
Technische Universität München
Fakultät für Informatik

Lehrstuhl III – Datenbanksysteme

Network-Aware Optimization in
Distributed Data Stream Management Systems

Diplom-Informatiker Univ.
Richard Bruno Kuntschke

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Florian Matthes

Prüfer der Dissertation:
1. Univ.-Prof. Alfons Kemper, Ph. D.
2. Univ.-Prof. Dr. Bernhard Seeger,

Philipps-Universität Marburg

Die Dissertation wurde am 17.09.2007 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 05.03.2008 angenommen.

Abstract

The management of streaming data in distributed environments is gaining importance in many
application areas such as sensor networks and e-science. This is mainly due to both, the need
for immediate reactions to important events in input streams as well as the requirement to ef-
ficiently handle enormous data volumes that are generated, for example, by modern scientific
experiments and observations. At the same time, data needs to be accessible by various collab-
orative, often geographically distributed communities and sciences. In this thesis, we address
the above issues by introducing a model and a prototype implementation of a distributed data
stream management system (DSMS), and by devising network-aware optimization techniques
for efficient resource usage in terms of computational load and network traffic in such a system.
We use the term StreamGlobe to denote both, the theoretical model of our DSMS as well as
its actual prototype implementation. The prototype serves as a research platform for evaluating
our optimization approaches which are at the core of this thesis. We further use an application-
specific astrophysical flavor of StreamGlobe called StarGlobe to demonstrate the applicability
and effectiveness of distributed stream processing in an actual astrophysical e-science scenario.

Scarce resources such as computational power and network bandwidth limit the number
of continuous queries a DSMS can handle concurrently. Making intelligent and efficient use
of these valuable resources is thus mandatory in order to offer the best service possible to
users. We achieve this goal by introducing data stream sharing, an optimization technique
based on in-network query processing and multi-subscription optimization. In-network query
processing enables us to distribute continuous query processing in the network while multi-
subscription optimization allows us to share data streams for satisfying multiple similar queries.
Thus, data stream sharing allows for efficient resource usage and provides a potential increase in
the number of queries a distributed DSMS can process concurrently with the available resources.

The effectiveness of data stream sharing depends on the existence of streams in the network
that are suitable for sharing. If the available preprocessed result streams of previously registered
queries do not contain all the necessary data required by a new query, sharing must resort to
using the corresponding original streams to satisfy the new query. To alleviate this problem, we
develop data stream widening, a technique that is able to alter existing streams to additionally
contain all the necessary data for a new query. We introduce an abstract property tree (APT)
and its extension, an abstract property forest (APF), for representing, matching, and merging
queries and data in a distributed DSMS to enable the combination of data stream sharing and
data stream widening. The improved representation of queries and streams allows for a more
effective optimization and additionally supports a larger class of queries.

Data stream widening requires the treatment of disjunctive predicates. However, traditional
query optimization largely neglects the handling of such predicates. We therefore devise, com-
pare, and discuss methods for matching and evaluating disjunctive predicates in the context of
data stream sharing and data stream widening. The presented approaches are generic and thus
applicable to other domains as well. Altogether, data stream sharing, data stream widening, and
the methods for handling disjunctive predicates add up to a powerful optimization approach for
continuous queries over data streams in a distributed DSMS such as StreamGlobe.

Acknowledgments

First of all, I would like to thank everyone who has helped with their support to make this
thesis possible. Especially, I thank my advisor, Prof. Alfons Kemper, Ph. D., for giving me the
opportunity and encouraging me to do this work. In many discussions, his advice and comments
provided invaluable guidance. I also thank Prof. Dr. Bernhard Seeger from Philipps-Universität
Marburg for volunteering to review my thesis.

Many thanks to my fellow researchers at the database group at TUM, especially to Dr.
Bernhard Stegmaier, who also supervised my diploma thesis and thus introduced me to the
topic of data stream research. I also thank the many other people who were active in the research
group during my work on this thesis and who were always helpful and provided for a pleasant
working atmosphere. This includes Martina-Cezara Albutiu, Stefan Aulbach, Veneta Dobreva,
Daniel Gmach, Prof. Dr. Torsten Grust, Benjamin Gufler, Dr. Markus Keidl, Prof. Dr. Birgitta
König-Ries, Stefan Krompaß, Manuel Mayr, Jessica Müller, Dr. Angelika Reiser, Jan Rittinger,
Tobias Scholl, Andreas Scholz, Dr. Stefan Seltzsam, Dr. Jens Teubner, Dr. Christian Wiesner,
Dr. Martin Wimmer and Bernhard Zeller. Special thanks to our secretary Evi Kollmann.

A large number of students have contributed to the work presented in this thesis over the
years and I thank them for their dedication. In particular, Franz Häuslschmid has implemented
large parts of the StreamGlobe prototype and has further implemented and helped with the
evaluation of the predicate evaluation algorithms of Chapter 6. Bo Feng has implemented
considerable parts of the StreamGlobe optimizer and has helped with its evaluation. Tobias
Scholl also has contributed to the StreamGlobe implementation. He further has implemented
the StreamGlobe GUI and helped a lot with the StreamGlobe demonstration at VLDB 2005. An-
dreas Fuchs has implemented large parts of the APT query and stream representation of Chap-
ter 5. Stefan Puchner has implemented and helped with the evaluation of the predicate match-
ing algorithms of Chapter 6. He has also helped with the integration of APTs in StreamGlobe.
Valentin Shopov and Atanas Gegov have helped with the performance evaluation in Chapter 5.

The StreamGlobe project is funded by the German Ministry of Education and Research
(BMBF) within the D-Grid initiative under contract 01AK804F and by Microsoft Research
Cambridge (MSRC) under contract 2005-041. Many thanks to Dr. Vassily Lyutsarev from
MSRC for his support in the course of the project.

Last but not least, I thank my parents for always supporting me in any possible way through
all the years.

Munich, May 2008 Richard Kuntschke

v

Contents

1 Introduction 1
1.1 System and Query Type Classification . 3
1.2 Contributions and Outline . 4

2 The StreamGlobe Distributed Data Stream Management System 7
2.1 Introduction . 7
2.2 Example Application Scenario . 8
2.3 StreamGlobe Architecture . 10

2.3.1 Network Architecture . 11
2.3.2 Super-Peer Architecture . 12
2.3.3 Thin-Peer Architecture . 13
2.3.4 Optimizer Integration . 13
2.3.5 External Operator Integration . 14
2.3.6 Network Organization . 15
2.3.7 Implementation . 17

2.4 Related Work . 18
2.4.1 Data Stream Management . 18
2.4.2 P2P Data Management . 21
2.4.3 Grid Computing . 23
2.4.4 Network Architecture . 23

2.5 Summary . 24

3 The StarGlobe System: An Astrophysical Flavor of StreamGlobe 25
3.1 Introduction . 25
3.2 Problem Statement . 27
3.3 The SED Scenario . 27

3.3.1 Overview . 27
3.3.2 Spatial (Astrometric) Matching . 29

3.4 Astrometric Matching in StarGlobe . 31
3.4.1 Preliminaries . 31

vi Contents

3.4.2 Spatial Matching Scenario . 32
3.5 Related Work . 35
3.6 Summary . 36

4 Data Stream Sharing 37
4.1 Introduction . 37
4.2 Preliminaries . 40

4.2.1 Problem Statement . 40
4.2.2 Data Streams . 41
4.2.3 Data Windows . 41

4.3 The WXQuery Subscription Language . 43
4.4 Data Stream Sharing . 50

4.4.1 Overview . 50
4.4.2 Query and Data Stream Properties . 51
4.4.3 Shareability and Dependency Relations 52
4.4.4 Cost Model . 55
4.4.5 Stream Sharing Algorithms . 58
4.4.6 Window-based Aggregation . 65
4.4.7 Extensions and Optimizations . 68

4.5 Evaluation . 70
4.6 Related Work . 73
4.7 Summary . 77

5 Advanced Data Stream Sharing: Matching and Merging Queries and Data 79
5.1 Introduction . 79
5.2 The Abstract Property Tree (APT) . 82

5.2.1 Definition . 82
5.2.2 Translating WXQueries into APTs . 85
5.2.3 Translating APTs into WXQueries . 96

5.3 Matching and Merging APTs . 101
5.3.1 Matching and Merging the Tree Structures 102
5.3.2 Matching and Merging the Annotations 102
5.3.3 Relaxing Data Windows . 103
5.3.4 Example Matchings . 105
5.3.5 Completeness and Correctness of Matching and Merging APTs 106

5.4 Handling Join Queries . 106
5.4.1 Preliminaries . 106
5.4.2 The Abstract Property Forest (APF) 110
5.4.3 Matching and Merging APFs . 120

5.5 Adapting the StreamGlobe Optimization Framework 125
5.5.1 Cost Model . 125
5.5.2 Deleting Queries . 125
5.5.3 Data Stream Widening and Data Stream Narrowing 125
5.5.4 Handling Join Queries . 126

5.6 Evaluation . 126
5.7 Related Work . 128
5.8 Summary . 130

Contents vii

6 Matching and Evaluation Strategies for Disjunctive Predicates 131
6.1 Introduction . 131
6.2 Preliminaries . 133

6.2.1 Predicates . 133
6.2.2 Predicate Matching . 134
6.2.3 Predicate Evaluation . 134
6.2.4 Notation . 135

6.3 Predicate Matching . 135
6.3.1 Example Predicates . 135
6.3.2 Quick Check (QC) . 136
6.3.3 Heuristics with Simple Relaxation (HSR) 137
6.3.4 Heuristics with Complex Relaxation (HCR) 138
6.3.5 Exact Matching (EM) . 140
6.3.6 Multi-Dimensional Indexing . 146

6.4 Predicate Evaluation . 147
6.4.1 Standard Evaluation (SE) . 147
6.4.2 Index-based Evaluation (IE) . 148

6.5 Complexity Analysis . 149
6.5.1 Prerequisites . 149
6.5.2 Quick Check (QC) . 150
6.5.3 Heuristics with Simple Relaxation (HSR) 151
6.5.4 Heuristics with Complex Relaxation (HCR) 153
6.5.5 Exact Matching (EM) . 155
6.5.6 Standard Evaluation (SE) . 160
6.5.7 Index-based Evaluation (IE) . 161
6.5.8 Summary . 161

6.6 Performance Evaluation . 161
6.6.1 Implementation and Setting . 162
6.6.2 Predicate Matching . 163
6.6.3 Predicate Evaluation . 167

6.7 Related Work . 170
6.8 Summary . 171

7 Conclusion and Outlook 173

A StreamGlobe Client Interface 177
A.1 Example Scenario . 177
A.2 Scenario Schema . 181
A.3 Distributed Query Evaluation Plan . 186
A.4 Plan Schema . 190

B Proof of Theorem 3.1 195

C Alternative XQuery Window Implementations 197
C.1 Count-based Data Windows . 197
C.2 Time-based Data Windows . 199

D WXQuery EBNF Grammar 201

viii Contents

E Alternative Aggregate Value Selection Algorithm 205

F Predicate Matching and Evaluation Algorithms 207
F.1 Quick Check (QC) . 207
F.2 Heuristics with Simple Relaxation (HSR) . 208
F.3 Heuristics with Complex Relaxation (HCR) 208
F.4 Exact Matching (EM) . 210
F.5 Standard Evaluation (SE) . 214

Bibliography 215

ix

List of Figures

1.1 System and query type classification . 4

2.1 Example DSMS scenario . 9
2.2 DTD of the example data stream photons . 9
2.3 Visualization of the astrophysical example data set 10
2.4 The RX J0852.0-4622 supernova remnant . 11
2.5 StreamGlobe architecture . 12
2.6 StreamGlobe external operator integration . 15
2.7 Hierarchical network organization . 16
2.8 StreamGlobe GUI . 17

3.1 SED assembly and classification workflow . 28
3.2 Spectral energy distribution of the emissions from the Crab Nebula 29
3.3 The Crab Nebula in the constellation Taurus 29
3.4 Two spiders . 30
3.5 Stray counterpart . 30
3.6 Schematic illustration of the distributed query evaluation plan 32
3.7 Network topology . 34

4.1 Example DSMS scenario . 38
4.2 Query 1 (q1) . 38
4.3 Query 2 (q2) . 39
4.4 Example of a count-based data window with window size 4 and step size 2 . . . 42
4.5 Example of a time-based data window with window size 4 and step size 2 . . . 43
4.6 Query 3 (q3) . 45
4.7 Query 4 (q4) . 45
4.8 WXQuery with count-based data window . 47
4.9 XQuery with count-based data window . 47
4.10 WXQuery with time-based data window . 48
4.11 XQuery with time-based data window . 49
4.12 Schematic illustration of the optimization process 51

x List of Figures

4.13 Abstract properties of q1 . 51
4.14 Abstract properties of q2 . 52
4.15 Abstract properties of q3 . 52
4.16 Abstract properties of q4 . 53
4.17 Shareability and dependency graphs for queries q1 to q4 55
4.18 Matching predicates . 64
4.19 Reusing window-based aggregates . 66
4.20 Window selection for reusing window-based aggregates 67
4.21 Example scenario: 8 super-peers, 1 data stream, 4 queries 71
4.22 Extended example scenario: 8 super-peers, 1 data stream, 25 queries 71
4.23 Small scenario: 4 super-peers, 1 data stream, 4 queries 72
4.24 4×4 grid scenario: 16 super-peers, 2 data streams, 100 queries 72

5.1 Example DSMS scenario . 80
5.2 Example queries . 81
5.3 APTs of example queries from Section 5.1 . 83
5.4 Structure-preserving query template . 97
5.5 Structure-mutating query template with time-based data window 98
5.6 Abstractions of example queries from Section 5.1 99
5.7 Result DTDs of abstract example queries . 101
5.8 Window relaxation example . 105
5.9 Window join semantics . 108
5.10 Example join queries . 109
5.11 WXQuery with traditional join semantics . 109
5.12 APFs of example join queries . 112
5.13 Join query template . 118
5.14 Abstractions of example join queries . 119
5.15 Result DTDs of abstract join queries . 119
5.16 Join result sharing . 122
5.17 Average CPU load and network traffic . 127

6.1 Example DSMS scenario . 132
6.2 Graphical representation of predicates p1 (solid boxes) and p2 (dashed box) . . 136
6.3 Relaxation of predicate p1 (solid boxes) to match predicate p2 (dashed box) . . 140
6.4 Partial match of predicates p′1 (solid boxes) and p2 (dashed box) 140
6.5 Partial match of predicates p1 (solid boxes) and p3 (dashed box) 142
6.6 Cases distinguished during dimension comparison 143
6.7 Exact matching algorithm split strategies . 145
6.8 Index-based predicate evaluation . 149
6.9 Varying number of dimensions . 165
6.10 Varying query predicate size . 165
6.11 Varying stream predicate size . 165
6.12 Varying number of dimensions . 165
6.13 Varying query predicate size . 165
6.14 Varying stream predicate size . 165
6.15 Matching large predicates . 166
6.16 Varying number of dimensions . 168
6.17 Varying predicate size . 168

List of Figures xi

6.18 Varying predicate selectivity . 168

C.1 Gathering remaining elements in final window 198
C.2 Sliding windows until no elements remain . 198
C.3 Gathering remaining elements in final window 199
C.4 Sliding windows until no elements remain . 200

xiii

List of Tables

3.1 Catalogs used in the spatial matching scenario 33
3.2 Catalogs queried using an input list of RASS-BSC sources 33
3.3 Workflow execution results . 34
3.4 Filter ratios with early filtering . 35

4.1 Evaluation scenarios . 70
4.2 Query registration times in the extended example scenario 73
4.3 Query registration times in the 4×4 grid scenario 73

5.1 Accumulated and average overall CPU load and network traffic 128

6.1 Variables used in algorithm descriptions and during complexity analysis 135
6.2 Variables used during complexity analysis . 150
6.3 Time complexities of predicate matching algorithms 162
6.4 Space complexities of predicate matching algorithms 162
6.5 Time complexities of predicate evaluation algorithms 163
6.6 Space complexities of predicate evaluation algorithms 163
6.7 Selectivities for combined test (%) . 167
6.8 Relative throughput for varying predicate overlap (%) 169

xv

List of Algorithms

4.1 REGISTERQUERY . 59
4.2 MATCHPROPERTIES . 61
4.3 MATCHPREDICATES . 63
4.4 SELECTAGGREGATEVALUES . 67
5.1 RELAXWINDOW . 104
6.1 Quick Check (QC) . 136
6.2 Heuristics with Simple Relaxation (HSR) . 138
6.3 Heuristics with Complex Relaxation (HCR) 139
6.4 Exact Matching (EM) . 141
6.5 Standard Evaluation (SE) . 147
E.1 SELECTAGGREGATEVALUES . 206
F.1 Quick Check (QC) . 207
F.2 Heuristics with Simple Relaxation (HSR) . 208
F.3 Heuristics with Complex Relaxation (HCR) 209
F.4 Compare Dimensions (CD) . 210
F.5 Exact Matching with Breadth-First Split Strategy (EM-BFS) 211
F.6 Exact Matching with Depth-First Split Strategy (EM-DFS) 212
F.7 Exact Matching with Mixed Split Strategy (EM-MIX) 213
F.8 Standard Evaluation (SE) . 214

1

CHAPTER 1

Introduction

In recent years, data management systems increasingly face new challenges that call for a
paradigm shift from processing persistent data to processing data streams. Evolving data man-
agement applications, e. g., in e-science, e-health, and e-business, increasingly require support
for stream-based processing of experimental, observational, and monitoring data. On the one
hand, the reason for this demand lies in the requirement to analyze the most up-to-date infor-
mation as soon as it arrives in order to be able to take immediate action if necessary. On the
other hand, certain application domains are confronted with the problem of handling data vol-
umes that are growing at exponential rates. The sheer masses of data and their quick growth
have started to make traditional data analysis approaches increasingly useless in the respective
communities. Instead of collecting, storing, and subsequently analyzing the data, stream-based
data processing can help to perform processing and analysis tasks on-the-fly while data is being
collected or generated.

Examples for the requirement of immediately processing most current data on arrival are
alerter services in e-science, e. g., in astrophysics. These alert researchers of interesting events
such as gamma ray bursts1 or other kinds of energy fluctuations during experiments and observa-
tions. In e-health, examples comprise bedside patient monitoring as well as the newly evolving
field of mobile home-based patient monitoring, which alert physicians to initiate rescue mea-
sures if a patient’s vital signs reach critical values. Radio frequency identification (RFID)2 is an
example from the e-business domain that recently sparked great interest in both, research and
economy. RFID is of special importance for supply chain management as it allows the auto-
mated monitoring of supply chains on various granularity levels—from containers to pallets to
single product items—during each step of the chain, from manufacturers to suppliers to vendors
and customers. The data delivered by RFID readers forms continuous data streams that require
efficient handling and processing.

The problem of large and exponentially increasing data volumes is especially crucial for

1See, for example, the Gamma Ray Burst Coordinate Network (GCN) at http://gcn.gsfc.nasa.gov.
2See, for example, [Bornhövd et al. (2005)].

http://gcn.gsfc.nasa.gov

2 1. Introduction

astrophysics1, as Alex Szalay, an astrophysicist from Johns Hopkins University, emphasized in
a talk given at TUM in summer 2005. Focusing on e-science in general, it can be observed
that scientific experiments and observations in many fields, e. g., in physics and astronomy,
create huge volumes of data which have to be interchanged and processed. With experimental
and observational data coming in particular from sensors and online simulations, the data has
an inherently streaming nature. Furthermore, continuing advances will result in even higher
data volumes which makes storing all of the delivered data prior to processing increasingly
impractical. Hence, in such e-science scenarios, processing and sharing data streams will play a
decisive role. It will enable new possibilities for researchers, since they will be able to subscribe
to interesting data streams of various sources without having to set up their own devices or
experiments. This results in much better utilization of expensive equipment such as telescopes
and satellites. Further, processing and sharing data streams on-the-fly in the network helps to
reduce network traffic and to avoid network congestion. Thus, even huge streams of data can
be handled efficiently by removing unnecessary parts early on, e. g., by early filtering and early
aggregation, and by sharing previously generated data streams and processing results.

The challenges described in the previous paragraphs fuel the need for data stream man-
agement systems (DSMSs) for processing streaming data. DSMSs complement traditional
database management systems (DBMSs) used for handling persistent data. The striking dif-
ference between DBMSs and DSMSs consists in the fact that in DBMSs, data is persistent and
queries are volatile, i. e., one-time queries arriving in the system are processed over a persis-
tent set of data and disappear after processing has finished. In DSMSs, however, persistent
queries are executed over volatile, i. e., streaming, data. Persistent queries are also called stand-
ing or continuous queries in the literature.2 In this thesis, we use the term continuous queries
throughout. We propose a model and a prototype implementation of a distributed DSMS called
StreamGlobe. The system architecture is based on aspects known from Grid computing and
Peer-to-Peer (P2P) networking. StreamGlobe serves as the basis for investigating network-
aware optimization techniques for enabling efficient resource usage in such an environment.

Efficiency is a very important aspect in the design of a DSMS. Since data streams usually
require real-time or near real-time processing, any DSMS must be concerned with efficient
algorithms for stream processing and with optimization techniques for making the best use of
potentially scarce resources such as memory and processing power. Furthermore, since data
and queries often emerge at various places, many actual DSMSs are inherently distributed,
e. g., for managing a distributed supply chain or for enabling e-science collaborations among
various research institutions that are spread across the globe. This thesis puts the focus on
logical network-aware optimization of continuous queries in a distributed DSMS. Similar to
traditional logical optimization, e. g., reordering operators in a logical algebra operator tree, we
are concerned with the appropriate placement of stream-based query processing operators on
distributed network nodes. However, our optimizations take place at the query level rather than
at the algebra operator level. Our guideline is to reduce computational load and network traffic
on network nodes and network connections in a distributed DSMS by means of data stream
sharing. We thus aim at sharing data streams and processing results among multiple similar
queries in a network whenever this is possible and seems reasonable. Physical optimization
on the intra-operator level such as choosing an appropriate evaluation algorithm for a certain
logical operator focuses on optimizing actual query processing at a single node. Previous work
in this direction by Stegmaier (2006) forms the basis of local query processing in our setting.

1See, for example, [Szalay et al. (2000)].
2See, for example, [Terry et al. (1992)] and [Golab and Özsu (2003a,b)].

1.1 System and Query Type Classification 3

The data stream sharing approach is based on multi-query optimization (MQO) as intro-
duced by Sellis (1988). While, due to its complexity, multi-query optimization has not gained
too much importance in the area of DBMSs for which it was originally conceived, it has been
identified as an important optimization technique for DSMSs. Babcock et al. (2002), for exam-
ple, state that

“In data stream applications, where most queries are long-lived continuous queries
rather than ephemeral one-time queries, the gains that can be achieved by multi-
query optimization can be significantly greater than what is possible in traditional
database systems.”

Referring to the adaptive Eddy query execution framework [Avnur and Hellerstein (2000)] they
go on to say that

“[. . .] to adapt the joint plan for a set of continuous queries as new queries are
added and old ones are removed remains an open research area.”

Investigating a similar issue in the context of StreamGlobe is one of the primary objectives of
this thesis.

Golab and Özsu (2003a,b) identify two approaches for executing similar continuous queries
together: sharing query plans and indexing query predicates. In this thesis, we adopt the former
approach. However, we also consider query predicate indexing in the context of predicate
matching and predicate evaluation for data stream sharing in Chapter 6.

As mentioned before, the shift from persistent data to streaming data also brings about
changes in the notion of queries. We take a closer look at the differences in the next section.

1.1 System and Query Type Classification
DSMSs have very special demands with respect to query processing and optimization. To bet-
ter understand what these demands are and to compare them to those of other data management
systems, we introduce a generic system and query type classification in Figure 1.1. This classi-
fication is inspired by a talk given by M. Tamer Özsu at the EDBT 2006 conference.

We classify data management systems with regard to the two dimensions query complexity
and throughput. Query complexity denotes the expressiveness of the employed query language.
Query languages at the high end of the spectrum allow for complex nested queries with user-
defined functions and predicates while languages at the low end only allow for rather simplistic
queries, e. g., containing only simple built-in predicate filters. In terms of throughput, we dif-
ferentiate between systems and query types enabling high data throughput in query processing,
i. e., many data items per time unit can be evaluated against a query, and those inducing a com-
paratively slower evaluation.

We distinguish between three different types of data management systems. These comprise
traditional DBMSs, stream-based DSMSs, and publish&subscribe (pub&sub) systems. Each of
these systems is based on its own typical type of queries. In traditional DBMSs, queries are usu-
ally short-lived one-time queries that may enter the system at any time and disappear after they
have been completely processed over the persistent data of the current database state. Query
languages like SQL1 for relational databases and XQuery2 for XML3 databases allow users

1See, for example, [Melton and Simon (2002)].
2See [W3C (2007d)].
3See [W3C (2006a,b)].

4 1. Introduction

Throughput

Qu
ery

 Co
mp

lex
ity

DBMSs

one-time
queries

DSMSs

continuous
queries Pub&Sub

Systems

predicate
filters

Figure 1.1: System and query type classification

to formulate very complex queries and provide extensive support for user-defined application
logic. XQuery, for example, basically constitutes a turing-complete functional programming
language that also incorporates some non-functional concepts such as explicit iteration using
for loops. On the other hand, publish&subscribe systems optimize for excessive throughput
of data items, processing event streams with high data rates against large sets of simple, usu-
ally predicate-based subscriptions using sophisticated index structures. Compared to traditional
DBMSs, publish&subscribe systems clearly trade query complexity for increased throughput.

As we can see from Figure 1.1, DSMSs are situated between traditional DBMSs and pub-
lish&subscribe systems in our classification in terms of both, query complexity and throughput.
Query complexity tends to be lower in DSMSs compared to DBMSs since certain types of
queries would be too slow or not meaningful over streaming data. Consider a nested-loops al-
gorithm over infinite input streams for example. But DSMSs still have higher demands in terms
of query complexity than mere predicate or event filtering as employed in publish&subscribe
systems. Considering the other dimension of our classification, throughput requirements in
DSMSs tend to be higher than in traditional DBMSs since stream processing must be able to
keep up with reasonably high input stream rates. However, the increased query complexity in
DSMSs limits their throughput compared to publish&subscribe systems.

Summarizing, we may say that DSMSs try to find a compromise between sufficiently ex-
pressive and flexible query languages on the one hand and reasonably high data stream process-
ing rates on the other hand.

1.2 Contributions and Outline

In this thesis, we present methods for network-aware optimization of continuous query process-
ing over data streams in a distributed DSMS. We focus on optimizing resource usage in terms

1.2 Contributions and Outline 5

of computational load and network traffic. Our investigations are based on a theoretical DSMS
model named StreamGlobe which we have also put into practice as a prototype implementa-
tion. We have further augmented this implementation with domain specific application logic
from the field of astrophysics to demonstrate its effectiveness in an actual e-science environ-
ment. Based on the StreamGlobe model and prototype, we develop and evaluate data stream
sharing as a valuable optimization approach to reduce computational load and network traffic in
a distributed DSMS. We go on to augment this optimization technique with data stream widen-
ing and its complement data stream narrowing to achieve even better results and applicability.
Finally, we take an in-depth look at efficient predicate handling in the context of the above solu-
tions. Altogether, the techniques introduced in this thesis form a solid optimization framework
for efficient resource usage in a distributed DSMS such as StreamGlobe.

In detail, the contributions of this thesis and its outline are as follows:

Chapter 2 – The StreamGlobe Distributed Data Stream Management System
introduces the architecture of the StreamGlobe system. StreamGlobe is a model as well as a pro-
totype implementation of a distributed DSMS that serves as our research platform. We describe
the architectural basics of StreamGlobe, the peer architecture, and the network organization.
StreamGlobe forms the basis and defines the setting for the optimization techniques developed
and presented in this thesis. We have implemented the basic StreamGlobe architecture and all
our optimization techniques in the prototype implementation. The prototype serves as a proof
of concept and as a basis for empirical performance evaluation studies.

We have previously presented parts of this chapter at the 1st International Workshop on Data
Management for Sensor Networks (DMSN 2004) [Stegmaier et al. (2004)], at the GI Workshop
Dynamische Informationsfusion (Informatik 2004) [Stegmaier and Kuntschke (2004)], and in
an article in the Datenbank Spektrum [Kuntschke et al. (2004)].

Chapter 3 – The StarGlobe System: An Astrophysical Flavor of StreamGlobe
presents a domain- and application-specific extension of StreamGlobe focused specifically on
supporting certain common data-intensive tasks in astrophysics. We introduce the astrophys-
ical challenge, describe the deficiencies of current solutions, and subsequently explain how
StarGlobe helps to overcome them. A performance evaluation substantiates the impressive per-
formance gain achieved by StarGlobe as compared to conventional solutions and emphasizes
that the StarGlobe approach provides a valuable computing platform for e-science applications.

We have previously presented parts of this chapter at the 2nd IEEE International Conference
on e-Science and Grid Computing (eScience 2006) [Kuntschke et al. (2006)].

Chapter 4 – Data Stream Sharing
introduces the data stream sharing optimization technique. We start this chapter with an illus-
trative example, a high-level description of the general problem, and our idea for solving it. We
then continue with the formalization of data streams and data windows in the context of this
thesis. Next, we introduce WXQuery, our XQuery-based subscription language for continuous
queries over XML data streams which constitutes an augmented fragment of XQuery. The core
of the chapter subsequently introduces our approach for enabling data stream sharing based
on query and stream properties, a cost function for evaluating query plans, and the actual data
stream sharing algorithms dealing with selection, projection, and aggregate queries. Finally, a

6 1. Introduction

performance evaluation shows the benefits of data stream sharing compared to the traditional
approaches of data shipping and query shipping.

We have previously presented parts of this chapter at the 2nd International Workshop on
Pervasive Information Management (PIM 2006) [Kuntschke and Kemper (2006a)] and have
given a system demonstration at the 31st International Conference on Very Large Data Bases
(VLDB 2005) [Kuntschke et al. (2005b)]. Further, parts of this chapter have appeared in Lec-
ture Notes in Computer Science, Vol. 4254 (LNCS) [Kuntschke and Kemper (2006b)] and as
Technical Report TUM-I0504 [Kuntschke et al. (2005a)].

Chapter 5 – Advanced Data Stream Sharing: Matching and Merging Queries and Data
describes a formal model for translating WXQueries into an abstract property tree representation
used for matching and merging queries and data streams. Matching the property tree of a newly
arriving query with that of an existing stream determines whether the stream is reusable as input
to the query. If the query and the stream do not match, merging their property trees results in a
new property tree. The new tree describes the unified stream that covers all the contents of the
original stream as well as the data additionally needed by the new query. Query templates allow
the translation of abstract property trees back into corresponding queries. These can be installed
in StreamGlobe to create a widened data stream that additionally satisfies the demands of the
new query. We introduce this data stream widening approach for selection, projection, and
aggregate queries. Subsequently, we extend our solution to support window-based join queries
over data streams. After describing the necessary extensions to the StreamGlobe model and
implementation for supporting data stream widening and its complement data stream narrowing,
we assess the effectiveness of widening by means of some performance experiments using our
StreamGlobe prototype implementation.

Chapter 6 – Matching and Evaluation Strategies for Disjunctive Predicates
addresses the issue of efficiently handling disjunctive predicates in the context of data stream
sharing and data stream widening. Disjunctive predicates can be created as a result of data
stream widening and need to be dealt with during the further matching of queries and data
streams as well as during query evaluation. In this chapter, we start by introducing our notion
of disjunctive predicates and by describing the problems of predicate matching and predicate
evaluation. We then continue to introduce several algorithms for solving the predicate matching
problem for disjunctive predicates. We describe two efficient heuristics and an exact solution.
After dealing with predicate matching, we turn our attention to the problem of efficiently evalu-
ating disjunctive predicates in a DSMS. We describe a simple iteration-based algorithm as well
as an index-based evaluation approach that provides for increased evaluation performance. The
introduction of the algorithms concludes with a detailed complexity analysis and a compari-
son of the presented matching and evaluation algorithms. Finally, an extensive performance
evaluation empirically confirms the findings of this analysis.

We have previously presented parts of this chapter at the 15th ACM Conference on Infor-
mation and Knowledge Management (CIKM 2006) [Kuntschke and Kemper (2006c)] and as
Technical Report TUM-I0615 [Kuntschke and Kemper (2006d)].

Chapter 7 – Conclusion and Outlook
summarizes the thesis and provides an outlook on further interesting research challenges in the
area of network-aware optimization in distributed DSMSs.

7

CHAPTER 2

The StreamGlobe
Distributed Data Stream Management System

The StreamGlobe distributed DSMS constitutes the foundation on which we build our network-
aware optimizations presented in later chapters of this thesis. We use the term StreamGlobe to
denote both, the theoretical model of the DSMS as well as its actual prototype implementation
which serves as a research platform for evaluating our optimization approaches.

2.1 Introduction
To enable the data stream sharing optimizations which are at the core of this thesis, we use
a combination of Peer-to-Peer (P2P) networking and Grid computing1 techniques. P2P has
gained lots of attention in the context of exchanging persistent data—in particular for file shar-
ing. In contrast, we apply P2P networks for the dissemination of individually subscribed and
transformed data streams, allowing for data stream sharing. By using the computational ca-
pabilities of peers in the P2P network, we can push data stream transforming operators into
the network, thus enabling efficient in-network query processing. This yields a reduction of
network traffic, enables load balancing among peers, and improves flexibility since any peer
can register arbitrarily complex queries by delegating query processing to other peers in the
network. At the same time, multi-subscription optimization allows the sharing of data streams
and the reuse of computational results among various peers. This provides for both, reduced
network traffic and decreased computational load on peers. Ultimately, more subscriptions can
be processed concurrently with the available resources. We propose StreamGlobe as a DSMS
model and prototype to meet these challenges. The StreamGlobe implementation adheres to
established Grid computing standards and thus fits seamlessly into existing e-science platforms.
To ensure interoperability, StreamGlobe is built on top of standards such as XML and XQuery
for representing data streams and specifying subscriptions.2

1See [Foster and Kesselman (2004)].
2The terms query, continuous query, and subscription are treated as synonyms throughout this thesis.

8 2. The StreamGlobe Distributed Data Stream Management System

In detail, we present the following contributions in this chapter:

• We introduce an example application scenario from the astrophysics domain which serves
as an illustrative example for our solutions throughout the thesis (Section 2.2). The sce-
nario consists of a simple example network topology and an actual astrophysical example
data set which we use as input data stream in the system. Chapters 4 and 5 introduce
some example queries over this data.

• We describe the architecture of StreamGlobe concerning network architecture, super-peer
architecture, thin-peer architecture, optimizer integration, external operator integration,
and network organization. We further briefly introduce the StreamGlobe prototype im-
plementation.

2.2 Example Application Scenario
The following astrophysical e-science scenario serves as an illustrative example for the applica-
tion of StreamGlobe throughout the thesis. Consider Figure 2.1 which illustrates an exemplary
StreamGlobe network. We classify peers in a StreamGlobe network as super-peers1 and thin-
peers, also simply called peers in the following. Super-peers usually are powerful stationary
servers providing extensive query processing capabilities and forming a stable super-peer back-
bone network. In contrast, thin-peers are less powerful, possibly mobile devices used to register
queries and data streams in the system. In the example network of Figure 2.1, SP0 to SP7 are
super-peers constituting the super-peer backbone network and P0 to P4 are thin-peers. P0 is
a satellite-bound telescope that detects photons and registers a data stream called photons at
super-peer SP4. This data stream contains real astrophysical data collected during the ROSAT2

All-Sky Survey (RASS) [Voges et al. (1999)] which we obtained through our cooperation part-
ners from the Max-Planck-Institut für extraterrestrische Physik3.

StreamGlobe deals with streams of XML data. The example stream photons complies to
the DTD shown in Figure 2.2. As its name implies, the data stream delivers a stream of photons
detected by a satellite’s photon detector. Each photon in the data stream is represented by an
XML element photon that incorporates the coordinates of the corresponding photon (coord),
the pulse height channel, i. e., the detector pulse caused by the photon when hitting the detector
(phc), the photon’s energy in keV (en), and the time of its detection in seconds since the start of
the observation (det_time). The coordinates consist of the celestial coordinates of the position
in the sky where the photon was detected (cel) and the coordinates of the detector pixel where
the photon actually hit the detector (det). Celestial coordinates comprise the right ascension
(ra) and declination (dec) of a point in the sky, measured in degrees. Detector pixel coordinates
contain the two-dimensional coordinates of the respective pixel on the detector plain (dx, dy).

Figure 2.3 visualizes the astrophysical example data set. The data set contains an extract of
the RASS data collected by the ROSAT satellite during its mission in the 1990s. Figure 2.3(a)
illustrates the data distribution in terms of the celestial coordinates right ascension (ra) from
0◦ to 360◦ and declination (dec) from -90◦ to +90◦. The band of data in the figure reflects the
flight path of the ROSAT satellite in earth orbit during data collection. Figure 2.3(b) shows the
same data in terms of the detector pixel coordinates dx and dy. The data distribution in this

1See [Yang and Garcia-Molina (2003)].
2http://wave.xray.mpe.mpg.de/rosat
3http://www.mpe.mpg.de

http://wave.xray.mpe.mpg.de/rosat

2.2 Example Application Scenario 9

photons

P0

P1

P3

P2

P4

Figure 2.1: Example DSMS scenario

figure reflects the shape of the photon detector. Figures 2.3(c) and 2.3(d) visualize the energy of
the detected photons in terms of their celestial coordinates and their detector pixel coordinates,
respectively. From Figures 2.3(a) and 2.3(c), we can clearly see an increased concentration
of highly energetic photons in an area around a right ascension of 135◦ and a declination of
-45◦. These are photons from the Vela supernova remnant. Figure 2.4 takes a closer look at
a small subset of the Vela region. The upper part of the figure shows all the photons detected
in this area on the right and their energy distribution on the left. The dense concentration of
photons with relatively low energy values does not allow to recognize any further structures in
this area. However, if we filter out all photons with energy values below 1.3 keV as shown in
the lower part of the figure, a new egg-shaped structure becomes visible. This structure consti-
tutes the RX J0852.0-4622 supernova remnant [Aschenbach (1998)] which was discovered only
through this kind of selective data analysis. This simple example illustrates how the appropriate

<!ELEMENT photons (photon*)>

<!ELEMENT photon (coord, phc, en, det_time)>

<!ELEMENT coord (cel, det)>

<!ELEMENT cel (ra, dec)>

<!ELEMENT ra (#PCDATA)>

<!ELEMENT dec (#PCDATA)>

<!ELEMENT det (dx, dy)>

<!ELEMENT dx (#PCDATA)>

<!ELEMENT dy (#PCDATA)>

<!ELEMENT phc (#PCDATA)>

<!ELEMENT en (#PCDATA)>

<!ELEMENT det_time (#PCDATA)>

ra dec

cel

dx dy

det

coord phc en det_time

photon*

photons

Figure 2.2: DTD of the example data stream photons

10 2. The StreamGlobe Distributed Data Stream Management System

−90

−75

−60

−45

−30

−15

0

15

30

45

60

75

90

0 45 90 135 180 225 270 315 360

D
ec

lin
at

io
n

(°
)

Right ascension (°)

(a) Celestial coordinates

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000 6000 7000 8000

dy

dx

(b) Detector pixel coordinates

0
90

180
270

360
−90

−45
0

45
90

0

1

2

3

Energy (keV)

Right ascension (°)

Declination (°)

Energy (keV)

(c) Energy vs. celestial coordinates

0
2000

4000
6000

8000 0
2000

4000
6000

8000

0

1

2

3

Energy (keV)

dx

dy

Energy (keV)

(d) Energy vs. detector pixel coordinates

Figure 2.3: Visualization of the astrophysical example data set

processing and analysis of scientific data can help to gain new insight and research results.
For simplicity, we consider only one single data stream in our example. However, it is also

possible to register multiple data streams at one or more super-peers in the network. Also,
while each element in the example DTD except for the photon element occurs exactly once,
more complex DTDs with varying element occurrences (“?”, “+”, “*”, “|”) are also possible
and can be handled accordingly.

Peers P1 to P4 in the example network of Figure 2.1 are devices of astrophysicists used to
register subscriptions in the network referencing the available data stream as input. Subscrip-
tions are registered using WXQuery, our XQuery-based subscription language that we introduce
in detail in Chapter 4. Our example queries use the example data set introduced above and focus
on the Vela and RX J0852.0-4622 areas of the data sample.

2.3 StreamGlobe Architecture

The following overview introduces the basic architecture of the StreamGlobe distributed DSMS
including network architecture, super-peer architecture, and thin-peer architecture. Further, we
describe the integration of the optimizer component and of the support for external operators
within the StreamGlobe architecture and discuss three alternatives for organizing the network

2.3 StreamGlobe Architecture 11

Figure 2.4: The RX J0852.0-4622 supernova remnant

of a distributed DSMS. Eventually, we briefly introduce our StreamGlobe prototype implemen-
tation. Figure 2.5 shows a generic overview of the StreamGlobe architecture.

2.3.1 Network Architecture

As described in the previous section, the StreamGlobe network architecture is based on the
concept of super-peer networks as introduced by Yang and Garcia-Molina (2003). Conse-
quently, we distinguish between super-peers and thin-peers in StreamGlobe. The P2P aspect
of StreamGlobe consists in the fact that each peer in the network can act as a client and as a
server at the same time. Super-peers, for example, may receive data streams from neighbor
peers, process the received streams, and subsequently forward and therefore serve them to other
neighbor peers. Likewise, thin-peers may act as servers by delivering data streams to the super-
peer backbone network and as clients by registering subscriptions referencing available streams
at a super-peer in the backbone. Further common aspects of P2P systems such as mobility
of peers and churn play a subordinate role in StreamGlobe since we consider the backbone
network and its super-peers to be stationary and stable. Due to the volatile characteristics of
streaming data and the problem of imminent data loss, handling data streams in a P2P network
with lots of churn is far more difficult than handling file exchange. Furthermore, dealing with
node failure is beyond the scope of this thesis.

Super-peers in StreamGlobe are implemented as collaborating Grid services as described
in Section 2.3.2 below. Since current Grid middleware platforms do not provide any means
for data stream transfer, we implemented our own StreamGlobe Transfer Protocol (SGTP) for
requesting and delivering streams across peer boundaries using TCP/IP socket connections.
Thin-peers act as interfacing components for registering and subscribing to data streams in the
super-peer backbone network. We take a closer look at the actual interface in Section 2.3.3.

12 2. The StreamGlobe Distributed Data Stream Management System

Globus
Toolkit

StreamGlobe

OGSA

Execution Engine

P2P Overlay Network

Super-Peer Speaker-Peer

Monitoring

StatistiX

Optimization

Metadata TCP/IP

Network Layer

XML Query Plans WXQuery Subscriptions XML Data Streams

Figure 2.5: StreamGlobe architecture

The super-peers of the overlay backbone network are connected according to some topol-
ogy. The contributions presented in this thesis are independent of the actual topology used.
Therefore, we do not elaborate on this issue any further. For the validity of our approach it is,
however, important that there is a reasonable relation between the P2P overlay network we con-
sider and the underlying physical network. The optimization of network traffic and peer load in
the overlay network must yield a corresponding optimization benefit in the physical network.
This implies, for example, that topological neighbor peers should also be geographically close.
An important question in this context is how to construct the overlay network on the basis of an
existing physical network in order to achieve such a reasonable relation. Among others, Rat-
nasamy et al. (2002) have already examined similar problems. However, this issue is beyond
the scope of this thesis.

2.3.2 Super-Peer Architecture
As already mentioned above, super-peers in StreamGlobe are implemented as collaborating
Grid services running on top of a Grid middleware. We use the Globus Toolkit1 implemen-
tation of the Open Grid Services Architecture (OGSA) introduced by Foster et al. (2005) for
this purpose. As Figure 2.5 shows, the peers of the overlay network sit on top of the Globus
OGSA implementation and the TCP/IP network layer used for data stream transfer between
peers. Super-peers also communicate with each other via the remote procedure call mecha-
nisms of the Globus Toolkit to exchange control messages and metadata. This communication
basically consists of web service calls using the Simple Object Access Protocol (SOAP)2. Each
super-peer offers a facility for continuously monitoring its current computational load and the
incoming and outgoing network traffic on all of its network connections in the P2P overlay
network. Furthermore, the so-called StatistiX component of a super-peer is responsible for
collecting statistical information about original XML input streams registered at the respective
peer. The collected data comprises the average frequency of data items arriving on the stream

1http://www.globus.org
2See [W3C (2007a)].

http://www.globus.org

2.3 StreamGlobe Architecture 13

and the average sizes and occurrences of all the XML elements contained in these data items.
The optimizer needs this information for estimating the data rates of result data streams in gen-
erated plans. These constitute a vital cost function parameter for estimating the costs induced
by a certain plan. We introduce the details of the StreamGlobe cost model in Chapter 4.

StreamGlobe allows multiple super-peer services to run in a simulated environment on a
single physical machine. This is convenient for testing and for demonstration purposes. In
normal operation, each super-peer service runs on its own physical machine. A hybrid mode
of operation allows to mix super-peers running exlusively on a single machine with super-peers
sharing their physical machine with other super-peers in a simulated environment.

2.3.3 Thin-Peer Architecture

Thin-peers can connect to a StreamGlobe super-peer backbone network and may join or leave
the network at any time. When joining the network, a thin-peer registers itself at any super-
peer in the backbone and subsequently forwards all of its requests, e. g., for registering a new
data stream or a new subscription, to the super-peer it is associated with. The super-peer then
initiates the appropriate handling of the request as described in the next section.

We use XML scenario files to build up the super-peer backbone network and to register
streams and continuous queries in StreamGlobe. Scenario files describe the network topology
and specify data streams, queries, and the super-peers where to register them. Appendix A.1 on
page 177 shows a small example scenario file. Appendix A.2 on page 181 contains the XML
Schema definition of scenario files.

2.3.4 Optimizer Integration

In the StreamGlobe super-peer backbone network, one of the super-peers takes the role of the
so-called speaker-peer. In addition to its normal super-peer duties, the speaker-peer runs a
metadata management and optimization component that is responsible for executing all of the
optimization logic that we develop and introduce in this thesis. A super-peer receiving a stream
or query registration request from an associated thin-peer forwards this request to the speaker-
peer responsible for the backbone network. The speaker-peer subsequently updates its metadata
repository to reflect the changes in registered streams and queries. When registering a new
query, the optimizer component of the speaker-peer generates various alternative distributed
XML query evaluation plans for the query and compares them according to a cost function.
Evaluating the cost function requires current monitoring and statistics data that the speaker-
peer requests and retrieves from the monitoring and statistics components of the affected peers
via Globus Grid service calls. Finally, the execution engine distributes the best plan found to
the affected peers in the backbone network and executes it. The execution engine is a local
component of each super-peer.

Query evaluation plans have a recursively nested structure where each subplan contains the
local plan of a certain super-peer as well as all the subplans the local plan depends on and that
need to be installed at neighbor peers. The speaker-peer starts the plan distribution by sending
the complete plan to the root peer of the plan hierarchy which is the peer that registered the
corresponding query. The execution engine of this peer extracts and removes the local subplan
from the overall plan and asynchronously sends the remaining subplans to the corresponding
neighbor peers which proceed with their local plans in the same manner. When the installation
of all subplans at neighbor peers returns successfully, the execution engine of the local peer syn-

14 2. The StreamGlobe Distributed Data Stream Management System

chronously installs and starts executing the operators specified in its own local plan, using the
now available result streams of any neighboring subplans as inputs. Appendix A.3 on page 186
shows an example of a distributed query evaluation plan for installing query q1 introduced in
Figure 4.2 of Chapter 4 in the StreamGlobe network of Figure 2.1. Appendix A.4 on page 190
contains the XML Schema definition for distributed query evaluation plans in StreamGlobe.

Due to the human-readable XML format of query evaluation plans, it is also possible to
write such plans manually. The StreamGlobe client interface offers a component that allows to
install manually written plans directly in the system, thus bypassing the query interface and the
optimizer component. This is useful for being able to execute plans with special operators and
logic that are not yet supported by the query language or the optimizer component. This feature
also allows full control over the structure of the plans to be installed and executed in the system.
We use this facility in Chapter 3 to enable the execution of highly domain-specific astrophysical
application scenarios in a special astrophysical flavor of StreamGlobe called StarGlobe.

2.3.5 External Operator Integration

In addition to the interface for manually written query plans, StreamGlobe also offers a con-
venient interface for easily integrating arbitrary user-defined operators to provide maximum
flexibility. The interface consists of a special stream processor implementation that entirely
encapsulates streaming XML serialization and deserialization and offers a simple push-based
iterator interface to implementers of user-defined application-specific operators. The iterator
interface provides the common open, next, and close methods. The open and close methods
serve for initializing and cleaning up the iterator before and after the iteration as in a usual pull-
based iterator. The next method of the push-based iterator differs from the next method of a
conventional pull-based iterator in that it has a single parameter that represents the next element
in the iteration. Stream sources push the next element arriving in the stream into the operator
by calling the operator’s next method with the corresponding element as a parameter.

Figure 2.6 shows a schematic view of the StreamGlobe external operator integration. The
stream processor receives and appropriately preprocesses the XML input streams via stream
handlers. It also serializes the operator result to the XML output stream via an appropriate
stream writer. The stream processor is an internal component of StreamGlobe. The stream
iterator is the only part that a developer of external functionality must implement to integrate
an external operator. Each stream iterator is required to implement the push-based iterator in-
terface described above. Thus, the implementation of a simple three method interface allows
for the addition of powerful user-defined application logic to StreamGlobe. At the same time,
the details of XML stream serialization and deserialization are hidden from the implementers
of such domain-specific operators. This makes StreamGlobe easily extensible even for non-
experts with respect to StreamGlobe internals such as users from the e-science and astrophysics
application domains. StreamGlobe loads user-defined operators as mobile code from a code
archive which can be located either in the local file system or on a remote web server which
we denote as a function provider. Loading and executing user-defined mobile code raises se-
curity issues which are beyond the scope of this thesis. Braumandl et al. (2001) have already
addressed security issues concerning mobile code in distributed environments in the context of
the ObjectGlobe system. ObjectGlobe is a precursor of StreamGlobe dealing with distributed
query processing over persistent relational data on the Internet.

We have used the StreamGlobe external operator interface to create the domain-specific
StarGlobe system for astrophysical applications introduced in Chapter 3. The StarGlobe sys-

2.3 StreamGlobe Architecture 15

Stream Iterator

Stream Handler 1

Stream Handler 2

Stream Handler n

Stream Writer

Stream Processor

...

XML Input Stream 1

XML Input Stream 2

XML Input Stream n

XML Output Stream

...

Item 1 Item 2 Item n Result Item

Figure 2.6: StreamGlobe external operator integration

tem differs from StreamGlobe solely through the addition of various user-defined astrophysical
operators that can be used for building and executing actual astrophysical workflows.

2.3.6 Network Organization
Since the speaker-peer is a centralized component in the StreamGlobe super-peer backbone net-
work, the question of scalability arises. In principle, there are three possibilities for organizing
the network with the necessary speaker-peer functionality:

• The simplest solution is a centralized approach where one super-peer takes the role of the
speaker-peer for the entire backbone network. In this case, the speaker-peer has a global
view on the network. The speaker-peer therefore has access to all the necessary metadata
information about streams, queries, monitoring data, and statistics needed for managing
the system and for optimizing newly registered queries. However, this approach obviously
does not scale since the speaker-peer would become a bottleneck in a growing network
with an increasing number of peers, streams, and queries.

• At the other end of the spectrum, a fully distributed implementation of the speaker-peer
functionality would solve the scalability problem. In this solution, each super-peer adopts
a part of the speaker-peer functionality and communicates with other, usually neighbor-
ing super-peers to obtain necessary metadata from remote sources. While this approach
eliminates the central bottleneck, it causes a lot of communication overhead between
super-peers which is counterproductive when optimizing for resource usage.

• Due to the shortcomings of the first two approaches, a hierarchical network organization
is the most promising solution in practice. Figure 2.7 shows an abstract illustration of
such a hierarchical network organization for an arbitrary network topology. The network
organization is divided into several hierarchy levels. The lowest level (Level 0 in Fig-
ure 2.7) represents the entire P2P overlay backbone network. This network is divided
into subnets indicated by circles around sets of peers in Figure 2.7. The number of levels
in the hierarchy depends on the actual size of the overall network and on the subnet sizes.
The filled black super-peers in Figure 2.7 are speaker-peers having a global view on their
respective subnets, i. e., each subnet chooses one of its super-peers as its speaker-peer.

16 2. The StreamGlobe Distributed Data Stream Management System

Level 0

Level 2

Level 1

Figure 2.7: Hierarchical network organization

Each speaker-peer is responsible for performing local optimizations within its subnet. On
the next level of the hierarchy (Level 1 in Figure 2.7), only the speaker-peers of the level
directly below are visible. These form a reduced network that is again divided into sub-
nets. In the example of Figure 2.7, Level 0 consists of three subnets with three super-peers
each, while Level 1 consists of a single subnet containing the three speaker-peers of Level
0. The subnets of Level 1 are handled just as those of Level 0, i. e., they again choose
one of their super-peers as the speaker-peer responsible for optimizing that subnet. In the
next hierarchy level above, again only these speaker-peers remain visible. Finally, the
top-level in the hierarchy (Level 2 in Figure 2.7) contains only one super-peer which is
the root of the entire network hierarchy.

As long as the speaker-peer of a subnet discovers shareable versions of requested data
streams in its own subnet, it can make local optimization decisions. In this case, the com-
plete optimization can be performed on an intra-subnet level and no inter-subnet commu-
nication is necessary. Otherwise, i. e., if the speaker-peer cannot find a shareable local
version of a data stream requested by a new subscription, the speaker-peer contacts the
speaker-peers of the neighboring subnets via the virtual neighborhood relationships of
the next hierarchy level above. The speaker-peers of the neighboring subnets can in turn
search their local subnets for shareable streams. If they find any suitable streams, they can
route them to the requesting speaker-peer via a route that needs to be mapped onto the
network connections in the original P2P overlay network. The stream discovery might
propagate all the way up to the root of the hierarchy in the worst case. The root may be
replicated among several super-peers to avoid that it becomes a bottleneck.

The hierarchical approach constitutes a compromise between the centralized approach
and the fully distributed approach. It therefore combines the strengths of both solutions.
This allows efficient local optimization decisions due to the global view of the optimizer
component on the respective subnet and further enables a scalable distribution of the opti-
mization logic in the potentially large overall network. At the same time, the hierarchical
approach avoids the disadvantages of the individual approaches by enabling scalability
and reducing metadata communication.

In this thesis, we focus on network-aware optimization in a single subnet with a single
speaker-peer. Note that this corresponds to the centralized approach introduced above but is

2.3 StreamGlobe Architecture 17

Figure 2.8: StreamGlobe GUI

also an integral part of the hierarchical approach. Implementing the hierarchical network orga-
nization in our StreamGlobe prototype is a matter of future work.

It is the task of the network designer setting up a StreamGlobe backbone network to choose
a reasonable subnet size. Empirical tests can help to determine which number of peers, streams,
and queries can be handled efficiently within a single subnet. Since the backbone network is
assumed to be stable, subnets and speaker-peers can be determined and set up in advance. Thus,
there is no need for algorithms that handle the case of super-peers joining or leaving the network
by dynamically partitioning or merging subnets. Further, there is no necessity for algorithms
that perform an automatic speaker-peer selection.

2.3.7 Implementation

We have implemented a Java prototype of the StreamGlobe distributed DSMS including our
optimization techniques presented in later chapters of this thesis. We used Java 5 and based
the original version of the prototype on the Globus Toolkit 3.2.1 middleware implementation
of OGSA. The Globus Toolkit 3.2.1 constitutes a reference implementation of the Open Grid
Services Infrastructure (OGSI) specified by Tuecke et al. (2003). The evaluation presented in
Chapter 5 was conducted after we switched the StreamGlobe implementation to Java 6 and to
the new Globus Toolkit 4.0.3 OGSA implementation which is now based on the Web Services
Resource Framework (WSRF) specified by Czajkowski et al. (2004).

For the experiments presented in later chapters of the thesis, we installed the StreamGlobe
prototype on a blade server. We used one blade for each super-peer. The blades each were
equipped with at least one Intel Xeon processor at 2.8 GHz and with at least 1 GB of RAM.
Some of the blades used the SuSE Linux Enterprise Server operating system in version 8. The
remaining blades used the same operating system in version 9.

Figure 2.8 shows a screenshot of the StreamGlobe GUI. The GUI is used to continuously

18 2. The StreamGlobe Distributed Data Stream Management System

monitor and visualize the current network state. The network shown in the figure is that of
Figure 2.1 after the registration of the example data stream of Figure 2.2 and 25 randomly
generated queries. The screenshot shows a network state that occurred without using our data
stream sharing optimization technique introduced in Chapter 4. The dotted lines represent busy
network connections. The lack of any optimization leads to overloaded network connections
indicated by orange and red colors in the network graph. Using data stream sharing in this
scenario actually causes all network connections to stay green, i. e., no overload situations occur.

The StreamGlobe execution engine uses the FluX query engine developed by Koch et al.
(2004a,b) for processing WXQueries over XML data streams. FluX is an event-based query
engine that efficiently processes queries over XML data streams. It minimizes buffer consump-
tion through optimizations exploiting the data stream schema. Extensions made by Stegmaier
(2006) enable FluX to support our augmented WXQuery subscription language employed in
StreamGlobe and introduced in Chapter 4. Since the focus of this thesis is on network-aware
optimization in distributed DSMSs rather than on stream-based query processing, we refer to
the literature for more information on FluX and on the actual processing of WXQueries.

2.4 Related Work
StreamGlobe is a successor of the ObjectGlobe system described by Braumandl et al. (2001).
While ObjectGlobe focuses on distributed query processing over persistent relational data on the
Internet, StreamGlobe constitutes a distributed DSMS based on XML data streams. Kossmann
(2000) surveys techniques for distributed query processing over persistent data. StreamGlobe is
related to work in the fields of data stream management, P2P data management, Grid computing,
and network architecture.

2.4.1 Data Stream Management
With StreamGlobe being a system that handles and processes data streams, it is worthwhile to
take a look at other approaches to building data stream management systems.

Numerous DSMSs have been proposed in recent years. One of the most prominent among
them is the Stanford Stream Data Manager (STREAM) [Arasu et al. (2003a); Babu and Widom
(2001); Motwani et al. (2003)] developed at Stanford University. STREAM constitutes a com-
prehensive prototype DSMS incorporating its own declarative query language CQL [Arasu et al.
(2002, 2003b,c, 2006); Arasu and Widom (2004a,b)] for continuous queries over data streams
and relations. CQL is based on SQL and introduces additional syntax for the specification of
data windows over streams just as WXQuery does with respect to XQuery. STREAM pro-
cesses data streams by transforming them into relations using special windowing operators and
by converting the query results back into streams again if necessary. In contrast, StreamGlobe
directly processes XML data streams.

Telegraph is a major project of the Berkeley Database Research group embracing various
subprojects. PSoup [Chandrasekaran and Franklin (2002)] builds on Telegraph and combines
the processing of one-time and continuous queries by treating data and queries symmetrically.
This allows new queries to be applied to old data and new data to be applied to old queries. Tele-
graphCQ [Chandrasekaran et al. (2003); Krishnamurthy et al. (2003)] is a system for managing
and for adaptively processing continuous queries over data streams using, among other things,
the Eddy [Avnur and Hellerstein (2000)] approach for adaptive tuple routing. The query lan-
guage StreaQuel was developed in the context of TelegraphCQ. Like CQL, StreaQuel is based

2.4 Related Work 19

on SQL and introduces a construct for specifying data windows. The language further uses a
special for loop construct for iterating over time. Lerner and Shasha (2003) propose AQuery,
another SQL-based query language and query algebra. AQuery is a language for ordered rela-
tional data. The language treats table columns as arrays and allows navigation in the columns
via order-dependent operators such as next, previous, first, and last.

Sullivan and Heybey (1998) introduce Tribeca as a stream-oriented DBMS designed for net-
work traffic analysis. They claim that, due to performance concerns and a semantic mismatch
between operations used in network traffic analysis and those provided by standard DBMSs,
conventional DBMSs are not suitable in their application domain. Instead of focusing on fast
random access, transactional updates, or relational joins, Tribeca aims at enabling fast sequen-
tial access to a stream of traffic records and at offering the ability to filter, aggregate, define
windows on, demultiplex, and remultiplex large streams of network traffic data.

Gigascope [Cranor et al. (2002, 2003a,b)] is a stream database for network applications such
as network monitoring, traffic analysis, and intrusion detection. It is developed as an industrial
project at AT&T Labs-Research. Gigascope introduces GSQL as an SQL-like stream database
language that is essentially a restriction of SQL with some stream database extensions. This
is similar to the WXQuery subscription language offered by StreamGlobe which constitutes an
augmented fragment of the XQuery language with additional support for window-based queries
over infinite data streams. Newer developments aim at distributing Gigascope in a—however
still centrally coordinated and scheduled—cluster to be used in applications such as network
security monitoring. Johnson et al. (2005) describe a mechanism for generating heartbeats in
Gigascope. These carry punctuations used for unblocking streaming operators with multiple
inputs over slow or bursty input streams.

PIPES [Krämer and Seeger (2004)] constitutes a flexible and extensible infrastructure pro-
viding fundamental building blocks for implementing DSMSs that focus on continuous query
processing over autonomous data sources. PIPES also contains separate frameworks that es-
tablish a basis for essential DSMS runtime components such as the scheduler [Cammert et al.
(2007a)], the memory manager [Cammert et al. (2006)], and the query optimizer. Further,
Cammert et al. (2007b) address the issue of dynamic metadata management in PIPES. The con-
stituents of PIPES are implemented as part of the XXL library1, which is a comprehensive Java
library described by van den Bercken et al. (2001).

All of the above systems are centralized and tuple-based whereas StreamGlobe constitutes
a distributed DSMS for managing XML data streams. Aurora [Carney et al. (2002)] is a sys-
tem for monitoring applications that also implements a centralized tuple-based stream proces-
sor. Basically, Aurora constitutes a data flow system that uses the boxes and arrows paradigm
known from workflow systems to specify operators (boxes) and their interconnections (arrows)
for processing tuple streams. Cherniack et al. (2003) describe two complementary large-scale
distributed stream processing systems, Aurora* and Medusa. Aurora* is a distributed version
of Aurora with nodes belonging to a common administrative domain. Medusa, on the other
hand, supports the federated operation of several Aurora nodes across administrative bound-
aries. Further development aiming at enabling new DSMS functionality such as dynamic revi-
sion of query results, dynamic query modification, and flexible optimization led to the Borealis
system [Abadi et al. (2005)]. Borealis is a distributed multi-processor version of Aurora built
upon the techniques of Aurora* and Medusa. Its current focus is on quality-of-service man-
agement, load distribution, high availability, and fault tolerance in data stream processing. The

1http://www.xxl-library.de

http://www.xxl-library.de

20 2. The StreamGlobe Distributed Data Stream Management System

commercial DSMS StreamBase1 is a descendant of these academic projects.
Implemented in the context of Telegraph, the continuously adaptive continuous query ap-

proach (CACQ) of Madden et al. (2002b) supports the sharing of physical operators among
queries in a centralized, tuple-based environment. Chen et al. (2000) describe NiagaraCQ, a
continuous query extension of the XML-based Niagara distributed database system. NiagaraCQ
intends to achieve a high level of scalability in continuous query processing by grouping contin-
uous queries according to similar structures. In StreamGlobe, we employ a similar multi-query
optimization approach to reduce network traffic and peer load in a distributed DSMS. In con-
trast to NiagaraCQ, our approach explicitly deals with and exploits the aspect of queries and
data streams being distributed over peers in a network. Further, our solutions allow more flexi-
ble sharing of data streams, e. g., by sharing query result streams anywhere in the network and
by dynamically altering the characteristics of a stream to fit the needs of a larger set of queries.

Shah et al. (2003) propose Flux, an adaptive partitioning operator for continuous query sys-
tems. Flux operators are placed between producers and consumers in a data flow and adaptively
partition the state of pipelined operators across a shared-nothing architecture while the pipeline
continues processing. This allows for parallel execution and thus for improved scalability. In
StreamGlobe, we use a different approach that builds on sharing common work and data among
multiple queries to increase scalability. Shah et al. (2004) have extended Flux with a technique
for masking failures to achieve high availability and fault tolerance for long-running data flows.
OSIRIS-SE [Brettlecker and Schuldt (2007); Brettlecker et al. (2004, 2005)] focuses on reliable,
fault-tolerant data stream management in distributed environments, especially in the context of
healthcare applications. The OSIRIS-SE system is based on the OSIRIS [Schuler et al. (2003,
2004)] prototype of a hyperdatabase [Schek et al. (2002)] infrastructure. Dealing with fault
tolerance in StreamGlobe is an issue of future work.

Naturally, data streams play an important role in the area of sensor networks. The Cougar
project [Bonnet et al. (2001); Demers et al. (2003); Fung et al. (2002); Yao and Gehrke (2002,
2003)] is a sensor database that allows users to query sensor networks using declarative queries.
A query optimizer transforms these queries into query plans for in-network query processing
which reduces resource usage and thus extends the lifetime of sensor network nodes. A sim-
ilar system constituting a distributed query processor is TinyDB [Madden et al. (2005)]. Like
Cougar, TinyDB allows declarative querying of distributed sensors using in-network query pro-
cessing for reducing sensor power consumption. In contrast to DSMSs where data is pushed
into the network by the data sources, systems such as Cougar and TinyDB usually trigger peri-
odic updates of sensor data via corresponding update intervals specified in queries. As part of
the Telegraph project, the Fjords architecture for queries over streaming sensor data introduced
by Madden and Franklin (2002) aims at managing multiple queries over many sensors. The
main optimization goal in Fjords is to limit sensor resource demands such as power consump-
tion while maintaining high query throughput. Apart from power consumption, which is the
main target of query optimization in distributed battery-powered sensor networks, robustness in
potentially hostile environments is another important issue. In contrast, StreamGlobe focuses
on different optimization goals such as network traffic and computational load on peers in a
stable, stationary backbone network.

Apart from DSMSs and sensor networks, document routing is also related to our setting.
Like StreamGlobe, many document routing systems use XML together with XPath or XQuery
to provide support for flexible generic data exchange. XFilter and YFilter are two approaches
for efficient XML message filtering [Diao et al. (2003)]. While XFilter [Altinel and Franklin

1http://www.streambase.com

2.4 Related Work 21

(2000)] concentrates on indexing techniques for enabling high throughput filtering, its suc-
cessor YFilter [Diao et al. (2002); Diao and Franklin (2003b)] builds on the experience of
XFilter and combines filter predicates into one single non-deterministic finite automaton to en-
able the shared processing of common prefixes in query paths to increase performance. XTrie
by Chan et al. (2002a,b) is an index structure based on tries that supports the efficient filtering
of streaming XML documents using XPath expressions. In contrast to StreamGlobe, where
subscriptions are “real” queries enabling the transformation of input data, content-based docu-
ment filtering and routing treats subscriptions as boolean queries, i. e., it only checks whether
a document matches a certain subscription or not. ONYX [Diao et al. (2004)] comprises an
architecture and techniques for the content-based dissemination of XML data in large-scale dis-
tributed publish&subscribe systems based on the filtering techniques of XFilter and YFilter.
Like StreamGlobe, this system is based on an overlay network. Diao and Franklin (2003a)
explicitly deal with XML message brokering.

Cayuga [Demers et al. (2006)] is a centralized publish&subscribe system based on non-
deterministic finite automata that introduces many extensions compared to traditional pub-
lish&subscribe systems. These extensions comprise, among others, support for stateful sub-
scriptions and a subscription language with increased expressiveness including parameteriza-
tion and aggregation. Cayuga also employs multi-query optimization for increasing subscrip-
tion evaluation performance. SASE [Wu et al. (2006)] constitutes a centralized event processing
system that executes complex subscriptions over streams of RFID data. Subscriptions are spec-
ified in a declarative event language that supports time-based sliding windows. In contrast to
ordinary publish&subscribe systems, SASE is also able to correlate events. Finally, the HiFi ap-
proach introduced by Franklin et al. (2005) addresses the requirements of high fan-in systems,
i. e., systems that need to handle many incoming data streams at a single node.

StreamGlobe uses a histogram-based approach for enabling selectivity estimations over data
streams as described in Section 4.4.4. These are necessary for estimating the costs of query
evaluation plans generated by the StreamGlobe optimizer. The literature provides many sophis-
ticated approaches for analyzing data streams and for collecting appropriate data stream statis-
tics. Among them are, for example, solutions that rely on kernel [Heinz and Seeger (2006)] or
wavelet density estimators [Heinz and Seeger (2007)].

2.4.2 P2P Data Management

Over the years, P2P data management has inspired the development of a number of relevant
techniques and prototype systems.

The first generation of P2P systems primarily featured file sharing applications such as Nap-
ster and Gnutella. Napster has been the first successful P2P system for exchanging files in a
global scale. It uses central directory servers to locate files. However, this centralism consti-
tutes a potential bottleneck and thus limits scalability. Gnutella works without any centralized
metadata repository using a scoped broadcast service that propagates queries to neighboring
peers. Subsequently, the peers send their results back to the requester. The drawback of this ap-
proach is that it floods the network with queries and query results which again limits scalability.

The second generation of P2P systems consists of structured overlay networks. Research in
this area mainly focuses on indexing techniques for scalable and efficient data retrieval. Many of
these indexing techniques are based on distributed hash tables (DHTs). Among the approaches
developed in this context are content-addressable networks (CANs) [Ratnasamy et al. (2001)].
In a CAN, the logical address space is organized as a multi-dimensional torus. Data is mapped

22 2. The StreamGlobe Distributed Data Stream Management System

onto the torus using a hash function and peers in the system are responsible for holding the
data of a certain region in the torus. Regions are disjoint and their union covers the entire data
space. CANs handle joining or leaving peers by dynamically splitting and assigning regions to
peers and by handing over regions to neighbor peers and merging them with the local region
of the neighbor peer if possible. Chord [Stoica et al. (2001, 2003)] takes another approach
by introducing a virtual key ring as address space, mapping data onto the ring according to a
hash function. Peers are responsible for a certain section of the ring and manage all the data
mapped onto that section. Since data and peers are mapped arbitrarily onto the ring, Chord
does not preserve any neigborhood relationships between data or peers. Pastry [Rowstron and
Druschel (2001)] improves this situation by introducing the notion of physical neighborhood.
While also using a virtual key ring as address space, the mapping of peers onto the ring can
additionally take into account physical neigborhood relationships, i. e., peers that are close to
each other in the physical network are also close to each other in the P2P overlay network. The
question of how close peers are in the physical network can be answered by arbitrary metrics,
e. g., geographical distance or bandwidth of existing network connections. Tapestry [Zhao et al.
(2004)] is similar to Pastry and puts a special focus on fault-tolerant routing. P-Grid, described
by Aberer et al. (2003a), provides a scalable access structure specifically designed for P2P
information systems. All hash-based techniques have in common that they only support point
queries, i. e., the retrieval of data objects—usually files—matching a certain query. They are
therefore not suitable for more complex tasks such as distributed query processing and data
stream management as applied in StreamGlobe.

Beyond DHT-based indexing techniques, various other topologies for P2P networks have
been developed. Yang and Garcia-Molina (2003) introduce the concept of super-peer networks.
These networks are meant to improve the scalability of P2P networks by using a super-peer
backbone network. The super-peers usually are powerful servers. Less powerful, possibly
mobile thin-peers can register and deregister themselves in the network via the super-peers. We
employ the super-peer concept as an integral part of the StreamGlobe architecture. HyperCuP,
described by Schlosser et al. (2002), uses hypercubes as P2P network topologies. It thereby
achieves a logarithmic upper bound for the number of hops needed to get from one super-peer
in the network to any other super-peer. Content-based construction of the overlay network
might lead to neighboring peers in the overlay network being far apart in the physical network.
Ratnasamy et al. (2002) propose solutions for the problem of constructing overlay networks that
preserve the topology of the underlying physical network.

DHT-based P2P networks rely on a global schema describing the data objects to be handled.
In contrast, schema-based P2P networks [Aberer et al. (2003b); Brunkhorst et al. (2003)] are
able to deal with various existing schemas in one P2P system. Research efforts in the area of
peer data management systems (PDMSs) aim at building a distributed peer-based data manage-
ment system to enable the transparent querying of a P2P system in the form of a traditional
distributed DBMS. PDMSs such as Piazza [Halevy et al. (2003); Tatarinov et al. (2003)] refor-
mulate queries1 to fit the different schemas at various peers. Mutant query plans [Papadimos
et al. (2003)] implement distributed query processing at peers close to the data. PIER [Huebsch
et al. (2005, 2003)] is a distributed query engine based on structured overlay networks intended
to bring database query processing facilities to widely distributed P2P environments. How-
ever, PIER destroys data locality by using a hashing scheme that arbitrarily distributes data over
peers. Newer approaches such as HiSbase [Scholl et al. (2007)] remedy this problem by using
a locality-preserving distribution scheme.

