input and output interfaces of analog decoders are, e.g., also investigated in [HLL+99]
and [Lus00].

8.1.1 Decoder Core
The decoder core consists of a fully parallel analog LDPC decoder as it has been introduced in
Section 5.4.3. The circuit implementation of the individual check node and variable node pro-
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cessors in the decoder has been covered in Section 6.4.1. In this section we are more interested
in the complexity of the analog decoder core and the resulting challenges for the physical layout
of the decoder. We start with a complexity analysis in terms of the required number of node
processors and transistors. In Section 6.4.3 we determined for the required number of check
node processors (CNP) and variable node processors (VNP)

#CNP = cH − 2(N −K) (8.1)

and
#VNP = cH −N, (8.2)

respectively. Here, the parameter cH determines the number of ones in the corresponding
(N −K)×N parity-check matrix of the code. The LDPC codes as proposed in [IEE05] were
designed so that both the rate R = 1/2 and the rate R = 5/6 code exhibit cH = 2376. The re-
sulting number of check node and variable node processors in the corresponding analog decoder
cores are summarized in Table 8.1 together with the overall number of nMOS transistors. We

Table 8.1: Complexity of analog LDPC decoder cores in terms of node processors and nMOS
transistors.

LDPC decoder core
(N, K) code (648,324) (648,540)
code rate R = 1/2 R = 5/6
#CND 1728 2160
#VND 1728 1728
# of nMOS transistors per node processor
(from Table 6.2) 39 39
overall # of nMOS transistors 134784 151632

assume that 39 nMOS transistors are required for the implementation of a node processor, see
Table 6.2. The large number of node processors poses one of the major challenges in the design
process of the decoder core. This is because a manual placement of the individual node pro-
cessors and routing them by hand is clearly not practical. There are commercial tools available
for place and route which mainly originate from digital design environments. However, these
tools are not well adopted to such complex tasks in the analog domain where a large number of
differential signal wires needs to be routed. In the following we outline a possible solution for
this design challenge which allows us to significantly reduce the complexity of the place and
route task. We exploit the structure of the proposed LDPC codes and develop a hierarchical ap-
proach for the layout based on the structure of the parity-check matrices. The top-level of such
a hierarchy in the layout is depicted in Fig. 8.2 and Fig. 8.3 for the rate R = 1/2 and R = 5/6
codes, respectively. Each rectangle represents a layout module for a z × z sub-matrix of the
corresponding parity-check matrix. Given the structure of these LDPC codes each of the z × z
matrices represents a cyclically shifted version of the identity matrix. For the considered block
lengths of the codes we have z = 27. It is then sufficient to design only one of these layout
modules, e.g., the one for the identity matrix as indicated in Fig. 8.4, and to guarantee the cyclic
shift by an external wiring network. The elements of this layout module are the check node and
variable node processors from Section 6.4.1. The wiring of the layout modules can then simply
be achieved with analog busses which propagate in horizontal and vertical direction equivalent
to the rows and columns of the parity-check matrix. The area usage of the individual LDPC
decoder cores in Fig. 8.2 and Fig. 8.3 can be reduced by moving the layout modules together
in horizontal direction. This allows us to significantly reduce the area in Fig. 8.2 at the expense
of only a small modification of the wiring network. In Fig. 8.3 there is only a marginal area
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Figure 8.2: Top-level layout of the (648,324) LDPC decoder core based on the parity-check
matrix (without area optimization).
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Figure 8.3: Top-level layout of the (648,540) LDPC decoder core based on the parity-check
matrix (without area optimization).
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Figure 8.4: Block diagram of a layout module in Fig. 8.2 and Fig. 8.3.
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Figure 8.5: Digital input interface of the analog LDPC decoder including D/A conversion.

reduction possible due to the given density of the layout modules. Note that the first and the
last layout module in each row of Fig. 8.2 and Fig. 8.3 require only variable node processors
and no check node processors. This is because there are dc blocks in each row but only dc − 2
check node processors are necessary for the calculation of the internal extrinsic information.
Also note that we neglect the fact that no decoder output needs to be provided for the parity bits
of the code.

8.1.2 Digital Input Interface
The maximum speed of the considered LDPC decoders is specified with 240 Mbps for the rate
R = 1/2 code and 600 Mbps for the rate R = 5/6 code [IEE05]. These data rates refer to
uncoded data rates and are achieved through different modulation schemes. Together with a
representation of the input values with either r = 3 bits or r = 4 bits we obtain four different
speed requirements for the input interface as listed in Table 8.2. In order to avoid clock signals

Table 8.2: Supported data rates at the digital input interface.

R = 1/2 R = 5/6
3 bit resolution 3 · 480 Mbps=1440 Mbps 3 · 720 Mbps=2160 Mbps
4 bit resolution 4 · 480 Mbps=1920 Mbps 4 · 720 Mbps=2880 Mbps

with several GHz in the receiver we assume that the incoming information is represented by
r parallel bit streams running at the speed of the coded bit rate. Each group of r bits coming
in simultaneously then represents a quantized channel value for the analog decoder core. The
corresponding digital input interface of the decoder is shown in Fig. 8.5. It consists of r serial
input registers of length N , which, after the overall block of rN bits is loaded, pass on the
bits to parallel data latches. The content of the data latches, i.e., r bits for each analog output
signal, selects one out of the 2r available voltage values provided by the weighted network in
Fig. 8.5. This weighted network is assumed to be adjustable so that different voltage levels can
be provided dependent on the channel SNR. The bit switches maintain the analog output for the
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duration of the decoding process so that no additional analog memory elements are required.
During the decoding process the next block of input bits can be loaded into the serial input
register.

8.1.3 Digital Output Interface
The digital output interface of the decoder is depicted in Fig. 8.6. It consists of K comparators
which make the hard decision based on the differential output voltages provided by the analog
decoder core. After the decoding time the decoded bits are copied into parallel data latches and
the serial output register, from where the decoded information bits are read out in a sequential
fashion.
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Figure 8.6: Digital output interface of the analog LDPC decoder including A/D conversion.

8.2 Estimated BER Performance
In general, the BER performance of an analog decoder depends on various different parame-
ters. This includes the technology, the circuit design, the physical dimensions of the transistors,
the bias currents used in the building blocks and the temperature. The adequate selection of
circuit-level parameters during the design process is critical for the success of a CMOS decoder
implementation. The main reason for this is the non-exponential behavior of CMOS devices
which only roughly approximates the exponential characteristic of bipolar transistors. In the
following, we introduce a new design approach where circuit-level parameters are optimized
by means of EXIT charts. We then evaluate the BER performance of analog LDPC decoders
for the rate R = 1/2 and R = 5/6 codes. The simulation results are compared with the BER
performance of the corresponding reference decoder as shown in Fig. 5.36. We start with sim-
ulations at room temperature (27 ◦C) and then investigate the impact of temperature variations
between -40 ◦C and +80 ◦C. We will see that the BER performance of the considered decoders
is in general suboptimal, in particular at low temperatures. However, we demonstrate that this
performance degradation can be mostly compensated with a special trimming of the decoder.
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8.2.1 Optimization of Circuit-Level Parameters with EXIT Charts
In this section we optimize the physical dimensions of the nMOS transistors used in the building
blocks of the decoder. We utilize a new approach which is based on EXIT chart analysis. The
selection of the width W and length L of a CMOS transistor depends mainly on the bias current
Ib used for the building blocks. This bias current defines the maximum current through the
devices. There is only limited flexibility in the selection of the bias current because it mainly
determines the speed of the transistors and thus the speed of the overall decoder. The bias
current therefore needs to be selected in a way that the speed requirements of the application
are met. In the following we assume a bias current of Ib = 1 µA. The selection of W and L then
poses a two-dimensional optimization problem. Our goal is to optimize these parameters based
on system-level simulations of the overall LDPC decoder. EXIT charts provide an efficient
means for such a performance estimation of a certain decoder configurations so that more time
consuming BER simulations can be avoided. Fig. 8.7 depicts the simulated trajectories for the
example of the R = 1/2 LDPC decoder for different widths of the transistors and a Eb/N0 value
of 1.75 dB. The transistors have a length of L=500 nm. We notice that the mutual information
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Figure 8.7: Trajectories for the R = 1/2 decoder with different transistor widths, Ib = 1 µA
and a Eb/N0 value of 1.75 dB.

