
Fakultät für Informatik
der Technischen Universität München

Flexible and Automated Production of

Full-Fledged Electronic Lectures

Peter Ziewer

Institut für Informatik
Lehrstuhl Informatik II

Flexible and Automated Production of

Full-Fledged Electronic Lectures

Peter Ziewer

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Arndt Bode
Prüfer der Dissertation:

1. Univ.-Prof. Dr. Helmut Seidl
2. Univ.-Prof. Dr. Johann Schlichter

Die Dissertation wurde am 30. November 2006 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 24. Mai 2007
angenommen.

Abstract

This thesis describes the automated production of multimedia-based learning mate-
rials. Recording of real live lectures enables a lightweight and cost-effective way of
creating electronic lectures. The flexible screen grabbing technology can capture vir-
tually any material presented during a lecture and furthermore can be integrated
seamlessly into an existing teaching environment in a transparent manner, so that
the teacher is not aware of the recording process.

Throughout this thesis the design and development of a flexible and easy-to-use lec-
turing environment on the basis of Virtual Network Computing (VNC) is explained.
The VNC infrastructure and protocol is adapted to build up an environment that of-
fers scalable transmission of live lectures and is capable of supplying a large number
of distance students in parallel. Furthermore, the suggested system provides com-
fortable lecture recording in order to produce electronic lectures for asynchronous
replay at any time later. These electronic lectures preserve the verbal narration of
the teacher and any material or applications presented during a lecture including
additional annotations (e.g. adding freehand drawings by use of an electronic pen).

Unlike other pixel-based recording environments, the suggested system offers slide-
based navigation and full text search. This is achieved by automated post-processing
which generates appropriate indexing structures and search bases by analyzing the
recorded lectures. Several analysing concepts are introduced and compared by eval-
uating recorded lectures of different presentation styles.

Furthermore, an implementation of the suggested concepts and ideas – the TeleTeach-
ingTool – is presented and usage scenarios are given in order to approve the usability
and the advantage of the system.

Acknowledgment

I would like to thank

Thomas Perst and Pete Bankhead

for their patient efforts in proofreading and
their helpful suggestions and comments.

Contents

1 Introduction . 1

1.1 Outline . 4

2 Presentation Recording and Transmission . 5

2.1 Electronic Lectures . 5

2.1.1 Terms and Definitions . 6

2.1.2 Usage Scenarios and Benefits . 9

2.1.3 From Traditional to Digital Lectures . 11

2.2 Symbolic Representation vs Screen Recording . 16

2.3 Lightweight Production and Transparent Recording 23

2.4 Criteria and Features . 29

2.4.1 Criteria Catalog . 35

3 VNC: Virtual Network Computing . 41

3.1 The VNC Environment . 41

3.2 Remote Framebuffer Protocol (RFB) . 42

3.2.1 Common VNC workflow. 44

3.2.2 RFB Message Types . 45

3.2.3 Pixel Format . 47

3.2.4 Encoding Schemes . 47

3.2.5 Hextile Encoding . 48

XIV Contents

3.2.6 Limitations . 49

3.3 Distance Learning based upon VNC . 50

3.3.1 Summary. 52

4 Scalable VNC . 55

4.1 Limiting Individual Properties . 57

4.1.1 Reducing Pixel Formats . 58

4.1.2 Encoding Agreement . 60

4.1.3 Combining Framebuffer Update Requests 60

4.2 One-To-Many Communication . 62

4.2.1 Routing Schemes . 62

4.2.2 Communication Protocols . 63

4.2.3 Size Limitations and Message Dependencies 64

4.2.4 Splitting Framebuffer Updates . 66

4.2.5 Splitting Hextile Encoded Rectangles . 67

4.2.6 Parsing and Buffering . 69

4.2.7 Format of Datagram Content . 70

4.2.8 Unreliable Transmission: Packet Loss . 71

4.2.9 Unreliable Transmission: Out of order Delivery 73

4.2.10 Additional Unicast Support . 74

4.2.11 Client Initialization . 75

4.2.12 Framebuffer Initialization and Late Join 76

4.3 Summary . 78

5 VNC Session Recording . 81

5.1 File Formats . 82

5.1.1 Delta Pixel Values . 83

5.1.2 Recording Distinct Rectangles . 84

5.1.3 Event Logging . 86

Contents XV

5.1.4 Log File Header . 87

5.2 File Sizes . 88

5.2.1 File Compression . 89

5.2.2 Sizes of Recordings Without Keyframes 92

5.2.3 Summary. 93

5.3 Random Access and Keyframes . 94

5.3.1 Checking the Past . 95

5.3.2 Keyframes as Check Points . 96

5.3.3 Keyframe Stripes for Invariant Frame Computation 96

5.3.4 Optimization: Current State as Keyframe 97

5.4 Random Access Performance . 97

5.4.1 Test Results . 99

5.4.2 Different Presentation Styles . 102

5.4.3 VNC Sessions without Keyframes . 104

5.4.4 Completing Updates instead of Keyframes 107

5.4.5 Optimized Effective Pixels Test . 108

5.5 Summary . 108

6 Annotations and Digital Whiteboard . 111

6.1 Annotations . 111

6.1.1 Annotation Controls . 114

6.2 Digital Whiteboard . 114

6.3 Protocol Integration . 115

6.4 Evaluation of Annotation Usage . 116

6.4.1 Dynamics of Lectures . 119

6.5 Summary . 120

7 Navigation and Automated Indexing . 123

7.1 Navigation by Time . 124

XVI Contents

7.2 Navigational Indices . 125

7.2.1 Intentional Annotations . 125

7.2.2 Side-effect Indices . 126

7.2.3 Derived Indices . 127

7.2.4 Post-hoc Indices . 128

7.2.5 Index Querying . 128

7.2.6 Automated Analysis . 129

7.3 Slide Detection . 130

7.3.1 Slide Detection By-Byte . 130

7.3.2 Slide Detection By-Area . 135

7.3.3 Whiteboard Pages . 138

7.3.4 Conclusion . 138

7.4 Animation Detection . 139

7.4.1 Slides vs. Animations . 142

7.4.2 User Events as Indicators . 144

7.4.3 Conclusion . 145

7.5 Visual Representation of Indices . 145

7.5.1 Automated script generation . 146

7.6 On The Fly Analysis . 150

7.6.1 Live Replay. 153

7.7 Interlinkage of Annotations and Slides . 154

7.7.1 Content Interlinkage . 155

7.8 Content Prediction by Color Histograms . 157

7.9 Summary . 158

8 Retrieval and Metadata . 161

8.1 Full Text Search for Pixel-based Recordings . 162

8.1.1 Text Extraction . 162

8.1.2 Interlinkage of Search Base and Indices . 168

Contents XVII

8.1.3 Recognition Improvements . 169

8.1.4 String Distance Metric and Stemming . 170

8.1.5 (Semi-)Automated Workflow . 170

8.2 Lecture Profiling and Metadata . 171

8.2.1 Metadata by Lecture Profiling . 172

8.2.2 Dublin Core Metadata . 173

8.3 Cross Lecture Search . 175

8.3.1 Online Full Text Search . 175

8.4 The Search&BrowsingTool . 176

8.4.1 Views . 177

8.4.2 Accessing Search Results . 180

8.4.3 Browsing . 181

8.5 Searchability by Web Search Engines . 182

8.6 Summary . 182

9 The TeleTeachingTool . 185

9.1 TTT Viewer for Students . 185

9.1.1 Asynchronous Electronic Lectures : Replaying recorded lectures 186

9.1.2 Synchronous Electronic Lectures : Attending live lectures 188

9.2 Teacher Component: Presenting and Recording 188

9.2.1 Presentation Controls . 190

9.3 Post Processing and Publishing . 192

9.3.1 Automated Post Processing . 193

9.3.2 Post Processing Workflow . 195

9.3.3 Publishing . 196

9.3.4 TTT to Flash Converter . 197

9.3.5 TTT Editor . 198

9.4 Transmitting Live Lectures . 201

9.5 Usage Scenarios . 204

XVIII Contents

9.6 Java Media Framework (JMF) . 205

9.6.1 TTT/JMF Interface . 206

9.6.2 Limitations and Problems . 207

9.6.3 Summary. 208

9.7 File Format Specification . 210

9.7.1 Header . 210

9.7.2 Extensions . 211

9.7.3 Body . 212

10 Conclusion . 217

10.1 Future Work . 219

A File sizes of recorded VNC Sessions . 221

A.1 8 bit recordings with update stripes . 221

A.2 16 bit recordings with stripes and file compression 223

A.3 32 bit recordings with file compression but no stripes 228

B Message sizes by-byte and by-area . 231

B.1 Einführung in die Informatik I [WS2004/05] . 231

B.2 Medienwissenschaft I: Theorien und Methoden [WS2003/04] 235

B.3 Abstrakte Maschinen im Übersetzerbau [SS2004] 239

B.4 Compilerbau [SS2006] . 242

C Publishing Script . 247

References . 251

1

Introduction

In the last decade the availability of powerful multimedia enhanced computer sys-
tems and broadband network connections has increased dramatically, having a large
influence on almost all areas of human culture, not only the scientific and working
life but also the social behavior and everyday life. Traditional universities reflect
this trend and the possibilities of new technologies by widening their well known
campus-based teaching and learning scenarios to embrace new media technologies.
In recent years various new terms have been introduced, for instance e-learning (or
eLearning), tele teaching, virtual universities, distance learning, et cetera, with some-
times overlapping meanings but also addressing very different subtopics. There are
various different e-learning scenarios, all of which have in common a computer-based
enhancement of teaching and/or learning areas, mainly in sense of more flexibility
in time (self-studying) or space (circumventing a spatial separation of participants).
In detail there can be a vast diversity of intended meanings containing, for example,
video conferencing as a possibility for synchronous communication over large dis-
tances, internet discussion groups or forums for an asynchronous communication in
an open community, computer-based training (CBT) or web-based training (WBT),
i.e. learning by executing special training programs on a computer, or learning man-
agement systems (LMS), which provide the management and delivery of learning
content and resources to students. Often the different subtopics are combined, for
instance, a learning management system can deliver computer-based training mod-
ules or provide access to a forum.

Our involvement in the area of e-learning started with the project Universitärer
Lehrverbund Informatik (ULI) [ULI, 2006], a cooperative project of 18 partners lo-
cated at one Swiss and 10 German universities, which was sponsored by the Zukun-
ftsinvestitionsprogramm (Future Investment Program) of the Bundesministerium für
Bildung und Forschung (BMBF, German federal department for education and re-
search). The project started in early 2001 and ended in 2004. Its aim was a (partial)
virtualisation of the computer science study for the following two reasons:

• “For a growing number of students, a full-time attendance study is difficult or
impossible to assist in due to family or occupation reasons. A partially virtual
curriculum with courses that are not dependent on time and place can enable
these students to participate in an up to standard Computer Science study.

2 1 Introduction

• For students from the FernUniversität (distance teaching university) Hagen, this
cooperation offers the possibility to make use of the other universities’ variety of
offers and take part in their courses.” [ULI, 2006]

During this virtualization process the task of most of the individual project part-
ners was to create learning materials. Generally the different universities did not
develop complex CBT/WBTs due to the high “production costs for rich-media con-
tent ... [which] range between 50,000 and 100,000 EUR per weekly lecture hour”
[Lauer and Ottmann, 2002]. Typically the rather cost-efficient recording of real live
lectures and presentations was preferred. Such lecture recording (also called presen-
tation recording) provides versatile digital learning material at negligible additional
costs and therefore is called lightweight content production [Kandzia et al., 2004].
Hence, the virtualization was acquired in a stand-alone manner but rather closely
connected to existing teaching and learning forms, which were extended by computer-
aided elements.

The special challenge in our sub-project of ULI was that at the Universität Trier we
intended to record our lectures for asynchronous replay and additionally wanted to
provide a synchronous transmission to our sub-project partners at the Universität
des Saarlandes, Saarbrücken. Furthermore, the materials that are presented in our
lectures should not be limited to slide presentations but additional material such as
visualizations or programming examples should also be supported. Since we did not
find a suitable piece of software fitting these requirements, we started the develop-
ment of our own solution, called TeleTeachingTool (TTT), which is presented in this
thesis. We rejected other applications for various reasons: they were either limited to
a single operating system or presentation application, did not support recording and
transmitting in parallel, did not support live transmission with a short round-trip
time (needed for live feedback), did not properly work or were unstable, or supported
no high-quality transmission or recording of the presentation content.

The TeleTeachingTool originally emerged from various independent applications,
which should be combined in one single system. In the beginning we used video con-
ferencing techniques and applications, in particular the Robust Audio Tool (RAT)
[RAT, 2006] and the Videoconferencing Tool (VIC) [VIC, 2006], which provided syn-
chronous communication in audio and video, but with rather limited support for
transmitting a desktop presentation (for instance by use of a network editor that en-
abled the simultaneous access to one document for multiple participants). We added
desktop transmission, which was archived pixel-based and thus independent of the
presented content, which provides a high degree of flexibility. At first, we transmitted
screenshots of the presented desktop periodically by using system calls. Due to the
poor performance and high bandwidth consumption of this approach, we rather soon
decided to switch to virtual network computing (VNC) [Richardson et al., 1998],
which provides remote access to a virtual desktop via a network. Both project part-
ners, i.e. Saarbrücken and Trier, were connected to the same desktop and thus saw
the same presentation, and furthermore were connected by use of video conferenc-
ing applications. The TeleTeachingTool replaced these individual components and
thus provided an integrated environment. In fact, the core of the TeleTeachingTool
is a modified VNC client, which is implemented in Java and thus offers a platform
independent basis.

1 Introduction 3

Throughout the years the TeleTeachingTool was improved and extended in close
relation to our own requirements and experiments as well as in relation to external
suggestions and related research publications. In the beginning, we have focused
on the teacher’s convenience by developing a system which enables recording and
transmission of live lectures but without influencing or limiting the teacher in her/his
choice of presentation applications and materials. Thus, we postulated as a main
design goal that the recording and transmission process should be transparent to the
teacher. In order to respect the special needs of digital presentation recording, we
furthermore added additional annotation and whiteboard components, which enable
presented elements to be emphasized and thus focus the attention of the audience,
and enable notes and sketches to be added on demand. Additionally, our research
addressed the scalability of lecture transmissions in order to support a high number
of simultaneously connected online students.

Recording live lectures typically produces electronic lectures of about 90 minutes
each. Typically a course consists of about 10–25 lectures resulting in about 15–
35 hours of learning material. Hence, offering only sequential playback of recorded
lectures is not sufficient. In order to offer students the possibility of locating and
accessing certain predefined access points (such as chapters or slides) or to search for
a particular topic, electronic lectures must rather support navigational and retrieval
features. Commonly a symbolic representation of content, which preserves document
structures (e.g. table of content, slides), textual content (e.g. sequences of ASCII
characters) and images (e.g. vector graphics), is needed in order to support, for
instance, full text search or slide-based navigation (i.e. direct access to each slide)
[Lauer and Ottmann, 2002]. For pixel-based recordings the navigational and retrieval
features are rather limited. On the other hand, a pixel-based presentation recording
approach offers a much higher degree of flexibility as any presentation content can be
preserved. Recording environments that preserve the symbolic representation of the
presented content are very limited in their flexibility, because such systems typically
need access to the source documents and support only a few document types and
often require the use of a certain presentation application. Hence, we typically have a
flexible recording environment that is rather limited in its navigational and retrieval
capabilities or a system that produces full-fledged electronic lectures but restricts the
teacher while presenting.

In order to generate full-fledged electronic lectures by use of a flexible recording
environment this thesis states two main goals. The first one is the design and de-
velopment of a flexible, easy-to-use recording and transmission environment, which
does not restrict teachers in their content production and presentation process, but
rather can be seamlessly integrated into existing teaching environments in a trans-
parent manner.

The second main goal is the automated production of electronic lectures by adding
navigational structures and retrieval features to pixel-based recordings in order to
create full-fledged electronic lectures and thus extend the usability of the flexible
recording technique. In order to keep the benefit of the cost-efficient lightweight lecture
recording approach, the production of such full-fledged electronic lectures must be
automated as far as possible.

4 1 Introduction

1.1 Outline

After this introduction, we will start in Chapter 2 with naming and describing the
terminology that is used throughout this work and will describe and compare dif-
ferent approaches of lecture recording. Furthermore, we will discuss the requirements
and features that are necessary to reach our main goals by building a criteria catalog
that can be used to compare and classify lecture recording systems.

Virtual network computing (VNC) and its remote framebuffer (RFB) protocol as the
basis of our recording system are described in Chapter 3. Furthermore, the benefits
and limitations of VNC in regard to the e-learning aspects are discussed. The next
two chapters address how we modified the VNC environment to fit our requirements,
but ensuring compability with the original VNC server components so that our sys-
tem can access a remote VNC desktop. In particular, we will discuss how to achieve
a distance learning environment by improving the scalability in order to support
a large number of simultaneously connected students (Chapter 4) and, as VNC is
originally only designed to remotely control a desktop via a network connection, how
to record live VNC sessions (Chapter 5). While discussing the recording aspects, we
will compare different recording formats regarding their suitability for recording and
later replay.

Chapter 6 addresses annotations, i.e. presentation related electronic note taking and
focusing the attention of the audience, as a meaningful feature of a computer-aided
lecture presentation environment and how annotation features can be integrated into
our VNC recording environment.

The following two chapters consider the second main goal of this thesis. Chap-
ter 7 describes how we acquire navigational indices by automated post-processing
of pixel-based recordings that were produced by the flexible screen recording tech-
nology. Different solutions for content analysis and prediction (e.g. slide detection)
are described, evaluated and compared in order to find well-suited algorithms that
enable an automated structuring of pixel-based electronic lectures as the basis for
appropriate navigational features. Furthermore, we will address how to present the
navigational structures and how to navigate and thus access the parts of an electronic
lecture that relate to certain content. The retrievability of pixel-based recordings is
addressed in Chapter 8. At first we provide a applicable possibility for creating
search-bases that are suitable to perform full text searches within screen recorded
lectures. Furthermore, we extend the searchability to perform cross lecture searches
and address how to present and access the search results. Additionally, the handling
of meaningful lecture related metadata is discussed.

Afterwards, the TeleTeachingTool and its components, features, usage and capabil-
ities are described in Chapter 9. We will give usage scenarios for the recording,
transmitting and post-processing of electronic lectures. Finally, a conclusion and
suggestions for future work will be given in Chapter 10.

2

Presentation Recording and Transmission

The scope of this thesis is a subtopic of the vast area of e-learning, namely the record-
ing and transmitting of real live presentations in order to create electronic lectures.
Moreover, this work focuses on presentation-like teaching styles, which are common
not only in computer science but in many other natural sciences and economics.
A lecturer presents some information in the form of slides or by writing it up on
a blackboard, accompanied with verbal narration to explain the contents. In other
domains such as languages or humanities the requirements and thus the teaching
styles can be very different.

This chapter specifies what is considered to be an electronic lecture here and also
states and explains other terms used throughout this thesis. A discussion about
benefits, requirements and restrictions of the transition from traditional to elec-
tronic teaching styles will be followed an explanation and comparison of different
approaches to lecture recording. The aim is to elaborate a suitable catalog of desir-
able features for recording and playback, allowing the comparison and evaluation
of lecture recording systems and research approaches within the given context. Fi-
nally, an overview of existing systems is given, including our own implementation,
the TeleTeachingTool, with regard to the ascertained criteria.

2.1 Electronic Lectures

In the sense of Brusilovsky, an electronic lecture “preserve[s] a lecture as an element
of web-based education replacing real lectures” [Brusilovsky, 2000]. This is a very
vague concept, so we have to take a closer look at what we consider here to be an
electronic lecture. Other terms used within this thesis are stated and explained as
well. Furthermore, this section will point out why such lectures are beneficial for
both distance and local students, and what requirements must be fulfilled to achieve
a transition from traditional to electronic lectures.

6 2 Presentation Recording and Transmission

2.1.1 Terms and Definitions

[Brusilovsky and Miller, 2000] differentiate hierarchically and sequentially structured
learning materials, called electronic textbooks and electronic presentations ,
respectively.

An electronic textbook offers a hierarchically structured representation of material,
which usually consists of text, augmented with figures. It is commonly provided in
the form of HTML1. The content is organized similarly to a printed textbook with
its subdivision into chapters, sections and subsections. The hierarchical structuring
implies special hierarchical navigation , which includes links to all subordinate
sections, a link to the higher level section, and a link to the beginning of the electronic
document. Furthermore, sequential navigation provides access to the next and
previous pages. There may be a linked table of contents and an index as well.

Brusilovsky and Miller distinguish two subclasses of sequentially structured elec-
tronic presentations : electronic lectures and guided tours . A guided tour
is a sequence of (perhaps previously developed) content (possibly of multiple au-
thors), which is accompanied by a narration. The narration is usually provided in
the form of text, called textual narration . This type of presentation is modeled
after a guided museum tour.

An electronic lecture is “a sequence of slides extended with audio or au-
dio/video narration” [Brusilovsky and Miller, 2000]. In our sense the concept
of mainly static slides should be loosened to include dynamic elements .
[Effelsberg and Geyer, 1998] request the possibility of using (and recording) media
other than text and still images as crucial components of modern computer-based
teaching, because “motion and interaction really make the difference between pa-
perbased teachware and computer-based teachware” [Effelsberg and Geyer, 1998].
Dynamic elements can be animations, simulations or any other applications used
in addition to some presentation software. In other words, talking about electronic
lectures we include any material and elements used during modern multimedia en-
hanced presentations. In the following discussion we will use the term slide not only
in the meaning of conventional static slides , but also to refer to presentation
content in general containing any material, media or application presented by a
teacher. Moreover, since this thesis is not concerned with guided tours, we use the
terms electronic lecture and electronic presentations synonymously.

[Brusilovsky, 2000] distinguishes synchronous and asynchronous (electronic) lec-
tures. Synchronous lectures provide access to real lecture halls from a distance.
Live presentations are transmitted via any network or infrastructure to another
location, either as unidirectional broadcast only or bidirectionally , allowing
two-sided communication offering distance students active participation (e.g. ask-
ing questions). Asynchronous lectures are intended to be viewed at any time
(later), perhaps by students, who could not attend real lectures, or to rework the
presented content. Synchronously presented lectures can also be recorded and thus
turned into asynchronous lectures.

1 Hyper Text Markup Language (HTML)

2.1 Electronic Lectures 7

Common digital media types are audio and video streams. In case of electronic lec-
tures audio preserves the verbal narration of teachers and, if required, questions
or explanations of students as well. If talking about video we think of a live video
filmed in the lecture hall mainly showing the teacher. We do not intend to film
presentation content, because simply videotaping lectures does not lead to accept-
able quality of the filmed blackboard or slides [Lauer and Ottmann, 2002]. Besides
audio-only and video enhanced electronic lectures, Brusilovsky furthermore classi-
fies high-quality video , which “requires special recording equipment, preferably a
studio with a blue screen and several hours of processing time for [...] one hour of
lectures” [Brusilovsky, 2000]. The efforts and costs of producing such high-quality
video lectures is similar to the production of CBTs/WBTs and “... range between
50,000 and 100,000 EUR per weekly lecture hour” [Lauer and Ottmann, 2002].

This thesis rather focuses on so-called lightweight course production
[Kandzia et al., 2004], which is “to record a quite regular live lecture in
order to obtain versatile digital material with negligible additional cost”
[Kandzia and Maass, 2001]. Nevertheless such low-cost recordings can be re-
worked, edited, enhanced and combined with other material and thus be the basis
for enhanced WBTs. Our aim is preserving a live presentation to achieve valuable
additional learning material, but not at the cost of the real lecture. The process of
recording is called lecture recording or presentation recording . Those terms are
not only used in to mean “recording to a file for later asynchronous replay”, but also
to refer to “the act of grabbing a presentation’s content (for synchronous transmis-
sion and/or for recording to a file)”, which can be called presentation grabbing
as well. If only the synchronous or asynchronous case is meant, we will explicitly
note which one or use non-ambiguous terms, such as (the noun) recording and
file or transmission and broadcast , respectively. Furthermore, this thesis will
mainly concentrate on recording a presentation’s content (in the sense of what is
displayed on the presentation computer or presented to the live audience via video
projector) and not on audio and video (in the sense of a camera filming the lec-
turer), because audio and video recording stays almost the same for the different
presentation recording systems. At best, presentation grabbing/recording should be
transparent [Ziewer and Seidl, 2002], which means that lecturers need not even be
aware of the recording process at all. Transparency concerns not only the presen-
tation, but also the content creation process. In other words, the recording should
not restrict or influence content creation and presentation, allowing lecturers to per-
form their preferred traditional teaching styles, especially including their favorite
presentation software. Suggestions to achieve transparent recording are discussed
in Section 2.3.

Textual narration may be sufficient for edited guided tours (as mentioned above)
or accordingly designed CBTs/WBTs. For recording real live presentations we
rather assume the lecturer’s verbal narration to be recorded, because “with-
out this, an essential and substantial part of the information will be missing”
[Lauer and Ottmann, 2002]. On the other hand Lauer and Ottmann state that for
recording traditional presentations “the importance of integrating live video should
... not be overestimated” [Lauer and Ottmann, 2002]. Although the video provides a
visual impression as well as a feeling of the instructor’s presence, it usually conveys
comparatively little information when considered alongside the amount of data it

8 2 Presentation Recording and Transmission

consumes (but this might be different for special purpose presentations, e.g. showing
experiments). [Schütz, 2003] declares the video to be useful to build up a personal
relationship to a lecturer, but is not looked at in detail after a while. Furthermore he
suggests that “because of bandwidth and use of processor time, no really important
information ought to be recorded with the video”. These conclusions fit with our
own experiences.

We also agree with Lauer and Ottmann, who requested tightly synchronous re-
play of any recorded media streams and data, because “simply capturing starting
times of events (such as launching an application) can result in streams drifting
apart”. In other words, media streams are not only starting synchronously, but syn-
chronization is also checked and adjusted (if needed) during playback. In order to
explain the importance of synchronization, [Effelsberg and Geyer, 1998] suggest an
example of a teacher explaining an algorithm where data packets flow over a graph
representing a network. The lecturer starts with nothing but the topology of the
graph, with nodes and edges. During the explanation of the algorithm, the graph is
dynamically annotated with colored arrows representing the packet flow. Hence, the
dynamics of the algorithm are explained by annotating the graph and thus, without
reproducing the dynamics of the annotations in the recording, essential information
is lost.

In order to synchronize replay [Brusilovsky, 2000] requests “video/audio streams
[...] to be divided into the smallest meaningful chunks, which usually correspond to
[...] a piece of a slide” and “synchronization means that each audio or video chunk
has to be associated with a corresponding portion of the slide presentation”. Re-
call that Brusilovsky considers a presentation to be a sequence of static slides, but
we additionally allow dynamic content, which acts more like a stream. We do not
recommend physical partitioning of media files according to determined chunks as
this would cause a huge amount of I/O handling during accessing processes. In fact
timestamps , which are non-ambiguous due to the sequential data style, are used
to refer to certain points within data streams. Special timestamps corresponding
to (the beginning of) interesting parts of an electronic lecture are called indices .
Indices and timestamps are essential elements of navigation within electronic lec-
tures as they, for example, enable access to slides, which is known as slide-based
navigation . Another possibility for navigation is timeline navigation , which com-
monly is available via a slider representing the time scale of an electronic lecture
from beginning to its end. If any arbitrary time within the time scale can be ac-
cessed, this is called random access . In fact suitable navigational and retrieval
features must be provided by electronic lectures, because it is almost impossible to
read and navigate video like lectures [Abowd et al., 1998]. [Brusilovsky, 2000] sug-
gests sequential playback without fine-grained “chunking” (i.e. sub-dividing) to be
sufficient for local students, because a teacher is available to solve problems. Nev-
ertheless, we assume navigational and retrieval features to be a crucial factor in
order to provide really useful learning material particularly for local students, who
have attended the live lectures and use recorded presentations to rework certain
topics. These students are mainly not interested in watching recorded presentations
as a whole, but rather want to identify and access only those topics they have not
understood. This assumption is confirmed by analysis of students behavior, which
showed that navigating through course content is preferred over sequential playback

2.1 Electronic Lectures 9

[Zupancic and Horz, 2002, Schütz, 2003]. Manual postproduction is not seen as
an appropriate solution for indexing as this would conflict with our lightweight course
production approach. Indexing and retrieval structures rather must be automatically
retained during the recording process or achieved by automated postproduction
(after the recording process has finished or on demand during playback).

An important feature of electronic learning materials are annotations . A com-
prehensive overview about various types of annotations is given by [Schütz, 2002],
who lists, for instance, textual notes, cross links (within a document or to other
documents), adding audio or movie clips, freehand drawing (by use of an electronic
pen, emphasizing of certain elements in order to focus the attention of the audi-
ence, et cetera. Such annotation can either be placed by teachers or by students and
furthermore can be placed during a live lecture or afterwards. The most common
case is that a teacher annotates the presented slides during the lecture by adding
aditional comments or sketches and furthermore highlights the most important as-
pects. [Lienhard and Lauer, 2002, Lienhard and Zupancic, 2003] suggest annotation
layering in order to handle students’ annotations besides those of a teacher.

2.1.2 Usage Scenarios and Benefits

Recall Brusilovsky’s definition of an electronic lecture as “[preserving] a lecture as
an element of web-based education replacing real lectures” [Brusilovsky, 2000]. Cer-
tainly, for distance students electronic lectures offer the possibility of being a sub-
stitute for traditional lectures, but we do not intend to replace real lectures under
any circumstances. There are two approaches to access electronic lectures: the syn-
chronous and the asynchronous one.

Synchronous electronic lectures are live transmissions of real lectures via a net-
work (mainly the internet, but other infrastructures are not excluded) from one
lecture hall to another and/or to students’ homes. Distance students can partici-
pate from anywhere in the world by accessing the corresponding streams. Generally,
such transmissions are unidirectional, because otherwise a sophisticated access man-
agement system is required in order to grant speaking permissions and avoid the
confusion caused by simultaneously speaking participants. The advantage of syn-
chronous transmissions (even of unidirectional ones) is that they provide immediate
access, without any loss of time. All asynchronous electronic lectures more or less
suffer from a delay caused by postproduction and publication of the recorded lec-
tures. At least the data must be copied to a server and a web page has to be updated
to enable downloading. For perfectly automated publication processes such a delay
might be a few minutes only, but in the majority of cases it takes some hours or
even days from the time of recording until the asynchronous lecture is accessible for
students. That can be critical for weekly exercises and assignments.

Another synchronous scenario is a dedicated two-point transmission between lecture
halls as we did during the ULI project [ULI, 2006] (see Introduction, page 1) in col-
laboration with the Universität des Saarlandes. A lecture was given at one of the two
locations alternately and transmitted to the other lecture hall. A feedback channel
transmitted a live video of the distant audience and was also used to enable bidirec-

10 2 Presentation Recording and Transmission

tional communication (mainly to ask questions). We also extended the scenario by
integrating unidirectional distance students (e.g. participating from the homes) as
described before. Another variation can be a network of multiple participants similar
to video conferencing scenarios.

Fig. 2.1. Electronic lecture scenarios

Preserving traditional presentations for asynchronous replay is useful for occasion-
ally missed lectures as well as for students who are not able to participate in time,
which can be the case for part-time students in employment or those with parental
duties. Asynchronous electronic lectures allow access to courses anytime and any-
where. Furthermore, appropriate asynchronous electronic lectures provide meaning-
ful additional learning materials for local students as well, even if they attend(ed)
live lectures. During a live lecture important information can be missed due to the
distracting process of note taking. While reworking a lecture, replay of the recording
offers the real wording of the teacher again. Appropriate retrieval and navigational
features like full text search or slide based navigation, respectively, can be used to
locate and recall special elements and topics in any recorded lecture.

Brusilovsky claims that “many faculty consider electronic lectures the best sub-
stitute for classroom lectures claiming that neither textbooks, nor handouts can
adequately replace an up-to-date lecture done by a leading researcher or profes-
sional” [Brusilovsky, 2000]. Moreover, such electronic lectures preserve the live at-
mosphere of the classroom and the teaching style of a lecturer for distance students.
[LaRose et al., 1997] claim that web lectures are at least as efficient as regular lec-
tures. Electronic lectures can be utilized independent of time and place. Other advan-
tages are “fast and efficient navigation through a lecture, fast retrieval of multimedia
content, and course and lecture indexing” [Jackson et al., 2000].

Some typical scenarios for the use of electronic lecture are given in Figure 2.1. How-
ever, there are many other and combinations of the shown scenarios are possible,

2.1 Electronic Lectures 11

for instance recording and transmitting, or two (or more) bidirectionally connected
lecture halls which also supply students’ homes in an unidirectional fashion.

2.1.3 From Traditional to Digital Lectures

In order to achieve valuable electronic lectures by presentation recording, all mean-
ingful elements of a live presentations must be preserved. [Lauer and Ottmann, 2002]
declare recording of all relevant media streams occurring in a live session as their
ultimate goal of presentation recording. We agree with them that simply videotap-
ing lectures does not lead to acceptable quality of the filmed blackboard or slides
(unless high resolution video recordings are practicable in future) and, according
to [Effelsberg and Geyer, 1998], that document cameras are inappropriate technol-
ogy in an all-digital environment. Video taping of computer screens is also discour-
aged, because the technical limitations of such recording make the screen content
very difficult to read during playback [Ishii and Miyake, 1991] and video compres-
sion encodings, such as MPEG-2 [Mitchell et al., 1996], are not suitable for com-
pressing artificial high-contrast images such as slides due to causing artifacts and
displaying blocks instead of a high-quality reproduction of the compressed content
[Hogrefe et al., 2003]. Rather, any content and all elements of interest must be cap-
tured and digitized in an appropriate quality. Therefore we have to identify such
elements and suggest how to translate them into the “digital world”.

Audio and Video:

Obvious essential elements of a presentation are slides and verbal narra-
tion of a teacher. A live video showing the teacher is not mandatory
[Lauer and Ottmann, 2002, Schütz, 2003], but nevertheless worth recording, as it
can preserve gestures and facial expressions. Digitizing and recording audio and
video streams are an everyday business for today’s computers, but there should be
a well considered decision about which formats to use and which codecs2 should be
applied to achieve compression (as uncompressed recording would lead to several
Mbytes or, in the case of video, even Gbytes of data). “The audio has to be of high
quality, because it has to transport a huge amount of information” [Schütz, 2003].
Listening to low quality audio over a period of more than a few minutes is straining
and exhausting (think of a bad mobile phone connection with flaws and gaps). The
most common audio format, MPEG-1 Audio Layer 3 well known under its abbrevi-
ation MP3, is capable of compressing a 90 minutes talk to approximately 20 Mbytes
in a suitable quality (22050 Hz, 32 kbps, 16bit, mono). Other codecs like Ogg Vorbis
or Advanced Audio Coding (AAC) achieve similar results.

The diversity of video codecs is much higher, which is not surprising as video com-
pression is more complex. MPEG4/Divx achieves very good compression rates at
high quality, but the compression algorithm is time consuming even using powerful
computers, which makes this codec unsuitable for online and real time coding. Other

2 Codec: a COmpression/DECompression algorithm capable of performing encoding and
decoding on a digital data stream or signal

12 2 Presentation Recording and Transmission

codecs, e.g. H.261 and its successors including the now widespread H.323 or H.264,
are optimized for exactly that purpose of real time coding as they are designed for
videoconferencing. Streaming media codecs, such as Real Video or Windows Media
Video, even fulfill other design requirements such as supporting different bandwidth
settings. Choosing a suitable video format and codec depends on the intended pur-
pose, which can be bidirectional synchronous transmission (requiring short delays),
streaming online content on demand or electronic presentations for asynchronous
offline usage.

Recall that we do not intend to film the presentation content (e.g. slides), due to
insufficient quality. Thus, no special high tech cameras are required to record video
as they will always exceed the intended output quality. Technicians operating cam-
eras may disturb the natural flow of a live presentation and, due to the additional
costs, are not in accordance with our low-cost lightweight approach. In most cases a
small fixed camera is satisfactory. Remotely controlled cameras or so-called pan-tilt
devices, which recognize movements and automatically adjust themselves, can be
used as well. Either digital video input via Firewire interface (also known as I.Link
or IEEE 1394) or analog input offered by some graphics cards or cheap grabbing
devices (e.g. common BT848/BT878 TV cards) is adequate for digitizing live video.
Audio recording can be seamlessly integrated by using already existing hardware.
Large lecture halls are equipped with at least one microphone and an adequate sys-
tem of loudspeakers anyway. In such case it is sufficient to connect the recording
system to the existing equipment. For smaller presentation rooms, where no voice
amplifying is required, obviously a dedicated microphone must be added. It depends
on the preferences of the lecturer if fixed microphones, headsets or other wireless
microphones should be used.

Overhead Slides:

As document cameras are inappropriate technology in an all-digital environment
[Effelsberg and Geyer, 1998], we demand presentations to be computer-bound. How-
ever, the use of computer-based presentation software is more and more replacing
traditional blackboards or overhead slides anyway, which is especially the case for
computer science courses. Digital slides can easily be edited and adapted and thus
offer a higher degree of reusability. Static computer-based slides can be conserved
in their original format or in the form of pixel-based slide images. The way in which
content is stored has a crucial impact not only on the recording process, but also on
the playback features that can be offered by electronic lectures. Storing presenta-
tion content is a core element of this thesis and therefore demands a more detailed
discussion, which is given in a separate section (Section 2.2).

Blackboard and Overhead Notes:

Digitizing traditional blackboard-and-chalk lectures in an acceptable quality can be
achieved only if a large amount of personal and technical effort is invested both
during and after the lecture [Lauer and Ottmann, 2002], which does not conform
with our lightweight approach. We suggest two approaches (which can be combined)
of transition towards computer bound lectures: computer-based slides or an electronic

2.1 Electronic Lectures 13

whiteboard. Teachers tend to just copy their notes from their draft to the blackboard
(or overhead). In such a case the use of slides is appropriate. The content can be
prepared in advance and is then only presented instead of completely written during a
lecture, which results in less time for writing and more time for explaining. Especially
drawing complex sketches to explain simple issues is effective but inefficient. Think of
drawing graphs to explain graph manipulating algorithms. Small graphs consisting
of only a few nodes and edges may not be meaningful, but drawing pairs or sequences
of larger ones, which only differ in some nodes or edges, is time consuming. Drawing
two graphs on a blackboard to show their differences is even more inefficient, but
can easily be achieved with digital slides. In addition, electronic slides do not suffer
from illegible handwriting.

The essential difference to handouts or books lies in the teacher’s hands by means
of her/his more or less detailed explanations or the possibility of reacting to the
audience. However, chalking up step-by-step notes dynamically can be very useful
for special purposes such as deriving mathematical proofs. Sometimes dynamics can
be achieved be so-called overlays, which are a series of slides, where each slide con-
tains a little more information than the previous one. Overlays are subsequentially
displayed until the complete slide is visible, allowing verbal explanations of parts
without showing too much in advance. For mathematical proofs or creating content
while interacting with students this approach is not applicable, because slide cre-
ation would be very intricate or not possible at all. In such cases the blackboard
can be replaced by an electronic equivalent, often called an electronic whiteboard. As
everybody can easily figure out by trying to write her/his name within some sim-
ple drawing software, the commonly used mouse is not an appropriate input device
to replace chalk or overhead markers. Special hardware is rather required enabling
teachers to write and draw with pen-style input devices. Such hardware can range
from monitor-like sizes (e.g. tablet PCs or Wacom’s Cintiq interactive pen display
series [Wacom, 2006]) to screen diagonals of several meters (e.g. SMART Board in-
teractive whiteboards [Smartboard, 2006]). Since everybody is familiar with handling
a pen, the usage of such input devices should be obvious and intuitive. Personal pref-
erences can be served by small overhead-like or larger blackboard-like realizations.
We have to admit that the amount of notes which can be handled by the limited area
of such boards is restricted, but hopefully will increase in future such as is described
by the digital lecture hall approach [Muehlhaeuser and Trompler, 2002], e.g. by use
of several beamers which display a history of the last few slides.

The use of such note taking should not be limited to empty pages, but rather can
(and should) be applied to slide content as well. Additional information can be added
if necessary during the presentations. Prepared slides can be annotated while giving
explanations (recall the graph flow algorithm example given earlier in this chapter).
The focus of the audience can be attracted to essential keywords and important
details by emphasizing (e.g. highlighting or underlining) them. This is very similar to
annotating overhead slides in the non-digital world with conventional non-permanent
pens, but without the nasty cleaning afterwards (if slides are intended to be reused).

14 2 Presentation Recording and Transmission

Emphases:

The usage of traditional emphasizing/pointing devices such as laser pointers, sticks
or pens lying on overhead slides, will get lost during the digitizing process. At the
most, the live video showing the teacher may capture pointing actions. However,
we stated that the video should be an optional element and, moreover, encoding
important information in the video should be avoided [Schütz, 2003], as students
may get confused about which media to concentrate on. During a live presentation
their main focus is bound to the lecturer, led by her/him with some pointing device
and only briefly interrupted whenever a new slide appears3. Replaying an electronic
lecture (irrespective of whether it is synchronous or asynchronous) the students’
main source of information is not the small live video, but the recorded computer-
based presentation. Thus, their attention is focused on slides and other presentation
content. Trying to figure out by watching a small and/or low quality video to which
area of the slide the lecturer is pointing and then finding the corresponding piece of
information on the recorded high quality slide is obviously not reasonable (see Figure
2.2). Particularly as the slides might be unreadable in the video and the pointer is
only a barely visible tiny red laser dot.

Fig. 2.2. Lecturer pointing to something on an illegible slide

Emphasizing content to attract students’ attention should rather take place within
the presentation slides. We already suggested underlining by use of freehand drawing
as a possibility for gaining focus in the previous paragraph. Advanced annotation
objects such as textmarker-style drawings or boxes can also emphasize content. Al-
ternatively, a dedicated pointer such as a large arrow can be used. In an early stage of
our e-learning research we have experimented with such an enlarged mouse pointer
for the purpose of marking, but we experienced this to be not very useful. The ap-
proach works fine as long as the teacher places the pointer carefully. But whenever
the lecturer moves the mouse only as computer mouse without being aware of the
special emphasizing function, she/he causes the large pointer to refer to an arbitrary
object not intended to be emphasized.

3 Therefore it is good practice to stop verbal narration for a short moment to allow students
to survey the newly presented slide.

2.1 Electronic Lectures 15

Dynamic Content and External Applications:

Dynamic elements in the form of animations or simulations as well as annotations
(like freehand notes) are very meaningful and should be preserved in a suitable
way to allow dynamic replay. However, animations and additional applications used
during a presentation have no counterpart in the traditional blackboard or overhead
teaching scenario. They are digital per se. Preserving and dynamically replaying
such content is discussed in Section 2.2.

traditional lecture digitizable analogon electronic lecture

verbal narration microphone output digital audio, e.g. MP3

lecturer’s presence video camera output digital video

overhead slides computer-based slides digital slides
or pixel data

blackboard electronic whiteboard digital annotations
or overhead notes or pixel data

stick or laser pointer computer-based pointer digital annotations
or annotations or pixel data

— dynamic elements synchronous start
(animation, simulation,
...)

or pixel data

— additional applications synchronous start
(browser, java, ...) or pixel data

Table 2.1. Elements of traditional and digital presentations

Table 2.1 sums up the aforementioned suggestions and shows an overview of how to
transfer elements of traditional presentations to a digitizable counterpart in order
to be preserved as part of an electronic lecture. Different recording approaches will
be explained and compared in Section 2.2. A detailed explanation of the recording
process used in our approach is given in Chapter 5.

16 2 Presentation Recording and Transmission

2.2 Symbolic Representation vs Screen Recording

Section 2.1.3 showed how to transfer certain elements of traditional lectures to the
digital world, but leaving out details concerning how to access and preserve the pre-
sented content (such as slides, annotations, animations and external applications).
This section addresses the recording, or more precisely the grabbing process, with
focus on presentation content. Recall that the term recording is also used in the
sense of “grabbing” (for synchronous as well as for asynchronous electronic lectures).
Audio/video grabbing stays the same for different recording approaches and has al-
ready been discussed in the previous sections as far as is necessary for that stage of
the thesis. Furthermore, we address computer-based digital recording only, because
“simply videotaping lectures [...] lead[s] to unacceptable quality of the filmed black-
board or slides” [Lauer and Ottmann, 2002]. Note that the availability of increased
computing power, appropriate storage capacities, very fast network connections and
high-resolution cameras, may enable the filming of a blackboard presentation at a
suitable quality at some point in future, but todays technology is either not afford-
able or not suitable to do so.

[Lauer and Ottmann, 2002] distinguish three different alternatives for presentation
recording software:

1. existing presentation systems with added recording functionality;

2. screen grabbing / output grabbing;

3. specifically designed tools for presenting and recording course contents.

Although designing a new piece of software offers more possibilities for address-
ing special requirements, we do not see the necessity of separating between adding
recording features to an existing presentation software or designing a new presen-
tation software supporting such features from scratch. Recording software should
rather be classified by the concept of the produced output as this heavily im-
pacts the representation of content, which is also addressed as key criterion by
[Lauer and Ottmann, 2002]. Thus, we distinguish two groups of lecture recording
applications, which differ in the way they access and store presentations:

1. symbolic recorders preserving symbolic information;

2. screen recorders storing pixel-based data.

The screen grabbing class of Lauer and Ottmann stores lecture content as pixel
data and matches our class of screen recorders. Those recorders grab and conserve
the output of a presentation independent of the underlying presentation software or
the formats of the presented documents. On the other hand, symbolic recorders are
closely connected to (and normally integrated with) the presentation software and
therefore can preserve all the features of the original presentation by storing the
symbolic information of the presented input document plus events occurring during

2.2 Symbolic Representation vs Screen Recording 17

the presentation process. Regarding this, the classification can also be seen as input
versus output grabbing.

Some presentation software recorders store static pictures of slides only, these pic-
tures are then pixel-based. Nevertheless, such recorders gain symbolic information
from the adherent presentation software and preserve them as part of the produced
recording. Such hybrid solutions are therefore counted as members of the class of
symbolic recorders, because they have access to symbolic content during the record-
ing process. That is also reasonable as many presentation software applications sup-
port input documents composed of sequences of pixel images anyway.

Symbolic Representation

Symbolic representation formats, such as PDF, store graphical content as vector
data and textual content as sequences of characters with information about color-
ing, font style and size. In order to generate a visible (or printable) output, the
symbolic information has to be interpreted. The interpretation can be modified e.g.
using different colors for visually impaired people or another font can be used if the
specified one is not available or not wanted. Furthermore, symbolic representation
offers scaling. Vector graphics can be scaled and font sizes can be adapted to fit
the resolution of the viewer’s machine. Symbolic information will be interpreted not
only during live presentation, but also during any replay, which enables individual
scaling (and other personal interpretation options). Symbolic recordings preserve
document structures, which not only allows slides to be distinguished but, equipped
with adequate timestamps, also enables access to individual slides and thus provides
slide-based navigation. The textual content can be searched and edited, which allows
information retrieval (full text search), correction of scribal errors or insertion of
additional explanations. Furthermore, symbolically represented recordings normally
result in smaller file sizes.

As the symbolic data must be accessible in order to be preserved, the recording
process must be closely connected to the presenting process. Therefore, the recorder
functionality is commonly integrated into the presentation software (either as add-on
or by design). Thus, recorders can access presented documents and applied actions,
e.g. switching to another slide. During the recording process (a copy of) the source
of the presentation (the input document) is tagged with synchronization data, e.g.
timestamps referring to actions. During replay, actions can be applied to the sources
again. For instance a list of pairs, each consisting of a slide reference and a timestamp,
can be used to replay corresponding slides at appropriate positions in the timeline
in synchronization with the audio playback.

However, the technique of symbolic recording is rather restricted concerning the
input formats and applications to be recorded. Teachers are restricted to using
a specific piece of presentation software, because the recorder is a part of that
software and, if only one platform dependent implementation is available, is also
bound to a single operating system. As a consequence, the supported input formats
are restricted by the presentation software as well. Authoring on the Fly (AOF)
[AOF, 2006, Bacher et al., 1997] uses a proprietary format, which demands slides
to be created with special applications (AOFwb or mlb) only. Import filters (e.g.

18 2 Presentation Recording and Transmission

for PowerPoint) improve the usability, but cannot compensate for all incompatibil-
ities (e.g. animations). Furthermore, such recording systems are typically designed
to record the presentation only. The parallel use of multiple software applications
(e.g. presenter and browser) during a lecture is rarely supported or not possible at
all. AOF allows the running of external applications, but the recorder only preserves
which application was started and when. During playback the application is started
at the appropriate time, but runs asynchronously thenceforward without further syn-
chronization. Thus, a recording does not really preserve what happened during live
presentation, but rather the playback engine only initiates a rerun of the presented
application or, to be more precise, an application of the same name as the presented
application. Moreover, the application must be available during playback time, which
demands that any special applications are copied with the electronic presentation
and installed on students’ machines. Even more severe is that the recorder does not
preserve the input applied by the teacher to the external application. Consider a
teacher opening a browser and manually entering an URL4 to show a certain web
page. During replay a web browser will open, but displaying the default start page
only. Entering the appropriate web address must be performed by the student, who
probably will not know the address. All other input performed by the teacher such
as selecting links or entering text in form fields will also be lost. Students would
have the reapply any clicks and any textual input the teacher has performed dur-
ing presentation. Additional problematic issues are deleted or modified web pages,
outdated links or the unavailability of a network connection during replay. Similar
problems occur for any other kind of interactive applications. Thus, only inputless
stand-alone applications or self-performing documents associated to corresponding
playback applications, such as Flash animations, that can be distributed to students
(technically and legally) can be used in a meaningful way.

Dynamic elements and annotations, which are handled by the presentation software
itself, can be accessed and preserved by an integrated recorder, at least theoretically.
Advanced presentation software, such as MS PowerPoint, offers a vast variety of dy-
namic elements (e.g. animations, slide crossfading or even JavaScript5 programs),
but additionally integrated recorder plug-ins rarely support these features. Some-
times not even freehand annotations are preserved by the plug-ins. On the other
hand, especially designed symbolic recorders with built-in presenters mostly offer a
built-in annotation system and provide dynamic annotation replay, but are often
limited in their capability to integrate other dynamic elements.

In summary, symbolic representation offers good editing, navigational and retrieval
features, which makes it very useful for postprocessing and playback demands, but
rather restricts lecturers in the content creation phase as well as during the presenta-
tion process. Displaying and recording dynamic elements may not be fully supported
and a meaningful usage of external applications is almost impossible due to the loss
of applied inputs. As a consequence, lecturers may be forced to change their teaching
styles, which contravenes our transparent approach (Section 2.3). Reuse of previously

4 Uniform Resource Locator (URL): a unique address of a document or another resource
on the World Wide Web

5 JavaScript is a scripting programming language compliant to the ECMAScript Language
Specification [Ecma, 1999]

2.2 Symbolic Representation vs Screen Recording 19

created but now incompatible sets of slides is impossible or needs at least a (perhaps
manual) transformation process.

Screen Recording

On the other hand, consider screen recorders, which store the graphical output (in the
form of pixel data) of a presentation and replay it exactly as it was displayed on the
screen during the live presentation. Screen recording provides lossless high quality
access to a presentation machine’s desktop. Storing pixel data is very flexible as it al-
lows everything happening upon a presenter’s screen to be preserved, independently
of the applications used. Teachers are free to run any presentation software, which
makes any input document formats accessible. There is (almost6) no limit concern-
ing the recording of additional applications. In contrast to the symbolic recording
approach, screen recording offers real replay of what happened during the presenta-
tion without demanding data transfer or the installation of software which was/is
used during presentation. Furthermore, any annotation system of any presentation
software can be recorded and all dynamic elements like animations, annotations as
well as pointer movements are retained.

Unfortunately, this flexibility is also the primary drawback of this approach. Screen
recorders are independent of presentation software and annotation systems and
therefore have no access to document structures, textual content or any events caused
by the presentation software. The inaccessibility of input documents and events in-
hibit comfortable navigational, post-processing and retrieval features. Conventional
screen recorders only offer video-like editing options (e.g. cutting and concatenating),
sequential playback and at best timeline navigation.

In order to conserve a lecture, a screen recorder needs to digitally access the graphical
output. One possibility is screen grabbing, which periodically grabs the complete
desktop as a bitmap (e.g. by copying the graphic card’s buffer). Storing uncompressed
bitmaps at high frame rates (bitmaps or frames per second = fps) obviously creates
huge amounts of data. Grabbing a screen of 1024×768 pixels at 32 bit color depth and
20 fps leads to 3600 Mbyte per minute. Standard picture compressing algorithms may
not be sufficient to reduce the data to a manageable amount. Rather, screen recorders
demand compression algorithms designed for motion pictures. Standard video codecs
provide much higher compression rates by allowing lossy compression. However,
to provide high quality multimedia-based learning materials, not only the quality
of the contents and its visual representation in respect of pedagogical issues are
crucial, but also its visual representation regarding image quality. A low quality video
transmission of the speaking teacher is no problem. We recognize who is talking,
his/her gestures and movements even if some details are missing. Applying lossy
compression to the content of slide, on the other hand, can result in illegible text or
indistinct sketches and tables as demonstrated by Figure 2.3, where the lossy area
was achieved by applying JPEG compression with very low quality settings, or Figure
2.2, which shows a video screen shot of a filmed presentation. Even if the degree of
loss is not that bad and the slides are only blurred instead of being unreadable, it is
at least hard to follow the lectures, because reading low quality slides over a period

6 Full screen movie replay during representation generally exceeds recording capacities

20 2 Presentation Recording and Transmission

of 90 minutes is awkward and tiring (even if the lecture is interesting). As standard
video compression algorithms are designed to encode real world videos, they are
adequate and unproblematic for live videos, movies, video conferencing, etc., but
“does in most cases neither lead to acceptable quality nor to a reasonable size of the
compressed file” [Lauer and Ottmann, 2002] if applied to the contents of a graphical
desktop.

Fig. 2.3. Lossy vs lossless compression

During ordinary slide presentations the screen content is rarely altered. Changes
occur only whenever the teacher switches slides, except for maybe a clock or the
mouse pointer, which causes small parts of the screen to change frequently. Hence,
two bitmaps representing two sequential frames will rarely differ very much from
each other, which offers large potential for compression by storing frame differences
only. The TechSmith Screen Capture Codec [TSCC, 2006] used by the commercial
screen recorder Camtasia Studio [Camtasia, 2006] is especially designed for lossless
and efficient compression of screen content. Unfortunately, it is only available for
MS Windows systems and still results in huge files if a high frame rate is applied,
as is necessary to enable smooth playback. Lowering the frame rate reduces the
memory consumption, but also reduces the quality. Instead of a smooth playback,
pointer movements and animations look jerky. Dynamics are (partly) lost. This is the
same for all other codecs that support fixed frame rates only. Dynamically adapting
frame rates, which allow the usage of many frames whenever necessary to preserve
dynamics but reduced frame rates elsewhere, would be preferable but are rarely
supported. Most compression algorithms support different, but fixed, frame rates,
selectable in advance of recording only.

Another approach for conserving the graphical output can be output grabbing in a
more general sense. Instead of recording bitmaps it is also possible to store trans-
mission protocol information, as is done by VNC session recorders (see Chapter 5)
or in the University of Mannheim’s Interactive Media on Demand (IMoD) system
[Hilt et al., 2001] based on their Real Time Protocol for Distributed Interactive Media
(RTP/I) [Mauve et al., 2001]. Protocol information is tagged with synchronization
data and replayed similarly to the symbolic representation approach. However, de-
pending on the recorded protocol, no document content and structures are stored,

2.2 Symbolic Representation vs Screen Recording 21

but rather messages describing screen content. Such event-based recording is not
constrained by a predetermined fixed frame rate, but rather stores data on demand,
which offers more flexibility concerning the trade-off between preserving dynamics
and achieving small file sizes.

Symbolic Representation Screen Recording

Presentation
Software

dedicated presentation software
with integrated recorder

any

Input
Formats

restricted by presentation
software

any

External
Applications

limited or not supported any

Annotations built-in annotation system of
presentation software

any (recorder built-in and
presentation software)

Dynamic
Elements

dynamic annotations; others are
rarely supported

any (limited by frame rate)

Retrieval searchable (full text search) —

Navigation slide-based timeline only

Editing content editable video-like editing only
(cut and concat)

Scalability scalable fonts and vector
graphics

—

Table 2.2. Symbolic Representation vs Screen Recording

Table 2.2 presents an overview of the comparison between the two recording ap-
proaches. In summary, we have flexible recording, i.e. a flexible environment that sup-
ports the recording of arbitrary content and applications, versus structured record-
ings, i.e. asynchronous electronic lectures in the form of structured files, which en-
able enhanced post-processing and playback features. However, the optimal solution
should enable both a flexible and transparent easy-to-use recording process produc-
ing electronic lectures with effective navigational and retrieval options.

One attempt to circumvent this dilemma is offered by Lecturnity [Lecturnity, 2006],
a commercial descendant of AOF [AOF, 2006]. This recorder stores symbolical data,
but offers an integrated screen grabbing utility to capture external applications on
demand. In fact there are two recorders integrated in one environment. Unfortu-
nately, whenever teachers leave the slide presentation (recorded by the symbolic
recorder), then they have to explicitly initiate the screen grabbing process by starting
the screen recording component and selecting which application has to be recorded.
It is certainly much easier to use the coupled screen recorder than two stand-alone
solutions. However, as the usage of other applications is possible without recording
them, teachers tend to forget to start the recording process. In such cases only the
verbal narration, but no application, is recorded. Furthermore, this approach has still
limited navigational and retrieval options for screen recorded parts and is meant for
teachers who rarely use additional applications.

Another approach is given by tele-TASK [Schillings and Meinel, 2002,
teleTASK, 2006]. This screen recorder delivers a special plug-in for MS Pow-

22 2 Presentation Recording and Transmission

erPoint, which is connected to the recorder. Thus, the recorder can preserve events
from the presentation software, such as switching to another slide, and hence,
enriches the produced electronic lecture with slide-based navigation. Unfortunately,
this approach reduces flexibility as it demands presentation software dependent
plug-ins (currently only PowerPoint is supported. Furthermore, transparency is
reduced, because the teacher must install and remember to start the plug-in prior
to recording.

Our research followed an alternative approach. Starting with a flexible screen record-
ing system, the produced electronic lectures are enriched with structure to provide
navigation functionality (Chapter 7) and integrate retrieval options (Chapter 8) by
automated post-production independent of the presentation (or any other) software
which was used.

2.3 Lightweight Production and Transparent Recording 23

2.3 Lightweight Production and Transparent Recording

While discussing electronic lectures (Section 2.1) we have stated that lightweight
course production, which is “to record a quite regular live lecture in order to obtain
versatile digital material with negligible additional cost” [Kandzia and Maass, 2001],
is a preferable solution for producing digital learning material in a cost-effective
way. High quality studio productions demand a lot of preparation to select and cre-
ate teaching contents. Special technical equipment and many manual resources are
needed during production and post-production. “Experience gained in several large-
scale projects in Europe has shown that production costs for rich-media content in
the range between 50,000 and 100,000 EUR per weekly lecture hour are no excep-
tions” [Lauer and Ottmann, 2002]. This is mostly not affordable, especially recalling
that University teaching should stay up-to-date with research, but updating content
is not easy to achieve in such a high quality production process. Lightweight record-
ing of regular live lectures in order to create electronic lectures tremendously reduces
production costs, but still offers meaningful digital learning material. Furthermore,
lightweight recording enables large archives of electronic lectures to be built up in a
short time and thus delivers a basis for virtualizing teaching processes.

As lightweight course production is kind of an add-on, it must not negatively influence
live lectures. The recording functionality should rather be seamlessly integrated into
the existing lecturing environment. At best, presentation grabbing/recording should
be transparent to lecturers [Ziewer and Seidl, 2002]. In other words teachers are not
aware of the recording process at all, but are free to perform their preferred tradi-
tional teaching styles. Thus, the presenting process stays the same, no matter if a
lecture is recorded or not. A transparent recording technique not only does not disturb
teachers willing to apply modern teaching approaches, but also will reach a larger
group of teachers because recording is not dominated by laborious preparation and
complex operation. The familiar act of presenting is entirely sufficient to achieve elec-
tronic lectures. Such an approach conforms to [Muehlhaeuser and Trompler, 2002],
who advocate a smooth transition from traditional to digital teaching in order not
to create powerful teaching environments for small elites and leaving behind the
big mass of average teachers. This approach also corresponds to [Schütz, 2003] who
said that “the main goal ... is not to produce the best e-learning content, but to
produce it very easily”. Certainly, some requirements and restrictions are inevitable.
In order to achieve valuable electronic lectures only computer-based presentations
can be recorded. Therefore the elements of traditional teaching must be transferred
to digital analogons as described in Section 2.1.3. Now we will discuss possibilities
of seamlessly integrating recording techniques and equipment into live lectures, in
order to achieve a transparent recording environment. Nevertheless, it is not our in-
tention to give a solution fitting all possible circumstance but rather to offer hints,
because local conditions, available hardware and applied recording techniques can
differ considerably from one another in numerous aspects.

Audio

Audio recording can be seamlessly integrated by using pre-existing hardware. Large
lecture halls are commonly equipped with at least one microphone and an adequate

24 2 Presentation Recording and Transmission

system of loudspeakers. In this case it is sufficient to connect the recording system
to the existing equipment. Technically this can be done by the use of a simple
Y-splitter cable or better by connecting the recording system to a line-out of an
amplifier or an interposed mixer. If wireless microphones are used, the recorder can
be connected to a second receiver, which is adjusted to the same frequency as the
static equipment of the lecture hall and thus receives the same input. The wireless
scenario is even easier to integrate as it does not matter where the static equipment
and the recording devices are located. Some lecture halls provide a special room for
technical equipment in the back, others have the amplifiers installed at the front
desk or maybe even integrated within the speaker devices. Additionally, recording
approaches differ in their requirements and possibilities. Some recording systems
are integrated within the presentation software and recording takes place at the
presentation machine. Other scenarios consist of several machines, which can be
locally distributed.

For smaller presentation rooms, where no voice amplifying is required, a dedicated
microphone must be added, obviously. It depends on the preferences of the lecturer
if fixed microphones, headsets or other wireless microphones should be applied. A
static microphone requires the teacher to stay within its reach. Wireless devices
offer more flexibility, but must be attached to the lecturer. Hand-held microphones
or microphones which are attached to the teacher by a wire, are discouraged as they
heavily influence a lecture because they restrict teachers in their movements.

