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Prüfer der Dissertation:

1. Univ.-Prof. Dr.rer.nat. Ernst Rank

2. Univ.-Prof. Dr.-Ing. Karl Schweizerhof,

Universität Fridericiana zu Karlsruhe

Die Dissertation wurde am 11.01.2007 bei der Technischen Universität München eingereicht
und durch die Fakultät für Bauingenieur- und Vermessungswesen am 11.04.2007 angenommen.





Für Susi.





Abstract

This thesis presents a consistent modeling approach to the phenomenon of deformation lo-
calization and material failure, based on high-order finite elements. With particular focus on
large scale analyses, it adopts a macroscopic perception of the failure process. Viewing the
typically small failure zones from the level of practical interest, continuous fields with a steep
gradient appear discontinuous; this constitutes the notion of strong discontinuities, i.e., jumps
in the displacement field. Accounting for the possible occurrence of strong discontinuities, the
pathological mesh sensitivity exhibited by classical continuum softening approaches is over-
come. Discontinuities are incorporated into the finite element formulation in an embedded
manner, avoiding the need of additional global degrees of freedom and thus, giving rise to
an efficient discretization and numerical treatment of the problem. As opposed to previous
concepts, the presented approach is consistently deduced regarding its possible application
in the context of high-order finite elements. Put forth by a novel reassessment of the strong
discontinuity kinematics, the extended p-adaptive formulation is established. Three dimen-
sional numerical investigations show, that — in contrast to commonly adopted low-order finite
element approximations — the proposed p-adaptive high-order approach facilitates a mini-
mization of potential locking effects while at the same time the algorithmic implementation
efficiently preserves a high degree of locality.

Zusammenfassung

Die vorliegende Arbeit präsentiert einen konsistenten Modellierungsansatz zu den Problemkrei-
sen Verformungslokalisierung und Materialversagen, der auf finiten Elementen hoher Ordnung
basiert. Mit besonderem Augenmerk auf Großberechnungen nimmt sie eine makroskopische
Sichtweise auf das Problem ein. Von der Ebene der Ingenieuranwendung aus betrachtet, er-
scheinen stetige Felder in den typischerweise kleinen Versagenszonen unstetig. Dieser Zusam-
menhang motiviert die Einführung starker Diskontinuitäten, d.h. eines sprungstetigen Ver-
schiebungsfeldes. Diese Maßnahme überwindet die pathologische Netzabhängigkeit des klassis-
chen kontinuumsmechanischen Ansatzes zur Simulation von Materialentfestigung. Die finite
Element Formulierung bindet die Verschiebungsdiskontinuitäten im Rahmen eines eingebet-
teten Ansatzes ein, wodurch zusätzliche Freiheitsgrade auf globaler Ebene vermieden werden;
eine effiziente Diskretisierung und numerische Behandlung des Problems wird ermöglicht. Ab-
weichend von bislang etablierten Verfahren, ist der präsentierte Ansatz konsistent hinsichtlich
der Anwendung im Kontext finiter Elemente hoher Ordnung abgeleitet. Ausgehend von einer
neuartigen Interpretation der Kinematik sprungstetiger Verschiebungsfelder entwickelt sich
die erweiterte p-adaptive Formulierung. Dreidimensionale numerische Untersuchungen zeigen,
dass der vorgeschlagene p-adaptive Ansatz hoher Ordnung — im Gegensatz zu üblicherweise
angewendeten Ansätzen im Rahmen finiter Elemente niedriger Ordnung — eine Minimierung
potenzieller Locking-Effekte erreicht, ohne dass die algorithmische Umsetzung ihren weitest-
gehend lokalen Charakter verliert.
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1

Chapter 1

Introduction

If you have an apple and I have an apple and we exchange
these apples then you and I will still each have one apple.

But if you have an idea and I have an idea and we exchange
these ideas, then each of us will have two ideas.

– George Bernard Shaw.

The present introductory chapter is split into three main parts. The first Section 1.1 aims at
motivating the problematic nature of modeling localization and failure processes, by means of
discussion of a simple model problem. This is then followed by a short review about efforts
made in the field of modeling of deformation localization in Section 1.2. Both sections together
provide the basis for the objective and the scope of this work, which are outlined in the final
Section 1.3 of this chapter.

1.1 Motivation

In order to approach the basic distinctive features associated with the simulation of material
softening behavior, subsequently a basic virtual experiment is presented. The experiment also
motivates the fundamental notion of strong discontinuities.

As a simple but representative model problem, we consider a bar loaded in uniaxial tension.
We assume, that the material behaves linear elastic up to a certain threshold ft (capacity),
which is reached at strain ε0. Once loaded beyond this threshold, the material is assumed to
follow a linear softening law in stress-strain space, such that its capacity vanishes completely
at strain ε > εu (Figure 1.1). The bar be of length L and cross-sectional area A. One bar end
be clamped, while the opposite end be loaded by a prescribed displacement u.

As a starting point, we assume the bar to be perfectly uniform both regarding material prop-
erties and geometry. Then, during loading, every section along the bar will reach its capacity
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L u

u
F F = Aσ

ft

σ

σ

ε

ε0 εu

Ft

Lε0 Lεu

Figure 1.1: Model problem: perfectly uniform bar subjected to uniaxial tension.

at the same instant — namely when the prescribed displacement loading has reached the value
of u = Lε0, corresponding to the force Ft = A · ft. Consequently, if loaded further, all sections
along the bar will undergo simultaneous softening until zero capacity is reached at a loading
state of u = Lεu (Figure 1.1).

Obviously, the setting of a perfectly uniform bar is not very realistic — in practice there are
variations in capacity and/or geometry. In our thought experiment, we account for this by
introducing an imperfection zone of extension L

n
located at mid-bar. The imperfection be

such, that the capacity of the adjacencies is slightly higher. Accordingly, at a loading state of
u = Lε0, only sections in the imperfection zone will have reached their capacity, the remaining
sections are still in a linear elastic state. As a consequence, during further loading, only
sections within the imperfection zone will experience softening and thus follow the softening
branch in the stress-strain relation. The remaining sections will unload elastically to satisfy
equilibrium. Hence, at the instance when the bar’s load carrying capacity has decreased to
zero, the corresponding elongation of the bar amounts to u = L

n
εu. Notably, this elongation

depends via n on the size of the softening zone, so we obtain different softening responses for
different values of n. Remarkably, in the limit n → ∞, i.e., for an infinitesimal softening zone,
the “softening” path degenerates to the elastic unloading path (Figure 1.2).
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F F = Aσ
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σ

σ

ε

ε0 εu

Ft = Aft

Lε0
L
n
εu

Figure 1.2: Model problem: bar with imperfection zone subjected to uniaxial tension.
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To summarize, several pathological features of the classical strain-softening continuum me-
chanical approach to this problem can be stated (Jirásek [54]):

(i) In the limit, the softening zone is infinitesimal.

(ii) As motivated above, in the limit case, the simulated softening response approaches the
elastic unloading path, thus featuring a snap-back in the obtained load-displacement
response. This behavior is always obtained, irrespective of structural size and material
ductility.

(iii) Degeneration of “softening” path to the elastic unloading path implies zero dissipated
energy during the failure process.

��

x

x

2Lε · δs

(
x − L

2

)

2Lε · Hs

(
x − L

2

)

L
2

L
2

u

u

2Lε0 ft

σ

σ

ε

ε

ε0 εu

Ft = Aft

Lε0

Figure 1.3: Model problem: strain and displacement distribution for the strain-softening continuum
solution.

From the mathematical point of view, these features are related to the loss of ellipticity of the
governing differential equation, effecting the boundary value problem to become ill-posed —
with the consequence that is does not have a unique solution, anymore. From the numerical
point of view, ill-posedness is evidenced by a pathological mesh sensitivity of the results. If
we, for example, consider the previous example to be discretized uniformly by N linear finite
elements, then the softening response induced by the imperfection at mid-bar is represented
by one finite element of length L

n
. Completely analogous to the foregoing discussion, the slope

of the softening branch depends strongly on the number of elements and degenerates to the
elastic unloading path as the number of elements tends to infinity, i.e., n → ∞. In conclusion,
the deficiency of the classical strain-softening continuum mechanical approach is manifested
by an inherent loss of objectivity.

However, the example not only illustrates the insufficiency of the classical approach, it also
motivates an alternative notion of the problem. To see this, let us consider the situation of
the bar being loaded by a displacement of, say 2Lε0. Then, in the limit case for n → ∞,
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Figure 1.4: Model problem: notion of strong discontinuity associated with objective traction-
separation softening law, replacing the problematic stress-strain relation.

the strain distribution along the bar is characterized by 2Lε0 · δs

(
x − L

2

)
and the correspond-

ing displacement distribution reads 2Lε0 · Hs

(
x − L

2

)
— thus exhibiting a discontinuity at

mid-bar of magnitude 2Lε0 (Figure 1.3). This observation suggests that material induced
localizing behavior — provided that a proper association to a softening law is achieved — can
be represented by strong discontinuities, i.e., jumps in the displacement field.

For the considered case of mode I failure, there is experimental evidence that the dissipated
energy during the failure process (fracture energy), often denoted by Gf , is an objective
material parameter. As a consequence, the softening behavior can be described in an objective
manner by a traction-separation law rather than a stress-strain relation. Thus, introducing
the notion of a strong discontinuity into our model and linking it to the traction-separation
law type description of material softening, renders an objective approach to characterize the
structure’s softening behavior (Figure 1.4).

1.2 Modeling deformation localization — a review

Prevention of failure of structures and structural components has always been a major concern
in engineering. Among the many possible causes for structural failure, material induced failure
is not only a very significant one, its computational treatment also represents one of the
most interesting and challenging fields in engineering science. In the following, some key
achievements during evolution of research on this topic shall be reflected, which — due to the
diversity of literature — can only be done in a highlighting manner. A comprehensive review
can, e.g., be found in de Borst [28], Mosler [75] or Jirásek [52].

Closer investigation of fracture of materials reveals, that failure is often preceeded by the
formation of a process zone in which damage and other inelastic effects accumulate, and in
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which high strain gradients prevail. This phenomenon is commonly termed strain localization
or deformation localization. Such processes can be associated with a wide range of materials
(see, e.g., Nádai [83]) — some examples are shear banding in soils, shearing of rock faults,
necking of metals, crazes in polymers and the accumulation and coalescence of microcracks in
concrete and rocks under low confining pressures. It is evident, that these phenomena are no
longer covered by the scope of classical continuum mechanics, as it is, for example, defined in
Truesdell & Noll [124].

The probably first scientific contribution to localization phenomena is Hadamard’s [47] char-
acterization of conditions for the occurence of stationary waves in continua and dates back to
1903. Later, theoretical considerations regarding strain localization and material instability
phenomena were published by Hill [48], Thomas [123], Mandel [68], Rudnicki & Rice

[104] and Rice & Rudnicki [101].

In the mid-1980’s, attempts to numerically simulate localization phenomena on the basis of
standard continuum mechanics that employed a local stress-strain softening relation, were
carried out. They failed in the sense that the solution proved to be determined to a strong
degree by the discretization of the problem, see, e.g., de Borst [26]. The deficiency of
the classical continuum approach to capture zones of localized straining correctly, can be
attributed to the fact that the employed softening stress-strain relations are substantially the
result of a mapping of force-displacement relations, obtained from testing devices, on basis of
the original load-carrying area and original length. This process does not account for changes
in the microstructure and, as a consequence, the mathematical model ceases to be a meaningful
representation of physical reality.

Early approaches to resolve this lack of objectivity of the classical continuum mechanical ap-
proach are based on the experimentally validated notion of the fracture energy as an objective
material parameter. To this end, Pietruszczak & Mroź [94] as well as Oliver [86] enhance
the classical plasticity formulation by introducing the softening modulus as a fracture energy
dependent model parameter, which implies a direct dependency of the softening modulus on
the finite element geometry. Hillerborg, Modeer & Petersson [49] propose a fracture
energy preserving approach for brittle materials, where the geometry enters the formulation
implicitly by establishing the softening response as a function of the crack opening.

Alternative attempts aim at the direct extension of the classical continuum mechanical model.
Several approaches can be distinguished, but they all have in common the introduction of
an internal length scale that is associated to the extension of the localized zone. Nonlocal
models (Pijaudier-Cabot & Bažant [95]; Bažant & Pijaudier-Cabot [9]) are charac-
terized by the fact, that the principle of locality — postulating that a material point’s response
only depends on the loading state at this point — is abandoned. Gradient enhanced theo-
ries (de Borst & Mühlhaus [29]; Mühlhaus & Aifantis [81]) can be derived from a
Taylor-expansion of the nonlocal models. The Cosserat-continuum approach (Cosserat

& Cosserat [21]; de Borst [27]; Steinmann & Willam [120]; Ehlers & Volk [40]),
finally, is based on the introduction of additional rotational degrees of freedom to describe
the kinematics of the considered material point. Volk [125], for example, successfully used
the Cosserat-theory as a regularizing means in the context of simulation of porous media.



6 1. Introduction

All three approaches understand localization as a steady process — resulting in a continuous
deformation gradient field with a distinct local maximum at the localization zone. The numer-
ical resolution of such a gradient field, therefore, requires a corresponding fine discretization
— which increases the numerical effort considerably.

A completely different notion is constituted by a macroscopic view of the deformation lo-
calization problem. With this perception, localization of deformation can be interpreted as
C0-discontinuity of the displacement field, with the corresponding gradient being Dirac dis-
tributed. This idea goes back to Johnson [61], who established discontinuous displacement
fields as admissible solutions to the differential equations of a perfectly-plastic pin-jointed
bar. In this context, the paper of Matthies et al. [69] represents another important work.
The adoption of C0-discontinuous displacement fields within the framework of the finite ele-
ment method was first accomplished by Johnson & Scott [62] to model the response of a
perfectly-plastic pin-jointed bar. Various proposals to incorporate discontinuous approaches
directly into the finite element formulation in terms of embedded discontinuities can be ob-
served in the following decade. Aiming at an improved resolution of shear bands, Ortiz et
al. [92] suggested an enrichment of the strain field for quadrilateral elements, such that one
weak discontinuity 1 line per element can be captured. Belytschko et al. [10] advanced the
idea and presented an element formulation that allowed for two weak discontinuity lines in
one element, the formulation thus being capable of representing the whole localization band
within one finite element. Direct incorporation of a strong discontinuity into a two-dimensional
finite element formulation was subsequently accomplished by Dvorkin, Cuitiño & Gioia

[39] as well as Klisinski et al. [65]. So far, all embedded discontinuity formulations alluded
to were derived purely from physical considerations — due to their simplicity no variational
principle was needed. Significant progress was finally achieved by the formulation of the strong
discontinuity approach in the fundamental work of Simo et al. [116]. Therein, the authors an-
alyze local material models in the softening regime under the assumption of C0-discontinuous
displacement fields. A vital issue is the interpretation of the softening moduli as singular dis-
tributions, which allows for treatment of the displacement discontinuity within the framework
of classical perfect plasticity. Based on the concept of enhanced assumed strains established
by Simo & Rifai [117] and Simo & Armero [112], Simo & Oliver [115] and Oliver [87]
then provided a sound variational basis for the method and also proposed a corresponding
two-dimensional finite element formulation based on constant strain elements. A key feature
of this method, is constituted by the fact that the additional degrees of freedom associated
with the discontinuous displacement modes are eliminated on element level by static conden-
sation — therefore, the system of global degrees of freedom remains unchanged. Armero

& Garikipati [4] subsequently modified the formulation in the sense that the stress-strain
relation describing the inelastic softening response of the material is replaced by a traction-
displacement relation.

Succeedingly, numerous concepts for application of the strong discontinuity approach to the de-
scription of material softening in the scope of damage models (e.g.,Garikipati [43], Armero

1A weak discontinuity is characterized by the fact that certain components of the strain field exhibit a
jump across the discontinuity. As a consequence, the corresponding displacement field is still rendered C0-
continuous. In case of a strong discontinuity, on the contrary, the discontinuity directly refers to components
of the displacement field itself, the resulting displacement field is no longer C0-continuous.
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[2]), elasto-plastic models (e.g., Borja & Regueiro [17], Regueiro & Borja [100]) or
coupled models (e.g., Mosler & Meschke [79]) were developed. All these concepts have in
common that the discontinuous constitutive model was obtained by a suitable “projection” of
the continuum model onto the localization surface, which transforms the stress-strain based
continuum law into a traction-displacement based constitutive relation. An alternative way
was advocated by Armero [3], who established the energy density function as composed of
a continuous portion and a dissipative, singular distributed portion — the latter being asso-
ciated with the displacement discontinuity. Based on the principle of maximum dissipation,
Armero then derived the constitutive evolution equations directly in terms of the displace-
ment discontinuity. The same concept was later adopted by Mosler [76].

As alluded to above, the original implementation of the strong discontinuity approach in a two-
dimensional setting was established for constant strain elements — allowing one discontinuous
mode per element and, thus, facilitating a straightforward elimination of the additional degrees
of freedom associated with the discontinuous displacement modes on element level by static
condensation. This concept was later modified by introducing a Gauss-point local notion
of the displacement discontinuity, furnishing a numerical implementation that is in complete
formal analogy to the algorithmic framework of classical C0-continuous continuum models.
The particular advantage of this setting is the elimination of the need for a static condensation
procedure on element level (Mosler & Meschke [77], Borja [16]). Based on this approach,
Mosler & Meschke [77] then extended the two-dimensional scheme to a general three-
dimensional finite element implementation. A three-dimensional discontinuity formulation for
the simulation of brittle fracture, using tetrahedral elements with linear shape functions, was
also presented by Wells & Sluys [130].