1See [Tatarinov and Halevy (2004)].

2.4 Related Work 23

2.4.3 Grid Computing

StreamGlobe builds on and extends the Open Grid Services Architecture (OGSA) and its refer-
ence implementation, the Globus Toolkit, by adding data stream management and data stream
processing capabilities to the Grid computing domain.

GATES [Chen et al. (2004)] is a related approach that also builds on Globus and tries to in-
troduce data stream processing into Grid computing. While GATES mainly concentrates on data
stream analysis and quality-of-service aspects in Grid-based data stream delivery, StreamGlobe
primarily focuses on network-aware query processing and optimization in a distributed DSMS.

Another system building on OGSA is OGSA-DAI1 (Open Grid Services Architecture Data
Access and Integration). As the name suggests, this project is concerned with developing a
middleware to enable the access and integration of data from various distributed data sources
via the Grid. It also contains a distributed query processor called OGSA-DQP. In contrast to
StreamGlobe, OGSA-DAI has no special focus on data streams.

Recent efforts in applying database and Grid computing techniques to support data-intensive
e-science applications, e. g., in astrophysics, high-energy physics, or biology and medicine,
have gained much attention. Nieto-Santisteban et al. (2005) devise efficient solutions for the as-
tronomical problem of finding galaxy clusters using conventional database techniques. GridDB
introduced by Liu and Franklin (2004) is a software overlay that provides data-centric services
for scientific Grid computing. These examples prove the demand for efficient data management
systems for huge data volumes in current and future e-science applications. We demonstrate the
effectiveness of StreamGlobe in a real astrophysical application in Chapter 3.

2.4.4 Network Architecture

Multicast techniques route data towards receiving ends in a way that reduces network traffic
by transmitting the same message or document only once for multiple recipients. Multicast
is mainly used in local area networks. Deering and Cheriton (1990) introduce extensions to
TCP/IP routing capabilities to enable multicast over wide area networks. Huang et al. (2003)
investigate multicast in the context of ad-hoc and sensor networks to support efficient multicast
in evolving networks. Castro et al. (2002) introduce Scribe, a scalable, decentralized multicast
infrastructure based on the Pastry P2P system.

It is important to point out that our work in StreamGlobe differs from multicast in a major
way. Multicast techniques as mentioned above mainly operate on the network level, i. e., they
prevent the redundant transmission of equal data packets of a data stream. This is sufficient
for, e. g., video streams, since such streams always have the same content for each recipient.
In the context of StreamGlobe, this assumption does not hold since an original data stream
may exist in various preprocessed and transformed instances. Hence, techniques working on
the network level do not achieve satisfying improvements with respect to network traffic. In
contrast, StreamGlobe provides multicast techniques on an application or content-based level
by means of data stream sharing. Instead of merely reusing existing messages or documents
needed in identical versions at various network sites, StreamGlobe is able to perform extensive
in-network transformations of data streams. Therefore, it can dynamically create appropriate
data streams for data stream sharing that best fit the queries to be answered while at the same
time reducing resource usage in the overall network.

1http://www.ogsadai.org.uk

http://www.ogsadai.org.uk

24 2. The StreamGlobe Distributed Data Stream Management System

2.5 Summary
In this chapter, we have described our StreamGlobe model and prototype implementation of a
distributed DSMS. The presented architecture serves as the basis for the optimization techniques
which are at the core of this thesis. We have further introduced an example scenario using an
astrophysical e-science setting which serves as a running example throughout the thesis.

StreamGlobe offers possibilities for future work in many directions. First and foremost, an
extension of the prototype implementation to support multiple subnets in a hierarchical network
organization would be beneficial. Apart from that, StreamGlobe can be extended by additional
client interfaces for supporting data streams and subscriptions in various domain-specific for-
mats and subscription languages. We have exemplarily realized such extensions for the VOTable
format1 and the Astronomical Data Query Language (ADQL)2.

1See [IVOA (2004)].
2See [IVOA (2005)].

25

CHAPTER 3

The StarGlobe System:
An Astrophysical Flavor of StreamGlobe

Two of the most important challenges currently faced by the field of e-science are the analysis of
huge volumes of scientific data and the connection of various sciences and communities. While
the former is necessary to cope with the increasing complexity of scientific experiments and
observations, the latter enables scientists to share scientific interests, data, and research results.
An astrophysical flavor of StreamGlobe called StarGlobe addresses these issues by processing
large volumes of data on-the-fly in the form of data streams and by combining multiple data
sources and making the results available in a network. By means of parallelization, pipelining,
and early filtering, StarGlobe drastically reduces the execution time of scientific workflows and
at the same time returns first results early on while the processing of the remaining inputs is still
proceeding. This increases efficiency and convenience for the scientific user.

3.1 Introduction

Information fusion across various data sources is an important task in many e-science applica-
tions. In this regard, transmitting all the necessary data from the data sources to the data sink for
processing (data shipping) is problematic and does not scale with the expected large and increas-
ing data volumes of the near future. Executing operators at or close to the data sources (query
shipping) if the operators reduce the data volume or distributing query processing operators in
a network (in-network query processing) are promising solutions to this problem. In-network
query processing as employed in the StarGlobe system can also be combined with parallel and
pipelined processing of data streams. This enables further improvements of performance and of
response times in e-science workflows.

Throughout this chapter, we use spatial matching, which is a current issue in astrophysics,
as an example e-science scenario to describe and to evaluate our approach. Spatial matching is
an important step in the process of determining spectral energy distributions (SEDs) of celestial
objects. SED assembly and subsequent classification as described by Adorf et al. (2004) are

26 3. The StarGlobe System: An Astrophysical Flavor of StreamGlobe

rather complex problems. In order to discover and to classify new astronomical objects such
as active galactic nuclei, brown dwarfs, or neutron stars, it is not sufficient to just survey the
sky using one specific observation method. Rather, photometric data from various wave bands
and catalogs, i. e., data archives, have to be combined to gain ideally seamless SEDs of celestial
objects. This scenario poses a real challenge due to several reasons such as the distribution
of catalogs over various locations, the potentially large data volumes, and the need for often
complex data transformations. One of the greatest difficulties is the lack of a unique (database)
key for the identification of astronomical objects. Instead, the only way of identifying these
objects is by using uncertain sky positions.

There exist only few tools, such as the GAVO (German Astrophysical Virtual Observatory)
crossmatcher developed by Adorf et al. (2005), that are able to perform the crossmatching of
catalogs which serves as a basis for subsequent SED assembly and classification. During the
process, the GAVO crossmatcher acquires astrometric and photometric data from catalogs cov-
ering different wavelength ranges and loads them into a main memory database. Afterwards,
the crossmatcher applies various transformations to spatially match astrometric data using sta-
tistical methods. Due to the combinatorial explosion during a multi-catalog join, the amount of
data can grow so rapidly that it exceeds main memory and cannot be handled anymore.

In this chapter, we present a solution to this problem using our StarGlobe system. StarGlobe
is an astrophysical flavor of StreamGlobe that augments StreamGlobe with functionality specif-
ically tailored to the needs of the astrophysics community. In StarGlobe, data from multiple
catalogs is streamed into a StreamGlobe network and processed in a pipelined fashion. We inte-
grated the astrophysical application logic using the external operator interface of StreamGlobe
introduced in Section 2.3.5 of Chapter 2. StarGlobe is able to transform and to spatially match
large volumes of astrometric data. In addition, the system dramatically reduces the time needed
to produce and to return the first result data item. Therefore, first results are available after a
relatively short period of time due to pipelined stream processing. This is much more conve-
nient for astronomers than having to wait for the entire process to complete before receiving
any results as in the straightforward approach.

Using DSMSs and exploiting their benefits is an important step in coping with the challenges
of the near future. The amount of data in astronomy is growing at an exponential rate. Soon,
observational data collected by satellites and telescopes during certain sky observations, e. g.,
in the LOFAR1 project, will exceed available storage capacities. Also, the traditional way of
collecting and storing all observational data first and of subsequently analyzing it may not be
appropriate for future applications. Therefore, alternative ways of processing and analyzing
data on-the-fly as in StarGlobe are necessary.

In detail, we make the following contributions in this chapter:

• We introduce SED assembly and classification as an actual astrophysical e-science appli-
cation that can benefit from research results in computer science in general and from data
stream management in particular.

• We describe our StarGlobe implementation of spatial matching using the StreamGlobe
external operator interface introduced in Chapter 2. Spatial matching is an important
prerequisite for SED assembly and classification.

• An evaluation of our solution proves that StarGlobe constitutes a valuable computing
platform for solving the task of spatial matching in an astrophysical application.

1http://www.lofar.org

3.2 Problem Statement 27

3.2 Problem Statement
SED assembly and subsequent classification [Adorf et al. (2004)] is a common problem in
astrophysics. The basic idea is to construct an approximate SED for a celestial object by com-
bining photometry from various catalogs covering different wavelength ranges and to classify
the object on the basis of its SED. A major problem in this context is the fact that observational
data usually are (in some cases also geographically) distributed over many large database tables
called catalogs. Also, since the data are obtained through various sky observations conducted
using different measurement instruments, they contain individual variances due to a variety of
reasons, including measurement uncertainties of the instruments used. These uncertainties con-
cern the celestial coordinates, i. e., the positions (astrometry), as well as the photometric data,
i. e., the intensities (photometry), of the object under investigation. Therefore, it is very likely
that the coordinates of the same object slightly differ from each other in different catalogs. This
makes it non-trivial to perform spatial matching, i. e., to combine (crossmatch) corresponding
objects or even entire catalogs, which is a prerequisite for SED assembly.

Solutions such as the GAVO crossmatcher [Adorf et al. (2005)] load the results of each
queried catalog into a main memory database. These so-called primary match results (PMRs)
are then combined1 and filtered in memory (in-memory matching). A major disadvantage of this
data shipping approach is the fact that it can easily lead to a memory overflow when matching
too many sources, particularly when many catalogs are involved. Besides, scientists initiat-
ing a spatial matching process for SED assembly have to wait for the crossmatcher to finish
completely before receiving any results. Thus, they are unable to gain immediate feedback con-
cerning the correctness of the specified parameters. We address these issues with an alternative
approach using and enhancing the stream processing capabilities of a Grid-based DSMS.

3.3 The SED Scenario
This section gives an explanation and a summary of the mechanisms of SED assembly and
classification to the extent necessary for understanding the approach we describe in this chapter.

3.3.1 Overview
As motivated in an astrophysical publication by Adorf et al. (2004), SED assembly and clas-
sification are essential exploratory techniques to discover new astronomical objects such as
obscured active galactic nuclei, brown dwarfs, isolated neutron stars, or planetary nebulae. The
key principle is the combination of multi-wavelength photometric data from different catalogs
to assemble an ideally seamless SED of a celestial object. The workflow of SED classification
consists of the following five steps (see Figure 3.1):

1. catalog query

2. spatial (or astrometric) matching

3. assembly of raw photometry

4. photometric transformation

1A left outer join is computed over the input list of objects and all primary match results. The input list can be
a complete catalog by itself.

28 3. The StarGlobe System: An Astrophysical Flavor of StreamGlobe

Input
list

P1

Photometric transformation
SED generationRatio calculation

Catalog 1 Catalog 2 Catalog n

…

P2 Pn
Primary match results
(including photometric data) …

Astrometric fuzzy join:

Deterministic matching
Statistical matching

Pri
ma

ry
ma

tch
(ca

tal
og

 qu
eri

es)

Object selection

Se
co

nd
ary

 m
atc

h
(sp

ati
al)

SED classification

Figure 3.1: SED assembly and classification workflow

5. actual SED classification

In the first step, astronomers usually create an input list of astronomical objects they are
interested in. The celestial coordinates of the objects could be derived, e. g., from a catalog
which the astronomer wants to use as a starting point. Besides the coordinates, the list also
contains an identifier for each object. The input list is then used to query various catalogs
covering as many wavelength ranges as needed. For each object in the input list, a domain-
specific selection called cone search is conducted on each catalog. For each catalog, the results
of the search, the associated photometric data, and the ids of the corresponding objects from
the input list are returned in a primary match result (PMR). The PMRs are the basis for the
astrometric matching performed in the second step which we explain in detail in Section 3.3.2.

When the astrometric matching is complete, photometric data has to be assembled and trans-
formed into an SED in the third and fourth step. Photometric transformation (the actual SED
assembly) is a non-trivial process which we do not explicitly address here. Figure 3.2 illus-

3.3 The SED Scenario 29

Source: [Völk (1999)]

Figure 3.2: Spectral energy distribution of the
emissions from the Crab Nebula

Source: [Völk (1999)]

Figure 3.3: The Crab Nebula in the constella-
tion Taurus

trates what the results of a photometric transformation could look like by the example of the
emissions from the Crab Nebula in the constellation Taurus. Figure 3.3 shows the Crab Nebula
in optical light. The dashed line in Figure 3.1 indicates that, alternatively to the photometric
transformation, so-called ratios of photometric values can be calculated to filter characteristic
objects (e. g., radio-loud objects: Fradio/Foptical > ratiothreshold).

After photometric transformation, the resulting SED can be fed into a statistical classifier
for supervised classification. This final step performs photometric matching with precomputed
template SEDs which may be synthesized based on a library of template spectra [Adorf et al.
(2004)]. Subsequently, astronomers can review and evaluate the results of the classification.

The emphasis of our work lies on the spatial matching in the second step.

3.3.2 Spatial (Astrometric) Matching
After having completed the first step of the SED assembly and classification workflow, i. e.,
all PMRs of each queried catalog have been collected, the secondary match can be performed
(see Figure 3.1). This match is fuzzy since a statistical method of result filtering is applied
(fuzzy match). The fuzzy match itself consists of a deterministic and a statistical part. The
deterministic part is basically a left outer equi-join over the id attribute (indicated by�id) of all
PMRs P1, . . . ,Pn including the input list I on the very left side:

(((I�id P1)�id P2)�id . . .)�id Pn

Here, id is an attribute introduced in I to identify objects in all PMRs related to one id in I.
The fuzzy part takes the result of the join and calculates a statistical metric, hypothetically

assuming that all objects within one join result item, also denoted as counterparts, belong to the
same physical source. This metric is subsequently referred to as the reduced χ2-metric [Adorf
et al. (2005)]. Figure 3.4 illustrates two join results or spiders, each consisting of three coun-
terparts from three different catalogs that obviously fit together forming two match candidates.
Match candidates with a χ2-value above a certain user-defined threshold are discriminated be-
cause they are statistically unreasonable match combinations. In Figure 3.5, one counterpart
is associated with both match candidates. The spider on the lower left seems to be quite rea-
sonable. But the spider on the upper right connecting the stray counterpart with a dashed line
probably does not make sense and can be dropped because its reduced χ2 is too high. One can
view the χ2

reduced-metric as a measure of compactness of a spider or match candidate.

30 3. The StarGlobe System: An Astrophysical Flavor of StreamGlobe

Catalog #1

Catalog #3

Catalog #2

Figure 3.4: Two spiders

Catalog #1

Catalog #3

Catalog #2

Figure 3.5: Stray counterpart

We calculate the χ2
reduced-value for each match candidate as follows:

1. Calculate the weighted mean (Euclidean) coordinates of all n counterparts within one
match candidate (assuming that the two-dimensional spherical coordinates of each object
have already been transformed into three-dimensional Euclidean coordinates on the unit
sphere):

~m =
1
w
·

n

∑
i=1

(wi~vi) , (3.1)

where wi = 1/σ2
i is the statistical weight factor for each counterpart i∈ [1..n], w = ∑n

i=1 wi
is the sum of all weight factors, σi is the astrometric uncertainty associated with each
counterpart i, and ~vi = (xi,yi,zi)T are the Euclidean coordinates of a counterpart i.

2. Normalize the Euclidean coordinates of the weighted vector ~m to the unit sphere:

~m =
~m√

x2
m + y2

m + z2
m

, (3.2)

with ~m = (xm,ym,zm)T .

3. With ~m as optimum center (see small thick black circles in Figures 3.4 and 3.5 which
represent the formal astrometric uncertainty) now calculate arc distances between each
counterpart i and the optimum center ~m :

ϕi = arccos(~vi · ~m) = arccos(xixm + yiym + zizm) , (3.3)

with ~m = (xm,ym,zm)T .

4. The Mahalanobis distance ri between each counterpart i and the center ~m then is:

ri =
ϕi

σi
. (3.4)

5. χ2 is calculated from:

χ2 =
n

∑
i=1

r2
i . (3.5)

3.4 Astrometric Matching in StarGlobe 31

6. Finally, the reduced χ2-value is calculated by dividing χ2 by the degrees of freedom (per
spider):

χ2
reduced =

χ2

2n−2
. (3.6)

This sketch of the calculation steps provides the background for the distributed spatial
matching scenario presented in this chapter.

3.4 Astrometric Matching in StarGlobe
This section presents the spatial matching scenario that we have implemented and executed in
StarGlobe. We also report on the results observed when executing the scenario workflow.

3.4.1 Preliminaries
Spatial matching is an important step in the process of SED assembly and classification. PMRs
from various catalogs are combined which can lead to an enormous growth of data volumes.
The challenge is to remove combinations that do not fit together and to select only valid match
candidates for further processing and classification. Straightforward approaches such as the
GAVO crossmatcher calculate all possible combinations of PMRs en bloc in main memory and
subsequently filter only good match candidates using the χ2

reduced-metric. As already mentioned
in Section 3.1, this approach will run out of main memory when matching too many catalogs.

Exploiting the fact that StarGlobe is a distributed system, we take a different and very
promising approach. By distributing the combination phase of the spatial matching process
over multiple peers, StarGlobe allows us to parallelize processing. We can thus join many more
PMRs at the same time. This enables us to include more catalogs to produce match candidates
containing even richer information.

In addition, we split up χ2
reduced-filtering, which is usually done after the deterministic

matching in the workflow of SED assembly (see Figure 3.1), and relocate it at the join op-
erators of the deterministic matching process as shown in Figure 3.6. This results in a tight
integration of the deterministic as well as the statistical process, thereby improving selectivity
and preventing bad match candidates from yielding unnecessary combinations at a very early
stage. Also, network traffic is reduced and throughput of valid match candidates at single peers
is increased. Yet, we need to be careful not to filter out match candidates too early if their
χ2

reduced-value lies slightly above the threshold. At first glance, these are bad match candidates.
But as long as further counterparts could join a match candidate, the match candidate’s χ2

reduced-
value could drop below the threshold. This may happen when an existing match candidate is
joined by another counterpart whose coordinates lie near or exactly on the optimal center of
the spider. This would contribute to the compactness of the spider such that its χ2

reduced-value
decreases. Therefore, we need to specify thresholds on filter operators placed at inner nodes
more generously. To assure that no valid match candidate is accidentally dropped, we divide
the local χ2 by the maximum degree of freedom a match candidate can reach throughout the
assembly process. This degree depends on the number of catalogs being spatially matched.

Another feature of the distributed approach is that first results are returned rather quickly
during processing in contrast to the straightforward approach where no results are returned as
long as the calculation proceeds. This is due to the fact that StarGlobe constitutes a DSMS
using non-blocking query operators that process data streams on-the-fly in a pipelined fashion.

32 3. The StarGlobe System: An Astrophysical Flavor of StreamGlobe

plan-10
at SP10

plan-8
at SP8

plan-5
at SP5

enrichσ-5
transform-5
stream-5

χ²filter-2
join-2

plan-4
at SP4

enrichσ-4
transform-4
stream-4

plan-9
at SP9

χ²filter-3
join-3

plan-7
at SP7

plan-2
at SP2

enrichσ-2
transform-2
stream-2

plan-3
at SP3

enrichσ-3
transform-3
stream-3

χ²filter-1
join-1

plan-6
at SP6

χ²filter-0
join-0

plan-1
at SP1

enrichσ-1
transform-1
stream-1

χ²filter-4
join-4

display

plan-0
at SP0

enrichσ-0
transform-0
stream-0

Figure 3.6: Schematic illustration of the distributed query evaluation plan

In order to support astrophysical scenarios like the following, we have augmented StarGlobe
with additional stream iterator implementations using the StreamGlobe external operator inter-
face. Stream iterators in StarGlobe are basically non-blocking operators for processing data
streams. The additional operators comprise a sigma enricher for attaching necessary uncer-
tainty information to data stream items, a generic, non-blocking, progressive merge join oper-
ator used for matching data items, and a χ2

reduced-filter operator for performing the filtering as
described in Section 3.3. To realize real-life spatial matching scenarios for SED assembly, we
have acquired PMRs from different astrophysical data catalogs shown in Table 3.1.

3.4.2 Spatial Matching Scenario

In our spatial matching scenario for SED assembly, we use an input list of 50 sources from
RASS-BSC [Voges et al. (1999)]. Since there does not yet exist a module to directly query
the VizieR catalog service1 from Centre de Données astronomiques de Strasbourg (CDS)2 and
to stream the results automatically into StarGlobe, we currently retrieve the PMRs manually
and convert them to XML. Table 3.2 shows the queried catalogs. The search radii used for
querying the catalogs are quite large, yielding a comparatively large number of PMRs. This
is due to the fact that the coordinates of the source objects taken from RASS-BSC have rather
large uncertainties. The density of a catalog also has an impact on the size of the result set. The
higher the density, the more objects are returned within the search radius.

1http://vizier.u-strasbg.fr
2http://cdsweb.u-strasbg.fr

3.4 Astrometric Matching in StarGlobe 33

CATALOG SPECTRAL BAND # OBJECTS FULL NAME

2MASS near-infrared 470,992,970 Two Micron All Sky Survey
FIRST radio 811,117 Faint Images of the Radio Sky at Twenty

centimeters
GSC-2 optical 455,851,237 The Guide Star Catalog Version 2.2
NVSS radio 1,773,484 1.4 GHz National Radio Astronomy Ob-

servatory Very Large Array Sky Survey
RASS-BSC X-ray 18,806 ROSAT All-Sky Survey Bright Source

Catalog 1RXS (1st ROSAT X Survey)
USNO B1.0 optical 1,045,913,669 Whole-Sky United States Naval Obser-

vatory B1.0 Catalog

Table 3.1: Catalogs used in the spatial matching scenario

CATALOG SEARCH RADIUS TABLE # PMRS STREAM SIZE

2MASS 90 arcsec II/246/out 611 229 KB
FIRST 90 arcsec VIII/71/first 60 27 KB
GSC-2 90 arcsec I/271/out 722 350 KB
NVSS 90 arcsec VIII/65/nvss 32 14 KB
USNO B1.0 90 arcsec I/284/out 666 260 KB

Table 3.2: Catalogs queried using an input list of RASS-BSC sources

Figure 3.7 shows the Grid-based network topology that we use for this spatial matching
scenario. The PMRs are streamed into the network at SP1 to SP5. The input list is injected at
SP0. In this scenario, the input list itself is included in the matching process, which is possible
in SED assembly. We split up the left outer join of Section 3.3.2 and distribute it over several
peers within the network. Thus, a transformation of the n-way left outer join becomes necessary
to make sure no tuple (or match candidate) is accidentally dropped. The basic principle of the
transformation is that some left outer joins on certain inner nodes need to be replaced by full
outer joins. The transformation is based on the following theorem.

Theorem 3.1 Let A := {[a1, . . . ,al]}, B := {[b1, . . . ,bm]}, and C := {[c1, . . . ,cn]} be relations
and let A.id ∈ {a1, . . . ,al}, B.id ∈ {b1, . . . ,bm}, and C.id ∈ {c1, . . . ,cn} be their corresponding
join attributes, respectively. Then the following applies:

(A�A.id=B.id B)�A.id=C.id C ≡ A�A.id=B.id∨A.id=C.id (B�B.id=C.id C) ¤

PROOF: We present the proof in Appendix B on page 195. ¥

In our example, the join

((((IRASS−BSC�id P2MASS)�id PFIRST)�id PUSNOB1)�id PNV SS)�id PGSC−2

is transformed to

((IRASS−BSC�id P2MASS)�id (PFIRST �id PUSNOB1))�id (PNV SS�id PGSC−2).

The network topology of Figure 3.7 reflects the transformed join order.

34 3. The StarGlobe System: An Astrophysical Flavor of StreamGlobe

SP10

SP9 SP8

SP6 SP4 SP5SP7

SP2SP1SP0 SP3

Input List
RASS-BSC

2MASS USNO B1.0

NVSS GSC-2

SED assembly

FIRST

Figure 3.7: Network topology

To illustrate the effectiveness of early filtering during spatial matching, Table 3.3 shows the
results of two different workflow executions. The first execution employs early χ2

reduced-filtering
while the second does not. The stream size in the table represents the intermediate size of an
output stream directly after each join operator (see Figure 3.6), i. e., after the join but before
the following filter operator in case of early filtering. The table also shows the corresponding
number of match candidates that are under consideration at each step. Early filtering keeps
the number of match candidates considerably lower after join-3 and join-4 compared to the
approach without early filtering. Since intermediate result sets are much smaller, performance
with early filtering is much better. Without early χ2

reduced-filtering, the workflow generates large
intermediate results with many irrelevant match candidates. Remember that, without early fil-
tering, the χ2

reduced-filter is only applied once after the complete join has been computed. Con-
sequently, in this case, no irrelevant match candidates are filtered until after join-4. Therefore,
99.9% of all match candidates in the result of join-4 are dropped at filter-4 when no early filter-
ing is employed. This can be seen from comparing stream sizes after join-4 and after filter-4 in
Table 3.3. The loss of performance is obvious when comparing the durations of both workflow

WITH EARLY FILTERING WITHOUT EARLY FILTERING

Stream size # Match candidates Stream size # Match candidates
After join-0 808 KB 611 808 KB 611
After join-1 1,874 KB 1,138 1,874 KB 1,138
After join-2 1,387 KB 826 1,387 KB 826
After join-3 6,355 KB 2,522 46,525 KB 15,489
After join-4 14,356 KB 3,815 1,838,648 KB 364,299
After filter-4 1,364 KB 318 1,364 KB 318
Duration hh:mm:ss 00:02:58 02:46:00

Table 3.3: Workflow execution results

3.5 Related Work 35

MATCH CANDIDATES FILTER RATIO

Before filtering After filtering
At join-0 611 289 47.3%
At join-1 1,138 452 39.7%
At join-2 826 458 55.4%
At join-3 2,522 400 15.9%
At join-4 3,815 318 8.3%

Table 3.4: Filter ratios with early filtering

executions.1 With early χ2
reduced-filtering, this astrometric matching scenario runs more than 50

times faster than without.
Table 3.4 shows the number of match candidates before and after each χ2

reduced-filter operator
at the various join nodes in the network when using early filtering. Additionally, the table shows
the resulting filter ratio (selectivity) at each χ2

reduced-filter.
Summarizing, our approach has proven to be highly beneficial in the presented scenario.

Executing the spatial matching workflow in StarGlobe vastly reduces the negative effects of
input coordinates with high uncertainties on overall performance by means of early filtering of
intermediate results. Also, even for high quality input coordinates with small uncertainties, the
parallel and pipelined streaming execution of workflow operators further improves performance
and increases convenience by delivering first results early on during processing.

3.5 Related Work
The functionality presented in this chapter is also provided by the GAVO crossmatcher which
was developed by Adorf et al. (2005). However, as we have pointed out before, the approach
pursued in the crossmatcher does not use early filtering, parallelization, or pipelined stream pro-
cessing. It thus imposes strict limitations on the sizes of computable problems due to excessive
resource consumption. If main memory size is insufficient to hold all the necessary data, the
approach taken by the crossmatcher becomes infeasible. Also, the crossmatcher delivers the
entire result to the user at the very end of the processing which can take a considerable amount
of time to complete. Our StarGlobe approach drastically reduces processing time and memory
consumption by means of parallel and pipelined stream processing. Further, StarGlobe instantly
delivers generated result items in a pipelined fashion.

The SkyQuery system [Budavári et al. (2002); Malik et al. (2003)] and its redesigned version
OpenSkyQuery [Budavári et al. (2003); O’Mullane et al. (2004)] are federated databases which
are based on web service technology. These systems enable users to query distributed catalogs
called (Open)SkyNodes and to perform crossmatching of various catalogs in a similar way as
presented in this chapter. However, OpenSkyQuery currently has some limitations, e. g., in the
number of rows that can be returned in an answer to a query. This is due to performance issues
since, in contrast to StarGlobe, OpenSkyQuery does not yet employ optimization techniques
such as parallelization and pipelined stream processing. In an ongoing cooperation with the
group of Alex Szalay at Johns Hopkins University, we continue to investigate possibilities of
integrating our work with theirs.

1For the evaluation, we executed the workflows on a blade server using 11 blades, each equipped with an Intel
Xeon processor at 2.8 GHz and 1 GB of RAM.

36 3. The StarGlobe System: An Astrophysical Flavor of StreamGlobe

As already pointed out in the previous chapter, many different data stream management
systems have been proposed in recent years. However, none of these systems has been used
to specifically support real-life e-science applications. This is the first work to investigate the
impact of employing a Grid-based distributed data stream management system for supporting
and improving an actual (astrophysical) e-science workflow.

3.6 Summary
This work demonstrates the possible benefits for the scientific community of combining re-
search efforts in computer science with those of other scientific disciplines such as astrophysics.
Recent research efforts in computer science in the field of data stream management provide new
solutions for existing scientific problems. StarGlobe is a new platform for efficiently executing
actual astrophysical e-science scenarios using data streams. We have shown the successful ex-
ecution of an astrometric matching scenario in StarGlobe. In this scenario, we combined the
extensive processing of multiple data streams with the application of possibly complex trans-
formations and statistical methods in order to efficiently crossmatch astrophysical data cata-
logs. The result data stream can be subscribed at any peer connected to the StarGlobe network.
Subscribed streams may be further processed, e. g., through supervised classification used to
discover new astronomical objects such as obscured neutron stars or hidden galaxies.

The research community benefits from our approach in many ways. First, larger problem
sizes can be handled without running into problems concerning available computing resources,
especially in terms of main memory. With early filtering and parallelization reducing mem-
ory consumption and processing time, StarGlobe is prepared for the challenges of the antici-
pated data explosion of the next decade. Second, using pipelined stream processing, e-science
workflows can deliver first results early on in a pipelined fashion while the computation of the
remaining results is still running. This enables scientists to check the correctness of their pa-
rameter settings and to start working on the results early on. Of course, our approach is also
applicable to many other matching scenarios in all fields of science, business, and engineering.

As far as future work is concerned, automatic retrieval of PMRs would eliminate the need to
query astronomical catalogs like VizieR/CDS manually. Within the scope of the development of
the GAVO crossmatcher, our astrophysical cooperation partners from the Max-Planck-Institut
für extraterrestrische Physik (MPE) have developed a component which performs the PMR ac-
quisition. They intend to make the component available for integration into StarGlobe in the
future. As an intelligent content provider, the adapted component could then be used to query
various remote catalogs in parallel and to stream the results into the StarGlobe network. Fur-
thermore, scientific workflows are currently specified in the form of manually written XML
documents in StarGlobe. This workflow description corresponds to a distributed query evalu-
ation plan in StreamGlobe as introduced in Chapter 2 and contains specifications of operators,
operator placement on peers, and the data flow that has to be established between operators
and peers. An optimizer for automatic plan generation would relieve researchers from hav-
ing to write their own query plans which is desirable especially for complex scenarios. In the
remainder of the thesis, we investigate optimization techniques within StreamGlobe for auto-
matically generating optimized distributed query evaluation plans for queries specified using
our XQuery-based WXQuery subscription language.

37

CHAPTER 4

Data Stream Sharing

Scarce resources such as computational power and network bandwidth limit the number of
continuous queries a DSMS can handle concurrently. Making intelligent and efficient use of
these valuable resources is thus mandatory in order to offer the best service possible to users.
We achieve this goal by introducing data stream sharing, an optimization technique based on
in-network query processing and multi-subscription optimization that enables us to distribute
continuous query processing in the network and to share data streams for satisfying multiple
similar queries. Thus, distributed DSMSs using this optimization can satisfy more continuous
queries concurrently with their available resources.

4.1 Introduction
As already motivated in Chapter 1, data stream processing is a valuable means for coping with
the requirements of novel applications in e-science, e-health, and e-business. The aim in e-
science, for example, is to enable various researchers and research institutes to share their re-
search data, e. g., sensor measurements of complex experiments in physics or telescope obser-
vation data in astronomy. This allows for resource sharing as well as multiple evaluation and
analysis of data. Furthermore, continuing technological advances will result in even higher data
volumes which makes storing all of the delivered data prior to processing increasingly imprac-
tical. Also, transmitting all the data over physically limited and therefore potentially congested
network connections is a problem. This is especially true if only small subsets of the data or
some processing results—which usually constitute a much smaller data volume than the input
data—are actually needed. To enable efficient data sharing and processing, it is imperative to
reduce the huge amounts of data generated by scientific experiments and observations as early
as possible and to reuse computational results if appropriate. Thus, the transmission of unnec-
essary data, the redundant transmission of data streams, the redundant execution of operators,
and therefore network and peer overload can be prevented.

We propose data stream sharing as a new optimization technique addressing these issues.
Data stream sharing is based on two main optimization approaches. These are (1) in-network

38 4. Data Stream Sharing

Super-Peer
Backbone

SP4 SP6

SP0 SP2

SP7

SP3SP1

SP5

Stream photons

P0

P1

P3

P2

P4

Query 1 (q1)

Query 3 (q3)

Query 2 (q2)

Query 4 (q4)

(a) Without data stream sharing

Super-Peer
Backbone

SP4 SP6

SP0 SP2

SP7

SP3SP1

SP5

Stream photons

P0

P1

P3

P2

P4

Query 1 (q1)

Query 3 (q3)

Query 2 (q2)

Query 4 (q4)

(b) With data stream sharing

Figure 4.1: Example DSMS scenario

query processing for distributing and executing newly registered continuous queries in the net-
work and (2) multi-subscription optimization for enabling the reuse and sharing of existing
(parts of) data streams that were generated to satisfy previously registered subscriptions. These
optimizations are an integral part of our StreamGlobe system. To enable them, we use Peer-to-
Peer (P2P) networking and Grid computing techniques as introduced in Chapter 2.

As a motivating example for the application of StreamGlobe, we introduce an astrophysi-
cal e-science application. Consider Figure 4.1 which illustrates an instance of the exemplary
network of Figure 2.1 once without and once with data stream sharing. Peers P1 to P4 in the
example network are devices of astrophysicists used to register subscriptions in the network.
Subscriptions are registered using WXQuery, our XQuery-based subscription language that we
introduce in detail in Section 4.3. We only consider Queries 1 (q1) and 2 (q2) of Figure 4.1
here. Queries 3 (q3) and 4 (q4) are presented in Section 4.3. All queries reference data stream
photons introduced in Section 2.1 as their single input. Figure 4.2 below shows Query 1 (q1).

<photons>

{ for $p in stream("photons")/photons/photon

where $p/coord/cel/ra >= 120.0

and $p/coord/cel/ra <= 138.0

and $p/coord/cel/dec >= -49.0

and $p/coord/cel/dec <= -40.0

return

<vela>

{ $p/coord/cel/ra } { $p/coord/cel/dec }

{ $p/phc } { $p/en } { $p/det_time }

</vela> }

</photons>

Figure 4.2: Query 1 (q1)

This query selects an area in the sky that contains the Vela supernova remnant and delivers
the celestial coordinates, the pulse height channel, the energy, and the detection time of all the
photons detected in that area. The stream function was newly introduced by us and indicates

4.1 Introduction 39

a possibly infinite data stream used as input to the query. Query 2 (q2) is shown in Figure 4.3
below and filters a smaller section of the sky.

<photons>

{ for $p in stream("photons")/photons/photon

where $p/en >= 1.3

and $p/coord/cel/ra >= 130.5

and $p/coord/cel/ra <= 135.5

and $p/coord/cel/dec >= -48.0

and $p/coord/cel/dec <= -45.0

return

<rxj>

{ $p/coord/cel/ra } { $p/coord/cel/dec }

{ $p/en } { $p/det_time }

</rxj> }

</photons>

Figure 4.3: Query 2 (q2)

This query selects the area of the RX J0852.0-4622 supernova remnant which is situated
within the area of Vela. Note that the section of the sky selected by q2 is completely contained
in the section selected by q1. Also, q2 is only interested in photons having an energy value of at
least 1.3 keV.

We first consider Figure 4.1(a) which shows the traditional scenario of answering queries
in the network. The thickness of the arrows associated with the various network connections
indicates the size of the data streams transmitted over these connections. Each of the four
queries in the system only needs a certain part of the original data stream. However, in each
case, the entire stream gets transmitted from the data source to the peer that registered the query,
leading to the transmission of unnecessary data. Since query execution for each subscription
takes place at the super-peer that the subscribing peer is connected to, queries that perform the
same operations on the same input data streams cause redundant execution of operators. Note
that this scenario already performs a basic form of data stream sharing since it transmits stream
photons from P0 to SP4 only once and then forwards multiple copies to various other peers.

Figure 4.1(b) shows the situation when using our stream sharing approach which answers
newly registered subscriptions using (parts of) data streams already present in the network.
These data streams have been generated for satisfying previously registered continuous queries.
We assume that queries q1 to q4 have been registered one after another in ascending order in our
example. Obviously, we can significantly reduce network traffic and processing overhead by
avoiding redundant transmissions and computations through sharing previously generated data
streams. For example, when q1 is registered, its execution can be pushed into the network and
the query can be processed at SP4 instead of at SP1. The result is then routed to P1 via SP5 and
SP1. When q2 is registered afterwards, it can reuse the stream constituting the answer for q1 at
SP5 because the result of q2 is completely contained in the answer for q1. The result data stream
of q1 is duplicated at SP5, yielding two identical streams. One is used to answer q1, the other
is filtered using the selection and projection of q2. This results in a new stream that constitutes
the result of q2 which is subsequently routed to P2 via SP7. We present more details on this and
on the registration of queries q3 and q4 in Section 4.4.

The contributions presented in this chapter comprise the following:

40 4. Data Stream Sharing

• First, we describe the problems of matching subscriptions and data streams and of suitably
placing query operators in the network. Furthermore, we establish a formal notion of data
streams and data windows (Section 4.2).

• Then, we introduce Windowed XQuery (WXQuery), our XQuery-based subscription lan-
guage for continuous queries over XML data streams enabling the formulation of queries
including window-based operators (Section 4.3).

• We develop a properties representation for data streams and subscriptions in the network.
This representation forms the basis for finding reusable streams enabling data stream
sharing (Section 4.4.2).

• We give a formal definition of shareability among properties representations of subscrip-
tions and streams (Section 4.4.3).

• We devise a cost model for estimating the costs of distributed query evaluation plans
generated by the optimizer (Section 4.4.4).

• We introduce algorithms for optimizing the evaluation of newly registered continuous
queries in a distributed DSMS by sharing possibly preprocessed data streams available in
the system (Section 4.4.5).

• Finally, Section 4.5 shows some evaluation results obtained using our StreamGlobe proto-
type implementation that demonstrate the benefits of data stream sharing in a distributed
DSMS.

4.2 Preliminaries
We start by introducing and describing the problems of matching subscriptions and data streams
and of placing query operators in the network. We further establish our notion of data streams
and data windows in the context of this thesis.

4.2.1 Problem Statement
Our goal is to efficiently integrate, distribute, and execute newly registered continuous queries
over data streams in a StreamGlobe network. We thus reduce network traffic and peer load,
avoid network congestion and peer overload, enable load balancing among peers and network
connections, and increase flexibility in terms of the kinds of subscriptions a peer can regis-
ter. We employ a local optimization approach to incrementally include new subscriptions in
an existing network. Note that static multi-query optimization on a set of subscriptions is a
different problem. However, if appropriate, it could be used for periodic or event-based global
reoptimization to complement our approach. The core problem that has to be solved in order
to achieve our goal is the discovery of reusable (parts of) data streams. Solving this problem
requires taking into account schema- or structure-based information (e. g., projections) as well
as content-based information (e. g., selections) about subscriptions and data streams. In order
to enable the efficient comparison of subscriptions and data streams, we abstract from the tex-
tual representation of the subscription and the data stream schema. Instead, we use a properties
approach introduced in Section 4.4.2 to gather the relevant properties of subscriptions and data
streams. On this basis, it is possible to compare the properties of a new subscription with those

4.2 Preliminaries 41

of existing data streams in the network. In our approach, the contents of a data stream are
represented by the properties of the subscription generating the respective stream. Therefore,
a subscription corresponds to a data stream, i. e., the result data stream of that subscription,
and vice versa. This implies that a subscription and its corresponding result data stream are
represented by the same properties.

In general, the above mentioned comparison of subscriptions and data streams will identify
more than one shareable stream for a given subscription. This leads to multiple possible evalu-
ation plans. The choice for one of those plans is made according to a cost function taking into
account additional network traffic and peer load caused by the new operators. Section 4.4.4
introduces the details of the cost model.

4.2.2 Data Streams
Before dealing with data stream sharing, we first introduce our notion of data streams in the
context of this thesis.

Definition 4.1 (Data stream) A data stream S is a possibly infinite sequence (si) of data items
si with i ∈ N+. Only the next data item arriving on the stream can be read from the stream at
any time. After reading a data item si from the stream, access to any data item s j with j ∈ N+

and j ≤ i is not possible any more. ¤

Data streams in our context are possibly infinite streams of XML data. Each stream consists
of a sequence of XML elements called data stream items. The sequence of data stream items
is enclosed in a data stream root element. The data stream root element can only have a single
subelement in the schema or DTD of the stream, namely the root element of the data stream
items. Since the stream consists of a sequence of data stream items, the root element of the data
stream items can and generally will have multiple occurrence in the data stream schema. The
structure of a data stream item is arbitrary. In the DTD of our example data stream photons

shown in Figure 2.2, the data stream root element is photons and the data stream items are the
XML subtrees rooted at the photon elements. Note that the opening photons tag marks the
beginning of the corresponding data stream while the closing photons tag marks its ending.
The stream contains a possibly infinite sequence of photon elements. A data stream can be
referenced via a stream node, corresponding to a document node in standard XML.

The order of the data objects in a data stream depends on the sort order of the stream. A
data stream can deliver its data stream elements either sorted according to a certain sort order
or unsorted.

Definition 4.2 (Sort order) A data stream S = (si) is called sorted according to an order /, if
and only if:

∀i, j ∈ N+ : i < j ⇔ si / s j ¤

Note that the order of data stream items as they are produced and sent out on the stream by
the data source implies a stream order corresponding to the document order of persistent XML
documents.

4.2.3 Data Windows
For being able to execute stateful operators such as aggregations over possibly infinite data
streams, we employ a window-based approach. The contents of a data stream are partitioned

42 4. Data Stream Sharing

time t
0 1 2 3 4 5 6 7 8 9 10 11 12

W1
count(4,2)

W2
count(4,2)

W3
count(4,2)

Figure 4.4: Example of a count-based data window with window size 4 and step size 2

into a sequence of data windows and the contents of each data window can subsequently be
processed, e. g., by computing an aggregate value over the window contents. In accordance
with the literature [Golab and Özsu (2003a,b)], we distinguish count-based data windows and
time-based data windows.

Count-based Data Windows

Count-based data windows have a fixed size in terms of the number of items contained in the
window. Items are inserted into the window as they arrive on the corresponding data stream.
As soon as the window is completely filled, the processing of the window contents starts. Pro-
cessing can be as simple as writing the window contents to the output stream which basically
corresponds to a grouping of the data stream. However, it can also involve a more complex
computation such as an aggregation. The window is updated each time after the processing
of the current window contents has finished. The update is performed by sliding the window,
leading to the removal of some items from the window contents and to the addition of some new
items arriving on the data stream. In a count-based data window, the step size of the window,
i. e., the amount by which the window slides along, is given in terms of the number of items that
need to be removed from the window contents and to be replaced by new items read from the
data stream during each update. Data items are removed from the window contents according
to a FIFO strategy. Figure 4.4 shows an example of a count-based data window with window
size 4 and step size 2. The bullets in the figure indicate data items arriving on the stream.

Definition 4.3 (Count-based data window) Formally, the definition of the k-th count-based
data window W count

k (∆,µ) with window size ∆ and step size µ on a data stream S is as follows:

W count
k (∆,µ) := {si ∈ S | 1+(k−1) ·µ ≤ i ≤ ∆+(k−1) ·µ} ¤

Time-based Data Windows

Time-based data windows are not organized by the number of items contained in the window
but by the value of a certain subelement which is called the reference element of the window. A
data item is contained in the window if and only if its reference element value is greater than or
equal to the lower bound and less than the upper bound of the window. This implies that there
must be a total order defined on the values of the reference element and that the lower bound
and the upper bound of the window must be defined in terms of the data type of the reference
element. In this thesis, we will always assume integer values for the window bounds and the
reference element value. Note that the reference element value does not necessarily need to be
a real time value. Rather, it suffices if it is an abstract logical time value which basically can be
any value of a totally ordered domain. Also note that, for time-based windows to work properly

4.3 The WXQuery Subscription Language 43

time t
0 1 2 3 4 5 6 7 8 9 10 11 12

W1
diff(t,4,2)

W2
diff(t,4,2)

W3
diff(t,4,2)

W4
diff(t,4,2)

W5
diff(t,4,2)

Figure 4.5: Example of a time-based data window with window size 4 and step size 2

on data streams, the reference element values of subsequent data stream items in a data stream
must be monotonically increasing. The step size of a time-based data window then indicates
the amount by which the lower bound and the upper bound of the window need to be increased
during a window update. All elements with reference element values less than the new lower
bound are subsequently removed from the window while all new elements arriving on the data
stream with reference element values greater than or equal to the new lower bound and less
than the new upper bound are inserted into the window. When the data window is completely
filled, i. e., all data items with reference element values satisfying the above condition have
been inserted, the window contents can be processed and the window can be updated again.
Figure 4.5 shows an example of a time-based data window with window size 4 and step size 2.
Again, the bullets in the figure indicate data items arriving on the stream.

Definition 4.4 (Time-based data window) Formally, the definition of the k-th time-based data
window W diff

k (r,∆,µ) with reference element r, window size ∆, and step size µ on a data stream
S is as follows:

W diff
k (r,∆,µ) := {si ∈ S | s1.r +(k−1) ·µ ≤ si.r < s1.r +∆+(k−1) ·µ}

Reference element values r are monotonically increasing:

∀si,s j ∈ S : i < j ⇒ si.r ≤ s j.r ¤

4.3 The WXQuery Subscription Language
In StreamGlobe, we use our Windowed XQuery (WXQuery) subscription language for register-
ing subscriptions over XML data streams. WXQuery is an augmented fragment of the XML
query language XQuery [W3C (2007d)] with added support for window-based operators.

In Definition 4.5 below, α is a WXQuery expression and χ denotes a condition. A tag name
is denoted by t. Further, $x and $y are variables representing XML trees, where $y can also start
with a function call to reference a document node or the stream node of a data stream such as
stream("photons") in the example subscriptions. A variable representing an aggregate result
is denoted by $a. The variable $z can represent any of the three kinds of variables $x, $y, or $a
as described above. We use π to denote a relative path that only employs the child axis (“/”).
It does not include wildcards (“*”), conditions (“[p]”), or other axes (e. g., “//”). A relative
path π differs from π in that it can also contain conditions. An aggregate function is denoted
by Φ, i. e., Φ ∈ {min,max,sum,count,avg}. In an actual query, each occurrence of the patterns
introduced above must be instantiated to an actual object, e. g., each α needs to be instantiated

44 4. Data Stream Sharing

to an actual WXQuery expression and each π needs to be instantiated to an actual relative
path. Patterns are treated like non-terminals in grammar productions, i. e., multiple occurrences
of the same pattern in an expression can and generally will be instantiated to different actual
objects. For example, the two occurrences of α in the conditional expression (Expression 4 in
Definition 4.5 below) will in general be instantiated to different expressions, one for the if-then
part and one for the else part.

We use a syntax resembling regular expressions to mark optional or recurring parts of a
query. Expressions enclosed in [[]]?, [[]]∗, or [[]]+ in the definition are optional, can occur zero or
more times, or can occur one or more times, respectively. A vertical bar (|) indicates an alterna-
tion. An expression of the form αi1,...,in represents a WXQuery expression from a restricted set
of expressions. For example, α1,2 stands for any one of the two element constructor expressions
numbered 1 and 2 in the definition below and α3,4,5,6,7 stands for any one of the remaining
expressions numbered 3 to 7.

Definition 4.5 (WXQuery) The WXQuery subscription language comprises all subscriptions
that consist only of the following expressions:

1. <t/>
(empty direct element constructor)

2. <t> [[α1,2 | {α3,4,5,6,7}]]∗ </t>
(direct element constructor)

3. [[for $x in $y[[/π]]?[[|count ∆ [[step µ]]?| | |[[/]]?π diff ∆ [[step µ]]?|]]? |
let $a := Φ($y[[/π]]?)]]+

[[where χ]]?

return α
(FLWR expression)

4. if χ then α else α
(conditional expression)

5. $y/π
(output of subtrees reachable from node $y through path π)

6. $z
(output of subtree rooted at node $z)

7. ([[α[[,α]]∗]]?)
(sequence) ¤

Appendix D on page 201 contains the full WXQuery EBNF grammar. The FLWR expres-
sion in the WXQuery definition introduces our new syntax for expressing data windows, e. g.,
for use with window-based aggregates. Query 3 (q3) in the network of Figure 4.1 is an example
for the use of such an aggregate. Figure 4.6 below shows the query.

4.3 The WXQuery Subscription Language 45

<photons>

{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and

coord/cel/ra <= 138.0 and

coord/cel/dec >= -49.0 and

coord/cel/dec <= -40.0]

|det_time diff 20 step 10|

let $a := avg($w/en)

return <avg_en> { $a } </avg_en> }

</photons>

Figure 4.6: Query 3 (q3)

Query 4 (q4) employs a different window and is shown in Figure 4.7 below.

<photons>

{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and

coord/cel/ra <= 138.0 and

coord/cel/dec >= -49.0 and

coord/cel/dec <= -40.0]

|det_time diff 60 step 40|

let $a := avg($w/en)

where $a >= 1.3

return <avg_en> { $a } </avg_en> }

</photons>

Figure 4.7: Query 4 (q4)

The definition of a data window is enclosed in “|” characters. Count-based windows—
indicated by the keyword count—contain a fixed number of items given by the numeric value
of ∆. Optionally, a step size µ determining the update interval of the data window can be
specified. For example, the window |count 20 step 10| defines a data window that always
contains 20 data items and removes the 10 oldest entries from the window while adding the
next 10 new data items arriving on the stream during each update. If omitted, the step size
defaults to the value of ∆, meaning the contents of the window are completely replaced by new
ones during each update.

The situation is analogous for time-based windows, except that ∆ indicates the size of the
window in time units and the step size indicates the time interval between two successive data
windows. Again, the step size defaults to ∆ if omitted. Time-based windows can only be
applied on data streams that are sorted according to the values of a particular reference element
that is used to control the window. This premise could be somewhat relaxed to a fuzzy order
by requiring that a fixed sized buffer is sufficient to derive the total order. An example for a
time-based window is |det_time diff 60 step 40| in query q4. Note that the path inside the
window is not meant to be evaluated yielding a sequence as defined by the conventional XQuery
semantics. Rather, it specifies the reference element controlling the window. The path to the
reference element is either absolute starting at the data stream root element (photons in our
example data stream) or relative to the context node of the data window (photon in the example
queries). Note that an absolute path may specify a reference element that is not a descendant
of the window context node. In this case, the implementation must implicitly add the reference

46 4. Data Stream Sharing

element to each item in the window since the reference element value is needed for evicting
items from the window during subsequent window updates. Also, if the window context node
may occur multiple times within a single data stream item, one reference element value may be
valid for multiple items in the data window at the same time. We expect each data stream item
to contain a unique reference element in practice, e. g., a timestamp. If the reference element
is missing, we completely ignore the corresponding data stream item and all of its subelements
and do not insert them into the window. If the reference element occurs multiple times within a
data stream item, we use the first occurrence in stream order.

Basically, the WXQuery window syntax constitutes an XPath extension that allows the addi-
tion of a window definition to the end of a path. The semantics of the window extension is such
that the result of an XPath expression is a sequence of windows instead of a sequence of items.
The contents of each window in turn form a sequence of items. The window extension also
brings about changes in the semantics of for loops in WXQuery as compared to XQuery. In
addition to iterating over a sequence of items, a for loop in WXQuery can also iterate over a se-
quence of sequences, i. e., a sequence of windows. Therefore, in contrast to standard XQuery,
a for loop in WXQuery can also bind a sequence, i. e., the contents of a window, to a vari-
able. The WXQuery window syntax allows the definition of sliding and tumbling windows as
described in the literature [Golab and Özsu (2003a,b); Patroumpas and Sellis (2006)]. For tum-
bling windows, the window step size µ is larger than the window size ∆, resulting in a sequence
of windows that does not necessarily cover each data item in the input stream. In this thesis, we
restrict the discussion to sliding windows with µ ≤ ∆ and to queries with at most one data win-
dow per input data stream. In addition to sliding windows, which have two sliding endpoints,
the literature further describes fixed windows, which have two fixed endpoints, and landmark
windows, which have one fixed and one sliding endpoint.

It is worth pointing out that WXQuery data windows as introduced above could also be
expressed using conventional XQuery syntax. Compare, for example, the WXQuery specifying
a count-based data window in Figure 4.8 with a possible equivalent formulation in standard
XQuery in Figure 4.9. We handle window construction in standard XQuery using a recursive
function cwin that returns the next window each time the function is called. Figures 4.10 and
4.11 show an according example for a query with a time-based data window. Again, we use a
recursive function dwin for window construction in XQuery. The reasons why we introduced a
new window syntax in WXQuery are threefold.

• First, as can be seen from the examples, the new syntax is much less verbose and easier
to read than the standard syntax.

• Second, the semantics of the recursive function in standard XQuery requires reading the
entire input data before starting to build the first window. This blocking behavior is not
applicable when dealing with possibly infinite data streams. Therefore, the new window
syntax in WXQuery is also meant to express the streaming nature of the query and of
query processing.

• Third, the dedicated window syntax can be implemented easier and more efficiently
through special-purpose built-in operators.

Note that in the standard XQuery syntax, an explicit root element for each data window is
introduced. It shows up as a direct element constructor in the recursive functions of Figures 4.9
and 4.11, constructing an element cw or dw enclosing the window contents, respectively.

4.3 The WXQuery Subscription Language 47

for $w in doc("data.xml")/a/b|count 4 step 2|

return

<result>

<win> { $w } </win>

</result>

Figure 4.8: WXQuery with count-based data window

declare function local:cwin($count as xs:integer,

$step as xs:integer,

$data as node()*) as node()*

{

let $cwin := fn:subsequence($data, 1, $count)

let $tail := fn:subsequence($data, $step + 1)

return

if (fn:count($data) < $count) then

()

else

if (fn:count($data) = $count) then

(<cw> { $cwin } </cw>)

else

(<cw> { $cwin } </cw>, local:cwin($count, $step, $tail))

};

for $x in doc("data.xml")/a

return

<result>

{ for $w in local:cwin(4, 2, $x/b)

return

<win> { $w/* } </win> }

</result>

Figure 4.9: XQuery with count-based data window

The query formulations in standard XQuery also explicitly reveal the behavior when reach-
ing the end of a finite input stream. The end of a stream is indicated by an end of stream marker,
i. e., a closing data stream root element tag. Three different semantics are possible when reach-
ing the end of an input stream:

Cut The cut semantics only returns data windows that are guaranteed to contain all the relevant
data. For count-based windows, this means that the final data window is not returned if it
contains less data elements than specified by the window size. For time-based windows,
processing terminates whenever the final data item arriving in the input stream enters the
current data window. The corresponding data window is not returned. This implies that
the cut semantics can lead to some items at the end of the data stream never being returned
as the contents of a window. The XQueries of Figures 4.9 and 4.11 yield this semantics.

Gather The gather semantics gathers all remaining data items at the end of a data stream in
one final window and returns this window before terminating. For count-based windows,
this can cause the final window to contain less elements than specified by the window
size. For time-based windows, the final window returned is the first window containing

48 4. Data Stream Sharing

for $w in doc("data.xml")/a/b|c diff 4 step 2|

return

<result>

<win> { $w } </win>

</result>

Figure 4.10: WXQuery with time-based data window

the final data item of the input data stream. The XQueries of Figures C.1 on page 198
and C.3 on page 199 in Appendix C yield this semantics.

Run The run semantics continues to construct and to return data windows until the final data
item of the input stream leaves the current window during the window update process.
All non-empty windows up to that point are returned before processing terminates. This
causes the windows to run empty when reaching the end of the input stream. Therefore,
when using count-based data windows, the run semantics can cause the final d(∆−1)/µe
windows to contain less data items than specified by the window size. The XQueries of
Figures C.2 on page 198 and C.4 on page 200 in Appendix C yield this semantics.

We use the cut semantics for count-based data windows and the run semantics for time-based
data windows in our StreamGlobe implementation. Note that the handling of the end of a finite
data stream is an issue that is dealt with here for the sake of completeness. It does, however, not
affect the processing of a running stream before reaching the end of the stream.

The let construct of WXQuery is restricted compared to ordinary XQuery as it is only used
to assign to a variable a singleton aggregate result value. Conditions in our context, whether
they appear in a where clause (“χ”) or within a path (“[p]”), are predicates that consist of
atomic predicates. A predicate is either a single atomic predicate or a conjunction of atomic
predicates. We deal extensively with disjunctive predicates in Chapter 6. Atomic predicates can
be of the form $vθ c or $vθ $w+ c, where $v and $w represent either aggregate values or paths
of the form π , c represents a constant value, and θ ∈ {=,<,≤,>,≥}. Constant values can be
negative and are either integer values or decimal values with a finite number of decimal places.

We concentrate on filtering operators, i. e., on selection and projection operators, as well
as on window-based aggregate operators in this chapter. Thus, the subscriptions we consider
always have one single input data stream. Furthermore, we restrict ourselves to queries with a
single for loop in the context of this chapter. We introduce support for more complex queries
including join queries with multiple input streams in Chapter 5.

During in-network query processing, we postpone any restructuring of the query result to
a postprocessing step at the super-peer that is connected to the peer that registered the original
subscription. Restructuring comprises the construction of new elements in the result returned by
a query as well as the reordering and renaming of input stream elements in the query result. The
result of the postprocessing is delivered to its final destination and is not considered for further
reuse in the network. Therefore, in the case of subscriptions employing only selection and
projection operators, the schema of a data stream generated during in-network query processing
can differ from the schema of the corresponding original data stream only by some missing
elements that have been removed by a projection operator. Selection operators do not affect
the data stream schema at all. We denote queries whose result streams have a schema that is a
subset of the corresponding input stream schema as structure-preserving queries.

Definition 4.6 (Structure-preserving query) A structure-preserving query denotes a query
that employs only selection and projection operators, i. e., a query for which the schema of

4.3 The WXQuery Subscription Language 49

declare function local:dwin($start as xs:integer,

$diff as xs:integer,

$step as xs:integer,

$data as node()*,

$refs as node()*) as node()*

{

let $dwin := for $i in $data

let $ds := for $d in $i/descendant-or-self::node()

where some $r in $refs satisfies $r is $d

return $d

where $ds[1] >= $start and $ds[1] < $start + $diff

return $i

let $tail := for $i in $data

let $ds := for $d in $i/descendant-or-self::node()

where some $r in $refs satisfies $r is $d

return $d

where $ds[1] >= $start + $step

return $i

return

if (fn:count($dwin) = fn:count($data)) then

()

else

(<dw> { $dwin } </dw>, local:dwin($start + $step, $diff, $step,

$tail, $refs))

};

for $x in doc("data.xml")/a

return

<result>

{ for $w in local:dwin(0, 4, 2, $x/b, $x/b/c)

return

<win> { $w/* } </win> }

</result>

Figure 4.11: XQuery with time-based data window

the query result may differ from the schema of the query input only by one or more missing
elements that have been removed by a projection operator. ¤

Example 4.1 (Structure-preserving queries) Queries q1 and q2 of Figures 4.2 and 4.3 are
examples of structure-preserving queries. ¤

We postpone any other more complex data stream schema transformations to the postprocessing
step. The only exception are subscriptions containing aggregate or join operators. In this case,
a result data stream with a generic schema is produced by in-network query processing. The
generic schema consists of a generic enclosing element for each data stream item in the result
data stream and one generic subelement for each aggregate or join result value computed in
the subscription. We denote queries that generate a completely new result schema as structure-
mutating queries.

50 4. Data Stream Sharing

Definition 4.7 (Structure-mutating query) A structure-mutating query is a query that con-
tains data windows, aggregate function calls, or joins, i. e., a query for which the schema of the
query result may be completely different from the schema of the query input. ¤

Example 4.2 (Structure-mutating queries) Queries q3 and q4 of Figures 4.6 and 4.7 are ex-
amples of structure-mutating queries. ¤

We require each result item returned by a query to contain at least one element of the query input
or an aggregate value based on elements of the query input. Thus, we can guarantee that the
result of in-network query processing contains all the necessary information for postprocessing.
An example for an invalid query would be a query that returns an empty tag for each photon with
an energy value above a certain threshold. Since attributes in XML data can always be converted
into corresponding elements, we restrict ourselves to dealing with elements. Remember that we
defer the introduction of support for join queries with multiple input streams and the handling
of disjunctive predicates to later chapters.

4.4 Data Stream Sharing

The data stream sharing optimization technique comprises a properties approach for represent-
ing subscriptions and data streams, shareability and dependency relations between the proper-
ties of subscriptions and data streams, a cost model, and the algorithms for finding, comparing,
and choosing an appropriate stream for satisfying a new subscription. Furthermore, this section
presents the handling of window-based aggregate operators as well as some optimizations and
extensions that further improve the effectiveness and the applicability of data stream sharing.

4.4.1 Overview

Figure 4.12 gives a schematic overview of the data stream sharing optimization process in
StreamGlobe. The WXQuery parser is part of the optimizer component within the speaker-peer
of a StreamGlobe network as described in Section 2.3.4. The parser transforms a newly arriving
WXQuery obeying the language syntax presented in Section 4.3 into an internal abstract prop-
erties representation introduced in Section 4.4.2. The properties representation serves as input
to the actual data stream sharing optimization algorithm. The main part of the algorithm is the
discovery component introduced in Algorithm 4.1 of Section 4.4.5. The data stream discovery
algorithm is responsible for searching the StreamGlobe backbone network for shareable streams
suitable for satisfying a new query. The discovery algorithm retrieves the current network state,
including network topology and properties of available data streams, from a metadata reposi-
tory maintained by the speaker-peer. The algorithm employs the property matcher to determine
whether there are possibly preprocessed data streams available in the network which satisfy
the requirements of the new query. The property matcher matches the properties of found data
streams with those of the new query using Algorithm 4.2 of Section 4.4.5. If sharing a stream
is possible, the plan generator creates a corresponding distributed query evaluation plan such as
the one shown in Appendix A.3 on page 186. The optimizer chooses the best plan among all
generated plans according to a cost model introduced in Section 4.4.4. Finally, the execution
engines of the affected super-peers in the StreamGlobe backbone network deploy and execute
the chosen distributed query evaluation plan as described in Section 2.3.4.

4.4 Data Stream Sharing 51

WXQuery
Parser Discovery

Property
Matcher

Metadata
Repository

Plan
Generator

Cost
Model

Execution
Engine

StreamGlobe

Optimizer
Speaker-Peer

WXQuery Properties Plan Result
Stream

Figure 4.12: Schematic illustration of the optimization process

4.4.2 Query and Data Stream Properties

We represent both, subscriptions and data streams using the same kind of properties represen-
tation. This is possible since a subscription can always be regarded as producing a result data
stream and a data stream can in turn always be regarded as being the result of a subscription.

The properties of subscriptions and data streams consist of three parts and describe how the
associated (result) data stream is generated. Figures 4.13 to 4.16 show simplified schematic
illustrations of the properties of Queries q1 to q4 from Sections 4.1 and 4.3. Properties describe
a subscription or a data stream as a set of original input data streams, a set of operators for
each input data stream and, for each operator, a set of conditions specifying the operator. The
operators reflect how the respective input data stream is transformed into the represented (re-
sult) data stream. Operator conditions comprise selection predicates, projection elements, data
window specifications, or aggregate operators in combination with the identifier of the corre-
sponding aggregated element. Predicates, e. g., selection predicates, are stored using a graph
representation as shown in Figures 4.13 to 4.16. We introduce this representation in more de-
tail in Section 4.4.5. Data windows for window-based aggregate operators are also stored in
a specific format containing the ordered reference element (only for time-based windows), the
window type (count or diff), the window size (∆) and the step size (µ).

We obtain the properties of a newly registered subscription by parsing the (W)XQuery sub-
scription and translating it into its corresponding (W)XQueryX [W3C (2007c)] representation.
From this representation, which is a standard XML file, we extract the necessary information to
be stored in the properties data structure using XPath [W3C (2007b)]. The properties approach

Properties

Query 1 (q1)

Stream

photons

Operator

σ

Operator

π

Condition

{ra●,dec●,phc●,en●,det_time●}

Condition

0

ra dec

138.0

-120.0

-40.0

49.0

Figure 4.13: Abstract properties of q1

52 4. Data Stream Sharing

Properties

Query 2 (q2)

Stream

photons

Operator

σ

Operator

π

Condition

Condition

{ra●,dec●,en●,det_time●}
0

ra dec

135.5

-130.5

-45.0

48.0

en-1.3

Figure 4.14: Abstract properties of q2

Properties

Query 3 (q3)

Stream

photons

Condition

0

ra dec

138.0

-120.0

-40.0

49.0

Condition

{ra,dec,en,det_time}

Operator

σ

Operator

π

Operator

avg●
Condition

Aggregated element: en
Reference element r: det_time
Window size ∆: 20
Window step size µ: 10

Figure 4.15: Abstract properties of q3

described here supports queries with multiple input data streams and without nesting. In Chap-
ter 5, we introduce an extended, more flexible properties structure which supports a larger class
of queries including nested queries and joins. Furthermore, the extended properties structure
enables advanced and even more effective data stream sharing.

Note that the properties structure as described above serves two purposes. First, it repre-
sents the parts of the originally queried input data streams that are required for satisfying the
corresponding subscription. Second, it describes the contents of a subscription’s result data
stream relative to the contents of the subscription’s input data streams. Also note that properties
abstract from transformation details such as the exact structuring of query results as specified in
the corresponding original queries.

4.4.3 Shareability and Dependency Relations

In order for a subscription to be able to reuse an existing data stream in the network, the data
stream to be reused must contain all the necessary information for satisfying the subscription.

Definition 4.8 (Shareability relation) The shareability relation @sr is defined on the set of
subscription and data stream properties. For two subscription or data stream properties p and
p′, p′ @sr p indicates that the data stream represented by p can be used as input to satisfy the
subscription represented by p′. For the shareability relation to be valid, both properties must ref-
erence the same original input data streams. Furthermore, for selection operators, the selection
predicate σp′ of p′ must imply the selection predicate σp of p, i. e., σp′ ⇒ σp. For projection
operators, the set R′ of elements referenced in p′ must be a subset of the set R of returned

4.4 Data Stream Sharing 53

Properties

Query 4 (q4)

Stream

photons

Condition

0

ra dec

138.0

-120.0

-40.0

49.0

Condition

{ra,dec,en,det_time}

Operator

σ

Operator

π

Operator

avg●
Condition

Aggregated element: en
Reference element r: det_time
Window size ∆: 60
Window step size µ: 40
Result selection σavg: ≥ 1.3

Figure 4.16: Abstract properties of q4

elements in p, i. e., R′ ⊆ R. An exception from the requirements concerning selection and pro-
jection operators occurs when reusing the results of window-based aggregate operators. In this
case, the aggregate operator, the aggregated element, and any selection predicates filtering the
input data prior to aggregation must be equivalent. Furthermore, any selection on the aggregate
result must fulfill the same condition as described for selection operators above. Eventually,
the data windows defined in p and p′ must be compatible. Let W be the data window defined
in p with a window size of ∆ and a step size of µ . Let W ′ be the data window defined in p′

with a window size of ∆′ and a step size of µ ′. Then, W and W ′ are compatible according
to our definition if they have the same window type (count-based or time-based), are defined
on the same element, use the same reference element (only for time-based windows), and the
following three conditions which are detailed in Section 4.4.6 hold:

• ∆′ mod ∆ = 0

• ∆ mod µ = 0

• µ ′ mod µ = 0 ¤

Theorem 4.1 The shareability relation defines an antisymmetric, transitive partial relation. ¤

PROOF: Let p, p′, and p′′ be the properties of three subscriptions or data streams.

Antisymmetry (p @sr p′∧ p′ @sr p ⇒ p = p′):
First, p @sr p′ ∧ p′ @sr p implies that p and p′ reference the same input data streams. For
selection operators, it yields that σp ⇒ σp′ ∧σp′ ⇒ σp, i. e., σp ⇔ σp′ . For projection operators
and in the absence of any aggregate values, R⊆R′∧R′ ⊆R holds. Here, R and R′ denote the sets
of elements referenced in p and p′ while R and R′ denote the sets of elements returned as output
elements by p and p′, respectively. Further, from R ⊆ R∧R′ ⊆ R′ follows R ⊆ R′ ⊆ R′ ⊆ R ⊆ R
and therefore R = R = R′ = R′. Finally, if p contains a data window W and p′ contains a data
window W ′, it remains to be shown that W = W ′. From ∆ mod ∆′ = 0∧∆′ mod ∆ = 0 follows
∆ = ∆′. Similarly, from µ mod µ ′ = 0∧ µ ′ mod µ = 0 follows µ = µ ′. Therefore, W = W ′

since the remaining properties of both windows are equal due to p @sr p′ ∧ p′ @sr p. For the
same reason, the remaining properties of any aggregation are also equal.

Transitivity (p @sr p′∧ p′ @sr p′′ ⇒ p @sr p′′):
From p @sr p′∧ p′ @sr p′′ follows that p, p′, and p′′ all reference the same input data streams. For

54 4. Data Stream Sharing

selection operators, the transitivity of predicate implication yields (σp ⇒ σp′ ∧σp′ ⇒ σp′′) ⇒
(σp ⇒ σp′′). For projection operators, R ⊆ R′∧R′ ⊆ R′′ holds in the absence of any aggregate
values. Because of R′ ⊆ R′, the transitivity of the subset relation yields R ⊆ R′′. Finally, it
remains to be shown that a data window W in p with window size ∆ and step size µ can
reuse a data window W ′′ in p′′ with window size ∆′′ and step size µ ′′. Because of p @sr p′ ∧
p′ @sr p′′, we know that ∆ mod ∆′ = 0∧∆′ mod ∆′′ = 0. This yields ∆ mod ∆′′ = 0. Similarly,
µ mod µ ′ = 0∧µ ′ mod µ ′′ = 0 yields µ mod µ ′′ = 0. Furthermore, because of p′ @sr p′′, the
condition ∆′′ mod µ ′′ = 0 holds for the data window defined in p′′. The remaining properties of
any aggregation are equal in p and p′′ due to p @sr p′∧ p′ @sr p′′.

The shareability relation @sr is not a total relation. As a counter-example, consider queries
q2 and q3 of Sections 4.1 and 4.3, respectively. Their properties are incomparable according
to @sr, i. e., ¬(pq2 @sr pq3)∧¬(pq3 @sr pq2). This is due to the fact that q3 is an aggregating
query that returns an aggregate value which cannot be shared by the non-aggregating query
q2. Furthermore, the selection predicates of the selection operators in q2 are more restrictive
than those in q3. Thus, the result data stream of q2 does not contain all the necessary data for
satisfying q3. An even simpler counter-example are two queries referencing different input data
streams. Such queries obviously are incomparable according to @sr.

The shareability relation is neither reflexive nor irreflexive. The fact that the set R of elements
referenced in p can be a proper superset of the set R of returned elements in p contradicts the
reflexivity of the shareability relation. Furthermore, the window condition ∆ mod µ = 0 does
not necessarily hold for an arbitrary p. On the other hand, the possibility of queries with R = R
and, for each data window defined in the subscription, ∆ mod µ = 0 contradicts the irreflexivity
of the shareability relation. Note that the shareability relation can be made reflexive by treating
semantically equivalent properties as a special case that always allows result sharing among
such properties. For the sake of clarity and a shorter presentation, we omit this special case in
the algorithms presented in this chapter. ¥

The shareability relation can be visualized as a shareability graph.