A simple solution with one microphone is sufficient for recording the teacher’s talk.
Questions from students are a little problematic. Highly equipped lecture rooms
with integrated microphones for each student are only available in rare research sce-
narios. Therefore, questions as well as any other verbal output from students are
not captured by microphones and thus get lost during the recording process. As a
consequence, the teacher’s answer can be meaningless. However, this problem also
occurs for any lectures taking place in large lecture halls even without recording
them. An unamplified voice is hardly audible in a lecture hall with a capacity of
several hundred students. Handing a microphone to a student prior to asking ques-
tions is cumbersome and will often limit the number of questions asked. If a question
is important for the entire audience, the teacher should rather repeat it or at least
phrase the answers in a way so that it will make sense without exactly knowing the
question.

Video

The video equipment provided by most lecture rooms is limited to visual presenta-
tion (video projector, overhead projector or diascope) not offering video recording.
However, no special high tech cameras are required as they will always exceed the
intended output quality. Rather, any standard video cameras are sufficient, often
even small internet cameras.

More significant is the placing of the camera so that it does not disturb the lecturer.
A large camera placed on a tripod just in front of the teacher and a technician
working behind the tripod panning the camera according to any small movements
of the teacher will obviously be a disruptive factor. A technician also does not fit

2.3 Lightweight Production and Transparent Recording 25

into our low-cost lightweight production approach, which claims to limit manual
resources. In most cases a small fixed camera is satisfactory as it is not intended
to produce high quality video material. Remotely controlled cameras or so-called
pan-tilt devices, which recognize movements and adjust themselves automatically,
may be used if camera panning is required.

Sometimes additional video devices such as VHS7 players are used during a lecture.
In order to achieve higher quality in the recording, the players should rather be con-
nected to the video input of the recording machine if possible, instead of projecting
and filming them via video camera. In one of our settings, we use a (hardware) video
mixer which makes it possible to switch the input of the lecture recorder.

Presentation Content

Transparent recording in the sense of presentation content grabbing must access and
preserve whatever is presented to a local audience in a real lecture hall. Computer-
based presentation systems commonly consist of a computer, typically a laptop,
connected to a video projector. The output projected to the wall exactly matches
the output visible on screen. Furthermore, the usage of some slide-based presentation
software in fullscreen mode is common practice. To achieve absolute transparency
this should stay the same. Integrating the recording process into a presentation
environment can be handled by different approaches differing in their placement
relative to the presenting computer (i.e. the computer that is locally present in the
lecture hall and is connected to the video projector):

I. Output Recording: In order to preserve what is projected onto the wall, it would
be straightforward to film the wall and thus the output of the video projector. But
such videotaping is discouraged due to the loss of quality as already mentioned in
the previous sections. In our digital setting, we rather would record the output of
the presentation computer as this is the input for the video projector. Such output
recording can be achieved by use of special digitizing hardware, such as AdderLink
IP8 [AdderLink, 2006], which is connected to the graphical VGA9 output of the
presentation machine in the same way as the video projector is. Due to the hardware
costs it might not be the cheapest solution, but it is the most flexible one because
it allows the output of any computer to be captured without installing any piece of
software or drivers.

Software recording generally results in lower costs. A software solution for screen
recording accesses the displayed screen content on the presenting computer via the
operating system or graphics card. As output recording is independent of the under-
lying presentation software, it can store pixel data only. The received pixels must be
compressed and stored in a suitable way (see Chapter 2.2).

II. Parallel Recording: Presentation software with integrated recording functionality
also offers software solutions for lecture recording. While displaying presentation

7 VHS abbr. for Vertical Helical Scan but commonly used as abbr. for Video Home System:
a recording and playing standard for video cassette recorders

8 AdderLink IP is a VNC compatible KVM-via-IP solution
9 Video Graphics Array (VGA): an analog computer display standard

26 2 Presentation Recording and Transmission

content on screen (and thus via video projector to a local audience), the presentation
software will also store the content plus additional media streams (audio and/or
video) for later replay. Such background recording does not influence the presentation
process as long as the recording process does not consume too much processing time,
which possibly could slow down the presentation. As discussed in Chapter 2.2, such
presentation software recorders can access and store the symbolic representation of
input documents and thereby preserve structuring as well as textual content.

III. Input Recording: Another approach is available for distributed infrastructures,
such as a videoconferencing environment or a set-up where the presenting machine
accesses the presented content located on another computer via a network. A recorder
accesses the data transfer between the content providing and the presenting machines
(e.g. interposed as proxy). The data transfer can be logged and replayed later in the
same way. Moreover, it can be interpreted in the same way a presentation software
would do and then handled as in the parallel solution (just without presenting the
content). Note that those different tasks are not necessarily distributed to different
computers. The recording software can be a process running on either the recording
or the content providing computer. Even those two tasks (and therefore all three)
can be performed on a single computer in today’s multitasking systems.

Other distributed scenarios do not transmit presentation content to the present-
ing computer, but redirect the output of a presentation to the presenting machine.
This means, the presenting machine located in the lecture hall and operated by the
teacher is not performing the presentation. In fact, it works as a client accessing a
server which runs the presentation software. Thus, the output of the presentation
is transferred from the server to the computer in the lecture hall, which presents it
to the teacher and the local audience. The input of the presenting computer is the
output of the machine that performs the presentation. Recording such data trans-
mission obviously does not offer access to input documents or events caused by the
presentation software. Hence, only pixel data is stored.

Controlling

In some circumstances a loosening of the transparent concept is inevitable. This is
the case whenever the integration of additional features demands some controlling
possibilities. Obviously some user interface for interacting with the system has to be
integrated into the recording or presenting software, respectively. However, the pre-
sentation system should stay as transparent as possible and the ease-of-use of new
features should have first priority in order not to disrupt the natural flow of a live
presentation. Therefore, simple but effective user interfaces must be developed and
integrated only. Too many separate windows or different user interfaces for slightly
different scenarios confuses teachers and students [Effelsberg and Geyer, 1998]. Re-
specting the smooth transition approach, no lecturer should be forced to use addi-
tional features, but should freely decide if and when to do so. Individual configura-
tion of a common adequate standard user interface can provide more flexibility by
allowing controlling elements to be added or removed.

Examples of additional features are controlling the recording process, which obvi-
ously is not needed in presentation-only environments, or annotation systems, which

2.3 Lightweight Production and Transparent Recording 27

can be meaningful for the local live presentation as well (recall the graph flow al-
gorithm example from Section 2.1.1). If recording is not controlled by a technician
in the background, but rather teachers themselves initiate and stop the recording
process, at least one start/stop button or keyboard shortcut must be available. Omit-
ting buttons and using shortcuts only has the benefit of not disturbing the visual
representation of slides, but starting and stopping the recording process can easily
be forgotten. If some graphical user interface is present anyway (e.g. for annotations
or slide control), an additional button does not matter. If the recording process is
performed by use of dedicated hardware, buttons are probably provided in hardware
instead.

Fig. 2.4. MS PowerPoint 2003’s annotation controls (closed)

For annotation systems there must be an option to choose and place annotations, and
usually one can select an annotation mode and maybe the coloring. At best, inter-
actions should be accessible via a single click. The menu style annotation controls of
MS PowerPoint has almost no affect upon the visual presentation itself (Figure 2.4),
but unfortunately always requires two clicks to switch between paint modes (one to
open the controls and one to select the mode) and the color selection demands even
a second level menu (Figure 2.5).

Fig. 2.5. MS PowerPoint 2003’s annotation controls (opened)

We rather suggest that annotation tools should be accessible in a comfortable way, at
best by a single user interaction. A toolbar with the most frequently use functions will
suitable. A hardware solution is offered by SMART Technologies. Their whiteboards

28 2 Presentation Recording and Transmission

are supplied with several electronic pens and the teacher can use different pens in
order to chose different colors [Smartboard, 2006].

Navigational and retrieval features are certainly crucial usage criteria of electronic
lectures, but must not demand additional work to be done during a live presentation
by the lecturer. [Li et al., 2000a] suggest to select any headlines during a presentation
in order to produce navigational marks which can be accessed during later replay.
However, this might irritate the teacher and also the students. The teachers’ tasks
and thus the user interface should rather be limited to whatever is required for
presenting and recording purposes only.

In fact the controlling user interface is meaningful to the teacher and within the
recording context only, but unfortunately will also be presented to the local au-
dience. Special hardware, so-called scan converters, or even many of todays video
projectors allow clipping of video output in order to display a selected section only. If
the graphical user interface of the presentation/recording software is located at the
border of the presentation area (which is advisable in order not to overlap and hide
something), they can be clipped out. This is obviously not possible using electronic
whiteboard hardware (e.g. Smartboard), where teachers and students must see the
same, because the board is used as the input device. The electronic lectures which
are produced do not suffer from unwanted graphical user interfaces, because only the
presentation content will be recorded (except for hardware output recording, which
will receive the same data via the graphics card as a local video projector).

2.4 Criteria and Features 29

2.4 Criteria and Features

In the previous sections we have regarded three criteria, lightweight content pro-
duction, transparent lecture recording and smooth transition (from traditional to
e-teaching), giving guidelines to produce electronic lectures in a fast, easy and com-
fortable (for the teacher) way. As those are no true-or-false criteria, the term strate-
gies might be more appropriate. To summarize, those strategies and guidelines are:

I. Lightweight Production

Producing electronic lectures should be fast and inexpensive, i.e.:

a) producing electronic lectures by recording real live lectures,

b) reducing manual and technical resources,

c) utilizing highest possible degree of automation.

II. Transparency

The recording process should not (negatively) influence the natural flow of
recorded live lectures, rather teachers should be unaware of the recording pro-
cess. This can be achieved by:

a) supporting the teacher’s choice of presentation software and documents,

b) recording in the background,

c) seamless hardware integration (concerning type and placement),

d) if additional user interfaces are inevitable, keep them concise.

III. Smooth Transition

The recording environment should aid teachers by offering beneficial features,
but not force their appliance:

a) ease-of-use (at best in a familiar style),

b) enabling quick-start for untrained (with regard to lecture recording) teachers
without additional preparation,

c) step-by-step integration of additional features at teacher’s pace.

In addition to these base strategies giving ideas and hints for how to achieve cost-
saving and teacher friendly content production processes, a detailed criteria and
feature catalog for both production and replay of electronic lectures is needed. The
aim is to compare existing environments and approaches exposing flaws and restric-
tions of today’s lecture recording technology. In the following chapters we will then
offer theoretical ideas and practicable implementations to loosen restrictions and

30 2 Presentation Recording and Transmission

eliminate flaws and, consequently, suggest solutions to achieve more suitable and
convenient electronic lectures.

There are essential features, which are indispensable to achieve meaningful replay,
and desirable features offering very useful aspects to enrich the value of an electronic
lecture. Rating the features depends on user preferences and some features might
conflict with others. Hence, we cannot design a 1 to 10 scale which could be used
to create the perfect 10 electronic lecture recording and playback environment, but
rather achieve hints and suggestions for some classification. Hardware aspects are
left out here, because they are almost the same for any kind of presentation recording
environment.

Obvious essential features for slide-based electronic lectures (stated by
[Lauer and Ottmann, 2002, Brusilovsky, 2000]) are:

LO1 Verbal narration:

audio recording of the teacher’s voice

LO2 Static slides:

storing slides displayed during presentation and slide replay synchronized to the
verbal narration

Recording slides without verbal narration delivers no more than a simple script
(maybe with additional annotations) and therefore we will not call it an electronic
lecture. Audiobooks intended for listening purposes only or referring exactly to cer-
tain textual learning material, e.g. by referencing by page and section numbers, are
meaningful without recorded slides. In the case of recording live lectures, a verbal
narration without interlinkage to visual content is impossible (or at least very hard)
to follow, because it is not intended to be used in such a way.

Beyond this elementary functionality, [Lauer and Ottmann, 2002] list nine criteria
for the evaluation and comparison of presentation recording systems:

LO3 Representation of contents:

preserving symbolic information of the original content wherever possible, be-
cause it offers:

a) information retrieval (e.g. full text search)

b) scalability

c) later manipulation of content

d) reduced amount of data compared to video formats

LO4 Dynamic capture and replay of annotations:

a) preserving the dynamics of teacher’s handwriting and other graphical anno-
tations

2.4 Criteria and Features 31

b) associate annotations with slides (so that annotations disappear when a slide
is changed and made visible again when returning to that slide later during
presentation)

LO5 Structured overview of recordings:

a) automatically created overview (e.g. via thumbnails) or table of content
showing the structure of the presentation

b) offering comfortable navigation by accessing structured elements

LO6 Visible scrolling during replay:

a) browsing through an electronic lecture by dragging a slider along a scrollbar
with instant update of the display during dragging (and not afterwards, when
the knob is released)

b) real-time random access without noticeable delay (required to achieve fast
visible scrolling)

LO7 File format and size of recorded documents:

a) small file sizes appropriate for downloading

b) platform-independent format

c) standard web-based format

d) streaming ability

e) lossless compression of slides and presentation content (to achieve sufficient
quality)

LO8 Formats of material which can be captured:

a) recording any given file format

b) or application used

LO9 Capture and integration of live video:

video picture of the teacher

LO10 Post-editing facilities:

although opposing the lightweight strategy some editing features might be useful

a) cut and join parts

b) manipulating slide content (can best be achieved if represented symbolically)

32 2 Presentation Recording and Transmission

LO11 Turning records into CD-Rom or web-based course:

easy and automated way of combining recordings with other materials as part
of integrated e-learning modules to organize a course in a web-based learning
management system or on distributable storage media

[Lauer and Ottmann, 2002] addressed asynchronous electronic lectures only, but
[Kandzia et al., 2004] recall and summarize those criteria and add:

LO12 Synchronous transmission:

Transmitting live lectures either to other lecture halls and/or to online students

Although we agree with most of the suggested aspects, we will rework and extend
them. Extending the list is needed to add further synchronous aspects. Rework
mainly concerns the intertwining of symbolically represented content and features,
such as scalability, structuring and retrieval. The representation of content certainly
has a crucial impact on some features, but the features are what we demand in the
first place. Enabling any of those features without using symbolically represented
content is sufficient as well. Therefore our criteria catalog should rather list informa-
tion retrieval LO3a and scalability LO3b as individual features independent of the
content representation aspect. The same holds for structured recordings (already
listed separately), manipulation of content (listed twice LO3c and LO10b) and data
amount (also listed twice LO3d and LO7a).

In addition to dynamic annotations, the aspect of dynamics should be extended to
capturing and replaying any dynamic elements including pointer movements, ani-
mations and interactions with arbitrary software (covered indirectly by LO8).

Real-time random access LO6b is a condition precedent to enable visible scrolling
LO6a, but is beneficial for any kind of navigation (e.g. accessing slides) and hence a
desirable feature of its own.

[Mertens and Rolf, 2003] suggest the following features of an ideal recording tool
(partly derived from [Lauer and Ottmann, 2002, Brusilovsky, 2000]):

MR1 Advanced navigation

such as structured overview (LO5) and visible scrolling (LO6)

MR2 Animations

reproduction of animation (effects) as part of a slide presentation

MR2 represents animations, which are provided as part of a slide presentation within
a presentation software. These could be simple fade-in/fade-out effects applied for
slide changing, but also any other sophisticated animations used not only for the ef-
fect, but rather for educational issues. Mertens and Rolf include reproduction of such
animations (or animation effects), because systems like Lecturnity [Lecturnity, 2006]

2.4 Criteria and Features 33

convert slides to proprietary formats, which may not support all kinds of animations
and features of the original document. Mertens and Rolf suggest decomposing an
animated slide into a sequence of several (sub)slides to reproduce such animations.
However, this is also a conversion of slides, which may support more effects, but
again may be incomplete. The drawback of converting slides is that the conversion
algorithm is most probably outdated for any new release of the original slide format.
Nevertheless, reproducing animated slides instead of supporting static slides only is
a desirable feature for a lecture recording environment.

MR3 Capture of hand-written annotations

MR4 Full text search

Annotations (MR3) and full text search (MR4) are analogous to LO4a and LO3a,
respectively.

MR5 Line based addressability

accessing lines rather then slides (as in [Brusilovsky, 2000])

MR6 Line based synchronization

synchronize audio and video streams according to accessed lines

Navigational features (MR1) are covered more precisely by Lauer and Ottmann
(LO5 and LO6), but line-based navigation (MR5 and MR6) (also suggested by
[Brusilovsky, 2000]) delivers an additional aspect, which is hardly fulfilled by any
of today’s recording systems. Line-based addressability and synchronization can be
merged to a single feature because one is useless without the other. In fact, line-based
navigation and slide-based navigation are subtopics of a structured overview/access
(LO5).

MR7 Metadata

incorporation of metadata in the recorded document (e.g. keywords, course de-
scription, language of course) to make recorded documents accessible for content
management

MR8 Post-editability

in the meaning of LO10

MR9 Screen recording

whenever a lecturer switches to another program

Demanding a screen recording feature mixes representation of content and the in-
tended feature of an ability to record additional applications other than the presen-
tation software (analogous to LO8b). Admittedly pixel-based recording is the best

34 2 Presentation Recording and Transmission

suited and maybe the only full featured solution to achieve this criterion. If screen
recording is also applied to the presentation software, the animation feature (MR2)
is covered per se.

MR10 Searchability by conventional search-engines

generate electronic lectures, which are indexable by web-search-engines

The searchability by conventional search engines offers an additional and mean-
ingful retrieval aspect not addressed by Lauer and Ottmann. Additionally,
[Jackson et al., 2000] state searchability over all types of media, i.e., text, graph-
ics, audio and video, as a desirable retrieval feature, although it is not quite clear
what to search for in a video, which mainly shows a speaking teacher. Furthermore,
they suggest searchability not for a single electronic lecture only, but for an entire
library of courses as well, which, for sure, is a meaningful aspect. Such search func-
tionality is somehow a loosening of MR10, because retrieval is enabled for large data
bases, but not necessarily by use of conventional search engines.

MR11 Supplemental delivery of annotations, links and references at any time

enable adding and altering of additional information and learning material re-
lated to certain parts of an electronic lecture by teachers and students (e.g.
wiki-like)

The integration of metadata (MR7) and supplemental elements (MR11) are not listed
by Lauer and Ottmann. However, the group of Prof. Ottmann (the developers of
the Authoring On The Fly (AOF) system [AOF, 2006]) discusses the integration of
student notes [Lienhard and Lauer, 2002, Lienhard and Zupancic, 2003], which can
also be seen as supplemental elements.

Brusilovsky, who has suggested the integration of supplemental elements
[Brusilovsky, 2000], also states retrievability of those elements, e.g. searching key-
words, comments or links to additional resources (which he calls annotations dif-
ferent from our term). A very similar idea is offered by [Jackson et al., 2000], who
suggest a supplementary information window with extra readings or links. Another
feature suggestion by [Jackson et al., 2000] is to offer students the possibility of in-
teracting with their learning environment. They suggest electronic note-taking in the
form of text and graphical annotations, post-its (to tag information) as well as cap-
tioning short audio or video clips, all of which can be filed under the vague feature of
offering supplemental elements (MR11). A fine-grained classification of supplemental
elements cannot be achieved10 due to unequal requirements and very diverse appli-
ance of such additional elements throughout different e-learning systems. In fact,
psychological studies and evaluations concerning acceptance by students/teachers
and learning benefits are needed to provide a classification.

10 Unless split into well-defined subtopics, but such discussion is not required throughout
this thesis

2.4 Criteria and Features 35

2.4.1 Criteria Catalog

Merging the different aspects and feature lists with our own experiences gained
throughout the last few years, we suggest the following catalog of criteria for evalu-
ation and comparison of presentation recording systems:

C1 Verbal Narration

recording the teacher’s voice in high quality is mandatory

C2 Live Video

a small, low quality video is sufficient if showing the teacher only; high quality
video is demanded for instance to preserve experiments filmed via camera; video
may be omitted to reduce bandwidth usage or file size

C3 Presentation Content

concerning degree of full-featured support and preserved dynamics

a) Format of presentation documents

handling presentation formats (e.g. html, pdf, PowerPoint incl. dynamic el-
ements), static slide images (e.g. BMP, JPEG, GIF) or at best, any input
documents

b) Supported presentation software

dedicated presentation software (familiar to teacher), recorder built-in pre-
sentation feature (unknown to teacher) or ideally any presentation software

c) Supported additional applications

ability to preserve arbitrary applications (e.g. browser) in addition to a slide
presentation (incl. menus and pointer movements)

The distinction between supported document formats and presentation software is
recommended, because supporting certain input formats regards the process of cre-
ating teaching material, but the second aspect addresses the act of presenting itself.
Although a presentation recorder supports a certain document format, it does not
necessarily support the teacher’s choice of presentation software. Consider a teacher
who produces teaching material with the often used MS PowerPoint, but uses the
recording software Lecturnity [Lecturnity, 2006]. The teacher propably is familiar
with PowerPoint not only for creating but also for presenting slides, but must use
Lecturnity’s integrated presenting functionality. This may annoy some teachers and
thus possibly prevent them recording their lectures. On the other hand, support-
ing the teacher’s choice of presentation software offers transparency and ease-of-use
during recording as the teacher is familiar with the handling. Of course supporting
the teacher’s commonly used presentation software implies that her/his presentation
documents are supported as well (unless the teacher made some terrible wrong de-

36 2 Presentation Recording and Transmission

cisions). Furthermore, a recording environment may support a certain input format
not directly, but demand some conversion of the original input documents.

C4 Annotations

a) Type of annotations

such as freehand notes, graphical objects, textual and audible annotations,
references and other supplemental elements

b) Dynamic capture and replay of annotations

preserving the dynamics of handwritten and other graphical annotations
(used for emphasizing or note-taking by teachers during live lecture)

c) Annotations associated with slides (or other elements)

so that annotations disappear when a slide is changed and are made visible
again when returning to that slide later during presentation

d) Student note-taking

supporting student notes and annotations live or during replay regarding
kind of annotations (e.g. references, textual, graphical, audible), maybe dis-
tributed among students (and teachers)

C5 Metadata

incorporation of metadata in the recorded document (e.g. keywords, language of
course, course description) to make recorded documents accessible for content
management, also regarding the format of metadata

C6 Post-processing

a) Video-like editing

cutting and concatenating

b) Content editing

editable slide content and/or annotations

c) Creation of distributable media

production of lecture archives, web-based courses or distributable media (e.g.
CD/DVD)

Criteria C1-C6 regard content and production mainly. At least, sequential replay
must be possible to make use of the created electronic lectures, but this alone would
not be sufficient for a top-quality learning environment. Rather advanced navigation
and retrieval aspects must be addressed:

2.4 Criteria and Features 37

C7 Navigation

a) Structured electronic lectures

regarding granularity (e.g. slide-, line-, element-based navigation) and rep-
resentation (e.g. thumbnail overview, table of contents) of identifiable and
accessable elements

b) Random Access

possibility to access any position (e.g. time-line navigation) regarding access
time (real-time random access without noticeable delay)

c) Visible Scrolling

browsing through an electronic lecture by dragging a slider along a scrollbar
with instant update of the display during dragging (and not afterwards, when
the knob is released)

Real-time random access is demanded to achieve meaningful visible scrolling and
is suitable for other navigation features such as slide-based navigation. However,
accessing (the beginning of) slides can be achieved without supporting random access
(e.g. storing separate files for each slide).

C8 Information Retrieval

a) Searchable content

which content/elements is/are searchable (for instance full text search of
slides, keywords, annotations, audio or video search)

b) Range of searchability

supporting retrieval within single electronic lectures, databases of archived
lectures or via conventional web-search engines

Also more technical issues of electronic lectures are a source of classification:

C9 Format of Produced Electronic Lectures

a) Lossless reproduction

replay content without loss in quality

b) Scalability

scaling content without loss in quality to fit to different screen resolutions

c) Streamability

d) Format

38 2 Presentation Recording and Transmission

standard formats are preferable to proprietary ones

e) File size and bandwidth

supported bandwidths for streaming; file size for downloading

C10 Platform Independency

platform independent recording, post-production and replay

Many issues affect synchronous and asynchronous electronic lectures in the same
way. Navigational and retrieval features concern asynchronous aspects. In addition,
special requirements of synchronous lectures are handled in the last item of our
criteria catalog:

C11 Synchronous Electronic Lectures

a) Addressed participants

uni- or bidirectional (audio/video feedback channel) live transmission to dis-
tant lecture halls or online students (at their homes)

b) Scalability

number of participants that can be handled

c) Late join

providing late-comers with a consistent state

d) Error tolerance

e) Synchronization

regarding delay (real-time or buffering) and support of multi user inputs
(e.g. distributed whiteboards)

We do not claim our list to be complete in all aspects or to be suitable for all kinds of
(maybe specialized) evaluations, but rather it offers a good overview most readers can
probably agree with. The suggested criteria catalog is derived from the recommenda-
tions of various other research results [Lauer and Ottmann, 2002, Brusilovsky, 2000,
Kandzia et al., 2004, Mertens and Rolf, 2003, Jackson et al., 2000], which have been
merged with our own experiences from recent years. Most items are congruent with
features listed by other researchers, but some have been reformulated, combined or
segmented to be, in our opinion, more appropriate. In particular we tried to abstract
the required feature (which we want to reach in the first place) from a certain way (of
possibly many) to achieve that feature. Consequently this catalog reveals the most
important features and criteria useful to evaluate and compare lecture recording
systems in different aspects.

Note, that the importance of the criteria may be different according to the intendet
e-learning scenario. For example, retrievability is very important to locate certain

2.4 Criteria and Features 39

topics in a huge database of asynchronous electronic lecture, but is typically rather
unimportant for any synchronous scenarios.

3

VNC: Virtual Network Computing

Virtual Network Computing (VNC) [Richardson et al., 1998] is a remote desktop en-
vironment providing access from a client machine to a desktop on a server machine.
VNC was developed at the Olivetti & Oracle Research Lab (ORL), which was ac-
quired by AT&T in 1999 and since then called AT&T Laboratories Cambridge. As
part of AT&T’s global restructuring of research, the industrially funded part of the
Cambridge Laboratory was closed in 2002. However, the original inventors of VNC,
the team around Andy Hopper, professor of Computer Technology at the Univer-
sity of Cambridge, continued to develop and maintain VNC under a newly founded
company called RealVNC [RealVNC, 2006]. Besides RealVNC there are other full-
featured VNC implementations, for instance TightVNC [TightVNC, 2006], Ultra-
VNC [UltraVNC, 2006] or OSXvnc [OSXvnc, 2006], which offer various enhance-
ments like efficient compression algorithms, encryption or file transfer. There are
also numerous VNC client implementations or special purpose servers (e.g. export-
ing a single application or a graphical user interface only). Except for some special
featured versions of RealVNC, all these implementations are freely available, both
as executables and sources.

3.1 The VNC Environment

In the VNC environment a server machine, called VNC server, supplies an entire
desktop environment that can be accessed via network from any machine using a
thin software client, called VNC viewer. The technology underlying the VNC system
is a simple protocol for remote access to a graphical user interface. It is called Re-
mote Framebuffer (RFB) protocol [Richardson, 2005]. Unlike other remote display
protocols such as the X Window system, the RFB protocol is totally independent of
operating systems, windowing systems and applications. Thus, it allows cross plat-
form usage between arbitrary operating systems, e.g. accessing a Microsoft Windows
desktop from a Linux machine or an Apple Macintosh from Sun Solaris. Besides var-
ious VNC implementations for several operation systems, a client implemented as
a Java applet offers access to any VNC Server from within any Java capable web
browser. While remote desktop access is the main usage of VNC, other scenarios

42 3 VNC: Virtual Network Computing

accessing only a single application, e.g. the controls of an audio player application,
are possible.

3.2 Remote Framebuffer Protocol (RFB)

The Remote Framebuffer (RFB) protocol is currently available in its version 3.8
[Richardson, 2005], which is backwards compatible to the only previously published
versions 3.3 and 3.7. It is a simple protocol for remote access to a graphical user
interface. The protocol works, as the name suggests, at the framebuffer level and
is based on a single graphics primitive: Put a rectangle of pixel data at a given x,y
position. A framebuffer update represents a change from one valid framebuffer state
to another. The protocol is demand-driven by the client. That is, an update is only
sent by a server in response to an explicit update request from a client, assuring that
pixel data is transferred only if the client is ready to process. This demand-driven
communication in conjunction with the client’s properties concerning color depth
and encoding schemes, gives the protocol an adaptive quality. A slow client and/or
network results in fewer framebuffers. Furthermore, the RFB protocol is a thin client
protocol that makes very few requirements of the client. In particular, the protocol
makes clients stateless. A client can disconnect at any time and reconnect even from
another machine and will find the graphical user interface in the same state as left.

The protocol consists of two stages: an initial handshaking phase to establish the con-
nection followed by the normal protocol interaction. During the handshaking phase
the two participants agree on a protocol version, handle the authorization and ne-
gotiate the format and encoding with which the pixel data will be sent. There are
various pixel formats and encoding schemes to compress the pixel data, giving a
large degree of flexibility to trade-off various parameters such as network band-
width, client drawing speed, and server processing speed. A server must respect the
client’s properties concerning pixel format, color depth, and encodings.

In the second phase, the normal protocol interaction, the two participants com-
municate by exchanging messages. The protocol defines several client-to-server and
server-to-client messages, mainly to notify each other about input events and frame-
buffer changes, respectively. If the RFB protocol is set upon a stream-oriented data
transfer, such as TCP/IP1 (as is the case for VNC), skipping messages or reading
messages without parsing them is impossible. This is the case because messages
(even of the same type) have variable lengths, but neither length tags nor message
delimiters are provided by the RFB protocol. Hence, messages are intended to be
read sequentially and in total.

The input side of the RFB protocol is based on a standard workstation model of
a keyboard and a multi-button pointing device like a mouse. A client sends input
events to its server whenever a user presses a key or pointer button or moves a
pointing device. So all input events generated by a client are passed on to the server
and thus to applications running at server side. The server’s task is to determine

1 Transmission Control Protocol [Postel, 1981b] / Internet Protocol [Postel, 1981a]

3.2 Remote Framebuffer Protocol (RFB) 43

pixel changes within the framebuffer (representing the applications). Whenever a
client requests to update a rectangular area of the framebuffer, the server transforms
and encodes pixels of the specified area according to the client’s properties and
returns the resulting framebuffer update. A framebuffer update consists of a sequence
of rectangles of pixel data, which the client should copy into its framebuffer. The
rectangles in an update are usually disjoint but this is not necessarily the case. The
server usually responds to a request by sending a framebuffer update. Note however
that there may be an indefinite period between a request and an update and that
a single framebuffer update may be sent in reply to several requests, combining the
requested areas.

Update requests can be incremental or non-incremental. In the case of a non-
incremental update request any pixel within the specified rectangle must be up-
dated. Otherwise the server may send only subregions covering those parts of the
framebuffer that contain modified pixels. The server can either send exactly the re-
quested area (same as non-incremental), the area specified by the outer bounds of
all modified pixels within the requested rectangle, or a set of adequate rectangular
subregions.

Fig. 3.1. Incremental and non-incremental framebuffer updates

Figure 3.1 shows an example of a framebuffer with some modified pixels (top left).
The area requested by the client is marked by a rectangle. The non-incremental up-
date (left) contains many pixels that have not been modified (since the last update).
For the incremental request, the server has chosen two rectangular areas (bottom),
which contain all modified and only a few unnecessary pixels. It would have been
valid to transfer modified pixels only, but that would have demanded at least seven

44 3 VNC: Virtual Network Computing

rectangles and thus possibly resulted in an overhead caused by rectangle headers. The
granularity of partitioning is a trade-off between processing time and the achieved
compression ratio and varies among several server implementations.

3.2.1 Common VNC workflow

The RFB protocol specification [Richardson, 2005] does not exactly designate how
to use messages. It demands that the communication must start with the initial
handshaking phase and proceed to the normal interaction stage afterwards. At this
stage, the client can theoretically send whichever messages it wants, and may receive
messages from the server as a result. Practically the common VNC client and server
implementations follow a certain workflow (see Figure 3.2). At first, the client

Fig. 3.2. Workflow of common VNC implementations

overrides the server’s pixel format settings and specifies which encodings are ac-
cepted by sending a SetPixelFormat and a SetEncodings message, respectively. This
is done before any other message is sent, and in particular before any framebuffer
update request. Setting properties before any pixel data is interchanged assures that
the client receives only pixel data it can decode, which is crucial because messages
that cannot be parsed or messages of unknown types cannot be skipped due to
missing message delimiters. As the next step in the workflow, the client requests
a non-incremental update of the complete framebuffer by sending an appropriate
FramebufferUpdateRequest. The server responds by encoding all pixel values of its
framebuffer and transferring the resulting FramebufferUpdate message to the client,
which allows the client to initialize its copy of the framebuffer. Now the client’s and
server’s framebuffers are synchronized. This can be seen as second or intermediate
initialization following the protocol’s compulsory initial handshaking phase.

3.2 Remote Framebuffer Protocol (RFB) 45

Afterwards the workflow enters an infinite loop of client’s requests and according
updates from the server. Again the client requests the complete framebuffer to be
updated, but now in an incremental way. Thus the server has the option to send
smaller rectangular parts only, which are sufficient to keep the client’s copy of the
framebuffer up to date. If no pixel values have been altered since the last update,
the response is delayed until a modification of the server’s framebuffer occurs. After
the client has received, decoded and displayed a framebuffer update, the next itera-
tion of the loop is executed, starting with another incremental update request of the
complete framebuffer. So to speak, the common implementations make use of full
area update requests only, one initial non-incremental request and always incremen-
tal ones thereafter. During the loop, input events (KeyEvent and PointerEvent) are
sent whenever they occur.

3.2.2 RFB Message Types

The RFB protocol distinguishes client to server and server to client messages. All
messages begin with a message-type byte, followed by any message-specific data.

Client-to-server messages

The protocol specifies six client to server message types:

type message name
0 SetPixelFormat
2 SetEncodings
3 FramebufferUpdateRequest
4 KeyEvent
5 PointerEvent
6 ClientCutText

A client can set its properties by sending messages of the type SetPixelFormat and
SetEncodings, which specify color depth and other format issues and a list of accepted
encodings, respectively. As those mainly occur immediately after the handshaking
phase, they can be seen as part of the initialization.

FramebufferUpdateRequests can be incremental or non-incremental and specify the
bounds (coordinates, width and height) of a rectangular area of the framebuffer,
which is supposed to be updated by the server.

KeyEvent and PointerEvent forward user input events to the server. A KeyEvent
consists of a key symbol and a flag which specifies whether a key was pressed or
released. A PointerEvent delivers the actual coordinates of the pointer and a mask
representing which buttons are currently pressed. Such events are used for both
pointer movements and button presses. A movement results in events with different
coordinates, but without any change of the button mask. A button press and re-
lease is indicated by two consecutive events with the corresponding flag of the mask
once set and once not. If the pointing device has not been moved in between, the

46 3 VNC: Virtual Network Computing

coordinates stay unchanged, otherwise the two messages indicate the button press
and the movement. For instance, the two consecutive events PointerEvent[(100,50)
with button 1 pressed] and PointerEvent[(102,55) with button 1 released] indicate that
the button 1 was pressed and released but the mouse was also moved from the
coordinates (100,50) to (102,55), which could either be counted as drag-and-drop
(commonly drag-and-drop results in more position changes in between) or just a
little inaccuracy while pressing the button.

Finally, there are ClientCutText messages, which transfer text from the client’s clip-
board to the server.

Server-to-client messages

In the opposite direction four server to client message types are available:

type message name
0 FramebufferUpdate
1 SetColourMapEntries
2 Bell
3 ServerCutText

The ServerCutText message type is the counterpart of ClientCutText and is used to
transfer the server’s clipboard contents to the client. The Bell message type is very
simple without any content other than the type byte and is sent to ring the system
bell as user notification. A SetColourMapEntries message contains a sequence of color
values to specify the color mapping to be applied to pixel values (not supported by
some VNC implementations).

Fig. 3.3. Format of the FramebufferUpdate message type (including rectangles)

The most frequently used and most important message type is the Framebuffer-
Update (Figure 3.3). An update messages is sent in response to a FramebufferUp-
dateRequest from a client. Each update consists of a number, which specifies how
many rectangles are included, and a sequence of that many rectangles, all of which
contain encoded pixel data supposed to be copied into the client’s framebuffer. The
common part of all rectangles specifies the (x, y)-position where the pixel data is
to be placed, its width and height, and the applied encoding scheme. It is followed
by pixel data encoded by the given scheme. As there are no delimiters provided by

3.2 Remote Framebuffer Protocol (RFB) 47

the protocol, rectangles cannot be accessed individually, but only sequentially (by
parsing all previous rectangles).

3.2.3 Pixel Format

A pixel format describes how pixel values represent individual colors. For true color
formats bit-fields within the pixel value translate directly to red, green and blue
intensities. Alternatively, a color map can be used, where an arbitrary mapping is
applied to translate between pixel values and red, green and blue intensities. Further
format parameters are byte order (little or big endian), color depth and bits-per-pixel.
The distinction between color depth and bits-per-pixel may not be evident. In most
cases they are equal, however it is common to store 24-bit color values within 32-bit
fields to respect 4-byte borders.

3.2.4 Encoding Schemes

An encoding scheme specifies the compression algorithm that is applied to encode
pixel data. The selected scheme influences various parameters such as network band-
width, client drawing speed and server processing speed. The Raw encoding, that
simply consists of width×height pixel values in left-to-right scanline order, can be
processed very fast by both server and client, but obviously results in heavy band-
width usage due to the lack of compression. This makes raw encoding suitable for
local connections to the same machine with practically unlimited bandwidth, but
unusable for slow modem connections. Advanced encoding schemes like tight2 or
ZRLE3 offer good compression rates, but demand more processing power, which
might be unsuitable for a VNC viewer running on a slow PDA. Except for the
JPEG option of the tight encoding, all encodings used by the RFB protocol provide
lossless compression of pixel values and therefore offer optimal image quality.

Several RFB encoding schemes use a two-dimensional extension of run-length en-
coding (RLE), called rise-and-run-length (RRE). The run-length encoding stores se-
quences of the same data value as a single data value and a count giving the length
of that sequence. In its two-dimensional counterpart the count is substituted by a
rectangle specifying a subregion of the data array to be filled with the given data
value. Such an encoding is most effective for data that contains many regions filled
with the same value, which is the case for most graphical user interfaces as they
are mainly assembled by simple graphic images. The basic idea behind RRE is the
partitioning of a rectangle of pixel data into rectangular subregions (subrectangles)
each of which consists of pixels of a single value and the union of which comprises
the original rectangular region. The CoRRE 4, Hextile and ZRLE encoding schemes
are variations of RLE or RRE.

2 special encoding used by the TightVNC implementation [TightVNC, 2006]
3 ZRLE = Zlib Run-Length Encoding
4 CoRRE = Compact Rise-and-Run-length Encoding

48 3 VNC: Virtual Network Computing

3.2.5 Hextile Encoding

The Hextile encoding is a variation of the RRE encoding and is of special interest for
this work. A rectangle to be encoded is split into smaller subrectangles, called tiles.
Limiting tiles to 16×16 pixels allows the dimensions of each subrectangle within
a tile to be specified by 4 bits per value, 16 bits in total ((x, y)-position, width
and height). Partitioning a rectangle into tiles is done in a predetermined way and
therefore no position or size of each tile has to be explicitly specified. The encoded
contents of the tiles simply follow one another starting at the top left going in left-
to-right, top-to-bottom order. If the width of the entire rectangle is not an exact
multiple of 16, then the width of the last tile in each row will be correspondingly
smaller. Similarly, if the height of the entire rectangle is not an exact multiple of
16, then the height of each tile in the final row will also be smaller. An example of
hextile ordering and sizes is shown in Figure 3.4. A framebuffer update of 93×68
pixel values is partitioned to 30 hextiles. The hextiles of the last column and the
last row are smaller than 16×16 pixels.

Fig. 3.4. Hextile partitioning and ordering of a rectangle of 93 × 68 pixels

Each tile begins with a subencoding type mask and is either encoded as raw pixel
data or as a variation of RRE. If the raw flag is set, all other flags are irrelevant and
pixel values follow in left-to-right scanline order. Otherwise each tile will — depend-
ing on the given flags — specify a background pixel value and/or a foreground pixel
value for the entire tile. If any value is not explicitly specified for a given tile, the
appropriate value of the previous tile is carried over. Tiles without any subrectangles
are just solid background color. Otherwise a sequence of subrectangles is attached,
which all are individually colored or filled with the foreground of the tile. Figure 3.5
shows a single hextile. As this hextile is two-colored, it is sufficient to specify one

3.2 Remote Framebuffer Protocol (RFB) 49

foreground color for all subrectangles. The contained pixels can be encoded by speci-
fying four subrectangles (given as {(x, y) , width, heigh}): {(1, 1) , 6, 2}, {(3, 3) , 2, 8},
{(8, 3) , 2, 10} and {(10, 11) , 4, 2}.

Predetermined tile ordering, 4 bit dimension values and carrying over previous colors
result in a very compact compression.

Fig. 3.5. Hextile with subrectlangles

3.2.6 Limitations

Accessing a desktop on the framebuffer level is not only independent of the operating
and windowing system but furthermore is independent of the applications running
on the accessed desktop. Hence, any application and thus also any documents can
be presented regardless of the document format. Due to the lossless compression a
perfect reproduction of the presented material is ascertained. However, lossless com-
pression cannot achieve as good compression ratios as lossy encodings. Nevertheless,
rather good compression ratios can be achieved, especially for slide presentation.
However, there are a few suggestions regarding how to improve the compression
rates or more precisely, what should be avoided (if possible) in a VNC session. In
particular, elements that should be avoided are:

• color cycling (as shown in Figure 3.6, left);

• fine grained patterns (same figure, right);

• high colored high resolution images;

• large movies (e.g. scaled to fullscreen).

50 3 VNC: Virtual Network Computing

Fig. 3.6. Color cycling and fine grained patters

Note that it is unproblematic if small areas of the screen contain any of those ele-
ments, but the user should avoid to place a high resolution image as wallpaper of the
desktop, presenting slides with a slide background that makes use of color cycling or
presenting movies scaled to fullscreen. Solid coloring should be preferred whenever
possible.

3.3 Distance Learning based upon VNC

In the final section of this chapter, we evaluate the suitability of the Virtual Net-
work Computing system and the Remote Framebuffer Protocol as basis for creating
a distance learning environment. We compare VNC’s features with our criteria cat-
alog (Section 2.4.1) and expose flaws and drawbacks, which must be eliminated or
circumvented in order to produce synchronous and/or asynchronous electronic lec-
tures.

Flexibility

VNC offers remote access to a graphical desktop and thus the desktop’s content.
Since desktop grabbing is done on a framebuffer basis, VNC is very flexible regarding
presentation content. There is no restriction in the choice of applications that can be
used, which are for educational issues the teacher’s favorite presentation software,
webbrowsers, additional visualization tools or whatever software is needed for a
course. Furthermore, any dynamics of applications are preserved as well as pointer
movements. Any application dependent annotations, which are visible on screen
during lecture, are also preserved dynamically.

Display Quality

Most image and video compression methods are lossy to achieve smaller file sizes or
lower bandwidth, thus making them unsuitable to compress the visual appearance
of graphical desktops. In contrast, the encoding schemes of the RFB protocol are
particularly designed to compress desktop data, which makes VNC a perfect choice
regarding image quality. Providing the same color depth for server and client, all
encodings (except tight) are lossless. The loss caused by downscaling to a lower
color depth, e.g. from 24 to 16, is almost negligible, as in most cases it does not
influence details in the displayed text, figures or sketches. Color cycling will appear
less smooth using lower bit rates, but is mainly used as a background effect and
not for pedagogical reasons. Due to resulting in less efficient compression ratios, the
usage of color cycling effects is discouraged anyway. The same holds for high colored
images used for the background of slides or as desktop wallpaper.

3.3 Distance Learning based upon VNC 51

Recording and Replay

Although the RFB protocol is not originally intended for recording, it can eas-
ily be extended for that purpose. [Li and Hopper, 1998b] introduced a VNC ses-
sion recorder, which is seamlessly integrated as proxy between a VNC server and
a VNC viewer. The proxy logs RFB messages plus additional timestamps specify-
ing the delay since the beginning of the recording. Afterwards the messages can be
sequentially replayed at the same rate as when they were recorded. Further publica-
tions of the VNC development team address indexing [Li et al., 2000a] and retrieval
[Li et al., 1999b], but by no means fulfilling today’s requirements. Advanced play-
back features like slide based navigation or full text search remain unconsidered.

Synchronous Scenarios

VNC is designed for remote desktop access in a scenario where a single user interacts
with applications running on a server via a network. However, a second user (a
student), whose client is connected to the same VNC server, is able to observe
any work done by the first one (the teacher). The student can survey any pointer
movement, any button press, any menu selection and watch how the graphical user
interface responds to the interactions made by the teacher. If allowed, the student
himself/herself can even interact with applications under the guidance of the teacher.
Providing an audio channel between those two participants, a one-on-one distance
teaching environment is set-up.

While a VNC server can supply several clients with a copy of its framebuffer, it is not
a very scalable infrastructure. In order to respect different properties and process-
ing speeds, each client must be fed separately with an individually transformed and
encoded copy of the same framebuffer. This is not a severe restriction regarding the
intention of VNC to provide remote desktop access, because many users interacting
with the same desktop at the same time is not very reasonable. However, in the
context of distance learning a scalable infrastructure is demanded. Extend the sce-
nario described above to a virtual classroom, where the teacher’s desktop should be
visible via network for many students. Controlling access is available to the teacher
exclusively and students participate on a course by using view-only clients connected
to the teacher’s desktop. A VNC server might be able to handle up to 20 clients, but
is unable to supply hundreds of students, because this would cause heavy network
traffic and a high processing load to encode and transfer all pixel data.

Transparent Integration

The VNC technology can be seamlessly integrated into a computer based presenta-
tion scenario by starting a VNC server, which exports the presentation computers’
graphical desktop. Every RFB compatible client is able to access the graphical out-
put now, either for recording asynchronous electronic lectures or transmitting syn-
chronous ones. The teaching process stays uninfluenced by the VNC server running
in the background. VNC implementations for operating systems that support more
than one graphical desktop may not export the standard desktop, but rather run
an additional one. Such a background desktop can be accessed via a VNC client
locally or remotely. The appearance of the VNC client can be optimized by setting

52 3 VNC: Virtual Network Computing

it to fullscreen mode. Thus, no additional borders create a distraction and the VNC
desktop can be accessed like a standard desktop.

Due to the variety of VNC implementations available for all common operating
systems, the described scenarios can be integrated in a cross-platform manner into
existing heterogeneous infrastructures (common not only in the technical depart-
ments of third level education) and thus even respecting low budgets, as VNC is
freely available.

3.3.1 Summary

Regarding the suitability of VNC as a basis for setting up a synchronous and asyn-
chronous e-learning scenario, this technique offers a flexible high quality access to
any remote desktop on a framebuffer basis, allowing a teacher to use any applica-
tions (including any presentation software) running on arbitrary operating systems
during lectures or other courses. Thus, VNC is very flexible regarding presentation
content (Criterion C3) and dynamic annotations (C4b). The RFB protocol (C9d)
offers lossless (C9a) and efficient (C9e) compression of a graphical desktop. Due to
the availability of free VNC implementations and the cross-platform design, VNC
is applicable in a platform independent and cross platform manner (C10). The sce-
nario can be integrated into any heterogeneous infrastructure and this even in a
cost-effective and seamless way, obeying the Lightweight and Transparency strate-
gies.

However, any support for handling audio and/or video streams is missing (Crite-
ria C1 and C2). At least audio is essential, whether to record and playback the
teacher’s voice, to allow a one-way live transmission or to establish a communica-
tion between multiple participants. [Li and Hopper, 1998a] suggested the use of an
additional telephone line. Furthermore, video conferencing software, such as the Ro-
bust Audio Tool (RAT) [RAT, 2006], could transmit the verbal narration. However,
an integrated solution is rather preferable, because too many separate applications
may confuse users [Effelsberg and Geyer, 1998].

As numerous protocols and encodings have been designed to record or transmit audio
and video data it should be possible to find suitable ones, which can be combined with
or integrated into VNC to fulfill the given requirements. Since accessing, transmitting
and recording a VNC desktop is not affected by a particular way of integrating audio
and video streams, we will discuss this topic later (while addressing implementation
issues) in Section 9.6.

A more severe restriction to building up a distributed virtual classroom scenario
is the very limited number of simultaneous users that a VNC server can handle.
Chapter 4 describes how the VNC environment and its RFB protocol can be modified
and extended to widen its scalability in a way that fulfills the requirements of setting
up a virtual classroom environment (C11).

Furthermore we have to address VNC’s recording facilities. Logging messages and
the time of their occurrences allows VNC sessions to be recorded. Unfortunately,

3.3 Distance Learning based upon VNC 53

playback is rather limited to sequential replay of these logs. Instead, we are in-
terested in advanced navigational (C7) and retrieval (C8) features. How to achieve
such features for pixel-based VNC recordings is discussed in Chapters 7 and 8. As
advanced playback can benefit from suitable recording formats, we will describe in
Chapter 5 how VNC session recording can be improved.

4

Scalable VNC

The Virtual Network Computing (VNC) architecture [Richardson et al., 1998] is de-
signed and commonly used to access a remote desktop, which is provided by the
VNC server, from a single distant VNC client. However, several clients can be con-
nected to the same server. In this case, the desktop is shared among the clients,
which means that each client will display and, unless set to the view-only mode, also
access the same remote desktop. A client can request to be connected in the shared
mode and, if granted by the server, all other clients that are connected in parallel
stay connected as well. If a client requests exclusive access to the desktop, the server
can either disconnect all other clients or reject the request and thus the incoming
connection. As the client’s properties are often set to request exclusive access by
default, although this may not be explicitly demanded by its user, it may be advis-
able to set the server’s always shared option (offered by most implementations). If
this option is enabled, all incoming connections will be treated as shared, and thus
not disconnect any existing connections, regardless of whether the connecting VNC
client requests a shared or an exclusive access. It is a critical issue how to handle
incoming connections in our intention of providing electronic lectures. Consider a
VNC session recorder implemented as VNC client connected to a VNC server whose
always shared option is disabled. The recording process will be terminated whenever
another client connects, but its user has forgotten to set the shared option.

Furthermore, the latest VNC server implementations support two kinds of con-
nections, one for view-only clients and one for full access. This is useful for dis-
tributed classroom scenarios. As clients are distinguished by different passwords,
the view-only password can be handed to students without offering them access to
the teacher’s desktop. Hence, a VNC desktop presentation can be easily distributed
to the world wide web, if combined with verbal narration, for instance by use of video
conferencing software (such as Robust Audio Tool (RAT) [RAT, 2006] and Videocon-
ferencing Tool (VIC) [VIC, 2006]). However, we rather prefer an integrated software
solution instead of starting one application that displays a remote desktop and one
to receive audio and maybe an additional one to process a video.

Although the VNC architecture allows multiple clients to share the same desktop,
it is not very scalable, because all clients are served individually and therefore only
a limited number of clients can be supplied. This is for two reasons:

56 4 Scalable VNC

1. Point-to-Point Communication: Existing VNC implementations are based
on connection-oriented communication, which only allows one-to-one transmis-
sions. In order to supply 100 clients with an update of 100 kbytes the server’s
outgoing traffic will increase to 10.000 kbytes. For a distance learning environ-
ment supplying a large number of students, a more suitable one-to-many or
many-to-many communication is preferable. Furthermore, the number of simul-
taneous connections of the server machine may be limited by system properties.

2. Individual Client Properties: During initialization, each client specifies its
pixel format and the set of encodings it can handle. The server must trans-
form and encode each framebuffer update for each connection according to the
properties of the respective client. Obviously, if many clients are connected si-
multaneously, individually supplying each client requires huge server processing
power due to many parallel transforming and encoding tasks.

In order to circumvent the high processing needs a network could be designed, where
clients do not directly connect to the teacher’s VNC server, but rather commu-
nicate with proxies [Li and Hopper, 1998a, Li et al., 1999b, Li et al., 2000b]. One
could create a scenario where the main VNC server supplies a manageable number
of proxies, which are connected as VNC clients. These proxies act as (intermediate)
VNC servers and distribute (a copy of) the framebuffer to the students’ clients. Par-
allel proxies could handle more clients and a multi-staged cascade of such proxies
could be established if necessary, but would cause a little extra delay for each level.
The processing power necessary to individually serve all clients could be distributed
among the proxies. In order to use existing software components instead of newly
implementing the proxy, a VNC viewer running on a VNC server could be used.
However, besides the huge amount of hardware needed and the complicated process
to build-up such a network, the benefits regarding the bandwidth consumption are
limited to the data exchange between two points on such a network. Nevertheless,
a bandwidth problem will occur when all proxies are located within the same net-
work segment, where all outgoing connections are handled by a single router, which
therefore becomes the bottleneck.

[Li et al., 2000b] introduced a one-to-many communication for the VNC environ-
ment by seamlessly placing a proxy between the server and the clients to intercept
and manipulate the message streams. The proxy merges and transmits the messages
of all clients to the server. Unfortunately, clients’ requests are merged in a way that
the proxy waits until it receives one request from each client before forwarding a sin-
gle (merged) request to the server. This ensures the rate of requests to be that of the
slowest client, but unfortunately delays the communications for all other clients. Fur-
thermore, that proxy forwards all framebuffer updates received by the VNC server
to all clients. From the VNC server’s point of view, there is only one single client,
which is the proxy.

[Li et al., 2000b] experimented with four VNC clients that were connected via a
proxy to one VNC server. The proxy forwarded server messages to multiple clients
via multiple point-to-point connections. They measured the average data transmis-
sion rate for each client while performing certain tasks. During the tests one to
four clients were connected simultaneously. This exposed a drop of the average data

4.1 Limiting Individual Properties 57

transmission rate of up to 50% when four clients were connected instead of one. Fur-
thermore, they noticed that the completion time of the task which caused the most
framebuffer updates, increased from about 90 to 140 seconds due to “an unneces-
sary overload on some segments of the network that have to carry multiple identical
flows [... and because ...] more clients usually cause more congestion and delay”
[Li et al., 2000b]. One has to admit that the bad performance was not only caused
by the number of clients, but also caused by the unnecessarily high bandwidth usage
due to sending uncompressed framebuffer updates (Raw encoding) and the process
of merging requests, which waits for the slowest client. Nevertheless, their solution
does not fulfill our demands of scalability in order to support a large number of
students. In fact, a better scaling infrastructure is needed in order to supply many
clients with synchronous electronic lectures.

However, the idea of extending the VNC architecture by placing a proxy between
existing VNC server and client implementations or implementing a new client (in
fact a proxy is a client from the server’s point of view) is preferable in comparison
to modifying or re-implementing a VNC server. Due to the thin client ideology of
the VNC architecture, it is much easier to implement a client (perhaps in a platform
independent programming language). Furthermore, the dependencies of the server
towards the windowing and operating system are unlike higher than the dependen-
cies of the thin client. Hence, modifying the server’s functionality while providing a
platform independent solution requires to adapt all the implementations of several
operating systems and do so, not only once, but for each future release. Implement-
ing a platform independent thin client or modifying one of the open source clients
preserving compatibility with original VNC implementations allows our components
to be integrated into standard VNC environments. In fact, the development of the
TeleTeachingTool was originally started by adapting and extending a platform in-
dependent Java implementation of a VNC client.

In order to improve the scalability of the VNC architecture to supply many students
with synchronous electronic lectures, first we discuss how to limit individual handling
of clients and merge the communication of parallel connections with the aim to
reduce the processing load of the server. Secondly, we expose the requirements and
restrictions of a switch from the originally used one-to-one to a more suitable one-
to-many communication and explain how to adapt the VNC environment and its
RFB protocol to work in a scalable one-to-many fashion.

4.1 Limiting Individual Properties

One obstacle preventing scalability is that, although all clients are displaying a
(transformed) copy of the same framebuffer, all updates must be individually trans-
formed, encoded and sent for each existing client according to its individual proper-
ties regarding the requested pixel format and which encodings are supported. Such
individual handling of clients obviously requires huge server processing power due
to many parallel transforming and encoding tasks if many clients are connected
simultaneously. Considering that most VNC viewer implementations are very sim-
ilar (or users even use the same implementation), the diversity of parameters used

58 4 Scalable VNC

practically is not as high as offered by the Remote Framebuffer (RFB) protocol
[Richardson, 2005].

Recall the workflow of common VNC implementations (Figure 3.2) with its ini-
tial handshaking, secondary initialization and the infinite interaction loop of non-
incremental update requests and responding framebuffer updates. Omitting the pos-
sibility of setting individual client’s properties and presuming that all clients have
similar preconditions regarding their processing power, displaying capabilities and
network connections, nearly identical framebuffer updates are sent almost simulta-
neously. Having equal clients, which use the same pixel format and consume server
messages at almost identical rates, a framebuffer update computed as a response to
an update request from any client can be re-used for other clients, which presum-
ably will send an identical request shortly after. This is especially the case as each
client will always set the same update request during the interaction loop, which
is in particular the request to update the complete framebuffer in an incremental
fashion. Moreover, even all other clients will set the same request during their inter-
action loop. However, the high quantity of different pixel formats provided by the
RFB protocol may prevent the use of such shared framebuffer updates, maybe only
because two pixel formats differ in just one little parameter, which is most probably
even insignificant.

4.1.1 Reducing Pixel Formats

The RFB protocol offers several parameters in order to individually adjust the pixel
format. Besides setting the byte order (big-endian or little-endian), the RFB protocol
allows not only the use of several color depths, but also the specification of how to
extract red, green and blue intensities from a pixel value by giving the number of
bits used for each color. This is done by a max value = 2n−1 where n is the number
of bits used for the color and a shift value, which is the number of shifts needed to
get the appropriate intensity in a pixel to the least significant bit. For 16 bit pixel
values and without concerning the byte order, this already results in

(
18
2

)
= 153

different pixel formats1. Altogether for the common 8, 16 and 24 bit color depths
and regarding both byte orders, the RFB protocol offers

(
10
2

)
+2∗

(
18
2

)
+2∗

(
26
2

)
= 1001

different pixel formats2.

Not all pixel formats are necessarily reasonable. The commonly used RGB color
model3 provides no more than 8 bits per color, 24 bits in total. Hence, it is useless
to specify more than 8 bits per color, because the finer nuances are not displayable.
Moreover, imbalanced pixel formats are not very meaningful. Consider, for instance,
the format for 8 bit pixel values, which specifies 7 bits for the red intensities, but
only a single bit for green and even no bit for blue values. This format allows the
brightness of red to be specified in 27 = 128 different steps and also supports bright
green and yellow tones, but no blue, brown, pink, violet, orange or turquoise colors,

1 number of 3 partions of 16 bits - 16 white balls as bits and 2 black ones as markers
2 byte order is irrelevant for 8 bit values
3 the RGB color model is an additive model, which combines its primary colors Red, Green

and Blue to reproduce colors

4.1 Limiting Individual Properties 59

as displayed in Figures 4.1 and 4.2. In fact, reasonable formats will provide almost
uniformly distributed numbers of bits for the red, green and blue color intensities.

Fig. 4.1. All colors of the 7-1-0-bit RGB format

Fig. 4.2. True color vs. 7-1-0-bit RGB format

In consequence, applying one predetermined byte order and (almost) uniformly dis-
tributed color bits, no more than three different pixel formats are needed, one for
each of the three standard color depths (see Figure 4.3).

Fig. 4.3. RGB formats with uniformly distributed bits

60 4 Scalable VNC

4.1.2 Encoding Agreement

Besides sharing a single pixel format, obviously all clients must support the same
encodings as well. However, the number of possible encodings is considerably lower
than the number of pixel formats. The RFB protocol specification in its version 3.8
[Richardson, 2005] specifies six encodings for framebuffer updates (Raw, CopyRect,
RRE, CoRRE, Hextile and ZRLE), even including a deprecated one (CoRRE), and
two so-called pseudo-encodings (Cursor and DesktopSize), which encode the mouse
cursor or switches to another desktop resolution. These are the encodings specified
by the RealVNC team, which officially releases the RFB protocol specifications.
Furthermore, three additional encodings (zlib, tight and zlibhex) and several pseudo-
encodings are registered (created by developers of other VNC implementations).

In the original VNC workflow each client specifies which encodings it supports. In
order to supply all clients with the same update messages, we must either statically
ensure that all clients support the same set of encodings or the framework must
dynamically agree on the least common subset during communication. A dynamic
agreement can be achieved by seamlessly placing a proxy between the VNC server
and its clients. The proxy suggested by [Li et al., 2000b] filters all SetEncodings
messages and thus implicitly agrees on the Raw encoding, which must be supported
by all clients regarding the protocol specification. Although not explicitly mentioned,
obviously their clients must also agree to a single pixel format as we have suggested
in the previous section.

Unfortunately, agreeing to the Raw encoding is very inefficient because it provides
no compression of the pixel data. Rather the proxy should coalesce all incoming
SetEncodings messages and send an appropriate SetEncodings message to the VNC
server whenever a client connects which does not support all of the currently specified
encodings. Such a dynamic agreement will serve fine unless the intersection of the
encodings that are supported by individual clients is empty, which should rarely
occur if using the same or similar VNC implementations with default settings.

Recalling our intention to create an e-learning environment with integrated verbal
narration, we probably have to provide our students with a special purpose client
implementation in order to support audio streams. Hence, we can additionally re-
quire this client implementation to support certain encoding schemas and thus the
static agreement fits fine.

4.1.3 Combining Framebuffer Update Requests

The proxy provided by [Li et al., 2000b] merges the update requests of all clients to
a single one. Unfortunately, the faster clients have to wait for the slower ones. This
causes a lower rate of requests and thus fewer updates and a less smooth replay.
Furthermore, if a single client freezes, the entire communication between the server
and all other clients will be blocked due to missing a single request.

If the suggested proxy would forward all requests of all clients to the server, the higher
number of requests could possibly cause a deadlock if the server implementation relies

4.1 Limiting Individual Properties 61

on the common workflow of alternating requests and responses. But this should rarely
be the case, since the protocol specification states that a single update may be sent
in reply to several requests. However, the higher number of requests would increase
the rate at which the server creates framebuffer updates. If ten clients request their
framebuffer to be updated and all ten requests are forwarded to the VNC server, the
server will read and answer the first request. As the other requests are buffered the
server is free to immediately send nine further updates instead of waiting until the
clients have received, decoded and displayed the first framebuffer update message.