More Recent publications within the strong discontinuity modeling framework are devoted
to finite element implementations that aim at the reduction of locking effects; for instance,
in the field of simulation of cracking of brittle materials, where Jirásek & Zimmermann

[60] employed a nonlocal damage model to estimate the crack topology and combine it with
a C0-discontinuous displacement field. As an alternative concept Mosler & Meschke [80]
advocated the adoption of a rotating discontinuity approach.

A further class of strategies, devoted to alleviating spurious locking and mesh bias effects,
is based on the enforcement of a geometrically continuous discontinuity path. These strate-
gies, commonly termed tracking strategies, are beyond the scope of the strong discontinuity
approach itself and they essentially rely on nonlocal information. Successful combinations of
tracking strategy and strong discontinuity approach are presented, e.g., by Oliver et. al.
[91] and Feist [41] in the context of low-order finite element approximations.

The overall rather expensive character of discontinuity tracking strategies, has triggered recent
research efforts towards formulations that aim at a realistic identification of the discontinuity
path, based on predominantly local information, i.e., information available at element and
material point level, respectively, see, e.g., Oliver et al. [90], Sancho et al. [107, 106, 108].

A further trend in development of solution techniques to simulate localization was consti-
tuted by the idea to treat the newly introduced discontinuity variables as additional global
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unknowns (Bolzon & Corigliano [14]). New developments in this direction are closely
related to the partition-of-unity concept (Babuška & Melenk [70, 5]). This approach, of-
ten termed extended finite element method, introduces separate degrees of freedom associated
with the displacement discontinuities on basis of a partition-of-unity (Moës, Dolbow & Be-

lytschko [73]). As opposed to the approach of embedded discontinuities, this method relies
on a nodal enrichment and the additional degrees of freedom pertain to the global system
of degrees of freedom, i.e., they can not be eliminated on a local level. Though this method
offers the perspective of a very general and completely discretization independent modeling
of failure zones, see, e.g., Jiràsek & Belytschko [56] and Wells [128, 129], its numerical
implementation — especially with respect to a three-dimensional setting — proves complex
and does not seem to be fully resolved, yet.

1.3 Objective and scope of the work

To the author’s best knowledge, modeling approaches in the field of deformation localization
and material failure are presently almost exclusively developed and applied in the context of
a low-order, mostly constant strain, finite element framework.

Based on the observation that spurious locking effects and mesh bias, are to a strong degree
influenced by the insufficient kinematic approach of low-order finite elements, the leading
thought of this thesis develops as follows: For linear and nonlinear elliptic boundary value
problems, high-order finite elements are proven to provide very efficient discretizations [121,
33, 84]. Moreover, due to their superior kinematics, high-order polynomial approximations
have been found to be robust against locking [96, 35, 98]. Therefore, as express concerns of
this work,

• it is not only desirable from an academic point of view to extend the scope of application
of high-order finite elements to the field of deformation localization and material failure;

• moreover, the assumption is justified that the rich kinematic potentials of high-order
polynomial extensions significantly alleviate stress locking and mesh bias issues — thus,
also in this problem domain a high-order finite element approach is expected to con-
tribute to an effective formulation that does not rely on elaborate strategies of highly
nonlocal character.

Subsequent to this introductory chapter, Chapters 2–6 form the core of this work. They are
structured according to:

Continuum mechanics & Discretization

• Chapter 2 summarizes the fundamental laws of continuum mechanics, on which devel-
opments presented in this work are based. Focusing on a small deformation context
the basic relations of kinematics, stress and equilibrium are outlined. The coherence
between strains and stresses, described by constitutive laws, is treated in view of the
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energy dissipation associated with material failure. For development of the variational
formulation, a general three field functional is employed. The so obtained variational
formulation constitutes the foundation for the numerical procedure and facilitates the
consistent formulation of embedded strong discontinuities in the framework of enhanced
assumed strains.

• Chapter 3 initially introduces the finite element method as a general discretization proce-
dure. Accounting for the incorporation of strong discontinuities, the generalized frame-
work set by the variational formulation is maintained. As the aspired extensions are
developed consistently in respect of possible applicability within a high-order finite ele-
ment framework, the characteristics of the finite element p-version are a natural matter
in the following. Accordingly, high-order hierarchical Ansatz spaces, mapping concepts,
as well as numerical integration are described as specifications of the p-version approach.

Strong discontinuities

• Chapter 4 extends the classical continuum mechanical formulation regarding the possible
occurence of strong discontinuities, i.e jumps in the displacement field. As an essential
attribute to this approach, the postulate of traction continuity evolves; it is exploited
for a direct coupling between strong discontinuity kinematics and a discrete interface
law. Following the previously established framework of enhanced assumed strains, it
develops a finite element formulation that furnishes both a consistent representation of
the strong discontinuity kinematics and the traction continuity requirement. Starting
from there, Chapter 4 develops the central notion of a p-adaptive consistent extension of
the approach to a high-order finite element framework. Two essential ingredients form
the basis for this progression:

a) Dispensing with the restriction of one discontinuity plane per finite element features
the transition to a pure continuum formulation and facilitates the elimination of
degrees of freedom, associated with the displacement discontinuities, already on
material point level.

b) A novel reassessment of the strong discontinuity kinematics then puts forth the ex-
tended p-adaptive formulation. As opposed to previous formulations, the approach
is consistent with the adoption of high-order polynomial approximations.

• Chapter 5 specializes the previously developed embedded strong discontinuity formula-
tion in respect of a modeling approach for brittle predominant mode-I material failure.
From the discussion of rotating and fixed discontinuity approaches, it deduces the idea of
a hybrid approach which accounts for the observed multi-phase character of the failure
zone formation process.

Numerical examples

• Chapter 6 finally, sheds light on the question regarding the approach’s consistency in
a high-order finite element context, by means of four spatially discretized numerical
examples. It illustrates both necessity and effectiveness of the advocated p-adaptive
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extension. Following a continuing study, which elaborates the distinct contribution of the
proposed hybrid discontinuity approach to the simulation of a locking free propagation
of the failure zone, the chapter concludes with a benchmark simulation. This simulation
not only supports the validity of the model, it also illustrates the superior resolution of
the failure process compared to corresponding low-order finite element approximations.

The work concludes with a survey over the essential outcomes in Chapter 7. From the very
beginning it was obvious that due to the complex nature of the problem field, there will be
questions left unanswered. So, Chapter 7 also tries to throw light on possible future directions
of research in this field.
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Chapter 2

Classical continuum mechanics

I could never make out what those damned dots meant.
– Winston Churchill.

As a foundation for the subsequent treatment of discretization concepts (Chapter 3), the
present chapter starts with summarizing the continuum mechanical basics. A continuum
body is understood as an assembly of material particles, each particle being characterized by
distinct material properties. During motion, this assembly of particles remains a portion of
the Euclidean space R

3 at any time t. Subsequent considerations are essentially based on
explanations of Bonet & Wood [15], Wriggers [133, 132] and Truesdell & Noll [124].

2.1 Kinematics

2.1.1 Motion

The three-dimensional Euclidean space R
3 is spanned by an orthonormal basis E defined

in the reference point O of the system. Let Ω0 ⊂ R
3 refer to the reference configuration of a

continuuum body at time t = 0 with boundary ∂Ω0 and closure Ω̄0 := Ω0 ∪ ∂Ω0. A particle
of Ω̄0 at its initial position at time t = 0 be labeled by the coordinates X ∈ Ω0, defined with
respect to the cartesian basis E. At time t ∈ (0, T ] ⊂ IR+ the current configuration of the
body be referenced by Ω ⊂ R

3, boundary ∂Ω0 and closure Ω̄ := Ω∪∂Ω. Assume further, that
the position of a particle at time t ∈ (0, T ] be described by the current coordinates x ∈ Ω,
which in general may refer to an alternative cartesian basis e. Then, the motion of the body
can be described by a mapping between initial and current particle positions as

φ : Ω̄0 × [0, T ] 7→ Ω̄ with Ω̄0, Ω̄ ∈ R
3

x = φ(X, t)
(2.1)
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Figure 2.1: Motion of a material particle

For a fixed value of t, equation (2.1) represents the mapping between reference (undeformed)
and current (deformed) configuration of body Ω — if view is focused on a distinct particle,
i.e., X is kept fixed, equation (2.1) describes the motion of this particle as a function of time.

When describing the motion of a body mathematically, two different views can be adopted —
which should be carefully distinguished:

• The Eulerian approach employs a spatial description. The observer is connected to
a distinct spatial position and monitors changes at this position, which may also be
due to ‘passing by’ of different material particles. Thus, the observer does not possess
information that is associated to a distinct particle, like, e.g., the change of particle’s
physical properties over time.

• The Lagrangian approach adopts a material based description. The observer is con-
nected to a distinct material particle and monitors changes of its physical properties and
spatial position over time.

The Euler approach is commonly applied in the field of computational fluid mechanics,
while for strucural mechanics problems generally the Lagrangian view is preferred since
it facilitates incorporation of material specific response in a natural way. Throughout the
remainder of this work the Lagrangian view is adopted.
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2.1.2 Deformation gradient

Consider a body whose deformation over time is described by the motion equation (2.1). The
displacement vector u associated with a particle then defines the difference between initial
and current position.

u = x − X (2.2)

As an important measure to relate quantities associated with the reference configuration (be-
fore deformation) to corresponding quantities in the current configuration (during deforma-
tion), the deformation gradient tensor F is introduced.

F :=
∂φ(X, t)

∂X
=

∂ (X + u(X, t))

∂X
= 1 +

∂u(X, t)

∂X
(2.3)

In (2.3)3, 1 denotes the second-order unit tensor. For the spatial derivatives with respect to
reference and current configuration we stipulate

∇0(•) :=
∂(•)
∂X

and ∇(•) :=
∂(•)
∂x

. (2.4)

The deformation gradient F represents the instantaneous “direction of motion” of a material
particle and thus maps tangent vectors in the reference configuration to tangent vectors in
the current configuration — for example, it associates to the elemental vectors dX i ∈ Ω0,
i = 1...2, the elemental vectors dxi ∈ Ω (Figure 2.1).

dx = F dX (2.5)

The postulation of uniqueness of the mapping (2.1) is complemented by exclusion of self-
penetration of the body. These two requirements give rise to the condition

J := detF > 0 , (2.6)

where the Jacobian determinant J has been introduced.

Based on the deformation gradient, convenient transformations of area and volume between
reference and current configurations can be defined as

da = nda = J F−T dA (Nanson’s formula) (2.7)

and

dv = J dV , (2.8)

respectively. In equation (2.7), n denotes the normal vector to the considered infinitesimal sur-
face section da in the current configuration. Quantities dv and dV in equation (2.8) represent
the respective infinitesimal volumes in current and reference configuration.
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2.1.3 Strain

For a suitable definition of strain, the notion of objectivity or frame invariance plays a funda-
mental role; a body which is subjected to a pure rigid body motion should not experience any
consequential straining. The Green-Lagrange strain tensor — as a quantity that meets
this requirement — shall be introduced in the following.

The scalar product of two elemental vectors X1 and X2 is both influenced by the vectors’
respective lengths and the enclosed angle between them. Consequently, the change of scalar
product during transformation to the current configuration x1 and x2 furnishes a quantity,
that reflects both stretching of the vectors and change of the enclosed angle — and thus
represents a suitable basis for the definition of strain.

1

2
(dx1 • dx2 − dX1 • dX2) =

1

2
(F dX1 • F dX2 − dX1 • dX2)

=
1

2

(
dX1 • F T F dX2 − dX1 • dX2

)

=: dX1 • E dX2

(2.9)

In equations (2.9), we have employed the mapping of elemental vectors according to (2.5).
The definition of the Green-Lagrange strain, finally, is derived from (2.9) as

E =
1

2

(
F T F − 1

)
(2.10)

or equivalently, in view of (2.3)3 and (2.4),

E =
1

2

(
∇0u + ∇

T
0 u + ∇

T
0 u ∇0u

)
. (2.11)

It should be noted that Green-Lagrange strain tensor E, due to its construction, is sym-
metric — hence, for x,X,u ∈ R

3 we have six independent components.

In the context of infinitesimal theory, which is followed in this work, no distinction is required
between reference configuration Ω0 and current configuration Ω, such that ∇0(•) ≈ ∇(•). In
particular, the displacement gradient ∇u is considered to be small, furnishing ∇

T u ∇u ≪ 1.
Hence, the quadratic term in (2.11) is considered to be negligible and one arrives at the
well-known symmetric linearized, or engineering, strain tensor definition according to

ε =
1

2

(
∇u + ∇

T u
)

= ∇
symu . (2.12)

Remark. It is important to note, that in a finite deformation context, the linearized strain
definition according to (2.12) is not frame invariant. Consider, for example a body subject to
an in-plane rigid body rotation about ninety degrees, such that

ux = −X − Y , uy = X − Y and uz = 0 . (2.13)

Then, the linearized strain tensor according to (2.12) would yield non-zero entries

εxx = εyy = −1 (2.14)

— and thus, violate the frame invariance (objectivity) postulate and introduce spurious strain-
ing to the body. 2
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2.2 Stress and equilibrium

2.2.1 Stress state

The “concept of force describes the action of the outside world on a body in motion and the
interaction between the different parts of the body” [124]. Considering, at a given time t, an
arbitrary part P ⊂ Ω of the body with boundary ∂P , the notion of stress is developed as
follows. Assuming the resultant contact force on ∂P being given by fa, then there exists a
corresponding vector field t(x, t) defined for each point x ⊂ ∂P on the boundary, such that

fa(P) =

∫

∂P

t(x, t) da . (2.15)

Therein, t(x, t) represents the so-called Cauchy stress or traction vector; it can be interpreted
as density of the contact force. Since P is arbitrary this notion can be extended to all interior
points of Ω, such that t(x,n, t) is the stress vector at x acting across the oriented surface
element with normal n. 1 The so obtained stress vector is also referred to as true stress — it
relates the current force dfa at a point x to an area da related to the current configuration:

t(x,n, t) =
dfa

da
(2.16)

The Cauchy theorem postulates a linear relation between stress vector t(x,n, t) and normal
unit vector n of a considered surface according to

t(x,n, t) = σ(x, t) n . (2.17)

The second-order tensor σ represents the Cauchy stress tensor, which is merely a function
of position and time — thus independent of n. Figure 2.2 illustrates the sign convention
for the definition of stress tensors, commonly adopted in solid mechanics. In the absence of
micropolar stresses, which is presumed throughout this work, the local balance of angular of
momentum dictates symmetry of the Cauchy stress tensor, i.e.,

σT = σ or σij = σji . (2.18)

A continuum classified by these properties, is frequently called Boltzmann continuum, cf.,
for example, D’Adetta [25].

Depending on the kinematic description adopted, there exist different corresponding stress def-
initions. The concept to establish the appropriate stress description is derived from the central
notion of work conjugacy. Representatively, the Second Piola-Kirchhoff stress tensor S

shall subsequently be introduced. The internal virtual work (see Section 2.3.2) characterizes

1If x ∈ ∂Ω and n coincides with the exterior unit normal to ∂Ω, then the stress vector t(x, t) reduces to a
function of position and is frequently named surface traction on the boundary ∂Ω.
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Figure 2.2: Sign convention for stress tensor components

the degree of straining of a body. It is defined in the current (deformed) configuration by
means of linearized strain and Cauchy stress tensor according to

Wint =

∫

Ω

ε(δu) : σ(u) dv , (2.19)

where δu represents a field of admissible virtual displacements. 2 Using the previously defined
Green-Lagrange strain tensor E (2.11), the above internal virtual work expression can
equivalently be recast as

Wint =

∫

Ω0

E(δu) : S(u) dV ; (2.20)

furnishing the energy conjugate Second Piola-Kirchhoff stress tensor S as

S := JF−1σF−T . (2.21)

2.2.2 Equilibrium

The local equilibrium condition for a general deformable body in the Euclidean space R
3 is

derived on basis of the balance of mass and momentum. For the quasi-static case, neglecting
inertia effects, the differential equations of the three-dimensional model problem are obtained

2The : symbol adopted in (2.19) denotes the double contraction operation, here applied to two second-order
tensors, thus featuring a scalar result. In indical notation, we have Wint = εijσij .
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from the postulate of equilibrium at the differential element as:

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
+ bx = 0

∂σyx

∂x
+

∂σyy

∂y
+

∂σyz

∂z
+ by = 0

∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂z
+ bz = 0

,

(2.22)

or, more compact

divσ + b = 0 . (2.23)

For a state of equilibrium, condition (2.23) must be fulfilled for every part of the body. The

vector b =
[
bx by bz

]T
represents the body force per unit volume and is supposed to be a

prescribed quantity for the boundary value problem.

2.3 Variational formulation

So far, the model problem has been characterized by the fundamental mechanical equations;
the kinematic relations of Section 2.1 and the equilibrium condition of Section 2.2.2, which
is derived on basis of a local balance of mass and momentum. Discussion of the extant
constitutive relations, linking strains and stresses, will be postponed to Section 2.4. The
present section is devoted to establishing a formulation of the boundary value problem that
can conveniently be adopted as a basis for the subsequent finite element approach. Generally,
the finite element formulation is established in terms of a weak form of the differential equations
under consideration.

To this end, starting from the method of weighted residuals, Section 2.3.2 establishes the
classical principle of virtual work as the common basis for standard finite element formulations.
With a view to later developments, Section 2.3.4 then adopts an alternative and more general
approach, employing the variational functional according to Hu [50] and Washizu [127].
This functional furnishes the consistent variational framework for the incorporation of enriched
strain fields into the finite element formulation — such as the enhanced assumed strain method
(EAS), constituted by Simo & Rifai [117] — and also facilitates the consistent formulation of
embedded strong discontinuities (Simo & Oliver [115]), which will be the matter of Chapter
4.