Definition 4.9 (Shareability graph) A shareability graph Gsg = (Vsg,Esg) is defined as a di-
rected graph with a set of vertices Vsg and a set of edges Esg. A vertex in the graph represents
the properties of a subscription or a data stream, respectively. A directed edge from a vertex p
to a vertex p′ indicates that the (result) data stream represented by p can be shared to satisfy the
query represented by p′, i. e., p′ @sr p. ¤

Figure 4.17(a) shows the shareability graph for queries q1 to q4 in the example network of
Figure 4.1. Queries q2, q3, and q4 can share the result of query q1. Furthermore, query q4 can
additionally share the result of query q3. Note that, due to the transitivity of the shareability
relation, the edges from pq1 to pq3 and from pq3 to pq4 imply the edge from pq1 to pq4 in the
graph. Also, q1, q2, and q3 could theoretically share their own result streams as input streams.
This is not possible for q4 since ∆ mod µ = 60 mod 40 = 20 6= 0 holds for this query. However,
when handling the special case of semantically equivalent properties described above, sharing
would theoretically also be possible in this case.

Definition 4.10 (Dependency relation) The dependency relation @dr is a restriction of the
shareability relation including only those pairs of properties that depend on each other in an
actual system state. For two subscription or data stream properties p and p′, p′ @dr p indi-
cates that the data stream represented by p is actually used as input to satisfy the subscription
represented by p′. ¤

4.4 Data Stream Sharing 55

pq

pq pq

pq

2

1

3

4

(a) Shareability graph

pq

pq pq

pq

2

1

3

4

(b) Dependency graph

Figure 4.17: Shareability and dependency graphs for queries q1 to q4

Theorem 4.2 The dependency relation defines an irreflexive, asymmetric partial relation. ¤

PROOF: The irreflexivity follows from the fact that a query cannot use its own result data stream
as input in an actual system state. The asymmetry follows from the fact that two queries cannot
mutually use their result data streams as inputs in an actual system state. The rest of the theorem
follows directly from the definition of the dependency relation and from Theorem 4.1. ¥

The dependency relation can be visualized as a dependency graph.

Definition 4.11 (Dependency graph) A dependency graph Gdg = (Vdg,Edg) is defined as a di-
rected graph with a set of vertices Vdg and a set of edges Edg. A vertex in the graph represents
the properties of a subscription or a data stream, respectively. A directed edge from a vertex p
to a vertex p′ indicates that the (result) data stream represented by p is actually being shared to
satisfy the query represented by p′, i. e., p′ @dr p. ¤

The set of vertices of a dependency graph is identical to the set of vertices of the corresponding
shareability graph. The set of edges of a dependency graph is a subset of the set of edges of the
corresponding shareability graph. Figure 4.17(b) shows the dependency graph for the example
network state of Figure 4.1(b).

4.4.4 Cost Model
The cost function fcost used in our cost model focuses on the amount of additional network
traffic and peer load caused by answering a new subscription. Other parameters such as latency
of network connections and memory usage of stream processing operators could also be added.
To define fcost, we need to introduce some notation. Let p be the properties of a new continuous
query q that is to be registered in the network. Then size(p) denotes the average size of one data
stream item (e. g., one photon) of the stream represented by p. Let Pq be the set of properties
of all input data streams of q, occ(ns) the average occurrence and size(ns) the average size of
element ns in the input stream represented by properties s, and Πps the set of projection elements
of p concerning the input stream represented by s. Then, for a subscription that only contains
selection and projection operators, size(p) is calculated using the following formula:

size(p) := ∑
s∈Pq

size(s)− ∑
ns /∈Πps

(
occ(ns) · size(ns)

) (4.1)

56 4. Data Stream Sharing

Note that in the above formula, size(p) denotes the average size of one data stream item in the
stream represented by p, e. g., one photon element in stream photons, whereas size(ns) denotes
the average size of one subelement ns, e. g., of the phc subelement of a photon. For aggregate
queries, the result data stream is a stream of aggregate result values. The average result data
stream size is therefore independent of the input stream size in this case and is computed as the
size of the computed aggregate values and their surrounding element tags. For queries returning
the contents of data windows, the average size of a data window needs to be determined. For
count-based data windows, this can be done by multiplying the window size with the average
size of the items contained in the window and by adding the sizes of the enclosing window tags.
This works analogously for time-based data windows except that the average number of data
items contained in a window must be estimated as the product of the input stream frequency
and the window size.

The average frequency of data items in the stream represented by p is denoted by freq(p).
With sel(σp) denoting the selectivity of the subscription represented by p, freq(p) can be com-
puted as follows:

freq(p) := sel(σp) · ∑
s∈Pq

freq(s) (4.2)

Note that the expression ∑s∈Pq freq(s) in this formula depends on the semantics of the employed
operators in q. The above formula is valid for selection operators. Projection operators do not
influence freq(p). For window-based queries, freq(p) depends on the step size defined for
the data window and the average frequency of the input data stream. For count-based data
windows, freq(p) corresponds to the frequency of the corresponding input data stream divided
by the step size µ of the data window. For time-based data windows, freq(p) depends on the
distribution of the values of the reference element in the data stream items arriving on the input
stream. To be able to estimate the frequency of the result data stream in such a case, we keep
track of the average increment of the reference element value between two successive data
items arriving on the stream. Dividing the step size µ of the time-based data window by this
average increment yields the average number of data items that need to be read from the stream
before the window update is complete. Then, as with count-based data windows, we divide
the frequency of the input data stream by this estimated number of data items to obtain the
estimated average frequency of the result data stream.

Introducing be as the maximum bandwidth of a network connection e, we can characterize
the relative amount ub

e of bandwidth of e used by the additional data streams routed over e for
answering q using the following formula:

ub
e :=

∑p∈Pe

(
size(p) · freq(p)

)
be

(4.3)

Here, Pe denotes the set of properties of all additional data streams added over e to answer q.
The average computational load caused by an operator o on a peer v with a set of input

stream properties Po is denoted by load(o,v,Po). The maximum load of a peer v is represented by
lv. The relative amount ul

v of computational load on a peer v caused by the additional operators
in Ov installed at v for answering a new subscription can be computed as follows:

ul
v :=

∑o∈Ov load(o,v,Po)
lv

(4.4)

Cost function inputs such as average frequencies of data stream items, average sizes and oc-
currences of elements, and selectivities of operators are obtained from statistics and selectivity

4.4 Data Stream Sharing 57

estimations. Collecting statistics over XML data has already been investigated in the literature
before. For example, Freire et al. (2002) propose an XML statistics model and framework for
collecting statistics over persistent XML documents. In StreamGlobe, the StatistiX compo-
nent introduced in Section 2.3.2 is responsible for collecting the necessary statistics for each
original input stream registered in the network. The statistics of the original stream, e. g., the
average frequency of data stream items arriving on the stream, can then be used to compute
the corresponding statistics for transformed versions of the stream. An example for this is the
multiplication of the selectivity of a selection operator with the original stream frequency to
obtain the average frequency of the transformed stream as in Equation 4.2 above. The StatistiX
component also maintains histograms of element values. The optimizer uses these histograms
for selectivity estimations. We use equi-width histograms in StreamGlobe since these can easily
be updated continuously with new values arriving on input streams. To avoid that histograms
grow indefinitely over infinite streaming inputs, we proceed as follows. Whenever the size of
a histogram, i. e., the number of values contained in the histogram, exceeds a certain thresh-
old, we initialize a second histogram and subsequently add each newly arriving value to both
histograms. Selectivity estimations continue to use the first histogram during this phase since
the new histogram does not yet contain enough values to allow meaningful estimations. After
the size of the first histogram reaches another threshold, we switch to the new histogram for
subsequent selectivity estimations and deallocate the old histogram. The difference between
the second and the first threshold thus yields the minimum amount of values a histogram must
contain before it is considered to deliver sufficiently meaningful selectivity estimations.

The average load load(o,v,Po) of an operator o on a peer v with a set of input stream prop-
erties Po depends on the performance of the executing peer, expressed by a performance index
(perfindex(v)), and the characteristics of the operator itself. For example, assuming a linear
dependency of the load caused by a selection operator σ from the frequency freq(s) of its only
input stream s, the average load caused by σ on a peer v can be defined as load(σ ,v,{s}) :=
baseload(σ) ·perfindex(v) · freq(s). Here, baseload(σ) represents a base load factor for the se-
lection operator. Factors like base loads of operators and performance indices of peers as well as
formulas for combining these factors yielding realistic load estimations have to be determined,
e. g., on the basis of reference values.

The cost function fcost is then defined as follows:

fcost(P) :=γ ·

(
∑

e∈EP

(
ub

e +max(0,(ub
e −ab

e)) · exp(ub
e −ab

e)
))

+

(1− γ) ·

(
∑

v∈VP

(
ul

v +max(0,(ul
v −al

v)) · exp(ul
v −al

v)
)) (4.5)

In this function, P denotes the evaluation plan of the new subscription. The plan describes
which operators have to be installed on which peers and how the generated data streams have
to be routed through the network. Furthermore, EP is the set of network connections and
VP is the set of peers affected by plan P . A weighting factor γ ∈ [0,1] determines which
part of the cost function should be more dominant—network traffic or peer load. We add an
exponential penalty for overload situations on peers and network connections. The relative
amount of available bandwidth on network connection e and of available computational load
on peer v is represented by ab

e and al
v, respectively. A plan P is better than another plan P ′

according to cost function fcost, expressed by P ≺ fcost P ′, if and only if fcost(P) < fcost(P ′).

58 4. Data Stream Sharing

4.4.5 Stream Sharing Algorithms

We now describe our stream sharing algorithms for registering and efficiently satisfying new
continuous queries in a distributed DSMS. The algorithms search for shareable data streams in
the network, compare the properties of new subscriptions to those of existing data streams, and
decide which streams to reuse at which peers.

Query Registration

The query registration algorithm searches for shareable data streams in the network and decides
for each available data stream whether that stream can actually be shared for answering the new
query. This decision is made by comparing the query properties with the corresponding data
stream properties. Further, the algorithm decides whether a newly found evaluation plan for the
new query is better than the previously best plan.

The algorithm is divided into four parts. The REGISTERQUERY algorithm shown in Algo-
rithm 4.1 describes the discovery of shareable data streams and the generation of corresponding
query evaluation plans. The MATCHPROPERTIES and MATCHPREDICATES algorithms which
are detailed in Algorithms 4.2 and 4.3 handle the matching of properties and of predicates,
respectively. Finally, the MATCHAGGREGATIONS algorithm deals with the matching of aggre-
gate operators. Beginning with Algorithm 4.1, the inputs pq and vq are the properties of the
new subscription q and the network node where q is registered, respectively. The output of the
algorithm is the evaluation plan P , describing how the network has to be changed in terms of
installed operators and routed data streams in order to satisfy q. Note that there will always be
at least one plan that is suitable for answering q—provided that q refers to existing inputs—
namely the plan using the originally registered versions of q’s input streams. The goal of our
approach is to find possibly transformed versions of these streams that can be used for satisfying
q, potentially by applying some further transformations. The available transformed versions of
streams result from in-network query processing of previously registered continuous queries.

Algorithm 4.1 starts with an empty plan P (line 1) and iterates over all input data streams of
q (line 2). The getInputStreams function retrieves from pq the stream identifiers of the original
input streams referenced in the query. It then uses these identifiers to obtain from the speaker-
peer metadata repository the set of properties representing these original input streams. For
each such input data stream, the algorithm performs some initialization tasks (lines 3–6). Since
we restrict the discussion to queries with a single input stream in this chapter, the for loop
in line 2 of Algorithm 4.1 is iterated only once for our example queries. First, the algorithm
initializes a FIFO queue LV for network nodes (peers) and another queue LP for properties.
Then, the algorithm stores the properties ps of the currently considered input data stream s
and the network node where this input data stream is registered in pb and vb, respectively.
The getSource function retrieves the data stream source node from the speaker-peer metadata
repository. The variables pb and vb represent the properties of the current best solution for the
data stream chosen as input for satisfying q and the network node where to find and reuse that
stream. Installing the new subscription at the super-peer at which the corresponding original
input stream is registered and routing the result to the subscribing peer via a shortest path in the
network is set as the initial evaluation plan. This plan is generated by means of the generatePlan
function that takes as inputs the properties pb of the data stream chosen for reuse, the node vb
where to reuse that stream, and the node vq where the query to be answered is registered and
where the query result is needed. At each time during the remaining execution of the algorithm,
the current best plan for input data stream s is represented by Ps. Note that the initial plan does

4.4 Data Stream Sharing 59

Algorithm 4.1 REGISTERQUERY

Input: The properties pq of the subscription q to be registered and the node vq where q is to be
registered.

Output: A distributed query evaluation plan P .

1: P ← /0;
2: for all ps ∈ getInputStreams(pq) do
3: LV ← /0; LP ← /0;
4: pb ← ps; vb ← getSource(pb);
5: Ps ← generatePlan(pb,vb,vq);
6: add(LV ,vb);
7: while LV 6= /0 do
8: v ← dequeue(LV); mark(v);
9: for all data streams available at v that are variants of ps do

10: enqueue all associated properties in LP;
11: end for
12: while LP 6= /0 do
13: p ← dequeue(LP);
14: if MATCHPROPERTIES(p, pq) then
15: for n ∈ getTargets(v, p) do
16: if (¬(isMarked(n))∧ (n /∈ LV)) then
17: add(LV ,n);
18: end if
19: end for
20: P ′

s ← generatePlan(p,v,vq);
21: if P ′

s ≺ fcost Ps then
22: pb ← p; vb ← v; Ps ← P ′

s;
23: end if
24: end if
25: end while
26: end while
27: unmark all nodes;
28: add(P,Ps);
29: end for
30: return P;

not reuse any existing preprocessed data streams in the network. Finally, the algorithm adds the
start node vb of the search in the network as first node to LV .

If a subscription references more than one input stream, the subscription algorithm handles
each stream individually. The algorithm assures that at least the relevant parts of each input
stream are delivered to the super-peer connected to the peer that registered q. Any combination
of input data streams as demanded by the subscription is performed at this peer during the final
postprocessing step and the result of this combination is not considered for reuse in the network.
This is the same as with any restructuring of the query result as described in Section 4.3. We
investigate possibilities for reusing join result streams in Chapter 5.

After the initialization, the algorithm performs a breadth-first search in the network graph for
each input stream, starting at the super-peer at which the corresponding original input stream of

60 4. Data Stream Sharing

q is registered. Using a LIFO queue for LV instead of a FIFO queue would cause the algorithm
to perform depth-first search which would be equally possible. We chose breadth-first search
because we expect this search strategy to find a good plan earlier than depth-first search. This
assumption is based on the fact that breadth-first search takes all potentially shareable branches
of a stream into account in turn, instead of examining one branch to the end before switching to
the next one. This is, however, only relevant if the optimization is stopped early, e. g., because
the optimization time should not exceed a certain threshold. If the optimization is carried out
to the end, both search strategies yield the same result. The peers in LV are dequeued one after
another (line 8). Each peer in LV is marked in order to handle circles in the network graph,
i. e., to consider each node at most once. For each dequeued peer, all properties of data streams
that are available at the currently handled peer and that are variants of ps are subsequently
inserted into LP (lines 9–11). These properties are then consecutively taken out of the queue
and matched against the properties pq of q using Algorithm 4.2 (lines 12–14). We describe this
process in detail further below. Network connections that do not have any associated properties
because they do not carry any data streams are ignored during the breadth-first search. Also,
non-matching properties do not add any peers to LV since following these paths cannot yield a
reusable data stream. Pruning the search in this way leads to the breadth-first search traversing
only the relevant part of the network instead of the entire network.

If a property p has been successfully matched, its corresponding stream can be reused for
answering q. Any unmarked peer to which the stream corresponding to p is delivered is added
to LV to be processed later on (lines 15–19). The getTargets function retrieves the correspond-
ing set of target peers from the speaker-peer metadata repository. For any found solution, the
generatePlan function generates a new plan P ′

s (line 20). Then, the algorithm computes the
value of the cost function fcost for the plan reusing the found data stream and compares the
obtained cost value against the cost value of the current best solution (line 21). Only if the new
solution is better according to fcost, we replace the current best solution and store the new best
solution along with its cost function value for future comparisons (lines 21–23). When there are
no properties left in queue LP, the next node in LV is considered. If there are no more nodes left
in LV , the best plan Ps found for input stream s is added to the overall plan P for evaluating
q (line 28). When all input streams of q have been considered, the algorithm terminates and
returns the current best solution for plan P as the final result.

The termination of the algorithm is guaranteed since there is only a finite number of input
data streams of q and of nodes and data streams in the network. For each input data stream,
each node can be added to LV at most once and each time through the while loop in line 7 of
the algorithm, one node gets dequeued from LV . Similar considerations apply to properties of
data streams and LP.

Matching Properties

Algorithm 4.2 is responsible for identifying shareable streams by matching the properties
of subscriptions and data streams. For each input data stream of a subscription, the properties
of the subscription reflect which operators and operator conditions the subscription employs to
transform the respective input stream into the subscription result. These properties need to be
matched with the properties of the data streams encountered during stream discovery to find
shareable streams for each input stream of the new subscription. The inputs for the properties
matching algorithm are the properties p of the data stream that is considered for reuse and the
properties p′ of the newly registered subscription. The algorithm returns true if these properties
match and false otherwise. When restricting the discussion to queries with a single input stream,

4.4 Data Stream Sharing 61

Algorithm 4.2 MATCHPROPERTIES

Input: The properties p of a data stream to be reused and p′ of a subscription to be registered.
Output: true if p and p′ match; false otherwise.

1: for all s′ ∈ getInputStreams(p′) do
2: smatch ← false;
3: for all s ∈ getInputStreams(p) do
4: if s = s′ then
5: smatch ← true; O ← getOperators(s); O′ ← getOperators(s′);
6: for all o ∈ O do
7: match ← false;
8: for all o′ ∈ O′ do
9: if o = o′ then

10: C ← getConditions(o); C′ ← getConditions(o′);
11: if o = σ then
12: G ← getPredicateGraph(C); G′ ← getPredicateGraph(C′);
13: if MATCHPREDICATES(G,G′) then
14: match ← true; break;
15: end if
16: else if o = Π then
17: R ← getReturnedElements(C); R′ ← getReferencedElements(C′);
18: if (R ⊇ R′)∨ isAggregated(s) then
19: match ← true; break;
20: end if
21: else if o ∈ {min,max,sum, count,avg} then
22: if MATCHAGGREGATIONS(C,C′) then
23: match ← true; break;
24: end if
25: else
26: ~i ← getParameters(C); ~i′ ← getParameters(C′);
27: if~i =~i′ then
28: match ← true; break;
29: end if
30: end if
31: end if
32: end for
33: if match = false then
34: return false;
35: end if
36: end for
37: break;
38: end if
39: end for
40: if smatch = false then
41: return false;
42: end if
43: end for
44: return true;

62 4. Data Stream Sharing

each of the for loops in lines 1 and 3 of Algorithm 4.2 is iterated only once.
If the input streams of both properties match—checked in lines 1–4 of Algorithm 4.2—the

algorithm fetches the operators used to transform the inputs from the properties data structures
(line 5) and assigns them to the operator sets O and O′, respectively. For each operator in O,
there must be a corresponding operator in O′. For example, if O contains a selection operator,
the data stream represented by p is only considered for reuse if p′ also contains a correspond-
ing selection. Otherwise, the stream of p would not contain all the data needed by q. If a
corresponding operator is found in O′, we need to assure that the conditions of both opera-
tors are compatible. The conditions are fetched from the properties data structures in line 10
of the algorithm. We distinguish four cases (lines 11–30), i. e., selection, projection, window-
based aggregate, and unknown operators. If the corresponding operators are selection operators
(lines 11–15), the algorithm retrieves the graphs representing the selection predicates (line 12)
and tries to match them using Algorithm 4.3. In case of a projection operator (lines 16–20) and
in the absence of reused aggregate values, the set R of elements that are actually contained in
the data stream represented by p has to be a superset of the set R′ of all the elements referenced
in the new query. Returned elements are marked with bullets in the sets of projection elements
within the properties of the example queries of Figures 4.13 to 4.16. Elements that are refer-
enced in a query but not returned as part of the query result appear as unmarked elements in the
projection operator conditions of the respective properties. Note that we assume that a query
either returns elements from the input stream or aggregate values based on elements from the
input stream. The solutions presented in Chapter 5 also allow queries that return a mixture of
input elements and aggregate values. However, processing such queries in the network close to
the data sources is only beneficial if their result stream causes less network traffic than the input
streams. If o and o′ are one of the window-based aggregate operators min, max, sum, count, or
avg, the MATCHAGGREGATIONS algorithm described further below needs to assure that the
corresponding conditions and data windows are compatible (lines 21–24). Reusing aggregate
values also induces changes in the handling of selection and projection operators as described in
Section 4.4.3. All other operators are handled in the fourth and final case (lines 25–30). These
are operators with unknown semantics, in particular user-defined functions. We only require
their semantics to be deterministic, i. e., the same operators applied to the same inputs must
always yield the same results. The algorithm then demands that not only the operators but also
their input vectors as retrieved in line 26 of the algorithm are equal for reusability. More so-
phisticated techniques for identifying reusable user-defined operators involve the development
of suitable operator descriptions which remains an issue for future work.

Matching Predicates

A predicate is represented by a weighted directed graph G = (V,E) within the corresponding
properties. The construction and representation of predicate graphs are an extension of earlier
work by Rosenkrantz and Hunt (1980) on the processing of conjunctive predicates. In addition
to integer valued variables and constants, we also allow decimal values with a finite number of
decimal places. First, predicates are normalized to contain only comparisons of the form $x ≥ c,
$x ≤ c and $x ≤ $y + c where $x and $y represent paths and c represents a constant integer or
decimal value. Each path in the predicate becomes a node in V . An atomic predicate of the
form $x ≤ $y+ c is represented by a weighted directed edge in E from node $x to node $y with
weight c. Further, V contains a node for the constant zero. An atomic predicate of the form
$x ≤ c is represented by an edge from node $x to node zero with weight c. An atomic predicate
of the form $x ≥ c, which can be expressed as 0 ≤ $x− c, is represented by an edge from node

4.4 Data Stream Sharing 63

Algorithm 4.3 MATCHPREDICATES

Input: The predicate graphs G of a data stream considered for reuse and G′ of a new subscrip-
tion to be registered.

Output: true if the predicates of G match the predicates of G′; false otherwise.

1: for all v ∈V do
2: vmatch ← false;
3: for all v′ ∈V ′ do
4: if v ≡ v′ then
5: vmatch ← true;
6: for all e ∈ {x ∈ E|x connected to v} do
7: ematch ← false;
8: for all e′ ∈ {y ∈ E ′|y connected to v′} do
9: if ζ (e) ⇐ ζ (e′) then

10: ematch ← true; break;
11: end if
12: end for
13: if ematch = false then
14: return false;
15: end if
16: end for
17: break;
18: end if
19: end for
20: if vmatch = false then
21: return false;
22: end if
23: end for
24: return true;

zero to node $x with weight −c. As illustrating examples consider Figures 4.13 to 4.16 which
contain the predicate graphs of the selections in queries q1 to q4. After the construction of G,
the predicate can be checked for satisfiability and is minimized using techniques introduced
by Rosenkrantz and Hunt (1980). If an operator’s predicate is unsatisfiable, the corresponding
subscription can be rejected. A minimized predicate does not contain any redundant atomic
predicates. Note that the construction of the properties together with all the steps described in
this paragraph is performed only once for each new subscription during the registration process.

The MATCHPREDICATES algorithm shown in Algorithm 4.3 can match any predicates in
the described graph representation, e. g., selection and join predicates. In this chapter, we use it
to match the predicates of selection operators. The algorithm takes as inputs the data structures
G and G′ of the weighted directed graphs representing the selection predicates of the existing
data stream and the new subscription. It compares these graphs and returns true if the predicates
of G′ imply those of G, i. e., reusability of the data stream is not prevented by the predicates.
One prerequisite for the possibility of data stream sharing is that, for each node v in the node
set V of G, there exists an equivalent node v′ in the node set V ′ of G′, denoted v ≡ v′ in line 4
of Algorithm 4.3. Nodes are equivalent if the variables represented by them refer to the same
element. Furthermore, if two equivalent nodes v and v′ have been found, for each edge e con-

64 4. Data Stream Sharing

Figure 4.18: Matching predicates

nected to v there must be an edge e′ connected to v′ such that the atomic predicate represented
by e, denoted ζ (e), is compatible with the atomic predicate represented by e′, denoted ζ (e′). In
our algorithm, this is the case if ζ (e)⇐ ζ (e′) in line 9. Figure 4.18 shows an example matching
for the predicate graphs of queries q1 and q2. For brevity, only the variable names instead of
the full paths are shown as node labels in the figure. The dashed arrows indicate the matching
vertices and edge weights. All the edge weights of q1 are greater than the corresponding edge
weights of q2 which indicates that the required predicate implications are true. The definition
of ζ (e) for any edge e in a predicate graph G can be formally expressed as

ζ (e) := (sourcelabel(e) ≤ targetlabel(e)+weight(e))

where sourcelabel(e) and targetlabel(e) denote the absolute path to the variable represented by
the source node and the target node of edge e, respectively, and weight(e) denotes the weight
that is associated with edge e.

Examples

We now consider queries q1 and q2 of Section 4.1 as illustrative examples for the algorithms
described above. We start with the network topology of Figure 4.1. We further assume that
stream photons has already been registered in the network and is available at super-peer SP4.
Note that it suffices to consider the super-peer backbone network in the algorithm since the
thin-peers are only the start and end points of data streams but do not transform any streams.

Example 4.3 (Query 1 (q1)) When q1 is registered, the algorithm first constructs the corre-
sponding properties of the query including the minimized weighted directed graphs represent-
ing the selection predicates. The only peer in the network that has a reusable stream is SP4 and
the only reusable stream is the originally registered stream photons. Consequently, the selection
and projection operators of q1 are installed at SP4 and the result is routed to P1 using a shortest
path in the network, e. g., via SP5 and SP1. ¤

Example 4.4 (Query 2 (q2)) Query q2 is registered at P2 after q1 has been registered. At this
point in time, the original stream photons is available at SP4 and the stream filtered by the selec-
tion and projection operators of q1 is available at SP1, at SP5, and at SP4, where it is generated.
The algorithm determines that the filtered stream is suitable for answering q2 because the atomic
predicates of the minimized selection predicates in q1 are all implied by corresponding atomic
predicates of the minimized selection predicates in q2, as can be seen from Figure 4.18. Fur-
ther, the set of projection elements returned by q1 is a superset of the set of elements referenced

4.4 Data Stream Sharing 65

in q2. Note that, in this example, the original predicates are already minimized since they do
not contain any redundant atomic predicates. Altogether, the algorithm identifies four possible
solutions for reusing a stream to answer q2. These include the original stream photons at SP4
as well as the filtered stream generated for answering q1 at SP4, at SP5, and at SP1. We assume
that reusing the filtered stream at SP5 yields the lowest value for cost function fcost. Therefore,
this stream is duplicated at SP5. After installing the selection and projection operators of q2 at
SP5 for performing the necessary additional filtering, the filtered copy of the stream is routed to
P2, again using a shortest path in the network which is via SP7. ¤

4.4.6 Window-based Aggregation

Reusing the results of window-based aggregate operators has been studied in the literature be-
fore, e. g., by Arasu and Widom (2004c). Our approach differs from this specific previous
solution in two ways. First, we introduce a step size in our windows which allows us to ex-
plicitly specify when a new aggregate value shall be computed. Second, we consider existing
results of other subscriptions for reuse instead of precomputing aggregate results that might
never be used. Following Gray et al. (1996), we categorize aggregate operators using three
classes. These classes comprise distributive (e. g., min, max, sum, count), algebraic (e. g., avg),
and holistic (e. g., median, quantile) aggregates. We concentrate on the distributive and alge-
braic aggregate operators mentioned above.

The MATCHAGGREGATIONS algorithm is used in Algorithm 4.2 to compare the conditions
of window-based aggregate operators. The algorithm compares such operators by examining
their input data, their results, and their data windows as follows. First, MATCHAGGREGA-
TIONS checks whether the aggregate considered for reuse and the new aggregate employ the
same aggregate operator, are based on the same input data, and aggregate the same element.
Furthermore, we need to handle selections in aggregate subscriptions more restrictively than
in other subscriptions. We need to assure that any selection performed on the aggregated data
stream prior to the aggregation is equivalent in both the reused and the new aggregate subscrip-
tion. Second, we check whether the aggregate result which is considered for reuse has been
filtered in any way. As an example, consider query q4 which filters its aggregate result $a us-
ing the predicate $a > 1.3. Reusing such aggregate values for computing more coarse-grained
window aggregates is not possible in general since a part of the necessary data might have been
removed. However, these aggregate values can still be reused for aggregates that apply the same
or a more restrictive filter on the aggregate result as long as all other prerequisites for reusability
are fulfilled.

Eventually, the algorithm examines the data windows of both operators. For time-based
windows, reuse is only possible if both windows have the same ordered reference element, e. g.,
det_time in queries q3 and q4. For both, count-based and time-based windows, we require
the window size and the step size of the windows to be compatible for being able to reuse
existing aggregate values without any further complex optimizations or transformations. One
requirement for this is that the window size of the new subscription is a multiple of the window
size of the data stream considered for reuse. This guarantees that a fixed number of reused
windows fits into one new window. Furthermore, the window size of a reused aggregate’s data
window must be a multiple of its step size. This assures that a sequence of non-overlapping
windows, i. e., aggregate values, covering the entire input data can be obtained—possibly by
ignoring some windows or aggregate values. Note that ignored aggregate values might have
to be buffered temporarily to be reused for computing subsequent values of the new aggregate.

66 4. Data Stream Sharing

Figure 4.19: Reusing window-based aggregates

Finally, the step size of the window of the new subscription also needs to be a multiple of the
step size of the window of the data stream considered for reuse. This guarantees that the reused
aggregate delivers an aggregate value at least each time the new aggregate has to produce one.
Formally, we can state these three conditions for data window reusability as follows:

• ∆′ mod ∆ = 0

• ∆ mod µ = 0

• µ ′ mod µ = 0

Note that for the values of avg aggregates to be shareable, we internally represent such ag-
gregates by their appropriate sum and count values. These values are actually transmitted in
the super-peer network. The final aggregate value is computed at the super-peer at which the
corresponding subscription is registered by evaluating (sum/count). The described internal rep-
resentation of avg aggregates also enables their reuse for computing sum and count aggregates,
i. e., the requirement of equal aggregate operators for shareability can be relaxed.

Example 4.5 (Queries 3 (q3) and 4 (q4)) As an example illustrating how our algorithm han-
dles window-based aggregates, consider queries q3 and q4 as introduced in Section 4.3. We
assume the network of Figure 4.1 with queries q1 and q2 already registered as described earlier.
Query q3, which can reuse the result data stream of q1, is registered at peer P3 in the network and
computes the average energy of all photons detected in a certain area of the sky. The time-based
data window has a size of 20 time units and requires the computation of a new aggregate value
every 10 time units. Further, q3 does not filter the aggregate result values in any way. Query q4
is another aggregate query that employs the same aggregate operator, references the same input
data stream, aggregates the same element, and uses the same selection predicate as q3.

Obviously, in terms of cost function fcost, reusing the result data stream of q3 at SP3 is the
best solution for answering q4, provided that reuse is possible. In order to determine share-
ability, the data windows of both subscriptions need to be compared. Figure 4.19 illustrates
the situation. Windows of q3 that are shaded in light or dark gray in the figure are shared by
a correspondingly shaded window of q4. Windows of q3 that are shaded in medium gray are
shared by two different windows of q4. Unshaded windows are not shared at all between q3 and
q4. We compute 60 mod 20 = 0 for the window sizes and 40 mod 10 = 0 for the step sizes of
the windows as well as 20 mod 10 = 0 for the window size and the step size of the result data
stream of q3, meaning that reuse is possible. Since 60 div 20 = 3 holds, three consecutive non-
overlapping windows of q3 are needed to form a window of q4. Because of 20 div 10 = 2, only
every second aggregate value of q3 is to be reused for q4. Eventually, 40 div 10 = 4 indicates

4.4 Data Stream Sharing 67

4
3

1 5 9

11
4

2 6 10
3 7

1
2

10

20

8 12
10

10

20
20

time

5

13

6
5

40
80

1

3 7 11

5 9

2
3

4

1 5

Figure 4.20: Window selection for reusing window-based aggregates

that each time four values of q3 have been seen, only two of which have been reused, a new
aggregate value of q4 is computed. ¤

For being able to reuse previously computed aggregate values of window-based aggregate
operators to compute more coarse-grained aggregates, we have developed an operator for se-
lecting the appropriate values during query evaluation in the FluX query engine. Note that
we do not necessarily need every single aggregate value of an existing aggregate result stream
and that we do not necessarily need the values in the same order as they appear in the reused
stream. Therefore, the aggregate value selection operator employs Algorithm 4.4 to select the
appropriate values and to buffer and to reorder these values if required.

Example 4.6 (Reusing aggregate values) We assume a stream data window with window size
∆ = 40 and step size µ = 10. The query window has a window size of ∆′ = 80 and a step size of
µ ′ = 20. Figure 4.20 illustrates the two data windows. The shading and hatching of the windows
in the figure indicates which stream windows are shared by which query windows. The stream
window with number 5, for example, is shaded in medium gray since it is shared by both, the
query window with number 1 shaded in light gray and the query window with number 3 shaded
in dark gray. Similarly, the stream window with number 7 is cross-hatched since it is shared

Algorithm 4.4 SELECTAGGREGATEVALUES

Input: Window sizes ∆ and ∆′ as well as step sizes µ and µ ′ of the data window to be reused
and the new data window, respectively.

Output: The correct sequence of aggregate values for reuse.

1: buffer first ((∆′−∆) div µ)+1 aggregate values arriving on the stream;
2: repeat
3: i ← 0;
4: while i < (∆′ div ∆) do
5: send value at buffer position i · (∆ div µ) to the query engine;
6: i ← i+1;
7: end while
8: remove first (µ ′ div µ) values from buffer and read next (µ ′ div µ) values from stream

into buffer;
9: until the buffer contains no more values;

68 4. Data Stream Sharing

by the two hatched query windows with numbers 2 and 4. Algorithm 4.4 starts by buffering
the first ((∆′−∆) div µ) + 1 = ((80− 40) div 10) + 1 = 5 aggregate values arriving on the
stream. It then sends the aggregate values at buffer positions i · (∆ div µ) for 0 ≤ i < (∆′ div ∆)
to FluX. Since ∆′ div ∆ = 80 div 40 = 2 and ∆ div µ = 40 div 10 = 4, these are the values at
buffer positions 0 · 4 = 0 and 1 · 4 = 4. Afterwards, the first µ ′ div µ = 20 div 10 = 2 values
are removed from the buffer and the next two values are read from the stream and added to the
buffer. After updating the buffer, the values needed for computing the next window aggregate
value reusing the values in the buffer can be determined as above. ¤

The reusing query that is executed in the FluX query engine uses the aggregate values deliv-
ered by Algorithm 4.4 as input. The query computes the corresponding final aggregate values
over these input values using the appropriate aggregate function (e. g., sum for computing sum

and count aggregates) and a count-based data window with equal window size and step size,
both set to (∆′ div ∆).

Note that Algorithm 4.4 buffers all the aggregate values arriving on the input stream. This
can be avoided by exactly identifying the aggregate values that need to be buffered and by
immediately discarding all the others. Appendix E on page 205 shows the resulting alternative
algorithm. Up to now, the StreamGlobe prototype uses an implementation of Algorithm 4.4.

4.4.7 Extensions and Optimizations
On the basis of the algorithms of Section 4.4.5, we now introduce some further extensions and
general optimizations improving the quality and the efficiency of data stream sharing.

Bypassing

The result of any subscription evaluation in the network is routed towards the receiving peer
via a shortest path in the network. In order to avoid congested network connections and over-
loaded peers, we introduce a simple bypassing mechanism, thus increasing the search space of
our algorithm. Whenever a plan is discovered to cause an overload situation on any network
connections or peers, a new internal network graph representing the original network without
the overloaded connections and peers is constructed. Then the plan is modified to route its
data over shortest paths within this reduced network. This can be repeated multiple times until
no overload occurs or the reduced network does not contain any valid paths to the target peer
any more. Each plan found during this procedure is compared against the current best plan as
described earlier in this chapter.

A disadvantage of the above solution is that the shortest path algorithm needs to be exe-
cuted multiple times if an overload situation is predicted. Furthermore, the approach can lead
to network partitioning in the reduced network, making it impossible to find an overload-free
evaluation plan although one might exist. This can be avoided by using an alternative bypass-
ing scheme which computes appropriate weights for each network connection and then uses a
shortest path algorithm to find the weighted shortest path between two peers in the network. In
this case, the shortest path algorithm needs to be executed only once during the generation of
a query evaluation plan. The weight of a network connection can be computed by determining
weights based on the current amount of network traffic and peer load on the respective net-
work connection and its two incident peers, and by adding the peer weights to the weight of the
network connection. A disadvantage of this scheme is, however, that the weights of network
connections and peers need to be updated each time the network state changes.

4.4 Data Stream Sharing 69

If the number of iterations needed to find an overload-free plan is low, we expect the first by-
passing approach to be more efficient. Independent of the used bypassing solution, the system
can reject a query if no plan without overloaded network connections or peers can be found. Ir-
respective of whether bypassing is used or not, rejecting queries currently is the default behavior
in StreamGlobe for dealing with insufficient resources.

Optimized Loop Computation

The loops in the algorithms of Section 4.4.5 iterate over sets of streams, peers, vertices, edges,
and properties. Some of these sets contain rather few items in practice, e. g., the operators in a
query or the vertices and edges in a predicate graph. This leads to a small number of loop itera-
tions. Additionally, many loops can be exited early, e. g., as soon as a match is found—indicated
by the break statements in the algorithms. Some loop computations can be optimized by em-
ploying an execution similar to merge joins. For example, the first two loops in Algorithm 4.3
can be executed in a merge join fashion if the vertices in V and V ′ are sorted lexicographically
according to their labels, i. e., according to the paths they represent.

Caching Matching Results

Routing a data stream through the network via several peers without transforming the stream
leads to identical data streams and data stream properties being available at many different
peers in the network. The basic algorithm of Section 4.4.5 does not take this into account when
searching for shareable streams and matches each of the identical properties anew. Furthermore,
the algorithms make no difference between incoming and outgoing data streams at a certain
peer. This leads to each data stream property being matched twice, once at the source peer
and once at the target peer of the corresponding stream. Both problems can be avoided by
identifying identical versions of already matched properties and by reusing the corresponding
cached matching result.

Exploiting Local Matches

A special case occurs when two or more subscriptions with identical properties are registered
at peers that are connected to the same super-peer in the network. This might easily occur in a
multi-user network where several users have the same interests and register continuous queries
at the same point in the network. Using the basic algorithm, each of these queries would be
optimized individually. Therefore, for each such query, the search for shareable streams would
start at the super-peers where the input data streams of the query are registered and then traverse
the network using breadth-first or depth-first search as described in Section 4.4.5. However, in
each case, the result would be to reuse the already present answer to the subscription at the
super-peer connected to the subscribing client as this will obviously yield the lowest value for
cost function fcost. The situation can easily be improved by checking a new subscription’s
super-peer for the presence of reusable streams prior to executing the actual query subscription
algorithm. The approach could even be extended to checking the properties of data streams
available at peers in the neighborhood of the subscribing peer. This could be done either by
checking the neighboring peers or, for larger networks where a larger neighborhood should be
considered, by flooding the network with a data stream request and using an adaptable horizon
for the flooding depth.

70 4. Data Stream Sharing

4.5 Evaluation

This section presents the results of a performance evaluation that we conducted using our
StreamGlobe prototype implementation. For the evaluation, we installed the system on a blade
server. Each super-peer ran on one blade. The blades had a 2.8 GHz Intel Xeon processor and
1 GB of main memory each. They were interconnected by a 100 MBit/s LAN. We report on four
scenarios here. The first one is the example scenario of Section 4.1 with 8 super-peers, 1 data
stream, and 4 queries. The second scenario is based on the same network topology as the first
but registers 25 queries in the system. The third scenario is a small scenario using 4 super-peers,
1 data stream, and 4 queries. Three of the super-peers form a triangle in the network topology
of this scenario and the fourth, which is the super-peer where the data stream is registered, is
connected to one of the three super-peers in the triangle. The fourth scenario uses a 4×4 grid
topology with 16 super-peers, 2 data streams, and 100 queries. All data streams and queries
are based on real astrophysical data. We generated the queries using a predefined set of query
templates for selection, projection, and aggregate queries. For each generated query, the query
generator randomly chose a template according to a uniform distribution. Constant values in
the template, e. g., in selection predicates or data window definitions, were chosen uniformely
from a predefined set of values to enable a certain degree of similarity and shareability between
the generated queries. Table 4.1 summarizes the four evaluation scenarios.

For each scenario, we compare three strategies. Data shipping simply transmits the entire
input data stream from the data source to the target super-peer for each query using a shortest
path in the network. The entire query evaluation takes place at the target super-peer. Query
shipping evaluates each query completely at the super-peer the data source is registered at. The
query result is transmitted to the target peer again using a shortest path in the network. This
obviously only works for queries that reference a single input data stream which is the case for
all the queries used in the evaluation. Finally, stream sharing uses our previously described op-
timization algorithms. The evaluated algorithm implementations correspond to the algorithms
as introduced in Sections 4.4.5 and 4.4.6. The extensions and optimizations of Section 4.4.7
were not used in the evaluation. Note that in the worst case, i. e., if no shareable streams can be
found for any query, stream sharing degenerates to query shipping. In the evaluated scenarios,
unless explicitly stated otherwise, all queries were registered successfully for all three strategies
and no queries had to be rejected due to overload situations.

Figures 4.21 and 4.22 show evaluation results in terms of average CPU load in percent
and average network traffic on network connections in kbps for the example and the extended
example scenarios. As can be seen from the diagrams, query shipping leads to massive peaks
of CPU load at data stream source peers (SP4 in the diagrams) since all the computations on the
respective stream are executed there. CPU load at source peers scales linearly with the number
of corresponding queries registered, e. g., by a factor of 6 from about 7% in the scenario with
4 queries in Figure 4.21 to about 42% in the scenario with 25 queries in Figure 4.22. On the

SCENARIO NETWORK TOPOLOGY # PEERS # DATA STREAMS # QUERIES

Example 3-dimensional hypercube 8 1 4
Extended example 3-dimensional hypercube 8 1 25
Small irregular 4 1 4
Grid 4×4 grid 16 2 100

Table 4.1: Evaluation scenarios

4.5 Evaluation 71

 0

 1

 2

 3

 4

 5

 6

 7

 8

SP 0
SP 1

SP 2
SP 3

SP 4
SP 5

SP 6
SP 7

A
vg

. C
PU

 lo
ad

 (
%

)

Peers

Data Shipping
Query Shipping
Stream Sharing

 0

 10

 20

 30

 40

 50

 60

 70

 80

1−
3

1−
5

2−
3

2−
6

4−
5

4−
6

5−
7

A
vg

. n
et

w
or

k
tr

af
fic

 (
kb

ps
)

Network connections

Data Shipping
Query Shipping
Stream Sharing

Figure 4.21: Example scenario: 8 super-peers, 1 data stream, 4 queries

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

SP 0
SP 1

SP 2
SP 3

SP 4
SP 5

SP 6
SP 7

A
vg

. C
PU

 lo
ad

 (
%

)

Peers

Data Shipping
Query Shipping
Stream Sharing

 0

 100

 200

 300

 400

 500

 600

0−
4

1−
3

1−
5

2−
6

3−
7

4−
5

4−
6

5−
7

6−
7

A
vg

. n
et

w
or

k
tr

af
fic

 (
kb

ps
)

Network connections

Data Shipping
Query Shipping
Stream Sharing

Figure 4.22: Extended example scenario: 8 super-peers, 1 data stream, 25 queries

other hand, the network traffic caused by query shipping is comparatively low. Data shipping,
as expected, causes much more network traffic but also relatively high CPU load over the entire
range of super-peers in the network since all the data needs to be forwarded over many peers
and network connections, often even multiple times. Stream sharing distributes computational
load much better over the peers in the network than query shipping and causes less overall CPU
load than data shipping. Furthermore, network traffic is also greatly reduced compared to the
other two strategies due to the effects of reusing streams for multiple queries.

Figures 4.23 and 4.24 show the results for the remaining two scenarios in terms of average
CPU load in percent and accumulated network traffic in MBit including both, incoming and
outgoing traffic for each super-peer. The results, especially for the larger grid scenario, show
that our approach significantly reduces network traffic at single peers as well as overall in the
network. Data shipping transmits the entire original data stream through the network multiple
times, once for each subscription referencing the stream as input. Note that query shipping
already significantly reduces network traffic by means of early filtering at the data stream source.
However, like data shipping, query shipping still transmits one distinct data stream through the
network for each query. Stream sharing is able to further reduce network traffic by using multi-
subscription optimization, transmitting data streams through the network only once and sharing
them for satisfying multiple similar or equal queries. The CPU load caused by stream sharing
is comparable to the load caused by the other approaches on most peers in the shown scenarios
except for the peak at the data stream source peers for query shipping. We expect our approach

72 4. Data Stream Sharing

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

SP 0
SP 1

SP 2
SP 3

A
vg

. C
PU

 lo
ad

 (
%

)

Peers

Data Shipping
Query Shipping
Stream Sharing

 0

 50

 100

 150

 200

 250

 300

SP 0
SP 1

SP 2
SP 3

A
cc

. n
et

w
or

k
tr

af
fi

c
(M

B
it)

Peers

Data Shipping
Query Shipping
Stream Sharing

Figure 4.23: Small scenario: 4 super-peers, 1 data stream, 4 queries

 0

 2

 4

 6

 8

 10

 12

SP 0
SP 2

SP 4
SP 6

SP 8
SP 10

SP 12
SP 14

A
vg

. C
PU

 lo
ad

 (
%

)

Peers

Data Shipping
Query Shipping
Stream Sharing

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

SP 0
SP 2

SP 4
SP 6

SP 8
SP 10

SP 12
SP 14

A
cc

. n
et

w
or

k
tr

af
fi

c
(M

B
it)

Peers

Data Shipping
Query Shipping
Stream Sharing

Figure 4.24: 4×4 grid scenario: 16 super-peers, 2 data streams, 100 queries

to distribute load better over peers in larger scenarios than the other two approaches. This
expectation is confirmed by the results of an additional test where we limited the maximum
CPU load of peers to 10% of their actual capacity and the maximum bandwidth of network
connections between peers to 1 MBit/s. We then used the grid scenario and determined how
many queries had to be rejected by the system because no query evaluation plan without causing
overload on peers or network connections could be found. While query shipping had to reject
35 and data shipping had to reject 47 out of the 100 queries that we tried to register, our stream
sharing approach only rejected 2 queries.

Inevitably, data stream sharing is associated with a certain optimization overhead. Tables 4.2
and 4.3 show the times a query took from the beginning of its registration until it was success-
fully installed and executed in the network in the extended example scenario and in the 4× 4
grid scenario, respectively. The stream sharing approach stays within a factor of three of the
other two much simpler approaches. This is acceptable since we are dealing with continuous
queries that usually remain registered over long periods of time. The difference between the
query registration times of data stream sharing and the other two approaches is expected to
grow for increasing network sizes and increasing numbers of queries. This is due to the larger
effort invested in query optimization. The more queries have been installed in the system, the
more alternatives for data stream sharing the query optimizer has to take into account when a
new query is registered. However, many real application scenarios, e. g., e-science collabora-
tion networks, are not expected to grow far beyond the dimensions of our largest evaluation

4.6 Related Work 73

TIME (ms) DATA SHIPPING QUERY SHIPPING STREAM SHARING

Average 931 890 2153
Minimum 390 284 509
Maximum 2078 2032 5025

Table 4.2: Query registration times in the extended example scenario

TIME (ms) DATA SHIPPING QUERY SHIPPING STREAM SHARING

Average 1363 1287 3558
Minimum 265 250 672
Maximum 4953 4802 11855

Table 4.3: Query registration times in the 4×4 grid scenario

scenarios. Also, if query registration times should not exceed a certain threshold, we can stop
the optimization process early and use the best query evaluation plan found so far.

4.6 Related Work
Data stream sharing is closely related to multi-query optimization (MQO) [Roy et al. (2000);
Sellis (1988); Zhou et al. (2007)]. Traditional MQO mainly aims at optimizing the evaluation
of a batch of queries over persistent data. Instead, data stream sharing incrementally optimizes
queries one after another when they are registered in the network, based on the current network
state. The streaming paradigm opens many new possibilities in our setting compared to tra-
ditional MQO. This is mainly due to the dynamic nature of streaming data and the persistent
nature of continuous queries over data streams. For example, as we show in Chapter 5, we
can dynamically widen data streams by relaxing predicates or window definitions in the system
to make an initially unsuitable stream shareable. Furthermore, it is possible to narrow a data
stream if some of its data is not needed any more due to the deletion of queries from the system.

Sharing of work between queries over streams has also been addressed in previous work
by Krishnamurthy et al. (2004). Our solution mainly differs from this approach in that we
consider distributed subscription evaluation among peers in a network. CACQ [Madden et al.
(2002b)] is related to stream sharing in that it allows the sharing of physical operators. How-
ever, CACQ is centralized and tuple-based and does not consider the sharing of potentially
preprocessed data streams in a network. NiagaraCQ [Chen et al. (2000)] groups continuous
queries according to similar structures to share common computations, thus increasing scal-
ability. As already mentioned in Section 2.4, the major difference between NiagaraCQ and
our approach in StreamGlobe consists in the fact that StreamGlobe explicitly deals with and
exploits the aspect of queries and data streams being distributed over peers in a network. This
allows for more flexible sharing of data streams compared to NiagaraCQ, e. g., by sharing query
result streams anywhere in the network. Also, Chapter 5 presents the details of our data stream
widening optimization technique that further increases the flexibility of data stream sharing by
dynamically altering the characteristics of a stream to fit the needs of a larger set of queries.
Ayad and Naughton (2004) investigate static optimization techniques for continuous queries
with sliding windows over infinite data streams. They also devise a cost model to assess the
costs of query evaluation plans and aim at minimizing resource usage if available resources are
sufficient while random load shedding is used to cope with insufficient resources. In contrast

74 4. Data Stream Sharing

to stream sharing, this approach does not employ any multi-query optimization. Seshadri et al.
(2007) propose a system that optimizes the execution of stream-based queries in a distributed
DSMS using optimization techniques such as network-aware join ordering, operator reuse, and
delayed filtering for increasing possibilities for reuse. The system integrates query planning
and deployment planning in a single step and limits the search space by using hierarchical net-
work partitions similar to the hierarchical network organization planned for StreamGlobe as
introduced in Section 2.3.6. In each partition, one of the nodes contained in the partition takes
the role of a coordinator. Reusable streams are discovered by means of stream advertisements.
A coordinator knows about all stream advertisements in its partition. Stream advertisements
and coordinators thus correspond to properties and speaker-peers in StreamGlobe. The main
differences in StreamGlobe compared to the approach of Seshadri et al. (2007) are the use of
XML data streams, the explicit development of a subscription language, the notion of data win-
dows, and a closer look at reusability depending on operator types and properties. Gedik and
Liu (2006) consider quality of service aspects for stream delivery in a distributed DSMS using
the concept of stream delivery graphs. They compare several algorithms for constructing such
delivery graphs and use load shedding to drop tuples in input streams if available resources
are insufficient. Currently, StreamGlobe rejects queries for which no plan without a predicted
overload situation on peers or network connections can be found. Introducing load shedding or
explicit quality of service guarantees in StreamGlobe remains an issue for future work. While
StreamGlobe processes continuous queries over data streams in an exact way, Dobra et al.
(2004) address the issue of multi-query optimization in the context of sketch-based approximate
query evaluation through sharing sketches among multiple concurrent queries. The concept of
sketch-based approximate query processing has been introduced by Dobra et al. (2002).

Ahmad and Çetintemel (2004) consider network-aware operator placement in a distributed,
DHT-based query processing system. Although generic, the proposed algorithms focus on push-
based continuous queries and use a cost function that aims at minimizing bandwidth consump-
tion in the overall network. The algorithms also allow to trade bandwidth usage for satisfying la-
tency bounds on query results. In contrast to data stream sharing in StreamGlobe, this approach
does not take into account the CPU load incurred by query processing operators on respective
peers and it does not perform any multi-query optimization. Pietzuch et al. (2006) introduce a
spring embedder approach to network-aware operator placement in distributed DSMSs. Their
solution uses a stream-based overlay network (SBON) for managing operator placement and
establishing the connection between the DSMS and the underlying physical network. Operator
placement works by computing the cost-optimal operator coordinates in an abstract cost space
according to the spring embedder model and by subsequently mapping the computed position
onto an actual node in the physical network. The used cost metric takes into account the latency
of network connections and the data rate transferred over these connections. Periodic reevalu-
ation combined with operator migration enables an adaptation to changing network states. The
SBON layer also performs basic multi-query optimization by combining operators with equal
inputs that are placed close to each other in the cost space and by distributing the corresponding
operator output to all recipients using a multicast operator. Therefore, multi-query optimization
is a subordinate step that is performed after operator placement whereas in StreamGlobe the
search for shareable data streams is the primary step that guides operator placement. Srivas-
tava et al. (2005) describe an efficient optimal algorithm for operator placement in tree-shaped
data acquisition networks as introduced, e. g., by Franklin et al. (2005). The leaves of the tree
form the data sources and the root forms the data sink. The network model assumes that nodes
towards the leaves of the tree have less bandwidth and less computational power. Therefore,

4.6 Related Work 75

the goal of the operator placement algorithm is to place operators in a way that minimizes the
combined cost of query processing and data transfer. For example, placing a filter operator
closer to the data sources reduces transfer costs but, due to the reduced resources of nodes close
to the leaves of the network tree, may incur higher computational costs. The operator place-
ment algorithm can handle uncorrelated filter operators and is subsequently extended to also
support correlated filter operators and multi-way stream joins. Clearly, this approach depends
on a particular network model and topology whereas data stream sharing in StreamGlobe does
not require a specific network topology.

Further, the problem of query containment has a strong relation to data stream sharing.
Query containment has already been studied for querying XML data, mainly in the context of
optimizing query rewriting in peer data management systems (PDMSs) [Tatarinov and Halevy
(2004)]. Dong et al. (2004) investigate support for nested queries in this context. Schwentick
(2004) summarizes a selection of algorithms proposed for XPath query containment. However,
as with MQO, the main difference to our work lies in the fact that we are dealing with persistent
queries and volatile data instead of persistent data and volatile queries. Query containment,
especially for XML queries, is a difficult problem. We were able to make it manageable by
exploiting the properties of our distributed system architecture, i. e., by postponing complex
restructuring until a data stream reaches its final destination in the super-peer backbone network.

Semantic caching [Chen and Rundensteiner (2002); Dar et al. (1996)], where reusable data
consists of previously computed and cached results of one-time queries over persistent data, is
one of the main application areas of query containment. Semantic caching differs from query
subscription in streaming environments mainly by the difference between processing persistent
data and processing data streams. In our setting, the cached data corresponds to the—albeit
volatile—data streams flowing through the network.

The question of which previously generated data stream should be reused for answering
a newly subscribed continuous query is similar to the problems of view materialization and
view selection in the context of persistent data [Theodoratos and Sellis (1997, 1999)]. In view
materialization, however, data is materialized before queries are posed whereas in our scenario,
reusable data streams are generated by previously registered queries in the network.

Even closer related to our work are more recent approaches to materialized XML views that
deal with using views in query processing [Balmin et al. (2004); Mandhani and Suciu (2005)],
for speeding up routing decisions in XML content-based document routing [Gupta et al. (2002,
2003)], and for efficiently supporting queries over XML views of relational data for increased
flexibility and interoperability [Shah and Chirkova (2003); Shanmugasundaram et al. (2001)].
The IBM XML Query Graph Model (XQGM) of Shanmugasundaram et al. (2001) is a graph-
based internal query representation for XQueries over XML views of relational data used in the
XPERANTO middleware system. An incoming XQuery is directly translated into an XQGM
by the query parser and the internal query representation is used to employ query rewriting op-
timizations and to compose the query with the views it references. The XQGM is subsequently
processed and decomposed into two parts. One part captures the memory and data intensive
processing and is pushed down to the relational engine while the other part constitutes a tagger
graph structure used to construct the XML query result. This approach is clearly related to ours
since we also use an abstract internal query representation for optimizing (W)XQuery process-
ing. The main differences are that StreamGlobe does not use a relational backend but directly
processes XML data and that we deal with data stream processing in a distributed environ-
ment. While the XQGM approach mainly aims at exploiting the facilities of proven relational
database backends for efficiently processing XQueries over a flexible and interoperable XML

76 4. Data Stream Sharing

view interface, StreamGlobe targets efficient resource usage in a distributed DSMS by means
of sharing common work and data among multiple long-running continuous queries. Some
approaches combine materialized views with multi-query optimization to increase the perfor-
mance of materialized view selection and maintenance [Mistry et al. (2001)] and to improve
query processing performance for XQueries over XML views [Zhang et al. (2003b)]. Further
approaches address the issues of query rewriting for XML queries using nested views [Onose
et al. (2006)], semantic caching for XPath queries [Xu (2005)] and XML databases [Hristidis
and Petropoulos (2002)], and a framework for handling XML data with incomplete informa-
tion [Abiteboul et al. (2001, 2006)]. Abiteboul (1999) has also published some general thoughts
on views and XML. Most of the above work on XML views exclusively supports XPath queries.
Only few approaches support a usually heavily restricted subset of XQuery. Also, in contrast to
StreamGlobe, these solutions work solely on XML documents and do not consider data streams.
Consequently, there is no notion of data windows either.

Another subject related to data stream sharing is data integration. Instead of matching new
subscriptions with existing data streams as is the case in our domain, data integration in the
previously mentioned peer data management systems (PDMSs) [Tatarinov and Halevy (2004)]
uses schema matchings in order to match a new query with various data sources that have
different, yet similar schemas.

Schema matching is one possible approach for comparing newly registered subscriptions
with existing data streams in the network. Many different solutions for this problem have been
proposed [Dhamankar et al. (2004); Rahm and Bernstein (2001)], also in the context of XML
data [Doan et al. (2001, 2000)]. However, generic schema matchers only match static schema
information. This is sufficient for structural filters such as projection operators, but not for
content-based filters such as selection operators. Supporting content-based filters requires an
appropriate extension of the matcher. Furthermore, generic ontology-based schema matchers do
not work without user interaction. Since we do not need the matching power of such ontology-
based matchers in our context but we do need to match the results of structural and content-
based filters alike, we have instead taken a different approach based on the abstract properties
of subscriptions and data streams.

We employ the FluX query engine developed by Koch et al. (2004a,b) for processing con-
tinuous queries over XML data streams. The major contribution of FluX is the ability to pro-
cess XQueries over streaming XML data while minimizing buffer consumption by exploiting
schema information of processed XML streams. Stegmaier (2006) has provided the necessary
extensions to FluX to support our WXQuery subscription language which constitutes an aug-
mented fragment of XQuery. Other examples of streaming XQuery implementations besides
FluX include Raindrop [Su et al. (2003)] and XQRL [Florescu et al. (2004, 2003)]. These can
be used to process standard XQueries. For being able to execute window-based WXQueries,
they need to be augmented with support for our WXQuery window extensions introduced in
Section 4.3. Li and Agrawal (2005) propose a different approach for efficiently evaluating
XQueries over streaming data. Instead of considering the schemas of the input streams, they
concentrate on the properties of the queries to be evaluated. Their solution comprises several
optimizations used to transform XQueries in a way that allows the execution of the transformed
queries with a single pass over the input data. Further, they provide a methodology for decid-
ing whether such a single pass evaluation is possible for a given, possibly transformed query.
Their approach also entails support for user-defined aggregates, including recursive functions.
Lim et al. (2006) exploit the duality of data and queries to devise a radically different approach
to continuous query processing. They propose a solution that is based on the transformation

4.7 Summary 77

of the continuous query processing problem to a multi-dimensional spatial join problem. The
join identifies pairs of overlapping regions from the set of data elements and the set of queries,
respectively. A one-dimensional data index, obtained by linearizing the multi-dimensional data
space using a space filling curve, together with a multi-dimensional query index enable an ef-
ficient join computation. A performance evaluation asserts the effectiveness of the proposed
query processing algorithm. Finally, Krämer and Seeger (2005) provide a formal temporal se-
mantics for continuous queries over data streams ensuring deterministic query results.

Botan et al. (2007) propose extensions to XQuery and to the XQuery data model (XDM)
for supporting window-based continuous queries and infinite sequences. Fischer et al. (2006)
provide an accompanying collection of use cases. The proposed window syntax and semantics
supports all types of data windows found in the literature and the authors plan to submit their
proposal to the W3C for possible standardization in the upcoming XQuery 1.1 standard. The
window extensions are implemented in the Java-based streaming XQuery engine MXQuery1.
The basic idea of introducing for loops that iterate over a sequence of data windows and bind
the corresponding sequences of window contents to a variable is identical to the concept of our
window extensions in WXQuery.

We defer a discussion of related work in the area of aggregate result sharing to Section 5.7.

4.7 Summary
In this chapter, we have presented a subscription language, a properties approach, a cost model,
and algorithms for registering continuous queries over data streams in a distributed DSMS us-
ing data stream sharing. Our approach takes three steps. First, we construct the properties of
a newly registered subscription. Second, we identify shareable data streams generated for an-
swering previously registered subscriptions in the network by matching properties. We choose
an appropriate stream for answering the new subscription according to a cost model that focuses
on the reduction of network traffic and peer load as well as on load balancing aspects. Finally,
we generate and install a distributed query evaluation plan to execute the new subscription.

In the next chapter, we introduce an enhanced properties structure for representing contin-
uous queries in StreamGlobe. The enhanced structure supports nested queries and enables us
to widen data streams. This allows the system to consider data streams for sharing that initially
do not contain all the necessary data for a new query but can be altered to do so by changing
some operators in the network. We also devise support for join queries over multiple input
data streams in the enhanced approach. Apart from this, an interesting opportunity for future
work in the context of data stream sharing is the dynamic optimization of the set of registered
subscriptions to retain an optimized data flow in the network even if network conditions or data
stream statistics change over time.

1http://www.mxquery.org

http://www.mxquery.org

78 4. Data Stream Sharing

79

CHAPTER 5

Advanced Data Stream Sharing:
Matching and Merging Queries and Data

Multi-query optimization aims at sharing common work among multiple queries and thus re-
quires the identification of shareable query parts. As stated in Chapter 1, this is especially
important for distributed DSMSs with multiple continuous queries running concurrently over
long periods of time. In this chapter, we introduce an abstract property tree (APT) and its ex-
tension, an abstract property forest (APF), for representing, matching, and merging queries and
data in a distributed DSMS. The presented techniques enable data stream sharing as introduced
in Chapter 4. In addition, data stream widening increases the possibilities for sharing streams.
The combination of data stream sharing and data stream widening thus allows for efficient re-
source usage and further increases the number of queries that can be processed concurrently.

5.1 Introduction

Deciding whether a certain query result or a data set contains all the relevant information for
answering another query is strongly related to the query containment problem [Dong et al.
(2004)]. Further, it is a common problem for many applications such as view selection [Levy
et al. (1995)] and semantic caching [Dar et al. (1996)]. Data stream sharing in a distributed
DSMS is a new area where this problem arises.

We have shown in Chapter 4 how data stream sharing can improve performance in a dis-
tributed DSMS such as StreamGlobe. However, the optimization quality of the presented solu-
tion depends on the properties of the registered queries and on the query registration sequence.
Only if the result data stream of a previously registered query contains at least all the data re-
quired as input for a new query, sharing the previous result for satisfying the new query is pos-
sible. In this chapter, we introduce data stream widening as an additional technique for making
the optimization quality more independent of the specific query properties and the query regis-
tration sequence. Data stream widening is able to widen an existing data stream to additionally
contain all the necessary data for a new query. We also devise the inverse data stream narrow-

80 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

Super-Peer
Backbone

SP4 SP6

SP0 SP2

SP7

SP3SP1

SP5

Stream photons

P0

P1

P3

P2

P4

Query 1 (q1)

Query 3 (q3)

Query 2 (q2)

Query 4 (q4)

(a) Data stream sharing without data stream widening

Super-Peer
Backbone

SP4 SP6

SP0 SP2

SP7

SP3SP1

SP5

Stream photons

P0

P1

P3

P2

P4

Query 1 (q1)

Query 3 (q3)

Query 2 (q2)

Query 4 (q4)

(b) Data stream sharing with data stream widening

Figure 5.1: Example DSMS scenario

ing approach for downsizing a data stream in case a dependent query has been deleted from
the system. Furthermore, the techniques we introduce in this chapter support a larger class of
queries. While the previous approach supports flat selection, projection, and aggregate queries,
the new approach additionally supports nested queries and joins.

As a motivating example for the application of our advanced data stream sharing technique
with data stream widening in StreamGlobe, we continue to use the astrophysical e-science ap-
plication introduced in Chapter 2. Consider Figure 5.1 which illustrates the exemplary network
of Figure 2.1 on page 9 employing data stream sharing once without and once with data stream
widening. The example scenario used in this chapter is identical to that used in Chapter 4 except
for the sequence in which queries are registered. For the example scenario used in this chapter,
we reversed the query registration sequence. In Chapter 4, each query was able to share the
result stream of a previously registered query. In this chapter, no sharing is possible since each
new query to be registered requires more input data from stream photons than the result data
streams of all previously registered queries provide. We will show how data stream widening
enables us to share preprocessed data streams in such a scenario anyway. Figure 5.2 shows
Queries 1 (q1) to 4 (q4) of the example scenario used in this chapter.

Queries q1, q2, and q4 select the area in the sky that contains the Vela supernova remnant.
Queries q1 and q2 are window-based aggregate queries returning the average energy of detected
photons in the input stream. While q1 computes the average for all photons with det_time

values within the last 60 time units and produces an aggregate value every 40 time units, q2
computes the average for all photons with det_time values within the last 20 time units and
produces an aggregate value every 10 time units. Query q3 is a simple selection and projection
query delivering the celestial coordinates, the energy, and the detection time of all the photons
detected in the area of the RX J0852.0-4622 supernova remnant.

Assuming that we register queries q1 to q4 one after another in ascending order, data stream
sharing without data stream widening is not able to reuse any query results of previously regis-
tered queries for satisfying later registered queries. This is due to the fact that the later registered
queries in this example always require more information than the result data streams of all pre-
viously installed queries provide. Therefore, multi-subscription optimization has no effect and
the optimizer creates a new data stream for each query that needs to be routed through the
network individually. Figure 5.1(a) illustrates this situation.

5.1 Introduction 81

<photons>

{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and

coord/cel/ra <= 138.0 and

coord/cel/dec >= -49.0 and

coord/cel/dec <= -40.0]

|det_time diff 60 step 40|

let $a := avg($w/en)

where $a >= 1.3

return <avg_en> { $a } </avg_en> }

</photons>

(a) Query 1 (q1)

<photons>

{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and

coord/cel/ra <= 138.0 and

coord/cel/dec >= -49.0 and

coord/cel/dec <= -40.0]

|det_time diff 20 step 10|

let $a := avg($w/en)

return <avg_en> { $a } </avg_en> }

</photons>

</photons>

(b) Query 2 (q2)

<photons>

{ for $p in stream("photons")/photons/photon

where $p/en >= 1.3

and $p/coord/cel/ra >= 130.5

and $p/coord/cel/ra <= 135.5

and $p/coord/cel/dec >= -48.0

and $p/coord/cel/dec <= -45.0

return

<rxj>

{ $p/coord/cel/ra } { $p/coord/cel/dec }

{ $p/en } { $p/det_time }

</rxj> }

</photons>

(c) Query 3 (q3)

<photons>

{ for $p in stream("photons")/photons/photon

where $p/coord/cel/ra >= 120.0

and $p/coord/cel/ra <= 138.0

and $p/coord/cel/dec >= -49.0

and $p/coord/cel/dec <= -40.0

return

<vela>

{ $p/coord/cel/ra } { $p/coord/cel/dec }

{ $p/phc } { $p/en } { $p/det_time }

</vela> }

</photons>

</photons>

(d) Query 4 (q4)

Figure 5.2: Example queries

By using data stream sharing with data stream widening, we are able to alter data streams
generated for satisfying previously registered queries to additionally contain all the necessary
data for a new query. This yields a larger data stream that constitutes the union of the input
data of all dependent queries. We can then replicate the stream at appropriate super-peers in
the network and further process each of its copies to form the query result for each dependent
query. Figure 5.1(b) shows the corresponding result for our example scenario. Note that now,
with the exception of q1 which is registered first, each newly registered query shares the widened
result data stream of a previously registered query. The effect can be seen when comparing the
number of arrows indicating the data flow in the backbone network in Figures 5.1(a) and 5.1(b).
Without data stream widening, there are nine arrows in the backbone network. With data stream
widening, there are only five.

In detail, we make the following contributions in this chapter:

• We introduce the Abstract Property Tree (APT), a structure used for representing, match-
ing, and merging queries and data which naturally supports data stream widening and data
stream narrowing (Section 5.2). We focus on queries over XML data streams formulated
in our XQuery-based subscription language WXQuery introduced in Section 4.3. We ini-
tially consider selection, projection, and aggregate queries and subsequently introduce
an extension called Abstract Property Forest (APF) to additionally support join queries
(Section 5.4).

• We show how to translate an arbitrary WXQuery into a corresponding APT and how to
translate an APT back into a corresponding WXQuery. We define inference rules for the
translation of a WXQuery into an APT and query templates for the inverse translation. We
discuss the soundness and completeness of the translation in both directions (Section 5.2).

82 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

• We present an algorithm for matching and merging two APTs, yielding a new APT that
represents the union of the input APTs (Section 5.3) and generalize the algorithm for the
use with APFs (Section 5.4). We further discuss the soundness and completeness of the
matching and merging algorithm.

• Some performance experiments conducted using our StreamGlobe prototype implemen-
tation assess the effectiveness of data stream sharing with data stream widening as intro-
duced in this chapter (Section 5.6).

5.2 The Abstract Property Tree (APT)
The abstract property tree (APT) is a data structure for representing, matching, and merging
queries and data as needed for data stream sharing and data stream widening. This section
introduces APTs and shows how to translate a WXQuery into a corresponding APT and vice
versa. Further, we discuss the completeness and correctness of these translations.

5.2.1 Definition
An abstract property tree (APT) consists of two main parts. The first part is a path tree rep-
resenting all paths referenced in the corresponding query and the second part is a set of anno-
tations. The path tree reflects the structural aspects of the query while the annotations reflect
its content-based aspects, e. g., selection predicates, join predicates, data window definitions,
and aggregates. Note that an APT is an abstract representation of a query, i. e., it represents
only the relevant parts of the query as needed for data stream sharing or, more generally, query
result sharing. With the exception of aggregate and join queries, APTs abstract from any com-
plex restructuring of the query result relative to the query inputs as described in Section 4.3.
This abstraction makes the difficult task of matching and merging queries and data feasible in
practice. The loss of information about the original query due to abstraction is the reason why
the translation of an APT back into a corresponding WXQuery generally yields a query that is
different from the original.

Definition 5.1 (Query abstraction) The abstraction q̂ of a query q reflects all the properties
of q that are relevant for in-network query processing. Compared to the original query q, the
corresponding abstraction q̂ does not contain any query details that are postponed to the post-
processing step, such as any restructuring of the query result involving element construction,
reordering, or renaming. Let q be a query, APT(x) a function that returns the corresponding
APT of a query x, and Query(y) a function that returns the corresponding query of an APT y.
Then, the abstraction q̂ of q is obtained as follows:

q̂ := Query(APT(q)) ¤

Figure 5.3 shows the APTs of the four example queries of Figure 5.2. The path tree in each
case reflects all the paths referenced in the corresponding query. The APT of q4 in Figure 5.3(d)
for example contains the path /photons/photon/phc because the phc element is returned and
therefore referenced in the query. However, the phc element does not occur in the APTs of
queries q1 to q3 because these queries do not reference this element. Note that all paths refer-
enced in a query are always expanded to absolute paths starting at the data stream root element
in the corresponding APT.

