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Kurzfassung

Das Ziel dieser vorliegenden Arbeit ist es, eine Untersuchung wichtiger flavor verletzender

neutraler Ströme und lepton flavor verletzender Zerfälle im Littlest Higgs Modell ohne T-

Parität und mit T-Parität vorzustellen.

Nach einer kurzen Einführung in das Standardmodell der Teilchenphysik diskutieren wir

eine damit verbundene, wohlbekannte Schwierigkeit: das little hierarchy problem. Um dieses

Problem zu beheben, stellen wir die grundlegenden Konzepte von Little Higgs Modellen vor,

welche ursprünglich aus Ideen zur Dekonstruktion von Eichfeldtheorien hervorgegangen sind.

Anschließend konzentrieren wir uns auf die ökonomischste Umsetzung dieser Idee und führen

deshalb das Littlest Higgs Modell ohne T-Parität ein. Um seine Auswirkungen auf flavor

verletzende neutrale Ströme zu untersuchen, leiten wir zunächst die Feynman-Regeln für das

Littlest Higgs Modell ab, wobei wir Korrekturen bis zur Ordnung v2/f2 berücksichtigen.

Mit Hilfe dieser Feynman-Regeln ist es uns möglich die Funktionen X und Y zu berechnen,

welche für die Beschreibung der seltenen Zerfälle K+ → π+νν̄, KL → π0νν̄ und Bs,d → µ+µ−

benötigt werden.

Aufgrund von elektroschwachen Präzisionsmessungen konnte jedoch bald gezeigt werden,

dass die Skala für neue Physik f in diesem Modell in der Größenordnung f ∼ 2 − 3TeV

liegen muss und damit das fine-tuning Problem wieder eingeführt wird. Aus diesem Grund

erweitern wir unsere Analyse auf ein realistischeres Modell, das Littlest Higgs Modell mit

T-Parität, in welchem die Skala f auf f ∼> 500GeV gesenkt werden kann. Nachdem wir für

dieses Modell die Feynman-Regeln abgeleitet haben, ermitteln wir erneut die Auswirkung auf

die Funktionen Xi, Yi und Zi, welche für die Ermittlung der flavor verletzenden neutralen

Ströme K+ → π+νν̄, KL → π0νν̄, Bs,d → µ+µ− und KL → π0ℓ+ℓ− erforderlich sind. Ferner

präsentieren wir für die oben erwähnten Zerfälle eine numerische Analyse, wobei wir uns

auf nicht-minimal flavor verletzende Beiträge konzentrieren. Schließlich erweitern wir unsere

Analyse noch auf die Betrachtung lepton flavor verletzender Prozesse. Nach einer expliziten

Berechnung mehrerer Prozesse wie ℓi → ℓjγ, ℓi → ℓjℓkℓl und τ → πℓi präsentieren wir eine

numerische Analyse in verschiedenen Vergleichsszenarien. Dabei widmen wir uns vor allem

Korrelationen zwischen verschiedenen Verzweigungsverhältnissen und beobachten Korrela-

tionsmuster im Littlest Higgs Model mit T-Parität, welche sich grundlegend von denen des

minimal supersymmetrischen Standardmodells unterscheiden. Wir beschließen diese Arbeit

mit den wichtigsten Aussagen und geben einen kurzen Ausblick.





Abstract

Throughout this work we study several prominent flavor changing neutral current (FCNC)

processes and lepton flavor violating (LFV) decays in the Littlest Higgs model without T-

parity and with T-parity.

Beginning with a brief introduction to the Standard Model (SM) we discuss a well-known

problem associated to it: the little hierarchy problem. In order to ameliorate this problem we

present the basic concepts of Little Higgs models, which were originally inspired by the ideas

of deconstructed gauge field theories. Subsequently we concentrate on the most economical

implementation of this idea and thus present the Littlest Higgs without T-parity. In order to

analyze its impact on FCNC processes we first derive the Feynman rules for the LH model,

including the v2/f2 corrections. Having at hand the Feynman rules for this model the short

distance functions X and Y are calculated, which are required to describe the rare decays

K+ → π+νν̄, KL → π0νν̄ and Bs,d → µ+µ−.

However, electroweak precision tests soon showed that the new physics scale f in this

model should be of the order 2 − 3TeV, thus re-introducing the fine-tuning problem. There-

fore we extend our analysis to a more realistic model, the Littlest Higgs model with T-parity,

in which the scale f can be lowered down to f ∼> 500GeV. After having derived the Feynman

rules for this model we determine again the impact on the short distance functions Xi, Yi and

Zi, i = s, d,K, which are relevant for the calculation of the FCNC processes like K+ → π+νν̄,

KL → π0νν̄, Bs,d → µ+µ− and KL → π0ℓ+ℓ−. This is followed by a numerical analysis of the

decays mentioned above, focusing on effects from non-minimal flavor violating contributions.

Finally we extend our analysis by considering LFV processes. After the explicit calculation

of several processes, like ℓi → ℓjγ, ℓi → ℓjℓkℓl and τ → πℓi we present a numerical analysis

in several benchmark scenarios. In doing so we turn our attention to correlations between

branching ratios of several decays and observe correlation patterns in the LHT that are com-

pletely different from those in the Minimal Supersymmetric Standard Model. We conclude

this work with the main messages and give a brief outlook.
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Chapter 1

Introduction and Motivation

Particle physics and cosmology are the two fundamental fields in physics whose aims consist

in explaining the origin of our universe. While cosmology tries to describe the evolution of

the universe to its present state, particle physics is concerned with the understanding of the

interactions of its basic constituents. During the last decades much progress has been made

in establishing an understanding of these fundamental constituents. This finally led to the

development of the Standard Model (SM) of particle physics.

The SM itself is a quantum field theory which exhibits a broken SU(3)C⊗SU(2)L⊗U(1)Y

gauge symmetry and therewith is able to describe the strong, weak and electromagnetic forces.

So far it has been extremely successful in explaining most experimental results and indeed

there has been no confirmed experimental evidence that contradicts its predictions. In spite

of its tremendous success and its remarkable agreement with experiment, the SM suffers from

a number of limitations and is therefore considered an incomplete theory.

One of the most convincing reasons why the SM is only an effective field theory is the fact

that it does not include the fourth elementary interaction, gravity, and so far all attempts

to construct a theory of quantum gravitation have resulted in non-renormalizable theories.

Apart from this there are many other theoretical questions that are not answered by the SM,

e.g. it fails to account for the baryon asymmetry of the universe. Also, it does not explain

why the observed pattern of masses of both quarks and leptons shows such a large hierarchy.

A further shortcoming concerns the Higgs particle, which has not been found so far and thus

leaves the mechanism of electroweak symmetry breaking (EWSB) unverified. Since the mass of

the Higgs particle is not protected by any symmetry, radiative corrections yield contributions

to the Higgs mass which are quadratically dependent on the cut-off of the theory. Therefore

some unnatural adjustment between the bare mass and the one-loop corrections is needed to

obtain a Higgs mass of the order of the weak scale.

To ameliorate this fine-tuning problem, particle theorists have been led to develop exten-

sions of the SM, of which the most promising candidates are supersymmetric theories, grand

unified theories or theories with extra space-time dimensions. Unfortunately, none of these

1
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possible scenarios could be either confirmed or ruled out so far. However, the Large Hadron

Collider (LHC) will be able to reach energies that are large enough to prove or disprove several

extensions of the SM.

In [1, 2, 3] a new natural scheme for electroweak symmetry breaking has been proposed

by Arkani-Hamed et al., in which the little hierarchy problem is ameliorated. In these Little

Higgs models the SM Higgs is protected by an approximate global symmetry and can thus be

realized as a pseudo-Goldstone boson. Starting point of all these models is a non-linear sigma

model G/H, where the global symmetry G is spontaneously broken down to its subgroup

H and contains a set of gauge symmetries. In this process of symmetry breaking a number

of Goldstone bosons arise, where one of them can be identified with the SM Higgs boson.

However, the gauge groups are embedded in such a way that G is explicitly broken only in

the presence of all gauge couplings and any diagram which contributes to the Higgs mass has

to involve all these couplings. This new mechanism, known as collective symmetry breaking,

prevents the Higgs mass from acquiring quadratic divergences at the one-loop level. In a

specific model, the Littlest Higgs model without T-parity (LH) [4], the Higgs boson results

from an approximate global SU(5) symmetry, which is broken down to an SO(5). Due to the

existence of new heavy vector bosons W±
H , ZH and AH with a mass f = O(1TeV) the number

of gauge bosons is doubled compared to the SM, while the fermion sector is enlarged only

by one additional heavy top quark (T ) which cancels the quadratic divergences coming from

the usual SM top quark. The details of this model have been elaborated in [5, 6, 7], whereas

constraints on the parameters of the Littlest Higgs model coming from direct searches and

electroweak precision tests (EWPT) have been discussed in [8]. However, in addition to the

constraints from EWPT, physics beyond the SM can also be detected in indirect searches via

flavor changing neutral currents (FCNC), i.e. by processes that only occur at the loop level in

the SM. Thus, when looking for physics beyond the SM, FCNC offer an interesting alternative

to the direct searches at colliders. In this thesis, we dedicate ourselves to the impact of the

Littlest Higgs model on FCNC.

After the introduction of the Littlest Higgs model it was soon realized that EWPT require

the relevant scale f of new physics to be at least 2 − 3TeV, which would re-introduce a

considerable fine-tuning. Since this strong constraint is due to the violation of the custodial

SU(2) symmetry at tree-level, physicists started to construct a more attractive model in which

a discrete symmetry forbids tree-level corrections to electroweak observables. Such a discrete

symmetry was introduced into the Littlest Higgs model by Cheng and Low [9] leading to the

Littlest Higgs model with T-parity (LHT), where the electroweak precision constraints [10]

are weakened. In this model, the new gauge bosons, fermions and scalars are sufficiently light

to be discovered at LHC and T-parity also provides a dark matter candidate [11]. Moreover,

the flavor structure of the LHT model is richer than the one of the Standard Model (SM),

mainly due to the presence of three doublets of mirror quarks as well as mirror leptons and

their weak interactions with the ordinary quarks and leptons.
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In first FCNC analyses the authors of [6, 7, 12, 13, 14] discussed the impact of the LH model

without T-parity on particle-antiparticle mixing and other FCNC processes, like KL → π0νν̄,

K+ → π+νν̄ and B → Xsγ. It turns out that in the LH model the effects coming from

new particles are rather small since the scale f is required to be above 2 − 3TeV in order

to satisfy the EWPT, as already mentioned before. Moreover, due to these small effects it

is very difficult to distinguish the LH model without T-parity from the SM. As pointed out

in [7] one should also be aware of the fact that the LH model is an effective theory with an

unspecified ultraviolet (UV) completion which is reflected in a number of left-over logarithmic

divergences.

In the LHT model, ∆F = 2 and ∆F = 1 FCNC processes, like particle-antiparticle

mixings, B → Xsγ, B → Xsℓ
+ℓ− and rare K and B decays have been discussed in [15, 16]

and [17], respectively. In this model, which is not stringently constrained by EWPT and

contains new flavor and CP-violating interactions, large departures from the SM predictions

are found, in particular for CP-violating observables that are strongly suppressed in the SM.

These deviations from the SM can first of all be seen in the branching ratio for KL → π0νν̄

and the CP asymmetry Sψφ in the Bs → ψφ decay, but also in Br(KL → π0ℓ+ℓ−) and

Br(K+ → π+νν̄). Smaller, but still significant effects have been found in rare Bs,d decays

and ∆Ms,d. The presence of left-over divergences in ∆F = 1 processes, that signals some

sensitivity to the UV completion of the theory, introduces some theoretical uncertainty in

the evaluation of the relevant branching ratios both in the LH model [7] and the LHT model

[17]. On the other hand, ∆F = 2 processes and the B → Xsγ decay are free from these

divergences.

In the LHT model the effects of new particles on lepton flavor violating processes are

expected to be much larger, since the presence of new flavor violating interactions and mirror

leptons with masses of order 1TeV can change the SM expectations up to many orders

of magnitude. While in the SM FCNC processes in the lepton sector, like ℓi → ℓjγ and

µ− → e−e+e−, are very strongly suppressed due to tiny neutrino masses, these new effects

can bring the relevant branching ratios for lepton flavor violating (LFV) processes close to

the bounds available presently or in the near future. A further aim of this analysis also

consists in finding patterns of LFV in this model and to constrain the mass spectrum of

mirror leptons and the new weak mixing matrix in the lepton sector, VHℓ, that in addition

to three mixing angles contains three CP-violating phases. Moreover, we have calculated the

µ − e conversion rate in nuclei as well as (g − 2)µ that has also been considered in [18, 19].

One of the most important results of the present thesis is the identification of correlations

between various branching ratios that are less parameter dependent and differ significantly

from corresponding correlations in the Minimal Supersymmetric Standard Model (MSSM)

discussed in [20, 21, 22, 23, 24, 25]. The reason for this difference is that the dominance

of the dipole operator in the decays in question present in the MSSM is substituted in the

LHT model by the dominance of Z0-penguin and box diagram contributions with the dipole
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operator playing now a negligible role. Consequently, LFV processes provide a formidable

possibility to distinguish these two models.

The remainder of this thesis is organized as follows. After a review of the main ingredients

of the SM in Chapter 2 we will briefly summarize the main ideas of dimensional deconstruction

in Chapter 3, which inspired physicists to construct Little Higgs models. Chapter 4 is then

devoted to the introduction of the LH model, in which we also present a short analysis of the

rare decays KL → π0νν̄, K+ → π+νν̄ and Bs,d → µ+µ−. Next, in Chapter 5 of this work we

continue with the description of the Littlest Higgs model with T-parity. Finally in Chapter 6

we study the implications of the LHT on rare decays and lepton flavor violating processes like

ℓi → ℓjγ with particular attention paid to µ → eγ, for which a new stringent experimental

upper bound should be available in the coming year. Furthermore we calculate (g − 2)µ. For

all these processes we present a detailed numerical analysis. In Chapter 7 we conclude this

thesis with a list of messages from our analysis and with a brief outlook.



Chapter 2

The Standard Model

The SM is a very successful theory describing the electroweak and strong interactions of quarks

and leptons at energies up to about a few hundred GeV. The theory of strong interactions,

known as Quantum Chromodynamics (QCD) [26], is a non-abelian gauge theory based on an

SU(3)C gauge group, while the standard theory of electroweak interactions is the Glashow-

Weinberg-Salam model relying on an SU(2)L⊗U(1)Y gauge group. In [27] Glashow originally

proposed how the weak and the electromagnetic interactions can be unified into this gauge

group, and Weinberg and Salam showed [28, 29] how the weak gauge bosons receive a mass

without spoiling the renormalizability of the theory.

2.1 Review of the Standard Model

2.1.1 Quantum Chromodynamics

From experiments we know that quarks possess an internal degree of freedom, called color. To

describe the interactions between quarks and gluons, Gell-Mann et al. chose a local SU(3)C

symmetry with the gluons sitting in the adjoint representation, which induced them to define

the following covariant derivative

Dµ = ∂µ + igsG
a
µ

λa
2
, a = 1, ..., 8 (2.1.1)

with λa/2 being the generators of the SU(3)C group. Disregarding the strong CP problem

the most general renormalizable kinetic term for the gauge fields reads:

LQCD = −1

4
GaµνG

µν
a , (2.1.2)

with the non-abelian field-strength tensor Gaµν given by

Gaµν = ∂µG
a
ν − ∂νG

a
µ − gsfabcG

b
µG

c
ν . (2.1.3)

5



6 Chapter 2: The Standard Model

In contrast to abelian field-strength tensors, the non-abelian field-strength tensor (2.1.3)

contains both linear and quadratic terms in the gauge fields, such that the theory is non-

trivial even in the absence of matter fields. These self-interactions are an important aspect

of non-abelian gauge theories and are in particular responsible for the asymptotic freedom of

QCD [30].

2.1.2 The Electroweak Sector of the Standard Model

As mentioned before, the standard theory of electroweak interactions is based on the gauge

group SU(2)L⊗U(1)Y . This gauge group has four vector fields, where three of them, denoted

by W i
µ, are related to the adjoint representation of SU(2)L and one to the U(1)Y , denoted by

Bµ. In order to make the Lagrangian invariant under local gauge transformations, the partial

derivative ∂µ has to be substituted by the covariant derivative Dµ, i.e.

∂µ → Dµ ≡ ∂µ + ig
τa
2
W a
µ + ig′

Y

2
Bµ, a = 1, 2, 3, (2.1.4)

where Ta = τa/2 and 1
2Y are the group generators of SU(2)L and U(1)Y , and g, g′ their

corresponding coupling constants.

In order to allow for parity violation in the electroweak theory we need to embed the left-

and right-handed components of the fermions into different group representations. Motivated

by neutral weak currents, all the left-handed fermions are taken to transform as doublets,

while the right-handed fermions are singlets under SU(2)L.

The fermions appear in three generations: Each generation consists of a neutrino ν ′i, a

charged lepton e′i with electric charge Qe = −1, and the up- and down-type quarks u′i and d′i
with charge Qu = 2/3 and Qd = −1/3. The lepton and quark doublets are given by

E′i
L = PL

(

ν ′i
e′i

)

=

((

ν ′e
e′

)

L

,

(

ν ′µ
µ′

)

L

,

(

ν ′τ
τ ′

)

L

)

, (2.1.5)

Q′i
L = PL

(

u′i
d′i

)

=

((

u′

d′

)

L

,

(

c′

s′

)

L

,

(

t′

b′

)

L

)

, (2.1.6)

while the singlets consist of

e′iR = PRe
′i =

(
e′R, µ

′
R, τ

′
R

)
, (2.1.7)

u′iR = PRu
′i =

(
u′R, c

′
R, t

′
R

)
, (2.1.8)

d′iR = PRd
′i =

(
d′R, s

′
R, b

′
R

)
, (2.1.9)

where PL,R = (1 ∓ γ5)/2 are left- and right-handed projectors of the fermion fields and i =

1, ..., 3 denotes the generation index. Additionally, we assign to each of them the hypercharge

Y and weak isospin T3 quantum numbers, which can be found in Table 2.1. The primes at the
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Lepton T3 Q Y Quark T3 Q Y

νe
1
2 0 −1 uL

1
2

2
3

1
3

e
−

L −1
2 −1 −1 dL −1

2 −1
3

1
3

− − − uR 0 2
3

4
3

e
−

R 0 −1 −2 dR 0 −1
3 −2

3

Table 2.1: Weak isospin and hypercharge quantum numbers of the first generation of leptons

and quarks

fermion fields indicate eigenstates of the electroweak interaction, which are not necessarily

identical to the mass eigenstates.

Applying this notation, we can then write down the fermionic part of the Lagrangian

describing massless spinor fields,

LF =
3∑

i=1

(
Ē′i
LiD/E

′i
L + Q̄′i

LiD/Q
′i
L + ē′iRiD/e

′i
R + ū′iRiD/u

′i
R + d̄′iRiD/d

′i
R

)
. (2.1.10)

In the limit of vanishing fermion masses one can see from (2.1.10) that the fermionic part of

the Lagrangian has a high degree of symmetry. We can see that this Lagrangian is invariant

under the separate groups of unitary transformations U(3)E×U(3)Q×U(3)e×U(3)u×U(3)d,

that is a U(3) symmetry for each of the multiplets E′i
L, Q′i

L, e′iR, u′iR and d′iR.

Including again the gauge kinetic terms leaves us with the SU(2)L ⊗ U(1)Y -invariant

Lagrangian, which can be written as

L =
∑

fL,fR

[

f̄Lγ
µ

(

i∂µ − g
τa
2
W a
µ − g′

Y

2
Bµ

)

fL + f̄Rγ
µ

(

i∂µ − g′
Y

2
Bµ

)

fR

]

−1

4
W i
µνW

µν
i − 1

4
BµνB

µν , (2.1.11)

where a summation over all left- and right-handed fermion fields fL and fR is understood. In

contrast to the abelian field-strength tensor Bµν , the non-abelian field-strength tensor W i
µν

contains both linear and quadratic terms in the gauge fields.

2.1.3 The Higgs Sector and Spontaneous Symmetry Breaking in the Stan-

dard Model

The Lagrangian in (2.1.11) describes massless gauge bosons interacting with massless fermions.

But with gauge fields and fermions being massless the SM is incomplete, since it does not

accommodate the observed non-zero masses of the charged leptons, quarks, and weak gauge
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bosons. However, gauge theories do not allow for massive gauge bosons, since mass terms

of the type m2
AA

a
µA

µ
a are not gauge-invariant. A mass term for the fermions of the form

−mf̄f = −m
(
f̄LfR + f̄RfL

)
is also forbidden, since left- and right-handed fermion fields

transform according to different representations of the gauge group SU(2)L.

According to these arguments we have to include masses for gauge bosons and fermions in

the theory without violating gauge invariance and without destroying the renormalizability,

which critically depends on the gauge symmetry of the interactions. To fulfill these require-

ments another possibility, denoted as the Higgs mechanism, was introduced, which relies on

the phenomenon of spontaneous symmetry breaking. In this process we introduce an elemen-

tary scalar field φ, that is coupled to gauge and matter fields. Due to its self-interactions

this scalar field acquires a non-zero vacuum expectation value (vev), which is responsible for

the masses of the gauge and matter fields. This scalar field is also necessary to guarantee

unitarity in a theory with massive vector bosons.

The idea of this mechanism consists in assuming that the classical Lagrangian of a theory

possesses either a global or local symmetry, which, however, is not respected by the vacuum

state. Since the symmetry is not broken explicitly by non-symmetric terms in the Lagrangian,

this is usually denoted as a spontaneously broken symmetry. In the case of the spontaneous

breaking of a (continuous) global symmetry the Goldstone theorem [31] holds and predicts

massless particles, called Goldstone bosons, corresponding to every broken symmetry gen-

erator. However, if the global symmetry of the classical Lagrangian is explicitly broken by

small terms, the broken symmetry generators are not related to massless particles anymore,

but to particles with a small mass. These particles are then denoted as pseudo-Goldstone

bosons. An example for an explicit global symmetry breaking is the chiral symmetry breaking

in QCD with two or three quark flavors due to quark mass terms. In such a scenario the

pseudo-Goldstone bosons, arising from the chiral symmetry breaking, can be identified with

the pions, π±, π0 and K±, K0, K̄0, η8, respectively. In the case of a broken local symmetry

Goldstone bosons arise as well, however, these Goldstone boson fields can be eliminated from

the theory with the help of gauge transformations. They are “eaten” by the corresponding

gauge fields, which in turn become massive. In the SM this is the way how vector and fermion

fields acquire a mass.

In the particular case of the SM, spontaneous symmetry breaking is achieved by means

of a single complex scalar field φ that transforms as a doublet of SU(2)L,

φ =

(

φ+

φ0

)

=

(
φ1+iφ2√

2
φ3+iφ4√

2

)

, (2.1.12)

with the φi, i = 1, 2, 3, 4 being real. As we will see later the superscript denotes the electric

charge of the corresponding components and thus fixes the hypercharge of φ to be 1 according

to (2.1.23). Using (2.1.12) we can now write down the most general renormalizable and
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SU(2)L-invariant Lagrangian for the scalar doublet,

LH = (Dµφ)† (Dµφ) + µ2φ†φ− λ
(

φ†φ
)2
. (2.1.13)

As before the covariant derivative is given by

Dµ → ∂µ + igTaW
a
µ + ig′

Y

2
Bµ. (2.1.14)

The Lagrangian (2.1.13) also contains self-interactions between the Higgs fields due to the

potential V (φ)

V (φ) = −µ2
(

φ†φ
)

+ λ
(

φ†φ
)2
, (2.1.15)

where λ and µ are two new real parameters. In order to obtain a stable vacuum, the potential

has to be bounded from below so that the quartic coupling λ has to be positive. With µ2 and

λ positive the Higgs potential V (φ) has a minimum at

〈φ†φ〉 =
µ2

2λ
. (2.1.16)

This ground state corresponds to an infinite number of degenerate minima. In choosing one

of them, the symmetry is spontaneously broken, since the Lagrangian (2.1.13) still respects

the SU(2)L × U(1)Y , but the vacuum state does not. Without loss of generality we choose

the vacuum expectation values

〈|φi|〉 = 0, i = 1, 2, 4, (2.1.17)

〈|φ3|〉 = v =

√

µ2

λ
. (2.1.18)

Expanding φ around this vacuum and making the substitution

h (x) = φ3 (x) − v, (2.1.19)

we can re-express the Lagrangian in terms of physical particles. By choosing the expectation

value of the neutral component to be nonzero we ensure that the vacuum is invariant under

U(1)Q of QED, and the photon remains massless. This yields

〈φ〉 = 〈0|
(

φ+

φ0

)

|0〉 =
1√
2

(

0

v

)

. (2.1.20)

Because

τa〈φ〉 6= 0, Y 〈φ〉 6= 0, (2.1.21)

both SU(2)L and U(1)Y are broken, but

Q〈φ〉 =

(
τ3
2

+
Y

2

)

〈φ〉 =
1√
2

(

1 0

0 0

)(

0

v

)

= 0. (2.1.22)
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Thus, the linear combination

Q = T3 +
Y

2
, (2.1.23)

may be identified with the generator of the unbroken residual electromagnetic U(1)Q symme-

try. Hence, we expect three gauge bosons to be massive while one remains massless.

To find the masses of the gauge bosons we substitute (2.1.20) into (2.1.13) which contains

∣
∣
∣
∣
ig
τa
2
W a
µ 〈φ〉 + i

g′

2
Y Bµ〈φ〉

∣
∣
∣
∣

2

=
1

8

∣
∣
∣
∣
∣

(

gW 3
µ + g′Bµ g

(
W 1
µ − iW 2

µ

)

g
(
W 1
µ + iW 2

µ

)
−gW 3

µ + g′Bµ

)(

0

v

)∣
∣
∣
∣
∣

2

=
1

8
v2
(
gW 3

µ − g′Bµ
)2

+ 0
(
g′W 3

µ + gBµ
)2

+

(
1

2
vg

)2

W+
µ W

−µ, (2.1.24)

where

W± =
(
W 1 ∓ iW 2

)
/
√

2. (2.1.25)

From (2.1.24) we can see that the mass matrix of the neutral fields is off-diagonal in the

(W 3
µ , Bµ) basis and, as expected, one of the mass eigenvalues is zero. We have displayed this

in (2.1.24) where the combination of fields in the second term is orthogonal to that in the

first one. This allows us to define

Zµ =
gW 3

µ − g′Bµ
√

g2 + g′2
= W 3

µ cos θW −Bµ sin θW ,

Aµ =
g′W 3

µ + gBµ
√

g2 + g′2
= W 3

µ sin θW +Bµ cos θW , (2.1.26)

with the Weinberg angle θW defined by

sin θW =
g′

√

g2 + g′2
, cos θW =

g
√

g2 + g′2
. (2.1.27)

Therefore (2.1.24) can now be written in terms of the physical mass eigenstates W±
µ , Zµ and

the photon Aµ as

M2
WW

+
µ W

−µ +
1

2
M2
ZZ

2
µ +

1

2
M2
γA

2
µ, (2.1.28)

where the masses are given by

MW =
1

2
vg, MZ =

1

2
v
(
g2 + g′2

)1/2
, Mγ = 0, (2.1.29)

and hence
MW

MZ
= cos θW . (2.1.30)
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2.1.4 Yukawa Sector

In the previous subsection we have seen how the Higgs mechanism generates masses for the

electroweak gauge bosons. We can now invoke the same mechanism to give masses to the

various fermions via Yukawa interactions. In order to allow for fermion masses of the up- and

down-type right-handed quark fields, an additional scalar doublet with weak hypercharge −1

is necessary. In the SM this can be achieved by defining the conjugate of the scalar doublet

by

φ̃ = iτ2φ
∗ =

(

φ̄0

−φ−

)

. (2.1.31)

Following these conventions we can write down the most general renormalizable and gauge-

invariant Lagrangian relating the fermion fields to the scalar doublets,

LY = −
3∑

i,j=1

(

λ′ije Ē
′i
Lφe

′j
R + λ′iju Q̄

′i
Lφ̃u

′j
R + λ′ijd Q̄

′i
Lφd

′j
R + h.c.

)

, (2.1.32)

where the Yukawa couplings λ′e, λ
′
u and λ′d are general complex 3 × 3 matrices. As one can

see from Table 2.1, the Yukawa Lagrangian is invariant under SU(2)L ⊗ U(1)Y .

As already mentioned in Subsection 2.1.2, the largest group of unitary field transforma-

tions that commutes with the gauge group is U(3)5 and can be decomposed into

SU(3)QL
⊗ SU(3)UR

⊗ SU(3)DR
⊗ SU(3)LL

⊗ SU(3)ER
⊗

U(1)B ⊗ U(1)L ⊗ U(1)Y ⊗ U(1)PQ ⊗ U(1)ER
. (2.1.33)

In order to diagonalize the Yukawa matrices we can exploit this symmetry and rotate the

left-handed fermion fields via unitary matrices related to the corresponding symmetry group.

Such a transformation rotates the eigenstates E′i
L and Q′i

L as

E′i
L →

3∑

j=1

U ije,LE
′j
L , Q′i

L →
3∑

j=1

U iju,LQ
′j
L. (2.1.34)

Similarly the analogous transformations of the right-handed chiral fields read

e′iR →
∑

U ije,Re
′j
R, u′iR →

3∑

j=1

U iju,Ru
′j
R, d′iR →

3∑

j=1

U ijd,Rd
′j
R. (2.1.35)

In (2.1.34) and (2.1.35) the different rotation matrices correspond to the symmetry groups in

(2.1.33). According to these rotations the Yukawa matrices then have to transform as

λe = Ue,Lλ
′
eU

†
e,R, λu = Uu,Lλ

′
uU

†
u,R, λd = Ud,Lλ

′
dU

†
d,R, (2.1.36)

which means that either λ′e and λ′u or λ′e and λ′d can be diagonalized simultaneously. In

choosing the first possibility, namely the simultaneous diagonalization of λ′e and λ′u, we are
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left with a Yukawa coupling λ′d which is neither real nor diagonal. However, we can decompose

λd in such a way that it can be written as the product of a diagonal, real and non-negative

matrix Dd = Ud,Lλ
′
dU

†
d,R and a unitary matrix V = Uu,LU

†
d,L via

V Dd = Uu,Lλ
′
dU

†
d,R. (2.1.37)

The matrix V in (2.1.37) is the famous Cabibbo-Kobayashi-Maskawa (CKM) matrix, which

describes the mixing between the different quark generation in the SM.

By rotating the fermionic fields as given in (2.1.34) and (2.1.35) we are able to diagonalize

the Yukawa matrices by choosing a different basis, in which the mass matrices are diagonal.

Such a basis is therefore called mass eigenstate basis in contrast to the weak eigenstate basis

and can be denoted by

νiL =

3∑

j=1

U ije,Lν
′j
L , eiL =

3∑

j=1

U ije,Le
′j
L , uiL =

3∑

j=1

U iju,Lu
′j
L , diL =

3∑

j=1

U ijd,Ld
′j
L ,

eiR =

3∑

j=1

U ije,Re
′j
R, uiR =

3∑

j=1

U iju,Ru
′j
R, diR =

3∑

j=1

U ijd,Rd
′j
R. (2.1.38)

In contrast to the lepton sector, where the two components of the isospin doublet feel the

same rotation matrix, u′iL and d′iL transform differently under the unitary transformations

(2.1.38), which leads to flavor mixing in the quark sector due to the CKM mixing matrix V .