at the end of the decoding process, i.e., at the end of the trajectory, reaches its maximum for the
largest considered width of W= 8 × 1.5 µm. The trajectory for this width closely approaches
the upper right corner of the EXIT chart and provides a good trade-off between transistor size
and performance. The length L of the transistors can be optimized similarly. This optimization
leads to L=500 nm as already assumed in the above. Similar results are obtained for the R =
5/6 LDPC decoder so that both decoders can use identical transistors. All of our following
investigations are therefore based on a transistor size of W= 8 × 1.5 µm and L= 500 nm with
a bias current of I = 1 µA per block.

Other parameters of analog LDPC decoders can also be optimized with EXIT charts.
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8.2.2 Room Temperature (no Trimming)
We start with a first performance evaluation of the analog LDPC decoders with rate R = 1/2
and R = 5/6 at room temperature (27 ◦C). The estimated BER performance of the decoders
with the optimized nMOS transistor size from Section 8.2.1 is depicted in Fig. 8.8. We notice
that both decoders exhibit a clearly suboptimal performance. Fig. 8.8 also shows the estimated
BER performance of these analog LDPC decoders implemented in the SiGe technology which
has also been used for our SiGe decoder chip in Section 7.3 (Ib = 400 µA). Note that the SiGe
decoders closely approach the performance of the reference decoder and even slightly outper-
form the reference decoder at a high SNR.
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Figure 8.8: Estimated BER of the analog LDPC decoders implemented in SiGe and CMOS
technology at room temperature (no timming).

8.2.3 Temperature Variations (no Trimming)
We now investigate the performance of the CMOS decoders for the case of temperature varia-
tions. Fig. 8.9 and Fig. 8.10 show the estimated BER performance of the analog LDPC decoders
with rate R = 1/2 and R = 5/6, respectively. Different temperatures of -40 ◦C, +27 ◦C and
+80 ◦C are considered. We notice a severe performance degradation of both decoders at a tem-
perature of -40 ◦C. The BER performance improves with increasing temperatures. At +80 ◦C
the R = 1/2 decoder is slightly better than at +27 ◦C while the R = 5/6 decoder exhibits a
comparable performance as at +27 ◦C. We demonstrate in the next section how this suboptimal
decoder performance can be improved.
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Figure 8.9: Estimated BER of the R = 1/2 analog LDPC decoder at different temperatures (no
trimming).
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Figure 8.10: Estimated BER of the R = 5/6 analog LDPC decoder at different temperatures
(no trimming).
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8.2.4 Trimming for Performance Optimization
In Sections 8.2.2 and 8.2.3 it became apparent that the BER performance of analog LDPC de-
coders implemented in CMOS is clearly suboptimal, compare Fig. 8.9 and Fig. 8.10. Note that
this behavior is observed despite the fact that the physical dimensions were already optimized
in Section 8.2.1. We now demonstrate how the performance of the CMOS decoders can be
optimized in a way that the performance of the reference decoder is closely approached for all
temperatures and the full SNR range. This optimization is referred to as trimming of the de-
coders. So far we always assumed that the differential voltages in the analog circuits represent
log-likelihood ratios based on the relation

∆V = VT L(X), (8.3)

with VT as the thermal voltage. The expression in (8.3) originates from the description of
bipolar transistor circuits, see Section 6.1. For the here considered CMOS implementations we
now replace (8.3) with

∆V = ṼT L(X), (8.4)

where the factor ṼT is subject to further optimization with EXIT charts. Note that this opti-
mization depends on both the temperature and the SNR. The BER simulation results for the rate
R = 1/2 and R = 5/6 analog CMOS decoders after this optimization are depicted in Fig. 8.11
and Fig. 8.12, respectively. Note that both analog CMOS decoders now closely approach the
performance of the corresponding reference decoders over the full SNR and temperature range.
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Figure 8.11: Estimated BER of the R = 1/2 analog LDPC decoder at different temperatures
(with trimming).
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Figure 8.12: Estimated BER of the R = 5/6 analog LDPC decoder at different temperatures
(with trimming).

8.3 Impairments of Analog CMOS Decoders
This section focuses on the impairments which are encountered when analog decoders are im-
plemented in CMOS technology. We start with an error analysis of the basic building blocks
of an analog LDPC decoder and then turn to noise effects and supply voltage variations. Fur-
thermore, we cover device mismatch, process variance and also give a short outlook to the
challenges of further shrinking device sizes.

8.3.1 Error Analysis of Decoder Building Blocks
In this section we investigate the error of the two main building blocks of an analog LDPC
decoder, namely BPX and SUM. Our analysis is based on the DC behavior of these blocks so
that the blocks are fully described in terms of the two log-likelihood ratios L(X1) and L(X2) at
the input and L(X3) at the output. The error is evaluated in terms of the relative error according
to

relative error =
Lideal(X3)− L(X3)

Lideal(X3)
, (8.5)

where Lideal(X3) represents the output of the ideal decoder building block. Fig. 8.13 depicts
the relative error of the CMOS implementation of the BPX building block as it was used for the
simulations in Sections 8.2.2, 8.2.3 and 8.2.4 at room temperature (27 ◦C). The plot reveals that
this block introduces a large error of up to 34 % when the magnitude of both inputs is small.
The main reason for this is the non-exponential behavior of the CMOS transistors. When the
magnitude of both inputs is large the error reaches 9 %. A similar error plot is shown in Fig. 8.14
for the CMOS implementation of the SUM building block at room temperature. We notice a
very large error in the corners of the plot where the magnitude of the output is large. Here, the
relative error can be as big as 70 %. This effect is due to the saturation of the differential voltage
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Figure 8.13: Relative error of the BPX building block at 27 ◦C.

−20

−10

0

10

20

−20

−10

0

10

20
−10

0

10

20

30

40

50

60

70

80

L(X
1
)L(X

2
)

re
la

tiv
e 

er
ro

r 
in

 %

Figure 8.14: Relative error of the SUM building block at 27 ◦C.
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at the output of this building block. The error introduced by the BPX and SUM building blocks
increases at higher temperatures. Fig. 8.15 illustrates the relative error for the example of the
BPX building block at 80 ◦C. Here, the relative error reaches 42 % for input values close to zero
and when both inputs have a large magnitude it amounts up to 17 %.
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Figure 8.15: Relative error of the BPX building block at 80 ◦C.