5.2 The Abstract Property Tree (APT) 83

photons

photon

coord

cel

ra dec

en det_time

pre-σ
ra >= 120.0 ∧∧∧∧
ra <= 138.0 ∧∧∧∧
dec >= -49.0 ∧∧∧∧
dec <= -40.0

ω
diff: det_time∆: 60 µ: 40

σ
avg(en) >= 1.3

γ●
avg

(a) APT of q1 (tq1)

photons

photon

coord

cel

ra dec

en det_time

pre-σ
ra >= 120.0 ∧∧∧∧
ra <= 138.0 ∧∧∧∧
dec >= -49.0 ∧∧∧∧
dec <= -40.0

ω
diff: det_time∆: 20 µ: 10

γ●
avg

(b) APT of q2 (tq2)

photons

photon

coord

cel

ra● dec●
en● det_time●

σ
en >= 1.3 ∧∧∧∧
ra >= 130.5 ∧∧∧∧
ra <= 135.5 ∧∧∧∧
dec >= -48.0 ∧∧∧∧
dec <= -45.0

(c) APT of q3 (tq3)

photons

photon

coord

cel

ra● dec●
en● det_time●phc●

σ
ra >= 120.0 ∧∧∧∧
ra <= 138.0 ∧∧∧∧
dec >= -49.0 ∧∧∧∧
dec <= -40.0

(d) APT of q4 (tq4)

Figure 5.3: APTs of example queries from Section 5.1

The boxes in Figure 5.3 represent annotations that augment the structural information of
the path tree with additional content-based information. There are three types of annotations
reflecting the characteristics of the three content-based operators for selection (σ), window
construction (ω), and aggregation (γ).

Selection annotations are associated either with output elements in the path tree, i. e., with
elements that are actually contained in the query result, or with aggregate annotations denoting
returned aggregate values. A selection annotation indicates under which condition the corre-
sponding element or aggregate value is returned by the query. Output elements are marked
with bullets in an APT. In Figure 5.3(c), for example, the output elements are ra, dec, en,
and det_time. Queries returning aggregate values are special since, in their APTs, bullets also
mark the aggregate annotations of the aggregate values returned by the query as shown in Fig-
ures 5.3(a) and 5.3(b). Also, Figures 5.3(c) and 5.3(d) indicate that common selection annota-
tions of multiple elements can be pulled up to a common ancestor node. Pulled-up annotations
are implicitly considered valid for all output elements further below in the path tree as long as
these do not have any other selection annotations associated with them.

Window annotations are always associated with the window root element, i. e., the element
whose instances are actually contained in the window. In q1 and q2, photon is the window root
element. Two different kinds of selection predicates can be associated with window annotations.
Predicates in the location steps of a window-defining XPath expression filter the items selected
by the XPath expression before the items enter the data window. We call selection annotations
representing such predicates window preselection annotations since the selection takes place

84 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

before window construction. The symbol pre-σ indicates these annotations which appear in the
APTs of q1 and q2 in Figure 5.3. Furthermore, predicates in a where clause filter the entire data
window after it has been constructed in accordance with XQuery existential semantics, treating
the window contents as a sequence. We call selection annotations representing these predicates
window postselection annotations, since the selection takes place after window construction.
The symbol post-σ indicates such annotations.

Finally, aggregate annotations are always associated with the aggregated element, which is
en in q1 and q2. Like window annotations, aggregate annotations can be associated with two
different kinds of selection annotations. An aggregate preselection annotation reflects a selec-
tion predicate occurring within the XPath expression that references the aggregated element in
the argument of the aggregate function call. Such a predicate filters elements before the actual
aggregate computation, i. e., elements not fulfilling the predicate of the aggregate preselection
annotation do not contribute to the aggregate. Furthermore, an ordinary selection annotation as-
sociated with an aggregate annotation indicates that the aggregate result value is only returned if
the respective condition is satisfied. Figure 5.3(a) shows such an annotation indicating that the
average energy of photons in the specified data window is only to be returned if it is greater than
or equal to 1.3 keV. We denote aggregate preselection annotations by the same symbol pre-σ
as window preselection annotations. The meaning of the overloaded symbol is unambiguous
in an actual APT since the corresponding annotation is either associated with a window or an
aggregate annotation.

For simplicity, we allow window postselection conditions to appear only in where clauses
of the FLWR expression that defines the corresponding window. Note that element references
in annotations are actually absolute paths starting from the data stream root element. In our
figures, however, we only show the element name for better readability. Projection operators are
structural operators which remove elements from the query inputs. Their effects are therefore
already reflected by the path tree. If a query removes elements using a projection, these elements
do not appear in the path tree of that query. Thus, there is no explicit projection annotation. We
introduce an additional join annotation for representing join operators in Section 5.4.

Definition 5.2 (Abstract Property Tree (APT)) The abstract property tree (APT) of a query q
is denoted tq := (P,A,O, id,d) and consists of the set of referenced paths P, the set of annotations
A, and the set of returned paths and aggregate values O of q, as well as the identifier id and the
DTD d of q’s input stream or input document.

Structural part The set P contains all the paths referenced in the corresponding query. The
APT internally represents these paths as a tree with merged common prefixes as shown in Fig-
ure 5.3, i. e., each path element occurs as a tree node exactly once. The tree thus constitutes
a prefix tree where each node represents an element occurring in the paths in P. A node v1 is
the parent of a node v2 in the tree if the element represented by v1 is the parent of the element
represented by v2 in a path in P. The root of the tree is the root of the query input data stream
or document. We expand relative paths referenced in the query to absolute paths before adding
them to P. The construction of the path tree uses the DTD d to preserve the stream or document
order of the elements in the tree. The set O of returned paths and aggregate values identifies
the elements in the path tree that we need to mark as output elements. Aggregate values in O,
indicated by a path with an aggregate function applied to it, cause the corresponding aggregate
annotation to be marked with an output marker. As with P, we expand all relative paths to
absolute paths before adding them to O.

5.2 The Abstract Property Tree (APT) 85

Content-based part An annotation a := (τ,C,R) has a type τ ∈ {σ ,ω ,γ,pre-σ ,post-σ} indi-
cating a selection annotation, a window annotation, an aggregate annotation, a window preselec-
tion annotation or an aggregate preselection annotation, and a window postselection annotation,
respectively. The annotation further consists of its contents C. In case of a selection annotation,
a window preselection annotation, an aggregate preselection annotation, or a window postse-
lection annotation, C is a set of selection predicates. The predicates in the set are meant to be
conjunctively combined. We take a closer look at the form and handling of predicates in the
context of data stream sharing and data stream widening in Chapter 6. A window annotation
representing a count-based window contains the window type, the window size, and the step
size of the window. In case of a time-based window, the annotation additionally contains the
absolute path to the reference element of the window. An aggregate annotation contains the cor-
responding aggregate function. Finally, R denotes the parents of the annotation, i. e., the objects
the annotation is associated with. For selection annotations, R is a set that can contain elements
in the path tree as well as aggregate annotations. For window annotations and for aggregate
annotations, the parent always is a single element in the path tree. For window preselection and
window postselection annotations, the parent always is a window annotation. For aggregate
preselection annotations, the parent always is an aggregate annotation. ¤

Note that, for simplicity, the visualization of APTs in Figure 5.3 does not explicitly show
stream identifiers and DTDs. Also, for ease of exposition concerning the inference rules of
Section 5.2.2 further below, we formally define the path tree as a set of paths instead of as an
actual tree structure. For implementation purposes, it is however advisable to represent the tree
in the latter form, which we did in our StreamGlobe prototype implementation.

We define structure-preserving and structure-mutating APTs similar to structure-preserving
and structure-mutating queries.

Definition 5.3 (Structure-preserving APT) A structure-preserving APT is an APT that re-
sults in a structure-preserving query when applying the translation described in Section 5.2.3.¤

Example 5.1 (Structure-preserving APTs) The APTs of queries q3 and q4 in Figures 5.3(c)
and 5.3(d) are structure-preserving APTs. ¤

Definition 5.4 (Structure-mutating APT) A structure-mutating APT is an APT that results in
a structure-mutating query when applying the translation described in Section 5.2.3. ¤

Example 5.2 (Structure-mutating APTs) The APTs of queries q1 and q2 in Figures 5.3(a)
and 5.3(b) are structure-mutating APTs. ¤

5.2.2 Translating WXQueries into APTs
The StreamGlobe optimizer translates each newly registered query into a corresponding APT
as follows.

Assembling the Path Tree

We assemble the path tree of a query by extracting all paths occurring in the respective query.
Paths in a query can occur in for and let expressions, in XPath predicates, in where clauses,
in window definitions for time-based data windows, in conditional expressions, as parameters
of aggregate function calls, and as standalone path expressions or path expressions in return

86 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

clauses. Each path in a query is either absolute or relative. The query parser extracts all paths
occurring in a query and expands each relative path to the corresponding absolute path. In
case of paths in XPath predicates and time-based data windows, the expansion concatenates
the absolute path of the corresponding context element and the relative path in the predicate or
window definition. In all other cases, relative paths start with a variable that can be recursively
expanded using a symbol table that contains the bindings for all the variables in the query.

We merge all extracted absolute paths into one path tree by adding the paths to the tree
one by one. The process identifies common prefixes which occur in the resulting tree only
once. Path tree construction also preserves the document or stream order of the respective
query inputs. The order of elements on each level of the path tree, from left to right, reflects
their order in the query input. Note that up to now, we assume that each query has exactly one
input stream. If a query has more than one input stream, we need to build an individual path
tree for each input stream. We extend our ideas to this class of queries in Section 5.4.

Example 5.3 As an example for path tree assembly consider q1 in Figure 5.2(a) and its APT
tq1 in Figure 5.3(a). The query contains the absolute path /photons/photon and the relative
paths coord/cel/ra and coord/cel/dec in the XPath predicate, det_time in the reference
element specification of the time-based data window, and $w/en as parameter of the aggre-
gate function call. The context element for the XPath predicate and the data window defini-
tion is photon. Therefore, we expand the corresponding relative paths to absolute paths by
prepending /photons/photon/, yielding the absolute paths /photons/photon/coord/cel/ra,
/photons/photon/coord/cel/dec, and /photons/photon/det_time. The variable $w is bound
to a sequence of photon elements, i. e. the photons contained in the current data window. We
therefore expand the relative path in the aggregate function call by replacing $w with the path
/photons/photon yielding /photons/photon/en as the final path. When merging the resulting
absolute paths into one path tree, we get /photons/photon/ as common prefix of all paths and
further /photons/photon/coord/cel/ as common prefix of the two paths in the XPath predi-
cate. The APT of Figure 5.3(a) contains the resulting path tree. ¤

Determining the Annotations

The next step in APT construction is to determine the annotations. We consider this issue for
each of the three main types of annotations, i. e., selection annotations, window annotations,
and aggregate annotations. We further treat the three subtypes of selection annotations, i. e.,
window preselection annotations, aggregate preselection annotations, and window postselection
annotations.

Selection annotations We must associate each output element of the path tree and each aggre-
gate annotation representing a returned aggregate value with the condition under which
the corresponding element or aggregate value is returned by the query. This condition
depends on the context of the respective output element or aggregate value. The relevant
conditions can appear as XPath predicates in the location steps of certain XPath expres-
sions, in where clauses of FLWR expressions (expression 3 in Definition 4.5 on page 44),
and in conditional expressions (expression 4 in Definition 4.5). Since FLWR expressions
and conditional expressions can be nested, the query parser needs to keep track of the
current context for each output element. We do this by storing the predicates defined in
each FLWR expression or conditional expression in a list and pushing this list on a stack.
Whenever an output element is encountered, all predicates in all lists on the stack are con-
junctively combined, thus forming the predicate for this element’s selection annotation.

5.2 The Abstract Property Tree (APT) 87

For conditional expressions, the predicate defined in the conditional expression is used
for the then part and the negation of this predicate is used for the else part. When the
scope of a FLWR expression or conditional expression ends, the corresponding predicate
list is popped from the stack and will therefore not be part of the selection annotations of
subsequent output elements. If the query returns several output elements under the same
condition, we try to avoid associating the selection annotation with each output element
individually. This is possible by pulling up the selection annotation to a common ances-
tor node as long as no other output elements with different selection annotations occur
between this ancestor node and the output elements.

Aggregate annotations Whenever the query parser discovers a call of an aggregate function,
it creates an aggregate annotation indicating the type of the aggregation (min, max, sum,
count, or avg) and associates it with the aggregated element referenced in the aggregate
function argument. We associate a corresponding aggregate preselection annotation with
the aggregate annotation if the query filters the sequence of elements to be aggregated
prior to aggregation.

Window annotations Whenever the query parser discovers a window definition, it creates an
according window annotation and associates it with the context element of the window,
i. e., the element the window is defined on. Each window annotation contains the win-
dow type (count-based or time-based), the reference element (only in case of a time-based
window), the window size, and the step size. Optionally, we associate a window preselec-
tion annotation, a window postselection annotation, or both with the window annotation
if indicated by the query.

We introduce an additional join annotation in Section 5.4.

Example 5.4 The APTs of queries q3 and q4 in Figures 5.3(c) and 5.3(d) show examples for
selection annotation pull-up. In both queries, all output elements are returned under the same
condition. Therefore, the corresponding selection annotation is not associated with each output
element individually. Instead, a single copy of the annotation is pulled up to the first common
ancestor node, which is the node representing the photon element in both cases.

In the APT of q2 in Figure 5.3(b), the window annotation is associated with the window
context element photon. Furthermore, a window preselection annotation representing the XPath
predicate of the query is associated with the window annotation. Finally, an aggregate anno-
tation marks the en element as the aggregated element using an avg aggregate operator. The
aggregate annotation also contains an output marker since the corresponding aggregate value is
returned by the query. The situation is similar for the APT of q1 in Figure 5.3(a). The only dif-
ference, besides different values in the window annotation, is the additional selection annotation
associated with the aggregate annotation. It indicates that the query returns the corresponding
aggregate value only under the annotated condition. ¤

Determining the Output Elements

All elements occurring in the path tree of a query are input elements of that query, i. e., they must
be present in the query input—possibly only under certain conditions expressed by selection
annotations. Otherwise, the query probably will not be answered correctly. The output elements
of a query are the elements returned by the query, i. e., the elements contained in the query result.
Except for aggregate values, each output element also is an input element. However, there can

88 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

be input elements which are no output elements, e. g., elements that only occur in selection
predicates but are never returned by the query. We mark output elements with bullets in APTs
as in Figure 5.3. A special case occurs for queries returning aggregate values. Here, we mark
the corresponding aggregate annotations with bullets.

Determining the output elements of a query is a little more difficult than assembling the
path tree. The reason is that for building the path tree, we can treat all paths occurring in the
query equally. But for determining output elements, we need to distinguish whether an element
referenced in a query q is actually returned by the abstraction q̂ of that query. Starting with q as
the initial expression α , we determine the set of output elements Oq of q recursively as follows:

• If α is a path expression as in expressions 5 or 6 of Definition 4.5 on page 44, then add
the element referenced by α to Oq.

• If α is a sequence of expressions as in expressions 2 or 7 of Definition 4.5, recursively
process each expression in the sequence.

• If α is a conditional expression as in expression 4 of Definition 4.5, recursively process
the expressions in both branches of α .

• If α is a FLWR expression as in expression 3 of Definition 4.5, recursively process the
expression returned by α .

The current StreamGlobe prototype implementation performs the restructuring of the result
data stream of structure-preserving queries in the postprocessing step by applying the original
query to the data stream created during in-network query processing. Consequently, we need
to assure that each input element required by the original query is present in this stream. We
achieve this by additionally marking all input elements of a structure-preserving original query
as output elements in the corresponding APT. It is possible to optimize this approach such that
elements referenced but not returned by the query are not marked as output elements and remain
in the APT only as input elements. This requires rewriting the original query to obtain the
correct query for restructuring. The rewriting needs to remove any elements that are referenced
but not returned by the original query and that are no longer needed during restructuring. This
can be the case, e. g., because the elements only occur in a selection predicate that has already
been evaluated during in-network query processing. The predicate is therefore assured to be
satisfied for all remaining data items. Optimizing the APT and the postprocessing query in this
way further reduces network traffic for queries for which the set of referenced elements is a
proper superset of the set of returned elements. Note that this is not an issue for our example
queries since q1 and q2 are not structure-preserving and q3 and q4 return all referenced elements
anyway. Generating complex restructuring queries is an issue of future work.

Example 5.5 In the APTs of q1 and q2 in Figures 5.3(a) and 5.3(b), we mark the aggregate
annotation with an output marker since these queries return the corresponding aggregate value.
The set of output elements of q3 marked with bullets in Figure 5.3(c) is {ra,dec,en,det_time}
and that of q4 marked with bullets in Figure 5.3(d) is {ra,dec,phc,en,det_time}. Note that,
in our current implementation, the set of output elements of q3 would not change if the query
would not return the elements ra, dec, or en. Also, the set of output elements of q4 would not
change if the query would not return the elements ra or dec. This is due to the fact that these
elements are referenced in selection predicates in the respective queries. With the optimization
described above, however, these elements would be removed from the set of output elements if
they were not returned by the query. ¤

5.2 The Abstract Property Tree (APT) 89

Inference Rules

In this section, we introduce formal rules for the translation of a WXQuery into a corresponding
APT. There is one rule for each WXQuery expression of Definition 4.5. We use the inference
rule notation of the XQuery formal semantics specification [W3C (2007e)]. Marian and Siméon
(2003a,b) use a similar notation to describe rules for projecting XML documents to reduce the
memory requirements of XML query processors. The judgment

Env ` α ⇒ (P,A,O, id,d)

holds if and only if, under the environment Env, the expression α references the paths in P,
defines the annotations in A, returns the paths and aggregate values in O, and references an
input source, i. e., a data stream or a document, with identifier id and DTD d. The environment
Env holds the symbol table needed for converting relative paths in a WXQuery to absolute paths.
Note that all paths are expanded to absolute paths using the variable bindings from Env. The set
of returned paths O contains absolute paths to returned elements, e. g., /photons/photon/en,
as well as absolute paths to aggregated elements of returned aggregate values together with the
corresponding aggregate function calls, e. g., avg(/photons/photon/en). Inference rules are of
the form

premise1 . . . premisen

conclusion
where all premises and the conclusion are judgments of the above form. Additionally, premises
may constitute expressions of the form Env′ = Env+($var ⇒ Path) that extend the environment
Env by adding the binding of the variable $var to the path represented by Path, thus yielding
the extended environment Env′. An inference rule expresses that, if all premises hold, then the
conclusion holds as well.

We now give the inference rules for each of the WXQuery expressions of Definition 4.5.
Since each APT has exactly one identifier id and exactly one DTD d, rules 5.2, 5.7, and 5.10
assume that all subexpressions have the same values for id and d. As id and d might also be
undefined (⊥) in certain subexpressions, we implicitly ignore undefined values unless id and d
are undefined in all subexpressions of an expression.

Empty direct element constructor The empty direct element constructor does not reference
or return any paths. It further does not induce any annotations.

Env ` <t/>⇒ (/0, /0, /0,⊥,⊥)
(5.1)

This inference rule has no premises and therefore, nothing is written above the rule.

Direct element constructor The direct element constructor contains zero or more WXQuery
expressions. The additions to the APT induced by the direct element constructor are the unions
of the additions induced by the enclosed WXQuery expressions. Since an APT always refer-
ences exactly one input data stream or document, the input identifier id and the DTD d are the
same in all expressions, ignoring undefined values as described above.

Env ` α1 ⇒ (P1,A1,O1, id,d) . . . Env ` αn ⇒ (Pn,An,On, id,d)
Env ` <t>α1 . . .αn</t>⇒ (

⋃n
i=1 Pi,

⋃n
i=1 Ai,

⋃n
i=1 Oi, id,d)

(5.2)

Note that we have rephrased the WXQuery expression for direct element constructors in the
inference rule compared to the WXQuery definition to better support the inference rule notation.
Although not explicitly shown in the inference rule for simplicity, an expression αi still needs
to be enclosed in curly braces if representing one of the expressions 3 to 7 of Definition 4.5.

90 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

FLWR expression We split the inference rule for FLWR expressions into four separate rules.
Three rules cover for loops without data windows and with count-based and time-based data
windows, respectively. The fourth rule covers let expressions. For better readability, we use
shortcuts for certain patterns in the following inference rules. The shortcut Path1 denotes the
path $y[[/π]]? bound to a variable in a for loop, Path2 represents the window reference element
[[/]]?π of a time-based data window, and Path3 stands for the path $y[[/π]]? in the argument of an
aggregate function call.

The path function used in the inference rules can be applied to any path or aggregate func-
tion call. If the argument path is a relative path, the function converts it to the corresponding
absolute path. Further, the function removes any conditions from the argument path before re-
turning it. Any aggregate function that is applied to the argument path is preserved by the path
function. The path function can be applied to paths and conditions. It leaves an absolute argu-
ment path unchanged and expands a relative argument path to the corresponding absolute path.
If the argument path contains any conditions, the paths referenced in these conditions are also
extracted, expanded, and returned. The return value of path therefore is a set of paths. When
applied to a condition, the path function extracts all the paths referenced in the condition and
expands any relative paths to the corresponding absolute paths. When encountering an aggre-
gate function call, the function expands a relative path in the aggregate function argument to an
absolute path before returning it. The aggregate function call is removed. The cond function
can be applied to paths and conditions. When applied to a path, it extracts all XPath conditions
contained in the argument path. Also, the function expands any relative paths in these condi-
tions to the corresponding absolute paths. The return value of the cond function therefore is a
set of conditions. When applied to a condition, the function expands any relative paths in the
condition to absolute paths. Finally, the id and dtd functions take a path as argument. If the
path starts with a reference to a stream or document node (i. e., with a call to the stream or doc
function), the id function returns the corresponding stream identifier or document name. The dtd
function uses the stream identifier or document name to retrieve the corresponding DTD of the
referenced stream or document from a metadata repository. The stream identifier or document
name is read from the argument of the stream or doc function, respectively. If the argument
path does not reference a stream or document node, the id and dtd functions return ⊥. This is
safe since we require each query and therefore also each APT to reference exactly one input
data stream or document. We deal with queries having multiple inputs in Section 5.4.

A for loop without a window operator references the path bound to the new variable and the
paths in the optional XPath conditions and where clauses. These XPath conditions and where

clauses also define the selection annotation which is associated with the set of returned paths
and aggregate values. If no XPath conditions and where clauses are present in the query, the
corresponding paths and annotations are not generated. The set of returned paths contains the
paths returned by the WXQuery expression α in the return clause. The first premise in the rule
reflects the variable binding in the for loop.

Env′ = Env+($x ⇒ path(Path1))
Env′ ` α ⇒ (P,A,O, id,d)

Env ` for $x in Path1 where χ return α
⇒ (P∪path(Path1)∪path(χ),

A∪{(σ ,cond(Path1)∪ cond(χ),O)},O, id(Path1),dtd(Path1))

(5.3)

The above rule reflects the optimized translation of a WXQuery into an APT in the sense de-
scribed in the previous section on determining the output elements. If the original query should

5.2 The Abstract Property Tree (APT) 91

be used for restructuring the resulting intermediate result data stream, then path(Path1) and
path(χ) need to be added to the set O of returned paths and to the set of parents of the selection
annotation that is added to A.

The next rule describes the translation of a for loop with a count-based data window. The
only change compared to the previous rule affects the set of annotations. This set now contains
a window annotation for the count-based data window. The window annotation is associated
with the element referenced by Path1. Furthermore, we need to break up the selection annota-
tion into a window preselection annotation for the conditions contained in Path1 and a window
postselection annotation for the conditions contained in the where clause. Both selection anno-
tations are associated with the window annotation ω . The selection annotations are optional,
just as the corresponding conditions in the query.

Env′ = Env+($x ⇒ path(Path1))
Env′ ` α ⇒ (P,A,O, id,d)

Env ` for $x in Path1 |count ∆ step µ| where χ return α
⇒ (P∪path(Path1)∪path(χ),

A∪{(ω ,(count,∆,µ),path(Path1)),(pre-σ ,cond(Path1),ω),(post-σ ,cond(χ),ω)},
O, id(Path1),dtd(Path1))

(5.4)

In the same way as in the previous rule, the rule without optimization additionally adds the
paths in path(Path1) and path(χ) to the set O of returned paths.

The inference rule describing the translation of for loops with time-based data windows
is similar to the previous rule for count-based windows. The only difference is the additional
handling of a path Path2 which identifies the window reference element.

Env′ = Env+($x ⇒ path(Path1))
Env′ ` α ⇒ (P,A,O, id,d)

Env ` for $x in Path1 |Path2 diff ∆ step µ| where χ return α
⇒ (P∪path(Path1)∪path(Path2)∪path(χ),

A∪{(ω,(diff,path(Path2),∆,µ),path(Path1)),(pre-σ ,cond(Path1),ω),
(post-σ ,cond(χ),ω)},O, id(Path1),dtd(Path1))

(5.5)

The window reference element path occurs in the set of referenced paths and in the window an-
notation. The rule without optimization additionally adds the paths in path(Path1), path(Path2),
and path(χ) to the set O of returned paths.

Finally, the following inference rule defines the translation of let expressions which are
used to bind the result of an aggregate function call to a variable in WXQuery. The first premise
of the rule reflects the binding of the new variable. The rule adds the path Path3 of the aggre-
gated element and, if present, the paths referenced in the condition to the set of referenced paths.
It further adds an aggregate annotation to the set of annotations. The aggregate annotation is
associated with the aggregated element. Optionally, an aggregate preselection annotation is as-
sociated with the aggregate annotation and an ordinary selection annotation is associated with
the set of returned elements and aggregate values in O.

92 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

Env′ = Env+($a ⇒ Φ(path(Path3)))
Env′ ` α ⇒ (P,A,O, id,d)

Env ` let $a := Φ(Path3) where χ return α
⇒ (P∪path(Path3)∪path(χ),

A∪{(γ,Φ,path(Path3)),(pre-σ ,cond(Path3),γ),(σ ,cond(χ),O)},
O, id(Path3),dtd(Path3))

(5.6)

In the non-optimized case, the rule additionally adds the paths in path(Path3) and path(χ) to the
set O of returned paths and consequently also to the set of parents of the selection annotation
added to A.

Conditional expression A conditional expression returns the returned paths and aggregate
values of α1 under the condition χ and those of α2 under the condition ¬χ . The inference
rule adds the corresponding selection annotations to the set of annotations A. It further adds
the paths referenced in the condition to the set of referenced paths P. Apart from that, the rule
propagates the referenced paths, the annotations, and the returned paths and aggregate values of
α1 and α2.

Env ` α1 ⇒ (Pα1,Aα1,Oα1, id,d)
Env ` α2 ⇒ (Pα2,Aα2,Oα2, id,d)

Env ` if χ then α1 else α2

⇒ (Pα1 ∪Pα2 ∪path(χ),
Aα1 ∪Aα2 ∪{(σ ,cond(χ),Oα1),(σ ,cond(¬χ),Oα2)},Oα1 ∪Oα2, id,d)

(5.7)

The non-optimized version of the above rule additionally adds the paths in path(χ) to the set
of returned paths Oα1 ∪Oα2 and to each of the sets of parents of the two selection annotations
added to Aα1 ∪Aα2 .

Output of subtrees reachable from node $y through path π A path expression of this form
adds the corresponding path to the sets of referenced and returned paths and generates an addi-
tional selection annotation if the path contains predicates. In the inference rule, Path4 represents
the pattern $y/π .

Env ` Path4

⇒ (path(Path4),{(σ ,cond(Path4),{path(Path4)})},{path(Path4)},⊥,⊥)

(5.8)

This rule has no premises.

Output of a subtree rooted at node $z The inference rule for this expression adds the path
referenced by $z to the set of returned paths. The path may also contain an aggregate function
call. Note that we do not need to add the path to the set of referenced paths since this will be
done when processing the expression that defines the variable binding.

Env ` $z ⇒ (/0, /0,{path($z)},⊥,⊥)
(5.9)

This rule has no premises.

5.2 The Abstract Property Tree (APT) 93

Sequence The inference rule for a sequence propagates the union of the sets of referenced
paths, annotations, and returned paths and aggregate values of all expressions contained in the
sequence.

Env ` α1 ⇒ (P1,A1,O1, id,d) . . . Env ` αn ⇒ (Pn,An,On, id,d)
Env ` (α1, . . . ,αn)⇒ (

⋃n
i=1 Pi,

⋃n
i=1 Ai,

⋃n
i=1 Oi, id,d)

(5.10)

Note that, similar to the rule for direct element constructors, we have rephrased the WXQuery
expression for sequences in the inference rule compared to the WXQuery definition to better
support the inference rule notation.

Example 5.6 We use query q1 of Figure 5.2(a) to illustrate the translation of a WXQuery into
a corresponding APT following the inference rules introduced above. We start by applying
rules 5.5 and 5.6. Note that the four decomposed rules for FLWR expressions always need to
be applied in combination since they are actually responsible for handling a single language
construct, namely the FLWR expression of expression 3 in Definition 4.5. We decomposed the
rule for FLWR expressions only to make the individual rules more concise.

First, the inference rules 5.5 and 5.6 update the environment Env yielding the extended en-
vironment Env′ by adding the bindings $w ⇒ stream("photons")/photons/photon and $a ⇒
avg(stream("photons")/photons/photon/en). Using the updated environment whose con-
tents are needed by the path, path, and cond functions during the expansion of relative paths to
absolute paths, the returned expression <avg_en> { $a } <avg_en> is evaluated next. This is
the task of rule 5.2 which in turn triggers rule 5.9 on the returned variable $a. Rule 5.9 adds
the aggregate function call avg(stream("photons")/photons/photon/en) to the set of returned
paths and aggregate values O. The set of referenced paths P and the set of annotations A remain
empty. Further, the input stream identifier id and the input stream DTD d remain undefined.
Afterwards, rule 5.2 simply returns the current state to rules 5.5 and 5.6 for handling the FLWR
expression.

Applying rule 5.5, Path1 becomes stream("photons")/photons/photon and Path2 becomes
det_time. Further, the value of ∆ is 60 and the value of µ is 40. The rule adds the following
paths to P:

• stream("photons")/photons/photon

which corresponds to Path1,

• stream("photons")/photons/photon/coord/cel/ra

and
stream("photons")/photons/photon/coord/cel/dec

corresponding to the condition within Path1,

• stream("photons")/photons/photon/det_time

which is the absolute path of Path2, and

• stream("photons")/photons/photon/en

reflecting the path referenced via $a in the where clause.

The rule further adds to the set of annotations A the window annotation

(ω ,(diff,stream("photons")/photons/photon/det_time,60,40),
stream("photons")/photons/photon)

94 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

and subsequently the window preselection annotation

(pre-σ ,{stream("photons")/photons/photon/coord/cel/ra >= 120.0 ∧
stream("photons")/photons/photon/coord/cel/ra <= 138.0 ∧
stream("photons")/photons/photon/coord/cel/dec >= -49.0 ∧
stream("photons")/photons/photon/coord/cel/dec <= -40.0},ω).

The set O of output elements remains unchanged to that returned by rule 5.2 before. Eventually,
id is set to photons and d is set to the DTD of stream photons shown in Figure 2.2 on page 9.

Applying rule 5.6, Path3 becomes $w/en. Subsequently, the rule adds to P the path

stream("photons")/photons/photon/en

which results from both applications of the path function to Path3 and to the condition χ in the
where clause. Further, the rule adds to A the aggregate annotation

(γ,avg,stream("photons")/photons/photon/en)

as well as the selection annotation

(σ ,{avg(stream("photons")/photons/photon/en) >= 1.3},
{avg(stream("photons")/photons/photon/en)})

induced by the condition χ in the where clause of the query. Again, O remains unchanged.
Since Path3 does not contain a stream or doc function call, id(Path3) and dtd(Path3) both return
⊥.

Figure 5.3(a) shows a graphical representation of the final APT tq1 of q1. ¤

Completeness and Correctness of the Translation

The translation of WXQueries into APTs according to the inference rules of the previous section
needs to be complete and correct.

Statement 5.1 (Completeness) Any WXQuery q referencing a single input stream and obeying
Definition 4.5 can be translated into a corresponding APT tq. ¤

DISCUSSION: The statement follows from the fact that each WXQuery expression in Defini-
tion 4.5 is associated with an according inference rule. Therefore, any expression that can be
contained in a valid WXQuery with a single input stream can be translated accordingly into a
corresponding APT. ¥

Statement 5.2 (Correctness) The translation of any WXQuery q with a single input stream
into a corresponding APT tq always yields an APT which represents the abstraction q̂ of q. ¤

DISCUSSION: The correctness of the translation follows by induction over the inference rules
for each WXQuery expression:

Empty direct element constructor The empty direct element constructor does not contribute
anything to the APT. It does not reference or return any paths and it does not induce any anno-
tations. Neither does it yield any input identifier or DTD.

5.2 The Abstract Property Tree (APT) 95

Direct element constructor A direct element constructor may contain zero or more subex-
pressions. Assuming that we have correctly determined the sets of referenced and returned
paths of the subexpressions as well as the sets of annotations induced by them, the direct ele-
ment constructor expression needs to be associated with the unions of these sets, respectively.
The input identifier and the DTD of the subexpressions are simply forwarded.

FLWR expression Assuming that we have correctly determined the APT of the expression
returned by a FLWR expression, we need to add the paths referenced in the FLWR expression
to P. These include the path bound to the new variable and any paths in optional conditions,
either in XPath predicates or in a where clause. We further need to add the according selection
annotations to A. The set O of returned paths is the same as that of the returned expression.
When data windows are involved, we need to distinguish window preselection and window
postselection annotations. Further, we need to add the window annotation. In case of a time-
based data window, the path of the reference element becomes part of the set of referenced
paths. Eventually, a let expression induces an according aggregate annotation. We need to
add the path in the aggregate function argument to the set of referenced paths. Furthermore,
we need to take into account any aggregate preselection specified by conditions in the XPath
expression identifying the aggregated element. Finally, the FLWR expression also determines
the identifier and the DTD of the input stream or document.

Conditional expression If we have correctly determined the APTs of both subexpressions of
a conditional expression, we can construct the APT of the conditional expression by taking the
unions of the sets of referenced paths, annotations, and returned paths of the subexpressions.
Additionally, we need to add the paths in the condition to the set of referenced paths. Further,
we add two new selection annotations. One for the if-then part, using the original condition
and associating the annotation with the returned paths of the if-then part. The other one for
the else part, using the negation of the original condition and associating the annotation with
the returned paths of the else part. The input identifier and the DTD of the subexpressions are
just forwarded.

Output of subtrees reachable from node $y through path π Here, the sets of referenced
and returned paths each contain the referenced path. If the path contains an XPath predicate, the
paths referenced in the predicate are added to the set of referenced paths and a corresponding
selection annotation is added to the set of annotations. Otherwise, the set of annotations is
empty. The expression does not yield any input identifier or DTD.

Output of a subtree rooted at node $z A variable yields no referenced paths or annotations.
These will be determined when the FLWR expression binding the variable is encountered. The
variable, however, yields a returned path. It does not provide an input identifier or a DTD.

Sequence Similar to direct element constructors, sequences can contain zero or more subex-
pressions. We can therefore determine the set of referenced paths, the set of annotations, and
the set of returned paths and aggregate values of a sequence by computing the unions of these
sets over all subexpressions. Furthermore, a sequence simply forwards the input identifier and
the DTD of its subexpressions.

96 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

Summary Each inference rule correctly propagates the set of referenced paths P, the set of
annotations A, and the set of returned paths and aggregate values O, as well as the input identifier
id and the DTD d of its subexpressions. Thus, the inference rule of the top-level expression
yields the corresponding correct sets and values for the entire query. ¥

5.2.3 Translating APTs into WXQueries

The purpose of representing queries using APTs is to abstract from the restructuring details
of the query and to enable a feasible way of identifying reusable data streams for data stream
sharing. Furthermore, we show in Section 5.3 how APTs can be merged in order to represent
multiple queries, i. e., the union of the corresponding result data streams, to increase possibilities
for data stream sharing. The merged APT then reflects a subscription that can serve as a prefilter
for the corresponding original queries. Therefore, each APT represents either the abstraction of
a single query or the abstraction of the union of a set of queries. For creating the data streams
represented by APTs in a distributed DSMS, we need to install and execute according queries
in the system. We distinguish between structure-preserving and structure-mutating APTs.

Structure-Preserving APT

A structure-preserving APT represents a query with selection and projection operators but with-
out more complex operators such as window construction and aggregation. We use the query
template of Figure 5.4 for translating such an APT into a corresponding query. We concentrate
on queries referencing data streams as input in the following. Queries on documents can be
handled analogously. The template contains template variables which are replaced by actual
values when generating a query for a given APT. In the template, the template variable ROOT

stands for the root element of the input data stream (photons in our running example), VAR

represents an arbitrary variable name, STREAM denotes the input data stream (again photons in
our running example), and ITEM references the name of the elements actually contained in the
stream (photon in the running example). Further, PRED1 to PREDn represent selection predicates,
and PATH1 to PATHn represent paths to output elements starting from $VAR . These paths can be
empty in an actual instance of the template variable, in which case the corresponding preceding
slash also disappears from the template.

The replacement of the template variables is straightforward for a given APT except for the
predicate template variables PRED1 to PREDn . These represent the predicates of the selection
annotations of the APT. The query template returns each output element in the APT under the
condition indicated by the corresponding selection annotation. If there is no selection annotation
for a certain output element, the query simply returns the element without a surrounding if

expression. In this case, we also need to remove the if expression guarding the output of the
ITEM tags from the template. The query preserves the stream order, i. e., it returns all elements
in the correct order of the data stream schema. We reference an output element in the return
clause of the generated query by starting an XPath expression with $VAR and concatenating the
remaining path steps leading to the output element. The APT yields the paths PATH1 to PATHn

by taking the absolute path of the respective output element and removing the prefix bound to
$VAR . An according prefix replacement also takes place for any paths in the predicates PRED1 to
PREDn . The generated query needs to enclose each returned element in the correct sequence of
direct element constructors to correctly retain the schema of the original data stream. We can
easily derive the necessary information from the paths to the returned elements in the original

5.2 The Abstract Property Tree (APT) 97

<ROOT>

{ for $VAR in stream("STREAM")/ROOT/ITEM

return

if (PRED1 or ... or PREDn) then

<ITEM>...

{ if (PRED1) then $VAR/PATH1 else () }

...

{ if (PREDn) then $VAR/PATHn else () }

...</ITEM>

else () }

</ROOT>

Figure 5.4: Structure-preserving query template

stream schema. These details vary for each actual query which is suggested by the dots in the
template of Figure 5.4.

Example 5.7 The APTs of the structure-preserving queries q3 and q4 as shown in Figures 5.3(c)
and 5.3(d) are translated into the queries of Figures 5.6(c) and 5.6(d), respectively. Since the
original queries each return all output elements under the same condition as indicated by the
selection annotation pull-up in the APT, only one if expression is used in the generated query
to return all the output elements. This illustrates how selection annotation pull-up can be used
to optimize query generation and reduce query size. In general, if all output elements of a
query are returned under the same condition, the if expression guarding the output of the ITEM

element constructor and the if expressions guarding the output of the single output elements
are all equivalent. We can therefore leave them all out of the generated query except for the
outermost expression which then guards the entire output of the query. ¤

Structure-Mutating APT

A structure-mutating APT represents a window query or an aggregate query. We concentrate
on window-based aggregate queries since these are most common in practice and present a
query template for aggregate queries with time-based windows. Query templates for aggregate
queries with count-based windows, for queries defining data windows without aggregation, and
for aggregate queries without data windows look similar. Figure 5.5 shows the query tem-
plate for structure-mutating APTs with aggregation and a time-based data window. In addition
to the ROOT , VAR , STREAM , and ITEM template variables already known from the template for
structure-preserving queries, we introduce the following additional variables. The PATH tem-
plate variable stands for a relative XPath expression with predicates allowed in each location
step. We use REFPATH to denote a predicateless relative or absolute path. The variable SIZE

denotes the window size and the variable STEP denotes the step size of the data window. The
PRED variable represents a selection predicate. Further, AGGVAR1 to AGGVARn stand for arbitrary
aggregate variable names, AGGFUNC1 to AGGFUNCn each denote one of the aggregate functions
min, max, sum, count, or avg, and AGGPATH1 to AGGPATHn represent paths to the corresponding
aggregated element relative to VAR . Moreover, AGGPRED1 to AGGPREDn are optional selection
predicates for filtering aggregate values and AGGELEM1 to AGGELEMn are generic aggregate ele-
ment names. Accordingly, WINPATH1 to WINPATHm denote paths to window elements relative to
VAR , and WINPRED1 to WINPREDm are optional selection predicates for filtering window elements.
Further, the WINELEM template variable represents a generic window root element. The where

98 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

<ROOT>

{ for $VAR in stream("STREAM")/PATH|REFPATH diff SIZE step STEP|

where PRED

return

let $AGGVAR1 := AGGFUNC1($VAR/AGGPATH1)

...

let $AGGVARn := AGGFUNCn($VAR/AGGPATHn)

return

if (AGGPRED1 or ... or AGGPREDn or WINPRED1 or ... or WINPREDm) then

<ITEM>

{ if (AGGPRED1) then <AGGELEM1> { $AGGVAR1 } </AGGELEM1> else () }

...

{ if (AGGPREDn) then <AGGELEMn> { $AGGVARn } </AGGELEMn> else () }

{ if (WINPRED1 or ... or WINPREDm) then

<WINELEM>

{ if (WINPRED1) then $VAR/WINPATH1 else () }

...

{ if (WINPREDm) then $VAR/WINPATHm else () }

</WINELEM>

else () }

</ITEM>

else () }

</ROOT>

Figure 5.5: Structure-mutating query template with time-based data window

clause, the if expressions, and the PATH , AGGPATHi , and WINPATHi variables are optional de-
pending on the characteristics of the corresponding APT. If PATH or any AGGPATHi or WINPATHi
is empty in an actual instance of the template variable, the corresponding preceding slash also
disappears from the template. If there is no selection annotation for a certain returned aggregate
value or window element, the query simply returns the value or element without a surrounding
if expression. In such a case, we also need to remove any if expressions guarding the output
of the surrounding ITEM and WINELEM tags from the template.

The query templates for queries defining data windows without aggregation are the same
as those for window-based aggregate queries except that the let expressions for computing
the aggregate values and the corresponding if expressions in the return clause are missing.
Note that sharing window operators without aggregation during in-network query processing
yields no optimization benefit in our setting since we assume potentially overlapping sliding
windows that cover the entire input stream. Window operators therefore do not reduce the data
volume of the stream. Rather, in case of overlapping windows, the transmitted data volume is
increased by repeating the overlapping parts of subsequent windows. The query templates for
aggregate queries without data windows are also the same as those for window-based aggregate
queries except that the for loop, its optional where clause, and the window-specific parts in
the return clause are missing. The query then needs to reference the input data stream via the
stream function from within the aggregate function argument. Original queries that contain a
for loop without a window definition and compute individual aggregate values for each item
in the iteration are not meaningful in practice but, for the sake of completeness, are treated
internally as if they would define a count-based window with a window size and a step size
of one item each. Their APT representation therefore also contains a corresponding window

5.2 The Abstract Property Tree (APT) 99

<photons>

{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and

coord/cel/ra <= 138.0 and

coord/cel/dec >= -49.0 and

coord/cel/dec <= -40.0]

|det_time diff 60 step 40|

let $a := avg($w/en)

return

if ($a >= 1.3) then

<photon>

<avg_en> { $a } </avg_en>

</photon>

else () }

</photons>

(a) Abstract Query 1 (q̂1)

<photons>

{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and

coord/cel/ra <= 138.0 and

coord/cel/dec >= -49.0 and

coord/cel/dec <= -40.0]

|det_time diff 20 step 10|

let $a := avg($w/en)

return

<photon>

<avg_en> { $a } </avg_en>

</photon> }

</photons>

</photons>

(b) Abstract Query 2 (q̂2)

<photons>

{ for $p in stream("photons")/photons/photon

return

if ($p/en >= 1.3 and

$p/coord/cel/ra >= 130.5 and

$p/coord/cel/ra <= 135.5 and

$p/coord/cel/dec >= -48.0 and

$p/coord/cel/dec <= -45.0)

then <photon>

<coord>

<cel>

{ $p/coord/cel/ra }

{ $p/coord/cel/dec }

</cel>

</coord>

{ $p/en } { $p/det_time }

</photon>

else () }

</photons>

(c) Abstract Query 3 (q̂3)

<photons>

{ for $p in stream("photons")/photons/photon

return

if ($p/coord/cel/ra >= 120.0 and

$p/coord/cel/ra <= 138.0 and

$p/coord/cel/dec >= -49.0 and

$p/coord/cel/dec <= -40.0)

then <photon>

<coord>

<cel>

{ $p/coord/cel/ra }

{ $p/coord/cel/dec }

</cel>

</coord>

{ $p/phc } { $p/en }

{ $p/det_time }

</photon>

else () }

</photons>

(d) Abstract Query 4 (q̂4)

Figure 5.6: Abstractions of example queries from Section 5.1

annotation. This is necessary to distinguish such queries from semantically different queries
that do not contain any for loop and compute a single aggregate value over the entire input. Of
course, such queries are only viable on finite inputs.

Again, the determination of the template variable values for a given APT is straightforward.
One important issue, however, is that selection predicates in window preselection annotations
become XPath predicates in PATH whereas selection predicates in window postselection anno-
tations become predicates in PRED in a where clause. Selection predicates in aggregate preselec-
tion annotations become XPath predicates in AGGPATHi of the corresponding aggregate function
call. We create the generic aggregate element name AGGELEM by concatenating the actual ag-
gregate function name and the actual name of the aggregated element with an underscore in
between, e. g., avg_en in our example queries. This is the element name for the aggregate value
in the intermediate result data stream generated during in-network query processing. Similarly,
we create the generic window root element name WINELEM by concatenating a fixed prefix with
the name of the actual window root element, e. g., win_photon.

We reference both, aggregated elements in the arguments of aggregate function calls as well
as output elements in the return clause of the generated query by starting an XPath expression
with $VAR and concatenating the remaining path steps leading to the respective aggregated or
returned element. Note that $VAR represents a variable bound to a data window, i. e., to a

100 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

sequence of elements, in the template of Figure 5.5. The APT yields the paths AGGPATH1 to
AGGPATHn and WINPATH1 to WINPATHm by taking the absolute path of the respective aggregated
or returned element and removing the prefix bound to $VAR , ignoring the window definition.
Again, an according prefix replacement also takes place for any paths in the predicates AGGPRED1
to AGGPREDn and WINPRED1 to WINPREDm .

Note that sharing a previously computed stream of aggregate values as input for a new ag-
gregate query requires the installation of an appropriate reusing query based on Algorithm 4.4 as
described in Section 4.4.6. This reusing query can be complemented by an additional selection
query for performing any aggregate postselection.

Example 5.8 Figures 5.6(a) and 5.6(b) show the abstractions of queries q1 and q2 of Fig-
ures 5.2(a) and 5.2(b), respectively. Note the missing if expression guarding the output of
the photon element constructor in q̂2 compared to q̂1. This is due to the fact that q̂2 does not
filter the returned aggregate value and therefore unconditionally produces an output for each
data window. We have also optimized q̂1 by removing the if expression guarding the output of
the avg_en element constructor. As in queries q̂3 and q̂4, this is again possible since the query
returns elements only under a single condition which is already tested by the surrounding if

expression guarding the output of the photon element constructor. ¤

DTD Generation

To be able to further use and process an intermediate data stream generated during in-network
query processing, we need to determine the schema of each such stream. For simplicity,
StreamGlobe uses DTDs since these provide a practical and concise means for describing data
stream schemas and are easy to handle. Nevertheless, it is possible to extend the system to use
the more expressive XML Schema. Creating the DTD for the result data stream of a structure-
preserving query requires removing all elements from the DTD of the input data stream that
are removed by a projection operator specified by the query. Furthermore, if the query returns
multiple output elements under different conditions, we need to mark those output elements
that are not necessarily part of every returned query result item as optional in the DTD. For
structure-mutating queries, we construct a completely new DTD which contains the data stream
root element (photons in our running example) as its root and the data stream item (photon in
the example) as the only child of the root, with multiple occurrence. The data stream item has
as its children either a sequence of generic aggregate elements, a generic window element, or
both. The generic window element contains, as direct subelements, the complete DTD subtrees
of the elements contained in the windows returned by the query.

Example 5.9 Figure 5.7 shows the DTDs of the result data streams of the abstract example
queries shown in Figure 5.6. ¤

Completeness and Correctness of the Translation

Similar to the translation of WXQueries into APTs, the inverse translation also needs to be
complete and correct.

Statement 5.3 (Completeness) Any APT tq obtained by translating a WXQuery q using the
inference rules of Section 5.2.2 can be translated back into a corresponding WXQuery q̂. ¤

DISCUSSION: The statement follows from the fact that for both kinds of APTs, structure-
preserving as well as structure-mutating, corresponding query templates for translating an APT
into a corresponding WXQuery exist. ¥

5.3 Matching and Merging APTs 101

<!ELEMENT photons (photon*)>

<!ELEMENT photon (avg_en)>

<!ELEMENT avg_en (#PCDATA)>

(a) Abstract Query 1 (q̂1)

<!ELEMENT photons (photon*)>

<!ELEMENT photon (avg_en)>

<!ELEMENT avg_en (#PCDATA)>

(b) Abstract Query 2 (q̂2)

<!ELEMENT photons (photon*)>

<!ELEMENT photon (coord, en, det_time)>

<!ELEMENT coord (cel)>

<!ELEMENT cel (ra, dec)>

<!ELEMENT ra (#PCDATA)>

<!ELEMENT dec (#PCDATA)>

<!ELEMENT en (#PCDATA)>

<!ELEMENT det_time (#PCDATA)>

<!ELEMENT det_time (#PCDATA)>

(c) Abstract Query 3 (q̂3)

<!ELEMENT photons (photon*)>

<!ELEMENT photon (coord, phc, en, det_time)>

<!ELEMENT coord (cel)>

<!ELEMENT cel (ra, dec)>

<!ELEMENT ra (#PCDATA)>

<!ELEMENT dec (#PCDATA)>

<!ELEMENT phc (#PCDATA)>

<!ELEMENT en (#PCDATA)>

<!ELEMENT det_time (#PCDATA)>

(d) Abstract Query 4 (q̂4)

Figure 5.7: Result DTDs of abstract example queries

Statement 5.4 (Correctness) The translation of any APT tq into a corresponding WXQuery
always yields a WXQuery which represents the abstraction q̂ of the original query q on which
tq is based. ¤

DISCUSSION: The correctness of the translation follows directly from the definitions of APTs
and query abstractions as well as from the fact that the template variables in the query templates
are replaced by the corresponding values of the APT. ¥

5.3 Matching and Merging APTs

We next introduce a tree algebra comprising two operators for matching and merging a pair of
APTs. Matching APTs is equivalent to a containment check of the represented queries. We use
this check for identifying shareable data streams in the network. Merging APTs enables us to
compute the union of two queries. This is necessary for data stream widening.

Merging also enables data stream narrowing which can be applied when a query is deleted
from the system. Several queries might reference the same intermediate data stream generated
during in-network query processing as their inputs. If one of these queries is deleted from the
system, we can potentially narrow this intermediate data stream. Narrowing requires replacing
the stream with a reduced version that contains less data. Merging the APTs of the remain-
ing queries yields an APT that represents the properties of the narrowed stream. If the deleted
query required some data that is not needed by any of the other queries, narrowing will remove
this data and the intermediate data stream will therefore become smaller. The narrowing can
be propagated backwards from peer to peer towards the original stream source until no more
data can be removed from the intermediate stream in the network. However, narrowing is ex-
pensive when dealing with large numbers of queries. Also, preserving the original intermediate
stream in the system might ease sharing for future queries. Therefore, narrowing should only be
performed on demand if network bandwidth or computational resources need to be freed. An
interesting aspect for future work is to assess the benefits of preserving result streams of deleted
queries with respect to anticipated requirements of future subscriptions. This is in a way similar
to forward-looking caching strategies for one-time queries over persistent data in distributed
environments as introduced by Kossmann et al. (2000).

102 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

It is possible to extend the tree algebra introduced in this section by additional operators.
One interesting extension is support for subtraction. Subtracting APTs from each other could
for example be used for generating remainder queries in semantic caching [Dar et al. (1996)].

In our application scenario, we always perform matching and merging of APTs in combi-
nation. For efficiency reasons, we therefore combine the matching and merging steps in one
operation. The operation takes two APTs as input. These correspond to the stream APT and
the query APT. The stream APT represents the result data stream of a query already installed
in the system while the query APT represents a newly arriving query. In the matching step, the
matching and merging operation examines whether the data stream represented by the stream
APT can be shared for satisfying the query represented by the query APT. If this is not the
case, the merging step appropriately merges both APTs, yielding a new APT that represents the
union of both input APTs. The resulting APT can be translated into a WXQuery according to
Section 5.2.3. Appropriately installing this query in the system generates a data stream that is
shareable by both, the new query and the query represented by the original stream APT. The
matching and merging of APTs needs to match and merge the path trees, the annotations, and
the returned elements of the query APT and the stream APT under consideration.

5.3.1 Matching and Merging the Tree Structures
We match and merge the tree structures of two APTs by checking whether the path tree of the
stream APT contains each path in the path tree of the query APT. If any path is missing, the
APTs do not match and we need to merge them by adding to the stream APT all the paths of the
query APT that are not already contained in the stream APT. Adding a path works in the same
way as described for path tree construction in Section 5.2.2.

There is a special case where we do not need to add all missing elements to the path tree
of the stream APT. This case occurs if, in the path tree of the stream APT, an ancestor of the
subelement to be added is already present and is marked as an output element under the same or
a less restrictive condition than the new subelement. In this case, the new subelement is already
implicit and therefore does not need to be added explicitly.

5.3.2 Matching and Merging the Annotations
We match and merge annotations by traversing the APTs and comparing any corresponding
annotations, i. e., annotations that are associated with the same elements in both trees, along the
way. We need to handle each kind of annotation separately.

Selection annotations For each selection annotation in the stream APT, there must be a corre-
sponding selection annotation in the query APT and the selection predicate in the query
APT must imply the corresponding predicate of the stream APT. If these conditions are
not met, we widen the stream APT by appropriately relaxing the selection predicate. We
will examine predicate implication checking and relaxation in detail in Chapter 6. If the
query APT contains no selection annotation for a path tree element for which the stream
APT contains a selection annotation, then the widening consists of removing the selection
annotation in the resulting merged APT.

Aggregate annotations An aggregate annotation, apart from being associated with the same
element, must reference the same aggregate operator in both APTs. Further, we require
the predicates of any aggregate preselection annotations to be semantically equivalent.

5.3 Matching and Merging APTs 103

Otherwise, we must remove the aggregate annotation in the merged APT. We must also
remove the aggregate annotation if the aggregate is window-based and the corresponding
window annotation needs to be removed during merging (see below).

Window annotations The window annotations of the stream APT and the query APT can only
match if they are defined over the same element in the same data stream, e. g., element
photon in stream photons in our example queries q1 and q2 of Figure 5.2 on page 81.
Further, we require the predicates of any window preselection annotations to be seman-
tically equivalent. The predicates of any window postselection annotation in the query
APT must imply the predicate of a corresponding window postselection annotation in the
stream APT. Finally, the window definitions need to fulfill the following conditions for
the window sizes ∆ and ∆′ and the step sizes µ and µ ′ of the window definition in the
stream APT and the window definition in the query APT, respectively:

• ∆′ mod ∆ = 0

• ∆ mod µ = 0

• µ ′ mod µ = 0

Furthermore, the window type (count-based or element-based) must be the same and
time-based data windows must have identical reference elements. We have already pre-
sented the details on sharing window-based aggregate values without widening in Sec-
tion 4.4.6. These continue to be applicable without any changes. If any of the above
requirements is not fulfilled, we remove the window annotation and all dependent aggre-
gate annotations from the merged APT and mark all elements required by the removed
annotations as output elements. We make an exception from this rule for differing win-
dow sizes and step sizes of the two data windows. In this case, we perform data stream
widening by computing the window size and the step size of a new window. This new
window is the basis for a new window annotation that replaces the window annotations
of the stream APT and the query APT in the merged APT. The query represented by the
resulting APT yields a result data stream that can be used to generate the original data
stream as well as to satisfy the new query. The next section details the algorithm for
computing the window size and the step size of the new window annotation.

5.3.3 Relaxing Data Windows
The relaxation of data windows computes a window size and a step size for a new data window
that all dependent windows can share. This requires that, for each dependent window, we
can combine multiple instances of the new data window to form an instance of the dependent
window. Therefore, we do not need to compute the dependent windows or any aggregates on
these windows from scratch. Rather, we can determine them by appropriately combining the
results of the relaxed window.

The window size ∆̄ and the step size µ̄ of the new window and the window and step sizes
∆, µ , ∆′, and µ ′ of the stream window and the query window, respectively, must satisfy the
following conditions:

• ∆̄ mod µ̄ = 0

• ∆ mod ∆̄ = 0

104 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

Algorithm 5.1 RELAXWINDOW

Input: Window sizes ∆ and ∆′, step sizes µ and µ ′ of stream and query window, respectively.
Output: Window size ∆̄ and step size µ̄ of relaxed window.

1. Initialize. Compute the list L∆,∆′ of all common divisors of ∆ and ∆′. Similarly, compute
the list Lµ ,µ ′ of all common divisors of µ and µ ′. These are the sets of potential values for
∆̄ and µ̄ , respectively.

2. Check for compatible pairs. Iterate L∆,∆′ and Lµ,µ ′ in decreasing order, i. e., examine
larger values first. For each µ̄ ∈ Lµ ,µ ′ compare µ̄ to each ∆̄ ∈ L∆,∆′ until the condition
∆̄ mod µ̄ = 0 is satisfied.

3. Return result. Return ∆̄ and µ̄ .

• µ mod µ̄ = 0

• ∆′ mod ∆̄ = 0

• µ ′ mod µ̄ = 0

The task of the window relaxation algorithm therefore is to find suitable values for ∆̄ and µ̄
under the above conditions. Furthermore, to support the optimization goal of reducing network
traffic, the resulting data stream should consume as few bandwidth as possible. The major
parameter in this respect is the step size. Note that, for example, a window-based aggregate
with a count-based data window, a window size of 10, and a step size of 1 causes twice as
much network traffic as a window with window size 5 and step size 2. The reason is that the
first window produces an aggregate value after every data stream item while the second window
produces an aggregate value only after every second data stream item.

Algorithm 5.1 shows how to compute ∆̄ and µ̄ from ∆, µ , ∆′, and µ ′. The algorithm takes all
potential combinations of ∆̄ and µ̄ into account and chooses the one with the largest value for µ̄
and the largest value of ∆̄ for the chosen value of µ̄ such that the first of the above conditions,
which is ∆̄ mod µ̄ = 0, is satisfied. We choose the largest possible value for µ̄ to minimize
network traffic as described above and the largest possible value for ∆̄ for the chosen value of µ̄
to minimize computational effort. Algorithm 5.1 always finds optimal values for ∆̄ and µ̄ . Note
that it always finds valid values since, in the worst case, ∆̄ and µ̄ will be set to 1 each.

Example 5.10 Let ∆ = 45, µ = 30, ∆′ = 30, and µ ′ = 20. Then, all three conditions for window
shareability as introduced in Section 5.3.2 are violated:

• ∆′ mod ∆ = 30 mod 45 = 30 6= 0

• ∆ mod µ = 45 mod 30 = 15 6= 0

• µ ′ mod µ = 20 mod 30 = 20 6= 0

Consider the lists of all divisors L∆ = [45,15,9,5,3,1], L∆′ = Lµ = [30,15,10,6,5,3,2,1], and
Lµ ′ = [20,10,5,4,2,1] of ∆, ∆′, µ , and µ ′, respectively. In the first step, Algorithm 5.1 de-
termines the lists of common divisors of ∆ and ∆′ as L∆,∆′ = [15,5,3,1] and of µ and µ ′ as
Lµ,µ ′ = [10,5,2,1]. In the second step, the algorithm tests the largest possible value for µ̄ , which
is 10, against all possible values for ∆̄. This yields the invalid combinations 15 mod 10 = 5 6= 0,

5.3 Matching and Merging APTs 105

Figure 5.8: Window relaxation example

5 mod 10 = 5 6= 0, 3 mod 10 = 3 6= 0, and 1 mod 10 = 1 6= 0. In practice, the algorithm imme-
diately continues with the next value for µ̄ as soon as the current value of ∆̄ becomes smaller
than the current value of µ̄ . The algorithm then takes into account the second largest possible
value for µ̄ , which is 5, and starts again by comparing this value to the largest possible value for
∆̄, which is 15, immediately arriving at the first valid combination 15 mod 5 = 0. In the third
step, the algorithm returns the final result ∆̄ = 15 and µ̄ = 5.

Figure 5.8 illustrates the correlations between the window sequences of, from top to bottom,
the stream window, the query window, and the relaxed window for the above example. The
individual shading of the relaxed windows indicates whether a particular relaxed window is
shared for building a stream window (light gray), a query window (dark gray), or both (medium
gray). Unshaded windows are not shared for any of the two. ¤

5.3.4 Example Matchings
Consider the APTs of the four example queries in Figure 5.3 on page 83. Assuming that the
APT of q1 is the query APT and the APT of q2 is the stream APT, applying the rules described
above yields a match without widening. If we interchange the roles of the query APT and the
stream APT, i. e., match the APT of q2 with the APT of q1, the APTs do not match and need to
be merged. The resulting APT is semantically equivalent to the APT of q2 in this example, i. e.,
both APTs represent the same data stream.

The situation is analogous for the APTs of q3 and q4. Again, matching the APT of q3 with
the APT of q4 yields a match without widening since the path tree of q4 contains all the paths
in the path tree of q3 and the selection predicate of q3 implies the selection predicate of q4.
When interchanging the roles of q3 and q4, we have no match since the path tree of q3 does
not contain the phc element and the inverse implication between the selection predicates is not
valid. Therefore, we need to merge the APTs, adding the phc element and relaxing the selection
predicate in the process. Again, the resulting APT is semantically equivalent to the APT of q4
in this particular example.

Matching the APT of q3 with the APT of q1 leads to the removal of the window annotation
and the aggregate annotation together with its associated selection annotation in the merged
APT. The window preselection annotation becomes a selection annotation associated with the
photon element and all elements at the leaves of the path tree are marked as output elements.
The resulting APT therefore is similar to the APT of q3. The only difference consists in the

106 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

selection predicate of the selection annotation. Interchanging the roles of the queries here and
matching the APT of q1 with the APT of q3 leads to the same result. In this case, the selec-
tion predicate of q3 needs to be relaxed and becomes semantically equivalent to the window
preselection predicate in q1.

5.3.5 Completeness and Correctness of Matching and Merging APTs

The matching and merging of two APTs needs to be complete and correct.

Statement 5.5 (Completeness) The algorithm for matching and merging two APTs is able to
match and merge any two arbitrary APTs complying to Definition 5.2. ¤

DISCUSSION: The statement follows directly from the discussion of the matching and merging
process for APTs. ¥

Statement 5.6 (Correctness) Matching and merging two APTs t1 and t2 always results in an
APT t representing the union of the two input APTs. This result APT can be translated into a
query q̂ that represents the union of the corresponding queries q̂1 and q̂2 of the input APTs, i. e.,
the results of both queries q̂1 and q̂2 are contained in the result of query q̂. ¤

DISCUSSION: The tree structure of the merged APT t results from merging the tree structures
of both input APTs t1 and t2. Therefore, t contains all the paths, and only those paths, that are
referenced by either t1 or t2, or both. The same rationale applies to the set of output elements of
the result APT. Incompatible annotations are either removed or relaxed whenever they prevent
the implication of the stream result by the query result. ¥

5.4 Handling Join Queries

In the following, we extend our findings on APTs from the previous sections to additionally
support join queries. Join queries are queries that either reference multiple inputs or that ref-
erence the same input multiple times in case of a self-join. Therefore, for each individual
input, the abstract property representation of the query contains an individual APT describing
the referenced and returned parts of the corresponding input source. Consequently, we call the
resulting abstract property representation of such a query an abstract property forest (APF). If
inputs are combined, i. e., joined, their respective APTs are interconnected using a new kind of
annotation, called a join annotation. We begin by introducing our notion of join and query se-
mantics. Then, we describe how APFs are defined on the basis of APTs. Finally, we extend the
previously introduced algorithm for matching and merging APTs to support the matching and
merging of APFs. Hence, the extensions presented in this section enable the sharing, widening,
and narrowing of join query results.

5.4.1 Preliminaries

Before describing the extensions for handling join queries, we first introduce our notion of join
and query semantics.

5.4 Handling Join Queries 107

Join Semantics

Considering a window-based binary join on two input streams, we define the join semantics as
follows. Whenever one of the windows is updated, i. e., the window slides along by the extent
defined by its step size, all items entering the window during the update are joined with the
contents of the current data window of the other input stream. Consequently, newly arriving
data items need to be buffered until the next update is triggered. In case of a count-based data
window, the update is triggered after as many items as indicated by the window’s step size have
arrived on the stream. In case of a time-based data window, the update is triggered when the
first item is encountered in the input stream whose reference element value is larger than the
projected new upper bound of the window. Due to the sort order of the stream, we can be sure
that no more items fitting into the updated window will arrive afterwards.

Whenever a window update occurs, the new items entering the updated window are joined
with the current contents of the window of the other input stream. Afterwards, the updated
window slides along, removing invalidated items from the window and adding the newly arrived
ones. This process easily generalizes to multi-way joins by appropriately joining the new items
of the updated window with the current contents of the windows of all other join inputs [Golab
and Özsu (2003c)]. For simplicity, we only consider binary joins here.

The step-based join semantics introduced above leads to non-deterministic join results. This
is due to the fact that the join result depends on the arrival sequence of data items on the joined
input streams. Figure 5.9(a) illustrates this issue. We assume that the data windows are gener-
ated in the sequence indicated by the numbers next to the window intervals in the figure, i. e.,
the initial window of stream B arrives before the three windows of stream A. Finally, the second
window of stream B arrives. Note that the time axes in the figure indicate the timestamp values
contained in the arriving data items. These represent application time and are independent of
the actual arrival time of the data items in the data window. We further assume that the contents
of the initial windows of streams A and B in Figure 5.9(a) have already been joined appropri-
ately. We now consider joins triggered by subsequent window updates. This leads to the three
joins indicated in the figure. First, when updating the window over stream A, the new parts of
the windows numbered 3 and 4, respectively, are joined with the contents of the window num-
bered 1. This corresponds to the first two joins of the data items a4 and a5 with the data items
b1, b2, and b3 in the figure. Subsequently, the new part of the window numbered 5 consisting
of b4 and b5 is joined with the complete contents of the window numbered 4 comprising a4 and
a5. We can see that a change in the arrival sequence of the windows of both streams—which
depends on the arrival sequence of the data items on both streams—can lead to a different join
result. For example, if the two windows of stream B arrive between the first and the second
window of stream A, then a4 and a5 entering the data window of stream A during its first and
second update would never be joined with b1 and b2 contained in the first window of stream B
in our example. This is different from the window sequence shown in Figure 5.9(a).

Despite its non-determinism, we make the case for this join semantics. In a multitude of ap-
plication domains, joining most recent data instead of computing purely timestamp-based joins
is of great importance. Prominent examples comprise sensor monitoring, surveillance, traffic
supervision, logistics, and process automation control. All of these application scenarios have
in common that they need to quickly recognize and react to the newest developments and to ex-
ceptional events such as unusual sensor readings, alarms, traffic jams, or malfunctions. Thus, in
many cases it is not of primary importance to join data items that have been generated at about
the same time and to produce deterministic join results. Instead, it is more important to join
the latest, most current values that have arrived on the input streams in order to get the most

108 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

∆B∆A

A B

time

1
2

3
4

5

a4
a3

a2
a1

a5
a6

b4

b3

b2

b1

b5

b6

A
{a4}

{b1,b2,b3}

A
{a5}

{b1,b2,b3}

A
{a4,a5}
{b4,b5}

(a) Step-based

∆
∆

A B

AA

time

iA
iB

(b) Traditional

Figure 5.9: Window join semantics

up-to-date combinations. Our step-based join semantics supports this requirement as long as
windows have reasonably small step sizes, e. g., one data item for count-based windows in the
extreme case. In the business world, SAP Executive Board member Claus Heinrich has coined
the term Real World Awareness [Heinrich (2005)], emphasizing the importance of monitoring
and reacting to most recent data for corporate success. One of the main enabling technologies
in this direction is Radio Frequency IDentification (RFID). In logistics, for example, reading
RFID tags generates streams of events that need to be processed. As a more concrete example,
consider stock exchange tickers. When joining the tickers of two companies to compare their
relative performance, it is imperative to always combine the latest available values. Since only
the most current results are of interest, the fact that the overall join result depends on the arrival
sequence of data items is irrelevant. A similar example is to compare the relative performance of
the same company at different stock exchanges. In this case, each stock exchange provides one
of the input data streams to be joined and the join predicate checks for equality of the company
id, assuming that each ticker provides data about multiple companies. The example join queries
of Figure 5.10 stick to our astrophysics application scenario. In this scenario, combining mea-
surements of multiple photon detectors of various telescopes and satellites provides for another
possible application of our join semantics. For example, it might be interesting to join photons
detected in the same celestial area, i. e., having similar celestial coordinates, and to retrieve their
energy and detection time for comparison. For brevity and clarity of exposition, the actual ex-
ample queries of Figure 5.10 use simpler join conditions that are not necessarily meaningful in
practice. However, our approach also works for more complex join queries. Another advantage
of our join semantics is that no synchronization between join input streams is necessary since
we correlate the streams based on their local window definitions which solely depend on the
respective input stream. We assume that newly arriving data items from both input streams are
processed sequentially to guarantee the synchronization of window updates and associated join
computations. Furthermore, the problem of large and growing operator states that requires the
introduction of heartbeats or punctuations to limit memory usage when joining slow or bursty
input streams is not an issue in our join semantics.

Note that WXQuery can also support different variants of traditional window join seman-
tics over data streams as found in the literature1. One of these variants, for example, specifies

1See, for example, [Chandrasekaran and Franklin (2002); Golab and Özsu (2003c); Hammad et al. (2003b);
Kang et al. (2003); Krämer and Seeger (2005); Madden et al. (2002b)].

5.4 Handling Join Queries 109

<photons>

{ for $x in stream("photons1")/photons/photon

|det_time diff 10 step 5|

for $y in stream("photons2")/photons/photon

|det_time diff 20 step 10|

where $x/en >= $y/en + 0.5

return

<result>

{ $x/en } { $x/phc }

{ $y/en } { $y/phc }

</result> }

</photons>

(a) Query 5 (q5)

<photons>

{ for $x in stream("photons1")/photons/photon

|det_time diff 10 step 5|

for $y in stream("photons2")/photons/photon

|det_time diff 20 step 10|

where $x/en >= $y/en

return

<result>

{ $x/en } { $x/det_time }

{ $y/en } { $y/det_time }

</result> }

</photons>

(b) Query 6 (q6)

<photons>

{ for $x in stream("photons1")/photons/photon

|det_time diff 30 step 5|

for $y in stream("photons2")/photons/photon

|det_time diff 15 step 10|

where $x/en >= $y/en

return

<result>

{ $x/en } { $x/det_time }

{ $y/en } { $y/det_time }

</result> }

</photons>

(c) Query 7 (q7)

<photons>

{ for $x in stream("photons1")/photons/photon

|det_time diff 15 step 10|

for $y in stream("photons2")/photons/photon

|det_time diff 30 step 15|

where $x/phc >= $y/phc

return

<result>

{ $x/en } { $x/det_time }

{ $y/en } { $y/det_time }

</result> }

</photons>

(d) Query 8 (q8)

Figure 5.10: Example join queries

that each newly arriving data item from one stream is joined with all the data items arriving on
the other stream whose timestamps are contained in a certain interval around the timestamp of
the new data item. Figure 5.11 shows an according example WXQuery with ∆ = 10. Streams
photons1 and photons2 are supposed to be photon data streams of the same schema as intro-
duced in Figure 2.2 on page 9 in all our example join queries. The above semantics has the
advantage of producing deterministic join results when using time-based data windows. Count-
based data windows always lead to non-deterministic join results. Hammad et al. (2003b) have
already extensively studied efficient join result sharing for join queries using another variant of
time-based window join semantics. In this variant, data items receive their timestamp on arrival
at the join operator. Each data item arriving on an input stream is joined with all data items
of the other input stream that arrived previously within a certain time interval. Consider Fig-

<photons>

{ for $x in stream("photons1")/photons/photon

for $y in stream("photons2")/photons/photon

where $x/det_time - $y/det_time <= 10

or $y/det_time - $x/det_time < 10

return

<result>

{ $x/en } { $x/phc }

{ $y/en } { $y/phc }

</result> }

</photons>

Figure 5.11: WXQuery with traditional join semantics

110 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

ure 5.9(b) that shows an illustrative example. The newly arriving data item iA with timestamp
value tiA in stream A is joined with all data items of stream B which have arrived previously and
whose timestamp values are greater than or equal to tiA −∆, with ∆ being the common window
size of streams A and B. Since each newly arriving data item iB with timestamp value tiB in
stream B is accordingly joined with all data items of stream A which have arrived previously
and whose timestamp values are greater than or equal to tiB −∆, iA will eventually be joined
with all data items iB from stream B for which (tiA − tiB ≤ ∆)∨ (tiB − tiA ≤ ∆) holds.