One could also imagine a scenerio where the proxy generates a request after each for-
warded framebuffer update message, or a scenario of a VNC server sending updates
whenever its framebuffer is modified without waiting for a request. We have tested
the first scenario and spotted that updates were sent faster than a real VNC client is
able to consume and display them. This was the case whenever many large updates
occurred within a short time span. For instance, we dragged a window for several
seconds in circles over the desktop. The client received, decoded and displayed all
framebuffer updates, but at a lower rate than they were generated by the server.
In consequence, the surveyed window movement was much slower on the desktop
that was displayed by the client. Then we stopped the dragging of the window and
applied actions that caused fewer modifications to the framebuffer, for instance just
moving the pointer or entering some text in a shell. As the client still was occupied
with the decoding of the previously sent messages caused by dragging the window,
the later updates were also delayed. As soon as the client had processed all updates
caused by the dragging, it started displaying the later updates. However, as process-
ing those smaller framebuffer updates was less CPU intensive, they where displayed
at a faster rate than they actually occurred, which looked unexpectedly strange.
The appearance was similar to dragging an elastic band. Pulling causes the band
to flex and therefore pulling becomes slower the wider the band is stretched, but if
the band tears, the movement will be suddenly and surprisingly fast. Therefore, it
is advisable to set requests that are generated by a real VNC client, which means a
client that really decodes and displays all framebuffer updates.

Neither forwarding all requests, sending updates without requests, nor merging re-
quests of all clients (by waiting for one request per client) is a satisfying solution.
Presuming that all clients are served with (copies of) the same framebuffer update
messages, it is sufficient if only one client, in our classroom scenario supposedly the
teacher’s client, generates requests and the response will immediately be delivered
to all other clients as well. Even if a client does not process the incoming data im-
mediately for some reason, for example temporary network dropouts or being busy
running other tasks, it will be in sync shortly after, because naturally the com-
munication shows a lot of idle time, which enables the clients to process buffered
messages. Note that this will not lead to the “elastic band” effect described above,
because the frame rate will never decrease due to too much framebuffer updates. It
rather gives to impression that the computer has stuck, which is (sadly) common
to most users. The faster replay of buffered messages is relieving since it offers the
impression the the blockade is now removed and the computer is working again.

Regarding the given facts, we suggest the requests are generated by a single client,
which really displays the framebuffer updates, preferably the teacher’s client, and the

62 4 Scalable VNC

resulting update messages are forwarded to all other clients. Alternatively, the proxy
can ignore the requests of all clients and create framebuffer update requests on its
own, but must respect the time needed by clients to decode and display framebuffer
updates in order not to increase the rate of updates. Such a scenario can be useful
considering a proxy that records the current VNC session without any connected
client.

To summarize, in order to increase the degree of scalability by reducing transforming
and encoding tasks and supplying all (or at least many) clients with (a copy of)
the same framebuffer update, the clients must support predetermined properties
instead of individual ones. This can be achieved limiting the unnecessarily large
number of possible pixel formats to an unitary standard or at least to three or four
standardized formats (e.g. for different color depths). Furthermore, all clients must
agree on a collective set of encodings, which has to be supported by each client.
The agreement can be achieved either dynamically or statically. Besides omitting
individual properties, individual requesting is eliminated as well. A single privileged
(teacher) client or an appropriate proxy will generate the framebuffer update requests
instead.

4.2 One-To-Many Communication

Current VNC implementations are based on a connection-oriented communication
protocol that only offers one-to-one data transfer and therefore causes heavy band-
width usage if supplying many clients in parallel. The experiments described by
[Li et al., 2000b] revealed a drop in the average data transmission rate of up to
50% when four clients were connected instead of one. This is mainly caused due to
serving multiple clients with uncompressed pixel data via multiple point-to-point
connections. In order to achieve a higher degree of scalability, more suitable one-to-
many transmission schemas are needed.

4.2.1 Routing Schemes

In computer networking the term routing refers to selecting paths in a computer
network along which to send data. The most common routing scheme is unicast,
where a source sends packets separately to each recipient, which is similar to an
ordinary mail delivery or, for two-sided connection-oriented protocols, a phone call.
In order to send the same data to multiple recipients, the source must send multiple
copies and each copy must traverse the network separately between the source and
destination, which obviously is very inefficient.

The opposite is broadcast where one sender reaches many recipients analogous to a
television or radio transmission. For computer networks, broadcasts are highly inef-
ficient, because the entire network is flooded with data packets reaching all possible
destinations, regardless of whether anyone is interested or not. Therefore, broadcasts
are generally filtered (ignored) by routers and hence will work in the subnet of the
sender only.

4.2 One-To-Many Communication 63

An optimized variation of broadcast is multicast, where data is send from one or
more senders to a set of registered recipients. Unlike unicast, multicast does not
send multiple copies. In fact the data traverses the network on a path towards all
recipients as long as possible and only if the path must be split up to reach all
clients, one copy of the data is routed along each new fragment. This assures that
every (sub-)path will never transmit two copies of the same data.

Fig. 4.4. Multiple point-to-point connections vs multicast connection

4.2.2 Communication Protocols

Although the RFB protocol defines distinct messages, the common VNC implemen-
tations are based on streaming data transfer. Client and server communicate via two
reliable streams, one transfers the client-to-server messages, while the other handles
the opposite direction. The streams buffer incoming messages until they are read by
the corresponding consumer. The sender feeds the stream and the receiver consumes
byte after byte while reading and parsing the incoming messages. A VNC server
can start writing a framebuffer update message while encoding is still in progress
and the receiving VNC client already starts displaying the update while decoding it,
although it has not received the full message (maybe the server is still encoding!).

The Transmission Control Protocol (TCP) [Postel, 1981b] used by VNC implemen-
tations is a connection-oriented protocol offering the benefits of reliable and in order
delivery of sender to receiver data for stream oriented services, but is relatively com-
plex causing additional processing (e.g. for error detection and retransmission of
lost packets). Unfortunately it only supports one-to-many data transfer. Also each
client connection is established during initialization and then is held during the com-
plete session, which might be a problem if the number of feasible simultaneous TCP
connections of the server is limited.

For time-sensitive applications (such as video conferencing) TCP might not be ap-
propriate as, due to in order packet delivery, the recipient cannot access the packets
coming after a lost packet until the retransmitted copy of the lost packet is received.

64 4 Scalable VNC

For real-time applications it is more useful to get most of the data in a timely fash-
ion than it is to get all of the data in order. Missing data may reduce the quality of
the reproduced voice or motion picture, but delaying the replay while waiting for a
single piece of data to arrive is unacceptable. Consider some short gaps in an audio
transmission, which lead to a slightly distorted, but still understandable speaker.
On the other hand, delays caused by ensuring in order packet delivery will probably
result in a stumbling voice, which is hard to follow for the audience.

The User Datagram Protocol (UDP) [Postel, 1980] is a connectionless transport-layer
protocol that does not provide the reliability and ordering guarantees that TCP does.
Instead of building a stream, UDP transmits data by sending packets called data-
gram, which are sent in a best effort manner. Datagrams may arrive out of order or
can be lost without notice. Without the overhead of checking if every packet actually
arrived, UDP is faster and more efficient for many lightweight or time-sensitive pur-
poses such as transmitting audio and video streams. UDP is not only more suitable
for real time applications, but also supports the multicast routing scheme and thus
the one-to-many and even many-to-many communication postulated for distance
learning environments in order to enlarge scalability [Effelsberg and Geyer, 1998].

In order to enable multicast transmissions for VNC, a shift from TCP based reliable
in order streaming communication towards unreliable packet oriented UDP transmis-
sion is inescapable. Therefore RFB messages must be packed into UDP datagrams
instead of being delivered via streams. In consequence, we must respect the allowed
maximum size of datagrams and regard the impacts of packet loss and out of order
delivery

4.2.3 Size Limitations and Message Dependencies

The size of UDP datagrams is limited. The supported datagram size depends on
system properties and therefore varies between different platforms. Our testings
discovered an apparently “non deterministic” behavior regarding UDP packets larger
than the platform’s maximum size. Some systems dropped such packets as invalid,
others just truncated them without any notification, but all systems supported at
least packets up to 64 kbytes.

Just splitting the original message stream at arbitrary positions, for instance at 64
kbyte borders, to fill UDP packets will fail as soon as one packet is lost or received out
of order, which can occur as UDP is a best effort and not a reliable protocol. Consider
four RFB messages split into six datagrams as shown in Figure 4.5. A recipient that

Fig. 4.5. Splitting messages to datagrams of 64 kbytes

4.2 One-To-Many Communication 65

has parsed datagram no. 1 and then receives no. 3 cannot finish message no. 1.
Assuming that the datagram provides consecutive data of message no. 1, further
parsing will fail in all probability. Numbering the datagrams by adding increasing
sequence numbers allows the detection of packet loss. However, as it is impossible to
determine the beginning of another message due to missing message delimiters, the
recipient is even incapable of parsing message no. 2 although it is completely included
in datagram no. 3. Datagram no. 6 is valid on its own as it exactly contains a single
message. However, if the previous message is lost, it is almost impossible to detect
whether the datagram begins with a message or not. Again the parser assumes the
received data to be part of the unfinished previous message. The splitting of RFB
messages to UDP datagrams will always be doomed whenever a datagram is lost due
to missing message delimiters and size tags. In fact, each datagram must provide
some information about which part of which message it contains. Regarding the
possibility of packet loss it is even better if each datagram contains only complete
messages, which are valid on their own, because this reduces datagram dependencies.

In order to ensure that UDP datagrams contain complete messages, it is necessary to
determine the beginning and the end of each message. Messages of a fixed length, for
instance the KeyEvent, PointerEvent or Bell messages, can be read in total once the
message type is determined be reading the message tag. Detecting message borders
of other than fixed size messages demands these messages to be completely parsed,
because the RFB protocol neither explicitly specifies the length of the following data,
nor does it offer delimiters to separate messages from each other. Unfortunately, this
prevents the handling of complete messages and also skipping of unknown messages,
which would enable a better extensibility of the RFB protocol. In the designed VNC
context, lengths or delimiters are not needed as all messages are read and consumed
in order. However, a proxy that only forwards messages must parse and buffer all
messages to extract them from the incoming stream in order to pack messages into
datagrams.

Packing RFB messages into UDP datagrams demands not only that messages are
distinguished from each other, but also that the length of a message does not exceed
the maximum datagram size, which we have limited to 64 kbytes as supported by all
operating systems we have tested. The five fixed size message types have lengths of
1 to 20 bytes (see Table 4.1) and hence are unproblematic. A SetEncodings message

message type max. size (in bytes)

SetPixelFormat 20
FramebufferUpdateRequest 10
KeyEvent 8
PointerEvent 6
Bell 1
ClientCutText 8 + 232, ≤ 64k if truncated
ServerCutText 8 + 232, ≤ 64k if truncated
SetEncodings 4 + 4 ∗ 216, ≤ 1064 for registered encodings
SetColourMapEntries 6 + 216, rarely used (for many colors)
FramebufferUpdate > 64k

Table 4.1. Maximum lengths of messages

66 4 Scalable VNC

can theoretically be 4 + 4 ∗ number of encodings = 4 + 4 ∗ 216 bytes long. However,
regarding that the specification lists nine registered encoding types and 256 values
for pseudo-encodings, a maximum of 265 values and thus a maximum length of
4 + 4∗265 = 1064 bytes is practically relevant. Generally, a client will set only a few
encodings and maybe some pseudo-encodings, which specify additional parameters
for the encodings. ClientCutText and ServerCutText messages are used to transfer
ISO 8859-1 (Latin-1) encoded ASCII text from a client’s clipboard (or cut buffer) to
that of the server or vice versa. The message length depends on the length of the
text. As the protocol allows the length to be specified by 4 bytes, the theoretical
length of text can be 232 characters and therefore the length of a message can
reach 8 + 232 bytes. However, transferring that many text is not very meaningful
and clipboards will rarely support such sizes. Limiting the length to 64 kbytes allows
65528 characters of text to be transferred, which should be sufficient. Hence, the text
of a Client- or ServerCutText message will be truncated prior to packing them into
an UDP datagram and the field that specifies the length of the following text must be
adjusted accordingly. The SetColourMapEntries message type is rarely used. Most
VNC server implementations do not support this message type at all. The theoretical
maximum length is 6 + 6 ∗ number of colors = 6 + 6 ∗ 216. However, defining that
much colors is not very meaningful. An appropriate pixel format is able to cover (at
least most of) the specified colors as well and should be used instead. Hence, most
of the RFB messages fit into one UDP packet easily. However, framebuffer update
messages may and most probably will exceed the maximum size of a datagram.

4.2.4 Splitting Framebuffer Updates

Framebuffer updates may be too large and will result in truncated messages if packed
into UDP. The size restriction can be resolved by splitting those updates into smaller
ones. In order to avoid dependencies, each of these pieces of the original update
must be a valid RFB message of its own. All updates are built up of one or more
rectangles. If an update message contains multiple rectangles it can be split into
several updates containing only a subset of these rectangles. If a single rectangle is
still too large to fit into an UDP packet as a whole, it must be split into smaller
rectangles. Certainly it is always possible to decode the framebuffer update to raw
pixel data and then (re-)encode smaller rectangles. Besides producing additional
processing tasks, it is not straight forward to gain a suitable subdivision of the
unencoded framebuffer. Rectangles of pixel data must be determined that will fit
into datagrams after being encoded. Choosing very small rectangles will increase the
overhead for message headers. A coarse-grained partitioning may result in messages
that exceed the given maximum size again and therefore must be split again, which
produces further processing loads.

Additionally it must be taken into account, that some framebuffer encodings de-
pend on data earlier sent. So is the case for the ZRLE encoding, which stands
for Zlib Run-Length Encoding and, as the name suggests, applies zlib compression
[Deutsch and Gailly, 1996] to the pixel data. During one connection, all ZRLE en-
coded messages are compressed by use of a single zlib stream, which achieves a better
compression ratio but unfortunately demands all ZRLE encoded data to be encoded

4.2 One-To-Many Communication 67

and decoded strictly in order [Richardson, 2005]. Decompression may require previ-
ously sent data and therefore may fail if any part of the zlib stream is missing, which
may occur due to packet loss. The same is the case for the zlib, tight and zlibhex
encodings. Therefore, encodings that apply zlib compression to data of sequential
messages are unsuitable for unreliable UDP transmission.

Another encoding type that relies on previous data is the CopyRect encoding, which
only specifies a rectangular area of the framebuffer to be copied to another position.
Unlike encodings which are based on zlib streams, the CopyRect encoding will not fail
if previous messages are lost. However, copying other than the expected content may
lead to (even more) incorrect framebuffer content. In contrast, Raw, RRE, CoRRE
and Hextile encoded framebuffer updates do not depend on previous messages or
the current state of the framebuffer and thus are valid on their own.

Instead of decoding, subdividing and re-encoding large framebuffer updates, they
can be split and repacked regarding their encoding scheme. A new message header
must be generated for each part, but the data of the message can be reused by
applying little adaption. The Hextile encoding is a suitable candidate.

4.2.5 Splitting Hextile Encoded Rectangles

Hextile encoded rectangles are subdivided into tiles of 16×16 pixels, which are en-
coded in left-to-right top-to-bottom order (see Section 3.2.5). As many rows of a
height of 16 pixels are gathered as fit into one UDP datagram. Taking complete
rows only ensures the result to be in a rectangular shape. The maximum size of each
tile is limited by the size of a raw encoded tile, which consists of a one byte header
followed by a sequence of pixel values for the 16×16 pixels: 1 + 16 ∗ 16 ∗ bpp (bytes
per pixel). Assuming a color depth of 16 bit this are 513 bytes per tile resulting in
a maximum of 127 tiles per 64 kbytes. This corresponds to a desktop width of 2032
pixels, which should be sufficient for common desktops. Even the width of 1008 pix-
els for 32 bit values should rarely cause problems, as the probability of reaching the
maximum size for all tiles is very low. However, a single row of tiles can be further
partitioned into a lower number of tiles until fitting into one UDP packet.

Hence, Hextile encoded framebuffer updates can be split as follows:

1 buffer rectangle header;

2 set marker on buffer;

3 for each tile {

4 read and buffer tile;

5 if tile exceeds datagram limit {

6 if marker points to beginning of buffer {

7 /* splitting single row */

8 create new framebuffer update message

9 of all buffered tiles omitting last one;

10 } else {

11 /* split after complete row */

12 create new framebuffer update message

68 4 Scalable VNC

13 of all buffered tiles up to marker;

14 }

15 send new message;

16 remove sent tiles from buffer;

17 }

18 if end of tile line is reached {

19 if current line of tiles was split {

20 /* next line will start at different x-position */

21 create new framebuffer update message

22 of all buffered tiles;

23 send new message;

24 remove sent tiles from buffer;

25 }

26 if end of tile line is reached {

27 set marker on buffer;

28 }

29 }

30 }

Appropriate headers for messages and rectangles must be set for the newly created
framebuffer update messages. The message header consists of the message type,
which is the FramebufferUpdate type, and the number of following rectangles, which
is one due to encoding single rectangles only. The rectangle header specifies the
x,y-position as well as the width and the height of the encoded rectangle. Due to
the predetermined tile numbering and ordering (see Figure 3.4), these values can
be easily computed regarding the number of previously sent and the number of
contained tiles. Splitting the rectangle with given coordinates and dimensions to four
parts as shown Figure 4.6, will result in the four rectangles with given positions and

Fig. 4.6. Hextile encoded rectangle to be split

dimensions as displayed by Figure 4.7. The position and width of rectangle no. 1

4.2 One-To-Many Communication 69

are the same as those of the original rectangle, because it contains the first tile and
complete rows of tiles. The third row of tiles is divided into two rectangles. Even
if rectangle no. 3 could contain more tiles without exceeding the maximum size, it
must be split as given, because adding the next tile in the sequence (the first tile of
the next row) would break the mandatory rectangular shape.

Fig. 4.7. Coordinates and dimensions after splitting

Furthermore, some adaption of the first tile of each new partition is needed. That is
because color tags are not specified for each tile. In a sequence of tiles, the foreground
and background color is specified once and valid for all following tiles until reassigned.
If an existing update message is split, it can only be assured that the first of the
newly created update messages, which contain the first part of the original message,
has valid fore- and background colors assigned. Therefore the color values have to be
acquired and added to the first tile of each new rectangle. Color information can be
easily determined and buffered during message parsing. Figure 4.7 displays the color
tags that have been added to the first tile of each rectangle. Rectangle no. 1 does
not need new color tags, because it contains the first tile of the original rectangle.
The first tile of rectangle no. 4 already specifies a foreground color and thus only
the background color must be assigned additionally. Note that the background color
that is specified by the third tile of the third row stays valid for the rest of the
original rectangle and thus for the newly created rectangle no. 3 and no. 4.

4.2.6 Parsing and Buffering

In order to switch from connection-oriented to packet-oriented transmission, indi-
vidual messages must be distinguished. Due to missing delimiters or information

70 4 Scalable VNC

regarding the length of each message, the incoming stream must be parsed and
buffered until the end of a message is detected. Unfortunately, such buffering can
result in delayed transmission. Testing with a Java based VNC proxy showed, that
buffering of large framebuffer updates can take up to two seconds. For view-only
clients such a delay is almost not noticeable, but for the teachers interacting with
the VNC server the response time should be no longer than a few hundred millisec-
onds. However, large messages must be split anyway, as they exceed the maximum
size for datagrams. But splitting can be done without reading a message in total.
Hextile encoded messages can be split after each line of tiles, which are 16 rows
of pixel data. Decoding framebuffer updates of other encoding schemas also pro-
duces pixel data in left-to-right top-to-bottom order. Hence, framebuffer updates
can be split and forwarded partially without parsing and buffering them completely
in advance.

Another solution is to serve the teacher’s client by forwarding the stream received by
the VNC server as displayed in Figure 4.8, which causes almost no additional delay.
Obviously, such forwarding can only be achieved by use of stream-oriented data
transmission. However, connection-oriented TCP communication offers the benefit
of being reliable and serving the teacher’s client by point-to-point communication is
unproblematic, because scaling is not needed as the number of connected teachers
should be rather low.

Fig. 4.8. Supplying teacher clients without parsing and buffering

4.2.7 Format of Datagram Content

Applying the zlib compression to the stream of messages and framebuffer updates,
as is the case for some encodings (e.g. ZRLE and tight), is discouraged, because of
the resulting message dependencies and the potential for failure due to packet loss.

Nevertheless, zlib compression is useful in order to reduce the network load, but must
be applied to each single datagram. Hence, we must use an individual zlib stream
for each datagram instead of using one zlib stream for the entire communication.
As the compression ratio is rather low if applied to short sequences of data, only
large datagrams should be compressed. Hence, each datagram must be labeled if
compressed or not, which can be achieved by setting a flag. Instead of adding an
additional byte, the compression flag can be integrated into the sequence number
and thus will consume a single bit only. Regarding the fact that datagrams, which are

4.2 One-To-Many Communication 71

missing for some time, will rarely reappear and, even if they do, they are probably
outdated anyway, it is sufficient to distinguish a few datagrams only. Therefore, we
suggest limiting the range of sequence numbers to 128 and thus a header of one byte
is sufficient as given in Figure 4.9a. Note that this is the header of the contained
data and does not influence the datagram header at network level.

Fig. 4.9. Datagram with header and size tags

Considering the format of the datagram content, this one byte header is sufficient
regardless of whether each datagram contains a single RFB message or a sequence
of messages. However, we suggest adding a size tag preceding each message, which
specifies the length of the following data as given in Figure 4.9b. This enables faster
message handling at client side because it allows entire messages to be read without
parsing them.

4.2.8 Unreliable Transmission: Packet Loss

The UDP protocol provides best effort transmission. UDP datagrams can be lost
or delivered in the wrong order. Out of order delivery can be detected by adding
a sequence number to each datagram. Whenever a datagram is received without
having received the previous one, a packet loss may have occurred or the missing
datagram may be delivered later. The loss of client to server messages of the type
KeyEvent and PointerEvent are not crucial, but annoying because they affect a
teacher’s interaction with the desktop. The loss of such events result in an unre-
sponsive desktop and actions must be applied again. The clipboard feature is rarely
used and therefore a loss of ClientCutText messages will most probably stay unno-
ticed. Losing a SetEncodings message is also non-critical, because transmission stays
unchanged. In contrast, the loss of a SetPixelFormat message affects the commu-
nication badly because the client expects all subsequent pixel data to be encoded
by the specified pixel format but the server will still use the previous encoding. At
best, the displaying of framebuffer updates is messed up due to applying a wrong
color mapping. If the new format has changed the color depth or specified another
number of bits per pixel, the communication will fail soon after in all probability.
If FramebufferUpdateRequests are lost, the communication will freeze, because the
server will assume that the client is not ready to process messages and therefore will
not send any more updates and the client keeps waiting for updates, which will never
arrive. However, this problem can be solved by resending the request after a certain

72 4 Scalable VNC

period. Nevertheless, client-to-server communication suffers badly from unreliable
datagram delivery. Hence, unreliable delivery of client-to-server messages is not very
practicable. However, when designing a new client implementation regarding the
previously suggested agreement on the pixel format and encodings, the SetPixelFor-
mat and SetEncodings message types can be eliminated. If the proxy generates the
FramebufferUpdateRequests (in an appropriate manner) even the freezing problem
is circumvented, but the lost event messages will still be annoying.

Considering the scenario of a single teacher (or maybe even a few teachers) that
interacts with the desktop and the vast majority of clients (of students) connected in
a view-only fashion, it will have almost no effect on the scalability of our environment,
if the teacher’s client will be connected to the server (or proxy) via the reliable
connection-oriented TCP protocol as is the case in the original VNC design.

In the opposite direction the loss of messages of the types Bell and ServerCut-
Text are unproblematic. Loosing a SetColourMapEntries message will result in a
wrongly colored representation of the framebuffer updates, but unlike lost SetPix-
elFormat messages will not cause a failure while parsing subsequent messages. As
the SetColourMapEntries type is rarely supported and may be disabled at server
side, messages of this type can be eliminated. The last and most important server-
to-client message type is FramebufferUpdate. Losing updates will result in outdated
framebuffers on the client side. The outdated area could be requested again in a non-
incremental fashion (as the server assumes that the client’s data equals its own), but
this demands the loss of an update to be noticed first. Due to the sequence numbers,
the loss of some message is exposed, but not the type of the lost message. Hence,
the client can only assume a framebuffer update to be missing, but without any clue
regarding which area is outdated. As the previously sent request was the request to
incrementally update the complete framebuffer (regarding the workflow of the VNC
architecture as described in Section 3.2.1), the only way to ensure its framebuffer
will be updated is to request a complete non-incremental update, which may be an
overreaction for some lost data of maybe a few bytes only.

In order to compensate for lost datagrams, we rather suggest some kind of redun-
dancy of transmitted pixel data in analogy to video transmissions. The architecture
should ensure the entire framebuffer content to be transmitted redundant within a
certain period. A full non-incremental update would fulfill this requirement, but as
such updates are generally large, redundancy should rather be distributed in time
to reduce bandwidth peaks. This can be achieved by transmitting smaller parts of
the framebuffer, which can be initiated by a proxy that requests certain parts of
the framebuffer to be updated after certain periods. The size of these parts and the
frequency of their transmission determines the time within which all image data can
be received as additional non-incremental updates. For example, partitioning the
framebuffer into 24 disjoint horizontal stripes, each containing 1/24 of the frame-
buffer as displayed by Figure 4.10, and sending single stripes successively every 5
seconds ensures a redundant copy of the framebuffer content to be sent every 2
minutes. This does not ensure that after this delay clients have updated all image
data, because non-incremental updates are also transmitted via UDP and therefore
can be lost as well. But it increases the chance of viewing a completely up-to-date
framebuffer. If the rate of lost packets is very high this method is obviously not

4.2 One-To-Many Communication 73

Fig. 4.10. Stripe partitioning for redundant transmission

practicable, but audio and video transmission will also suffer from packet loss and
therefore will result in very low quality as well. In this case a useful synchronous
lecture transmission is not possible anyway.

Note that a client or proxy, which fullfils the task of a session recorder, should not
be served via unreliable communication, because this may produce asynchronous
electronic lectures of lower quality.

4.2.9 Unreliable Transmission: Out of order Delivery

The UDP protocol is not only unreliable regarding data transfer as datagrams may
be lost without notice. Datagrams may also arrive in the wrong order. The se-
quence numbers, suggested previously, enable the client to detect that datagrams
are missing. However, missing datagrams may be received anytime later. Lost up-
date messages cause outdated framebuffer content at the client side. Messages that
are received too late contain the missing data and hence should be used to update
the content. However, just decoding and copying the included pixel data will not
necessarily result in up-to-date framebuffer content. Consider framebuffer updates
with positions, dimensions and sequence numbers as given in Figure 4.11. The up-
dates no. 1 and no. 5 can be applied later without causing any faults, because they
are distinct from all other rectangles. Even update no. 6 can be applied later, but
copying the pixel data of update no. 2 after applying all other updates, would result
in overwriting update no. 6 and parts of no. 4. Due to the higher sequence numbers,
the content of update no. 4 and no. 6 is more up-to-date and thus must not be
erased. Update no. 4 can be applied after no. 5, but not after no. 6.

74 4 Scalable VNC

Fig. 4.11. Ordering of framebuffer updates

Therefore, we must ensure that framebuffer updates, which are received too late, are
only applied in a way that they will not overwrite (more) up-to-date pixel data. This
can be achieved by re-applying the newer updates after processing the late comer,
but demands complete framebuffer updates or at least the contained rectangles of
pixel values to be buffered by the client.

Another solutions is to copy only those pixels of the out of order delievered update
message, which are not covered by updates with higher sequence numbers. This can
be achieved by computing rectangle intersections to determine the affected areas.
For this approach it is sufficient to buffer rectangle headers only instead of buffering
entire framebuffer updates, because the headers contain the positions and dimensions
of the reactangles. Hence, the second approach causes less memory usage for buffering
and less message decoding, because each message is only applied (maybe partly)
once.

Out of order delivery of datagrams will generally not cause (update) messages to
be received much later than supposed, and if this does occur then the contained
rectangles are probably no longer of interest because later updates may have already
overwritten the area. Hence, we can limit the buffer size to contain a few updates
only, so that the number of intersections to be computed or updates, which possibly
must be re-applied, is manageable. Furthermore, the necessary computations can be
delayed to idle phases in order not to influence the decoding of incoming up-to-date
messages. Especially as the out of order delivered update may no longer be useful if
overwritten by these incoming messages.

4.2.10 Additional Unicast Support

Currently not all networks support UDP multicasting (e.g. the Deutsche Telekom
does not), but this hopefully will change with the spreading of the new version 6 of
the internet protocol (IPv6) [Deering and Hinden, 1998]. Until then, it is advisable

4.2 One-To-Many Communication 75

to supply a limited amount of unicast clients in addition to multicast support. These
clients receive the same data (packed in UDP datagrams) as the multicast clients,
but instead of being part of a multicast group each datagram is sent individually to
each client’s IP address. In order to limit the network traffic produced by sending
each packet several times, the number of clients should be restricted by the server
according to the available bandwidth. Due to the connectionless communication,
there must be a possibility to detect if unicast clients are still interested in receiving
packets. In the case of UDP multicast communication this is done automatically by
the network, but unicast delivery is done without knowledge of the presence of a re-
ceiver or not. Hence, a server may send datagrams via unicast even if the client is no
longer running. Therefore, we demand disconnecting clients to send a short acknowl-
edgement to the server before terminating. A short UDP datagram is sufficient. This
is sufficient unless the acknowledgement is lost or not sent due to abnormal program
termination, system shutdown or network trouble. Thus, it is advisable that each
unicast client periodically sends an acknowledgement — an alive message — that it
is still receiving data. The server administers a list of unicast clients, where clients
are inserted when they connect and removed when a disconnect acknowledgement is
received or alive messages are no longer received. In order not to disconnect clients
due to packet loss, one or two missing alive messages should be tolerated by the
server. Hence, the client must timestamp the received acknowledgements and dis-
connect clients after a timeout of three times the period between acknowledgements.
This procedure guarantees that (most of the time) unicast traffic is produced only
if consumed by a client.

4.2.11 Client Initialization

Regarding the conceptual design of a proxy placed between a VNC server and our
newly designed clients, the proxy acts as VNC client and thus must connect and
initialize according to the RFB protocol. The initialization of clients, which connect
to the proxy, may differ.

The initialization specified by the RFB protocol specification [Richardson, 2005] con-
sists of a client authentication, setting the connection to be shared or not, specifying
the framebuffer resolution and an agreement concerning the pixel format and ap-
plied encodings. Even without requesting authentication and if all clients are shared
by default and predetermined pixel format and encodings are applied, at least the
resolution must be specified unless all teachers are forced to use the same resolution
for all time, which is discouraged as it contradicts our transparent approach. In order
to allow more flexibility it is advisable to keep the specification of pixel format and
encodings during initialization.

During initialization a teacher’s client must be distinguished from the students’
ones in order to provide full access to the desktop or not. Furthermore, multicast
and unicast clients must be distinguished as they are servered in different ways.
Requesting authentication for students’ view-only clients or not depends on whether
the course is open to the public or not.

76 4 Scalable VNC

Thus the initialization process specified by the RFB protocol must be extended by
requesting a certain kind of connection: full-access, view-only multicast or view-only
unicast. The concept of a full-access and a view-only password may be applied. At
least, the teacher’s connection should require a correct authentication. If distinguish-
able passwords are provided for each of the three connection types the explicit request
can be omitted. Furthermore, the initialization may omit the setting of the shared
option (as all connections are forced to be shared anyway). The initialization of pixel
data and encodings can be carried over from the RFB protocol, but later resetting
of these options by a client is abolished. In order to provide meaningful synchronous
electronic lectures, the integration of audio is mandatory. Hence, the initialization
will probably require some information concerning the transmission of audio and
video streams, such as data type, addresses and ports used for transmission.

In order to ensure a reliable initialization, a TCP connection will be used during
handshaking. For the student clients the connection will be closed after all properties
are arranged. Further data transmission, which is unidirectional server to client only,
is handled by scalable UDP communication. Only teacher clients (generally there will
be only one) stay connected via reliable and bidirectional TCP.

Unidirectional Initialization

The initialization between the VNC server and the VNC clients as well as the initial-
ization between our proxy and the new clients is handled via bidirectional commu-
nication as both participants interact with each other. In order to serve clients via
unidirectional transmission, which can be useful for satellite connections not offer-
ing an up-link for clients, a solution to support unidirectional initialization of clients
must be achieved. As the complete handshaking phase consists of a few dozen bytes
only and clients have to accept the server’s properties anyway, initialization messages
can be interspersed into the datagrams delivered to clients. Any client can survey
the incoming messages of a given UDP multicast address until such an initialization
message is received and attend the lecture transmission thenceforth. Obviously, no
client authentication can be established, but messages could be encrypted using a
key only known by authorized clients. The second restriction of unidirectional initial-
ization is the missing possibility of additional unicast support, because this requires
dedicated message forwarding for each client and thus knowledge of the clients exis-
tence. Furthermore, no input events can be sent, i.e. unidirectionally served clients
are always view-only multicast clients.

4.2.12 Framebuffer Initialization and Late Join

In the original VNC set-up, each client places individual requests and, hence, is free
to request a non-incremental update of the complete desktop to initialize its copy
of the framebuffer. That is only practicable as long as only a few clients participate
in a synchronous electronic lecture. As soon as the number of participants increases,
they cannot be supplied with individual initial updates anymore, because this would
possibly cause heavy server load and more network traffic and, thus, less scalability.
This is particularly the case because commonly most students connect during a short

4.2 One-To-Many Communication 77

time slot at the beginning of the transmission. Therefore initial framebuffer requests
should be gathered and answered with a little delay, which is no problem as audio
and video streams have a little start-up delay as well. Moreover, a dedicated request
to achieve an initial framebuffer update is not necessary as it always follows the
initialization. By logging the time of connection, the proxy can periodically check if
some clients have connected recently and sent a non-incremental update request on
demand.

Without any initial framebuffer, newly connected clients will display only the incre-
mental updates the server sends later. Due to the non-incremental update stripes
used to diminish the effect of packet loss, each client should receive a valid frame-
buffer once within a certain period (of two minutes for the example given by Figure
4.10). Obviously, this is the only possible framebuffer initialization for unidirection-
ally initialized clients.

Instead of requesting updates for newly connected clients, the proxy can reuse the
update stripes and in this will reduces the server load. Buffering the messages con-
taining these stripes, allows new clients to be supplied with already encoded messages
instead of requesting a complete framebuffer update. As all clients receive the same
data, we have to take into account that the updates might be outdated. Outdated
updates are better than no updates (for new connections), but must not have any
impact on established clients. Therefore such updates must be marked, e.g. with a
flag, and only be displayed by newly connected clients within a short period after
their initialization. It is advisable to notify the user that the displayed content might
be outdated, because otherwise a student may wonder why the teachers narration is
not related to the displayed content. This can easily be achieved by displaying the
marked updates in grayscales instead of colored.

Note that the period until a client can display an up-to-date framebuffer is not
necessarily the period in which all non-incremental stripes are requested once. Any
modifications of the server’s framebuffer that occur after the client has connected,
will be propagated in the form of framebuffer update messages. Especially, whenever
the teacher switches to another slide, most of the framebuffer will be updated for
all clients. Hence, after joining late, students will be able to view at least the next
slide.

Commonly the term late join addresses the handling of clients that connect to an
already running session. In our scenario, the solutions suggested above will serve any
client in the same way, regardless of whether they connect in time before the lecture
starts or, for instance, 20 minutes later. This is because a certain point in time, which
describes when the lecture starts, is meaningless on the protocol layer. For the RFB
protocol the session begins when the VNC client connects to the VNC server. In
the case of individual TCP connections there cannot be a late joining client. In our
environment, which supplies all clients with the same data, the beginning of a session
is the establishment of the connection between the proxy and the VNC server. Hence,
all clients (that connect to the proxy) join too late and no special late join handling is
needed. However, for synchronous lecture transmission, the proxy can request a non-
incremental framebuffer update at the time the lecture starts, e.g. by a special start
button. This will ensure that all clients that are connected beforehand, but may

78 4 Scalable VNC

not have received an initial update yet, will be supplied with a valid framebuffer
for the beginning of the lecture. Note that starting the proxy exactly at the time
the lecture is supposed to start is discouraged, because students should have the
possibility to connect slightly earlier to be ensured that their connection is properly
working. Otherwise they may panic a little bit.

4.3 Summary

In its original design the VNC framework and the RFB protocol is not as scalable
as required to provide a distance learning scenario with a large number of students,
which is mainly caused by the lack of support for the one-to-many routing scheme.
However, two steps are needed to handle many students simultaneously. At first we
must ensure that all clients can be supplied with exactly the same data, which could
be achieved by reducing the vast, but unneeded, diversity of pixel formats offered by
the RFB protocol and enforcing the use of the same encodings for all clients. This is
possible as long as clients can be assumed to be (almost) equal regarding processing
power and network connections, which is the case in our e-learning environment.
Even slightly outdated computers are more than fast enough to decode and display
RFB framebuffer updates and, since we will combine VNC with audio (and video)
streams, a faster connection than just a dial-up internet connection is required.
Otherwise two or three categories of clients could be introduced and supplied with
different one-to-many transmissions using different color depths (and also different
settings for the audio and video streams if required, or even with video omitted).

The second step to support one-to-many message delivery is the switch from reliable,
stream-oriented TCP to unreliable, packet based UDP data transfer. Although the
RFB protocol lacks message delimiters or length-of-message tags, streams of RFB
messages cannot only be distinguished by parsing and buffering them, but also can
be split-up to fit into single UDP datagrams respecting UDP’s size restriction. For
stable network connections packet loss should rarely occur. However, some methods
to compensate lost datagrams have been suggested. Moreover, client initialization
was discussed including unidirectional initialization of receive-only clients to provide
satellite transmission of synchronous electronic lectures.

The suggested modifications of the VNC architecture should improve VNC regarding
our Criterion C11: Synchronous Electronic Lectures. By switching from point-to-point
towards one-to-many communication, the scalability (Criterion C11b) is extended
tremendously from a few to possibly hundreds of clients. Certainly this will work
only as far as the network supports UDP multicasting. Otherwise clients must be
served via multiple point-to-point connections, which limits scalability by the number
of possible parallel connections not exceeding the bandwidth of the network. Even
if UDP multicasting is supported by the network, it is advisable not to leave behind
students with unsuitable network connections. Hence, the system should support
at least some clients via unicast. Supplying unicast clients is only limited by the
bandwidth. Unlike the original VNC architecture, multiple clients do not influence
the processing load of the server, because no individual transformation and encoding
of pixel data must be processed.

4.3 Summary 79

The benefit of scalability is achieved at the cost of small modifications to the RFB
protocol and a variation regarding data transmission. Hence, Criterion C9d, which
prefers standard formats instead of proprietary ones, is a little loosened. However,
the benefits are much higher and the VNC architecture with its RFB protocol are
not that widespread as, for instance, the use of RealMedia [RealMedia, 2006] or
WindowsMedia [Windows Media, 2006] formats .

Further aspects of providing synchronous electronic lectures, namely late join (C11c)
and error tolerance (C11d) have been discused and (partially) solved. Criterion C11e:
Synchronization regarding real-time delivery is given by the VNC concept per se and
the delay caused by placing a proxy within the communication line is negligible.
Synchronization regarding multi user inputs is given by supporting parallel teacher
clients, but could be extended further, for instance to support collaborative sessions
for students. As teacher clients are supported via reliable, but unscalable, TCP
connections, this may be a restriction of C11b: Scalability. However, it is hard to
think of a scenerio of a meaningful and productive collaboration of several hundred
clients actively interacting with a single desktop. Nevertheless, it may be useful
to allow single students to interact with the desktop, which can be achieved be
forwarding the client’s Key- and PointerEvent messages to the VNC server. The
proxy can filter the events of unauthorized clients. In order to avoid packet loss,
a reliable TCP connection can be established between the authorized clients and
the proxy. Some mechanism of hand-raising and dynamic authorization should be
provided during the lecture.

Implicitly, we have already considered Criterion C11a: Addressed Participants, which
are one (or maybe a few) teacher(s) and a large number of view-only students. This
scenario fits to our lecturing concept. However, extending to environment in order to
support other setups such as connecting lecture halls or collaborative sessions would
be useful. In fact, we already have connected two lecture halls by use of a bidirectional
communication channel as described in Section 2.1.2 (page 9). This was achieved by
integrating additional audio and video streams but only on desktop stream. In order
to support Computer Supported Cooperative Work (CSCW) [Li and Hopper, 1998a]
and [Li et al., 1999a] suggest a proxy that provides floor control and user awareness.

To summarize, we have extended the scalability of the VNC architecture and thus
strengthened VNC’s suitability as a basis for an e-learning environment.

5

VNC Session Recording

One aim of this thesis is to provide a flexible and valuable environment to create
asynchronous electronic lectures by recording computer-based live presentations. The
Virtual Network Computing (VNC) architecture [Richardson et al., 1998] and the
Remote Framebuffer (RFB) protocol [Richardson, 2005] provide access to a desktop,
but are not specifically designed for the purpose of recording.

However, as the RFB protocol works on pixel basis, it can be used to serve a screen
recording process. The screen recording technology consists of two stages: grabbing
and encoding. Grabbing pixel data is solved by the VNC architecture by providing
a framebuffer of pixel data, which can be used as the input for further encoding
and storing (Figure 5.1). Due to using the framebuffer as the interface between the
grabbing and the encoding process, both phases are independent of each other. Nev-
ertheless, the incoming stream of RFB messages delivers beneficial meta data for
the encoding process, because it specifies which areas of the framebuffer are up-
dated and when. Such triggered processing probably achieves a better encoding and
compression ratio than grabbing and encoding at a fixed frame rate (as commonly
is the case for screen recording).

Fig. 5.1. Framebuffer as interface between grabbing and encoding processes

As the encoding phase is independent of the grabbing phase, any kind of encoding
can be applied. However, common encodings designed to compress motion pictures
are lossy (contradicting our Criterion C9a: Lossless Reproduction) and not suitable
for screen content [Lauer and Ottmann, 2002]. The TechSmith Screen Capture Codec
[TSCC, 2006] is especially designed for lossless compression of screen captured data,
but is available for a single platform only and thus not platform independent as
required by Criterion C10: Platform Independency. As the encodings specified by the
RFB Protocol Specification [Richardson, 2005] are especially designed to compress
screen content, it is natural to apply them not only for transmission but also for

82 5 VNC Session Recording

recording purposes. Moreover, it is not necessary to encode the framebuffer of the
client in order to record the pixel content. In fact, the framebuffer update messages
received by the VNC server already contain encoded pixel data and therefore the
decoding and re-encoding can be avoided.

5.1 File Formats

The concept of VNC Session Recording was introduced by [Li and Hopper, 1998a]
and oftentimes reapplied throughout their later work [Li and Hopper, 1998b,
Li et al., 1999b, Li et al., 1999a, Li et al., 2000a, Li et al., 2000b]. Session recording
is achieved by seamlessly placing a proxy between the VNC server and the client com-
ponent, analogous to the synchronous scenarios described in the previous chapter. In
fact, the proxy, which merges clients’ events and forwards framebuffer updates, can
also handle the session recording. The recording proxy writes all framebuffer update
messages with an additional timestamp to a log file (Figure 5.2). The timestamp
specifies the delay since the beginning of the session.

Fig. 5.2. Logging messages with timestamps

Logging the stream received by the VNC server can be achieved by storing byte after
byte without any knowledge of the contained data. In contrast, adding a timestamp
to each message demands that messages are distinguished from each other. As the
RFB protocol does not specify message delimiters or provide the lengths of messages,
the proxy must parse and partly1 decode messages.

Replaying or reviewing2 is achieved by reading, decoding and displaying the logged
sequence of messages in the same way as is the case during synchronous playback,
except that the input is read from a file instead of being received via network. The
messages are sequentially replayed at the same rate as when they were recorded.

The architecture design described in [Li and Hopper, 1998b] consists of a Review
Server, which supplies a distant Reviewer with messages (analogous to the clien-
t/server design of VNC). The task of the Review Server is to read messages from
a log file and send them according to their timestamps. Li and Hopper measured
the duration of replaying recorded sessions in fast forward mode, which means pro-
cessing and displaying as fast as possible, ignoring timestamps. This demonstrates
the fast forward mode to be no better than four times faster compared to ordinary
playback, which would be over 20 minutes for a 90 minute lecture. One reason for
the bad performance of their architecture probably is the format of their log file,
which neither provides message delimiters nor sizes, as is the case for the original
RFB protocol. The Review Server does not need to access any message content, but

1 sequences of pixel data can be skipped without decoding if the length is known
2 following the naming of VNC clients, which are often called VNC Viewer

5.1 File Formats 83

must parse each message in order to access the subsequent timestamp. The distant
reviewer must parse the message once more in order to display the recorded session.

Hence, we suggest extending the format by adding an additional tag before each
message that specifies the size of the following data in bytes (Figure 5.3). The size
can easily be determined during recording by buffering each message before writing
it to the log file, which we already stated as mandatory to archive scalability via
UDP multicast (Section 4.2.3). The size tags enable better message handling during
replay. Messages can be read in total without parsing and thus processed faster.
Size tags allow messages to be skipped on demand, which can be beneficial for fast
forwarding or random access. Additionally, this provides a better extensibility in
future by enabling skipping of unknown message types.

Fig. 5.3. Logging messages with timestamps and size tags

Instead of logging the size of each message, [Li and Hopper, 1998b] suggest extending
the format of the log files by adding file pointers referencing the previous message
(see Figure 5.4). However, as this format still demands files to be read sequentially
and the file pointers can be easily achieved by caching the positions while reading
(and parsing) the log file, the benefit of storing the file pointers within the log file is
rather limited. In order to improve performance, some or all messages may be kept
in memory anyway.

Fig. 5.4. Logging messages with timestamps and back references

5.1.1 Delta Pixel Values

VNC’s framebuffer updates contain absolute pixel values, which are sufficient for
sequential replay but insufficient for rewinding. Old pixel values of the framebuffer
are replaced by new ones and cannot be recovered unless tracing back to the nearest
past update that contains the relevant pixels. Therefore, [Li and Hopper, 1998b]
suggest storing (relative) delta pixel values instead of absolute ones. The conversion
is done during recording by applying the XOR (Exclusive OR) operator to the pixels
of the framebuffer updates and the corresponding pixels of the previous framebuffer
(Figure 5.5).

Storing delta values allows the Reviewer application to process earlier recorded ses-
sions in both directions. This is very useful as the user can rewind the session a little
bit whenever she/he did not grasp something immediately and thus wants to replay

84 5 VNC Session Recording

Fig. 5.5. Logging delta framebuffer updates

that part of the session once more. Skimming through a recorded session by visible
scrolling (Criterion C7c: Visible Scrolling) also demands fast processing of recorded
content in both directions. Storing delta pixel values enables sequential playback in
either direction, but still does not support random access as is requested by Criterion
C7b: Random Access.

Unfortunately, this operation may require decoding and re-encoding of pixel data
as shown in Figure 5.5 and moreover, the usage of two framebuffers, one for the
current pixel values and one for those of the newly received framebuffer update. As
[Li and Hopper, 1998b] make use of Raw encoded and thus uncompressed frame-
buffer updates, the XOR operator can be applied byte after byte. However, we
discourage the usage of Raw encoded values due to resulting in large file sizes and
high bandwidth consumption.

Rewinding absolute pixels demands to process at least all framebuffer updates that
have any contribution to the framebuffer state at the demanded playback point. In
the worst case, this requires parsing of all previous messages if the file format does
not provide access to message headers, as is the case for the formats in Figure 5.2
and 5.4, and to rectangle headers, as is the case for all formats discussed so far.

5.1.2 Recording Distinct Rectangles

Handling messages becomes easier due to storing the length of each message within
the log file, which prevents many parsing processes. However often update messages
do not need to be accessed as a whole, but rather the rectangles they contain must
be accessed. Sometimes it is even sufficient to access rectangle headers. Recall the
idea of rewinding or the computing of rectangle intersections to re-apply messages
if delivered in the wrong order (Section 4.2.9). Unfortunately, accessing rectangles
requires message parsing, because each framebuffer update may contain a sequence
of rectangles without delimiters or knowledge of a rectangle’s length. Therefore,
each rectangle may be preceded by a size tag as given in Figure 5.6 analogous to the
extended message logging (Figure 5.3).

Fig. 5.6. Logging messages with size tags for rectangles

5.1 File Formats 85

Instead of adding a tag before each rectangle, each framebuffer update that contains
a sequence of rectangles can be transformed to a sequence of framebuffer update
messages, all of which contain a single rectangle only (Figure 5.7).

Fig. 5.7. Transforming sequences of rectangles to a sequence of messages

After the transformation, the previously suggested format of logging lengths of mes-
sages is sufficient to access rectangles individually without message or rectangle
parsing3 (Figure 5.8).

Fig. 5.8. Storing updates with single rectangles

If logging no other messages than framebuffer update messages and ensuring that
update messages contain single rectangles only, the message headers can be omitted,
because they will always consist of the same four bytes, which is the type byte
(always 0 = FramebufferUpdate), a padding byte (of irrelevant content) and two
bytes for the number of rectangles (in this case always one). Hence, the recorder
stores timestamped rectangles rather than messages as given in Figure 5.9.

Fig. 5.9. Storing rectangles (omitting message headers)

Preserving only rectangles is sufficient in order to replay a VNC session. As the aim
of this thesis is to provide more features than sequential replay, we should regard
some kind of extensibility of the format to enable integration of additional data,
for instance annotations. This could be done by withdrawing the idea of storing
rectangles and keep storing framebuffer update messages that contain single rectan-
gles. However, as framebuffer updates will constitute the most part of the session,
we suggest another solution. The rectangle headers contain a field for the encoding
type of the following pixel data. By ensuring that additionally introduced message
types will not collide with the potentially occurring encoding types, we can reuse
the encoding type field for the purpose of marking other data as well. Thus, the
rectangle’s encoding type field becomes our message type field.

3 except for the fixed sized message header

86 5 VNC Session Recording

Recall the format of the rectangle headers as given in Figure 3.3. The RFB protocol
specifies the encoding type to be after the values, which set the rectangle position
and dimension. However, these fields are possibly meaningless for most other message
types. Even some of the RFB protocol’s own pseudo-encodings (e.g. DesktopSize)
do not require (all of) the dimension and size fields, but must contain them due to
the defined ordering. In order to circumvent this problem, we suggest adapting the
header by moving the type field to the beginning (in combination with removing the
original message header) as given in Figure 5.10. The other parameters must only
be included if required by the given encoding type (which is also our message type
now).

Fig. 5.10. Storing rectangles (omitting message headers)

Note that in the first public release of the RFB protocol, which was Version 3.3, all
defined encoding types required all parameters of the rectangle header and there-
fore any arbitrary ordering was equally meaningful. The above mentioned pseudo-
encodings were introduced later.

5.1.3 Event Logging

Besides logging framebuffer update messages, [Li et al., 1999a] also log user events,
such as KeyEvent, PointerEvent and ClientCutText messages. These events are not
needed for replaying a session, but may deliver meta data for indexing and retrieval
purposes. Li et al. suggest the use of two log files, one for the updates and one for the
events. Framebuffer updates are logged with timestamps and back references in the
form of file pointers as given in Figure 5.4. The second log file records user events,
but also stores the timestamps of the update messages, which allows user events to
by synchronized with framebuffer updates later (Figure 5.11).

Logging client-to-server and server-to-client in the same file will fail because the
values that represent certain message types are not distinct (see Section 3.2.2). The
value 0 corresponds either to the server’s FramebufferUpdate type or to the client’s
SetPixelFormat type. However, logging only the types KeyEvent, PointerEvent and
ClientCutText as user events, will not collide with any server message type.

Note that logging KeyEvent messages will preserve any keystroke of the teacher and
hence the log will contain any password entered during a session although it was not
visible on screen. For security reasons, we discourage logging of key events.

5.1 File Formats 87

Fig. 5.11. Synchronization of logged user events and framebuffer updates

5.1.4 Log File Header

Framebuffer update messages can only by parsed if the number of bytes used per pixel
value is known, because reading, for example, 10 pixel values from a RFB stream or
log file means reading 10, 20 or 40 bytes for data sizes of 8, 16 or 32 bit, respectively.
Decoding of framebuffer updates requires a framebuffer to be initialized to the same
size as the server’s framebuffer, and translating pixel values to color values demands
knowledge of the applied pixel format.

The original (synchronous) VNC client is provided with this data during initializa-
tion. This is also the case for the environment of [Li and Hopper, 1998b], where a
Review Client connects to a Review Server, which supplies the client with messages
read from a log file. As Li and Hopper’s log file format does not enable the reading
of complete messages due to missing size tags, the Review Server must also parse
message after message and therefore must, at least, know the number of bytes per
pixel. Even if the log file provides the suggested size tags, the Review Server must
know the parameters in order to initialize the client. If distributing recorded VNC
sessions via download or storage media (e.g. CD and DVD), the (asynchronous) re-
view application must also be provided with those parameters. Hence, for each log
file we must store some initialization parameters, either as a separate file or, as we
prefer in order to reduce the number of files, as the header of the log file. Note that
the size tags are still useful, because they enable messages to be read and forwarded
without being parsed.

Recall the initial handshaking as specified by the RFB protocol [Richardson, 2005].
The communication starts with agreeing on a protocol version. Such an agreement
is not needed to replay a log file, but the protocol version or a file format version
is meaningful to distinguish different file formats (considering future extensibility).
The authentication of the RFB protocol can be omitted unless the file should be
encrypted to be readable for authorized students only. The server initialization pro-
vides the parameters of the framebuffer (resultion, pixel format and color depth),
which are required to decode framebuffer updates. Furthermore, the server initial-
ization delivers a name for the session, which commonly is the name of the server,
but in our e-learning scenario, storing the name of the teacher and the title course
is more suitable (if available).

In close relation to the initial handshaking phase of the RFB protocol, we suggest
a log file header (Figure 5.12) that contains the protocol/file version as well as the

88 5 VNC Session Recording

server initialization, including the framebuffer’s resolution, the applied pixel format
and the name string, as specified by the RFB protocol. As the server’s pixel format
may be overruled by SetPixelFormat messages of the (synchronous) client, either
these messages must also be logged so that the (asynchronous) replay client can
adjust message decoding correspondingly whenever required, or we must ensure that
the specified format stays valid for the entire log file. Regarding the common VNC
workflow (Section 3.2.1) and our intention to supply several synchronous clients with
identical messages (Chapter 4), we can assume that the session recorder (e.g. a VNC
proxy) will set an appropriate pixel format immediately after the initial handshaking,
which will not be changed afterwards. In consequence, the session recorder will not
write a log file header that contains the pixel format it initially received from the
VNC server, but a header with the currently valid pixel format.

Fig. 5.12. Log file with header

Note that the other approach of logging SetPixelFormat messages will fail unless
the client to server messages are distinguished from the server to client messages,
because the original RFB protocol defines “0” to be the message type value for
both the FramebufferUpdate and the SetPixelFormat message type. Furthermore,
note that for the purpose of replaying log files, it is meaningless to specify a set of
encodings, because the logged framebuffer updates are already encoded.

For a detailed TTT file format specification refer to Section 9.7 (page 210).

5.2 File Sizes

In order to distribute asynchronous electronic lectures via download or storage me-
dia such as CD or DVD, the file size is rather important. [Li and Hopper, 1998b]
have compared the sizes of their log files with the sizes of equivalent MPEG video
recordings of the desktop and state that even uncompressed (Raw encoded) VNC
sessions are 8% to 85% smaller than the corresponding MPEG video. However, due
to the demand-driven design of the RFB protocol, the rate in which framebuffer
updates occur varies depending on the network connections between the server,
proxy and client components. A higher bandwidth provides a smoother display of
the remote desktop but also causes larger file sizes. The size of the MPEG video
will probably stay the same (or just increase slightly) due to its fixed frame rate.
As [Li and Hopper, 1998b] results were acquired in 1998, repeating the experiments
today will propably expose larger VNC session recordings due to improved network
bandwidth and computing power.

5.2 File Sizes 89

On the other hand, the Raw encoding they applied during their experiments is very
inefficient as it provides no compression of pixel data. But if the size of uncompressed
recordings already falls below that of MPEG videos, compressed VNC sessions will
perform much better. [Li et al., 1999a] also compare the sizes of uncompressed (Raw
encoded) and compressed session recordings. Their results reveal that other encod-
ings reduce the file sizes by 40% to 92%. Note that [Li et al., 1999a] do not mention
which of the RFB encodings were applied but typically Hextile is preferred as it was
the best performing encoding that was specified by the RFB protocol in 1998.

The number and the sizes of framebuffer updates (and thus the file sizes) highly
depend on the tasks performed during a session. Recording a static desktop without
any user interaction will produce only one or a few framebuffer update messages,
which supply the client with an initial copy of the framebuffer’s content. Showing a
movie scaled to fullscreen mode will rather produce a tremendous amount of mes-
sages. Commonly, “most of the time [...] only a small area of the screen is affected”
[Li et al., 1999a] and hence, the encodings will achieve suitable compression ratios.
The experiments described in [Li and Hopper, 1998b] reveal consumptions of 0.59
to 2.78 Mbytes per minute for a framebuffer with a resolution of 796 × 576 pixel
and Raw encoded updates (color depth is not stated). Regarding the better com-
pression ratios of other encodings this would result in approximately 0.04 to 1.67
Mbytes4 per minute. However, we experienced that rarely more than 0.3 Mbyte/min
will be consumed if recording real live lectures at a resolution of 1024× 768 pixel, 8
bit color depth and applying Hextile encoding. Commonly 120–200 kbytes/min are
achieved, which results in approximately 10–15 Mbyte for a typical lecture of 80–90
min. These values were acquired by analyzing several dozen recorded live lectures
from the courses “Informatik I ” (Seidl, 2001/02), “Technische Grundlagen des Elek-
tronischen Publizierens im WWW ” (Meinel, 2001/02; only about 80 kbyte/min),
“Abstract Machines” (Seidl, 2002) and “Medienwissenschaft I ” (Bucher, 2002). All
these courses were recorded during 2001 and 2002 at the Universität Trier with the
first prototype of the TeleTeachingTool, which stored timestamped RFB messages
with size tags. Table 5.1 lists the file sizes and the average per minute consumption
for one course (not regarding the sizes of additional audio and video streams). The
other results are available in Appendix A.1.

5.2.1 File Compression

The sizes of the recordings can be further reduced by approximately half by applying
file compression before distributing the recorded sessions. The 10–20 Mbyte file of a
single lecture of about 80–90 minutes typically can be compressed to 3 to 8 Mbyte
(only regarding the desktop recording and omitting audio and video files). Hence,
it is advisable to apply some kind of compression to the file in order to reduce file
sizes (regarding Criterion C9e: File Size and Bandwith). Instead of compressing the
log file for distribution only, we rather suggest a compressed file format, i.e. applying
zlib deflate compression to the body of the file (i.e. the messages as shown Figure
5.12). A compressed file format will permanently reduce file sizes, but downloading
compressed files requires that the recordings are extracted (to their original size)

4 improvements of 40–92%: min. 0.59 ∗ 0.08 = 0.0472 to max. 2.78 ∗ 0.6 = 1.668

90 5 VNC Session Recording

Course: “Abstract Machines” (Seidl/Wilhelm, 2002):

name duration size density

abstrakt_2002_04_16_tr.vnc 92 min 9.3 Mbytes 103 kbytes/min

abstrakt_2002_04_23_tr.vnc 85 min 10.0 Mbytes 121 kbytes/min

abstrakt_2002_04_30_tr.vnc 91 min 11.5 Mbytes 130 kbytes/min

abstrakt_2002_05_07_tr.vnc 97 min 13.9 Mbytes 147 kbytes/min

abstrakt_2002_05_14_sb.vnc 65 min 12.4 Mbytes 195 kbytes/min

abstrakt_2002_05_28_sb.vnc 71 min 33.5 Mbytes 483 kbytes/min

abstrakt_2002_06_04_sb.vnc 47 min 21.3 Mbytes 465 kbytes/min

abstrakt_2002_06_11_tr.vnc 86 min 11.3 Mbytes 134 kbytes/min

abstrakt_2002_06_18_tr.vnc 86 min 12.1 Mbytes 144 kbytes/min

abstrakt_2002_06_25_tr.vnc 84 min 10.3 Mbytes 125 kbytes/min

abstrakt_2002_07_02_tr.vnc 90 min 10.3 Mbytes 118 kbytes/min

abstrakt_2002_07_09_tr.vnc 17 min 3.4 Mbytes 207 kbytes/min

average: 197 kbytes/min

Table 5.1. Files sizes of recorded VNC sessions (8 bit)

before replaying them. If file compression should be optional, the header must be
extended with a flag that indicates whether the body of the file is compressed or not.
Note that such compression can also be used to encrypt a file so that it is readable
for authorized students only.

Since winter 2002/03 the TeleTeachingTool applies zlib deflate compression to the
body of the recordings. Furthermore, VNC sessions are recorded at 16 bit per pixel
(instead of 8 bit/pixel) to provide better quality due to more detailed coloring. The
resulting files typically achieve rates of 20–60 kbytes per minute for slide presen-
tations that are sometimes enriched with dynamic content such as animations or
programming examples (as shown in Figure 5.13). This is about a quarter of the un-
compressed 8 bit recordings. Table 5.2 shows the files sizes of the course “Abstrakte
Maschinen” of Prof. Dr. Helmut Seidl, recorded during summer 2003. The values of
further courses are listed in Appendix A.2.