Finally we can rewrite the Lagrangian (2.1.32) in terms of mass eigenstates (2.1.38), where

the masses of the charged leptons, up- and down-type quarks are related to the diagonal

elements of the Yukawa couplings by

mi
e =

v√
2
Dii
e , mi

u =
v√
2
Dii
u , mi

d =
v√
2
Dii
d , (2.1.39)

with De, Du and Dd being diagonal, real and non-negative.

2.2 Why Go Beyond the Standard Model

2.2.1 The Standard Model as an Effective Field Theory

Despite the fact that the SM is extremely successful in describing the fundamental interactions

of particles and despite the fact that there have been no confirmed experimental results that

contradict its predictions, it suffers from several conceptual problems.

One of the most obvious indications for the incompleteness of the SM is the fact that it

does not include gravity and since the gravitational interactions become strong at the Planck

scale, MP l ∼ 1019 GeV, the SM cannot be the underlying theory to describe all physical laws.

So far, all attempts to quantize general relativity result in non-renormalizable field theories.

Therefore these theories can predict correct results at lowest order, but they do not allow for

a precise calculation of experimental quantities at the quantum level.
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Apart from the question of how to incorporate gravity, the SM itself has several unnatural

features. As already discussed in previous chapters the gauge group of the SM consists of

three gauge factors SU (3)C , SU(2)L and U(1)Y with three independent coupling constants.

Although the SM can unify the weak and electromagnetic force utilizing the idea of the

symmetry breaking mechanism SU (2)L ⊗ U (1)Y → U (1)Q, it cannot provide a unification

of all three forces. It is also surprising that the SU(2)L ⊗ U(1)Y gauge factor distinguishes

between left and right handed states, while the SU(3)C does not. Another important, so far

undiscovered sector of the SM is the Higgs sector, which is responsible for the generation of

masses and the spontaneous symmetry breakdown. Besides, it requires an inelegant addition

of parameters to the Lagrangian, since it does not provide an explanation for the values of

the particles’ masses.

A further question which still remains unanswered is that the theory does not give any

arguments why there are exactly three generations of matter. Together with the unknown

origin of the parameters in the mass matrix, mentioned above, this is the reason why there

are 19 free parameters in the SM. These are the three coupling parameters (α, θW , ΛQCD),

the two Higgs parameters (MH and λ), the nine fermion masses (me, mu, md; mµ, mc, ms;

mτ , mt, mb), the three mixing angles and one phase angle in the CKM matrix, and the strong

QCD phase parameter θ. There are even more parameters if neutrino masses and mixings

are included.

Thus, due to these shortcomings, the SM cannot be the complete theory of nature, and

some new understanding is needed in order for these questions to be answered properly.

2.2.2 Unitarity

As already stated in the last subsection, at least above the Planck scale of MP l ∼ 1019 GeV,

the SM has to be replaced by a more general theory that includes quantum gravity. Thus

an upper bound for the cut-off is given by the Planck scale MP l. However, there are further

reasons like the high-energy scattering of weak gauge bosons why the SM can only be valid

up to a much lower cut-off.

A fundamental motivation to generate the masses of W and Z bosons by the Higgs mech-

anism is that the Higgs boson is needed as an extra degree of freedom to soften the UV

behavior of massive gauge bosons. When we look at the scattering of longitudinal polar-

izations of massive spin-1 particles we obtain a tree level amplitude which possesses a E4

dependence

A = A(4)

(
E

M

)4

+ A(2)

(
E

M

)2

+ ..., (2.2.40)

where M is the mass of the massive gauge boson. From (2.2.40) we can see that A becomes

larger than 1 and would spoil the unitarity of the S-matrix when the energy scale E is of

the order of the gauge boson masses. In the absence of any other fundamental degrees of

freedom the theory would therefore enter a strongly coupled regime and we would not be
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able to apply perturbative methods. The Higgs particle as a new degree of freedom can now

give an additional contribution to the scattering amplitude (2.2.40) which exactly cancels

that part of the amplitude growing with energy. Including the Higgs particle we obtain

an amplitude A = g2M2
H/(4M

2
W ), which is finite at arbitrarily high energies. However, to

preserve perturbative unitarity the Higgs particle should not be too heavy. We can get a

rough upper bound for the Higgs mass from the decomposition of the amplitudes into partial

waves [32]

A = 16π
∞∑

l=0

(2l + 1)Pl (cos θ) al, (2.2.41)

where the Pl are the Legendre polynomials.

Using this decomposition we get for the coefficient a0 in the SM without a Higgs boson

a0 =
g2E2

16πM2
W

, (2.2.42)

which tells us that perturbative unitarity cannot be maintained above ∼ 620GeV. Including

the Higgs boson, the coefficient a0 becomes

a0 =
g2MH

64πM2
W

, (2.2.43)

which yields the upper bound MH ≤ 1.2TeV for the Higgs mass. Considering a different

channel one can even get the more stringent upper bound MH ≤ 780GeV [32].

A further bound on the Higgs mass can be derived from the study of radiative corrections

to the Higgs potential. At the quantum level, the coefficient λ in the Higgs potential (2.1.15)

run with energy as given in [33],

16π2 dλ

d lnQ
= 24λ2 −

(
3g′2 + 9g2 − 12y2

t

)
λ+

3

8
g′4 +

3

4
g′2g2 +

9

8
g4 − 6y4

t + ... (2.2.44)

Solving (2.2.44) in the large Higgs mass limit, where the first term on the right hand side in

(2.2.44) dominates, yields the solution

λ (Q) =
M2
H

2v2 − 3
2π2M

2
H ln Q

v

, (2.2.45)

which shows a Landau pole at

Q = ve4π
2v2/3M2

H . (2.2.46)

To prevent this instability new physics has to appear below that scale and thus we obtain a

relation between the cut-off of the SM and the Higgs mass

ln
Λ

v
≤ 16π2m2

W

3g2m2
H

, (2.2.47)

from which an upper bound on the Higgs mass for a fixed cut-off scale can be derived.
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γW,Z, higgstop

Figure 2.1: Most important, quadratically divergent contributions to the Higgs mass, making

the Higgs UV sensitive (taken from M. Schmaltz et al. [3]).

2.2.3 Naturalness and Hierarchy Problem

Generally, in particle physics it should be possible to deduce a low-energy theory from a high-

energy theory without carefully adjusting its parameters. This means that no fine-tuning

of the high-energy parameters should be necessary to derive the low-energy effective theory.

A definition of naturalness has been given by ’t Hooft in the following version [34]: at any

energy scale Q, a physical parameter α(Q) or set of parameters αi (Q) is allowed to be very

small only if the replacement αi (Q) = 0 increases the symmetry of the theory.

So far we have looked at the running of the Higgs quartic coupling to derive upper bounds

on the Higgs mass. However, radiative corrections are even more important when we consider

the mass term of the Higgs, since it is highly dependent on the UV physics. To determine

the one-loop corrections to the Higgs mass M2
H we assume the SM to be valid up to a cut-off

Λ and calculate the one-loop corrections of Figure 2.1, which yields the following result

δM2
H =

(
1

4

(
9g2 + 3g′2

)
− 6y2

t + 6λ

)
Λ2

32π2
. (2.2.48)

Assuming a cut-off of 10TeV we can see from (2.2.48) that the contributions coming from

the gauge, top and Higgs contributions to the Higgs mass are of the order of (600GeV)2,

−(1.5TeV)2 and (600GeV)2, respectively. Thus all these particles give unnaturally large

corrections to the Higgs mass and some precise adjustment, i.e. fine-tuning, between the bare

mass and the one-loop correction is needed to preserve the vev of the Higgs at the weak scale.

From the contributions to the Higgs mass mentioned above we can see that a fine-tuning of

one part in 100 among the tree level parameters is necessary in order to keep the mass of the

Higgs in the range of a few hundred GeV. Such a precise adjustment of parameters strongly

contradicts ’t Hooft’s definition, since setting MH = 0 does not lead to any new symmetry

and therefore a fine-tuning of parameters will be necessary. This is considered as unnatural

and is usually denoted as the hierarchy problem.

According to these arguments the cut-off of the theory should not be much higher than

the Higgs boson mass and future colliders like the LHC should be able to uncover a more

fundamental theory soon. However, indirect searches through precision data from LEP did

not show any signals so far that points towards new physics at this scale. These analyses
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seem to favor a light Higgs with a mass of 100−200GeV, but require the scale of new physics

to be at least 5TeV. This hierarchy between these two different scales is often referred to as

the little hierarchy problem [35].

However, assuming that physics beyond the SM already appears at the TeV scale, we are

able to regulate the Higgs mass and restore naturalness by newly introduced particles. In

the following we want to sketch some of the most popular theories, which serve as possible

candidates to explain the physics beyond the SM.

2.2.4 Supersymmetry

One of the most popular candidate theories beyond the SM is weak scale supersymmetry. In

this model the superpartners of the SM particles possess a different statistics and contribute

to the radiative corrections to the Higgs mass with the opposite sign and in the limit of exact

supersymmetry, all corrections to MH cancel. However, exact supersymmetry requires the

superpartners to have exactly the same masses as their SM partners, which has not been

observed in nature and therefore supersymmetry must be broken. Due to a broken super-

symmetry, there is a remnant logarithmic divergence dominated by the negative contribution

of the top quark. Then, assuming a soft supersymmetry breaking scale at around 1TeV, the

Higgs becomes tachyonic and the electroweak symmetry is radiatively broken. In its simplest

version, denoted as the MSSM, such a scenario is considerably constrained to live in a fraction

of its parameter space. In the MSSM the main constraint comes from the experimental lower

bound on the Higgs mass MH , which is typically light and hardly above 120GeV.

2.2.5 Extra Dimensions

A different solution to the hierarchy problem is proposed by extra dimensional models, among

which the model of Randall and Sundrum [36, 37] is one of the most popular. In their 5D

model they assume the extra space dimension not to be flat but to have a nontrivial geometry.

More precisely, they consider a setup with a bulk geometry of the form

ds2 = a2 (y) dxµdxµ − dy2, y ∈ [0, πR] . (2.2.49)

with two branes, where matter can be localized. To realize such a setup Randall and Sundrum

choose a negative cosmological constant in the bulk and opposite signs for those on the branes.

In the original works the SM particles are confined to one of the branes, which is denoted

as the visible brane. On the remaining brane, the hidden one, 4D gravity is strong with a

fundamental scale M∗. However, due to the exponential factor in the metric, the fundamental

scale of gravity on the visible brane is much larger

Mvis
P l = ekπRM∗ (2.2.50)

and one can easily obtain a fundamental scale M∗ in the TeV region, therefore avoiding the

hierarchy problem.



Chapter 3

From Extra Dimensions to the

Little Higgs

Gauge theories in more than four space-time dimensions are non-renormalizable and various

quantum problems cannot be solved consistently. However, it has been demonstrated [1, 38]

that the physics of higher dimensional gauge theories can alternatively be described by certain

four dimensional theories which possess an enlarged gauge symmetry. For example, there is

a correspondence between five dimensional gauge theories with the gauge group G and four

dimensional gauge theories whose gauge group is a direct product of the gauge group G

replicated N times, G×G× · · · ×G. The resulting four dimensional theory is then referred

to as deconstructed and each copy of G may be interpreted as the gauge group located

at a particular point along a new, discretized, ”deconstructed” dimension. The spectrum of

matter fields is a set of bifundamental representations expressed by a moose or quiver diagram

that has its analogy in lattice gauge theory. This setup can be considered as an alternative

description of the higher dimensional theory, but has the property of being renormalizable.

Phenomenologically interesting theories of this kind are for example Little Higgs theories,

which will be discussed later.

3.1 Basics of Deconstruction

3.1.1 Moose-Diagrams and Deconstruction

In this subsection we focus on the four dimensional model of [1, 38], which contains both gauge

fields and Weyl-fermions. These are conveniently accommodated in so-called “moose” [39]

or “quiver” [40] diagrams. In these diagrams the N gauge groups G and Gs are symbolized

by circles and fermions by directed links between the sites i and i + 1. The moose diagram

we want to consider is shown in Fig. 3.2 and describes a 4D field theory with a GN × GN
s

gauge group, where we will choose G = SU(m) and Gs = SU(n). Furthermore, we require

17
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Figure 3.1: A side of the polygon (taken from Arkani-Hamed et al. [1]).

all gauge couplings of the SU(m) groups to be set equal to a common value g, while all the

SU(n) couplings are set to gs.

As shown in Fig. 3.1, the sides of the polygon each represent two types of fermions, which

transform under the corresponding gauge groups as

χi transforming as (m, n̄,1) under SUi(m) × SUi(n) × SUi+1(m), (3.1.1)

ψi transforming as (1,n, m̄) under SUi(m) × SUi(n) × SUi+1(m). (3.1.2)

At energies much higher than Λs and Λ this theory can be described by N sets of massless

and weakly interacting fermions and gauge bosons. However, at lower energies one of the

gauge interactions can become strongly coupled and without loss of generality, we assume

Λs ≫ Λ. Thus, around the scale Λs, Gs = SU(n) becomes strongly coupled, while G can

still be treated perturbatively. At this scale a pair of fermions condenses similar to quark

confinement leading to ordinary glueballs and baryons in QCD. For each pair of fermions we

thus assume a non-zero vacuum expectation value,

〈χiψi〉 ∼ 4πf3
sUi, (3.1.3)

with fs ∼ Λs/(4π) and Ui being a unitary m × m matrix parameterizing the direction of

the condensate in SU(m) space. The moose diagram of Fig. 3.2 then turns into a condensed

moose diagram as depicted in Fig. 3.3. Below the scale Λs the theory of this condensed moose

diagram can be described as a
N∏

i=1
SU(m)i gauge theory connected by a set of non-linear sigma

model (NLSM) fields, denoted by Ui. Each of these link fields contains the corresponding

Goldstone boson fields arising from the symmetry breakdown and can be parameterized by

Ui = exp







i

fs

m2−1∑

a=1

πai Ta






, (3.1.4)

where the Ta correspond to the SU(m) generators. The transformation property of the

Goldstone boson fields under SU(m)i × SU(m)i+1 is then given by those of the Ui which

transform as (m, m̄), or explicitly

Ui → g−1
i (x)Uigi+1(x), (3.1.5)

where gi ∈ SU(m)i. Moreover, the Ui are singlets under the strong SU(n) gauge group.
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Suppressing higher dimensional operators, that are irrelevant for the low energy theory,

we can write the effective action for the Goldstone bosons as

Seff =

∫

d4x
N∑

i=1

{

f2
sTr

[

(DµUi)
†DµUi

]

− 1

2g2
Tr
(
F iµνF

µν
i

)
+ ...

}

, (3.1.6)

where the covariant derivative is defined by

DµUi = ∂µUi − igAiµUi + igUiA
i+1
µ , Aiµ = Ai,aµ T a. (3.1.7)

The action (3.1.6) connects the gauge fields at neighboring sites and the different Goldstone

bosons are linked by a local “nearest neighbor” interaction. As pointed out in [1, 38], the

action (3.1.6), corresponding to the condensed moose diagram in Fig. 3.3, can be interpreted

as the discretized action for a five dimensional theory with a gauge group SU(m), where the

fifth dimension has been latticized. For further details the reader is referred to [1, 38].
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Figure 3.2: A moose diagram (taken from ArkaniHamed et al. [1]).

3.1.2 Symmetry Breaking

According to the previous subsection it is obvious by construction that the low energy La-

grangian of (3.1.6) possesses a local SU(m)N symmetry. Considering just one side of the

condensed moose diagram, i.e. the Goldstone boson matrix Ui and its corresponding gauge

groups SU(m)i and SU(m)i+1 in Fig. 3.1, we can see that Ui transforms under the two gauge

groups independently. Thus the symmetry group of each side of the polygon is given by

SU(m)i × SU(m)i+1. However, they are related by the gauge couplings, which explicitly

break this accidental symmetry.
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Figure 3.3: A condensed moose diagram (taken from ArkaniHamed et al. [1]).

Switching off the SU(m) gauge couplings, the polygon breaks up, (3.1.6) simplifies signif-

icantly and the low energy Lagrangian reduces to

Lg=0 =
N∑

i=1

f2
sTr

(

∂µU
†
i ∂

µUi

)

. (3.1.8)

From (3.1.8) one can see that the different NLSM fields Ui decouple and can be transformed

globally

Ui(x) → LiUi(x)R
†
i , (3.1.9)

where the Li, R
†
i are independent SU(m) matrices and can for example be associated with the

transformations of the left-handed χ† and right-handed ψ, respectively. Thus, in the absence

of gauge interactions, such a theory has an accidental “chiral” global [SU(m)L × SU(m)R]N

symmetry, where the global symmetry groups of each side are now denoted with

Gi → GLi
and Gi+1 → GRi

. (3.1.10)

Still assuming vanishing couplings g, the accidental global symmetry, in analogy to spon-

taneous chiral symmetry breaking in QCD, is spontaneously broken down to its diagonal

subgroup via vacuum expectation values of the NLSM fields,

SU(m)Li
× SU(m)Ri

SSB−−−→ SU(m)Li=Ri
, (3.1.11)

where the NLSM fields can be expressed as in (3.1.4). Concerning the symmetry of the total

moose diagram this implies a symmetry breakdown

[SU(m)Li
× SU(m)Ri

]N
SSB−−−→ [SU(m)Li=Ri

]N , (3.1.12)
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with the index L and R denoting the left and right gauge group belonging to the same side

of the polygon.

In contrast to the spontaneous symmetry breakdown described above, the global acci-

dental symmetry can also be broken explicitly via the gauge couplings. Considering the

transformation properties both of the gauge bosons

Aiµ → giAiµg
†
i (3.1.13)

and Goldstone bosons (3.1.9) one can see [2] that, in the presence of the gauge couplings,

only a
[
SU(m)Li=Ri−1

]N
is preserved, as soon as Li = gi = Ri−1. That is, it is necessary for

the right gauge group of a side to be equal to the left gauge group of the neighboring side.

Thus the global symmetry [SU(m)Li
× SU(m)Ri

]N is explicitly broken to
[
SU(m)Li=Ri−1

]N

by the presence of gauge couplings at the level of the classical Lagrangian.

As depicted in the following diagram the explicit symmetry breaking arises from the

presence of gauge couplings and connects each single side of the condensed moose diagram

while the spontaneous symmetry breakdown leaves the diagonal subgroup of each single side

unbroken.

[SU(m)Li
× SU(m)Ri

]N
SSB−−−−→ [SU(m)Li=Ri

]N

g



y g



y

[
SU(m)Li=Ri−1

]N SSB−−−−→ SU(m)diag

(3.1.14)

Using the gauge freedom, almost all Ui can be gauged to unity by an appropriate choice

of gauge transformations. As discussed in [2], in unitary gauge it is possible to set N − 1

of the N NLSM fields to unity, where one Nambu-Goldstone field remains and is associated

with the product U1U2 · · ·UN . This field contains the pseudo Goldstone boson describing the

low energy limit of the theory and can be parameterized as

U = exp

{
i

fs
φ

}

, φ =
1√
N

(π1 + ...+ πN ) . (3.1.15)

Since the global accidental symmetry [SU(m)L × SU(m)R]N is broken at the classical level

only by the gauge couplings, φ remains massless at tree level and receives its mass by quantum

corrections. However, these quantum corrections include only diagrams which involve all

gauge couplings at the same time.

In [2] this is demonstrated by introducing spurion fields qi, which transform as

Ui → LiUiR
†
i+1, (3.1.16)

Ai → LiAiL
†
i , (3.1.17)

qi → Ri+1qiL
†
i+1. (3.1.18)
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This guarantees the modified covariant derivative

Dq
µUi = ∂µUi + igAiµUi − igUiqiAi+1µq

†
i (3.1.19)

to be invariant under a global SU(m)2N . Since U is defined as the product of all Ui, the

potential containing a mass term for φ must be a function of
∏

i
Ui and the leading nontrivial

operator involving only the Ui is given by [2]

O = |Tr (U1q1 · · · UNqN )|2 , (3.1.20)

with a natural size for the coefficient of this operator given by (4πf)2f2(g2/16π2)N [41].

From this one can see that all couplings must be involved to generate such an operator.

Metaphorically speaking, φ is distributed over the whole condensed moose diagram, thus being

a non-local object, while the gauge couplings, which connect the sides of nearest neighbors of

the polygon, are local objects in theory space. Thus it is not possible to generate quantum

corrections depending on φ involving only a single gauge coupling, which leads to the fact that

φ can be realized as a light pseudo-Goldstone boson. In the later Subsection 3.1.5 we will see

that this mechanism of generating scalar fields with natural small masses can be embedded

in physically more viable model, which will lead to Little Higgs models.

3.1.3 Relation to Lattice Gauge Theory

In the original works [1, 2, 38] Arkani-Hamed et al. have pointed out that theories as described

in the previous subsection can actually be interpreted as higher dimensional field theories in

the low energy limit. In particular, the theory described by the moose diagram in Figure 3.3

corresponds to a 5D gauge theory with one dimension compactified on a circle. In contrast to

many other theories, this dimension is not continuous, but discretized [42] on a lattice with

N sites. To see this correspondence, we briefly demonstrate how gauge theory is formulated

on a spacetime lattice [43]. Usually in lattice gauge theory the gauge fields are replaced by

so-called link fields U , that implement a parallel transport along the path C:

U (C) = P exp

(

−ig
∫

C
ANdxN

)

(3.1.21)

with P denoting the path-ordering operator.

Since we want to discretize only one dimension, while the remaining four dimensions shall

remain continuous, a link field is introduced only for A5. Denoting the lattice points by i

and the lattice spacing by a, the link fields between two lattice points i and i + 1 can be

approximated by

Ui = exp (−igaA5 ((i+ 1/2) a)) . (3.1.22)

Introducing the corresponding covariant derivatives for the Ui,

DµUi = ∂µUi − igAµ (ia)Ui + igAµ ((i+ 1) a)Ui, (3.1.23)



3.1 Basics of Deconstruction 23

and expanding it in terms of the lattice spacing a, we find that at order O(a),

DµUi = −iagFµ5 (ai) + O
(
a2
)
. (3.1.24)

Performing the sum over a finite number of points 0 to N and identifying i = 0 with i = N

we obtain a compactified and discretized interval of size L = Na with the topology of a circle.

To see the analogy to a 5D continuum theory the gauge fields have to be rescaled and the

sum has to be substituted by an integral

a
∑

p

→
∫

dx5 (3.1.25)

with the gauge coupling constant of the 5D EFT given by g2
5 = ag2. By comparing (3.1.22)

with (3.1.4) one can the see the correspondence of the NLSM to a latticized version of a

5D non-abelian gauge theory with the lattice spacing a and the circumference R of the fifth

dimension,

πiaT
a/fs = −agAi5, a =

1

gfs
, R = Na. (3.1.26)

3.1.4 Non-Renormalizability and Chiral Perturbation Theory

As we have seen in the previous subsections the deconstructed theory is a NLSM, which

is non-renormalizable and can make predictions only up to a cut-off scale Λ. Yet, we can

write down the effective Lagrangian using a non-linear realization of the gauge symmetry,

where we make use of the notation in [44]. In analogy to the established techniques of chiral

perturbation theory for low energy QCD [41, 45] all the terms in the Lagrangian of a NLSM

can be organized in a power series in small momenta p≪ Λ ∼ 4πf ,

Leff = L2 + L4 + ..., (3.1.27)

where the terms in L2 are of order O(p2), the terms in L4 of order O(p4).

Having expanded the Lagrangian of a NLSM into a series in p/Λ we can see that the higher

dimensional terms, which are suppressed by inverse powers of Λ, destroy the renormalizability

of the NLSM. Yet, renormalizability does not pose a problem here, since in an effective field

theories (EFT) it is always possible to remove all divergences at a fixed order in the momentum

expansion.

In Chiral Perturbation Theory, for example, the most general effective Lagrangian at the

order O(p4) has to include both the tree-level graphs originating from L4, the one-loop graphs

associated with the lowest-order Lagrangian O(p2) and the Wess-Zumino-Witten functional to

account for the chiral anomaly. The complete effective Lagrangian at order O(p4) is given in

[45, 46] and needs to be renormalized due to divergent Goldstone loops. These divergences can

be absorbed in the renormalization of the coupling constants. Schematically, the Lagrangian
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can be written as a sum of operators multiplied by bare low-energy constants L4 =
∑

i
LiOi,

where the Li are given by [44]

Li = Lri (µ) + Γiλ, λ =
µd−4

16π2

{
1

d− 4
− 1

2

[
log(4π) + Γ′(1) + 1

]
}

. (3.1.28)

From (3.1.28) we can see the constants Li absorbing the divergences from divergent loops

of L2 so that the scheme- and scale-dependent renormalized constants Lri (µ) are finite. The

remaining coefficient Γi of the divergent term can explicitly be calculated from the one-loop

generating functional and are given in [45, 46]. Finally, one has to perform a matching between

effective and full theory at low energies to determine these low-energy constants. However,

for strongly interacting theories case they cannot be calculated and have to be determined

from experiment.

3.1.5 The Minimal Moose Model

To derive a realistic Little Higgs model, where the SM Higgs is realized as a pseudo Goldstone

boson, it was proposed by Arkani-Hamed et al. in [47] to start with a deconstructed theory

that has at least two “compactified dimensions”. In the minimal version such a model consists

of two sites and four link fields, where one site corresponds to the gauge group G1 = SU(3),

while the other site is G2 = SU(2) × U(1). These sites are connected by 4 link fields Xi,

i = 1, ..., 4, which are 3 × 3 NLSM fields describing the Goldstone fields. In the absence of

any gauge interactions the theory has a large, approximate SU(3)8 global symmetry, which is

spontaneously broken to SU(3)4. Denoting the Goldstone fields by xi and the global SU(3)

transformations by Li, Ri, the NLSM fields Xi = exp (2ixi/f) transform as

Xi → LiXiR
†
i , i = 1, 2, 3, 4. (3.1.29)

Below the cut-off Λ ∼ 4πf ∼ 10TeV of this model the theory can be described by the effective

Lagrangian

L = LG + LX + Lt + Lψ, (3.1.30)

where LG represents the conventional kinetic terms and gauge interactions of the NLSM

and LX , Lt, Lψ will be explained in turn. As some modes of the Goldstone bosons will

serve as a Higgs boson and should therefore couple to fermions, a coupling between the four

fields Xj is introduced. Additionally, we have to generate a Higgs potential to trigger the

electroweak symmetry breaking, which will be achieved by introducing LX containing so-

called “plaquette” couplings between the Xj . These consist of gauge invariant objects similar

to Wilson loops in lattice gauge theory and are added in an ad hoc way:

LX = f4Tr(AX1X
†
2X3X

†
4) + f4Tr

(

A′X1X
†
4X3X

†
2

)

+ h.c.. (3.1.31)

In (3.1.31), A, A′ denote the matrices A = κ1 + εT8 and A′ = κ′1 + ε′T8. Each of these

ε, ε′ terms preserves enough of the global symmetry to leave some of the Goldstone bosons
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massless, i.e. these ε, ε′ respect an SU(2) × U(1) symmetry, but break the global SU(3) to

generate pseudo Goldstone bosons.

To generate the SM Yukawa couplings, the NLSM is coupled to the SM quark fields by

the two remaining terms Lt and Lψ. In doing so, the top Yukawa sector is modified in a

peculiar way. To avoid quadratic divergences coming from the top sector we introduce a pair

of additional vectorlike quarks U and U c, which have the same statistics as the SM quarks

and will cancel the dangerous divergences to the Higgs boson mass at the one-loop order. In

order to achieve this the Yukawa interaction for the top quark is chosen to be

Lt = λf
(
0 0 uc′3

)
X1X

†
2

(

q3

U

)

+ λ′fUU c + h.c.. (3.1.32)

Since the Yukawa couplings for the remaining quarks are much smaller than that of the top

quark, the quadratic divergences related to them are negligible for a cut-off Λ ∼ 10TeV,

especially in view of the two-loop divergences coming from top quark loops which are present

in the model anyway. Therefore the standard Yukawa interaction for light up-type quarks

Lψ has the same form as (3.1.32) but with U , U c removed, while for the down and charged

lepton sector Lψ contains

Lψ = λD (q 0)X1X
†
2f






0

0

dc




+ λE (l 0)X1X

†
2f






0

0

ec




 , (3.1.33)

which finalizes the construction of the model. However, one should be aware of the short-

comings of this construction. The most striking one is the fact that the terms included in

the Lagrangian were not selected by any symmetry principle. This means that all the terms

that were neglected will be generated radiatively at higher loop level. To forbid certain terms

in the low energy Lagrangian it is necessary to construct an appropriate UV completion of

the model and it is unclear whether such a completion exists in a satisfactory form. Besides,

the Little Higgs mechanism alone cannot explain the hierarchy between the cut-off of the low

energy theory and the GUT or Planck scale. To do so, again some kind of UV completion

is needed [48]. For detailed informations about this model and its interactions the reader is

referred to the original work [47] by Arkani-Hamed et al..
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Chapter 4

The Littlest Higgs Model without

T-Parity

Little Higgs models [2, 4, 47, 49, 50, 51], as an alternative to supersymmetric models, have been

invented to stabilize the Higgs boson mass against large radiative corrections by introducing

new gauge bosons, scalars and quarks. In contrast to supersymmetric models, the cancellation

of quadratic divergences is realized between particles of the same spin statistics. In these

models the physics below the TeV scale can be approximately described by the SM, while for

energies higher than 1TeV new particles emerge. However, one should be aware of the fact

that the Little Higgs is not the end of the story and the ultraviolet completion of the theory

must still be explored.

Based on the Little Higgs idea, a model named Littlest Higgs Model without T-Parity

(LH) has been constructed [4] and its explicit interactions have been presented in [5, 6, 7].

Numerous phenomenological studies in this model have been performed, see e.g. [5, 8]. In this

chapter, we will concentrate on the effects of new particles on rare decays like KL → π0νν̄,

K+ → π+νν̄ and Bs,d → µ+µ−, which are known to be ideal probes for physics beyond the

SM.

4.1 The Structure of the Littlest Higgs Model

In the LH model, the starting point is a global symmetry group G which is spontaneously

broken down to a subgroup H. This symmetry breaking occurs at a scale f of the order

of 1TeV. Since this model realizes the Higgs as a pseudo-Goldstone boson, the unbroken

symmetry group H should contain SU(2)L ⊗U(1)Y as a subgroup. Similarly to the SM, one

would expect that the gauge interactions will again induce one-loop quadratically divergent

contributions to the Higgs mass. In order to avoid this, we assume that G contains a gauged

subgroup including two copies of SU(2)L ⊗ U(1)Y : G ⊃ G1 ⊗ G2 = [SU(2)1 ⊗ U(1)1] ⊗
[SU(2)2 ⊗ U(1)2]. These two copies are now arranged in such a way that each Gi commutes

27
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with a different subgroup Xi of G, and hence preserves a different global symmetry. This is

sufficient to forbid a Higgs mass term. Only when both gauge groups come into play, the

symmetry is broken and a mass term for the Higgs boson is allowed. We will see that at one-

loop level one can therefore only get logarithmically divergent contributions, and quadratic

divergences first appear at two-loop level.