For the sake of clarity and conforming with the scope of the work, discussion is restricted to the
infinitesimal case; in particular, no distinction is required between initial configuration Ω0 and
current configuration Ω. It should be noted however, that the method of enhanced assumed
strains can equally valid be posed for the case of finite deformations (Simo & Armero [112];
Wall et al. [126]).
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2.3.1 Definition of the boundary value problem

Let Ω ⊂ R
3 be the reference configuration of a continuum body with a smooth boundary

∂Ω, closure Ω̄ := Ω ∪ ∂Ω, and particles X labeled by their position vectors x ∈ Ω relative
to the standard basis in R

3. The deformation of the body from its reference configuration is
described by the displacement field u. Deformation is assumed to be prescribed as u∗ := u|∂u

on the Dirichlet boundary ∂uΩ ⊂ ∂Ω. Among the many possible types of loading that
can act on a continuum body, this work limits regard to body forces b and surface tractions
t∗ := σ|∂σ

n. These surface tractions be prescribed on the Neumann boundary ∂σΩ ⊂ ∂Ω,
such that ∂uΩ ∪ ∂σΩ = ∂Ω and ∂uΩ ∩ ∂σΩ = ∅.

����
����
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����

x1

x2

x3

Ω

∂Ω = ∂uΩ ∪ ∂σΩ
∂uΩ

∂σΩ

t∗

n

Figure 2.3: Definition of the boundary value problem

2.3.2 The weak form of equilibrium

The departure point is the differential equilibrium condition (2.23). Accounting for the previ-
ously defined boundary conditions, the displacement field u is sought that satisfies

divσ + b = 0 . (2.24)

Let now δu ∈ V define a test function vector which can equivalently be interpreted as virtual
displacement. V = {δu(x) ∈ [H1(Ω)]ndim : δu = 0 on ∂uΩ} defines a Sobolev space [6, 31],
which is based on functions with square-integrable, generalized derivatives. ndim corresponds
to the number of physical degrees of freedom, which for the considered Boltzmann continuum
is equivalent to the dimensionality of the problem, i.e., ndim = i for x ∈ R

i with i = 1, 2, 3.
Then, multiplying — according to the method of weighted residuals — the differential equation
(2.24) by the test function vector δu and integrating over the computational domain Ω yields

∫

Ω

(divσ + b) • δu dv = 0 ∀δu ∈ V ; (2.25)
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now rendering equilibrium in an integral sense. Integrating by parts 3 and using the Gauss

theorem, finally puts forth the so-called weak form of equilibrium
∫

Ω

∇
symδu : σ dv =

∫

Ω

b • δu dv +

∫

∂σΩ

t∗ • δu da . (2.26)

Note, that the symmetry (2.18) of the Cauchy stress tensor implies the equivalence ∇δu : σ =
∇

symδu : σ. The attribute weak refers to the fact that equation (2.26) poses less strict re-
quirements regarding the regularity of the displacement field than its strong form counterpart
(2.24). Equation (2.26) frequently is referred to as principle of virtual work, where the work
due to internal forces is defined by

Wint(u, δu) :=

∫

Ω

∇
symδu : σ dv =

∫

Ω

ε : σ dv (2.27)

and the work due to external forces is given as

Wext(δu) :=

∫

Ω

b • δu dv +

∫

∂σΩ

t∗ • δu da . (2.28)

The resulting strain energy is specified as

U(u) :=
1

2
Wint(u,u) , (2.29)

with the corresponding energy norm

‖u‖E(Ω) :=
√

U(u) =

√

1

2
Wint(u,u) . (2.30)

Equation (2.26) determines the exact solution u = uex with finite strain energy that satisfies
the geometrical boundary conditions.

Remark. With every statement of the principle of virtual work it is also possible to associate a
quadratic functional Π(u), such that the exact solution uex to the weak form is the minimizing
function of this functional. For conservative systems, this quadratic functional can directly be
associated with the potential energy.

Π(u) := U(u) −Wext(u) =
1

2
Wint(u,u) −Wext(u) (2.31)

2

2.3.3 Generalized variational formulation

Extending the pure displacement formulation of the previous section, it is also possible to
introduce strain ε and stress σ as additional primary variables. As a consequence, the corre-
sponding functional (2.31) then renders three independent fields Π := Π(u, ε,σ). Such a —

3The product rule gives rise to the divergence property div (σδu) = δu • divσ + ∇δu : σ.
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most general — approach is constituted by the Hu-Washizu three-field variational functional.
It is stated as (e.g., Andelfinger [1], Simo & Hughes [113])

Π(u, ε,σ) = Πint(u, ε,σ) + Πext(u, ε,σ) (2.32)

where

Πint(u, ε,σ) =

∫

Ω

W (x, ε) − σ : (ε − ∇
symu) dV (2.33)

represents the internal potential 4, with W (x, ε) denoting the stored material energy function.
The external potential is specified as

Πext(u, ε,σ) = −
∫

Ω

b • u dV −
∫

∂σΩ

t∗ • u dA (2.34)

In anticipation of later developments, we also define in the standard fashion (cf. Section 2.3.2)
spaces of admissible displacement variations

V = {δu(x) ∈ [H1(Ω)]ndim : δu = 0 on ∂uΩ} (2.35)

and spaces of admissible strain and stress variations

E = {δε(x) ∈ [L2(Ω)]nstrn} and S = {δσ(x) ∈ [L2(Ω)]nstrn} , (2.36)

ndim again denoting the dimensionality of the problem and nstrn referring to the number of
strain and stress components, respectively.

Based on the notion of the principle of minimum potential energy, it is convenient to expand
the potential Π(u, ε,σ) around the unknown state (uex, εex,σex) by means of a truncated
Taylor series.

Π(u, ε,σ) = Π(uex + κ δu, εex + κ δε,σex + κ δσ)

≈ Π(uex, εex,σex) + DΠ(u, ε,σ) · (δu, δε, δσ)
(2.37)

The directional derivative (Gâteaux derivative) DΠ(•) · (•) represents the first variation
δΠ of the functional (2.32) around a point (uex, εex,σex) in the direction (δu, δε, δσ) and is
defined as

δΠ ≡ DΠ(u, ε,σ) · (δu, δε, δσ)

:=
d

dκ

∣
∣
∣
∣
κ→0

Π(u + κδu, ε + κδε,σ + κδσ)
(2.38)

A necessary requirement in order to let candidate (uex, εex,σex) indeed be a minimizer of the
potential Π(u, ε,σ), is the stationarity of equation (2.37) [112]. This implies, that the first
variation of the functional vanishes. Accordingly, we write

δΠ =

(
∂Π(u + κδu)

∂κ
+

∂Π(ε + κδε)

∂κ
+

∂Π(σ + κδσ)

∂κ

)∣
∣
∣
∣
κ→0

!
= 0 (2.39)

4Taking a different point of view on this formulation, the stress field σ can be interpreted as a Lagrange
multiplier — applied to enforce the kinematic constraint ε = ∇

symu [113].
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which — accounting for the independence of the three variable fields — finally yields

∫

Ω

∇
symδu : σ dV −





∫

Ω

b • δu dV +

∫

∂σΩ

t∗ • δu dA





︸ ︷︷ ︸

Wext

= 0

∫

Ω

δε : (σ̂(ε) − σ) dV = 0

∫

Ω

δσ : (∇symu − ε) dV = 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

δΠ (2.40)

Notably, equation (2.40)1 reflects the well-known weak form of the equilibrium equations
(principle of virtual work) (2.26), giving rise to the strong form of equilibrium

divσ + b = 0 (2.41)

and the static Neumann boundary conditions

t∗ = σ|∂σ
n on ∂σΩ . (2.42)

Additionally, equations (2.40)2 and (2.40)3 enforce the constitutive relation

σ̂(ε) = σ (2.43)

and the kinematic equation

∇
symu = ε . (2.44)

To summarize, except for the Dirchlet boundary conditions u = u∗ on ∂uΩ, all other
governing equations are replaced by the variational equality (2.40) in a weak sense, see also
Jirásek [52].

Remark. Though the derivation of (2.40) is initially motivated by the notion of minimization
of the potential energy — which silently assumes the existence of such a potential — the
application of the variational equality (2.40) is not restricted to the class of problems where
such a potential indeed exists. Instead it is possible to start directly with (2.40) — all governing
equations are contained therein, as was shown above. To emphasize this aspect, in (2.40)2 the
partial derivative of the material stored energy function ∂,εW (ε) has been replaced by the
stress σ̂(ε) computed from the assumed strain ε using the respective constitutive equation.
For non-conservative systems — i.e., systems that do not preserve the energy introduced to
them — of course, the interpretation of minimization of a potential is lost and no longer
justified. 2

2.3.4 Modified three-field variational problem

The fundamental idea of the enhanced assumed strain method is the decomposition of the
strain field into a displacement compatible and an enhanced portion. Introducing this split
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both for the strains and the corresponding admissible variations, namely

ε = ∇
symu + ε̃

δε = ∇
symδu + δε̃

(2.45)

with ε̃, δε̃ ∈ Ẽ and Ẽ being the space of enhanced strain fields, equation (2.40)2 is rewritten
as

∫

Ω

δε̃ : (σ̂(ε) − σ) dV +

∫

Ω

∇
symδu : (σ̂(ε) − σ) dV = 0

Using this relation and inserting (2.45) into (2.40), the modified three-field variational problem
is finally obtained as (Simo & Rifai [117]; Klinkel & Wagner [64])

∫

Ω

∇
symδu : σ̂(∇symu + ε̃) dV −Wext(δu) = 0

∫

Ω

δε̃ : (σ̂(∇symu + ε̃) − σ) dV = 0

∫

Ω

δσ : ε̃ dV = 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

δΠ (2.46)

2.3.5 Linearization of the modified variational problem

In general, the system of equations (2.46) can be nonlinear. In the context of such a nonlinear
framework, an efficient iterative solution strategy with quadratic convergence properties is
the Newton-Raphson algorithm. The algorithm is based on a consistent linearization of
the underlying variational problem and can be outlined as follows. Having arrived at a state
(uk, ε̃k,σk) — silently assuming equations (2.46) are not satisfied — a corrected state

(uk+1, ε̃k+1,σk+1) = (uk, ε̃k,σk) + (u̇, ˙̃ε, σ̇)

can be obtained by a linear extension of (2.46) around the state k. Again, applying a truncated
Taylor series expansion, we write

δΠ(uk+1, ε̃k+1,σk+1) ≈ δΠ(uk, ε̃k,σk) + DδΠ(uk, ε̃k,σk) · (u̇, ˙̃ε, σ̇)
︸ ︷︷ ︸

=: ˙δΠ

(2.47)
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and require δΠ(uk+1, ε̃k+1,σk+1)
!
= 0; ˙δΠ denotes the directional derivative of the first varia-

tion of the functional (2.32). Standard arguments in the calculus of variations yield

˙δΠ =
d

dκ

∣
∣
∣
∣
κ→0

δΠ(u + κu̇, ε + κ ˙̃ε,σ + κσ̇)

=

∫

Ω

(

∇
symδu : ∂,εσ̂ : ∇

symu̇ + ∇
symδu : ∂,εσ̂ : ˙̃ε

)

dV

+

∫

Ω

(

δε̃ : ∂,εσ̂ : ∇
symu̇ + δε̃ : ∂,εσ̂ : ˙̃ε

)

dV

+

∫

Ω

δσ : ˙̃ε dV +

∫

Ω

δε̃ : σ̇ dV

(2.48)

2.3.6 Eliminating the stress field from the formulation

So far, three independent variable fields u, ε̃ and σ show up in the variational problem (2.46)
and its linearized form (2.47). The stress field’s occurence — and hence, its later discretization
— can be avoided by formally introducing an L2-orthogonality between stress field and the
enhanced strain field variations (Simo & Rifai [117]). Imposing

∫

Ω

δε̃ : σ dV = 0 (2.49)

and introducing the definition of the fourth-order continuum constitutive tangent tensor

Ct := ∂,εσ̂(ε) = ∂,εσ̂(∇symu + ε̃) (2.50)

the variational problem (2.46) and its linearized form (2.47) with respect to the remaining two
independent variables and their corresponding variations reduce to

∫

Ω

∇
symδu : σ̂ dV −Wext(δu) = 0

∫

Ωe

δε̃ : σ̂ dV = 0
(2.51)

and
∫

Ω

∇
symδu : Ct : ∇

symu̇ dV +

∫

Ω

∇
symδu : Ct : ˙̃ε dV +

+

∫

Ω

∇
symδu : σ̂ dV −Wext(δu) = 0

∫

Ωe

δε̃ : Ct : ∇
symu̇ dV +

∫

Ωe

δε̃ : Ct : ˙̃ε dV +

∫

Ωe

δε̃ : σ̂ dV = 0

(2.52)
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respectively. In light of this outcome, equation (2.51)2 can be interpreted as the weak form of
an internal equilibrium condition — complementing the classical weak equilibrium requirement
(2.51)1 between internal and external forces.

Remark. Note, that the components of the admissible enhanced strain field ε̃ and its variation
δε̃ are required only to lie in L2(Ω) [117, 112, 12] — therefore, the respective fields need not be
continuous on the domain Ω. In view of a later finite element discretization, see Section 3.1.2,
this facitilates the L2-orthogonality between stress field and enhanced strain field variation
(2.49) to be established on subdomains Ωe ⊂ Ω, represented by finite elements; which finally
features a convenient construction of corresponding interpolation functions. To indicate this
aspect, the subscript (•)e has been added to the integration domains in equations (2.51) and
(2.52), respectively. 2

2.4 Continuum constitutive modeling

The basic lines of continuum kinematics and equilibrium in local and variational form set out
so far, have essentially been developed irrespective of material specific constitutive properties.
In mathematical terms, this disregard becomes manifest in the insuffient number of equations
to uniquely determine the solution to the boundary value problem defined in Section 2.3.1. To
complete the formulation, the present section takes on the discussion of constitutive relations
which mark the residual link between deformation of a continuum material and consequential
induced stress state — finally furnishing a well-posed boundary value problem.

Owing to the tremendous variety of materials and loading regimes of interest, the diversity of
constitutive modeling approaches is almost just as comprehensive. An extensive overview with
particular focus on inelastic material response and failure is, e.g., given in Bažant & Cedolin

[7], Stein [119], Jirásek [51] or Jirásek & Bažant [55]. An excellent outline of classical
infinite and finite elastoplasticity can, e.g., be found in Miehe [72]. Due to its generality,
the flow theory of plasticity is also covered by many standard books on (computational)
continuum mechanics, such as Zienkiewicz [135], Crisfield [23, 24] Wriggers [132] or
Simo & Hughes [114].

Still, especially in consideration of the large amount of available constitutive modeling ap-
proaches with very different complexity, from the analyst’s point of view the key point of
using constitutive equations must be characterized as finding the simplest model that offers
the accuracy required in the present situation.

In view of the later adopted modeling approach to capture traction-separation response at
the discontinuity surface (cf. Section 4.3 and Chapter 5), this section concentrates on the
description of basic ingredients of (hyper-)elasticity and the flow theory of plasticity. Also,
consistent with the framework developed so far, a strong focus on the geometrical linear theory
is maintained.
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2.4.1 Hyperelasticity

Common to all elastic continuum models is the fundamental notion of a stored material energy
potential W (ε) as a function of the deformation state, characterized by the strain tensor ε.
This notion implies that:

(i) There is a unique relation between deformation state and corresponding internal stress
state.

(ii) A consecutively loaded and unloaded body exactly returns to its initial position, i.e.,
no permanent deformation is induced. As a consequence, the deformation state is com-
pletely elastic with ε = εe.

Having described the material characteristics by a suitable energy function, the stress state is
formally established by

σ :=
∂W (εe)

∂εe

= ∂,εeW (εe) (2.53)

and the change of stress with respect to strain is consequently described via

σ̇ = ∂,εeσ(εe) ε̇e = C ε̇e , (2.54)

with

C :=
∂σ(εe)

∂εe

=
∂2W (εe)

∂εe ∂εe

= ∂,εe∂,εeW (εe) (2.55)

denoting the fourth-order constitutive tangent tensor.

The simplest example of a hyperelastic constitutive framework is indeed the famous Hooke’s
law of isotropic linear elasticity, dealing with only two material parameters. Specifying the
stored energy potential as

W (εe) = 2µĪ2 +
1

2
λI2

1 , (2.56)

where λ and µ denote the Lamé material constants and I1 := tr(εe) and Ī2 := 1
2
tr(εe ⊗ εe),

respectively, are invariants of the strain tensor, the stress state is obtained via (2.53) as

σ = 2µεe + λtr(εe)1 . (2.57)

From definition (2.55), the constitutive tangent is then deduced as (Crisfield [24])

C =
∂2W (εe)

∂εe ∂εe

= 2µ I + λ1 ⊗ 1 . (2.58)

In equations (2.57) and (2.58) 1 and I denote the second-order and fourth-order unit tensor,
respectively. As a consequence of the specific choice of the energy potential (2.56), which
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depends on the strains in a quadratic manner, the resulting constitutive tangent (2.58) is
constant, therefore furnishing a linear relationship between strains and corresponding stresses.
In the infinitesimal case, where the strains are also linearly dependent on the displacements, the
resultant load-displacement relation renders linear, too. By increasing the number of elastic
material constants it is possible to account for anisotropic effects ranging from transversal
isotropy and orthotropy to general anisotropy with at most 21 independent elastic moduli 5.
The Lamé constant λ can equivalently be expressed by

λ =
3κ − 2µ

3
, (2.60)

with κ = E/(3(1 − 2ν)) being the bulk modulus, µ = E/(2(1 + ν)) the shear modulus, E
Young’s modulus and ν Poisson’s ratio. Using this equivalence, the constitutive tangent
(2.58) is recast as

C = 2µ[I − 1

3
1 ⊗ 1] + κ1 ⊗ 1 . (2.61)

In the general case — depending on the specific choice of the stored energy potential W
— the constitutive tangent tensor is non-constant but depends on the strains. Well-known
hyperelastic formulations, frequently used in the field of simulation of rubber-like materials,
are, e.g., due to Mooney [74], Rivlin [102] or Ogden [85].