Fig. 5.13. Presented slides (left) and simulations (right)5

Besides the file sizes in bytes, we have also measured the numbers of updated pixels,
which are listed as average per minute pixel density and potentially reveal the degree
of the dynamics of a recording. However, this is a rather vague measure as a high
pixel density possibly refers to many slides and/or much dynamic content such as
animations but also may be caused by movements of the mouse pointer or annota-

5 Presented in lecture 2004/05/19 of “Abstrakte Maschinen” (Seidl, 2004)

5.2 File Sizes 91

Course: “Abstrakte Maschinen” (Seidl, 2003):

name duration size density pixel density

abstrakt_2003_04_29.ttt 91 min 2.3 Mbytes 26 kbytes/min 1255 kpixel/min

abstrakt_2003_05_06.ttt 105 min 2.8 Mbytes 28 kbytes/min 2069 kpixel/min

abstrakt_2003_05_13.ttt 77 min 1.7 Mbytes 23 kbytes/min 1173 kpixel/min

abstrakt_2003_05_20.ttt 95 min 2.3 Mbytes 25 kbytes/min 1407 kpixel/min

abstrakt_2003_05_27.ttt 88 min 2.3 Mbytes 27 kbytes/min 1826 kpixel/min

abstrakt_2003_06_03.ttt 91 min 2.3 Mbytes 27 kbytes/min 2087 kpixel/min

abstrakt_2003_06_17.ttt 92 min 2.9 Mbytes 32 kbytes/min 2743 kpixel/min

abstrakt_2003_06_24.ttt 65 min 2.8 Mbytes 44 kbytes/min 2846 kpixel/min

abstrakt_2003_06_25.ttt 92 min 5.9 Mbytes 65 kbytes/min 7028 kpixel/min

abstrakt_2003_07_08.ttt 91 min 2.5 Mbytes 28 kbytes/min 1785 kpixel/min

abstrakt_2003_07_15.ttt 89 min 2.6 Mbytes 30 kbytes/min 1096 kpixel/min

abstrakt_2003_07_16.ttt 61 min 1.9 Mbytes 31 kbytes/min 1061 kpixel/min

abstrakt_2003_07_29.ttt 81 min 2.8 Mbytes 35 kbytes/min 2211 kpixel/min

average: 32 kbytes/min 2199 kpixel/min

Table 5.2. Files sizes of recorded VNC sessions (16 bit) with additional file compression

tions made within the presentation software, which are recorded pixel-based (unless
handled separately by the RFB protocol’s cursor encodings or are symbolically repre-
sented). However, the amount of updated pixels in relation to the file sizes reveal the
achieved (inverse) compression ratios, i.e. the reduction in data quantity, defined as:

compression ratio =
size original− size compressed

size original

Note that the pixel density was not measured for the uncompressed (older) recordings
because of the different file format, which does not enable direct access to rectangle
headers. The pixel density would probably be similar to the listed values of the same
course given and recorded in one of the following years.

The average (inverse) compression ratio of the course “Abstrakte Maschinen” (2003)
is 99.3%6. Other courses by Prof. Seidl achieve compression ratios of about 98–
99%. The same is the case for the course “Programmiersprachen” by Dr. Alexandru
Berlea (recorded in winter 2005/06). Such high compression ratios can be achieved
for lectures that present mainly text, sketches, tables or graphs but (almost) no high
colored images. Lower compression ratios must be assumed for presentations with a
high pixel variety, i.e. many different pixel values instead of solid coloring.

During the media science courses of Prof. Dr. Hans-Jürgen Bucher (Universität
Trier) many slides with high colored images and scanned newspaper articles (e.g.
Figure 5.14) were presented. The resulting files are about three to five times larger
(about 150–250 kbyte/min) than those of Prof. Seidl although the pixel density
is lower; about 800 kpixel/min compared to 1000–2000 kpixel/min (Table 5.3 and
Appendix A.2). For such presentation content the pixel variety is much higher which

6 2199 kpixel/min at 16 bit and 32 kbyte/min:
2199k ∗ 2byte− 32kbyte

2199k ∗ 2byte
= 0.9927

92 5 VNC Session Recording

results in less efficient compression. The analyzed sessions of Prof. Bucher achieve
compression ratios of about 85–90% (compared to 98–99%). Considering the 16
bit color depth (instead of 8 bit), this is still approximately half the size of the
uncompressed recordings.

Fig. 5.14. Slides with high pixel variety7

Course: “Medienwissenschaft II ” (Bucher, 2002/03):

name duration size density pixel density

--

medien2_2002_11_05.ttt 65 min 10.8 Mbytes 170 kbytes/min 713 kpixel/min

medien2_2002_11_26.ttt 70 min 12.5 Mbytes 183 kbytes/min 1036 kpixel/min

medien2_2002_12_03.ttt 93 min 22.2 Mbytes 244 kbytes/min 854 kpixel/min

medien2_2002_12_17.ttt 90 min 19.5 Mbytes 222 kbytes/min 936 kpixel/min

medien2_2003_01_07.ttt 92 min 30.8 Mbytes 343 kbytes/min 1006 kpixel/min

medien2_2003_01_14.ttt 94 min 25.2 Mbytes 274 kbytes/min 815 kpixel/min

medien2_2003_01_21.ttt 98 min 21.8 Mbytes 227 kbytes/min 560 kpixel/min

medien2_2003_01_28.ttt 93 min 17.8 Mbytes 197 kbytes/min 862 kpixel/min

medien2_2003_02_11.ttt 92 min 3.5 Mbytes 39 kbytes/min 638 kpixel/min

medien2_2003_02_18.ttt 82 min 11.3 Mbytes 141 kbytes/min 764 kpixel/min

--

average: 204 kbytes/min 818 kpixel/min

Table 5.3. Files sizes of recorded VNC sessions (16 bit) with high pixel variety

5.2.2 Sizes of Recordings Without Keyframes

Besides the framebuffer updates of the VNC session, all of the analyzed recordings
include additional updates as parted keyframes (at a period of two minutes as de-
scribed in Section 5.3.3). In order to test a new TTT implementation, which was
created to improve performance, we recorded two courses during summer 2006 with-
out these additional updates. Hence, the resulting recording comprises exactly of the
messages caused by the original VNC workflow (Section 3.2.1) (plus a small portion
filled by the TTT related header and annotation messages). Omitting the keyframes
reduced the pixel density to 300–800 kpixel/min, which is about a third of the size
of comparable lectures with keyframes (Table 5.4 and Appendix A.3).

Regarding the byte consumption and thus the file sizes, an average density of 10–
50 kbytes per minute is reached. This results in file sizes of 1–4 Mbyte for typical
lectures, which is a very good result, especially considering that such sizes are not

7 Presented in lecture 2003/01/07 of “Medienwissenschaft II ” (Bucher, 2002/03)

5.2 File Sizes 93

uncommon as the size of the presented source documents (e.g. pdf or PowerPoint
slide presentations). As these sessions were recorded at a color depth of 24 bit using
32 bit per pixel, the file sizes could even be lowered if storing 16 bit (or 8 bit) VNC
sessions instead.

Course: “Compilerbau” (Seidl, 2006):

name duration size density pixel density

compiler_2006_04_26.ttt 89 min 0.6 Mbytes 7 kbytes/min 224 kpixel/min

compiler_2006_05_03.ttt 87 min 2.5 Mbytes 29 kbytes/min 1021 kpixel/min

compiler_2006_05_08.ttt 88 min 2.3 Mbytes 27 kbytes/min 492 kpixel/min

compiler_2006_05_15.ttt 88 min 1.3 Mbytes 15 kbytes/min 451 kpixel/min

compiler_2006_05_17.ttt 86 min 2.4 Mbytes 29 kbytes/min 547 kpixel/min

compiler_2006_05_22.ttt 89 min 4.0 Mbytes 46 kbytes/min 685 kpixel/min

compiler_2006_05_24.ttt 90 min 4.1 Mbytes 47 kbytes/min 786 kpixel/min

compiler_2006_05_29.ttt 85 min 14.9 Mbytes 180 kbytes/min 2392 kpixel/min

compiler_2006_05_31.ttt 88 min 2.2 Mbytes 26 kbytes/min 506 kpixel/min

compiler_2006_06_07.ttt 69 min 1.9 Mbytes 28 kbytes/min 499 kpixel/min

compiler_2006_06_12.ttt 85 min 2.4 Mbytes 29 kbytes/min 427 kpixel/min

compiler_2006_06_14.ttt 80 min 1.2 Mbytes 15 kbytes/min 393 kpixel/min

compiler_2006_06_19.ttt 89 min 1.8 Mbytes 21 kbytes/min 493 kpixel/min

compiler_2006_06_21.ttt 87 min 1.6 Mbytes 19 kbytes/min 445 kpixel/min

compiler_2006_06_26.ttt 74 min 3.6 Mbytes 50 kbytes/min 751 kpixel/min

compiler_2006_06_28.ttt 89 min 4.9 Mbytes 56 kbytes/min 917 kpixel/min

compiler_2006_07_03.ttt 87 min 4.1 Mbytes 48 kbytes/min 837 kpixel/min

compiler_2006_07_05.ttt 78 min 1.1 Mbytes 15 kbytes/min 370 kpixel/min

compiler_2006_07_10.ttt 88 min 3.4 Mbytes 39 kbytes/min 567 kpixel/min

compiler_2006_07_12.ttt 89 min 1.0 Mbytes 12 kbytes/min 306 kpixel/min

compiler_2006_07_17.ttt 86 min 1.0 Mbytes 12 kbytes/min 282 kpixel/min

compiler_2006_07_19.ttt 89 min 1.6 Mbytes 18 kbytes/min 404 kpixel/min

compiler_2006_07_24.ttt 82 min 2.5 Mbytes 31 kbytes/min 546 kpixel/min

compiler_2006_07_26.ttt 55 min 1.7 Mbytes 33 kbytes/min 667 kpixel/min

average: 34 kbytes/min 625 kpixel/min

Table 5.4. Files sizes of recorded VNC sessions (32 bit) without keyframes

5.2.3 Summary

In summary, we can state that by means of VNC session recording, approximately
80–90 minutes of real live lectures, which typically consist of slide presentations and
some additional dynamic content, can be preserved by file sizes of no more than 5
Mbyte. If storing content with a high pixel variety, larger file sizes of about 10–15
and rarely up to 30 Mbytes are produced. This is achieved by VNC’s on demand
updating approach and using the Hextile encoding (or other encodings) as specified
by the RFB protocol in combination with applying file compression (zlib deflate) to
the body of the recorded session. The achieved compression ratios for the recorded

94 5 VNC Session Recording

pixel data exceed 80% if presenting content with a high pixel variety and reach
95–99% for other lectures that typically consist of text, sketches and graphs.

Note that these values regard the desktop recording only. At least an audio stream
(for the teacher’s verbal narration) and maybe a video stream (for a live video of
the teacher) must be added. However, this is also the case for the symbolic recorders
and, in fact, for any other recording environment. The integration of audio and video
streams into the TeleTeachingTool is addressed in Section 9.6.

5.3 Random Access and Keyframes

Random access is the basis for most navigational features. In order to achieve random
access, the state of the framebuffer must be computable for any point in time within
the duration of the recorded session, preferably in real time fashion. If random access
is not supported, a session must be replayed in total (which is very unpleasant for
longer sessions) or only certain chunks are accessible. Consider an asynchronous
electronic lecture, which enables access to the beginning of each slide. Accessing a
slide triggers the playback of a corresponding audio stream, but this stream is always
played from the start and students cannot skip parts of the verbal narration. Note
that Random access is meant in terms of time, not file. However, if replaying a log
file without copying all or most of the data into memory, random access within the
log file must also be supported.

Neither storing absolute nor delta pixel values provide random access per se. In fact,
the RFB protocol is hardly designed for that purpose. It rather provides sequential
and in order computation of a framebuffer’s content. The idea of storing delta pixel
values, as suggested by [Li and Hopper, 1998b], enables processing in both direc-
tions, but still demands sequential computation.

Potentially any update message since the beginning of the recording may influence
the framebuffer’s content for a certain point in time. The brute force approach of
providing the corresponding set of pixel values by computing all framebuffer updates,
starting with the first logged message, proceeding up to the specified timestamp, is
easy to implement, but highly inefficient. The approach will work for short recordings
or if accessing points at the beginning of the session, but presumably will tend to
perform poor towards the end with the increasing number of framebuffer updates
that must be processed.

Consider a log file with 18 Mbytes of framebuffer updates and a duration of 90
minutes. Computing the content of the framebuffer at minute 5 must approximately
respect one Mbyte of data. Accessing minute 81 would rather demand 16.2 Mbytes
of framebuffer updates to be decoded. Assuming a resolution of 1024×768 pixels and
the highest possible color depth of 32 bits per pixel value, a framebuffer contains
no more than 786432 ∗ 4 byte = 3 Mbyte of uncompressed pixel data. Hence, in
order to reconstruct the framebuffer of minute 81, at least 80% (≈ 16.2−3

16.2) of the
computations are performed unnecessarily. Now consider backwards visible scrolling.
Skimming from minute 81 back to 77 at a rate of 1

10 Hz (one frame every 10 seconds)

5.3 Random Access and Keyframes 95

results in 379.2 Mbyte8 of data to be processed. Obviously, decoding that much data
in a real time fashion must fail.

5.3.1 Checking the Past

In order to improve efficiency, message decoding should be reduced to a minimum,
i.e. decoding of framebuffer updates must be limited to rectangles, which provide a
contribution to the required state of the framebuffer. Hence, we must compute which
update rectangles previous to a given point in time are not covered (completely) by
other succeeding rectangles (up to the given time). As the probability that an update
contains relevant pixels decreases with the distance, computation should start at
the access point and progress backwards until any pixel is covered by at least one
rectangle (Figure 5.15). In the worst case, all rectangles up to the beginning of the
log file must be scanned for relevant pixels. However, a recorded slide presentation
probably will cause most of the framebuffer to be updated whenever switching slides.

Fig. 5.15. Backward processing to acquire relevant framebuffer updates

In order to determine whether an update contributes any pixels to the desired frame-
buffer state demands knowledge of the rectangle positions and dimensions but unfor-
tunately the original RFB protocol encapsulates the rectangle headers (which contain
the required data) within the stream of update rectangles, which are encapsulated
within the stream of (update) messages. Hence, accessing any piece of information
demands parsing any previous data and would result in the same inefficiency as
stated above. This is the case for the VNC client/server communication as well as
for the log file formats suggested by [Li and Hopper, 1998a, Li and Hopper, 1998b].

In fact, the efficient calculation of certain framebuffer states (which is needed to
provide fast random access) demands not only fast access to messages but also to
rectangle headers (as suggested in Section 5.1.2). Accessing previous messages via
file pointers [Li and Hopper, 1998a, Li and Hopper, 1998b] is not sufficient due to
missing rectangle delimiters. Furthermore, messages should be kept in memory (if
possible) in order to circumvent slow file I/O.

8 6 frames/min:
81∗6P
k=77∗6

`
k ∗ 18Mbyte

90∗6
´

= 6 ∗
81P
k=77

k ∗ 0.2Mbyte = 379.2Mbyte

96 5 VNC Session Recording

5.3.2 Keyframes as Check Points

Another approach to supporting efficient random access is the idea of keyframes
analogous to most video formats. The recorder of [Li et al., 1999a] stores so-called
check points, which are framebuffer updates that contain the pixel data for the en-
tire framebuffer as is the case for the initial update message. In the case of random
access, the review applications scan the log file for the closest check point previous
to the intended access point. Hence, it is sufficient to progress all subsequent mes-
sages, which potentially can override some of the check point’s pixels, to acquire the
required state of the framebuffer.

Keyframes result in large framebuffer updates because they contain the pixel values
of an entire framebuffer state. Hence, many keyframes increase the file size. There-
fore, selecting a keyframe rate becomes a trade-off between access time and file
size. Computing keyframes at playback time instead of storing them within the log
files, does not cause larger file sizes but increases the startup time of the reviewing
application.

Random access by making use of keyframes does not necessarily lead to better
performance. The contribution of a keyframe to the final state of the framebuffer
may be rather low. Consider a recorded slide presentation with slides and keyframes
as given in Figure 5.16. Due to the large distance to the closest previous keyframe,
framebuffer updates containing three slides (no. 5, 6 and 7) are decoded although
each slide probably will cover most of the area. The approach of determining relevant
updates may detect that 95% of the required pixels are already covered if progressing
up to the closest slide, which is slide no. 7. Hence, only very few of the updates
between the keyframe and slide no. 7 must be decoded (including the large keyframe
update and the updates of slide no. 5 and 6). Instead of placing keyframes at a fixed
rate, the updates that represent slides could be extended to keyframes, but would
collide with the approach of forwarding messages instead of the less efficient solution
of decoding and re-encoding all pixel data.

Fig. 5.16. Log file with keyframes

5.3.3 Keyframe Stripes for Invariant Frame Computation

A third approach to computing the framebuffer state for a given point in time is
based on the idea of non-incremental update stripes, which we have introduced to
counteract packet loss during transmission (Section 4.2.8). Within a certain period

5.4 Random Access Performance 97

these stripes cover the entire framebuffer. The period depends on the rate and size
of the updates. A rate of 12 stripes per minute and 24 stripes in total results in a
period of two minutes (used by the TeleTeachingTool). Hence, at most all updates
within two minutes previous to the intended access point may have a contribution
to the final state. Regarding this invariant, it is sufficient to decode the updates
between the access point minus two minutes and the access point itself (Figure
5.179). However, the effect on the file size is (almost) the same as storing a keyframe
every two minutes. There may be fewer updates, because the stripes are requested
from the VNC server and thus the server may have combined it with other updates.
Nevertheless, this approach is useful if recording the same message stream that is
used to supply online students via synchronous electronic lectures. The log file will
contain the stripes anyway and therefore should be used instead of placing additional
keyframes.

Fig. 5.17. Log file with non-incremental update stripes

5.3.4 Optimization: Current State as Keyframe

Any of the three described framebuffer state computations can use the current frame-
buffer state as a keyframe. Hence, accessing a point in time that lies briefly beyond
the current replay time can be optimized. Consider skipping forward 30 seconds. As
the current state covers the entire framebuffer, only those messages after the current
replay time and up to the set access time can make any contribution to the required
framebuffer state. Therefore, repeatedly forward skipping (and if storing XOR pixel
values also backward skipping) at small increments (as is done to perform visible
scrolling) is generally performed faster than accessing a distant timestamp.

5.4 Random Access Performance

Our intention is to provide asynchronous electronic lectures that support random
access for any given point in time (within the duration of the lecture). Access points
are specified in the form of timestamps, which have a step size of one millisecond,
which commonly is the smallest increment between two timestamps. Each logged
message corresponds to a timestamp, but obviously not every possible timestamp is
necessarily connected to a message (otherwise there must be at least 1000 messages

9 the figure shows only 8 stripes to be more readable

98 5 VNC Session Recording

per second). Immediate random access, i.e. accessing without noticeable delay, de-
mands an efficient implementation. Recall the inefficiency of the example mentioned
above, which caused hundreds of Mbytes to be processed.

A limiting factor for a fast response time is the access time, i.e. the time that is
necessary to compute the appropriate state of the framebuffer after specifying a
certain timestamp. In order to give a prediction of the average access time, we have
measured the access times while seeking certain positions within several recordings.
For each recording, uniformly distributed points within its duration were accessed.
The distance between two consecutive access points was set to one minute and
the average of all access times per lecture was acquired. In advance to performing
the general tests, we applied also distances other than one minute. Comparing the
results showed that any values achieved by applying distances between one second
and five minutes were almost the same, but applying higher distances caused larger
variations.

During the tests the points were accessed in a back-to-front order, because otherwise
the current state of the framebuffer (which is the final state of the previous test)
would have enabled the optimization suggested in Section 5.3.4 since the following
access point is placed shortly afterwards. In this case it would have been sufficient
to regard only those messages between the last time set and the new access point
and therefore would have resulted in faster access times. Seeking is not affected by
this optimization if the requested access point corresponds to an earlier timestamp
than that of the current state of the framebuffer.

The state of the framebuffer is computed once by use of the keyframe stripes as de-
scribed in Section 5.3.3 and once by a back to front search of the effective rectangles
(i.e. the contributing updates) as described in Section 5.3.1. For the keyframe stripe
approach, any messages between the new access timestamp minus two minutes (and
five seconds) and the new access timestamp itself are processed plus any necessary
annotations or mouse cursor messages (which are not integrated in the keyframe
stripes and thus need not necessarily be covered within the two minute period). For
the other approach, the measured time includes the determination of the signifi-
cant messages (framebuffer updates as well as annotation and cursor messages), the
decoding of those messages and the updating of the framebuffer state.

We analyzed several courses that was recorded with the TeleTeachingTool through-
out the last years at the Universität Trier and the Technische Universität München.
All courses were recorded with a resolution of 1024× 76810, a color depth of 16 bit
and include non-incremental keyframe stripes (24 stripes at a rate of 1

5Hz and thus a
2 min period) unless stated otherwise. The durations of the listed recordings are ap-
proximately 80–90 minutes each and are listed in detail in Appendix A. All lectures
are publicly available at our lecture archive http://ttt.uni-trier.de. Note that some
erroneous recordings (e.g. split due to network failure) as well as the few lectures
with other resolutions were ignored and are not listed in the graphs given below.
All average access times listed here were confirmed by at least a second measure-
ment, which proved a deviation of less than 5% (otherwise the test was repeated).

10 Or a slightly smaller resolution (e.g. 1024× 738) giving some space for control elements

5.4 Random Access Performance 99

The tests were performed on an AMD Athlon XP 3000+ with 1.5 Gbyte memory11

running SuSE Linux 9.2 and SUN’s Java (version 1.5.0 06). (Adapted) routines of the
TeleTeachingTool in version 21.06.2006 were used. Note that the framebuffer was
not displayed during these tests, because the graphical output routines commonly
consume a lot of time (especially as the tests were performed in Java) and only the
final state of the framebuffer must be displayed but no intermediate framebuffer
states. Furthermore, each recorded session was load into memory beforehand.

5.4.1 Test Results

Figures 5.18 and 5.19 show the average access time per recorded lecture of the courses
“Informatik I ” [Winter 2004/05] and “Informatik II ” [Summer 2005] by Prof. Dr.
Helmut Seidl. Each graph presents the results for both approaches.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

20
05

_0
2_

04

20
05

_0
2_

03

20
05

_0
1_

28

20
05

_0
1_

27

20
05

_0
1_

21

20
05

_0
1_

20

20
05

_0
1_

14

20
05

_0
1_

13

20
05

_0
1_

07

20
04

_1
2_

23

20
04

_1
2_

17

20
04

_1
2_

16

20
04

_1
2_

10

20
04

_1
2_

09

20
04

_1
2_

03

20
04

_1
1_

26

20
04

_1
1_

25

20
04

_1
1_

18

20
04

_1
1_

12

20
04

_1
1_

11

20
04

_1
1_

04

20
04

_1
0_

29

20
04

_1
0_

28

20
04

_1
0_

22

20
04

_1
0_

21

av
er

ag
e

se
ek

 ti
m

e
(in

 m
se

c)

Course: Seidl-Informatik_I_2004-05

effective rectangles
keyframe stripes

Fig. 5.18. Average access time per lecture

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

20
05

_0
7_

12

20
05

_0
7_

08

20
05

_0
7_

05

20
05

_0
7_

01

20
05

_0
6_

28

20
05

_0
6_

24

20
05

_0
6_

21

20
05

_0
6_

17

20
05

_0
6_

14

20
05

_0
6_

10

20
05

_0
6_

07

20
05

_0
6_

03

20
05

_0
5_

31

20
05

_0
5_

27

20
05

_0
5_

24

20
05

_0
5_

20

20
05

_0
5_

13

20
05

_0
5_

10

20
05

_0
5_

06

20
05

_0
5_

03

20
05

_0
4_

29

20
05

_0
4_

26

20
05

_0
4_

22

20
05

_0
4_

19

20
05

_0
4_

15

20
05

_0
4_

12

av
er

ag
e

se
ek

 ti
m

e
(in

 m
se

c)

Course: Seidl-Informatik_II_2005

effective rectangles
keyframe stripes

Fig. 5.19. Average access time per lecture

11 As these are not memory intensive tests, similar results can be achieved with less memory

100 5 VNC Session Recording

During the lectures mainly slide presentations were shown, partly enriched with
some live programming as well as running some examples. More animated content
were presented in the lectures 2004 12 23 and 2005 02 04 (both “Informatik I ”). For
most recordings, the average access times for the approach regarding the keyframe
stripes are approximately 40–60 msec and for the other approach slightly higher
(approx. 50–80 msec). The approach of determining the effective rectangles generally
must decode fewer framebuffer updates but must check whether an update must be
decoded or not (if it is covered by other updates). As the recording contains update
stripes, the effective rectangles approach also will generally test no more than two
minutes.

Analyzing the course “Programmiersprachen” by Dr. Alexandru Berlea (recorded
in winter 2005/06, Figure 5.20) revealed an average access time of about 50 msec
for the effective rectangles approach and around 10–50 msec longer for the other
approach. Hence, the values are similar to those of the other two courses but this
time the effective rectangles approach is better performing than the keyframe stripes
approach.

 0

 20

 40

 60

 80

 100

 120

20
06

_0
2_

08

20
06

_0
1_

25

20
06

_0
1_

18

20
06

_0
1_

11

20
05

_1
2_

14

20
05

_1
2_

07

20
05

_1
1_

30

20
05

_1
1_

23

20
05

_1
1_

09

20
05

_1
1_

02

20
05

_1
0_

26

20
05

_1
0_

19

av
er

ag
e

se
ek

 ti
m

e
(in

 m
se

c)

Course: Berlea-Programmiersprachen_2005-06

effective rectangles
keyframe stripes

Fig. 5.20. Average access time per lecture

The results of the courses “Abstrakte Maschinen” by Prof. Dr. Helmut Seidl recorded
in summer 2003 (Figure 5.21) and in summer 2004 (Figure 5.22) confirm the results
by revealing average access times between 30 and 120 msec for most of the recorded
lectures and a benefit of the keyframe stripe approach can be stated for the recordings
of the summer 2003, but almost identical or slightly better effective rectangles values
are achieved for the recordings of the other year. Hence, we cannot clearly favor either
approach here.

The recordings 2003 06 25, 2004 05 19 and 2004 06 23 expose noticeably higher av-
erage access times of 294 msec, 397 msec and 182 msec, respectively, for the effec-
tive rectangles approach and 277 msec, 366 msec and 220 msec, respectively, for the
keyframe stripes approach. Surveying the recordings revealed that during these lec-
tures a simulator was used over a period of about 20 minutes per lecture. The VAM
simulator (visualization of Abstract Machines (VAM) [Ziewer, 2001, VAM, 2006])
was used to visualize the memory management (stack, heap and registers) during

5.4 Random Access Performance 101

 0

 50

 100

 150

 200

 250

 300

20
03

_0
7_

29

20
03

_0
7_

16

20
03

_0
7_

15

20
03

_0
7_

08

20
03

_0
6_

25

20
03

_0
6_

24

20
03

_0
6_

17

20
03

_0
6_

03

20
03

_0
5_

27

20
03

_0
5_

20

20
03

_0
5_

13

20
03

_0
5_

06

20
03

_0
4_

29

av
er

ag
e

se
ek

 ti
m

e
(in

 m
se

c)

Course: Seidl-Abstrakte_Maschinen_2003

effective rectangles
keyframe stripes

Fig. 5.21. Average access time per lecture

 0
 50

 100
 150
 200
 250
 300
 350
 400

20
04

_0
7_

21

20
04

_0
7_

14

20
04

_0
7_

07

20
04

_0
6_

30

20
04

_0
6_

23

20
04

_0
6_

16

20
04

_0
6_

09

20
04

_0
5_

26

20
04

_0
5_

19

20
04

_0
5_

12

20
04

_0
5_

05

20
04

_0
5_

03

20
04

_0
4_

28

20
04

_0
4_

26

20
04

_0
4_

21

20
04

_0
4_

19

av
er

ag
e

se
ek

 ti
m

e
(in

 m
se

c)

Course: Seidl-Abstrakte_Maschinen_2004

effective rectangles
keyframe stripes

Fig. 5.22. Average access time per lecture

program executions (see Figure 5.13, page 90 to the right). Setting, copying and
deleting values results in animated movements and fading effects of the objects,
which represent the corresponding memory cells. Hence, 20–25% of the recordings
correspond to dynamic content that generally causes more updates, which must be
scanned and/or decoded during the tests and often result in larger files. This higher
dynamics cause a higher pixel density of about 5-10 Mpixel/min compared to 1–2
Mpixel/min for the other lectures of those courses (the pixel densities are listed in
Appendix A.2).

However, high average access times does not necessarily correspond with large file
sizes. Most of the lectures of these two courses achieve file sizes of 2–3 Mbyte (about
30 kbytes/min; see Appendix A.2 for details) but, for example, the lecture 2004 05 03
reaches 6.2 Mbyte while achieving an average access times of 78 msec, which is also
reached by other lectures with only half the file size. During this specific lecture,
the simulator was also used for a period of about ten minutes, but furthermore
some high colored pictures (the desktop background) were shown, which probably
increased the file size due to achieving a lower compression ratio. On the other hand,
the lecture with the worst average access times, lecture 2004 05 19, resulted only in
a file size of 3.5 Mbyte for 77 minutes and thus a density of 47 kbytes per minute,

102 5 VNC Session Recording

which is not particularly high compared to other recordings from the same series.
Moreover, this particular recording has a pixel density of 10.3 Mpixel/min, which
is about eight times the average density of all other lecture from that course. The
lecture 2004 05 03 that has a file size of 6.2 Mbyte but achieves a good average
access time of 78 msec has a pixel density of only 1.7 Mpixel/min.

In fact, surveying the pixel density of other courses (Appendix A) expose a correla-
tion between the pixel density and the average access time, which is not surprising as
more pixel updates cause more processing. Generally the correlation to the keyframe
stripes approach is stronger than to the effective rectangles approach.

5.4.2 Different Presentation Styles

Dynamic content typically causes more framebuffer updates. However, in the case of
the simulator usage the animated areas mainly consist of solid coloring and hence are
easy to compress. Presentation content that shows a higher pixel variety, such as the
lectures of the media science courses of Prof. Dr. Hans-Jürgen Bucher, who presents
slides with many high colored images and scanned newspaper articles (e.g. Figure
5.14), can be less efficiently encoded and decoded, which results in larger file sizes
(see Table 5.3 and Appendix A.2) and higher average access times as presented in
Figures 5.23 and 5.24 although the pixel density is lower compared to the previously
analyzed courses (0.8 Mpixel/min vs. 1–2 Mpixel/min). The average access times
for the effective rectangles approach are around 100 msec, which is also reached by
some of the previously analyzed recordings. The average access times of the keyframe
stripes approach start at almost the same level but reach peaks of up to 216 msec.
Generally the results of the effective rectangles approach are better for the recorded
lectures of these two courses.

 0

 50

 100

 150

 200

 250

20
03

_0
2_

18

20
03

_0
2_

11

20
03

_0
1_

28

20
03

_0
1_

21

20
03

_0
1_

14

20
03

_0
1_

07

20
02

_1
2_

17

20
02

_1
2_

03

20
02

_1
1_

26

20
02

_1
1_

05

av
er

ag
e

se
ek

 ti
m

e
(in

 m
se

c)

Course: Bucher-Medienwissenschaften_II_2002-03

effective rectangles
keyframe stripes

Fig. 5.23. Average access time per lecture

This is also the case for the recordings of the course “Informatik III ” (winter
2005/06) by Prof. Dr. Johann Schlichter. Figure 5.25 reveals average access times
for the effective rectangles approach that are almost constantly between 100 and

5.4 Random Access Performance 103

 0

 50

 100

 150

 200

 250

20
04

_0
2_

17

20
04

_0
2_

10

20
04

_0
2_

03

20
04

_0
1_

27

20
04

_0
1_

13

20
04

_0
1_

06

20
03

_1
2_

09

20
03

_1
2_

02

20
03

_1
1_

25

20
03

_1
1_

18

20
03

_1
1_

11

20
03

_1
1_

04

20
03

_1
0_

28

av
er

ag
e

se
ek

 ti
m

e
(in

 m
se

c)

Course: Bucher-Medienwissenschaften_I_2003-04

effective rectangles
keyframe stripes

Fig. 5.24. Average access time per lecture

110 msec, but exposes approximately 50–100 % higher access rates for the other ap-
proach. Unlike the slides of Prof. Bucher with their high pixel variety, the presented
content of Prof. Schlichter is more similar to that of Prof. Seidl as it consists of
text, graphs and sketches as well as some dynamic simulations, but almost no high
colored images. Nevertheless, the achieved average access times are very similar to
those of Prof. Bucher’s lectures. The reason is caused by the applied presentation
software. Prof. Schlichter presents html based content, which is generated by Tar-
geteam, a system for supporting the preparation, use, and reuse of teaching materials
[Teege and Breitling, 2002, Targeteam, 2006]. The html slides are accessed and dis-
played with a standard web browser and are dynamically annotated by use of a Java
applet. This pixel-based annotations and scrolling pages within the web browser
generate more updates. However, access times of around 100 msec are still accept-
able as they enable the user to access ten different points within the duration of the
recording.

 0

 50

 100

 150

 200

 250

20
06

_0
2_

06

20
06

_0
1_

31

20
06

_0
1_

30

20
06

_0
1_

24

20
06

_0
1_

23

20
06

_0
1_

17

20
06

_0
1_

16

20
06

_0
1_

10

20
06

_0
1_

09

20
05

_1
2_

19

20
05

_1
2_

13

20
05

_1
2_

12

20
05

_1
2_

06

20
05

_1
2_

05

20
05

_1
1_

29

20
05

_1
1_

28

20
05

_1
1_

22

20
05

_1
1_

21

20
05

_1
1_

14

20
05

_1
1_

08

20
05

_1
1_

07

20
05

_1
0_

31

20
05

_1
0_

25

20
05

_1
0_

24

20
05

_1
0_

18

av
er

ag
e

se
ek

 ti
m

e
(in

 m
se

c)

Course: Schlichter-Informatik_III_2005-06

effective rectangles
keyframe stripes

Fig. 5.25. Average access time per lecture

104 5 VNC Session Recording

5.4.3 VNC Sessions without Keyframes

All of the recordings we have analyzed so far contain non-incremental keyframe
stripes, which constitute one full keyframe at a period of two minutes. Hence, each
recording contains approximately 40–45 non-incremental keyframes, which are not
necessarily required for replaying the session. During summer 2006 we have recorded
two courses by Prof. Dr. Helmut Seidl without these additional update stripes. There-
fore the computation of the framebuffer state for a given access position can only
be achieved by the effective rectangles approach. Unlike the previously analyzed
recordings, which were recorded at a color depth of 16 bit, these two courses were
recorded at 32 bit per pixel (24 bit color values stored in 4 bytes each, since 3 byte
values are not supported by the used VNC server implementation) and thus contain
typically twice as much pixel data (which probably does not cause twice the amount
of compressed data as the unused byte is commonly always set to zero).

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

av
er

ag
e

se
ek

 ti
m

e
(in

 m
se

c)

Course: Seidl-Abstrakte_Maschinen_2006

effective rectangles
keyframe stripes

 0

 20

 40

 60

 80

 100

20
06

_0
7_

27

20
06

_0
7_

20

20
06

_0
7_

13

20
06

_0
7_

06

20
06

_0
6_

29

20
06

_0
6_

22

20
06

_0
6_

08

20
06

_0
6_

01

20
06

_0
5_

18

av
er

ag
e

se
ek

 ti
m

e
(in

 m
se

c)

effective rectangles
keyframe stripes

Fig. 5.26. Average access time per lecture (no keyframe stripes)

The average access times for the lectures of the course “Abstrakte Maschinen” are
given in Figure 5.26 and for the “Compilerbau” course in Figure 5.27. The graphs
reveal very good access times of about 40 msec for most of the lectures, especially
if regarding the 32 bit values instead of 16 bits only. However, the graphs evidently
expose some tremendously high peak values of several hundred milliseconds and even
up to two seconds, which might be acceptable for slide based navigation and is still
better compared to most streaming media but nevertheless is anything but a perfect
access time for user interaction.

During the “Abstrakte Maschinen” lecture 2006 06 08 a lot of dynamic content (pro-
duced by the simulator) was presented and a different VNC server implementation

5.4 Random Access Performance 105

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

av
er

ag
e

se
ek

 ti
m

e
(in

 m
se

c)

Course: Seidl-Compilerbau_2006

effective rectangles
keyframe stripes

 0

 20

 40

 60

 80

 100

20
06

_0
7_

26

20
06

_0
7_

24

20
06

_0
7_

19

20
06

_0
7_

17

20
06

_0
7_

12

20
06

_0
7_

10

20
06

_0
7_

05

20
06

_0
7_

03

20
06

_0
6_

28

20
06

_0
6_

26

20
06

_0
6_

21

20
06

_0
6_

19

20
06

_0
6_

14

20
06

_0
6_

12

20
06

_0
6_

07

20
06

_0
5_

31

20
06

_0
5_

29

20
06

_0
5_

24

20
06

_0
5_

22

20
06

_0
5_

17

20
06

_0
5_

15

20
06

_0
5_

08

20
06

_0
5_

03

20
06

_0
4_

26

av
er

ag
e

se
ek

 ti
m

e
(in

 m
se

c)

effective rectangles
keyframe stripes

Fig. 5.27. Average access time per lecture (no keyframe stripes)

was used. That VNC server generated significantly more large updates. Other record-
ings of that course typically have an average pixel density of several hundred kpixel
per minute (listed in Appendix A.3). Values between 1–2 Mpixel/min are not uncom-
mon for recordings that contain keyframes (A.2). However, this particular lecture
of the “Abstrakte Maschinen” course reveals an average pixel density of 30071 kpix-
el/min, which is about 70 times more than the average of all other recordings of
that course and therefore we will ignore this recording as massive outlier (probably
caused by a faulty VNC server).

Surveying the other recordings of the two analyzed courses revealed that during
the lectures, whose recordings suffer from bad average access times, the presentation
software was not switched to fullscreen mode. Hence, the presented slides were always
surrounded by a border. The border (or at least parts of it) stayed unmodified during
(almost) the complete session, which is the worst case for the effective rectangles
approach as messages that occurred very early during the lecture are relevant to
(almost) any later framebuffer states including those towards the end of the session.
Compare the example given in Figure 5.28 against Figure 5.15 (page 95).

Fig. 5.28. Backward processing to acquire relevant framebuffer updates (worst case)

106 5 VNC Session Recording

Note that the lecture “Compilerbau” 2006 05 29 achieves even worse access rates
than the others, because the presented slides were not only presented within a fixed
border but also not scaled to fit into that border. Therefore the lecturer often scrolled
the slides and thus causing a higher pixel density of 2392 kpixel/min, which is about
three to four times the typical amount achieved for that course. Scrolling causes
large-area modifications similar to a full screen movie or animation unless the VNC’s
CopyRect encoding is applied, which we have discouraged in Section 4.2.4 in order
to avoid message dependencies. The CopyRect encoding could be enabled for VNC
session recording but then we cannot use the same VNC message stream for trans-
mission and recording and furthermore message dependencies would have to be
respected while computing the framebuffer state for random access.

The effective rectangles approach tests every rectangle between the access point and
the first effective rectangle whether it has any effective pixels or not. In this worst
case scenario, many tested rectangles offer no contribution to the final state. The
test for effective pixels is currently implemented (within the TTT) as a comparison
against a bit mask, which marks the already covered pixels. Hence, its performance
strongly depends on the number of tested pixels. If presenting slides within a static
(and thus unmodified) border, each slide covers large areas of the interior but possibly
offers no contribution to the final state as the slide is probably covered by a later
shown slide. Nevertheless the large number of pixels caused by each slide must be
tested. Consider the example given in Figure 5.29. If the eight slides would have
been presented in fullscreen mode without a border, it would have been sufficient to
test only slide no. 8 and slide no. 7 in order to achieve a full update of the entire
framebuffer.

Fig. 5.29. Effective pixels of a series of slides

Although it is commonly seen as a better style to present slides in fullscreen mode,
we do not intend to force teachers to do so, because this would contravene our
transparent recording approach. Furthermore, VNC session recording is not limited
to slide based presentations. The border of any other application or the task bar
of the recorded desktop will probably cause similar effects. Hence, the recording
and replay environment must be able to handle such recordings in an appropriate
way to achieve better access times. The usage of keyframes (either as stripes or full
keyframes) ensures that no messages previous to the keyframe has any influence on
framebuffer states later than the keyframe. However, the average access times of
recordings that do not contain keyframes (Figure 5.26 and 5.27) are typically better
(due to them containing less updates), except for the worst cases.

5.4 Random Access Performance 107

5.4.4 Completing Updates instead of Keyframes

Another approach than using (full) keyframes is to analyse each recording and add
completing updates whenever needed, i.e. updates that cover any pixels which have
not been updated for a while. This guarantees that only a certain number of up-
dates or a certain period in time must be tested (as is the case for recordings with
keyframes) but reduces the number of redundant pixel updates. This can be achieved
analogous to the effective pixel test but this time in a front to back ordering. The
pixels that are modified by an update within a certain time span are marked and at
the end of the period it is tested whether all pixels are updated within the period
or not (Figure 5.30a). Probably some pixels are not marked and therefore addi-

Fig. 5.30. Determining and inserting Completing Updates

tional messages that contain the missing pixels must be inserted. This can be done
by copying the messages that contain the missing pixels from the previous period.
Searching for the appropriate updates can be achieved by a back to front search
starting at the end of the previous period and using the current pixel mask (which
reveals any necessary pixels) as shown in Figure 5.30b. The copied updates must be
inserted at the beginning of the current period (Figure 5.30c), because otherwise
they may overwrite other messages of the period. Afterwards the pixel mask is reset
and the next period will be tested. As the algorithm guarantees that any previous
period already updates any pixel of the entire framebuffer, the back to front search
will end at least at the beginning of the previous period. Due to the initial frame-
buffer update all pixels are included at the end (in fact already at the beginning)
of the first period and therefore this period can be skipped during the test. Note
that the copied messages may contain more pixels than necessary and therefore new

108 5 VNC Session Recording

messages of smaller sizes could be composed instead. However, this would require
messages to be decoded, partitioned and re-encoded rather than just copied. The
analysis and modification of recordings is best suited for an automated post process-
ing phase, because if performed during playback time it would increase the startup
time of the replay application.

5.4.5 Optimized Effective Pixels Test

Regardless of whether adding keyframes or not, we assume that more suitable average
access times can be achieved by improving the test for effective pixels. The currently
implemented approach of using a bit mask and testing for each pixel whether the
corresponding flag is set or not, highly depends on the pixel density of the recorded
session. As updates are only applied in the form of rectangles and as the presented
content also has typically rectangular shapes (e.g. slides as well as application win-
dows) a rectangle inclusion (or intersection) test could be applied instead. Hence,
the performance would no longer depend on the number of updated pixels but on
the number of updates (regardless of their sizes).

Furthermore, the bit mask should be replaced by a more suitable data structure.
For instance, images can be manipulated and accessed rather quickly if represented
as quad trees [Hunter and Steiglitz, 1979]. As our bit mask is a two colored image
only, the efficiency of such a data structure would improve further. Quad trees can
be efficiently implemented from binary arrays [Samet, 1980] and work best if used to
compress axially parallel rectangles, which is the case for our rectangular updates.
In order to approve the given suggestions and modifications for arbitrary courses,
other lectures with a higher pixel variety must be recorded first.

5.5 Summary

VNC Session Recording by logging timestamped RFB protocol messages
was introduced by [Li and Hopper, 1998a] and extended in other works
[Li and Hopper, 1998b, Li et al., 1999b, Li et al., 1999a, Li et al., 2000a,
Li et al., 2000b], but mainly focuses on sequential replay. The concept of storing delta
pixel values enables sequential replay in either direction [Li and Hopper, 1998b].
Random access is addressed by placing check points (keyframes) [Li et al., 1999a],
but not in a way sufficient to provide fast random access. However, fast random
access is a key feature not only to provide visible scrolling (Criterion C7c) but any
kind of navigational (C7), retrieval (C8) or post-processing (C6) features.

The drawback of the mentioned works is the suggested file format, whose inefficiency
is mainly caused by the RFB protocol specification due to missing delimiters. Ac-
cessing certain messages, rectangles or headers within the logged stream of messages
always requires all previous content to be parsed, which obviously is highly ineffi-
cient. Adding file pointers as backreferences to previous messages is only a slight
improvement. In fact, fast access to the successive messages is required. Therefore,

5.5 Summary 109

we suggest size tags that specify the length of the following data, which can be
easily achieved by buffering single messages before writing them to the log file. The
size tags also enable skipping of unknown messages and thus improve extensibil-
ity. Furthermore, we suggest storing distinct rectangles, which provide fast access to
rectangle headers and thus improves the computation of rectangle intersections and
the areas affected by framebuffer updates.

We have analyzed recorded VNC sessions for several courses during which different
presentation styles were used and have shown that the suggested file format modi-
fications lead to suitable average access rates less than 150 msec (typically around
40–100 msec) for most lectures. We have also made suggestions regarding how to
achieve further improvements.

Furthermore, generating asynchronous electronic lectures by recording VNC sessions
results in handable file sizes fulfilling Criterion C9e: File Size and Bandwidth. In fact,
the log files are smaller than corresponding video recordings, but provide better
quality due to lossless compression schemas. With the concept of a compressed file
format, the files sizes are further reduced.

6

Annotations and Digital Whiteboard

Multimedia-based electronic documents offer various possibilities to annotate the pre-
sented content, for instance, by adding textual notes, cross links (within a document
or to other documents), adding audio or movie clips, developing sketches by freehand
drawing tools, highlighting and underlining parts to emphasize their importance, et
cetera (see [Schütz, 2005] for a detailed list).

While discussing the transition from traditional to digital lectures (in Section 2.1.3)
we have suggested replacing traditional blackboards and overhead projectors with
digital analogons in order to preserve handwritten notes in a digital form of high
quality (which cannot be achieved by videotaping [Lauer and Ottmann, 2002] or
document cameras [Effelsberg and Geyer, 1998]).

With appropriate input devices, such as electronic pens, annotating documents is
similar to writing on a blackboard or overhead slides and, furthermore, many presen-
tation systems support at least simple annotating features. During the first lectures
we have recorded with the TeleTeachingTool, we have used such built-in annota-
tion features. In particular, our presentation software supported freehand drawing,
which we used to underline words for emphasizing them and thus focusing the at-
tention of the audience and also to add additional notes or sketches. While adding
notes and drawing sketches worked in an almost satisfying way, the emphasizing was
rather annoying because it often happened that words were crossed out instead of
underlined. Deleting such a line was only possible by deleting all other annotations
as well, including sketches or handwritten comments. Additionally, the annotations
were limited to the presented slides since the freehand tool was integrated within
the presentation software. Therefore, we decided to integrate simple but effective
annotation tools within our lecture recording environment.

6.1 Annotations

The TeleTeachingTool presents a (remote) desktop, which offers the flexibility to
present arbitrary applications and document formats. By virtually placing a sepa-
rate transparent layer above the desktop presentation and adding annotations to this

112 6 Annotations and Digital Whiteboard

annotation layer the TeleTeachingTool enables the user to annotate any underlying
applications. Such annotations are vertically layered [Schütz, 2005] and thus are to-
tally independent of the application (since the desktop is presented as pixel image).
Horizontally linked annotations would rather be integrated into the presented doc-
ument [Schütz, 2005], which requires access to the presented documents and thus is
typically limited to certain document formats only.

Fig. 6.1. Annotations of the TeleTeachingTool

Our annotation tool should at least support freehand annotations, because this is the
natural replacement of handwritten blackboard notes or annotating overhead slides.
Furthermore, a support for focusing the attention of the audience must be given.
Our experiences showed that a (maybe enlarged) mouse pointer, which seems to be
a natural replacement for a traditional pointing device, such as a stick or a laser
pointer, is not suitable. Unlike the mouse pointer, a traditional pointing device is
typically used to point to a certain element and than will be removed. Typically the
mouse pointer will always be visible. This might be preferable because the focused el-
ement will stay emphasized. Consider, for instance, a traditional presentation during
which the presenter points rather briefly to a topic by use of a laser pointer, which
might not be noticed by some people in the audience. However, a mouse pointer is
inappropriate for permanently focusing of elements, because in general the presenter
is used to the mouse pointer in such a way that she/he will often not be aware of
the pointing functionality due to the everyday usage of the pointer in a common
desktop environment. Hence, the pointer very often will not point to elements by in-
tention, but rather point to arbitrary positions. Because of this and our unsatisfying
experiences with the freehand annotations as an emphasizing tool, we rather suggest
the use of explicit emphasizing annotations. Additionally it is useful to be able to
remove certain of the previously applied annotations in order to make corrections,
for example while drawing sketches, or to remove all annotations to clear the screen.
In summary, we want to provide the functionality of freehand drawing, emphasizing
and removing of annotations.

6.1 Annotations 113

The TeleTeachingTool (TTT) currently supports the following annotation types, all
of which can be applied in several colors (except deletion):

annotation description
freehand a line of connected dots
line a straight line
rectangle a rectangle drawn parallel to the axes
highlight a translucently filled rectangle
delete erases certain annotations
delete all removes all annotations

The graphical visualization of TTT annotations is shown in Figure 6.1.

The annotations are not handled pixel-based as part of the framebuffer but are
specified via coordinates and colors and are represented symbolically. Pixel-based an-
notations could be integrated into the existing protocol either by placing rectangles
that exactly cover the affected pixels (which is easy for horizontal or vertical lines
but rather complex for freehand drawings) or must respect and thus re-encode the
current framebuffer content. Besides the rather complex computations needed and
the higher bandwidth and larger file sizes caused by pixel-based storage, it is im-
possible to remove annotations (unless we provide a backup for overwritten pixels
or request the area in a non-incremental fashion). In contrast, the symbolic repre-
sentation of annotations produces less data (typically a few bytes per annotation
only, see Section 9.7 for the specification) and applying annotations on a separate
layer without affecting the framebuffer that represents the desktop, enables more
flexibility in editing annotations and especially supports the removal of annotations.
The deletion of annotation objects is performed by choosing the delete mode and
selecting the appropriate annotation that should be removed, i.e. clicking on the
visual representation of the annotation object.

Fig. 6.2. Annotating a dynamic desktop

114 6 Annotations and Digital Whiteboard

Unlike the annotating feature of the screen recorder Camtasia [Camtasia, 2006],
our annotations are not applied to a static screenshot of the desktop but to the
dynamically updated desktop. Although it is obviously not meaningful to annotate
a moving object, for example the moving cells of the VAM Simulator we have already
mentioned in Section 5.4.1, it can be useful to annotate static elements, for instance
the program code or certain (currently) stationary cells of the simulator as shown
in Figure 6.2.

6.1.1 Annotation Controls

[Schütz, 2005] divides parallelly divided and integrated annotation controls, where
integrated means that the annotation controls are part of (integrated into) other
control elements of the presentation software. As our screen grabbing approach is
independent of any presented applications, the TeleTeachingTool must use parallelly
divided controls, i.e using an own tool bar as shown in Figure 6.3.

Fig. 6.3. Annotation Controls

The buttons of the annotation controls correspond to the following functionalities
(left to right): enabling/disabling the annotating mode, choosing one of several col-
ors, choosing one of the annotation tools (freehand, highlight, etc.) and removing all
annotations. By choosing the appropriate annotation tool (and color) a teacher can
annotate slides and any other presented material dynamically during the lecture.

6.2 Digital Whiteboard

Beside annotations, our system offers a digital whiteboard which provides a blank page
that can be displayed on demand in order to give additional space for annotations.
Consider a lecturer who presents slides, but sometimes uses a traditional blackboard
in order to describe certain issues, maybe because students have asked. In order to
preserve such excursions in an electronic lecture, they must be digitizable in a suitable
quality. Offering annotations alone might not be sufficient. Although a teacher may
leave some free space upon her/his slides in order to place annotations during the
presentation, more space may be needed to explain unforeseen students’ questions.
Adding blank pages offers additional space.

Another possibility would be to switch back to the edit mode of the presentation
software and insert an additional blank slide. However, this would disrupt the pre-
sentation. In contrast, the whiteboard of the TTT can be enabled whenever needed
and, after the excursion has finished, the teacher can switch back to the originally
presented slide with a single button press (the outmost right button in Figure 6.3).

6.3 Protocol Integration 115

Since it is often useful to recall the annotation made during the excursion, the
whitboard and the desktop have different annotation layers and thus independent
sets of annotations. Hence, the teacher can switch between annotated slides and
annotated whiteboard excursions. Moreover, the TTT supports not only a single
whiteboard but rather whiteboard pages with individual annotations for each page.

6.3 Protocol Integration

In order to transmit and record the annotations they must be integrated into the
adapted RFB protocol. Rectangles (including highlighting rectangles) can be specified
by the x,y coordinates of one corner and the width and height, lines by specifying
two points and freehand annotations by a list of points. Additionally, the color must
be noted. The removal of annotations could be achieved by assigning a unique ID
to each annotation object and explicitly removing objects by their ID. However, we
have chosen a very simple but pragmatical solution: Since removing is performed by
virtually wiping out the objects with the electronic pen, the corresponding annota-
tions can be removed by specifying the removal points (which correspond to the pen
movements while wiping out) and deleting any annotations that intersect with this
points.

Fig. 6.4. Data flow between TTT components

The integration into the protocol is achieved by defining new message types with
appropriate values for each of the annotation types as specified by the TTT protocol
description given in Section 9.7. Furthermore, these new annotation messages must
be delivered to the students’ replaying applications. Recall that our proxy receives
messages from the VNC Server and processes them (i.e. transforming, recording
and transmitting) and additionally handles the input events sent by the teacher’s
application in order to remotely access the presented desktop. Annotations are pro-
duced by the teacher’s application as well and should be transferred to the students’
client and to the recording component. Therefore we suggest delivering annotation

116 6 Annotations and Digital Whiteboard

messages from the teacher’s application to the proxy analogous to the input event
messages as given in Figure 6.4. Unlike the input events, the annotations are not
sent to the VNC Server but are merged with the framebuffer update messages re-
ceived by the VNC Server and then transmitted to the students’ clients or delivered
to the recording component. As stated in the figure, the teacher’s application is also
supplied with the merged framebuffer update and annotation stream. As the teacher’s
application is the producer of the annotations, this would not be necessary. However,
such a design enables all clients to be supplied with the same data.

Note that our design still uses an original VNC Server implementation, which re-
spects the original RFB protocol and thus is not aware of the annotation concept.
However, this is not necessary since the proxy filters any annotation messages.

Recording of TTT annotations is achieved in the same way as logging framebuffer
updates. In fact, merging the additional annotation messages with the stream of
framebuffer updates is sufficient for recording, because the recording component will
automatically timestamp and log each message of the incoming message stream,
including the annotations.

6.4 Evaluation of Annotation Usage

A complex evaluation regarding pedagogical issues and learning results of students
could not be performed throughout this thesis. Nevertheless, we can give a short
summary of how the annotations were used during our lectures and how this affected
the dynamics of electronic lectures.

We have analyzed 85 recorded lectures by Prof. Dr. Helmut Seidl, which were
recorded during four semesters, regarding the usage of our annotation tools
[Ziewer and Seidl, 2004]. We have analyzed the number of applied annotations per
lecture, distinguishing between the four annotation types : freehand, line, rectangle
and highlighting. Since the annotations are recorded as individual message types,
counting the occurrences is easily established by automatically analyzing the mes-
sage headers for each recorded lecture. Note that a freehand annotation is counted as
a single occurrence from setting the electronic pen on the display, i.e. producing the
start point, until lifting the pen again, but the writing of a word or drawing a sketch
typically consists of several individual freehand annotations. Hence, the number of
occurrences of freehand annotations cannot be directly compared with the number
of occurrences of the other annotation types, which exactly reflect single uses, for
instance to highlight a word.

The annotation tool was used for the first time during winter 2002/03. The lectures
of that semester reveal approximately 180–280 annotations per lecture and the usage
increased to 200–400 annotations per lecture in the following semesters. The number
of annotations that were used per lecture are given in Figure 6.5, where the left values
relate to the oldest and the right to the newer lecture dates.

The most frequently used annotation type was the highlighting annotation, which
was used about 130–230 times per lecture (Figure 6.6). Highlighting annotations

6.4 Evaluation of Annotation Usage 117

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80

nu
m

be
r o

f a
nn

ot
at

io
ns

lecture

Fig. 6.5. Annotations per lecture (rect,line,high,free)

have been accepted by the teacher almost since the very first lecture and the usage
stayed relatively constant throughout the years.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 20 30 40 50 60 70 80

nu
m

be
r o

f a
nn

ot
at

io
ns

lecture

Fig. 6.6. Highlighting annotations per lecture

Analyzing the freehand annotation usage reveals different results as shown in Figure
6.7. During the first semester (the first 27 analyzed lectures in the figures), Prof. Seidl
rarely used freehand annotations (less than 20 occurrences per lecture). Since the
second semester he started using freehand annotations more frequently and there is
a slight increase in the last semester.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 20 30 40 50 60 70 80

nu
m

be
r o

f a
nn

ot
at

io
ns

lecture

Fig. 6.7. Freehand annotations per lecture

118 6 Annotations and Digital Whiteboard

The possibility of line annotations was hardly ever used and the rectangles were
drawn about 10–50 times per lecture. However rectangle annotations were often
applied to draw a rectangle around some text in order to emphasize it. Hence,
highlighting annotations could have been applied instead.

Furthermore, we have analyzed how often the color was changed between two consec-
utive annotations. This feature was barely used during the first lectures, the teacher
started using it more frequently after about two months. Overall he switched to an-
other color about 30–50 times per lecture in order to distinguish different annotations
by using different colors.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 20 30 40 50 60 70 80

nu
m

be
r o

f a
nn

ot
at

io
ns

lecture

Fig. 6.8. Color changes per lecture

Although more recordings of different teachers must be analyzed in order to give
a general statement, these results give an impression of how TTT annotations po-
tentially can be used. Regarding these results we can state that for Prof. Seidl the
highlighting and freehand annotations are of most importance. The rectangle anno-
tations can often be replaced by highlighting annotations since they were both used
with the intention of emphasizing. Although Prof. Seidl used the freehand feature of
the presentation software to underline certain words for emphasizing purposes before
we introduced the TTT annotations, he rarely used the line feature later. Thus, we
conjecture that applying highlighting annotations is much more effective.

Students’ comments concerning the TeleTeachingTool revealed that some of the stu-
dents complained about too many highlighting annotations in the lectures of Prof.
Seidl. An extreme case of a slide with many highlighting annotations is shown in
Figure 6.9. Almost every element was emphasized during the talk but typically only
the last one is still valid for focusing purposes. Therefore, the previously made high-
lightings should rather be deleted. Since an explicit deletion by the teacher would
be an additional task to be performed, which should be avoided. Instead we sug-
gest automatic removal of previously made highlightings. This can either be realized
by limiting the number of simultaneously visible highlighting annotations to one or
maybe up to three annotations at a time, or by setting a timeout for such annota-
tions so that they will automatically disappear after several seconds. Considering the
implementation of the TeleTeachingTool the first approach is preferable, because it
can be realized by modifying the TTT teaching component (by sending appropriate
delete annotations) while keeping full compatibility for the student component. This
modification will affect only newly produced electronic lectures. If the highlighting

6.4 Evaluation of Annotation Usage 119

annotations of previously recorded lectures should be limited as well, a modification
of the replaying engine is inevitable. Since the highlighting annotation type might
have been used for drawing purposes during previously recorded lectures, for in-
stance to draw boxes, the feature of automated removal should stay optional, i.e.
students should have the option to disable that feature.

Fig. 6.9. “Over-highlighted” slide

In summary, the most frequently used annotation feature is highlighting in order
to focus the attention of the audience. In order to strengthen the effect of this
feature, the number of simultaneous highlighting annotations should be limited in
order not to lose the focusing effect. For any other commenting of the presented
content the freehand drawing feature is of highest importance. Considering the usage
statistics, the other annotation types can be neglected, but the use of different colors
is helpful in order to distinguish the applied annotations. Regarding the intention
to provide an easy to use and concise control bar that offers access to simple but
effective annotation tools, emphasizing (with automated removal), freehand drawing
and deleting in combination with a few colors might be sufficient.

6.4.1 Dynamics of Lectures

Presenting a static slide over a longer period is rather problematic from a pedagogi-
cal point of view [Edelmann, 1995], especially if the teacher is only visible in a small
video (if at all) as is the case for electronic lectures that are presented on screen.
Therefore, we have additionally analyzed the recordings regarding their dynamics,
i.e. any visible modifications of the presented lecture including slide switches, ani-
mations, annotating or just moving the mouse pointer. We have classified periods as
dynamic or not according to the time spans between consecutive modifications. Time
spans up to 3 seconds were classified as dynamic. The lectures of Prof. Seidl show

120 6 Annotations and Digital Whiteboard

a proportion of dynamic periods of about 15–35%. If regarding only the dynamics
caused by the desktop (i.e. the framebuffer updates) without considering annotations
the proportion decreases to approximately 10%, if using other applications besides
the slide presentation (e.g. the VAM simulator) about 20% are achieved.

We have compared those values with the dynamics of 28 lectures of Prof. Dr. Hans-
Jürgen Bucher, whose lectures were also recorded with the TeleTeachingTool. Instead
of the TTT annotation system, Prof. Bucher has used the built-in freehand drawing
feature of the applied presentation software. The dynamic proportion of this lectures
reaches only 5–15%

Hence, the dynamic proportion of (electronic) lectures can be significantly increased
by use of the simple annotating features of the TeleTeachingTool. Even higher dy-
namics are achieved whenever additional applications and especially animations or
visualizations are used during the presentation. However, adequate evaluations must
be performed in order to state the effect of TTT annotations and dynamic propor-
tions regarding the learning results of the students.

6.5 Summary

The TeleTeachingTool offers an easy to use simple but effective annotating func-
tionality, which is suitable to focus the attention of the audience as well as to add
additional comments and sketches and furthermore increase the dynamic proportion
of electronic lectures. By offering an electronic whiteboard, the teacher can add blank
pages on demand in order to give additional explanations whenever questions arise
during a lecture. After such an excursion the presenter can switch back to the pre-
sentation, which stayed unchanged during the excursion, including previously made
annotations.

TTT annotations are not limited to the presentation software but can be applied
to any presented applications and documents, because they are applied on a sep-
arate layer on top of the pixel-based desktop representations. This design can be
extended to multiple layers in order to support several sets of annotations as sug-
gested by [Schütz, 2002, Lienhard and Lauer, 2002, Lienhard and Zupancic, 2003].
They suggest annotation layering in order to enable student annotations. By pro-
viding several virtual layers for the teacher’s and the student’s annotations, and
maybe for additional annotations of other students, each set of annotations can be
enabled or disabled on demand, i.e. certain annotations can be shown or hidden.