The full exposition of the model can be found in the original paper [4] and in [5]. We

will follow the notations of [5] as far as possible. References to comprehensive reviews can be

found in [3].

4.1.1 Symmetry Breaking Pattern

In the LH model the electroweak sector of the SM is embedded in an SU(5)/SO(5) NLSM,

which means that the global symmetry group G = SU(5) is spontaneously broken down to

its subgroup H = SO(5). The symmetry groups protecting the Higgs mass are chosen to be

Xi = SU(3)i, i = 1, 2. Moreover, each Xi contains a gauged SU(2)i ⊗ U(1)i subgroup and

should not lie entirely inside H, since they shall explicitly break the symmetry protecting the

Higgs mass.

The symmetry breaking SU(5) → SO(5) is induced by a vacuum condensate of a scalar

field transforming in the symmetric tensor representation of SU(5). A vacuum expectation

value proportional to the unit matrix then breaks SU(5) → SO(5). However, it is convenient

to choose the vacuum expectation value in the direction of Σ0 given by the 5 × 5 symmetric

matrix [4]

Σ0 =






12×2

1

12×2




 , (4.1.1)

where 12×2 represents a 2 × 2 unit matrix.

In order to see that Σ0 yields the right symmetry breaking pattern, we have to transform

the standard generators of SU(5), λa, by a similarity transformation. The generators λa are

either symmetric or antisymmetric, where the 10 antisymmetric generators are identified with

the SO(5) subgroup generators. Introducing S as

S =
1

2











1 + i 0 0 1 − i 0

0 1 + i 0 0 1 − i

0 0 1 0 0

1 − i 0 0 1 + i 0

0 1 − i 0 0 1 + i











, (4.1.2)

we can then define new generators by a similarity transformation λ̃a := SλaS
−1. Furthermore,

the symmetric and unitary matrix S is related to Σ0 by Σ0 = S2 = STS. Using these relations

we can then immediately see that the new generators λ̃a satisfy

λ̃aΣ0 = (SλaS
−1)(S2) = ±(SλaS)T = ±Σ0λ̃

T
a , (4.1.3)
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where the plus sign corresponds to symmetric generators and the minus sign to antisymmetric

generators of SU(5). From (4.1.3) it is evident that the unbroken SO(5) generators, denoted

by Ta, fulfill

TaΣ0 + Σ0T
T
a = 0, (4.1.4)

while the broken generators, denoted by Xa, obey

XaΣ0 − Σ0X
T
a = 0. (4.1.5)

This can easily be seen by observing that an unbroken symmetry preserves the vacuum and

therefore the relation OΣ0O
T = Σ0, with O = exp (iαaTa), must hold. Expanding the latter

in terms of α leads to

Σ0 = (1 + iαaTa)Σ0

(
1 + iαaT Ta

)
= Σ0 + iαa

(
TaΣ0 + Σ0T

T
a

)
+ O

(
α2
)
, (4.1.6)

yielding condition (4.1.4) for the unbroken generators of SO(5). Consequently, the remaining

14 symmetric generators are broken and obey XaΣ0 − Σ0X
T
a = 0.

Thus, from the breaking SU(5) → SO(5), we obtain 14 Goldstone bosons corresponding

to the 14 broken generators. Under the unbroken SU(2)L ⊗ U(1)Y , these transform as

10 ⊕ 30 ⊕ 2± 1

2

⊕ 3±1. (4.1.7)

The first two sets are eaten by the gauge bosons corresponding to the broken G1⊗G2 genera-

tors, thereby giving a TeV scale mass to them. The third set is a complex doublet, identified

with the Higgs boson while the last set is an additional complex triplet.

Similarly to the QCD chiral Lagrangian for pions, the dynamics of the theory at low

energy scales below 4πf can be described in terms of the massless Nambu-Goldstone degrees

of freedom, each of them corresponding to one of the broken generators Xa. Thus we can

parameterize all the 14 Nambu-Goldstone bosons from the breaking of SU(5)/SO(5) by a

NLSM, whose Lagrangian contains all possible Lorentz-invariant, local operators built out of

the field

Σ (x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0. (4.1.8)

For the second equality in (4.1.8) we used the relation XaΣ0 = Σ0X
aT , obeyed by the broken

generators. Moreover, f is the Goldstone boson decay constant of the order 1TeV, and

Π = πaXa. Using (4.1.7) and ignoring the Goldstone bosons that are eaten by the heavy

gauge bosons, the Goldstone boson matrix Π can be written in terms of fields with definite

electroweak quantum numbers as

Π =







h†√
2

φ†

h√
2

h∗√
2

φ hT
√

2






. (4.1.9)
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Here h is the Higgs doublet and φ is a complex triplet under the unbroken SU(2)L ⊗ U(1)Y .

They can be represented by

h =
(
h+, h0

)
, φ =

(

φ++ φ+

√
2

φ+

√
2

φ0

)

. (4.1.10)

As already mentioned earlier, the condensate Σ0 does not only break the global symmetry

group G = SU(5) down to SO(5), but also breaks the gauge group [SU(2)1 ⊗ U(1)1] ⊗
[SU(2)2 ⊗ U(1)2] to its “diagonal” subgroup SU(2) ×U(1), which then is identified with the

SM electroweak gauge group. To summarize the pattern of symmetry breaking discussed in

the last paragraphs we illustrate it in the following cartoon.

SU(5)
SSB−−−−→ SO(5)

g1



yg2 g1



yg2

[SU(2) × U(1)]2
SSB−−−−→ [SU(2) × U(1)]diag

(4.1.11)

The first SU(2)1 × U(1)1 subgroup is embedded in the SU(5) in such a way as to preserve

a global SU(3) symmetry in the lower-right 3 × 3 block, while the second SU(2)2 × U(1)2

preserves an SU(3) symmetry in the upper-left 3 × 3 block. Thus, we define the generators

of G1 = SU(2)1 × U(1)1 as

Qa1 =






σa

2

03×3




 , Y1 =

1

10











−3

−3

2

2

2











, (4.1.12)

and the ones of G2 = SU(2)2 × U(1)2 as

Qa2 =






03×3

−σa∗

2




 , Y2 =

1

10











−2

−2

−2

3

3











. (4.1.13)

The diagonal SU(2) × U(1) generators

Qa =
1√
2

(Qa1 +Qa2) , Y = Y1 + Y2 (4.1.14)

are unbroken, since

QaΣ0 + Σ0Q
aT =






02×2 σa/2

0

02×2 −σ∗a/2




+






02×2 −σ∗Ta /2

0

02×2 σTa /2




 = 0, (4.1.15)
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Gauge Bosons Gauge Bosons

Diagram (a) Diagram (b)

Figure 4.1: Gauge boson contributions to the Higgs mass. Diagram (a) is the quadratically

divergent contribution to the Higgs mass in the SM, while Diagram (b) denotes the logarith-

mically contribution to the Higgs mass in the LH model (continuous lines correspond to the

Σ field, while wiggly lines denote gauge bosons).

where in the last step we used the hermiticity of the Pauli matrices. Analogously we can

proceed in the case of Y Σ0 + Σ0Y
T = 0.

At the end of this subsection we want to recall once more that all gauge couplings of G1

leave a global SU(3)2 symmetry in the lower-right 3 × 3 block invariant. Assuming further

on the gauge couplings of G2 to be switched off, the enlarged symmetry forbids the radiative

generation of a Higgs mass, i.e. a mass term hh† is forbidden by symmetry. The situation is

similar when the G1 gauge couplings are turned off and only G2 is active. Only when both

couplings are turned on at the same time, the symmetry is sufficiently broken and allows the

appearance of a Higgs mass. This mechanism is known as collective symmetry breaking and

eliminates all quadratically divergent one-loop contributions to the Higgs mass. From Fig. 4.1

we can see that Diagram (a) contains only a single gauge coupling in it, and hence cannot

contribute to the Higgs mass. In the SM this is the diagram, which is responsible for the

hierarchy problem. Diagram (b) is again a one-loop diagram, however is only logarithmically

divergent, since both couplings are involved. Therefore it does not generate large radiative

corrections to the Higgs mass. Moreover, there are possible two-loop diagrams that are

quadratically divergent, but their value is suppressed by a an additional loop factor of 1/(4π)

and thus is sufficiently small to prevent the little hierarchy problem from being re-introduced

at the TeV scale.

4.1.2 The Gauge Boson Sector

As seen in the last section, the effective field theory of the LH model can be parameterized

by an SU(5)/SO(5) NLSM with a gauged subgroup

G1 ⊗G2 = [SU(2)1 ⊗ U(1)1] ⊗ [SU(2)2 ⊗ U(1)2] , (4.1.16)
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which is spontaneously broken down to the SM gauge group. In particular, by the symmetry

breaking of the NLSM, the Lagrangian still preserves the full [SU(2) ⊗ U(1)]2 gauge sym-

metry. The leading order dimension-two term in the NLSM, describing the Σ field, can be

written for the scalar sector [4, 52] as

LΣ =
1

2

f2

4
Tr (DµΣ) (DµΣ)† . (4.1.17)

The numerical coefficients have been chosen such that the scalar kinetic terms are canonically

normalized. (4.1.17) is manifestly gauge invariant under G1 ⊗ G2 if the covariant derivative

is defined as

DµΣ = ∂µΣ − i

2∑

j=1

{
gjW

a
µj

(
QajΣ + ΣQaTj

)
+ ig′jBµj

(
YjΣ + ΣY T

j

)}
, (4.1.18)

where the SU(2)j=1,2 gauge fields are given by W a
µj , the U(1)j=1,2 gauge fields by Bµj and

the corresponding generators Qa1,2, Y1,2 are defined in (4.1.12) and (4.1.13).

In order to write the Lagrangian in terms of the scalar fields h, φ and the gauge bosons,

respectively, we linearize (4.1.17) by expanding Σ in powers of 1/f around its vacuum expec-

tation value Σ0,

Σ = Σ0 +
2i

f







φ† h†√
2

02×2

h∗√
2

0 h√
2

02×2
hT
√

2
φ







− 1

f2






h†h∗
√

2φ†hT h†h+ 2φ†φ√
2hφ† 2hh†

√
2h∗φ

hTh∗ + 2φφ†
√

2φh† hTh




+O(

1

f3
).

(4.1.19)

In the process of spontaneous symmetry breaking the local gauge symmetry G1 ⊗ G2

is broken down to the diagonal subgroup [SU(2)L ⊗ U(1)Y ] identified with the electroweak

SM gauge group. The corresponding unbroken generators of [SU(2)L ⊗ U(1)Y ] are given in

(4.1.14) while the broken generators are

Q′a =
1

√

g4
1 + g4

2

(
g2
1Q

a
1 − g2

2Q
a
2

)
. (4.1.20)

In this process 4 of the 14 Goldstone bosons of the SU(5) → SO(5) breaking are eaten

to give mass to 4 particular linear combinations of the gauge fields. This gives rise to mass

terms of order f for half of the gauge bosons (the heavy W ′ and B′)

mW ′ =
f

2

√

g2
1 + g2

2 =
g

2sc
f, mB′ =

f

2
√

5

√

g′21 + g′22 =
g′

2
√

5s′c′
f. (4.1.21)

Here s, c, s′ and c′ are the sines and cosines of the angles that describe the mixing of the

[SU(2)1 × U(1)1] ⊗ [SU(2)2 × U(1)2] gauge bosons

W = sW1 + cW2, W ′ = −cW1 + sW2

B = s′B1 + c′B2, B′ = −c′B1 + s′B2. (4.1.22)
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In (4.1.22) W1 and W2 each represent the three gauge bosons of SU(2)1 and SU(2)2, re-

spectively, while B1 and B2 are the corresponding gauge bosons of U(1)1 and U(1)2. The

corresponding mixing angles are given by

s =
g2

√

g2
1 + g2

2

, c =
g1

√

g2
1 + g2

2

, (4.1.23)

s′ =
g′2

√

g′21 + g
′2
2

, c′ =
g′1

√

g′21 + g′22
, (4.1.24)

where g1,2 are SU(2)1,2 coupling constants and g′1,2 the ones of U(1)1,2. The W and B remain

massless at this stage and can be identified with the SM gauge bosons, with couplings

g = g1s = g2c, g′ = g′1s
′ = g′2c

′. (4.1.25)

Finally, we can obtain the couplings of the gauge bosons to the two scalar degrees of freedom

by re-expressing (4.1.17) in terms of the mass eigenstates W , W ′, B and B′ and using the

expansion (4.1.19) of Σ in powers of 1/f .

In the second step of the gauge symmetry breaking the SM group is broken down to U(1)Q.

Since the details of this breakdown are already presented in [5, 7] we will summarize only the

most important results. After having broken the SM group to U(1)Q the mass eigenstates of

the gauge bosons can be obtained by diagonalizing

Lmasses = W
′a
µ W

′aµ

(
m2
W ′

2
− 1

8
g2v2

)

+ (W 1
µW

1µ +W 2
µW

2µ)

(
1

8
g2v2

(

1 − 1

6

v2

f2

))

+W 3
µW

3µ

(
1

8
g2v2

(

1 − 1

6

v2

f2

))

+W a
µW

′aµ

(

−1

4
g2v2 (c2 − s2)

2sc

)

+B′
µB

′µ

(
m2
B′

2
− 1

8
g′2v2

)

+BµB
µ

(
1

8
g′2v2

(

1 − 1

6

v2

f2

))

+BµB
′µ

(

−1

4
g′2v2 (c′2 − s′2)

2s′c′

)

+W 3
µB

µ

(
1

4
gg′v2

(

1 − 1

6

v2

f2

))

+W
′3
µ B

′µ

(

−1

8
gg′v2

(
cs′

sc′
+
sc′

cs′

))

+W 3
µB

′µ

(

−1

4
gg′v2 (c′2 − s′2)

2s′c′

)

+W
′3
µ B

µ

(

−1

4
gg′v2 (c2 − s2)

2sc

)

, (4.1.26)

with v denoting the vev of the neutral components of the complex doublet. In our analysis

we will set the vev of the complex triplet, v′, to zero.

The final mass eigenstates of the charged gauge bosons are W±
L and W±

H where the indices

L and H stand for “light” and “heavy”. The mass eigenstates are given by

WL = W +
v2

2f2
sc(c2 − s2)W ′, WH = W ′ − v2

2f2
sc(c2 − s2)W, (4.1.27)
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while the corresponding masses read

M2
W±

L

= m2
W

(

1 − v2

f2

(
1

6
+

1

4
(c2 − s2)2

))

, (4.1.28)

M2
W±

H

= m2
W

(
f2

s2c2v2
− 1

)

. (4.1.29)

As one can see from (4.1.28) and (4.1.29), the mass of the W±
L boson approaches the SM

value mW ≡ gv/2 when f → ∞.

The neutral gauge boson mass eigenstates AL, ZL, AH and ZH are given by

AL = −sWW 3 + cWB,

ZL = cWW
3 + sWB + xW

′

Z

v2

f2
W

′3 + xB
′

Z

v2

f2
B

′

,

AH = B′ + xH
v2

f2
W

′3 − xB
′

Z

v2

f2
(cWW

3 + sWB),

ZH = W
′3 − xH

v2

f2
B′ − xW

′

Z

v2

f2
(cWW

3 + sWB), (4.1.30)

with

xH =
5

2
gg′

scs′c′(c2s
′2 + s2c

′2)

(5g2s′2c′2 − g′2s2c2)
,

xW
′

Z =
1

2cw
sc(c2 − s2) ,

xB
′

Z =
5

2sw
s′c′(c

′2 − s
′2) . (4.1.31)

Here

sW =
g′

√

g2 + g′2
, cW =

g
√

g2 + g′2
(4.1.32)

are the sine and the cosine of the Weinberg angle describing the weak mixing in the SM.

AL and ZL are the SM photon and Z0 boson and AH and ZH the new heavy photon and

heavy Z0 boson, respectively. Their masses are given by

M2
AL

= 0, (4.1.33)

M2
ZL

= m2
Z

(

1 − v2

f2

(
1

6
+

1

4
(c2 − s2)2 +

5

4
(c′2 − s′2)2

))

, (4.1.34)

M2
AH

= m2
Zs

2
W

(
f2

5s′2c′2v2
− 1

)

, (4.1.35)

M2
ZH

= m2
W

(
f2

s2c2v2
− 1

)

, (4.1.36)

where mZ is the SM Z0 boson mass with mZ ≡ gv/(2cW ).

It is evident from (4.1.28) and (4.1.34) that the tree level SM relation

m2
W

m2
Z

= c2W (4.1.37)
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is not valid for the W±
L and Z0

L masses. To O(v2/f2) we have [5]

M2
W±

L

M2
ZL

= c2W

(

1 +
v2

f2

5

4
(c′2 − s′2)2

)

(4.1.38)

which reflects the tree level breaking of the custodial SU(2) in the LH model. Formula (4.1.38)

will play an important role in our later analysis.

From (4.1.28) and (4.1.29) we find

MW±
H

=
f

v

MW±
L

sc
, (4.1.39)

which is valid to order v2/f2.

The formulae given above have already been presented in [5] but at a few places the results

shown here differ from the ones presented there. We would like to spell out these differences

explicitly.

• In going from (4.1.26) to (4.1.30) no field redefinitions have been made as done in [5].

As a result of this, the formulae in (4.1.30) differ from (A34) in [5] by B replaced by

−B. This difference is a matter of choice and has no impact on physical results.

• The results for xW
′

Z and xB
′

Z in (4.1.31) differ by sign from the ones given in (A35) of

[5]. This difference is crucial for the removal of the divergences in the calculations in

the unitary gauge.

• In contrast to (A37) of [5] the presence of terms proportional to xH can not be con-

firmed at this order as seen in (4.1.35) and (4.1.36). Moreover, the result shown here is

consistent with that of the LH model with T-parity [11, 16, 17] presented in the next

chapter, where the terms proportional to xH are also absent at this order.

4.1.3 Fermions and Their Interactions

In the SM fermions become massive due to their couplings to the Higgs via Yukawa interac-

tions, and so far we have not included any fermions in the theory. However, due to its large

Yukawa coupling to the Higgs the top quark induces a large quadratically divergent contribu-

tion to the Higgs mass. In the LH model this problem is solved by adding new fermions to the

theory in order to precisely cancel these top loops. The quadratic divergences coming from

the other fermions do not constitute any problem, since their Yukawa couplings are much

smaller than the one of the top quark so that their contributions at a scale Λ of order 10TeV

are quite negligible and do not necessitate fine-tuning.

The newly introduced fermions are a pair of vector-like, colored Weyl fermions t̃ and t̃′c

with quantum numbers (3,1) and (3̄,1) under the two global SU(3)s. For convenience we

accommodate the new particles in the row vector χ = (b3, t3, t̃). The quantum numbers of
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these new particles further allows us to write down a bare mass term for the new fields of

order f . The coupling of the SM top quark and the new fermions to the Goldstone boson

field Σ is given by

Lt =
1

2
λ1fεijkεxyχiΣjxΣkyu

′c
3 + λ2f t̃t̃

′c + h.c., (4.1.40)

where i, j, k are summed over 1, 2, 3 while x, y are summed over 4, 5 and u′c3 corresponds

to the right-handed top quark of the SM. It can be seen that the first term in (4.1.40) is

SU(3)1-invariant but breaks SU(3)2, while for the second term the converse is true. Hence

to generate a contribution to the Higgs mass parameter from the extended top sector, both

λ1 and λ2 need to be turned on. From this it follows that a quadratic divergence cannot be

generated at the one-loop level.

To extract the coupling of the fermions to the Goldstone bosons from (4.1.40), we expand

the Σ field as given in (4.1.19). From this we obtain the following couplings

Lt = λ2f t̃t̃
′c + iλ1

{

−b3
[√

2h+ +
i

f

(√
2h−φ++ + h0∗φ+

)]

u′c3

−t3
[√

2h0 +
i

f

(

h−φ+ +
√

2h0∗φ0
)]

u′c3

+ t̃

[

−if +
i

f

(
h+h− + h0h0∗ + 2φ++φ−− + φ+φ− + 2φ0φ0∗)

]

u′c3

}

+ h.c.,

(4.1.41)

The most important contributions of (4.1.41) are

Lt = λ2f t̃t̃
′c − λ1

f
t̃h0h0∗u′c3 + λ1f t̃u

′c
3 − iλ1

√
2q3h

0u′c3 + h.c.+ ..., (4.1.42)

where the dots indicate terms involving the heavy scalar φ, and q3 = (b3, t3). From the

interactions given in (4.1.42) one can explicitly see how the quadratically divergent top loop

gets canceled at one loop order by the new heavy fermions t3, t̃, u
′c
3 .

The Lagrangian in (4.1.41) contains a fermion mass term of order f . Defining the mixtures

of t̃c and u′c3 as

t̃c =
1

√

λ2
1 + λ2

2

(
λ2t̃

′c + λ1u
′c
3

)
, uc3 =

1
√

λ2
1 + λ2

2

(
−λ1t̃

′c + λ2u
′c
3

)
, (4.1.43)

(4.1.41) can be diagonalized and yields a mass term f
√

λ2
1 + λ2

2t̃t̃
c = mt̃t̃t̃

c for the heavy

fermion.

After electroweak symmetry breaking at the scale v additional mass terms for the fermions

are generated and the Lagrangian, after diagonalization, reads

Lmass = −mttLt
c
R −MTTLT

c
R, (4.1.44)
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where the masses up to order v2/f2 are given by

mt =
λ1λ2

√

λ2
1 + λ2

2

v

{

1 +
v2

f2

[

−1

3
+
fv′

v2
+

1

2

λ2
1

λ2
1 + λ2

2

(

1 − λ2
1

λ2
1 + λ2

2

)]}

,

MT = f
√

λ2
1 + λ2

2

[
1 + O(v2/f2)

]
. (4.1.45)

Moreover, the physical mass eigenstates tL, tcR, TL, T cR, which correspond to the masses in

(4.1.45), are given by the following rotation

tL = cLt3 − sLt̃, tcR = cRu
′c
3 − sRt̃

′c (4.1.46)

TL = sLt3 + cLt̃, T cR = sRu
′c
3 + sRt̃

′c (4.1.47)

with the rotation angles

sL = xL
v

f

[

1 +
v2

f2
d2

]

,

cL = 1 − x2
L

2

v2

f2
,

sR =
√
xL

[

1 − v2

f2
(1 − xL)

(
1

2
− xL

)]

,

cR =
√

1 − xL

[

1 +
v2

f2
xL

(
1

2
− xL

)]

. (4.1.48)

Expressing MT in terms of mt we get the useful relation

MT =
f

v

mt
√

xL(1 − xL)

(

1 +
v2

f2

(
1

3
− xL(1 − xL)

))

, xL =
λ2

1

λ2
1 + λ2

2

. (4.1.49)

Following [5] λ1 and λ2 in (4.1.40) are expected to be O(1) with

λi ≥
mt

v
, or

1

λ2
1

+
1

λ2
2

≈
(
v

mt

)2

. (4.1.50)

Thus, within a good approximation we can express in terms of the mass mt and the mixing

parameter xL

λ1 =
mt

v

1√
1 − xL

, λ2 =
mt

v

1√
xL
, (4.1.51)

where xL can in principle vary in the range 0 < xL < 1. As discussed in [5, 6, 13], the

parameter xL is crucial for the gauge interactions of the heavy T quark. For xL ≈ 0 and

xL ≈ 1, the mass MT becomes very large [13].

In summary we see that the Lagrangian (4.1.42) includes all desired features: the quadratic

divergence due to the top loop is canceled, and the SM Yukawa coupling to the quark doublet

λtq3h
0uc3, with λt =

λ1λ2
√

λ2
1 + λ2

2

(4.1.52)
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is reproduced at low energies by integrating out the heavy quark from the Lagrangian (4.1.42).

The scalar interactions of the up-type quarks of the first two generations can be chosen to

take the same form as in (4.1.40), except that there is no need for the extra vector-like quarks

t̃, t̃′c. The interactions with the down-type quarks and leptons of the three generations are

generated by a similar Lagrangian.

4.1.4 The Effective Higgs Potential and Electroweak Symmetry Breaking

In the LH model, the appearance of a Higgs potential is forbidden at tree level due to the

global symmetries protecting the Lagrangian. However, a potential for the Higgs is generated

by quantum effects at one- and higher-loop level since the Yukawa and gauge interactions

explicitly break all the symmetries of the Lagrangian. Such radiative corrections by vector

boson and fermion loops result in a Coleman-Weinberg potential which can be generically

parameterized as

V = λφ2f2Tr
(

φ†φ
)

+ iλhφhf
(

hφ†hT − h∗φh†
)

− µ2hh† + λh4

(

hh†
)2
, (4.1.53)

where terms involving φ4 and h2φ2 have been neglected due to their small contributions to

the vacuum expectation value of h.

First we are going to compute the quadratically divergent one-loop contributions to the

Coleman-Weinberg potential coming from gauge bosons. This contribution is given by [53]

Λ2

(4π)2
TrM2

V (Σ) , (4.1.54)

where M2
V (Σ) is the gauge boson mass matrix in the presence of a background field Σ and

can be determined from the covariant derivative (4.1.18). A calculation of this contributions

then yields [4]

La =
1

2
af4

{

g2
j

∑

n

Tr
[(
QnjΣ

) (
QnjΣ

)∗]
+ g′2j Tr [(YjΣ) (YjΣ)∗]

}

. (4.1.55)

Here we cut off the quadratically divergent contributions of the gauge bosons at a scale

Λ = 4πf , and a is a O(1) coefficient, whose precise value depends on the unknown UV

physics at Λ. Linearizing the Σ field in terms of the fields h and φ, we can rewrite the

potential as

La =
1

2
a
(
g2
1 + g′21

)
[

f2Tr
(

φ†φ
)

− if

2

(

hφ†hT − h∗φh†
)

+
1

4

(

hh†
)2

+ ...

]

+
1

2
a
(
g2
2 + g′22

)
[

f2Tr
(

φ†φ
)

+
if

2

(

hφ†hT − h∗φh†
)

+
1

4

(

hh†
)2

+ ...

]

.(4.1.56)

The last expression (4.1.56) can also be understood by looking at the SU(3) transformation

properties of h and φ. Following [4] these two fields transform under an SU(3)1 according to

hi → hi + fεi + ... (4.1.57)

φij → φij − i (εihj + εjhi) + ... (4.1.58)
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while under an SU(3)2 they transform as

hi → hi + fηi + ... (4.1.59)

φij → φij + i (ηihj + ηjhi) + ... . (4.1.60)

Then the invariant quantities are given by
∣
∣
∣
∣
φij ±

i

2f
(hihj + hjhi)

∣
∣
∣
∣

2

. (4.1.61)

Upon expansion, this yields exactly the terms in square brackets in (4.1.56).

Similarly we calculate the quadratically divergent contribution to the Coleman-Weinberg

potential arising from fermion loops [4],

La′ = −1

2
a′λ2

1f
4εwxεyzε

ijkεkmnΣiwΣjxΣ
∗myΣ∗nz + h.c. . (4.1.62)

Since the fermion-Higgs interaction preserves the SU(3)1 global symmetry in the upper 3× 3

block of Σ, the contribution of fermions must have the same form as the term proportional

to g2
2 + g′22 in (4.1.56) with a coefficient now given by −1

2a
′λ2

1.

Adding up these two contributions from gauge bosons and fermions we end up with the

overall potential given by
(

1

2
a
(
g2
1 + g′21

)
− 1

2
a′λ2

1

)

f2

∣
∣
∣
∣
φij +

i

2f
(hihj + hjhi)

∣
∣
∣
∣

2

(4.1.63)

+
1

2
a
(
g2
2 + g′22

)
f2

∣
∣
∣
∣
φij −

i

2f
(hihj + hjhi)

∣
∣
∣
∣

2

. (4.1.64)

In order to find the equation of motion for φ, we determine the minimum of the overall

potential, which imposes the following condition on φij

[
a
(
g2
1 + g′21

)
− a′λ2

1

]
(

φij +
i

f
hihj

)

+ a
(
g2
2 + g′22

)
(

φij −
i

f
hihj

)

= 0. (4.1.65)

Thus, at energies below the triplet mass, after having integrated out φ, we are left with a

quartic potential for h

λ
(

hh†
)2
, where λ = a

(
g2
1 + g′21 − a′/aλ2

1

) (
g2
2 + g′22

)

g2
1 + g′21 − a′/aλ2

1 + g2
2 + g′22

. (4.1.66)

We can see from (4.1.66) that turning off the gauge couplings g2 and g′2 restores the SU(3)2

symmetry and indeed sets λ = 0. Similarly, turning off the SU(3)1 breaking terms g1, g
′
1 and

λ1 again yields λ = 0 and a Higgs potential is not generated.

One further remark is in order here. From (4.1.56) and (4.1.62) we can express the

coefficients λh4, λhφh and λφ2 in terms of c, c′, s, s′ g, g′ and λ1. In particular, we find the

relation

λh4 =
1

4
λφ2. (4.1.67)

For further details the reader is referred to [5].
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4.2 Feynman Rules in the Littlest Higgs Model

Charged Gauge Boson–Fermion Interactions

The Feynman rules for vertices involving the charged W±
L and W±

H gauge bosons and quarks

in the notation Cγµ(1 − γ5) [7] are given in Table 4.1. Here xL is given in (4.1.49) while a, b

and d2 are defined by

a =
1

2
c2(c2 − s2), b =

1

2
s2(c2 − s2), d2 = −5

6
+

1

2
x2
L + 2xL(1 − xL). (4.2.68)

For leptons the Feynman rules can be obtained from the entries of the first line with Vij = 1.

The Vij are the usual CKM parameters. The issue of the violation of the CKM unitarity at

O(v2/f2) has already been discussed in detail in [6] and will not be repeated here. Table 4.1

should be compared with Table VIII of [5]. Due to different phase conventions for the t and

T fields, the rules for the vertices W±
L T̄ dj and W±

H T̄ dj differ by a crucial factor i as already

discussed in [6].

Table 4.1: Feynman Rules in LH Model for WL,H : Cγµ(1 − γ5).

Vertex C Vertex C

W+
L ūidj

ig

2
√

2
Vij

(

1 − v2

f2a
)

W+
H ūidj − ig

2
√

2
Vij

c
s

(

1 + b v
2

f2

)

W+
L t̄dj

ig

2
√

2
Vtj

(

1 − v2

f2 (1
2x

2
L + a)

)

W+
H t̄dj − ig

2
√

2
Vtj

c
s

(

1 − v2

f2 (1
2x

2
L − b)

)

W+
L T̄ dj

ig

2
√

2
Vtj xL

v
f

(

1 + v2

f2 (d2 − a)
)

W+
H T̄ dj − ig

2
√

2
Vtj

c
s xL

v
f

Neutral Gauge Boson–Fermion Interactions

The vertices involving quarks and leptons and the neutral gauge bosons Z0
L, Z0

H and A0
H , that

are relevant for the decays considered in the next section, are presented in Table 4.2, where

gV and gA universally parameterize the vertices as follows:

iγµ(gV + gAγ5), (4.2.69)

and

u = (c′2 − s′2), a′ =
1

2
c′2(c′2 − s′2). (4.2.70)

These rules follow from (A55) of [5] that we confirmed except for the signs in xW
′

Z and xB
′

Z in

(4.1.31) as discussed above. In spite of agreeing with (A55) the rules presented in Table 4.2

differ surprisingly at various places from Table IX of [5]. The differences are found in the

couplings ZLūu, ZL t̄t, ZLT̄ t, AH T̄ T and ZH T̄ T . They all are crucial for the cancellation of

the divergences in the calculations discussed below. In order to make the comparison with
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[5] as simple as possible, Table 4.2 has exactly the same form as table IX of [5]. Table 4.2

contains also higher order terms in v/f that were required in the calculation of diagrams in

classes 4 and 5 discussed below and were not present in [5].