Remark. It should be noted, that in the geometrical nonlinear case it is vital to define
the stored energy potential in terms of a suitable frame invariant strain measure, e.g., the
previously introduced Green-Lagrange strain tensor E. Otherwise, the formulation is
susceptible to the introduction of spurious straining in consequence of rigid body rotations
(cf. Section 2.1.3). Naturally, when using such a frame invariant strain measure, the stress
is then described in terms of the appropriate work conjugate stress measure, e.g., the Second
Piola-Kirchhoff stress tensor S. 2

5The fourth-order constitutive tensor due (2.55) features 34 = 81 entries. Since the symmetry property of
the stress tensor (2.18) renders three out of nine equations obsolete, each equation having nine coefficients,
that is a total reduction of 3 · 9 = 27 constants. In the remaining six equations each three coefficients are
not independent as a result of the symmetry of the strain tensor (cf. Section 2.1.3), which eliminates another
3 ·6 = 18 constants. Thus, because of symmetry in stress and strain tensors the number of independent elastic
constants is reduced to 81 − 27 − 18 = 36.
Further, accounting for the fact that the constitutive tensor is derived from an energy potential, it emerges
that the result should be the same irrespective of the order of differentiation, i.e.,

Cijkl =
∂

∂εij

(
∂W

∂εkl

)

=
∂

∂εkl

(
∂W

∂εij

)

= Cklij . (2.59)

This symmetry reduces the total amount of constants by another 15, which yields a final total of 21 independent
constants.
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2.4.2 Flow theory of plasticity

A central notion of the flow theory of plasticity is the introduction of a space of admissible
stresses:

Eσ := {(σ, q) ∈ S × R
n | φ (σ, q) 6 0} ∀X ∈ Ω (2.62)

Inner points of this space, i.e., σ ∈ Eσ\∂Eσ are characterized by elastic response, while on the
boundary ∂Eσ plastic states are permitted, as well. The function φ : S × R

n 7→ R describes
the restricted space subject to the stress state σ and the stress-like variable q and is commonly
known as yield function. Variable q accounts for a possible evolution of the admissible stress
space in dependence of an energy conjugate strain-like variable α, an effect which is known
as hardening in case of expansion and softening in the contractive case, respectively. For
brevity, in the remainder of the section we will use the term hardening as a generic term
unless explicitly stated otherwise. As opposed to kinematic hardening behavior, which is
characterized by a translation of the space of admissible stresses in stress space, this work is
concerned with the case of isotropic hardening, exhibiting a uniform isotropic evolution of the
space of admissible stresses. In case q does not evolve during plastic flow, as a consequence
the elastic domain remains fixed — this behavior is commonly termed perfect plasticity. The
space of admissible stresses is subject to the following constraints:

• Convexity: Eσ must be a convex space. More descriptive, this condition requires that all
points on the linear path between two admissible stress states also render admissible, i.e.,
belong to Eσ. This implies that for an elastic state σ(1) which changes during monotonic
loading to the elastic state σ(2), the intermediate states are completely characterized by
elastic response, too. A principle two-dimensional graphical representation of such a
convex elastic domain is given in Figure 2.4.

• C1-continuity: The continuity of the first derivative of the yield function must not
be guaranteed in a strict sense. With particular view to multi-surface plasticity, it is
sufficient to require that the yield function is C1-continuous for almost all (= all but a
finite number of) points. Mathematically,

∂Eσ Lipschitz-continuous and

∂Eσ ∈ C1(S × R
n, R) for almost all σ ∈ ∂Eσ .

(2.63)

In contrast to the hyperelastic case, the flow theory of plasticity accounts for the possibil-
ity that the energy furnished during deformation is not maintained completely in form of
reversible, stored material strain energy — a portion of the deformation energy is then ir-
reversibly dissipated, e.g., in form of thermal energy. A direct consequence of the process’
irreversibility is the development of permanent (= plastic) deformation, i.e., a loaded and se-
quentially unloaded continuum body does not recover its initial position. Such characteristics
can indeed be observed for a wide range of materials; mechanical energy dissipation frequently
is manifested by changes in the material microstructure, finally giving rise to the phenomenon
of plastic deformation. Foregoing considerations motivate a second fundamental assumption
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— the split of the strain tensor into an elastic and a plastic contribution. For the infinitesimal
theory, which is followed in this work, this can be done in an additive manner:

ε = εe + εp (2.64)

Due to the allowance of energy dissipation, the stored energy potential W is henceforth a
function of the elastic portion of the strains rather than the total strains. Further, the possible
evolution of the admissible stress space in dependence of the stress-like variable q is accounted
for by introducing the conjugate strain-like variable α. Hence, we obtain W := W (εe,α).
Following the hyperelastic framework (2.53), the stress state is then derived as

σ =
∂W (εe,α)

∂εe

(2.65)

and definition of the stress-like hardening variable q yields

q := −∂W (εe,α)

∂α
. (2.66)

Restricting attention to the isothermal case, i.e., no thermal energy is explicitly supplied to
the material, the internal stress power

P = σ : ε̇ (2.67)

is additively composed of a contribution stemming from the stored energy potential and a
term associated with internal energy dissipation. Accordingly, we can write the dissipation
inequality as

D = P − Ẇ > 0 , (2.68)

where Ẇ denotes the change of stored energy during the elastoplastic process. Equation
(2.68) often is referred to as Clausius-Planck form of the second fundamental theorem of
thermodynamics [72]. In view of definitions (2.65) and (2.66) together with (2.67) and (2.64)
the dissipation inequality, specialized for the considered flow theory of plasticity, is finally
recast as

D = σ : ε̇ − (σ : ε̇e − q • α̇)

= σ : ε̇p + q • α̇ > 0 . (2.69)

2.4.2.1 The principle of maximum dissipation

So far, the stress tensor σ and the stress-like hardening variable q have been derived from the
stored energy potential according to equations (2.65) and (2.66). To complete the formulation,
it remains to establish the evolution equations for the conjugate plastic strain tensor εp and the
internal strain-like variable α. This can be achieved by employing the principle of maximum
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Eσ \ ∂Eσ

∂Eσ (φ = 0)

σ

σ̃

ε̇p

D(σ)
D(σ̃)

Figure 2.4: Convex elastic domain Eσ and geometrical interpretation of the principle of maximum
plastic dissipation for perfect plasticity.

plastic dissipation. The principle states that for a given inelastic strain rate ε̇p, from all
admissible stress states σ̃ the current state σ is the one that maximizes the internal dissipation
D. A geometrical interpretation of this principle for the perfectly plastic case is depicted in
Figure 2.4.

Adopting this principle (e.g., [114, 72]) — i.e., postulating the dissipation according to (2.69)
to be maximized within the space of admissible stresses Eσ — a constrained maximization
problem is obtained. This is then transferred to an equivalent unconstrained minimization
problem by means of the Lagrange-functional (see, e.g., Luenberger [67])

L (σ, q, λ) = −D + λφ (t, q) , (2.70)

where the Lagrange factor λ in the present context usually goes by the name plastic mul-
tiplier. The solution of this problem is determined by the stationarity requirement of (2.70),
leading to

L
∂σ

!
= 0 ⇒ ε̇p = λ ∂,σφ (flow rule) (2.71)

L
∂q

!
= 0 ⇒ α̇ = λ ∂,qφ (hardening rule) (2.72)

accomplished by the so-called Karush-Kuhn-Tucker conditions

λ > 0, φ (t, q) 6 0, λφ (t, q) = 0 . (2.73)

The so obtained flow rule (2.71) and hardening rule (2.72) are termed associative since they
are obtained by the respective partial derivatives of the same potential function, namely the
yield function φ. The concept can be generalized by introducing the additional potentials g
and h for flow rule and hardening rule, respectively. The generalized, non-associative versions
of the evolution equations then read:

ε̇p = λ ∂,σg and α̇ = λ ∂,qh (2.74)
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When adopting the non-associative evolution equations, of course, the notion of maximum
dissipation is lost.

According to the Karush-Kuhn-Tucker condition (2.73)3, plastic flow characterized by
λ > 0 can only occur for φ = 0. Further, stress states with φ > 0 are not permitted due (2.62),
so the rate of the yield function’s change is also zero during plastic flow. This consideration
leads to the consistency condition

λφ̇ = 0 . (2.75)

Equation (2.75) alternatively is termed persistency condition [114], since it requires the stress
state to ‘persist’ on ∂Eσ during plastic flow.

2.4.2.2 The constitutive tangent stiffness

Assuming that the current values of all variables as well as the rate of the total strain are
given, the so far developed basic equations allow the computation of the remaining variables’
rates. If plastic loading takes place, i.e., λ > 0, the rate of the plastic multiplier λ can be
obtained from the consistency condition (2.75). To this end, applying the chain rule, it is
recast as

φ̇ =
∂φ

∂σ
: σ̇ +

∂φ

∂q
• q̇ = 0 . (2.76)

Further, σ̇ is expressed using (2.64) and (2.74)1 as

σ̇ = C : (ε̇ − λ ∂,σg) (2.77)

and q̇ is expanded by means of (2.74)2 as

q̇ =
∂q

∂α
α̇ = −λ H

∂h

∂q
. (2.78)

In (2.78) the definition H := −∂q/∂α was introduced while in (2.77) the fourth-order constitu-
tive tangent according to (2.55) was employed. Substituting (2.77) and (2.78) into consistency
condition (2.76), yields a linear equation for the plastic multiplier λ:

λ =
∂,σφ : C : ε̇

∂,σφ : C : ∂,σg + ∂,qφ • H • ∂,qh
(2.79)

Substitution of this result back into (2.77) puts forth the rate form of the elastoplastic stress-
strain law as

σ̇ =

(

C − C : ∂,σg ⊗ ∂,σφ : C

∂,σφ : C : ∂,σg + ∂,qφ • H • ∂,qh

)

: ε̇ . (2.80)

The term in parantheses represents the fourth-order elastoplastic constitutive tangent tensor,
commonly denoted as Cep.
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1. Linear elastic isotropic constitutive relationship:

σ̇ = C(ε̇ − ε̇p)

2. Admissible stress space:

Eσ := {(σ, q) ∈ S × R
n | φ (σ, q) 6 0} ∀X ∈ Ω

3. Non-associated flow rule and hardening rule:

ε̇p = λ
∂g

∂σ
, α̇ = λ

∂h

∂q
and q̇ = −λ H

∂h

∂q

4. Karush-Kuhn-Tucker conditions:

λ > 0, φ (t, q) 6 0, λφ (t, q) = 0

5. Consistency condition:

λφ̇(σ, q) = 0

Table 2.1: Rate independent flow theory of plasticity with non-associated flow and hardening rules

It should be noted that the elastoplastic constitutive tangent Cep in general is not symmetric
anymore. Merely for the particular case of an associative flow rule, for which the equivalence
∂,σg ≡ ∂,σφ holds, symmetry of the constitutive tangent tensor is maintained.

Table 2.1 summarizes the essential ingredients of the flow theory of plasticity for the more
general case of non-associated flow and hardening rules, respectively.
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Chapter 3

The finite element method

The Law of Conservation of Energy tells us
we can’t get something for nothing,

but we refuse to believe it.
– Isaac Asimov

The finite element method (FEM) represents a general numerical procedure for obtaining an
approximate solution to the mathematical formulation of a model problem, given by a partial
differential equation. Applying this method, the underlying formulation is not solved analyt-
ically but the solution is approximated by a finite number of operations. This is essentially
achieved by discretization of the unknown variable fields along with the introduction of trial
functions, i.e., reducing the problem size to a finite number of unknowns (degrees of freedom).
Naturally, the quality of the approximation is directly influenced by the number of degrees of
freedom.

3.1 Discretization

The basis for the subsequently discussed discretization procedure is the generalized variational
formulation (2.51), set out in Section 2.3. The corresponding procedure for the pure displace-
ment formulation, as constituted by the weak form of equilibrium (2.26), is then simply derived
by neglecting the enhanced terms. As alluded to above, the scope of this work is limited to
infinitesimal theory, i.e., small strains and small deformations are assumed. Accordingly, in
what follows, reference and current configuration of the continuum body are not distinguished
and all coordinate specifications consistently refer to the reference configuration.

To begin with, in the context of a finite element approximation it is convenient to render the
fundamental ingredients of the underlying variational formulation (2.51) in matrix notation.
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3.1.1 Transition to matrix notation

To this end, we express the displacement vector u and its variation δu as

u = [ux, uy, uz]
T and δu = [δux, δuy, δuz]

T . (3.1)

Exploiting the symmetry properties of the compatible strain tensor εc = ∇
symu, we have six

independent scalar variables that can be written in Voigt notation 1 as

εc = [ εx, εy, εz, γxy, γyz, γxz ]T , (3.2)

where γij = εij + εji, i 6= j. Accordingly, for the enhanced strains, we have

ε̃ = [ ε̃x, ε̃y, ε̃z, γ̃xy, γ̃yz, γ̃xz ]T . (3.3)

The compatible strains (3.2) depend on the displacements via the differential operator matrix
L:

εc = Lu with L =























∂

∂X
0 0

0
∂

∂Y
0

0 0
∂

∂Z
∂

∂Y

∂

∂X
0

0
∂

∂Z

∂

∂Y
∂

∂Z
0

∂

∂X























(3.4)

The stresses σ are related to the strains (3.2) via a rate form constitutive (cf. equations (2.54)
and (2.80)) of the form

σ̇ = [ σ̇x, σ̇y, σ̇z, τ̇xy, τ̇yz, τ̇zx ]T = C ε̇ . (3.5)

For linear elasticity, the matrix C is identified as the counterpart to the constitutive tensor C

(2.61) and renders 2

C =
1

3















3κ + 4µ 3κ − 2µ 3κ − 2µ 0 0 0

3κ − 2µ 3κ + 4µ 3κ − 2µ 0 0 0

3κ − 2µ 3κ − 2µ 3κ + 4µ 0 0 0

0 0 0 3µ 0 0

0 0 0 3µ 0

0 0 0 0 3µ















, (3.6)

1See Belytschko et al. [11] and references therein for a definition of Voigt notation and further reading.
2Due to the definition of engineering shear strains as γij = εij + εji, i 6= j, the respective components in

(3.6) are multiplied by 1
2
.
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with the bulk modulus κ and the shear modulus µ being defined according to Section 2.4.1.

3.1.2 Finite element representation

Let the continuum body Ω0 ∈ R
3 be represented by means of a union of finite elements

Ωe, so that Ω0 =
⋃nel

e=1 Ωe. Let furthermore a set of basis functions Ni, i = 1, . . . , nedof and
Gi, i = 1, . . . , nε̃ be defined on each element Ωe. Then, the trial functions for the approximate
solution (•)h to the exact solution (•)ex of the variational formulation (2.51) can be stated as

uh =

nel∑

e=1

nedof∑

i=1

χe diNi(X) =:

nel∑

e=1

χe Nndim×nedof d (3.7)

for the displacement field and

ε̃h =

nel∑

e=1

nε̃∑

i=1

χe µiGi(X) =:

nel∑

e=1

χe Gnstrn×nε̃ µ (3.8)

for the enhanced strain field approximation. By Vh ⊂ V and Ẽh ⊂ Ẽ we denote the finite
element spaces of displacements and enhanced strains, so that uh ∈ Vh and ε̃h ∈ Ẽh. The
characteristic function χe : Ωe 7→ R is defined as

χe =

{

1 iff X ∈ Ωe,

0 otherwise.
(3.9)

and serves as a filter to prevent spurious contributions from other elements but the active one.

There is an infinite number of functions δu and δε̃, that are admissible and must satisfy
equations (2.51). Since it is generally not possible to “test” against an infinite number of
variations, an analogous approximation as for the variable fields is also introduced for the
corresponding variations, which constitutes the so-called Bubnov-Galerkin method. In a
more general setting however, the corresponding test function space may be different from
the trial function space, furnishing a Petrov-Galerkin scheme (Simo & Oliver [115];
Oliver [88]). In view of later developments we employ such a concept for the enhanced
strain variations and define a corresponding weighting space of admissible test functions Eh

δ ,
such that Eh

δ 6= Eh; we set

δu =

nel∑

e=1

nedof∑

i=1

χe δdiNi(X) =:

nel∑

e=1

χe Nndim×nedof δd

δε̃ =

nel∑

e=1

nε̃∑

i=1

χe δµiĜi(X) =:

nel∑

e=1

χe Ĝnstrn×nε̃ δµ

(3.10)

where δu ∈ Vh and δε̃ ∈ Eh
δ . The particular form of the element basis functions N is treated in

Section 3.2 and the characteristics of G and Ĝ are closely connected with the incorporation of
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strong discontinuities into the formulation, see Section 4.4. Restricting conditions that apply
to the choices of spaces for ε̃ and δε̃ are discussed in Section 4.4, as well.