The annotation and whiteboard features are integrated in our adapted VNC environ-
ment by defining additional message types. The recording component automatically
timestamps each logged annotation message and thus enables a dynamic replay of an-
notations as requested by [Lauer and Ottmann, 2002] (our Criterion: C4d). Another
criterion (C4c; also requested by [Lauer and Ottmann, 2002]) is that annotations
should be associated with slides and disappear when switching to another slide and
appear again when switching back. Typically such an association requires an inte-
gration of annotations into the presented document (horizontally linked annotations

6.5 Summary 121

[Schütz, 2005]), but our annotations are applied vertically layered and independent
of the underlying content in order to support the annotating of any applications.
We diminish this drawback by automatically removing all annotations whenever the
teacher switches to the next or previous slide by pressing one of the keys commonly
used to switch slides, i.e. the arrow keys and the page-up/-down keys. Hence, new
slides will always be presented without the annotations of the previous slide. In most
cases, this approach is sufficient. An association with slides to ensure that annota-
tions can appear again corresponding to the presented slide is more challenging.
Nevertheless, we will address this topic and suggest solutions in Section 7.7 (after
discussing some necessary prerequisites).

7

Navigation and Automated Indexing

Lectures and presentations are sequential and so are their video style recordings, the
asynchronous electronic lectures. Students who have not attended the corresponding
live lectures, e.g. distance students or local students that missed a lecture, may watch
the electronic version in full length. But in general pure sequential playback is not
sufficient. Students rather want to access certain topics and thus like to locate and
study parts of special interest, which could be the beginning of a chapter or a specific
definition. They may want to replay interesting or complicated sequences but skip
other parts.

However, as standard screen recording does not conserve the document structures (of
presented slides), only sequential playback or at most navigation by time is possible.
Although such timeline navigation is a useful feature, for instance to skim through
a lecture or to skip back a little bit to replay the just seen part once more, it is often
not the best way of navigation. In fact, navigation by time is rather annoying if trying
to access (the beginning of) a certain slide or topic, particularly if accessing takes
a couple of seconds caused by buffering techniques (e.g. streaming media). Even if
immediate random access is supported, searching is not as comfortable as required.
Dragging a slider back and forth until a certain position is found, is rather imprecise
and therefore time consuming and annoying. Recall the tedious search of a certain
song on a music tape or a passage on a video tape, always winding the tape back and
forth, and replaying a short fragment until the desired sequence is located. Besides
assuming that a user knows what to search for, such an approach moreover requires
not only the identification of the target sequence, but also the identification of even
the unwanted sequences to be able to decide whether to wind forward or to rewind
the tape. Thus, knowledge of the recording is a precondition for efficient searching.
Accessing a certain song on a CD or a movie chapter on a DVD is much easier by
use of a given predetermined table of contents, which exactly refers to meaningful
positions within the timeline of the media. In order to improve navigational features
for lecture recordings, indices are required as navigation marks addressing special
positions within a recording. Any timestamp and thus any recorded data associated
with a timestamp is a potential index, but a recorded VNC session commonly consists
of thousands of timestamps. However, meaningful indices are only those addressing
points of interest, like the beginning of a chapter or an animation as well as switching
to another slide, which is called navigation by slide.

124 7 Navigation and Automated Indexing

In this chapter we will first give an overview of navigation by time, including re-
quirements and suitable graphical user interfaces (GUI). Then different classes of
navigational indices are described and discussed in order to elaborate an approach
to acquire meaningful navigation marks. Afterwards, we introduce and discuss differ-
ent approaches of automated slide and animation detection to be performed during
post-production as well as on the fly during a live lecture. Additionally, we discuss
the visual representation of indices as well as the automated generation of annotated
scripts. Furthermore, suggestions are made as to how TTT annotations, which are
independent of the presented content by default, can be interlinked and associated
with slide indices and presentation content.

7.1 Navigation by Time

Navigation by time or timeline navigation is navigating during replay by specifying
a certain (access) point in time within the duration of the recorded session. The
most common user interface to specify the access point is a slider as shown in Fig-
ure 7.1. The slider represents the timeline of the lecture. The left point (starting
point) relates to the beginning of the lecture and the right point to the end and
thus the duration of the lecture. As the representation is straight proportional, any
slider position in between relates to a position within the duration of the lecture.
Selecting a time is done by clicking a certain point on the slider or dragging the
slider knob to the desired point and releasing it (depending on the slide implemen-
tation). This provides random access to the specified access point on the timeline. If
the screen is updated in relation to the knob position while still dragging the knob,
which is called visible scrolling, the user can skim through the lecture and thereby
get a better overview. If visible scrolling is not supported, the displayed media will
be updated according to the end point (i.e. the release point) only. Of course visible
scrolling is preferred but is not/cannot be supported by all players and media for-
mats. Streaming media generally cannot support visible scrolling “... because only a
small part of the document is buffered locally at any given time. In order to make
random access work in real time, the document as a whole must be stored locally”
[Lauer and Ottmann, 2002].

Fig. 7.1. Controls of the WindowsMediaPlayer including a timeline slider

A slider is a very comfortable user interface but not necessarily a very exact one. The
number of selectable positions and thus the possible access points is limited by the
number of pixels corresponding to the length of the slider. For the common screen
resolution of 1024× 768 pixel the length is approximately 900 pixels and thus the
smallest increment is theoretically six seconds which relates to one pixel. However, if
the slider is shorter or if the slider implementation provide only larger step sizes, the
smallest increment might be bigger. Morever, setting the slider to an exact position
is not that easy. If exact positioning is demanded, e.g. for editing purpose, the user

7.2 Navigational Indices 125

interface should provide an additional input field, which enables the user to specify
the point in time by entering the corresponding time value (i.e. by entering digits).

Another useful feature for navigation by time are buttons or keyboard shortcuts,
that can be used to skip back or forth a certain amount of time (e.g. -5 min, -1 min,
+1 min, +5 min). This enables relative navigation instead of absolute positioning.
Often students just want to skip back a little bit in order to replay the just seen but
not totally understood part of the lecture or they want to skip parts they already
have understood. For instance some introduction to a topic might be clear to the
student but certain details that are discussed afterwards might not be and therefore
the student wants to skip the introduction and progress directly to the detailed
discussion.

A crucial factor for the usability of navigation by time is the response time. In fact,
a fast response time is also beneficial for other navigational features, however the
user might be willing to wait a few seconds if accessing a certain slide or performing
a search, but not if navigating by time, especially not during visible scrolling. This
is because navigating by time is commonly composed of several navigational steps,
for instance, clicking several positions on the slider until the searched position is
found. Or consider a student pressing the +1 min button several times and then
recognizing that she/he skipped slightly beyond the desired time and hence pressing
the -1 min button once. If random access demands time consuming computing or
buffering, as is commonly the case for streaming media, navigation by time is less
useful and visible scrolling without fast random access is meaningless. Unfortunately,
the RFB Protocol [Richardson, 2005] is not designed to support random access by
default but can be appropriately adapted (Chapter 5). In particular, we have shown
that (average) access rates for random access of less than 200 msec can be achieved
and for typical slide based presentations even access rates of less than 50 msec are
possible as shown in Section 5.4. As the response time of the graphical user interface
correlates to the access rate we can presume fast random access and low response
times for VNC based recordings.

7.2 Navigational Indices

[Minneman et al., 1995] divide four broad classes of navigational indices.
[Li et al., 2000a] applied these classes to the context of VNC session recording. They
use a VNC proxy recorder that not only stores timestamped framebuffer update mes-
sages but also records user event messages (e.g. key events) (see Section 5.1.3), which
also can be used as indexing marks.

7.2.1 Intentional Annotations

Firstly, there are intentional annotations , which are indices the teacher creates
during the presentation especially for the purpose of indexing, i.e. to mark particular
points of interest. Highlighting a text string on the desktop leads VNC to automat-
ically create a ServerCutText message, which can be used as index. However, the

126 7 Navigation and Automated Indexing

teacher has to remember to create such indices during presentation, but she/he may
forget to do so in the heat of the moment. Consider intentionally indexing head-
lines. The teacher must remember to highlight the headline of each slide in order to
generate a ServerCutText message and thus copy the textual string to be included
in an overview or table of contents. This approach influences the live presentation
without any positive effect for the local audience, in opposition to the transparency
recording approach, and therefore is not very commendable.

Additionally, the VNC client of [Li et al., 2000a] offers the possibility of inserting
brief notes which are stored as ClientCutText messages to fit into the RFB protocol.
If used during a lecture, this feature may interrupt and distract the natural flow
of the presentation. The explicit insertion of brief notes is better suited for post-
processing and, in this case, should be filed under post-hoc indices (see below).

On the other hand, intentional indices can be placed automatically. teleTASK
[teleTASK, 2006], a pixel-based recording system, uses a plug-in for PowerPoint,
during the presentation to generate an index each time the teacher switches to an-
other slide. This allows slide-based navigation. Unfortunately, this feature demands
the use of PowerPoint and if teachers forget to start the plug-in no such indices are
recorded and there is no way of applying the plug-in afterwards.

7.2.2 Side-effect Indices

The second class are side-effect indices , which are activities whose primary pur-
pose is not indexing but provide indices because these activities are automatically
timestamped and logged. Hence, side-effect indices are recorded without any im-
pact on the presentation process and therefore are well suited for our transparent
recording approach.

Examples are input events such as keystrokes, pointer movements and but-
ton presses, which occur while the teacher interacts with the VNC desktop.
[Li et al., 2000a] suggest logging KeyEvent, PointerEvent and Bell messages. Their
idea is to generate indices of such events because users may remember them and want
to access the corresponding part of the recorded session. Obviously, this idea is only
meaningful to users who have attended the live session or, at least, have watched
the recorded session before. Especially the Bell message type, which signifies that
something happened and commonly results in a short sound (the signal bell), is only
meaningful if the user remembers that such an event occurred and knows to which
topic it refers. However, Li et al. have a different scenario in mind. Instead of record-
ing live lectures (where the signal bell is typically inaudible to the audience), they
rather intend to record desktop sessions in order to demonstrate software usage.

Nevertheless, their studies revealed that “pointer events are hardly referred”
[Li et al., 2000a] and thus provide not very interesting indices. Especially the events
caused by moving the pointing device are commonly irrelevant, because each move-
ment generates dozens of such events and therefore an entire session may contain
several thousand in total, for instance, if the pointer device is used to annotate slides.

7.2 Navigational Indices 127

On the other hand, there might be teachers who control their slide presentations by
use of key presses only and thus generate sessions without any pointer events.

[Li et al., 2000a] suggest the logging of key events in order to enable retrieval of
inserted text. Furthermore, the inserted text may be used the generate a textual
index. A sequence of key events results in (or can be combined with) textual content
that is searchable. Since at most only small texts are entered during a presentation,
the benefit for later text search is rather limited. In the scenario of lecture recording,
special keys are often used for special purposes, e.g. the page down key to switch
slides. Logging such keys would deliver good indices. However, as most presentation
software applications offer several possibilities to switch slides (e.g. mouse buttons,
the page-up/down keys, the arrow keys or the b and n key) it is almost impossible to
generate a good index table on the basis of these events alone. Moreover, the used
keys may be application dependent and therefore must be defined prior to recording
and must be used in the expected way, which leads to similar problems to those of
intentional annotations. Hence, we cannot rely on such events and therefore they
are not sufficient to provide navigation within (asynchronous) electronic lectures on
their own, but at least they might be useful as additional indicators.

In fact, we discourage the logging of key events due to security issues. As we log
desktop sessions and allow the usage of arbitrary applications, the teacher potentially
may enter a password in order to connect to a remote computer or a protected web
page. Unfortunately the entered password, although not visible on screen, would be
logged in the form of key events. If the key event log file (either a separate file or
combined with the framebuffer updates) is handed to students, they potentially may
access the teacher’s password(s). In the case of generating a textual index, which
consists of any text phrases entered during a lecture, even the unmasked password
is displayed. Admittedly, the way of storing the key events in a database utilized by
[Li et al., 2000a] is more secure, but nevertheless the benefits for retrievability are
rather limited as typically only small text passages are inserted, e.g. shell commands.
Note that full text search is by all means a very reasonable feature but must access
the slide content instead of the key events (see Section 8.1).

Besides the already mentioned intentional placement, ClientCutText and Server-
CutText messages also provide side-effect indices when used for the original purpose
of copying text (i.e. clipboard content) between session partners. Note, that due to
the double usage of these two message types, it is not distinguishable, if they were
created by intention or as side-effect only. Hence, any marked text may occur as
a headline in a table of contents (suggested by [Li et al., 2000a]) and thus possibly
irritates students.

7.2.3 Derived Indices

Another class of indices are derived indices , which are produced by automated
analysis of recorded data. [Li et al., 2000a] suggest analyzing framebuffer updates
as “a big screen change may suggest that an application window has been opened or
closed” [Li et al., 2000a]. Considering our intention of recording slide presentations,
such big screen changes also exposes slide changes.

128 7 Navigation and Automated Indexing

Post-processing enables the tweaking of parameters to achieve optimal results. New
or improved index analysis can be applied to all recordings and so even very old
lectures benefit from research advances. Additionally, as the derived indices are
calculated after the presentation is finished, the creation cannot be forgotten during
the recording process.

7.2.4 Post-hoc Indices

Finally, there are post-hoc indices , which are manually created during post
production to mark points of interest. If placed with consideration, for exam-
ple to mark definitions or the beginning of chapters, they are very useful. In-
sertion of keywords to describe chunks of the electronic lecture, as suggested by
[Brusilovsky and Miller, 2000], are also filed under post-hoc indices. Unfortunately,
manual placing of indices is very time consuming and thus undesirable for a
lightweight lecture recording process.

However, students may annotate and comment an electronic lecture (for instance
as described by [Lienhard and Lauer, 2002, Lienhard and Zupancic, 2003]) which is
also a post editing process but not a mandatory one. Such student notes provide
post-hoc indices with a special meaning to the student who placed it and, if the
comments can be exchanged among students, may also be useful for fellow students.

7.2.5 Index Querying

The VNC session recorder of [Li et al., 2000a] stores all events in an event store
[Spiteri and Bates, 1998], which allows retrieval by use of SQL1 queries. The query

select * from frame-buffer-update where update >= 40%;

leads to all framebuffer update events that change 40% or more of the screen.
Entering queries in SQL syntax is obviously not very user friendly. Therefore,
[Li et al., 2000a] provided some browser interfaces for common queries. For the given
example they suggest a field labeled “update” and inserting the value 40 results in
the SQL query given above. However, the meaning of the “update” field and the pos-
sible values must be explained to the user. This approach may be useful for advanced
users, but is not very intuitive, especially not for novice students with less computer
practice. Hence, most students will probably not use such features. A major problem
of the system of [Li et al., 2000a] is that the student must decide, which are mean-
ingful values for the queries. A structured overview, as claimed to be necessary by
[Lauer and Ottmann, 2002], would rather give (a list of) predetermined meaningful
indices with some kind of classification (e.g. indices that refer to slides) and the stu-
dent must only select which of the indices she/he wants to access. Hence, we need
to determine indices and classify them and finally present them in the form of an

1 SQL (commonly expanded to Structured Query Language) is a computer language to
interact with relational database management systems

7.2 Navigational Indices 129

intuitive user interface in order to provide meaningful and easy to use asynchronous
electronic lectures.

7.2.6 Automated Analysis

Regarding the lightweight content creation approach, the generation and classifi-
cation of indices should/must be automated as far as possible. Hence, the manual
placement of post-hoc indices may be offered for additional index generation or
to place optional student comments, but is unsuitable for automated processing.
The use of intentional annotations is also discouraged, because it opposes the
transparency of the session recording as it demands teachers to think about useful
indices and keywords during the live presentation. In terms of transparency only
side-effect and derived indices provide an appropriate way of structuring electronic
lectures. As a (VNC session) recording consists of thousands of potential indices, we
need automated analysis to classify them and acquire a meaningful selection.

Regarding the classification, it is better to find fewer but consistently meaningful
indices instead of presenting all the meaningful indices along with many useless
ones (“false positives”). Consider a recorded slide presentation with 30 slides. If the
review environment presents, for instance, 27 or 28 indices, each referring to a real
slide switch, the indices are well-suited for navigation and will satisfy most users.
However, if their are 50 slide indices, 30 of which refer to the beginning of a slide,
but 20 referring to arbitrary and meaningless points in time, the user might be
confused about the meaning of the indices and wonder why an index provides access
to the middle of nowhere. Hence, the classification algorithms should deliver only
meaningful indices at high probability.

Note that the analysis and the suggested algorithms and thresholds of the following
sections are closely related to the TeleTeachingTool and TTT recordings (because
it is the basis implementation for this research). However, many aspects can be
transformed to other VNC session recorders or even to screen recorders in general.
The main difference between VNC recorders and other screen recorders is the mes-
sage based and demand-driven data recording. Pixel values are encapsulated within
framebuffer updates and thus we have sets of rectangular screen modifications. Fur-
thermore, the demand-driven approach in combination with the timestamp message
logging provides some useful metadata, e.g. what was updated and when, and there-
fore enables a better classification than recording (full) frames at a fixed frame
rate. Furthermore, the VNC input event message types as well as the TTT anno-
tation message types offer the possibility of identifying user events, which is hardly
possible just on a pixel basis. Note that several presentation software applications
provide their own annotation systems. The resulting annotations are recorded by
the TTT (and all other screen recorders), but are encoded pixel-based as part of the
framebuffer in this case, overwriting other pixels and hence cannot be extracted in
a straightforward manner. On the other hand, TTT annotations, which are stored
symbolically, can be filtered and thus analysis can be applied just to the framebuffer.
This is also the case if the VNC server supports the special cursor encodings, which
handle the mouse cursor on a separate layer and thus independent of the framebuffer
content. Additionally, all TTT recordings (unless recorded with a TTT since version

130 7 Navigation and Automated Indexing

21.06.2006) contain non-incremental update stripes, which are used as partitioned
keyframe parts as suggested in Section 5.3.3. Other VNC session recorders may use
full keyframes (like [Li et al., 1999a]) or no keyframes at all. (Standard) video for-
mats that are used by other screen recorders commonly make use of keyframes as
well.

7.3 Slide Detection

Navigation by slide is one main feature a playback engine should offer
[Lauer and Ottmann, 2002]. A slide, or more precisely the representation of a slide,
is (mainly) an image shown to an audience. Screen recorders store these slide images
as pixel data. Switching slides during a presentation commonly results in a modi-
fication of large areas of the screen. In our VNC context any screen change leads
to framebuffer update messages. Therefore the timestamp of any large framebuffer
update is a potential index for a slide change. “Large” can be seen in the meaning of
by byte, i.e. the length of messages, or by-area, i.e. the area of the framebuffer which
is affected by an update.

7.3.1 Slide Detection By-Byte

The computation of slide indices in terms of large by-byte is straight forward if log-
ging VNC messages with corresponding timestamps and the length of each message
(Section 5.1, Figure 5.3). Otherwise the entire log file must be parsed once in order
to determine message lengths. A classification of message sizes can be achieved by
applying an empirically determined threshold. Any framebuffer update whose size
exceeds this slide detection threshold is classified as a slide.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90

si
ze

 in
 k

by
te

s

time in minutes

info1_2004_10_28.kbytes

Fig. 7.2. Message sizes

7.3 Slide Detection 131

Figure 7.2 shows the message sizes in kbytes of each lecture of the course “Einführung
in die Informatik I ” [WS2004/05] of Prof. Dr. Helmut Seidl, recorded at the Techni-
sche Universität München at a resolution of 1024×768 (or slightly less to keep space
for control elements during recording) pixels and 16 bit pixel values2. The large mes-
sages denote slide switches. The smaller ones (see Figure 7.3 for a zoomed graph) are
mainly caused by the periodically appearing non-incremental update stripes which
are used as (partitioned) keyframes (Section 5.3.3)3. If the framebuffer content stays

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

si
ze

 in
 k

by
te

s

time in minutes

info1_2004_10_28.kbytes

Fig. 7.3. Message sizes (zoomed)

unmodified for a while (e.g. minute 70–80), the graph evidently exposes the period of
two minutes after which (almost) identical stripes are transmitted once again. The
update messages, which are caused by these stripes, must not be taken into account
when computing indices. However, the RFB protocol does not offer a possibility
to distinguish these non-incrementally requested stripes from other framebuffer up-
dates, which were requested in an incremental fashion, because only the requests
have an appropriate flag but not the update messages. One could try to regard the
rectangle coordinates to test if an update covers the requested stripe or not. How-
ever, the VNC server is free to combine or split updates (depending on the server
implementation) and therefore this approach may fail. Hence, the stripes must be
eliminated by setting the slide detection threshold to a larger value than the largest
stripe message. For the given example recording, a threshold of 12,500 bytes elemi-
nates all messages caused by stripes. A closer look at the recording reveals that 23 of
24 slides are detected applying that threshold which corresponds to a hit rate of at
least 95%. The one elided slide appears at minute 45 and is only 12,212 bytes in size
due to containing a few words (and thus a few pixels) only (as shown in Figure 7.4)
and therefore achieves a good compression ratio. As the largest messages caused by
the update stripes are 12,122 bytes large (min 60–65), reducing the threshold to

2 this and all other mentioned recordings are freely available at our lecture archive
http://ttt.uni-trier.de

3 Recordings stored by the TeleTeachingTool up to Version 20.06.2006 contain non-
incremental update stripes (12 or 24 stripes at a period of 2 min.)

132 7 Navigation and Automated Indexing

include the missing slide is discouraged, because this may lead to false detections if
different content causes slightly larger stripe messages. Recall that we favor dropping
a meaningful index against generating many false positives, i.e. meaningless indices.

Fig. 7.4. Undetected slide

Applying the same slide detection threshold of 12.500 bytes to other recordings from
the same course revealed similar results and hit rates of above 90% (see Appendix
B.1). The undetected slides contained only a few words (as the example given above),
small sketches or (series of) graphs as shown in Figure 7.5.

Fig. 7.5. Series of undetected slides

Our previous research [Ziewer, 2004] revealed a slide detection threshold of 10,000
bytes to be suitable for recordings with a lower color depth of only 8 bit and a
resolution of 1024 × 768, which is the case for the recorded courses “Informatik I
(Programmierung in Java)” [WS2001/02] by Prof. Dr. Helmut Seidl recorded at
the Universität Trier and “Abstract Machines for Compilers” [SS2002] presented by
Prof. Dr. Helmut Seidl (Universität Trier) and Prof. Dr. Reinhard Wilhelm (Univer-
sität des Saarlandes).

We noticed that the slide detection algorithm sometimes generates multiple indices
for the same slide. However, these are no faulty detections, but a result of the
teacher’s presentation style (during that particular course). Slides were annotated
using the built-in drawing features of the presentation software. Deleting annotations
caused a redrawing of the screen and thus resulted in additional framebuffer update
messages, which the algorithm detects as a slide change. In fact the presentation
software showed the same slide two (or more) times in a row, exceeding the threshold
each time and therefore such slides are detected twice (or more often). At least
the indices determined here give meaningful partitions of such slides as removing
previous annotations certainly lead to breakpoints within the presentation.

7.3 Slide Detection 133

Limitations

Slide detection by message sizes works well for many lectures by Prof. Seidl. How-
ever, we encountered problems applying the same slide detection threshold to other
lectures (with the same resolution and color depth). This was especially the case
with the course “Medienwissenschaft I: Theorien und Methoden” [WS2003/04] of
Prof. Dr. Hans-Jürgen Bucher, recorded at the Universität Trier. This media science
course was complex in its graphical representation. The extensive usage of large high
colored images (mainly scans of newspapers and magazines) and figures leads to a
higher pixel variety (i.e. many different pixel values instead of solid coloring) and
thus to larger message sizes (due to less efficient compression) as shown in Figure 7.6
for one example lecture (others are listed in Appendix B.2).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60 70 80 90

si
ze

 in
 k

by
te

s

time in minutes

medien1_2004_02_17.kbytes

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90

si
ze

 in
 k

by
te

s

time in minutes

medien1_2004_02_17.kbytes

Fig. 7.6. Message sizes (full scaled and zoomed)

For that particular lecture, the values of the first ten minutes look very similar to
those seen previously. Again, the two minute period of the non-incremental update

134 7 Navigation and Automated Indexing

stripes is evident. Surveying the range between minute 56 and 62 also reveals the two
minute period but consists of much larger messages which partly exceed 30 kbytes.
This would suggest increasing the slide detection threshold for the given lecture
(or course) in order to exclude the update stripes again. However, the recording
contains even larger update stripes. The peak of 903,990 bytes at 23:55 min. was
caused by the slide shown in Figure 7.7 to the left. The slide included two newspaper
scans and therefore does not achieve very good compression ratios as we apply
lossless compression to obtain better quality. Some of the following update stripes
(containing parts of that slide) exceed even 50 kbytes in size, but the next slide (right
side of the figure), appearing at 25:55 min., is only 38,478 bytes in size. This slide,
like many others, consists mainly of text, which can be compressed rather efficiently.
Hence, increasing the threshold to filter large stripes would also mean dropping all
indices for text-only slides. This is not only the case for the given example recording
but also for other recordings of that course (see Appendix B.2).

Fig. 7.7. Slides with scanned newpaper (904 kbytes) and simple text (38 kbytes)

In fact, the approach of detecting slides by the sizes in bytes of the framebuffer
updates is sufficient for homogeneous recordings, i.e. when all slides show similar
content (in terms of structure not semantics) and thus are of similar size in bytes.
For homogeneous recordings the slide detection threshold could even be computed
dynamically based upon the peak values. However, this approach is almost certain
to fail for inhomogeneous presentation content. Such is the case for that particular
media science course. Its presentations mixed slides containing only some text, fol-
lowed by others showing huge colorful illustrations. Slide detection on a size by-byte
basis for such presentations is not sufficient, because a fragment of a colorful illus-
tration can be larger than a complete slide containing only text. This is even more
severe if mixing incremental and non-incremental updates as is the case for most of
our recordings. However, only partial non-incremental framebuffer updates (stripes)
are requested and the affected area of such an update is less than five percent of
the desktop resolution (if the framebuffer is partitioned to 24 stripes4). Switching
fullscreen slides, in contrast, results in framebuffer updates that affect (almost) the
complete desktop. Hence, the approach of determining slide switches regarding the
area that is covered by framebuffer updates is more promising.

4 some of the older recordings contain a partitioning of 12 stripes

7.3 Slide Detection 135

7.3.2 Slide Detection By-Area

Computation of indices regarding the area that is covered/affected by the framebuffer
updates for each given timestamp mainly consists of computing rectangle unions and
intersections. This can only be achieved in an efficient way if the rectangle headers
are directly accessable within the recorded sessions (as suggested in Section 5.1.2)
or if the rectangle positions and dimensions are cached preliminarily (e.g. by parsing
all update messages once). As most VNC server implementations deliver framebuffer
updates with distinct rectangles, it is possibly sufficient to sum up only the rect-
angles’ dimensions not regarding overlapping. However, the protocol specification
does not ensure distinct rectangles. The number of pixels are accumulated for each
given timestamp and then translated to relative values in relation to the maximum
number of pixel values, which is specified by the resolution of the framebuffer. This
is not possible for the other approach since by-byte values cannot be transformed
to relative values due to a missing maximum. However, relative values are more
suitable to achieve a meaningful content prediction, because they are independent of
the number of bytes used per pixel (color depth), the screen resolution, the applied
encodings or the encoded data, i.e. the presented content.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

ct
ed

 a
re

a
(%

)

time in minutes

info1_2004_10_28.areas

Fig. 7.8. Affected areas (i.e. message sizes by-area)

Figure 7.8 displays the affected areas for the same lecture as examined for the by-
byte approach (compare with Figure 7.2) and reveals perfect matches. Each of the 24
slides are detected and each slide covers 100% of the framebuffer, even the one which
was ignored by the by-byte approach due to its small size. The bottom line5 is caused
by the non-incremental stripes, which cover 1

24 = 4.16% each. Unfortunately, we can-
not assume we will receive such perfect matches for all recordings. The main reason
for the perfect matches in this case was the VNC server implementation used, which
evidently generated entire updates instead of applying a fine-grained partitioning

5 It is actually not a line but distinct values at a frequency of 1
10
Hz, which only appears

as line due to the scaling of the graph

136 7 Navigation and Automated Indexing

to the framebuffer. However, other VNC implementations probably will. Although
not analyzed in detail, we observed that the Linux implementations generally send
fewer but larger rectangles and the Windows implementations tend to generate very
many small update rectangles instead.

For the example lecture of the media science course the affected areas in comparison
to the message sizes are given in Figure 7.9. Evidently, the problematic large update
stripes are all reduced to 4.16% and thus can easily be filtered. However, setting the

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90

si
ze

 in
 k

by
te

s

time in minutes

medien1_2004_02_17.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

ct
ed

 a
re

a
(%

)

time in minutes

medien1_2004_02_17.areas

Fig. 7.9. Message sizes (zoomed) vs. affected areas

by-area slide detection threshold to a value slightly exceeding the stripe filter
of 4, 16% (1

12 = 8.3% for older TTT recordings), generates too many indices. In the
zoomed view of the graph (Figure 7.10 to the left) some values between 5% and
20% are visible. The corresponding framebuffer updates were either caused by slide
overlays, for instance at minute 15:02 (7%) and 17:44 (8.3%), or by placing freehand
annotations, which were recorded pixel-based using the freehand drawing feature of

7.3 Slide Detection 137

the presentation software (min. 24–30; 12–18%). This is also the case for the small
updates between minutes 70 and 80. Detecting slide overlays may be meaningful
unless a slide is partitioned to a large number of overlays, but freehand annotations
should not cause slide indices (although the detection of annotations can also be a
meaningful feature). Hence, we must increase the by-area slide detection threshold to
20% in order to filter annotations, but at cost of some slide overlays. Nevertheless,
the first slide (to which the overlays are applied) will still be recognized, because it
is commonly larger as it must overwrite (most of) the previous framebuffer content.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 14 16 18 20 22 24 26 28 30

af
fe

ct
ed

 a
re

a
(%

)

time in minutes

medien1_2004_02_17.areas

 0

 10

 20

 30

 40

 50

 60

 70

 80

 41 41.5 42 42.5 43 43.5 44

af
fe

ct
ed

 a
re

a
(%

)

time in minutes

medien1_2004_02_17.areas

Fig. 7.10. Affected areas (zoomed)

Another phenomenon is visible in the detailed view at the right hand side of Fig-
ure 7.10. There are four occurrences of framebuffer updates that affect at least 45% of
the framebuffer and which are followed by another large update within a very short
interval of less than 2 seconds. Surveying the recorded session reveal that slides with
scanned statistics were shown. However, at first the presentation software showed
only the slide with headings but needed some time to display the scans. Due to
the short delay, the framebuffer updates have distinct timestamps and thus would
result in different indices although they were induced by the same slide. A VNC
server under heavy load may also cause a slightly delayed transmission of updates
which belong together. As we are interested in the final appearance of each slide, we
can drop potential indices that exceed the threshold but are overruled by another
index shortly after. Even if the previous index was caused by another slide, drop-
ping that index is unproblematic, because the corresponding slide only appeared for
a few seconds and therefore that particular slide is obviously not that important.
Consider the teacher skipping a slide or hitting the “next slide” button (e.g. a mouse
button) by mistake and switching back immediately. Showing a slide for less than
five seconds will hardly be meaningful. Hence, applying a slide detection threshold
to derive potential slide indices and afterwards applying a slide drop threshold
of five seconds (as delay between consecutive indices) to drop overruled potential
slide indices is reasonable to classify slide indices. Commonly, slides are presented
much longer than five seconds unless they contain overlays or sequences of slides,
which may be used to explain certain issues. For instance the slides shown in Figure

138 7 Navigation and Automated Indexing

7.5 are used to explain the “binary search” algorithm in a step by step fashion. It
is a matter of opinion whether each overlay should be counted as single slide or
not. Slide overlays could be accumulated to one slide index by increasing the slide
drop threshold to 10 or 15 seconds. Unfortunately, increasing the slide drop threshold
would result in the last of the overlays to be accessable rather than the first one.
Therefore, it is probably better suited to treat such slide sequences as animations
(Section 7.4). This is also the case when recording other applications unless they are
used to present static pages (e.g. a web browser presenting slides in the form of html
pages).

7.3.3 Whiteboard Pages

Besides presenting slides by use of presentation software, the TeleTeachingTool offers
the possibility of inserting blank pages on demand (electronic whiteboard ; see Section
6.2, page 114). The whiteboard is enabled and disabled by a special message, which
is rather short (a few bytes only) and thus would not be classified as an index
by the by-byte approach. However, whiteboard notes are of special interest as they
are often used to explain a certain topic in detail or on demand if asked for by
students. Moreover, whiteboard notes are commonly not part of a published set of
slides or a script. Fortunately, whiteboard indices can easily be integrated whenever
a corresponding message enables the whiteboard. Likewise, an additional slide index
is inserted whenever the whiteboard is turned off again. The same result is achieved
if a whiteboard message is treated as a framebuffer update that covers 100% of the
screen.

7.3.4 Conclusion

With the by-area approach and the empirically determined threshold, slide indices
for pixel-based recordings can be generated in a fully automated manner. The use
of relative values instead of absolute ones as the basis for a content prediction al-
gorithm leads to much better results, because relative values provide some kind of
abstraction from the presented content. Applying a slide detection threshold of 20%
in combination with an error correction, which accumulates slides that appear within
a time span of the slide drop threshold of five seconds, results in a slide detection
rate that (almost) matches the real slide switches. Hence, if recording slide presen-
tations, the automated slide detection for pixel-based recordings reveal slide indices
that are (almost) as good as those of symbolic recordings. Typically more than 95%
of the slide switches are detected. Thus, we have eliminated one main drawback of
the screen recording approach.

7.4 Animation Detection 139

7.4 Animation Detection

A flexible (pixel-based) recording environment provides not only the possibility to
record (mainly) static slides (or more precisely slide images), but also supports
the recording of various “motion images”. Such dynamic content consists of, for
instance, animations, simulations and executed programming examples, which we
will all call animation to simplify matters. Slide overlays or sequences of slides that
appear within a certain delay may also be classified as animation. Unlike (static)
slides, dynamic content does not generate distinct peaks but rather causes many
updates as long as the motion lasts. Hence, animations cause sequences of potential
indices. However, a meaningful index is the first one, which refers to the beginning
of the section (the start of the animation) and maybe the last one, which is less
meaningful as an access index, but reveals the duration of the animation.

During the course “Abstrakte Maschinen im Übersetzerbau” [SS2004] Prof. Seidl
used the VAM simulator (visualization of Abstract Machines (VAM) [Ziewer, 2001,
VAM, 2006]), which visualizes the memory management (stack, heap and registers)
during program execution. Screenshots are shown in Figure 7.11. Setting, copying
and deleting values results in animated movements and fading effects for the objects,
which represent the corresponding memory cells.

Fig. 7.11. Simulator Visualization6

Figure 7.12 (see also Figure 7.13 for a closer look) shows the resulting graphs of the
update sizes by-byte and by-area for a recorded lecture during which the simulator
was presented. The message sizes in bytes hardly reveal the usage of the simula-
tor, but the graph of the affected areas evidently exposes the dynamic presentation
content between minute three and seven. Even the short pause, which the teacher
made to explain the presented simulation, is recognizable by the gap around minute
five. The simulator usage results in framebuffer updates, whose sizes in bytes hardly
exceeds the by-byte slide detection threshold of 12,500 bytes (Figure 7.13 to the left)
due to the (almost) solid coloring of the moving objects, which results in good com-
pression ratios. Showing a short movie instead would cause much larger sizes. Again,
the relative values of the affected areas reveal more explicit results as shown on the
right hand side of the figure.

Framebuffer updates, which follow each other at a high rate, are potentially caused
by dynamic presentation content. Examining the gaps between the updates also

6 Presented in lecture 2004/05/19 of “Abstrakte Maschinen” (Seidl, 2004)

140 7 Navigation and Automated Indexing

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90

si
ze

 in
 k

by
te

s

time in minutes

abstrakt_2004_06_16.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

ct
ed

 a
re

a
(%

)

time in minutes

abstrakt_2004_06_16.areas

Fig. 7.12. Message sizes vs. affected areas

reveals the end of such a sequence of updates and thus enables multiple animations
to be distinguished from each other. Hence, an animation starts whenever the delay
between two consecutive framebuffer updates falls below a certain threshold and
it lasts as long as the threshold is not exceeded (by the following delays between
the following updates). Whenever the delay exceeds the threshold, the animation
has completed. This animation detection threshold must either be lower than
five seconds or the updates caused by the non-incremental update stripes must be
filtered, because otherwise the delay between two consecutive updates will never
exceed the mark of five seconds and thus will cause the algorithm to assume and
classify one endless animation for each recording. For the preferable approach of
regarding the affected areas instead of sizes in bytes, filtering is easily achieved by
applying a stripe filter threshold of 4.16%. Only rectangles that update more than
4.16% of the framebuffer are considered. A side effect of the stripe filtering is that
movements of the mouse cursor are also filtered, which is not only acceptable but
also rather appreciated, because moving the pointing device is commonly not the

7.4 Animation Detection 141

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

si
ze

 in
 k

by
te

s

time in minutes

abstrakt_2004_06_16.kbytes

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

af
fe

ct
ed

 a
re

a
(%

)

time in minutes

abstrakt_2004_06_16.areas

Fig. 7.13. By-byte and by-area results for recorded animations (zoomed)

kind of dynamic content that is of much interest. Note that the mouse cursor is not
filtered if using the special cursor encodings but these encodings do not affect the
framebuffer anyway and therefore filtering is not necessary. [Li et al., 2000a] enabled
searching and accessing pointer events but stated that this feature is hardly used.
Other sources of irritation are also filtered, for instance a (permanently changing)
performance monitor or a clock, which are often placed in the task bar and hence
may be visible during desktop recordings.

Surveying the results caused by recording the simulation, which are shown in a
detailed view in Figure 7.14, exposes delays between consecutive large updates of
less than a second as well as others of several seconds. If the animation consists of
permanently changing areas, the delay between two updates is very short. However,
an animation may contain short pauses as is the case for the step-by-step execution
of our simulator. If the applied animation detection threshold is too low, too many
indices are generated but a high value may assume two consecutive slides to be an
animation instead. Hence, the delay threshold must be lower than the presumed
minimum distance between two slides. For the given example, a threshold of 10
seconds is suitable to classify two animations, one lasting from 3:51–4:40 min and the
other from 5:07–5:50 min. If the pause between the two parts should be overruled, the
animation detection threshold must be increased to 30 seconds. But 30 seconds may
already be a period in which a slide can be presented in a meaningful way. Applying
an animation detection threshold of 15 seconds to the given lecture gathered some
of the less interesting shell interactions, which were done to start applications. On
the other hand, also some meaningful slide indices were combined to a single one.
Therefore, the lower threshold of ten seconds is preferable. Reducing the threshold
further to only 5 seconds, resulted in 67 instead of 59 indices. The eight additional
indices were inserted during the period of the animation/simulation. Surveying the
recorded lecture revealed that not that many indices are needed. Analyzing other
lectures with dynamic content showed similar results.

142 7 Navigation and Automated Indexing

 0

 20

 40

 60

 80

 100

 3.5 4 4.5 5 5.5 6

af
fe

ct
ed

 a
re

a
(%

)

time in minutes

abstrakt_2004_06_16.areas

Fig. 7.14. By-area results for recorded animations (zoomed)

7.4.1 Slides vs. Animations

We have presented ways to detect slides and animations within recorded VNC ses-
sions. Unfortunately, animation detection cannot be treated independently of the
slide detection. This is not only the case for choosing a suitable animation detection
threshold so that two consecutive slides are not classified as animation. Recall that
we have suggested dropping potential slide indices which are succeeded by another
one shortly after, in order to eliminate irritations caused by skipped slides (or de-
layed slide transmission). Applying the animation detection after the slide detection
would cause the slide error correction to drop messages possibly useful for the ani-
mation detection and thus may cause the animation detection to fail. It is even not
unproblematic if applying both algorithms directly to the recorded data and thus
independently of each other. Consider a sequence which is assumed to be caused by
skipping slides. The animation detection rather would classify such occurrences of
subsequent updates as animation. However, the slide detection and the animation
detection differ in their way of classifying the potential indices of a sequence to be
important or not. The slide detection algorithm drops all indices except the last one,
but, as animations should be visible in total, the animation detection rather keeps
the first index and drops all following potential indices until a decreasing rate of up-
dates reveals the end of the sequence. Classifying a sequence once as a skipped and
thus unimportant slide, and once as meaningful animation is obviously inconsistent
and therefore must be avoided. Therefore, animations must be distinguished from
slides.

Approach I: Duration of sequence

Skipping slides (willfully or by mistake) as well as slightly delayed transmission
of slide parts will rarely last for more than a couple of seconds. On the other
hand, it is hard to imagine a meaningful animation of a short duration, for
instance, of four or five seconds only. Hence, a sequence of framebuffer updates

7.4 Animation Detection 143

with short delays is classified as an animation only if the overall duration exceeds
a minimum time span, the sequence duration threshold .

Approach II: Length of sequence

Another approach to differentiate between animations and skipped slides is to
count the length of a sequence, i.e. the number of messages. As each displayed
animation frame is represented by at least one framebuffer update, animations
generally consist of many updates. On the other hand, delayed slide transmission
or skipped slides commonly cause only a few updates and thus short sequences.
Hence, animations and slides are distinguished by a sequence length thresh-
old . Note that all rectangles with identical timestamps must be considered to be
one message because we have split a message that contains sequences of rectan-
gles to a sequence of messages each containing a single rectangle only (discussed
in Section 5.1.2).

Testing both approaches with different threshold values revealed only slight differ-
ences between the resulting indices. Again the example lecture (Figure 7.12 to 7.14)
of the course “Abstrakte Maschinen im Übersetzerbau” is a good candidate for anal-
ysis, because during this lecture not only the simulator was used but the recording
also contains several occurrences of skipped slides (e.g. around minutes 22, 30–32,
37-38), because the teacher switched back to recall previously shown slides and than
switched forward to the current slide to continue his lecture.

We analyzed the index table generated with sequence duration thresholds of 5 an
10 seconds as well as with sequence length thresholds of 5 an 10 potential indices.
Interestingly, the four different index computations have absolutely no influence
on the generated index table for the periods during which the simulator was used.
However, they differ in their classification of skipped slides. For both approaches, the
longer sequences resulted in better indices where “better” means that the timestamp
of the selected index refers to a framebuffer state which represents the slide to which
the teacher’s narration is related. This is because any potential slide indices which
are caused by a skipped slide are correctly classified as skipped slides. However, the
teacher had sometimes already started speaking while skipping slides and thus an
index referring to the end of a sequence may cut off a little piece of the verbal
narration.

On the other hand, applying shorter sequence thresholds causes the algorithm to
classify the problematic sequences of about 10 seconds or 10 potential indices as an-
imations and therefore they are replayed starting at their beginning, which results in
skipping less verbal narration and thus provides a natural flow of the teachers speech.
But creating a meaningful visual index (e.g. in the form of thumbnails), where the
presented slide should give a hint on the addressed topic, the last potential index
of these sequences is better suited. Otherwise the visual index may show a skipped
and therefore irrelevant index. A reasonable solution out of this dilemma is to derive
indices by use of the higher sequence thresholds in order to receive meaningful visual
representations referring to the last slides (omitting skipped ones). Additionally, one
has to ensure that the replay does not cut the corresponding narration, i.e. if access-
ing such a slide index, the corresponding timestamp less a short delay of 3–5 seconds

144 7 Navigation and Automated Indexing

should be accessed instead of the exact timestamp. If the teacher said nothing while
skipping slides, some silence is replayed, which naturally is less troublesome than
starting in the middle of a sentence.

Note that there are only slight differences between the two classification approaches.
If setting the higher thresholds (sequence of 10 indices or 10 seconds, respectively),
the index table for that particular lecture (but similar results are acquired for other
recordings) differs only in one value. Applying the lower thresholds (5 indices or 5
seconds), six of the 59 indices are classified differently, the first approach classifies a
skipped slide whereas the other approach chooses an animation at four times. The
other two indices are classified vice versa. So it is rather negligible which of the
two approaches is applied because one might deliver a slightly better classification
on one lecture but slightly less good results for another one. However, the density,
i.e. the number of indices within the duration of a sequence, enables some kind of
content prediction. If a sequence was caused by slide overlays commonly only one or
two potential indices within 10 seconds are detected, but a real animation typically
causes much more. The simulator usage, for instance, results in up to 15 potential
indices per second.

7.4.2 User Events as Indicators

Although the side-effect indices that are caused by the RFB protocol messages are
rather irrelevant (see Section 7.2.2), user events may be used as additional indicators
in order to index a recorded session. Note that we rather derive indices from user
events instead of using them directly as side-effect indices.

For instance, if a sequence of potential indices is accompanied by key presses com-
monly used to switch slides, it is rather unlikely that the sequence is caused by an
animation and not by skipping slides. Due to security issues, the TeleTeachingTool
does not log key events, but during the live presentation, the keys that are commonly
used to switch slides, trigger automated removal of all current annotations in order
to clear pages if switching to another slide. As those RemoveAllAnnotations events
are logged, they provide similar hints to the key events themselves since RemoveAl-
lAnnotations events will rarely, if ever, occur during animations. As the removal of
all current annotations can also be induced by clicking on a dedicated clear annota-
tions button without switching to another slide, a RemoveAllAnnotations event may
furthermore suggest a break in the teacher’s talk and thus a meaningful partitioning
of a slide, which can be respected by adding an additional index (or sub-index).

Annotation events also give meaningful indices. Consider the freehand drawing fea-
ture. A short dash (e.g. underlining) may not be very interesting. But the first
timestamp of a sequence of many freehand annotations potentially refers to a point
within the lecture where the teacher had drawn and explained, for instance, a sketch,
a formula or added some comments. Since dynamic freehand (or other) annotations
are a special kind of animation, a classification of sequences is achieved analogous to
the animation detection by analyzing the delays between subsequent events. Recall
that the TeleTeachingTool handles annotations on a separate layer and stores them
in the form of symbolic representation (see Section 6.1). Otherwise if storing anno-

7.5 Visual Representation of Indices 145

tations pixel-based, for instance if using any of the drawing features of a recorded
application, they cannot be accessed in an easy way as it is hard or even impossible
to distinguish annotations from pointer movements, which we already declared to
be rather meaningless for indexing purposes.

7.4.3 Conclusion

Generally analyzing dynamic content does not lead to as perfect indices as slide
detection because the diversity of what can cause dynamics extend from designed
animations, mouse movements and menu usage to any animation effects caused by
arbitrary applications. However, calling this a problem of the screen recording ap-
proach would not be fair as the symbolic recorders typically are not able to record
dynamic content at all (unless especially designed to be recorded with a specific
recorder as is the case for a built-in dynamic annotation feature). Nevertheless, dy-
namic content can be distinguished from static slide images, and by filtering small
updates caused by dynamic mouse movements or other irritations, meaningful an-
imation indices can be achieved. Furthermore, we have stated how skipped slides,
which are somewhat similar to a rather short animation, can be distinguished from
longer running real animations (or other dynamic content).

7.5 Visual Representation of Indices

A suitable presentation of indices has a fundamental impact on the usability of the
replay software. Besides the conventional timeline navigation (timeline slider and
play/pause/skip buttons), the TeleTeachingTool offers a graphical overview of the
automatically computed slide indices. Clicking on a small preview image (thumbnail)
causes instantaneous playback of the corresponding slide. Additionally, accessing the
previous and next slide is supported via buttons. A further visual representation of
indices is a corresponding script that consists of one page per index. Each page
shows a screenshot of the presented content and also may contain the corresponding
annotations.

An index refers to a single timestamp but also represents the part (or chunk) of
the recorded session from that particular timestamp up to the next index. Hence,
a preview image should give a meaningful hint about the topic that is addressed
during the period between two consecutive indices. Such an image is achieved by
copying the state of the framebuffer at a certain timestamp. A scaled down copy is
used as a thumbnail and a full scaled copy can be used to generate a script directly
from the recorded session without any access to the presented source materials (such
as slides).

Annotations give a good indication of the presented topics and the importance of the
index. Consider the teacher adding additional comments to a slide, which revealed
some comprehension problems. These explanations, and thus the index that refers
to the corresponding slide, are of special interest for students during replay. Hence,

146 7 Navigation and Automated Indexing

the visual representation of the index should already reveal the importance of the
index by displaying the applied annotations. This is also the case for drawn sketches
or tables. During recent years of recording lectures, we have recognized that the
freehand annotations are of special interest for the visual representation of indices,
but the highlighting feature is not that meaningful (for that purpose). Highlighting
is of momentary importance as this feature is used for emphasizing and to focus the
attention of the audience, but is not necessarily a meaningful hint on a thumbnail or
a script page. Especially if many highlighting annotations are applied. Therefore we
suggest that visual index representations should not contain highlighting annotations
or at least highlighting annotations should be disengageable by students as is the
case for the thumbnail overview of the TeleTeachingTool.

The timestamp of a slide index refers to the appearance of the slide and to the begin-
ning of the teacher’s explanations concerning that slide. Thus, annotations are not
visible at the referred timestamp but will be added later. Consequently, we need some
“foresight” to display relevant annotations within the visual index representation.
If the teacher has removed some of the annotations and drawn others instead, dis-
playing all annotations between two consecutive indices may look confusing. Hence,
we gather all annotations that appear after the timestamp of the current index and
the following index or the following RemoveAllAnnotations event, whichever occurs
first. Note that an additional (sub)index for the remove event may be beneficial in
order to present all annotations. This results in sets of annotations related to certain
periods, which start at the timestamp of an index. Hence, annotations can be ap-
plied to the underlying framebuffer copy in the same way as to the real framebuffer
during ordinary replay. As TTT annotations are handled on a separate layer and
as annotations are distinguishable by their message types, the drawing of certain
annotations types can easily be enabled or disabled within a thumbnail overview.
Obviously, this is not possible if applying pixel-based annotations. In order to gener-
ate visual indices that include pixel-based annotations, we rather must conserve the
annotations when they are available, which is at the end of a period between two
consecutive indices. Hence, a thumbnail must copy the state of the framebuffer just
before switching to the next slide. In order to eliminate irritations probably caused
by slide switches, for instance, slow presentation software or if deleting annotations
before switching, we suggest to store the framebuffer state of the following index
minus a little delay of 1–5 seconds. Note that for a sequence of potential indices
that has been classified to be caused by skipped slides, the displayed index is the last
index of that sequence. Hence, the index minus one second probably will represent a
skipped slide, which is not our intention. Therefore, rather the first potential index
of such a sequence must be accounted as the end of the previous period. However,
this can be achieved by storing different index tables for the automated thumbnail
and script generation and to access slides during replay.

7.5.1 Automated script generation

The visual representation of indices is a useful basis to generate a script that corre-
sponds to the recorded lecture. Certainly such a pixel-based script does not offer the
editing and reusability features of the source documents (of the slide presentation)

7.5 Visual Representation of Indices 147

or other symbolically represented documents (but the source documents can be used
for such purposes). Such scripts are rather intended to be used as additional learning
material for students, because not all teachers publish their slides (or other docu-
ments), which they have presented during the lecture. Even if slides were published
once, they may no longer be available for older courses. However students may prefer
to have a printed version in order to add comments or read them without the use of
an electronic device, which is no problem if a script can be derived from an electronic
lecture without access to the presented source materials.

An important feature of the generated script is the inclusion of annotations made
during the live presentation. Any freehand comments or sketches are presented by
such a script in contrast to the published (classic) slides, which commonly contain no
annotations. Additionally, a script generated from a recording can present different
document types. Consider a slide presentation that is paused to show and discuss
some web pages or another document (type), all of which are then presented in a
single script. Obviously, dynamic content cannot be presented fully in a static script
since a screenshot will only represent a momentary state.

Fig. 7.15. Thumbnail overview of an automatically generated html script7

We have implemented the automatic creation of an html script by storing and link-
ing slide images. For each index position, a copy of the framebuffer state is stored,
once full scaled and once scaled down to thumbnail size. This is done analogous to

7 Lecture 2004/02/17 of “Medienwissenschaft I ” (Bucher, 2004)

148 7 Navigation and Automated Indexing

thumbnail computation for the preview images shown with the TeleTeachingTool
during replay. Certainly annotation layering as well as enabling and disabling anno-
tation types is not as easy to achieve for (static) scripts as it is for the thumbnail
overview within the TTT application (but might be provided by means of dynamic
scripting languages). Our script generator rather applies the required annotations
(all annotation types except highlighting) to the copy of the framebuffer before stor-
ing the (slide) image and the thumbnail. Hence, annotations are stored pixel-based
as part of the presented images. If the drawing feature of the recorded presentation
software is used instead of the TTT’s built-in annotation system, annotations can
also be made visible in the script by storing the state of the framebuffer just before
the timestamp of the following index as suggested above.

The entry point of the script presents a thumbnail overview as shown in Figure 7.15.
Each thumbnail is linked to a page with the corresponding full scaled (slide) image
and each of the slide images has links to the previous and next index page as well
as back to the overview, which are displayed at the top and the bottom of each
page (Figure 7.16). The next page can also be accessed just by clicking on the full
scaled image (to provide sequential progress). Furthermore, the overview provides
some information about the recording like the title of the course, the teacher’s name
and the date of recording, which are extracted from the session name field and the
start time of the recorded session.

Fig. 7.16. Annotated pages of an html script with navigation links

Each automatically created script page has the same simple structure as the following
example:

1 <html>
2 <head>
3 <title>Bucher: Medienwissenschaft I (17.02.2004) [42]</title>
4 <link rel="stylesheet" type="text/css" href="style.css">
5 </head>
6 <body>
7 <center>
8
9 prev -

10 overview -
11 next

12

7.5 Visual Representation of Indices 149

13
14

15 prev -
16 overview -
17 next
18
19 </center>
20 </body>
21 <html>

Any links and file names obey a predefined naming scheme that contains the base
file name of the corresponding recording (which for our lectures corresponds to the
possibly shortened course name and the date), followed by the index number and
the file ending. The referenced stylesheet is also created by the TeleTeachingTool
but stays the same for all scripts and pages. Therefore, any content provider (e.g.
a university) may adapt or replace the given stylesheet according to their own re-
quirements and likings. A consistent naming is also important to (automatically)
interlink the results of an online full text search (described Section 8.3.1) or the
download pages of our web archive with the corresponding script pages.

The generated structure of a sample overview page is given below. Lines 1–21 specify
the title and display some metadata. The individual entries for each thumbnail start
at line 23. The <fieldset> tag (since html 4.0) enables the grouping of elements.
In combination with the stylesheet entry “fieldset { display:inline }” such
grouping ensures that the number of thumbnails per line is adjusted according to
the width of the browser window and thus gives a better look and feel. Most of
todays browsers support this feature. Otherwise it may not be possible to group
the thumbnails with the corresponding index numbers and timestamps, or only a
fixed number of indices can be displayed per line. We also have implemented a script
generation that does not rely on the <fieldset> tag and therefore can be used in
order to support older browser versions.

1 <html>
2 <head>
3 <title>Bucher: Medienwissenschaft I (17.02.2004)</title>
4 <link rel="stylesheet" type="text/css" href="style.css">
5 </head>
6 <body>
7 Main Index
8 <table cellpadding="5">
9 <tr>

10 <td>name: </td>
11 <td>Bucher: Medienwissenschaft I (17.02.2004)</td>
12 </tr>
13 <tr>
14 <td>recorded: </td>
15 <td>Tue Feb 17 10:18:03 CET 2004</td>
16 </tr>
17 <tr>
18 <td>length: </td>
19 <td>89:04 min.</td>
20 </tr>
21 </table>
22 <p>
23 <fieldset>
24 <legend> #1: 00:00 min. </legend>
25
26
27
28 </fieldset>

150 7 Navigation and Automated Indexing

29 <fieldset>
30 <legend> #2: 09:58 min. </legend>
31
32
33
34 </fieldset>
35 <fieldset>
36 <legend> #3: 10:23 min. </legend>
37
38
39
40 </fieldset>
41
42 .
43 .
44 .
45
46 <fieldset>
47 <legend> #55: 87:32 min. </legend>
48
49
50
51 </fieldset>
52 </body>
53 <html>

We have implemented the automated html script generation in order to provide
visual representations of the recorded lectures in our web archive. In order to produce
a more printer friendly document, the script should rather by generated in the form
of a pdf or similar document type, which can be done by generating pages including
a single screenshot for each index.

7.6 On The Fly Analysis

Criterion C4c: Annotations associated with slides (or other elements) in a way that
guarantees that annotations disappear when a slide is changed and are made visible
again when returning to that slide later during presentation, requireindices to be
available during a live lecture. However, our detection and classification algorithms
are designed to be performed after the recording process is finished and all mes-
sages are available in advance. Hence, we must adapt the automated analysis to be
performed on the fly while the presentation is still in progress. A suitable index com-
putation algorithm must be able to determine useful indices by processing a stream
of sequential messages and decide not only where to set indices, but where to set
meaningful indices, and this in an realtime fashion.

Essentially, the automated post-processing consists of 3 phases:

1. Derive Potential Indices

2. Classify Indices

3. Compute Thumbnails & Screenshots

The first phase , the computation of the sizes of the framebuffer updates in order to
derive potential indices, can be transferred to online processing straightforwardly. As

7.6 On The Fly Analysis 151

each message must be parsed by the TTT for recording and transmission purposes
anyway, each rectangle header is read and the affected area can be calculated. Com-
bining updates of almost identical timestamps (as is done during post-processing)
causes a short delay of several hundred milliseconds only.

In the second phase the identified potential indices are classified to determine
a meaningful selection. The offline classification algorithm analyzes sequences of
indices following each other at short delays. However, if messages are received from
a stream instead of being available a priori, it is not always evident when a sequence
terminates. The classification depends on the applied thresholds. We have suggested
an animation detection threshold of 10 seconds, which is combined with a sequence
duration threshold of 5–10 seconds or a sequence length threshold of 5–10. A potential
index (exceeding a given slide detection threshold) can be classified at least after the
maximum duration of a sequence that is still classified as slide skipping (all longer
sequences must be classified as animations). This duration is either the sequence
duration threshold and thus 10 seconds, or a sequence of 10 potential indices (the
sequence length threshold), which have a maximum delay of 10 seconds (animation
detection threshold), and thus 90 seconds (although rarely reached in practice). For
on the fly classification, the approach of examining the duration of a sequence is
evidently better suited.

Nevertheless, we discuss fast termination of the other approach as well. Commonly,
the delays between two consecutive indices are much shorter (in the case of anima-
tions or skipped slides) or much longer (for static slides) than the threshold of ten
seconds. Static slides, which generate a single potential index only, can be classi-
fied after 10 seconds (as is the case for the other classification approach), because
the animation detection threshold is exceeded and thus the “sequence” consists of
a single index only. Real animations cause many potential indices with very short
delays at high probability and therefore will exceed the sequence length threshold
very soon. For the recorded simulator usage, which we have discussed in Section 7.4,
a density of 5–15 potential indices per second is not uncommon. In this case, the
classification can be achieved after one or two seconds (and thus even faster then
the other approach which always must wait until the animation duration threshold
of 10 seconds has passed). Skipped slides are commonly classified after no more than
15–20 seconds, because skipped slides may cause some potential indices (commonly
2–4 with very short delays) after which a pause follows that exceeds the animation
detection threshold of 10 seconds. Therefore, a classification by examining the length
of a sequence by the number of the included potential indices is practically achieved
in less than 30 seconds, and for animations typically in less than 5 seconds. Note
that this is unproblematic for the post-processing, because the offline computation
is not performed in a timeline fashion according to the logged timestamps and can
rely on all messages being available in advance.

A slightly delayed on the fly index computation is acceptable because immediate
usage of newly created back references is not very reasonable. They either refer to
the currently displayed slide or to one which was shown recently for a very short
time span only and hence cannot be very important and will contain only a few, if
any, annotations.

152 7 Navigation and Automated Indexing

A sequence that ends within the sequence duration threshold or the sequence length
threshold is assumed to be caused by skipped slides, opening a new application win-
dow or delayed messages due to heavy server or network load and thus the last index
is considered to be valuable. A sequence is classified to be (part of) an animation if
it exceeds the threshold. Animations can last longer, but only the start point and
thus the first index is classified as important. As soon as the algorithm assumes that
an animation is in progress, it can drop any further potential indices (exceeding the
slide detection threshold) until the end of the animation is detected by a decreasing
rate of framebuffer updates. Keeping in mind that we want to allow teachers to ac-
cess annotated slides during the presentation, it is doubtful whether past animations
should be accessible at all. If not, animations are simply ignored. They could also
be treated as short sequences, meaning that the last index in the sequence will be
classified as suitable and thus the final framebuffer at the end of an animation with
all annotations would be accessible. However, as it is unsolved how to guess the
content and intention of an animation, it is not possible to determine if a suitable
snapshot should be achieved at the entry point, the end or any position somewhere
in between.

Fig. 7.17. TTT player with thumbnail overview

A thumbnail overview (Figure 7.17 to the left) is a meaningful representation of in-
dices. It can be updated dynamically whenever a new index is detected or an existing
one should be replaced due to a higher classified index. As a perpetually changing
index overview may confuse the teacher, replacing should be reduced to a minimum.
This is achieved by delayed updating, which perfectly fits with the delayed index
detection and classification suggested above. However, the teacher might expect in-
stant feedback whenever showing a new slide. Therefore a new thumbnail is added
immediately whenever the teacher switches to the next slide, but any potential in-
dices appearing shortly afterwards are not displayed until fully classified. This gives
immediate feedback during an ordinary presentation (with an adequate amount of

7.6 On The Fly Analysis 153

time between slides), but does not confuse presenters due to bustling activity in the
thumbnail index during animations or while skipping slides. Similarly, each created
annotation is added to the current thumbnail with a little delay, because there is no
necessity to display them immediately as they are also visible in the main window
and the teacher is obviously still occupied with annotating the current slide. As the
intention is to access previously made annotations, it is advisable not only to index
slide changes, but also to make use of the side-effect indices that are caused by re-
moving all annotations. As a result each slide can have several sets of annotations,
which refer to different remarks by the teacher and can be accessed individually if
represented by one thumbnail per set.