As discussed in [5], the gauge invariance of the Yukawa interactions alone cannot un-

ambiguously fix all the U(1) charge values. The two parameters ye and yu that enter the

Feynman rules in Table 4.2 are undetermined. Requiring that the U(1) charge assignments

are anomaly free, they can be fixed to be

ye =
3

5
, yu = −2

5
. (4.2.71)

On the other hand, as emphasized in [5], in an effective field theory valid below a cutoff, it

is unnecessary to be completely anomaly free as the anomalies could be canceled by some

specific extra matter at the cutoff scale. In the rest of this thesis ye and yu are set to the

values given in (4.2.71) in order to avoid additional sensitivity to the physics at the cut-off

scale.

The rules for the triple gauge boson vertices can be found in Table VII of [5] and are not

presented here.

Charged Scalar Interactions

Only the following Feynman rules given in [5] are of relevance in this thesis:

Φ+ūidj : − i√
2

g

4

mi

MWL

(1 − γ5)
v

f
Vij (4.2.72)

Φ+T̄ dj : − i√
2

g

4

mt

MWL

(1 − γ5)
λ1

λ2

v

f
Vtj (4.2.73)

Φ+Φ−ZL : i
g

cw
s2w(p+ − p−)µ (4.2.74)

with p± being the outgoing momenta of Φ±. For the Φ−d̄jui vertex, (1 − γ5) should be

replaced by (1 + γ5) and Vij by V ∗
ij . The case for Φ−d̄jT is analogous.

4.3 Rare Decays in the Littlest Higgs Model

4.3.1 X and Y Functions

To describe the physics of rare decays it is convenient to use the framework of an effective

field theory. In such an effective field theory it is possible to formulate the physics by a certain

set of parameters without any reference to what is going on at arbitrarily small distances.

With the help of the Operator Product Expansion the effective Hamiltonian can generally be

written as

Heff = Hlight +
GF√

2

∑

i

V i
CKMCi (µ)Oi, (4.3.75)
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Table 4.2: Feynman Rules in the LH Model for the gauge bosons ZL, AH and ZH . gV and

gA are defined through (4.2.69).

vertex gV gA

ALf̄f −eQf 0

ZLūu − g
2cw

{

(1
2 − 4

3s
2
w) − v2

f2

[

cwx
W ′

Z c/2s − g
2cw

{

−1
2 − v2

f2

[

−cwxW ′

Z c/2s

+
swxB′

Z

s′c′

(
2yu + 17

15 − 5
6c

′2)
]}

+
swxB′

Z

s′c′

(
1
5 − 1

2c
′2)
]}

ZLd̄d − g
2cw

{

(−1
2 + 2

3s
2
w) − v2

f2

[

−cwxW ′

Z c/2s − g
2cw

{
1
2 − v2

f2

[

cwx
W ′

Z c/2s

+
swxB′

Z

s′c′

(
2yu + 11

15 + 1
6c

′2)
]}

+
swxB′

Z

s′c′

(
−1

5 + 1
2c

′2)
]}

ZLēe − g
2cw

{

(−1
2 + 2s2w) − v2

f2

[

−cwxW
′

Z c/2s − g
2cw

{
1
2 − v2

f2

[

cwx
W ′

Z c/2s

+
swxB′

Z

s′c′

(
2ye − 9

5 + 3
2c

′2)
]}

+
swxB′

Z

s′c′

(
−1

5 + 1
2c

′2)
]}

ZLν̄ν − g
2cw

{
1
2 − v2

f2

[

cwx
W ′

Z c/2s − g
2cw

{

−1
2 − v2

f2

[

−cwxW
′

Z c/2s

+
swxB′

Z

s′c′

(
ye − 4

5 + 1
2c

′2)
]}

+
swxB′

Z

s′c′

(
−ye + 4

5 − 1
2c

′2)
]}

ZLt̄t − g
2cw

{

(1
2 − 4

3s
2
w) − v2

f2

[

x2
L/2 + cwx

W ′

Z c/2s − g
2cw

{

−1
2 − v2

f2

[

−x2
L/2 − cwx

W ′

Z c/2s

+
swxB′

Z

s′c′

(

2yu + 17
15 − 5

6c
′2 − 1

5
λ2
1

λ2
1
+λ2

2

) ]}

+
swxB′

Z

s′c′

(
1
5 − 1

2c
′2 − 1

5
λ2
1

λ2
1
+λ2

2

)]}

ZLT̄ T
g

2cw

{
4
3s

2
w + v2

f2

(

− 1
2x

2
L+ g

2cw
v2

f2

{
1
2x

2
L +

swxB′

Z

s′c′
1
5xL

}

swxB′

Z

s′c′ (2yu + 14
15 − 4

3c
′2 + 1

5xL)
)}

ZLT̄ t
g

2cw

{

− v
f

1
2xL+ v2

f2

swxB′

Z

c′s′

(
1
5xL

λ2

λ1

)

+ g
2cw

{
v
f

1
2xL+ v2

f2

swxB′

Z

c′s′

(
1
5xL

λ2

λ1

)

+

v3

f3

(
1
4x

3
L− 1

2xLd2+xL( c
′

s′
swxB′

Z

2 + c
s
cwxW ′

Z

2 )
)}

v3

f3

(

− 1
4x

3
L+ 1

2xLd2−xL(c
′

s′
swxB′

Z

2 + c
s
cwxW ′

Z

2 )
)}

AH ūu
g′

2s′c′

(
2yu + 17

15 − 5
6c

′2) g′

2s′c′

(
1
5 − 1

2c
′2)

AH d̄d
g′

2s′c′

(
2yu + 11

15 + 1
6c

′2) g′

2s′c′

(
−1

5 + 1
2c

′2)

AH ēe
g′

2s′c′

(
2ye − 9

5 + 3
2c

′2) g′

2s′c′

(
−1

5 + 1
2c

′2)

AH ν̄ν
g′

2s′c′

(
ye − 4

5 + 1
2c

′2) g′

2s′c′

(
−ye + 4

5 − 1
2c

′2)

AH t̄t
g′

2s′c′

(

2yu + 17
15 − 5

6c
′2 − 1

5
λ2
1

λ2
1
+λ2

2

)
g′

2s′c′

(
1
5 − 1

2c
′2 − 1

5
λ2
1

λ2
1
+λ2

2

)

AH T̄ T
g′

2s′c′

(

2yu + 14
15 − 4

3c
′2 + 1

5
λ2
1

λ2
1
+λ2

2

)
g′

2s′c′
1
5

λ2
1

λ2
1
+λ2

2

AH T̄ t
g′

2s′c′

(
1
5xL

λ2

λ1
+ v

f
1
2c

′2xL
)

g′

2s′c′

(
1
5xL

λ2

λ1
− v

f
1
2c

′2xL
)

ZH ūu gc/4s −gc/4s
ZH d̄d −gc/4s gc/4s

ZH ēe −gc/4s gc/4s

ZH ν̄ν gc/4s −gc/4s
ZH t̄t gc/4s −gc/4s
ZH T̄ T O(v2/f2) O(v2/f2)

ZH T̄ t gxLvc/4fs −gxLvc/4fs
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where the Oi are the relevant local operators of the considered decay. In this sense the effective

Hamiltonian Heff in (4.3.75) can be regarded as a sum of effective vertices accompanied by

effective coupling constants Ci (µ). Formally, the effective theory can be derived by integrating

out the heavy particles within the path integral formalism.

In earlier papers [6, 12, 13] the effects of the Littlest Higgs model without T-Parity on

particle-antiparticle mixing and other processes have been analyzed. In this section, however,

we will be concerned with the impact of the LH on the rare decays K+ → π+νν̄, KL → π0νν̄

and Bs,d → µ+µ−, where the effective Hamiltonian is governed by the functions X and Y .

These functions can be determined from Z0 penguins and the corresponding box contributions

to the effective Hamiltonian with νν̄ and µµ̄ in the final state, respectively. Adding these two

contributions yields the final effective Hamiltonian which is then given by

(
Hν̄ν
eff

)

Z+Box
=

g4

64π2

1

M2
W

(
C (v) +Bνν̄ (v)

)

︸ ︷︷ ︸

=X(v)

(s̄d)V−A (ν̄ν)V−A , (4.3.76)

(

Hµµ̄
eff

)

Z+Box
=

g4

64π2

1

M2
W

(
C (v) +Bµµ̄ (v)

)

︸ ︷︷ ︸

=Y (v)

(s̄d)V−A (µ̄µ)V−A . (4.3.77)

From (4.3.77) one can see that the gauge independent functions X (v) and Y (v) are defined

through the linear combinations C (v) +Bνν̄ (v) and C (v) +Bµµ̄ (v), respectively.

In the Littlest Higgs model the functions X and Y are modified through contributions

coming from penguin and box diagrams involving the new heavy fields WH , ZH , AH , T and

Φ±. To determine these contributions it is useful to group the diagrams contributing at

O(v2/f2) into six distinct classes, which are shown in Appendix A.1.

In class 1 we group all the diagrams with modifications of the SM vertices, where the circles

around the vertices indicate the O(v2/f2) corrections without the x2
L terms. Additionally, we

also include the WLWHZL triple vertex and the (WL,AH) penguin diagrams in this class.

The second class contains the contributions of the standard top quark in the (WH ,ZL) and

(WL,ZH) penguin diagrams, the (WL,WH) box diagram and the diagrams with theWLWHZH

and WHWHZL triple vertices of order v2/f2. All diagrams involving the new heavy T quark

and the modifications from the SM top quark proportional to x2
L are displayed in Fig. A.3

and belong to the third class. Further contributions containing the heavy top quark T are

summarized in class 4 and 5. Although being suppressed by a factor v4/f4, these classes of

diagrams have to be considered, since the mass of the heavy T is of order f and therefore

leads to a relevant v2/f2 contribution. For completeness, in Figure A.6 we show class 6, which

contains all the diagrams involving Φ±.

Apart from the diagrams given in Appendix A.1 we may also not forget that in the LH

model the custodial SU(2) symmetry is already broken at the v2/f2 level. Since we have

to express the MZ mass in the Z-penguin in terms of MW , the breakdown of the custodial

symmetry yields additional O(v2/f2) corrections. These corrections arise from diagrams of
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class 1 and ZL penguins with heavy top quark T of class 3 and are given by

∆XCustodial 1 = ∆YCustodial 1 =
v2

f2

5

4
(c′2 − s′2)2C(xt)unitary, (4.3.78)

∆XCustodial 3 = ∆YCustodial 3 =
v4

f4

5

4
(c′2 − s′2)2x2

LC(xT )Class 3, (4.3.79)

with

C(xt)unitary = −xt
16

(

1

ε
+ ln

µ2

M2
WL

)

− x2
t − 7xt

32(1 − xt)
+

4xt − 2x2
t + x3

t

16(1 − xt)2
log xt,

C(xT )class 3 = −xT
16

(

1

ε
+ ln

µ2

M2
WL

)

− 3xT
32

+
(−2 + xT ) log xT

16
.

After the calculation of all diagrams coming from these 6 classes [7] we can see that the

classes 2, 3 and 4 are free of divergences, whereas some divergences contained in class 1 and

5 can only cancel in the sum together with the inclusion of the singularities from (4.3.78) and

(4.3.79) due to the breakdown of the custodial SU(2) symmetry.

However, as already mentioned earlier we are left with some singularities coming from

classes 1, 5 and charged Higgs diagrams of class 6. In summary, we obtain the final divergence

Cdiv =
xt
64

1

1 − xL

v2

f2

(

−S1

5
+ S2

)

, (4.3.80)

where we used the abbreviations S1 resulting from classes 1 and 5 and S2 from charged Higgs

diagrams,

S1 =
1

ε
+ ln

µ2

M2
WL

and S2 =
1

ε
+ ln

µ2

M2
Φ

. (4.3.81)

After these comments on our calculation we can now write down our results for X and

Y in the LH model, that are necessary to describe the phenomenology of rare decays like

KL → π0νν̄, K+ → π+νν̄ and Bs,d → µ+µ−. From our calculation we find the following

functions XLH(xt, z) and YLH(xt, z)

XLH(xt, z) = XSM(xt) + ∆X1 + ∆X2 + ∆X3 + ∆X4 + ∆X5 + ∆X6, (4.3.82)

YLH(xt, z) = YSM(xt) + ∆Y1 + ∆Y2 + ∆Y3 + ∆Y4 + ∆Y5 + ∆Y6, (4.3.83)

where the parameter z in (4.3.82) and (4.3.83) denotes collectively all the parameters in the

LH model. As seen in Appendix A.3 the singularities mentioned in (4.3.80) are included in

the contributions ∆X1, ∆X5, ∆X6 and ∆Y1, ∆Y5, ∆Y6, respectively. In detail, we find for

each contribution ∆Xi and ∆Yi

∆X1 =
v2

f2
U1, ∆X2 = c4

v2

f2
U2 =

c2

s2
1

y
U2, (4.3.84)

∆X3 = x2
L

v2

f2
U3, ∆X4 = x2

Lc
4 v

4

f4
U4 = x2

L

c2

s2
1

y

v2

f2
U4, (4.3.85)

∆X5 = x2
L

v4

f4
U5, ∆X6 =

v2

f2

xt
128

1

1 − xL
(1 − 2xLU6(x̂T )) , (4.3.86)
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and

∆Y1 =
v2

f2
V1, ∆Y2 = c4

v2

f2
V2 =

c2

s2
1

y
V2, (4.3.87)

∆Y3 = x2
L

v2

f2
V3, ∆Y4 = x2

Lc
4 v

4

f4
V4 = x2

L

c2

s2
1

y

v2

f2
V4, (4.3.88)

∆Y5 = x2
L

v4

f4
V5, ∆Y6 = ∆X6, (4.3.89)

where the different functions Ui and V6 can be found in the Appendix A.3. Finally, after

having included the finite parts of the two corrections due to the custodial relation given by

(4.3.78) and (4.3.79) into the X and Y functions of class 1 and 5 the final results (4.3.82) and

(4.3.83) turn out to be independent of s′.

4.3.2 The Issue of Leftover Singularities

It may seem surprising that FCNC amplitudes considered in the previous section contain

residual ultraviolet divergences reflected by the non-cancellation of the 1/ε poles at O(v2/f2)

in the unitary gauge calculation. Indeed due to the GIM mechanism [29] the FCNC processes

considered here vanish at tree level both in the SM and in the LH model in question. Therefore

within the particle content of the low energy representation of the LH model there seems to

be no freedom to cancel the left-over divergences as the necessary tree level counter terms are

absent.

At first sight then one could worry that the remaining divergence is an artifact of the

unitary gauge calculation. However, the fact that the dominant divergence comes from the

gauge independent charged triplet Higgs Φ± contribution gives us a hint that the residual

divergence is not an artifact of the unitary gauge but reflects the true sensitivity to the UV

completion of the LH model and the presence of additional contributions to the NLSM used

as the effective field theory at low energy.

In order to put this hypothesis onto a solid ground we have analyzed the divergent part

of the amplitudes in the Feynman gauge. Then the box diagram contributions are finite

and it is sufficient to concentrate on the penguin (vertex) contributions. In this context let

us recall that in the SM the divergent contributions from penguin diagrams involving only

quarks and gauge bosons are removed by the GIM mechanism as the divergent terms are

mass independent. Some of the vertex diagrams with internal Goldstone bosons are also

divergent and being proportional to m2
i , (i = u, c, t) these divergences cannot be removed by

the GIM mechanism [29]. Within the SM they cancel, however, due to gauge invariance and

renormalizability of the theory.

In the LH model in the Feynman gauge there are no divergences left from the pure gauge

boson diagrams of classes 1 - 5 shown in Figs. A.1 –A.5 in the appendix. Note also that the

divergence from the breakdown of the custodial symmetry is also absent as in the Feynman

gauge the SM function C is finite. Thus the left-over divergences come only from the charged
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triplet Higgs contribution in Fig. A.6 and two charged Goldstone bosons that now have to

be included in the evaluation of the diagrams of classes 1-5. These are a charged vector

Higgs boson which is responsible for the mass of WH and the usual charged doublet Higgs

boson which gives mass to WL. We confirm that the left-over divergence coming from these

Goldstone boson contributions to classes 1-5 exactly reproduces the divergence discovered

in the corresponding unitary gauge calculation. Combined with the charged triplet Higgs

contribution we reproduce, in the Feynman gauge, the full divergence of (4.3.80).

To understand the meaning of these ultraviolet divergences it is important to recall that

the LH model is a NLSM, an effective field theory that describes the low energy behavior

of a symmetric theory below the scale where the symmetry is dynamically broken. In this

region the currents associated with the dynamically broken generators are conserved by a

cancellation between the quark charge form factor current and the Goldstone current. Quark

currents will remain conserved even when the charge form factor is renormalized as long as

the Yukawa coupling of the Goldstone bosons to the fermions has a corresponding renormal-

ization. It is easy to confirm that this is exactly what happens in the NLSM used above to

describe the LH theory and the divergence may be identified as a renormalization of the quark

charges associated with neutral current processes. The subsequent gauging of the Little Higgs

theory only rearranges the infrared structure of the theory but cannot modify the ultraviolet

behavior. The divergence in the charge form factors is not a true ultraviolet divergence but

reflects sensitivity to the UV completion of the theory.

This same mechanism can be observed in the phenomenological description of dynamical

chiral symmetry breaking in QCD using a non-linear realization of the pseudo-scalar mesons as

Goldstone bosons. Here the axial charges are dynamically broken but the axial vector currents

remain conserved due to the Goldstone currents of pions. To apply this theory to the physical

baryons, the axial charge of the baryon is observed to be renormalized, GA ∼ 1.26 6= 1. This

renormalization is consistent with a conserved axial vector current as long as the Goldstone

coupling of the pions to the baryons is modified according to the Goldberger-Treiman relation.

In fact, the naive constituent quark model predicts an even larger value of 5/3 for the axial

charge of the baryon where the axial charge of the quark is taken to be 1. This kind of

divergence was already encountered by Peris [54] in a study of the constituent quark model

for baryons. He calculates the corrections to the axial charge GA of the baryon from the

loop corrections of the chiral quark constituents. His calculation uses a linear sigma model of

pions coupled to constituent quarks to regularize the nonlinear theory. In the broken phase,

the pionic radiative corrections generate a logarithmically enhanced correction to the axial

charge form factor. The scale of the logarithm is set by the mass of the scalar partner of

the pion, i.e. the scale of the dynamical symmetry breaking within the chiral multiplet. In

the nonlinear theory this scale will not be larger than the cutoff scale, 4πf . Using the cutoff

scale, Peris observes a 20% reduction for the in the axial charge of the quark which is about

the right magnitude to explain the observed value of the axial charge of the baryon in the
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constituent quark model. He also remarked that other ultraviolet completions could generate

a modification of the quark axial charge even at leading order, i.e. gA is really a free parameter

in the effective field theory.

The value of the charge form factors of dynamically broken generators will depend on the

ultraviolet completion of the Little Higgs model. The principal question concerns how the

dynamical symmetry breaking is transmitted to the fermions. As a minimum, the symmetry

breaking is reflected through the Yukawa couplings of the Goldstone bosons to the fermions.

In this case the next-to-leading corrections may be estimated from Goldstone loop corrections

to the charge form factors and the scale of the logarithmic divergences should not be larger

than 4πf . However, the light fermions may have a more complex relation to the fundamental

fermions of the ultraviolet completion of the theory and the Little Higgs theory may have

to include modifications of the charge form factors even at leading order, as in the case of

the baryon where GA 6= 1. We conclude that the residual logarithmic divergences found in

Subsection 4.3.1 are a real physical effect, but they also indicate additional sensitivity to the

UV completion of the Little Higgs models usually not included in the phenomenology of these

models.

Assuming the minimal case discussed above, we estimate the contributions of the loga-

rithmically divergent terms to the functions X and Y . Removing 1/ε terms from (4.3.80) and

setting µ = Λ we find

∆Xdiv = ∆Ydiv =
xt
64

1

1 − xL

v2

f2

[

ln
Λ2

M2
Φ

− 1

5
ln

Λ2

M2
WL

]

. (4.3.90)

Setting

Λ = 4πf, mH = 115GeV, v = 246GeV (4.3.91)

and using the values of MWL
and mt in Table 4.3 we find for f/v = 5 and xL = 0.8

∆Xdiv = ∆Ydiv = 0.049, (4.3.92)

which should be compared with XSM ≃ 1.49 and YSM ≃ 0.95. Thus for this choice of

parameters the correction amounts to 3% and 5% for X and Y , respectively. Larger values

are obtained for xL closer to unity but such values are disfavored by the measured value

of ∆Ms. Smaller values are found for larger f . In summary the effect of the logarithmic

divergences turns out to be small. However, we would like to emphasize that this estimate

only takes into account the contributions, where the fermions couple to the Goldstone bosons

only through the mass terms, not the GA-like terms, and the sensitivity to the ultraviolet

completion of the LH model could in principle be larger than estimated here.
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4.4 Numerical Analysis

For a numerical analysis we are mainly interested in the effects of the corrections coming from

LH contributions. For that purpose we will consider the ratios

R+ ≡ Br (K+ → π+νν̄)LH

Br (K+ → π+νν̄)SM

, (4.4.93)

RL ≡
Br
(
KL → π0νν̄

)

LH

Br (KL → π0νν̄)SM

=
Br (B → Xs,dνν̄)LH

Br (B → Xs,dνν̄)SM

=

[
XLH

XSM

]2

, (4.4.94)

Rs,d ≡ Br (Bs,d → µ+µ−)LH

Br (Bs,d → µ+µ−)SM

=

[
YLH

YSM

]2

, (4.4.95)

where all the relevant input parameters are given in Table 4.3.

In order to define the ratios (4.4.94) and (4.4.95) we have to assume that the values of the

CKM parameters in the LH model are the same as in the SM. This is a reasonable assumption

since both models belong to the class of MFV models for which the so-called universal unitarity

triangle exists [55, 56]. Moreover, in principle CKM parameters can be determined from tree

level processes independently of new physics contributions. In the following we will choose

xL ≤ 0.8 since we know from the recent CDF and D∅ measurement of ∆Ms [57, 58] that

values for xL close to unity are already excluded. Moreover, as stated above we will take the

CKM parameters to be the same for the SM and LH model and fixed to the central values

collected in Table 4.3, where mt = mt(mt) in the MS scheme. Then the ratios in (4.4.94) and

(4.4.95) only depend on the one-loop functions X and Y and the dependence on the CKM

parameters is only present in (4.4.93) due to the relevant charm contribution in K+ → π+νν̄

in which the new physics contributions are negligible.

mt = 163.8(32)GeV |Vub| = 0.00423(35)

MW = 80.425(38)GeV |Vcb| = 0.0416(7)[59]

α = 1/127.9 λ = 0.225(1) [60]

sin2 θW = 0.23120(15) γ = 71◦ ± 16◦ [61]

Table 4.3: Values of the experimental and theoretical quantities used as input parameters.

For the three new parameters f , xL and s parameterizing the LH model we will choose

the ranges

f/v = 5 or 10, 0.2 ≤ xL ≤ 0.8, 0.3 ≤ s ≤ 0.95. (4.4.96)

This parameter space is larger than the one allowed by other processes [5, 8] which typically

imply f/v ≥ 10 or even higher. But we want to demonstrate that even for f/v as low as 5

the corrections from LH contributions to X and Y are small.

In Figure 4.2 we show the ratios (4.4.93)-(4.4.95) as functions of s for different values of

xL and f/v = 5. The corresponding plots for f/v = 10 are shown in Fig. 4.3.
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We observe that R+, RL and Rd,s increase with increasing s and xL. For f/v = 5, s = 0.95

and xL = 0.8 they reach 1.23, 1.33 and 1.51, respectively. However for f/v = 10 they are

all below 1.15 and consequently it will be difficult to distinguish the LH predictions for the

branching ratios in question from the SM ones.
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Figure 4.2: Normalized branching ratios RL, Rs,d, R+ for different xL = 0.2, 0.5, 0.8 (from

top to bottom) and f/v = 5.
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Chapter 5

The Littlest Higgs Model with

T-Parity

When introducing the superpotential of the MSSM in the most general form one has to con-

sider several baryon- and lepton-number violating terms, which lead to a number of theoretical

predictions that contradict experimental observations, like the decay of the proton. In order

to explain this discrepancy between theory and experiment a new symmetry, called R-parity,

is introduced. Under this symmetry all SM particles are defined to possess positive parity

while their superpartners acquire a negative sign. A direct consequence of a preserved R-

parity is the fact that the lightest supersymmetric particle (LSP) can not decay and therefore

provides a viable dark matter candidate. To fit observations, such a particle is assumed to

have a mass of 100GeV to 1TeV, to be neutral and to interact typically through weak and

gravitational interactions.

As already discussed in the previous chapter the LH model was proposed to solve the

little hierarchy problem and to protect the Higgs scalar from quadratically divergent mass

at the one-loop level. However, in order to be consistent with the severe constraints coming

from electroweak precision tests [8], the scale f in the LH model should be of the order of

3TeV, which re-introduces an unacceptable fine tuning. This is due to the fact that in the

LH model higher dimensional operators originating either from the expansion of the Σ field

or from integrating out heavy gauge bosons affect these electroweak observables.

To evade these problems Cheng and Low suggested in [9] a new discrete symmetry, called

T -parity. Like R-parity in SUSY, T -parity is a mechanism in Little Higgs models to get rid

of troublesome couplings that are in conflict with experimental observations. To do so one

assumes the SM particles to have positive parities, while troublesome extra fields acquire a

minus sign under the parity transformation. In the next sections we want to illustrate how

T -parity can be incorporated into the Littlest Higgs model.

53
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5.1 Introducing T-parity

In order to implement T-parity into the LH model based on an SU(5)/SO(5) non-linear sigma

model, we recall that the unbroken and broken generators T a and Xa satisfy Σ0TaΣ0 = −T Ta
and Σ0XaΣ0 = XT

a , respectively. These relations lead to the observation that the coset

space SU(5)/SO(5) is a symmetric space, in which the unbroken T a and broken symmetry

generators Xa obey
[

T a, T b
]

∼ T c,
[

T a,Xb
]

∼ Xc,
[

Xa,Xb
]

∼ T c. (5.1.1)

From (5.1.1) we see that the Lie algebra with its schematic commutation relations is invariant

under the transformation

T a → T a, Xa → −Xa. (5.1.2)

This transformation is an automorphism of the Lie algebra and can be used to define T-parity

in a consistent way. Since the broken generators are assigned a minus sign under T-parity,

we can determine T-parity to act on gauge fields and scalars as

W µ
L → W µ

L ,

W µ
H → −W µ

H ,

Π → −ΩΠΩ. (5.1.3)

In the last line of (5.1.3) we had to introduce a matrix Ω = diag (1, 1,−1, 1, 1), which com-

mutes with all the generators and gives the Higgs a positive parity in order to serve as SM

Higgs boson. Furthermore this choice of Ω also keeps the triplet odd, which forbids a danger-

ous vev v′ for the triplet. Thus, by (5.1.3) and the use of Ω, T-parity is defined in a consistent

way.

To impose T-parity on the gauge fields, the coupling constants of the two gauge groups

[SU(2) × U(1)]1 and [SU(2) × U(1)]2 are set to be equal, i.e. g1 = g2 and g′1 = g′2. A direct

consequence of this setting is the fact that the gauge sector given in (4.1.17) is invariant under

the following transformation of gauge fields

W a
1 ↔W a

2 , B1 ↔ B2. (5.1.4)

Using these assignments one can convince oneself that (4.1.17) is invariant under T-parity by

applying (5.1.3).

To implement T-parity in the fermion sector the left-handed SM fermions ψ1, ψ2 have

to be embedded into incomplete representations Ψ1, Ψ2 of the full SU(5) symmetry group.

Moreover, a consistent introduction of T-parity requires a right-handed multiplet ΨR of the

unbroken SO(5). Thus, the field content of the multiplets can be expressed as

Ψ1 =






ψ1

0

0




 , Ψ2 =






0

0

ψ2




 , ΨR =






ψ̃R

χR

ψR




 , (5.1.5)
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with ψR being the right-handed mirror fermion doublet. The remaining singlet χR and doublet

ψ̃R in (5.1.5) receive large masses by the introduction of further fermions [10, 62] and are

assumed to decouple from the theory. The two doublets ψ1 and ψ2 transform linearly under

the [SU(2)]1 and [SU(2)]2 gauge groups, respectively. Due to the transformation properties

of the gauge generators given in (5.1.2) T-parity relates the fields Ψ1 and Ψ2 by introducing

a minus sign. That is, under T-parity both multiplets transform as

Ψ1 ↔ −Σ0Ψ2. (5.1.6)

Thus, following this transformation property of Ψ1 and Ψ2 the remaining right-handed fields

ΨR need to transform under T-parity as

ΨR → −ΨR. (5.1.7)

Having determined how T-parity acts on the different fermion fields Ψ1, Ψ2 and ΨR we are

able to identify the T-even and T-odd eigenstates. The linear combination

ψSM =
1√
2

(ψ1 − ψ2) , (5.1.8)

turns out to be the T-even eigenstate, while the T-odd combination is given by

ψH =
1√
2

(ψ1 + ψ2) . (5.1.9)

The ψSM in (5.1.8) are the SM left-handed doublets, which are even under T-parity, while

the T-odd combinations are left-handed mirror fermion doublets, which will have significant

phenomenological impact, as we will see later.

Finally, we need to modify the top-sector in order to incorporate T-parity into the model.

Typically, this is done by adding two new singlet fields t′1, t
′
2 as well as their right-handed

counterparts, t′1R and t′2R. These fields are supposed to transform under T-parity as

t′1 ↔ −t′2, t′1R ↔ −t′2R. (5.1.10)

Taking into account these transformation properties we can write down the kinetic terms for

the left- and right-handed multiplets, respectively. Following [11] a kinetic term for Ψ1 and

Ψ2 is given by

Lkin ⊃ Ψ̄1iγ
µD1

µΨ1 + Ψ̄2iγ
µD2

µΨ2, (5.1.11)

where the covariant derivatives are given by

D1
µ = ∂µ − i

√
2gQa1W

a
1µ − i

√
2g′Y

(ψ1)
1 B1µ − i

√
2g′Y

(ψ1)
2 B2µ,

D2
µ = ∂µ + i

√
2gQaT2 W a

2µ − i
√

2g′Y
(ψ2)
1 B1µ − i

√
2g′Y

(ψ2)
2 B2µ. (5.1.12)

Finally, the corresponding U(1) charges Y
(ψj)
i are fixed by the requirement of gauge invariance

and T-parity and are given in Table 5.1.
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In terms of mass eigenstates of the gauge bosons and fermions, as denoted in (4.1.22),

(5.1.8) and (5.1.9), the Lagrangian (5.1.11) can schematically be re-written by

Lkin ⊃ ψ̄SM iγ
µDL

µψSM + ψ̄Hiγ
µDH

µ ψH + cψ̄SM iγ
µVHµψH , (5.1.13)

where VHµ denotes the heavy gauge bosons. As one can see, (5.1.13) contains the usual kinetic

terms for the SM doublet fermions with DL
µ being the SM covariant derivative. However, they

also include new interactions between mirror fermions, SM fermions and heavy gauge bosons.