Adopting the interpolations (3.7), (3.8) and (3.10), along with the definition

B := LN , (3.11)

the variational equations (2.51) and its linearized form (2.52) are finally recast as

nel

A
e=1

∣
∣
∣
∣
∣
δdT





∫

Ωe

BT σ̂ dV −
∫

Ωe

NT b dV −
∫

∂Ωe

NT t∗ dA



 = 0

nel

A
e=1

∣
∣
∣
∣
∣
δµT





∫

Ωe

ĜT σ̂ dV



 = 0

(3.12)

and

nel

A
e=1

∣
∣
∣
∣
∣
δdT





∫

Ωe

BTCB dV ḋ +

∫

Ωe

BTCG dV µ̇+

+

∫

Ωe

BT σ̂ dV −
∫

Ωe

NTb dV −
∫

∂Ωe

NT t∗ dA



 = 0

nel

A
e=1

∣
∣
∣
∣
∣
δµT





∫

Ωe

ĜTCB dV ḋ +

∫

Ωe

ĜTCG dV µ̇ +

∫

Ωe

ĜT σ̂ dV



 = 0

(3.13)

where A
nel

e=1 denotes the standard assembly operator. Considering that the variations δd and
δµ are arbritary, from (3.13) we conclude

nel

A
e=1

∣
∣
∣
∣
∣

[
bbKe

bgKe
gbKe

ggKe

]

︸ ︷︷ ︸

=:Ke

{

ḋ
µ̇

}

=

{
f ext
e − f int

e

−he

}

,
(3.14)

where we have employed the definitions

bbKe :=

∫

Ωe

BTCB dV bgKe :=

∫

Ωe

BTCG dV

gbKe :=

∫

Ωe

ĜTCB dV ggKe :=

∫

Ωe

ĜTCG dV

(3.15)

and

f ext
e :=

∫

Ωe

NTb dV +

∫

∂Ωe

NT t∗ dA f int
e :=

∫

Ωe

BT σ̂ dV

he :=

∫

Ωe

ĜT σ̂ dV .

(3.16)
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With a view to later developments, we consider as a particular case a locally enforced enhanced
strain field interpolation — i.e., we drop the requirement of inter element continuity of the
additional variables µ. Then, it is possible to eliminate the enhanced variables by static
condensation on element level, so that the condensed stiffness matrix K̃e resembles the classical
displacement degrees of freedom, only. From (3.14), straightforward calculus yields:

(
bbKe − bgKe(

ggKe)
−1 gbKe

)

︸ ︷︷ ︸

K̃e

ḋ = f ext
e − f int

e + bgKe(
ggKe)

−1 he

µ̇ = −(ggKe)
−1
(

he + gbKeḋ
)

(3.17)

Finally, after assembly, the discretized system of equations emerges:

K̃ ḋ = F (3.18)

Where prior to discretization the exact solution uex was sought, now the coefficients ḋi, i =
1, . . . , ndof are the unknowns that must fulfill the above system of equations and satisfy the
geometrical boundary conditions. K̃ denotes the global (or system) stiffness matrix whereas F
renders the effective total force vector (out-of-balance force). It should be noted that in general,
due to the adopted Petrov-Galerkin scheme with Ĝ 6= G, we have gbKe 6= (bgKe)

T — with
the consequence that the condensed stiffness matrix K̃ is no longer symmetric. Further, the
system of equations (3.18) can be nonlinear, i.e., K̃ is not constant but in some way dependent
on the unknowns d — therefore, in general an iterative solution procedure is required.

Remark. Derivation of (3.17) is based on the assumption of regularity — and hence, invert-
ibility — of ggKe. Consequential implications are discussed in Section 4.4.2. 2

Remark. In the case of a pure displacement approach as obtained from the weak form of
equilibrium (2.26), the corresponding finite element formulation can simply be derived from
the above by neglecting the terms related to the enhanced strains. Thus, from (3.14) we
readily obtain

bbKe ḋ = f ext
e − f int

e (3.19)

by setting µ̇ = 0. 2

3.1.2.1 Coordinate transformation for integration over the finite element domain

Element stiffness matrix and load vector initially are functions of X. An efficient and conve-
nient computational scheme is established by defining the element shape functions, discussed
in the following section, in a unified manner — namely, on basis of a standard element with
local coordinates ξ and domain Ωh

st = [(−1, 1) × (−1, 1) × (−1, 1)]. This, on the other hand,
requires a bijective mapping function between global (physical) and local coordinates X und
ξ. Let it be defined by the function Qe and the unique inverse relation (Qe)−1.

X = Qe(ξ) und ξ = (Qe)−1(X) (3.20)
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Using this transformation rule, mapping of the shape functions — which are defined locally
in terms of ξ — to the global setting can be expressed as:

Ni(X) = Ni

(

(Qe)−1(X)
)

= Ni

(

ξ(X)

)

(3.21)

For the strain-displacement matrix B, the shape function’s derivatives with respect to the
physical coordinates are required. Accounting for the chain rule, we obtain
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∂η
∂Ni
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= J−1












∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ












, (3.22)

where the Jacobi-matrix J, respectively its inverse, encapsulates the geometry dependent
information, thus facilitating the finite element Ansatz spaces being set up in a unified manner,
independent of the geometry. Setting

J =












∂X

∂ξ

∂Y

∂ξ

∂Z

∂ξ
∂X

∂η

∂Y

∂η

∂Z

∂η
∂X

∂ζ

∂Y

∂ζ

∂Z

∂ζ












, we have: dX dY dZ = detJ · dξ dη dζ (3.23)

Within a high-order finite element framework both the Ansatz spaces and the mapping concept
are different from those of the standard h-version. These aspects are considered in detail in
Section 3.2 and 3.3, respectively.

3.1.2.2 Computation of the element matrices

Thus, the integration problem has been transformed to the domain Ωh
st of the standard element.

For computation of the element matrices, the following relations are obtained:

1. element stiffness matrix

bbKe =

1∫

−1

1∫

−1

1∫

−1

BT CB detJ dξ dη dζ (3.24)

(If required, analogous computation for bgKe,
gbKe and ggKe.)
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2. element load vector

f ext
e =

1∫

−1

1∫

−1

1∫

−1

NT b detJ dξ dη dζ (3.25)

+
6∑

i=1

1∫

−1

1∫

−1

NT t∗ |∂,rX × ∂,sX| dr ds , (3.26)

where according to Section 3.3 holds:

r = ξ, s = η for i = 1, 6

r = ξ, s = ζ for i = 2, 4

r = η, s = ζ for i = 3, 5

(3.27)

(Analogous computation for f int
e and possibly he.)

3.2 High-order hierarchical ansatz spaces

In order to improve the quality of the finite element approximation, the key characteristic
of the finite element p-version is the employment of high-order polynomial degrees for the
Ansatz functions on a rather coarse spatial finite element discretization of the problem domain.
Composition of the Ansatz function space is based on a hierarchical concept, which features
several beneficial qualities. The hierarchical concept is characterized by the fundamental idea,
that all Ansatz functions of lower order are contained in the space of Ansatz functions of
higher order. Or, vice-versa: A higher-order Ansatz function space is obtained by simply
adding the corresponding higher-order functions to the lower order Ansatz function space. To
begin with, the one-dimensional hierarchical basis established by Szabó and Babus̆ka [121]
is introduced in Section 3.2.1 and differences to the standard basis are pointed out.

3.2.1 The one-dimensional hierarchical basis

On a two-noded one-dimensional standard element Ωst = [−1, 1], the first two Ansatz functions
N1(ξ) and N2(ξ) defined by equations (3.31) and (3.32) represent the typical linear nodal
Ansatz functions, as they are also known from the h-version of the finite element method.
They each take the value 1 at one node and vanish at the other. N1(ξ) and N2(ξ) are,
accordingly, part of both the standard and the hierarchical basis (cf. Figure 3.1, left and
right).
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p = 1 p = 1

p = 2 p = 2

p = 3 p = 3

Figure 3.1: One-dimensional standard basis and hierarchical basis for p = 1, 2, 3

The higher-order functions of the standard basis (Figure 3.1, left) are defined by Lagrange

polynomials

Np
i (ξ) =

p+1
∏

j=1, j 6=i

ξ − ξj

ξi − ξj

. (3.28)

The description of these polynomials is based on collocation points xj in the interval [−1, 1],
normally arranged equidistant — such that a polynomial Np

i takes the value 1 at node xi and
0 at all remaining nodes xj with j 6= i:

Np
i (ξj) = δij (3.29)

A further distinct feature of the standard basis is rendered by the fact that the sum of all
Lagrange polynomials for a given polynomial degree p equals 1 for any point ξ ∈ [−1, 1],
the Lagrangian polynomial basis thus features the partition of unity property

p+1
∑

i=1

Np
i (ξ) = 1 . (3.30)

The hierachical concept adopts a completely different approach. On extending the Ansatz to
p > 1, the existing Ansatz space of the linear functions N1(ξ) und N2(ξ) is simply enhanced
by each one Ansatz function with the corresponding polynomial degree Ni(ξ), i = 3, 4, . . . ,
according to (3.33):

N1(ξ) =
1

2
(1 − ξ) (3.31)

N2(ξ) =
1

2
(1 + ξ) (3.32)

Ni(ξ) = φi−1(ξ), i = 3, 4, . . . , p + 1 (3.33)

One important point is that the higher-order Ansatz functions vanish on the boundary of the
interval:

Ni(−1) = Ni(1) = 0, i = 3, 4, . . . ; (3.34)

thus establishing the naming internal modes or bubble modes. It should be noted, that the
polynomials φj(ξ) are defined (see below) without adopting the notion of additional nodes as
supporting or collocation points, thus the higher-order Ansatz functions are not associated
with a physical location on the element.
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The polynomials φj(ξ) are obtained by integration of the well-known Legendre polynomials.

φj(ξ) =

√

2j − 1

2

ξ∫

−1

Lj−1(x) dx =
1√

4j − 2
(Lj(ξ) − Lj−2(ξ)) , j = 2, 3, . . . (3.35)

Legendre polynomials {Ln(x)}∞n=0 are solutions to the Legendre differential equation

((1 − x2)y′)′ + n(n + 1)y = 0, x ∈ (−1, 1), n = 0, 1, 2, . . . (3.36)

and can be determined, either, using the Rodriguez formula [134]

Ln(x) =
1

2n n!

dn

d xn
(x2 − 1)n , x ∈ (−1, 1), n = 0, 1, 2, . . . (3.37)

or, by recursive multiplication from Bonnet’s formula [121]:

Ln(x) =
1

n
[(2n − 1)xLn−1(x) − (n − 1)Ln−2(x)] , x ∈ (−1, 1), n = 2, 3, 4, . . . (3.38)

Exemplarily, the first nine Legendre polynomials read:

L0(x) = 1 ,

L1(x) = x ,

L2(x) = 3/2 x2 − 1/2 ,

L3(x) = 5/2 x3 − 3/2 x ,

L4(x) = 35/8 x4 − 15/4 x2 + 3/8 ,

L5(x) = 63/8 x5 − 35/4 x3 + 15/8 x ,

L6(x) = 231/16 x6 − 315/16 x4 + 105/16 x2 − 5/16 ,

L7(x) = 429/16 x7 − 693/16 x5 + 315/16 x3 − 35/16 x ,

L8(x) = 6435/128 x8 − 3003/32 x6 + 3465/64 x4 − 315/32 x2 + 35/128

(3.39)

An important property of Legendre polynomials is their orthogonality in the integration
interval (−1, 1), so that:

1∫

−1

Ln(x)Lm(x) dx =







2

2n + 1
if n = m

0 else
(3.40)

This distinct property is the reason, why for the polynomials φj(ξ) (3.35) — and thus the
Ansatz functions Ni(ξ) (3.33) — the integrated form (3.35) of the Legendre polynomials
is adopted. Consider the computation of the element stiffness matrix according to equation
(3.24) for our one-dimensional standard element Ωst = [−1, 1]. Assume C constant and note,
that the strain-displacement matrix B is essentially the derivative of the Ansatz functions N.
Then, it is evident that off-diagonal terms in the element stiffness matrix that correspond to
higher-order modes are identically zero due to the orthogonality property (3.40). In general,
a non-constant C or the Jacobian (3.23) may effect non-zero values also for these off-diagonal
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terms — nevertheless, the consideration motivates a superior conditioning of the element
stiffness matrix, thus, also of the system stiffness matrix, when compared to the standard
Ansatz space.

Every function, that can be represented by the standard basis, can equally be described by
the hierarchical basis. The latter is superior to the standard basis in several respects:

• As already alluded to, it improves the conditioning of the stiffness matrix, facilitating a
faster and more stable iterative solution of the system of equations.

• If degrees of freedom are organized properly, the resulting stiffness matrix inherits the
hierarchical structure of the Ansatz space, featuring a straightforward elimination of
internal modes by static condensation and thus, improvement of the efficiency of the
solution process.

3.2.2 Hierarchical Ansatz space for quadrilaterals

Composition of the two-dimensional Ansatz space for quadrilaterals follows the basis intro-
duced by Szabó and Babus̆ka [121]. The corresponding standard element Ωq

st = [(−1, 1) ×
(−1, 1)] is depicted in Figure 3.2.

N2

ξ

η

N1

N3N4

E1

E2

E3

E4

Ωq
st = [(−1, 1) × (−1, 1)]

Figure 3.2: Definition of nodes and edges in the quadrilateral standard element

The two-dimensional Ansatz space is simply formed by the tensor product of the one-dimensional
hierarchical basis. By construction, three types of Ansatz functions can be identified.

1. Nodal modes:
The nodal modes

NNi

1,1(ξ, η) =
1

4
(1 + ξi ξ)(1 + ηi η) , i = 1, . . . , 4 (3.41)
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correspond to the standard bilinear Ansatz functions, as they are known from the
isoparametric quadrilateral element. As in the one-dimensional case (ξi, ηi) denote the
local coordinates of the i-th node. Figure 3.3, exemplarily illustrates the Ansatz function
for node 1.

-1
 0

 1 -1

 0

 1

 0

 1

ξ
η

Figure 3.3: Node 1: NN1
1,1 (ξ, η) = 1

4 (1 − ξ)(1 − η)

2. Edge modes:
Edge modes are those constituents of the tensor product space that are formed by the
product of each one internal and one corresponding orthogonal nodal Ansatz function
of the one-dimensional basis. Thus, an edge mode takes the value of the corresponding
internal mode along one edge and vanishes at all remaining edges. The respective modes
for edge E1 read

NE1
i,1 (ξ, η) =

1

2
(1 − η)φi(ξ) . (3.42)

For i = 2 along edge 1, the corresponding mode is plotted in 3.4.

-1
 0

 1 -1

 0

 1-0.5

-0.25

 0

ξ
η

Figure 3.4: Edge 1 (i = 2): NE1
2,1(ξ, η) = 1

2 (1 − η)φ2(ξ)

3. Internal modes (bubble modes):
Internal modes, finally, are formed by multiplication of two orthogonal internal Ansatz
functions of the one-dimensional basis, see equation (3.43).

N int
i,j (ξ, η) = φi(ξ)φj(η) (3.43)
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As a consequence, internal modes are purely local to the element and vanish at the edges.
Exemplarily, Figure 3.5 depicts the internal mode for i = j = 2.

-1
 0

 1 -1

 0

 1

 0

 0.375

ξ
η

Figure 3.5: Internal mode (i = j = 2): N int
2,2(ξ, η) = φ2(ξ)φ2(η)

The indices i, j of the Ansatz functions correspond to the polynomial degress pξ and pη of the
standard element’s Ωq

st local directions ξ, η.

3.2.3 Hierarchical Ansatz space for hexahedral elements

The extension to a three-dimensional Ansatz space for hexahedrals follows completely anal-
ogous lines as for the quadrilateral case. Again, the starting point is the one-dimensional
hierarchical basis, introduced by Szabó and Babus̆ka [121]. The three-dimensional Ansatz
space is then formed by the tensor product of three mutually orthogonal one-dimensional
bases, accounting for the three distinct directions ξ, η and ζ. The hexahedral standard ele-
ment Ωq

st = [(−1, 1) × (−1, 1) × (−1, 1)] is depicted in Figure 3.6.

For this three-dimensional extended case, four types of Ansatz functions can be identified.

1. Nodal modes:
The eight nodal modes (3.44), defined by the product of each three mutually orthogonal
nodal Ansatz functions of the one-dimensional basis, reflect the trilinear Ansatz functions
of the standard isoparametric hexahedral element. (ξi, ηi, ζi) denote the local coordinates
of node i.

NNi

1,1,1(ξ, η, ζ) =
1

8
(1 + ξi ξ)(1 + ηi η)(1 + ζiζ), i = 1, . . . , 8 (3.44)

2. Edge modes:
They are associated with each one of the twelve element edges and vanish at all remaining
edges. The Ansatz functions of edge E1 (cf. Figure 3.6), e.g., are defined by equation
(3.45).

NE1
i,1,1(ξ, η, ζ) =

1

4
(1 − η)(1 − ζ)φi(ξ) (3.45)
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ξ η

ζ

N1

N2

N3

N4

N5

N6

N7

N8

E1

E2
E3

E4

E5

E6

E7

E8

E9

E10
E11

E12

F1

F2

F3

F4

F5

F6

Ωh
st = [(−1, 1) × (−1, 1) × (−1, 1)]

Figure 3.6: Definition of nodes edges and faces for the hexahedral standard element

3. Face modes:
The six face modes are the product of two internal one-dimensional Ansatz functions
and one nodal one-dimensional Ansatz function — each mutually orthogonal. Thus,
each face mode takes values different from zero on precisely one associated face, while it
vanishes at the other faces. The Ansatz functions for face F1, e.g., read

NF1
i,j,1(ξ, η, ζ) =

1

2
(1 − ζ)φi(ξ)φj(η) . (3.46)

4. Internal modes (bubble modes):
Analogous to the one- and two-dimensional case, internal modes are purely local to the
element and vanish at its boundary.