The third phase of the post-processing algorithm computes thumbnails and screen-
shots by fast replay of all update messages and copying the framebuffer state (i.e.
the contained pixels) for each timestamp that represents an index. The online al-
gorithm must store screenshots during index computation, because the framebuffer
is modified by every (subsequent) update and reclaiming overwritten pixel values
demands the session to be in memory and the usage of a second framebuffer, which
is inefficient. Instead, we store a (scaled) screenshot for each potential index and
delete it if the index is rejected afterwards. In order to avoid performance problems
caused by storing many screenshots within a few seconds, it is advisable not to store
a screenshot immediately after receiving a potential index, but to wait until the next
framebuffer message arrives. This offers the possibility of observing the next header,
which may reveal that the new message should be included in the screenshot due
to an identical timestamp, or alternatively may result in the generation of a more
suitable index to replace the current one. However, as an update can contain several
rectangles but the RFB protocol does not enable access to rectangle headers without
parsing all preceding rectangles, either only the first rectangle can be observed or
rectangles must be parsed and buffered but not immediately displayed. Screenshot
generation is reduced further whenever the detection algorithm has classified the
currently read sequence as animation and thus all potential indices can be ignored
until the end of the sequence is determined. Note that our optimized file format that
provides fast access to rectangle headers is not valid here, because the input stream
is the message stream received from a VNC server and thus obeys the original RFB
protocol.

7.6.1 Live Replay

During offline playback a recorded presentation is replayed dynamically in the same
way as it was presented in the lecture hall including the teacher’s verbal narration.
The narration is obviously not needed if accessing a previous index during a live
lecture. Dynamic replay of recorded application usage may be meaningful to show
the behavior of an application again. However, in most cases it is likely easier and
less confusing to rerun the application once more instead of replaying the recorded
version, because replaying does not allow interaction with the recorded applications
and the index might not refer exactly to the position the teacher had in mind. This is
also the case for animations. Furthermore, if accessing an annotated slide, teachers
expect annotations to be displayed instantaneously rather than to appear after a

154 7 Navigation and Automated Indexing

while. As TTT annotations are handled on a separate layer, they can be reapplied
in the same way as when new annotation are created. Since there is no difference
between replayed and newly created annotations, the teacher can mix and edit all
annotations as the need arises.

Dynamic replay demands keeping the entire recorded session in memory, because
reading from a file while still recording to it is error-prone and also the replay
itself must be recorded again. In most cases the much easier approach of replaying
static screenshots is sufficient. Commonly, the predominant part of each lecture
consists of a slide presentation and other applications or animations are only shown
on demand. Regarding the results of the classification algorithm allows an annotated
screenshot, or more precisely a screenshot of the (previously) presented content plus
the corresponding annotations on a separate layer, to be shown whenever an index is
classified as slide, and the dynamic replay of animations or other content otherwise.

7.7 Interlinkage of Annotations and Slides

TTT annotations are not bound to the presentation software but are applied to the
desktop as a whole and hence any application can be annotated. While replaying a
previously recorded session, annotations are displayed according to their timestamps
in the same timeline fashion as they were recorded. For sequential playback the mes-
sage timestamps are sufficient. If accessing a certain slide, for instance via thumbnail
overview, the corresponding state of the framebuffer is computed and since then any
subsequent messages are again replayed sequentially including all annotations (of
the currently shown slide).

Recall that [Lauer and Ottmann, 2002] postulate that during live presentations an-
notations should be associated with slides so that annotations disappear when a
slide is changed and are made visible again when returning to that slide later (which
is our Criterion C4c). The first aspect of removing the current annotations whenever
switching to another slide is supported by the TeleTeachingTool by applying auto-
mated removal of annotations triggered by the keys commonly used to switch slides
(the arrow keys and the page up/page down keys).

Furthermore, annotations can be linked to indices according to their timestamps. An
interlinkage to indices (or any other timestamps) can be achieved by aggregating
all annotations in the period between two consecutive indices (or a timestamp and
the next event that removes annotations) as is done to gain the annotations for the
visual representation of indices (thumbnails or script pages). On the fly interlinkage
of annotations with already computed indices is achieved by buffering annotation
events. Hence, if accessing a slide via thumbnail overview (or any other position
within the timeline) all previously made annotations that are still valid for the given
timestamp, are displayed immediately.

However, this is only a loose interlinkage, because indices are only referencing (in-
dices of) slide changes without any knowledge of slide content. A slide shown twice
during the presentation causes two independent slide indices with different sets of

7.7 Interlinkage of Annotations and Slides 155

corresponding annotations. A real association between annotations and slides (or
any other content) would even make it possible to recall corresponding annotations
whenever skipping back to previously annotated slides within the presentation soft-
ware.

7.7.1 Content Interlinkage

In order to achieve content interlinkage it is necessary to determine if the currently
displayed framebuffer matches any previously shown content. Comparing the cur-
rent framebuffer with all previous states is not applicable as every update message
modifies the framebuffer content and a session of 90 minutes comprises of several
thousand updates. However, only grave modifications are important such as switch-
ing to another slide or opening a new application. But those are identified by the
indexing algorithm and typically limited to several dozen occurrences. Therefore
framebuffer comparisons are only needed whenever a received update message is
identified as a potential index and the number of comparison partners is limited
to the already identified indices. Detecting exact matches using checksums such as
cyclic redundancy check (CRC32), is a relatively easy task. Different checksums re-
late to different framebuffers and, if chosen suitably, matching checksums should
point to equal content at high probability.

Unfortunately, such a comparison will be problematic unless the contents match
perfectly, which is not necessarily the case. Sources of inaccuracy can be a clock
or a performance monitor, which are displayed within an application or the task
bar, as well as animated banners of web pages. Also the frequently changing pointer
position is a disruptive factor (if part of the framebuffer and not treated separately by
VNC’s cursor encodings). TTT’s own annotations are stored on a separate layer, but
annotations generated by any presentation software influence the framebuffer as well.
Therefore only a high degree of covering instead of a perfect match should be used
as the comparison factor. Examinations of the computer science course “Informatik
III ” [Winter 2005/06] of Prof. Dr. Johann Schlichter (25 recordings of approx. 90
min.), revealed a content matching threshold of 1.1% differing pixels as suitable
to identify slides. Applying the same threshold to the recordings of the courses
”Compilerbau” and “Abstrakte Maschinen” [Summer 2006] by Prof. Dr. Helmut
Seidl showed less perfect matches due to the heavy usage of slide overlays during
the presentations. Such overlays are very similar as they partly contain the same
content, but nevertheless should be distinguished. Lowering the content matching
threshold to a value below 0.2% eliminated the problem. Surveying several other
recordings confirmed the lower threshold to be suitable for most lectures. However
the detection rate for the lectures of Prof. Schlichter is remarkably better when the
higher value is applied, which is caused by using a web browser showing html-based
slides instead of a designated presentation software. Slide navigation is done via
links and followed links are displayed in another color, which results in a higher
number of differing pixel values if showing the same slide twice, once before link(s)
have been clicked and then afterwards when returning to that slide. Until further
research exposes an adaptive threshold computation, a preset suitable for most cases
but adjustable for special occurrences is practicable. At least a threshold stays valid

156 7 Navigation and Automated Indexing

for a certain presentation style and thus has to be designated only once per teacher
or lecture series. Lowering the color depth before performing comparisons can also
reduce irritations.

Pixel-based comparison of several framebuffer states (screenshots) is not very efficient
due to the heavy memory usage and the high number of comparison operations
required. However, the number of effective pixel values is very limited. Analyzing
the screenshots of our automatically generated scripts demonstrated that for most
slides approximately 90–95% of the pixel values are set to the same color (assuming
a single colored background). The results of a typical lecture by Prof. Seidl are given
in Figure 7.18, which displays how much of the framebuffer is covered by the most
frequently used color for each index.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

ba
ck

gr
ou

nd
 c

ol
or

ed
 p

ix
el

s
(in

 %
)

indices

Recording: info1_2006_10_20.ttt

Fig. 7.18. Background pixels of presentations showing mainly text

Surveying lectures with slides that present content of a higher pixel variety reveal
that even very complex slides rarely contain less than 40% of background colored
pixels. The graph in Figure 7.19 corresponds to the lecture of Prof. Dr. Hans-Jürgen
Bucher that is presented in the slide overview shown in Figure 7.15. Slides that
present scanned newspaper articles or other complex pictures are evidently exposed
by lower values.

The coloring of many pixels in the same color leads to very high compression rates
even for simple and therefore fast compression schemes such as run-length-encoding.
As the majority of comparison partners represent unequal slides, the comparison
algorithm should detect and reject them as fast as possible, at best by a single
value comparison. Examination of several dozen recordings revealed the number of
background pixels to be a suitable criterion. Slides cannot match each other if the
number of pixels that are colored in the most frequently used color, which typically is
the background color, exceeds the previously mentioned content matching threshold
of 0.2% or 1.1%, because differing background pixels are a subset of all differing
pixels.

In order to determine the background color we compute a color histogram, i.e.
counting how many pixels are colored by each color. Hence, each pixel must be

7.8 Content Prediction by Color Histograms 157

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

ba
ck

gr
ou

nd
 c

ol
or

ed
 p

ix
el

s
(in

 %
)

indices

Recording: medien1_2004_02_17.ttt

Fig. 7.19. Background pixels of presentations showing very complex slides

accessed once, but this is also the case for any other comparison algorithm. At
least this can be combined with constructing additional data structures to per-
form an efficient pixel comparison, whenever required later (for instance quad trees
[Hunter and Steiglitz, 1979]). The complete comparison of all pixel values is carried
out only if the number of background pixels almost matches. Hence, the main case of
comparing non-matching framebuffer contents can be achieved in time O(w · h+ n)
in order to compute the histogram and perform the single value comparisons instead
of performing all pixel comparisons which would result in O(n ·w ·h), where w and h
denote the framebuffer width and height, respectively, and n denotes to the number
of indices.

Note that the suggested quick rejection will probably fail if color cycling or high
colored background images are used instead of a (mainly) solid background, but their
usage for VNC environments is discouraged anyway, because they result in rather bad
compression ratios and thus high bandwidth usage (Section 3.2.6). Another approach
could be a similarity hash, but a suitable hash function needs to be ascertained first.

7.8 Content Prediction by Color Histograms

Through the examination of the background color of recorded lectures we have de-
tected that the color histogram exposes information about the framebuffer content.
For simple slides over 90% of the pixels are in the background color, but more com-
plex slides achieve values of approximately 55-85%. A desktop with a taskbar, icons
and windows results in a coverage of 30-50% in the most frequently used color, and
if no color covers more than 5% of the pixel values the framebuffer represents a
fullscreen video or high colored picture. Surveying the second most frequently used
color of complex slides reveals that a value of more than 10% indicates a table or
diagram, but lower values most probably point to a slide containing a high colored
picture (e.g. a photo).

Figure 7.20 displays the analysis of one example recording (“Informatik II ”,
04/15/2005 by Prof. Seidl). It shows how much of the framebuffer is covered by

158 7 Navigation and Automated Indexing

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

ba
ck

gr
ou

nd
 c

ol
or

ed
 p

ix
el

s
(in

 %
)

indices

Recording: info2_2005_04_15.ttt

Fig. 7.20. Background pixels of presentations showing slides and simulator usage

the most frequently used color for each index. During the corresponding lecture the
desktop with some windows was visible at the beginning (up to index no. 13) and the
end (no. 50-54). The middle part consisted of a slide presentation and some slides
contained images (no. 19, 20, 23, 40 and 41). Index no. 24 was a plain whiteboard
page and thus resulted in 100% background pixels.

Further research is required in order to the possibilities of content prediction regard-
ing color histograms. In order to classify slide images (or screenshots in general), we
must determine classes of slides (and other content) first and furthermore appropri-
ate thresholds for each class must be ascertained. Additionaly, an appropriate user
interface must be designed that is capable of presenting content classes and enable
retrieval of certain content. Our lecture archive contains about 400 lectures with
approximately 10,000–20,000 slide images in total and thus is a suitable basis for
further research.

7.9 Summary

Sequential playback and timeline navigation is not sufficient to provide electronic lec-
tures of high quality. Structured electronic lectures rather provide navigation marks
in order to access certain points of interest. Screen recording offers a flexible tech-
nique for lecture recording as it allows virtually any material displayed during a
presentation to be captured but is criticized for producing unstructured electronic
lectures only. Adding some kind of structure by manual indexing during a live lec-
ture or afterwards is not in accordance with our transparent and lightweight content
production approach.

In this chapter we have presented different approaches regarding how to acquire
navigational indices for pixel-based recordings fully automated by deriving indices
from the messages of a recorded VNC session. The by-byte analysis gains meaningful
indices for homogenous presentation content but fails for inhomogeneous recordings.
With the by-area approach and the given empirically determined thresholds, slide
indices for pixel-based recordings can be generated for any of our recordings. The

7.9 Summary 159

usage of relative values instead of absolute ones as s basis for the detection algo-
rithms leads to much better results, because relative values provide some kind of
abstraction from the presented content. Applying a slide detection threshold of 20%
in combination with an error correction (i.e. accumulating messages of almost iden-
tical timestamps and dropping skipped slides) results in a slide detection rate, which
(almost) matches the real slide switches. Hence, if recording slide presentations, the
automated slide detection for pixel-based recordings produces slide indices that are
(almost) as good as those of symbolic recordings. Thus, we have eliminated one main
drawback of the screen recording approach.

A thumbnail overview gives a visual representation of indices that, in combination
with fast random access, offers an easy to use slide based navigation. Storing full
scaled visual indices enables the extraction of a script directly from pixel-based
recordings without any access to the presented source documents. As an example,
we have addressed the automatic generation of an html script by interlinking the
acquired screenshots but other document forms can be produced rather similarly.
Furthermore, we have discussed content prediction in the form of animation detec-
tion, accessing notes and sketches created via freehand drawing, and by analyzing
color histograms. An examination of the background color of recorded lectures has
revealed that color histograms give information about content, but more research is
needed to achieve suitable thresholds for content prediction and to integrate appro-
priate search and navigational features in a reasonable way. Furthermore, analysis
of dynamical content should be improved.

Another advantage of the symbolic representation is the association of annotations
with slides. However, TTT annotations, which are also stored symbolically, can be
interlinked with slide indices according to their timestamps. Therefore, the indexing
algorithm, which is originally designed for post-production only, is transferred to
on the fly usage to achieve live access to previously annotated slides. By compar-
ing framebuffer contents, the annotations can even be linked to pixel-based content
(slides images). In order to do so, we have suggested possibilities to perform efficient
screenshot comparison.

In summary, we have extended the flexible approach of preserving live lectures via
screen recording in a way that it also produces structured electronic lectures as
commonly is only possible by use of symbolic representation. Now screen recording
is no longer just a teacher friendly recording solution but also provides easy to use
and student friendly navigational features of high quality.

8

Retrieval and Metadata

Students rarely want to replay complete sessions but rather want to select those
parts that address certain topics [Zupancic and Horz, 2002, Schütz, 2003]. Besides
Random access and indexing structures, full-fledged electronic lectures must also
support appropriate retrieval features in order to locate content within electronic
lectures and databases of lectures.

For the recording of VNC sessions, [Li et al., 2000a] suggested to log key events
in order to enable retrieval of the entered text. Their intention was not to record
dedicated presentations (as we do) but rather to conserve user interactions with
the command shell or applications such as editors. Hence, the reviewing user may
see previously entered commands and can request the timestamp, when they where
entered. It is doubtful how meaningful it is to access such timestamps because the
result is already visible on screen and no additional information is given as their
recording environment only preserves the VNC session but no verbal narration.
However, it might be useful to search for a certain command (or other text) which
is not yet visible but known to be entered during the session. Such retrieval will
fail if only exact matches are presented. Consider a user entering some text and
deleting and correcting a mistyped key. This problem can be solved by normalizing
the sequence of key events, i.e. deriving the final character sequence. Furthermore,
logging of key events of desktop sessions is safety critical as any entered password
will by logged as well. Hence, we do not see key event retrieval as an adequate
retrieval feature for electronic lectures especially as typically only very little text is
entered during a presentation. Meaningful text retrieval should rather address the
presented (slide) content, either by use of metadata and textual annotations that
describe certain (parts of) electronic lectures or in the form of full text search.

In this chapter, we will explain how full text search can be in performed for pixel-
based recordings by automatically extracting a search base from electronic lectures.
Furthermore, we discuss a simple metadata model and how metadata is meaningful
in order to categorize lectures and provide cross lecture retrievability for databases
of electronic lectures.

162 8 Retrieval and Metadata

8.1 Full Text Search for Pixel-based Recordings

A major advantage of text-based electronic media is an easy to use full text search.
By specifying a search pattern, typically a string, a search engine offers a list of
all identified matches or subsequent searches offer the respectively next occurrence.
Electronic lectures that store symbolically represented data (including text) obvi-
ously can offer full text search very easily. For screen recording systems, which store
pixel data only, the presented text has to be acquired somehow. One way would
be to make use of the (textual) sources of the presentation, which commonly are
symbolically represented. The so obtained textual content must be logically inter-
linked with the pixel-based recording. If a teacher presents her/his slides strictly
in order, an automated process may extract and link textual content to slide in-
dices of the recording. However, if the teacher skips back to previously shown slides,
accesses any slide directly (e.g. by entering the corresponding slide number) or if
the indices do not exactly correspond to the presented slides, for instance if a slide
was not detected by the indexing algorithm, such an automated process probably
must fail. Furthermore, as screen recording allows arbitrary applications to be used
during presentations, there may be various different source documents and formats.
This restricts the practicability of providing text retrieval by use of the presented
source documents as the process can hardly be automated and manual processing is
laborious and thus discouraged for lightweight lecture recording.

8.1.1 Text Extraction

Instead of accessing the source documents that were shown during the live presenta-
tion, we rather make use of the recorded pixel-based slide images. Slide images are
independent of the formats of the source documents. Hence, any presented content
can be handled in the same way, which is preferable for our flexible recording ap-
proach. Slide images are acquired by automated indexing and storing screenshots of
the corresponding framebuffer states as described in Chapter 7. In fact, the pages
of an automatically generated html script (Section 7.5.1) already provide such index
screenshots.

Optical character recognition (OCR) (also known as digital character recognition)
algorithms are designed to translate images of handwritten or typewritten text into
machine-editable text. Via sophisticated pattern matching, pictures of characters are
translated into a standard encoding scheme representing them (e.g. ASCII or Uni-
code). Traditional character recognition algorithms are designed for printed sources
(usually captured by a scanner). These algorithms are optimized for scanned high
resolution images of 300–400 dpi (dots per inch). As scanning is typically an error-
prone process, error correction techniques do a re-alignment to ensure a horizontal
character layout and try to compensate for shades, spots or other visual irritations.

In comparison to high resolution scans, screenshots of typically 1024×768 pixels offer
a rather low resolution (comparable to 72–100 dpi in printed sources), which may im-
pair text recognition results. On the other hand, screenshots are digital sources with
exact horizontal alignment and without the typical irritations caused by scanned

8.1 Full Text Search for Pixel-based Recordings 163

analog documents. In a brute force test we have applied commercial OCR soft-
ware applications (Scansoft’s1 OmniPage Pro 11 [OmniPage, 2006] and ABBYY’s
FineReader OCR 7.0 [Finereader, 2006]) to the pages of our automatically created
script. We achieved mostly good results for textual content but results for formulas
and sketches were rather bad. Badly recognized content is not very useful in the orig-
inal intention of OCR software, which is to provide editable, printable and re-usable
digital documents (as copies of analog sources). However, our intention is not to edit
or present the extracted data but to acquire a search base for retrieval purpose. Stu-
dents will commonly specify keywords as search patterns and not formulas. Hence,
our search base should contain any meaningful text that is likely to be searched for.
Any other words or characters that are stored in the search base are unproblematic,
even if special characters and “strange signs” are included. For example, take a look
to the following ASCII text that was generated by applying character recognition to
the slide displayed in Figure 8.1:

Exkurs 2: Vollständige Verbände Eine Menge DD mit einer Relation

E [D ID ist eine partielle Ordnung falls für allen, b, c E ID gilt:

n E n Refexivität a E b b E a a=b Anti ? Symmetrie a E b 1, a E c

Transitivität Beispiele: 1. D = 2{ ◦’‘l mit der Relation : Ä.b - aG

Fig. 8.1. Slide that corresponds to OCR output

Most text, including keywords that possibly will be searched, for instance
“Verbände”, “Reflexivität” or “Symmetrie”, are recognized correctly. However, the
useless character sequences that are deduced from the formulas or the figure at the

1 Scansoft recently changed its name to Nuance but the OCR software is still sold as
Scansoft’s OmniPage

164 8 Retrieval and Metadata

bottom of the slide are only presented here for demonstration purpose but will nor-
mally be hidden in the search base and thus will never be visible to students and
thus cannot confuse students. In fact, for retrieval purposes it is sufficient to obtain
the information whether a sequence is included in a certain part of the search base or
not. Only the statement “is included” leads to search results. Unrecognized content
that is never queried is irrelevant but it is unproblematic if such content is stored
in the search base. Words that are potentially searched for but are not recognized
correctly will not be found and thus cause fewer search results. However, students
might be used to getting not all possible search results, because this is also the case
for many other retrieval systems (consider web searches) but at least the presented
results are relevant.

Extracting ASCII text for each slide enables slide-based search results. Hence, search
results can refer to the pages that match the search pattern but typically also an
emphasizing of the search result within the page is desirable, which requires the
corresponding coordinates. Sophisticated OCR algorithms can not only extract the
characters but also the layout of the input documents. In order to store the layout,
OCR applications generally support output formats that are designed for word pro-
cessing purposes, e.g. Rich Text Format (RFT), various Microsoft Office formats
or the Portable Document Format (PDF). Unfortunately, these formats typically do
not contain absolute coordinates but rather blocks of text with assigned font types,
styles and sizes. The layout of words is relative within each block and the blocks
are positioned relative to other blocks. Hence, calculating absolute pixel coordinates
demands the complex parsing and processing of a word processor, which probably
is overkill for our purpose.

Some (mostly more expensive) OCR applications also support Extensible Markup
Language (XML) as an output format (not to be mistaken with Microsoft’s WordML,
which also uses the file extension “.xml”). Currently, we use Scansoft’s OmniPage
Pro 14 Office [OmniPage, 2006], which generates XML output files that include the
coordinates and the dimensions of each recognized word (or character, depending on
the set properties). Note that for our sources the recognition results of ABBYY’s
FineReader OCR 7.0 [Finereader, 2006] are better but FineReader OCR 7.0 does
not support XML output. Hence, we do not suggest OmniPage to be the best can-
didate in order to extract a search base from slide presentations but will rather
discuss OmniPage’s XML output format as an example. Other OCR applications
with appropriate output formats may be used as well.

Now take a look at the XML file that corresponds to the slide shown in Figure 8.1:

<?xml version="1.0"?>
<!--XML document generated using OCR technology from ScanSoft, Inc.-->
<document ssdoc-vers="SSDOC1.0" ocr-vers="OmniPage Pro 14"

xmlns="x-schema:http://www.scansoft.com/omnipage/xml/ssdoc-schema2.xml">
<page width="4896" height="3523" x-res="300" y-res="300" bpp="1"

orientation="0" skew="0" filename="Optimierung_2006_10_17.44.png" language="1">
<region reg-type="horizontal">

<rc l="643" t="425" r="4181" b="2885"/>
<paragraph para-type="text" align="left" left-indent="0" right-indent="0"

start-indent="0" line-spacing="336">
<ln baseline="600" ff="Garamond" fs="900">

<wd l="696" t="485" r="1210" b="605">Exkurs</wd>
<wd l="1262" t="490" r="1373" b="605">2:</wd>
<wd l="1742" t="485" r="2664" b="653">Vollständige</wd>

8.1 Full Text Search for Pixel-based Recordings 165

<wd l="2731" t="485" r="3427" b="605">Verbände</wd>
</ln>

</paragraph>
<paragraph para-type="text" align="left" left-indent="0" right-indent="0"

start-indent="0" line-spacing="156">
<ln baseline="946" ff="Bookman Old Style" fs="500">

<wd l="691" t="869" r="912" b="950">Eine</wd>
<wd l="960" t="869" r="1306" b="984">Menge</wd>
<wd l="1344" t="864" r="1426" b="950">DD</wd>
<wd l="1464" t="869" r="1637" b="950">mit</wd>
<wd l="1670" t="869" r="1930" b="950">einer</wd>
<wd l="1963" t="869" r="2395" b="950">Relation</wd>
<wd l="2558" t="874" r="2635" b="946">E</wd>
<wd l="2846" t="864" r="2928" b="950">][D</wd>
<wd l="3082" t="864" r="3163" b="950">ID</wd>
<wd l="3312" t="869" r="3442" b="950">ist</wd>
<wd l="3470" t="869" r="3682" b="950">eine</wd>
<wd l="2147483647" t="2147483647" r="0" b="0">partielle</wd>

</ln>
<ln baseline="1104" ff="Bookman Old Style" fs="500">

<wd l="691" t="1027" r="1166" b="1138">Ordnung</wd>
<wd l="1210" t="1022" r="1416" b="1109">falls</wd>
<wd l="1459" t="1022" r="1603" b="1109">für</wd>
<wd l="1642" t="1027" r="1934" b="1123">allen,</wd>
<wd l="1968" t="1022" r="2045" b="1123">b,</wd>
<wd l="2078" t="1051" r="2122" b="1109">c</wd>
<wd l="2170" t="1042" r="2232" b="1114">E</wd>
<wd l="2280" t="1022" r="2362" b="1109">ID</wd>
<wd l="2400" t="1027" r="2587" b="1142">gilt:</wd>

</ln>
</paragraph>
<paragraph para-type="text" align="left" left-indent="504" right-indent="0"

start-indent="0" line-spacing="192">
<ln baseline="1560" ff="Times New Roman" fs="600" char-attr="italic">

<wd l="1229" t="1507" r="1277" b="1565">n</wd>
<wd l="1330" t="1488" r="1406" b="1560" ff="Bookman Old Style" fs="500"

char-attr="non-italic">E</wd>
<wd l="1454" t="1507" r="1502" b="1565">n</wd>
<wd l="2147483647" t="2147483647" r="0" b="0">Refexivität</wd>

</ln>
</paragraph>
<paragraph para-type="text" align="left" left-indent="504" right-indent="0"

start-indent="0" line-spacing="192">
<ln baseline="1752" ff="Times New Roman" fs="600" char-attr="italic">

<wd l="1229" t="1699" r="1277" b="1757">a</wd>
<wd l="1330" t="1680" r="1406" b="1752" ff="Bookman Old Style" fs="500"

char-attr="non-italic">E</wd>
<wd l="1454" t="1670" r="1502" b="1757">b</wd>
<wd l="1642" t="1670" r="1690" b="1757">b</wd>
<wd l="1742" t="1680" r="1819" b="1752" ff="Bookman Old Style" fs="500"

char-attr="non-italic">E</wd>
<wd l="1862" t="1699" r="1910" b="1757">a</wd>
<wd l="2256" t="1670" r="2530" b="1757">a=b</wd>
<wd l="2770" t="1670" r="2990" b="1757">Anti</wd>
<wd l="3029" t="1723" r="3110" b="1728"> </wd>
<wd l="3149" t="1675" r="3662" b="1790">Symmetrie</wd>

</ln>
</paragraph>
<paragraph para-type="text" align="left" left-indent="504" right-indent="0"

start-indent="0" line-spacing="192">
<ln baseline="1944" ff="Bookman Old Style" fs="600" char-attr="italic">

<wd l="1229" t="1891" r="1277" b="1949" ff="Times New Roman">a</wd>
<wd l="1330" t="1872" r="1406" b="1944" fs="500" char-attr="non-italic">E</wd>
<wd l="1454" t="1862" r="1502" b="1949" ff="Times New Roman">b</wd>
<wd l="1642" t="1862" r="1690" b="1949" fs="500" char-attr="non-italic">1,</wd>
<wd l="2251" t="1891" r="2299" b="1949" ff="Times New Roman">a</wd>
<wd l="2352" t="1872" r="2429" b="1944" fs="500" char-attr="non-italic">E</wd>
<wd l="2477" t="1891" r="2520" b="1949" ff="Times New Roman">c</wd>
<wd l="2147483647" t="2147483647" r="0" b="0" ff="Times New Roman">Transitivität</wd>

</ln>
</paragraph>
<paragraph para-type="text" align="left" left-indent="2592" right-indent="288"

166 8 Retrieval and Metadata

start-indent="-2592" line-spacing="276">
<ln baseline="2299" ff="Bookman Old Style" fs="500">

<wd l="691" t="2203" r="1272" b="2338">Beispiele:</wd>
<wd l="691" t="2467" r="763" b="2549">1.</wd>
<wd l="898" t="2462" r="979" b="2549">D</wd>
<wd l="1022" t="2506" r="1114" b="2534">=</wd>
<wd l="1157" t="2443" r="1253" b="2549">2{</wd>
<wd l="1325" t="2443" r="1445" b="2525">◦’‘l</wd>
<wd l="1488" t="2467" r="1670" b="2549">mit</wd>
<wd l="1704" t="2467" r="1877" b="2549">der</wd>
<wd l="1915" t="2467" r="2347" b="2549">Relation</wd>
<wd l="2635" t="2496" r="2645" b="2549">:</wd>
<wd l="2832" t="2443" r="3014" b="2539" char-attr="italic">Ä.b</wd>
<wd l="3806" t="2515" r="3821" b="2539" char-attr="italic">-</wd>

</ln>
<ln baseline="2760" ff="Arial Narrow" fs="500" char-attr="italic">

<wd l="3307" t="2482" r="3408" b="2779">aG</wd>
</ln>

</paragraph>
</region>

</page>
</document>

The <wd> tags reveal the coordinates of recognized words (character sequences)
by specifying the “l” (left), “t” (top), “r” (right) and “b” (bottom) parameter
of the following character sequence. Note that the parameter values correspond to
the resolution that is specified in the <page> tag and therefore must be translated
into the pixel resolution of the screenshots. Furthermore, the <page> tags give the
mapping of the recognized text to the slide indices. The other tags are not required
for our intention of emphasizing the search results within slide images.

Fig. 8.2. Emphasizing search results and the search pattern “objekt”

In the TTT environment, emphasizing is done by placing highlight annotations au-
tomatically, for instance like those displayed in Figure 8.2. As users should not be
forced to enter entire words, we perform substring searches. Therefore it is advisable
not only to highlight complete words that contain the search pattern but also to
mark the search pattern within that word, for instance by underlining it. Without
marking the search pattern, it might not be evident at a glance why the system
presented a particular search result. If the search pattern matches the beginning of
a recognized word and/or is a semantical subword as “objekt” in Figure 8.2, it is
obvious to the user why this result is presented but consider a search for “paris” and

8.1 Full Text Search for Pixel-based Recordings 167

receiving “comparison” as result. Obviously “comparison” is not the expected result
but due to the underling it is clear why it is presented. Otherwise the user might be
irritated by such a result.

A problematic aspect of underlining the search pattern is that the XML file only
specifies the absolute coordinates and dimensions of the entire word and not of the
specific substring we want to underline. OmniPage also supports coordinates per
character but this results in much larger XML files (approx. 50 times larger) as one
<wd> tag must be specified for each character. We rather suggest to interpolate the
required coordinates. If assuming characters of equal widths this is done by dividing
the width of the recognized word by its length, i.e. the number of characters, in order
to achieve the character width in pixels and then adding that amount n times to
x-coordinate of the word (the “l” parameter of the <wd> tag), where n is the position
within the word minus one. As a result we achieve the x-coordinate of the beginning
of the matched substring. The end is determined similarly and the y-coordinates
are given by the “b” parameter of the <wd> tag. Note that some additional space
is added between the emphasized characters and the underline (as well as for the
border of the highlighting annotation).

Such interpolation will slightly misplace the underline, because typically proportional
fonts are used (instead of fixed size fonts) and hence, the width of characters vary.
Regarding the character width for several fonts requires knowledge of the applied
font (which probably is provided by the OCR software) and also knowledge of any
character widths of any possible fonts and therefore is too complex considering the
issue. Since the letters “m” and “w” are typically wider for any font than “i” or “l”
(with only minor differences between fonts), we rather suggest interpolation by use
of well defined default widths instead of one width for all letters. The following table
lists the proportional widths (of Java’s default “Serif” font under SuSE Linux 9.2):

! " # $ % & ’ () * + , - . / 0 1 2

0.5 0.4 0.6 1.0 1.0 1.1 1.1 0.4 0.5 0.5 0.8 1.3 0.4 0.9 0.4 0.8 1.0 1.0 1.0

3 4 5 6 7 8 9 : ; < = > ? @ A B C D E

1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.4 1.3 1.3 1.3 0.8 1.4 1.2 1.0 1.1 1.2 0.9

F G H I J K L M N O P Q R S T U V W X

0.9 1.2 1.2 0.5 0.7 1.1 0.9 1.4 1.2 1.2 0.9 1.2 1.1 0.9 1.1 1.2 1.1 1.5 1.1

Y Z [\] ^ _ ‘ a b c d e f g h i j k

1.1 1.0 0.5 0.8 0.5 1.0 0.8 1.0 0.9 1.0 0.8 1.0 0.8 0.6 0.9 1.0 0.5 0.6 1.0

l m n o p q r s t u v w x y z { | } ~

0.5 1.5 1.0 1.0 1.0 1.0 0.7 0.8 0.6 1.0 0.9 1.3 0.9 0.9 1.0 0.6 0.6 0.6 1.3

With these proportional character widths or relative widths the underline for the ex-
ample “comparison”, which has a relative width of 9.2, can be computed by the rel-
ative widths of the three substrings “com” (3.3 ≈ 35.9%), “paris” (3.9 ≈ 42.4%) and
“on” (2.0 ≈ 21.7%) instead of the fixed sizes, which would be 3:5:2 or 30%:50%:20%
(since “comparison” has 10 characters). The five letters of “paris” are only slightly
wider than the three letter substring “com”.

168 8 Retrieval and Metadata

8.1.2 Interlinkage of Search Base and Indices

Applying optical character recognition to automatically generated slide images deliv-
ers a textual basis that is required to provide full text search. The logical interlinkage
between the extracted text and an electronic lecture is automatically given by the
slide indices. The indices provide the partitioning of the electronic lecture and thus
correspond to the produced slide images. The output of the optical character recog-
nition also corresponds with the slide images and thus the slide indices as well.
Hence, each portion of the search base is associated with an index. If using the XML
format of OmniPage, each <page> tag contains the recognized characters for a single
page and subsequent <page> tags correspond with subsequent indices. If storing the
output of the OCR application as ASCII text either one file per slide can be stored
or, as we prefer due to resulting in fewer files, one file that includes the text of all
pages and individual pages are divided by a form feed (ASCII character 0x0C hex).

The retrieval algorithm returns the indices of the slides where the corresponding text
matches the search pattern and, if coordinates are provided, also emphasizes the ap-
propriate areas. As each search can be performed in a few milliseconds, the search
results are updated while the user enters a keyword. Therefore it is not necessary
to enter entire words and start the search process by pressing a dedicated search
button. In fact, the user gets permanent feedback after each additionally entered
character and hence can stop whenever an appropriate result is presented or the
entered character sequence cannot be found. The TeleTeachingTool supports access-
ing the matching indices either by use of a clickable thumbnail overview that only
displays the matching pages as well as by performing the search multiple times and
thus accessing the respective next occurrence. The matching words are emphasized
within the presented slides and the thumbnails.

The described search function is slide-based. However, we can make it more fine-
grained. Hereunto, we need adequate indices to divide the recording into smaller
sections. Presentations with overlays generate more frequent framebuffer changes,
all of which can be used as indices not only for navigation but for splitting sections.
As suggested in Section 7.4.2, the RemoveAllAnnotations events also offer a more
fine grained partition.

Indices provide the logical interlinkage between text and the recorded desktop.
Search results are slide indices and thus we get the beginning of the teacher’s
comments about a slide (matching the search pattern), but not the precise com-
ments about the searched string. The built-in annotation system of the TTT offers
a possibility of an interlinkage with the audio recording. The highlighting feature
is generally used for marking words or text parts, which the teacher comments on
at exactly that moment. And as the presenter only points out important elements,
we may have localized comments about interesting words, which are more likely to
be searched. Using timestamps of highlighting events and applying text recognition
to highlighted areas results in text that can be linked to the timestamps of the
corresponding annotation events and thus possibly to audio comments about the
highlighted text, which provide more precise search results. Pointer stop positions
may also be used to create such interlinkage since the pointer can be used to point
to something. Although detection via pointer events or animation detection can be

8.1 Full Text Search for Pixel-based Recordings 169

done, it is hard to identify which area the pointer is pointing to or if it is pointing
to something important at all. Therefore results may be very error-prone and thus
are not useful.

Another possibility for interlinking the verbal narration and presented textual con-
tent would be to use an audio transcript of the recorded audio stream, i.e. a textual
extraction acquired by speech recognition. As [Hürst, 2003] suggests, such an audio
transcript is another retrieval option for multimedia-based data such as an electronic
lecture. Speech recognition typically results in worse recognition rates than character
recognition but, analogous to the search based that is produced by character recogni-
tion, badly recognized words will not harm the retrieval process, because such words
will typically not be searched and thus will never be presented to the student. Due to
the redundancy in spoken words and as recognition errors mostly affect small filling
words, the influence of recognition errors for retrieval purposes is rather negligible
[Garofolo et al., 2000, Hauptmann and Wactlar, 1997, Thong et al., 2000].

8.1.3 Recognition Improvements

In order to improve the recognition results, we have tested the influence of differ-
ent input formats. The input to the OCR software is screenshots as given by the
automatically generated html script. However, as the pages of the script might be
annotated but annotations may confuse the text extraction process if annotations
overlap with characters, we will not use the script pages but store slide images that
are optimized for character recognition without irritating annotations and mouse
cursors (unless recorded pixel-based as part of the framebuffer).

Additionally we have tested different color formats. The outputs of the tested
OCR applications (Scansoft’s OmniPage Pro 11 [OmniPage, 2006] and ABBYY’s
FineReader OCR 7.0 [Finereader, 2006]) were very similar for full colored and
grayscale sources. Black and white input offers better contrasts, which reduces the
error rate. Unfortunately all characters written in light colors were reduced to white
and therefore were no longer distinguishable from the background. Hence, if using
black and white images, the contrasts between pixels must be respected in order to
keep all characters visible, which is problematic if using differently colored texts and
backgrounds. Note that these tests were performed during our earlier research at the
Universität Trier. The later long term usage at the Technische Universität München
exposed that the results of Scansoft’s OmniPage Pro 14 Office, which supports XML
outputs, are less good if compared to FineReader.

These results are application dependent and different pieces of OCR software may
reveal other results. Hence, we cannot state the perfect input format for optical
character recognition. However, this is not the intention of our research and especially
not of this thesis. We rather want to demonstrate that full text search does not
necessarily require storing electronic lectures symbolically or to access the presented
source documents.

170 8 Retrieval and Metadata

8.1.4 String Distance Metric and Stemming

In order to match incorrectly recognized search words with a user’s query or
to correct misspelled or mistyped user queries, we have tested the well-known
Damerau-Levenshtein-Metric [Damerau, 1964, Levenshtein, 1966], which is used to
determine how similar two strings are. The edit distance between two strings is
defined to be the minimum number of operations needed to transform one string
into the other, where an operation is an insertion, deletion, or substitution of a
single character. However, this resulted in too many unwanted results, especially
if regarding that the user’s query and the recognized text may contain errors.
Consider, for example, the words “Zelle” (German word for “(memory) cell”)
and “Keller” (German word for “stack”), which are often used in the compiler
construction lectures. The edit distance is only two:

“Zelle” −→substitute “Kelle” −→insert “Keller”

Now recall that we perform a substring search. Hence, the distance between “Zelle”
and “Kelle[r]” is only one due to omitting the last character. Although one is the
smallest possible distance of the Damerau-Levenshtein-Metric, such results probably
irritate the user, especially if the search patterns are not marked with the search
results or if the search results are not emphasized at all. Similar irritations are
achieved by applying “stemming” algorithms, which determine a stem form of a
given inflected or derived word form.

Presenting incorrect or unwanted results may confuse the student (as is the case for
meaningless indices). As our first priority is to present meaningful search results, it
is better to find fewer but correct results, than to find any results but also present
some irrelevant and thus confusing ones. Hence, we prefer exact matches. However,
special characters (including unprintable ones) may be ignored and German umlauts
may be treated like the corresponding standard vocals.

8.1.5 (Semi-)Automated Workflow

Our aim is to provide full-fledged electronic lectures by a lightweight lecture recording
process. Hence, the extraction and interlinkage of a search base should be automated
as far as possible. The indexing and the generation of the slide images, which are
used as input files for the OCR software, is automated by the TeleTeachingTool as
described in Chapter 7. The recognition process is also automated within the OCR
software. All slide images are selected as input. Then the automated recognition
algorithm is applied. Optionally the user can correct the recognition results manually.
Finally the results are stored in the selected file format. Nevertheless, the OCR
application must be started and the reading of the input files must be initiated
manually.

Instead of using an external OCR application, an integrated solution would rather
by preferable. However, the results of sophisticated commercial OCR applications
are remarkably better (due to the applied algorithms and large dictionaries of up to

8.2 Lecture Profiling and Metadata 171

Fig. 8.3. Workflow to integration a search base

100,000 words) if compared to freely available optical character recognition solutions
and moreover many less advanced algorithms must be trained before achieving good
results. Other solutions to increase automation would be an appropriate program-
ming interface to an external OCR application or the usage of batch processing,
which is offered by some commercial OCR applications. Due to the high pricing
of such OCR applications, we currently have no access to appropriate systems and
therefore cannot test these approaches.

Nevertheless, the current semi-automated solution of the TeleTeachingTool inte-
grates full text search functionality into pixel-based recordings within a few minutes
demanding a few manual operations only (mainly limited to initiating certain tasks).
By providing full text search for electronic lectures that are produced by the flex-
ible screen recording approach, we have eliminated another main drawback when
compared to the symbolic recording approach.

8.2 Lecture Profiling and Metadata

VNC session recording preserves the presented desktop, which is sufficient for replay-
ing a recorded presentation. However, in order to produce and also to describe asyn-
chronous electronic lectures some additional information, commonly called metadata,
is required, for instance the name of the teacher and the topic of the lecture or pre-
sentation. As lectures are typically part of a course or lecture series, each electronic
lecture should also reveal the corresponding course as well as a sequence number or
date so that the lectures can be classified and arranged in order. Some metadata,
for instance the duration of the lecture, are given implicitly by the recorded session
(the duration is obviously the distance between the smallest, typically zero, and the
largest timestamp). Other data must be specified explicitly, for instance the teacher’s
name.

172 8 Retrieval and Metadata

8.2.1 Metadata by Lecture Profiling

In order to initiate a recording process, several parameters, e.g. the VNC server
exporting the desktop to be captured, the color depth or enabling/disabling video
recording or transmission, must be specified. The system should offer meaningful
predefined values as far as possible and if the recording environment preserves the
last used parameters, the values need to be specified only once. However, if the
same recording setup is used by several people for multiple lectures all demanding
different parameters, errors are likely to occur. Even if unable to avoid hardware
related failures, like pulled plugs or empty batteries in microphones, the recording
software should at least give suitable guidance on the software side to reduce errors.
Therefore we suggest lecture profiling.

A lecture profile is a set of parameters, which contain settings that are essential for
recording purpose. Additionally, a profile may contain useful metadata like the title
of the lecture (series) and the teacher’s name. As the ease of use is very important
a suitable user interface for lecture profiling is required. We have implemented a
concise lecture profiling user interface for the TeleTeachingTool (Figure 8.4). When-
ever a lecture of a certain lecture series should be recorded, it is sufficient to select
the appropriate entry from the list of all previously used lecture titles and all other
parameters will be automatically loaded again. A designated loading and storing
of profiles via menus or buttons is not encouraged as novice users should not be
overloaded with terms and means of lecture profiling but should rather be able to
record something forthright and notice later that parameters are stored for their
convenience.

Fig. 8.4. Lecture Profiling GUI of the TeleTeachingTool

In order to achieve consistent naming of files, our profiling mechanism generates
titles and filenames automatically depending on the title of the lecture, the teacher’s
name and the current date. Subsequent recordings are distinguished by an addi-
tional sequence number at the end of the filename, which is useful, for instance, if
a teacher prefers to make a pause during a lecture or if recording a series of talks
during seminars or conference events. Not only the names of the recordings should

8.2 Lecture Profiling and Metadata 173

be consistent but also the names of the corresponding search base used for full text
search and the automatically generated script, which consists of several html and
image files. Manual naming is not only an unnecessary but also an error-prone task.
Consistent naming is essential to provide structured databases of lectures and to cat-
egorize lecture recordings as is required in order to achieve a suitable representation
of cross lecture search results, which will be discussed in the following sections.

8.2.2 Dublin Core Metadata

There are several approaches and discussions in the research community about stan-
dardizing metadata specifications for e-learning issues. As an example of a possible
metadata set and how this set relates to our electronic lectures we will give an
short overview of an simple model, the Dublin Core Metadata Element Set (also
known as Simple Dublin Core) [DublinCore, 2003], which provides a simple, rather
loosely-defined set of elements. The Dublin Core Metadata Initiative (DCMI) is also
working on a set of terms which allow the Dublin Core Metadata Element Set to be
used with greater semantic precision (Qualified Dublin Core). The Dublin Education
Working Group aims to provide refinements for the specific needs of the education
community. Details can be found at the Dublin Core website [DCMI, 2006]. An-
other common but more complex model would be Learning Object Metadata (LOM)
[Wayne Hodgins, 2002].

The Dublin Core Metadata Initiative (DCMI), an organization dedicated to promot-
ing the widespread adoption of interoperable metadata standards, has introduced
the Dublin Core Metadata Element Set, Version 1.1 [DublinCore, 2003] as a standard
for cross-domain information resource description. It contains 15 optional elements,
which can be more or less used to describe our electronic lectures. Some of the meta-
data is provided by the lecture profiles, others can be acquired from the recordings
themselves (maybe after analysis algorithms have been applied), for example date,
duration, indices or the full text search base. In particular, the elements are:

Title: The title of the lecture as specified by the profile.

Creator: The teacher’s name is also specified by the profile.

Subject: The main topic should be given by the lecture’s title as well but admittedly
this “subject” might be a little vague as it is intended as the subject for a series of
lectures and not for a single recording.

Description: The full text search base provides detailed information. However, more
suitable descriptions like chapter headlines or summaries cannot be extracted auto-
matically for pixel-based recordings (at this time). The DCMI specification allows
non textual resources, like index thumbnails, to be added as well.

Publisher: The university, institute or company associated with the recording. Ac-
tually not supported by our lecture profiling system as practically all lectures pro-
duced with the same setup are provided by the same university but an appropriate
“Publisher” or “University” field can be added to the profiling system easily.

174 8 Retrieval and Metadata

Contributor: Same as publisher.

Date: The start time (and thus the date) of each recording is stored in its header.

Type: According to the recommendation given by the DCMI Type Vocabulary
[DublinCoreVocabulary, 2004] one of several types could be assigned: “Collection”
as a recording comprises several data streams, thumbnails or search base as text;
“Event” describing the local lecture that was recorded; “InteractiveResource” which
is used (among others) for multimedia learning objects or the type; or “MovingIm-
age” could be assigned. However, regardless of which of these types is used, it should
stay the same for all recordings and therefore the type element is irrelevant for the
purpose of categorizing the recordings of a lecture archive.

Format: The DCMI recommends the use of MIME types (Multipurpose Internet
Mail Extensions), which are defined for standard formats. However, lecture recording
formats are not standardized at this time (unless standard video formats are used).
Like the type element, the format element should be the same for all lectures and
therefore is not essential as long as only electronic lectures are handled.

Identifier: The filename(s) or the filename base (without endings) should be a
unique identifier within a lecture archive.

Source: This element could describe the sources (slides) of the presentation. How-
ever, a pixel-based recording approach abstracts from the formats of the source
documents as it supports the parallel use of arbitrary sources. Hence, the source
format is typically unknown for a electronic lecture and in fact is already unknown,
because it is not important, to the recording environment.

Language: Right know we have recorded lectures mainly in German and some in
English. Distinguishing them would be useful in order to categorize lectures and to
restrict searches to a certain language, but this is not supported right now. However,
the keywords specified to perform the full text search lead to results in the same
language (except for internationally used terminology). An appropriate field can be
added to the profiling set if desired.

Relation: This element should refer to related resources. Due to the predetermined
consistent naming that is provided by the lecture profiling system, all recordings
that belong to the same lecture series have the same filename except for the date
component. This allows related lectures to be derived for a given recording. This is
also the case for other automatically generated materials such as the html scripts.

Coverage: Typically, coverage will include a spatial location, a temporal period or
a jurisdiction and therefore could refer to metadata used for the elements Publisher
or Contributor (a university in the sense of company and location), the recording
date or period. However, this element is very vaguely defined.

Rights: If the electronic lecture supports some kind of rights management, e.g.
encrypted files, this can be noted here. Actually, neither our recording environment
nor our lecture archive supports rights management. Lectures are freely available
to the public. Note that download could also be limited by the web archive but in

8.3 Cross Lecture Search 175

such a case it does not influence the recordings and its metadata but the publishing
process.

Note that any fields may be added to a profiling system. However, regarding the ease
of use, the number of entries that must be specified by the teacher (or a technician)
should be limited as far as possible and therefore one should consider seriously which
entries are supported.

8.3 Cross Lecture Search

Lightweight lecture recording enables large multimedia databases to be built up
containing hours of asynchronous electronic lectures rather quickly. Currently our
archive contains more than 400 recordings resulting in approximately 600 hours of
recorded presentations. Hence there is an increasing need for techniques not only to
localize specific information within a single electronic lecture during replay but also
to find a lecture that addresses a specific topic. Furthermore, an adequate presenta-
tion of the results is needed, which should offer easy to use navigation and a rating
system.

8.3.1 Online Full Text Search

Our archive of lectures offers cross lecture searchability provided by a PHP script 2.
The cross lecture search base is composed of a set of all individual search bases of the
single lectures. A search base is stored within the extended header of an electronic
lecture. However, instead of extracting the search bases from the archived electronic
lectures, we use the output of the OCR application directly. While packing and
uploading our recordings, a script also copies the OCR output files to a dedicated
directory on our web server where they can be accessed by the PHP script. In future,
this packing and uploading process should be integrated into the TeleTeachingTool.

Search results are formatted as html pages (Figure 8.5), which presents the titles of
the recordings that match the keyword and the list of matching indices for each lec-
ture, all of which are linked to the automatically created html script. The consistent
naming, which is achieved by the lecture profiling is essential to perform the inter-
linkage between search results and the script pages as otherwise links would refer
to nonexistent files. Metadata such as the lecture titles or the dates and durations
of the recording, are not included in the search base but can be extracted from the
corresponding html files, because the structure of the html files is known as they
were generated by the TTT.

Currently, following a link leads to a static script without any possibility to highlight
search results or to access other results within the presented script page. Dynamic
web pages offer a more suitable technique for presenting search results by combining

2 a scripting programming language; PHP is a recursive backronym für Hypertext Prepro-
cessor and originally stands for Personal Home Page Tools

176 8 Retrieval and Metadata

the screenshots, thumbnails and metadata of the static scripts with a dynamic link
structure that corresponds to the delivered search results. Furthermore, a dynamic
representation enables the search results to be emphasized within each html script
page. An appropriate system that provides a cross lecture full text search by gener-
ating dynamic web pages is currently being developed and implemented as a student
project.

Fig. 8.5. Online Full Text Search

8.4 The Search&BrowsingTool

The Search&BrowsingTool (SBT) is an extension of the TeleTeachingTool
and was implemented during a system development project by two students
[Gruber and Leiter, 2006]. The goal was to provide cross lecture searchability with
an easy to use graphical user interface. The SBT supports three kinds of sources:
At first it can handle any local lectures that are accessible as (directories of) TTT
files. Furthermore, it can search and browse through lectures available at our on-
line archive. And finally an offline search base, which contains any information and
metadata that are necessary to describe lectures for searching purposes, can be ex-
ported and imported and thus allow offline students to check contents, which they
may access later (online or via DVD).

In order to perform a local search, the SBT gathers all TTT recordings located in
specified directories. Lectures are not loaded completely as this would be very time
consuming and memory intensive. Instead, only the headers of recordings including
metadata (e.g. date and title), indexing structures, search bases and thumbnails are

8.4 The Search&BrowsingTool 177

read. As a further improvement this task is not performed for each search but only
once. The SBT creates a combined search base that stores all needed data and is
imported during startup and validated by use of checksums with the existing lecture
files. Entries for new or modified files are generated or modified respectively. This
combined search base is not only useful to enhance startup and search performances
but additionally can be exported and distributed for students’ usage as an offline
search base.

The online search must be performed in a different way. As the recorded lectures
consist of up to three files (desktop, audio and optional video stream), they are
packed within a single ZIP archive in order to provide easier download. Obviously,
downloading and extracting all available lectures just to perform a search is not
feasible. Instead we make use of the existing functionality of the online search feature
already. The search string of each performed query is sent as an HTTP request to
a web service, which performs the online full text search and returns the results as
an XML file. The returned XML document contains a list of results, each of which
consists of a corresponding lecture title, a matching index (number) and a filename
base. The filename base is valid for all files related to a certain recording and can be
extended by appropriate file endings. Due to the consistent naming and the known
directory structure of the server, the SBT can additionally access the automatically
generated html script (including screenshots and thumbnails).

8.4.1 Views

Applying full text search to a single electronic lecture produces no more results than
the maximum number of indices available, which are typically about 30–50. Therefore
a thumbnail overview is a suitable visual representation of the search results. Note
that there might be more matches within a single page but nevertheless each index
is presented only once by the thumbnail overview.

Giving an appropriate representation of the results of a cross lecture search is more
challenging. A simple (thumbnail) list of matching indices could be sufficient for say
five to ten matches but is absolutely inadequate for a high number of results. The
keyword “stack” for example is frequently used during our recorded lectures and
therefore produces over 200 matches within about 80 lectures of a dozen different
courses. The keyword “Beispiel” (German word for “example”) even produces far
more than 2000 results. Besides the memory consumption of about 10 Mbyte com-
pressed files, which relate to 40–160 Mbyte uncompressed pixel values (8–32 bit per
pixel), a thumbnail overview with 2000 entries can hardly be surveyed in a reason-
able manner. Just presenting a list of results without displaying the thumbnails is
also not very comfortable. Hence, another representation is needed.

In order to respect the varying numbers of results, we will categorize lectures by their
metadata and introduce several representations, called views , adequate for different
purposes. Common for all views is a tree representation (see Figure 8.6 left hand
side) that is labeled differently on each level, starting with the root node, which
represents all lectures. The subsequent levels show the categories (title of lecture
series), the semesters (as each series can be recorded multiple times in different

178 8 Retrieval and Metadata

years) and finally single lectures by date, which are the leaves of the tree. A number
next to each entry displays the number of search results that were found in the
associated subtree.

Fig. 8.6. Search results: Overview

The representation displayed in the main window depends on the number of results
and the selected level within the tree. The top level representation, the overview ,
which is displayed in Figure 8.6, shows a top to bottom list of lecture categories,
which are entitled by the name of the lecture series. In the presented figure, we have
searched for “stack” and received 226 results in 11 categories, which are listed as
“Optimierung”, “Programmiersprachen”, etc. Additionally, the number of matching
lectures plus the absolute number of matches in that category are listed. The graph-
ical bar visualizes the number of results in relation to the maximum matches (of a
single lecture) and thus provides some kind of rating for each entry. In the example
the maximum is given by 90 matches (in 31 lectures) in the third category, which
is entitled “Abstrakte Maschinen”. The first entry in the list has only 1 match, the
second has 9 matches. Hence, the bars are accordingly shorter. Clicking on an entry,
either in the view in the main window or in the tree representation, accesses the
next, more fine grained level and the view will be updated correspondingly. Note
that higher levels can be accessed by clicking on a corresponding tree entry.

Level Views

Besides the overview, we offer the category view that represents a list of lecture
series, the semester view for all lectures of one category within a certain semester,
and finally the lecture view , which corresponds with the leaves of the tree and

8.4 The Search&BrowsingTool 179

thus single lectures. The first two of these views show a top down list of entries with
rating bars similar to the overview. Selecting the third entry in the example leads
to the category view displayed in Figure 8.7. The course was recorded three times
(summer 2003, 2004 and 2006). Again the number of matches is visualized by bars.
The semester view (Figure 8.8) looks analogous except that the list entries represent
single lectures, all of which were recorded in the same semester, and each entry is
entitled by the respective recording date.

Fig. 8.7. Search results: Category View

Fig. 8.8. Search results: Semester View

The lecture view (Figure 8.9) represents a single lecture and displays a left to right
thumbnail overview, analogous to the representation used as the overview page of
the html script (Figure 7.15 on page 147) but showing only matching instead of all
indices. Thumbnails are entitled with index numbers.

180 8 Retrieval and Metadata

Fig. 8.9. Search results: Lecture View

Limited View

Besides the level related views, we provide one view for the special purpose of rep-
resenting a small number of results only, the limited view . It combines the top
down lists with per lecture thumbnails as displayed in Figure 8.10. Each row dis-
plays the thumbnails of a single lecture and is entitled with the corresponding lecture
name, semester, date and the number of results. If more matches for a lecture are
found than will fit into a single row, only the first thumbnails are displayed and an
additional “more ...” link appears, which enables access to all thumbnails of that
particular lecture (by switching to the lecture view). Graphical bars for rating are
not necessary because the number of the displayed thumbnails within each row is
equivalent to the bar rating. The limited view can appear on any level of our tree,
whenever the number of results falls below given thresholds. Preassigned, but ad-
justable by the user, are a maximum number of 64 results and an upper bound of 16
lectures. If the number of search results does not exceed these thresholds, the limited
view will be displayed instead of the view that is associated with that particular tree
level normally.

The tree representation of search results in combination with different views, which
display either top down lists with rating bars or left to right thumbnails, and the
special treatment of a small number of matches by use of the limited view, provide
a structured representation of search results with different levels of granularity. Fur-
thermore, the asynchronous electronic lectures are categorized by use of metadata
(title, filename and date) in order to give useful hints to the user, who possibly is
interested in a certain course or a certain semester only.

8.4.2 Accessing Search Results

Actually students do not only want to search and find topics but certainly want to
access them as well. As the cross lecture search can use different search bases (local,
online, offline), appropriate activities must be performed. The colors of the thumbnail
borders and the tree leaves indicate from which of the three possible search bases
(local: gray, online: green, offline: red) a lecture originates and applicable actions can
be accessed via each thumbnail’s context menu. If the electronic lecture is locally

8.4 The Search&BrowsingTool 181

Fig. 8.10. Search results: Limited View

available in the user’s file system, the replay can be initiated, starting at the index
that matches the selected search result. Otherwise the appropriate lecture can be
downloaded from the web archive to be unpacked and replayed locally. Additionally,
the Search&BrowsingTool can display a fullscreen image of the selected thumbnail
or access the associated html script in a web browser. The screenshots and the html
scripts are available online. The thumbnails are read from local files if present or
from the web archive as well.

8.4.3 Browsing

The Search&BrowsingTool does not only offer retrieval features, but, as the name
suggests, additionally offers the functionality of browsing through the contents of
local and online lecture databases. Browsing is performed as a search without spec-
ifying a keyword and thus delivers any lecture (indices) as result. The presentation
of the indices and accessing content (replaying or downloading lectures or accessing
the script) stays the same. Additionally the SBT offers the possibility of comparing
the local lecture database with the lectures that are available in the online archive.
Via HTTP request a web service delivers the lectures which are available for down-
load. In synchronization with the recordings that are found on the local file system,
an overview displays the list of available lectures and marks which of them are al-
ready locally available. The user can now select missing lectures and initiate their
download.

182 8 Retrieval and Metadata

8.5 Searchability by Web Search Engines

Searchability by conventional search engines by generating electronic lectures, which
are indexable by web search engines, is also a desirable feature in order to improve
the retrievability of such learning material [Mertens and Rolf, 2003]. Until appropri-
ate standard formats or metadata models are available, we suggest making use of
the data formats that are currently indexed by web search engines, which are textual
documents. Due to the recognition artefacts, our search bases are not suitable to be
presented but nevertheless give a meaningful abstract description of the presented
content. Integrating the search bases and other metadata as appropriate META tags
into html documents, which enables the specification of, for instance, the author, a
content description and keywords, allows web search engines to index such textual
content. As such indexable meta tags can be added to the automatically generated
html scripts as well as to the download pages, the suggested searchability by con-
ventional web search engines can be achieved. If a page of one of our html scripts
is referred as a result in regard to a performed web search, the user will not see the
textual content, which is hidden in the meta tags but nevertheless be led to this re-
sult, but rather the pixel-based presentation of it, which is equally sufficient (to the
user). If a download page is presented as a web search result it might not be evident
why this page is presented. Therefore a meaningful short description is advisable but
we currently do not see how this can be fully automated. However, teachers (or their
staff) probably can be asked to deliver at least a short course description, which
commonly is available at their web pages anyway.

8.6 Summary

This chapter considered the Criterion C8: Information Retrieval and Criterion C5: Meta-
data. Screen recording offers a flexible technique for lightweight lecture recording and
automated indexing compensates for many drawbacks caused by the missing struc-
ture. In order to provide full text search for pixel-based recordings we suggest the
use of optical character recognition in order to extract search bases from the elec-
tronic lectures. Instead of accessing various source documents of arbitrary document
formats, our approach enables us to derive a search base directly from an electronic
lecture. The process of storing slide images as input for the optical character recog-
nition, the extraction of text (and coordinates) and the association of search base
parts with indices is performed semi-automatically. Providing an appropriate pro-
gramming interface, the character recognition could be fully integrated to provide
full-fledged electronic lectures with indexing structures and full text search without
manual post-processing.

During playback students can specify keyword(s) to initiate full text searches. The
results refer to slide indices of matching pages and are presented as clickable thumb-
nails, which are linked to the corresponding position within the recording. Applying
an optical character recognition application that provides XML output (or appropri-
ate other formats) with coordinates, even the occurrences of the keywords within each
slide (image) can be emphasized (including underlining the matching substring).

8.6 Summary 183

In order to find relevant recordings within large databases of electronic lectures,
additional retrieval features are required. Cross lecture search is addressed in the
form of an online search that is implemented as a PHP script and is available at
our web archive. Extending the currently available static representation of search
results to a dynamic version will improve the usability. Another approach of provid-
ing cross lecture searchability is shown with the development and implementation of
the Search&BrowsingTool. It categorizes the archived electronic lectures by use of
metadata, which is provided by the recorded lectures or related web pages and offers
different graphical representations, the views, for different category levels and num-
bers of entries within these levels. As the Search&BrowsingTool supports different
search bases (local, online and offline) the environment furthermore provides dif-
ferent possibilities to access the found entries by download, replaying or presenting
static images. Furthermore, we have discussed possibilities to provide searchability
be conventional web search engines.