Similarly, a kinetic term for the top partner fields is given by [11]

Lkin ⊃ t̄′1iγ
µD′1

µ t
′
1 + t̄′2iγ

µD′2
µ t

′
2, (5.1.14)

where the primed covariant derivatives contain only U(1) gauge bosons and are given by

D′i
µ = ∂µ − i

√
2g′Y

(t′i)
1 B1µ − i

√
2g′Y

(t′i)
2 B2µ. (5.1.15)

Finally, we note that the covariant derivatives for the right-handed SM fermions are in-

troduced in analogy to (5.1.12) and (5.1.15) with the relevant quantum numbers given in

Table 5.1. For the right-handed mirror fermions the kinetic terms have to be constructed via

the CCWZ formalism [62, 63] and have been worked out in detail in [11].

We want to conclude this section by noting that there is a further possibility to incorporate

T-parity in the model [62]. In contrast to the previous approach the SM fermions could also

be put into a complete multiplet of the unbroken SO(5) and a kinetic term via the CCWZ

formalism [63] could be constructed. This allows to lift the masses of the mirror fermions and

the spectrum would be identical to that of the LH model. Unfortunately, this is not possible,

since the Yukawa-type interactions, responsible for the masses of the mirror fermions contain

vertices with one SM fermion, one mirror fermion and a Goldstone boson. Such couplings

yield finite contributions to the four fermion operator cf
(
ψ̄SM σ̄µψSM

) (
ψ̄SM σ̄

µψSM
)

with

the coefficient cf being cf ∼ 1/f2. However, experiments require this coefficient to be cf ≤
1/ (5 − 15TeV)2 [64] and thus, the fine-tuning problem, which we wanted to solve, is re-

introduced.

5.2 The Littlest Higgs Model with T-Parity

5.2.1 Gauge and Scalar Sector

In this and the next subsection we want to use the ideas of Section 5.1 to write down an

explicit model, from which we can derive the Feynman rules relevant for a phenomenological

analysis.

As in the LH the starting point of our considerations is the scalar kinetic term, whereas the

two different coupling constants have been set equal, i.e. g1 = g2 ≡
√

2g and g′1 = g′2 ≡
√

2g′.
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Thus the gauge sector of the LHT contains much less parameters than the one of the LH

model and the scalar kinetic term is now given by

Lkin =
f2

8
Tr (DµΣ) (DµΣ)† , (5.2.16)

where the covariant derivative is defined by

DµΣ = ∂µΣ − i
√

2

2∑

j=1

[
gW a

jµ

(
QajΣ + ΣQaTj

)
+ g′Bjµ (YjΣ + ΣYj)

]
. (5.2.17)

Due to the symmetry breaking at the scale f , (5.2.17) leads to linear combinations of

gauge bosons which remain massless

W a
L =

W a
1 +W a

2√
2

, BL =
B1 +B2√

2
, (5.2.18)

while the second orthogonal linear combinations

W a
H =

W a
1 −W a

2√
2

, BH =
B1 −B2√

2
(5.2.19)

get a mass of the order of the breaking scale f . The indices “L” and “H” in (5.2.18) and

(5.2.19) denote the light bosons (T-even), which serve as SM gauge bosons, and new heavy

gauge bosons (T-odd), respectively. In the process of EWSB, SU(2)L × U(1)Y is broken

down to U(1)Q via the usual Higgs mechanism, generating the known mixing of the light

gauge bosons. Additionally, in the neutral heavy gauge boson sector linear combinations

of W 3
H and BH will produce the new mass eigenstates ZH and AH . After the spontaneous

breakdown at the scale v the mass eigenstates read

W±
L =

W 1
L ∓ iW 2

L√
2

, W±
H =

W 1
H ∓ iW 2

H√
2

,

ZL = cos θWW
3
L − sin θWBL, ZH = W 3

H + xH
v2

f2
BH ,

AL = sin θWW
3
L + cos θWBL, AH = −xH

v2

f2
W 3
H +BH , (5.2.20)

with θW being the usual weak mixing angle and

xH =
5gg′

4 (5g2 − g′2)
. (5.2.21)

The masses of the physical eigenstates (5.2.20) are given by

MWH
= fg

(

1 − v2

8f2

)

, MZH
= MWH

, MAH
=
fg′√

5

(

1 − 5v2

8f2

)

, (5.2.22)

and

MWL
=
gv

2

(

1 − v2

12f2

)

, MZL
=

gv

2 cos θW

(

1 − v2

12f2

)

, MAL
= 0, (5.2.23)

where the light gauge bosons only get contributions from the second symmetry breakdown at

the scale v. Also, from (5.2.23) one can see that the custodial SU(2) symmetry is preserved,

since the mass relation MWL
= MZL

cos θW holds at tree level.
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5.2.2 The Fermion Sector

Apart from the scalar and gauge sector we also have to incorporate T-parity in the fermion

sector. To construct a T-invariant Yukawa interaction for the top quark one can start with

(4.1.40) and T-symmetrize it. As shown in [11] such an interaction is given by

Ltop = − 1

2
√

2
λ1fǫijkǫxy

[(
Q̄1

)

i
ΣjxΣky −

(
Q̄2Σ0

)

i
Σ̃jxΣ̃ky

]

u3
R

−λ2f
(
t̄′1t

′
1R + t̄′2t

′
2R

)
+ h.c., (5.2.24)

where Σ̃, the image of Σ under T-parity, is

Σ̃ ≡ T [Σ] = Σ0ΩΣ†ΩΣ0. (5.2.25)

As in the LH model the third generation Yukawa sector has to be modified in order to prevent

the Higgs mass from dangerous one loop quadratic divergences. For this reason the multiplets

Q1 and Q2 have to be completed to representations of the SU(3)1 and SU(3)2 subgroups of

the full SU(5). With the fermions ψ1 and ψ2

ψi = −iσ2

(

ti

bi

)

(5.2.26)

the incomplete multiplets Q1 and Q2 in (5.2.24) are given by

Q1 =






ψ1

t′1
0




 , Q2 =






0

t′2
ψ2




 . (5.2.27)

Furthermore, with the right-handed singlet quark field u3
R being neutral under T-parity,

u3
R → u3

R, (5.2.28)

and using the transformation properties Q1, Q2 and t′1R, t′2R, respectively,

Q1 ↔ −Σ0Q2, t′1R ↔ −t′2R, (5.2.29)

one can see that (5.2.24) is invariant under T-parity.

To express the Lagrangian (5.2.24) in terms of mass eigenstates we introduce the following

T-even eigenstates of the top partners

t′± =
t′1 ∓ t′2√

2
, t′±R =

t′1R ∓ t′2R√
2

, (5.2.30)

which mix with the first component of the SM quark doublet and finally lead to the T-even

mass eigenstates

tL = cLu
3
L − sLt

′
+, (T+)L = sLu

3
L + cLt

′
+,

tR = cRu
3
R − sRt

′
+R, (T+)R = sRu

3
R + cRt

′
+R. (5.2.31)
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In (5.2.31) u3
L is the first component of the left-handed SM quark doublet while the sines and

cosines of the mixing angles are found to be

sL = xL
v

f

[

1 +
v2

f2
d2

]

,

cL = 1 − x2
L

2

v2

f2
,

sR =
√
xL

[

1 − v2

f2
(1 − xL)

(
1

2
− xL

)]

,

cR =
√

1 − xL

[

1 +
v2

f2
xL

(
1

2
− xL

)]

, (5.2.32)

with xL and d2 given in (4.1.49) and (4.2.68).

In contrast to the T-even eigenstates the T-odd combination does not mix with the mirror

fermions and can simply be identified with

(T−)L ≡ t′−, (T−)R ≡ t′−R. (5.2.33)

As one can see from (5.2.31), the physical top quark is a linear combination of the third

generation SM up-type quark and the new LHT field t′. This mixing can be described by the

mixing angles in (5.2.32) and will obviously affect SM Feynman rules for the top quark at

order v2/f2. Using the field definitions in (5.2.31) we can re-express (5.2.24) in terms of the

physical mass eigenstates, where the corresponding masses are given by

mt =
λ1λ2v

√

λ2
1 + λ2

2

[

1 +
v2

f2

(

−1

3
+

1

2
xL (1 − xL)

)]

,

mT+
=

f

v

mt
√

xL (1 − xL)

[

1 +
v2

f2

(
1

3
− xL (1 − xL)

)]

,

mT− =
f

v

mt√
xL

[

1 − v2

f2

(
1

3
− 1

2
xL (1 − xL)

)]

. (5.2.34)

For the other quark flavors, however, it will not be necessary to modify the Yukawa Lagrangian

as in the top sector since their Yukawa coupling is at least one order of magnitude smaller

than the Yukawa coupling of the top quark and thus their contributions to the quadratic

divergences turn out to be negligible. Therefore we do not need to introduce additional

singlets for the remaining up-type quarks and the Yukawa coupling is accordingly given by

Lup = − 1

2
√

2
λufǫijkǫxy

[(
Q̄1

)

i
ΣjxΣky −

(
Q̄2Σ0

)

i
Σ̃jxΣ̃ky

]

uR + h.c.. (5.2.35)

In contrast to (5.2.27) the incomplete multipletsQ1, Q2 now consist only of the SU(2) doublets

ψ1 and ψ2. Concerning the down-type Yukawa Lagrangian, in principle, one has to proceed

as in the case of the up-type sector via T-symmetrization. However, here an additional factor
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X ≡ (Σ33)
−1/4 has to be included in order to conserve hypercharge. A gauge invariant

down-type Yukawa term is therefore given by

Ldown =
i

2
√

2
λdfǫijǫxyz

[(
Ψ̄2

)

x
ΣiyΣjzX −

(
Ψ̄1Σ0

)

x
Σ̃iyΣ̃jzX̃

]

dR + h.c., (5.2.36)

where this time the sum over i, j = 1, 2 and x, y, z = 3, 4, 5 and the incomplete multiplets Ψ1,

Ψ2 contain the SU(2) doublet fields q1, q2 without an additional factor σ2,

Ψ1 =






q1

0

0




 , Ψ2 =






0

0

q2




 . (5.2.37)

From (5.2.35) and (5.2.36) we obtain, after diagonalization, the physical masses of the up-

and down-type quarks which are given by

mi
u = λiuv

(

1 − v2

3f2

)

, i = 1, 2 (5.2.38)

mj
d = λjdv

(

1 − v2

12f2

)

, j = 1, 2, 3. (5.2.39)

So far we have only discussed the mass generation for SM-like fermions. However, since

the mirror fermions have not been observed experimentally we have to give them a mass of

order O (f). This can be achieved by giving them a mass via the following Yukawa interaction

Lmirror = −κijf
(

Ψ̄i
2ξ + Ψ̄i

1Σ0Ωξ
†Ω
)

Ψj
R + h.c., (5.2.40)

where the summation over i, j = 1, 2, 3 is implicit. The set of mirror fermions ΨR is embedded

in a complete multiplet of SO(5), whose transformation is non-linear under SU(5). Thus, in

(5.2.40), ξ = eiΠ/f is needed to give the ΨR multiplet interactions with other fields, which

obey linear transformation rules, and to make Lmirror SU(5) invariant. The masses acquired

by both the mirror quarks and leptons are given by [16]

mu
Hi =

√
2κif

(

1 − v2

8f2

)

≡ mHi

(

1 − v2

8f2

)

, (5.2.41)

md
Hi =

√
2κif = mHi, (5.2.42)

where the κi denote the eigenvalues of the mass matrix κ.

Imposing gauge invariance on the Yukawa sector of the LHT model the U(1) charges of

the fermions can be defined up to one free parameter. However, this parameter can be fixed

by requiring the Lagrangian to be invariant under T-parity, which finally yields the U(1)

quantum numbers shown in Table 5.1.
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q1 (1/30, 2/15) q2 (2/15, 1/30)

t′1 (8/15, 2/15) t′2 (2/15, 8/15)

t′1R (8/15, 2/15) t′2R (2/15, 8/15)

uR (1/3, 1/3) dR (−1/6,−1/6)

ℓ1 (−1/5,−3/10) ℓ2 (−3/10,−1/5)

eR (−1/2,−1/2)

Table 5.1: U(1)1 × U(1)2 quantum numbers of the fermion fields.

Derivation of Feynman Rules

Having presented how T-parity can be embedded into the LH model we discussed the kinetic

and interactions terms as well as the particle content of the LHT model. However, in order to

make predictions for physical observables, we have to derive all the relevant Feynman rules.

Although other papers [10, 11, 16] concerned with calculations in the LHT model already state

some Feynman rules a complete list was first published in [17]. In Appendix A.2 we present

the Feynman rules for the interaction of fermions, gauge and Goldstone bosons since they

have not been derived by other authors so far. For our calculation they are essential, since

we want to confirm the X, Y and Z functions, obtained from a unitary gauge calculation, in

’t Hooft-Feynman gauge.

5.2.3 Flavor Mixing in the Mirror Sector

As discussed in detail in [16], one of the most important ingredients of the mirror sector is

the existence of four CKM-like unitary matrices, two for mirror quarks and two for mirror

leptons:

VHu, VHd, VHν , VHℓ. (5.2.43)

In order to see how they arise, we briefly recall the Dirac-type mass term, which was presented

in (5.2.40). In analogy to the CKM mechanism in subsection 2.1.4, the 3× 3 matrix κ can be

biunitarily diagonalized by the two unitary matrices VH and UH

κ = VHκDU
†
H . (5.2.44)

To understand how charged currents are affected by this rotation we schematically recall

the gauge interaction part of the kinetic terms in the T-parity eigenbasis that is given by

gQ̄−A/−Q+ + gQ̄+A/−Q−, (5.2.45)

where A− and Q− are the heavy T-odd gauge bosons and fermions and Q+ are the T-even

eigenstates. Rotating the T-even and T-odd flavor eigenstates into mass eigenstates identified

with the index H and L, we then obtain for the quark sector

gQ̄HV
†
HA/H

(

VuuL

VddL

)

+ g

(

ūLV
†
u

d̄LV
†
d

)

A/HVHQH , (5.2.46)
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and similarly for the lepton sector

gL̄HV
(ℓ)†
H A/H

(

VννL

VℓℓL

)

+ g

(

ν̄LV
†
ν

ℓ̄LV
†
ℓ

)

A/HV
(ℓ)
H LH . (5.2.47)

In (5.2.46) and (5.2.47) QH and LH denote doublets of heavy quarks and leptons, respectively.

Similarly to the CKM mechanism the rotation matrices relevant for flavor physics are given

by

V †
HVu ≡ VHu, V †

HVd ≡ VHd, (5.2.48)

and

V
(ℓ)†
H Vν ≡ VHν , V

(ℓ)†
H Vℓ ≡ VHℓ. (5.2.49)

Moreover, it can easily be seen that the matrices in (5.2.48) and (5.2.49) are related to the

CKM and PMNS matrices by

V †
HuVHd = VCKM and V †

HνVHℓ = V †
PMNS. (5.2.50)

The mixing matrices in (5.2.48) and (5.2.49) parameterize the flavor violating interactions

between SM fermions and mirror fermions mediated by the heavy gauge bosons W±
H , ZH and

AH .

In contrast to the CKM or PMNS matrix, the matrices VHd and VHℓ are parameterized

by three angles and three phases [65]. This is due to the fact that in the LHT model there are

new interactions, mediated by the heavy gauge bosons W±
H , ZH and AH . The mixing matrix

VHd is involved in the interactions of ordinary SM down quarks and either an up mirror quark

(W±
H mediated), or a down mirror quark (ZH or AH mediated). As discussed in [16], these

interactions can generally be described by a 3× 3 unitary matrix containing 3 mixing angles

and 6 complex phases. In order to determine the number of physically parameters in this

matrix some of these phases can be eliminated by rotating the interaction states. However,

in contrast to the CKM matrix only 3 phases can be rotated away, since the phases of the

SM fields have already been fixed in order to remove the unphysical parameters in the CKM

matrix. Thus, it turns out that VHd can be parameterized in terms of 3 mixing angles and 3

phases. After having discussed the basic structure of VHd it is straightforward to determine

VHu with the help of (5.2.50).

Here we will present the parameterization of VHd, whose analogon in the lepton sector is

the matrix VHℓ. Following [65], we parameterize VHd in terms of three mixing angles θdij and

three complex phases δdij as a product of three rotations, and introducing a complex phase in

each of them, thus obtaining

VHd =






1 0 0

0 cd23 sd23e
−iδd

23

0 −sd23eiδ
d
23 cd23











cd13 0 sd13e
−iδd

13

0 1 0

−sd13eiδ
d
13 0 cd13











cd12 sd12e
−iδd

12 0

−sd12eiδ
d
12 cd12 0

0 0 1




 .

(5.2.51)
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Performing the product one obtains the expression

VHd =






cd12c
d
13 sd12c

d
13e

−iδd
12 sd13e

−iδd
13

−sd12cd23eiδ
d
12 − cd12s

d
23s

d
13e

i(δd
13−δd

23) cd12c
d
23 − sd12s

d
23s

d
13e

i(δd
13−δd

12−δd
23) sd23c

d
13e

−iδd
23

sd12s
d
23e

i(δd
12

+δd
23

) − cd12c
d
23s

d
13e

iδd
13 −cd12sd23eiδ

d
23 − sd12c

d
23s

d
13e

i(δd
13
−δd

12
) cd23c

d
13




 .

(5.2.52)

As in the case of the CKM matrix, the angles θdij can all be made to lie in the first quadrant

with 0 ≤ δd12, δ
δ
23, δ

d
13 < 2π. The matrix VHu is then determined through VHu = VHdV

†
CKM.

In the course of our analysis of FCNC rare decays and LFV decays it will be useful to

introduce the following quantities (i = 1, 2, 3):

ξ
(K)
i = V ∗is

Hd V
id
Hd , ξ

(d)
i = V ∗ib

HdV
id
Hd , ξ

(s)
i = V ∗ib

HdV
is
Hd , (5.2.53)

that we will need for the analysis of rare K and Bd,s decays

χ
(µe)
i = V ∗ie

Hℓ V
iµ
Hℓ , χ

(τe)
i = V ∗ie

Hℓ V
iτ
Hℓ , χ

(τµ)
i = V ∗iµ

Hℓ V
iτ
Hℓ , (5.2.54)

that govern µ→ e, τ → e and τ → µ transitions, respectively.

5.2.4 The Parameters of the LHT Model

The new parameters of the LHT model, relevant for the present study, are

f , mq
H1 , mq

H2 , mq
H3 , θq12 , θq13 , θq23 , δq12 δq13 δq23 , (5.2.55)

which can be probed by FCNC processes in K and B meson systems, as discussed in detail

in [15, 17] and the ones in the mirror lepton sector

mℓ
H1 , mℓ

H2 , mℓ
H3 , θℓ12 , θℓ13 , θℓ23 , δℓ12 δℓ13 δℓ23 , (5.2.56)

which can be probed with the help of LFV decays, as discussed in detail in [66].

The determination of the parameters in (5.2.55) and (5.2.56) with the help of K and B

meson systems and LFV processes is clearly a formidable task. However, if the new particles

present in the LHT model are discovered once LHC starts its operation, the parameter f will

be determined from MWH
, MZH

or MAH
. Similarly the mirror quark and lepton masses mq

H1

and mℓ
Hi will be measured.

The only remaining free parameters among the ones listed in (5.2.55) and (5.2.56) will

then be θq,ℓij and δq,ℓij , which can be determined once many FCNC and LFV processes have

been measured.
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Chapter 6

Phenomenology of Rare Decays in

the LHT Model

Rare decays play a crucial role for the discovery potential of B experiments such as the LHCb

or a Super B Factory. As they involve loop-suppressed flavor-changing neutral currents, they

are highly-sensitive probes for new degrees of freedom beyond the Standard Model.

In this chapter we want to present the calculation of several important rare decays in the

LHT that are likely to be of crucial interest when K and B experiments are operating. This

chapter is organized as follows. In the first section we want to introduce some theoretical

ingredients which are relevant for describing the phenomenology of rare decays. In the subse-

quent section several rare decays are calculated within the LHT so that we can finally present

a numerical analysis of these decays in the LHT.

6.1 Rare K and B Decays beyond MFV

6.1.1 Preliminaries

Before presenting the details of the calculations of rare K and B decays in the LHT model in

question, it will be useful to have a general look at rare decays within models with new flavor

and CP-violating interactions but with the same local operators of the SM or more generally

of constrained MFV (CMFV) models, as defined in [56, 67].

It should be emphasized that while the formulae given below bear many similarities to the

ones given in [68], they differ from the latter ones in the following important manner. In [68] a

simple beyond-MFV scenario of new physics has been considered in which new physics affected

only the Z0-penguin function C that became a complex quantity, but remained universal for

K, Bd and Bs decays. In this manner several CMFV relations involving only CP-conserving

quantities remained valid and the main new effects were seen in CP-violating quantities like

Br(KL → π0νν̄) and the CP-asymmetries in B → Xsℓ
+ℓ−. In particular, the full system

65



66 Chapter 6: Phenomenology of Rare Decays in the LHT Model

of rare K, Bd and Bs decays considered in this section could be described by three complex

functions

X = |X| ei θX , Y = |Y | ei θY , Z = |Z| ei θZ , (6.1.1)

with correlations between these functions resulting from the universality of the Z0-penguin

function C = |C| exp (iθC). As a result the CMFV correlations between observables in K,

Bd and Bs were only affected in the cases in which θi played a role. In the LHT model the

structure of new flavor violating interactions is much richer. Let us spell it out in explicit

terms.

6.1.2 Xi, Yi, Zi functions

In the CMFV models the new physics contributions enter for all practical purposes only

through the functions X, Y and Z that multiply the CKM factors λ
(i)
t

λ
(K)
t = V ∗

ts Vtd , λ
(d)
t = V ∗

tb Vtd , λ
(s)
t = V ∗

tb Vts , (6.1.2)

for K, Bd and Bs systems respectively. As in the LH model the CKM elements we will use

are those determined from tree level decays.

It will be useful to keep this structure in the LHT model and absorb all new physics

contributions in the functions Xi, Yi, Zi with i = K,d, s defined as follows:

Xi = XSM + X̄even +
1

λ
(i)
t

X̄odd
i ≡ |Xi| ei θ

i
X , (6.1.3)

Yi = YSM + Ȳeven +
1

λ
(i)
t

Ȳ odd
i ≡ |Yi| ei θ

i
Y , (6.1.4)

Zi = ZSM + Z̄even +
1

λ
(i)
t

Z̄odd
i ≡ |Zi| ei θ

i
Z . (6.1.5)

Here XSM, YSM and ZSM are the SM contributions for which explicit expressions can be found

in Appendix A.4. X̄even, Ȳeven and Z̄even are the contributions from the T-even sector, that

is the contributions of T+ and of t at order v2/f2 necessary to make the GIM mechanism

[29] work. The latter contributions, similar to XSM, YSM and ZSM, are real and independent

of i = K,d, s. They can be extracted from [7] and will be given in Section 6.2. Finally, the

remaining functions X̄odd
i , Ȳ odd

i and Z̄odd
i , that represent the T-odd sector of the LHT model

can be obtained from penguin and box diagrams with internal mirror fermions. The details

of this calculation can be found in Section 6.2. In what follows we will present the most

interesting branching ratios in terms of Xi and Yi.

6.2 Calculating Rare and CP-violating Decays

In order to calculate the functions Xi, Yi and Zi in (6.1.3), (6.1.4) and (6.1.5) we have to

determine the contributions X̄even, Ȳeven and Z̄even coming from the T-even sector and X̄odd
i ,
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Ȳ odd
i , Z̄odd

i resulting from the T-odd sector. Among these functions, the contribution X̄even

and Ȳeven in (6.1.3) and (6.1.4), respectively, can be easily extracted from [7] by using the

functions X and Y calculated in Chapter 4. However, in the LHT model T-parity enforces

the gauge couplings of the two SU(2)i ⊗U(1)i, i = 1, 2 factors to be equal, which implies for

the mixing angles

s = c = s′ = c′ =
1√
2
. (6.2.6)

Due to T-parity one can also see from the diagrams in Appendix A.1 that all contributions

from the classes 1, 2, 4 and 6 vanish. Additionally, there are also no corrections from the

breakdown of custodial symmetry and the left-over divergence, discussed in detail in Subsec-

tion 4.3.2.

The remaining contributions therefore arise from the classes 3 and 5 and can be summa-

rized as

X̄even = x2
L

v2

f2

[

U3(xt, xT ) +
xL

1 − xL

xt
8

]

, (6.2.7)

Ȳeven = x2
L

v2

f2

[

V3(xt, xT ) +
xL

1 − xL

xt
8

]

, (6.2.8)

with U3(xt, xT ) and V3(xt, xT ) given in Appendix A.3.

The contributions X̄odd
i and Ȳ odd

i resulting from fermions in the mirror sector cannot be

extracted from previous results and have to be calculated from the diagrams shown in Figures

6.1 and 6.2. Analogously, in the case of Ȳ odd
i , diagrams with external charged leptons have

to be considered. For the calculation of X̄odd
i and Ȳ odd

i we first use the unitary gauge to find

the results (6.2.9) and (6.2.10). Subsequently, we confirm it by using the ’t Hooft-Feynman

gauge, where in this renormalizable gauge also diagrams with Goldstone bosons have to be

included.

6.2.1 Calculation in Unitary and ’t Hooft-Feynman Gauge

In the decays considered here only the penguin diagrams involving ZL contribute, since there

are no couplings of ZH and AH to νν̄ and µ+µ− due to T-parity. Moreover, the diagrams

with triple gauge boson vertices vanish in the case of internal AH and ZH contributions.

Compared to the SM the diagrams in Figure 6.1 are not suppressed by v2/f2 and yield

a contribution O(1). These O(1) contributions have to vanish as otherwise it would not be

possible to decouple the mirror fermions in the limit f → ∞. Indeed, this cancellation of

O(1) contributions is assured by the vectorial coupling of ZL to the mirror fermions.

A consequence of this vectorial coupling is the fact that the charged (W±
H ) and neutral

(ZH , AH) gauge boson contributions of O(1) to the ZL-penguin vanish independently in the

unitary gauge, since the difference in the couplings d̄iHZ
µ
Ld

i
H and ūiHZ

µ
Lu

i
H compensates the

missing diagrams with triple gauge boson vertices in the neutral gauge boson case. Deter-

mining the remaining v2/f2 corrections to the neutral gauge boson interactions we find that
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ZL

ui
Hui

H

WH

νν

s d

ZL

di
Hdi

H

ZH , AH

νν

s d

ZL

WHWH

ui
H

νν

s d

ZL

WH

ui
H

νν

s
d

ZL

ZH , AH

di
H

νν

s
d

Figure 6.1: ZL-penguin diagrams contributing in the T-odd sector.

WH WH

s d

ν ν

ui
H

ℓ
j
H

ZH , AH ZH , AH

s d

ν ν

di
H

ν
j
H

ZH , AH ZH , AH

s d

ν ν

di
H

ν
j
H

Figure 6.2: Box diagrams in the unitary gauge.

this only yields an overall factor which multiplies the vanishing ZH and AH contributions.

Therefore the contributions from mirror fermions to the ZL penguin vanish in the unitary

gauge.

To determine the contributions coming from the box diagrams in Figure 6.2 we assume

the mirror leptons to be degenerate in mass. Having checked numerically that this is a good

approximation this assumption will simplify our results.

For the box diagrams in Figure 6.2 we find, similarly to ∆F = 2 transitions considered

in [15, 16], that the relevant part of the gauge boson propagator is the gµν part, where the

contributions from the second part proportional to kµkν/M2
WH

cancel each other between the

last two box diagrams in Figure 6.2. Therefore we conclude that the neutral gauge boson box

contributions to X̄odd
i and Ȳ odd

i are gauge independent, which means that the neutral gauge

boson contributions to ZL-penguins must vanish in an arbitrary gauge. As discussed below

we confirm this through an explicit calculation in the Feynman gauge. The result for the box
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ZL

ω+ω−

ui
H

νν

s d

ZL

WHω−

ui
H

νν

s d

Figure 6.3: O
(
v2/f2

)
contributions to ZL-penguin in the ’t Hooft-Feynman gauge.

contributions involving W±
H however is divergent in the unitary gauge. This is contrary to the

box contributions in a renormalizable gauge, where box diagrams are finite by power counting.

Consequently the box diagram contributions involving W±
H must be gauge dependent.

In order to confirm our result (6.2.9) and (6.2.10) in the ’t Hooft-Feynman gauge we

also have to take into account diagrams with Goldstone bosons, which are absent in unitary

gauge. For the ZL-penguin diagrams the O (1) contributions vanish as expected and we have

to consider O
(
v2/f2

)
corrections. As in the unitary gauge, there are no contributions from

diagrams involving only gauge bosons. However, diagrams with Goldstone bosons contribute

at O
(
v2/f2

)
. It shows that the O

(
v2/f2

)
corrections to vertices involving SM quarks, mirror

quarks and Goldstone boson vertices cancel in the calculation. This implies that the neutral

gauge boson contributions to the ZL-penguin, not having triple gauge boson vertices and

corresponding vertices with Goldstone bosons, vanish also in the ’t Hooft-Feynman gauge as

expected. Thus in the ’t Hooft-Feynman gauge only two diagrams at O
(
v2/f2

)
in Figure

6.3 contribute to the ZL-penguin vertex. Calculating these diagrams and including finite

contributions of the penguin and box diagram leaves us with the final results for X̄odd
i and

Ȳ odd
i , confirming those in the unitary gauge.

6.2.2 Final Results for the T-odd sector

Due to our calculation of X̄odd
i and Ȳ odd

i in the unitary gauge and in the ’t Hooft-Feynman

gauge we conclude, similarly to the LH model without T-parity [7], that the left-over diver-

gence obtained in the unitary gauge is not an artifact of a non-renormalizable gauge but a

physical gauge independent result. Thus the final results for X̄odd
i and Ȳ odd

i in the LHT

model can be summarized as

X̄odd
i =

[

ξ
(i)
2

(
Jνν̄(z2, y) − Jνν̄(z1, y)

)
+ ξ

(i)
3

(
Jνν̄(z3, y) − Jνν̄(z1, y)

)]

, (6.2.9)

Ȳ odd
i =

[

ξ
(i)
2

(
Jµµ̄(z2, y) − Jµµ̄(z1, y)

)
+ ξ

(i)
3

(
Jµµ̄(z3, y) − Jµµ̄(z1, y)

)]

, (6.2.10)
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where

Jνν̄ (zi, y) =
1

64

v2

f2

[

ziSodd + F νν̄(zi, y;WH)

+4
(

G(zi, y;ZH) +G1(z
′
i, y

′;AH) +G2(zi, y; η)
)]

, (6.2.11)

Jµµ̄ (zi, y) =
1

64

v2

f2

[

ziSodd + Fµµ̄(zi, y;WH)

−4
(

G(zi, y;ZH) +G1(z
′
i, y

′;AH) −G2(zi, y; η)
)]

, (6.2.12)

Sodd =
1

ε
+ log

µ2

M2
WH

. (6.2.13)

The functions F νν̄ , Fµµ̄, G, G1 and G2 are given in Appendix A.4 and the various variables

are defined as follows

zi =
m2
Hi

M2
WH

=
m2
Hi

M2
ZH

, z′i = azi with a =
5

tan2 θW
, (6.2.14)

y =
m2
Hℓ

M2
WH

=
m2
Hℓ

M2
ZH

, y′ = ya , η =
1

a
. (6.2.15)

In the unitary gauge the results in (6.2.9)-(6.2.12) follow from box diagrams only, since the

ZL-penguin diagrams do not contribute in this gauge, as discussed in Section 6.2.1. In the ’t

Hooft-Feynman gauge the contribution of the ZL-penguin diagram is found to be

∆Jνν̄ = ∆Jµµ̄ ≡ 1

64

v2

f2

(

ziSodd − 8ziR2(zi) +
3

2
zi + 2ziF2(zi)

)

, (6.2.16)

where the functions R2 and F2 are given in Appendix A.4.