The results of Hammad et al. (2003b) are applicable without any changes in our setting
when the corresponding join semantics is applied. Note that the optimizations introduced by
Hammad et al. (2003b) impose restrictions on the queries that may be taken into account for join
result sharing. These restrictions include identical signatures of the join queries, i. e., identical
join predicates, and an equal window size ∆ for all input streams of a query as indicated in Fig-
ure 5.9(b). In contrast, our step-based semantics and the accompanying join sharing approach
introduced further below allow for different join predicates in the queries taken into account
for sharing. We also support varying window and step sizes in the windows of various input
streams of a query.

Query Semantics

In SQL, joins can simply be formulated by referencing the relations to be joined in the from

clause and by including the join predicates as conditions in the where clause. The query does not
imply a certain evaluation strategy for computing the join. Therefore, SQL-based continuous
query languages such as CQL [Arasu et al. (2006)] extend the query language by introducing
window syntax constructs without having to change the basic underlying SQL query semantics.

In XQuery and consequently also in WXQuery, joins are expressed by nested for loops with
accompanying conditions reflecting the join predicates. The usual semantics of nested loops
is, however, not applicable when formulating window-based joins over possibly infinite data
streams since this leads to infinite loops that do not produce the desired results. To illustrate this
issue, consider Query 5 (q5) of Figure 5.10(a). Both for loops in the query reference unbounded
data streams with data windows defined on them. Under conventional XQuery semantics, the
inner loop would iterate indefinitely over an infinite number of windows on stream photons2

while the outer loop would never leave its first iteration. Therefore, we redefine the query
semantics for join queries in WXQuery as follows. Whenever a WXQuery contains more than
one for loop over a windowed input, we compute the corresponding window join as described in
the previous section on join semantics. During join computation in combination with a window
update, we consider the variables bound by the for loops to iterate over the new items of the
updated data window and the current items of the other data window in a nested loops fashion.
Due to this change in semantics, we currently do not deal with queries mixing aggregates and
joins. Introducing a dedicated WXQuery syntax extension for expressing window-based joins
over unbounded data streams is an issue of future work.

5.4.2 The Abstract Property Forest (APF)

In the following, we define APFs and show how to translate a join query into a corresponding
APF and vice versa.

5.4 Handling Join Queries 111

Definition

The definition of an APF builds on Definition 5.2 of an APT.

Definition 5.5 (Abstract Property Forest (APF)) An abstract property forest (APF) fq := T
of a query q with m input data streams consists of a list T := [t i

q | 1 ≤ i ≤ m] of property trees,
one for each input source referenced in q.

Structural part The structural part of fq consists of the union of the structural parts of the
contained APTs, i. e., it is a forest consisting of the path trees of the input sources. If a query
references the same input source multiple times, e. g., for self-join purposes, then each reference
has its own path tree in fq.

Content-based part In addition to the annotations of the APTs as introduced in Section 5.2,
fq can also contain join annotations. A join annotation a := (τ ,C,R) is a selection annotation
that is associated with elements from multiple APTs. It consists of its type τ = ./, its contents C
which represent a set of join predicates, and a set R of parents. Similar to selection annotations,
the predicates in the contents C of a join annotation are meant to be conjunctively combined. A
join annotation can be associated with elements from each participating APT. As a special kind
of a selection annotation, a join annotation is associated with the returned elements of a query
and determines under which condition these elements are returned as part of the join result. ¤

Translating WXQueries into APFs

We extend the translation rules introduced in Section 5.2.2 to support join queries referencing
multiple input streams.

Determining Join Annotations Generating the APTs of the multiple input sources, i. e., as-
sembling the path trees, determining the annotations, and identifying the output elements, works
exactly as described in Section 5.2.2 for each input source. The only additional aspect is the
identification of join annotations. This is similar to determining selection annotations. If the
corresponding predicate is a join predicate, i. e., the predicate correlates elements from different
input sources, a join annotation is generated and associated with the returned elements of the
involved sources’ APTs. Determining the input source an element belongs to is straightforward
since the path to each element is expanded to the corresponding absolute path if necessary. The
absolute path contains the respective stream or document identifier as an argument to the stream

or doc function.

Example 5.11 Figure 5.12 shows the APFs of the example join queries q5 to q8. Note the join
annotations connecting the returned elements of both input streams in each APF. ¤

Inference Rules This section extends the formal rules for translating a WXQuery into a cor-
responding APT introduced in Section 5.2.2 to additionally support join queries and their trans-
lation into APFs.

The construction of the APTs of each individual input stream works as described in Sec-
tion 5.2.2. For queries with multiple input data streams, instead of generating a single APT,
we generate a list of APTs containing one APT per input data stream. The length of the list

112 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

photons2

photon2

en2
● det_time2phc2

●
photons1

photon1

en1
● det_time1phc1

●
A

en1 >= en2 + 0.5

ω
diff: det_time1∆: 10 µ: 5 ω

diff: det_time2∆: 20 µ: 10

(a) APF of q5 (fq5)

photons2

photon2

photons1

photon1

en1
● det_time1

● en2
● det_time2

●
A

en1 >= en2

ω
diff: det_time1∆: 10 µ: 5 ω

diff: det_time2∆: 20 µ: 10

(b) APF of q6 (fq6)

photons2

photon2

photons1

photon1

en1
● det_time1

● en2
● det_time2

●
A

en1 >= en2

ω
diff: det_time1∆: 30 µ: 5 ω

diff: det_time2∆: 15 µ: 10

(c) APF of q7 (fq7)

photons2

photon2

en2
● det_time2

●phc2

photons1

photon1

en1
● det_time1

●phc1

A
phc1 >= phc2

ω
diff: det_time1∆: 15 µ: 10 ω

diff: det_time2∆: 30 µ: 15

(d) APF of q8 (fq8)

Figure 5.12: APFs of example join queries

5.4 Handling Join Queries 113

can be derived from the query in advance. For each input source i, we also determine the in-
put stream identifier or document name idi and the corresponding DTD di in advance during a
preprocessing phase by scanning the query for any stream or doc function calls which contain
an input source identifier as parameter. We use the input source identifier to retrieve the corre-
sponding DTD from a metadata repository. Therefore, idi and di are already present for each
input source i and the following rules simply forward them. This is important since we need
the corresponding input source identifier during APF generation to add paths, annotations, and
output elements to the correct APTs. In this context, we also slightly redefine the semantics of
the path, path, and cond functions. These now only return those paths or conditions referring to
the corresponding input source as indicated by a superscript. For example, if Path1 represents a
path belonging to APT t i, then pathi(Path1) returns this path and Pi ∪{pathi(Path1)} adds it to
Pi. At the same time, path j(Path1) does not return any path and therefore P j ∪{path j(Path1)}
does not add any path to P j for all 1 ≤ j ≤ m, j 6= i. Finally, we define the condi function to only
return conditions that exclusively reference elements from input source i, i. e., simple selection
conditions. Further, we additionally introduce a variant condi that only returns conditions that
reference additional input sources besides i, i. e., join conditions involving input source i.

We again use the inference rule notation of the XQuery formal semantics specification [W3C
(2007e)]. The judgment

Env ` α ⇒ [(P1,A1,O1, id1,d1), . . . ,(Pm,Am,Om, idm,dm)]

holds if and only if, under the environment Env, the expression α induces the construction of
the APTs (P1,A1,O1, id1,d1) to (Pm,Am,Om, idm,dm) as described in Section 5.2.2. Inference
rules are again of the form

premise1 . . . premisen

conclusion
where all premises and the conclusion are judgments of the above form. Additionally, premises
may again constitute expressions of the form Env′ = Env +($var ⇒ Path) that extend the en-
vironment Env yielding the environment Env′ by adding the binding of the variable $var to
the path represented by Path. The inference rule expresses that, if all premises hold, then the
conclusion holds as well.

We now give the extended inference rules for each WXQuery expression of Definition 4.5.

Empty direct element constructor An empty direct element constructor induces a list of
empty APTs.

Env ` <t/>⇒ [(/01, /01, /01, id1,d1), . . . ,(/0m, /0m, /0m, idm,dm)]
(5.11)

Direct element constructor For each input source, the rule generates the corresponding APT
just as for the single APT in the original rule of Section 5.2.2.

Env ` α1 ⇒ [(P1
1 ,A1

1,O
1
1, id

1,d1), . . . ,(Pm
1 ,Am

1 ,Om
1 , idm,dm)]

. . .

Env ` αn ⇒ [(P1
n ,A1

n,O
1
n, id

1,d1), . . . ,(Pm
n ,Am

n ,Om
n , idm,dm)]

Env ` <t>α1 . . .αn</t>

⇒ [(
⋃n

i=1 P1
i ,

⋃n
i=1 A1

i ,
⋃n

i=1 O1
i , id

1,d1), . . . ,(
⋃n

i=1 Pm
i ,

⋃n
i=1 Am

i ,
⋃n

i=1 Om
i , idm,dm)]

(5.12)

114 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

Note that, as described in Section 5.2.2, we have again rephrased the WXQuery expression for
direct element constructors in the inference rule compared to the WXQuery definition to better
support the inference rule notation.

FLWR expression We again split the inference rule for FLWR expressions into four separate
rules as in Section 5.2.2. We use the same shortcuts and functions as in the introduction of the
original rules. Additionally, as introduced above, the functions pathi and pathi with 1 ≤ i ≤ m
return only those paths that reference the input source with identifier idi. Furthermore, the
cond function only considers non-join conditions, i. e., conditions that reference elements from
only one APT. We introduce the cond function to exclusively handle join conditions referencing
elements from more than one APT. Both functions are applied as described in Section 5.2.2 on
the respective conditions.

First, we consider a for loop without any data window. The first premise in the rule again
reflects the variable binding in the for loop.

Env′ = Env+($x ⇒ path(Path1))

Env′ ` α ⇒ [(P1,A1,O1, id1,d1), . . . ,(Pm,Am,Om, idm,dm)]
Env ` for $x in Path1 where χ return α

⇒ [(P1 ∪path1(Path1)∪path1(χ),

A1 ∪{(σ ,cond1(Path1)∪ cond1(χ),O1),(./,cond1(Path1)∪ cond1(χ),O1)},
O1, id1,d1),

. . . ,

(Pm ∪pathm(Path1)∪pathm(χ),

Am ∪{(σ ,condm(Path1)∪ condm(χ),Om),(./,condm(Path1)∪ condm(χ),Om)},
Om, idm,dm)]

(5.13)

Note that an annotation is only added to the set Ai of annotations of a certain APT t i if Oi is
not empty, i. e., the annotation is associated with at least one returned element in Oi. As stated
in Section 4.3, O := O1 ∪ ·· ·∪Om must not be empty, i. e., each query must return at least one
element of the input sources or an aggregate value based on the input sources. Therefore, each
annotation is associated with at least one element in at least one of the APTs of the APF.

The next rule describes the translation of a for loop with a count-based data window. The
selection annotations are again optional, just as the corresponding conditions in the query.

Env′ = Env+($x ⇒ path(Path1))

Env′ ` α ⇒ [(P1,A1,O1, id1,d1), . . . ,(Pm,Am,Om, idm,dm)]
Env ` for $x in Path1 |count ∆ step µ| where χ return α

⇒ [(P1 ∪path1(Path1)∪path1(χ),

A1 ∪{(ω ,(count,∆,µ),path1(Path1)),(pre-σ ,cond1(Path1),ω),

(post-σ ,cond1(χ),ω),(./,cond1(Path1)∪ cond1(χ),O1)},O1, id1,d1),
. . . ,

(Pm ∪pathm(Path1)∪pathm(χ),
Am ∪{(ω,(count,∆,µ),pathm(Path1)),(pre-σ ,condm(Path1),ω),

(post-σ ,condm(χ),ω),(./,condm(Path1)∪ condm(χ),Om)},Om, idm,dm)]

(5.14)

5.4 Handling Join Queries 115

Note that pathi(Path1) only returns a path for the input source with identifier idi. Therefore, the
rule generates the window annotation only once and associates it with the correct input source.
The rule does not generate the same window annotation for the other input sources since for the
other sources, the parent of the annotation specified by path j(Path1) with j 6= i is empty.

The inference rule describing the translation of for loops with time-based data windows
again handles an additional path Path2 which identifies the window reference element.

Env′ = Env+($x ⇒ path(Path1))

Env′ ` α ⇒ [(P1,A1,O1, id1,d1), . . . ,(Pm,Am,Om, idm,dm)]
Env ` for $x in Path1 |Path2 diff ∆ step µ| where χ return α

⇒ [(P1 ∪path1(Path1)∪path1(Path2)∪path1(χ),

A1 ∪{(ω,(diff,path1(Path2),∆,µ),path1(Path1)),(pre-σ ,cond1(Path1),ω),

(post-σ ,cond1(χ),ω),(./,cond1(Path1)∪ cond1(χ),O1)},O1, id1,d1),
. . . ,

(Pm ∪pathm(Path1)∪pathm(Path2)∪pathm(χ),
Am ∪{(ω ,(diff,pathm(Path2),∆,µ),pathm(Path1)),(pre-σ ,condm(Path1),ω),

(post-σ ,condm(χ),ω),(./,condm(Path1)∪ condm(χ),Om)},Om, idm,dm)]

(5.15)

Although we do not deal with queries mixing aggregates and joins due to the semantic differ-
ences described in Section 5.4.1, we introduce the inference rule for translating let expressions
which are used to bind the result of an aggregate function call to a variable in WXQuery. This
sets the stage for supporting mixed queries in future work.

Env′ = Env+($a ⇒ Φ(path(Path3)))

Env′ ` α ⇒ [(P1,A1,O1, id1,d1), . . . ,(Pm,Am,Om, idm,dm)]
Env ` let $a := Φ(Path3) where χ return α

⇒ [(P1 ∪path1(Path3)∪path1(χ),

A1 ∪{(γ,Φ,path1(Path3)),(pre-σ ,cond1(Path3),γ),(σ ,cond1(χ),O1),

(./,cond1(Path3)∪ cond1(χ),O1)},O1, id1,d1),
. . . ,

(Pm ∪pathm(Path3)∪pathm(χ),
Am ∪{(γ,Φ,pathm(Path3)),(pre-σ ,condm(Path3),γ),(σ ,condm(χ),Om),

(./,condm(Path3)∪ condm(χ),Om)},Om, idm,dm)]

(5.16)

Similar to the window annotations, the rule generates the aggregate annotation only once and
associates it with the APT t i for which pathi(Path3) actually returns a path. For the remain-
ing input sources, the parent of the aggregate annotation remains empty and the annotation is
therefore not generated.

Conditional expression Apart from handling multiple input streams, the rule for conditional
expressions further differs from the corresponding rule in Section 5.2.2 in that it creates join
annotations in addition to normal selection annotations if dictated by the query to be translated.

116 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

Env ` α1 ⇒ [(P1
α1

,A1
α1

,O1
α1

, id1,d1), . . . ,(Pm
α1

,Am
α1

,Om
α1

, idm,dm)]

Env ` α2 ⇒ [(P1
α2

,A1
α2

,O1
α2

, id1,d1), . . . ,(Pm
α2

,Am
α2

,Om
α2

, idm,dm)]
Env ` if χ then α1 else α2

⇒ [(P1
α1
∪P1

α2
∪path1(χ),A1

α1
∪A1

α2
∪{(σ ,cond1(χ),O1

α1
),(σ ,cond1(¬χ),O1

α2
),

(./,cond1(χ),O1
α1

),(./,cond1(¬χ),O1
α2

)},O1
α1
∪O1

α2
, id1,d1),

. . . ,

(Pm
α1
∪Pm

α2
∪pathm(χ),Am

α1
∪Am

α2
∪{(σ ,condm(χ),Om

α1
),(σ ,condm(¬χ),Om

α2
),

(./,condm(χ),Om
α1

),(./,condm(¬χ),Om
α2

)},Om
α1
∪Om

α2
, idm,dm)]

(5.17)

Output of subtrees reachable from node $y through path π In addition to the correspond-
ing rule of Section 5.2.2, this inference rule handles multiple input streams and join annotations.
In the rule, Path4 again represents the pattern $y/π .

Env ` Path4

⇒ [(path1(Path4),

{(σ ,cond1(Path4),{path1(Path4)}),(./,cond1(Path4),{path1(Path4)})},
{path1(Path4)}, id1,d1),

. . . ,

(pathm(Path4),

{(σ ,condm(Path4),{pathm(Path4)}),(./,condm(Path4),{pathm(Path4)})},
{pathm(Path4)}, idm,dm)]

(5.18)

Output of a subtree rooted at node $z This rule is similar to the corresponding rule of
Section 5.2.2 except that it handles multiple input streams and propagates the identifier idi and
the DTD di of each input stream i determined in the preprocessing phase described further
above.

Env ` $z ⇒ [(/0, /0,{path1($z)}, id1,d1), . . . ,(/0, /0,{pathm($z)}, idm,dm)]
(5.19)

Sequence For each individual input stream, the sequence rule behaves just like the original
rule of Section 5.2.2.

Env ` α1 ⇒ [(P1
1 ,A1

1,O
1
1, id

1,d1), . . . ,(Pm
1 ,Am

1 ,Om
1 , idm,dm)]

. . .

Env ` αn ⇒ [(P1
n ,A1

n,O
1
n, id

1,d1), . . . ,(Pm
n ,Am

n ,Om
n , idm,dm)]

Env ` (α1, . . . ,αn)

⇒ [(
⋃n

i=1 P1
i ,

⋃n
i=1 A1

i ,
⋃n

i=1 O1
i , id

1,d1), . . . ,(
⋃n

i=1 Pm
i ,

⋃n
i=1 Am

i ,
⋃n

i=1 Om
i , idm,dm)]

(5.20)

Similar to the rule for direct element constructors, we have again rephrased the WXQuery
expression for sequences in the inference rule compared to the corresponding expression in the
WXQuery definition to better support the inference rule notation.

5.4 Handling Join Queries 117

Example 5.12 As an example for the translation of a join query into a corresponding APF,
consider query q5 of Figure 5.10(a). For both input streams of q5, the translation builds a cor-
responding APT just as described in Section 5.2.2. Additionally, the inference rules introduce
a new join annotation each time they encounter a selection annotation that references elements
from more than one APT. The join annotation

(./,{stream("photons1")/photons/photon/en
>= stream("photons2")/photons/photon/en + 0.5},

{stream("photons1")/photons/photon/en,stream("photons1")/photons/photon/phc,
stream("photons2")/photons/photon/en,stream("photons2")/photons/photon/phc})

of q5 is associated with the returned elements of all affected APTs. Figure 5.12(a) shows the
resulting APF fq5 of q5. ¤

Completeness and Correctness of the Translation Similar to the translation of a WXQuery
with a single input stream into a corresponding APT, the translation of a WXQuery with multi-
ple input streams into a corresponding APF needs to be complete and correct.

Statement 5.7 (Completeness) Any WXQuery q obeying Definition 4.5 can be translated into
a corresponding APF fq. ¤

DISCUSSION: The discussion is analogous to the discussion of Statement 5.1 on page 94. ¥

Statement 5.8 (Correctness) The translation of any WXQuery q into a corresponding APF fq
always yields an APF which represents the abstraction q̂ of q. ¤

DISCUSSION: The discussion is analogous to the discussion of Statement 5.2 on page 94. ¥

Translating APFs into WXQueries

Similar to APTs, we can translate an arbitrary APF back into a corresponding WXQuery. In
contrast to APTs, APFs are always structure-mutating since they represent join queries and joins
are structure-mutating operators.

Figure 5.13 shows the query template for translating an arbitrary APF representing a join
query with time-based data windows into a corresponding WXQuery. The template vari-
ables VARi , STREAMi , PATHi , REFPATHi , SIZEi , and STEPi have the same meaning as in Sec-
tion 5.2.3. The index i indicates the input stream the respective template variable belongs to.
The JOINROOT variable represents the root element name of the join result. For intermediate
results created during in-network processing, we generate a generic name by concatenating
the root element names of the joined input streams with underscores in between. This yields
photons_photons in our example queries since photons is the root element name of both input
streams. The variable JOINPREDS represents the join predicates. We use PREDij to denote the
j -th selection predicate concerning stream i . The JOINITEM variable refers to the element name
of one join result item. We generically create this name by concatenating the names of the data
stream items of the joined streams. This yields photon_photon in our example queries since the
data stream items are named photon in both streams. Finally, PATHij is the path referencing the
j -th returned element of stream i , relative to VARi . The values of the template variables other
than JOINROOT and JOINITEM are determined from an APF in a similar way as described for the
translation of APTs in Section 5.2.3.

118 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

<JOINROOT>

{ for $VAR1 in stream("STREAM1")/PATH1|REFPATH1 diff SIZE1 step STEP1|

...

for $VARm in stream("STREAMm")/PATHm|REFPATHm diff SIZEm step STEPm|

where JOINPREDS

return

if (PRED11 or ... or PRED1n or ... or PREDm1 or PREDmk) then

<JOINITEM>

{ if (PRED11 or ... or PRED1n) then

<STREAM1>...

{ if (PRED11) then $VAR1/PATH11 else () }

...

{ if (PRED1n) then $VAR1/PATH1n else () }

...</STREAM1>

else () }

...

{ if (PREDm1 or ... or PREDmk) then

<STREAMm>...

{ if (PREDm1) then $VARm/PATHm1 else () }

...

{ if (PREDmk) then $VARm/PATHmk else () }

...</STREAMm>

else () }

</JOINITEM>

else () }

</JOINROOT>

Figure 5.13: Join query template

The where clause, the if expressions, and the PATHi and PATHij variables are optional
depending on the characteristics of the corresponding APF. If any PATHi or PATHij is empty in
an actual instance of the template variable, the respective preceding slash also disappears from
the template. If there is no selection annotation for a certain returned element, the query simply
returns the element without a surrounding if expression. In such a case, we also need to remove
any if expressions guarding the output of the surrounding JOINITEM and STREAMi tags from the
template. Each returned element is enclosed in the correct sequence of surrounding elements
as in the original input stream schema, starting with the first element below the stream item,
which is the photon element in our example stream. This is necessary to uniquely identify the
elements during postprocessing and is indicated by dots in the query template of Figure 5.13.

Example 5.13 Figure 5.14 shows the abstractions of queries q5 to q8 of Figure 5.10. ¤

DTD Generation For structure-mutating join queries, we construct a completely new DTD
which contains the join root element (photons_photons in our example queries) as the root and
the join result item (photon_photon in the example queries) as the only child of the root, with
multiple occurrence. The join result item has as its children a sequence of generic stream ele-
ments representing the joined input streams. Each generic stream element contains the elements
of the respective stream that are returned by the query. The returned elements are embedded in
the correct sequence of surrounding elements as in the original stream schema, starting with the
first element below the data stream item.

5.4 Handling Join Queries 119

<photons_photons>

{ for $x in stream("photons1")/photons/photon

|det_time diff 10 step 5|

for $y in stream("photons2")/photons/photon

|det_time diff 20 step 10|

where $x/en >= $y/en + 0.5

return

<photon_photon>

<photons1>

{ $x/phc } { $x/en }

</photons1>

<photons2>

{ $y/phc } { $y/en }

</photons2>

</photon_photon> }

</photons_photons>

(a) Abstract Query 5 (q̂5)

<photons_photons>

{ for $x in stream("photons1")/photons/photon

|det_time diff 10 step 5|

for $y in stream("photons2")/photons/photon

|det_time diff 20 step 10|

where $x/en >= $y/en

return

<photon_photon>

<photons1>

{ $x/en } { $x/det_time }

</photons1>

<photons2>

{ $y/en } { $y/det_time }

</photons2>

</photon_photon> }

</photons_photons>

(b) Abstract Query 6 (q̂6)

<photons_photons>

{ for $x in stream("photons1")/photons/photon

|det_time diff 30 step 5|

for $y in stream("photons2")/photons/photon

|det_time diff 15 step 10|

where $x/en >= $y/en

return

<photon_photon>

<photons1>

{ $x/en } { $x/det_time }

</photons1>

<photons2>

{ $y/en } { $y/det_time }

</photons2>

</photon_photon> }

</photons_photons>

(c) Abstract Query 7 (q̂7)

<photons_photons>

{ for $x in stream("photons1")/photons/photon

|det_time diff 15 step 10|

for $y in stream("photons2")/photons/photon

|det_time diff 30 step 15|

where $x/phc >= $y/phc

return

<photon_photon>

<photons1>

{ $x/en } { $x/det_time }

</photons1>

<photons2>

{ $y/en } { $y/det_time }

</photons2>

</photon_photon> }

</photons_photons>

(d) Abstract Query 8 (q̂8)

Figure 5.14: Abstractions of example join queries

Example 5.14 Figure 5.15 shows the DTDs of the result data streams of the abstract example
join queries in Figure 5.14. ¤

Completeness and Correctness of the Translation As with APTs, the translation of APFs
into corresponding WXQueries needs to be complete and correct.

Statement 5.9 (Completeness) Any APF fq obtained by translating a WXQuery q using the
inference rules introduced earlier in Section 5.4.2 can be translated back into a corresponding
WXQuery q̂. ¤

DISCUSSION: The discussion is analogous to the discussion of Statement 5.3 on page 100. ¥

<!ELEMENT photons_photons (photon_photon*)>

<!ELEMENT photon_photon (photons1, photons2)>

<!ELEMENT photons1 (phc, en)>

<!ELEMENT photons2 (phc, en)>

<!ELEMENT phc (#PCDATA)>

<!ELEMENT en (#PCDATA)>

(a) Abstract Query 5 (q̂5)

<!ELEMENT photons_photons (photon_photon*)>

<!ELEMENT photon_photon (photons1, photons2)>

<!ELEMENT photons1 (en, det_time)>

<!ELEMENT photons2 (en, det_time)>

<!ELEMENT en (#PCDATA)>

<!ELEMENT det_time (#PCDATA)>

(b) Abstract Queries 6, 7, and 8 (q̂6,q̂7,q̂8)

Figure 5.15: Result DTDs of abstract join queries

120 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

Statement 5.10 (Correctness) The translation of any APF fq into a corresponding WXQuery
always yields a WXQuery which represents the abstraction q̂ of the original query q on which
fq is based. ¤

DISCUSSION: The discussion is analogous to the discussion of Statement 5.4 on page 101. ¥

5.4.3 Matching and Merging APFs

This section describes how to match and merge APFs for data stream sharing and data stream
widening. It further discusses possibilities for join result sharing.

Basics

As with APTs, we perform the matching and merging of APFs in one operation which takes two
APFs as input, the stream APF and the query APF. The stream APF represents the result data
stream of a join query already installed in the system while the query APF represents a newly
registered join query. In the matching step, the matching and merging operation examines
whether the data stream represented by the stream APF can be shared for satisfying the query
represented by the query APF. If this is not the case, the merging step appropriately merges both
APFs, yielding either a new APF or—if the join needs to be removed during the merge—a set of
APTs representing the necessary inputs for both original APFs. The resulting APF or APTs can
be translated into one or more WXQueries according to Sections 5.4.2 and 5.2.3, respectively.
Appropriately installing these queries in the system generates one or more data streams that
are shareable by both, the new query and the query represented by the original stream APF.
The matching and merging of APFs needs to match and merge the path trees as well as the
annotations of both input APFs.

Note that it is also possible to match and merge the APF of a multiple input join query with
the APT of a single input non-join query. If the single input query should share the result of the
join query, widening will involve removing the join from the merging result. This leads to a set
of independent APTs that represent single input queries to be installed in the system. The result
data streams of these queries can then be combined later to form the original join result while
a copy of one of the streams can further be used to satisfy the new single input query. If the
APF of a newly arriving join query is matched with the APT of an already installed single input
query, it might be possible to use the result stream of the single input query as one of the inputs
to the join query. To determine this, the APT of the corresponding input stream contained in
the APF of the join query needs to be matched and merged with the APT of the query whose
result shall be shared. This process can be repeated for each input stream of the join query to
find suitable streams for all inputs. An open question to be dealt with in future work is where
to place the join operator in the network to combine the inputs and to compute the actual join
result. Network-aware operator placement has already been the subject of some research work,
e. g., by Ahmad and Çetintemel (2004), Pietzuch et al. (2006), and Srivastava et al. (2005). A
simple solution is to route all input streams to the final super-peer which is connected to the
peer that registered the new query and to compute the join there. This approach is beneficial if
the join result stream is larger than the sum of the sizes of all input streams. Another possibility
is to compute the join at any super-peer at which one of the shareable inputs has been found and
to route the remaining inputs there. The join result can subsequently be routed to the querying
peer. This approach may be beneficial if the join result size is smaller compared to the sum of

5.4 Handling Join Queries 121

the sizes of the join inputs. More sophisticated solutions would make dynamic decisions, e. g.,
based on statistics and join result size estimations.

Sharing Join Results

In the following, we concentrate on the matching and merging of the APFs of two binary join
queries. Using the join and the query semantics introduced in Section 5.4.1, we distinguish
three cases that allow for different levels of sharing. The cases differ in the relation between
the window sizes ∆ and ∆′ as well as the step sizes µ and µ ′ of each of the data windows in the
properties of an already installed query whose result data stream is considered for sharing and
a newly arriving query, respectively.

Full join result sharing Full join result sharing is the simplest and most effective case. It
occurs if ∆ = ∆′ and µ = µ ′ for each pair of corresponding data windows in the properties of
the installed query and the properties of the new query. In this case, the join only needs to be
computed once and the join result can be shared for both queries. However, different selection
predicates and projections might be applied to the shared join result to obtain the exact result for
each query. We demonstrate this case using q5 of Figure 5.10(a) as the query already installed
and q6 as the newly arriving query. Figure 5.16(a) illustrates the evaluation of both queries. The
figure uses subscripts to distinguish equally named elements from different input streams. The
upper part of the figure depicts the resulting APF after matching and merging the APFs of the
two queries. The window definitions stay the same since both queries use the same windows.
The join annotation reflects the relaxed join condition which is equal to the join condition of
q6 in this case. This is due to the fact that the join condition of q5 implies the join condition
of q6. The lower part of the figure shows the application of further selection and projection
operators to generate the final results for queries q5 and q6. Since both queries use the same
window definitions for their corresponding input streams, the basic join is computed only once
as result of the widening. The join result is then further processed using according selection and
projection operators in the postprocessing phase to obtain the final results for both queries.

Selective join result sharing Selective join result sharing also allows to compute the join
result once and to share it for both queries. This case occurs if ∆ 6= ∆′ for at least one pair and
µ = µ ′ for each pair of corresponding data windows in the properties of the installed query and
the properties of the new query. Apart from the selection and projection operators as in full join
result sharing, an additional selection of join results is necessary in the selection phase. The
reason is that during widening, the window size of each data window that has non-equal size in
the properties of the installed query and the properties of the new query is set to the maximum of
the corresponding window sizes in both properties. Figure 5.16(b) illustrates this aspect using
queries q5 and q7 as an example. Query q5 defines a window size of 10 for the input stream
photons1 and a window size of 20 for the input stream photons2. Accordingly, query q7 defines
a window size of 30 for the input stream photons1 and a window size of 15 for the input stream
photons2. Consequently, the shareable window size for stream photons1 is max(10,30) = 30
and the shareable window size for stream photons2 is max(20,15) = 20. In the selection phase,
the operator SELECTJOINRESULT(10,20) selects only those join result items where the joined
item from the left input is within the first 10 units of the widenend data window of the left input
stream, i. e., it selects only the first third of the entire widened window which has a total size
of 30 units. Furthermore, the joined item from the right input of each selected join result item

122 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

photons2

photon2

en2● det_time2●phc2●

photons1

photon1

en1● det_time1●phc1●

∏{en1,phc1,en2,phc2}
q5

∏{en1,det_time1,en2,det_time2}
q6

Re
sul

t o
f w

ide
nin

g
Po

stp
roc

ess
ing

 ph
ase

ω
diff: det_time1
∆: 10 µ: 5

ω
diff: det_time2
∆: 20 µ: 10

A
en1 >= en2

σ
en1 >= en2 + 0.5

(a) Full join result sharing between q5 and q6

photons2

photon2

en2● det_time2●phc2●

photons1

photon1

en1● det_time1●phc1●

q5 q7

Re
sul

t o
f w

ide
nin

g
Po

stp
roc

ess
ing

 ph
ase

SELECTJOINRESULT
(10,20)

SELECTJOINRESULT
(30,15)

ω
diff: det_time2
∆: 20 µ: 10

A
en1 >= en2

σ
en1 >= en2 + 0.5

ω
diff: det_time1
∆: 30 µ: 5

Se
lec

tio
n

ph
ase

∏{en1,phc1,en2,phc2} ∏{en1,det_time1,en2,det_time2}
(b) Selective join result sharing between q5 and q7

photons2

photon2

en2● det_time2●phc2●

photons1

photon1

en1● det_time1●phc1●

SELECTWINDOWS
(2,1,1)

SELECTWINDOWS
(2,2,2)

q5

SELECTWINDOWS
(3,2,3)

SELECTWINDOWS
(3,1,2)

q8

Re
sul

t o
f w

ide
nin

g
Se

lec
tio

n p
ha

se
Po

stp
roc

ess
ing

 ph
aseA

en1 >= en2 + 0.5
A

phc1 >= phc2

ω
diff: det_time1
∆: 5 µ: 5

ω
diff: det_time2
∆: 10 µ: 5

∏{en1,det_time1,en2,det_time2}∏{en1,phc1,en2,phc2}
(c) Selective window sharing between q5 and q8

Figure 5.16: Join result sharing

5.4 Handling Join Queries 123

is situated within the first 20 units of the widened data window of the right input stream, i. e.,
the operator selects the entire widened window which has a total size of 20 units to obtain the
correct results for q5. Units may either be time units or the number of elements, depending on
whether time-based or count-based windows are used. The situation is similar for the operator
SELECTJOINRESULT(30,15) which selects the entire widenend window of the left input stream
and only the first three quarters of the widened window of the right input stream to obtain the
correct results for q7. Again, the final results for both queries are obtained by applying adequate
selection and projection operators in the postprocessing phase.

The SELECTJOINRESULT operator requires additional information for each join result item
during the selection phase. For time-based data windows, the timestamps of the individual input
items forming a join result item need to be preserved if the join query removes the timestamp
elements from the join result. For count-based data windows, we associate each individual input
item with a monotonically increasing integer value when the item enters the corresponding data
window. Furthermore, each input item is associated with the lower bound of the corresponding
data window instance the input item belonged to when the respective join result item was gen-
erated. Join computations are triggered by window updates in our join semantics. Therefore,
the corresponding window instance of the join input stream that triggered the join computation
corresponds to the window instance of the updated window. Window bounds are time values
in case of time-based data windows and counter values in case of count-based data windows.
Knowing the window lower bounds and the timestamp or counter values of the joined data
items enables us to decide which join result items qualify for the result of a certain join query.
Note that the counter value for count-based windows does not need to grow indefinitely. It can
be reset during any window update process by subtracting the minimum of the counter values
of all the data items contained in the window from the current window bounds and from the
counter values of all the items remaining in the window after the update. Newly added items
subsequently need to be consistently associated with further incremental counter values.

Selective window sharing The third and final case is called selective window sharing and
occurs if µ 6= µ ′ for at least one pair of corresponding data windows in the properties of the
installed query and the properties of the new query. In this case, the join result cannot be shared
due to the incompatible window definitions. Instead, we can compute relaxed window defini-
tions according to Algorithm 5.1 that are shareable by both queries, just as we do for aggregate
queries. Figure 5.16(c) shows an example using queries q5 and q8. Widening computes the
new window definitions using Algorithm 5.1 for both input streams and removes the join an-
notation. In the selection phase, a window selection operator selects the appropriate windows
in the appropriate order to generate windows of the window size and the step size required by
the respective query. Window selection works just as aggregate value selection as described
in Algorithm 4.4 on page 67 except that complete window contents instead of window-based
aggregate values are selected. For example, in Figure 5.16(c), SELECTWINDOWS(2,1,1) selects
two consecutive windows of window size 5 and step size 5 and combines them to generate a
window of window size 10 and step size 5 corresponding to the window over the left input of
q5. SELECTWINDOWS(2,2,2) analogously combines two windows of window size 10 and step
size 5 to generate the window over the right input of q5 with window size 20 and step size 10.
But it only takes into account every second window in the input when generating a particular
window. This provides for the combination of contiguous non-overlapping windows. Also,
only after every second window arriving on the input stream, the window of q5 is updated. This
leads to the required step size of 10 whereas the shared windows have a step size of 5. Similarly,

124 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

for q8, SELECTWINDOWS(3,1,2) selects three consecutive windows of window size 5 and step
size 5 to form one window of window size 15 over the left input of q8. Only after every second
window arriving on the input stream, the window of q8 is updated. This leads to the required
step size of 10, which is two times the step size of the shared window. Finally, SELECTWIN-
DOWS(3,2,3) combines three windows of window size 10 to form one window of window size
30 over the right input of q8. Only every second input window is used to get a sequence of
contiguous non-overlapping windows for a particular window instance. To obtain the correct
window update interval of 15 for the window over the right input of q8, three windows of step
size 5 must have arrived on the shared input before updating the window of q8. Depending on
the actual window and step sizes, certain data windows might have to be temporarily buffered
for later reference as detailed in Algorithm 4.4. The postprocessing phase then generates the
final join result for both queries by applying appropriate join and projection operators.

The joins in the postprocessing phase obey the join semantics introduced in Section 5.4.1.
The join operators can derive the updated parts of the data windows delivered by the SE-
LECTWINDOWS operators by means of the window definition, i. e., by examining the window
bounds and the step size. If the SELECTWINDOWS operators and the join operators are kept
separate as indicated in Figure 5.16(c), overlapping parts of subsequent data windows are deliv-
ered to the join operators multiple times. This can be avoided by integrating the SELECTWIN-
DOWS operators of the selection phase with the join operators of the postprocessing phase and
by applying appropriate optimizations.

Finally, it is worth noting that it might be more efficient in practice to execute each window
join operator individually on the ungrouped inputs instead of computing and sharing common
windows among queries via selective window sharing. Deciding which solution is the better
choice depends on cost function and network characteristics.

Completeness and Correctness of Matching and Merging APFs

Similar to APTs, the matching and merging of two APFs needs to be complete and correct.

Statement 5.11 (Completeness) The algorithm for matching and merging two APFs is able to
match and merge any two arbitrary APFs complying to Definition 5.5. ¤

DISCUSSION: The statement follows directly from the discussion of the matching and merging
process for APFs. ¥

Statement 5.12 (Correctness) Matching and merging two APFs f1 and f2 always results ei-
ther in an APF f or a set of APTs T representing the necessary inputs of the two original APFs.
A resulting APF can be translated into a query q̂ that represents the union of the corresponding
queries q̂1 and q̂2 of the original APFs, i. e., the results of both queries q̂1 and q̂2 are contained
in the result of query q̂. A resulting set of APTs can be translated into a set of queries Q whose
results may again be joined to form the results of f1 and f2. ¤

DISCUSSION: The tree structures of the APTs contained in the merged APF f or the resulting
set of APTs T result from merging the tree structures of the corresponding APTs in the input
APFs f1 and f2. Therefore, f or T contains all the paths, and only those paths, that are refer-
enced by either f1 or f2, or both. The same rationale applies to the set of output elements of the
merged APF f or the sets of output elements of the resulting APTs in T . Incompatible annota-
tions are either removed or relaxed whenever they prevent the implication of the stream result
by the query result. Therefore, the merged APF f or the resulting set of APTs T represents all
the data required for obtaining the correct results for the queries represented by f1 and f2. ¥

5.5 Adapting the StreamGlobe Optimization Framework 125

5.5 Adapting the StreamGlobe Optimization Framework
Integrating the previously introduced approaches for supporting data stream widening, data
stream narrowing, and join queries into StreamGlobe requires the following adaptations to the
StreamGlobe optimization framework.

5.5.1 Cost Model

The widening of data streams involves the replacement and therefore the deletion of parts of
distributed query evaluation plans in the StreamGlobe system. Thus, the cost model must be
able to handle the removal of operators. This can easily be achieved by taking into account
negative costs for removed operators. Thus, the cost function accumulates positive costs for
added operators and negative costs for removed operators. This yields an estimation of the
additional costs caused by replacing an existing plan with a new plan involving stream widening.

5.5.2 Deleting Queries

Data stream widening and data stream narrowing require the deletion of previously installed
query operators. This functionality is also desirable to support the explicit deletion of previously
installed continuous queries in StreamGlobe. Operator deletion requires an augmentation of the
query plan specification by introducing a means for specifying the removal of operators.

5.5.3 Data Stream Widening and Data Stream Narrowing

Besides the extensions described above, support for data stream widening and data stream nar-
rowing in StreamGlobe also requires changes to the discovery algorithm for finding shareable
streams in the network. Instead of pruning a stream during the search as soon as the algorithm
recognizes that the stream does not contain all the necessary data for satisfying a new query,
a query plan using this stream and employing appropriate data stream widening must be gen-
erated. The widening must be propagated backwards towards the source of the original data
stream in the network until all necessary data for the widened stream is available. In the worst
case, the widening can propagate all the way back to the stream source which always contains
all the data. During widening, the properties of any other streams depending on the stream to be
widened must be preserved. This may require reversing the effects of the widening for certain
dependencies by installing appropriate compensating operators that correspond to the properties
of the data stream required by the dependency.

For data stream narrowing, no stream discovery is necessary. But after the deletion of an op-
erator, the narrowing needs to propagate backwards towards the data stream source in a similar
fashion as during data stream widening. After the removal of an operator from a certain peer,
the necessary data at the respective peer can be determined by merging the properties of the re-
maining parts of each of the streams affected by the removal. This yields the unified properties
of the remaining parts of the according original data streams required at that peer. Each of these
properties needs to be propagated backwards to the previous peer en route to the corresponding
data stream source. There, the unified properties replace the respective previous properties and
are merged with the properties of all other instances of the same stream required at that peer.
This process continues until it cannot remove any more data from the stream or it reaches the
super-peer where the original stream is registered.

126 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

As stated earlier, data stream narrowing can be an expensive task due to the necessity of
merging a possibly large number of properties of remaining data streams at numerous peers
in the network. Therefore, narrowing should rather be used as a means for freeing system re-
sources on demand by identifying and removing unnecessary parts of streams flowing through
the network instead of employing it as a required step during query deletion. In addition, pre-
serving parts of data streams that become unnecessary after the deletion of a query increases the
possibilities for finding shareable input streams when registering future queries. Unnecessary
parts of streams can still be removed later when system resources become scarce.

5.5.4 Handling Join Queries
Data stream sharing for join queries involves further changes to the stream discovery algorithm.
The algorithm must search for shareable versions of each input stream of a join query. After
it has found shareable streams for each input, the system needs to decide where to place the
join operator to combine the streams. As mentioned previously, join operator placement in
distributed environments has already been examined in the literature, e. g., by Pietzuch et al.
(2006). Dealing with this issue in the context of StreamGlobe is part of future work. Alterna-
tively, the discovery algorithm might also find a shareable join result in which case the system
does not need to recompute the join.

5.6 Evaluation
To assess the benefits of data stream widening, we have conducted some performance exper-
iments using our StreamGlobe prototype implementation. We have implemented data stream
sharing and data stream widening for non-join queries in StreamGlobe, together with the naive
data shipping strategy known from Section 4.5. The results for data shipping merely serve as
a baseline. For each query, data shipping transmits a copy of each original input stream refer-
enced by the query from the original stream source to the peer that registered the query. The
transmission uses a shortest path in the network and does not share or fork the stream in any
way. We implemented data stream widening using Java 6 and again ran our tests on a blade
server. Depending on the scenario, we used 8 or 16 blades, one for each peer in the backbone
network. Each blade had a 2.8 GHz Intel Xeon processor and at least 1 GB of main memory.

We conducted performance tests using various scenarios differing in the number of peers in
the backbone network (8 or 16) and in the number of queries registered (from 4 to 100). We
used three- and four-dimensional hypercubes as network topologies. The data streams were of
the form described in Section 2.2. Since the results were similar for all scenarios, we selected
one scenario for presentation. The chosen scenario uses a three-dimensional hypercube net-
work topology consisting of 8 super-peers as shown in Figure 2.1 on page 9. We used a single
photons data stream and registered 32 randomly generated queries. The query generator gener-
ates queries that return a randomly chosen subset of the elements contained in their single input
stream. It further generates random selection predicates. Selections were performed either on
the detector pixel coordinates (dx, dy) or on the energy (en) of a photon, or on both. Selections
consist of conjunctive and disjunctive combinations of atomic predicates. An atomic predicate
in turn consists of an element, a comparison operator, and a constant, e. g., en >= 1.3. The con-
stants are chosen randomly from a predefined set of reasonable values from our photons data
set using a normal distribution. The resulting overlap between queries reflects the assumption of
regional query hotspots which are common in astrophysics when several researchers investigate

5.6 Evaluation 127

 0

 5

 10

 15

 20

 25

 30

 35

SP 0
SP 1

SP 2
SP 3

SP 4
SP 5

SP 6
SP 7

A
vg

. C
PU

 lo
ad

 (
%

)

Peers

Data Shipping
Stream Sharing

Stream Widening

 0

 100

 200

 300

 400

 500

0−
1

0−
5

0−
7

1−
2

1−
6

2−
3

2−
7

3−
4

3−
6

4−
5

4−
7

5−
6

A
vg

. n
et

w
or

k
tr

af
fic

 (
kb

ps
)

Network connections

Data Shipping
Stream Sharing

Stream Widening

Figure 5.17: Average CPU load and network traffic

interesting events in a certain, relatively small area of the sky. Further, the overlap increases the
probability that there will be some queries that can readily share the result streams of previously
registered queries using plain data stream sharing without data stream widening.

Figure 5.17 shows the results in terms of average CPU load in percent on the peers in the
example network and in terms of average network traffic in kilobits per second on the network
connections between peers. Additionally, Table 5.1 presents the accumulated and average CPU
load and network traffic in the overall backbone network. The accumulated overall values are
computed by adding up the average CPU load and network traffic values shown in Figure 5.17
for all peers and network connections. The average overall values are computed by dividing the
accumulated values by the number of peers or network connections, respectively. The percent-
age in the table illustrates the relation between the three strategies compared to the values of
data shipping which serve as a baseline at 100%.

As expected, data shipping causes the highest amount of CPU load and network traffic
throughout the network since it requires to forward the entire data stream multiple times, once
for each query. In contrast, stream sharing potentially shares one result data stream for satisfying
multiple subscriptions. Thus, it reduces computational load and network traffic due to result
sharing. Also, by installing subscriptions in the network close to the data sources, early filtering
and early aggregation at the stream source further reduce resource usage within the backbone
network. Only at SP0, which is the peer where the original photons data stream is registered,
the CPU load increases using stream sharing. The reason is that stream sharing installs a query
directly at the stream source and routes the resulting stream to the querying peer on a shortest
path in the network if the query is unable to share any preprocessed streams. In our scenario, 14
of the 32 queries registered were able to share preprocessed streams without widening. Using
data stream widening, this value increased to 31, i. e., every query except for the very first one
was able to reuse a possibly widened result data stream of a previously registered query. This
leads to a further reduction of CPU load and network traffic compared to data stream sharing
without data stream widening. In the presented scenario, the average CPU load in the overall
network, i. e., averaged over all 8 peers, dropped from 7.85% to 5.95%. This corresponds to a
reduction of about 25%. The average network traffic in the overall network, i. e., averaged over
all 12 network connections, dropped from 20.3 kbps to 10.6 kbps, corresponding to a reduction
of about 48%.

Summarizing, the results show that data stream widening serves the important purpose of
making optimization quality more independent of the actual query characteristics and the query

128 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

CPU LOAD (%)
Accumulated Average Percentage

Data Shipping 89.0 11.13 100.0%
Stream Sharing 62.8 7.85 70.6%
Stream Widening 47.6 5.95 53.5%

NETWORK TRAFFIC (kbps)
Accumulated Average Percentage

Data Shipping 1999.7 166.6 100.0%
Stream Sharing 243.6 20.3 12.2%
Stream Widening 127.8 10.6 6.4%

Table 5.1: Accumulated and average overall CPU load and network traffic

registration sequence. Thus, the approach achieves good optimization results and efficient re-
source usage for arbitrary query loads.

Due to the increased optimization overhead, registering a query usually takes longer when
using stream widening compared to plain stream sharing without widening. Query registration
times tend to become longer for both strategies with an increasing number of previously reg-
istered queries in the system. This is due to the fact that the optimizer has more alternatives
to take into account. In our experiments, data stream widening caused an increase in query
registration times of up to double the amount of time used by data stream sharing without data
stream widening. Nevertheless, registering a query never took longer than 45 seconds in the
largest scenario with 100 queries registered. Since we deal with continuous queries which are
supposed to run for long periods of time, optimization delays of several seconds up to some
minutes for a single query are acceptable. Further, we may stop the optimization process after a
certain amount of time and use the best solution found so far if query registration times should
not exceed a certain threshold.

5.7 Related Work

In addition to the work related to data stream sharing presented in Section 4.6, this section dis-
cusses existing approaches for computing and sharing aggregate and join results over streams.

Starting with aggregation, Zhang et al. (2003a) deal with temporal and spatio-temporal ag-
gregates occurring in applications that maintain time-evolving data. Their approach uses dif-
ferent time granularities for data of different age and employs specialized indexing schemes
to dynamically and progressively maintain temporal and spatio-temporal aggregates over data
streams. Li et al. (2005b) focus on general semantics and evaluation techniques for window ag-
gregates over data streams. The importance of sharing work and resources to achieve efficient
and scalable query processing has been observed multiple times in the literature, especially in
the context of data streams. Precise sharing of common work while avoiding unnecessary work
is the focus of TULIP [Krishnamurthy et al. (2004)], which keeps track of predicate evalua-
tion results using the concept of tuple lineage known, e. g., from Eddies [Avnur and Hellerstein
(2000)]. However, TULIP focuses on selection predicates and does not deal with aggregation.
Zhang et al. (2005) enable the shared computation of multiple related aggregates over data
streams that differ only in the choice of grouping attributes. Resource sharing for continuous
sliding window aggregates is an aspect that has sparked special interest. Arasu and Widom

5.7 Related Work 129

(2004c), for example, propose several algorithms for solving various instances of this problem.
A possible approach for enabling sharing for overlapping sliding windows is to divide the win-
dows into disjoint panes [Li et al. (2005a)]. These can be used to compute window aggregates
containing the respective panes. Therefore, work on the overlapping parts of the windows is
done only once. However, the approach described by Li et al. (2005a) only deals with sharing
within a single query. An improvement over panes allows sharing among various queries in-
volving different window definitions and selection predicates at the same time using so-called
shards [Krishnamurthy et al. (2006)]. Golab et al. (2006a,b) show how to enable multi-query
optimization for sliding window aggregates by means of schedule synchronization. Further,
Babcock et al. (2004) deal with load shedding for aggregate queries over data streams. Their
approach handles system overload during aggregate computation by dropping unprocessed in-
put tuples. The challenge is to minimize the degree of inaccuracy introduced in query results
due to load shedding. All of the above approaches are centralized and tuple-based, whereas
our approach in StreamGlobe is distributed and based on XML data. Huebsch et al. (2007)
examine shared aggregate computation for aggregates with different selection predicates in dis-
tributed tuple-based environments but do not deal with continuous queries over data streams.
Finally, aggregation also is a major topic in sensor networks. Work in this direction comprises
TAG [Madden et al. (2002a)], a service for aggregation in distributed, wireless sensor networks.
In TAG, users can state simple declarative queries which are then distributed and executed in the
sensor network using in-network query processing. Manjhi et al. (2005) aim at reducing power
consumption and at improving the result quality of aggregation in sensor networks by combin-
ing a tree-based approach for reduced power consumption with a multi-path-based approach
for increased robustness. In contrast to StreamGlobe, which is based on a stationary backbone
network, the solutions for sensor networks are tuple-based and focus on energy efficient query
evaluation in networks of battery-powered sensors.

Joins over data streams are another interesting topic that is widely covered in the literature.
Several join algorithms for streamed join processing have been proposed. The Symmetric Hash
Join by Wilschut and Apers (1991) is an early approach that aims at achieving a high degree of
parallelism in parallel database systems by lowering the synchronization requirements of join
operators. Based on the Symmetric Hash Join, the XJoin [Urhan and Franklin (2000)] is a non-
blocking pipelined join operator able to produce initial results quickly. The XJoin pays special
attention to reactively scheduling background processing in order to hide intermittent delays
in data arrival, making it an appropriate choice for join query processing in slow and bursty
wide-area networks. Rate-based query optimization [Viglas and Naughton (2002)] turns away
from traditional cardinality-based query optimization used in database management systems
and aims at optimizing query plans for maximum output rate instead. In this context, RPJ [Tao
et al. (2005)] is another join algorithm for progressively joining streams. Its goal is to produce
first results early on and to generate result tuples at a fast rate. The MJoin [Viglas et al. (2003)]
addresses the problem of varying stream arrival rates in complex query evaluation plans in an
innovative way. Instead of dynamically reorganizing the query plan in response to variations
in stream input rates, it augments existing symmetric binary join operators to support multiple
inputs, therefore also eliminating intermediate results in the execution tree. Ripple joins [Haas
and Hellerstein (1999)] are a class of join algorithms designed to support multi-table online
aggregation in relational database management systems. In contrast to traditional offline join
algorithms which always produce exact answers, ripple joins aim at yielding reasonably precise
online estimates in less time. As in our work, most approaches use windows to limit the mem-
ory requirements of streaming joins. Many of these solutions, e. g., PSoup [Chandrasekaran and

130 5. Advanced Data Stream Sharing: Matching and Merging Queries and Data

Franklin (2002)] and CACQ [Madden et al. (2002b)], use join semantics similar to the tradi-
tional window join semantics introduced in Section 5.4.1. Some approaches, including CACQ,
also use a basic approach for sharing join results among multiple queries that have equal inputs
and join predicates but differ in their window definitions. This involves computing the join of
the contents of the largest windows and then filtering the result multiple times with different
filter conditions to obtain the exact results for all queries. However, this might impose con-
siderable delays on queries using relatively small windows since these queries have to wait for
their results until the join of the larger windows completes. Alternative algorithms for shared
window join scheduling introduced by Hammad et al. (2003b) alleviate this problem. Hong
et al. (2007) describe several techniques for enabling efficient multi-query optimization for join
queries over streaming as well as persistent XML inputs in a publish&subscribe setting. The
literature furthermore provides efficient algorithms for processing sliding window multi-joins
in continuous queries over data streams [Golab and Özsu (2003c)] and a binary sliding window
join variant of the symmetric hash join [Kang et al. (2003)]. A new paradigm of multi-query
optimization for window queries over data streams suggests the slicing of window states and
introduces a new pipelining method to reduce the number of total joins [Wang et al. (2006)].
Babu et al. (2005) examine adaptive caching for continuous queries to improve performance and
adaptivity for queries involving continuous multi-way joins. Hammad et al. (2003a) consider
sliding window joins over streaming data in the context of sensor networks, e. g., for tracking
moving objects in the sensor space. Finally, Ganguly et al. (2004) introduce skimmed sketches
for estimating the result size of stream-based binary joins.

5.8 Summary
In this chapter, we have introduced an abstract property tree (APT) for representing, match-
ing, and merging queries and data in a distributed DSMS. The presented approach enables data
stream sharing as well as data stream widening and data stream narrowing. We have estab-
lished formal rules for the translation of a query formulated in our XQuery-based subscription
language WXQuery into a corresponding APT. Query templates provide for the inverse trans-
lation. Further, we have extended our approach to support queries with multiple inputs, e. g.,
join queries, by introducing abstract property forests (APFs). The results of performance exper-
iments conducted using the prototype implementation of our distributed DSMS StreamGlobe
demonstrate the effectiveness of data stream sharing in combination with data stream widening
at a reasonable optimization cost.

An interesting problem for future work is the cost-efficient placement of join operators in the
StreamGlobe network. Techniques from distributed databases may be useful in this direction.
Furthermore, the problem of dynamic plan migration, i. e., of replacing a query evaluation plan
with its widened or narrowed pendant in the network without losing data, is of great importance.
Examining previously proposed solutions to this problem by Zhu et al. (2004), Krämer et al.
(2006), and Yang et al. (2007) with regard to their applicability in our setting can give directions
on how to solve this issue. Additional difficulties for dynamic plan migration in the context of
data stream widening in StreamGlobe arise from the fact that other queries may depend on
an existing plan. These dependencies must be preserved during plan migration. A further
interesting aspect is the extension of the WXQuery subscription language, e. g., by introducing
a general let expression similar to that of standard XQuery. Finally, the tree algebra introduced
in this chapter can be extended, e. g., to support tree subtraction. Among other things, tree
subtraction would be a useful approach for computing remainder queries in semantic caching.

131

CHAPTER 6

Matching and Evaluation Strategies
for Disjunctive Predicates

Traditional query optimization largely neglects the handling of disjunctive predicates. However,
new and evolving applications and optimization techniques such as data stream sharing and data
stream widening make the treatment of disjunctive predicates a necessity. In this chapter, we
develop, compare, and discuss methods for matching and evaluating disjunctive predicates in
StreamGlobe in the context of data stream sharing and data stream widening. Nevertheless, the
presented techniques are generic and can be applied to other domains as well.

6.1 Introduction

Except for a few publications1 which have dealt with the issue in the database field, disjunc-
tive predicates have largely been neglected in the context of query optimization for traditional
database management systems (DBMSs). This is also true for other domains such as active
databases [Widom and Ceri (1996)] and publish&subscribe systems [Hanson et al. (1990); Han-
son and Johnson (1996); Wu et al. (2004a,b)]. Disjunctive predicates are known to be complex
to handle. Hence, query optimization often limits itself to considering conjunctive query predi-
cates since well-known ways for efficiently managing such predicates exist. The main argument
for justifying the neglect of disjunctive predicates has been that such predicates do not occur
often in practice. While this argument might be true for traditional database systems and ap-
plications, it is not correct for new and evolving applications and optimization techniques, e. g.,
in semantic caching [Dar et al. (1996)] and in data stream management. Considering DSMSs
for example, new network-aware optimization strategies that take into account the current net-
work state for deciding how to distribute query processing operators among network nodes and
how to route data streams through the network can introduce disjunctions in predicates. That

1See, for example, [Bry (1989); Chang and Lee (1997); Claussen et al. (2000); Hellerstein and Stonebraker
(1993); Kemper et al. (1994); Muralikrishna and DeWitt (1988)].

132 6. Matching and Evaluation Strategies for Disjunctive Predicates

Super-Peer
Backbone

SP4 SP6

SP0 SP2

SP7

SP3SP1

SP5

Stream 0 (S0)

P0

P1

P3

P2

Query 1 (q1)

Query 3 (q3)

Query 2 (q2)q 1
∨

q 2
∨

q 3

q2

q 1
∨ q 3

q3 q3

q
1

q2

Figure 6.1: Example DSMS scenario

includes the data stream widening optimization technique introduced in Chapter 5. In the fol-
lowing, we focus on disjunctive predicates consisting of disjunctively combined conjunctive
predicates. Each conjunctive predicate forms a multi-dimensional hyperrectangle in the data
space with edges parallel to the coordinate axes. Such predicates are typical, e. g., for region-
based queries in astrophysics. Our approaches can also be used as an approximation for more
complex shaped predicates. However, we do not explicitly deal with this issue in this thesis.
Although we use a DSMS example scenario, it is worth noting that the techniques presented in
this chapter are generic and can be applied to any other domain as well.

As an example for a DSMS that needs to handle disjunctive predicates during query opti-
mization and query processing, consider data stream sharing in combination with data stream
widening in a StreamGlobe network with the network topology shown in Figure 6.1. We as-
sume that three queries q1, q2, and q3 are registered one after another in the given order. Since
sharing a data stream is only possible if the stream contains all the necessary information for
answering a new subscription, optimization quality depends on the characteristics and the regis-
tration sequence of queries. If queries selecting smaller parts of the data streams are registered
first, their result data streams as produced by in-network query processing are not reusable for
satisfying later registered queries that require larger parts of the streams. For example, assum-
ing that the result data stream of q2 does not contain all the necessary data for satisfying q1,
registering query q2 before q1 in the example network would prevent any sharing of result data
streams among q1 and q2. To alleviate this problem, data stream widening as introduced in
Chapter 5 can be employed, e. g., by relaxing some selection predicate in the network. Thus,
an existing result data stream is widened to deliver not only the result data for the query it was
originally computed for, but also the data for a newly registered query. Since, in its simplest
form, relaxing a predicate in this way consists of disjunctively combining the predicates of the
two queries, data stream widening can introduce additional disjunctions in the predicates of
selection operators in the network. To illustrate this, suppose that q3 in Figure 6.1 is registered
after q1 but needs some more data of stream S0 than q1. The query processing operators at SP4
and SP5 can then be relaxed to produce a result stream containing at least the necessary infor-
mation for both queries. This causes the selection predicate for producing the combined stream

6.2 Preliminaries 133

to become the disjunction of the selection predicates of the two individual queries (q1 ∨ q3).
Note that the additional disjunction can make future predicate matchings and evaluations more
expensive. Further processing at SP1 can then produce the final result data streams of queries
q1 and q3. The resulting stream for query q1 can subsequently be delivered directly to P1. The
stream generated for query q3 can be routed to P3 via SP3.

Deciding whether a certain data stream can be used for satisfying a newly registered query
involves the matching of the selection predicates of the new query with those of the query that
produced the data stream considered for reuse. The matching process consists of an implication
check and an optional predicate relaxation. If the selection predicate of the new query does not
imply the selection predicate of the stream-producing query, predicate relaxation computes the
relaxed predicate covering all the necessary information for both queries. To speed up the pred-
icate matching and evaluation processes, predicates can be indexed using a multi-dimensional
index structure. This corresponds to a change in perspective similar to predicate indexing in
active databases and publish&subscribe systems. In traditional DBMSs, data is relatively static
and queries are dynamic, i. e., different queries are posed and answered using the already present
data. Therefore, the data is indexed to support efficient answering of certain query types. In a
DSMS, the set of registered continuous queries is relatively static and the data arriving in the
form of continuous, possibly infinite data streams is highly dynamic. Thus, the queries—or, in
our case, the query predicates—are indexed for efficient predicate matching and evaluation.

In detail, we provide the following contributions in this chapter:

• We develop, compare, and discuss various methods for matching and evaluating interval-
based disjunctive predicates (Sections 6.3 and 6.4). We propose heuristics as well as an
exact solution for the predicate matching problem (Section 6.3) and investigate the use of
multi-dimensional indexing for speeding up the matching (Section 6.3.6) and evaluation
(Section 6.4.2) processes for disjunctive predicates.

• We analyze the space and the time complexities of the presented algorithms (Section 6.5).

• We have implemented all presented algorithms and show the results of an extensive ex-
perimental study comparing and evaluating the various approaches (Section 6.6). The
study reveals that performance gains of several orders of magnitude are achievable for
predicate matching and evaluation by using multi-dimensional predicate indexes.

6.2 Preliminaries
Before describing the algorithms for predicate matching and predicate evaluation, we first intro-
duce our notion of predicates in the context of this chapter and define the problems of predicate
matching and predicate evaluation. We further introduce some notation used for describing the
algorithms in the following sections.

6.2.1 Predicates
We define predicates in this chapter as follows.

Definition 6.1 (Predicates) Predicates in our context are of the following three forms:

Atomic predicate An atomic predicate is a comparison of the form vθ c, where v is a variable,
c is a constant, and θ ∈ {=, 6=,<,≤,>,≥}.
Example: a ≤ 5

134 6. Matching and Evaluation Strategies for Disjunctive Predicates

Conjunctive predicate A conjunctive predicate is a conjunction of atomic predicates.
Example: (a ≤ 5)∧ (b ≥ 7)

Disjunctive predicate A disjunctive predicate is a disjunction of conjunctive predicates.
Example: ((a ≤ 5)∧ (b ≥ 7))∨ ((a ≥ 0)∧ (b < 9)) ¤

We call the distinct variables referenced in a predicate the dimensions of the predicate. For
example, the disjunctive predicate shown above has two dimensions named a and b. Atomic
predicates define intervals in the various dimensions of a predicate by setting lower and upper
bounds that can be included in or excluded from the interval itself. For example, a ≥ 0 defines
an included lower bound of 0 for the interval in dimension a. In contrast, b < 9 defines an
excluded upper bound of 9 for the interval in dimension b. Intervals can also be unbounded
on one or both ends, i. e., the lower bound of an interval can be negative infinity and the upper
bound can be positive infinity. Atomic predicates of the form v = c, where v is a variable and
c is a constant, can be replaced by (v ≤ c)∧ (v ≥ c). Similarly, atomic predicates of the form
v 6= c can be replaced by (v < c)∨ (v > c). The disjunctively combined conjunctive predicates
making up a disjunctive predicate are called the (conjunctive) subpredicates of the respective
disjunctive predicate.

Note that the above definition defines a predicate hierarchy, i. e., any atomic predicate can be
regarded as a special case of a conjunctive predicate and any conjunctive predicate can in turn
be regarded as a special case of a disjunctive predicate but not vice versa. Also note that any
conjunctive and disjunctive combination of atomic predicates can always be transformed into
the form of a disjunctive predicate as defined above. This requires transforming the predicate
into disjunctive normal form (DNF) with the atomic predicates being treated as literals.

6.2.2 Predicate Matching
Predicate matching in our context is the problem of deciding whether a predicate implies another
predicate and, if this is not the case, how the other predicate can be altered in order for the
implication to become valid. More formally, given two predicates p and p′, matching p′ with
p returns (true, p) if p′ ⇒ p and (false, p̄), where p̄ is a relaxed version of p such that p′ ⇒ p̄
(and also p ⇒ p̄), otherwise.

While the implication problem for conjunctive predicates can be solved efficiently according
to Rosenkrantz and Hunt (1980) and Sun et al. (1989), the general implication problem for
disjunctive predicates is proven to be NP-hard [Sun et al. (1989)]. Since disjunctive predicates
can be created during data stream widening in a DSMS, matching such predicates is a necessity
when optimizing stream processing in such a system.

In the following, we always consider the matching of the query predicate of a newly reg-
istered query with the stream predicate of a stream-producing query that is already being exe-
cuted in a DSMS. Nevertheless, the presented techniques are generic and can be applied to any
predicates of the form described in Section 6.2.1 and in any domain.

6.2.3 Predicate Evaluation
Predicate evaluation in our context is the problem of deciding whether a data item satisfies a
predicate or not. More formally, given a predicate p and a data item i, evaluating p against i
returns true if, for all dimensions referenced in p, the value of i in the corresponding dimension
is contained within the interval defined for that dimension in p.

6.3 Predicate Matching 135

VARIABLE DESCRIPTION

p disjunctive stream predicate
p′ disjunctive query predicate
c conjunctive subpredicate of stream predicate p
c′ conjunctive subpredicate of query predicate p′

n number of conjunctive subpredicates c in p
m number of conjunctive subpredicates c′ in p′

d dimension of a conjunctive subpredicate c in p
d′ dimension of a conjunctive subpredicate c′ in p′

Id interval defined by c in dimension d
Id′ interval defined by c′ in dimension d′

D data space
k number of dimensions in the data space
kc number of dimensions referenced by c

Table 6.1: Variables used in algorithm descriptions and during complexity analysis

6.2.4 Notation
Table 6.1 shows important variables used in the algorithm descriptions and during the complex-
ity analysis of Section 6.5. In the pseudocode representations of the predicate matching and
evaluation algorithms in Appendix F on page 207, assignments of the value of a variable y to a
variable x are written x ← y. Assignments are supposed to assign a copy of the value of y to x.
Furthermore, function calls are supposed to use call-by-value. Unless explicitly stated, queues
used in the algorithm descriptions can be either FIFO or LIFO queues.

6.3 Predicate Matching
This section presents three algorithms for matching disjunctive predicates. The first two algo-
rithms are heuristics that are very efficient, yet do not deliver exact results. The third algorithm
is an exact method whose worst case running time is exponential in the number of subpredicates
contained in the predicates to be matched.

6.3.1 Example Predicates
We use the following predicates as a running example for illustrating the matching algorithms
introduced in this section.

Example 6.1 (Predicates) Consider predicates p1 and p2 defined below as examples and sup-
pose we want to match p2 with p1, i. e., determine whether p2 implies p1 or how p1 could be
modified in order for the implication to be valid.

p1: ((a ≥ 3)∧ (a ≤ 12)∧ (b ≥ 0)∧ (b ≤ 5))∨
((a ≥ 9)∧ (a ≤ 14)∧ (b ≥ 2)∧ (b ≤ 8))∨
((a ≥ 0)∧ (a ≤ 5)∧ (b ≥ 1)∧ (b ≤ 6))

p2: ((a ≥ 1)∧ (a ≤ 8)∧ (b ≥ 2)∧ (b ≤ 4))

136 6. Matching and Evaluation Strategies for Disjunctive Predicates

0
0

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

b

a

p1

p2

Figure 6.2: Graphical representation of predicates p1 (solid boxes) and p2 (dashed box)

Note that predicate p1 constitutes a disjunction of conjunctive predicates and that, for simplicity
and a shorter presentation, predicate p2 consists of only one conjunctive subpredicate and does
not contain any disjunctions. However, our algorithms are also capable of handling the general
case of more than one subpredicate in p2. Figure 6.2 shows a graphical representation of the
example predicates p1 and p2. ¤

6.3.2 Quick Check (QC)
We start by first introducing a simple quick check (QC) algorithm that can be combined with
each of the matching algorithms. It is described in Algorithm 6.1 and tests for a conjunctive
subpredicate c′, whether c′ implies at least one of the conjunctive subpredicates c of a given
stream predicate p. The implication check for conjunctive predicates can easily be done by
checking the bounds of c′ for containment in the intervals defined by the atomic predicates
in c for all dimensions [Rosenkrantz and Hunt (1980); Sun et al. (1989)]. If the quick check
returns true, nothing more remains to be done for the tested subpredicate since it is clear that
this subpredicate already matches the stream predicate as is.

Concerning our running example, comparing the only conjunctive subpredicate of p2 to
each conjunctive subpredicate of p1 obviously yields no match, i. e., the quick check returns
false. This is due to the fact that none of the tested implications is valid which can easily be
seen from Figure 6.2. The dashed box of p2 is not completely contained in any one of the three
solid boxes of p1.

Algorithm 6.1 Quick Check (QC)
Input: Stream predicate p and a conjunctive subpredicate c′ of query predicate p′.
Output: true, if c′ ⇒ c for at least one conjunctive subpredicate c in p; false, otherwise.

1. Compare subpredicates. Compare c′ to each conjunctive subpredicate c in p, i. e., check
if c′ ⇒ c.

2. Return result. As soon as c′ ⇒ c for the current values of c′ and c, return true. If no
conjunctive subpredicate c in p with c′ ⇒ c exists, return false.

6.3 Predicate Matching 137

Since the QC algorithm has to iterate over the conjunctive subpredicates of p and, for each
subpredicate, over all dimensions referenced in that subpredicate, the worst case complexity of
this algorithm is in O(n · k), where n is the number of conjunctive subpredicates c in p and k is
the number of dimensions in the data space. Algorithm F.1 on page 207 shows a pseudocode
representation of the quick check.

6.3.3 Heuristics with Simple Relaxation (HSR)

The easiest way to perform predicate matching is to completely skip the predicate implication
checking and to go directly to the relaxation part. This is the idea of the heuristics with simple
relaxation (HSR) shown in Algorithm 6.2. When matching a predicate p′ with a predicate
p, all conjunctive subpredicates of p′ are disjunctively added to p. Since this solution does
not perform any implication checking at all, it misses matches that are already present in the
original predicates and it therefore performs unnecessary predicate relaxations in general.