Given the large error of the BPX and SUM building blocks it is in fact surprising to see
that the overall LDPC decoder achieves a remarkable good BER performance close to optimal
decoder performance, see Section 8.2.4. Clearly, this performance can only be achieved with
trimming of the decoder.

8.3.2 Noise Effects

Digital circuits or analog radio frequency (RF) circuits may inject noise into the substrate. Sub-
strate noise spectral components are typically found around the clock frequency of digital cir-
cuits or the characteristic frequencies of the circuit. Different noise isolation schemes are known
which isolate noise more efficiently than simply increasing the distance to a noise source. This
includes guard rings and deep Nwell (triple-well). These techniques are commonly used for
system on chip (SOC) solutions and are thus offered in most CMOS processes. They can also
be applied when it comes to the integration of an analog LDPC decoder into a SOC. Deep Nwell
(DNW) achieves the best noise isolation because of an additional pn junction. Besides DNW,
the transistors can also be protected by a guard ring or a combination of both.

The noise sensitivity of the analog LDPC decoder is generally reduced through the use of
differential circuits throughout the decoder core. It is thus expected that the integration together
with D/A and A/D converters as well as with digital signal processing blocks does not pose any
problem for the performance of analog LDPC decoders.
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8.3.3 Supply Voltage Variations
Small and slow variations of the supply voltage over time have only negligible impact on the
differential output of a block and on overall decoder performance. In fact, the building blocks
of the analog decoder core can handle supply voltages as low as 1.2 V at the expense of a small
performance loss in terms of BER. AC components in the supply voltage in general change
the single ended voltage levels within the circuits. The use of differential circuits throughout
the analog decoder core reduces these effects similar to the case of noise introduced via the
bulk. AC noise almost perfectly cancels out for the important case of differential signals near
the decision threshold, i.e., a differential voltage of 0 V, although the single ended voltages
carry the noise component. A fraction of the AC signal may become visible at large differential
output voltages representing a high reliability of the output. Here, an AC component in the
supply voltage with a magnitude of 10 mV and a frequency in the range of 10 kHz to 100
MHz1 leads to an AC component in the maximum differential output voltage of a block with a
magnitude of 2.5 mV. However, at this point the magnitude of the AC signal compared to the
differential output signal is small and the decoder decision is not altered.

Noise components at the output of one block propagate to the input of a consecutive block.
We therefore also investigated the case of noisy input signals (also with a magnitude of 10 mV)
in combination with a noisy power supply and possible phase shifts between the noise signals.
Any phase shift between the pairs of input wires or between the input and power supply leads
to noise cancelation near the decision threshold. However, a phase shift between the noise
on the two wires of a differential input leads to a noisy differential output signal over the full
differential output voltage range. This effect can be avoided by matching the parasitics and thus
the delay of the differential signal wires in the physical layout of the LDPC decoder.

The use of separate supply voltage sources for the digital and analog part of the chip may
reduce or avoid the introduction of digital noise via the supply voltage.

8.3.4 Device Mismatch
One of the important questions in analog decoding is about the effect of transistor mismatch
on the overall decoder performance. In the context of analog LDPC decoders it is important to
match the transistors within one building block rather than between different building blocks.
This implies that local mismatch (geometry dependent mismatch) is more important than global
mismatch (spacing dependent mismatch). We therefore focus on local mismatch sources.

Mismatch can be divided into a mismatch of the threshold voltage Vth between neighbor-
ing devices of equal size and so-called β-mismatch [LWMM98], [LHC86]. The drain current
mismatch ∆ID of the nMOS transistor in (6.6) can be expressed as

∆ID

ID

=
gm

ID

∆Vth +
∆β

β
, (8.6)

with gm = ∂ID/∂VGS as the transconductance of the transistor and

β = µ Cox
W
L

. (8.7)

In terms of the variance we obtain [LHC86], [LWMM98]

σ2(∆ID)

I2
D

= 4
σ2(∆Vth)

(VGS − Vth)2
+

σ2(∆β)

β2
(8.8)

=

(
gm

ID

)2 A2
Vth

WeffLeff

+
A2

β

WeffLeff

. (8.9)

1A larger suppression is achieved outside this frequency range.
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The constants AVth
and Aβ in (8.9) characterize the threshold voltage mismatch and β-mismatch,

respectively. Weff and Leff refer to the effective physical dimensions of the transistor which
are typically slightly smaller than the width and length specified in the design process. These
parameters may be provided by the foundry as part of the design kit. Typically, the thresh-
old voltage mismatch is the dominating effect so that the β-mismatch can be neglected. We
therefore omit the second term on the right hand side of (8.9) in the following.

In case the parameter AVth
is not available for a given technology we can exploit the fact

that AVth
increases roughly linearly with the gate oxide thickness Tox [DTS03]. For a gate ox-

ide thickness of a TSMC technology with Tox = 4.1 nm we obtain AVth
= 5 mV·µm [DTS03].

We now investigate the drain current mismatch for transistors of size W= 4 × 1.5 µm and
W= 8 × 1.5 µm, both with L= 500 nm. The effective transistor sizes are calculated based on
the parameters provided in the design kit. Together with the simulation results for the transcon-
ductance gm we obtain a drain current mismatch which dependents on the drain current ID as
shown in Fig. 8.16. Mismatch is reduced for a fixed transistor size when the drain current ID

is increased. A similar effect is achieved when the effective area is increased for a given ID.
Note that doubling the area approximately decreases mismatch by a factor of

√
2. When we

compare the estimated mismatch for a transistor with W= 8× 1.5 µm and L= 500 nm with the
inherent error of the CMOS decoder building blocks in Section 8.3.1 we can conclude that the
latter clearly dominates.

10
−8

10
−7

10
−6

10
−5

10
−4

2

3

4

5

6

7

8

drain current I
D

 in A

dr
ai

n 
cu

rr
en

t m
is

m
at

ch
 σ

(∆
 I D

) 
in

 %

 

 
W=4x1.5 um, L=500 nm
W=8x1.5 um, L=500 nm

Figure 8.16: Drain current mismatch for nMOS transistors with different size.

The effect of device mismatch on the performance of analog decoders is also investigated in
[LHL+99b], [Lus00], [AMNX02], [Dai02] and [Win04] without finding any significant degra-
dation. Only a minor performance degradation is reported in [LL01] for a comparable device
mismatch of 5 %. A table with very similar results as in Fig. 8.16 is presented in [Dai02] for a
0.5 µm CMOS technology. Dai also concluded that the error due to the quadric behavior of the
devices (compared to the exponential behavior of bipolar transistors) is much larger than the
error due to mismatch.
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8.3.5 Process Variance
There are process variations across multiple wafers and fabrication cycles. A typical effect is,
for example, the variation of the threshold voltage. The trimming technique in Section 8.2.4
also facilitates post-fabrication performance optimization. We demonstrated that it is possible
to optimize the performance of an analog LDPC decoder over the full SNR and temperature
range. It is therefore expected that process variations and changes of the threshold voltage can
also be compensated.