N int
i,j,k(ξ, η, ζ) = φi(ξ)φj(η)φk(ζ) (3.47)

The indices i, j, k of the Ansatz functions denote the polynomial degrees pξ, pη and pζ with
respect to the local directions ξ, η, ζ of the standard element Ωh

st.

Having finally defined the complete set of Ansatz functions for the three-dimensional hexaedral
element, matrix N introduced in (3.10)1 can now be further particularized as

N =
[
NN NE NF NB

]
, (3.48)

superscript N , E, F and B denoting the nodal, edge, face and internal (bubble) modes, re-
spectively.
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3.2.4 Various specifications of Ansatz spaces

The Ansatz space S of a finite element computation is spanned by a set of Ansatz functions of
above discussed type. For the two- and three-dimensional case however, different specifications
regarding the completeness of the Ansatz space are possible.

• In the one-dimensional case, the degree p of the Ansatz space Spξ
ps (Ωst) corresponds

directly to the polynomial degree of the Ansatz function in direction ξ.

• In two dimensions, description of the Ansatz spaces depends on the local directions ξ
und η and the respective chosen polynomial degress pξ and pη. Szabó und Babus̆ka

[121] distinguish two types of Ansatz spaces, the trunk space Spξ,pη

ts (Ωq
st) and the tensor

product space Spξ,pη

ps (Ωq
st). The latter is also termed full space, since it comprehends the

complete set of functions emerging from the tensor product of the two one-dimensional
hierarchical bases Spξ

ps (Ωst) and Spη
ps (Ωst). Formally, the tensor product space Spξ,pη

ps (Ωq
st)

consists of all polynomials on the standard element Ωq
st = [(−1, 1) × (−1, 1)] that are

spanned by the set of monomials

ξi ηj with i = 0, 1, . . . , pξ, j = 0, 1, . . . , pη .

The trunk space Spξ,pη

ts (Ωq
st), on the other hand, is spanned by the reduced set of mono-

mials

ξiηj with i = 0, . . . , pξ, j = 0, . . . , pη, i + j = 0, . . . , max{pξ, pη} ,

complemented by

ξ η for pξ = pζ = 1

ξpξ η for pξ ≥ 2

ξ ηpη for pη ≥ 2 .

The difference between the two Ansatz spaces can nicely be visualized by means of Pas-

cal’s triangle. For comparison, the Ansatz spaces S3,3
ts (Ωq

st) and S3,3
ps (Ωq

st) are contrasted
in Figure 3.7.

• For the three-dimensional case, in addition to trunk space Spξ,pη ,pζ

ts (Ωh
st) and tensor pro-

duct space Spξ,pη ,pζ
ps (Ωh

st), a third variant can be identified — the anisotropic tensor prod-
uct space Sp,p,q(Ωh

st). The definition of these three specifications again goes back to
Szabó and Babus̆ka and is described in detail in [121]. Polynomial degress pξ, pη and
pζ for the trunk space Spξ,pη ,pζ

ts (Ωh
st) and tensor product space Spξ,pη ,pζ

ps (Ωh
st) can be chosen

individually for the respective local directions ξ, η and ζ. Differences between these two
Ansatz spaces are manifested in the representation of face modes and internal modes.
As in the two-dimensional case, the tensor product space is formed by the complete set
of monomials, whereas the trunk space is spanned by a reduced set. Exemplarily, we
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S3,3
ts (Ωq

st)

S3,3
ps (Ωq

st)
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Figure 3.7: Ansatz spaces trunk space S3,3
ts (Ωq

st) and tensor product space S3,3
ps (Ωq

st)

consider the modes for face F1, given by (3.46). For the trunk space, the set of monomials
is then constrained according to

ξiηjζk with i = 2, . . . , pξ − 2, j = 0, . . . , pη − 2, k = 0, 1

and i + j = 0, . . . , max{pξ, pη} .

Similarly, for the internal modes (3.47) we have

ξiηjζk with i = 2, . . . , pξ − 4, j = 0, . . . , pη − 4, k = 0, . . . , pζ − 4

and i + j + k = 0, . . . , max{pξ, pη, pζ} .

The anisotropic tensor product space Sp,p,q(Ωh
st), finally is characterized by two polyno-

mial degrees p and q, where the polynomial degrees of all higher-order Ansatz functions
associated with the local directions ξ and η are assumed to be equal, i.e., pξ = pη = p.
These Ansatz functions correspond to edges Ei and i = 1, . . . , 4, 9, . . . , 12, faces F1 and
F6, as well as to all internal modes (cf. Figure 3.6). Ansatz functions for faces F1 and F6

conform with those of the trunk space Spξ,pη ,pζ

ts (Ωh
st) for pξ = pη = p. The degree of Ansatz

functions for the remaining direction ζ is specified by q. q affects the Ansatz functions
for edges Ei for i = 5, . . . , 8, faces Fi for i = 2, . . . 5, and all internal modes. In contrast
to faces F1 and F6, the Ansatz functions for faces Fi with i = 2, . . . , 5 conform with
those of the tensor product space Spξ,pη ,pζ

ps (Ωh
st). Thus, for a constant polynomial degree

p = q = pξ = pη = pζ , the trunk space Spξ,pη ,pζ

ts (Ωh
st) renders the lowest, the anisotropic

tensor product space Sp,p,q(Ωh
st) an intermediate number and the tensor product space

Spξ,pη ,pζ
ps (Ωh

st) the highest number of Ansatz functions.

High-order finite elements are not only flexible regarding the choice of polynomial degree
for the local directions — they also allow for a differentiated choice with respect to
the primary variables ux, uy and uz. A comprehensive description of this flexibility is
given in Düster [33] and Düster et al. [35]. Equation (3.49) exemplarily illustrates
the definition of a so-called polynomial degree template p with the three independent



48 3. The finite element method

primary variables u = [ux, uy, uz]
T :

p =

ux uy uz

ξ 1 4 7

η

(

2 5 8

)

ζ 3 6 9

(3.49)

Considering the trunk space Spξ,pη ,pζ

ts (Ωh
st), this template defines the Ansatz for the dis-

placement field ux ∈ S1,2,3
ts (Ωh

st), uy ∈ S4,5,6
ts (Ωh

st) and uz ∈ S7,8,9
ts (Ωh

st). For tensor product
space Spξ,pη ,pζ

ps (Ωh
st) and anisotropic tensor product space Sp,p,q(Ωh

st), the proceeding is
analogous.

A polynomial degree template can be assigned individually to each finite element. Conti-
nuity of the Ansatz at element faces and element edges is then assured by each adopting
the higher polynomial degree at the interfacing element parts.

Based on the foregoing considerations, a hexahedral element formulation features some
advantageous characteristics when compared to corresponding tetrahedral and pentra-
hedral formulations. Apart from the intuitive numerical integration using a Gaussian

quadrature scheme, hexahedral finite element discretizations lead to a higher accuracy
of the solution. The most significant benefit, however, is gained for the analysis of
thin-walled structures. In this case, the previously discussed flexibility of the Ansatz
space proves particularly powerful. Accounting for the mechanical behavior of thin-
walled structures, it is possible to choose the polynomial degree in thickness direction
different from the in-plane direction — leading to very efficient discretizations. Com-
prehensive studies on this topic and practical applications are given, for example, in
[99, 82, 122, 33, 35].

Irrespective of the Ansatz space’s dimensionality, degrees of freedom related to internal modes
are purely local to the corresponding finite element, i.e., there is no dependence on degrees of
freedom attributed to neighboring finite elements. Exploiting this property, it is possible to
eliminate element internal degrees of freedom already on element level by adopting a static
condensation procedure. Depending on the specific problem and the adopted Ansatz space,
the consequential reduction of the number of global unknowns can be significant. The static
elimination procedure proves particular efficient, if an appropriate ordering of the elemental
degrees of freedom is considered [33].

3.3 Mapping concept for high-order elements

For the h-version of the finite element method, discretization error is controlled by local or
global mesh refinement. At the same time, the geometric boundary of the structure is captured
more and more accurately — in the limit case, for the element size h approaching zero, the
approximate boundary representation converges to the exact geometry. The p-version of the
finite element method, on the contrary, achieves convergence to the exact solution by locally or
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globally increasing the polynomial degree of the Ansatz functions. In doing so, the element size
is kept constant. Hence, to facilitate control over the geometrical error of the discretization,
an element size independent representation technique of the structural boundary is required.
The blending function method, originally proposed by Gordon and Hall [45, 46] in 1973,
is a tool that matches these requirements. It allows for the exact description of an arbitrary
geometry of the finite element boundary. Subsequently, the fundamentals of the method are
outlined for the two-dimensional (Section 3.3.1) and three-dimensional case (Section 3.3.2). In
Section 3.3.3, different concepts regarding the geometric representation of the boundary are
shortly discussed and their repective assets and drawbacks contrasted.

3.3.1 Two-dimensional blending

To motivate subsequent developments, consider the mapping Qe(ξ) = [Qe
x(ξ), Qe

y(ξ)]T of a
quadrilateral standard element Ωq

st = [(−1, 1) × (−1, 1)] with local coordinates ξ = [ξ, η]T to
a general quadrilateral with global coordinates X = [X,Y ]T , as illustrated in Figure 3.8. The
geometry of the general quadrilateral in R

2 be defined by its nodal coordinates Xi = [Xi, Yi]
T

with i = 1, . . . , 4 and its edges Ei = [Eix, Eiy]
T with i = 1, . . . , 4. We postulate, that edges

N2

X

Y

ξ

η

N1

N3N4

E1

E2

E3

E4 X1

X2

X3

X4

E2(η)

Qe(ξ, η)

Figure 3.8: Mapping of a quadrilateral element

Ei(r) with i = 1, . . . , 4 can be described as parametric curves depending on parameters ξ and
η, with {ξ, η} ∈ [−1, 1] — so that Ei(r) = [Eix(r), Eiy(r)]

T , where

r = ξ for i = 1, 3

r = η for i = 2, 4 .
(3.50)
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Then, equation (3.51) describes a general transformation from standard element to geometrical
element.

X = Qe(ξ, η) =
4∑

i=1

NNi

1,1(ξ, η)Xi +
4∑

i=1

ei(ξ, η) (3.51)

The first term represents the standard bilinear mapping of an isoparametric quadrilateral,
where the Ansatz functions NNi

1,1(ξ, η) are defined via equation (3.41). The second term ac-
counts for a possibly curved geometry of the edges, it is frequently referred to as edge blending
term. To seize the construction principle of the blending term, consider the example of local
edge E2(η) being mapped onto a curve whose geometry in the range of the element edge be
defined by E2(η) = [E2x(η), E2y(η)]T (Figure 3.8).

e2(ξ, η) =

[

E2(η) −
(

1 − η

2
X2 +

1 + η

2
X3

)]
1 + ξ

2
(3.52)

Considering equation (3.52), the term in square brackets corresponds to the difference between
the curved edge E2(η) = [E2x(η), E2y(η)]T and the imaginary straight edge between nodes X2

und X3, as it would be obtained by standard bilinear mapping. Multiplication by [(1 + ξ)/2]
applies a linear blending to this difference term. This blending assures that the difference is
completely accounted for along edge E2, where (ξ = 1) and thus [(1+ ξ)/2] = 1 — while along
the opposite edge E4, where (ξ = −1) prevails, [(1+ ξ)/2] and thus the influence of the curved
edge E2 vanishes.

Upon substitution of the edge terms ei(ξ, η) — specified in detail in Appendix B.1 — into
equation (3.51), one finally obtains (3.53). 3

x = Qe(ξ, η) (3.53)

=
1

2

[

(1 − η)E1(ξ) + (1 + ξ)E2(η) + (1 + η)E3(ξ) + (1 − ξ)E4(η)

]

− [ NN1
1,1 (ξ, η)X1 + NN2

1,1 (ξ, η)X2 + NN3
1,1 (ξ, η)X3 + NN4

1,1 (ξ, η)X4 ]

3.3.2 Three-dimensional blending

Description of the method for a three-dimensional setting is developed following analogous lines
as for the two-dimensional case. The essential enhancement is given by terms representing the
geometry of the element faces. Subsequently, the application of the blending function method
to three-dimensional hexahedral elements is briefly outlined. A comprehensive discussion of

3The minus sign, which applies to the linear terms of the mapping function (3.53) emerges as a result of
the substitution.
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this topic is given in [63], [13], [18] and [35]. Figure 3.9 illustrates the situation of a standard
hexahedral element Ωh

st = [(−1, 1) × (−1, 1) × (−1, 1)] with local coordinates ξ = [ξ, η, ζ]T

being transformed to a general hexahedral element with global cordinates X = [X,Y, Z]T via
the mapping Qe(ξ) = [Qe

x(ξ), Qe
y(ξ), Qe

z(ξ)]T . The element geometry in R
3 is uniquely defined

by the nodal coordinates Xi = [Xi, Yi, Zi]
T mit i = 1, . . . , 8, the edges Ei = [Eix, Eiy, Eiz]

T , i =
1, . . . , 12 and the faces Fi = [Fix, Fiy, Fiz]

T , i = 1, . . . , 6. As for the two-dimensional case we

X
Y

Z

ξ η

ζ

N1

N2

N3

N4

N5

N6

N7

N8

E1

E2
E3

E4

E5

E6

E7

E8

E9

E10 E11

E12

F1

F2

F3

F4

F5

F6

X1

X2

X3

X4

X5

X6

X7

X8

E1(ξ)

F6(ξ, η)

Qe(ξ, η, ζ)

Figure 3.9: Mapping of a hexahedral element

require that edges Ei(r) with i = 1, . . . , 12 can be described as parametric curves depending
on parameters ξ, η and ζ with {ξ, η, ζ} ∈ [−1, 1] — so that Ei(r) = [Eix(r), Eiy(r), Eiz(r)]

T ,
where

r = ξ for i = 1, 3, 9, 11

r = η for i = 2, 4, 10, 12

r = ζ for i = 5, 6, 7, 8 .

(3.54)

Similarly, faces Fi with i = 1, . . . , 6 are supposed to be represented by parametric surfaces
dependent on each two parameters (ξ, η), (ξ, ζ) and (η, ζ), repectively, with {ξ, η, ζ} ∈ [−1, 1]
— so that Fi(r, s) = [Fix(r, s), Fiy(r, s), Fiz(r, s)]

T , where

(r, s) = (ξ, η) for i = 1, 6

(r, s) = (ξ, ζ) for i = 2, 4

(r, s) = (η, ζ) for i = 3, 5 .

(3.55)
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Then, equation (3.56) defines a general transformation from standard element to geometrical
element.

X = Qe(ξ, η, ζ) =
8∑

i=1

NNi

1,1,1(ξ, η, ζ)Xi +
6∑

i=1

fi(ξ, η, ζ) −
12∑

i=1

ei(ξ, η, ζ) (3.56)

The first term represents the standard trilinear mapping of an isoparametric hexahedral el-
ement, where the functions NNi

1,1,1(ξ, η, ζ) resemble the previously introduced nodal Ansatz
functions (3.44). The second term accounts for a possibly curved geometry of the element
faces, it is frequently referred to as face blending term. Composition of this term is covered in
detail in Appendix B.2.2. Here, it is exemplarily discussed for the element face F6 (cf. Figure
3.9). The square bracketed term in equation (3.57) corresponds to the difference between the
actual curved surface geometry F6(ξ, η) = [F6x(ξ, η), F6y(ξ, η), F6z(ξ, η)]T and an imaginary
bilinear surface (as it would be obtained by standard trilinear mapping), spanned by the ele-
ment nodes X5,X6,X7 and X8. Multiplication by the term [(1 + ζ)/2] manifests — as in the
two-dimensional case — a linear blending, and thus a vanishing contribution, of this difference
towards the opposite face F1.

f6(ξ, η, ζ) =

[

F6(ξ, η) −
(

(1 − ξ)(1 − η)

4
X5 +

(1 + ξ)(1 − η)

4
X6 + (3.57)

+
(1 + ξ)(1 + η)

4
X7 +

(1 − ξ)(1 + η)

4
X8

)](
1 + ζ

2

)

The final term in equation (3.56) refers to the edge blending, which is exemplarily illustrated
for edge E1, as follows. The derivation is in complete analogy to the two-dimensional case, i.e.,
the bracketed term in (3.58) again denotes the difference between curved geometry E1(ξ) =
[E1x(ξ), E1y(ξ), E1z(ξ)]

T and the imaginary straight edge as direct connection between nodes
X1 and X2. The only difference to the two-dimensional case is that the factors [(1−η)/2] and
[(1− ζ)/2] assure the vanishing contribution of the difference term towards all opposite edges
— i.e., all edges with equivalent local edge parameter, namely E3(ξ), E9(ξ) and E11(ξ).

e1(ξ, η, ζ) =

[

E1(ξ) −
(

1 − ξ

2
X1 +

1 + ξ

2
X2

)](
1 − η

2

)(
1 − ζ

2

)

. (3.58)

Every edge is part of two faces. Hence, the corresponding edge difference terms are considered
twice during face blending. This reveals, why the edge blending terms in equation (3.56) must
be subtracted.