The situation can be improved by combining the approach with the quick check algorithm of
Section 6.3.2. The matching problem for disjunctive predicates is thereby basically reduced to
the implication problem for conjunctive predicates. In this solution, two nested loops compare
each conjunctive subpredicate of the query predicate to each conjunctive subpredicate of the
stream predicate, checking for implication. If, for each subpredicate of the query predicate,
a matching subpredicate in the stream predicate is found, the matching succeeds, else it fails.
Obviously, this approach might fail even though the query and the stream predicates do match.
In the running example, the only subpredicate ((a≥ 1)∧(a≤ 8)∧(b≥ 2)∧(b≤ 4)) of predicate
p2 does not match any of the three subpredicates ((a ≥ 3)∧ (a ≤ 12)∧ (b ≥ 0)∧ (b ≤ 5)),
((a ≥ 9)∧ (a ≤ 14)∧ (b ≥ 2)∧ (b ≤ 8)), or ((a ≥ 0)∧ (a ≤ 5)∧ (b ≥ 1)∧ (b ≤ 6)) of predicate
p1 directly. However, p2 matches with the entire predicate p1 as can be seen from Figure 6.2,
which this algorithm does not realize. Therefore, the algorithm reports a mismatch although the
predicates actually do match.

Predicate relaxation in the case of a mismatch is simply done by adding the concerned query
subpredicate to the stream predicate using a disjunction. This yields ((a ≥ 3)∧ (a ≤ 12)∧ (b ≥
0)∧ (b ≤ 5))∨ ((a ≥ 9)∧ (a ≤ 14)∧ (b ≥ 2)∧ (b ≤ 8))∨ ((a ≥ 0)∧ (a ≤ 5)∧ (b ≥ 1)∧ (b ≤
6))∨ ((a ≥ 1)∧ (a ≤ 8)∧ (b ≥ 2)∧ (b ≤ 4)) for p̄1 in our example and clearly causes the
number of disjunctions in the stream predicate to increase by one. In general, even more than
one disjunction might be added—one for each conjunctive subpredicate of the query predicate in
the worst case. Note that, if one or more subpredicates of the query predicate already matched
the stream predicate before the relaxation and the algorithm just was not able to detect these
matches, this strategy still adds unnecessary disjunctions to the stream predicate. This should
be avoided since additional disjunctions can cause future predicate matchings and predicate
evaluations to become more expensive because the number of subpredicates has direct impact
on algorithm complexities.

The worst case complexity of Algorithm 6.2 is in O(m) without the quick check and in
O((m ·n+m2) · k) with the quick check, where m is the number of conjunctive subpredicates c′

in p′, n is the number of conjunctive subpredicates c in p, and k is the number of dimensions in
the data space.

The advantages of the HSR algorithm without as well as with the quick check are that it
is fast and easy to implement. The disadvantages of the approach obviously are that it misses
matches in general—actually all matches if it is used without the quick check—and that it
can therefore cause unnecessary predicate relaxations which affects the performance of future

138 6. Matching and Evaluation Strategies for Disjunctive Predicates

Algorithm 6.2 Heuristics with Simple Relaxation (HSR)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if the quick check of Algorithm 6.1 is activated and, for all conjunctive

subpredicates c′ in p′, c′ ⇒ c for at least one conjunctive subpredicate c in p; (false, p̄),
where p̄ is a relaxed version of p such that the above condition is satisfied, otherwise.

1. Relax predicate. Disjunctively add each conjunctive subpredicate c′ in p′ to p. Optionally,
perform the quick check of Algorithm 6.1 for p and each c′ in p′ and only append those
conjunctive subpredicates c′ in p′ to p for which the quick check returns false.

2. Return result. Return (true, p), if no changes have been made to p, i. e., no conjunctive
subpredicates c′ of p′ have been disjunctively added to p. Otherwise, return (false, p̄),
where p̄ is the modified version of p after the addition of one or more conjunctive sub-
predicates c′ of p′.

predicate matching and predicate evaluation processes. Algorithm F.2 on page 208 shows a
pseudocode representation of the HSR approach.

6.3.4 Heuristics with Complex Relaxation (HCR)

The heuristics with complex relaxation (HCR) avoids the increase in the number of subpred-
icates in the stream predicate induced by HSR at the expense of potentially producing only
approximate results. Algorithm 6.3 shows the approach. For each conjunctive subpredicate in
the query predicate, HCR relaxes one of the conjunctive subpredicates in the stream predicate in
order for it to match the query subpredicate if no direct match between subpredicates has been
found. Relaxing a subpredicate means employing a less restrictive filter on the corresponding
data stream, therefore increasing network traffic. Thus, the subpredicate of the stream predicate
that needs the least amount of relaxation in order to match the query subpredicate should be
relaxed. In our running example, this is ((a ≥ 3)∧ (a ≤ 12)∧ (b ≥ 0)∧ (b ≤ 5)) which be-
comes ((a ≥ 1)∧ (a ≤ 12)∧ (b ≥ 0)∧ (b ≤ 5)). Figure 6.3 illustrates the situation. In general,
this kind of relaxation causes the data stream to contain unnecessary data, e. g., the data with
((a ≥ 1)∧ (a < 3)∧ (b ≥ 0)∧ (b < 2))∨ ((a ≥ 1)∧ (a < 3)∧ (b > 4)∧ (b ≤ 5)) in our exam-
ple. However, in the example, parts of these areas are already covered by another conjunctive
subpredicate of p1 as can be seen from Figure 6.3. Therefore, additional unnecessary network
traffic is only caused by the inclusion of the hatched area ((a ≥ 1)∧(a < 3)∧(b ≥ 0)∧(b < 1))
in Figure 6.3 in this specific case.

Deciding which subpredicate should be chosen for relaxation is a complex issue. As the
example indicates, minimizing the extensions that have to be made to the intervals covered by
the subpredicate in the various dimensions of the data space is generally not enough in order
to maximize the quality of the solution. The reason is that the parts of the data space that are
unnecessarily covered by the relaxed subpredicate might or might not already be covered by
other subpredicates. Therefore, the coverage of these parts of the data space might or might not
cause additional unnecessary network traffic. Recognizing whether or not the unnecessary parts
of the intervals added to the relaxed subpredicate are covered by other subpredicates leads to
the same kind of matching problem that we initially intended to solve—without the relaxation
aspect. We use heuristics to solve this problem and choose the subpredicate with the lowest
number of infinite interval bounds for relaxation. If the number of infinite interval bounds is

6.3 Predicate Matching 139

Algorithm 6.3 Heuristics with Complex Relaxation (HCR)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if, for all conjunctive subpredicates c′ in p′, c′ ⇒ c for at least one conjunc-

tive subpredicate c in p; (false, p̄), where p̄ is a relaxed version of p such that the above
condition is satisfied, otherwise.

1. Compare subpredicates. Compare each conjunctive subpredicate c′ in p′ to each conjunc-
tive subpredicate c in p in step 2. Optionally, perform the quick check of Algorithm 6.1
for p and c′ and only consider c′ in the following if the quick check returns false.

2. Compare dimensions. Compare each dimension d of c to the corresponding dimension d′

of c′, i. e., in the following, d = d′ holds. For each pair of corresponding dimensions d
and d′, if the interval Id′

c′ of c′ in d′ is not completely contained in the interval Id
c of c in

d, compute the amount a by which Id
c has to be extended, i. e., the sum of the amounts

by which its lower bound has to be decreased and its upper bound has to be increased
in order for the containment to be valid. Multiply a with the product of the non-zero
extents of all finite intervals in all other dimensions of c and add up the results for all
dimensions, yielding an accumulated value e. Replace Id

c in c with its extended version.
If, after the comparison of all dimensions, the relaxed version of c has less unbounded
interval ends than the current best solution (the initial best solution has an infinite number
of unbounded interval ends) or the same number of unbounded interval ends and a smaller
value for e (again, the initial value for e is infinite), the relaxed version of c is saved as the
new current best solution. If, after the comparison of c′ with all c in p, no match for c′

without relaxation has been found, replace the original version of the current best solution
in p with the relaxed version computed above.

3. Return result. Return (true, p), if no changes have been made to p, i. e., no conjunctive
subpredicates c of p have been replaced with relaxed versions. Otherwise, return (false, p̄),
where p̄ is the modified version of p after the relaxation of one or more conjunctive sub-
predicates c in p.

equal for two subpredicates, we choose the subpredicate that yields the lowest increase in the
volume of the data space it covers when ignoring dimensions with infinite interval length.

Figure 6.4 illustrates a case where relaxation is actually necessary. In this example, the third
subpredicate of predicate p1 has been altered from ((a ≥ 0)∧ (a ≤ 5)∧ (b ≥ 1)∧ (b ≤ 6)) to
((a≥ 0)∧(a≤ 5)∧(b≥ 3)∧(b≤ 6)) to form predicate p′1. This leads to the necessary inclusion
of the hatched area described by ((a ≥ 1)∧ (a < 3)∧ (b ≥ 2)∧ (b < 3)) in Figure 6.4, whereas
the other hatched area described by ((a ≥ 1)∧ (a < 3)∧ (b ≥ 0)∧ (b < 2)) is unnecessarily
included in addition.

Like the HSR approach, HCR can be combined with the quick check algorithm of Sec-
tion 6.3.2 to detect obvious matches before starting the more complex relaxation algorithm.
The worst case complexity of the algorithm is in O(m ·n · k2) with as well as without the quick
check, with m, n, and k as defined before.

Some advantages of HCR are similar to those of HSR, i. e., the approach is relatively fast
and easy to implement. Furthermore, other than the HSR approach, HCR does not introduce any
additional disjunctions in the stream predicate. Some disadvantages are also similar since the
approach still misses matches and therefore performs unnecessary predicate relaxations in gen-
eral. Additionally, in contrast to HSR, the HCR approach can lead to the inclusion of unneeded

140 6. Matching and Evaluation Strategies for Disjunctive Predicates

0
0

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

b

a

p1

p2

Figure 6.3: Relaxation of predicate p1 (solid boxes) to match predicate p2 (dashed box)

0
0

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

b

a

p2
p1'

Figure 6.4: Partial match of predicates p′1 (solid boxes) and p2 (dashed box)

parts of the data space in the relaxed predicate and therefore cause unnecessary network traffic
due to false drops. This leads to a deterioration of the optimization effect in our distributed
DSMS scenario and necessitates additional filtering to obtain the exact result if approximate re-
sults are not acceptable. Algorithm F.3 on page 209 shows a detailed pseudocode representation
of the HCR algorithm.

6.3.5 Exact Matching (EM)
The exact matching (EM) algorithm is a split algorithm that always correctly detects a match

of a query predicate p′ with a stream predicate p. It does not miss matches like the heuristics
above nor does it report false matches. The query predicate is split along its dimensions accord-
ing to the boundaries of the overlapping intervals of the stream predicate. Only if all parts of
the query predicate have been successfully matched at the end of the matching process, a match
is reported. Otherwise, the stream predicate is relaxed. Algorithm 6.4 describes the approach.

Concerning the two dimensions a and b of our running example, we first match the intervals
[3,12] for a and [0,5] for b of the first subpredicate ((a≥ 3)∧(a≤ 12)∧(b≥ 0)∧(b≤ 5)) of p1
with the intervals [1,8] for a and [2,4] for b corresponding to ((a ≥ 1)∧(a ≤ 8)∧(b ≥ 2)∧(b ≤
4)) of p2. Since the interval for b of p2 is completely contained in the interval for b of p1, we do

6.3 Predicate Matching 141

Algorithm 6.4 Exact Matching (EM)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if p′ ⇒ p; (false, p̄), where p̄ is a relaxed version of p such that p′ ⇒ p̄,

otherwise.

1. Compare subpredicates. Compare each conjunctive subpredicate c′ in p′ to each conjunc-
tive subpredicate c in p in step 2. Optionally, perform the quick check of Algorithm 6.1
for p and c′ and only consider c′ in the following if the quick check returns false.

2. Compare dimensions. Compare each dimension d of c to the corresponding dimension d′

of c′, i. e., in the following, d = d′ holds. Let Id
c and Id′

c′ be the intervals defined by c and
c′ in dimensions d and d′, respectively. We distinguish four cases:

(a) If Id
c and Id′

c′ are disjoint, continue with the next conjunctive subpredicate c in p to be
matched with c′.

(b) If Id′
c′ is completely contained in Id

c , continue with the next pair of dimensions from c
and c′.

(c) If Id
c is completely contained in Id′

c′ , split c′ along dimension d′ into the part c′i that is
overlapping with c in dimension d′ and the remaining parts c′o1 and c′o2. Enqueue c′o1
and c′o2 in a queue Q′

c.

(d) If Id
c and Id′

c′ overlap, split c′ along dimension d′ into the part c′i that is overlapping
with c in dimension d′ and the remaining part c′o. Enqueue c′o in a queue Q′

c.

Match the remaining parts of c′ contained in Q′
c with the remaining conjunctive subpred-

icates c in p as above. As soon as Q′
c does not contain any more unmatched parts of c′,

continue with the next c′ in p′ from the beginning. If not all parts of c′ could be matched,
disjunctively add c′ to p.

3. Return result. Return (true, p), if no changes have been made to p, i. e., no conjunctive
subpredicates c′ of p′ have been disjunctively added to p. Otherwise, return (false, p̄),
where p̄ is the modified version of p after the addition of one or more conjunctive sub-
predicates c′ of p′.

not have to split the interval for b of p2. We simply keep this interval and only split the interval
for a of p2 into the two intervals [1,3[and [3,8]. The second of these two intervals is covered by
the first subpredicate of p1 and therefore does not have to be considered any further. Thus, in the
following, we only need to match the intervals [1,3[for a and [2,4] for b of p2. This corresponds
to a rest predicate of ((a ≥ 1)∧ (a < 3)∧ (b ≥ 2)∧ (b ≤ 4)). Matching this rest predicate with
intervals [9,14] and [2,8] of the second subpredicate ((a ≥ 9)∧ (a ≤ 14)∧ (b ≥ 2)∧ (b ≤ 8)) of
p1 does not yield any additional matches. So we continue with the third and final subpredicate
((a ≥ 0)∧ (a ≤ 5)∧ (b ≥ 1)∧ (b ≤ 6)) of p1, which yields intervals [0,5] for a and [1,6] for b.
These intervals completely contain the intervals for a and b of the rest predicate of p2. Thus,
the resulting rest predicate of p2 is empty and the entire predicate has been matched. Therefore,
the algorithm correctly recognizes that p1 is implied by p2.

The above example illustrates the case of a complete match between predicates. In case of
a mismatch, the resulting rest predicate will not be empty. In order to appropriately relax the

142 6. Matching and Evaluation Strategies for Disjunctive Predicates

0
0

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

b

a

10

p1

p3

Figure 6.5: Partial match of predicates p1 (solid boxes) and p3 (dashed box)

query predicate, either the rest predicate or the original query predicate has to be disjunctively
added to the stream predicate. While the former solution does not cause any additional overlap
in the stream predicate, the latter always introduces only one additional stream subpredicate per
mismatched query subpredicate. Overlap is not that critical for predicate matching and predicate
evaluation. This is indicated by our performance evaluation presented in Section 6.6 and is also
due to our short-circuit optimization introduced in Section 6.4.2. In contrast, the number of
subpredicates has direct impact on the efficiency of matching and evaluation algorithms and
should therefore be kept small. Consequently, we choose to add the original query predicate in
case of a mismatch. Note that, in each case, no unnecessary parts of the data space are added to
the predicate during relaxation as opposed to the HCR algorithm.

To demonstrate the case of a partial match, we introduce predicate p3.

p3: ((a ≥ 4)∧ (a ≤ 13)∧ (b ≥ 7)∧ (b ≤ 10))

We now want to match p3 with p1. Figure 6.5 illustrates the situation. Considering the intervals
[4,13] for a and [7,10] for b of p3, we want to match these with intervals [3,12] for a and [0,5]
for b of the first subpredicate ((a ≥ 3)∧ (a ≤ 12)∧ (b ≥ 0)∧ (b ≤ 5)) of p1. Since the intervals
for b of both predicates are disjoint, no match is found. We therefore continue by matching the
intervals of p3 with intervals [9,14] for a and [2,8] for b of the second subpredicate of p1. Since
the intervals for a of both predicates overlap, we have to split the interval for a of p3 into the
two intervals [4,9[and [9,13]. As the first interval does not overlap with the currently examined
subpredicate of p1, this part of p3 is saved for future comparisons with other subpredicates of
p1. The second interval completely overlaps with the current subpredicate of p1 and is therefore
compared with this subpredicate in the remaining dimensions. Since there is also an overlap of
the intervals for b, another split is made. The resulting intervals for b are [7,8] and]8,10]. After
the decomposition, p3 looks as follows:

((a ≥ 4)∧ (a < 9)∧ (b ≥ 7)∧ (b ≤ 10))∨
((a ≥ 9)∧ (a ≤ 13)∧ (b > 8)∧ (b ≤ 10))∨
((a ≥ 9)∧ (a ≤ 13)∧ (b ≥ 7)∧ (b ≤ 8))

The three disjoint parts of this predicate are indicated by the dotted lines within the rectangle
of p3 in Figure 6.5. The third of the three disjoint subpredicates of the decomposed predicate

6.3 Predicate Matching 143

c c'

d = d'
(a) Disjoint stream and query intervals

c'
c

d = d'
(b) Query interval contained in stream interval

c

c'

d = d'

c'o1 c'i c'o2

(c) Stream interval contained in query interval

c

c'

d = d'

c'i c'o

(d) Overlapping stream and query intervals

Figure 6.6: Cases distinguished during dimension comparison

p3 above has now been completely matched with the second subpredicate of p1. The other two
subpredicates of the decomposed predicate p3 have to be matched with the remaining subpred-
icates of p1. This yields no further matches. Therefore, p3 does not match p1. In order to force
the match, p1 has to be relaxed by disjunctively adding the entire subpredicate of p3, which in
our example happens to be p3 itself. The relaxed predicate looks as follows:

((a ≥ 3)∧ (a ≤ 12)∧ (b ≥ 0)∧ (b ≤ 5))∨
((a ≥ 9)∧ (a ≤ 14)∧ (b ≥ 2)∧ (b ≤ 8))∨
((a ≥ 0)∧ (a ≤ 5)∧ (b ≥ 1)∧ (b ≤ 6))∨
((a ≥ 4)∧ (a ≤ 13)∧ (b ≥ 7)∧ (b ≤ 10))

Figure 6.4 shows another example for a partial match. In this case, the EM algorithm would
split predicate p2 into the three disjoint parts (a≥ 3)∧(a≤ 8)∧(b≥ 2)∧(b≤ 4), (a≥ 1)∧(a <
3)∧ (b ≥ 3)∧ (b ≤ 4), and (a ≥ 1)∧ (a < 3)∧ (b ≥ 2)∧ (b < 3). The third of these three parts
remains unmatched.

The EM algorithm needs to compare the intervals defined by stream subpredicates in the
various dimensions of the data space to the intervals defined by query subpredicates in the corre-
sponding dimensions. This dimension comparison distinguishes four cases which are illustrated
in Figure 6.6. The intervals defined by the stream and the query subpredicate may either be dis-
joint (Figure 6.6(a)), overlapping (Figure 6.6(d)), or contained in each another (Figures 6.6(b)
and 6.6(c)). Algorithm F.4 on page 210 shows the details of the dimension comparison.

Again, the quick check presented in Section 6.3.2 can be executed in combination with the
EM approach to check for matching subpredicates in advance before starting the more complex
relaxation algorithm. The worst case time complexity of the EM algorithm without the quick

144 6. Matching and Evaluation Strategies for Disjunctive Predicates

check is in O(∑m−1
i=0 ∑n+i−1

j=0 (2k) j · k) and thus in O(k · (2k)m+n), with m, n, and k defined as
before. Section 6.5 presents the details of the complexity analysis.

The advantages of the exact solution are that it determines matches between predicates in
an exact way, i. e., all existing matches are found—as opposed to the heuristics—and no false
matches are reported. Therefore, the approach does not cause any unnecessary predicate relax-
ations. Also, the non-matching parts of the query predicate are exactly identified. The major
disadvantage of the exact solution is its high algorithmic complexity which is exponential in
the number of subpredicates in the predicates to be matched. This might slow down the opti-
mization process considerably for predicates with many disjunctions and makes the algorithm
inapplicable for larger problem sizes. In such cases, the heuristics have to be used instead.

We have developed three different split strategies for use with the EM algorithm. The strate-
gies differ in the order in which they process unmatched parts of previously split subpredicates.
These differences have impact on the average execution time—though not on the theoretical
worst case time complexity—and on the space complexity of the EM algorithm. We call the
(unmatched) parts resulting from the splitting of a conjunctive subpredicate the (unmatched)
subparts of the subpredicate and the original subpredicate itself the corresponding superpart
of these subparts. Note that each subpart and each superpart by itself constitutes a conjunctive
predicate. Figure 6.7 shows a schematic illustration of the split strategies for a small example
with a query subpredicate c′, n = 3 stream subpredicates, and k = 2 dimensions in the data
space. The figure assumes the worst case of the query subpredicate and each of its resulting
subparts in turn being split into 2k unmatched parts during the matching. Note that this is a
conservative approximation since it is impossible in reality that each of the subparts originating
from the same superpart is split into 2k unmatched parts. This is due to the fact that all the
subparts of the same superpart are pairwise disjoint and 2k unmatched parts only result from
the splitting if the stream subpredicate is completely contained in the query subpredicate that is
to be split. However, a stream subpredicate cannot be completely contained in more than one
subpart of a set of disjoint subparts. Nevertheless, we use this approximation for the EM algo-
rithm, yielding exponential worst case time complexity. Since the general implication problem
involving disjunctive predicates is proven to be NP-hard [Sun et al. (1989)], the actual worst
case time complexity—although lower than our approximation—still is exponential.

Breadth-First Split Strategy (BFS)

The breadth-first split strategy (BFS) starts by splitting a query subpredicate c′ by comparing
it to the first stream subpredicate c of a stream predicate p. The remaining unmatched parts
of c′ are then split in turn by comparing them to the next stream subpredicate in p until no
more unmatched parts remain, in which case the matching succeeds, or until no more stream
subpredicates remain, in which case the matching fails and the stream predicate needs to be
relaxed. Figure 6.7(a) shows the resulting tree of unmatched parts for the worst case. The tree
has a maximum of n+1 levels, one for each stream subpredicate and one for the root, which is
the original query subpredicate c′. On each level, every subpart on that level is split into 2k new
subparts that belong to the next level of the tree. Thus, the leaf level contains a total of (2k)n

subparts. Algorithm F.5 on page 211 shows the details of the EM algorithm with BFS strategy.
Using the BFS strategy leads to building up the aforementioned tree in a breadth-first man-

ner, i. e., each level of the tree is completely filled with all subparts belonging to that level before
the next level is built. This leads to a maximum in computational cost and memory usage, since
the algorithm performs every possible split and creates the maximum possible number of sub-
parts that need to be stored.

6.3 Predicate Matching 145

(a) Breadth-first split strategy (BFS)

(b) Depth-first split strategy (DFS)

(c) Mixed split strategy (MIX)

Figure 6.7: Exact matching algorithm split strategies

Depth-First Split Strategy (DFS)

The situation can be vastly improved by using the depth-first split strategy (DFS), which is
illustrated in Figure 6.7(b). Using this strategy, only one of the subparts on each level of the
tree is split further by comparing it to the next stream subpredicate. If all parts on one tree
level have been successfully matched, the matching continues with the next subpart on the
corresponding parent level. In the worst case, each level of the tree contains 2k parts. Thus, the
tree has a total of (n−1) ·(2k−1)+2k leaf nodes. Algorithm F.6 on page 212 shows the details
of the EM algorithm with DFS strategy.

Using the DFS strategy leads to building up the aforementioned tree in a depth-first manner.
Since matched parts are removed from the tree, each level contains at most 2k parts at each
time, except for the root level which always contains at most one part—the original query
subpredicate c′. This reduces the space complexity of the algorithm to quadratic in k and to
linear in all other parameters. Further, the DFS strategy reduces the average execution time of
the algorithm since mismatches can be detected early and therefore many comparisons between
subparts and stream subpredicates can be saved compared to the BFS strategy. On the other
hand, the DFS strategy is a little more difficult to implement and has a slightly higher data
structure maintenance overhead than the BFS strategy. However, the differences between the
two strategies are small in this respect.

146 6. Matching and Evaluation Strategies for Disjunctive Predicates

Mixed Split Strategy (MIX)

The mixed split strategy (MIX) is a compromise between the BFS and the DFS strategies. The
memory consumption of the MIX strategy is higher than that of the DFS strategy. Also, the MIX
strategy might perform some unnecessary splits before detecting a mismatch. But it still needs
much less memory than the BFS strategy and it can be implemented with less data structure
maintenance overhead than the DFS strategy. The idea is to always compare all the subparts
that belong to the same superpart against the next stream subpredicate at once, splitting them
as needed. Figure 6.7(c) illustrates the approach. Using this strategy, the tree of subparts has
one node in level 0, 2k nodes in level 1, and (2k)2 nodes in all remaining levels in the worst
case. Therefore, the number of leaf nodes is (n− 2) · (2k− 1) · 2k + (2k)2 in the worst case.
Algorithm F.7 on page 213 shows the details of the EM algorithm with MIX strategy.

The MIX strategy potentially detects mismatches later than the DFS strategy but still earlier
than the BFS strategy. It furthermore has cubic space complexity in k, whereas the DFS and
BFS strategies have quadratic and exponential space complexities in k, respectively. Section 6.5
contains the details of the complexity analysis. The MIX strategy is supposed to be slower
than the DFS strategy for large numbers of stream subpredicates n and for large numbers of
dimensions k if many mismatches occur. In these cases, the DFS strategy benefits from detecting
mismatches earlier. However, if only few mismatches occur, the reduction in maintenance
overhead achieved in the MIX strategy might cause it to outperform the DFS strategy. Similar to
the DFS strategy, the MIX strategy is a little more difficult to implement than the BFS strategy.
However, all three variants are comparatively easy to implement.

6.3.6 Multi-Dimensional Indexing
The previously described algorithms can be supported by multi-dimensional indexing as fol-
lows. The quick check of Algorithm 6.1 can use such an index to retrieve all conjunctive
subpredicates of the stream predicate p that overlap with the current conjunctive subpredicate
c′ of the query predicate p′. Only the overlapping subpredicates instead of all subpredicates of
the stream predicate need to be iterated and compared to c′ in subsequent steps.

Algorithm 6.2 without the quick check offers no possibility for indexing. Algorithm 6.3
cannot be supported directly by an index either. It must always take all subpredicates of the
stream predicate into consideration for relaxation since it is not clear—and cannot be decided
using a multi-dimensional index—which of these subpredicates should be relaxed to minimize
the cost. However, as with all matching algorithms presented in this chapter, the quick check
that can be combined with these algorithms can use an index.

The exact solution of Algorithm 6.4 can benefit the most from a multi-dimensional index.
In addition to the indexed quick check, the index can also be used during the splitting step to
quickly identify the subpredicates of the stream predicate that overlap with the current subpred-
icate of the query predicate. Only these overlapping subpredicates have to be considered during
splitting instead of iterating over all subpredicates of the stream predicate.

Various multi-dimensional index structures with different characteristics have been devel-
oped over the years [Gaede and Günther (1998)]. In this chapter, we use main memory versions
of different variants of the R-tree [Beckmann et al. (1990); Guttman (1984)]. Since R-trees in-
dex boxes in multi-dimensional space, they can naturally index the multi-dimensional intervals
described by our predicates without any additional postprocessing. We do not deal with arbi-
trary intervals that form complex structures rather than rectangular boxes in the data space in
this thesis. But we could approximate such arbitrary intervals by minimum bounding boxes in

6.4 Predicate Evaluation 147

Algorithm 6.5 Standard Evaluation (SE)
Input: Predicate p and data item i.
Output: true, if i satisfies p; false, otherwise.

1. Iterate subpredicates. Compare i to each conjunctive subpredicate c in p. For each such
subpredicate, compare each dimension dc in c to the corresponding dimension di in i in
step 2.

2. Compare dimensions. For each pair of corresponding dimensions dc and di, i. e., dc = di,
check if the value for di in i lies within the interval defined for dc in c. If so, continue with
the next dimension in c. Otherwise, continue with the next conjunctive subpredicate c in
p.

3. Return result. As soon as, for a certain conjunctive subpredicate c in p, the intervals
of all dimensions dc in c contain the values of all the corresponding dimensions di in i,
return true. If there is no conjunctive subpredicate c in p such that the above condition is
satisfied, return false.

an R-tree. This may necessitate a non-trivial postprocessing step in addition to an index access.
Note that the index does not need to comprise all dimensions of the data space. It only needs to
contain the dimensions that are actually referenced by the indexed predicate. These are usually
few, compared to the potentially many dimensions of the data space. If the dimensions refer-
enced by predicates can change dynamically, e. g., due to predicate relaxation as in our DSMS
scenario, a subset of the dimensions of the data space containing the most selective dimensions
can be indexed. This yields a quick and efficient reduction of the data volume. If a predi-
cate references non-indexed dimensions, these can subsequently be evaluated conventionally.
Alternatively, the index can be rebuilt each time the set of referenced dimensions changes.

6.4 Predicate Evaluation
Apart from predicate matching, efficient predicate evaluation is also important in a DSMS. The
goal is to evaluate a given predicate against as many data items per time unit as possible, i. e., to
achieve a high throughput. In the following, we present two approaches for predicate evaluation.

6.4.1 Standard Evaluation (SE)

We use the term standard evaluation (SE) to denote a simple sequential scan that is shown
in Algorithm 6.5. The algorithm evaluates a given predicate p against a given data item i by
iterating over the conjunctive subpredicates c of p and by testing for each dimension whether
the value of i in that dimension is contained in the interval defined for the same dimension in c.
As soon as a subpredicate containing the values of i in each dimension is found, the algorithm
terminates and returns true. Only if no subpredicate containing i could be found after inspecting
all conjunctive subpredicates c of p, the algorithm returns false.

The worst case complexity of the standard evaluation algorithm is in O(n · k), where n de-
notes the number of conjunctive subpredicates in the predicate p to be evaluated and k is the
number of dimensions in the data space. Algorithm F.8 on page 214 shows a pseudocode rep-
resentation of the standard evaluation algorithm.

148 6. Matching and Evaluation Strategies for Disjunctive Predicates

6.4.2 Index-based Evaluation (IE)

Considering the facts that the exact matching algorithm is only applicable for small problem
sizes and the approximate results of the HCR algorithm are often not desirable, a switch to the
HSR algorithm for larger problem sizes, i. e., larger numbers of dimensions and subpredicates,
seems necessary in many cases. Since the HSR algorithm—with as well as without the quick
check—can introduce a considerable number of additional disjunctions in predicates, the simple
standard evaluation algorithm above will quickly become inefficient. Therefore, an optimized
predicate evaluation strategy that better handles large numbers of subpredicates is needed.

Predicate evaluation can benefit even more from multi-dimensional indexing than the pred-
icate matching algorithms of Section 6.3. We call the evaluation algorithm with index support
index-based evaluation (IE). It differs from standard evaluation in that it does not iterate over
the conjunctive subpredicates of the predicate to be evaluated. Instead, it indexes the predicate
using a multi-dimensional index structure. To evaluate the predicate against a data item, the al-
gorithm simply executes the containment method of the index with the data item as a parameter.
The evaluation is then completely performed by the index, returning true if the predicate covers
the data item and false otherwise. If a predicate references a very large number of dimensions, it
is possible to index only a subset, i. e., the most selective of these dimensions, to obtain a quick
index-based prefiltering with only a small number of false drops in the result. The remain-
ing dimensions can then be evaluated conventionally using standard evaluation. Furthermore,
predicate evaluation can be dynamically adapted to available computing resources by limiting
the index level to which the evaluation descends before deciding whether a data item satisfies
the indexed predicate. This will in general lead to approximate results, i. e., the resulting data
stream will contain data items that do not satisfy the original predicate. In a DSMS scenario,
this can be corrected by an additional filtering step at another peer in the network further down-
stream. Note that this approach does not remove any qualifying data items from the stream. In
the remainder of this chapter, we always assume that an index contains all dimensions refer-
enced in a predicate and that the index-based evaluation is exact, i. e., that it does not use the
dynamic adaptation described above.

It has been noted several times in the literature1 that multi-dimensional index structures are
not suitable for predicate indexing in active databases and publish&subscribe systems. The
reason is that overlap between regions tends to be high in these settings and multi-dimensional
index structures are prone to deteriorate under such circumstances. Searching the regions con-
taining a certain multi-dimensional point in an R-tree with highly overlapping regions could,
for example, lead to a full tree traversal in the worst case. However, this is only true if all con-
taining regions for a data item have to be returned as in traditional use cases. In our application
scenario, we index disjunctive predicates and the first hit determines the result, i. e., it suffices
to determine whether there is at least one region containing the data item. If such a region is
found, the search can be stopped and true can be returned as the evaluation result. If no con-
taining region is present in the index, the mismatch can potentially be detected early at higher
index levels. Using this short-circuit optimization on an R-tree proves to be a beneficial evalu-
ation strategy as the performance evaluation in Section 6.6 shows. Even better results could be
achieved by using adaptive index structures such as the TV-tree [Lin et al. (1994)]. In contrast
to R-trees, such index structures are able to dynamically adapt the set of indexed dimensions.
They can thus help to avoid indexing unbounded dimensions in a predicate. This is desirable
since unbounded dimensions in the index can cause excessive overlap between index regions

1See, for example, [Hanson and Johnson (1996)].

6.5 Complexity Analysis 149

0
0

2
4
6
8

2 4 6 8 10 12 14 16 18

b

a

c1

10
12
14
16
18

c11 c21

c2

c12 c13 c22 c23

c11

c12
c13

c1

c2
c21

c22

c23

●
●

●

●

hiti2

hiti1

lateimiss

earlyimiss

Figure 6.8: Index-based predicate evaluation

and therefore degrade index performance. Examining the use of such advanced indexing tech-
niques as well as integrating application-specific improvements and tuning into the index itself
are possibilities for future research.

Figure 6.8 illustrates an example where a disjunctive predicate consisting of 6 conjunctive
subpredicates is represented by an R-tree and evaluated against 4 different data items. The figure
shows the graphical representation of the predicate in the data space and the corresponding R-
tree. For data item iearly

miss , the fact that the data item does not satisfy the predicate can already
be determined by comparing the data item to the root of the index tree. In contrast, for ilate

miss,
the mismatch is not detected before the leaf level of the index tree. While ihit

1 can be identified
as a match by traversing one single path in the index tree, ihit

2 would normally require to visit
two different leaf nodes. However, by using our short-circuit optimization, we can stop the
evaluation and return true after the first matching leaf node has been found.

6.5 Complexity Analysis
This section analyzes the best case, average case, and worst case time and space complexities
of the matching and evaluation algorithms introduced in Sections 6.3 and 6.4.

6.5.1 Prerequisites
Table 6.2 repeats from Table 6.1 on page 135 the variables used during complexity analysis to-
gether with their meaning. We assume m,n,k ∈ N+ in the following. We consider a dimension
in the data space as the most fine-grained unit for time and space complexity analysis. For time
complexity, comparing two dimensions is the most fine-grained unit. Note that comparing two
dimensions always consists of comparing the upper and the lower bounds of the two dimen-
sions, i. e., the comparison always leads to two value comparisons. Since this is the same for
each comparison between two dimensions, we abstract from the actual value comparisons and
choose the comparison between two dimensions as the most fine-grained unit for time complex-
ity analysis. Equally, for space complexity analysis, the most fine-grained unit is the memory
required to store the information associated with a single dimension in the data space. Again,

150 6. Matching and Evaluation Strategies for Disjunctive Predicates

VARIABLE DESCRIPTION

p disjunctive stream predicate
p′ disjunctive query predicate
c conjunctive subpredicate of stream predicate p
c′ conjunctive subpredicate of query predicate p′

n number of conjunctive subpredicates c in p
m number of conjunctive subpredicates c′ in p′

k number of dimensions in the data space

Table 6.2: Variables used during complexity analysis

for each dimension, its corresponding upper and lower bound need to be stored. We again ab-
stract from these values and choose the memory needed for storing all the information for a
single dimension as the most fine-grained unit for space complexity analysis.

6.5.2 Quick Check (QC)

Time Complexity

• Best Case:
The best case for the QC algorithm occurs when the query subpredicate c′ already implies
the first stream subpredicate c in p and c only references one of the k dimensions of the
data space. Then, only a single comparison between two dimensions of the data space is
necessary. In this case, the time complexity of the QC algorithm is constant and is in

Ω(1)

• Worst Case:
The worst case for the QC algorithm occurs when the query subpredicate c′ does not
imply any of the n stream subpredicates c in p and each stream subpredicate references
all of the k dimensions of the data space. Then, for each of the n conjunctive subpredicates
c in p, all of the k dimensions of the data space need to be considered. In this case, the
time complexity of the QC algorithm is linear in n and k, and is in

O(n · k)

• Average Case:
The average case for the QC algorithm occurs when the query subpredicate c′ is found to
imply a stream subpredicate c in p after checking half of the n subpredicates c in p and
each subpredicate c in p on average references half of the k dimensions of the data space.
In this case, the time complexity of the QC algorithm is linear in n and k, and is in

Θ
(

n
2
· k

2

)
= Θ(n · k)

6.5 Complexity Analysis 151

Space Complexity

• Best Case:
The best case for the QC algorithm occurs when each stream subpredicate c in p as well
as the query subpredicate c′ only reference one of the k dimensions of the data space.
Then, for each of the n stream subpredicates c in p as well as for the query subpredicate
c′, the information for only one dimension needs to be stored. In this case, the space
complexity of the QC algorithm is linear in n and is in

Ω(n+1)

• Worst Case:
The worst case for the QC algorithm occurs when each stream subpredicate c in p as well
as the query subpredicate c′ reference all of the k dimensions of the data space. Then,
for each of the n stream subpredicates c in p as well as for the query subpredicate c′, the
information for all k dimensions of the data space needs to be stored. In this case, the
space complexity of the QC algorithm is linear in n and k, and is in

O((n+1) · k)

• Average Case:
The average case for the QC algorithm occurs when each stream subpredicate c in p as
well as the query subpredicate c′ reference half of the k dimensions of the data space.
Then, for each of the n stream subpredicates c in p as well as for the query subpredicate
c′, the information for half of the k dimensions of the data space needs to be stored. In
this case, the space complexity of the QC algorithm is linear in n and k, and is in

Θ
(

(n+1) · k
2

)

Summary

The QC algorithm is an efficient algorithm for quickly determining obvious matches of a query
subpredicate with a stream predicate. Its time and space complexities are at most linear in the
number n of subpredicates in the stream predicate and the number k of dimensions in the data
space. Note that the worst and average case time complexities are the same. The complexity of
the index-based QC algorithm depends on the complexity of the employed index structure.

6.5.3 Heuristics with Simple Relaxation (HSR)

Time Complexity

For the HSR algorithm without the quick check, the best case, worst case, and average case
time complexities are linear in m and are in Ω(m), O(m), and Θ(m), respectively. This is due
to the fact that, without the quick check, the HSR algorithm simply iterates over all m con-
junctive subpredicates in the query predicate and disjunctively adds each of these subpredicates
to the stream predicate one after another. The situation is different when combining the HSR
algorithm with the quick check as described in the following.

152 6. Matching and Evaluation Strategies for Disjunctive Predicates

• Best Case:
The best case for the HSR algorithm with the quick check occurs if, for each of the
m query subpredicates c′ in p′, the quick check finds a matching subpredicate in the first
stream subpredicate c in p and c only references one of the k dimensions of the data space.
Then, the algorithm only has to iterate over all m subpredicates of the query predicate and
to perform a single dimension comparison for each query subpredicate. In this case, the
time complexity of the HSR algorithm with the quick check is linear in m and is in

Ω(m)

• Worst Case:
The worst case for the HSR algorithm with the quick check occurs if, for each of the m
query subpredicates c′ in p′, the quick check iterates over all of the n stream subpredicates
c in p without finding a match and each subpredicate in the stream predicate references all
of the k dimensions of the data space. Since each of the unmatched query subpredicates
is disjunctively added to the stream predicate, the number of conjunctive subpredicates in
the stream predicate increases by one each time the algorithm starts to consider the next
conjunctive subpredicate of the query predicate. Therefore, the number of comparisons
between dimensions can be estimated as

m−1

∑
i=0

(n+ i) · k =

(
m ·n+

m−1

∑
i=0

i

)
· k

arith.=
series

(
m ·n+

(m−1) ·m
2

)
· k

≤
(
m ·n+m2) · k

Consequently, the worst case time complexity of the HSR algorithm with the quick check
is quadratic in m, linear in n and k, and is in

O
((

m ·n+m2) · k)
• Average Case:

The average case for the HSR algorithm with the quick check occurs if, for each of the
m query subpredicates c′ in p′, the quick check iterates over half of the n stream sub-
predicates c in p before finding a match and each subpredicate in the stream predicate
references half of the k dimensions of the data space. Furthermore, we assume that half
of the m query subpredicates remain unmatched and are therefore disjunctively added
to the stream predicate, thus increasing the number of conjunctive subpredicates in the
stream predicate by one for half of the query subpredicates. Therefore, the number of
comparisons between dimensions can be estimated as

m−1

∑
i=0

(
n+ i

2
2

)
· k

2
=

(
m ·n+

1
2
·

m−1

∑
i=0

i

)
· k

4

arith.=
series

(
m ·n+

1
2
· (m−1) ·m

2

)
· k

4

≤
(
m ·n+m2) · k

Consequently, the average case time complexity of the HSR algorithm with the quick
check is quadratic in m, linear in n and k, and is in

Θ
((

m ·n+m2) · k)

6.5 Complexity Analysis 153

Space Complexity

The space complexity of the HSR algorithm is independent of whether the algorithm is executed
with or without the quick check.

• Best Case:
The best case for the HSR algorithm occurs when each subpredicate only references one
of the k dimensions of the data space. Then, for each of the m query subpredicates c′ in
p′ as well as for each of the n stream subpredicates c in p, the information for only one
dimension needs to be stored. In this case, the space complexity of the HSR algorithm is
linear in m and n, and is in

Ω(m+n)

• Worst Case:
The worst case for the HSR algorithm occurs when each subpredicate references all of the
k dimensions of the data space. Then, for each of the m query subpredicates c′ in p′ as well
as for each of the n stream subpredicates c in p, the information for all k dimensions of
the data space needs to be stored. In this case, the space complexity of the HSR algorithm
is linear in m, n, and k, and is in

O((m+n) · k)

• Average Case:
The average case for the HSR algorithm occurs when each subpredicate references half
of the k dimensions of the data space. Then, for each of the m query subpredicates c′ in
p′ as well as for each of the n stream subpredicates c in p, the information for half of the
k dimensions of the data space needs to be stored. In this case, the space complexity of
the HSR algorithm is linear in m, n, and k, and is in

Θ
(

(m+n) · k
2

)
Summary

The HSR algorithm without the quick check is a simple relaxation algorithm with linear time
complexity in m and with linear space complexity. Combining the HSR algorithm with the QC
algorithm does not affect the space complexity but leads to quadratic time complexity in m in
the worst and average case. Note that, as for the QC algorithm, the worst and average case
time complexities of the HSR algorithm are the same. Still, the HSR approach is a simple and
relatively fast algorithm. The HSR algorithm can only indirectly be supported by an index when
using an index-supported quick check. In this case, the complexity of the algorithm depends on
the complexity of the employed index structure.

6.5.4 Heuristics with Complex Relaxation (HCR)
Time Complexity

• Best Case:
The best case for the HCR algorithm without the quick check occurs if, for each of the m
query subpredicates c′ in p′, the algorithm finds a matching subpredicate in the first stream
subpredicate c in p and c only references one of the k dimensions of the data space. Then,

154 6. Matching and Evaluation Strategies for Disjunctive Predicates

the algorithm only has to iterate over all m subpredicates of the query predicate and to
perform a single dimension comparison for each query subpredicate. In this case, the
time complexity of the HCR algorithm without the quick check is linear in m and is in

Ω(m)

The best case complexity of the HCR algorithm remains the same when combining it with
the quick check. The best case then occurs when the quick check finds a match for each
query subpredicate c′ in p′ when comparing it to the first stream subpredicate c in p and
furthermore, c references only one of the k dimensions of the data space.

• Worst Case:
The worst case for the HCR algorithm without the quick check occurs if, for each of the m
query subpredicates c′ in p′, the algorithm iterates over all of the n stream subpredicates
c in p without finding a match and each subpredicate in the stream predicate references
all of the k dimensions of the data space. Since, for each pair of subpredicates c′ in p′

and c in p as well as for each dimension in the data space, the list of all k dimensions has
to be iterated to compute v in line 20 of Algorithm F.3 on page 209, the worst case time
complexity of the HCR algorithm without the quick check is linear in m and n, quadratic
in k, and is in

O
(
m ·n · k2)

The worst case complexity of the HCR algorithm with the quick check has to additionally
take into account the worst case complexity of the QC algorithm. The quick check is exe-
cuted before the actual HCR algorithm and in case the quick check does not yield a match,
the normal HCR algorithm is executed. Thus, the numbers of dimension comparisons of
the QC algorithm and the HCR algorithm have to be added. This yields

m ·n · k +m ·n · k2 = m ·n ·
(
k + k2)

≤ 2 ·m ·n · k2

Therefore, the worst case complexity of the HCR algorithm with the quick check is still
linear in m and n, quadratic in k, and is in

O
(
m ·n · k2)

• Average Case:
The average case for the HCR algorithm without the quick check occurs if, for each of
the m query subpredicates c′ in p′, the algorithm iterates over half of the n stream sub-
predicates c in p before finding a match and each subpredicate in the stream predicate
references half of the k dimensions of the data space. Furthermore, we assume that half
of the m query subpredicates remain unmatched and thus lead to a relaxation of the stream
predicate during the execution of the algorithm. Therefore, the average case time com-
plexity of the HCR algorithm without the quick check is linear in m and n, quadratic in k,
and is in

Θ

(
m · n

2
·
(

k
2

)2
)

= Θ
(
m ·n · k2)

6.5 Complexity Analysis 155

The average case complexity of the HCR algorithm with the quick check is determined
analogously to the worst case. For the number of dimension comparisons, this yields

m · n
2
· k

2
+

m
2
·n ·

(
k
2

)2

≤ m ·n ·
(
k + k2)

≤ 2 ·m ·n · k2

Therefore, the average case complexity of the HCR algorithm with the quick check is still
linear in m and n, quadratic in k, and is in

Θ
(
m ·n · k2)

Space Complexity

The space complexity of the HCR algorithm is identical to the space complexity of the HSR
algorithm since both algorithms only need to store the query and the stream predicate. In con-
trast to the EM algorithm which is analyzed below, the HSR and HCR algorithms do not split
subpredicates and therefore do not create additional subpredicates either.

Summary

The time and space complexities of the HCR algorithm are independent of whether the quick
check is activated or deactivated. Also note that the worst and average case time complexities
are again the same. Although they are quadratic in k, the algorithm still is relatively fast com-
pared to the exact solution analyzed below. Like the HSR algorithm, the HCR algorithm only
offers the possibility of indirect index support via an index-supported quick check. In this case,
the complexity of the algorithm depends on the complexity of the employed index structure.

6.5.5 Exact Matching (EM)
Time Complexity

The time complexity of the EM algorithm is the same for each of the three split strategies
introduced in Section 6.3.5. This is due to the fact that all strategies need to examine the same
number of subparts in the best, worst, and average case. They only do so in different order. We
therefore only consider the time complexity of the EM algorithm with and without the quick
check in general, without distinguishing the different split strategies.

• Best Case:
The best case for the EM algorithm without the quick check occurs if, for each of the m
query subpredicates c′ in p′, the algorithm finds a matching subpredicate in the first stream
subpredicate c in p and c only references one of the k dimensions of the data space. Then,
the algorithm only has to iterate over all m subpredicates of the query predicate and to
perform a single dimension comparison for each query subpredicate. In this case, the
time complexity of the EM algorithm without the quick check is linear in m and is in

Ω(m)

Similar to the HCR algorithm, the best case complexity of the EM algorithm remains the
same when combining it with the quick check. The best case then occurs when the quick

156 6. Matching and Evaluation Strategies for Disjunctive Predicates

check finds a match for each query subpredicate c′ in p′ when comparing it to the first
stream subpredicate c in p and furthermore, c references only one of the k dimensions of
the data space.

• Worst Case:
The worst case for the EM algorithm without the quick check occurs if, for each of the m
query subpredicates c′ in p′, the algorithm iterates over all of the n stream subpredicates
c in p without finding a match, each subpredicate in the stream predicate references all of
the k dimensions of the data space, and the intervals defined by the stream subpredicate in
each dimension are completely contained in the respective intervals defined by the query
subpredicate in the corresponding dimensions. Then, the algorithm needs to split the
query subpredicate into three parts during each comparison (lines 7–9 in Algorithm F.4 on
page 210). Two of these three parts need to be taken into account in future comparisons.
Since each of the unmatched query subpredicates is disjunctively added to the stream
predicate, the number of conjunctive subpredicates in the stream predicate increases by
one each time the algorithm starts to consider the next conjunctive subpredicate of the
query predicate. Thus, we can estimate the number of dimension comparisons as

m−1

∑
i=0

n+i−1

∑
j=0

(2k) j · k
geom.
=

series

m−1

∑
i=0

(2k)n+i −1
2k−1

· k

=
k

2k−1
·

m−1

∑
i=0

(
(2k)n+i −1

)
=

k
2k−1

·

((
(2k)n ·

m−1

∑
i=0

(2k)i

)
−m

)
geom.
=

series

k
2k−1

·
(

(2k)n · (2k)m −1
2k−1

−m
)

≤ k · (2k)m+n

Therefore, the worst case time complexity of the EM algorithm without the quick check
is polynomial in k, exponential in m and n, and is in

O
(
k · (2k)m+n)

Similar to the HCR algorithm, the worst case time complexity of the EM algorithm with
the quick check has to additionally take into account the worst case time complexity of
the quick check algorithm. Again, the quick check is executed before the actual EM
algorithm. In case the quick check does not yield a match, the normal EM algorithm is
executed. Thus, the number of dimension comparisons of the quick check algorithm and
the EM algorithm have to be added. This yields

m−1

∑
i=0

(
(n+ i) · k +

n+i−1

∑
j=0

(2k) j · k

)
=

m−1

∑
i=0

(n+ i) · k +
m−1

∑
i=0

n+i−1

∑
j=0

(2k) j · k

≤
(
m ·n+m2) · k + k · (2k)m+n

=
(
m ·n+m2 +(2k)m+n) · k

Therefore, the worst case time complexity of the EM algorithm with the quick check is
polynomial in k, exponential in m and n, and is in

O
((

m ·n+m2 +(2k)m+n) · k)

6.5 Complexity Analysis 157

• Average Case:
The average case for the EM algorithm without the quick check occurs if, for each of the m
query subpredicates c′ in p′, the algorithm iterates over half of the n stream subpredicates
c in p before finding a match, each subpredicate in the stream predicate references half of
the k dimensions of the data space, and the intervals defined by the stream subpredicate in
each dimension overlap with the respective intervals defined by the query subpredicate in
the corresponding dimensions. Then, the algorithm needs to split the query subpredicate
into two parts during each comparison (lines 10–13 in Algorithm F.4 on page 210), one
of which needs to be taken into account in future comparisons. Furthermore, we assume
that half of the m query subpredicates remain unmatched and are therefore disjunctively
added to the stream predicate, increasing the number of conjunctive subpredicates in the
stream predicate by one for half of the query subpredicates. Therefore, assuming k > 3,
the number of comparisons between dimensions can be estimated as

m−1

∑
i=0

⌈
n+ i

2
2

⌉
−1

∑
j=0

(
k
2

) j

· k
2

geom.
=

series

m−1

∑
i=0

(k
2

)⌈
n+ i

2
2

⌉
−1

k
2 −1

· k
2

=
k

k−2
·

m−1

∑
i=0

(
k
2

)⌈
n+ i

2
2

⌉−m

≤ k

k−2
·

((
m−1

∑
i=0

(
k
2

)d n
2e

·
(

k
2

)d i
4e

)
−m

)

≤
k ·

(k
2

)n

k−2
·

m−1

∑
i=0

(
k
2

)i

geom.
=

series

k ·
(k

2

)n

k−2
·
(k

2

)m −1
k
2 −1

≤ k ·
(

k
2

)m+n

Therefore, the average case time complexity of the EM algorithm without the quick check
is polynomial in k, exponential in m and n, and is in

Θ

(
k ·

(
k
2

)m+n
)

The average case complexity of the EM algorithm with the quick check is determined
analogously to the worst case. For the number of dimension comparisons, this yields

158 6. Matching and Evaluation Strategies for Disjunctive Predicates

m−1

∑
i=0

(

n+ i
2

2

)
· k

2
+

⌈
n+ i

2
2

⌉
−1

∑
j=0

(
k
2

) j

· k
2

 =
m−1

∑
i=0

(
n+ i

2
2

)
· k

2
+

m−1

∑
i=0

⌈
n+ i

2
2

⌉
−1

∑
j=0

(
k
2

) j

· k
2

≤
(
m ·n+m2) · k + k ·

(
k
2

)m+n

=

(
m ·n+m2 +

(
k
2

)m+n
)
· k

Therefore, the average case time complexity of the EM algorithm with the quick check is
polynomial in k, exponential in m and n, and is in

Θ

((
m ·n+m2 +

(
k
2

)m+n
)
· k

)

Space Complexity

The space complexity of the EM algorithm is independent of whether the algorithm is executed
with or without the quick check.

• Best Case:
The best case for all variants of the EM algorithm occurs when each subpredicate only
references one of the k dimensions of the data space and no splitting of subpredicates
occurs during the execution of the algorithm. Then, for each of the m query subpredicates
c′ in p′ as well as for each of the n stream subpredicates c in p, the information for only
one dimension needs to be stored. In this case, the space complexity of the EM algorithm
is linear in m and n, and is in

Ω(m+n)

• Worst Case:
The worst case for the EM algorithm occurs when each subpredicate references all of the k
dimensions of the data space and each query subpredicate c′ in p′ needs to be split in three
parts in each dimension (lines 7–9 in Algorithm F.4 on page 210). Two of these three parts
need to be stored in a queue for later matching. Thus, in the worst case, two additional
conjunctive subpredicates are created during each split. Using the BFS strategy, this leads
to 2k additional subpredicates after comparing all dimensions and to (2k)n additional
subpredicates after comparing a query subpredicate c′ to all n stream subpredicates c
in p in the worst case. This is indicated by the hatched subparts in Figure 6.7(a). All
subparts at the leaf level of the tree need to be stored in memory. Then, for each of the
m query subpredicates c′ in p′ as well as for each of the n stream subpredicates c in p,
the information for all of the k dimensions of the data space needs to be stored. This
analogously applies to each of the conjunctive subpredicates that were newly created by
the algorithm due to the splitting of existing query subpredicates. Thus, in this case, the
space complexity of the EM algorithm is linear in m, polynomial in k, exponential in n,
and is in

O((m+n+(2k)n) · k)

6.5 Complexity Analysis 159

The DFS strategy only produces up to (n− 1) · (2k− 1)+ 2k subparts during matching
as indicated by the hatched subparts in Figure 6.7(b). Therefore, its worst case space
complexity is linear in m and n, quadratic in k, and is in

O((m+n+(n−1) · (2k−1)+2k) · k)

The MIX strategy produces up to (n−2) · (2k−1) ·2k +(2k)2 subparts during matching
as indicated by the hatched subparts in Figure 6.7(c). Therefore, its worst case space
complexity is linear in m and n, cubic in k, and is in

O
((

m+n+(n−2) · (2k−1) ·2k +(2k)2) · k)
• Average Case:

The average case for the EM algorithm occurs when each subpredicate references half of
the k dimensions of the data space and half of the query subpredicates c′ in p′ need to be
split in two parts in half of the dimensions (lines 10–13 in Algorithm F.4 on page 210).
One of these two parts needs to be stored in a queue for later matching. Thus, in the
average case, one additional conjunctive subpredicate is created during each split. Using
the BFS strategy, this leads to k/2 additional subpredicates after comparing half of the
dimensions and to (k/2)n/2 =

√
(k/2)n additional subpredicates after comparing a query

subpredicate to half of the n stream subpredicates on average. Then, for each of the m
query subpredicates c′ in p′ as well as for each of the n stream subpredicates c in p,
the information for half of the k dimensions of the data space needs to be stored. This
analogously applies to each of the conjunctive subpredicates that were newly created by
the algorithm due to the splitting of existing query subpredicates. Thus, in this case, the
space complexity of the EM algorithm is linear in m, polynomial in k, exponential in n,
and is in

Θ
((

m+n+
√

(k/2)n
)
· k

2

)
The DFS strategy only produces ((n−1)/2) · (k/2−1)+k/2 subparts on average during
matching. Therefore, its average case space complexity is linear in m and n, quadratic in
k, and is in

Θ
((

m+n+
n−1

2
·
(

k
2
−1

)
+

k
2

)
· k

2

)
The MIX strategy produces ((n− 2)/2) · (k/2− 1) · (k/2)+ (k/2)2 subparts on average
during matching. Therefore, its average case space complexity is linear in m and n, cubic
in k, and is in

Θ

((
m+n+

n−2
2

·
(

k
2
−1

)
· k

2
+

(
k
2

)2
)
· k

2

)

Summary

The EM algorithm with BFS strategy shows exponential time and space complexity in the worst
and average case. Since Sun et al. (1989) have proven the general implication problem for dis-
junctive predicates to be NP-hard, the exponential time complexity cannot be improved sub-
stantially. However, it is possible to improve the space complexity to cubic in the number of
dimensions in the data space and to linear in all other parameters using the MIX strategy instead
of the BFS strategy. Using the DFS strategy even reduces the space complexity to quadratic in

160 6. Matching and Evaluation Strategies for Disjunctive Predicates

the number of dimensions in the data space and to linear in all other parameters. The complexity
of the index-based EM algorithm depends on the complexity of the employed index structure.

6.5.6 Standard Evaluation (SE)

Time Complexity

• Best Case:
The best case for the SE algorithm occurs when the first conjunctive subpredicate c in
the predicate p to be evaluated references only one of the k dimensions of the data space
and the interval defined for that dimension in c contains the value of the corresponding
dimension in i. Then, only a single value to interval comparison is necessary to evaluate
the predicate to true. In this case, the time complexity of the SE algorithm is constant and
is in

Ω(1)

• Worst Case:
The worst case for the SE algorithm occurs when every conjunctive subpredicate c in the
predicate p to be evaluated references all of the k dimensions of the data space but none of
the subpredicates matches the data item i and the mismatch in each case is only detected
after all dimensions have been considered. Then, all of the n subpredicates of predicate
p and, for each subpredicate, all of the k dimensions of the data space need to be iterated
and compared to the values in i. In this case, the time complexity of the SE algorithm is
linear in n and k, and is in

O(n · k)

• Average Case:
The average case for the SE algorithm occurs when every conjunctive subpredicate c in
the predicate p to be evaluated references half of the k dimensions of the data space,
a match is found after considering half of the n subpredicates of predicate p, and mis-
matches are detected on average after considering half of the dimensions referenced in
the corresponding subpredicate. Then, half of the n subpredicates of predicate p and, for
each subpredicate, one quarter of the k dimensions of the data space need to be iterated
and compared to the values in i. In this case, the time complexity of the SE algorithm is
linear in n and k, and is in

Θ
(

n
2
· k

4

)
= Θ(n · k)

Space Complexity

• Best Case:
The best case for the SE algorithm occurs when each conjunctive subpredicate c in the
predicate p to be evaluated references only one of the k dimensions of the data space.
Additionally, the k values of the data item i need to be stored. In this case, the space
complexity of the SE algorithm is linear in n and k, and is in

Ω(n+ k)

6.6 Performance Evaluation 161

• Worst Case:
The worst case for the SE algoritm occurs when each conjunctive subpredicate c in the
predicate p to be evaluated references all of the k dimensions of the data space. Addition-
ally, the k values of the data item i need to be stored. In this case, the space complexity of
the SE algorithm is again linear in n and k, and is in

O(n · k + k) = O((n+1) · k)

• Average Case:
The average case for the SE algorithm occurs when each conjunctive subpredicate c in
the predicate p to be evaluated references half of the k dimensions of the data space.
Additionally, the k values of the data item i need to be stored. In this case, the space
complexity of the SE algorithm is also linear in n and k, and is in

Θ
(

n · k
2

+ k
)

= Θ
((n

2
+1

)
· k

)
Summary

The SE algorithm shows linear time and space complexity in the worst and average case. This
causes the evaluation to slow down for large numbers of subpredicates n and for large numbers
of dimensions k. We introduced the index-based evaluation strategy to alleviate this problem.

6.5.7 Index-based Evaluation (IE)
The best case, worst case, and average case time and space complexities of the index-based
evaluation depend on the respective complexities of the employed index structure.

6.5.8 Summary
Tables 6.3 and 6.4 summarize the time complexities and the space complexities of the predicate
matching algorithms, respectively. Since the time complexity of the EM algorithm is the same
for all three split strategies, Table 6.3 shows the time complexity only once for the generic EM
algorithm. Also, in Table 6.4, the space complexities of the algorithms with the quick check are
omitted since they are the same as for the corresponding algorithms without the quick check.

Tables 6.5 and 6.6 summarize the time complexities and the space complexities of the pred-
icate evaluation algorithms, respectively. In Table 6.5, Ipoint

Ω (n,k), Ipoint
Θ (n,k), and Ipoint

O (n,k)
denote the best case, average case, and worst case time complexity of a point containment
query on the corresponding index structure. Analogously, in Table 6.6, Ispace

Ω (n,k), Ispace
Θ (n,k),

and Ispace
O (n,k) denote the best case, average case, and worst case space complexity of the cor-

responding index structure. In addition to the index, the values of the data item i in the k
dimensions need to be stored.

6.6 Performance Evaluation
This section presents our experimental evaluation results. First, we describe the implementation
of the algorithms presented in this chapter and the evaluation setting. Second, we show some
comparative evaluation results for predicate matching and predicate evaluation.

162 6. Matching and Evaluation Strategies for Disjunctive Predicates

TIME COMPLEXITY

Best Case Worst Case Average Case
QC Ω(1) O(n · k) Θ(n · k)
HSR Ω(m) O(m) Θ(m)
HSR+QC Ω(m) O

((
m ·n+m2) · k) Θ

((
m ·n+m2) · k)

HCR Ω(m) O
(
m ·n · k2) Θ

(
m ·n · k2)

HCR+QC Ω(m) O
(
m ·n · k2) Θ

(
m ·n · k2)

EM Ω(m) O(k · (2k)m+n) Θ(k · (k/2)m+n)
EM+QC Ω(m) O

((
m ·n+m2 +(2k)m+n) · k) Θ

((
m ·n+m2 +(k/2)m+n) · k)

Table 6.3: Time complexities of predicate matching algorithms

SPACE COMPLEXITY

Best Case Worst Case
QC Ω(n+1) O((n+1) · k)
HSR Ω(m+n) O((m+n) · k)
HCR Ω(m+n) O((m+n) · k)
EM-BFS Ω(m+n) O((m+n+(2k)n) · k)
EM-DFS Ω(m+n) O((m+n+(n−1) · (2k−1)+2k) · k)
EM-MIX Ω(m+n) O

((
m+n+(n−2) · (2k−1) ·2k +(2k)2) · k)

SPACE COMPLEXITY

Average Case
QC Θ((n+1) · k/2)
HSR Θ((m+n) · k/2)
HCR Θ((m+n) · k/2)
EM-BFS Θ

((
m+n+

√
(k/2)n

)
· (k/2)

)
EM-DFS Θ((m+n+((n−1)/2) · ((k/2)−1)+(k/2)) · (k/2))
EM-MIX Θ

((
m+n+((n−2)/2) · ((k/2)−1) · (k/2)+(k/2)2) · (k/2)

)
Table 6.4: Space complexities of predicate matching algorithms

6.6.1 Implementation and Setting

We have implemented all algorithms presented in this chapter using Java 5. We use double
values to represent constants in atomic predicates in our implementation. The internal represen-
tation of a disjunctive predicate contains a collection of conjunctive subpredicates. The entries
in this collection are automatically kept sorted in decreasing order in terms of the volume of
the hyperrectangle representing the predicate in multi-dimensional space. In our terminology, if
predicates have unbounded interval ends, a predicate is “smaller” than another one if it has less
unbounded interval ends or an equal number of unbounded interval ends and less volume when
restricting the volume computation to the finite dimensions. The purpose of the sorting is to
compare larger subpredicates first when iterating the subpredicate list of a disjunctive predicate.
This helps to find matches earlier or to match large parts of a subpredicate early on in order
to potentially reduce the number of necessary matching steps. Also, the intervals for each di-
mension within a conjunctive predicate are kept sorted in increasing order according to interval
length. Considering shorter intervals first increases the probability of comparing two disjoint
intervals early on. With the exception of the HCR algorithm, we can stop the comparison with

6.6 Performance Evaluation 163

TIME COMPLEXITY

Best Case Worst Case Average Case
SE Ω(1) O(n · k) Θ(n · k)
IE Ω(Ipoint

Ω (n,k)) O(Ipoint
O (n,k)) Θ(Ipoint

Θ (n,k))

Table 6.5: Time complexities of predicate evaluation algorithms

SPACE COMPLEXITY

Best Case Worst Case Average Case
SE Ω(n+ k) O((n+1) · k) Θ((n/2+1) · k)
IE Ω(Ispace

Ω (n,k)+ k) O(Ispace
O (n,k)+ k) Θ(Ispace

Θ (n,k)+ k)

Table 6.6: Space complexities of predicate evaluation algorithms

the current subpredicate when encountering disjoint intervals and continue with the next sub-
predicate without having to consider the remaining dimensions. These optimizations are used
for all the matching and evaluation algorithms throughout.

A generic interface allows the integration and usage of various index structures in our im-
plementation. For each index, the interface is implemented by an adapter class that delegates
the interface method calls to the appropriate method calls of the underlying index structure and
performs any necessary conversions. We have compared various implementations of R-tree
variants for our evaluation. For the evaluation of the matching algorithms, we have decided to
use an efficient lightweight main memory implementation of a standard R-tree with quadratic
split strategy [Guttman (1984)]. This specific implementation turned out to be the fastest of all
the index structures that we have tested for predicate matching and predicate evaluation. For
the predicate evaluation tests, however, we have switched to a more generic and flexible main
memory implementation of an R*-tree [van den Bercken et al. (2001)]. Although this specific
implementation of the R*-tree was slightly slower in our tests than the lightweight R-tree imple-
mentation, it already supports our short-circuit evaluation optimization without having to edit
the index source code. We have also repeated the evaluation of the matching algorithms using
this R*-tree implementation. In our tests, all index structures use a minimum node capacity of
5 and a maximum node capacity of 10.

All tests ran on a single server blade with two 2.8 GHz Intel Xeon processors (only one of
which was used), 4 GB of main memory, and SuSE Linux Enterprise Server 9.

6.6.2 Predicate Matching

For the evaluation of the predicate matching algorithms, we randomly generated a set of query
predicates and a set of stream predicates by appropriately setting the number of dimensions and
subpredicates, and by randomly choosing the constant values for the interval bounds of each di-
mension in each subpredicate. The values were chosen from a list of 21 distinct values between
0 and 100 using a normal distribution for query predicates and a uniform distribution for stream
predicates. Each subpredicate defines a finite interval in each dimension of the data space. For
the tests shown in this section, we used a set of 60 query predicates that were matched against
a set of 20 stream predicates. We matched each query predicate against each stream predicate,
i. e., 1200 predicate pairs were matched in total. Figures 6.9 to 6.11 show the average matching
time per predicate pair in milliseconds for the heuristics with simple relaxation (HSR+QC), the

164 6. Matching and Evaluation Strategies for Disjunctive Predicates

heuristics with complex relaxation (HCR+QC), and the exact matching algorithm with breadth-
first split strategy without index support (EM+QC) as well as with index support (EM+QC+I).
All algorithms use the quick check (QC). Note that the matching time is scaled logarithmically
on each of the three diagrams. If nothing else is stated, the default settings used for the tests
were 6 dimensions, 2 subpredicates per query predicate, and 20 subpredicates per stream pred-
icate. We use relatively low values for the numbers of dimensions and subpredicates in the
matching tests to be able to include the EM approach in the comparison. Due to its exponential
complexity, the EM approach is not feasible for large problem sizes. Note that matching time is
a part of query compilation time in our DSMS scenario. It is therefore less important if dealing
with long-running continuous queries.

In Figure 6.9, we varied the number of distinct dimensions in the data space that are refer-
enced in each predicate. We can clearly see that the matching time of the EM algorithm without
index support grows exponentially with an increasing number of dimensions. Using the index
approach significantly reduces matching time and can therefore keep the approach feasible for
larger problem sizes. The index-supported EM approach does not even differ that much from
the HCR approach which has polynomial complexity and whose running time increases lin-
early. The matching time of the HSR approach also increases linearly but is generally lower
than for the other algorithms since less complex computations need to be performed.

Figures 6.10 and 6.11 show the effects of a varying number of subpredicates in the query and
the stream predicate, respectively. Again, the index-based version of the EM algorithm clearly
outperforms the version without index and can compete roughly with the HCR approach. In
each case, the performance gain achieved through multi-dimensional indexing is about two
orders of magnitude.

We repeated the above tests with predicates containing infinite intervals. The predicates
were generated by randomly choosing the finite dimensions of the data space for each subpred-
icate using a uniform distribution. The remaining dimensions were not referenced by the sub-
predicate and were therefore unbounded. In this setting, the performance gain of the index was
about an order of magnitude less. However, the index-based EM algorithm was still superior to
the version without an index, especially for larger numbers of dimensions and subpredicates.

We furthermore repeated the matching tests using the R*-tree index that we also used for the
predicate evaluation tests further below instead of the lightweight R-tree index implementation.
Also, we included the exact matching algorithms with depth-first (EM-DFS) and mixed split
strategy (EM-MIX) in addition to the exact matching algorithm with breadth-first split strategy
(EM-BFS). The results shown in Figures 6.12 to 6.14 indicate that the R*-tree is a little bit
slower in our tests than the R-tree index of the previous tests. Also, with growing number of
dimensions and subpredicates in the query and the stream predicates, the EM-DFS and EM-
MIX algorithm variants increasingly outperform the EM-BFS variant without as well as with
index support. The difference in matching time between the EM-DFS and EM-MIX variants
is marginal in our tests. We did not investigate index support for the EM-DFS and EM-MIX
variants in detail. But we expect that an index could also improve the performance of these
algorithm variants. However, the achievable performance improvements through indexing are
supposed to be smaller than for the EM-BFS variant since the EM-DFS and EM-MIX algo-
rithms already avoid lots of unnecessary work compared to the EM-BFS algorithm. In fact, in
extreme cases, index overhead might even exceed index benefits.

An interesting observation from Figure 6.12 is that the EM-BFS algorithm with index sup-
port and the EM-DFS and EM-MIX algorithm variants become faster when increasing the num-
ber of dimensions referenced in each predicate from 5 to 6. Further, Figures 6.12 to 6.14 show

6.6 Performance Evaluation 165

 0.001

 0.01

 0.1

 1

 10

 100

2 3 4 5 6

A
vg

. m
at

ch
in

g
tim

e
(m

se
c)

Dimensions

HSR+QC
HCR+QC
EM+QC
EM+QC+I

Figure 6.9: Varying number of dimensions

 0.01

 0.1

 1

 10

 100

 1000

1 2 3

A
vg

. m
at

ch
in

g
tim

e
(m

se
c)

Subpredicates per query predicate

HSR+QC
HCR+QC
EM+QC
EM+QC+I

Figure 6.10: Varying query predicate size

 0.01

 0.1

 1

 10

 100

 1000

10 20 30

A
vg

. m
at

ch
in

g
tim

e
(m

se
c)

Subpredicates per stream predicate

HSR+QC
HCR+QC
EM+QC
EM+QC+I

Figure 6.11: Varying stream predicate size

 0.001

 0.01

 0.1

 1

 10

 100

2 3 4 5 6

A
vg

. m
at

ch
in

g
tim

e
(m

se
c)

Dimensions

HSR+QC
HCR+QC
EM−BFS+QC+I
EM−BFS+QC
EM−DFS+QC
EM−MIX+QC

Figure 6.12: Varying number of dimensions

 0.01

 0.1

 1

 10

 100

 1000

1 2 3

A
vg

. m
at

ch
in

g
tim

e
(m

se
c)

Subpredicates per query predicate

HSR+QC
HCR+QC
EM−BFS+QC+I
EM−BFS+QC
EM−DFS+QC
EM−MIX+QC

Figure 6.13: Varying query predicate size

 0.01

 0.1

 1

 10

 100

 1000

10 20 30

A
vg

. m
at

ch
in

g
tim

e
(m

se
c)

Subpredicates per stream predicate

HSR+QC
HCR+QC
EM−BFS+QC+I
EM−BFS+QC
EM−DFS+QC
EM−MIX+QC

Figure 6.14: Varying stream predicate size

that the EM-DFS and EM-MIX algorithm variants are actually faster than the HCR algorithm
if the number of dimensions referenced in the predicates is greater than 4. Note that the tests
shown in Figures 6.13 and 6.14 use the default value of 6 dimensions per predicate. These re-
sults are most likely due to the fact that an increasing number of dimensions also increases the
probability of encountering disjoint intervals when comparing the extents of two conjunctive

166 6. Matching and Evaluation Strategies for Disjunctive Predicates

 0.01

 0.1

 1

 10

 100

50 100 250 500

A
vg

. m
at

ch
in

g
tim

e
(m

se
c)

Subpredicates per stream predicate

HSR+QC
HCR+QC
EM−DFS+QC
EM−MIX+QC

Figure 6.15: Matching large predicates

subpredicates in the various dimensions. This reduces the total number of matching predicates
and enables the EM algorithm variants to stop the comparison early, thus preventing the corre-
sponding query subpredicate from being split. In contrast, the HCR algorithm does not benefit
from encountering disjoint intervals since it always needs to consider each dimension in each
stream subpredicate to obtain the desired result if the predicates under consideration do not
match without relaxation.