A consistent naming of all related files is essential for any automated processing
or to achieve an interlinkage between various elements. In order to avoid error-
prone manual naming, we have introduced an easy to use lecture profiling system,
which automatically names all files to fit a predetermined scheme. Moreover, each
profile provides the parameters that are required to perform lecture recording within
the TeleTeachingTool environment. And finally the profiles contain some additional
metadata, like lecture titles or teachers’ names, which can be used to enrich the
representation of search results and which are needed to categorize the hundreds of
lectures available in our archive.

The presented work is designed to be used in our TeleTeachingTool environment but
can be adapted for other recording tools or lecture archives. However, the use of stan-
dardized metadata and interfaces, describing how to perform full text search and how
to access content, would be beneficial to create a commonly applicable infrastructure.
This thesis does not intent to provide a sophisticated wide ranged metadata model
nor to address detailed retrieval issues for large databases (of electronic lectures) but
rather proves that the flexible screen recording approach does not necessarily conflict
with searchable electronic lectures. By providing the basic retrieval features for pixel-
based recordings in the form of a search base, structured recordings and some useful
metadata, we give the basis to apply research results that previously were valid for
symbolic recordings only. For instance, [Hürst, 2003] claims that the established re-
trieval systems, which are commonly designed to process large textual databases, are
not suitable to handle slide presentations and therefore he discusses the classification
and presentation of search results for sequences of slides. Another retrieval aspect
for electronic lectures is the retrieval of spoken words. [Hürst, 2003] suggests apply-
ing speech recognition to the audio stream and extract an audio transcript of the
recorded verbal narration. Audio retrieval is not a dedicated topic of screen record-
ing but rather can be applied to any other recording approaches and is addressed
further in [Garofolo et al., 2000, Hauptmann and Wactlar, 1997, Thong et al., 2000,
Hürst et al., 2003].

In summary, we have diminished another drawback of the flexible screen recording
approach by developing and implementing a system that produces pixel-based but

184 8 Retrieval and Metadata

nevertheless searchable lecture recordings, and this in an automated fashion. Hence,
we have further improved the usability of pixel-based electronic lectures.

9

The TeleTeachingTool

The TeleTeachingTool (TTT) offers an implementation of most of the ideas and con-
cepts that are suggested in this thesis and was developed for everyday usage in close
relation to our own requirements and experiences. The TTT is a lecture recording,
transmission and replaying environment with integrated automated post-processing
functionality based on flexible, pixel-based desktop capturing technology but unlike
other screen recorders, the TTT offers advanced navigational features such as slide-
based navigation and visible scrolling and furthermore enables full text search. Each
electronic lecture that is produced with the TTT consists of three streams: the audio
stream that preserves the teacher’s verbal narration, the (optional) video stream that
shows a video of the teacher, and the desktop stream that delivers the framebuffer
updates. We use standard formats for audio and video transmission and recording.
The desktop stream is transmitted by use of a modified RFB protocol in order to
achieve a higher degree of scalability as suggested in Chapter 4. The desktop record-
ing (file ending “.ttt”) consists of a header and logged messages as suggested in
Chapter 5 (plus optional extensions).

In order to prove the ease of use and the intuitive operation of the TTT environ-
ment, we will first describe how to use the TeleTeachingTool from a student’s and
a teacher’s point of view and address the (optional) post processing and publish-
ing possibilities. Furthermore, we give some usage scenarios of how we are using
the TTT environment in order to record lectures. Afterwards, we address the Java
Media Framework (JMF), which is used to capture, handle and replay the audio
and video streams and furthermore, we give a specification of the file format for
recording the desktop stream.

9.1 TTT Viewer for Students

The menu bar of the TeleTeachingTool consists of different main entries, which are
entitled “Student”, “Teacher” and “Post Processing”, and relate to certain groups of
people and tasks.

186 9 The TeleTeachingTool

A student can either open and replay an asynchronous electronic lecture, i.e. a pre-
viously recorded lecture, or connect to a synchronous electronic lecture, i.e. a live
transmission.

9.1.1 Asynchronous Electronic Lectures: Replaying recorded lectures

After selecting the “Student→open...” menu entry (Figure 9.1), a file request dia-
log is prompted and the student can specify which recording should be replayed.
Afterwards that recording will be loaded and the replay will be initiated.

Fig. 9.1. Opening a recorded lecture

Figure 9.2 displays the Replay GUI of the TTT. The recorded presentation (includ-
ing the annotations) is dynamically replayed within the main window. The teacher
video (if available) is shown in the top left corner above the thumbnail overview,
which displays small preview images of the recognized indices (typically correspond-
ing to slides). If no video is available or if the video is turned off, the additional
space is taken by the thumbnail overview. The thumbnail overview emphasizes the
currently presented slide by a red border, which is automatically updated in relation
to the replayed sequence. The user can watch other indices by use of the scroll bar
and access each slide simply by clicking the corresponding thumbnail (slide-based
navigation).

The control bar at the bottom provides the standard controls, which are play/pause
(depending on the current state), stop (reset replay to the beginning) as well as
accessing the relative previous and next index. The main part of the control bar is
occupied by the timeline slider, which represents the timeline of the lecture from
the beginning (left) to the end (right). The knob of the slider represents the current
playback time and its position is automatically adjusted in relation to the replayed se-
quence. The student can set the replay time to any point in time (within the lecture’s
duration) just by clicking the corresponding position on the timeline. Furthermore,
the student can drag the knob along the timeline in order to browse through the
lecture by visible scrolling, i.e. the display is updated instantaneously while dragging
the knob. Left of the timeline slider are two labels representing the current replay
time and the duration, respectively.

The controls in the right bottom corner provide possibilities to adjust the repre-
sentation of the playback window as well as the volume. The volume controls are
only presented after pressing the volume button and allows the volume level to be
adjusted via a slider or to be temporarily muted. The other control buttons are used

9.1 TTT Viewer for Students 187

Fig. 9.2. Replaying a recorded lecture

to switch between the windowed and the fullscreen mode and to hide (or display
again) the thumbnail overview and the video component. Furthermore, the scaling
of the main window (which displays the lecture) can be adjusted, either by selecting
one of the a predefined scaling levels, which are “50%”, “75%”, “100%”, “150%”,
“200%” or “auto” (i.e. automatic adjustment according to the window’s size), or by
specifying the scaling level manually, i.e. by entering the desired level. If the main
window is smaller than the (probably scaled) resolution of the lecture, the student
can select which subregion should be displayed.

Full text search is initiated by entering a search pattern (a string) in the search
field, which is displayed above the thumbnail overview. A full text search will be
performed while entering characters, i.e. the search results will be updated whenever
the next character is entered. The search results are presented within the thumbnail
overview. Preview images of all matching indices will be displayed and, if supported
by the lecture, the corresponding matches are emphasized within the thumbnails and
the main window. The corresponding slides can be accessed by clicking on a search
result in the thumbnail overview or the next search result will be presented whenever
performing the (same) search again by hitting the “enter” key (in the search field)
or by pressing the search button left of the search field. Selecting the index tab at the
top of the search field will redisplay again all indices within the thumbnail overview
(instead of the search results only). The user can switch back to the search results
by selecting the appropriate tab.

188 9 The TeleTeachingTool

9.1.2 Synchronous Electronic Lectures: Attending live lectures

Via the “Student→connect...” menu entry (Figure 9.3), the student can either specify
a TTT Server manually or select an entry from a list of previously used or pre-
assigned TTT Servers.

Fig. 9.3. title

If connecting manually, a Connect Dialog (as shown in Figure 9.4) will appear and
ask for the name (host) and port of a TTT Server and furthermore offers the possibil-
ity of choosing whether the transmission should be provided as unicast or multicast.
Multicast is preferable but might not work for all network connections (see Section
4.2.10 on page 74).

Fig. 9.4. Connection dialog

If a connection to the specified TTT Server can be established, the live replay will
start. Since navigational controls are meaningless for live attendance, the Live Replay
GUI will comprise the main window (which displays the lecture and annotations),
the video component (that displays the live video of the teacher), the volume controls
and the controls for the scaling, the fullscreen mode and to enable/disable the video
component.

9.2 Teacher Component: Presenting and Recording

The presentation and recording process is initiated by selecting the “Teacher→present
& record” menu entry as shown in Figure 9.5.

9.2 Teacher Component: Presenting and Recording 189

Fig. 9.5. Starting the presentation and recording process

Now the profile dialog will be opened (Figure 9.6). For a quick start it is typically
sufficient to specify only the VNC Server, which delivers the desktop that should
be presented, by entering its host name and port. However, the teacher can adjust
additional parameters. It can be selected whether the lecture and the video should
be recorded or not, and the names of the teacher and the lecture or course can be set.
The lecture name will be used as the profile name and all options are automatically
stored within this profile and loaded whenever that profile is selected again (by use
of Java’s own preferences backing store/registry). In order to present and record the
next lecture within the same series it is sufficient to select the appropriate lecture
name as shown in the left screenshot in Figure 9.6 and the coressponding lecture
profile will be loaded implicitely and any fields will be filled with the previously used
values of that profile. There is no need to explicitly store and load lecture profiles.

The teachers’ names are also cached and can be selected from the list whenever a new
profile is generated. As most teachers will use the same parameters for their different
courses, they can select an already specified profile and generate a new profile just
by changing the name of their lecture. A new lecture profile will automatically be
stored under the new name. Note that the other (old) profile will stay unmodified.

In order to reduce the number of parameters that must be specified in order to
initiate a recording process and to provide consistent naming, the TTT sets the title
of the lecture and the filename of the produced recording(s) according to a predefined
name scheme, which regards the lecture and teacher names, the current date and a
sequence number (if recording more than one lecture (part)).

As entering and selecting parameters in the profile dialog is rather intuitive and as
any storing and loading of lecture profiles is performed automatically, there is no
need to introduce the concept of lecture profiling to the teachers. In fact, it is even
not required that they know the presence of such a concept. The next time they
start the TeleTeachingTool they will notice that the parameters have been cached.

Nevertheless the TeleTeachingTool offers the option to import and export profiles if
they should be transferred to another machine or stored permanently. Furthermore,
profiles can be removed from the list. These features are accessible via appropriate
menu entries, which are shown in Figure 9.7.

190 9 The TeleTeachingTool

Fig. 9.6. Lecture parameters and profiles

Fig. 9.7. Import and export of lecture profiles

9.2.1 Presentation Controls

After the teacher has specified the session parameters or selected the appropriate
lecture profile, the connection to the VNC Server and, if enabled, the audio and/or
video devices are initialized. The teacher will see a presentation GUI as shown in
Figure 9.8. In the main window the presented desktop will appear, which can be
controlled by use of the mouse and the keyboard like any other desktop. Mouse
movements, menu selections or any applications are presented dynamically within
the main window.

The control bar above of the main window provides the annotation controls (left
hand side) and the recording controls (to the right). The reconnect button (outmost
right) can be used to reset the connection if any network problems occur. Beside
the reconnect button is a button to switch between the windowed and the fullscreen
mode, which typically is preferred as it removes any borders and thus provides more
space for the presentation.

Starting a recording is initiated by simply pressing the red recording button and
stopped by clicking the stop button (only enabled while recording is in progress) left
of the recording button. After the recording process is terminated the teacher can
instantaneously replay the recorded session by pressing the play button or initiate
another recording process by pressing the recording button once more. Note that the
sequence number of the filename will automatically be increased by one.

9.2 Teacher Component: Presenting and Recording 191

Fig. 9.8. Presenter GUI

Typically, the presented VNC desktop is controlled via keyboard and a pointing
device like any other desktop. Furthermore, the pointing device can be used to
annotate the desktop, which can show, for instance, a slide presentation. Hence,
we need to switch betwen the interaction and the annotation mode, which can be
done by the outmost left button (always showing the current selection). Note that
any key presses are always forwarded to the presented desktop. Hence, the desktop
can be controlled via keyboard while the annotation mode is enabled. This is very
useful as, for instance, the pointing device can be used to annotate a presentation
while the keyboard can still be used to switch to the next slide without disabling
the annotation mode.

The other annotation controls are structured in color buttons and mode buttons.
Clicking on either of these buttons will automatically switch to the annotation mode
(as typically the selection will be followed by annotating). The available paint modes
are (from left to right) freehand, highlight, line, rectangle and delete. The highlighting
mode is used to focus the attention of the audience and the other modes are intended
to add comments or sketches. Annotations are always applied in the currently se-
lected color mode. While in the delete mode any previously made annotation can be
deleted by selecting it with the pointing device. While in annotation mode, clicking
at any point that corresponds to an annotation will remove the complete annotation,
because each annotation is applied as one object and thus no partial annotations
can be removed. The button left of the mode buttons is the clear button that can
be used to remove all currently visible annotations from the screen. Furthermore,
all keys that are typically used to switch to another slide (the page-up/down and
arrow key) automatically initiate the removal of all current annotations since the

192 9 The TeleTeachingTool

annotations are typically meaningless to another slide. Annotations are recorded
and dynamically replayed in the same order and time scale as they were presented
or deleted during the live lecture.

The whiteboard button in the center of the control bar switches between the desktop
and the whiteboard, which is a blank white page that can be used for additional an-
notations. Note that there are different sets of annotations for the desktop and each
whiteboard page. Hence, the whiteboard can be annotated independently of the pre-
sentation (or any other application), which enables providing additional comments
on-demand.

As typically all key presses are forwarded to the presented desktop, the TeleTeach-
ingTool defines only a few key shortcuts. The keys and functions are:

F9 switches to the next color mode;
F10 switches to the next paint mode;
F11 switches to the next “task” at the presented desktop;
F12 switches between interaction and annotation mode.

Note that “F9” and “F10” will implicitly activate the annotation mode (if not ac-
tivated yet). “F11” simulates a so called “task switch”, which (for most desktop
systems) is typically caused by the key shortcut “ALT+TAB” and enables the active
window to be selected without using the pointing device (which otherwise is used to
activate an application by clicking on the corresponding window or task bar entry).
The selection is typically performed by pressing the “TAB” key multiple times (in
order to select the next window) while the “ALT” key is held down and selecting an
entry by releasing the “ALT” finally. However, performing this procedure while con-
trolling a remote desktop within the TeleTeachingTool results in switching between
the local applications and not between the remote ones. Nevertheless this feature
would be very useful to switch between applications very fast (for instance the pre-
sentation and a simulator or a programming editor) Therefore, the TeleTeachingTool
simulates a hold down “ALT” key when pressing the “F11” key. The presented re-
mote desktop will typically show a task switch menu then. By pressing the “F11”
key multiple times, the teacher can select the desired entry. The simulated “ALT”
will be released whenever any key other than “F11” or a mouse button is pressed.
Hence, switching between two applications can be performed by two key presses.

9.3 Post Processing and Publishing

Most post processing aspects are performed automatically by the TeleTeachingTool
or are automated, i.e. will by performed on request with little manual input. When-
ever a recorded lecture is loaded which has no indexing structure (i.e. slide indices)
and/or does not contain slide preview images for the thumbnail overview, the TTT
will automatically analyze the recording and compute the indices and thumbnails
(as described in Sections 7.3, 7.4 and 7.5). The computed indexing structure and the
thumbnails can be stored permanently as part of the electronic lecture then.

9.3 Post Processing and Publishing 193

Additionally, the TTT will automatically load, check for compability and integrate
any search base files (if available). A search base file is an ASCII text or an XML
file of the same name as the recorded lecture but with the file ending “.txt” or
“.xml” (see Section 8.1.1 for supported search base formats). The TTT will test if
the number of text pages that are stored in the search base matches the number
of slide indices and, if loading an XML search base, if the XML structure matches
the expected scheme. Provided it matches, the search base is integrated and can be
stored permanently as part of the electronic lecture within to desktop file (file ending
“.ttt”).

Note that loading the search base file and the computation of indices and thumbnails
are not only available during explicit post processing, but will rather be performed
whenever necessary, for instance, whenever a student replays a recorded lecture that
does not contain indices and/or a search base (see Section 9.1.1). However, it is
preferable to distribute lecture files with integrated indexing structures, thumbnails
and (optionally) search base for students’ convenience.

9.3.1 Automated Post Processing

The TeleTeachingTool offers explicit post processing of recorded lectures, which is
typically performed once for each recorded lecture before publishing it and typically
takes no more than a few minutes. A recorded lecture is opened for post processing
by selecting the menu entry “Post Processing→open..” (Figure 9.9) and choosing the
appropriate lecture by use of a file request dialog.

Fig. 9.9. Opening a file for post processing

Then the lecture will be loaded and the indexing structure and the thumbnails are
computed automatically. When the computation is finished, the post processing di-
alog will open. If loading an unmodified lecture, i.e. one that has not been post
processed before, the post processing dialog will commonly look as given in Figure
9.10. The “Info” tab displays some metadata that reveals the title, the date, the
duration, the number of indices and the resolution of the lecture. The title is read
from the lecture file and typically is preset by the lecture profile, which was used for
recording (Section 9.2). Without applying a lecture profile, commonly the title is set
to the name of the recorded VNC server. If desired or necessary, the user can edit
the title.

The “Thumbnails” tab shows the status of the thumbnails, i.e. whether the lecture
contains thumbnails or, as presented in Figure 9.10, if the thumbnails have been

194 9 The TeleTeachingTool

Fig. 9.10. Post Processing Dialog

computed but are not permanently stored to the lecture file, which is emphasized by
the red color. In fact, any modified but not stored elements are colored in red (i.e.
title, thumbnails and search base status). A (re)computation of the thumbnails can
be initiated by pressing the compute button.

The last tab that relates to the lecture file is the “Full Text Search” tab. It reveals the
current status of the search base, i.e. whether a search base is available and of what
kind (ASCII text only or XML with coordinates, see Section 8.1.1 for formats). As
mentioned above, matching search bases files are automatically loaded if available.
Furthermore, the name of a search base file can be specified in the text field or via
a file request dialog and than imported by pressing the import button. Any modified
elements will be permanently stored within the lecture file by pressing the store
button.

An additional feature of the TTT is the possibility of creating an html script with an-
notations for each recorded lecture. An html script consists of a thumbnail overview
and linked slide screenshots (Section 7.5.1). The screenshots can be used as input
for an external optical character recognition (OCR) application. However, the TTT
also can store screenshots that are optimized for optical character recognition issues
(Section 8.1.3). The user can select whether to compute and store an html script,
OCR input or both by pressing the corresponding button in the “Script” tab (or
storing nothing by not pressing any button). The output will be written to sub-
directories in the same directory in which the lecture file is located. Moreover, the
directories and any image and html files will automatically be named according to
a consistent naming scheme, which will respect the file name base of the lecture file,
i.e. same name but different file endings and possibly additional sequence numbers
(referring to indices). Afterwards, the html script can be published (e.g. copied to a

9.3 Post Processing and Publishing 195

web server) and the OCR input can be read by the OCR software and the resulting
name can then be imported as the search base for the lecture as described above.

9.3.2 Post Processing Workflow

Although recorded lectures can be distributed and replayed without post processing,
we suggest a few post processing steps in order to create full-fledged electronic lectures
for the students’ convenience. Quick post processing of recorded lectures is typically
performed as follows.

1. open lecture via the “Post Processing→open..” menu entry
(indexing structure and thumbnails will be computed automatically)

2. press the “HTML+OCR” button
(creates html script and OCR input)

3. create search base :

a) open OCR application and initiate reading and recognition of the OCR input

b) store the output of the OCR application
(using the same name as the lecture file but ending “.txt” or “.xml”)

4. press the “Import” button
(reads a search base file with the preset naming; specify file name otherwise)

5. press the “Store” button
(creates a full-fledged electronic lecture)

Note that step four only imports the search base, i.e. reads and parses the search base
file and interlinks the search base parts with indices. Step five is necessary in order
to integrate the read search base as well as the computed indexing structure and
thumbnails into the desktop file, so that these features will be available to students
(without additional computation or reading a seperate search base file on startup).

Details concerning the supported search base file formats (ASCII text only or XML
with coordinates) and OCR applications are discussed Section 8.1.1.

These five steps can typically be performed in less than five minutes for automated
character recognition and in about 10–15 minutes if making some manual corrections
during or after the recognition process. If omitting the creation of a search base, post
processing can even be achieved in about one or two minutes, but note that a full
text search can only be performed if a search base is available (either as a separate
search base file or integrated within the desktop file)

196 9 The TeleTeachingTool

9.3.3 Publishing

Afterwards the recorded lecture can be published. The TTT does not support the
publishing of lectures as an integrated feature yet. Currently we use a script that
packs the audio, video and desktop file as one ZIP archive and copies the ZIP archive
to our web server. Furthermore, the script copies the html script and the search base
file to the appropriate directories of our web server, so that they are respected by the
online full text search. Besides packing and copying, the script checks the consistent
naming and lists the information needed to create the appropriate entries at the
download page. The script is listed in Appendix C.

In future, publishing should also be addressed by the TTT in order to provide a more
complete environment. The packing can easily be integrated. Copying files to a web
server requires some configuration possibilities in order to specify the server and
the appropriate directories. We suggest adding these configuration parameters to
the corresponding lecture profile or storing them as an additional publishing profile.
The automated listing within the download page can be realized by reading the
current page (i.e. the corresponding html file) and adding the new entry to a certain
position within the file, for instance by storing a special mark hidden within an
html comment. Afterwards the document can be copied back to the web server.
Another possibility would be to implement a dynamic download page analogous to
the dynamic online full text search. In fact, our web server already offers a dynamic
listing of all available html scripts. As a download page should reveal additional
information such as file sizes and duration or should link course related materials or
the teacher’s web page, the script must be extended correspondingly.

Instead of providing an own web server with proprietary services, an interface to
support an Learning Management System such as CLIX Campus [CLIX, 2006] is
worthwhile in order to provide a single address for students where they can find all
course related information and materials, including the recorded lectures.

Furthermore, a course can be distributed as a self-contained DVD, which does not
only contain the edited lecture files, but also additional course material, the automat-
ically generated html scripts and the TeleTeachingTool software. Additionally, these
DVDs are bootable and contain a self-starting linux operating system (KNOPPIX
[Knopper, 2006]), which commonly supports (almost) any hardware. Any necessary
software including the TeleTeachingTool is preinstalled and preconfigured on the
DVD’s operating system and on system startup a course overview will be presented
within a browser with direct links to replay any of the recorded lectures.

In order to create such a course DVD rather quickly, we have produced a DVD
template, which contains the operating system including any software and provides
a special folder for the course related data. In order to produce a self-contained
lecture DVD, it is sufficient to use the DVD template and copy the recorded lectures
and any additional materials to the special course folder. Afterwards an ISO image
file of the DVD is created, which can be burned to DVDs.

9.3 Post Processing and Publishing 197

9.3.4 TTT to Flash Converter

Distributing electronic lectures in a standard file or streaming format is preferable
as no software installation is necessary [Lauer and Ottmann, 2002]. However, most
standard video formats and compression codecs are designed to compress “real world
video content” and are not suitable in order to compress “computer-based content”
such as slide presentations [Hogrefe et al., 2003, Lauer and Ottmann, 2002] and fur-
thermore it is very difficult or even impossible to integrate enhanced navigational
and retrieval features to standard video formats.

One wide-spread video and animation format that is especially designed to compress
computer-based content is Adobe Flash (formerly Macromedia Flash) [Flash, 2006].
In a diploma thesis one of our students developed and implemented a prototype
of a converter that transfers recorded lectures from the TTT format to Flash
[Nopoudem, 2006]. The converted lecture will look like the example shown in Figure
9.11.

Fig. 9.11. TTT Flash Movie

The converter implementation extends the infrastructure of the TeleTeachingTool in
a way that each message object is extended by an additional writeToFlash() method
and therefore it should be an relative easy task to integrate the converter into the
TTT. In fact, converting is performed in almost the same way as creating the html
scripts and thus the Flash converter functionality might be added by placing an
additional create flash button to the post processing dialog (Figure 9.10).

The current implementation of the Flash converter for TTT recordings supports the
basic playback functions start, stop and pause and furthermore slide-based navigation
via a thumbnail overview. A slider for timeline navigation and visible scrolling is
currently not available within the resulting Flash movies. Furthermore, full text

198 9 The TeleTeachingTool

search is not supported. Nevertheless, by implementing a conversion of TTT/RFB
messages and implementing the basic navigation functions, the diploma thesis proved
that TTT lectures can be transformed to a wide-spread (quasi) standard format.
Extending the converter to create full-featured electronic recording is suggested as
future work.

9.3.5 TTT Editor

Although the lightweight lecture recording approach discourages extensive manual
post processing and editing, it is sometimes useful to have at least some rudimen-
tary editing features. For instance, cutting the beginning or end of recordings as
sometimes teachers will start the recording too early or stop them several minutes
after the actual end of the lecture. Furthermore, lectures may be cut and concate-
nated so that the resulting pieces will relate to certain topics instead of reflecting a
90 minute lecture period.

An exchange student from the School of Computer Science, The Queen’s University
of Belfast, has developed and implemented an editor for TTT recordings as a master
thesis [Bankhead, 2005]. Due to the requirements of the university, the TTT Editor
was implemented as a stand alone application. In contrast to the TTT implemen-
tation, which processes lectures as message streams plus additional structuring data
such as the timestamps that correspond to slide indices, the editor implementation
uses indices as the major data structure and each index object contains a set of
messages.

Fig. 9.12. TTT Editor

9.3 Post Processing and Publishing 199

A screenshot of the TTT Editor is shown in Figure 9.12. The TTT Editor offers
a replay engine that supports most replay features of the TeleTeachingTool (see
Section 9.1.1) except visible scrolling. The main window displays the recorded lecture
and the control bar at the bottom offers both the control elements (such as the
timeline slider and other replay controls) and also additional controls to set markers
for editing purposes.

The area on the right hand side of the GUI displays one of four function tabs, which
can be selected by the appropriate tabs at the top of the area. Besides the two tabs
that are known from the TTT replay GUI, the thumbnail overview (Figure 9.12 to
the right) and a representation of search results (also via thumbnails), the editor
offers two more tabs, the “Detail” and the “Marker” tabs (Figure 9.13).

Fig. 9.13. TTT Editor detail tab (left) and marker tab (right)

The “Detail” tab represents the list of indices and for each index a list of the asso-
ciated annotation events. Individual indices can be deleted or modified. The index
timestamp can be adjusted, i.e. set to another position, the index title can be set
and the search base can be edited manually (currently only ASCII search bases are
supported; see Section 8.1.1 on page 162). Note that the TTT currently does not
display index titles, which might be used to create a table of contents. Furthermore,
new indices can be generated by choosing the appropriate timestamp and pressing
the “Insert” button at the bottom of the tab. Additionally, the listed annotations
can be deleted and, in future, possibly the editor will also support editing and adding
annotations. In this regard, the annotating tools of the TTT can simply be added
to the editor’s GUI. However, one has to consider whether additional annotating
should be done while replaying the lecture or during pause mode. Annotations can
be placed exactly timed in pause mode, but since all annotations will refer to the
same timestamp, placing many annotations in pause mode will result in a simultane-

200 9 The TeleTeachingTool

ous appearance of all annotations during later replay, which might irritate students.
[Lienhard and Zupancic, 2003] suggest limiting annotating features during replay to
setting static textual annotations (“PostIts”) instead of placing dynamic annota-
tions.

The TTT Editor supports markers, which can be set in order to specify certain
points for splitting lectures or cutting parts out of it or to mark positions, which
could be used to place additional indices. The “Marker” tab, which is shown on the
right hand side of Figure 9.13, lists all currently set markers including the start and
end marker. Markers are also visualized by small vertical marks in the timeline at
the bottom of the GUI. Markers are placed by setting the current playback time to
the desired position and pressing one of the three marker buttons, which resets the
start or end marker or places a new intermediate one, respectively. The buttons are
avaliable within the “Marker” tab (at the top), but are also available in the control
bar at the bottom, which is useful to place markers whenever one of the other tabs is
displayed. Setting a certain time can be done by timeline and slide-based navigation,
by pressing the pause button during replay or by explicitly setting the desired time
in minutes, seconds and milliseconds by use of a special time seek dialog, which is
also shown in Figure 9.13 (in the middle of the right screenshot).

Fig. 9.14. TTT Editor: File Menu

After manipulating indices and setting appropriate markers, the recorded lecture
can be saved. If the start and end markers have been adjusted, i.e. if timestamps
other than zero and the duration of the lecture have been assigned, the lecture will
be correspondingly cut at the beginning and/or the end. Furthermore, a lecture can
be split into several pieces by placing appropriate markers and selecting the “Save &
sub divide” entry in the “File” menu, which is shown in Figure 9.14. The beginning
and end of the lecture will be cut and each sub division will result in an own lecture
file. Concatenating two or more files is done by selecting the “File→Concatenate”
menu entry and choosing the appropriate files in the concatenate dialog as shown in
Figure 9.15. Note that any splitting, cutting and concatenating operations will not
only affect the desktop recording but the audio and video files as well.

Normally we do not edit our recorded lectures but rather use the editor only to cut
a lecture whenever the beginning or end of the recording significantly differs from
that of the lecture or to combine two parts of a lecture if the lecture was interrupted.
Furthermore, we edited the course “Compilerbau” of Prof. Dr. Helmut Seidl, which
was recorded during the summer semester 2005, in order to demonstrate how to split

9.4 Transmitting Live Lectures 201

Fig. 9.15. TTT Editor: Concatenating Dialog

a lecture into meaningful chunks that relate to the course structure, i.e. chapters and
topics, rather than to the presentation schedule, i.e. two 90 minute lectures a week.
The edited course is available to students in the form of a self-contained DVD (as
described in Section 9.3.3).

9.4 Transmitting Live Lectures

The TeleTeachingTool provides synchronous live transmission of VNC sessions as
suggested and described in Chapter 4. To achive this, a TTT Server transforms
the RFB message stream, which is received from a VNC Server, to TTT messages
which are then sent to the students’ TTT Clients. The TTT Server parses (to process
distinct messages; Section 4.2.6), splits (to respect packet limits; Sections 4.2.4 and
4.2.5) and packetizes (as UDP datagrams; Section 4.2.7) the incoming messages.
Additionally, the TTT Server will sent an audio and (optionally) a video stream.

Starting a TTT Server is initiated by selecting the “Server→Start TTT-Server” menu
entry as shown in Figure 9.16. Note that this and any further screenshots in this
section show an older version of the TeleTeachingTool, because the server function-
ality is currently not fully implemented in the redesigned version of the TTT (but
will be in future).

Fig. 9.16. TTT Server

202 9 The TeleTeachingTool

Selecting the menu entry will open the server options dialog, which is displayed in
Figure 9.17. The simple options dialog is intended to enable a quick start of a TTT
Server and hides additional parameters, which are automatically set to meaningful
default values. In order to run a TTT Server it is sufficient to specify the host
name and port of the VNC Server that delivers the desktop to be transmitted
(and recorded), and furthermore to enable transmitting and optionally recording by
selecting the appropriate check boxes at the bottom of the simple options tab. The
default audio and video devices will be used and the server will be accessable by the
students under the host name (of the machine) and a preassigned port (commonly
port 33229) as listed at the top of the dialog box. The TTT Server is started by the
“ok” button.

Fig. 9.17. TTT Server: simple options dialog

The advanced options dialog provides tweaking of the preassigned default parameters
and is accessed from the simple options dialog by pressing the “advanced>>” button.
The advanced options dialog consists of three different tabs which relate to the source,
transmission and recording parameters, respectively.

In the source tab (Figure 9.18, left) the input sources are assigned, which are the
desktop of a VNC Server (analogous to the simple options) and the audio and video
devices, which can be selected from the list of all determined devices. Additionally
the color depth can be assigned, which will be used for transmission and recording
the desktop.

Fig. 9.18. TTT Server: advanced options dialog

9.4 Transmitting Live Lectures 203

The screenshot in the middle of Figure 9.18 shows the transmission tab with preas-
signed randomly generated multicast groups and ports for desktop, audio and video
transmission. Each value can be manually edited. Furthermore, this tab enables the
size of the video that shows the teacher to be set and the time-to-live1 (ttl) in order
to specify the range of the transmission. Furthermore, the port of the TTT Server
can be manually adjusted at the top of the dialog. Note that the host name cannot
be edited, because it is the host name of the machine on which the TTT Server is ex-
ecuted. Changing the name rather requires a modification of the network properties
on a lower level (network and operating system).

Finally, the recording tab (right hand side of the figure) offers the possibility to
enable or disable the recording of the three data streams (desktop, audio and video)
as well as to adjust the size for the recorded video (of the teacher).

The user can switch between the simple and advanced options dialog as required.
Any value will be preserved until edited, even after terminating and restarting the
TeleTeachingTool. Furthermore, any options can be explicitly saved to a file and
loaded again by selecting the appropriate function within the ‘File” menu of the
dialog. In future, the server parameters should be integrated into the lecture profiling
concept (Section 9.2).

1 The time-to-live (ttl) specifies the maximum number of transmissions for each network
packet (datagram) while traversing the network, i.e. the ttl of a datagram is reduced by
every host on the route to its destination and if it reaches zero before the datagram arrives
at its destination, then the datagram is discarded. In the case of multicast delivery, the
ttl defines the range of the transmission from local networks (ttl of 0–2) to continental
or world wide delivery

204 9 The TeleTeachingTool

9.5 Usage Scenarios

We are using (variations of) the TeleTeachingTool since the winter semester 2001/02
and have recorded about 400 lectures over recent years at the Universität Trier and
the Technische Universität München. We have used the TTT in different set-ups
which will be described here.

A absolutely transparent recording environment was used while recording the Lec-
ture “Informatik III ” by Prof. Dr. Johann Schlichter. He use a tablet PC to present
his slides by use of a standard web browser. Slides were annotated by use of an
electronic pen and an Java applet. During the lecture the desktop was exported to
a TTT Server running on another machine, which was also connected to the audio
and video equipment of the lecture hall. The tablet PC was also connected to the
beamer in order to present the slides to the audience. This scenario enabled Prof.
Schlichter to give his lecture in the same way as would have been the case without
recording. Since we achieved the highest degree of transparency and flexibility.

A very similar set-up is used at the Universität Trier in order to record the lectures
given by Prof. Dr. Hans-Jürgen Bucher. Instead of a tablet PC, Prof. Bucher uses
an ordinary labtop. Again the PC of the teacher was accessed remotely by a TTT
Server in order to be recorded. Since the used laptop does not provide appropriate
input devices for annotating purposes, we also placed an electronic tablet into the
lecture hall, which presented the same desktop but within a TTT Teacher Client.
As this client provides the built-in annotation tools of the TTT, Prof. Bucher can
annotate his slides. However, he preferred to control is desktop directly instead of
remotely, i.e. generally he uses his own familiar laptop but whenever he required an
annotation feature, he used the electronic tablet.

In order to record the lecture of Prof. Dr. Helmut Seidl we use a rather different
solution. Instead of using a laptop as source of the desktop recording, we rather use an
office PC, which is remotely controlled. In fact, this office PC is placed in Prof.Seidl’s
office and is the machine he uses during his working hours. Other than the previously
described scenarios, this machine does not export the standard desktop, but a VNC
Server is started in the background and exports an own virtual VNC desktop, which
is accessed by a TTT Server which is executed on a machine placed in the lecture
hall. Again we provide an electronic tablet and the TTT’s annotation features for
annotating the slides and other presented content. The benefit of this set-up is that
the teacher need not to carry his laptop to the lecture hall. Furthermore, he can use
any application which are available on his office PC and he can prepare a lecture,
i.e. he can select the slide he intents to present first. In fact, the VNC server is
never terminated in our set-up and therefore the presentation can be initiated the
day before the lecture is given. Consider an lecture which takes place early in the
morning, but everything is already prepared the day before. The lecture can be
started be just connecting to the office PC.

This three scenarios show the different possibilities our lecturing environment offers.
Which of these scenarios should be used depends on the available hardware and the
preferences of the teacher.

9.6 Java Media Framework (JMF) 205

9.6 Java Media Framework (JMF)

The audio stream (verbal narration) and video stream (showing the teacher) are
not encoded within the message stream/desktop stream (encoding the desktop
presentation), but are rather delivered and recorded by use of suitable standard
media formats, such as the Real-time Transport Protocol (RTP), which defines
a standardized packet format for delivering audio and video over the Internet
[Schulzrinne et al., 2003]. During the initialization phase (i.e. whenever a client con-
nects to the TTT Server) the IP addresses and ports are specified, describing where
to receive additional media streams. For asynchronous replay (of previously recorded
lectures) the additional media streams are determined by appropriate filenames
(same as the desktop file but different endings). Since this thesis focuses on the
recording, transmission and automated post-processing of computer-based presenta-
tions, i.e. the presented virtual desktop, and not on capturing, encoding and replay-
ing of audio and video streams, we prefer to use an existing environment instead of
implementing the appropriate functionalities.

The Java Media Framework (JMF) [JMF, 2006] is an optional package for the Java
platform, which can capture, playback, stream and transcode multiple (standard)
media formats, i.e audio, video and other time-based media. Hence, JMF is a full-
featured framework that can be integrated into Java applications by use of the
Java Media Framework API (application programming interface). Nevertheless, the
framework might be replaced by any other appropriate package that is accessible
from within Java applications or, as the implementation of the ideas that are de-
scribed in this thesis does not necessarily need to be implemented in Java, any other
language as well.

In order to provide a full-featured recording environment, audio and video streams
must be captured, recorded, transmitted and replayed in a synchronously and asyn-
chronously manner. The capturing of media streams is not directly integrated in the
JMF core package. Instead JMF accesses certain (maybe platform dependent) cap-
turing packages such as JavaSound, video4linux (v4l) or video for windows (VFW),
which commonly support typically used hardware. Platform dependent libraries can
only be accessed by the JMF in the appropriate performance pack versions, which
are available for several operating systems. Note that replaying of almost any sup-
ported data formats and codecs can be handled by the platform independent cross
platform version.

Regarding the formats and codecs, we prefer standard formats (Criterion: C9d) and,
since we do not intend to implement any codecs (which can be integrated into the
JMF), we will use only those codecs and formats that are supported by and available
for the JMF. From the available video formats2 only the h.263 codec is capable of
producing acceptable data transfer rates and file sizes (about 70–90 Mbyte for a
video of 90 minutes at a resulotion of 176× 144 pixels). All other supported formats
produce files of several hundred Mbytes. Unfortunately, more “up-to-date” codecs
like MPEG-4/DivX are currently not supported by the JMF.

2 The complete set of formats is listed under http://java.sun.com/products/java-
media/jmf/2.1.1/formats.html

206 9 The TeleTeachingTool

The variety of available audio formats and codecs is higher and most codecs achieve
suitable compression rates to produce acceptable file sizes. As with video record-
ing and transmission, the bandwidth consumption and file sizes for audio streams
should be as low as possible. However, a reduced sound quality cannot be tolerated
(Criterion: C1 Verbal Narration). Note that “CD quality” and “stereo sound” is not
necessary to capture the verbal narration of a teacher, but a distorted speech with
dropouts or nasal reproduction must be avoided. By analyzing the produced data
rate (and thus the file sizes and bandwidth consumption) and the sound quality of
the recorded speech, we have chosen MPEG-1 Audio Layer 3, commonly known as
mp3, at 22,050 Hz, 16-bit, Mono as a suitable codec. Lowering the rate or recording
to 8-bit noticeably reduces the sound quality and thus is not acceptable. Record-
ing the teacher’s speech in stereo is not necessary. As JMF does not support mp3
for transmission purposes, we must use another codec for synchronous electronic
lectures. We have found µlaw at 8000 Hz, 8-bit, Mono to be suitable. The other
available codecs result either in a lower quality or higher bandwidth consumption.

Asynchronous electronic lectures are recorded to files. The supported video file for-
mats are QuickTime (mov) and AVI (audio video interleaved). Due to a bug in
the then available version of JMF, AVI replay was only possibly up to 35 minutes
and 47 seconds (caused by an integer overflow). Hence, we used QuickTime. As the
JMF cannot record mp3 audio within a QuickTime video we record one file for each
stream.

For synchronous transmission the JMF supports the real-time transport protocol
(RTP), which defines a standardized packet format for delivering audio and video
over the Internet [Schulzrinne et al., 2003] and is commonly used by many video
conferencing systems. If compared to other streaming media formats, the benefit
of rtp is that no noticeable buffering is necessary and therefore rtp transmissions
achieve rather short round-trip times and therefore are suitable for a two-sided com-
munication.

9.6.1 TTT/JMF Interface

The interface between the JMF and the TTT can be limited to a few functions
in order to synchronize the desktop handling with the media streams, which are
processed by the JMF. In particular the following functionality is required for the
server and recording component of the TTT:

• accessing audio/video capture devices,

• initializing, starting and terminating the recording of audio/video streams and

• initializing, starting and terminating the transmission of audio/video streams.

The student component requires:

• receiving and replaying of transmitted audio/video stream,

9.6 Java Media Framework (JMF) 207

• reading and replaying (including start, stop and pause) of recorded streams,

• requesting the current replay time (to synchronize desktop replay) and

• setting the replay time (to enable random access).

JMF provides the class javax.media.Manager as the access point for obtaining
system dependent resources, which is used to create instances of (implementing
classes of):

javax.media.protocol.DataSource the origin of a media stream;
javax.media.Player replays a media stream;
javax.media.Processor transforms a media stream

(e.g. encoding and decoding) and
javax.media.DataSink sepcifies the output for a media stream.

The TTT recording and transmitting components create a DataSource for the se-
lected audio and video capture devices. In order to support different outputs (e.g.
for recording and transmission), the media stream of the DataSource is multiplexed
and handed to appropriate Processors. Each Processor encodes the media stream
according to the given format specifications (e.g. µlaw/rtp, 8000 Hz, 8-bit, Mono for
our audio transmission) and delivers the encoded stream to an appropriate DataSink,
which is either related to an output file or an output socket.

Replaying is done by creating an appropriate DataSource, which is either associated
with a recorded file or an input socket (which is connected to the output socket of
the TTT server). A Player is created for such a DataSource. This Player offers
certain controlling methods and, in the case of a video stream, a visual component,
which can be displayed by the TTT. A DataSink is not required during replay.

The synchronization between the audio and the video stream is accomplished by
the JMF. The desktop stream is synchronized to the audio stream by comparing the
timestamp of the next message (of the desktop stream) against the current replay
time of the audio stream. Typically the timestamp will be larger and the message
will be delayed accordingly. If the audio replay has already passed the timestamp,
the message will be replayed instantaneously. Random access is performed by setting
the replay time of the audio and video streams according to the specified timestamp,
computing the current state of the desktop framebuffer (as described in Section 5.3)
and setting the first message that exceeds the given timestamp as next message to
be processed. No synchronization is required for synchronous transmissions. In fact
the audio, video and desktop streams are replayed as they arrive.

9.6.2 Limitations and Problems

Although the Java Media Framework provides a meaningful infrastructure in or-
der to capture, playback and stream standard audio and video formats, there are
some drawbacks. The supported codecs, especially the video codecs, are rather out-
dated. Support of newer, more advanced and better compressing formats such as

208 9 The TeleTeachingTool

ogg, h.323, h.264 or MPEG-4, is missing. Furthermore, recording an audio stream is
rather problematic regarding the synchronization. The recorded audio streams are
sometimes too short. The reason is that small pauses may occur during which no
audio is recorded and which are mostly generated by high system loads on systems
that use onboard sound devices. Although these pauses are no longer than a few
milliseconds, they add up over a lecture of about 90 minutes to several seconds or,
in the worst case, even minutes. During replay the synchronization between the au-
dio and the desktop stream (video as well) will be fine at the beginning but will get
worse towards the end. Hence, in order to produce synchronous recordings, hardware
that will not be affected by this problem must be used, which can be troublesome
due to the high number of possible hardware combinations. Typically stand alone
sound adapters are better suited than today’s commonly used onboard solutions.

In order to provide a workaround, the TeleTeachingTool checks during replay
whether the data streams are of equal lengths. If not, the desktop replay rate will
be slightly increased so that the replay duration matches the duration of the au-
dio stream. However, the pauses are not necessarily equally distributed throughout
the duration and therefore this is only a slight improvement but at least limits the
asynchronism to a few seconds, which is an improvement while replaying progresses
towards the end of the electronic lecture. Nevertheless, the replay of the video stream
will still be asynchronous. The JMF API offers a method to set the replay rate of
media streams, but unfortunately only a rate of 1.0 is implemented for the given
formats. Another solution was suggested by Prof. Dr. Wolfgang Slany (Technische
Universität Graz). He uses the TeleTeachingTool for recording his lectures, but ad-
ditionally records the audio stream with another audio recording tool. Afterwards
he edits (cuts) the beginning of the audio stream to provide synchronous replay.
However, manual post-processing is necessary.

Since the developer of the Java Media Framework, which is Sun Microsystems, Inc.,
does not focus much effort on improving this framework, for instance by supporting
newer, more meaningful codecs and formats, we might watch out for an alterna-
tive. In fact the latest update on the JMF web pages is dated “November 2004”.
QuickTime for Java [QTJava, 2006] offers access to the QuickTime API for Java ap-
plications, but does not support the linux operating system. The open source project
Freedom for Media in Java (FMJ) [FMJ, 2006] aims to reimplement and improve
JMF while preserving compatibility with the JMF API, but is still in progress.

9.6.3 Summary

In summary, the Java Media Framework offers (almost) all of the functionality that
is required to build up an environment for recording and replaying asynchronous
electronic lectures as well as to transmit and receive synchronous ones and there-
fore is a suitable basis to implement the TeleTeachingTool in order to approve the
ideas and concepts, which we suggested in this theses. Currently, the TeleTeaching-
Tool uses JMF to record mp3 audio and h.263/QuickTime video files and transmits
µlaw/rtp audio and h.263/rtp video streams. As the available encodings are rather
limited and somehow “outdated” and furthermore the current implementation of the
Java Media Framework has some drawbacks, another possibility to integrate audio

9.6 Java Media Framework (JMF) 209

and video streams should be preferred to provide a more stable and satisfying lecture
recording environment in the future.

210 9 The TeleTeachingTool

9.7 File Format Specification

The desktop recording (file ending “.ttt”) produced by the TeleTeachingTool con-
sists of three parts: a header , which specifies certain parameters (analogous to the
initialization provided by a VNC Server), optional extensions that may contain
indexing structures, thumbnails and search bases, and the main body that stores the
logged messages.

Since the TTT is derived from the VNC, the TTT format shows many analogies
to the RFB protocol specification [Richardson, 2005]. Unlike the RFB protocol, the
TTT protocol enables reading (and skipping) of (potentially unknown) message types
without parsing them and thus enables faster processing of recorded lectures.

9.7.1 Header

The header is derived from the initialization phase of the RFB protocol
[Richardson, 2005] and analogous starts with the protocol version:

No. of bytes Type Description
12 byte array protocol version [TTT 001.001\n]

Unlike the RFB protocol, the TTT encodes/compresses any subsequent data (in-
cluding extensions and body) that follows the protocol version by use of a zlib deflate
stream in order to reduce the file size.

The initialization is the same as the ServerIntialization of the RFB protocol
(for details and the meaning of the parameters see RFB protocol specification
[Richardson, 2005]):

No. of bytes Type Description
2 short framebuffer-width
2 short framebuffer-height
1 byte bits-per-pixel
1 byte color-depth
1 byte big-endian-flag
1 byte true-color-flag
2 short red-max
2 short green-max
2 short blue-max
1 byte red-shift
1 byte green-shift
1 byte blue-shift
3 padding
4 int name-length
name-length byte array name-string

Now a possibly empty list of extensions follows, where an extension length of zero
bytes indicates the end of the list:

9.7 File Format Specification 211

No. of bytes Type Description
4 int length-of-extension
length-of-extension byte array extension

The header ends with the time/date when the recording was started (in milliseconds
since midnight, January 1, 1970 UTC):

No. of bytes Type Description
8 long startime

9.7.2 Extensions

The TTT protocol provides an extensibility by offering the concept of extensions,
which enable the integration of additional data, such as indexing structures, without
modifying the protocol header or the message type specifications.

Currently the TTT suports the following two extension types:

Type 1: index table extension
Type 2: searchbase extension

Each extension must start with a byte specifying the extension-type and is followed
by type specific data. Since each extension is preceded by its size (see header), any
unknown extension can be skipped (ignored).

Index Table Extension

The index table extension stores the indexing structure of a recording and optionally
contains thumbnails (preview images) and ASCII search bases for the indices.

The index table extension starts with:

No. of bytes Type Description
1 byte extension-type [1]
2 short number-of-indices

followed by number-of-indices “index entries”:

No. of bytes Type Description
4 int timestamp (milliseconds since beginning)
1 byte title-length
title-length byte array title-string
4 int searchbase-length (no searchbase if zero)
searchbase-length byte array searchbase-string (ASCII)
4 int thumbnail-size (no thumbnail if zero)
thumbnail-size byte array thumbnail-image (png image)

212 9 The TeleTeachingTool

Search Base Table with Coordinates Extension

The search base table extension stores a search base with coordinates (in order to
emphasize search results) for each index entry of a recording.

The search base table extension starts with:

No. of bytes Type Description
1 byte extension-type [2]
2 short number-of-indices
8 double coordinate-ratio

Note that the number of indices of the search base table extension must match the
number of indices listed by the index table extensions. The coordinate-ratio is re-
quired to translate the given coordinates to pixel coordinates (by multiplying the
coordinate by the ratio), because ScanSoft’s Omnipage, which we use to generate
the search bases (see Section 8.1.1), produces coordinates that relate to a dpi mea-
surement (dots per inch) instead of pixels.

The extension header is followed by number-of-indices “search base entries”:

No. of bytes Type Description
2 short number-of-words

followed by number-of-words “word entries”:

No. of bytes Type Description
2 short word-length
word-length byte array word-string (ASCII)
2 short x-position
2 short y-position
2 short width
2 short height

9.7.3 Body

The body of a TTT file contains a sequence of messages, which is terminated by the
end of file (“EOF”). Each message starts as follows:

No. of bytes Type Description
4 int message-length
1 byte encoding (message type)

where the encoding is one of the following:

9.7 File Format Specification 213

value Description
0 EncodingRaw
1 EncodingCopyRect
5 EncodingHextile

17 EncodingTTTCursorPosition
18 EncodingTTTXCursor
19 EncodingTTTRichCursor
20 AnnotationRectangle
21 AnnotationLine
22 AnnotationFreehand
23 AnnotationHighlight
24 AnnotationDelete
25 AnnotationDeleteAll
33 EncodingWhiteboard
64 EncodingFlagUpdate

128 EncodingFlagTimestamp

The EncodingFlagUpdate and the EncodingFlagTimestamp can be combined (“OR”
operator) with any other encoding. The EncodingFlagUpdate is only relevant for
transmitted lectures and reveals that a message contains potentially outdated updates,
which will only be displayed by clients with an uninitialized framebuffer as suggested
in Section 4.2.12 (reusing non-incremental keyframe stripes).

If the EncodingFlagTimestamp is set, the encoding is succeeded by the timestamp
of that message (otherwise the timestamp will be carried over from the previous
message):

No. of bytes Type Description
4 int timestamp (if TimestampFlag is set)

Framebuffer Update Encodings

In order to provide direct access to the rectangle headers, we store individual rect-
angles instead of messages that contain sequences of rectangles (as suggested in
Section 5.1.2). Furthermore, we have placed the encoding field in front of the co-
ordinates and dimensions (unlike the RFB protocol). The RFB rectangle encodings
are used as TTT encodings unless they do not fit in our 1 byte encoding-field (since
the RFB protocol uses 4 bytes), which is the case for the cursor pseudo encodings :
(EncodingXCursor [-240] and EncodingRichCursor [-239]).

Any framebuffer update rectangle or cursor encoding starts as follows:

No. of bytes Type Description
2 short x-position
2 short y-position
2 short width
2 short height

214 9 The TeleTeachingTool

and will be succeeded by encoding related data according to the corresponding RFB
encodings as specified in the RFB protocol specification [Richardson, 2005].

Note that any encoding related data can be read without parsing due to the size tag
that precedes each message. The length of the encoding related data is the length
of the message minus the length of the header. Reading rectangles without parsing
their content is meaningful, because many rectangle processing algorithms (for in-
stance the slide detection) can be performed by use of the rectangle headers only.
Furthermore, the size tags enable skipping of messages of unknown encoding type.

EncodingTTTCursorPosition

In order to specify the position of the cursor (shape), the width and height fields are
not necessary:

No. of bytes Type Description
2 short x-position
2 short y-position

AnnotationRectangle, AnnotationLine and AnnotationHighlight

These message types only differ in their graphical representation (and obviously the
encoding field). The format of all three types is:

No. of bytes Type Description
1 byte color (of a predefined color table)
2 short start-x-position
2 short start-y-position
2 short end-x-position
2 short end-y-position

where either a line or a rectangle, respectively, will be drawn (in the given color)
from the start position to the end position. A line is a straight line between the two
points and a rectangle contains the two specified points as corners and will be drawn
parallel to the axes. In case of a AnnotationHighlight, the rectangle will be filled in
a translucent color, so that the underlying desktop framebuffer is emphasized but
still visible.

AnnotationFreehand

A freehand annotation consists of a sequence of points, which are connected by lines,
and starts as follows:

No. of bytes Type Description
1 byte color (of a predefined color table)
2 short number-of-points

9.7 File Format Specification 215

followed by number-of-points “point entries”, where each point consists of:

No. of bytes Type Description
2 short x-position
2 short y-position

AnnotationDelete

No. of bytes Type Description
2 short x-position
2 short y-position

Note that not the single point will be deleted but rather any annotations that contain
the point of deletion, i.e. that affect/paint the pixel at the corresponding coordinate.

AnnotationDeleteAll

This message initiates the deletion of any currently shown annotations and needs no
further message specific data.

EncodingWhiteboard

Whiteboard messages are used to switch between blank page(s), the whiteboard, and
the desktop and consists of the following field only:

No. of bytes Type Description
1 byte page-number

where 0 relates to the desktop (whiteboard disabled) and larger values correspond to
whiteboard pages (whiteboard enabled).

10

Conclusion

The lightweight approach of recording and transmitting live lectures enables the cost-
efficient production of multimedia-based learning materials for distance education
as well as for local students in order to study independent of time and place.

In general, there are two conflicting recording approaches: recording symbolic repre-
sentation and pixel-based screen recording. Symbolically represented documents typ-
ically offer structured data and thus enhanced navigational features, editing and
searchable content, but restrict the teaching and recording process because only cer-
tain document formats and presentation applications can be supported. In contrast,
screen recording offers a very flexible technique for the grabbing/recording process as
it allows virtually any material to be captured (on a pixel basis) displayed during a
presentation, but commonly supports only sequential replay and timeline navigation,
and lacks any retrievability.

The first main goal of this thesis was the design and development of a flexible, easy-
to-use recording and transmission environment, which does not restrict teachers in
their content production and presentation process, but rather can be seamlessly
integrated into an existing teaching environment in a transparent manner, so that
the teacher is not aware of the recording process.

Virtual Network Computing (VNC) was chosen as a suitable basis to create a flex-
ible environment. By remotely accessing/grabbing the presented desktop via VNC,
lecture recording and transmission can be seamlessly integrated into almost any ex-
isting learning environment as long as the teacher uses computer-based presentations.
Moreover, this approach does not restrict the teachers in their choice of presented
documents and applications.

In order to support a scalable desktop transmission, i.e. to support a large number of
simultaneously connected students, we have additionally modified the VNC infras-
tructure and its Remote Framebuffer (RFB) protocol by reducing the unnecessarily
huge number of different pixel formats and individual handling of clients. Moreover,
the transmission was transferred from connection-oriented TCP communication to
connection-less UDP data transmission in order to make use of scalable multicast
data transfer, which requires message splitting and regarding the effects of packet

218 10 Conclusion

loss. By adding audio and video streams, which are captured and transmitted by
use of the Java Media Framework (JMF), this now scalable VNC environment can
be used to deliver synchronous electronic lectures for distance learning.

In order to support the special requirements of an all-digital recording environment,
we enriched the presentation capabilities by adding an (optional) easy to use anno-
tation system, which can be used to emphasize certain presented elements during a
lecture in order to focus the attention of the audience. Such an annotation system
also enables on demand commenting and drawing of sketches, annotating presented
slides and an additional electronic whiteboard, which are possibilities to replace the
tradionally used chalk and blackboards.

The second main goal was the automated production of full-fledged asynchronous
electronic lectures. The VNC environment can easily be extended to record VNC
sessions by logging timestamped messages. We have adapted the recording format
to enable direct access to message and rectangle headers, which improves the us-
ability and performance during replay. As we have proved that random access can
be performed efficiently for our recording, we have given the basis for other naviga-
tional features. The main drawback of the screen recording approach is the missing
structure of the produced electronic lectures. We have shown how analyzing the pixel-
based recordings makes it possible to regain a structure. Furthermore, the structuring
process is automated by providing empirically determined thresholds for slide and
animation detection. At first potential indices are derived and then classified.

The index structure is used to provide slide-based navigation via a comfortable
thumbnail overview giving a meaningful visual representation of indices. The index-
ing structure also enables the automated generation of a lecture related script that
will include the annotations, which were made during the lecture but are typically
not included in published slides.

Moreover, we have discussed how the indexing process can be performed on the fly
during the live presentation, which enables the use os slide indices in order to access
previously presented slides including the corresponding annotations. By performing
an efficient comparison of framebuffer states even an interlinkage of annotations and
(pixel-based) content can be accomplished.

Retrievability of content is an important issue for electronic lectures since it enables
students to locate and access certain topics of their interest. Textual (and any other)
content is stored pixel-based. Nevertheless we suggested a possibility to create a tex-
tual search base which allows to perform full text search for screen recorded lectures :
The indexing structure makes it possible to address a pixel-based representation of
recorded slides. Applying optical character recognition to automatically generated
slide images delivers the textual content of each slide, which then is interlinked with
the indexing structure of the recording. Hence, we can perform full text search and
receive accessable search results in the form of slide indices. If the character recog-
nition delivers the coordinates of the recognized elements, we can even emphasize
the search results.

Furthermore, we have suggested and implemented several solutions to enable cross
lecture searches in order to handle the huge number of electronic lectures within a

10.1 Future Work 219

database of lectures. Our own lecture recording archive currently contains about 600
hours of recorded lectures. The online full text search regards all individual lecture
search bases and delivers the name and the indices of matching lectures for any given
search pattern. With the Search&BrowsingTool we offer a more comfortable cross
lecture search by classifying recordings according to metadata, such as name and
date. By providing various views, a suitable representation of search results can be
achieved.

Hence, we have overcome the limited navigational and missing retrieval features
of the screen recording approach. Another drawback is the missing scalability of
pixel-based content. Electronic lectures which are produced by use of symbolic rep-
resentations including vector fonts and vector graphics, can be scaled to any screen
resolution without loss in quality. Scaling pixel-based recordings will result in a loss
of quality. Currently, we do not see how to eliminate this drawback. However, as
many lecture recorders either use pixel-based input formats (to achieve more flexi-
bility) or produce electronic lectures in a standard video format, which commonly
are also pixel-based, this drawback should not be that important.

In summary, the TeleTeachingTool offers a flexible and easy to use solution to lecture
recording and scalable transmission, which nevertheless produces electronic lectures
of manageable file sizes and necessary navigational and retrieval features. The an-
notation system and the profiling concept increases the usability and comfort of the
system. Since almost all aspects of the content production and post-processing are
automated, the TeleTeachingTool produces electronic lectures in a fast and efficient
manner.

10.1 Future Work

Currently the TeleTeachingTool offers already flexible recording and automated post-
processing but the publishing process should also be automated. This requires an
appropriate interface to a lecture archive, i.e. a web server, a learning management
system or any other database. The cross lecture search may be extended to include
additional learning materials or the searchability of electronic lectures should be
enabled from within conventional search engines (perhaps within a learning man-
agement system). It might be useful to improve the content analysis of pixel-based
recordings (for instance by use of color histograms) in order to enable the searching
of slides with figures or images. Retrievability can be further improved by integrating
support for audio retrieval by use of speech recognition.

Another meaningful approach of multimedia-based learning material is the
integration of digital student annotations as suggested by [Schütz, 2002,
Lienhard and Lauer, 2002, Lienhard and Zupancic, 2003]. Since TTT annotations
are handled on a separate layer anyway, the concept of annotation layering can
easily be added to the TTT protocol but an infrastructure for live annotating and
exchanging annotations must be added. Currently the TTT does not support textual
annotations, because typically the freehand drawing feature is preferred over typing
textual notes during a live presentation. However, students probably will not have

220 10 Conclusion

suitable input devices such as an electronic pen. Hence, the TTT’s annotating system
should be extended to support textual annotations. Possibly other kinds of annota-
tions such as links to other materials (e.g. web pages) will also be meaningful. The
TTT protocol can be easily extended by adding additional message types. Unlike the
original RFB protocol, which cannot handle unknown message types or encodings,
the TTT protocol will simply skip any unknown messages, which is possible due to
the size tag that precedes each message.

Regarding the online transmission, a protocol that respects a given bandwidth would
be preferable instead of the currently used protocol, which generates high peaks while
switching to another slide. Transmitting interlaced framebuffers can be useful to
reduce the peaks and use the idle times of the transmission. Furthermore, cooperative
work should be addressed by switching between multiple simultaneously connected
desktops and supporting verbal communication between several participants and
thus provide an environment for an electronic classroom or electronic seminars.

A

File sizes of recorded VNC Sessions

This appendix lists the file sizes, the average per minute sizes and the average pixel
densities, i.e. the average number of pixels that are modified (updated) within a
minute, for real live lectures that were recorded throughout the last years by use of
the TeleTeachingTool. Note that some erroneous recordings (e.g. split due to network
failure) as well as the few lectures with other resolutions are not listed here.

A.1 8 bit recordings with update stripes

The following courses were recorded with the first prototype of the TeleTeachingTool.
The recordings contain Hextile encoded VNC sessions with non-incremental update
stripes (12 stripes at a rate of 1

10Hz and thus a 2 min period). No additional file
compression was used. The resolution is 1024× 768 pixels (or slightly less to make
space for control elements) at 8 bit per pixel.

The sessions include mainly slide presentations and sometimes dynamic content (e.g.
animated simulations and programming examples). Annotations (if applied) and
pointer movements are generally stored pixel-based.