8.3.6 Shrinking Device Sizes
Scaling of CMOS technology leads to improvements in device speed, matching and minimum
noise figure. The disadvantage of scaling include reduced linearity and increased 1/f noise.
Also, lowered nominal supply voltages go along with scaling. This usually poses a problem for
analog circuit design. Our current circuit design can cope with supply voltages of 1.2 V and less
at the expense of a small performance degradation. We can adjust to even lower supply voltages
by changing the circuit architecture. This, however, does not necessarily lead to a similar clear
advantage in terms of power consumption as in digital circuits. Low voltage architectures in the
analog domain are in general slower than their high-voltage counterparts. From an analog point
of view it is therefore desirable to benefit from shrinking device sizes while maintaining higher
supply voltages as for digital circuits.

With advances in packaging technology many companies make use of system in a package
(SIP) solutions rather than system on chip (SOC). The key advantage of this approach is that
both analog and digital components can be implemented using the best suited technology with-
out compromise on the performance. Digital designs can then directly benefit from speed and
cost advantages of shrinking device sizes in CMOS while analog parts may still be manufac-
tured in a technology with higher supply voltage. Several chips, i.e., dies, can then be grouped
together in a single package which is also commonly referred as chip. Another approach is the
use of so-called flip-chip technology which also allows the integration of different dies into one
package. Both, SIP and flip-chip technology may significantly decrease the time to market in
case of changes in the system or in case new features need to be added. They are therefore
attractive alternatives for the integration of analog signal processing into a system.

8.4 Speed Estimation
The speed of analog decoders is determined by various different parameters. This includes the
technology, the circuit architecture, the type and the size of the transistors, the physical layout
of the decoder, the bias currents, temperature and also the configuration of channel values at
the input of the decoder. The structure of the decoder building blocks in Chapter 6 makes the
decoder very fast around the decision threshold. This is because the bias current is divided
almost equally among the transistors in one row of the building block. Here, the current can
quickly be steered from one transistor into another. This behavior is in strong contrast to the
situation when a building block needs to provide a very reliable output, i.e., a large differential
output voltage. In this case, almost all the bias current flows through one transistor in each row
of the building block while the currents through the other transistors need to be decreased to
almost zero. This operation is extremely time consuming and typically requires up to several
orders of magnitude longer than switching near the decision threshold. Our speed estimations
for analog LDPC decoders are based on such a scenario. For this, we considered a sub-block
of the overall decoder and applied an input pulse with a rise time of 1 ns at the input and
then simulated the transient response with the circuit-level simulator. We then measured the
required time so that the output settles to 98 % of the largest possible differential output voltage.
The results of these circuit-level simulations are depicted in Fig. 8.17 as a function of the bias
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Figure 8.17: Worst case settling time of the analog decoding network at different temperatures
(settling to 98 % of the largest possible magnitude at the output).

current Ib of a building block. Temperatures of -40 ◦C, +27 ◦C and +80 ◦C are considered.
This scenario is assumed to reflect the worst case settling behavior of the decoder. These results
are derived for an analog LDPC decoder where the building blocks consist of nMOS devices
with W=8 × 1.5 µm and L=500 nm. The voltage-shifting output stages use the same nMOS
devices with a bias current of 0.1 Ib. Note that the settling time decreases when the temperature
increases, i.e., the decoder operates faster at higher temperatures.

A speed estimation based on the worst case settling time in Fig. 8.17 would lead to a sig-
nificant underestimation of decoder speed. This is because the settling time of outputs with a
large magnitude, i.e., a high reliability, does not alter the decoder decisions and thus the BER
performance. This reasoning is also supported by the fact that every summation building block
of the decoder comprises a large error of up to 70 % for outputs with a large magnitude, see
Section 8.3.1. From a decoding point of view the most critical range is around a zero differential
output, i.e., the decision threshold, and this is where the decoder is up to several orders of mag-
nitudes faster. In the following we assume that the appropriate hard decision can be provided
at the decoder output within 1 % of this worst case settling time with no (or only a negligible)
performance degradation. This assumption appreciates the fact that outputs with a large magni-
tude may not have settled. Fig. 8.18 and Fig. 8.19 depict the results of this speed estimation for
the example of the rate R = 1/2 and rate R = 5/6 decoders, respectively. Again, the results
are plotted as a function of the bias used for each building block of the decoder. As it can be
expected from analog circuits, decoder speed increases when the bias currents are increased. It
is interesting to see that both LDPC decoders potentially support data rates beyond 100 Gbps.
Note that for a given bias current per block the rate R = 5/6 decoder reaches a higher through-
put since K = 540 information bits are decoded in parallel instead of only K = 324 in the rate
R = 1/2 decoder.

It is important to emphasize that there is not strict speed limitation on analog decoders. Ana-
log decoders always degrade gracefully by producing a slightly increased BER whenever there
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Figure 8.18: Estimated speed of the (648,324) analog LDPC decoder at different temperatures.
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Figure 8.19: Estimated speed of the (648,540) analog LDPC decoder at different temperatures.
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Table 8.3: Estimations for the two analog LDPC decoder cores.

decoder core
LDPC decoder R = 1/2 R = 5/6
(N, K) (648,324) (648,540)
#BPX building blocks 5184 6480
#SUM building blocks 5184
nMOS width W 8× 1.5 µm
nMOS length L 500 nm
# of transistors 135 k 152 k
clock -
area
- guard ring + DNW per nMOS 79 mm2 89 mm2

- no guard ring, no DNW 13 mm2 15 mm2

speed @ power (27 ◦C)
Ib = 50 nA 50 Mbps @ 1.1 mW 80 Mbps @ 1.3 mW
Ib = 1 µA 65 Mbps @ 22.4 mW 110 Mbps @ 25.2 mW
Ib = 10 µA 540 Mbps @ 224 mW 900 Mbps @ 252 mW

energy per info bit (27 ◦C)
Ib = 50 nA 0.022 nJ/bit 0.016 nJ/bit
Ib = 1 µA 0.345 nJ/bit 0.229 nJ/bit
Ib = 10 µA 0.415 nJ/bit 0.280 nJ/bit

is not enough time for some very time-demanding decoding situations. The BER performance
is thus essentially a function of the settling time. The allowed settling time of an analog LDPC
decoder is thus comparable to the number of iterations in a digital decoder implementation.

8.5 Estimated Performance Characteristics
In this section we estimate the performance characteristics of the overall LDPC decoder includ-
ing input interface, D/A conversion, A/D conversion and output register. All estimations are
based on the 0.18 µm CMOS technology offered from TSMC with a supply voltage of 1.8 V.
The performance characteristics include transistor or gate2 count, area and power consumption.
The power estimations for the input and output interfaces including D/A conversion are based
on a TSMC specification for the given technology. With a power supply of 1.8 V the maximum
power consumption is 30 nW/MHz/gate. This allows us to estimate the power consumption
based on the number of gates and the frequency of the corresponding clock signal.