In order to estimate the size of Sodd we will, as in Subsection 4.3.2, remove 1/ε terms

from (6.2.13) and set µ = Λ to obtain

Jνν̄div = Jµµ̄div = zi
1

64

v2

f2
log

Λ2

M2
WH

, (6.2.17)

as a minimal estimate of the UV sensitivity of the model. Setting

Λ = 4πf , v = 246GeV , (6.2.18)

we find that for f = 1000GeV, implying MWH
= 652GeV,

Jνν̄div = Jµµ̄div = zi · 0.006 . (6.2.19)

Performing a more thorough analysis as done in [17], we observe that the divergences

constitute a sizable fraction of the total result. The coefficient of zi in the divergent terms

Jνν̄div and Jµµ̄div is of the same order of magnitude as the analogous linear coefficient in the
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convergent contributions, but roughly four times larger. At first sight this could imply the

loss of predictive power of the theory as our estimate of the divergent contribution is clearly

an approximation. On the other hand the divergence found has a universal character and we

can simply write

Jνν̄div = Jµµ̄div = δdiv zi (6.2.20)

and treat δdiv as a free parameter. Assuming that δdiv encloses all effects coming from the

UV completion, which is true if light fermions do not have a more complex relation to the

fundamental fermions of the UV completion that could spoil its flavor independence, one can

in principle fit δdiv to the data and trade it for one observable. At present this is not feasible,

but could become realistic when more data for FCNC processes will be available.

On the other hand, implementing T-parity removes all divergences from the T-even sector.

This is easy to understand. The only new T-even particle is T+ which can be thought of as

an arbitrary singlet field mixing with the SM top quark, independently of the NLSM. Of

the “pion” matrix Π, only the SM Higgs doublet is present in the T-even sector, and all

modifications in its couplings appear due to the mixing of T+ with t. Thus the T-even sector

of the LHT model is effectively decoupled from the breaking SU(5) → SO(5) of the non-linear

sigma model, which has been the basic reason for the appearance of the singularity described

above and in Chapter 4.

6.3 Important Rare Decays

6.3.1 K+
→ π+νν̄ and KL → π0νν̄

The first decays we want to discuss are the rare decays K+ → π+νν̄ and KL → π0νν̄. They

play an important role in the field of flavor changing neutral currents due to their theoretical

cleanness and their large sensitivity to short-distance QCD effects that can be calculated very

systematically.

For the determination of the branching ratios we apply the formulae presented in [68] to

the case of the LHT model. They are given by

Br(K+ → π+νν̄) = κ+

[
r̃2A4R2

t |XK |2 + 2r̃P̄c(x)A
2Rt|XK | cos βKX + P̄c(x)

2
]
, (6.3.21)

Br(KL → π0νν̄) = κLr̃
2A4R2

t |XK |2 sin2 βKX , (6.3.22)

with the relevant quantities taken from [69],

r̃ =

∣
∣
∣
∣

Vts
Vcb

∣
∣
∣
∣
≃ 0.98 , κ+ = (5.08 ± 0.17) · 10−11 , κL = (2.22 ± 0.07) · 10−10 . (6.3.23)

The function Pc(x) in (6.3.21) comprises both the NNLO corrections [69] and the long distance

contributions [70], and its value has been determined

P̄c(x) =

(

1 − λ2

2

)

Pc(x) , Pc(x) = 0.42 ± 0.05 . (6.3.24)
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Finally, the remaining angle βKX is defined as the difference

βKX = β − βs − θKX , (6.3.25)

whereas the values for A, Rb, β and βs are collected in Table 6.2.

Of particular interest is the relation

sin 2(β + ϕBd
) = sin 2βKX , (6.3.26)

that for ϕBd
= 0, θKX = 0 reduces to the MFV relation of [71, 72]. A violation of this relation

would signal the presence of new complex phases and generally non-MFV interactions. In

this context the ratio

Br(KL → π0νν̄)

Br(KL → π0νν̄)SM
=

∣
∣
∣
∣

XK

XSM

∣
∣
∣
∣

2 [ sin βKX
sin (β − βs)

]2

(6.3.27)

is very useful, as it is very sensitive to θKX and is theoretically very clean.

The most recent SM predictions for the branching ratios read [69]

Br(K+ → π+νν̄) = (8.0 ± 1.1) · 10−11 , Br(KL → π0νν̄) = (2.9 ± 0.4) · 10−11 , (6.3.28)

to be compared with the present experimental measurements [73, 74]

Br(K+ → π+νν̄) = (1.47+1.30
−0.89) · 10−10 , Br(KL → π0νν̄) < 2.1 · 10−7 (90%C.L.) . (6.3.29)

Recent reviews of the K → πνν̄ decays can be found in [75, 76].

6.3.2 Bs,d → µ+µ−

Here, we will mainly be interested in the following ratios

Br(Bs → µ+µ−)

Br(Bs → µ+µ−)SM
=

∣
∣
∣
∣

Ys
YSM

∣
∣
∣
∣

2

, (6.3.30)

Br(Bd → µ+µ−)

Br(Bd → µ+µ−)SM
=

∣
∣
∣
∣

Yd
YSM

∣
∣
∣
∣

2

, (6.3.31)

Br(Bd → µ+µ−)

Br(Bs → µ+µ−)
=

τ(Bd)

τ(Bs)

mBd

mBs

F 2
Bd

F 2
Bs

∣
∣
∣
∣

Vtd
Vts

∣
∣
∣
∣

2 ∣∣
∣
∣

Yd
Ys

∣
∣
∣
∣

2

, (6.3.32)

where the departure of the last factor from unity signals non-MFV interactions. In obtaining

these formulae we assume that the CKM parameters have been determined in tree level decays

independently of new physics so that they cancel in the ratios in question.

In the LHT model [15],

∆Md

∆Ms
=
mBd

mBs

B̂Bd
F 2
Bd

B̂BsF
2
Bs

∣
∣
∣
∣

Vtd
Vts

∣
∣
∣
∣

2 CBd

CBs

, (6.3.33)
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where

CBq =
∆Mq

(∆Mq)SM
(q = d, s) . (6.3.34)

Consequently, using (6.3.32) and (6.3.33), the golden relation between Br(Bd,s → µ+µ−) and

∆Md/∆Ms valid in CMFV models [77] gets modified as follows:

Br(Bs → µ+µ−)

Br(Bd → µ+µ−)
=
B̂Bd

B̂Bs

τ(Bs)

τ(Bd)

∆Ms

∆Md
r , r =

∣
∣
∣
∣

Ys
Yd

∣
∣
∣
∣

2 CBd

CBs

, (6.3.35)

with r being in general different from unity.

The most recent SM predictions read [67]

Br(Bs → µ+µ−) = (3.35±0.32)·10−9 , Br(Bd → µ+µ−) = (1.03±0.09)·10−10 , (6.3.36)

to be compared with the experimental upper bounds from CDF [78]

Br(Bs → µ+µ−) < 1 · 10−7 , Br(Bd → µ+µ−) < 3 · 10−8 . (6.3.37)

6.3.3 KL → π0ℓ+ℓ−

The rare decays KL → π0e+e− and KL → π0µ+µ− are dominated by CP-violating contri-

butions. In the SM the main contribution comes from the indirect (mixing-induced) CP-

violation and its interference with the direct CP-violating contribution [79, 80, 81, 82]. The

direct CP-violating contribution to the branching ratio is in the ballpark of 4 · 10−12, while

the CP-conserving contribution is at most 3 · 10−12. Among the rare K meson decays, the

decays in question belong to the theoretically cleanest, but certainly cannot compete with the

K → πνν̄ decays. Moreover, the dominant indirect CP-violating contributions are practically

determined by the measured decays KS → π0ℓ+ℓ− and the parameter εK . Consequently

they are not as sensitive as the KL → π0νν̄ decay to new physics contributions, present only

in the subleading direct CP violation. However, as pointed out in [68], in the presence of

large new CP-violating phases the direct CP-violating contribution can become the dominant

contribution and the branching ratios for KL → π0ℓ+ℓ− can be enhanced by a factor of 2–3,

with a stronger effect in the case of KL → π0µ+µ− [81, 82].

Adapting the formulae in [80, 81, 82, 83] with the help of [68] to the LHT model we find

Br(KL → π0ℓ+ℓ−) =
(

Cℓdir ± Cℓint |as| + Cℓmix |as|2 + CℓCPC

)

· 10−12 , (6.3.38)

where

Cedir = (4.62 ± 0.24)(ω2
7V + ω2

7A) , Cµdir = (1.09 ± 0.05)(ω2
7V + 2.32ω2

7A) , (6.3.39)

Ceint = (11.3 ± 0.3)ω7V , Cµint = (2.63 ± 0.06)ω7V , (6.3.40)

Cemix = 14.5 ± 0.05 , Cµmix = 3.36 ± 0.20 , (6.3.41)

CeCPC ≃ 0 , CµCPC = 5.2 ± 1.6 , (6.3.42)

|as| = 1.2 ± 0.2, (6.3.43)
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with

ω7V =
1

2π

[

P0 +
|YK |

sin2 θW

sinβKY
sin(β − βs)

− 4|ZK | sin βKZ
sin(β − βs)

] [
Imλt

1.4 · 10−4

]

, (6.3.44)

ω7A = − 1

2π

|YK |
sin2 θW

sin βKY
sin(β − βs)

[
Imλt

1.4 · 10−4

]

, (6.3.45)

where P0 = 2.88 ± 0.06 [84] includes NLO QCD corrections and

βKY = β − βs − θKY , βKZ = β − βs − θKZ , (6.3.46)

with ZK defined in (6.1.5).

The effect of the new physics contributions is mainly felt in ω7A, as the corresponding

contributions in ω7V cancel each other to a large extent.

The present experimental bounds

Br(KL → π0e+e−) < 28 · 10−11 [85] , Br(KL → π0µ+µ−) < 38 · 10−11 [86] (6.3.47)

are still by one order of magnitude larger than the SM predictions [83]

Br(KL → π0e+e−)SM = 3.54+0.98
−0.85

(
1.56+0.62

−0.49

)
· 10−11 , (6.3.48)

Br(KL → π0µ+µ−)SM = 1.41+0.28
−0.26

(
0.95+0.22

−0.21

)
· 10−11, (6.3.49)

with the values in parentheses corresponding to the “−” sign in (6.3.38).

In order to evaluate (6.3.38) we have to determine the missing function ZK , which contains

both Z̄even and Z̄odd
K . For the calculation of Ceven we simply use the function Ceven from

Chapter 4 and impose T-parity, which leads to

Ceven
unitary =

x2
L

8

v2

f2
Seven

(
xt − xT

2
− d2xT

v2

f2

)

−x
2
L

16

v2

f2

(−6 − 5xt + 5x2
t − 3xT + 3xtxT

2(xt − 1)

+
8xt − 10x2

t + 5x3
t

(xt − 1)2
log xt − (4xt + xT ) log xT

)

+
x2
L

8

v4

f4
xT

(

−3

2
d2 + x2

L + d2 log xT

)

, (6.3.50)

with

Seven =
1

ε
+ log

µ2

M2
WL

, (6.3.51)

and d2 defined in (4.2.68).

Using the function DSM in the unitary gauge,

DSM
unitary(xt) =

xt
4
Seven +

−153xt + 383x2
t − 245x3

t + 27x4
t

72(xt − 1)3

−16 − 64xt + 36x2
t + 93x3

t − 84x4
t + 9x5

t

36(xt − 1)4
log xt , (6.3.52)
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which has been calculated in [17], we can derive Deven in the LHT model similar to B → Xsγ

in [7] as

Deven
unitary =

v2

f2
x2
L

[(

1 + 2d2
v2

f2

)

DSM
unitary(xT ) −DSM

unitary(xt)

]

. (6.3.53)

Subsequently, after having dropped O(v4/f4) terms,

Deven
unitary =

v2

f2
x2
L

[
xT
4

(

1 + 2d2
v2

f2

)

Seven −DSM
unitary(xt)

]

+
v2

f2
x2
L

[

−41 − 24 log xT
18

+
xT
8

(

1 + 2d2
v2

f2

)

(3 − 2 log xT )

]

, (6.3.54)

so that we can finally write down the gauge independent function Z̄even as

Z̄even = Ceven
unitary +

1

4
Deven

unitary. (6.3.55)

Since all the divergences in (6.3.55) cancel, Z̄even turns out to be finite, being consistent with

the statement in the last paragraph of Subsection 6.2.2.

Analogously in the T-odd sector we can derive the contribution Zodd,

Zodd(zi) = Codd(zi) +
1

4
Dodd(zi) , (6.3.56)

by using (6.2.16), from which we find in the ’t Hooft-Feynman gauge

Codd(zi) = ∆Jµµ̄ =
1

64

v2

f2

[

ziSodd − 8ziR2(zi) +
3

2
zi + 2ziF2(zi)

]

. (6.3.57)

The divergent part Sodd in (6.3.57) is defined in (6.5.92), whereas the functions R2 and F2

are listed in Appendix A.4.

Finally, using our calculation of B → Xsγ in [15] we determine Dodd(zi) to be

Dodd(zi) =
1

4

v2

f2

[

D0(zi) −
1

6
E0(zi) −

1

30
E0(z

′
i)

]

(6.3.58)

with D0 and E0 given in Appendix A.4. With the help of Codd and Dodd we can now write

down the final result Z̄odd
K , which reads

Z̄odd
K =

[

ξ
(K)
2

(
Zodd(z2) − Zodd(z1)

)
+ ξ

(K)
3

(
Zodd(z3) − Zodd(z1)

)
]

. (6.3.59)

To estimate the remaining divergence in Zodd coming from Codd(zi), we proceed as outlined

in Subsection 6.2.2.

6.4 Numerical Impact of the LHT on Rare Decays

6.4.1 Preliminaries and Benchmark Scenarios

To consider the numerical impact on the branching ratios of the last subsections we assume

three scenarios both for the structure of the VHd matrix and the mass spectrum of mirror
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fermions. Due to the new sources of flavor and CP violation in the mirror sector of the

LHT we will see a modification of the CMFV correlations between K0, B0
d and B0

s systems

[55, 56, 67]. In the first two scenarios we set the phases δd12 and δd23 to zero, while in the third

scenario we perform a general scan over all mirror fermion masses and VHd parameters with

δd12 and δd23 different from zero. We find that such a simplification does not affect the general

results of the analysis. Consequently such a numerical analysis helps us to gain a global view

of the possible signatures of mirror fermions in the processes considered and of T+ present in

the T-even contributions.

|Vub| = 3.68(14) · 10−3 [87] GF = 1.16637(1) · 10−5 GeV−2

|Vcb| = 0.0416(9) [59] MW = 80.425(38)GeV

λ = |Vus| = 0.225(1) [60] α = 1/127.9

|Vts| = 0.0409(9) [61] sin2 θW = 0.23120(15)

A = 0.822(16) mK0 = 497.65(2)MeV

Rb = 0.447(31) mBd
= 5.2794(5)GeV

β = 26.3(21)◦ mBs
= 5.370(2)GeV

βs = −1.28(7)◦ FK = 160(1)MeV [88]

mc = 1.30(5)GeV FBd
= 189(27)MeV

mt = 163.8(32)GeV FBs
= 230(30)MeV [89]

Table 6.1: Values of the experimental and theoretical quantities used as input parameters.

Benchmark Scenarios

Scenario 1 (green):

This scenario yields large departures from the SM and MFV in Bs decays and can solve

some problems mentioned in [15]. For example, it is possible to explain the discrepancy

between the value of sin 2β coming from tree-level decays and the one coming from the

CP-asymmetry ACP (Bd → ψKS). Moreover, it also gives reasons to understand the mass

difference (∆Ms)LHT < (∆Ms)SM , as favored by the CDF and D∅ measurement [57, 58]. In

this scenario the parameters are assumed to be

mH1 ≈ mH2 = 500GeV , mH3 = 1000GeV , (6.4.60)

1√
2
≤ sd12 ≤ 0.99 , 5 · 10−5 ≤ sd23 ≤ 2 · 10−4 , 4 · 10−2 ≤ sd13 ≤ 0.6 . (6.4.61)

δd12 and δd23 are set to zero, while the phase δd13 is arbitrary and the hierarchical structure of

the CKM matrix, s13 ≪ s23 ≪ s12 , is changed to

sd23 ≪ sd13 ≤ sd12 , (VHd) (6.4.62)
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leading to the following VHd

VHd =






cd12 sd12 sd13e
−iδd

13

−sd12 cd12 sd23
−cd12sd13eiδ

d
13 −sd12sd13eiδ

d
13 1




 . (6.4.63)

With the degeneracy mH1 ≈ mH2 the T-odd contributions in εK proportional to Im(ξK2 ) and

Re(ξK2 ) vanish, and only the T-odd term proportional to Im(ξK3 )Re(ξK3 ) contributes. Since

Im(ξK3 ) = sd13c
d
23s

d
23 sin δd13, the hierarchy chosen in this scenario for VHd, with sd23 ≪ 1, has

the advantage of suppressing mirror fermion effects in εK , allowing at the same time large

CP-violating effects in the B0
s − B̄0

s system [15]. Furthermore, ∆Ms can be smaller than its

SM value in this scenario, and interesting effects in the B0
d − B̄0

d system are also found.

Scenario 2 (brown):

In studying this scenario we aim to enhance mirror fermion contributions to rare K decays,

keeping negligible effects in the experimentally well measured quantities ∆MK and εK . For

this purpose we choose the mirror fermion masses as in Scenario 1 (see (6.4.60)) since the

near degeneracy between mH1 and mH2 helps to suppress mirror fermion effects in ∆MK .

Concerning εK , we recall that with the degeneracy mH1 ≈ mH2 the T-odd contribu-

tions proportional to Im(ξK2 ) and Re(ξK2 ) vanish, and only the T-odd term proportional to

Im(ξK3 )Re(ξK3 ) contributes. In Scenario 1 the hierarchical structure of VHd was chosen as to

satisfy Im(ξK3 ) ≃ 0. Here, instead, we suppress mirror fermion effects in εK due to the second

and third generations by requiring Re(ξK3 ) = 0. Setting also in this scenario the phases δd12
and δd23 to zero, the explicit expression of the real part reads

Re(ξK3 ) = −cd12sd12
(

sd23
2 − cd23

2
sd13

2
)

+ (cos δd13) c
d
23s

d
23s

d
13

(

cd12
2 − sd12

2
)

, (6.4.64)

which vanishes for θd12, θ
d
23 and θd13 (chosen in the first quadrant) satisfying

cd12 = sd12 =
1√
2
, (6.4.65)

sd23 =
sd13

√

1 + sd13
2
. (6.4.66)

We note that while the value of θd12 is fixed to 45◦ by (6.4.65), θd23 and θd13 have no specified

value nor order of magnitude, but (6.4.66) implies that only one of them is a free parameter.

The matrix VHd can then be expressed in terms of the two free parameters θd13 and δd13 as

VHd =












cd
13√
2

cd
13√
2

sd13e
−iδd

13

− 1
√

2

q

1+sd
13

2
(1 +

(
sd13
)2
eiδ

d
13) 1

√
2

q

1+sd
13

2
(1 −

(
sd13
)2
eiδ

d
13)

sd
13
cd
13

q

1+sd
13

2

sd
13√

2

q

1+sd
13

2
(1 − eiδ

d
13) − sd

13√
2

q

1+sd
13

2
(1 + eiδ

d
13)

cd13
q

1+sd
13

2












.

(6.4.67)
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Its structure becomes much simpler if the angle θd13 is sufficiently small, i. e., sd13 ≤ 0.1, and

reads

VHd ≈







1√
2

1√
2

sd13e
−iδd

13

− 1√
2

1√
2

sd13
sd
13√
2
(1 − eiδ

d
13) − sd

13√
2
(1 + eiδ

d
13) 1






. (6.4.68)

As we will see the very different structure of VHd as compared to VCKM implies enhancements

in rare K decays, without introducing problematic effects in ∆MK and εK . Moreover, as

VHd in (6.4.68) has a structure different also from the one of Scenario 1 in (6.4.63), the new

physics effects in the B0
d−B̄0

d and mainly in the B0
s−B̄0

s system turn out to be small, although

visible.

Scenario 3 (blue):

Scenarios 1 and 2 turn out to be the most interesting ones with large new physics effects in the

Bs and K systems, respectively. Such visible enhancements follow from the structure of VHd,

primarily required to satisfy the εK and ∆MK constraints, through Im(ξK3 ) ≈ 0 in Scenario

1 and through Re(ξK3 ) = 0 in Scenario 2. A further consequence of the VHd structure is that

in Scenario 1 spectacular effects can be obtained in the Bs system but not in the K system

and vice versa in Scenario 2. An even more interesting picture would be the simultaneous

manifestation of large enhancements in both B and K observables. In order not to miss such

a possibility, in addition to the scenarios described above, we have performed a general scan

over mirror fermion masses and VHd parameters. To have a global view of the most general

LHT effects, we have allowed here the phases δd12 and δd23 to differ from zero. Qualitatively

their effect is not significant, although they can help in achieving very large effects in certain

observables. We find that there exist some sets of masses and VHd parameters where the new

physics effects turn out to be spectacular in both B and K systems. We note that they do

not really constitute a scenario, they rather appear in the plots shown in the next section as

isolated (blue) points. In contrast to previous scenarios, in fact, the blue points corresponding

to large new physics effects are quite sensitive to the particular configuration of mirror fermion

masses and VHd parameters.

6.4.2 Numerical Analysis

Breakdown of the Universality

Since in the LHT the universality of the functions Xi, Yi and Zi is broken by the presence

of the mirror fermions we expect many quantities to deviate from MFV relations. One of

the first correlations where this breakdown of universality becomes obvious is the space of

(|Xs|, |XK |). In Fig. 6.4 we show the ranges of possible points for Xs and XK in the different

scenarios defined above. The solid line represents the MFV scenario, in which the functions

Xi do not depend on the index i, i.e. Xs = XK . Any departure from this line indicates
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Figure 6.4: Breakdown of the universality between |XK | versus |Xs|, where the black dot

corresponds to the SM value.
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Figure 6.5: Breakdown of the universality between θKX versus θsX , where the black dot corre-

sponds to the SM value.

a deviation from MFV relations and thus provides a hint for physics beyond the SM. From

Fig. 6.4 we can see that |Xs| and |XK | vary within the range

1.40 ≤ |Xs| ≤ 1.75, 0.7 ≤ |XK | ≤ 4.7, (6.4.69)

which implies that CP-conserving effects in the K system can be much larger than in the

Bs system. This is due to the fact that contributions from the T-odd sector in (6.1.3) are

enhanced by a factor 1/λ
(i)
t . In the case of the K system this leads to an enhancement

of 1/λ
(K)
t ≃ 1/

(
4 · 10−4

)
whereas in the Bd,s system 1/λ

(d)
t ≃ 1/

(
1 · 10−2

)
and 1/λ

(s)
t ≃

1/
(
4 · 10−2

)
. Therefore effects in the K system tend to be larger compared to the Bd,s

system.

Apart from the departure of MFV in CP-conserving processes we can also observe devi-

ations from MFV relations in the CP-violating quantities θsX and θKX . In Fig. 6.5 we can see
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Figure 6.6: Br
(
KL → π0νν̄

)
as a function of Br (K+ → π+νν̄). The shaded area represents

the experimental 1σ-range for Br (K+ → π+νν̄). The GN-bound is displayed by the dotted

line, while the solid line separates the two areas where Br
(
KL → π0νν̄

)
is larger or smaller

than Br (K+ → π+νν̄).

that the ranges in the space
(
θsX , θ

K
X

)
turn out to be

−3.5◦ ≤ θsX ≤ 3.5◦, −130◦ ≤ θKX ≤ 55◦, (6.4.70)

which means that CP-violating effects in b→ s transitions are very small in contrast to those

in KL decays.

The Rare Decays K+
→ π+νν̄ and KL → π0νν̄

In Fig. 6.6 we present the correlation between Br (K+ → π+νν̄) and Br
(
KL → π0νν̄

)
for

the three scenarios described above. The grey shaded area in Fig. 6.6 depicts the allowed 1σ-

range for Br (K+ → π+νν̄) [73], while the dotted line corresponds to the model independent

bound by Grossman and Nir [90]. It can be seen in the plot that the Scenario 3 yields two

branches of possible points. The first one, parallel to the Grossman-Nir bound, can enhance

Br
(
KL → π0νν̄

)
up to O

(
5 · 10−10

)
but still lies within the 1σ range of Br (K+ → π+νν̄).

The second branch corresponds to values of Br (K+ → π+νν̄) up to O
(
5 · 10−10

)
while the

points for Br
(
KL → π0νν̄

)
are close to the SM prediction. In the case of the Scenario 2

the picture described in the previous scenario simplifies considerably, since the first branch

reduces to a single line and the second branch disappears completely. Finally in the Scenario

1 the branching ratio of Br (K+ → π+νν̄) is always smaller than the SM value and can even

get close to the Grossman-Nir bound, whereas Br
(
KL → π0νν̄

)
sticks close to its SM value.
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Figure 6.7: The ratio r as a function of δd13 with the black dot denoting the SM value.
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Figure 6.8: sin 2βKX /SψKS
as a function of δd13 with the black dot denoting the SM value.

Deviations from MFV relations

In Fig. 6.7 we illustrate the variation of the ratio r defined in (6.3.35) in dependence of the

new phase δd13 of the mixing matrix VHd. One can see that in Scenario 1, 2, 3 each large

deviations from the SM value, which is denoted by the black dot, are possible. Any departure

from unity, which can be measured by the parameter r, signals a violation of the golden

relation between Bd,s → µ+µ− and ∆Md,s, which hints for new physics beyond the SM. In

all scenarios considered here we find a range

0.6 ≤ r ≤ 1.7 , (6.4.71)

where the lower and upper bounds for r can be reached most easily in the Scenario 1.

Moreover, in Fig. 6.8 we present the correlation between the ratio sin 2βKX / sin (2β + 2ϕBd
)

and the new phase δd13, where in a MFV scenario this relation is given by sin 2βKX ≡ sin(2β +

2ϕBd
) = SψKS

. As before any deviation of this ratio from unity would indicate contributions
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Figure 6.9: Br
(
KL → π0µ+µ−

)
as a function of Br

(
KL → π0e+e−

)
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Figure 6.10: Br
(
KL → π0e+e−

)
(upper curve) and Br

(
KL → π0µ+µ−

)
(lower curve) as

functions of Br
(
KL → π0νν̄

)
. The corresponding SM predictions are represented by dark

points.

that are coming from new physics. Since we know from the SψKs asymmetry in [61, 67] that

ϕBd
is constrained to be at most a few degrees, the existence of a phase βKX can produce these

large deviations from unity as seen in Fig. 6.8.

The Decays KL → π0ℓ+ℓ−

In Fig. 6.9 the correlation between Br
(
KL → π0e+e−

)
and Br

(
KL → π0µ+µ−

)
is considered.

We observe that this correlation is only moderately sensitive to the three different scenarios

and that the branching ratios can be a factor two larger compared to the SM values, which

are denoted by the black dots.

Furthermore we show Br
(
KL → π0e+e−

)
and Br

(
KL → π0µ+µ−

)
as a function of the

branching ratio Br
(
KL → π0νν̄

)
. It can be seen in Fig. 6.10 that a large enhancement of
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Br
(
KL → π0νν̄

)
automatically implies an enhancement of KL → π0ℓ+ℓ−. Furthermore,

with the determination of KL → π0ℓ+ℓ− we would be able to predict Br
(
KL → π0νν̄

)
rather

precisely.

6.5 Signatures of the LHT in Lepton Flavor Violating Decays

6.5.1 ℓi → ℓjγ

Some of the most popular LFV processes used to constrain new physics contributions are the

processes ℓi → ℓjγ, which are bounded by the following current experimental upper limits

[91, 92]1

Br(µ→ eγ) < 1.2 · 10−11 , (6.5.72)

Br(τ → µγ) < 1.6 · 10−8 , Br(τ → eγ) < 9.4 · 10−8 . (6.5.73)

Among these the most interesting decay is the LFV process µ → eγ, since for this process

the MEGA collaboration [91] will improve the upper bound down to O
(
10−13 − 10−14

)
in

the coming years.

In order to obtain the branching ratio Br(µ→ eγ) in the LHT model we take into account

several elements of the Br(B → Xsγ) calculation in this model [15]. The generalization to

τ → µγ and τ → eγ will then be automatic. For details of this calculation the reader is

referred to [66].

The relevant diagrams for µ → eγ in the LHT model are shown in Fig. 6.11, where we

only consider contributions coming from mirror fermions as particles from the T-even sector

give negligible contributions. Moreover diagrams involving the heavy scalar triplet Φ can be

neglected since at this order in v/f they do not contribute (see [15, 17] for details).

Having calculated these diagrams we can write the resulting branching ratio as the sum

of three different terms representing the W±
H , ZH and AH contributions

Br(µ→ eγ)LHT =
3α

2π
|∆WH

+ ∆ZH
+ ∆AH

|2 . (6.5.74)

Using the abbreviations

yi =
mℓ
Hi

2

M2
WH

, y′i = a yi with a =
5

tan2 θW
≃ 16.6 , (6.5.75)

we explicitly find for ∆WH

∆WH
=

1

4

v2

f2

∑

i

χ
(µe)
i H(yi) , (6.5.76)

where H is given in Appendix A.5 and χ
(µe)
i is defined in (5.2.54).

1The bounds in [92] have been obtained by combining Belle [93] and BaBar [94] results.
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Figure 6.11: Diagrams contributing to µ→ eγ in the LHT model.

The neutral gauge boson contributions can directly be deduced from (4.10) of [15]. In-

cluding a factor 3 that takes into account the difference between the electric charges of quarks

and leptons, we obtain from the last two terms in (4.10) of [15]

∆ZH
=

1

4

v2

f2

∑

i

χ
(µe)
i

[

−1

2
E′

0(yi)

]

, (6.5.77)

∆AH
=

1

4

v2

f2

∑

i

χ
(µe)
i

[

− 1

10
E′

0(y
′
i)

]

. (6.5.78)

Finally, adding up these three contributions in (6.5.76)–(6.5.78), we arrive at the following

result

Br(µ→ eγ)LHT =
3α

2π

∣
∣D̄′µe

odd

∣
∣
2
, (6.5.79)

with

D̄′µe
odd =

1

4

v2

f2

[
∑

i

χ
(µe)
i

(

D′
0(yi) −

7

6
E′

0(yi) −
1

10
E′

0(y
′
i)

)]

, (6.5.80)

and yi defined in (6.5.75) and D′
0, E

′
0 given in Appendix A.5.