Course: ”Abstract Machines” (Seidl/Wilhelm, 2002):

name duration size density

abstrakt_2002_04_16_tr.vnc 92 min 9.3 Mbytes 103 kbytes/min

abstrakt_2002_04_23_tr.vnc 85 min 10.0 Mbytes 121 kbytes/min

abstrakt_2002_04_30_tr.vnc 91 min 11.5 Mbytes 130 kbytes/min

abstrakt_2002_05_07_tr.vnc 97 min 13.9 Mbytes 147 kbytes/min

abstrakt_2002_05_14_sb.vnc 65 min 12.4 Mbytes 195 kbytes/min

abstrakt_2002_05_28_sb.vnc 71 min 33.5 Mbytes 483 kbytes/min

abstrakt_2002_06_04_sb.vnc 47 min 21.3 Mbytes 465 kbytes/min

abstrakt_2002_06_11_tr.vnc 86 min 11.3 Mbytes 134 kbytes/min

abstrakt_2002_06_18_tr.vnc 86 min 12.1 Mbytes 144 kbytes/min

abstrakt_2002_06_25_tr.vnc 84 min 10.3 Mbytes 125 kbytes/min

abstrakt_2002_07_02_tr.vnc 90 min 10.3 Mbytes 118 kbytes/min

222 A File sizes of recorded VNC Sessions

abstrakt_2002_07_09_tr.vnc 17 min 3.4 Mbytes 207 kbytes/min

average: 197 kbytes/min

Course: ”Informatik I ” (Seidl, 2001/02):

name duration size density

info1_2001_10_30.vnc 78 min 3.4 Mbytes 45 kbytes/min

info1_2001_11_02.vnc 87 min 3.5 Mbytes 41 kbytes/min

info1_2001_11_06.vnc 86 min 3.4 Mbytes 41 kbytes/min

info1_2001_11_09.vnc 86 min 3.4 Mbytes 40 kbytes/min

info1_2001_11_13.vnc 81 min 2.4 Mbytes 31 kbytes/min

info1_2001_11_16.vnc 84 min 4.5 Mbytes 55 kbytes/min

info1_2001_11_20.vnc 87 min 14.2 Mbytes 168 kbytes/min

info1_2001_11_23.vnc 77 min 9.6 Mbytes 128 kbytes/min

info1_2001_11_27.vnc 88 min 16.8 Mbytes 195 kbytes/min

info1_2001_11_30.vnc 72 min 7.2 Mbytes 103 kbytes/min

info1_2001_12_04.vnc 88 min 15.0 Mbytes 175 kbytes/min

info1_2001_12_07.vnc 89 min 10.6 Mbytes 122 kbytes/min

info1_2001_12_11.vnc 85 min 17.7 Mbytes 214 kbytes/min

info1_2001_12_14.vnc 88 min 17.3 Mbytes 201 kbytes/min

info1_2001_12_18.vnc 88 min 18.3 Mbytes 213 kbytes/min

info1_2001_12_21.vnc 89 min 17.9 Mbytes 206 kbytes/min

info1_2002_01_08.vnc 57 min 0.8 Mbytes 15 kbytes/min

info1_2002_01_11.vnc 92 min 13.6 Mbytes 152 kbytes/min

info1_2002_01_15.vnc 90 min 17.9 Mbytes 204 kbytes/min

info1_2002_01_18.vnc 89 min 16.8 Mbytes 193 kbytes/min

info1_2002_01_22.vnc 89 min 12.7 Mbytes 146 kbytes/min

info1_2002_01_25.vnc 87 min 10.0 Mbytes 117 kbytes/min

info1_2002_01_29.vnc 88 min 17.1 Mbytes 199 kbytes/min

info1_2002_02_01.vnc 90 min 15.8 Mbytes 179 kbytes/min

info1_2002_02_05.vnc 89 min 14.5 Mbytes 167 kbytes/min

info1_2002_02_08.vnc 89 min 11.4 Mbytes 132 kbytes/min

info1_2002_02_12.vnc 86 min 14.5 Mbytes 173 kbytes/min

info1_2002_02_19.vnc 61 min 7.3 Mbytes 123 kbytes/min

average: 134 kbytes/min

Course: ”Medienwissenschaft I ” (Bucher, 2002):

name duration size density

medien1_2002_04_16.vnc 87 min 9.9 Mbytes 117 kbytes/min

medien1_2002_04_23.vnc 88 min 13.7 Mbytes 159 kbytes/min

medien1_2002_04_30.vnc 87 min 16.9 Mbytes 198 kbytes/min

medien1_2002_05_07.vnc 86 min 12.8 Mbytes 152 kbytes/min

medien1_2002_05_14.vnc 91 min 15.8 Mbytes 178 kbytes/min

medien1_2002_05_28.vnc 78 min 6.6 Mbytes 86 kbytes/min

medien1_2002_06_11.vnc 84 min 16.8 Mbytes 205 kbytes/min

medien1_2002_06_18.vnc 94 min 17.1 Mbytes 186 kbytes/min

medien1_2002_06_25.vnc 95 min 12.7 Mbytes 137 kbytes/min

A.2 16 bit recordings with stripes and file compression 223

medien1_2002_07_09.vnc 86 min 26.7 Mbytes 317 kbytes/min

medien1_2002_07_16.vnc 77 min 6.9 Mbytes 92 kbytes/min

average: 166 kbytes/min

Course: ”Technische Grundlagen des Elektronischen Publizierens im
WWW ” (Meinel, 2001/02):

name duration size density

--

tgep_2001_10_30.vnc 66 min 7.3 Mbytes 114 kbytes/min

tgep_2001_11_06.vnc 80 min 12.8 Mbytes 164 kbytes/min

tgep_2001_11_08.vnc 74 min 2.8 Mbytes 39 kbytes/min

tgep_2001_11_13.vnc 72 min 6.8 Mbytes 97 kbytes/min

tgep_2001_11_15.vnc 87 min 4.3 Mbytes 50 kbytes/min

tgep_2001_11_20.vnc 90 min 6.4 Mbytes 73 kbytes/min

tgep_2001_11_27.vnc 70 min 3.1 Mbytes 46 kbytes/min

tgep_2001_11_29.vnc 78 min 4.3 Mbytes 57 kbytes/min

tgep_2001_12_04.vnc 50 min 3.9 Mbytes 80 kbytes/min

tgep_2001_12_06.vnc 82 min 4.6 Mbytes 58 kbytes/min

tgep_2001_12_11.vnc 70 min 3.9 Mbytes 58 kbytes/min

tgep_2001_12_13.vnc 78 min 3.7 Mbytes 49 kbytes/min

tgep_2001_12_18.vnc 74 min 2.9 Mbytes 40 kbytes/min

tgep_2002_01_08.vnc 81 min 12.7 Mbytes 161 kbytes/min

tgep_2002_01_10.vnc 83 min 6.4 Mbytes 80 kbytes/min

tgep_2002_01_15.vnc 69 min 3.3 Mbytes 49 kbytes/min

tgep_2002_01_17.vnc 77 min 4.4 Mbytes 59 kbytes/min

tgep_2002_01_22.vnc 76 min 4.2 Mbytes 56 kbytes/min

tgep_2002_01_29.vnc 87 min 9.3 Mbytes 110 kbytes/min

tgep_2002_01_31.vnc 77 min 5.7 Mbytes 76 kbytes/min

tgep_2002_02_05.vnc 61 min 4.8 Mbytes 81 kbytes/min

tgep_2002_02_07.vnc 76 min 6.0 Mbytes 82 kbytes/min

tgep_2002_02_14.vnc 79 min 6.7 Mbytes 87 kbytes/min

tgep_2002_02_19.vnc 78 min 6.6 Mbytes 87 kbytes/min

tgep_2002_02_21.vnc 70 min 8.2 Mbytes 121 kbytes/min

--

average: 78 kbytes/min

A.2 16 bit recordings with stripes and file compression

The following courses were recorded with the TeleTeachingTool with additional zlib
deflate compression (applied to the file body). The recordings contain Hextile en-
coded VNC sessions with non-incremental update stripes (24 stripes at a rate of 1

5Hz
and thus a 2 min period). The resulution is 1024×768 pixels (or slightly less to make
space for control elements) at 16 bit per pixel.

The following sessions include mainly slide presentations and some dynamic content
(e.g. animated simulations and programming examples). Annotations and pointer
movements are generally stored symbolically.

224 A File sizes of recorded VNC Sessions

Course: ”Abstrakte Maschinen” (Seidl, 2003):

name duration size density pixel density

abstrakt_2003_04_29.ttt 91 min 2.3 Mbytes 26 kbytes/min 1255 kpixel/min

abstrakt_2003_05_06.ttt 105 min 2.8 Mbytes 28 kbytes/min 2069 kpixel/min

abstrakt_2003_05_13.ttt 77 min 1.7 Mbytes 23 kbytes/min 1173 kpixel/min

abstrakt_2003_05_20.ttt 95 min 2.3 Mbytes 25 kbytes/min 1407 kpixel/min

abstrakt_2003_05_27.ttt 88 min 2.3 Mbytes 27 kbytes/min 1826 kpixel/min

abstrakt_2003_06_03.ttt 91 min 2.3 Mbytes 27 kbytes/min 2087 kpixel/min

abstrakt_2003_06_17.ttt 92 min 2.9 Mbytes 32 kbytes/min 2743 kpixel/min

abstrakt_2003_06_24.ttt 65 min 2.8 Mbytes 44 kbytes/min 2846 kpixel/min

abstrakt_2003_06_25.ttt 92 min 5.9 Mbytes 65 kbytes/min 7028 kpixel/min

abstrakt_2003_07_08.ttt 91 min 2.5 Mbytes 28 kbytes/min 1785 kpixel/min

abstrakt_2003_07_15.ttt 89 min 2.6 Mbytes 30 kbytes/min 1096 kpixel/min

abstrakt_2003_07_16.ttt 61 min 1.9 Mbytes 31 kbytes/min 1061 kpixel/min

abstrakt_2003_07_29.ttt 81 min 2.8 Mbytes 35 kbytes/min 2211 kpixel/min

average: 32 kbytes/min 2199 kpixel/min

Course: ”Abstrakte Maschinen” (Seidl, 2004):

name duration size density pixel density

abstrakt_2004_04_19.ttt 73 min 1.9 Mbytes 27 kbytes/min 869 kpixel/min

abstrakt_2004_04_21.ttt 85 min 2.1 Mbytes 26 kbytes/min 1277 kpixel/min

abstrakt_2004_04_26.ttt 86 min 2.6 Mbytes 31 kbytes/min 1306 kpixel/min

abstrakt_2004_04_28.ttt 89 min 2.1 Mbytes 24 kbytes/min 814 kpixel/min

abstrakt_2004_05_03.ttt 90 min 6.2 Mbytes 71 kbytes/min 1658 kpixel/min

abstrakt_2004_05_05.ttt 88 min 2.4 Mbytes 28 kbytes/min 865 kpixel/min

abstrakt_2004_05_12.ttt 88 min 2.3 Mbytes 27 kbytes/min 1540 kpixel/min

abstrakt_2004_05_19.ttt 77 min 3.5 Mbytes 47 kbytes/min 10354 kpixel/min

abstrakt_2004_05_26.ttt 87 min 2.2 Mbytes 26 kbytes/min 1250 kpixel/min

abstrakt_2004_06_09.ttt 85 min 3.1 Mbytes 37 kbytes/min 2417 kpixel/min

abstrakt_2004_06_16.ttt 88 min 3.5 Mbytes 40 kbytes/min 2100 kpixel/min

abstrakt_2004_06_23.ttt 77 min 4.6 Mbytes 61 kbytes/min 5115 kpixel/min

abstrakt_2004_06_30.ttt 89 min 2.9 Mbytes 33 kbytes/min 1389 kpixel/min

abstrakt_2004_07_07.ttt 85 min 2.3 Mbytes 27 kbytes/min 1199 kpixel/min

abstrakt_2004_07_14.ttt 40 min 1.0 Mbytes 25 kbytes/min 1083 kpixel/min

abstrakt_2004_07_21.ttt 74 min 1.5 Mbytes 21 kbytes/min 1052 kpixel/min

average: 34 kbytes/min 2143 kpixel/min

ignoring abstrakt_2004_05_19.ttt average: 31 kbytes/min 1344 kpixel/min

Course: ”Programmiersprachen” (Berlea, 2005/06):

name duration size density pixel density

--

prgsprachen_2005_10_19.ttt 92 min 5.6 Mbytes 62 kbytes/min 1847 kpixel/min

prgsprachen_2005_10_26.ttt 87 min 5.7 Mbytes 67 kbytes/min 1747 kpixel/min

A.2 16 bit recordings with stripes and file compression 225

prgsprachen_2005_11_02.ttt 89 min 5.1 Mbytes 58 kbytes/min 1895 kpixel/min

prgsprachen_2005_11_09.ttt 86 min 3.8 Mbytes 45 kbytes/min 1072 kpixel/min

prgsprachen_2005_11_23.ttt 87 min 6.8 Mbytes 80 kbytes/min 2072 kpixel/min

prgsprachen_2005_11_30.ttt 79 min 4.4 Mbytes 58 kbytes/min 1016 kpixel/min

prgsprachen_2005_12_07.ttt 84 min 4.4 Mbytes 54 kbytes/min 1410 kpixel/min

prgsprachen_2005_12_14.ttt 83 min 5.0 Mbytes 62 kbytes/min 1781 kpixel/min

prgsprachen_2006_01_11.ttt 83 min 4.1 Mbytes 51 kbytes/min 1210 kpixel/min

prgsprachen_2006_01_18.ttt 79 min 3.7 Mbytes 48 kbytes/min 1035 kpixel/min

prgsprachen_2006_01_25.ttt 81 min 4.8 Mbytes 61 kbytes/min 1357 kpixel/min

prgsprachen_2006_02_08.ttt 78 min 3.2 Mbytes 42 kbytes/min 799 kpixel/min

--

average: 57 kbytes/min 1436 kpixel/min

Course: ”Informatik I ” (Seidl, 2002/03):

name duration size density pixel density

--

info1_2002_10_29.ttt 85 min 2.4 Mbytes 29 kbytes/min 659 kpixel/min

info1_2002_11_05.ttt 89 min 4.1 Mbytes 48 kbytes/min 1030 kpixel/min

info1_2002_11_08.ttt 88 min 3.9 Mbytes 46 kbytes/min 1003 kpixel/min

info1_2002_11_12.ttt 88 min 5.0 Mbytes 58 kbytes/min 1604 kpixel/min

info1_2002_11_15.ttt 77 min 8.6 Mbytes 114 kbytes/min 1937 kpixel/min

info1_2002_11_19.ttt 90 min 3.9 Mbytes 44 kbytes/min 1623 kpixel/min

info1_2002_11_22.ttt 90 min 3.5 Mbytes 40 kbytes/min 1326 kpixel/min

info1_2002_11_26.ttt 90 min 4.8 Mbytes 55 kbytes/min 1912 kpixel/min

info1_2002_11_29.ttt 89 min 2.4 Mbytes 28 kbytes/min 1036 kpixel/min

info1_2002_12_03.ttt 81 min 1.7 Mbytes 22 kbytes/min 882 kpixel/min

info1_2002_12_06.ttt 89 min 1.8 Mbytes 21 kbytes/min 863 kpixel/min

info1_2002_12_10.ttt 89 min 3.0 Mbytes 35 kbytes/min 940 kpixel/min

info1_2002_12_13.ttt 90 min 4.2 Mbytes 47 kbytes/min 1115 kpixel/min

info1_2002_12_17.ttt 91 min 3.7 Mbytes 42 kbytes/min 978 kpixel/min

info1_2002_12_20.ttt 90 min 3.4 Mbytes 39 kbytes/min 764 kpixel/min

info1_2003_01_07.ttt 79 min 2.8 Mbytes 37 kbytes/min 1033 kpixel/min

info1_2003_01_10.ttt 87 min 2.9 Mbytes 35 kbytes/min 798 kpixel/min

info1_2003_01_14.ttt 88 min 2.9 Mbytes 34 kbytes/min 854 kpixel/min

info1_2003_01_17.ttt 88 min 2.4 Mbytes 28 kbytes/min 1139 kpixel/min

info1_2003_01_21.ttt 88 min 2.8 Mbytes 33 kbytes/min 962 kpixel/min

info1_2003_01_24.ttt 89 min 2.9 Mbytes 33 kbytes/min 680 kpixel/min

info1_2003_01_28.ttt 91 min 2.7 Mbytes 30 kbytes/min 811 kpixel/min

info1_2003_01_31.ttt 90 min 5.1 Mbytes 58 kbytes/min 1309 kpixel/min

info1_2003_02_04.ttt 90 min 3.9 Mbytes 45 kbytes/min 1165 kpixel/min

info1_2003_02_07.ttt 89 min 4.3 Mbytes 49 kbytes/min 1038 kpixel/min

info1_2003_02_11.ttt 89 min 3.6 Mbytes 41 kbytes/min 1177 kpixel/min

info1_2003_02_18.ttt 79 min 4.0 Mbytes 52 kbytes/min 1269 kpixel/min

--

average: 42 kbytes/min 1107 kpixel/min

Course: ”Informatik I ” (Seidl, 2004/05):

name duration size density pixel density

--

info1_2004_10_21.ttt 48 min 1.8 Mbytes 39 kbytes/min 819 kpixel/min

226 A File sizes of recorded VNC Sessions

info1_2004_10_22.ttt 83 min 3.5 Mbytes 44 kbytes/min 1078 kpixel/min

info1_2004_10_28.ttt 89 min 1.9 Mbytes 22 kbytes/min 585 kpixel/min

info1_2004_10_29.ttt 83 min 1.8 Mbytes 22 kbytes/min 532 kpixel/min

info1_2004_11_04.ttt 88 min 3.6 Mbytes 42 kbytes/min 1039 kpixel/min

info1_2004_11_11.ttt 89 min 2.3 Mbytes 26 kbytes/min 1024 kpixel/min

info1_2004_11_12.ttt 86 min 2.2 Mbytes 26 kbytes/min 1013 kpixel/min

info1_2004_11_18.ttt 87 min 2.3 Mbytes 27 kbytes/min 1477 kpixel/min

info1_2004_11_25.ttt 86 min 3.1 Mbytes 37 kbytes/min 1017 kpixel/min

info1_2004_11_26.ttt 86 min 2.1 Mbytes 25 kbytes/min 1064 kpixel/min

info1_2004_12_03.ttt 87 min 1.8 Mbytes 21 kbytes/min 801 kpixel/min

info1_2004_12_09.ttt 84 min 3.0 Mbytes 36 kbytes/min 995 kpixel/min

info1_2004_12_10.ttt 85 min 2.9 Mbytes 35 kbytes/min 754 kpixel/min

info1_2004_12_16.ttt 78 min 2.8 Mbytes 37 kbytes/min 788 kpixel/min

info1_2004_12_17.ttt 86 min 3.0 Mbytes 35 kbytes/min 656 kpixel/min

info1_2004_12_23.ttt 86 min 3.3 Mbytes 39 kbytes/min 1487 kpixel/min

info1_2005_01_07.ttt 92 min 2.8 Mbytes 31 kbytes/min 787 kpixel/min

info1_2005_01_13.ttt 82 min 2.0 Mbytes 25 kbytes/min 587 kpixel/min

info1_2005_01_14.ttt 85 min 2.2 Mbytes 26 kbytes/min 666 kpixel/min

info1_2005_01_20.ttt 85 min 2.7 Mbytes 32 kbytes/min 841 kpixel/min

info1_2005_01_21.ttt 86 min 2.6 Mbytes 32 kbytes/min 817 kpixel/min

info1_2005_01_27.ttt 83 min 2.6 Mbytes 32 kbytes/min 823 kpixel/min

info1_2005_01_28.ttt 85 min 3.5 Mbytes 42 kbytes/min 771 kpixel/min

info1_2005_02_03.ttt 84 min 3.3 Mbytes 40 kbytes/min 934 kpixel/min

info1_2005_02_04.ttt 83 min 7.9 Mbytes 98 kbytes/min 2320 kpixel/min

--

average: 34 kbytes/min 947 kpixel/min

Course: ”Informatik II ” (Seidl, 2005):

name duration size density pixel density

--

info2_2005_04_12.ttt 86 min 3.7 Mbytes 44 kbytes/min 850 kpixel/min

info2_2005_04_15.ttt 84 min 5.3 Mbytes 65 kbytes/min 1067 kpixel/min

info2_2005_04_19.ttt 90 min 4.4 Mbytes 50 kbytes/min 1210 kpixel/min

info2_2005_04_22.ttt 88 min 4.0 Mbytes 46 kbytes/min 779 kpixel/min

info2_2005_04_26.ttt 88 min 3.3 Mbytes 38 kbytes/min 917 kpixel/min

info2_2005_04_29.ttt 88 min 2.3 Mbytes 27 kbytes/min 856 kpixel/min

info2_2005_05_03.ttt 90 min 2.3 Mbytes 26 kbytes/min 938 kpixel/min

info2_2005_05_06.ttt 88 min 2.6 Mbytes 30 kbytes/min 1007 kpixel/min

info2_2005_05_10.ttt 90 min 2.4 Mbytes 28 kbytes/min 918 kpixel/min

info2_2005_05_13.ttt 93 min 5.5 Mbytes 60 kbytes/min 1216 kpixel/min

info2_2005_05_20.ttt 85 min 3.0 Mbytes 36 kbytes/min 781 kpixel/min

info2_2005_05_24.ttt 89 min 4.0 Mbytes 46 kbytes/min 916 kpixel/min

info2_2005_05_27.ttt 82 min 2.9 Mbytes 37 kbytes/min 661 kpixel/min

info2_2005_05_31.ttt 90 min 3.4 Mbytes 39 kbytes/min 733 kpixel/min

info2_2005_06_03.ttt 88 min 3.5 Mbytes 41 kbytes/min 680 kpixel/min

info2_2005_06_07.ttt 85 min 3.0 Mbytes 36 kbytes/min 687 kpixel/min

info2_2005_06_10.ttt 83 min 2.8 Mbytes 35 kbytes/min 890 kpixel/min

info2_2005_06_14.ttt 88 min 4.6 Mbytes 54 kbytes/min 1055 kpixel/min

info2_2005_06_17.ttt 74 min 2.9 Mbytes 40 kbytes/min 710 kpixel/min

info2_2005_06_21.ttt 83 min 1.8 Mbytes 22 kbytes/min 585 kpixel/min

info2_2005_06_24.ttt 82 min 2.3 Mbytes 29 kbytes/min 651 kpixel/min

A.2 16 bit recordings with stripes and file compression 227

info2_2005_06_28.ttt 86 min 3.5 Mbytes 42 kbytes/min 731 kpixel/min

info2_2005_07_01.ttt 87 min 3.8 Mbytes 44 kbytes/min 724 kpixel/min

info2_2005_07_05.ttt 86 min 3.1 Mbytes 37 kbytes/min 615 kpixel/min

info2_2005_07_08.ttt 84 min 3.1 Mbytes 38 kbytes/min 731 kpixel/min

info2_2005_07_12.ttt 73 min 4.0 Mbytes 57 kbytes/min 1680 kpixel/min

--

average: 40 kbytes/min 868 kpixel/min

The following sessions include pixel intensive slide presentations (e.g. animated
content, pixel-based annotations, high colored pictures or scanned newspaper arti-
cles).

Course: ”Medienwissenschaft I ” (Bucher, 2003/04):

name duration size density pixel density

medien1_2003_10_28.ttt 101 min 31.8 Mbytes 323 kbytes/min 842 kpixel/min

medien1_2003_11_04.ttt 95 min 17.7 Mbytes 191 kbytes/min 897 kpixel/min

medien1_2003_11_11.ttt 84 min 9.1 Mbytes 111 kbytes/min 640 kpixel/min

medien1_2003_11_18.ttt 92 min 9.1 Mbytes 101 kbytes/min 626 kpixel/min

medien1_2003_11_25.ttt 87 min 10.0 Mbytes 118 kbytes/min 606 kpixel/min

medien1_2003_12_02.ttt 92 min 21.9 Mbytes 244 kbytes/min 752 kpixel/min

medien1_2003_12_09.ttt 65 min 8.2 Mbytes 129 kbytes/min 762 kpixel/min

medien1_2004_01_06.ttt 94 min 12.4 Mbytes 136 kbytes/min 662 kpixel/min

medien1_2004_01_13.ttt 95 min 24.4 Mbytes 263 kbytes/min 800 kpixel/min

medien1_2004_01_27.ttt 68 min 22.6 Mbytes 341 kbytes/min 1237 kpixel/min

medien1_2004_02_03.ttt 89 min 15.0 Mbytes 173 kbytes/min 830 kpixel/min

medien1_2004_02_10.ttt 86 min 7.1 Mbytes 84 kbytes/min 673 kpixel/min

medien1_2004_02_17.ttt 89 min 17.4 Mbytes 200 kbytes/min 765 kpixel/min

--

average: 185 kbytes/min 776 kpixel/min

Course: ”Medienwissenschaft II ” (Bucher, 2002/03):

name duration size density pixel density

--

medien2_2002_11_05.ttt 65 min 10.8 Mbytes 170 kbytes/min 713 kpixel/min

medien2_2002_11_26.ttt 70 min 12.5 Mbytes 183 kbytes/min 1036 kpixel/min

medien2_2002_12_03.ttt 93 min 22.2 Mbytes 244 kbytes/min 854 kpixel/min

medien2_2002_12_17.ttt 90 min 19.5 Mbytes 222 kbytes/min 936 kpixel/min

medien2_2003_01_07.ttt 92 min 30.8 Mbytes 343 kbytes/min 1006 kpixel/min

medien2_2003_01_14.ttt 94 min 25.2 Mbytes 274 kbytes/min 815 kpixel/min

medien2_2003_01_21.ttt 98 min 21.8 Mbytes 227 kbytes/min 560 kpixel/min

medien2_2003_01_28.ttt 93 min 17.8 Mbytes 197 kbytes/min 862 kpixel/min

medien2_2003_02_11.ttt 92 min 3.5 Mbytes 39 kbytes/min 638 kpixel/min

medien2_2003_02_18.ttt 82 min 11.3 Mbytes 141 kbytes/min 764 kpixel/min

--

average: 204 kbytes/min 818 kpixel/min

Course: ”Informatik III ” (Schlichter, 2005/06):

name duration size density pixel density

228 A File sizes of recorded VNC Sessions

--

info3_2005_10_18.ttt 85 min 10.3 Mbytes 124 kbytes/min 1087 kpixel/min

info3_2005_10_24.ttt 73 min 7.5 Mbytes 106 kbytes/min 1132 kpixel/min

info3_2005_10_25.ttt 85 min 11.5 Mbytes 138 kbytes/min 1156 kpixel/min

info3_2005_10_31.ttt 87 min 9.4 Mbytes 110 kbytes/min 1013 kpixel/min

info3_2005_11_07.ttt 89 min 9.2 Mbytes 106 kbytes/min 922 kpixel/min

info3_2005_11_08.ttt 84 min 10.0 Mbytes 122 kbytes/min 1011 kpixel/min

info3_2005_11_14.ttt 89 min 13.0 Mbytes 149 kbytes/min 1347 kpixel/min

info3_2005_11_21.ttt 92 min 13.2 Mbytes 147 kbytes/min 1290 kpixel/min

info3_2005_11_22.ttt 89 min 14.2 Mbytes 164 kbytes/min 1292 kpixel/min

info3_2005_11_28.ttt 91 min 11.3 Mbytes 128 kbytes/min 1166 kpixel/min

info3_2005_11_29.ttt 88 min 15.8 Mbytes 184 kbytes/min 1550 kpixel/min

info3_2005_12_05.ttt 86 min 11.3 Mbytes 134 kbytes/min 1165 kpixel/min

info3_2005_12_06.ttt 90 min 10.8 Mbytes 123 kbytes/min 1174 kpixel/min

info3_2005_12_12.ttt 90 min 11.9 Mbytes 135 kbytes/min 1220 kpixel/min

info3_2005_12_13.ttt 90 min 18.6 Mbytes 212 kbytes/min 1582 kpixel/min

info3_2005_12_19.ttt 89 min 13.4 Mbytes 154 kbytes/min 1305 kpixel/min

info3_2006_01_09.ttt 86 min 10.8 Mbytes 128 kbytes/min 1134 kpixel/min

info3_2006_01_10.ttt 84 min 14.1 Mbytes 172 kbytes/min 1823 kpixel/min

info3_2006_01_16.ttt 80 min 9.3 Mbytes 120 kbytes/min 946 kpixel/min

info3_2006_01_17.ttt 87 min 10.1 Mbytes 119 kbytes/min 1108 kpixel/min

info3_2006_01_23.ttt 85 min 15.5 Mbytes 187 kbytes/min 1469 kpixel/min

info3_2006_01_24.ttt 89 min 13.8 Mbytes 159 kbytes/min 1318 kpixel/min

info3_2006_01_30.ttt 81 min 15.3 Mbytes 194 kbytes/min 1598 kpixel/min

info3_2006_01_31.ttt 86 min 12.1 Mbytes 145 kbytes/min 1190 kpixel/min

info3_2006_02_06.ttt 84 min 12.4 Mbytes 151 kbytes/min 1300 kpixel/min

--

average: 144 kbytes/min 1251 kpixel/min

A.3 32 bit recordings with file compression but no stripes

The following courses were recorded with the TeleTeachingTool with additional
zlib deflate compression (applied to the file body). The recordings contain Hex-
tile encoded VNC sessions without non-incremental update stripes The resulution
is 1024 × 768 pixels (or slightly less to make space for control elements) at color
depth of 24 bit but pixel values are stored at 4 byte per pixel (32 bit).

The sessions include mainly slide presentations and some dynamic content (e.g.
animated simulations and programming examples). Annotations and pointer move-
ments are generally stored symbolically.

Course: ”Abstrakte Maschinen” (Seidl, 2006):

name duration size density pixel density

abstrakt_2006_05_18.ttt 89 min 2.2 Mbytes 25 kbytes/min 709 kpixel/min

abstrakt_2006_06_01.ttt 87 min 0.8 Mbytes 9 kbytes/min 286 kpixel/min

abstrakt_2006_06_08.ttt 67 min 28.7 Mbytes 439 kbytes/min 30071 kpixel/min

abstrakt_2006_06_22.ttt 82 min 1.1 Mbytes 14 kbytes/min 483 kpixel/min

A.3 32 bit recordings with file compression but no stripes 229

abstrakt_2006_06_29.ttt 85 min 1.9 Mbytes 23 kbytes/min 373 kpixel/min

abstrakt_2006_07_06.ttt 86 min 1.6 Mbytes 19 kbytes/min 648 kpixel/min

abstrakt_2006_07_13.ttt 91 min 1.2 Mbytes 14 kbytes/min 484 kpixel/min

abstrakt_2006_07_20.ttt 90 min 1.8 Mbytes 20 kbytes/min 546 kpixel/min

abstrakt_2006_07_27.ttt 29 min 0.4 Mbytes 16 kbytes/min 455 kpixel/min

average: 64 kbytes/min 3783 kpixel/min

ignoring abstrakt_2006_06_08.ttt average: 15 kbytes/min 442 kpixel/min

Without the pixel intensive lecture of the 2006/06/08 (which obviously is a massive
outlier) an average of 17 kbytes/min and 498 kpixel/min are achieved.

Course: ”Compilerbau” (Seidl, 2006):

name duration size density pixel density

compiler_2006_04_26.ttt 89 min 0.6 Mbytes 7 kbytes/min 224 kpixel/min

compiler_2006_05_03.ttt 87 min 2.5 Mbytes 29 kbytes/min 1021 kpixel/min

compiler_2006_05_08.ttt 88 min 2.3 Mbytes 27 kbytes/min 492 kpixel/min

compiler_2006_05_15.ttt 88 min 1.3 Mbytes 15 kbytes/min 451 kpixel/min

compiler_2006_05_17.ttt 86 min 2.4 Mbytes 29 kbytes/min 547 kpixel/min

compiler_2006_05_22.ttt 89 min 4.0 Mbytes 46 kbytes/min 685 kpixel/min

compiler_2006_05_24.ttt 90 min 4.1 Mbytes 47 kbytes/min 786 kpixel/min

compiler_2006_05_29.ttt 85 min 14.9 Mbytes 180 kbytes/min 2392 kpixel/min

compiler_2006_05_31.ttt 88 min 2.2 Mbytes 26 kbytes/min 506 kpixel/min

compiler_2006_06_07.ttt 69 min 1.9 Mbytes 28 kbytes/min 499 kpixel/min

compiler_2006_06_12.ttt 85 min 2.4 Mbytes 29 kbytes/min 427 kpixel/min

compiler_2006_06_14.ttt 80 min 1.2 Mbytes 15 kbytes/min 393 kpixel/min

compiler_2006_06_19.ttt 89 min 1.8 Mbytes 21 kbytes/min 493 kpixel/min

compiler_2006_06_21.ttt 87 min 1.6 Mbytes 19 kbytes/min 445 kpixel/min

compiler_2006_06_26.ttt 74 min 3.6 Mbytes 50 kbytes/min 751 kpixel/min

compiler_2006_06_28.ttt 89 min 4.9 Mbytes 56 kbytes/min 917 kpixel/min

compiler_2006_07_03.ttt 87 min 4.1 Mbytes 48 kbytes/min 837 kpixel/min

compiler_2006_07_05.ttt 78 min 1.1 Mbytes 15 kbytes/min 370 kpixel/min

compiler_2006_07_10.ttt 88 min 3.4 Mbytes 39 kbytes/min 567 kpixel/min

compiler_2006_07_12.ttt 89 min 1.0 Mbytes 12 kbytes/min 306 kpixel/min

compiler_2006_07_17.ttt 86 min 1.0 Mbytes 12 kbytes/min 282 kpixel/min

compiler_2006_07_19.ttt 89 min 1.6 Mbytes 18 kbytes/min 404 kpixel/min

compiler_2006_07_24.ttt 82 min 2.5 Mbytes 31 kbytes/min 546 kpixel/min

compiler_2006_07_26.ttt 55 min 1.7 Mbytes 33 kbytes/min 667 kpixel/min

average: 34 kbytes/min 625 kpixel/min

B

Message sizes by-byte and by-area

This Appendix lists the message size in bytes and in proportion to the resolution of
the framebuffer of some recorded lectures.

B.1 Einführung in die Informatik I [WS2004/05]

Prof. Dr. Helmut Seidl / Technische Universität München

1024 x 768 (16 bit truecolor), 16 bits per pixel, 2 bytes per pixel
with keyframe stripes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

info1_2004_10_22.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

info1_2004_10_22.areas

232 B Message sizes by-byte and by-area

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

info1_2004_10_29.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

info1_2004_10_29.areas

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

info1_2004_11_04.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

info1_2004_11_04.areas

B.1 Einführung in die Informatik I [WS2004/05] 233

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

info1_2004_11_11.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

info1_2004_11_11.areas

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

info1_2004_11_18.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

info1_2004_11_18.areas

234 B Message sizes by-byte and by-area

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

info1_2004_11_25.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

info1_2004_11_25.areas

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

info1_2004_11_26.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

info1_2004_11_26.areas

B.2 Medienwissenschaft I: Theorien und Methoden [WS2003/04] 235

B.2 Medienwissenschaft I: Theorien und Methoden
[WS2003/04]

Prof. Dr. Hans-Jürgen Bucher / Universität Trier

1024 x 768 (16 bit truecolor), 16 bits per pixel, 2 bytes per pixel
with keyframe stripes

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

siz
e

in
kb

yte
s

time in minutes

medien1_2003_11_04.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

af
fe

cte
d

ar
ea

 (%
)

time in minutes

medien1_2003_11_04.areas

236 B Message sizes by-byte and by-area

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

siz
e

in
kb

yte
s

time in minutes

medien1_2003_11_11.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

af
fe

cte
d

ar
ea

 (%
)

time in minutes

medien1_2003_11_11.areas

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

siz
e

in
kb

yte
s

time in minutes

medien1_2003_11_25.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

af
fe

cte
d

ar
ea

 (%
)

time in minutes

medien1_2003_11_25.areas

B.2 Medienwissenschaft I: Theorien und Methoden [WS2003/04] 237

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

siz
e

in
kb

yte
s

time in minutes

medien1_2003_12_02.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

af
fe

cte
d

ar
ea

 (%
)

time in minutes

medien1_2003_12_02.areas

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

siz
e

in
kb

yte
s

time in minutes

medien1_2004_01_06.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

af
fe

cte
d

ar
ea

 (%
)

time in minutes

medien1_2004_01_06.areas

238 B Message sizes by-byte and by-area

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

siz
e

in
kb

yte
s

time in minutes

medien1_2004_01_13.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

af
fe

cte
d

ar
ea

 (%
)

time in minutes

medien1_2004_01_13.areas

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

siz
e

in
kb

yte
s

time in minutes

medien1_2004_02_03.kbytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

af
fe

cte
d

ar
ea

 (%
)

time in minutes

medien1_2004_02_03.areas

B.3 Abstrakte Maschinen im Übersetzerbau [SS2004] 239

B.3 Abstrakte Maschinen im Übersetzerbau [SS2004]

Prof. Dr. Helmut Seidl / Technische Universität München

1024 x 768 (16 bit truecolor, BigEndian), 16 bits per pixel, 2 bytes per pixel
with keyframe stripes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80

siz
e

in
kb

yte
s

time in minutes

abstrakt_2004_04_19.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

af
fe

cte
d

ar
ea

 (%
)

time in minutes

abstrakt_2004_04_19.areas

240 B Message sizes by-byte and by-area

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

abstrakt_2004_04_21.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

abstrakt_2004_04_21.areas

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

abstrakt_2004_04_26.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

abstrakt_2004_04_26.areas

B.3 Abstrakte Maschinen im Übersetzerbau [SS2004] 241

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

abstrakt_2004_05_05.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

abstrakt_2004_05_05.areas

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

abstrakt_2004_05_12.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

abstrakt_2004_05_12.areas

242 B Message sizes by-byte and by-area

B.4 Compilerbau [SS2006]

Prof. Dr. Helmut Seidl / Technische Universität München

1024 x 768 (24 bit truecolor), 32 bits per pixel, 4 bytes per pixel
no keyframe stripes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

compiler_2006_04_26.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

compiler_2006_04_26.areas

B.4 Compilerbau [SS2006] 243

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

compiler_2006_05_08.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

compiler_2006_05_08.areas

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

compiler_2006_05_17.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

compiler_2006_05_17.areas

244 B Message sizes by-byte and by-area

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

compiler_2006_05_22.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

compiler_2006_05_22.areas

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

compiler_2006_05_24.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

compiler_2006_05_24.areas

B.4 Compilerbau [SS2006] 245

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

compiler_2006_05_29.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

compiler_2006_05_29.areas

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

siz
e

in
kb

yte
s

time in minutes

compiler_2006_06_07.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

af
fe

cte
d

ar
ea

 (%
)

time in minutes

compiler_2006_06_07.areas

246 B Message sizes by-byte and by-area

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90

siz
e

in
kb

yte
s

time in minutes

compiler_2006_06_12.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

af
fe

cte
d

ar
ea

 (%
)

time in minutes

compiler_2006_06_12.areas

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

siz
e

in
kb

yte
s

time in minutes

compiler_2006_07_26.kbytes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

af
fe

cte
d

ar
ea

 (%
)

time in minutes

compiler_2006_07_26.areas

C

Publishing Script

We use the following script in order to pack and publish our electronic lectures:

#!/bin/bash

echo

echo "***************************"

echo "* Recording Info *"

echo "***************************"

echo

test -s $1.html/index.html &&

(grep title $1.html/index.html | cut -d "<" -f 2 | cut -b 7-)

echo

tttinfo $1

echo

echo "***************************"

echo "* Files *"

echo "***************************"

echo

ls -l $1*

echo

test -s $1.ttt || echo $1.ttt not found

test -s $1.ttt.orig || echo $1.ttt.orig not found

test -s $1.mp3 || echo $1.mp3 not found

test -s $1.mov || echo $1.mov not found

test -s $1.txt || echo $1.txt not found - ASCII Searchbase

test -s $1.xml || echo $1.xml not found - XML Searchbase

test -d $1.html || echo $1.html not found - HTML Script folder

echo

echo "***************************"

echo "* HTML Script *"

echo "***************************"

echo

test -d $1.html || echo html script missing: $1.html

248 C Publishing Script

test -d $1.html &&

(scp $1.html/thumbs/*.png

ziewer@ttt.uni-trier.de:/usr/local/httpd/htdocs/search/thumbs/;

scp $1.html/images/*.png

ziewer@ttt.uni-trier.de:/usr/local/httpd/htdocs/search/images/;

scp $1.html/html/*.html

ziewer@ttt.uni-trier.de:/usr/local/httpd/htdocs/search/html/)

echo

echo "***************************"

echo "* Searchbase *"

echo "***************************"

echo

test ! -s $1.txt && test -s $1.xml &&

java -cp /home/ziewer/workspace/TTT3/classes ttt.XMLHandler -txt $1.xml

test -s $1.txt || echo searchbase missing: $1.txt - ASCII Searchbase

test -s $1.txt && scp $1.txt

ziewer@ttt.uni-trier.de:/usr/local/httpd/htdocs/search/searchbase/

test -s $1.xml || echo searchbase missing: $1.xml - XML Searchbase

test -s $1.xml && scp $1.xml

ziewer@ttt.uni-trier.de:/usr/local/httpd/htdocs/search/searchbase/

echo

echo "***************************"

echo "* Backup Original *"

echo "***************************"

echo

echo backup original recording to server ttt.uni-trier.de

scp $1.ttt $1.mp3 $1.mov ziewer@ttt.uni-trier.de:/data/ttt/

test -s $1.ttt.orig && scp $1.ttt.orig ziewer@ttt.uni-trier.de:/data/ttt/

test -d $1.orig && scp -r $1.orig ziewer@ttt.uni-trier.de:/data/ttt/

echo

echo "***************************"

echo "* Zip Archives *"

echo "***************************"

echo

echo zip $1.zip

test -e $1.zip && rm -f $1.zip

zip $1.zip $1.ttt $1.mp3

echo zip $1_v.zip

test -e $1_v.zip && rm -f $1_v.zip

zip $1_v.zip $1.ttt $1.mp3 $1.mov

echo

ls -hl $1.zip

ls -hl $1_v.zip

echo

echo copy zip to server ttt.uni-trier.de

scp $1.zip $1_v.zip ziewer@ttt.uni-trier.de:/data/webspace

ls -hl $1*zip

C Publishing Script 249

echo

echo "***************************"

echo "* Finished *"

echo "***************************"

echo

echo

echo "***************************"

echo "* Recording Check *"

echo "***************************"

echo

echo "Missing files:"

test -s $1.ttt || echo $1.ttt not found

test -s $1.ttt.orig || echo $1.ttt.orig not found

test -s $1.mp3 || echo $1.mp3 not found

test -s $1.mov || echo $1.mov not found

test -s $1.txt || echo $1.txt not found - ASCII Searchbase

test -s $1.xml || echo $1.xml not found - XML Searchbase

test -d $1.html || echo $1.html not found - HTML Script folder

echo

echo "Titel ok?"

test -s $1.html/index.html &&

(grep title $1.html/index.html | cut -d "<" -f 2 | cut -b 7-)

echo

echo "Download Sizes:"

ls -hl $1.zip

ls -hl $1_v.zip

echo

echo "Length of recoding:"

tttinfo $1

echo

echo "Remember to edit download page:"

echo " ziewer@ttt.uni-trier.de:/usr/local/httpd/htdocs/recordings/*.html"

echo

Note that ttt.info lists the durations of the audio,video and desktop streams.

References

[Abowd et al., 1998] Abowd, G. D., Atkeson, C. G., Brotherton, J. A., Enqvist, T.,
Gulley, P., and LeMon, J. (1998). Investigating the Capture, Integration and Access
Problem of Ubiquitous Computing in an Educational Setting. In Proceedings of the
SIGCHI conference on Human factors in computing systems (CHI 1998, pages 440–447.
ACM Press/Addison-Wesley Publishing Co.

[AdderLink, 2006] Adder Technology (2006). AdderLink IP product site.
http://www.adder.com/.

[AOF, 2006] AOF Team (2006). Authoring on the Fly product site.
http://ad.informatik.uni-freiburg.de/aof/index.html.

[QTJava, 2006] Apple Computer, Inc. (2006). QuickTime for Java product site.
http://developer.apple.com/quicktime/qtjava/.

[Bacher et al., 1997] Bacher, C., Müller, R., Ottmann, T., and Will, M. (1997).
Authoring on the Fly: a new way of integrating telepresentation and courseware
production. In Proceedings of the International Conference of Computers in Education
(ICCE’97), pages 89–96, Kuching, Sarawak, Malaysia.

[Bankhead, 2005] Bankhead, P. (2005). The Design and Implementation of an Editor for
the TeleTeachingTool Environment. Master thesis, School of Computer Science, The
Queen’s University of Belfast and Technische Universität München.

[Brusilovsky, 2000] Brusilovsky, P. (2000). Web lectures: Electronic presentations in
Web-based instruction. Syllabus, 13(5):18–23.

[Brusilovsky and Miller, 2000] Brusilovsky, P. and Miller, P. (2000). Course Delivery
Systems for the Virtual University. In Tschang, T. and Senta, T. D., editors, Access to
Knowledge: New Information Technologies and the Emergence of the Virtual University,
pages 167–206. Elsevier Science, Amsterdam, The Netherlands.

[Windows Media, 2006] Corporation, M. (2006). Windows Media product site.
http://www.microsoft.com/windows/windowsmedia/.

[Damerau, 1964] Damerau, F. (1964). A technique for computer detection and correction
of spelling errors. Communications of the ACM, 7(3):171–176.

[Deering and Hinden, 1998] Deering, S. and Hinden, R. (1998). RFC 2460: Internet
Protocol, Version 6 (IPv6) Specification. ftp://ftp.rfc-editor.org/in-notes/rfc2460.txt.

[Deutsch and Gailly, 1996] Deutsch, P. and Gailly, J.-L. (1996). RFC 1950: ZLIB
Compressed Data Format Specification version 3.3.
ftp://ftp.rfc-editor.org/in-notes/rfc1950.txt.

[Ecma, 1999] Ecma International (1999). Standard ECMA-262: ECMAScript Language
Specification.
http://www.ecma-international.org/publications/standards/Ecma-262.htm.

252 References

[Edelmann, 1995] Edelmann, W. (1995). Lernpsychologie. Psychologie-Verlags-Union,
Weinheim.

[Effelsberg and Geyer, 1998] Effelsberg, W. and Geyer, W. (1998). Tools for Digital
Lecturing - What We Have and What We Need. In Proceedings of BITE ’98 (Bringing
Information Technology to Education), pages 151–173, Maastricht, The Netherlands.
Kluwer Verlag.

[Garofolo et al., 2000] Garofolo, J., Auzanne, G., and Voorhees, E. (2000). The trec
spoken document retrieval track: A success story.

[Gruber and Leiter, 2006] Gruber, J. and Leiter, U. (2006). Erweiterung der
Suchfunktion des TeleTeachingTool: Das Search&BrowsingTool.
Systementwicklungsprojekt, Technische Universität München.

[Hauptmann and Wactlar, 1997] Hauptmann, A. and Wactlar, H. (1997). Indexing and
search of multimodal information.

[Hilt et al., 2001] Hilt, V., Mauve, M., Vogel, J., and Effelsberg, W. (2001). Interactive
media on demand: Generic recording and replay of interactive media streams. In ACM
Multimedia 2001, Association of Computing Machinery, pages 593–594, Ottawa,
Canada.

[Hogrefe et al., 2003] Hogrefe, D., Köster, R., Werner, C., and Zibull, M. (2003).
Teleteaching an der universität göttingen: Systemarchitektur und problematiken. In
DeLFI, pages 129–133.

[Finereader, 2006] House, A. S. (2006). Finereader OCR product site.
http://www.abbyy.com/finereader ocr/.

[Hunter and Steiglitz, 1979] Hunter, G. M. and Steiglitz, K. (1979). Operations on
Images Using Quad Trees. IEEE Transaction on Pattern Analysis and Machine
Intelligence (PAMI), 1(2):145–153.

[Hürst, 2003] Hürst, W. (2003). Suche in aufgezeichneten Vorträgen und Vorlesungen. In
Bode, A., Desel, J., Rathmeyer, S., and Wessner, M., editors, Tagungsband: Die 1.
e-Learning Fachtagung Informatik (DeLFI 2003), volume 37 of LNI, pages 27–36,
Garching bei München. GI-Edition Lecture Notes in Informatics.

[Hürst et al., 2003] Hürst, W., Kreuzer, T., and Wiesenhütter, M. (2003). A Qualitative
Study Towards Using Large Vocabulary Automatic Speech Recognition to Index
Recorded Presentations for Search and Access over the Web. IADIS International
Journal on WWW/Internet, I(1):43–58.

[CLIX, 2006] imc AG (2006). CLIX Campus product site. http://www.clix.de/.
[Lecturnity, 2006] imc AG (2006). Lecturnity product site. http://www.lecturnity.de/.
[Flash, 2006] Incorporated, A. S. (2006). Adobe Flash (Macromedia Flash) product site.

http://www.adobe.com/de/products/flash/.
[DublinCore, 2003] Initiative, D. C. M. (2003). Dublin Core Metadata Element Set,

Version 1.1. ISO Standard 15836-2003.
[DublinCoreVocabulary, 2004] Initiative, D. C. M. (2004). DCMI Type Vocabulary.

http://dublincore.org/documents/dcmi-typevocabulary/.
[DCMI, 2006] Initiative, D. C. M. (2006). Dublin Core Metadata Initiative web page.

http://dublincore.org/.
[Ishii and Miyake, 1991] Ishii, H. and Miyake, N. (1991). Toward an open shared

workspace: Computer and video fusion approach of teamworkstation. Commun. ACM,
34(12):36–50.

[Jackson et al., 2000] Jackson, J. R., Anderson, D. V., and Hayes III, M. H. (2000).
Effective and Efficient Distance Learning Over the Internet: Tools and Techniques. In
Proceedings of the International Conference on Engineering Education (ICEE 2000),
Taipei, Taiwan.

[Kandzia et al., 2004] Kandzia, P.-T., Kraus, G., and Ottmann, T. (2004). Der
Universitäre Lehrverbund Informatik - eine Bilanz. GI Softwaretechnik-Trends,
24(1):54–61.

References 253

[Kandzia and Maass, 2001] Kandzia, P.-T. and Maass, G. (2001). Course Production -
Quick and Effective. In Proceedings of the 3rd International Conference on New
Learning Technologies (NLT 2001), Fribourg, Switzerland.

[TightVNC, 2006] Kaplinsky, C. (2006). TightVNC product site.
http://www.tightvnc.com/.

[Knopper, 2006] Knopper, K. (2006). KNOPPIX product site.
http://www.knopper.net/knoppix/.

[LaRose et al., 1997] LaRose, R., Gregg, J., and Heeter, C. (1997). An evaluation of a
Web-based distributed learning environment in higher education. In Proceedings of
ED-MEDIA/ED-TELECOM’97 - World Conference on Educational Multimedia /
Hypermedia and World Conference on Educational Telecommunications, pages
1286–1287, Calgary, Canada. AACE Press.

[Lauer and Ottmann, 2002] Lauer, T. and Ottmann, T. (2002). Means and Methods in
Automatic Courseware Production: Experience and Technical Challenges. In
Proceedings of the World Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education (E-Learn 2002), number 1, pages 553–560, Montréal,
Canada. AACE Press.

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics Doklady, 10(8):707–710.

[Li and Hopper, 1998a] Li, S. F. and Hopper, A. (1998a). A Framework to Integrate
Synchronous and Asynchronous Collaboration. In Proceedings of the 7th IEEE
Workshops on Enablings Technologies: Infrastructure for Collaborative Enterprises
(WETICE), pages 96–103, Stanford, CA. IEEE Computer Society Press.

[Li and Hopper, 1998b] Li, S. F. and Hopper, A. (1998b). What You See Is What I Saw:
Applications of Stateless Client Systems in Asynchronous CSCW. In Proceedings of the
Fourth Joint Conference on Information Sciences (JCIS’98), volume 3, pages 10–15,
Research Triangle Park, North Carolina.

[Li et al., 2000a] Li, S. F., Spiteri, M. D., Bates, J., and Hopper, A. (2000a). Capturing
and Indexing Computer-based Activities With Virtual Network Computing. In
Proceedings of the 2000 ACM Symposium on Applied Computing, volume 2, pages
601–603, Como, Italy.

[Li et al., 1999a] Li, S. F., Stafford-Fraser, Q., and Hopper, A. (1999a). Applications of
Stateless Client Systems in Collaborative Enterprises. In International Conference on
Enterprise Information Systems, pages 665–673.

[Li et al., 1999b] Li, S. F., Stafford-Fraser, Q., and Hopper, A. (1999b). Frame-buffer on
Demand: Applications of Stateless Client Systems in Web-based Learning. In
Proceedings of the 5th International Conference on Information Systems Analysis and
Synthesis (ISAS’99), Orlando, Florida.

[Li et al., 2000b] Li, S. F., Stafford-Fraser, Q., and Hopper, A. (2000b). Integrating
Synchronous and Asynchronous Collaboration with Virtual Network Computing. In
Proceedings of the First International Workshop on Intelligent Multimedia Computing
and Networking, volume 2, pages 717–721, Atlantic City, New Jersey.

[Lienhard and Lauer, 2002] Lienhard, J. and Lauer, T. (2002). Multi-layer recording as a
new concept of combining lecture recording and students’ handwritten notes. In
MULTIMEDIA ’02: Proceedings of the tenth ACM international conference on
Multimedia, pages 335–338, New York, NY, USA. ACM Press.

[Lienhard and Zupancic, 2003] Lienhard, J. and Zupancic, B. (2003). Annotieren von
vorlesungsaufzeichnungen während der aufnahme- und wiedergabe-phase. In DeLFI,
pages 95–99.

[ULI, 2006] Management, U. P. (2006). Universitärer Lehrverbund Informatik (ULI)
project site. http://www.uli-campus.de/.

[Mauve et al., 2001] Mauve, M., Hilt, V., Kuhmünch, C., and Effelsberg, W. (2001).
Rtp/i - towards a common application level protocol for distributed interactive media.
In IEEE Transactions on Multimedia (TMM’01), volume 3, pages 152–161.

254 References

[Mertens and Rolf, 2003] Mertens, R. and Rolf, R. (2003). Automation Techniques for
Broadcasting and Recording Lectures and Seminars. In Proceedings of SINN03 - Third
International Technical Workshop and Conference.

[Minneman et al., 1995] Minneman, S. L., Harrison, S. R., Janssen, B., Kurtenbach, G.,
Moran, T. P., Smith, I. E., and van Melle, W. (1995). A Confederation of Tools for
Capturing and Accessing Collaborative Activity. In Proceedings of the The Third ACM
International Multimedia Conference and Exhibition (ACM MULTIMEDIA ’95), pages
523–534, San Francisco, CA. ACM Press.

[Mitchell et al., 1996] Mitchell, J. L., Pennebaker, W. B., Fogg, C. E., and Legall, D. J.,
editors (1996). MPEG Video Compression Standard. Chapman & Hall, Ltd., London,
UK, UK.

[Muehlhaeuser and Trompler, 2002] Muehlhaeuser and Trompler (2002). Digital lecture
halls...

[Nopoudem, 2006] Nopoudem, E. W. T. (2006). Transformation von
TeleTeachingTool-Aufzeichnungen zur Wiedergabe mit Standard-Software.
Diplomarbeit, Technische Universität München.

[OmniPage, 2006] Nuance Communications, I. f. S. (2006). OmniPage product site.
http://www.nuance.com/omnipage/.

[FMJ, 2006] open source community (2006). Freedom for Media in Java (FMJ) product
site. http://fmj.sourceforge.net/.

[OSXvnc, 2006] OSXvnc (2006). OSXvnc product site.
http://sourceforge.net/projects/osxvnc/.

[Postel, 1980] Postel, J. (1980). RFC 768: User Datagram Protocol.
ftp://ftp.rfc-editor.org/in-notes/rfc768.txt.

[Postel, 1981a] Postel, J. (1981a). RFC 791: Internet Protocol.
ftp://ftp.rfc-editor.org/in-notes/rfc791.txt.

[Postel, 1981b] Postel, J. (1981b). RFC 793: Transmission Control Protocol.
ftp://ftp.rfc-editor.org/in-notes/rfc793.txt.

[RealMedia, 2006] RealNetworks, I. (2006). RealMedia product site.
http://www.realnetworks.com/products/codecs/.

[RealVNC, 2006] RealVNC Ltd (2006). RealVNC product site.
http://www.realvnc.com/.

[Richardson, 2005] Richardson, T. (2005). The RFB Protocol, Version 3.8.
http://realvnc.com/docs/rfbproto.pdf. RealVNC Ltd.

[Richardson et al., 1998] Richardson, T., Stafford-Fraser, Q., Wood, K. R., and Hopper,
A. (1998). Virtual Network Computing. IEEE Internet Computing, 2(1):33–38.

[Samet, 1980] Samet, H. (1980). Region Representation: Quadtree from Binary Arrays.
Computer Graphics & Image Processing, 13(1):88–93.

[Schillings and Meinel, 2002] Schillings, V. and Meinel, C. (2002). tele-TASK -
Teleteaching Anywhere Solution Kit. In Proceedings of the ACM SIGUCCS 2002, pages
130–133, Providence, Rhode Island, USA.

[UltraVNC, 2006] Schneider, O., Scharpf, M., Vos, R. D., and UltraSam (2006).
UltraVNC product site. http://www.ultravnc.com/.

[Schulzrinne et al., 2003] Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V.
(2003). RFC 3550: RTP: A Transport Protocol for Real-Time Applications.
ftp://ftp.rfc-editor.org/in-notes/rfc3550.txt.

[Schütz, 2002] Schütz, F. (2002). Annotations: Though standard in conventional learning
a stepchild of elearning. In Vilas, A. M. and Gonzalez, J. M., editors, Proceedings of the
International Conference on Information and Communication Techonologies in
Education (ICTE2002), Badajoz, Spain.

[Schütz, 2003] Schütz, F. (2003). Producing eLearning materials on the fly – only a great
dream? In Vilas, A. M. and Gonzalez, J. M., editors, Proceedings of the Second
International Conference on Multimedia and ICTs in Education (m-ICTE2003),
Badajoz, Spain.

References 255

[Schütz, 2005] Schütz, F. (2005). Annotationen in der Lehre – Eine
Annotationsarchitektur zur Erweiterung bestehender elektronischer Lehrsysteme.
Dissertation, Technische Universität München.

[Smartboard, 2006] SMART Technologies (2006). Smartboard product site.
http://www.smartboard.com/.

[Spiteri and Bates, 1998] Spiteri, M. D. and Bates, J. (1998). An architecture to support
storage and retrieval of events. In Proceedings of MIDDLEWARE 1998, IFIP
International Conference on Distributed Systems Platforms and Open Distributed
Processing, Lancaster, UK.

[RAT, 2006] SUMOVER Project, University College London (2006). Robust Audio Tool
(RAT) product site. http://mediatools.cs.ucl.ac.uk/nets/mmedia/wiki/RatWiki.

[VIC, 2006] SUMOVER Project, University College London (2006). Videoconferencing
Tool (VIC) product site. http://mediatools.cs.ucl.ac.uk/nets/mmedia/wiki/VicWiki.

[JMF, 2006] Sun Microsystems, Inc. (2006). Java Media Framework (JMF) product site.
http://java.sun.com/products/java-media/jmf/.

[Camtasia, 2006] TechSmith Corporation (2006). Camtasia Studio product site.
http://www.techsmith.com/camtasia.asp.

[TSCC, 2006] TechSmith Corporation (2006). TechSmith Screen Capture Codec product
site. http://www.techsmith.com/codecs/tscc/default.asp.

[Targeteam, 2006] Teege, G. (2006). Targeteam product site.
http://www11.in.tum.de/forschung/projekte/targeteam/.

[Teege and Breitling, 2002] Teege, G. and Breitling, P. (2002). Targeteam: Adaptierbare
Lehrinhalt auf Basis on XML und XSLT. In Informatik bewegt: Informatik 2002 - 32.
Jahrestagung der Gesellschaft für Informatik e.v. (GI), pages 364–368. Gesellschaft für
Informatik e.v. (GI).

[teleTASK, 2006] teleTASK (2006). tele-TASK product site. http://www.tele-task.com/.
[Thong et al., 2000] Thong, J. V., Goddeau, D., Litvinova, A., Logan, B., Moreno, P.,

and Swain, M. (2000). Speechbot: A speech recognition based audio indexing system for
the web.

[Wacom, 2006] Wacom Technology (2006). Wacom product site.
http://www.wacom.com/.

[Wayne Hodgins, 2002] Wayne Hodgins, Erik Duval, e. (2002). Draft standard for
learning object metadata, ieee 1484.12.1-2002. Technical report, IEEE Learning
Technology Standards Committee.

[Ziewer, 2001] Ziewer, P. (2001). Visualisierung Abstrakter Maschinen. Diplomarbeit,
Universität Trier.

[Ziewer, 2004] Ziewer, P. (2004). Navigational Indices and Full-Text Search by
Automated Analyses of Screen Recorded Data. In Proceedings of the World Conference
on E-Learning in Corporate, Government, Healthcare, and Higher Education (E-Learn
2004), pages 3055–3062, Washington, D.C. AACE Press.

[VAM, 2006] Ziewer, P. (2006). VAM Simulator product site.
http://wwwseidl.in.tum.de/projekte/vam/.

[Ziewer and Seidl, 2002] Ziewer, P. and Seidl, H. (2002). Transparent Teleteaching. In
Williamson, A., Gunn, C., Young, A., and Clear, T., editors, Proceedings of the 19th
Annual Conference of the Australian Society for Computers in Tertiary Education
(ASCILITE), volume 2, pages 749–758, Auckland, New Zealand. UNITEC Institute of
Technology.

[Ziewer and Seidl, 2004] Ziewer, P. and Seidl, H. (2004). Annotiertes Lecture Recording.
In Engels, G. and Seehusen, S., editors, Tagungsband: Die 2. e-Learning Fachtagung
Informatik (DeLFI 2004), volume 52 of LNI, pages 43–54, Paderborn, Germany.
Gesellschaft für Informatik e.V (GI.

[Zupancic and Horz, 2002] Zupancic, B. and Horz, H. (2002). Lecture recording and its
use in a traditional university course. In ITiCSE ’02: Proceedings of the 7th annual

256 References

conference on Innovation and technology in computer science education, pages 24–28,
New York, NY, USA. ACM Press.