8.5.1 Decoder Core
Our estimations for the two analog LDPC decoder cores are summarized in Table 8.3. The
decoder core for the rate R = 5/6 code requires a larger number of BPX blocks and the same
number of SUM building blocks as the decoder core for the R = 1/2 code. A transistor size of
W= 8 × 1.5 µm and L= 500 nm is assumed for the building blocks. The area estimation for
the analog LDPC decoder core is based on the individual transistor sizes, the required routing
within the building blocks, the interconnects between the building blocks and power routing.
There are two options for the area estimation in Table 8.3. One is based on the assumption
that each transistor is protected by guard ring and DNW and the other is without this shielding
techniques. Note that the latter leads to a significant area reduction. A large fraction of this area

2One gate consists of two transistors.
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reduction may be captured by shielding the building blocks rather than each individual transis-
tor. The speed of the analog LDPC decoder is estimated together with the associated power
consumption based on the results in Fig. 8.18 and Fig. 8.19 (room temperature).

8.5.2 Input Interface
The input interface consists of serial input registers, parallel data latches and bit switches for
D/A conversion as outlined in Section 8.1.2. Our following estimations are based on a quan-
tization of the decoder input with three and four bit. The results for the individual blocks of
the input interface in Fig. 8.5 are summarized in Table 8.4. It is surprising to see that almost
all the power is consumed by the input shift register. The results of this power estimations are
comparable with the power consumption reported for the shift register in [WCC+05]. Note that
a similar shift register is also required at the input of a digital LDPC decoder. Also note that
the estimated power consumption of the D/A conversion is roughly three orders of magnitude
lower than the power consumption of the input register.

Table 8.4: Estimations for the input interface.

input interface
LDPC decoder R = 1/2 R = 5/6
input resolution 3 bit 4 bit 3 bit 4 bit
input register
# of gates 17500 23300 17500 23300
clock 480 MHz 720 MHz
area 0.26 mm2 0.35 mm2 0.26 mm2 0.35 mm2

power 252 mW 336 mW 378 mW 504 mW
latch
# of gates 9700 13000 9700 13000
clock 480 MHz/648 720 MHz/648
area 0.15 mm2 0.20 mm2 0.15 mm2 0.20 mm2

power 0.2 mW 0.3 mW 0.3 mW 0.4 mW
D/A
# of gates 9100 19400 9100 19400
clock 480 MHz/648 720 MHz/648
area 0.14 mm2 0.30 mm2 0.14 mm2 0.30 mm2

power 0.2 mW 0.4 mW 0.3 mW 0.6 mW
total # of gates 36300 55700 36300 55700
total area 0.55 mm2 0.85 mm2 0.55 mm2 0.85 mm2

total power 252.4 mW 336.7 mW 378.6 mW 505 mW

8.5.3 Output Interface
The output interface consists of A/D converters, parallel data latches and a serial output register
as described in Section 8.1.3. A/D conversion is achieved by using K comparators at the output
of the analog LDPC decoder core. These comparators detect the sign of the differential output
voltage and make a hard decision on the K decoded information bits (K = 324 for R = 1/2
and K = 540 for R = 5/6). These bits are then stored in parallel data latches and passed on to
the serial output register. The results for the individual blocks of the output interface in Fig. 8.6
are summarized in Table 8.5. Note that the power consumption of the A/D conversion and the
data latches is significantly lower than the power consumption of the shift register at the output.



8.5 Estimated Performance Characteristics 165

Note that a similar shift register is also required at the output of a digital LDPC decoder.

Table 8.5: Estimations for the output interface.

output interface
LDPC decoder R = 1/2 R = 5/6
A/D
# of gates 810 1350
clock 240 MHz/324 600 MHz/540
area 0.012 mm2 0.02 mm2

power 0.02 mW 0.03 mW
latch
# of gates 1620 2700
clock 240 MHz/324 600 MHz/540
area 0.03 mm2 0.04 mm2

power 0.04 mW 0.06 mW
output register
# of gates 6150 10300
clock 240 MHz 600 MHz
area 0.09 mm2 0.15 mm2

power 44 mW 111 mW
total # of gates 8580 14350
total area 0.13 mm2 0.21 mm2

total power 44.06 mW 111.09 mW

8.5.4 Overall Analog LDPC Decoder
The performance characteristics of the analog LDPC decoder including the digital input and
output interface are summarized in Table 8.6. The area of the overall analog LDPC decoder
is clearly dominated by the area of the decoder core. In case of a guard ring and DNW for
each nMOS transistor in the building blocks the cores of the R = 1/2 and R = 5/6 decoder
occupy 79 mm2 and 89 mm2, respectively. Without these shielding techniques the area reduces
to 13 mm2 and 15 mm2. This significant area reduction strongly motivates the use of more
area-efficient shielding techniques, e.g., shielding of the decoder core or shielding the individ-
ual building blocks. With a bias current of Ib = 10 µA per building block the analog decoder
core easily supports the required data rates of 240 Mbps (R = 1/2) and 600 Mbps (R = 5/6).
We notice that most of the power is consumed by the digital shift registers in the input and
output interfaces. This is mainly due to the shift register at the input which needs to process
input samples with a resolution of three or four bits. The clock signals are here 480 MHz and
720 MHz. The shift register at the output is clocked with 240 MHz and 600 MHz since only the
hard decisions of the decoder are carried. In case the input samples are represented with four
bits the decoder core consumes approximately only one third of the overall power. Given the
large number of up to 152 k analog transistors in the decoder core the LDPC decoder may only
be manufactured in CMOS technology. BiCMOS or SiGe implementations do not appear to be
feasible due to yield problems in the manufacturing.
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Table 8.6: Summary of the performance characteristics of the overall analog LDPC decoder.

overall decoder
LDPC decoder R = 1/2 R = 5/6
(N,K) (648,324) (648,540)
technology 0.18 µm CMOS
supply voltage 1.8 V
decoder core
# of transistors 135 k 152 k
area
- guard ring + DNW per nMOS 79 mm2 89 mm2

- no guard ring, no DNW 13 mm2 15 mm2

speed @ power (27 ◦C)
Ib = 50 nA 50 Mbps @ 1.1 mW 80 Mbps @ 1.3 mW
Ib = 1 µA 65 Mbps @ 22.4 mW 110 Mbps @ 25.2 mW
Ib = 10 µA 540 Mbps @ 224 mW 900 Mbps @ 252 mW

input interface
input resolution 3 bit 4 bit 3 bit 4 bit
# of gates 36300 55700 36300 55700
area 0.55 mm2 0.85 mm2 0.55 mm2 0.85 mm2

power 252.4 mW 336.7 mW 378.6 mW 505 mW
output interface
# of gates 8580 14350
area 0.13 mm2 0.21 mm2

power 44.1 mW 111.1 mW
total # of transistors (analog) 135 k 152 k
total # of gates (digital) 44880 64280 50650 70050
total area
- guard ring + DNW per nMOS 79.68 mm2 79.98 mm2 89.76 mm2 90.06 mm2

- no guard ring, no DNW 13.68 mm2 13.98 mm2 15.76 mm2 16.06 mm2

total power 520.5 mW 604.8 mW 741.7 mW 868.1 mW
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Summary and Outlook

In this thesis we investigated a new type of analog signal processing in the FEC decoder of
a digital communication system. The use of analog signal processors promises higher operat-
ing speed, lower power consumption and/or smaller footprint compared to conventional digital
decoder implementations. Analog decoders are therefore well suited for complex, and thus
area-demanding, coding schemes in high-speed communication systems as well as applications
demanding ultra-low power consumption.