Substituting the edge terms ei(ξ, η ζ) and face terms fi(ξ, η ζ) contained in equation (3.56)
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by the corresponding terms specified in Appendix B.2, one finally obtains

x = Qe(ξ, η, ζ) (3.59)

=
1

2

[

(1 − ζ)F1(ξ, η) + (1 − η)F2(ξ, ζ) + (1 + ξ)F3(η, ζ) +

+ (1 + η)F4(ξ, ζ) + (1 − ξ)F5(η, ζ) + (1 + ζ)F6(ξ, η)

]

−1

4

[

(1 − ζ) (1 − η)E1(ξ) + (1 − ζ) (1 + ξ)E2(η) + (1 − ζ) (1 + η)E3(ξ) +

+ (1 − ζ) (1 − ξ)E4(η) + (1 − ξ) (1 − η)E5(ζ) + (1 + ξ) (1 − η)E6(ζ) +

+ (1 + ξ) (1 + η)E7(ζ) + (1 − ξ) (1 + η)E8(ζ) + (1 + ζ) (1 − η)E9(ξ) +

+ (1 + ζ) (1 + ξ)E10(η) + (1 + ζ) (1 + η)E11(ξ) + (1 + ζ) (1 − ξ)E12(η)

]

+ NN1
1,1,1(ξ, η, ζ)X1 + NN2

1,1,1(ξ, η, ζ)X2 + NN3
1,1,1(ξ, η, ζ)X3 +

+ NN4
1,1,1(ξ, η, ζ)X4 + NN5

1,1,1(ξ, η, ζ)X5 + NN6
1,1,1(ξ, η, ζ)X6 +

+ NN7
1,1,1(ξ, η, ζ)X7 + NN8

1,1,1(ξ, η, ζ)X8

3.3.3 Various mapping concepts — assets and drawbacks

Based on their fundamental properties, mapping concepts can generally be classified into three
groups:

• isoparametric approach
The same functions that define the Ansatz space for the solution uh, approximating
the exact solution u, are also adopted for mapping of the geometry. This approach is
the standard procedure for low order linear or quadratic elements in the context of the
h-version of the finite element method.

• subparametric approach
Mapping functions for the geometry are comprised in the function space for the approx-
imate solution to u. The Ansatz space adopted to obtain the approximate solution uh

is more general.

• superparametric approach
Mapping functions for the geometry are more general than those, that are employed to
obtain the approximate solution uh. This can be the case if, e.g., for the description of
the geometry higher-order polynomials are used than for the description of the primary
variables uh.

The subsequent section tempts an outline of the approaches’ distinct characteristics and a short
discussion of their respective impact on the finite element analysis. To this end, it follows the
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principal argumentation of Szabó & Babus̆ka [121] and [18, 33, 84]. The arguments set
out below are valid in a strict sense for a pure displacement based finite element formulation.
Mixed finite element formulations might exhibit a somewhat lower sensitivity, due to possibly
improved locking behavior as for the enhanced assumed strain method [117] — the basic
rationale, however, also applies to this class of formulations.

To elaborate the fundamental differences, the representation of rigid body modes plays a vital
role. A rigid body movement or rotation does not induce any straining to an eleastic body,
the body remains strain free. The general rigid body motion, i.e., translations in x-, y-, and
z-direction and the three rotations about the body’s origin, is represented by the displacement
field (3.60) with Ci, i = 1, . . . , 6 being constant.

urbm = C1





1
0
0



+ C2





0
1
0



+ C3





0
0
1



+ C4





0
−z

y



+ C5





z
0

−x



+ C6





−y
x
0



 (3.60)

The representation of these modes by the finite element solution uh can be guaranteed if, and
only if: the geometry mapping function space is a subspace of — or, falls together with —
the finite element solution’s Ansatz space. In other words, the finite element Ansatz must be
capable of reproducing the rigid body modes, which for the rotational terms implicitly involves
representation of the geometry.

uh
!
= urbm with uh =

nmodes∑

i=1

Ni(ξ) ai (3.61)

For isoparametric and subparametric mapping approaches, condition (3.61) is always satisfied;
for the superparametric case the complexity of the geometry description excels the one of the
finite element Ansatz. In this case, rigid body translations are still captured by the nodal
modes — exact representation of rigid body rotations, however, fails due to insufficient richness
of the finite element Ansatz. As a consequence, the solution exhibits spurious strains. For
smooth geometries, the corresponding error can in general be significantly reduced by adapting
the finite element Ansatz to a higher polynomial degree, see Szabó & Babus̆ka [121] and
Düster [33]. For complex geometries, however, this error might have a crucial impact on the
quality of the solution, as was shown in detail by Bröker in [18].

Some commonly adopted mapping strategies are subsequently outlined:

• The isoparametric standard concept is predominantly applied in the context of the finite
element h-version. It emerges as a special case of the general blending function method.
For isoparametric mapping, both the finite element discretization and the geometry
mapping are described by

x ≈
(p+1)n

dim∑

i=1

Np
i (ξ) ai , (3.62)
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where, depending on the spatial dimension ndim of the problem: x = [x, y]T ∈ R
2,

ξ = [ξx, ξy]
T and ai = [aix, aiy]

T , respectively x = [x, y, z]T ∈ R
3, ξ = [ξx, ξy, ξz]

T

and ai = [aix, aiy, aiz]
T . Np

i (ξ) denote the Lagrange-polynomials, with ai being the
collocation points which are commonly arranged in an equidistant manner. As discussed
above, due to the isoparametric character of the mapping, errors due to insufficient
representation of the rigid body modes cannot occur. A disadvantage of this concept
lies in a potential lack of accuracy regarding the geometrical description, which can
possibly affect the quality of the obtained results.

Mapping strategies suitable for the p-version of the finite element method are conveniently
based on the previously introduced blending function method, compare equations (3.51) and
(3.56). Three different strategies regarding the geometric representation of element edges Ei

and faces Fi shall be considered:

• In case geometry is available in a parametrized form using curves Ei(r) and surfaces
Fi(r, s), re-parametrization with respect to the element local parameters ξ facilitates the
computation of Jacobian matrices that are based on the exact geometry. To this end,
the strategies set out in Sections 3.3.1 and 3.3.2 are adopted. The advantage of accurately
capturing the geometry by an analytical description is opposed to the possibility of
merging in a superparametric approach — which would feature the drawbacks, just
discussed.

• A different strategy was introduced by Királyfalvi & Szabó [63] in 1997, the quasi-
regional mapping. The fundamental idea is to employ a polynomial approximation of
the geometry instead of a parametric exact description.

Ei(r) ≈ Einterp
i (r) =

p+1
∑

k=1

Np
k (r)Ei(rk)

Fi(r, s) ≈ Finterp
i (r, s) =

p+1
∑

k=1

q+1
∑

l=1

Np
k (r) N q

l (s)Fi(rk, sl)

(3.63)

The terms Ei(r) and Fi(r, s), occuring in equation (3.63), are specified by equations
(3.50) and accordingly (3.54) and (3.55). The interpolation of the geometry is supplied
by means of Lagrange-polynomials, evaluated at distinct collocation points rk and sl

according to Chen & Babus̆ka [20]. The distribution of these collocation points, also
termed Babus̆ka-Chen points, are not equidistant — their positioning scheme aims at
a minimization of oscillations due to the polynomial approximation. Details are given
in [20].

With a view of applying this method of boundary representation to quadrilateral and
hexahedral finite elements Királyfalvi and Szabó point out two distinct characteris-
tics of their approach:

1. “The only information required are coordinates of the curves and surfaces in the
collocation points.”
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2. “If the curves or surfaces are analytic then their piecewise polynomial approxima-
tion converges to the analytic expressions as the number of collocation points is
increased.”

Due to the fact that Lagrange-polynomials take the value 1 at each one node and
vanish at all remaining nodes (3.29), computation of the collocation points Ei(rk) and
Fi(rk, sl) is done in a straightforward explicit manner — no solution of a correspond-
ing system of equations is required. It should be noted that the space spanned by
Lagrange-polynomials of a certain order is more comprehensive than the correspond-
ing trunk space of Legendre-polynomials. Therefore, transition to a superparametric
state cannot generally be excluded for this approach; unless the — costly — tensor
product space of at least the same order as the polynomial geometry approximation is
chosen for the finite element approximation.

• A third variant, therefore, adopts the same Ansatz for the geometry approximation as
for the finite element solution. In this case, the approximation reads:

Ei(r) ≈ Eapprox
i (r) =

nModen∑

i=1

Ni(r) ai

Fi(r, s) ≈ Fapprox
i (r, s) =

mModen∑

i=1

Ni(r, s)bi

(3.64)

Therein, functions Ni(r) and Ni(r, s) denote the hierarchical Ansatz functions according
to Section 3.2; ai and bi refer to the corresponding coefficients. Due to the character of
the Ansatz functions, computation of the respective coefficents requires the solution of a
system of equations. As a result of the equality of approximation spaces for geometry and
finite element solution, the approach is classified as isoparametric. Further discussion
of this concept is provided by Demkowicz [30, 31] in the context of hp-adaptive finite
element methods.

As we have seen, it is possible to directly apply the blending function method to the parametrized
exact description of the respective faces Fi(r, s) and edges Ei(r). Different from that, both the
quasi-regional mapping and the isoparametric geometry approximation introduce an interme-
diate geometry configuration — obtained by interpolation and approximation, respectively, of
the true geometry — which then in turn serves as a basis for the blending function method.
This notion is, inspired by Nübel [84], graphically illustrated in Figure 3.10.

3.4 Numerical integration

The finite element method, irrespective of its different derivations and specifications, com-
monly adopts an integral approach of the underlying system of differential equations. The
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Blending Function Method

(equations (3.51) and (3.56))

Finterp
i (r, s) Fapprox

i (r, s)

Einterp
i (r) Eapprox

i (r)

Fi(r, s) Interpolation Isoparametric approximation

Ei(r) of the exact geometry of the exact geometry

Fi(r, s) Fi(r, s)

Ei(r) Ei(r)

Exact geometry

Figure 3.10: Mapping strategies in the framework of the blending function method; Ei(r) and Fi(r, s)
are specified by (3.50) and accordingly (3.54) and (3.55)

discretized forms (3.12) and (3.13) of the variational principle (2.51) and (2.52) naturally re-
flect this notion. Since for an arbitrarily posed boundary value problem the evaluation of
the corresponding integrals in closed form is generally not possible, numerical quadrature is a
central issue of the solution process.

Subsequently, the essential characteristics of the Gauss quadrature — which is probably the
most widely-used quadrature scheme in finite element computations and also is the basis for
the numerical analyses carried out in Chapter 6 — are briefly outlined.

3.4.1 Gauss quadrature

Using the Gauss quadrature scheme, the initial integration problem

+1∫

−1

+1∫

−1

+1∫

−1

f(ξ, η, ζ) dξ dη dζ (3.65)

is transferred to an approximate summation problem according to

l∑

i=1

m∑

j=1

n∑

k=1

wi wj wk f(ξi, ηj, ζk) . (3.66)
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Thus, the volume integral is reduced to a triple — corresponding to the three directions —
one-dimensional integration, which, of course, manifests an approximation in the general case.

+1∫

−1

f(x) dx ≈
n∑

i=1

wi f(xi) with xi ∈ [−1, 1] (3.67)

In equation (3.67), wi reflect the Gauss-weights and xi represent the collocation points or
Gauss-points. In contrast to the Newton-Cotes scheme, which employs equidistant collo-
cation points, the Gauss quadrature scheme is derived on a more general basis, allowing the
position of the collocation points to vary — thus, furnishing a higher degree of accuracy. For
Gaussian quadrature, the following proposition holds: There exists precisely one quadrature
formula (3.67) with n collocation points that yields the maximum degree of accuracy (2n− 1),
i.e., integrates a polynomial of degree (2n − 1) exactly. It can be proved (see, e.g., [109]),
that collocation points xi correspond to the roots of the n-th Legendre polynomial (3.37)
or (3.38) and the corresponding weights are defined by

wi =

1∫

−1

n∏

j=1
j 6=i

(
x − xj

xi − xj

)2

dx > 0, (i = 1, 2, . . . , n). (3.68)

Collocation points xi 6= 0 are located pairwise symmetric to the origin. From (3.68), it can
easily be seen that the associated weights are pairwise identical, too. Generally, it can be
stated that the high precision of the Gauss integration is payed for by the discomfort, that
the location of collocation points and the magnitude of the respective weights depends on the
order of n. A robust numerical procedure for determination of collocation point coordinates
and corresponding weights is provided in [109].
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Chapter 4

Embedded strong discontinuities

Might as well jump!
– Van Halen.

4.1 Strong discontinuity kinematics

The so far described classical continuum model (Chapter 2) is based on the fundamental as-
sumption of the body’s response remaining continuous during loading. It was, however, already
alluded to in Section 1.2, that failure of materials is frequently preceeded by the formation
of a process zone in which damage and other inelastic effects accumulate, and in which high
strain gradients prevail — furnishing the notion of deformation localization. Clearly, when at-
tempting to extend the model to these kinds of phenomena, the scope of classical continuum
mechanics (Truesdell & Noll [124]) is left. Assessing the typically small localization zones
from a distance, continuous fields with a steep gradient appear discontinuous. For practical
engineering problems this means that many continuous problems arise discontinuous when
viewed from the level of practical interest. 1 Adopting this view, the remainder of this sec-
tion is devoted to extending the classical continuum model regarding the possible incident of
strong discontinuities, i.e., jumps in the displacement field. Thereby, the notation follows the
fundamental concept of a re-parametrization of the strong discontinuity kinematics which was
constituted in Simo et al. [116] and subsequently elaborated by Simo & Oliver [115] and
Oliver [88]. Later, this notion was succeeded by several authors, amongst others Regueiro

& Borja [100, 17], Borja [16], Mosler & Meschke [77] and Feist [41].

1Notably, also fields that appear continuous may in fact be discontinuous when observed at a lower scale
(microlevel).
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4.1.1 Standard approach

To begin with, consider the classical boundary value problem set out in Section 2.3.1. Supple-
mentary, body Ω is assumed to be separated into two portions Ω+ and Ω− by a discontinuity
surface ∂sΩ of arbitrary shape (Figure 4.1). This decomposition is formally described by
Ω = Ω+ ∪ Ω− ∪ ∂sΩ. Further, the orientation of the discontinuity surface is assumed to be
defined by its normal N .

����
����
����

����
����
����

∂sΩ

Ω+

Ω−
N

X1

X2

X3

t∗

Figure 4.1: Body with discontinuity surface ∂sΩ

In such a setting, the strong discontinuity approach is based on the assumption of a jump in the
displacement field across the discontinuity surface. Mathematically, this jump can conveniently
be expressed using the Heaviside function Hs(X), operating on a smooth continuous function.
Accordingly, the displacement field can be written as

u(X, t) = ŭ(X, t)
︸ ︷︷ ︸

regular

+ JuK(X, t) Hs(X)
︸ ︷︷ ︸

jump term

, ∀X ∈ Ω (4.1)

with the Heaviside function Hs(X) being defined as

Hs(X) :=

{

1 ∀X ∈ Ω+ ,

0 ∀X ∈ Ω− .
(4.2)

It is emphasized, that both ŭ(X, t) and JuK(X, t) are smooth continuous functions on Ω
[128, 105, 41]. Introducing the definition J(•)(X)Ks := (•)(X)+ − (•)(X)− , ∀X ∈ ∂sΩ, the
magnitude of the displacement jump at the discontinuity surface is determined from (4.1) as

JuKs :=JuK(X, t) , ∀X ∈ ∂sΩ . (4.3)

The displacement rate field is then obtained by differentiating (4.1) once with respect to time.
Assuming that the Heaviside function is stationary, which implies that the discontinuity does
not translate, we obtain:

u̇(X, t) = ˙̆u(X, t) + Ju̇K(X, t) Hs(X) , ∀X ∈ Ω . (4.4)
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u ŭ JuKHs

JuKs

∂sΩ

∂sΩ

ε ε̆ εδ
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Ω+

Ω+

∇
symJuK (JuK ⊗ N )sym δs

Figure 4.2: Strong discontinuity kinematics: Decomposition of displacement field into continuous
and discontinuous portions and strain field into corresponding regular and singular con-
tributions.

To complete the strong discontinuity kinematics, it remains to establish the corresponding
strain tensor. Employing the mathematical concept of generalized functions (distributions)
furnishes the derivative of the discontinuous Heaviside function as ∇Hs = Nδs, and thus
avoids the need to explicitly consider body Ω as two separate entities Ω+ and Ω− linked by
traction forces at the discontinuity surface ∂sΩ. Hence, the linearized (small) strain tensor is
derived as

ε(X, t) = ∇
symu

= ∇
symŭ + ∇

symJuKHs(X)
︸ ︷︷ ︸

ε̆ (regular)

+ (JuKs ⊗ N )sym δs
︸ ︷︷ ︸

εδ (singular)

. (4.5)

With δs we denote the Dirac-delta distribution at the discontinuity surface ∂sΩ, defined by
δs := δ (X − Xs) with Xs ∈ ∂sΩ. Considering the stationarity of the Heaviside function, the
strain rate is established from (4.5) by differentiating once with respect to time:

ε̇(X, t) = ∇
sym ˙̆u + ∇

symJu̇KHs(X)
︸ ︷︷ ︸

˙̆ε (regular)

+ (Ju̇Ks ⊗ N )sym δs
︸ ︷︷ ︸

ε̇δ (singular)
(4.6)

4.1.2 Reformulated kinematics

From a computational point of view, as will be seen later, it proves favorable to slightly modify
the kinematics established above. To this end, a domain Ωϕ ⊂ Ω is introduced, such that
the discontinuity surface renders a subset of Ωϕ, i.e., ∂sΩ ⊂ Ωϕ [115, 88], for illustration see
Figure 4.3. The two portions of Ωϕ that are separated by the discontinuity surface are denoted
by Ω−

ϕ and Ω+
ϕ , such that Ω−

ϕ ⊂ Ω−, Ω+
ϕ ⊂ Ω+ and Ω−

ϕ ∪ Ω+
ϕ = Ωϕ.