In another test, we investigated how the matching algorithms perform for larger predicates,
i. e., stream predicates with a larger number of subpredicates. Figure 6.15 shows the results.
The EM-BFS algorithm variant is missing in the figure since it was not able to process stream
predicates with more than 30 subpredicates without running out of main memory. As the figure
shows, the performance of the EM-DFS and EM-MIX algorithm variants is comparable to that
of the HCR algorithm for up to 50 subpredicates in the stream predicate. For 500 subpredicates,
HCR is about a factor of 3 faster than the exact matching variants.

To illustrate the differences in predicate relaxation between the matching algorithms, we
randomly generated a predicate with 6 dimensions and 20 subpredicates representing a stream
predicate. We also generated 4 predicates with 6 dimensions and 2 subpredicates each, which
represent query predicates. We generated the predicates as described above except that the
values for the interval bounds were chosen among 6 distinct values between 0 and 100 for
the query predicates and among 4 distinct values for the stream predicate. We then matched
the stream predicate with the first query predicate to obtain predicate pA. Predicate pA was
then matched with the second query predicate to obtain predicate pB. Predicate pB was again
matched with the third query predicate to obtain predicate pC which was in turn matched with
the fourth query predicate to obtain predicate pD. Matching was performed with the HSR,
the HSR+QC, the HCR, and the EM algorithms. Note that the use of the quick check for
HCR and EM and the use of index-based matching for all algorithms has no influence on the
structure of the resulting predicates. Predicates pA to pD were then evaluated using one million
uniformly distributed data items. Table 6.7 shows the results for the observed selectivities of all
four predicates depending on the matching algorithm that produced them. As expected, HSR,
HSR+QC, and EM yield predicates with identical selectivities because these algorithms produce
exact predicates that do not cause any false drops. Also, we can see that predicates pA and pC
need to be relaxed to obtain predicates pB and pD, respectively. The HCR algorithm relaxes the
predicate during each matching step and yields higher selectivity values which shows that this
algorithm causes false drops. However, the increase in selectivity induced by the false drops

6.6 Performance Evaluation 167

pA pB pC pD
HSR 66.31 66.37 66.37 66.44
HSR+QC 66.31 66.37 66.37 66.44
HCR 66.31 67.93 69.26 69.82
EM 66.31 66.37 66.37 66.44

Table 6.7: Selectivities for combined test (%)

never exceeds 3.5%. This indicates that the approximation made by the HCR algorithm stays
close to the exact solution in this test.

The difference between the various matching algorithms in the ability to detect matching
predicates that do not need to be relaxed is illustrated by the following test. Using a randomly
generated set of 60 query and 20 stream predicates with 3 possibly unbounded dimensions, 3
subpredicates per query predicate, and 30 subpredicates per stream predicate, the EM algorithm
successfully matched 933 out of the 1200 predicate pairs without relaxation. The remaining
algorithms, with the exception of the HSR algorithm without QC, detected only 660 matching
pairs. This means that the heuristics missed 273 matches in this example. The HSR algorithm
without QC never detects any matches at all.

Summarizing, we can state that the EM algorithm is applicable in practice as long as the
problem size, i. e., the number of dimensions in the data space and the number of subpredi-
cates in the stream predicate, is reasonably low. However, performance quickly degrades with
increasing problem size. This effect can be alleviated by combining the EM algorithm with
a multi-dimensional index on the subpredicates of the stream predicate. Since the DFS and
MIX split strategies outperform the BFS split strategy by far in all tests and are applicable for
larger problem sizes due to the profoundly reduced memory consumption, they are the preferred
choice. For very large problem sizes, the exponential time complexity of the EM algorithm be-
comes prohibitive. In this case, we need to use the heuristics instead. Both heuristics, HSR as
well as HCR, perform and scale well with increasing problem size. Also, the increase in pred-
icate selectivity induced by the approximation made when using HCR proves to be relatively
low in our tests.

6.6.3 Predicate Evaluation

In contrast to predicate matching time, predicate evaluation time is performance critical in our
DSMS scenario. We carried out the predicate evaluation tests by evaluating a given predicate
against one million randomly generated data items with values distributed uniformly between
0 and 100 for each dimension. We also again randomly generated predicates using a certain
number of subpredicates for disjunctively covering an area of the data space. We placed the re-
maining subpredicates in the middle of that area using a normal distribution for placing the cen-
ter point of each subpredicate. Since data items are distributed uniformly in the data space, the
percentage of the data space covered by the predicate yields the predicate’s selectivity. Unless
otherwise stated, all parameters take default values which are 3 dimensions, 100 subpredicates
in the predicate to be evaluated, and a predicate selectivity of 1%. We choose a larger number of
subpredicates for the evaluation benchmark than for the matching benchmark since we expect
many subpredicates to be introduced by predicate relaxation in the EM and especially the HSR
matching approaches. In our tests, predicates have an overlap of 50%. We achieve this by using
half of the subpredicates for disjunctively covering the area of the data space needed to obtain

168 6. Matching and Evaluation Strategies for Disjunctive Predicates

 0

 200

 400

 600

 800

 1000

 1200

2 3 4 5 6 7 8 9 10 11 12

T
hr

ou
gh

pu
t (

da

ta
 it

em
s/

m
se

c)

Dimensions

SE
IE

IE+SC

Figure 6.16: Varying number of dimensions

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

10 50 100 500 1000 5000

T
hr

ou
gh

pu
t (

da

ta
 it

em
s/

m
se

c)

Subpredicates

SE
IE

IE+SC

Figure 6.17: Varying predicate size

 0

 200

 400

 600

 800

 1000

 1200

1 5 10 25 50 75 100

T
hr

ou
gh

pu
t (

da

ta
 it

em
s/

m
se

c)

Selectivity (%)

SE
IE

IE+SC

Figure 6.18: Varying predicate selectivity

the desired selectivity and by placing the remaining subpredicates within this area as described
above. Figures 6.16 to 6.18 show the throughput of predicate evaluation in data items per mil-
lisecond for the standard evaluation (SE), the index-based evaluation (IE), and the index-based
evaluation with short-circuit optimization (IE+SC).

Figure 6.16 shows the throughput for a varying number of dimensions in the data space.
Clearly, index-based evaluation is superior for the given settings. Short-circuiting the evalua-
tion yields an additional performance gain of about 20%. For all three algorithms, throughput
decreases only moderately for an increasing number of dimensions.

In Figure 6.17, we vary the number of subpredicates in the predicate to be evaluated. Again,
index-based evaluation is clearly superior to standard evaluation and the performance of the
index-based approach degrades slower with an increasing number of subpredicates than the
performance of the standard approach. For 5000 subpredicates, the index-based approach is
still better than the standard evaluation for 10 subpredicates.

In another test, we varied the selectivity of the predicate to be evaluated between 1%, mean-
ing that only one in a hundred data items satisfies the predicate, and 100%, which means that
all data items satisfy the predicate. Figure 6.18 shows the results. Obviously, the lower the
selectivity, the better the index-based solutions perform. In contrast, the standard evaluation
performs better for higher selectivities. This is due to the fact that the index can identify a non-
qualifying data item early on, e. g., when comparing it to the root of the index tree if the data

6.6 Performance Evaluation 169

SELECTIVITY σ = 10% σ = 75%
OVERLAP 0% 15% 25% 30% 50% 0% 15% 25% 30% 50%
SE 100 100 100 100 100 100 100 100 100 100
IE 644 690 670 633 655 74 85 89 84 79
IE+SC 1215 1120 1114 1015 1088 160 156 185 181 160

Table 6.8: Relative throughput for varying predicate overlap (%)

item is situated outside the root area of the index. In contrast, the evaluation needs to descend
to the leaves of the tree if the data item qualifies. For the standard evaluation, the situation is
vice versa. A qualifying data item can be identified early on because as soon as the data item is
contained within the current subpredicate, no further comparisons with the remaining subpred-
icates are necessary. But if a data item does not qualify, all subpredicates need to be considered
in order to be sure that no matching subpredicate exists.

We can roughly expect from Figure 6.18 that for our default settings and for 50% subpred-
icate overlap, standard evaluation is better than index-based evaluation for selectivity values
above about 70% and better than index-based evaluation with short-circuit optimization for
selectivity values above about 90%. With less overlap between subpredicates, the situation
changes in favor of the index-based solutions. For overlap ratios of up to 40%, the index-based
evaluation with short-circuit optimization was superior for all selectivities in our tests when
using default values for the other parameters. Higher overlap reduces the benefit of the index-
based solutions as more overlap means that more paths need to be traversed in the tree. This
effect is worse for the index-based evaluation without short-circuit optimization. However, se-
lectivities are expected to be low in practice since users are mostly interested in very specific
parts of the available information. Also, the number of dimensions in our DSMS scenario is
supposed to be moderate since, e. g., sensor data streams rarely contain more than about 10 to 20
dimensions per data item. Further, queries often only reference a small subset of the available
dimensions. In contrast, the number of subpredicates can become large (in the order of many
thousand) if many queries are registered. This is due to the effects of data stream widening,
especially if the HSR approach is used.

Table 6.8 shows the relative throughput of the three predicate evaluation algorithms for
varying subpredicate overlap ratios of the evaluated predicate with low (σ = 10%) and high
(σ = 75%) selectivities. The baseline is the throughput of the standard evaluation (SE) which
is set to 100% in each case. For low selectivity values, the index-based evaluation (IE) and
the index-based evaluation with short-circuit optimization yield a performance gain of about a
factor of 6 and a factor of 11, respectively. For high selectivity values, the index-based evalua-
tion is already inferior to the standard evaluation. The index-based evaluation with short-circuit
optimization is however still superior by about 55% to 85%. This shows that the short-circuit
optimization yields a major improvement over the non-optimized index approach and makes
index use beneficial even for high predicate overlap ratios and selectivity values.

The throughput of the individual algorithms does not show a stable trend for increasing
overlap ratios in Table 6.8. This is due to the fact that we have randomly generated a new
predicate for each overlap ratio. Therefore, the characteristics of the various predicates cannot
be fully controlled. However, variations are similar in relation for all three algorithms.

Summarizing, the index-based evaluation is beneficial especially for predicates with many
subpredicates and realistically low selectivity values. It yields performance gains of up to three
orders of magnitude for predicates with 50% overlap and even more if overlap is less. The tests

170 6. Matching and Evaluation Strategies for Disjunctive Predicates

also show that the short-circuit optimization alleviates the disadvantages of multi-dimensional
index structures such as the R-tree when indexing highly overlapping regions.

6.7 Related Work
Efficient handling of predicates has been a research topic for many years. Rosenkrantz and Hunt
(1980) have already examined the handling of conjunctive predicates in the early 1980s. They
deal with problems such as predicate representation and predicate minimization as well as with
equivalence and satisfiability checking. Sun et al. (1989) address implication checking for con-
junctive predicates. Guo et al. (1996) conducted detailed studies for solving satisfiability, impli-
cation, and equivalence problems for conjunctive predicates concerning different domains and
operator sets. Denny and Franklin (2005) introduce predicate result range caching for speeding
up the evaluation of continuous queries. Instead of merely memorizing the predicate evaluation
results of single input values, which may be ineffective if values are diverse and drawn from a
large domain, predicate result range caching computes and caches predicate evaluation results
for ranges of input values. This allows for more effective cache usage and saves potentially ex-
pensive predicate evaluations. Predicate result range caching is also in a sense related to stream
sharing. However, instead of sharing result streams, range caching shares predicate evaluation
results for ranges of input values. Furthermore, since predicate result range caching also per-
forms range expansion to increase the value ranges for which the predicate evaluation result is
known, range caching is also somehow related to data stream widening. However, all of the
above works are restricted to conjunctive predicates.

Predicate indexing has been and still is an active research area, especially in the domains
of active databases [Widom and Ceri (1996)] and publish&subscribe systems such as Le Sub-
scribe [Fabret et al. (2001)] and MDV [Keidl et al. (2002)]. Two index structures that have
been proposed for predicate indexing in active databases are the IBS-tree [Hanson et al. (1990)]
and interval skip lists [Hanson and Johnson (1996)]. These are one-dimensional index struc-
tures for indexing a set of independent intervals on one attribute. Another approach for index-
ing a set of independent one-dimensional intervals are virtual construct intervals (VCIs) [Wu
et al. (2004b)]. There also exists a two-dimensional variant, the virtual construct rectangles
(VCRs) [Wu et al. (2004a)], for indexing a set of independent two-dimensional intervals. In
contrast, we propose using a multi-dimensional index structure for indexing a set of multi-
dimensional conjunctive predicates that are all part of the disjunctive normal form of the same
disjunctive predicate. Wang et al. (2004) study multi-dimensional predicate indexing for event
filtering in publish&subscribe systems using the UB-tree as an index structure. Their approach
accordingly transforms the dimensions using a space filling curve to map the multi-dimensional
universe to a one-dimensional space. Further, Enderle et al. (2005) have examined index support
for the evaluation of queries over data sets containing interval-valued attributes.

There are only few works on predicate handling for disjunctive predicates in the database
field. These approaches deal with the efficient evaluation of disjunctive predicates by merging
disjuncts [Muralikrishna and DeWitt (1988)] or by using a special form of relational algebra
translation [Bry (1989)]. Other work focuses on bypassing the evaluation of expensive predi-
cate terms if possible [Claussen et al. (2000); Kemper et al. (1994)] and on union pushdown
techniques for optimizing the processing of disjunctive predicates [Chang and Lee (1997)].
Hellerstein and Stonebraker (1993) also consider disjunctive predicates in their work on opti-
mizing query evaluation by appropriately moving expensive predicates in the query plan.

Multi-dimensional indexing has originally been motivated by the needs of spatial databases.

6.8 Summary 171

One of the most well-known spatial index structures is the R-tree introduced by Guttman (1984).
It uses minimum bounding boxes to index spatial objects and stores multi-dimensional rectan-
gles such as our conjunctive subpredicates without any further transformation or clipping. The
R*-tree by Beckmann et al. (1990) is an advanced version of the R-tree aiming at improved
performance by reducing the area, margin, and overlap of the rectangles stored in the index.
These goals are achieved by employing a modified insertion strategy that uses a forced reinsert
policy. Overlap between index regions is known to be responsible for performance degradation
in an R-tree during a search due to the necessity of traversing all paths covering or intersecting
the searched data point or region. To completely eliminate any overlap between index regions,
Sellis et al. (1987) developed the R+-tree which uses clipping to distribute non-overlapping
parts of rectangles over different index regions. While the problem of overlapping regions is
thus avoided, the clipping approach may lead to a high fragmentation of indexed regions. The
TV-tree of Lin et al. (1994) indexes high-dimensional data by dynamically choosing an appro-
priate subset of dimensions for indexing on each index level. A similar indexing approach could
be beneficial in our setting. It could be used to dynamically adapt the index to a changing set of
dimensions referenced in the indexed predicate during predicate relaxation. Investigating such
advanced predicate indexing approaches is an interesting aspect for future work. Finally, Gaede
and Günther (1998) have published an extensive survey on multi-dimensional access methods
including a classification and comparative studies.

6.8 Summary
In this chapter, we have presented various methods for matching and evaluating interval-based
disjunctive predicates. Matching involves deciding whether a predicate implies another and, if
this is not the case, how the other predicate can be altered in order for the implication to become
valid. We have concentrated on predicates in disjunctive normal form consisting of conjunctive
subpredicates that form multi-dimensional hyperrectangles with edges parallel to the coordinate
axes in the data space. The approach can also be used as an approximation for more complex
shaped predicates. This affords a non-trivial postprocessing step that we do not elaborate on in
this thesis. We have introduced two heuristics that can be executed efficiently but either cause
the number of subpredicates of a disjunctive predicate to increase or deliver only approximate
results. We have further shown an exact solution that is applicable for small input sizes, i. e.,
small numbers of dimensions and subpredicates. Achieving high throughput during predicate
evaluation is a major goal in most application scenarios. We therefore have further dealt with
the evaluation of disjunctive predicates and examined the use of multi-dimensional indexing for
speeding up predicate matching and predicate evaluation. We have implemented and evaluated
all our algorithms in a comparative experimental study asserting the effectiveness of the index-
based approach which yields a performance gain of up to several orders of magnitude compared
to the corresponding solution without indexing.

There are numerous opportunities for future work. First, the applicability and efficiency
of other multi-dimensional index structures in the context of predicate matching and predicate
evaluation could be examined. Second, implementing a specialized index structure that is based
on existing index techniques but specifically fits the needs of indexing disjunctive predicates is
an interesting approach. In this course, the functionality of predicate matching could be fully
or partially integrated into the index itself.

172 6. Matching and Evaluation Strategies for Disjunctive Predicates

173

CHAPTER 7

Conclusion and Outlook

Data streams constitute a relatively new paradigm for data management and data processing.
Despite its novelty, this paradigm forms a natural way of modelling actual data in many ap-
plication scenarios, e. g., in sensor networks or in scientific experiments and observations. In
many of these application domains and especially in e-science, cooperative nodes for deliver-
ing, processing, and requesting streaming data are often—also geographically—distributed over
various administrative domains. We target such application scenarios with our StreamGlobe
system which constitutes a model as well as a prototype implementation of a distributed data
stream management system (DSMS) based on techniques known from P2P systems and Grid
computing. An astrophysical flavor of StreamGlobe, called StarGlobe, augments StreamGlobe
with user-defined operators from the astrophysics domain and proves that stream-based pro-
cessing including parallelization and early filtering is a valuable computing approach for actual
astrophysical e-science workflows.

In DSMSs in general and in distributed DSMSs in particular, multi-query optimization offers
huge optimization potentials. This is due to the fact that long-running continuous queries enable
larger amortized optimization benefits in terms of computational load and network traffic than
short-lived one-time queries known from traditional database management systems (DBMSs).
Data stream sharing is an optimization technique that aims at reducing computational load on
peers and network traffic on network connections between peers in a distributed DSMS such as
StreamGlobe. The optimization employs in-network query processing and multi-subscription
optimization to achieve these goals. Using a cost model to generate query plans that share result
data streams of previously registered queries, multi-subscription optimization avoids redundant
processing and transfer of data streams in the network. Additionally, in-network query process-
ing increases the flexibility of the system by allowing any device to register arbitrarily complex
queries and by delegating query processing to the super-peers in the backbone network. Fur-
ther, in-network query processing enables load balancing and the reduction of network traffic
by means of early filtering and early aggregation. Data stream sharing shows significantly im-
proved performance in our experiments compared to traditional distributed query processing
techniques such as data shipping and query shipping.

174 7. Conclusion and Outlook

We have further improved data stream sharing by introducing data stream widening. Re-
laxing selection predicates, projection operators, and data window definitions for aggregates or
joins can greatly improve the possibilities for sharing the result data streams of previously reg-
istered queries in the network. Furthermore, data stream widening makes optimization quality
more independent from actual query characteristics and the query registration sequence. We
have introduced an abstract property tree (APT) and an abstract property forest (APF) repre-
sentation of queries and data streams. APTs enable the matching and merging of queries and
data in the context of data stream sharing and data stream widening for queries with a single
input stream. APFs provide the same possibilities for queries with multiple input streams. For-
mal inference rules and query templates describe the process of translating a query into the
internal APT or APF representation and vice versa. Experiments using our StreamGlobe proto-
type implementation indicate that data stream widening further improves the effectiveness and
applicability of data stream sharing.

Finally, we have investigated in detail possible approaches for matching, relaxing, and eval-
uating disjunctive predicates that may occur in user queries or result from data stream widen-
ing. For solving the matching problem, we have described and compared two heuristics and
an exact solution that is, however, only applicable for reasonably small problem sizes due to
its exponential complexity. Furthermore, we have investigated possible improvements to pred-
icate matching and predicate evaluation through multi-dimensional indexing. We analyzed the
complexities of the proposed matching and evaluation algorithms. An extensive comparative
performance evaluation shows how the algorithms relate to each other and reveals the benefits
of speeding up predicate matching and predicate evaluation using multi-dimensional indexing.

The techniques presented in this thesis form the basis of a network-aware optimizer for
continuous queries over streaming data in a distributed DSMS. There are several worthwile
directions for extending this work. Among the most important ones are the following:

• In an architectural sense, it would be interesting to investigate the hierarchical network
organization proposed in Section 2.3.6 in more detail, e. g., with respect to the determi-
nation of optimal subnet sizes. Another aspect is the dynamic selection of speaker-peers
and the dynamic growth or shrinkage of subnets in environments where super-peers may
dynamically join or leave the network and in case of node failures.

• The WXQuery language introduced in Section 4.3 offers possibilities for further language
extensions. One issue would be the introduction of a general let expression similar to the
let expression in standard XQuery. Such extensions need to be investigated under the
light of their potential implications for the internal query and stream representation and
the matching process in the context of data stream sharing and data stream widening.

• An important aspect concerning queries with multiple input streams is the question of
optimal network-aware operator placement. While previous work in this direction exists
in the field of distributed databases [Kossmann (2000)] as well as in the area of data
stream processing [Pietzuch et al. (2006); Srivastava et al. (2005)], the applicability of
such solutions in the context of network-aware optimization in distributed DSMSs still
needs to be evaluated.

• Data stream widening as introduced in Chapter 5 already introduces increased dynamics
into the data stream sharing optimization process. Instead of only considering streams for
reuse that are available at the time of optimization as in Chapter 4, widening allows to
dynamically change the current network state. This also affects the query evaluation plans

175

of previously registered queries and increases the possibilities for sharing preprocessed
streams. Yet, the incremental optimization and integration of newly arriving queries might
lead to a suboptimal global state of the distributed DSMS over time. Periodic or event-
based reoptimization can help to alleviate this problem. Since global reoptimization in
large-scale systems is prohibitively expensive, reoptimization should be combined with a
hierarchical network organization. This allows for the feasible independent reoptimiza-
tion of smaller individual subnets.

• Eventually, dynamic plan migration for distributed query evaluation plans is a topic of
major importance in the context of data stream widening. Previous solutions to the dy-
namic plan migration problem [Krämer et al. (2006); Yang et al. (2007); Zhu et al. (2004)]
focus on migrating a logical algebra operator plan to a semantically equivalent plan if the
original plan has become suboptimal during query processing due to changing conditions
such as stream rates or operator selectivities. In contrast, data stream widening requires
migrating existing plans to widened plans that result from widening-enabled optimiza-
tion. This makes the migration problem potentially more difficult. Additional difficulties
arise from the fact that query plans are distributed in StreamGlobe and that existing de-
pendencies that share the results of the migrated plan must be preserved. Research in
this direction needs to investigate whether existing methods can be applied to the new
problem—possibly with some changes or extensions—or whether new solutions need to
be developed.

Altogether, these topics constitute many interesting future research directions in both, data
stream management in general as well as network-aware continuous query optimization in dis-
tributed DSMSs in particular.

176 7. Conclusion and Outlook

177

APPENDIX A

StreamGlobe Client Interface

A.1 Example Scenario

A StreamGlobe scenario is an XML document describing the network topology and the streams
and queries to be registered in the system. The StreamGlobe prototype provides a client for
reading and executing such a scenario description. The following example scenario reflects the
example network of Figure 4.1 on page 38.

<?xml version ="1.0" encoding ="UTF -8"?>

<scenario name=" example"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xmlns="http ://www -db.in.tum.de/research/projects/

StreamGlobe/scenario">

<statistix dbPath ="${user.home}/ statistiX" reportType ="file"/>

<graph >

<vertex vid ="0" label ="000"/ >

<vertex vid ="1" label ="001"/ >

<vertex vid ="2" label ="010"/ >

<vertex vid ="3" label ="011"/ >

<vertex vid ="4" label ="100"/ >

<vertex vid ="5" label ="101"/ >

<vertex vid ="6" label ="110"/ >

<vertex vid ="7" label ="111"/ >

<edge source ="0" target ="1"/>

<edge source ="0" target ="2"/>

<edge source ="0" target ="4"/>

<edge source ="1" target ="3"/>

<edge source ="1" target ="5"/>

<edge source ="2" target ="3"/>

178 Appendix A. StreamGlobe Client Interface

<edge source ="2" target ="6"/>

<edge source ="3" target ="7"/>

<edge source ="4" target ="5"/>

<edge source ="4" target ="6"/>

<edge source ="5" target ="7"/>

<edge source ="6" target ="7"/>

</graph >

<streams >

<kindDefinition >

<kind name="file" class=" streamglobe.client.p2p.

FileContentServer "/>

</kindDefinition >

<stream sid=" photons" type="file">

<dtd filename ="/ home/strglobe/schema/vela.dtd"/>

<param name=" stream.filename">

/home/strglobe/data/vela.xml

</param >

<param name=" stream.server.port">

9009

</param >

<param name=" stream.sleep.time">

100

</param >

</stream >

</streams >

<queries >

<query qid="1">

<![CDATA[

<photons >

{

for $p in stream (" photons ")/photons/photon

where $p/coord/cel/ra >= 120.0

and $p/coord/cel/ra <= 138.0

and $p/coord/cel/dec >= -49.0

and $p/coord/cel/dec <= -40.0

return

<vela >

{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/phc} {$p/en} {$p/det_time}

</vela >

}

</photons >

]]>

</query >

<query qid="2">

<![CDATA[

<photons >

{

A.1 Example Scenario 179

for $p in stream (" photons ")/photons/photon

where $p/en >= 1.3

and $p/coord/cel/ra >= 130.5

and $p/coord/cel/ra <= 135.5

and $p/coord/cel/dec >= -48.0

and $p/coord/cel/dec <= -45.0

return

<rxj >

{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det_time}

</rxj >

}

</photons >

]]>

</query >

<query qid="3">

<![CDATA[

<photons >

{

for $w in stream (" photons ")/photons/photon

[coord/cel/ra >= 120.0 and

coord/cel/ra <= 138.0 and

coord/cel/dec >= -49.0 and

coord/cel/dec <= -40.0]

|det_time diff 20 step 10|

let $a := avg($w/en)

return

<avg_en >

{$a}

</avg_en >

}

</photons >

]]>

</query >

<query qid="4">

<![CDATA[

<photons >

{

for $w in stream (" photons ")/photons/photon

[coord/cel/ra >= 120.0 and

coord/cel/ra <= 138.0 and

coord/cel/dec >= -49.0 and

coord/cel/dec <= -40.0]

|det_time diff 60 step 40|

let $a := avg($w/en)

where $a >= 1.3

return

<avg_en >

{$a}

</avg_en >

180 Appendix A. StreamGlobe Client Interface

}

</photons >

]]>

</query >

</queries >

<injectorMapping >

<mapping peer ="4" stream =" photons"/>

</injectorMapping >

<queryMapping >

<mapping peer ="1" query ="1"/>

<mapping peer ="7" query ="2"/>

<mapping peer ="3" query ="3"/>

<mapping peer ="2" query ="4"/>

</queryMapping >

</scenario >

Listing A.1: Example scenario

A.2 Scenario Schema 181

A.2 Scenario Schema

StreamGlobe scenarios adhere to the following XML Schema:

<?xml version ="1.0" encoding ="UTF -8"?>

<xs:schema attributeFormDefault =" unqualified"

elementFormDefault =" qualified"

xmlns:xs="http ://www.w3.org /2001/ XMLSchema"

targetNamespace ="http ://www -db.in.tum.de/research/

projects/StreamGlobe/scenario"

xmlns:sg="http ://www -db.in.tum.de/research/projects/

StreamGlobe/scenario">

<xs:element name=" scenario">

<xs:complexType >

<xs:sequence >

<xs:element ref="sg:statistix" minOccurs ="0"/>

<xs:element ref="sg:graph"/>

<xs:element ref="sg:streams"/>

<xs:element ref="sg:queries" minOccurs ="0"/>

<xs:element ref="sg:injectorMapping "/>

<xs:element ref="sg:queryMapping" minOccurs ="0"/>

</xs:sequence >

<xs:attribute name="name" type="xs:string" use=" required"/>

</xs:complexType >

<xs:key name=" vertexKey">

<xs:selector xpath="sg:graph/sg:vertex"/>

<xs:field xpath="@vid"/>

</xs:key >

<xs:keyref name=" vertexRefForSource" refer="sg:vertexKey">

<xs:selector xpath="sg:graph/sg:edge"/>

<xs:field xpath=" @source"/>

</xs:keyref >

<xs:keyref name=" vertexRefForTarget" refer="sg:vertexKey">

<xs:selector xpath="sg:graph/sg:edge"/>

<xs:field xpath=" @target"/>

</xs:keyref >

<xs:keyref name=" vertexRefForStreamInjector" refer="sg:

vertexKey">

<xs:selector xpath="sg:injectorMapping/sg:mapping"/>

<xs:field xpath="@peer"/>

</xs:keyref >

<xs:keyref name=" vertexRefForQueryMapping" refer="sg:vertexKey

">

<xs:selector xpath="sg:queryMapping/sg:mapping"/>

<xs:field xpath="@peer"/>

</xs:keyref >

<xs:key name=" streamKey">

<xs:selector xpath="sg:streams/sg:stream"/>

182 Appendix A. StreamGlobe Client Interface

<xs:field xpath="@sid"/>

</xs:key >

<xs:keyref name=" streamRef" refer="sg:streamKey">

<xs:selector xpath="sg:injectorMapping/sg:mapping"/>

<xs:field xpath=" @stream"/>

</xs:keyref >

<xs:key name=" queryKey">

<xs:selector xpath="sg:queries/sg:query"/>

<xs:field xpath="@qid"/>

</xs:key >

<xs:keyref name=" queryRef" refer="sg:queryKey">

<xs:selector xpath="sg:queryMapping/sg:mapping"/>

<xs:field xpath=" @query"/>

</xs:keyref >

<xs:key name=" kindKey">

<xs:selector xpath="sg:streams/sg:kindDefinition/sg:kind"/>

<xs:field xpath="@name"/>

</xs:key >

</xs:element >

<xs:element name=" statistix">

<xs:complexType >

<xs:attribute name=" dbPath" type="xs:string" use=" required"/>

<xs:attribute name=" reportType" default ="file" use=" optional

">

<xs:simpleType >

<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="file"/>

<xs:enumeration value="rrdb"/>

<xs:enumeration value=" combined"/>

</xs:restriction >

</xs:simpleType >

</xs:attribute >

</xs:complexType >

</xs:element >

<xs:element name="graph">

<xs:complexType >

<xs:sequence >

<xs:element name=" vertex" maxOccurs =" unbounded">

<xs:complexType >

<xs:attribute name="vid" type="xs:unsignedByte" use="

required"/>

<xs:attribute name="label" type="xs:string" use="

optional"/>

<xs:attribute name="pid" type="xs:string" use=" optional

"/>

A.2 Scenario Schema 183

</xs:complexType >

</xs:element >

<xs:element name="edge" minOccurs ="0" maxOccurs =" unbounded

">

<xs:complexType >

<xs:attribute name=" source" type="xs:unsignedByte" use

=" required"/>

<xs:attribute name=" target" type="xs:unsignedByte" use

=" required"/>

</xs:complexType >

</xs:element >

</xs:sequence >

</xs:complexType >

</xs:element >

<xs:element name=" streams">

<xs:complexType >

<xs:sequence >

<xs:element name=" kindDefinition">

<xs:complexType >

<xs:sequence >

<xs:element name="kind" maxOccurs =" unbounded">

<xs:complexType >

<xs:attribute name="name" type="xs:string" use="

required"/>

<xs:attribute name="class" type="xs:string" use="

required"/>

</xs:complexType >

</xs:element >

</xs:sequence >

</xs:complexType >

</xs:element >

<xs:element name=" stream" maxOccurs =" unbounded">

<xs:complexType >

<xs:sequence >

<xs:element name="dtd">

<xs:complexType >

<xs:attribute name=" filename" type="xs:string"

use=" required"/>

</xs:complexType >

</xs:element >

<xs:element name="param" maxOccurs =" unbounded">

<xs:complexType >

<xs:simpleContent >

<xs:extension base="xs:string">

<xs:attribute name="name" type="xs:string"

use=" required"/>

</xs:extension >

</xs:simpleContent >

</xs:complexType >

184 Appendix A. StreamGlobe Client Interface

</xs:element >

</xs:sequence >

<xs:attribute name="sid" type="xs:string" use=" required

"/>

<xs:attribute name="type" type="xs:string" use="

required"/>

</xs:complexType >

</xs:element >

</xs:sequence >

</xs:complexType >

</xs:element >

<xs:element name=" queries">

<xs:complexType >

<xs:sequence >

<xs:element name="query" maxOccurs =" unbounded">

<xs:complexType mixed="true">

<xs:sequence minOccurs ="0">

<xs:element name=" resource">

<xs:complexType >

<xs:attribute name=" filename" type="xs:string"

use=" required"/>

</xs:complexType >

</xs:element >

</xs:sequence >

<xs:attribute name="qid" type="xs:unsignedByte" use="

required"/>

</xs:complexType >

</xs:element >

</xs:sequence >

</xs:complexType >

</xs:element >

<xs:element name=" injectorMapping">

<xs:complexType >

<xs:sequence >

<xs:element name=" mapping" maxOccurs =" unbounded">

<xs:complexType >

<xs:attribute name="peer" type="xs:unsignedByte" use="

required"/>

<xs:attribute name=" stream" type="xs:string" use="

required"/>

</xs:complexType >

</xs:element >

</xs:sequence >

</xs:complexType >

</xs:element >

<xs:element name=" queryMapping">

<xs:complexType >

A.2 Scenario Schema 185

<xs:sequence >

<xs:element name=" mapping" maxOccurs =" unbounded">

<xs:complexType >

<xs:attribute name="peer" type="xs:unsignedByte" use="

required"/>

<xs:attribute name="query" type="xs:unsignedByte" use="

required"/>

<xs:attribute name=" install_interval" type="xs:int" use

=" optional"/>

</xs:complexType >

</xs:element >

</xs:sequence >

</xs:complexType >

</xs:element >

</xs:schema >

Listing A.2: Scenario schema

186 Appendix A. StreamGlobe Client Interface

A.3 Distributed Query Evaluation Plan

Similar to scenarios, distributed query evaluation plans are also represented as XML documents
in StreamGlobe. Each plan consists of a sequence of nested plan elements. Each plan ele-
ment belongs to a certain peer in the network and contains information about all the stream
operators to be installed, removed, or replaced locally at the respective peer. Furthermore, the
plan element contains nested subplans for all neighbor peers that are affected by the plan. The
nested subplans are again plan elements themselves. In an actual distributed query evaluation
plan, the outermost plan element contains the local plan for the super-peer at which the query is
registered. The innermost plan elements correspondingly contain the local plans for the peers
at which the input streams of the query are available.

The following example plan was generated by the StreamGlobe optimizer for installing the
example query q1 of Chapter 4 in the example network of Figure 4.1 on page 38.

<?xml version ="1.0" encoding ="UTF -8"?>

<plan atPeer ="http ://192.168.0.1:8080/ wsrf/services/streamglobe/

PeerFactory ?1"

id="query -1:plan -1"

xmlns="urn:streamglobe.in.tum.de/pdc"

xmlns:pdc="urn:streamglobe.in.tum.de/pdc"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance">

<add >

<streamoperator id="query -1:plan -1:query -1:q1#"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -

instance"

xsi:type=" queryStreamoperatorType">

<dependencies >

<streamreference id="query -1:plan -1"/>

</dependencies >

<source >

<![CDATA[

<photons >

{

for $p in /photons/photon

return

<vela >

{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/phc} {$p/en} {$p/det_time}

</vela >

}

</photons >

]]>

</source >

<input -dtd >

<![CDATA[

<!ELEMENT photons (photon)*>

<!ELEMENT photon (coord , phc , en, det_time)>

<!ELEMENT coord (cel)>

<!ELEMENT cel (ra, dec)>

<!ELEMENT ra (# PCDATA)>

A.3 Distributed Query Evaluation Plan 187

<!ELEMENT dec (# PCDATA)>

<!ELEMENT phc (# PCDATA)>

<!ELEMENT en (# PCDATA)>

<!ELEMENT det_time (# PCDATA)>

]]>

</input -dtd >

<output -dtd >

<![CDATA[

<!ELEMENT photons (photon)*>

<!ELEMENT photon (coord , phc , en, det_time)>

<!ELEMENT coord (cel)>

<!ELEMENT cel (ra, dec)>

<!ELEMENT ra (# PCDATA)>

<!ELEMENT dec (# PCDATA)>

<!ELEMENT phc (# PCDATA)>

<!ELEMENT en (# PCDATA)>

<!ELEMENT det_time (# PCDATA)>

]]>

</output -dtd >

</streamoperator >

<streamoperator id="query -1:plan -1"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -

instance"

xsi:type=" counterStreamoperatorType">

<dependencies >

<streamreference id="query -1:plan -0"/>

</dependencies >

<stream -item >photon </stream -item >

<neighbor >

http ://192.168.0.1:8080/ wsrf/services/streamglobe/

PeerFactory ?5

</neighbor >

</streamoperator >

</add >

<plan atPeer ="http ://192.168.0.1:8080/ wsrf/services/streamglobe/

PeerFactory ?5"

id="query -1:plan -0"

xmlns="urn:streamglobe.in.tum.de/pdc"

xmlns:pdc="urn:streamglobe.in.tum.de/pdc"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance">

<add >

<streamoperator id="query -1:plan -0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -

instance"

xsi:type=" counterStreamoperatorType">

<dependencies >

<streamreference id="query -1"/>

</dependencies >

<stream -item >photon </stream -item >

<neighbor >

188 Appendix A. StreamGlobe Client Interface

http ://192.168.0.1:8080/ wsrf/services/streamglobe/

PeerFactory ?4

</neighbor >

</streamoperator >

</add >

<plan atPeer ="http ://192.168.0.1:8080/ wsrf/services/streamglobe

/PeerFactory ?4"

id="query -1"

xmlns="urn:streamglobe.in.tum.de/pdc"

xmlns:pdc="urn:streamglobe.in.tum.de/pdc"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance">

<add >

<streamoperator id="query -1:q0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema

-instance"

xsi:type=" queryStreamoperatorType">

<dependencies >

<stream id=" photons"/>

</dependencies >

<source >

<![CDATA[

<photons >

{

for $p in /photons/photon

where $p/coord/cel/ra >= 120.0

and $p/coord/cel/ra <= 138.0

and $p/coord/cel/dec >= -49.0

and $p/coord/cel/dec <= -40.0

return

<photon >

<coord >

<cel >

{$p/coord/cel/ra}

{$p/coord/cel/dec}

</cel >

</coord >

{$p/phc}

{$p/en}

{$p/det -time}

</photon >

}

</photons >

]]>

</source >

<input -dtd >

<![CDATA[

<!ELEMENT photons (photon)* >

<!ELEMENT photon (coord , phc , en, det_time)>

<!ELEMENT coord (cel , det)>

<!ELEMENT cel (ra, dec)>

A.3 Distributed Query Evaluation Plan 189

<!ELEMENT ra (# PCDATA)>

<!ELEMENT dec (# PCDATA)>

<!ELEMENT det (dx, dy)>

<!ELEMENT dx (# PCDATA)>

<!ELEMENT dy (# PCDATA)>

<!ELEMENT phc (# PCDATA)>

<!ELEMENT en (# PCDATA)>

<!ELEMENT det_time (# PCDATA)>

]]>

</input -dtd >

<output -dtd >

<![CDATA[

<!ELEMENT photons (photon)*>

<!ELEMENT photon (coord , phc , en, det_time)>

<!ELEMENT coord (cel)>

<!ELEMENT cel (ra, dec)>

<!ELEMENT ra (# PCDATA)>

<!ELEMENT dec (# PCDATA)>

<!ELEMENT phc (# PCDATA)>

<!ELEMENT en (# PCDATA)>

<!ELEMENT det_time (# PCDATA)>

]]>

</output -dtd >

</streamoperator >

</add >

</plan >

</plan >

</plan >

Listing A.3: Distributed query evaluation plan

190 Appendix A. StreamGlobe Client Interface

A.4 Plan Schema

Distributed query evaluation plans in StreamGlobe adhere to the following XML Schema:

<?xml version ="1.0" encoding ="UTF -8"?>

<xs:schema attributeFormDefault =" unqualified"

elementFormDefault =" qualified">

xmlns:xs="http ://www.w3.org /2001/ XMLSchema"

targetNamespace ="urn:streamglobe.in.tum.de/pdc"

xmlns:pdc="urn:streamglobe.in.tum.de/pdc">

<xs:element name="plan">

<xs:complexType >

<xs:sequence >

<xs:element name=" delete" type="pdc:

deleteOperatorsAtPeerType" minOccurs ="0"/>

<xs:element name=" replace" type="pdc:

replaceOperatorsAtPeerType" minOccurs ="0" maxOccurs ="

unbounded"/>

<xs:element name="add" type="pdc:addOperatorsAtPeerType"

minOccurs ="0"/>

<xs:element ref="pdc:plan" minOccurs ="0" maxOccurs ="

unbounded"/>

</xs:sequence >

<xs:attribute name=" atPeer" type="xs:string" use=" required"/>

<xs:attribute name="id" type="xs:string" use=" required"/>

</xs:complexType >

<xs:key name=" planIdOrOperatorId">

<xs:selector xpath ="./ pdc:add/pdc:streamoperator |./pdc:plan

"/>

<xs:field xpath="@id"/>

</xs:key >

<xs:keyref name=" validReferences" refer="pdc:planIdOrOperatorId

">

<xs:selector xpath ="./ pdc:add/pdc:streamoperator/pdc:

dependencies/pdc:streamreference "/>

<xs:field xpath="@id"/>

</xs:keyref >

<xs:unique name=" doNotDeleteNewOperators">

<xs:selector xpath =".// pdc:streamoperator "/>

<xs:field xpath="@id"/>

</xs:unique >

</xs:element >

<xs:complexType name=" deleteOperatorsAtPeerType">

<xs:sequence >

<xs:element name=" streamoperator" type="pdc:

abstractStreamoperatorType" maxOccurs =" unbounded"/>

</xs:sequence >

</xs:complexType >

A.4 Plan Schema 191

<xs:complexType name=" replaceOperatorsAtPeerType">

<xs:sequence >

<xs:element name=" delete" type="pdc:deleteOperatorsAtPeerType

" minOccurs ="0"/>

<xs:element name="add" type="pdc:addOperatorsAtPeerType"

minOccurs ="0"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" addOperatorsAtPeerType">

<xs:sequence >

<xs:element name=" streamoperator" type="pdc:

abstractStreamoperatorType" maxOccurs =" unbounded"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" parameterType">

<xs:sequence >

<xs:element name="key" type="xs:string"/>

<xs:element name="value" type="xs:string"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" abstractStreamoperatorType" abstract ="true

">

<xs:sequence >

<xs:element name=" dependencies">

<xs:complexType >

<xs:choice maxOccurs =" unbounded">

<xs:element name=" streamreference" type="pdc:

streamreferenceType "/>

<xs:element name=" stream" type="pdc:streamType"/>

</xs:choice >

</xs:complexType >

</xs:element >

</xs:sequence >

<xs:attribute name="id" type="xs:string" use=" required"/>

</xs:complexType >

<xs:complexType name=" streamreferenceType">

<xs:attribute name="id" type="xs:string" use=" required"/>

</xs:complexType >

<xs:complexType name=" streamType">

<xs:attribute name="id" type="xs:string" use=" required"/>

</xs:complexType >

<xs:complexType name=" queryStreamoperatorType">

<xs:complexContent >

<xs:extension base="pdc:abstractStreamoperatorType">

<xs:sequence >

<xs:element name=" source" type="xs:string"/>

<xs:element name="input -dtd" type="xs:string"/>

<xs:element name="output -dtd" type="xs:string"/>

192 Appendix A. StreamGlobe Client Interface

<xs:element name="udf" minOccurs ="0" maxOccurs =" unbounded

">

<xs:complexType >

<xs:attribute name="name" type="xs:string" use="

required"/>

<xs:attribute name=" codebase" type="pdc:codebaseType"

use=" required"/>

</xs:complexType >

</xs:element >

</xs:sequence >

<xs:attribute name="name" default ="query" use=" optional"/>

</xs:extension >

</xs:complexContent >

</xs:complexType >

<xs:complexType name=" builtInStreamoperatorType">

<xs:complexContent >

<xs:extension base="pdc:abstractStreamoperatorType">

<xs:attribute name="name" use=" required">

<xs:simpleType >

<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value=" forward"/>

<xs:enumeration value=" display"/>

<xs:enumeration value=" statistics"/>

<xs:enumeration value=" counter"/>

<xs:enumeration value="null"/>

</xs:restriction >

</xs:simpleType >

</xs:attribute >

</xs:extension >

</xs:complexContent >

</xs:complexType >

<xs:complexType name=" hopStreamoperatorType">

<xs:complexContent >

<xs:extension base="pdc:abstractStreamoperatorType">

<xs:sequence >

<xs:element name=" roottag" type="xs:string"/>

<xs:element name=" blocktag" type="xs:string"/>

<xs:element name=" stream_win" type="xs:int"/>

<xs:element name=" stream_step" type="xs:int"/>

<xs:element name=" query_win" type="xs:int"/>

<xs:element name=" query_step" type="xs:int"/>

</xs:sequence >

<xs:attribute name="name" default ="hop" use=" optional"/>

</xs:extension >

</xs:complexContent >

</xs:complexType >

<xs:complexType name=" counterStreamoperatorType">

<xs:complexContent >

<xs:extension base="pdc:abstractStreamoperatorType">

<xs:sequence >

A.4 Plan Schema 193

<xs:element name="stream -item" type="xs:string"/>

<xs:element name=" neighbor" type="xs:anyURI"/>

</xs:sequence >

</xs:extension >

</xs:complexContent >

</xs:complexType >

<xs:complexType name=" externalStreamoperatorType">

<xs:complexContent >

<xs:extension base="pdc:abstractStreamoperatorType">

<xs:sequence >

<xs:element name=" authorizedby" type="xs:string"/>

<xs:element name=" inputstreamdata" type="pdc:

inputStreamDataType" maxOccurs =" unbounded"/>

<xs:element name=" outputstreamdata" type="pdc:

outputStreamDataType "/>

<xs:element name=" parameter" type="pdc:parameterType"

minOccurs ="0" maxOccurs =" unbounded"/>

</xs:sequence >

<xs:attribute name="name" type="xs:string" use=" required"/>

<xs:attribute name=" codebase" type="pdc:codebaseType" use="

required"/>

<xs:attribute name=" dependencyToEnrich" type="xs:string"

use=" optional"/>

</xs:extension >

</xs:complexContent >

</xs:complexType >

<xs:complexType name=" streamDataType">

<xs:sequence >

<xs:element name="dtd" type="xs:string" minOccurs ="0"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" inputStreamDataType">

<xs:complexContent >

<xs:extension base="pdc:streamDataType">

<xs:sequence >

<xs:element name=" variable" type="pdc:

typedVariableMapping" minOccurs ="0" maxOccurs ="

unbounded"/>

</xs:sequence >

<xs:attribute name="id" type="xs:string" use=" required"/>

</xs:extension >

</xs:complexContent >

</xs:complexType >

<xs:complexType name=" outputStreamDataType">

<xs:complexContent >

<xs:extension base="pdc:streamDataType">

<xs:sequence >

<xs:element name=" variable" type="pdc:

untypedVariableMapping" minOccurs ="0" maxOccurs ="

194 Appendix A. StreamGlobe Client Interface

unbounded"/>

</xs:sequence >

</xs:extension >

</xs:complexContent >

</xs:complexType >

<xs:complexType name=" untypedVariableMapping">

<xs:attribute name="name" use=" required"/>

<xs:attribute name=" select" type="pdc:mappingPathType" use="

required"/>

<xs:attribute name=" position" use=" optional">

<xs:simpleType >

<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="FIRST"/>

<xs:enumeration value="LAST"/>

</xs:restriction >

</xs:simpleType >

</xs:attribute >

</xs:complexType >

<xs:complexType name=" typedVariableMapping">

<xs:complexContent >

<xs:extension base="pdc:untypedVariableMapping">

<xs:attribute name="type" use=" required"/>

</xs:extension >

</xs:complexContent >

</xs:complexType >

<xs:simpleType name=" mappingPathType">

<xs:restriction base="xs:string">

<xs:pattern value ="\./.*"/ >

</xs:restriction >

</xs:simpleType >

<xs:simpleType name=" codebaseType">

<xs:restriction base="xs:anyURI">

<xs:pattern value="http ://.*"/ >

<xs:pattern value="file :///.*"/ >

<xs:pattern value="urn:streamglobe:internalCodeBase "/>

</xs:restriction >

</xs:simpleType >

</xs:schema >

Listing A.4: Plan schema

195

APPENDIX B

Proof of Theorem 3.1

Theorem B.1 (repeated from Theorem 3.1) Let A := {[a1, . . . ,al]}, B := {[b1, . . . ,bm]}, and
C := {[c1, . . . ,cn]} be relations and let A.id ∈ {a1, . . . ,al}, B.id ∈ {b1, . . . ,bm}, and C.id ∈
{c1, . . . ,cn} be their corresponding join attributes, respectively. Then the following applies:

(A�A.id=B.id B)�A.id=C.id C ≡ A�A.id=B.id∨A.id=C.id (B�B.id=C.id C) ¤

PROOF: We show the above equivalence using the relational tuple calculus. Since all joins are
equi-joins over the same attribute, we omit the join condition in the following for the sake of
readability.

In terms of the relational tuple calculus, the relational left-outer join � is defined as

A�B ⇔{[ta.a1, . . . , ta.al, tb.b1, . . . , tb.bm] |
ta ∈ A∧ tb ∈ {B∪⊥}∧
(ta.id = tb.id∨
(tb = ⊥∧∀t ′b ∈ B : (t ′b.id 6= ta.id)))}

(B.1)

and the relational full-outer join� is defined as

B�C ⇔{[tb.b1, . . . , tb.bm, tc.c1, . . . , tc.cn] |
tb ∈ {B∪⊥}∧ tc ∈ {C∪⊥}∧
(tb.id = tc.id∨
(tb = ⊥∧∀t ′b ∈ B : (t ′b.id 6= tc.id))∨
(tc = ⊥∧∀t ′c ∈C : (t ′c.id 6= tb.id)))}.

(B.2)

196 Appendix B. Proof of Theorem 3.1

Hence
(A�B)�C ⇔{[ta.a1, . . . , ta.al, tb.b1, . . . , tb.bm, tc.c1, . . . , tc.cn] |

ta ∈ A∧ tb ∈ {B∪⊥}∧ tc ∈ {C∪⊥}∧
((ta.id = tb.id ∧ tb.id = tc.id)∨
(ta.id = tb.id ∧ tc = ⊥∧∀t ′c ∈C : (t ′c.id 6= ta.id))∨
(ta.id = tc.id ∧ tb = ⊥∧∀t ′b ∈ B : (t ′b.id 6= ta.id))∨
(tb = ⊥∧∀t ′b ∈ B : (t ′b.id 6= ta.id)∧
tc = ⊥∧∀t ′c ∈C : (t ′c.id 6= ta.id)))}

(B.3)

and
A� (B�C) ⇔{[ta.a1, . . . , ta.al, tb.b1, . . . , tb.bm, tc.c1, . . . , tc.cn] |

ta ∈ A∧ tb ∈ {B∪⊥}∧ tc ∈ {C∪⊥}∧
((ta.id = tb.id ∧ tb.id = tc.id)∨
(ta.id = tb.id ∧ tc = ⊥∧∀t ′c ∈C : (t ′c.id 6= ta.id))∨
(ta.id = tc.id ∧ tb = ⊥∧∀t ′b ∈ B : (t ′b.id 6= ta.id))∨
(tb = ⊥∧∀t ′b ∈ B : (t ′b.id 6= ta.id)∧
tc = ⊥∧∀t ′c ∈C : (t ′c.id 6= ta.id)))∧
(tb.id = tc.id∨
(tb = ⊥∧∀t ′b ∈ B : (t ′b.id 6= tc.id))∨
(tc = ⊥∧∀t ′c ∈C : (t ′c.id 6= tb.id)))}.

(B.4)

Now it remains to be proven that the sets of tuples defined in (B.3) and (B.4) are equivalent.
We do this by comparing the conditions. Obviously, the complete condition of (B.3) is already
contained in the condition of (B.4). Additionally, (B.4) conjunctively adds to the overall condi-
tion an additional disjunctive term represented by the last three lines in (B.4). We next show that
the additional term in (B.4) is redundant since it is already expressed by other terms in (B.4).
We do this via a pairwise comparison of the respective disjunctively combined terms.

The following implication

((ta.id = tb.id ∧ tb.id = tc.id)∨
(ta.id = tb.id ∧ tc = ⊥∧∀t ′c ∈C : (t ′c.id 6= ta.id))∨
(ta.id = tc.id ∧ tb = ⊥∧∀t ′b ∈ B : (t ′b.id 6= ta.id))∨
(tb = ⊥∧∀t ′b ∈ B : (t ′b.id 6= ta.id)∧ tc = ⊥∧∀t ′c ∈C : (t ′c.id 6= ta.id)))

⇒(tb.id = tc.id∨
(tb = ⊥∧∀t ′b ∈ B : (t ′b.id 6= tc.id))∨ (tc = ⊥∧∀t ′c ∈C : (t ′c.id 6= tb.id)))

(B.5)

applies because of

(ta.id = tb.id ∧ tb.id = tc.id) ⇒ (tb.id = tc.id)
and

(ta.id = tb.id ∧ tc = ⊥∧∀t ′c ∈C : (t ′c.id 6= ta.id)) ⇒ (tc = ⊥∧∀t ′c ∈C : (t ′c.id 6= tb.id))
and

(ta.id = tc.id ∧ tb = ⊥∧∀t ′b ∈ B : (t ′b.id 6= ta.id)) ⇒ (tb = ⊥∧∀t ′b ∈ B : (t ′b.id 6= tc.id)).

(B.6)

Thus, we can omit the third term in (B.4) and the equivalence of (B.3) and (B.4) is proven to be
valid. Hence, Theorem 3.1 applies. ¥

197

APPENDIX C

Alternative XQuery Window Implementations

This section presents alternative XQuery implementations of count-based and time-based data
windows with the gather and the run semantics introduced in Section 4.3.

C.1 Count-based Data Windows
Figures C.1 and C.2 show alternative XQuery implementations of count-based data windows.
The implementation of Figure C.1 gathers the remaining elements in a final window at the
end of the stream according to the gather semantics. In the implementation of Figure C.2, the
window slides along until it contains no more elements as specified by the run semantics.

198 Appendix C. Alternative XQuery Window Implementations

declare function local:cwin($count as xs:integer,

$step as xs:integer,

$data as node()*) as node()*

{

let $cwin := fn:subsequence($data, 1, $count)

let $tail := fn:subsequence($data, $step + 1)

return

if (fn:count($data) <= $count) then

(<cw> { $cwin } </cw>)

else

(<cw> { $cwin } </cw>, local:cwin($count, $step, $tail))

};

for $x in doc("data.xml")/a

return

<result>

{ for $w in local:cwin(4, 2, $x/b)

return

<win> { $w/* } </win> }

</result>

Figure C.1: Gathering remaining elements in final window

declare function local:cwin($count as xs:integer,

$step as xs:integer,

$data as node()*) as node()*

{

let $cwin := fn:subsequence($data, 1, $count)

let $tail := fn:subsequence($data, $step + 1)

return

if (fn:empty($tail)) then

(<cw> { $cwin } </cw>)

else

(<cw> { $cwin } </cw>, local:cwin($count, $step, $tail))

};

for $x in doc("data.xml")/a

return

<result>

{ for $w in local:cwin(4, 2, $x/b)

return

<win> { $w/* } </win> }

</result>

Figure C.2: Sliding windows until no elements remain

C.2 Time-based Data Windows 199

C.2 Time-based Data Windows
Figures C.3 and C.4 show alternative XQuery implementations of time-based data windows.
The implementation of Figure C.3 gathers the remaining elements in a final window at the
end of the stream according to the gather semantics. In the implementation of Figure C.4, the
window slides along until it contains no more elements as specified by the run semantics.

declare function local:dwin($start as xs:integer,

$diff as xs:integer,

$step as xs:integer,

$data as node()*,

$refs as node()*) as node()*

{

let $dwin := for $i in $data

let $ds := for $d in $i/descendant-or-self::node()

where some $r in $refs satisfies $r is $d

return $d

where $ds[1] >= $start and $ds[1] < $start + $diff

return $i

let $tail := for $i in $data

let $ds := for $d in $i/descendant-or-self::node()

where some $r in $refs satisfies $r is $d

return $d

where $ds[1] >= $start + $step

return $i

return

if (fn:count($dwin) = fn:count($data)) then

(<dw> { $dwin } </dw>)

else

(<dw> { $dwin } </dw>, local:dwin($start + $step, $diff, $step,

$tail, $refs))

};

for $x in doc("data.xml")/a

return

<result>

{ for $w in local:dwin(0, 4, 2, $x/b, $x/b/c)

return

<win> { $w/* } </win> }

</result>

Figure C.3: Gathering remaining elements in final window

200 Appendix C. Alternative XQuery Window Implementations

declare function local:dwin($start as xs:integer,

$diff as xs:integer,

$step as xs:integer,

$data as node()*,

$refs as node()*) as node()*

{

let $dwin := for $i in $data

let $ds := for $d in $i/descendant-or-self::node()

where some $r in $refs satisfies $r is $d

return $d

where $ds[1] >= $start and $ds[1] < $start + $diff

return $i

let $tail := for $i in $data

let $ds := for $d in $i/descendant-or-self::node()

where some $r in $refs satisfies $r is $d

return $d

where $ds[1] >= $start + $step

return $i

return

if (fn:empty($tail)) then

(<dw> { $dwin } </dw>)

else

(<dw> { $dwin } </dw>, local:dwin($start + $step, $diff, $step,

$tail, $refs))

};

for $x in doc("data.xml")/a

return

<result>

{ for $w in local:dwin(0, 4, 2, $x/b, $x/b/c)

return

<win> { $w/* } </win> }

</result>

Figure C.4: Sliding windows until no elements remain

201

APPENDIX D

WXQuery EBNF Grammar

The notation of the following WXQuery EBNF grammar is based on the notation of the XQuery
EBNF grammar in [W3C (2007d)]. In particular, the grammar uses a special notation to refer-
ence externally defined parts via URLs.

[1] QueryBody ::= Expr

[2] Expr ::= ExprSingle ("," ExprSingle)*

[3] ExprSingle ::= FLWRExpr

| PathExpr

| ElementConstructor

| ParenthesizedExpr

| IfExpr

[4] FLWRExpr ::= (ForClause | LetClause)+

WhereClause?

"return" ExprSingle

[5] ForClause ::= "for" VarRef "in" WindowedPathExpr

[6] VarRef ::= "$" VarName

[7] VarName ::= QName

[8] QName ::= [http://www.w3.org/TR/REC-xml-names/#NT-QName]Names

[9] WindowedPathExpr ::= PathExpr ("|" WindowSpec "|")?

[10] PathExpr ::= PrimaryExpr

| ((PrimaryExpr "/")?

RelativePathExpr)

| ("/" RelativePathExpr?)

http://www.w3.org/TR/REC-xml-names/#NT-QName

202 Appendix D. WXQuery EBNF Grammar

[11] PrimaryExpr ::= VarRef | XMLFunctionCall

[12] XMLFunctionCall ::= (("stream" | "doc")

"(" StringLiteral ")")

| ("collection"

"(" StringLiteral? ")")

[13] StringLiteral ::= ('"' (PredefinedEntityRef

| CharRef

| EscapeQuot

| [^"&])* '"')

| ("'" (PredefinedEntityRef

| CharRef

| EscapeApos

| [^'&])* "'")

[14] PredefinedEntityRef ::= "&" ("lt" | "gt" | "amp"

| "quot" | "apos") ";"

[15] CharRef ::= [http://www.w3.org/TR/REC-xml#NT-CharRef]XML

[16] EscapeQuot ::= '""'

[17] EscapeApos ::= "''"

[18] RelativePathExpr ::= StepExpr ("/" StepExpr)*

[19] StepExpr ::= StepExprNoPredicates Predicate?

[20] StepExprNoPredicates ::= ContextItemExpr | QName

[21] ContextItemExpr ::= "."

[22] Predicate ::= "[" WherePredicate "]"

[23] WherePredicate ::= PredicateOrExpr

[24] PredicateOrExpr ::= PredicateAndExpr

("or" PredicateAndExpr)*

[25] PredicateAndExpr ::= (PredicateComparisonExpr

| ParenPredOrExpr)

("and" (PredicateComparisonExpr

| ParenPredOrExpr))*

[26] PredicateComparisonExpr ::= AdditiveExpr

(ComparisonOperator AdditiveExpr)?

[27] AdditiveExpr ::= PredicateValue

(("+" | "-") PredicateValue)*

http://www.w3.org/TR/REC-xml#NT-CharRef

203

[28] PredicateValue ::= (("-" | "+")? Literal)

| RelPathExprNoPred

| PredicateVariablePath

[29] Literal ::= NumericLiteral | StringLiteral

[30] NumericLiteral ::= IntegerLiteral

| DecimalLiteral

| DoubleLiteral

[31] IntegerLiteral ::= Digits

[32] Digits ::= [0-9]+

[33] DecimalLiteral ::= ("." Digits) | (Digits "." [0-9]*)

[34] DoubleLiteral ::= (("." Digits)

| (Digits ("." [0-9]*)?))

[eE] [+-]? Digits

[35] RelPathExprNoPred ::= StepExprNoPredicates

("/" StepExprNoPredicates)*

[36] PredicateVariablePath ::= VarRef ("/" RelPathExprNoPred)?

[37] ComparisonOperator ::= "=" | "!=" | "<" | "<=" | ">" | ">="

[38] ParenPredOrExpr ::= "(" PredicateOrExpr ")"

[39] WindowSpec ::= (("count" IntegerLiteral)

| (PathExprNoPredicates

"diff" IntegerLiteral))

("step" IntegerLiteral)?

[40] PathExprNoPredicates ::= ("/")? RelPathExprNoPred

[41] LetClause ::= "let" VarRef ":=" AggFunctionCall

[42] AggFunctionCall ::= AggFunctionName "(" PathExpr ")"

[43] AggFunctionName ::= "min" | "max" | "sum" | "count" | "avg"

[44] WhereClause ::= "where" WherePredicate

[45] ElementConstructor ::= "<" QName

("/>"

| (">" ElementContent*

"</" QName ">"))

[46] ElementContent ::= ElementConstructor | EnclosedExpr

204 Appendix D. WXQuery EBNF Grammar

[47] EnclosedExpr ::= "{" Expr "}"

[48] ParenthesizedExpr ::= "(" Expr? ")"

[49] IfExpr ::= "if" "(" PredicateOrExpr ")"

"then" ExprSingle "else" ExprSingle

205

APPENDIX E

Alternative Aggregate Value Selection Algorithm

Algorithm E.1 is an alternative to the aggregate value selection algorithm introduced in Al-
gorithm 4.4 on page 67. The alternative algorithm avoids buffering data items that are never
used and thus potentially saves memory. Despite the overhead caused by additional sequence
numbers, the alternative algorithm reduces the overall memory consumption compared to Algo-
rithm 4.4 if enough unused data items exist in the input stream to compensate for the overhead.
The sequence numbers are used to decide which data items to buffer and which items to send
to the query engine in each step of the alternative algorithm. In Algorithm 4.4, the buffer for
the data items is generally larger but the algorithm does not need to introduce any additional
sequence numbers.

Example E.1 (Reusing aggregate values) Applying Example 4.6 on page 67 with ∆ = 40,
µ = 10, ∆′ = 80, and µ ′ = 20 to Algorithm E.1 causes the first ((∆′−∆) div µ)+ 1 = ((80−
40) div 10)+ 1 = 5 values to be initially read from the input stream with sequence numbers
from 0 to ((∆′−∆) div µ) = ((80− 40) div 10) = 4. Due to (∆′ div ∆) = (80 div 40) = 2
and (µ ′ div µ) = (20 div 10) = 2, the values with sequence numbers 1 · 2 = 2 and 2 · 2 = 4
are inserted into the buffer. These are the values numbered 3 and 5 in Figure 4.20 on page 67.
Only these two values of the five values read from the stream actually need to be buffered at
this stage. Accordingly, due to (∆ div µ) = (40 div 10) = 4, the values with sequence num-
bers 0 · 4 = 0 and 1 · 4 = 4 are sent to the query engine. These are the values numbered 1
and 5 in Figure 4.20, which are needed to compute the aggregate value corresponding to the
first data window of the reusing query. The remaining values with sequence numbers 1 and
3 corresponding to the values numbered 2 and 4 in Figure 4.20 are ignored since they are not
needed for computing the aggregate values of the reusing query. Subsequently, the algorithm
removes all values with sequence numbers from 0 to (µ ′ div µ)− 1 = (20 div 10)− 1 = 1
from the buffer. This affects no values in the initial iteration since the values currently con-
tained in the buffer have sequence numbers 2 and 4. The algorithm next decreases the se-
quence numbers of the values contained in the buffer by (∆′ div ∆) = (80 div 40) = 2, i. e.,
from 2 to 0 and from 4 to 2 in the example. The next iteration of the for loop reads the next
(∆′ div ∆) = (80 div 40) = 2 values from the input stream and assigns increasing sequence num-

206 Appendix E. Alternative Aggregate Value Selection Algorithm

Algorithm E.1 SELECTAGGREGATEVALUES

Input: Window sizes ∆ and ∆′ as well as step sizes µ and µ ′ of the data window to be reused
and the new data window, respectively.

Output: The correct sequence of aggregate values for reuse.

1: during the initial iteration of the for loop in line 3, read first ((∆′−∆) div µ)+1 values v0 to
v(∆′−∆) div µ from the input stream and assign sequence numbers from 0 to ((∆′−∆) div µ)
to them;

2: repeat
3: for value vn with sequence number n contained in buffer or read from input stream do
4: if n ∈ {i · (µ ′ div µ) | i > 0∧ i ≤ (∆′ div ∆)} then
5: if vn is not yet contained in the buffer then
6: insert vn into buffer;
7: end if
8: end if
9: if n ∈ {i · (∆ div µ) | i ≥ 0∧ i < (∆′ div ∆)} then

10: send vn to the query engine;
11: end if
12: end for
13: remove values v0 to v(µ ′ div µ)−1 from buffer if present;
14: decrease sequence number of each value contained in buffer by (∆′ div ∆);
15: during the next iteration of the for loop in line 3, read next (∆′ div ∆) values from

the stream and assign increasing sequence numbers starting from ((∆′ − ∆) div µ)−
(∆′ div ∆)+1 to them;

16: until the buffer contains no more values;

bers starting from ((∆′−∆) div µ)−(∆′ div ∆)+1 = ((80−40) div 10)−(80 div 40)+1 = 3
to them, i. e., the two new values receive the sequence numbers 3 and 4. The algorithm inserts
the new value with sequence number 4 that now corresponds to the value numbered 7 in Fig-
ure 4.20 into the buffer. The value with sequence number 2 that now corresponds to the value
numbered 5 in Figure 4.20 is already contained in the buffer and is therefore not inserted again.
The values with sequence numbers 0 and 4 corresponding to the values numbered 3 and 7 in
Figure 4.20 are sent to the query engine where they are used to compute the aggregate value
corresponding to the second data window of the reusing query. The remaining value with se-
quence number 3 corresponding to the value numbered 6 in Figure 4.20 is not needed and is
therefore ignored. This process continues until the buffer contains no more values. ¤

207

APPENDIX F

Predicate Matching and Evaluation Algorithms

All algorithms in this chapter assume that each stream predicate p and each query predicate p′

contains at least one conjunctive subpredicate c and c′, respectively. Extensions for the handling
of special cases such as empty predicates and predicates that constitute tautologies or contra-
dictions are straightforward but would clutter the algorithm presentations. It is also possible to
deal with these special cases beforehand. In our StreamGlobe prototype implementation, for
example, we handle these cases within the data stream sharing optimizer.

F.1 Quick Check (QC)

Algorithm F.1 Quick Check (QC)
Input: Stream predicate p and a conjunctive subpredicate c′ of query predicate p′.
Output: 1, if c′ ⇒ c for at least one conjunctive subpredicate c in p; 0, if c′ overlaps with at

least one conjunctive subpredicate c in p and c′ 6⇒ c for every c in p; −1, if c′ does not
overlap with any conjunctive subpredicate c in p.

1: overlap ←−1;
2: for all conjunctive subpredicates c in p do
3: if c′ ⇒ c then
4: return 1;
5: end if
6: if c′ overlaps with c then
7: overlap ← 0;
8: end if
9: end for

10: return overlap;

208 Appendix F. Predicate Matching and Evaluation Algorithms

The pseudocode version of the QC algorithm in Algorithm F.1 is an extension of the QC
algorithm presented in Algorithm 6.1 on page 136. Algorithm 6.1 returns true if c′ ⇒ c for at
least one c in p, and false otherwise. Algorithm F.1 returns 1 if c′ ⇒ c for at least one c in p, 0
if c′ overlaps with at least one c in p and c′ 6⇒ c for every c in p, and −1 if c′ does not overlap
with any c in p. The pseudocode versions of the exact matching algorithms use this additional
information to optimize their execution in Algorithms F.5, F.6, and F.7. If a c′ does not overlap
with any c in p, we do not need to start the complex split algorithm since we already know
that there are no overlapping parts. Instead, we disjunctively add c′ to p̄ right away. If it is not
required to exactly determine the non-matching parts of a subpredicate c′, we can even further
optimize the algorithms. In this case, we may return 0 in the QC algorithm under the stricter
condition that c′ does not imply any c in p and at the same time, c′ overlaps with at least two c
in p. If c′ overlaps with at most one c in p, we may return −1. This is possible since it is clear
that overlap with only one c in p without containment cannot make the implication valid.

F.2 Heuristics with Simple Relaxation (HSR)

Algorithm F.2 Heuristics with Simple Relaxation (HSR)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if the quick check of Section F.1 is activated and, for all conjunctive sub-

predicates c′ in p′, c′ ⇒ c for at least one conjunctive subpredicate c in p; (false, p̄), where
p̄ is a relaxed version of p such that the above condition is satisfied, otherwise.

1: p̄ ← p; match ← true;
2: for all conjunctive subpredicates c′ in p′ do
3: if quick check is activated ∧QC(p̄,c′) = 1 then
4: continue;
5: else
6: match ← false;
7: p̄ ← p̄∨ c′;
8: end if
9: end for

10: return (match, p̄);

F.3 Heuristics with Complex Relaxation (HCR)
In Algorithm F.3 on the facing page, k denotes the number of dimensions in the data space and
kc denotes the number of dimensions that are referenced in subpredicate c. Further, Id indicates
an interval in dimension d and Īd indicates the extent of interval Id .

F.3 Heuristics with Complex Relaxation (HCR) 209

Algorithm F.3 Heuristics with Complex Relaxation (HCR)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if, for all conjunctive subpredicates c′ in p′, c′ ⇒ c for at least one conjunc-

tive subpredicate c in p; (false, p̄), where p̄ is a relaxed version of p such that the above
condition is satisfied, otherwise.