The major topics of this thesis can be summarized as follows:

¤ Representation of Analog Decoding Networks

Different decoding algorithms were presented as special instances of generalized message
passing decoding based on code graphs. We found that normal graphs are well suited for
the representation of analog decoding networks. Here, the nodes in the normal graph
represent analog node processors while edges determine the message exchange between
node processors. We transformed normal graphs in a way that each node only exhibits
degree three. The directed view of such a normal graph then represented the analog
decoding network as a block diagram.

¤ Simulation of Analog Decoders

We developed a comprehensive simulation environment which includes different time-
continuous and time-discrete simulation models of analog decoders. This environment is
linked with the circuit-level simulator so that high-level simulation models can easily be
validated against circuit-level simulation results of the same decoder or an identical input
configuration. Even for very simple decoding networks it was not feasible to run Monte
Carlo simulations for the BER at circuit level. Many interesting coding schemes even pro-
hibited circuit-level simulations of a fully parallel decoder architecture. We experienced
that even high-level simulation models working in continuous time limit the block length
of the code to a few hundred bits. We therefore developed faster time-discrete simulation
models which capture the dynamics of analog decoders with sufficient accuracy. These
simulation models were verified against other time-continuous simulation models for dif-
ferent analog decoding networks. We found a happy match between our time-continuous
and time-discrete simulation models for all considered block codes, convolutional codes
and turbo codes. We also investigated the effect of quantization on the performance of
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analog decoders. The reason for this was twofold. First, quantization occurs whenever
analog decoders utilize a digital input interface in order to be compatible with other digi-
tal components in the receiver. In this case, the complexity and power consumption of the
D/A converters directly depends on the number of quantization levels. The second reason
was that a sensitivity to quantization would also suggest a sensitivity to other impairments
like discharge of analog memories, noise and device mismatch. We demonstrated that a
quantization of the input values with three to four bits only marginally degrades decoder
performance for both LDPC decoders and turbo decoders. We therefore concluded that
the requirements for D/A conversion and analog storage are rather low and that a rela-
tively large quantization error can be tolerated. This also indicated a robustness against
other impairments.

¤ Possible Equivalence between Analog and Digital Decoding
Analog and digital decoders based on cycle-free code graphs were found to provide iden-
tical outputs. We also verified this for the case of tailbiting convolutional codes where the
code graph forms a single loop. In these cases both analog and digital decoders are based
on the same code graph. This is different for code graphs with loops. Digital decoders
then iterate between the different component decoders while analog decoders operate on
the overall code graph at the same time. In cases where the analog decoder is based on a
transformed normal graph the two decoders are clearly not equivalent in a strict sense, but
we found no evidence that node processors with degree three or the time-continuous op-
eration impact BER performance. However, we presented two examples of simple block
codes where further manipulations of the code graph improved the BER performance of
both analog and digital decoders. Digital decoder implementations essentially work with
quantized messages and rely on approximations in the node processors in order to lower
the computational complexity. This causes a performance degradation compared to the
ideal digital decoder we assumed throughout this thesis. From this point of view we can
then argue that a carefully designed analog decoder is very likely to outperform a digital
decoder implementation not only in terms of speed, power consumption and area, but also
in terms of the BER.

¤ Decoder Architectures
We investigated fully parallel as well as sequential decoder architectures. Fully parallel
decoders are based on the overall code graph so that all bits of a code word are decoded in
parallel. This introduces the maximum amount of parallelism into the decoding network
and thus achieves the highest throughput. The disadvantage of this approach is that the
complexity of the decoder increases linearly with the block length. For many interest-
ing applications this leads to an unfavorable tradeoff between area, power consumption
and speed. Furthermore, the block length and the interleaver of the analog decoder are
confined by the wiring. We therefore proposed a novel turbo decoder architecture which
provides more flexibility in the design process so that given speed requirements can be
matched. This architecture relies on a sequential processing of the component codes with
a smaller analog decoder. Internal messages are then stored on memory elements which
may simply be realized with a capacitor in the analog domain or based on digital memory
elements. The latter necessitates additional internal A/D and D/A converters. The key ad-
vantage of this approach is that various different block lengths and interleaver structures
can be realized at the expense of some additional control hardware for addressing the stor-
age elements. A fully parallel analog turbo decoder for UMTS was found to require up
to 5.9 million transistors. Our sequential architecture reduced the transistor count in the
analog core to 16.6 k, i.e., by a factor of 355. We concluded that sequential architectures
are essential whenever different block lengths and interleavers need to be supported, or,
when the block length of the code exceeds a few hundred bits.
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¤ Circuit Design

The happy match between analog transistor circuits and the operations in a decoder rests
on the exponential characteristic of bipolar transistors. A similar characteristic may also
be achieved with CMOS devices operating below threshold. It is characteristic of our
circuit design that we solely use npn transistors or nMOS devices in the high-speed sig-
nal path thus avoiding slower pnp or pMOS devices. We presented a library of analog
transistor circuits which is suited for the realization of arbitrary analog decoders. It is
characteristic of these blocks that they operate very fast around the decision threshold
while it is more time demanding to provide reliable outputs. The building blocks exhibit
voltage inputs and voltage outputs so that no additional voltage to current conversion is
required. The output of a block can thus easily be connected to a multiplicity of other
blocks. In cases where the output needs to be adjusted to the input of another block we
used output stages. Three different realizations of output stages were covered. We de-
signed complete analog signal processors for different coding schemes and analyzed the
complexity of different decoder architectures.

¤ Implemented Decoder Chips in BiCMOS and SiGe

As a proof of concept two prototypes of analog decoders were successfully fabricated and
tested. The fist decoder chip was implemented in 0.25 µm BiCMOS. The measured BER
demonstrated a close correlation to the simulated results of the ideal decoder over the full
SNR range. The measured transient impulse response indicated that the chip supports an
uncoded data rate of 160 Mbps while only dissipating 20 mW from a 3.3 V supply. The
I/O bound chip area was 1.680 mm2. To the best of our knowledge, this implementation
represents the world’s fully operational analog decoder chip. Our second decoder chip
was fabricated in 0.25 µm SiGe. Here, the measurement results indicated an increasing
offset of the BER towards higher SNR values. This performance degradation was caused
by only a few bit positions while other bit positions closely approached the performance
of the ideal decoder. We concluded that the suboptimal results for some bits positions
originated in the measurement setup of the decoder. Based on the switching between two
different input configurations we estimated that the SiGe chip supports an uncoded data
rate of 800 Mbps while dissipating 127 mW from a 3.3 V supply. The I/O bound chip area
of 1.638 mm2 was almost identical to the first chip. Our second decoder chip is believed
to be the fastest analog decoder chip to date. The estimated energy per information bit of
the BiCMOS and SiGe decoder chip was 0.125 nJ/b and 0.159 nJ/b, respectively.