The corresponding branching ratios for τ → eγ and τ → µγ can easily be found in analogy

to µ→ eγ and read

Br(τ → eγ) =
3α

2π
Br(τ− → ντe

−ν̄e)
∣
∣D̄′ τe

odd

∣
∣2 , (6.5.81)

Br(τ → µγ) =
3α

2π
Br(τ− → ντµ

−ν̄µ)
∣
∣D̄′ τµ

odd

∣
∣
2
, (6.5.82)

where D̄′ τe
odd and D̄′ τµ

odd can be obtained from (6.5.80) by replacing (µe) with (τe) and (τµ),

respectively. Furthermore [88]

Br(τ− → ντe
−ν̄e) = (17.84 ± 0.05)% , Br(τ− → ντµ

−ν̄µ) = (17.36 ± 0.05)% . (6.5.83)
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6.5.2 Semileptonic τ Decays

In the last years the Belle [95] and BaBar [96] collaborations presented improved upper bounds

for the decays τ → ℓP (P = π, η, η′), which have been combined [92] to

Br(τ → µπ) < 5.8 · 10−8 , Br(τ → µη) < 5.1 · 10−8 , Br(τ → µη′) < 5.3 · 10−8 ,

(6.5.84)

Br(τ → eπ) < 4.4 · 10−8 , Br(τ → eη) < 4.5 · 10−8 , Br(τ → eη′) < 9.0 · 10−8 ,

(6.5.85)

thus increasing the interest in investigating these branching ratios in the LHT model.

In this subsection we will study these semileptonic decays with the help of the recent

analysis of rare K and B decays in the LHT model [17]. In the case of τ → µπ the diagrams

are completely analogous to the ones contributing to K → πνν̄. However, as π0 has the

following flavor structure

π0 =
ūu− d̄d√

2
, (6.5.86)

we have to consider two sets of diagrams, with both ūu and d̄d in the final state. From

the analysis of rare K and B decays [17] we can directly obtain the corresponding effective

Hamiltonians for τ → µπ, which involve the short-distance functions X̄τµ
odd and −Ȳ τµ

odd for ūu

and d̄d, respectively. Taking into account the opposite sign that is conventionally chosen to

define the two short distance functions, the effective Hamiltonian that includes both sets of

diagrams is then given as follows

Heff =
GF√

2

α

2π sin2 θW

(
X̄τµ

odd(ūu)V−A − Ȳ τµ
odd(d̄d)V−A

)
(µ̄τ)V−A . (6.5.87)

The structure of X̄τµ
odd and Ȳ τµ

odd in (6.5.87) is the same as those of the functions calculated in

the context of rare K and B decays [17]. Adapting them to the lepton sector we find:

X̄τµ
odd =

[

χ
(τµ)
2

(
Juū(y2, z) − Juū(y1, z)

)
+ χ

(τµ)
3

(
Juū(y3, z) − Juū(y1, z)

)]

, (6.5.88)

Ȳ τµ
odd =

[

χ
(τµ)
2

(
Jdd̄(y2, z) − Jdd̄(y1, z)

)
+ χ

(τµ)
3

(
Jdd̄(y3, z) − Jdd̄(y1, z)

)]

, (6.5.89)

where

Juū (yi, z) =
1

64

v2

f2

[

yiSodd + F uū(yi, z;WH)

+4
(

G(yi, z;ZH) +G1(y
′
i, z

′;AH) +G2(yi, z; η)
)]

, (6.5.90)

Jdd̄ (yi, z) =
1

64

v2

f2

[

yiSodd + F dd̄(yi, z;WH)

−4
(

G(yi, z;ZH) +G1(y
′
i, z

′;AH) −G2(yi, z; η)
)]

, (6.5.91)

Sodd =
1

ε
+ log

µ2

M2
WH

−→ log
(4πf)2

M2
WH

, (6.5.92)
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with the functions F uū, F dd̄, G, G1 and G2 given in Appendix A.5, the leptonic variables yi

and y′i defined in (6.5.75) and the analogous variables for degenerate mirror quarks given by

z =
mq
H

2

M2
WH

, z′ = a z , η =
1

a
. (6.5.93)

Evaluating the matrix elements by

〈0|(ūu)V−A|π0〉 = −〈0|(d̄d)V−A|π0〉 =
Fπp

µ
π√

2
, (6.5.94)

where Fπ ≃ 131MeV is the pion decay constant, we arrive at the final branching ratio

Br(τ → µπ) =
G2
Fα

2F 2
πm

3
τττ

128π3 sin4 θW
|X̄τµ

odd + Ȳ τµ
odd|2 , (6.5.95)

with ττ and mτ being the lifetime and mass of the decaying τ , and neglecting suppressed pion

and muon mass contributions of the order O(m2
π/m

2
τ ) and O(m2

µ/m
2
τ ). Analogously we can

obtain the branching ratio for the τ → eπ decay very easily from (6.5.95) by simply replacing

(τµ) with (τe). The generalization of (6.5.95) to the decays τ → µη and τ → µη′ is then

straightforward too, although slightly complicated by mixing in the η−η′ system. For details

the reader is referred to [66].

6.5.3 µ−
→ e−e+e−, τ−

→ µ−µ+µ− and τ−
→ e−e+e−

Next, we will consider the decay µ− → e−e+e−, for which the experimental upper bound

reads [97]

Br(µ− → e−e+e−) < 1.0 · 10−12 . (6.5.96)

Using the analogies to the b → sµ+µ− transition, analyzed in the LHT model in [17] this

decay is governed by contributions from γ- and Z0-penguins and by box diagrams. However,

two identical particles are now present in the final state which prevent us from using directly

the known final expressions for b → sµ+µ−, although some intermediate results from the

latter decay turned out to be useful here. Also the general result for µ− → e−e+e− obtained

in [98], which has been corrected in [20, 22], turned out to be very helpful.

Performing the calculation in the unitary gauge, where we find the contribution from the

Z0-penguin to vanish [17], we find for the relevant amplitudes from photon penguins and box

diagrams2:

Aγ′ =
GF√

2

e2

8π2

1

q2
D̄′µe

odd

[

ē(p1)(mµiσαβq
β(1 + γ5))µ(p)

]

⊗ [ē(p2)γ
αe(p3)]

−(p1 ↔ p2) , (6.5.97)

Aγ = −
[

4
GF√

2

e2

8π2
Z̄µeodd [ē(p1)γα(1 − γ5)µ(p)] ⊗ [ē(p2)γ

αe(p3)] − (p1 ↔ p2)

]

, (6.5.98)

Abox = 2
GF√

2

α

2π sin2 θW
Ȳ µee,odd [ē(p1)γα(1 − γ5)µ(p)] ⊗ [ē(p2)γ

α(1 − γ5)e(p3)] . (6.5.99)

2Following [98], our sign conventions are chosen such that Heff is determined from −A.
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The function D̄′µe
odd is given in (6.5.80), while the functions Ȳ µe

e,odd and Z̄µeodd can easily be

obtained from those calculated in [17]. The analogy with the b → sµ+µ− decay, together

with the observation that the µ− → e−e+e− decay in question involves only leptons in both

the initial and final states, allow us to write3

Ȳ µe
e,odd = χ

(µe)
2

3∑

i=1

|V ie
Hℓ|2

[

Jdd̄(y2, yi) − Jdd̄(y1, yi)
]

+χ
(µe)
3

3∑

i=1

|V ie
Hℓ|2

[

Jdd̄(y3, yi) − Jdd̄(y1, yi)
]

, (6.5.100)

with Jdd̄ given in (6.5.91). Following a similar reasoning we can write for the Z̄µeodd function

Z̄µeodd =

[

χ
(µe)
2

(
Zodd(y2) − Zodd(y1)

)
+ χ

(µe)
3

(
Zodd(y3) − Zodd(y1)

)
]

, (6.5.101)

where

Zodd(yi) = Codd(yi) +
1

4
Dodd(yi) . (6.5.102)

The explicit expressions for the Codd andDodd functions are given in Appendix A.54. Here,

we just note that as a consequence of the charge difference between the leptons involved in

µ− → e−e+e− and the quarks involved in b → sµ+µ−, Dodd in (6.5.102) differs from the

analogous function found in [17].

Comparing these expressions to the general expressions for the amplitudes given in [22, 98],

we easily obtain Γ(µ− → e−e+e−). Normalizing to Γ(µ− → e−ν̄eνµ), we find the branching

ratio for the decay µ− → e−e+e− to be

Br(µ− → e−e+e−) =
Γ(µ− → e−e+e−)

Γ(µ− → e−ν̄eνµ)

=
α2

π2

[

3
∣
∣Z̄µeodd

∣
∣2 + 3Re

(
Z̄µeodd(D̄

′µe
odd)∗

)
+
∣
∣D̄′µe

odd

∣
∣
2
(

log
mµ

me
− 11

8

)

+
1

2 sin4 θW

∣
∣
∣Ȳ

µe
e,odd

∣
∣
∣

2
− 2

sin2 θW
Re
(

Z̄µeodd(Ȳ µe
e,odd)

∗
)

− 1

sin2 θW
Re
(

D̄′µe
odd(Ȳ µe

e,odd)
∗
) ]

. (6.5.103)

For τ− → µ−µ+µ− we make the following replacements in (6.5.97)–(6.5.103):

V ie
Hℓ → V iµ

Hℓ , (µe) → (τµ) , mµ → mτ , me → mµ , (6.5.104)

3The subscript e of Ȳ
µe

e,odd
denotes which of the SM charged leptons appears on the flavor conserving side

of the relevant box diagrams.
4Note that the functions Codd and Dodd are gauge dependent and have been calculated in the ’t Hooft-

Feynman gauge. However, the function Z̄
µe
odd

is gauge independent, so that it can be used also in the unitary

gauge calculation above.
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so that, in particular, Ȳ τµ
µ,odd is now present. Furthermore, in (6.5.103) the normalization

Γ(µ− → e−νµν̄e) is replaced by Γ(τ− → µ−ντ ν̄µ), so that the final result for Br(τ− →
µ−µ+µ−) contains an additional factor Br(τ− → µ−ντ ν̄µ). In the case of τ− → e−e+e− the

replacements in (6.5.100)–(6.5.103) amount only to

(µe) → (τe) , mµ → mτ , (6.5.105)

having now Ȳ τe
e,odd, and in (6.5.103) Γ(µ− → e−νµν̄e) is replaced by Γ(τ− → e−ντ ν̄e) and an

additional factor Br(τ− → e−ντ ν̄e) appears. In doing this we neglect me,µ with respect to

mτ in all three expressions.

6.5.4 µ − e Conversion in Nuclei

Similarly to the decays µ → eγ and µ− → e−e+e−, stringent experimental upper bounds

on µ − e conversion in nuclei exist. In particular, the experimental upper bound on µ − e

conversion in 48
22Ti reads [99]

R(µTi → eTi) < 4.3 · 10−12 , (6.5.106)

and the dedicated J-PARC experiment PRISM/PRIME should reach a sensitivity of O(10−18)

[100].

A very detailed calculation of the µ−e conversion rate in various nuclei has been performed

in [101], using the methods developed by Czarnecki et al. [102]. It has been emphasized in

[101] that the atomic number dependence of the conversion rate can be used to distinguish

between different theoretical models of LFV. Useful general formulae can also be found in

[98].

We have calculated the µ−e conversion rate in nuclei in the LHT model using the general

model-independent formulae of both [98] and [101]. We have checked numerically that, for

relatively light nuclei such as Ti, both results agree within 10%. Therefore, we will give the

result for µ − e conversion in nuclei derived from the general expression given in [98], as it

has a more transparent structure than the one of [101].

Following a similar reasoning as in the previous section, we find from (58) of [98]

Γ(µX → eX) =
G2
F

8π4
α5Z

4
eff

Z
|F (q)|2m5

µ

·
∣
∣
∣
∣
Z
(
4Z̄µeodd + D̄′µe

odd

)
− (2Z +N)

X̄µe
odd

sin2 θW
+ (Z + 2N)

Ȳ µe
odd

sin2 θW

∣
∣
∣
∣

2

,(6.5.107)

where X̄µe
odd and Ȳ µe

odd are obtained from (6.5.88) and (6.5.89) by making the replacement

(τµ) → (µe), and D̄′µe
odd and Z̄µeodd are given in (6.5.80) and (6.5.101), respectively. Z and N

denote the proton and neutron number of the nucleus. Zeff has been determined in [103] and

F (q2) is the nucleon form factor. For X = 48
22Ti, Zeff = 17.6 and F (q2 ≃ −m2

µ) ≃ 0.54 [104].
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The µ− e conversion rate R(µX → eX) is then given by

R(µX → eX) =
Γ(µX → eX)

ΓX
capture

, (6.5.108)

with ΓX
capture being the µ capture rate of the element X. The experimental value is given by

ΓTi
capture = (2.590 ± 0.012) · 106 s−1 [105].

In our numerical analysis of Section 6.6 we will restrict ourselves to µ−e conversion in 48
22Ti,

for which the most stringent experimental upper bound exists and where the approximations

entering (6.5.107) work very well. For details, we refer the reader to [98, 101, 104].

6.5.5 τ−
→ µ−e+e− and τ−

→ e−µ+µ−

These decays have two types of contributions. First of all they proceed as in τ− → µ−µ+µ−

and τ− → e−e+e− through ∆L = 1 penguin and box diagrams. However, they also receive

contributions from ∆L = 2 box diagrams. Since this time there are no identical particles

in the final state, the effective Hamiltonians for these contributions can directly be obtained

from the decay B → Xsℓ
+ℓ−. The generalization to τ− → e−µ+µ− will then be automatic.

As the QCD corrections are not involved now, only three operators originating in magnetic

photon penguins, Z0-penguins, standard photon penguins and the relevant box diagrams have

to be considered. Keeping the notation from B → Xsµ
+µ− but translating the quark flavors

into lepton flavors these operators are

Q7 =
e

8π2
mτ µ̄σ

αβ(1 + γ5)τFαβ , (6.5.109)

that enters, of course with different external states, also the µ→ eγ decay, and

Q9 = (µ̄τ)V−A(ēe)V , Q10 = (µ̄τ)V−A(ēe)A . (6.5.110)

The effective Hamiltonian is then given by

Heff(τ− → µ−e+e−) = −GF√
2

[Cτµ7 Q7 + Cτµ9 Q9 + Cτµ10 Q10] . (6.5.111)

The Wilson coefficient for the operator Q7 can easily be found from Subsection 6.5.1 and

Section 7 of [17]. We find

Cτµ7 = −1

2
D̄′ τµ

odd , (6.5.112)

with D̄′ τµ
odd obtained from (6.5.80) by replacing (µe) with (τµ).

The Wilson coefficients of the operators Q9 and Q10 receive not only contributions from

∆L = 1 γ-penguin, Z0-penguin and box diagrams, but also from ∆L = 2 box diagrams. For

Cτµ9 and Cτµ10 we can then write

Cτµ9 =
α

2π
C̃τµ9 , Cτµ10 =

α

2π
C̃τµ10 , (6.5.113)

C̃τµ9 =
Ȳ τµ
e,odd

sin2 θW
− 4Z̄µeodd − ∆τµ , C̃τµ10 = −

Ȳ τµ
e,odd

sin2 θW
+ ∆τµ , (6.5.114)
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Figure 6.12: Diagrams of ∆L = 2 type contributing to τ− → µ−e+e− in the LHT model.

with the functions Ȳ τµ
e,odd and Z̄τµodd obtained from (6.5.100) and (6.5.101) by replacing (µe)

by (τµ). ∆τµ represents the additional ∆L = 2 contribution which is not present in the

case of b → sℓ+ℓ− and will be explained below. As there are no light fermions in the T-odd

sector, the mass independent term present in C9 in the case of b→ sℓ+ℓ− in (X.5) of [106] is

absent here. Effectively this corresponds to setting η = 1 in the latter equation and of course

removing QCD corrections.

For the ∆L = 2 diagrams shown in Fig. 6.12 contributing to this decay the corresponding

effective Hamiltonian can be obtained from ∆B = 2 processes, that is from (3.11) of [106],

through the replacements of local operators, removing the symmetry factor 2 and performing

the following change in the mixing factors:

χ
(τe)
i χ

(µe)
j −→ χ

(τe)
i χ

(µe)
j

∗
. (6.5.115)

We find

∆τµ =
2π

α

GF
32π2

√
2M2

WL

v2

f2

∑

i,j

χ
(τe)
i χ

(µe)
j

∗
FH(yi, yj)

=
1

16 sin2 θW

v2

f2

∑

i,j

χ
(τe)
i χ

(µe)
j

∗
FH(yi, yj) , (6.5.116)

with FH (zi, yj) defined by

FH (zi, yj) = F (zi, yj;WH) +G (zi, yj;ZH) +A1 (zi, yj ;ZH) +A2 (zi, yj ;ZH) . (6.5.117)

Effectively the presence of the diagrams in Fig. 6.12 introduces corrections to the Wilson

coefficients C̃9 and C̃10 in (6.5.114). As the relevant operator has the structure (V − A) ⊗
(V −A), the shifts in C̃9 and C̃10 are equal up to an overall sign.

Finally, introducing

ŝ =
(pe+ + pe−)2

m2
τ

, Rτµ(ŝ) =
d
dŝΓ(τ− → µ−e+e−)

Γ(τ− → µ−ν̄µντ )
(6.5.118)
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and neglecting me with respect to mτ we find for the differential decay rate Rτµ(ŝ)

Rτµ(ŝ) =
α2

4π2
(1 − ŝ)2

[

(1 + 2ŝ)
(

|C̃τµ9 |2 + |C̃τµ10 |2
)

+4

(

1 +
2

ŝ

)

|Cτµ7 |2 + 12Re
(

Cτµ7 (C̃τµ9 )
∗)
]

. (6.5.119)

The branching ratio is then given as follows:

Br(τ− → µ−e+e−) = Br(τ− → µ−ν̄µντ )

∫ 1

4m2
e/m

2
τ

Rτµ(ŝ) dŝ . (6.5.120)

The branching ratio for τ− → e−µ+µ− can easily be obtained from the above expressions

by interchanging µ↔ e, where χ
(eµ)
i = χ

(µe)
i

∗
.

For quasi-degenerate mirror leptons the ∆L = 1 part clearly dominates as the GIM-like

suppression acts only on one mirror lepton propagator, whereas it acts twice in the ∆L = 2

case. Moreover, in the latter case the effective Hamiltonian is quartic in the VHℓ couplings,

whereas it is to a very good approximation quadratic in the case of ∆L = 1. As these

factors are all smaller than 1, quite generally ∆L = 2 contributions will then be additionally

suppressed by the mixing matrix elements. Consequently, the ∆L = 1 part is expected to

dominate and the shift ∆τµ can be neglected. On the other hand, for very special structures of

the VHℓ matrix, the double GIM suppression of ∆L = 2 with respect to ∆L = 1 contributions

could be compensated by the VHℓ factors. Therefore it is safer to use the more general

expressions given above.

6.5.6 (g − 2)µ

The anomalous magnetic moment of the muon aµ = (g − 2)µ/2 provides an excellent test for

physics beyond the SM and has been measured very precisely at the E821 experiment [107]

in Brookhaven. The latest result of the (g − 2) Collaboration of E821 reads

aexp
µ = (11659208.0 ± 6.3) · 10−10 , (6.5.121)

whereas the SM prediction is given by [108]

aSM
µ = aQED

µ + aew
µ + ahad

µ = (11659180.4 ± 5.1) · 10−10 . (6.5.122)

While the QED and electroweak contributions to aSM
µ are known very precisely [109, 110], the

theoretical uncertainty is dominated by the hadronic vacuum polarization and light-by-light

contributions. These contributions have been evaluated in [108, 111, 112, 113].

The anomalous magnetic moment aµ can be extracted from the photon-muon vertex

function Γµ(p′, p)

ū(p′)Γµ(p′, p)u(p) = ū(p′)
[
γµFV (q2) + (p + p′)µFM (q2)

]
u(p) , (6.5.123)
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Figure 6.13: Diagrams contributing to (g − 2)µ in the LHT model.

where the anomalous magnetic moment of the muon aµ can be read off as

aµ = −2mFM (0) . (6.5.124)

The diagrams which yield new contributions to aµ in the LHT model are shown in Fig. 6.13.

They either have a heavy neutral gauge boson (ZH or AH) and two heavy charged leptons

ℓiH (i = 1, 2, 3) or two heavy charged gauge bosons (W±
H ) and one heavy neutrino νiH (i =

1, 2, 3) running in the loop.

Calculating the diagrams in Fig. 6.13 and using the Feynman rules given in [17], the

contributions of the new particles for each generation i = 1, 2, 3 are found to be:

[aµ]
i
X=AH ,ZH

=
1

2π2

m2
µ

M2
X

∣
∣CiX

∣
∣
2
ri

{(
5

6
− 5

2
ri + r2i +

(
r3i − 3r2i + 2ri

)
ln
ri − 1

ri

)

+
mℓ
Hi

2

2M2
X

(
5

6
+

3

2
ri + r2i +

(
r2i + r3i

)
ln
ri − 1

ri

)}

, (6.5.125)

[aµ]
i
X=WH

= − 1

4π2

m2
µ

M2
X

∣
∣CiX

∣
∣
2
ri

{

−2

(
5

6
− 3

2
bi + b2i +

(
b2i − b3i

)
ln
bi + 1

bi

)

− mℓ
Hi

2

M2
X

(
5

6
+

5

2
bi + b2i −

(
2bi + 3b2i + b3i

)
ln
bi + 1

bi

)}

,(6.5.126)

where

ri =

(

1 − mℓ
Hi

2

M2
X

)−1

, b =
mℓ
Hi

2

M2
X

ri (6.5.127)

and

CiAH
=
g′

20
V iµ
Hℓ , CiZH

=
g

4
V iµ
Hℓ , CiWH

=
g

2
√

2
V iµ
Hℓ . (6.5.128)

The parameter mℓ
Hi in (6.5.125) and (6.5.126) denotes the mass of the mirror leptons while

MX is the mass of the heavy gauge bosons. We expanded our results in the small parameter

mµ/MX . Our results in (6.5.125) and (6.5.126) for the muon anomalous magnetic moment

are confirmed by the formulae in [114] for general couplings.

Replacing the parameters ri and bi by the more convenient parameter yi, defined in
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(6.5.75), leads us to the following expressions

[aµ]ZH
=

√
2GF

32π2

v2

f2
m2
µ

3∑

i=1

∣
∣
∣V

iµ
Hℓ

∣
∣
∣

2
L1(yi) , (6.5.129)

[aµ]AH
=

√
2GF

160π2

v2

f2
m2
µ

3∑

i=1

∣
∣
∣V

iµ
Hℓ

∣
∣
∣

2
L1(y

′
i) , (6.5.130)

[aµ]WH
=

−
√

2GF
32π2

v2

f2
m2
µ

3∑

i=1

∣
∣
∣V

iµ
Hℓ

∣
∣
∣

2
L2(yi) , (6.5.131)

where the functions L1 and L2 are given in Appendix A.5.

Our final result for aµ in the LHT model therefore is

aµ = [aµ]SM +

√
2GF

32π2

v2

f2
m2
µ

3∑

i=1

∣
∣
∣V

iµ
Hℓ

∣
∣
∣

2
[

L1(yi) − L2(yi) +
1

5
L1(y

′
i)

]

. (6.5.132)

While we disagree with [18], we confirm the result of [19] except that according to us the

factors (VHν)
∗
2i(VHν)2i and (VHℓ)

∗
2i(VHℓ)2i in equations (3.22)–(3.24) of that paper should be

replaced by |V iµ
Hℓ|2.

6.6 Numerical Impact of the LHT on Lepton Flavor Violating

Decays

6.6.1 Preliminaries and Benchmark Scenarios

In contrast to rare meson decays, the number of flavor violating decays in the lepton sector, for

which useful constraints exist, is rather limited. Basically only the constraints on Br(µ→ eγ),

Br(µ− → e−e+e−), R(µTi → eTi) and Br(KL → µe) can be mentioned here. The situation

may change significantly in the coming years and the next decade through the experiments

briefly discussed in the introduction.

In this section we want to analyze numerically various branching ratios that we have

calculated in Sections 6.5.1–6.5.6. In Subsection 6.6.3 we will extend our numerical analysis

by studying various ratios of branching ratios and comparing them with those found in the

MSSM. Our purpose is not to present a very detailed numerical analysis of all decays, but

rather to concentrate on the most interesting ones from the present perspective and indicate

rough upper bounds on all calculated branching ratios within the LHT model. To this end

we will first set f = 1TeV and consider three benchmark scenarios for the remaining LHT

parameters, as discussed below.

In Table 6.2 we collect the values of the input parameters that enter our numerical analysis.

In order to simplify the analysis, we will set all input parameters to their central values. As

all parameters are known with quite high precision, including the error ranges in the analysis
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would amount only to percent effects in the observables considered, which is clearly beyond

the scope of our analysis.

me = 0.5110MeV MW = 80.425(38)GeV

mµ = 105.66MeV α = 1/137

mτ = 1.7770(3)GeV GF = 1.16637(1) · 10−5 GeV−2

ττ = 290.6(10) · 10−3 ps [88] sin2 θW = 0.23122(15) [88]

Table 6.2: Values of the experimental and theoretical quantities used as input parameters.

Benchmark Scenarios

We will consider the following three scenarios:

Scenario A (red):

In this scenario we will choose

VHℓ = V †
PMNS , (6.6.133)

so that VHν ≡ 1, and mirror leptons have no impact on flavor violating observables in the

neutrino sector, such as neutrino oscillations. In particular we set the PMNS parameters to

[115]

sin θ12 =
√

0.300 , sin θ13 =
√

0.030 , sin θ23 =
1√
2
, δ13 = 65◦ , (6.6.134)

which is consistent with the experimental constraints on the PMNS matrix [88]. As no

constraints on the PMNS phases exist, we have taken δ13 to be equal to the CKM phase and

set the two Majorana phases to zero.

Furthermore, we take the mirror lepton masses to lie in the range

300GeV ≤ mℓ
Hi ≤ 1.5TeV , (i = 1, 2, 3) . (6.6.135)

Scenario B (green):

Here, we take

VHℓ = VCKM , (6.6.136)

so that [87]

θℓ12 = 13◦ , θℓ13 = 0.25◦ , θℓ23 = 2.4◦ , (6.6.137)

δℓ12 = 0 , δℓ13 = 65◦ , δℓ13 = 0 , (6.6.138)

and the mirror lepton masses in the range (6.6.135).
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Figure 6.14: Correlation between µ→ eγ and µ− → e−e+e− in the scenarios of Section 6.6.1.

In the right plot of Scenario C we show the contributions to µ− → e−e+e− from D̄′µe
odd

(purple,

lowermost), Z̄µe
odd

(orange, middle) and Ȳ µe
e,odd (light-blue, uppermost) separately. The shaded

area represents the experimental constraints.

Scenario C (blue):

Here we perform a general scan over the whole parameter space, with the only restriction

being the range (6.6.135) for mirror lepton masses.

At a certain stage we will investigate the dependence on mass splittings in the mirror

lepton spectrum.

µ → eγ, µ−
→ e−e+e− and µ − e Conversion

In Fig. 6.14 we show the correlation between µ → eγ and µ− → e−e+e− in the scenarios in

question together with the experimental bounds on these decays. We observe:

• In Scenario A the great majority of points is outside the allowed range, implying that

the VHℓ matrix must be much more hierarchical than VPMNS in order to satisfy the

present upper bounds on µ→ eγ and µ− → e−e+e−.
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• Also in Scenario B most of the points violate the current experimental bounds, although

VCKM is much more hierarchical than VPMNS. The reason is that the CKM hierarchy

s13 ≪ s23 ≪ s12 implies very small effects in transitions between the third and the first

generation, like τ → eγ, while allowing relatively large effects in the µ → e transitions.

Thus in order to satisfy the experimental constraints on µ → eγ and µ− → e−e+e− a

very different hierarchy of the VHℓ matrix is required, unless the mirror lepton masses

are quasi-degenerate.

• In Scenario C there are more possibilities, but also here a strong correlation between

µ → eγ and µ− → e−e+e− is observed. This is easy to understand, as both decays

probe dominantly the combinations of VHℓ elements χ
(µe)
i .

• For Scenario C, we also show the contributions to µ− → e−e+e− from D̄′µe
odd, Z̄µeodd and

Ȳ µe
e,odd separately. We observe that the dominant contributions come from the functions

Z̄µeodd and above all Ȳ µe
e,odd, while the contribution of the operator Q7, given by D̄′µe

odd, is

by roughly two orders of magnitude smaller and thus fully negligible. This should be

contrasted with the case of the MSSM where the dipole operator is dominant. We will

return to the consequences of this finding in the next subsection.

• We emphasize that the strong correlation between µ → eγ and µ− → e−e+e− in the

LHT model is not a common feature of all extensions of the SM, in which the structure

of µ− → e−e+e− is generally much more complicated than in the LHT model. It is

clear from Fig. 6.14 that an improved upper bound on µ→ eγ by MEG in 2007 and in

particular its discovery will provide important information on µ− → e−e+e− within the

model in question.

Next, in Fig. 6.15 we show the correlation between the µ − e conversion rate in 48
22Ti

and Br(µ → eγ), after imposing the existing constraints on µ → eγ and µ− → e−e+e−. We

observe that this correlation is much weaker than the one between µ→ eγ and µ− → e−e+e−.

Furthermore, we find that the µ − e conversion rate in Ti is likely to be found close to the

current experimental upper bound, and that in some regions of the parameter space the latter

bound is even the most constraining one.

τ → µγ and τ → eγ

In Fig. 6.16 we show the correlation between Br(τ → µγ) and Br(τ → eγ) in Scenario C,

imposing the experimental bounds on µ→ eγ and µ− → e−e+e−. We observe that they both

can be individually as high as ∼ 8 · 10−10, but the highest values of Br(τ → µγ) correspond

generally to much lower values of Br(τ → eγ) and vice versa. Still simultaneous values of

both branching ratios as high as 2 · 10−10 are possible.



6.6 Numerical Impact of the LHT on Lepton Flavor Violating Decays 97

1. ´ 10-151. ´ 10-141. ´ 10-131. ´ 10-121. ´ 10-11
BrHΜ®eΓL

1. ´ 10-15

1. ´ 10-13

1. ´ 10-11

RHΜTi®eTiL

Figure 6.15: µ − e conversion rate in 48
22Ti as a function of Br(µ → eγ), after imposing the

existing constraints on µ → eγ and µ− → e−e+e−. The shaded area represents the current

experimental upper bound on R(µTi → eTi).
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Figure 6.16: Correlation between Br(τ → eγ) and Br(τ → µγ).
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Figure 6.17: Br(τ → µπ) (dark-blue) and Br(τ → µη) (light-blue) as functions of Br(τ →
µγ).

τ → µπ, µη, µη′ and τ → µγ

In Fig. 6.17 we show Br(τ → µπ) and Br(τ → µη) as functions of Br(τ → µγ), imposing

the constraints from µ → eγ and µ− → e−e+e−. We find that Br(τ → µπ) can reach values

as high as 2 · 10−9 and Br(τ → µη) can be as large as 7 · 10−10, which is still by more than

one order of magnitude below the recent bounds from Belle and BaBar. We do not show

Br(τ → µη′) as it is very similar to Br(τ → µη).