1: p̄ ← p; match ← true;
2: for all conjunctive subpredicates c′ in p′ do
3: if quick check is activated ∧QC(p̄,c′) = 1 then
4: continue;
5: else
6: ib ← +∞; eb ← +∞; cb ← null; corig ← null; m ← true;
7: for all conjunctive subpredicates c in p̄ do
8: i ← 2(k− kc); e ← 0; cc ← c; m ← true;
9: for all pairs of corresponding dimensions d,d′ in cc,c′ with d = d′ do

10: if (lowerBound(Id) = −∞)∨ (lowerBound(Id′ = −∞)) then
11: i ← i+1;
12: end if
13: if (upperBound(Id) = +∞)∨ (upperBound(Id′ = +∞)) then
14: i ← i+1;
15: end if
16: if Id ∩ Id′ 6= Id′ then
17: m ← false;
18: a ← max(0, lowerBound(Id)− lowerBound(Id′))+
19: max(0,upperBound(Id′)−upperBound(Id));
20: v ← ∏d∗∈D:((d∗ 6=d)∧(0<Īd∗<+∞)) Īd∗;
21: e ← e+(a · v);
22: replace Id in cc with Idc := [min(lowerBound(Id), lowerBound(Id′)),
23: max(upperBound(Id),upperBound(Id′))];
24: end if
25: end for
26: if m = true then
27: break;
28: else if (i < ib)∨ ((i = ib)∧ (e < eb)) then
29: ib ← i; eb ← e; cb ← cc; corig ← c;
30: end if
31: end for
32: if m = false then
33: match ← false;
34: replace corig in p̄ with cb;
35: end if
36: end if
37: end for
38: return (match, p̄);

210 Appendix F. Predicate Matching and Evaluation Algorithms

F.4 Exact Matching (EM)

Algorithm F.4 Compare Dimensions (CD)
Input: Conjunctive stream subpredicate c and conjunctive query subpredicate c′c.
Output: Queue Q′

c of unmatched parts of query subpredicate c′c.

1: Q′
c ← /0; c′orig ← c′c;

2: for all pairs of corresponding dimensions d,d′ in c,c′c with d = d′ do
3: if Id ∩ Id′ = /0 then
4: Q′

c ← /0; enqueue(Q′
c,c

′
orig); break;

5: else if Id ∩ Id′ = Id′ then
6: continue;
7: else if Id ∩ Id′ = Id then
8: split c′c along dimension d′ into the part c′i that is overlapping with c in dimension d′

and the remaining parts c′o1 and c′o2;
9: enqueue(Q′

c,c
′
o1); enqueue(Q′

c,c
′
o2); c′c ← c′i;

10: else
11: /* Id and Id′ overlap */
12: split c′c along dimension d′ into the part c′i that is overlapping with c in dimension d′

and the remaining part c′o;
13: enqueue(Q′

c,c
′
o); c′c ← c′i;

14: end if
15: end for
16: return Q′

c;

F.4 Exact Matching (EM) 211

Algorithm F.5 Exact Matching with Breadth-First Split Strategy (EM-BFS)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if p′ ⇒ p; (false, p̄), where p̄ is a relaxed version of p such that p′ ⇒ p̄,

otherwise.

1: p̄ ← p; match ← true;
2: for all conjunctive subpredicates c′ in p′ do
3: if quick check is activated ∧QC(p̄,c′) = 1 then
4: continue;
5: else if quick check is activated ∧QC(p̄,c′) = −1 then
6: match ← false;
7: p̄ ← p̄∨ c′;
8: continue;
9: else

10: /* quick check is deactivated or returns 0 */
11: Q′

1 ← /0; Q′
2 ← /0; enqueue(Q′

1,c
′);

12: for all conjunctive subpredicates c in p̄ do
13: Q′

2 ← Q′
1; Q′

1 ← /0;
14: while Q′

2 6= /0 do
15: c′c ← dequeue(Q′

2);
16: /* compare dimensions using Algorithm F.4 */
17: Q′

c ← CD(c,c′c);
18: append(Q′

1,Q
′
c);

19: end while
20: if Q′

1 = /0 then
21: break;
22: end if
23: end for
24: if Q′

1 6= /0 then
25: match ← false;
26: p̄ ← p̄∨ c′;
27: end if
28: end if
29: end for
30: return (match, p̄);

212 Appendix F. Predicate Matching and Evaluation Algorithms

Algorithm F.6 Exact Matching with Depth-First Split Strategy (EM-DFS)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if p′ ⇒ p; (false, p̄), where p̄ is a relaxed version of p such that p′ ⇒ p̄,

otherwise.

1: p̄ ← p; match ← true;
2: for all conjunctive subpredicates c′ in p′ do
3: if quick check is activated ∧QC(p̄,c′) = 1 then
4: continue;
5: else if quick check is activated ∧QC(p̄,c′) = −1 then
6: match ← false;
7: p̄ ← p̄∨ c′;
8: continue;
9: else

10: /* quick check is deactivated or returns 0 */
11: Qinit ← /0; QLIFO ← /0; QLIFO

p ← /0;
12: enqueue(Qinit,c′); enqueue(QLIFO,Qinit); enqueue(QLIFO

p , p̄);
13: while QLIFO 6= /0 do
14: Qnext ← dequeue(QLIFO); c′c ← dequeue(Qnext); p− ← dequeue(QLIFO

p);
15: if Qnext 6= /0 then
16: enqueue(QLIFO,Qnext); enqueue(QLIFO

p , p−);
17: end if
18: let c be the first conjunctive subpredicate in p−; remove c from p−;
19: /* compare dimensions using Algorithm F.4 */
20: Q′

c ← CD(c,c′c);
21: if Q′

c 6= /0 then
22: if p− is not the empty predicate then
23: enqueue(QLIFO,Q′

c); enqueue(QLIFO
p , p−);

24: else
25: match ← false;
26: p̄ ← p̄∨ c′;
27: break;
28: end if
29: end if
30: end while
31: end if
32: end for
33: return (match, p̄);

F.4 Exact Matching (EM) 213

Algorithm F.7 Exact Matching with Mixed Split Strategy (EM-MIX)
Input: Stream predicate p and query predicate p′.
Output: (true, p), if p′ ⇒ p; (false, p̄), where p̄ is a relaxed version of p such that p′ ⇒ p̄,

otherwise.

1: p̄ ← p; match ← true;
2: for all conjunctive subpredicates c′ in p′ do
3: if quick check is activated ∧QC(p̄,c′) = 1 then
4: continue;
5: else if quick check is activated ∧QC(p̄,c′) = −1 then
6: match ← false;
7: p̄ ← p̄∨ c′;
8: continue;
9: else

10: /* quick check is deactivated or returns 0 */
11: Qinit ← /0; QLIFO ← /0; QLIFO

p ← /0;
12: enqueue(Qinit,c′); enqueue(QLIFO,Qinit); enqueue(QLIFO

p , p̄); m ← true;
13: while QLIFO 6= /0 do
14: Qnext ← dequeue(QLIFO); p− ← dequeue(QLIFO

p);
15: let c be the first conjunctive subpredicate in p−; remove c from p−;
16: while Qnext 6= /0 do
17: c′c ← dequeue(Qnext);
18: /* compare dimensions using Algorithm F.4 */
19: Q′

c ← CD(c,c′c);
20: if Q′

c 6= /0 then
21: if p− is not the empty predicate then
22: enqueue(QLIFO,Q′

c); enqueue(QLIFO
p , p−);

23: else
24: m ← false;
25: match ← false;
26: p̄ ← p̄∨ c′;
27: break;
28: end if
29: end if
30: end while
31: if m = false then
32: break;
33: end if
34: end while
35: end if
36: end for
37: return (match, p̄);

214 Appendix F. Predicate Matching and Evaluation Algorithms

F.5 Standard Evaluation (SE)

Algorithm F.8 Standard Evaluation (SE)
Input: Predicate p and data item i.
Output: true, if i satisfies p; false, otherwise.

1: for all conjunctive subpredicates c in p do
2: match ← true;
3: for all pairs of corresponding dimensions dc,di in c, i with dc = di do
4: if the interval defined for dc in c does not contain the value for di in i then
5: match ← false;
6: break;
7: end if
8: end for
9: if match = true then

10: return true;
11: end if
12: end for
13: return false;

215

Bibliography

ABADI, D. J., AHMAD, Y., BALAZINSKA, M., ÇETINTEMEL, U., CHERNIACK, M.,
HWANG, J.-H., LINDNER, W., MASKEY, A. S., RASIN, A., RYVKINA, E., TATBUL, N.,
XING, Y., AND ZDONIK, S.: The Design of the Borealis Stream Processing Engine. In:
Proc. of the Conf. on Innovative Data Systems Research (CIDR), pp. 277–289, Asilomar,
CA, USA, January 2005.

ABERER, K., CUDRÉ-MAUROUX, P., DATTA, A., DESPOTOVIC, Z., HAUSWIRTH, M.,
PUNCEVA, M., AND SCHMIDT, R.: P-Grid: A Self-organizing Structured P2P System. ACM
SIGMOD Record, 32(3):29–33, September 2003a.

ABERER, K., CUDRÉ-MAUROUX, P., AND HAUSWIRTH, M.: The Chatty Web: Emergent
Semantics Through Gossiping. In: Proc. of the Int’l World Wide Web Conf. (WWW), pp.
197–206, Budapest, Hungary, May 2003b.

ABITEBOUL, S.: On Views and XML. In: Proc. of the ACM SIGACT–SIGMOD–SIGART Symp.
on Principles of Database Systems (PODS), pp. 1–9, Philadelphia, PA, USA, May 1999.

ABITEBOUL, S., SEGOUFIN, L., AND VIANU, V.: Representing and Querying XML with
Incomplete Information. In: Proc. of the ACM SIGACT–SIGMOD–SIGART Symp. on Princi-
ples of Database Systems (PODS), pp. 150–161, Santa Barbara, CA, USA, May 2001.

ABITEBOUL, S., SEGOUFIN, L., AND VIANU, V.: Representing and Querying XML with
Incomplete Information. ACM Trans. on Database Systems (TODS), 31(1):208–254, March
2006.

ADORF, H.-M., KERBER, F., LEMSON, G., MICOL, A., MIGNANI, R., RAUCH, T., AND

VOGES, W.: Assembly and Classification of Spectral Energy Distributions – A new VO Web
Service. In: Proc. of the Conf. on Astronomical Data Analysis Software & Systems (ADASS),
pp. 365–369, Pasadena, CA, USA, October 2004.

ADORF, H.-M., LEMSON, G., AND VOGES, W.: The GAVO Cross-Matcher Application. In:
Proc. of the Conf. on Astronomical Data Analysis Software & Systems (ADASS), pp. 695–698,
San Lorenzo de El Escorial, Spain, October 2005.

216 Bibliography

AHMAD, Y. AND ÇETINTEMEL, U.: Network-Aware Query Processing for Stream-based Ap-
plications. In: Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pp. 456–467,
Toronto, Canada, August 2004.

ALTINEL, M. AND FRANKLIN, M. J.: Efficient Filtering of XML Documents for Selective
Dissemination of Information. In: Proc. of the Int’l Conf. on Very Large Data Bases (VLDB),
pp. 53–64, Cairo, Egypt, September 2000.

ARASU, A., BABCOCK, B., BABU, S., DATAR, M., ITO, K., MOTWANI, R., NISHIZAWA,
I., SRIVASTAVA, U., THOMAS, D., VARMA, R., AND WIDOM, J.: STREAM: The Stanford
Stream Data Manager. IEEE Data Engineering Bulletin, 26(1):19–26, March 2003a.

ARASU, A., BABU, S., AND WIDOM, J.: An Abstract Semantics and Concrete Language
for Continuous Queries over Streams and Relations. Technical Report 2002-57, Stanford
University, November 2002.

ARASU, A., BABU, S., AND WIDOM, J.: CQL: A Language for Continuous Queries over
Streams and Relations. In: Proc. of the Int’l Workshop on Database Programming Languages
(DBPL), pp. 1–19, Potsdam, Germany, September 2003b.

ARASU, A., BABU, S., AND WIDOM, J.: The CQL Continuous Query Language: Semantic
Foundations and Query Execution. Technical Report 2003-67, Stanford University, October
2003c.

ARASU, A., BABU, S., AND WIDOM, J.: The CQL continuous query language: semantic
foundations and query execution. The VLDB Journal, 15(2):121–142, June 2006.

ARASU, A. AND WIDOM, J.: A Denotational Semantics for Continuous Queries over Streams
and Relations. ACM SIGMOD Record, 33(3):6–12, September 2004a.

ARASU, A. AND WIDOM, J.: A Denotational Semantics for Continuous Queries over Streams
and Relations. Technical Report 2004-19, Stanford University, March 2004b.

ARASU, A. AND WIDOM, J.: Resource Sharing in Continuous Sliding-Window Aggregates.
In: Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pp. 336–347, Toronto, Canada,
August 2004c.

ASCHENBACH, B.: Discovery of a young nearby supernova remnant. Nature, 396(6707):141–
142, November 1998.

AVNUR, R. AND HELLERSTEIN, J. M.: Eddies: Continuously Adaptive Query Processing. In:
Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp. 261–272, Dallas, TX,
USA, May 2000.

AYAD, A. M. AND NAUGHTON, J. F.: Static Optimization of Conjunctive Queries with Sliding
Windows Over Infinite Streams. In: Proc. of the ACM SIGMOD Int’l Conf. on Management
of Data, pp. 419–430, Paris, France, June 2004.

BABCOCK, B., BABU, S., DATAR, M., MOTWANI, R., AND WIDOM, J.: Models and Issues in
Data Stream Systems. In: Proc. of the ACM SIGACT–SIGMOD–SIGART Symp. on Principles
of Database Systems (PODS), pp. 1–16, Madison, WI, USA, June 2002.

Bibliography 217

BABCOCK, B., DATAR, M., AND MOTWANI, R.: Load Shedding for Aggregation Queries over
Data Streams. In: Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE), pp. 350–361,
Boston, MA, USA, March 2004.

BABU, S., MUNAGALA, K., WIDOM, J., AND MOTWANI, R.: Adaptive Caching for Contin-
uous Queries. In: Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE), pp. 118–129,
Tokyo, Japan, April 2005.

BABU, S. AND WIDOM, J.: Continuous Queries over Data Streams. ACM SIGMOD Record,
30(3):109–120, September 2001.

BALMIN, A., ÖZCAN, F., BEYER, K. S., COCHRANE, R. J., AND PIRAHESH, H.: A Frame-
work for Using Materialized XPath Views in XML Query Processing. In: Proc. of the Int’l
Conf. on Very Large Data Bases (VLDB), pp. 60–71, Toronto, Canada, August 2004.

BECKMANN, N., KRIEGEL, H.-P., SCHNEIDER, R., AND SEEGER, B.: The R*-tree: An Effi-
cient and Robust Access Method for Points and Rectangles. In: Proc. of the ACM SIGMOD
Int’l Conf. on Management of Data, pp. 322–331, Atlantic City, NJ, USA, May 1990.

BONNET, P., GEHRKE, J., AND SESHADRI, P.: Towards Sensor Database Systems. In: Proc.
of the IEEE Int’l Conf. on Mobile Data Management (MDM), pp. 3–14, Hong Kong, China,
January 2001.

BORNHÖVD, C., LIN, T., HALLER, S., AND SCHAPER, J.: Integrating Smart Items with
Business Processes – An Experience Report. In: Proc. of the Hawaii Int’l Conf. on System
Sciences (HICSS), p. 227.3, Waikoloa, HI, USA, January 2005.

BOTAN, I., FISCHER, P. M., FLORESCU, D., KOSSMANN, D., KRASKA, T., AND TAMOSE-
VICIUS, R.: Extending XQuery with Window Functions. In: Proc. of the Int’l Conf. on Very
Large Data Bases (VLDB), pp. 75–86, Vienna, Austria, September 2007.

BRAUMANDL, R., KEIDL, M., KEMPER, A., KOSSMANN, D., KREUTZ, A., SELTZSAM, S.,
AND STOCKER, K.: ObjectGlobe: Ubiquitous query processing on the Internet. The VLDB
Journal, 10(1):48–71, August 2001.

BRETTLECKER, G. AND SCHULDT, H.: The OSIRIS-SE (Stream-Enabled) Infrastructure for
Reliable Data Stream Management on Mobile Devices. In: Proc. of the ACM SIGMOD Int’l
Conf. on Management of Data, pp. 1097–1099, Beijing, China, June 2007.

BRETTLECKER, G., SCHULDT, H., AND SCHATZ, R.: Hyperdatabases for Peer-to-Peer Data
Stream Processing. In: Proc. of the IEEE Int’l Conf. on Web Services (ICWS), pp. 358–366,
San Diego, CA, USA, June 2004.

BRETTLECKER, G., SCHULDT, H., AND SCHEK, H.-J.: Towards Reliable Data Stream Pro-
cessing with OSIRIS-SE. In: Proc. of the Conf. on Database Systems for Business, Technol-
ogy, and Web (BTW), pp. 405–414, Karlsruhe, Germany, March 2005.

BRUNKHORST, I., DHRAIEF, H., KEMPER, A., NEJDL, W., AND WIESNER, C.: Distributed
Queries and Query Optimization in Schema-Based P2P-Systems. In: Proc. of the Int’l Work-
shop on Databases, Information Systems and Peer-to-Peer Computing (DBISP2P), pp. 184–
199, Berlin, Germany, September 2003.

218 Bibliography

BRY, F.: Towards an Efficient Evaluation of General Queries: Quantifier and Disjunction Pro-
cessing Revisited. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp.
193–204, Portland, OR, USA, May 1989.

BUDAVÁRI, T., MALIK, T., SZALAY, A., THAKAR, A., AND GRAY, J.: SkyQuery – A Pro-
totype Distributed Query Web Service for the Virtual Observatory. In: Proc. of the Conf. on
Astronomical Data Analysis Software & Systems (ADASS), pp. 31–34, Baltimore, MD, USA,
October 2002.

BUDAVÁRI, T., SZALAY, A., MALIK, T., THAKAR, A., O’MULLANE, W., WILLIAMS, R.,
GRAY, J., MANN, B., AND YASUDA, N.: Open SkyQuery – VO Compliant Dynamic Fed-
eration of Astronomical Archives. In: Proc. of the Conf. on Astronomical Data Analysis
Software & Systems (ADASS), pp. 177–180, Strasbourg, France, October 2003.

CAMMERT, M., HEINZ, C., KRÄMER, J., SEEGER, B., VAUPEL, S., AND WOLSKE, U.:
Flexible Multi-Threaded Scheduling for Continuous Queries over Data Streams. In: Proc. of
the Int’l Workshop on Scalable Stream Processing Systems (SSPS), Istanbul, Turkey, April
2007a.

CAMMERT, M., KRÄMER, J., AND SEEGER, B.: Dynamic Metadata Management for Scalable
Stream Processing Systems. In: Proc. of the Int’l Workshop on Scalable Stream Processing
Systems (SSPS), Istanbul, Turkey, April 2007b.

CAMMERT, M., KRÄMER, J., SEEGER, B., AND VAUPEL, S.: An Approach to Adaptive
Memory Management in Data Stream Systems. In: Proc. of the IEEE Int’l Conf. on Data
Engineering (ICDE), p. 137, Atlanta, GA, USA, April 2006.

CARNEY, D., ÇETINTEMEL, U., CHERNIACK, M., CONVEY, C., LEE, S., SEIDMAN, G.,
STONEBRAKER, M., TATBUL, N., AND ZDONIK, S.: Monitoring Streams – A New Class
of Data Management Applications. In: Proc. of the Int’l Conf. on Very Large Data Bases
(VLDB), pp. 215–226, Hong Kong, China, August 2002.

CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., AND ROWSTRON, A.: Scribe: A Large-
Scale and Decentralized Application-Level Multicast Infrastructure. IEEE Journal on Se-
lected Areas in Communications (JSAC), 20(8):1489–1499, October 2002.

CHAN, C.-Y., FELBER, P., GAROFALAKIS, M., AND RASTOGI, R.: Efficient filtering of XML
documents with XPath expressions. The VLDB Journal, 11(4):354–379, December 2002a.

CHAN, C.-Y., FELBER, P., GAROFALAKIS, M., AND RASTOGI, R.: Efficient Filtering of
XML Documents with XPath Expressions. In: Proc. of the IEEE Int’l Conf. on Data Engi-
neering (ICDE), pp. 235–244, San José, CA, USA, February 2002b.

CHANDRASEKARAN, S., COOPER, O., DESHPANDE, A., FRANKLIN, M. J., HELLERSTEIN,
J. M., HONG, W., KRISHNAMURTHY, S., MADDEN, S., RAMAN, V., REISS, F., AND

SHAH, M.: TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In: Proc.
of the Conf. on Innovative Data Systems Research (CIDR), Asilomar, CA, USA, January
2003.

CHANDRASEKARAN, S. AND FRANKLIN, M. J.: Streaming Queries over Streaming Data. In:
Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pp. 203–214, Hong Kong, China,
August 2002.

Bibliography 219

CHANG, J.-Y. AND LEE, S.-G.: An Optimization of Disjunctive Queries: Union-Pushdown.
In: Proc. of the Int’l Computer Software and Applications Conf. (COMPSAC), pp. 356–361,
Washington, DC, USA, August 1997.

CHEN, J., DEWITT, D. J., TIAN, F., AND WANG, Y.: NiagaraCQ: A Scalable Continuous
Query System for Internet Databases. In: Proc. of the ACM SIGMOD Int’l Conf. on Manage-
ment of Data, pp. 379–390, Dallas, TX, USA, May 2000.

CHEN, L., REDDY, K., AND AGRAWAL, G.: GATES: A Grid-Based Middleware for Pro-
cessing Distributed Data Streams. In: Proc. of the IEEE Int’l Symp. on High-Performance
Distributed Computing (HPDC), pp. 192–201, Honolulu, HI, USA, June 2004.

CHEN, L. AND RUNDENSTEINER, E. A.: ACE-XQ: A CachE-aware XQuery Answering Sys-
tem. In: Proc. of the Int’l Workshop on the Web and Databases (WebDB), pp. 31–36, Madi-
son, WI, USA, June 2002.

CHERNIACK, M., BALAKRISHNAN, H., BALAZINSKA, M., CARNEY, D., ÇETINTEMEL, U.,
XING, Y., AND ZDONIK, S.: Scalable Distributed Stream Processing. In: Proc. of the Conf.
on Innovative Data Systems Research (CIDR), Asilomar, CA, USA, January 2003.

CLAUSSEN, J., KEMPER, A., MOERKOTTE, G., PEITHNER, K., AND STEINBRUNN, M.:
Optimization and Evaluation of Disjunctive Queries. IEEE Trans. on Knowledge and Data
Engineering (TKDE), 12(2):238–260, March 2000.

CRANOR, C., GAO, Y., JOHNSON, T., SHKAPENYUK, V., AND SPATSCHECK, O.: Gigas-
cope: High Performance Network Monitoring with an SQL Interface. In: Proc. of the ACM
SIGMOD Int’l Conf. on Management of Data, p. 623, Madison, WI, USA, June 2002.

CRANOR, C., JOHNSON, T., SPATSCHECK, O., AND SHKAPENYUK, V.: Gigascope: A
Stream Database for Network Applications. In: Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, pp. 647–651, San Diego, CA, USA, June 2003a.

CRANOR, C., JOHNSON, T., SPATSCHECK, O., AND SHKAPENYUK, V.: The Gigascope
Stream Database. IEEE Data Engineering Bulletin, 26(1):27–32, March 2003b.

CZAJKOWSKI, K., FERGUSON, D. F., FOSTER, I., FREY, J., GRAHAM, S., SEDUKHIN,
I., SNELLING, D., TUECKE, S., AND VAMBENEPE, W.: The WS-Resource Framework,
Version 1.0. March 2004, http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

DAR, S., FRANKLIN, M. J., JÓNSSON, B. T., SRIVASTAVA, D., AND TAN, M.: Seman-
tic Data Caching and Replacement. In: Proc. of the Int’l Conf. on Very Large Data Bases
(VLDB), pp. 330–341, Mumbai (Bombay), India, September 1996.

DEERING, S. E. AND CHERITON, D. R.: Multicast Routing in Datagram Internetworks and
Extended LANs. ACM Trans. on Computer Systems (TOCS), 8(2):85–110, May 1990.

DEMERS, A., GEHRKE, J., HONG, M., RIEDEWALD, M., AND WHITE, W.: Towards Expres-
sive Publish/Subscribe Systems. In: Proc. of the Int’l Conf. on Extending Database Technol-
ogy (EDBT), pp. 627–644, Munich, Germany, March 2006.

DEMERS, A., GEHRKE, J., RAJARAMAN, R., TRIGONI, N., AND YAO, Y.: The Cougar
Project: A Work-In-Progress Report. ACM SIGMOD Record, 32(4):53–59, December 2003.

http://www.globus.org/wsrf/specs/ws-wsrf.pdf

220 Bibliography

DENNY, M. AND FRANKLIN, M. J.: Predicate Result Range Caching for Continuous Queries.
In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp. 646–657, Baltimore,
MD, USA, June 2005.

DHAMANKAR, R., LEE, Y., DOAN, A., HALEVY, A., AND DOMINGOS, P.: iMAP: Discover-
ing Complex Semantic Matches between Database Schemas. In: Proc. of the ACM SIGMOD
Int’l Conf. on Management of Data, pp. 383–394, Paris, France, June 2004.

DIAO, Y., ALTINEL, M., FRANKLIN, M. J., ZHANG, H., AND FISCHER, P.: Path Sharing
and Predicate Evaluation for High-Performance XML Filtering. ACM Trans. on Database
Systems (TODS), 28(4):467–516, December 2003.

DIAO, Y., FISCHER, P., FRANKLIN, M. J., AND TO, R.: YFilter: Efficient and Scalable
Filtering of XML Documents. In: Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE),
pp. 341–342, San José, CA, USA, February 2002.

DIAO, Y. AND FRANKLIN, M.: Query Processing for High-Volume XML Message Brokering.
In: Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pp. 261–272, Berlin, Germany,
September 2003a.

DIAO, Y. AND FRANKLIN, M. J.: High-Performance XML Filtering: An Overview of YFilter.
IEEE Data Engineering Bulletin, 26(1):41–48, March 2003b.

DIAO, Y., RIZVI, S., AND FRANKLIN, M. J.: Towards an Internet-Scale XML Dissemination
Service. In: Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pp. 612–623, Toronto,
Canada, August 2004.

DOAN, A., DOMINGOS, P., AND HALEVY, A.: Reconciling Schemas of Disparate Data
Sources: A Machine-Learning Approach. In: Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, pp. 509–520, Santa Barbara, CA, USA, May 2001.

DOAN, A., DOMINGOS, P., AND LEVY, A.: Learning Source Descriptions for Data Integra-
tion. In: Proc. of the Int’l Workshop on the Web and Databases (WebDB), pp. 81–86, Dallas,
TX, USA, May 2000.

DOBRA, A., GAROFALAKIS, M., GEHRKE, J., AND RASTOGI, R.: Processing Complex Ag-
gregate Queries over Data Streams. In: Proc. of the ACM SIGMOD Int’l Conf. on Manage-
ment of Data, pp. 61–72, Madison, WI, USA, June 2002.

DOBRA, A., GAROFALAKIS, M., GEHRKE, J., AND RASTOGI, R.: Sketch-Based Multi-query
Processing over Data Streams. In: Proc. of the Int’l Conf. on Extending Database Technology
(EDBT), pp. 551–568, Heraklion, Crete, Greece, March 2004.

DONG, X., HALEVY, A. Y., AND TATARINOV, I.: Containment of Nested XML Queries. In:
Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pp. 132–143, Toronto, Canada,
August 2004.

ENDERLE, J., SCHNEIDER, N., AND SEIDL, T.: Efficiently Processing Queries on Interval-
and-Value Tuples in Relational Databases. In: Proc. of the Int’l Conf. on Very Large Data
Bases (VLDB), pp. 385–396, Trondheim, Norway, August 2005.

Bibliography 221

FABRET, F., JACOBSEN, H. A., LLIRBAT, F., PEREIRA, J., ROSS, K. A., AND SHASHA, D.:
Filtering Algorithms and Implementation for Very Fast Publish/Subscribe Systems. In: Proc.
of the ACM SIGMOD Int’l Conf. on Management of Data, pp. 115–126, Santa Barbara, CA,
USA, May 2001.

FISCHER, P. M., KOSSMANN, D., KRASKA, T., AND TAMOSEVICIUS, R.: Windows for
XQuery – Use Cases. Technical Report, ETH Zurich, November 2006.

FLORESCU, D., HILLERY, C., KOSSMANN, D., LUCAS, P., RICCARDI, F., WESTMANN,
T., CAREY, M. J., AND SUNDARARAJAN, A.: The BEA streaming XQuery processor. The
VLDB Journal, 13(3):294–315, September 2004.

FLORESCU, D., HILLERY, C., KOSSMANN, D., LUCAS, P., RICCARDI, F., WESTMANN,
T., CAREY, M. J., SUNDARARAJAN, A., AND AGRAWAL, G.: The BEA/XQRL Streaming
XQuery Processor. In: Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pp. 997–
1008, Berlin, Germany, September 2003.

FOSTER, I. AND KESSELMAN, C. (eds.): The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers, 2nd edition, 2004.

FOSTER, I., KISHIMOTO, H., SAVVA, A., BERRY, D., DJAOUI, A., GRIMSHAW, A., HORN,
B., MACIEL, F., SIEBENLIST, F., SUBRAMANIAM, R., TREADWELL, J., AND VON REICH,
J.: The Open Grid Services Architecture, Version 1.0. January 2005, http://www.gridforum.
org/documents/GWD-I-E/GFD-I.030.pdf.

FRANKLIN, M. J., JEFFERY, S. R., KRISHNAMURTHY, S., REISS, F., RIZVI, S., WU, E.,
COOPER, O., EDAKKUNNI, A., AND HONG, W.: Design Considerations for High Fan-in
Systems: The HiFi Approach. In: Proc. of the Conf. on Innovative Data Systems Research
(CIDR), pp. 290–304, Asilomar, CA, USA, January 2005.

FREIRE, J., HARITSA, J. R., RAMANATH, M., ROY, P., AND SIMÉON, J.: StatiX: Making
XML Count. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp. 181–
191, Madison, WI, USA, June 2002.

FUNG, W. F., SUN, D., AND GEHRKE, J.: COUGAR: The Network is the Database. In: Proc.
of the ACM SIGMOD Int’l Conf. on Management of Data, p. 621, Madison, WI, USA, June
2002.

GAEDE, V. AND GÜNTHER, O.: Multidimensional Access Methods. ACM Computing Surveys,
30(2):170–231, June 1998.

GANGULY, S., GAROFALAKIS, M., AND RASTOGI, R.: Processing Data-Stream Join Aggre-
gates Using Skimmed Sketches. In: Proc. of the Int’l Conf. on Extending Database Technol-
ogy (EDBT), pp. 569–586, Heraklion, Crete, Greece, March 2004.

GEDIK, B. AND LIU, L.: Quality-Aware Distributed Data Delivery for Continuous Query Ser-
vices. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp. 419–430,
Chicago, IL, USA, June 2006.

GOLAB, L., BIJAY, K. G., AND ÖZSU, M. T.: Multi-Query Optimization of Sliding Window
Aggregates by Schedule Synchronization. In: Proc. of the ACM Int’l Conf. on Information
and Knowledge Management (CIKM), pp. 844–845, Arlington, VA, USA, November 2006a.

http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf
http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf

222 Bibliography

GOLAB, L., BIJAY, K. G., AND ÖZSU, M. T.: Multi-Query Optimization of Sliding Win-
dow Aggregates by Schedule Synchronization. Technical Report CS-2006-26, University of
Waterloo, August 2006b.

GOLAB, L. AND ÖZSU, M. T.: Data Stream Management Issues – A Survey. Technical Report
CS-2003-08, University of Waterloo, April 2003a.

GOLAB, L. AND ÖZSU, M. T.: Issues in Data Stream Management. ACM SIGMOD Record,
32(2):5–14, June 2003b.

GOLAB, L. AND ÖZSU, M. T.: Processing Sliding Window Multi-Joins in Continuous Queries
over Data Streams. In: Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pp. 500–
511, Berlin, Germany, September 2003c.

GRAY, J., BOSWORTH, A., LAYMAN, A., AND PIRAHESH, H.: Data Cube: A Relational
Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. In: Proc. of the
IEEE Int’l Conf. on Data Engineering (ICDE), pp. 152–159, New Orleans, LA, USA, Febru-
ary 1996.

GUO, S., SUN, W., AND WEISS, M. A.: Solving Satisfiability and Implication Problems in
Database Systems. ACM Trans. on Database Systems (TODS), 21(2):270–293, June 1996.

GUPTA, A. K., HALEVY, A. Y., AND SUCIU, D.: View Selection for Stream Processing. In:
Proc. of the Int’l Workshop on the Web and Databases (WebDB), pp. 83–88, Madison, WI,
USA, June 2002.

GUPTA, A. K., SUCIU, D., AND HALEVY, A. Y.: The View Selection Problem for XML Con-
tent Based Routing. In: Proc. of the ACM SIGACT–SIGMOD–SIGART Symp. on Principles
of Database Systems (PODS), pp. 68–77, San Diego, CA, USA, June 2003.

GUTTMAN, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Proc. of the
ACM SIGMOD Int’l Conf. on Management of Data, pp. 47–57, Boston, MA, USA, June
1984.

HAAS, P. J. AND HELLERSTEIN, J. M.: Ripple Joins for Online Aggregation. In: Proc. of the
ACM SIGMOD Int’l Conf. on Management of Data, pp. 287–298, Philadelphia, PA, USA,
June 1999.

HALEVY, A. Y., IVES, Z. G., MORK, P., AND TATARINOV, I.: Piazza: Data Management
Infrastructure for Semantic Web Applications. In: Proc. of the Int’l World Wide Web Conf.
(WWW), pp. 556–567, Budapest, Hungary, May 2003.

HAMMAD, M. A., AREF, W. G., AND ELMAGARMID, A. K.: Stream Window Join: Tracking
Moving Objects in Sensor-Network Databases. In: Proc. of the Int’l Conf. on Scientific and
Statistical Database Management (SSDBM), pp. 75–84, Cambridge, MA, USA, July 2003a.

HAMMAD, M. A., FRANKLIN, M. J., AREF, W. G., AND ELMAGARMID, A. K.: Scheduling
for shared window joins over data streams. In: Proc. of the Int’l Conf. on Very Large Data
Bases (VLDB), pp. 297–308, Berlin, Germany, September 2003b.

Bibliography 223

HANSON, E. N., CHAABOUNI, M., KIM, C.-H., AND WANG, Y.-W.: A Predicate Match-
ing Algorithm for Database Rule Systems. In: Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, pp. 271–280, Atlantic City, NJ, USA, May 1990.

HANSON, E. N. AND JOHNSON, T.: Selection Predicate Indexing for Active Databases Using
Interval Skip Lists. Information Systems, 21(3):269–298, May 1996.

HEINRICH, C.: RFID and Beyond: Growing Your Business through Real World Awareness.
Wiley & Sons, 2005.

HEINZ, C. AND SEEGER, B.: Towards Kernel Density Estimation over Streaming Data. In:
Proc. of the Int’l Conf. on Management of Data (COMAD), pp. 91–102, Delhi, India, De-
cember 2006.

HEINZ, C. AND SEEGER, B.: Adaptive Wavelet Density Estimators over Data Streams. In:
Proc. of the Int’l Conf. on Scientific and Statistical Database Management (SSDBM), p. 35,
Banff, Canada, July 2007.

HELLERSTEIN, J. M. AND STONEBRAKER, M.: Predicate Migration: Optimizing Queries
with Expensive Predicates. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of
Data, pp. 267–276, Washington, D.C., USA, May 1993.

HONG, M., DEMERS, A., GEHRKE, J., KOCH, C., RIEDEWALD, M., AND WHITE, W.:
Massively Multi-Query Join Processing in Publish/Subscribe Systems. In: Proc. of the ACM
SIGMOD Int’l Conf. on Management of Data, pp. 761–772, Beijing, China, June 2007.

HRISTIDIS, V. AND PETROPOULOS, M.: Semantic Caching of XML Databases. In: Proc. of
the Int’l Workshop on the Web and Databases (WebDB), pp. 25–30, Madison, WI, USA, June
2002.

HUANG, Q., LU, C., AND ROMAN, G.-C.: Spatiotemporal Multicast in Sensor Networks. In:
Proc. of the Int’l Conf. on Embedded Networked Sensor Systems (SenSys), pp. 205–217, Los
Angeles, CA, USA, November 2003.

HUEBSCH, R., CHUN, B., HELLERSTEIN, J. M., LOO, B. T., MANIATIS, P., ROSCOE, T.,
SHENKER, S., STOICA, I., AND YUMEREFENDI, A. R.: The Architecture of PIER: an
Internet-Scale Query Processor. In: Proc. of the Conf. on Innovative Data Systems Research
(CIDR), pp. 28–43, Asilomar, CA, USA, January 2005.

HUEBSCH, R., GAROFALAKIS, M., HELLERSTEIN, J. M., AND STOICA, I.: Sharing Ag-
gregate Computation for Distributed Queries. In: Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, pp. 485–496, Beijing, China, June 2007.

HUEBSCH, R., HELLERSTEIN, J. M., LANHAM, N., LOO, B. T., SHENKER, S., AND STO-
ICA, I.: Querying the Internet with PIER. In: Proc. of the Int’l Conf. on Very Large Data
Bases (VLDB), pp. 321–332, Berlin, Germany, September 2003.

IVOA: VOTable Format Definition, Version 1.1 (IVOA Recommendation, August 11th, 2004).
August 2004, http://www.ivoa.net/Documents/latest/VOT.html.

IVOA: IVOA Astronomical Data Query Language, Version 1.01 (IVOA Working Draft, June
24th, 2005). June 2005, http://www.ivoa.net/Documents/latest/ADQL.html.

http://www.ivoa.net/Documents/latest/VOT.html
http://www.ivoa.net/Documents/latest/ADQL.html

224 Bibliography

JOHNSON, T., MUTHUKRISHNAN, S., SHKAPENYUK, V., AND SPATSCHECK, O.: A Heart-
beat Mechanism and its Application in Gigascope. In: Proc. of the Int’l Conf. on Very Large
Data Bases (VLDB), pp. 1079–1088, Trondheim, Norway, August 2005.

KANG, J., NAUGHTON, J. F., AND VIGLAS, S. D.: Evaluating Window Joins over Unbounded
Streams. In: Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE), pp. 341–352, Ban-
galore, India, March 2003.

KEIDL, M., KREUTZ, A., KEMPER, A., AND KOSSMANN, D.: A Publish & Subscribe Ar-
chitecture for Distributed Metadata Management. In: Proc. of the IEEE Int’l Conf. on Data
Engineering (ICDE), pp. 309–320, San José, CA, USA, February 2002.

KEMPER, A., MOERKOTTE, G., PEITHNER, K., AND STEINBRUNN, M.: Optimizing Dis-
junctive Queries with Expensive Predicates. In: Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, pp. 336–347, Minneapolis, MN, USA, May 1994.

KOCH, C., SCHERZINGER, S., SCHWEIKARDT, N., AND STEGMAIER, B.: FluXQuery: An
Optimizing XQuery Processor for Streaming XML Data. In: Proc. of the Int’l Conf. on Very
Large Data Bases (VLDB), pp. 1309–1312, Toronto, Canada, August 2004a.

KOCH, C., SCHERZINGER, S., SCHWEIKARDT, N., AND STEGMAIER, B.: Schema-based
Scheduling of Event Processors and Buffer Minimization for Queries on Structured Data
Streams. In: Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pp. 228–239, Toronto,
Canada, August 2004b.

KOSSMANN, D.: The State of the Art in Distributed Query Processing. ACM Computing Sur-
veys, 32(4):422–469, December 2000.

KOSSMANN, D., FRANKLIN, M. J., AND DRASCH, G.: Cache Investment: Integrating Query
Optimization and Distributed Data Placement. ACM Trans. on Database Systems (TODS),
25(4):517–558, December 2000.

KRÄMER, J. AND SEEGER, B.: PIPES – A Public Infrastructure for Processing and Exploring
Streams. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp. 925–926,
Paris, France, June 2004.

KRÄMER, J. AND SEEGER, B.: A Temporal Foundation for Continuous Queries over Data
Streams. In: Proc. of the Int’l Conf. on Management of Data (COMAD), pp. 70–82, Goa,
India, January 2005.

KRÄMER, J., YANG, Y., CAMMERT, M., SEEGER, B., AND PAPADIAS, D.: Dynamic Plan
Migration for Snapshot-Equivalent Continuous Queries in Data Stream Systems. In: Proc. of
the Int’l Conf. on Semantics of a Networked World (ICSNW), pp. 497–516, Munich, Germany,
March 2006.

KRISHNAMURTHY, S., CHANDRASEKARAN, S., COOPER, O., DESHPANDE, A., FRANKLIN,
M. J., HELLERSTEIN, J. M., HONG, W., MADDEN, S. R., REISS, F., AND SHAH, M. A.:
TelegraphCQ: An Architectural Status Report. IEEE Data Engineering Bulletin, 26(1):11–
18, March 2003.

Bibliography 225

KRISHNAMURTHY, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND JACOBSON, G.: The
Case for Precision Sharing. In: Proc. of the Int’l Conf. on Very Large Data Bases (VLDB),
pp. 972–983, Toronto, Canada, August 2004.

KRISHNAMURTHY, S., WU, C., AND FRANKLIN, M. J.: On-the-Fly Sharing for Streamed
Aggregation. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp. 623–
634, Chicago, IL, USA, June 2006.

KUNTSCHKE, R. AND KEMPER, A.: Data Stream Sharing. In: Proc. of the Int’l Workshop on
Pervasive Information Management (PIM), pp. 45–56, Munich, Germany, March 2006a.

KUNTSCHKE, R. AND KEMPER, A.: Data Stream Sharing. In: Current Trends in Database
Technology – EDBT 2006, EDBT 2006 Workshop PhD, DataX, IIDB, IIHA, ICSNW, QLQP,
PIM, PaRMa, and Reactivity on the Web, Munich, Germany, March 26-31, 2006, Revised Se-
lected Papers, Lecture Notes in Computer Science (LNCS), vol. 4254, pp. 769–788, Springer
Verlag, March 2006b.

KUNTSCHKE, R. AND KEMPER, A.: Matching and Evaluation of Disjunctive Predicates for
Data Stream Sharing. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Man-
agement (CIKM), pp. 832–833, Arlington, VA, USA, November 2006c.

KUNTSCHKE, R. AND KEMPER, A.: Matching and Evaluation of Disjunctive Predicates for
Data Stream Sharing. Technical Report TUM-I0615, Technische Universität München, Au-
gust 2006d.

KUNTSCHKE, R., SCHOLL, T., HUBER, S., KEMPER, A., REISER, A., ADORF, H.-M.,
LEMSON, G., AND VOGES, W.: Grid-based Data Stream Processing in e-Science. In: Proc.
of the IEEE Int’l Conf. on e-Science and Grid Computing (eScience), p. 30, Amsterdam, The
Netherlands, December 2006.

KUNTSCHKE, R., STEGMAIER, B., HÄUSLSCHMID, F., REISER, A., KEMPER, A., ADORF,
H.-M., ENKE, H., LEMSON, G., AND VOGES, W.: Datenstrom-Management für e-Science
mit StreamGlobe. Datenbank-Spektrum, 4(11):14–22, November 2004.

KUNTSCHKE, R., STEGMAIER, B., AND KEMPER, A.: Data Stream Sharing. Technical Report
TUM-I0504, Technische Universität München, April 2005a.

KUNTSCHKE, R., STEGMAIER, B., KEMPER, A., AND REISER, A.: StreamGlobe: Processing
and Sharing Data Streams in Grid-Based P2P Infrastructures. In: Proc. of the Int’l Conf. on
Very Large Data Bases (VLDB), pp. 1259–1262, Trondheim, Norway, August 2005b.

LERNER, A. AND SHASHA, D.: AQuery: Query Language for Ordered Data, Optimization
Techniques, and Experiments. In: Proc. of the Int’l Conf. on Very Large Data Bases (VLDB),
pp. 345–356, Berlin, Germany, September 2003.

LEVY, A. Y., MENDELZON, A. O., SAGIV, Y., AND SRIVASTAVA, D.: Answering Queries
Using Views. In: Proc. of the ACM SIGACT–SIGMOD–SIGART Symp. on Principles of
Database Systems (PODS), pp. 95–104, San José, CA, USA, May 1995.

LI, J., MAIER, D., TUFTE, K., PAPADIMOS, V., AND TUCKER, P. A.: No Pane, No Gain: Ef-
ficient Evaluation of Sliding-Window Aggregates over Data Streams. ACM SIGMOD Record,
34(1):39–44, March 2005a.

226 Bibliography

LI, J., MAIER, D., TUFTE, K., PAPADIMOS, V., AND TUCKER, P. A.: Semantics and Eval-
uation Techniques for Window Aggregates in Data Streams. In: Proc. of the ACM SIGMOD
Int’l Conf. on Management of Data, pp. 311–322, Baltimore, MD, USA, June 2005b.

LI, X. AND AGRAWAL, G.: Efficient Evaluation of XQuery over Streaming Data. In: Proc. of
the Int’l Conf. on Very Large Data Bases (VLDB), pp. 265–276, Trondheim, Norway, August
2005.

LIM, H.-S., LEE, J.-G., LEE, M.-J., WHANG, K.-Y., AND SONG, I.-Y.: Continuous Query
Processing in Data Streams Using Duality of Data and Queries. In: Proc. of the ACM SIG-
MOD Int’l Conf. on Management of Data, pp. 313–324, Chicago, IL, USA, June 2006.

LIN, K.-I., JAGADISH, H. V., AND FALOUTSOS, C.: The TV-Tree: An Index Structure for
High-Dimensional Data. The VLDB Journal, 3(4):517–542, October 1994.

LIU, D. T. AND FRANKLIN, M. J.: GridDB: A Data-Centric Overlay for Scientific Grids. In:
Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pp. 600–611, Toronto, Canada,
August 2004.

MADDEN, S. AND FRANKLIN, M. J.: Fjording the Stream: An Architecture for Queries Over
Streaming Sensor Data. In: Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE), pp.
555–566, San José, CA, USA, February 2002.

MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W.: TAG: a Tiny AG-
gregation Service for Ad-Hoc Sensor Networks. In: Proc. of the Symp. on Operating System
Design and Implementation (OSDI), Boston, MA, USA, December 2002a.

MADDEN, S., SHAH, M., HELLERSTEIN, J. M., AND RAMAN, V.: Continuously Adaptive
Continuous Queries over Streams. In: Proc. of the ACM SIGMOD Int’l Conf. on Management
of Data, pp. 49–60, Madison, WI, USA, June 2002b.

MADDEN, S. R., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W.: TinyDB: An Ac-
quisitional Query Processing System for Sensor Networks. ACM Trans. on Database Systems
(TODS), 30(1):122–173, March 2005.

MALIK, T., SZALAY, A. S., BUDAVÁRI, T., AND THAKAR, A. R.: SkyQuery: A Web Service
Approach to Federate Databases. In: Proc. of the Conf. on Innovative Data Systems Research
(CIDR), Asilomar, CA, USA, January 2003.

MANDHANI, B. AND SUCIU, D.: Query Caching and View Selection for XML Databases. In:
Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pp. 469–480, Trondheim, Norway,
August 2005.

MANJHI, A., NATH, S., AND GIBBONS, P. B.: Tributaries and Deltas: Efficient and Robust
Aggregation in Sensor Network Streams. In: Proc. of the ACM SIGMOD Int’l Conf. on Man-
agement of Data, pp. 287–298, Baltimore, MD, USA, June 2005.

MARIAN, A. AND SIMÉON, J.: Projecting XML Documents. In: Proc. of the Int’l Conf. on
Very Large Data Bases (VLDB), pp. 213–224, Berlin, Germany, September 2003a.

MARIAN, A. AND SIMÉON, J.: Projecting XML Documents. Technical Report, Columbia
University, February 2003b.

Bibliography 227

MELTON, J. AND SIMON, A. R.: SQL:1999 – Understanding Relational Language Compo-
nents. Morgan Kaufmann Publishers, 2002.

MISTRY, H., ROY, P., SUDARSHAN, S., AND RAMAMRITHAM, K.: Materialized View Selec-
tion and Maintenance Using Multi-Query Optimization. In: Proc. of the ACM SIGMOD Int’l
Conf. on Management of Data, pp. 307–318, Santa Barbara, CA, USA, May 2001.

MOTWANI, R., WIDOM, J., ARASU, A., BABCOCK, B., BABU, S., DATAR, M., MANKU,
G., OLSTON, C., ROSENSTEIN, J., AND VARMA, R.: Query Processing, Resource Man-
agement, and Approximation in a Data Stream Management System. In: Proc. of the Conf.
on Innovative Data Systems Research (CIDR), Asilomar, CA, USA, January 2003.

MURALIKRISHNA, M. AND DEWITT, D. J.: Optimization of Multiple-Relation Multiple-
Disjunct Queries. In: Proc. of the ACM SIGACT–SIGMOD–SIGART Symp. on Principles
of Database Systems (PODS), pp. 263–275, Austin, TX, USA, March 1988.

NIETO-SANTISTEBAN, M. A., GRAY, J., SZALAY, A. S., ANNIS, J., THAKAR, A. R., AND

O’MULLANE, W. J.: When Database Systems Meet the Grid. In: Proc. of the Conf. on
Innovative Data Systems Research (CIDR), pp. 154–161, Asilomar, CA, USA, January 2005.

O’MULLANE, W., BUDAVÁRI, T., LI, N., MALIK, T., NIETO-SANTISTEBAN, M. A., SZA-
LAY, A. S., AND THAKAR, A. R.: OpenSkyQuery and OpenSkyNode – the VO Framework
to Federate Astronomy Archives. In: Proc. of the Conf. on Astronomical Data Analysis Soft-
ware & Systems (ADASS), pp. 341–345, Pasadena, CA, USA, October 2004.

ONOSE, N., DEUTSCH, A., PAPAKONSTANTINOU, Y., AND CURTMOLA, E.: Rewriting
Nested XML Queries Using Nested Views. In: Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, pp. 443–454, Chicago, IL, USA, June 2006.

PAPADIMOS, V., MAIER, D., AND TUFTE, K.: Distributed Query Processing and Catalogs for
Peer-to-Peer Systems. In: Proc. of the Conf. on Innovative Data Systems Research (CIDR),
Asilomar, CA, USA, January 2003.

PATROUMPAS, K. AND SELLIS, T.: Window Specification over Data Streams. In: Proc. of the
Int’l Conf. on Semantics of a Networked World (ICSNW), pp. 445–464, Munich, Germany,
March 2006.

PIETZUCH, P., LEDLIE, J., SHNEIDMAN, J., ROUSSOPOULOS, M., WELSH, M., AND

SELTZER, M.: Network-Aware Operator Placement for Stream-Processing Systems. In:
Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE), p. 49, Atlanta, GA, USA, April
2006.

RAHM, E. AND BERNSTEIN, P. A.: A survey of approaches to automatic schema matching.
The VLDB Journal, 10(4):334–350, December 2001.

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S.: A Scal-
able Content-Addressable Network. In: Proc. of the ACM SIGCOMM Conf. on Applications,
Technologies, Architectures, and Protocols for Computer Communication, pp. 161–172, San
Diego, CA, USA, August 2001.

228 Bibliography

RATNASAMY, S., HANDLEY, M., KARP, R., AND SHENKER, S.: Topologically-Aware Over-
lay Construction and Server Selection. In: Proc. of the IEEE Conf. on Computer Communi-
cations (INFOCOM), pp. 1190–1199, New York, NY, USA, June 2002.

ROSENKRANTZ, D. J. AND HUNT, H. B.: Processing Conjunctive Predicates and Queries. In:
Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pp. 64–72, Montreal, Canada,
October 1980.

ROWSTRON, A. AND DRUSCHEL, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: IFIP/ACM Int’l Conf. on Distributed Sys-
tems Platforms (Middleware), pp. 329–350, Heidelberg, Germany, November 2001.

ROY, P., SESHADRI, S., SUDARSHAN, S., AND BHOBE, S.: Efficient and Extensible Algo-
rithms for Multi Query Optimization. In: Proc. of the ACM SIGMOD Int’l Conf. on Manage-
ment of Data, pp. 249–260, Dallas, TX, USA, May 2000.

SCHEK, H.-J., SCHULDT, H., AND WEBER, R.: Hyperdatabases: Infrastructure for the Infor-
mation Space. In: Proc. of the Working Conf. on Visual Database Systems (VDB), pp. 1–15,
Brisbane, Australia, May 2002.

SCHLOSSER, M., SINTEK, M., DECKER, S., AND NEJDL, W.: HyperCuP – Hypercubes,
Ontologies, and Efficient Search on Peer-to-Peer Networks. In: Proc. of the Int’l Workshop
on Agents and Peer-to-Peer Computing (AP2PC), pp. 112–124, Bologna, Italy, July 2002.

SCHOLL, T., BAUER, B., GUFLER, B., KUNTSCHKE, R., REISER, A., AND KEMPER, A.:
HiSbase: Histogram-based P2P Main Memory Data Management. In: Proc. of the Int’l Conf.
on Very Large Data Bases (VLDB), pp. 1394–1397, Vienna, Austria, September 2007.

SCHULER, C., WEBER, R., SCHULDT, H., AND SCHEK, H.-J.: Peer-to-Peer Process Execu-
tion with OSIRIS. In: Proc. of the Int’l Conf. on Service-Oriented Computing (ICSOC), pp.
483–498, Trento, Italy, December 2003.

SCHULER, C., WEBER, R., SCHULDT, H., AND SCHEK, H.-J.: Scalable Peer-to-Peer Process
Management – The OSIRIS Approach. In: Proc. of the IEEE Int’l Conf. on Web Services
(ICWS), pp. 26–34, San Diego, CA, USA, June 2004.

SCHWENTICK, T.: XPath Query Containment. ACM SIGMOD Record, 33(1):101–109, March
2004.

SELLIS, T., ROUSSOPOULOS, N., AND FALOUTSOS, C.: The R+-Tree: A Dynamic Index for
Multi-Dimensional Objects. In: Proc. of the Int’l Conf. on Very Large Data Bases (VLDB),
pp. 507–518, Brighton, England, September 1987.

SELLIS, T. K.: Multiple-Query Optimization. ACM Trans. on Database Systems (TODS),
13(1):23–52, March 1988.

SESHADRI, S., KUMAR, V., COOPER, B. F., AND LIU, L.: Optimizing Multiple Distributed
Stream Queries Using Hierarchical Network Partitions. In: Proc. of the IEEE Int’l Parallel
and Distributed Processing Symp. (IPDPS), Long Beach, CA, USA, March 2007.

Bibliography 229

SHAH, A. AND CHIRKOVA, R.: Improving Query Performance Using Materialized XML
Views: A Learning-Based Approach. In: Proc. of the Int’l Workshop on XML Schema and
Data Management (XSDM), pp. 297–310, Chicago, IL, USA, October 2003.

SHAH, M. A., HELLERSTEIN, J. M., AND BREWER, E.: Highly Available, Fault-Tolerant,
Parallel Dataflows. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp.
827–838, Paris, France, June 2004.

SHAH, M. A., HELLERSTEIN, J. M., CHANDRASEKARAN, S., AND FRANKLIN, M. J.: Flux:
An Adaptive Partitioning Operator for Continuous Query Systems. In: Proc. of the IEEE Int’l
Conf. on Data Engineering (ICDE), pp. 353–364, Bangalore, India, March 2003.

SHANMUGASUNDARAM, J., KIERNAN, J., SHEKITA, E., FAN, C., AND FUNDERBURK, J.:
Querying XML Views of Relational Data. In: Proc. of the Int’l Conf. on Very Large Data
Bases (VLDB), pp. 261–270, Roma, Italy, September 2001.

SRIVASTAVA, U., MUNAGALA, K., AND WIDOM, J.: Operator Placement for In-Network
Stream Query Processing. In: Proc. of the ACM SIGACT–SIGMOD–SIGART Symp. on Prin-
ciples of Database Systems (PODS), pp. 250–258, Baltimore, MD, USA, June 2005.

STEGMAIER, B.: Query Processing on Data Streams. Ph.D. Thesis, Technische Universität
München, June 2006.

STEGMAIER, B. AND KUNTSCHKE, R.: StreamGlobe: Adaptive Anfragebearbeitung und Op-
timierung auf Datenströmen. In: GI Workshop Dynamische Informationsfusion, pp. 367–372,
Ulm, Germany, September 2004.

STEGMAIER, B., KUNTSCHKE, R., AND KEMPER, A.: StreamGlobe: Adaptive Query Pro-
cessing and Optimization in Streaming P2P Environments. In: Proc. of the Int’l Workshop on
Data Management for Sensor Networks (DMSN), pp. 88–97, Toronto, Canada, August 2004.

STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H.:
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In: Proc. of the
ACM SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication, pp. 149–160, San Diego, CA, USA, August 2001.

STOICA, I., MORRIS, R., LIBEN-NOWELL, D., KARGER, D. R., KAASHOECK, M. F.,
DABEK, F., AND BALAKRISHNAN, H.: Chord: A Scalable Peer-to-Peer Lookup Protocol
for Internet Applications. IEEE/ACM Trans. on Networking (TON), 11(1):17–32, February
2003.

SU, H., JIAN, J., AND RUNDENSTEINER, E. A.: Raindrop: A Uniform and Layered Algebraic
Framework for XQueries on XML Streams. In: Proc. of the ACM Int’l Conf. on Informa-
tion and Knowledge Management (CIKM), pp. 279–286, New Orleans, LA, USA, November
2003.

SULLIVAN, M. AND HEYBEY, A.: Tribeca: A System for Managing Large Databases of Net-
work Traffic. In: Proc. of the USENIX Annual Technical Conference, pp. 13–24, New Or-
leans, LA, USA, June 1998.

230 Bibliography

SUN, X.-H., KAMEL, N., AND NI, L. M.: Solving Implication Problems in Database Appli-
cations. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp. 185–192,
Portland, OR, USA, May 1989.

SZALAY, A. S., KUNSZT, P. Z., THAKAR, A., GRAY, J., SLUTZ, D., AND BRUNNER, R. J.:
Designing and Mining Multi-Terabyte Astronomy Archives: The Sloan Digital Sky Survey.
In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp. 451–462, Dallas,
TX, USA, May 2000.

TAO, Y., YIU, M. L., PAPADIAS, D., HADJIELEFTHERIOU, M., AND MAMOULIS, N.: RPJ:
Producing Fast Join Results on Streams through Rate-based Optimization. In: Proc. of the
ACM SIGMOD Int’l Conf. on Management of Data, pp. 371–382, Baltimore, MD, USA, June
2005.

TATARINOV, I. AND HALEVY, A.: Efficient Query Reformulation in Peer Data Management
Systems. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp. 539–550,
Paris, France, June 2004.

TATARINOV, I., IVES, Z., MADHAVAN, J., HALEVY, A., SUCIU, D., DALVI, N., DONG, X.,
KADIYSKA, Y., MIKLAU, G., AND MORK, P.: The Piazza Peer Data Management Project.
ACM SIGMOD Record, 32(3):47–52, September 2003.

TERRY, D., GOLDBERG, D., NICHOLS, D., AND OKI, B.: Continuous Queries over Append-
Only Databases. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp.
321–330, San Diego, CA, USA, June 1992.

THEODORATOS, D. AND SELLIS, T.: Data Warehouse Configuration. In: Proc. of the Int’l
Conf. on Very Large Data Bases (VLDB), pp. 126–135, Athens, Greece, August 1997.

THEODORATOS, D. AND SELLIS, T.: Dynamic Data Warehouse Design. In: Proc. of the Int’l
Conf. on Data Warehousing and Knowledge Discovery (DaWaK), pp. 1–10, Florence, Italy,
August 1999.

TUECKE, S., CZAJKOWSKI, K., FOSTER, I., FREY, J., GRAHAM, S., KESSELMAN, C.,
MAGUIRE, T., SANDHOLM, T., SNELLING, D., AND VANDERBILT, P.: Open Grid Services
Infrastructure (OGSI) Version 1.0. June 2003, http://www.globus.org/alliance/publications/
papers/Final_OGSI_Specification_V1.0.pdf.

URHAN, T. AND FRANKLIN, M. J.: XJoin: A Reactively-Scheduled Pipelined Join Operator.
IEEE Data Engineering Bulletin, 23(2):27–33, June 2000.

VAN DEN BERCKEN, J., BLOHSFELD, B., DITTRICH, J.-P., KRÄMER, J., SCHÄFER, T.,
SCHNEIDER, M., AND SEEGER, B.: XXL – A Library Approach to Supporting Efficient
Implementations of Advanced Database Queries. In: Proc. of the Int’l Conf. on Very Large
Data Bases (VLDB), pp. 39–48, Roma, Italy, September 2001.

VIGLAS, S. D. AND NAUGHTON, J. F.: Rate-Based Query Optimization for Streaming In-
formation Sources. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp.
37–48, Madison, WI, USA, June 2002.

http://www.globus.org/alliance/publications/papers/Final_OGSI_Specification_V1.0.pdf
http://www.globus.org/alliance/publications/papers/Final_OGSI_Specification_V1.0.pdf

Bibliography 231

VIGLAS, S. D., NAUGHTON, J. F., AND BURGER, J.: Maximizing the Output Rate of Multi-
Way Join Queries over Streaming Information Sources. In: Proc. of the Int’l Conf. on Very
Large Data Bases (VLDB), pp. 285–296, Berlin, Germany, September 2003.

VOGES, W., ASCHENBACH, B., BOLLER, T., BRÄUNINGER, H., BRIEL, U., BURK-
ERT, W., DENNERL, K., ENGLHAUSER, J., GRUBER, R., HABERL, F., HARTNER, G.,
HASINGER, G., KÜRSTER, M., PFEFFERMANN, E., PIETSCH, W., PREDEHL, P., ROSSO,
C., SCHMITT, J. H. M. M., TRÜMPER, J., AND ZIMMERMANN, H. U.: The ROSAT All-
Sky Survey Bright Source Catalogue. Astronomy and Astrophysics, 349(2):389–405, July
1999.

VÖLK, H.: Gamma-Astronomie mit abbildenden Cherenkov-Teleskopen – Erste Ergebnisse
und Pläne für die Zukunft. Sterne und Weltraum, pp. 1064–1070, December 1999.

W3C: Extensible Markup Language (XML) 1.0 (Fourth Edition) (W3C Recommendation, Au-
gust 16th, 2006, edited in place September 29th, 2006). September 2006a, http://www.w3.
org/TR/xml/.

W3C: Extensible Markup Language (XML) 1.1 (Second Edition) (W3C Recommendation, Au-
gust 16th, 2006, edited in place September 29th, 2006). September 2006b, http://www.w3.
org/TR/xml11/.

W3C: SOAP Version 1.2 Part 1: Messaging Framework (Second Edition) (W3C Recommen-
dation, April 27th, 2007). April 2007a, http://www.w3.org/TR/soap12-part1/.

W3C: XML Path Language (XPath) 2.0 (W3C Recommendation, January 23rd, 2007). January
2007b, http://www.w3.org/TR/xpath20/.

W3C: XML Syntax for XQuery 1.0 (XQueryX) (W3C Recommendation, January 23rd, 2007).
January 2007c, http://www.w3.org/TR/xqueryx/.

W3C: XQuery 1.0: An XML Query Language (W3C Recommendation, January 23rd, 2007).
January 2007d, http://www.w3.org/TR/xquery/.

W3C: XQuery 1.0 and XPath 2.0 Formal Semantics (W3C Recommendation, January 23rd,
2007). January 2007e, http://www.w3.org/TR/xquery-semantics/.

WANG, B., ZHANG, W., AND KITSUREGAWA, M.: UB-tree Based Efficient Predicate Index
with Dimension Transform for Pub/Sub System. In: Proc. of the Int’l Conf. on Database
Systems for Advanced Applications (DASFAA), pp. 63–74, Jeju Island, Korea, March 2004.

WANG, S., RUNDENSTEINER, E., GANGULY, S., AND BHATNAGAR, S.: State-Slice: New
Paradigm of Multi-query Optimization of Window-based Stream Queries. In: Proc. of the
Int’l Conf. on Very Large Data Bases (VLDB), pp. 619–630, Seoul, Korea, September 2006.

WIDOM, J. AND CERI, S. (eds.): Active Database Systems – Triggers and Rules for Advanced
Database Processing. Morgan Kaufmann Publishers, 1996.

WILSCHUT, A. N. AND APERS, P. M. G.: Dataflow Query Execution in a Parallel Main-
Memory Environment. In: Proc. of the Int’l Conf. on Parallel and Distributed Information
Systems (PDIS), pp. 68–77, Miami Beach, FL, USA, December 1991.

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xqueryx/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery-semantics/

232 Bibliography

WU, E., DIAO, Y., AND RIZVI, S.: High-Performance Complex Event Processing over
Streams. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp. 407–418,
Chicago, IL, USA, June 2006.

WU, K.-L., CHEN, S.-K., AND YU, P. S.: VCR Indexing for Fast Event Matching for Highly-
Overlapping Range Predicates. In: ACM Symp. on Applied Computing (SAC), pp. 740–747,
Nicosia, Cyprus, March 2004a.

WU, K.-L., CHEN, S.-K., YU, P. S., AND MEI, M.: Efficient Interval Indexing for Content-
Based Subscription E-Commerce and E-Service. In: Proc. of the IEEE Int’l Conf. on E-
Commerce Technology for Dynamic E-Business (CEC), pp. 22–29, Beijing, China, Septem-
ber 2004b.

XU, W.: The Framework of an XML Semantic Caching System. In: Proc. of the Int’l Workshop
on the Web and Databases (WebDB), pp. 127–132, Baltimore, MD, USA, June 2005.

YANG, B. AND GARCIA-MOLINA, H.: Designing a Super-Peer Network. In: Proc. of the IEEE
Int’l Conf. on Data Engineering (ICDE), pp. 49–60, Bangalore, India, March 2003.

YANG, Y., KRÄMER, J., PAPADIAS, D., AND SEEGER, B.: HybMig: A Hybrid Approach
to Dynamic Plan Migration for Continuous Queries. IEEE Trans. on Knowledge and Data
Engineering (TKDE), 19(3):398–411, March 2007.

YAO, Y. AND GEHRKE, J.: The Cougar Approach to In-Network Query Processing in Sensor
Networks. ACM SIGMOD Record, 31(3):9–18, September 2002.

YAO, Y. AND GEHRKE, J.: Query Processing for Sensor Networks. In: Proc. of the Conf. on
Innovative Data Systems Research (CIDR), Asilomar, CA, USA, January 2003.

ZHANG, D., GUNOPULOS, D., TSOTRAS, V. J., AND SEEGER, B.: Temporal and spatio-
temporal aggregations over data streams using multiple time granularities. Information Sys-
tems, 28(1–2):61–84, March 2003a.

ZHANG, R., KOUDAS, N., OOI, B. C., AND SRIVASTAVA, D.: Multiple Aggregations Over
Data Streams. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pp. 299–
310, Baltimore, MD, USA, June 2005.

ZHANG, X., DIMITROVA, K., WANG, L., EL SAYED, M., MURPHY, B., PIELECH, B.,
MULCHANDANI, M., DING, L., AND RUNDENSTEINER, E. A.: Rainbow: Multi-XQuery
Optimization Using Materialized XML Views. In: Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, p. 671, San Diego, CA, USA, June 2003b.

ZHAO, B. Y., HUANG, L., STRIBLING, J., RHEA, S. C., JOSEPH, A. D., AND KUBIA-
TOWICZ, J. D.: Tapestry: A Resilient Global-Scale Overlay for Service Deployment. IEEE
Journal on Selected Areas in Communications (JSAC), 22(1):41–53, January 2004.

ZHOU, J., LARSON, P.-A., FREYTAG, J.-C., AND LEHNER, W.: Efficient Exploitation of
Similar Subexpressions for Query Processing. In: Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, pp. 533–544, Beijing, China, June 2007.

ZHU, Y., RUNDENSTEINER, E. A., AND HEINEMAN, G. T.: Dynamic Plan Migration for
Continuous Queries Over Data Streams. In: Proc. of the ACM SIGMOD Int’l Conf. on Man-
agement of Data, pp. 431–442, Paris, France, June 2004.

	Title Page
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 System and Query Type Classification
	1.2 Contributions and Outline

	2 The StreamGlobe Distributed Data Stream Management System
	2.1 Introduction
	2.2 Example Application Scenario
	2.3 StreamGlobe Architecture
	2.3.1 Network Architecture
	2.3.2 Super-Peer Architecture
	2.3.3 Thin-Peer Architecture
	2.3.4 Optimizer Integration
	2.3.5 External Operator Integration
	2.3.6 Network Organization
	2.3.7 Implementation

	2.4 Related Work
	2.4.1 Data Stream Management
	2.4.2 P2P Data Management
	2.4.3 Grid Computing
	2.4.4 Network Architecture

	2.5 Summary

	3 The StarGlobe System: An Astrophysical Flavor of StreamGlobe
	3.1 Introduction
	3.2 Problem Statement
	3.3 The SED Scenario
	3.3.1 Overview
	3.3.2 Spatial (Astrometric) Matching

	3.4 Astrometric Matching in StarGlobe
	3.4.1 Preliminaries
	3.4.2 Spatial Matching Scenario

	3.5 Related Work
	3.6 Summary

	4 Data Stream Sharing
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Problem Statement
	4.2.2 Data Streams
	4.2.3 Data Windows

	4.3 The WXQuery Subscription Language
	4.4 Data Stream Sharing
	4.4.1 Overview
	4.4.2 Query and Data Stream Properties
	4.4.3 Shareability and Dependency Relations
	4.4.4 Cost Model
	4.4.5 Stream Sharing Algorithms
	4.4.6 Window-based Aggregation
	4.4.7 Extensions and Optimizations

	4.5 Evaluation
	4.6 Related Work
	4.7 Summary

	5 Advanced Data Stream Sharing: Matching and Merging Queries and Data
	5.1 Introduction
	5.2 The Abstract Property Tree (APT)
	5.2.1 Definition
	5.2.2 Translating WXQueries into APTs
	5.2.3 Translating APTs into WXQueries

	5.3 Matching and Merging APTs
	5.3.1 Matching and Merging the Tree Structures
	5.3.2 Matching and Merging the Annotations
	5.3.3 Relaxing Data Windows
	5.3.4 Example Matchings
	5.3.5 Completeness and Correctness of Matching and Merging APTs

	5.4 Handling Join Queries
	5.4.1 Preliminaries
	5.4.2 The Abstract Property Forest (APF)
	5.4.3 Matching and Merging APFs

	5.5 Adapting the StreamGlobe Optimization Framework
	5.5.1 Cost Model
	5.5.2 Deleting Queries
	5.5.3 Data Stream Widening and Data Stream Narrowing
	5.5.4 Handling Join Queries

	5.6 Evaluation
	5.7 Related Work
	5.8 Summary

	6 Matching and Evaluation Strategies for Disjunctive Predicates
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Predicates
	6.2.2 Predicate Matching
	6.2.3 Predicate Evaluation
	6.2.4 Notation

	6.3 Predicate Matching
	6.3.1 Example Predicates
	6.3.2 Quick Check (QC)
	6.3.3 Heuristics with Simple Relaxation (HSR)
	6.3.4 Heuristics with Complex Relaxation (HCR)
	6.3.5 Exact Matching (EM)
	6.3.6 Multi-Dimensional Indexing

	6.4 Predicate Evaluation
	6.4.1 Standard Evaluation (SE)
	6.4.2 Index-based Evaluation (IE)

	6.5 Complexity Analysis
	6.5.1 Prerequisites
	6.5.2 Quick Check (QC)
	6.5.3 Heuristics with Simple Relaxation (HSR)
	6.5.4 Heuristics with Complex Relaxation (HCR)
	6.5.5 Exact Matching (EM)
	6.5.6 Standard Evaluation (SE)
	6.5.7 Index-based Evaluation (IE)
	6.5.8 Summary

	6.6 Performance Evaluation
	6.6.1 Implementation and Setting
	6.6.2 Predicate Matching
	6.6.3 Predicate Evaluation

	6.7 Related Work
	6.8 Summary

	7 Conclusion and Outlook
	A StreamGlobe Client Interface
	A.1 Example Scenario
	A.2 Scenario Schema
	A.3 Distributed Query Evaluation Plan
	A.4 Plan Schema

	B Proof of Theorem 3.1
	C Alternative XQuery Window Implementations
	C.1 Count-based Data Windows
	C.2 Time-based Data Windows

	D WXQuery EBNF Grammar
	E Alternative Aggregate Value Selection Algorithm
	F Predicate Matching and Evaluation Algorithms
	F.1 Quick Check (QC)
	F.2 Heuristics with Simple Relaxation (HSR)
	F.3 Heuristics with Complex Relaxation (HCR)
	F.4 Exact Matching (EM)
	F.5 Standard Evaluation (SE)

	Bibliography