¤ Case Study of Analog LDPC Decoders in CMOS

We investigated analog LDPC decoders in 0.18 µm CMOS for a commercial application
in the emerging wireless LAN standard IEEE 802.11n with data rates of 240 Mbps and
600 Mbps. We found that the BER performance highly depends on the physical dimen-
sions of the transistors and the temperature. The decoders thus required a very careful pa-
rameter optimization which has been achieved with a new approach based on EXIT chart
analysis. After optimization the BER performance of the reference decoder was closely
approached over the full SNR and temperature range. This was despite the fact that indi-
vidual node processors still introduced an error of up to 70 per cent. Low precision node
processors thus achieved overall accuracy at decoder level. We addressed layout issues
and covered impairments like noise, supply voltage variations, device mismatch and pro-
cess variations. We concluded that all these impairments are small compared to the error
introduced by the node processors. The non-exponential characteristic of CMOS devices
was identified to be the dominating source of performance degradation. We estimated
the speed of these analog LDPC decoders for different temperatures and found that speed
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nicely scales with power consumption so that data rates of hundreds of Gbps could po-
tentially be achieved. The decoders were analyzed together with digital input and output
interfaces. We found that neither D/A nor A/D conversion is critical in terms of area or
power consumption. The area was clearly dominated by the analog core of the decoder.
With a shielding of every analog transistor we estimated an area of 80 mm2 and 90 mm2

for the overall decoders. Without this shielding the area reduced to 14 mm2 and 16 mm2,
respectively. It became apparent that handling the incoming digital bit stream at these
high data rates consumed 1.5 to 2 times the power of the analog core. The total power
consumption was 605 mW and 868 mW at data rates of 240 Mbps and 600 Mbps, respec-
tively. The power consumption of the analog decoder core alone was 224 mW and 252
mW. The transistor count of the analog cores was 135 k and 152 k while the interfaces
contributed up to 70 k additional digital gates.

Based on the outcomes of this thesis we suggest further work in the following areas:

• We found that certain manipulations of the code graphs improved the BER performance
of both analog and digital decoders. This effect could be investigated further.

• We noticed that the speed of analog node processors is very fast around the decision
threshold while the settling to large, i.e., reliable, outputs is very time-demanding. This
effect has not been considered in our system-level simulations. The simulation models
for analog decoders could thus be further refined so that this behavior is reflected appro-
priately.

• We presented a sequential decoder architecture for turbo codes which can be considered
as a major step towards more flexibility and scalability of analog decoders. A similar
decoder architecture should also be investigated for LDPC codes so that different coding
schemes can be supported with a single analog decoder core.

• Shielding of each individual transistor appears to be too conservative. A similar protection
may be achieved with more area-efficient shielding techniques, e.g., at a block level. This
would facilitate a dramatic area reduction of the analog decoder as already outlined in the
above.

• The performance of analog decoders including the performance estimations of our work
should be further validated through further prototype fabrications and measurement re-
sults.

We conclude this work with the notice that analog signal processing has many applications
beyond coding. These include the equalization of ISI channels [HOMM99], [HMO00a], multi-
user detection, multiple-input multiple-output (MIMO) detection [SGPMM06] and fast Fourier
transform (FFT).
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Symbols and Notation

Symbols and Notation with First Occurrence:

ai realization of symbol variable Ai, 20
a|IA(j) projection of symbol realization a onto index set IA(j), 21
Ai symbol variable, 20
AVth

constant characterizing threshold voltage mismatch, 159
Aβ constant characterizing beta mismatch, 159
A state matrix, 13
A symbol configuration space of symbol variables Ai, i ∈ IA, 21
Ai vector space over a finite field, 20
B input matrix, 13
B full behavior, 24
B|X projection of full behavior onto symbol variables, 24
ci code bit at position i, 5
cH number of ones in parity-check matrix, 126
c code word or code sequence, 8
ĉ estimated code word, 36
ca code word a, 130
cb code word b, 130
ck n0-tuple of code bits at position k, 11
C channel capacity, 18
Cox oxide capacitance, 100
C output matrix, 13
C code, 8
Cj local code, j ∈ IC , 21
C⊥ dual code, 9
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dc,j number of ones in row j of a matrix, 10
dv,i number of ones in column i of a matrix, 10
dH Hamming distance, 8
dmin minimum Hamming distance, 8
D number of trellis sections decoded within one decoding window, 47
D transition matrix, 13
Eb energy per information bit, 7
ES energy per transmitted symbol, 6
f(D) feedforward polynomial of a convolutional encoder, 12
gm transconductance, 158
g(D) rational transfer function of a convolutional encoder, 12
G generator matrix of a code, 9
Gl sub-matrix of G, 11
Gsys systematic generator matrix, 9
G(D) polynomial generator matrix, 12
Gsys(D) systematic polynomial generator matrix, 13
h step size of time-discrete simulation model, 61
H(ω) transfer function, 60
H parity-check matrix of a code, 9
i(t) current signal, 60
I current, 99
I(X; Y ) mutual information, 17
Ij j-th current, 108
IA mutual information at the a priori decoder input, 53
IA1 mutual information at the a priori input of the 1st component decoder, 53
IA2 mutual information at the a priori input of the 2nd component decoder, 53
Ib bias current, 97
IB base current, 98
IC collector current, 98
ID drain current, 99
IE mutual information at the extrinsic decoder output, 53
IE1 mutual information at the extrinsic output of the 1st component decoder, 53
IE2 mutual information at the extrinsic output of the 2nd component decoder, 53
IS transport saturation current 98
IA index set of symbol variables Ai, i ∈ IA, 21
IA(j) index of a subset of symbol variables Ai, i ∈ IA(j), 21
IC index set of local codes Cj , j ∈ IC , 21
IS index set of state variables Sl, l ∈ IS , 23
IS(j) index of a subset of state variables Sl, l ∈ IS(j), 23
IU index set of information bits, 36
IX index set of symbol variables Xi, i ∈ IX , 21
IX (j) index of a subset of symbol variables Xi, i ∈ IX (j), 21
IK K ×K identity matrix, 9
Im m×m identity matrix, 15
IN N ×N identity matrix, 61
IN−K (N −K)× (N −K) identity matrix, 9
∆I differential current, 97
∆IC difference between two collector currents, 101
∆ID drain current mismatch, 158
k Boltzmann’s constant, 98
k0 information bits per trellis section, 11
K number of information bits per code word, 7
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lx(X) log-likelihood of realization x of random variable X , 39
L stabilization length of a sliding window decoder, 47
L length of transistor, 100
Leff effective length of transistor, 159
Lc channel state information, 7
Lcy L-value for bit X obtained from the channel, 64
Lcyi L-value for bit Xi obtained from the channel, 37
Lcy

(ν)
k L-value associated with ν-th code bit in trellis section k, 45

Lcy vector of L-values obtained from the channel, 41
L(X) L-value for bit X , 39
Lx,x′(X) L-value for random variable X based on outcomes x and x′, 43
L(X̂i) L-value for bit Xi at decoder output, 37
L(X̂

(ν)
k ) decoder output for the ν-th code bit of trellis section k, 46

L(Ûk) L-value for information bit Uk at decoder output, 44
La(Xi) a priori L-value for bit Xi at decoder input, 37
La(X

(ν)
k ) a priori L-value for the ν-th code bit of trellis section k, 46

Le(X) extrinsic L-value for bit X at the decoder output 64
Le(Xi) extrinsic L-value for bit Xi at decoder output, 37
Le(X

(ν)
k ) extrinsic L-value for the ν-th code bit of trellis section k, 46

Le,1(Uk) extrinsic L-value for information bit Uk at the output of the 1st component
decoder, 51

Le,2(Uk) extrinsic L-value for information bit Uk at the output of the 2nd component
decoder, 51