Completely analogous correlations can be found also for the corresponding decays τ →
eπ, eη, eη′ and τ → eγ. Indeed, this symmetry between τ → µ and τ → e systems turns out

to be a general feature of the LHT model, that can be found in all decays considered in the

present section. We will return to this issue in Subsection 6.6.3.

An immediate consequence of these correlations is that, as in the case of τ → µγ and

τ → eγ, the highest values for τ → µπ are possible if τ → eπ is relatively small, and vice

versa. Still the corresponding branching ratios can be simultaneously enhanced to 3 · 10−10.

Analogous statements apply to τ → µ(e)η and τ → µ(e)η′.

6.6.2 Upper Bounds for LFV Processes

To estimate the impact of the LHT on all LFV processes we present in Table 6.3 an overview

of upper bounds of all branching ratios considered so far, together with the corresponding

experimental limits. In deriving these bounds we imposed the constraints coming from µ →
eγ and R(µT i → eT i). The number in brackets are obtained by imposing the additional

constraint R(µT i → eT i), which has only a minor impact on the observables discussed. We

can also see from Table 6.3 that the limits strongly depend on the choice of the scale f which

has been set to f = 500GeV and f = 1000GeV with the range (6.6.135) for the mirror lepton
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decay f = 1000GeV f = 500GeV exp. upper bound

µ→ eγ 1.2 · 10−11 (1 · 10−11) 1.2 · 10−11 (1 · 10−11) 1.2 · 10−11 [91]

µ− → e−e+e− 1.0 · 10−12 (1 · 10−12) 1.0 · 10−12 (1 · 10−12) 1.0 · 10−12 [97]

µTi → eTi 2 · 10−10 (5 · 10−12) 4 · 10−11 (5 · 10−12) 4.3 · 10−12 [99]

τ → eγ 8 · 10−10 (7 · 10−10) 1 · 10−8 (1 · 10−8) 9.4 · 10−8 [92]

τ → µγ 8 · 10−10 (8 · 10−10) 2 · 10−8 (1 · 10−8) 1.6 · 10−8 [92]

τ− → e−e+e− 7 · 10−10 (6 · 10−10) 2 · 10−8 (2 · 10−8) 2.0 · 10−7 [116]

τ− → µ−µ+µ− 7 · 10−10 (6 · 10−10) 3 · 10−8 (3 · 10−8) 1.9 · 10−7 [116]

τ− → e−µ+µ− 5 · 10−10 (5 · 10−10) 2 · 10−8 (2 · 10−8) 2.0 · 10−7 [117]

τ− → µ−e+e− 5 · 10−10 (5 · 10−10) 2 · 10−8 (2 · 10−8) 1.9 · 10−7 [117]

τ → µπ 2 · 10−9 (2 · 10−9) 5.8 · 10−8 (5.8 · 10−8) 5.8 · 10−8 [92]

τ → eπ 2 · 10−9 (2 · 10−9) 4.4 · 10−8 (4.4 · 10−8) 4.4 · 10−8 [92]

τ → µη 6 · 10−10 (6 · 10−10) 2 · 10−8 (2 · 10−8) 5.1 · 10−8 [92]

τ → eη 6 · 10−10 (6 · 10−10) 2 · 10−8 (2 · 10−8) 4.5 · 10−8 [92]

τ → µη′ 7 · 10−10 (7 · 10−10) 3 · 10−8 (3 · 10−8) 5.3 · 10−8 [92]

τ → eη′ 7 · 10−10 (7 · 10−10) 3 · 10−8 (3 · 10−8) 9.0 · 10−8 [92]

Table 6.3: Upper bounds on LFV decay branching ratios in the LHT model, for two different

values of the scale f , after imposing the constraints on µ → eγ and µ− → e−e+e−. The

numbers given in brackets are obtained after imposing the additional constraint R(µTi →
eTi) < 5 · 10−12. For f = 500GeV, also the bounds on τ → µπ, eπ have been included. The

current experimental upper bounds are also given.

masses in both cases. In particular the upper bounds on τ decays increase by two orders of

magnitude when the scale f is lowered to 500GeV. Moreover, the recent upper bounds for

τ → µπ, eπ could be violated by roughly a factor 5. Therefore, in deriving the LHT bounds

for f = 500GeV, we also have taken into account the latter bounds.

6.6.3 Comparing the LHT to Supersymmetry

We have seen in the previous subsection that many charged LFV processes could reach within

the LHT model a level accessible to experiments performed in this decade. However, in view

of many parameters involved, it is useful to look for correlations between various branching

ratios that are less parameter dependent than individual branching ratios. In [20] a number

of correlations characteristic for LFV decays in the MSSM in the absence of significant Higgs

contributions have been worked out by Ellis et al. and have been analyzed in [21, 22, 24]. In

particular, these correlations have been modified by Paradisi [23, 24, 25] in the presence of

significant Higgs contributions.

These different patterns of LFV in the LHT and the MSSM can best be seen by studying
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ratio LHT MSSM (dipole) MSSM (Higgs)

Br(µ−→e−e+e−)
Br(µ→eγ) 0.4. . . 2.5 ∼ 6 · 10−3 ∼ 6 · 10−3

Br(τ−→e−e+e−)
Br(τ→eγ) 0.4. . . 2.3 ∼ 1 · 10−2 ∼ 1 · 10−2

Br(τ−→µ−µ+µ−)
Br(τ→µγ) 0.4. . . 2.3 ∼ 2 · 10−3 0.06 . . . 0.1

Br(τ−→e−µ+µ−)
Br(τ→eγ) 0.3. . . 1.6 ∼ 2 · 10−3 0.02 . . . 0.04

Br(τ−→µ−e+e−)
Br(τ→µγ) 0.3. . . 1.6 ∼ 1 · 10−2 ∼ 1 · 10−2

Br(τ−→e−e+e−)
Br(τ−→e−µ+µ−)

1.3. . . 1.7 ∼ 5 0.3. . . 0.5

Br(τ−→µ−µ+µ−)
Br(τ−→µ−e+e−) 1.2. . . 1.6 ∼ 0.2 5. . . 10

R(µTi→eTi)
Br(µ→eγ) 10−2 . . . 102 ∼ 5 · 10−3 0.08 . . . 0.15

Table 6.4: Comparison of various ratios of branching ratios in the LHT model and in the

MSSM without and with significant Higgs contributions.

certain correlations between branching ratios that have been previously considered in the con-

text of the MSSM. We find that the ratios in Table 6.4 could allow for a transparent distinction

between the LHT model and the MSSM. In particular, the ratios involving Br (ℓi → ℓjγ) turn

out to be of O (1) in the LHT model, while being O (α) in the MSSM. Also the µ−e conversion

rate in nuclei, normalized to Br (µ→ eγ), can be significantly enhanced in the LHT model,

with respect to the MSSM without significant Higgs contributions. However, the distinction

in this case is not as clear as in the case of Br(ℓ−i → ℓ−j ℓ
+
j ℓ

−
j )/Br(ℓi → ℓjγ).

The significant difference in the pattern of the LFV branching ratios in the LHT model

from the MSSM allows for a clear distinction of these two models. The origin for this difference

is the fact, that in the MSSM the LFV rates are dominated by the dipole operator, while

in the LHT the dipole contributions to the decays ℓ−i → ℓ−j ℓ
+
j ℓ

−
j and ℓ−i → ℓ−j ℓ

+
k ℓ

−
k can be

neglected compared to the Z0-penguin and box diagram contributions. The reason is that

the neutral gauge boson (AH , ZH) contributions annihilate with the W±
H contributions to the

dipole operator functions D̄′ij
odd, but combine constructively in the case of the Ȳ ′ij

k,odd, relevant

for the Z0-penguin and box contributions. Furthermore, the characteristic enhancement of

dipole operators due to large tanβ in the MSSM does exist in the LHT model.

However, in the presence of significant Higgs contributions this distinction between the

MSSM and the LHT is less emphasized in τ decays with µ in the final state. This makes it

difficult to distinguish between both models because of the parametric uncertainties in the

relevant MSSM ratios, as seen in 6.4. In addition, the ratio R(µT i → eT i)/Br(µ → eγ) is

larger than α, making it harder to discriminate between the LHT model and the MSSM.
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Summary and Outlook

In this work we have presented a detailed analysis of several prominent FCNC processes as

well as LFV observables in the context of the Littlest Higgs model without and with T-parity,

whose basic structure is based on an idea by Arkani-Hamed et al. [4].

We started this thesis with a brief overview of the SM and its basic ingredients, where

we have seen that it is extremely successful in describing the fundamental interactions of

particles. However, we noticed that the SM suffers from a number of shortcomings and is

therefore regarded as an effective theory. Among these problems one of the most striking

questions is the unknown mechanism of electroweak symmetry breaking, which requires the

introduction of a scalar Higgs boson. However, being not protected by any symmetry, the

Higgs particle receives radiative corrections proportional to the square of the cut-off Λ, thus

being the origin of the little hierarchy problem.

To overcome this problem many extensions of the SM have been developed of which

the most prominent ones are supersymmetry or theories with extra space-time dimensions.

Starting in Chapter 3 from deconstructed gauge field theories a further, very interesting

alternative, denoted as the Little Higgs model, has been proposed in the last years by Arkani-

Hamed et al. [47, 49]. Although Little Higgs models have not been worked out in the same

detail as the MSSM, they nonetheless represent an interesting alternative in explaining why

we have not yet seen any evidence of the mechanism behind EWSB in precision experiments.

In the present thesis we have studied the LH model with and without T-parity, which is

based on the symmetry breaking pattern SU(5)/SO(5) [4]. In such a framework the Higgs

is realized as a pseudo-Goldstone boson and can be kept naturally light without fine-tuning.

Moreover, it is necessary to introduce only a very small number of new, weakly coupled

particles at the TeV scale to stabilize the Higgs mass. As discussed in Chapter 4 this includes

one heavy copy each of the electroweak gauge bosons, the top quark and a new scalar triplet

coupled to the Higgs. In view of the constraints on the new physics scale coming from

EWPT we started to analyze the impact of this model on FCNC. After the correction of

several Feynman rules, that have already been derived in [5], we were able to calculate the

101
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relevant X and Y functions relevant for the phenomenology of the rare decays K+ → π0νν̄,

KL → π0νν̄ and Bs,d → µ+µ−. Finally one should always be aware of the fact that the LH

model is an effective field theory with a cut-off in the range of 10TeV, beyond which one has

to construct a UV-completion [48]. This sensitivity to the UV completion, which is reflected

by a logarithmic divergence on the cut-off, is also present in our calculation and thus lowers

the model’s ability to make precise predictions.

As already mentioned, it soon turned out that the original LH models is severely con-

strained by electroweak precision tests, which requires the scale f to be higher than 3TeV.

Such a scale however re-introduces a certain amount of fine-tuning in the theory and is against

the spirit of the original construction. To evade these problems connected with EWPT Cheng

and Low proposed to introduce a new, discrete symmetry, called T-parity [9]. Embedding this

new symmetry into the LH model they were able to avoid the stringent experimental bounds

since the new particles in the LHT are assigned to be odd under T-parity, which prevented

them from contributing to electroweak precision observables at tree level. Thus, as seen in

Chapter 5, the scale of new physics f can be lowered to values f ∼> 500GeV while still being

consistent with EWPT.

Having now at hand the LHT as a more viable scenario to describe physics beyond the SM

we decided to extend our analysis of FCNC in the LH model to the LHT model. Together with

a previous work [15] on quantities related to particle-antiparticle mixing and B → Xsγ the

rare K and B decays in [17] provide a general description of FCNC processes in this model.

In Chapter 6 of this thesis we focused on the calculation of the Xi, Yi and Zi, i = K,d, s,

which are the responsible short distance functions for several rare decays. In contrast to

models with minimal flavor violation the short distance functions Xi, Yi and Zi are complex

quantities which depend on the index i and thus signal the breakdown of universality. With

the help of these functions we could straightforwardly calculate several branching ratios of

interesting rare decays like K+ → π0νν̄, KL → π0νν̄, Bs,d → µ+µ− and KL → π0ℓ+ℓ−.

The most evident departures from the SM predictions are found for CP-violating observables

like the branching ratio KL → π0νν̄ but large deviations from the SM expectations are also

possible for the branching ratios Br (K+ → π+νν̄) and Br
(
KL → π0ℓ+ℓ−

)
. In contrast to

the large effects in the K system the branching ratios for Bs,d → µ+µ− are only moderately

modified by at most 20%−30%. Finally, we have seen that universality of new physics effects

can be largely broken, in particular between K and Bs,d systems.

In contrast to rare K and B decays, where the SM contributions play an important

role, in the LHT model the mirror fermion contributions to LFV processes play the by far

dominant role, since in the SM LFV effects are suppressed by the smallness of the neutrino

masses. Moreover, the absence of QCD corrections and hadronic matrix elements allow for

predictions that are determined by perturbation theory. In this thesis we concentrated on the

radiative decays ℓi → ℓjγ, semileptonic τ decays like τ → ℓP , P = π, η, η′, µ− → e−e+e−,

τ− → e−e+e−, τ− → µ−µ+µ−, µ → e conversion in nuclei, τ− → µ−e+e−, τ− → e−µ+µ−
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and finally (g− 2)µ. As seen in Table 6.3 several branching ratios can reach the experimental

upper bounds and are interesting in the view of new experiments. The contributions of

mirror leptons to (g−2)µ are negligible and thus the discrepancy between SM prediction and

experimental data cannot be explained. The correlation between various branching ratios also

allow for a clear distinction between the MSSM and the LHT, since in the MSSM without

significant Higgs contributions the dipole operator plays the dominant role while in the LHT

model penguin and box contributions are much more important. Although this distinction is

less obvious in the case of the MSSM with significant Higgs contributions the ratios involving

ℓi → ℓjγ and decays with electrons in the final state still offer an excellent opportunity to

distinguish these two models.

We want to conclude this thesis with the message that both FCNC and LFV processes

provide a formidable framework to test the LH and LHT model. As we have seen, in spite of

the impressive agreement of the SM with the available data it is still possible to obtain large

deviations form the Standard Model’s predictions. In particular, the correlations between

different LFV processes should turn out to be very useful to distinguish the LHT from various

other models, like the MSSM and thus provide an interesting alternative in the search for new

physics to the high-energy processes at the LHC. Apart from the MSSM, which is getting more

and more under pressure by precision tests, these models represent one of the most promising

candidates for extensions of the SM. Now, it is up to the next generation of experiments, like

the LHC, to uncover the unknown pattern of EWSB.
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Appendix A

Relevant Formulae and Feynman

Rules

A.1 Classes of Diagrams in the LH Model

In this section, we show all the diagrams contributing to the rare decays KL → π0νν̄ and

K+ → π+νν̄ in the Littlest Higgs model without T-parity. The different classes are arranged

according to their contributions given in (4.3.84) – (4.3.89).
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Figure A.1: Class 1. Penguin and box diagrams with SM particles and AH contributing to

K → πνν̄ in the LH model at O(v2/f2).
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Figure A.2: Class 2. Penguin and box diagrams with WH and ZH contributing to K → πνν̄

in the LH model at O(v2/f2).
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Figure A.3: Class 3. Top and heavy top quark contributions to K → πνν̄ in the LH model

at O(v2/f2) which are proportional to x2
L. The diamonds correspond to terms proportional

to x2
L, which were not considered in class 1.
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Figure A.4: Class 4. Penguin and box contributions toK → πνν̄ in the LH model at O(v2/f2)

which are proportional to v4/f4c4x2
L.
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Figure A.6: Class 6. Penguin contributions to K → πνν̄ in the LH model at O(v2/f2) with
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A.2 Feynman Rules in the LHT Model

A.2.1 Fermion–Goldstone Boson Couplings

In this section, we present the vertex rules concerning the interactions between the fermions

and the Goldstone bosons that are needed for the calculation of the diagrams in the LHT.

Further Feynman rules involving fermions and heavy/light gauge bosons are not repeated

here and the reader is referred to [11, 16, 17].

Fermion couplings to SM Goldstone bosons
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The leading order contributions to the couplings of fermions to the heavy Goldstone

bosons have already been given in [16]. We included also O(v2/f2) corrections, necessary for

the calculation of rare decays, and the contributions proportional to the SM fermion masses.

Fermion couplings to heavy Goldstone bosons
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ūiHω
0t g

2MZH

[

mu
Hi

(

1 + v2

f2

(
1
8 − xH

tan θW
− x2

L

2

))

PL −mtPR

]

(VHu)i3
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A.2.2 Triple Gauge Boson–Goldstone Boson Couplings

The kinetic term for the non-linear sigma model field Σ is given by

L =
f2

8
Tr
[

(DµΣ)† (DµΣ)
]

, (A.2.1)

where the covariant derivative is defined through

DµΣ = ∂µΣ −
√

2i

2∑

j=1

[
gW a

jµ

(
QajΣ + ΣQaTj

)
+ g′Bjµ

(
YjΣ + ΣY Tj

)]
. (A.2.2)

From this term, taking into account the mixing of the Goldstone boson and scalar fields,

the interactions of the Goldstone boson fields with the SM and heavy gauge bosons can be

obtained.

All momenta are defined to be incoming.
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Gauge boson–Goldstone boson interactions

W+µ
L W−ν

H η g
4MAH

(
5

tan θW
+ 4xH

)
v2

f2 g
µν

W+µ
L W−ν

H ω0 −gMZH

(

1 − v2

4f2

)

gµν

W+µ
H ZνLω

− −gMWH
cos θW

(

1 − v2

4f2 cos2 θW

)

gµν

W+µ
H AνLω

− −eMWH
gµν

W+µ
L ZνHω

− gMWH

(

1 − v2

4f2

)

gµν

W+µ
L AνHω

− gMWH
v2

f2

(
tan θW

4 − xH

)

gµν

W+µ
L ZνLπ

− gMWL

sin2 θW

cos θW
gµν

W+µ
L AνLπ

− −eMWL
gµν

W+µ
H AνHπ

− g′MWL
gµν

ω+(p)ω−(q)ZL ig cos θW

(

1 − v2

8f2 cos2 θW

)

(p− q)µ

ω+(p)ω−(q)AL ie (p− q)µ

π+(p)π−(q)ZL
ig(1−2 sin2 θW )

2 cos θW
(p− q)µ

π+(p)π−(q)AL ie (p− q)µ

ω+(p)π−(q)AH −ig′v3f (p− q)µ

ω+(p)ω0(q)W−µ
L −ig

(

1 − v2

8f2

)

(p − q)µ

ω+(p)η(q)W−µ
L i25g+24g′xH

24
√

5
v2

f2 (p − q)µ

π+(p)ω0(q)W−µ
H −ig2 vf (p − q)µ

π+(p)η(q)W−µ
H −i

√
5g
6

v
f (p − q)µ

π+(p)π0(q)W−µ
L −ig2 (p− q)µ
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A.3 The Functions Ui and Vi

In the following we list the functions that enter the study of rare decays in the LH model,

where xi = m2
i /M

2
W±

L

and y = M2
W±

H

/M2
W±

L

. Both the results relevant for the X and Y

function are collected.

U1(xt, y) = − (1 + 4xL) xt
320

S1 +
(1 + 4xL) (−7 + xt)xt

640 (−1 + xt)

+
(1 + 4xL) xt

(
4 − 2xt + x2

t

)
log xt

320 (−1 + xt)
2

− axt (11 + 4xt)

8 (−1 + xt)
− 3axt

(
−8 + 2xt + x2

t

)
log xt

8 (−1 + xt)
2 +

3axt log y

8
(A.3.1)

U2(xt, y) = − xt (4 − 7xt)

16(−1 + xt)
− 3xt

(
8 − 6xt − x2

t

)
log xt

16(−1 + xt)2
− xt log y

4
(A.3.2)

U3(xt, xT ) =
−3 + 2xt − 2x2

t

8(−1 + xt)
− xt

(
−4 − xt + 2x2

t

)
log xt

8(−1 + xt)2
+

(3 + 2xt) log xT
8

(A.3.3)

U4(xT , y) =
3xT y

16 (−xT + y)
+

3xT y
2 log xT

16(xT − y)2
− 3xT y

2 log y

16(xT − y)2
− xT log y

16
(A.3.4)

U5(xt, xT ) = − (−3 + 4xL)xT
320

S1 +

(
−7 − 12xL + 80x2

L

)
xT

640
+

(−3 + 4xL)xT log xT
320

+
3axT y (log xT − log y)

8 (xT − y)
(A.3.5)

U6(x̂T ) = − S2

xL
+

x̂T
(1 − x̂T )

+
x̂2
T log x̂T

(1 − x̂T )2
(A.3.6)

V1(xt, y) = − (1 + 4xL) xt
320

S1 +
(1 + 4xL) (−7 + xt)xt

640 (−1 + xt)

+
(1 + 4xL) xt

(
4 − 2xt + x2

t

)
log xt

320 (−1 + xt)
2

− axt (−13 + 4xt)

8 (−1 + xt)
− 3ax2

t (2 + xt) log xt

8 (−1 + xt)
2 +

3axt log y

8
(A.3.7)

V2(xt, y) = − xt (4 − 7xt)

16(−1 + xt)
− 3x2

t (2 − xt) log xt
16(−1 + xt)2

− xt log y

4
(A.3.8)

V3(xt, xT ) =

(
3 + 2xt − 2x2

t

)

8(−1 + xt)
− xt

(
2 − xt + 2x2

t

)
log xt

8(−1 + xt)2
+

(3 + 2xt) log xT
8

(A.3.9)

V4(xT , y) =
3xT y

16 (−xT + y)
+

3xT y
2 log xT

16(xT − y)2
− 3xT y

2 log y

16(xT − y)2
− xT log y

16
(A.3.10)

V5(xt, xT ) = − (−3 + 4xL)xT
320

S1 +

(
−7 − 12xL + 80x2

L

)
xT

640
+

(−3 + 4xL)xT log xT
320

+
3axT y (log xT − log y)

8 (xT − y)
(A.3.11)
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A.4 Functions Relevant for Rare Decays

In this appendix we list the functions that entered the present study of rare and CP-violating

K and B decays in the LHT model. Both the SM contributions and the new physics contri-

butions coming from the T-even and T-odd sectors are collected. The variables are defined

as follows:

xq =
m2
q

M2
WL

, xT =
m2
T+

M2
WL

(q = c, t) , (A.4.1)

zi =
m2
Hi

M2
WH

, z′i =
m2
Hi

M2
AH

= zi a with a =
5

tan2 θW
, (i = 1, 2, 3) , (A.4.2)

y =
m2
Hℓ

M2
WH

=
m2
Hℓ

M2
ZH

, y′ = ya , η =
1

a
. (A.4.3)

XSM(xt) =
xt
8

[
xt + 2

xt − 1
+

3xt − 6

(xt − 1)2
log xt

]

(A.4.4)

YSM(xt) =
xt
8

[
xt − 4

xt − 1
+

3xt
(xt − 1)2

log xt

]

(A.4.5)

ZSM(xt) = −1

9
log xt +

18x4
t − 163x3

t + 259x2
t − 108xt

144(xt − 1)3

+
32x4

t − 38x3
t − 15x2

t + 18xt
72(xt − 1)4

log xt (A.4.6)

C0(y) =
y

8

[
y − 6

y − 1
+

3y + 2

(y − 1)2
log y

]

(A.4.7)

D0(y) = −4

9
log y +

−19y3 + 25y2

36(y − 1)3
+
y2(5y2 − 2y − 6)

18(y − 1)4
log y (A.4.8)

E0(y) = −2

3
log y +

y2(15 − 16y + 4y2)

6(y − 1)4
log y +

y(18 − 11y − y2)

12(1 − y)3
(A.4.9)

D′
0(y) = −(3y3 − 2y2)

2(y − 1)4
log y +

(8y3 + 5y2 − 7y)

12(y − 1)3
(A.4.10)

E′
0(y) =

3y2

2(y − 1)4
log y +

(y3 − 5y2 − 2y)

4(y − 1)3
(A.4.11)

U3(xt, xT ) =
−3 + 2xt − 2x2

t

8(−1 + xt)
− xt

(
−4 − xt + 2x2

t

)
log xt

8(−1 + xt)2
+

(3 + 2xt) log xT
8

(A.4.12)

V3(xt, xT ) =

(
3 + 2xt − 2x2

t

)

8(−1 + xt)
− xt

(
2 − xt + 2x2

t

)
log xt

8(−1 + xt)2
+

(3 + 2xt) log xT
8

(A.4.13)
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(D′)SM = D′
0(xt) (A.4.14)

(D′)LHT = (D′)even +
1

λ
(s)
t

T odd
D′ (A.4.15)

(D′)even = D′
0(xt) +

v2

f2
x2
L

[

D′
0(xT ) −D′

0(xt)
]

(A.4.16)

T odd
D′ =

1

4

v2

f2

[

ξ
(s)
2

(
D′

odd(z2) −D′
odd(z1)

)
+ ξ

(s)
3

(
D′

odd(z3) −D′
odd(z1)

)]

(A.4.17)

D′
odd(zi) = D′

0(zi) −
1

6
E′

0(zi) −
1

30
E′

0(z
′
i) (A.4.18)

R2(zi) = −
[
zi log zi
(1 − zi)2

+
1

1 − zi

]

(A.4.19)

F2(zi) = −1

2

[
z2
i log zi

(1 − zi)2
+

1

1 − zi

]

(A.4.20)

F νν̄ (zi, y;WH) =
3

2
zi − F5 (zi, y) − 7F6 (zi, y) − 9U (zi, y) (A.4.21)

Fµµ̄ (zi, y;WH) =
3

2
zi − F5 (zi, y) − 7F6 (zi, y) + 3U (zi, y) (A.4.22)

F5 (zi, y) =
z3
i log zi

(1 − zi) (y − zi)
+

y3 log y

(1 − y) (zi − y)
(A.4.23)

F6 (zi, y) = −
[

z2
i log zi

(1 − zi) (y − zi)
+

y2 log y

(1 − y) (zi − y)

]

(A.4.24)

U (zi, y) =
z2
i log zi

(zi − y) (1 − zi)
2 +

y2 log y

(y − zi) (1 − y)2
+

1

(1 − zi) (1 − y)
(A.4.25)

G (zi, y;ZH) = −3

4
U (z, y) (A.4.26)

G1

(
z′i, y

′
i;AH

)
=

1

25a
G
(
z′i, y

′
i;ZH

)
(A.4.27)

G2 (zi, y; η) = − 3

10a

[
z2
i log zi

(1 − zi) (η − zi) (zi − y)

+
y2 log y

(1 − y) (η − y) (y − zi)
+

η2 log η

(1 − η) (zi − η) (η − y)

]

(A.4.28)
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A.5 Functions Relevant for Lepton Flavor Violating Decays

Finally, in this appendix we list the functions relevant for the study of LFV decays with the

variables being defined in Appendix A.4.

D0(x) = −4

9
log x+

−19x3 + 25x2

36(x− 1)3
+
x2(5x2 − 2x− 6)

18(x − 1)4
log x (A.5.29)

E0(x) = −2

3
log x+

x2(15 − 16x+ 4x2)

6(1 − x)4
log x+

x(18 − 11x− x2)

12(1 − x)3
(A.5.30)

D′
0(x) = −3x3 − 2x2

2(x− 1)4
log x+

8x3 + 5x2 − 7x

12(x− 1)3
(A.5.31)

E′
0(x) =

3x2

2(x− 1)4
log x+

x3 − 5x2 − 2x

4(x− 1)3
(A.5.32)

H(yi) = D′
0 (yi) −

2

3
E′

0 (yi) (A.5.33)

R2(yi) = −
[
yi log yi
(1 − yi)2

+
1

1 − yi

]

(A.5.34)

F2(yi) = −1

2

[
y2
i log yi

(1 − yi)2
+

1

1 − yi

]

(A.5.35)

F uū (yi, z;WH) =
3

2
yi − F5 (yi, z) − 7F6 (yi, z) − 9U (yi, z) (A.5.36)

F dd̄ (yi, z;WH) =
3

2
yi − F5 (yi, z) − 7F6 (yi, z) + 3U (yi, z) (A.5.37)

F5 (yi, z) =
y3
i log yi

(1 − yi) (z − yi)
+

z3 log z

(1 − z) (yi − z)
(A.5.38)

F6 (yi, z) = −
[

y2
i log yi

(1 − yi) (z − yi)
+

z2 log z

(1 − z) (yi − z)

]

(A.5.39)

U (yi, z) =
y2
i log yi

(yi − z) (1 − yi)
2 +

z2 log z

(z − yi) (1 − z)2
+

1

(1 − yi) (1 − z)
(A.5.40)

G (yi, z;ZH) = −3

4
U (yi, z) (A.5.41)

G1

(
y′i, z

′;AH
)

=
1

25a
G
(
y′i, z

′;ZH
)

(A.5.42)

G2 (yi, z; η) = − 3

10a

[
y2
i log yi

(1 − yi) (η − yi) (yi − z)

+
z2 log z

(1 − z) (η − z) (z − yi)
+

η2 log η

(1 − η) (yi − η) (η − z)

]

(A.5.43)
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Codd(yi) =
1

64

v2

f2

[

yiSodd − 8yiR2(yi) +
3

2
yi + 2yiF2(yi)

]

(A.5.44)

Dodd(yi) =
1

4

v2

f2

[

D0(yi) −
7

6
E0(yi) −

1

10
E0(y

′
i)

]

(A.5.45)

Sodd =
1

ε
+ log

µ2

M2
WH

−→ log
(4πf)2

M2
WH

(A.5.46)

F (zi, yj ;WH) =
1

(1 − zi)(1 − yj)

(

1 − 7

4
ziyj

)

+
z2
i log zi

(zi − yj)(1 − zi)2

(

1 − 2yj +
ziyj
4

)

−
y2
j log yj

(zi − yj)(1 − yj)2

(

1 − 2zi +
ziyj
4

)

(A.5.47)

A1(zi, yj ;ZH) = − 3

100a

[

1

(1 − z′i)(1 − y′j)
+

z′izi log z
′
i

(zi − yj)(1 − z′i)
2

−
y′jyj log y′j

(zi − yj)(1 − y′j)
2

]

(A.5.48)

A2(zi, yj ;ZH) = − 3

10

[

log a

(a− 1)(1 − z′i)(1 − y′j)
+

z2
i log zi

(zi − yj)(1 − zi)(1 − z′i)

−
y2
j log yj

(zi − yj)(1 − yj)(1 − y′j)

]

(A.5.49)

L1(yi) =
1

12(1 − yi)4
[
−8 + 38yi − 39y2

i + 14y3
i − 5y4

i + 18y2
i log yi

]
(A.5.50)

L2(yi) =
1

6(1 − yi)4
[
−10 + 43yi − 78y2

i + 49y3
i − 4y4

i − 18y3
i log yi

]
(A.5.51)
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• Ferner möchte ich mich recht herzlich auch bei allen anderen Kollegen William Bardeen,

Pham Hung, Stefan Recksiegel, Michael Spranger, Cecilia Tarantino, Andreas Weiler

und Elmar Wyszomirski bedanken. Ich bin mir bewusst, daß ohne ihre Mithilfe, Geduld

und Einsatzbereitschaft die Vielzahl an wissenschaftlichen Publikationen nicht möglich
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