Lin,1(Uk) L-value for information bit Uk at the input of the 1st component decoder, 50
Lin,2(Uk) L-value for information bit Uk at the input of the 2nd component decoder, 51
Lα(·) L-value of state variable (·) (forward direction), 64
Lβ(·) L-value of state variable (·) (backward direction), 64
Ldec vector of L-values at decoder output, 129
LR(X) likelihood ratio for bit X , 39
m encoder memory, 12
ma mean of Gaussian distributed L-values at the a priori decoder input, 53
my′ mean of Gaussian distributed L-values obtained from the channel, 52
n(t) sample function of additive noise process, 6
ni realization of a Gaussian distributed random variable, 6
n0 code bits per trellis section, 11
N number of code bits per code word, 7
N0 one-sided power spectral density of additive noise process, 6
p(·) probability density function, 17
p(·|·) conditional probability density function, 7
Pb probability of a transmission error, 7
Pw word error probability, 36
PX(x) probability of realization x of random variable X , 39
P (·) probability, 36
P (·|·) conditional probability, 36
q charge of an electron, 98
q(D) feedback polynomial of a convolutional encoder, 12
Q number of quantization levels, 54
r bit resolution, 146
r(t) time-continuous received signal, 5
R code rate, 7
R0 computational cutoff rate, 54
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s realization of state variable S at time k, 44
s′ realization of state variable S ′ at time k + 1, 44
s(t) time-continuous transmit signal, 5
s(t) state vector, 60
sci

(t) time-continuous transmit signal representing code bit ci, 5
sk encoder state at time k, 13
s|IS(j) projection of state realization s onto index set IS(j), 24
s

[zi]
k zero-input solution at time k, 14

s
[zs]
k zero-state solution at time k, 14

Sl state variable at position l, l ∈ IS , 23
S state variable at time k, 44
S ′ state variable at time k + 1, 44
S state configuration space of state variables Sl, l ∈ IS , 24
t time, 5
∆t time step, 61
T absolute temperature in degrees Kelvin, 98
Tox gate oxide thickness, 159
TS symbol duration, 6
Tν quantization thresholds, ν ∈ {1, . . . , Q− 1} 55
uk information bit at position k, 4
ûk estimation for information bit at position k, 5
u block/sequence of information bits, 8
ua information word a, 130
ub information word b, 130
uk encoder input at time k, 14
v(t) voltage signal, 60
v(t) voltage vector, 61
V single-ended voltage, 99
Vj j-th single-ended voltage, 100
Vi,j differential voltage, 108
VBE base-emitter voltage, 98
VDD supply voltage, 102
VDS drain-source voltage, 99
VGS gate-source voltage, 99
Vref reference voltage, 130
Vth threshold voltage, 99
VT thermal voltage, 97
∆V differential voltage, 97
∆Vth threshold voltage mismatch, 158
Vi voltage vector, 109
VLcy voltage vector representing Lcy, 115
V

Lcy
(i)
k

voltage vector representing Lcy
(i)
k , 119

VLe(·) voltage vector representing Le(·), 116
VLα(·) voltage vector representing Lα(·), 116
VLβ(·) voltage vector representing Lβ(·), 116
V ∗

Lβ(S′) voltage vector with offset representing Lβ(S ′), 116
Vαk

voltage vector representing αk, 119
Vαk+1

voltage vector representing αk+1, 120
Vβk

voltage vector representing βk, 120
Vβk+1

voltage vector representing βk+1, 119
V ∗

γk
voltage vector representing γk, 119
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W window size of sliding window decoder, 47
W width of transistor, 100
Weff effective width of transistor, 159
WT trellis sections of a tailbiting convolutional code, 49
x realization of symbol variable X , 64
xi realization of symbol variable Xi, 21
x̂ estimation for bit x, 40
x vector of symbol realizations, 8
x|IX (j) projection of symbol realizations x onto index set IX (j), 24
X symbol variable, 17
Xi symbol variable at position i, i ∈ IX , 21
X symbol configuration space of symbol variables Xi, i ∈ IX , 8
Xi vector space over a finite field, 21
y noisy received sample, 64
yi noisy received sample at position i, 7
ȳ(ν) ν-th quantization level of noisy received sample, ν ∈ {1, . . . , Q}, 54
y vector of received samples, 36
Y value-continuous random variable, 17
z expansion factor of LDPC code, 147
αF base transport factor, 99
αk(s) metric of forward recursion at time k, 45
αk row vector of forward metrics at time k, 46
βF forward current gain, 99
βk+1(s

′) metric of backward recursion at time k + 1, 45
βk column vector of backward metrics at time k, 46
γk(s, s

′) transition metric from state s to state s′ at time k, 45
γ

(ν)
k (s, s′) transition metric from state s to state s′ at time k associated with ν-th code

bit, 45
Γk transition matrix at time k, 46
∆β beta mismatch, 158
λ(X) soft bit of binary random variable X , 40
µ surface mobility of electrons, 100
ν constraint length, 12
σ2

a variance of Gaussian distributed L-values at the a priori decoder input, 53
σ2

n variance of Gaussian noise, 6
σ2

y′ variance of Gaussian distributed L-values received from the channel, 52
τ time constant, 60
ψ log-likelihood offset, 97
Ψ voltage offset, 108
ω angular frequency, 60
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Abbreviations

Abbreviations with First Occurrence:
A/D analog-to-digital, 54
APP a posteriori probability, 36
ASIC application specific integrated circuit, 57
AWGN additive white Gaussian noise, 6
BCJR Bahl Cocke Jelinek Raviv, 35
BER bit error rate, 8
BiCMOS bipolar CMOS, 3
BPSK binary phase shift keying, 5
BPX Boxplus, 145
CMOS complementary metal oxide semiconductor, 97
CNP check node processor, 118
CSI channel state information, 7
DAQ data acquisition, 139
D/A digital-to-analog, 54
DMC discrete memoryless channel, 54
DNW deep Nwell, 157
DSP digital signal processor, 57
DVB digital video broadcast, 8
EDA electronic design automation, 63
EXIT extrinsic information transfer, 52
FEC forward error correction, 1
FFT fast Fourier transform, 170
FPGA field programmable gate array, 57
Gbps gigabit per second, 142
HSDPA high-speed downlink packet access, 124
I/O input/output, 31
ISI inter-symbol interference, 48
LAN local area network, 3
LDPC low-density parity-check, 1
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MAP maximum a posteriori, 36
Mbps megabit per second, 124
MD minimum distance, 36
MIMO multiple-input multiple-output, 170
ML maximum likelihood, 36
MLF micro leadframe, 142
MSGM minimum span generator matrix, 22
MSPCM minimum span parity-check matrix, 22
PCB printed circuit board, 58
pdf probability density function, 7
pMUX probability multiplexor, 108
pMUX−1 inverse pMUX, 109
RC resistor-capacitor, 59
RCPC rate-compatible punctured convolutional codes, 14
RF radio frequency, 157
SiGe silicon germanium, 3
SIP system in a package, 160
SNR signal-to-noise ratio, 6
SOC system on chip, 157
SPC single parity-check, 9
SUM summation, 145
SwinDec (analog) sliding window decoding, 79
TSMC Taiwan semiconductor manufacturing company, 145
UMTS universal mobile telecommunications system, 15
VNP variable node processor, 118
XOR exclusive OR, 32
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