Introducing the definition

ū(X, t) := ŭ(X, t) + JuK(X, t) ϕ(X) , (4.7)
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∂sΩ

Ω+ \ Ω+
ϕΩ− \ Ω−

ϕ Ω+
ϕΩ−

ϕ

∂Ω+
ϕ

∂Ω−
ϕ

Ωϕ = Ω−
ϕ ∪ Ω+

ϕ

N

X1

X2

X3

Figure 4.3: Body with discontinuity surface ∂sΩ and subdomain Ωϕ

equation (4.1) can — without loss of generality — be cast in a competely equivalent format
(Figure 4.4):

u(X, t) = ū(X, t) + JuK(X, t) (Hs(X) − ϕ(X))

= ū(X, t) + JuK(X, t) Ms(X)

= ū(X, t)
︸ ︷︷ ︸

regular

+ û(X, t)
︸ ︷︷ ︸

jump term

(4.8)

In (4.8), the ‘regularizing’ function Ms(X) is defined as

Ms(X) := Hs(X) − ϕ(X) . (4.9)

The substantial notion that motivates the forms (4.8) and (4.7) and constitutes the definition
of the function Ms(X) (4.9), is the introduction of an — to begin with, completely arbitrary —
interpolation function ϕ(X). The essential characteristic of this function is the ‘transmission’
of the displacement jump effect at the discontinuity surface, JuKs, to the boundaries of domain
Ωϕ. Therefore, as a necessary condition to assure the equivalence between the re-parametrized
form (4.8) and the original one (4.1) we require [115, 88, 16, 77, 128, 41]:

ϕ(X) :=







0 ∀X ∈ Ω− \ Ω−
ϕ

1 ∀X ∈ Ω+ \ Ω+
ϕ

C0-continuous in result interval [0, 1] ∀X ∈ Ωϕ

(4.10)

It will be seen later that above condition is indeed necessary, but not sufficient in order to
assure consistency of the approach with respect to the order of polynomial approximation for
the regular displacement field ū (cf. Section 4.5.2).

Differentiating (4.8) with respect to time yields the corresponding rate form of the displace-
ment field as

u̇(X, t) = ˙̄u(X, t) + ˙̂u(X, t)

= ˙̄u(X, t) + Ju̇K(X, t) (Hs(X) − ϕ(X)) . (4.11)

To appreciate the advantage of this reformulated version of the strong discontinuity kinematics,
we consider the jump term of equation (4.8). According to requirement (4.10) it follows
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that Ms(X) = 0 ∀X ∈ Ω \ Ωϕ which in turn implies u(X, t) = ū(X, t) ∀X ∈ Ω \ Ωϕ.
Hence, by conveniently choosing Ωϕ, this property can be exploited, such that the Dirichlet

boundary conditions need to be prescribed solely for ū = ŭ + JuKϕ rather than for ŭ and
JuK. The important point is that, using the reformulated version, the regular displacement
field ū already incorporates the jump effect and can, as will be seen later, be associated with
the compatible displacement field spanned by the standard finite element basis functions, cf.
Section 4.5.2.

+

+

=

=
NNN

NNN

u ū û

JuKs

Ωϕ

∂Ω−
ϕ ∂Ω+

ϕ∂sΩ

∂sΩ

ε ε̄ εδ

Ω− Ω+

∇
symJuK (JuK ⊗ N )sym δs

Figure 4.4: Reformulated strong discontinuity kinematics: Decomposition of displacement field into
continuous and discontinuous portions and strain field into regular and singular contri-
butions.

Following identical lines as before, the linearized strain tensor for the reformulated kinematics
is established as (4.4)

ε(X, t) := ∇
symū − (JuKs ⊗ ∇ϕ)sym + ∇

symJuKMs
︸ ︷︷ ︸

ε̄ regular

+ (JuKs ⊗ N )sym δs
︸ ︷︷ ︸

εδ singular

,
(4.12)

where again δs denotes the Dirac-delta distribution at the discontinuity surface ∂sΩ.

It is always possible to establish a re-parametrization of u by means of ū and JuK such
that JuK = const. in the direction N normal to the discontinuity. For the remaining in-
plane directions the contribution of ∇

symJuK is considered to be negligible compared to the
contribution of (JuKs ⊗ ∇ϕ)sym in (4.12). Hence, we assume ∇JuK ≈ 0, cf. references [16,
128, 75, 41]. Following Simo & Oliver [115], our aim is to introduce the strong discontinuity
kinematics within the framework of enhanced assumed strains (EAS). According to the EAS
concept, the enhanced strains are modeled in an incompatible fashion — meaning that with
view on a later finite element discretization no inter element continuity of the enhanced strains
is required, cf. Section 2.3.6. Therefore, also from a variational point of view, it is admissible
to neglect the term ∇JuK in equation (4.12). Hence, from (4.12) we define:

ε := ∇
symū − (JuKs ⊗ ∇ϕ)sym

︸ ︷︷ ︸

=:εϕ

+ (JuKs ⊗ N )sym δs
(4.13)

Again, assuming that the Heaviside function, and thus Ms, is stationary and again neglecting
the term ∇Ju̇K, the strain rate can be found from (4.12) by differentiating once with respect
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to time:

ε̇ := ∇
sym ˙̄u − (Ju̇Ks ⊗ ∇ϕ)sym

︸ ︷︷ ︸

=:ε̇ϕ

+ (Ju̇Ks ⊗ N )sym δs
(4.14)

Remark. In view of a possibly non-uniform evolution of the jump amplitude along the discon-
tinuity surface, the assumption of Ju̇K(X) ≈ 0 may initially seem improper. It is admissible,
however, since the evolution of the discontinuity in the present formulation does not rely on
a continuous representation of the inner surface. As a consequence of the finite element dis-
cretization process, the crucial kinematics (4.13) will be sampled in a discrete set of points
(finite elements or rather, as discussed later, integration points). In this context, the situation
of a non-uniform evolution of the jump amplitude along the discontinuity surface would then
be approximated by piecewise constant contributions of the respective sampling points. 2

Remark. For the time being, any function satisfying conditions (4.10) is considered to be
a suitable choice for the transmission function ϕ(X). However, as already mentioned, closer
inspection reveals that certain restrictions apply to guarantee a consistent formulation of the
approach. This will be discussed in detail in Section 4.5.2. 2

4.2 The weak and local form of the equilibrium equa-

tions

The description of the kinematics of a body crossed by a discontinuity surface established
in the previous section, maintained the idea of a strain field that is defined everywhere in
the body — inclusive of the discontinuity surface. Therefore, the discussion of equilibrium
conditions for such a setting, can be done following classical lines and conveniently be based on
the classical weak form of equilibrium. In dependence on Simo & Oliver [115] and Oliver

[88] this notion shall be adopted in the following in order to establish the adequate form of
the local (strong) conditions of equilibrium.

To this end, following up Section 2.3, we start from the weak form of the equilibrium equations
as stated by the principle of virtual work (2.26):

∫

Ω

∇
symδu : σ dV =

∫

Ω

b • δu dV +

∫

∂σΩ

t∗ • δu dA , (4.15)

for all admissible test functions δu ∈ V. In view of the previously established strong discon-
tinuity kinematics (4.8), a similar split as for the displacement field is introduced for the test
functions, yielding

δu = δū + βMs(X) . (4.16)

The local form of the equilibrium equations in a strong discontinuity setting can then be
derived in two steps. In a first step, the test functions are chosen to be regular functions on
Ω. This is simply achieved by setting δu = δū. This choice is then adopted for the weak
form of the equilibrium equation (4.15). Integrating by parts 2 and using the Gauss theorem

2The product rule gives rise to the divergence property div (σδu) = δu • divσ + ∇δu : σ.
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furnishes the left hand side of equation (4.15) as

∫

Ω

∇
symδu : σ dV = −

∫

Ω

δu • div σ dV +

∫

∂sΩ

δu •
[
σ+N+ − σ−N−

]
dA +

∫

∂σΩ

δu • σN dA .

(4.17)

Note, that application of the Gauss theorem to the internal surface ∂sΩ gives rise to the
intermediate term in the right hand side of equation (4.17). Inserting this result into the weak
form of equilibrium (4.15), by a standard argument the local equilibrium equations

div σ + b = 0 in Ω\∂sΩ (4.18)

σN = t∗ on ∂σΩ (4.19)

and

σ+N − σ−N
︸ ︷︷ ︸

JtKs

= 0 on ∂sΩ (4.20)

are obtained. In (4.20), again the notation J(•)(X)Ks := (•)(X)+ − (•)(X)− , ∀X ∈ ∂sΩ
was adopted. In a second step, now choosing the test functions to be discontinuous, i.e.,
δu = βMs(X), the additional local condition

ts − σ+N = 0 on ∂sΩ (4.21)

can be derived following similar lines as above. Details are given in [115]. In (4.21), ts explicitly
refers to the tractions prevailing at the discontinuity surface.

Condition (4.20) imposes the equality of the right-hand and left-hand limit of the tractions
in the bulk material adjacent the discontinuity surface, while (4.21) requires the tractions at
the discontinuity surface ∂sΩ to balance the right-hand traction limit. In conclusion, for a
continuum body with a discontinuity surface, we have the classical local equilibrium conditions
supplemented with two additional conditions, stating traction continuity over the discontinuity
surface ∂sΩ.

Proposition 4.2.1 (Traction continuity). After onset of localization, the stress σ remains reg-
ularly distributed over the domain Ω. In particular, traction continuity over the discontinuity
surface ∂sΩ is maintained.

4.3 Constitutive modeling in a strong discontinuity con-

text

The previously derived kinematics associated with the presence of strong displacement discon-
tinuities are composed of two different displacement fields, JuK and ū, compare equation (4.13).
In the present section, the constitutive equations associated with these fields are discussed.
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According to the definition of the kinematics of Section 4.1, the strains in the bulk material,
denoted by Ω±, are regularly distributed — thus facilitating the application of standard stress-
strain based continuum models. For the sake of clarity, in what follows linear elastic Hooke’s
law is adopted for points belonging to Ω±. That is, the stresses σ in Ω± are computed
by means of the elastic fourth-order constitutive tensor C := ∂,ε∂,εWel(X, ε) according to
σ̇ = C : ε̇. It should be noted, however, that any classical continuum model, such as plasticity
or a damage theory can be applied equally well.

4.3.1 Traction-separation laws

On the discontinuity surface ∂sΩ — in contrast to Ω± — the material response is ruled by
the discontinuous displacement jump JuKs = JuK(X, t) ∀X ∈ ∂sΩ and can be represented by
a traction-separation law. Using the traction continuity condition (4.21) at the interface, a
traction-separation law of the type

t+ = ts (JuKs) with t := σN , ts := t|∂sΩ (4.22)

renders an admissible choice.

Basically, there are two concepts that can be applied for development of a constitutive law of
type (4.22). The first method involves a projection of a classical stress-strain relationship onto
the discontinuity surface ∂sΩ, e.g., Simo et al. [116]. Alternatively, a traction-separation law
can be derived from an assumed singular distributed stored energy functional W . This notion
is adopted, e.g., by Armero [3], Oliver [88] or Mosler [76].

Following the latter concept, we postulate an additive split of the stored energy into a regularly
distributed part Wreg corresponding to points in Ω± and a singular part Wie associated with
points in ∂sΩ according to

W = Wreg + Wie δs . (4.23)

The fundamental assumption, the concept is based upon, is the direct association of the
displacement discontinuity JuKs with the inelastic deformation stemming from the singular
portion of the stored energy functional; Wie = Wie (α (JuKs)) in terms of the displacement-like
variable α ∈ R

n depending on the displacement discontinuity. Then, it is possible to define
the space of admissible stresses (or rather tractions) in analogy to standard plasticity in a
general fashion as

Et := {
(
t+, q

)
∈ R

3 × R
n | φ

(
t+, q

)
6 0} ∀X ∈ ∂sΩ . (4.24)

Hence, the space of admissible stresses is confined by the yield (or failure) function φ (t+, q),
which is constituted of the traction vector t+ and a vector of stress-like hardening/softening
parameters q that is conjugated to α. If we adopt the special choice φ (t+, q) = ‖t+ − q‖ and
q = ts — then, φ = 0 renders the traction continuity condition stated in Proposition 4.2.1.
That is, the traction continuity condition (4.21) can be recast in a format that is identical
to the yield condition known from standard plasticity theory. In what follows — as ts is
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included in the stress-like variable q — we omit the + sign indicating the right-hand limit of
the traction vector without risk of confusion, i.e., t := t+.

The direct association of the displacement discontinuity JuKs with the singular portion of the
stored energy functional Wie at the discontinuity surface, actually restricts the dissipative
mechanism to the discontinuity surface ∂sΩ. This, in turn, implies the concentration of in-
elastic deformation to the localization zone in case of softening response taking place. Such a
behavior is indeed motivated by experimental observations and reflects the key characteristics
of localization phenomena; in accordance with the fundamental work of Simo et al. [116], we
devise:

Proposition 4.3.1 (Deformation concentration). After onset of localization, inelastic defor-
mation related to softening response, is concentrated to the localization zone represented by
the discontinuity surface ∂sΩ — which is, for this reason, also termed localization surface.

Since the space of admissible stresses (4.24) is formally equivalent to that of standard plasticity
theory, the evolution equations defining the interface law can be derived following similar lines
as for the stress-strain based continuous case, cf. Section 2.4.2. Accordingly, by introducing
two potentials g (t, q) and h (t, q), the rates of JuKs and α are defined in a general manner as

Ju̇Ks := λ∂,tg and α̇ := λ∂,qh . (4.25)

The precise definition of the space of admissible stresses (4.24) — which is analogous to the
notion of yield surface in classical elastoplasticity — clearly depends on the particular choice
of the norm ‖•‖. With a view to later developments we choose q = ‖ts‖ and specify

φ : R
3 × R+ 7→ R

(t, q) 7→ ‖t‖ − q ,
(4.26)

which reflects the case of isotropic hardening / softening.

Remark. For the specific choice g = φ and h = φ, the associative case is obtained. Then, the
evolution equations (4.25) can alternatively be derived as a result from the principle of max-
imum dissipation, cf. Section 2.4.2. Employing the energy functional (4.23), the dissipation
inequality is then stated as [3, 76]

D = t • Ju̇Ks + q • α̇ > 0 . (4.27)

In analogy to the continuum case of Section 2.4.2, the principle of maximum dissipation is
adoped by postulating the dissipation according to (4.27) to be maximized within the space
of admissible stresses Et. Then, a constrained maximization problem is obtained, which can
again be transferred to an equivalent unconstrained minimization problem by means of the
Lagrange-functional (see, e.g., Luenberger [67]):

L (t, q, λ) = −D + λφ (t, q) (4.28)
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The Karush-Kuhn-Tucker conditions then determine the solution of the problem. In the
present context, they read

Ju̇Ks = λ∂,tφ, α̇ = λ∂,qφ (4.29)

and

λ > 0, φ (t, q) 6 0, λφ (t, q) = 0 , (4.30)

where equations (4.29) represent the associative form of the evolution equations (4.25). 2

4.3.2 Correlation with strong discontinuity kinematics

Having established the traction-separation law including its evolution equations (4.25) and
(4.29), respectively, a direct coherence with the strong discontinuity kinematics defined by
equation (4.14) can readily be established. Accounting for the plastic dissipation at the dis-
continuity surface ∂sΩ and in view of (4.14), the resulting strain field is defined by

ε̇ = ∇
sym ˙̄u − (Ju̇Ks ⊗ ∇ϕ)sym

︸ ︷︷ ︸

regular

+ (Ju̇Ks ⊗ N )sym δs − λ ∂,σg
︸ ︷︷ ︸

singular

. (4.31)

Also, complying with the assumption ∇JuK ≈ 0 that has been made in the derivation of
(4.14), the jump discontinuity can equivalently be expressed as

Ju̇Ks = ζ̇m , (4.32)

where m denotes the direction of the displacement jump and ζ̇ represents its magnitude.

4.3.2.1 The regular portion of the enhanced strain field

Drawing attention to the regular portion of the strain field (4.31), the direct relation to the
evolution equations (4.25) or (4.29) is derived as follows. Considering (4.25)1 we obtain

(Ju̇Ks ⊗ ∇ϕ)sym = λ
(

∂,tg ⊗ ∇ϕ
)sym

. (4.33)

and can, with view of (4.14), conclude that

ε̇ϕ = λ
(

∂,tg ⊗ ∇ϕ
)sym

. (4.34)

The above result is now employed to describe the response of a material point in Ω±
ϕ that is

subject to Hooke’s law. Using (4.34) and adopting the strong discontinuity kinematics (4.14)
renders

σ̇ = C : ε̇

= C :
(
∇

sym ˙̄u − ε̇ϕ

)

= C :
(

∇
sym ˙̄u − λ

(

∂,tg ⊗ ∇ϕ
)sym)

(4.35)
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Remarkably, constitutive relation (4.35) is formally identical to classical flow theory of plas-
ticity — with term (∂,tg ⊗ ∇ϕ)sym taking the role of the ‘direction of flow’, cf. equation
(2.74)1.

4.3.2.2 Physical relevance of the Lagrange multiplier λ

Complying with Proposition 4.3.1, we assume that the dissipative mechanism is restricted
completely to the discontinuity surface ∂Ωs. This assumption implies a singular distribution
of the plastic multiplier, i.e., λ ≡ λ δs. Further, due to the direct association of the displace-
ment discontinuity JuKs with the dissipative mechanism at the discontinuity surface ∂Ωs, the
resulting plastic strains must correspond to the singular portion (Ju̇Ks ⊗ N )sym δs of the strain
field (4.31):

(Ju̇Ks ⊗ N )sym δs = λ ∂,σg δs (4.36)

Multiplication with ∂,σφ : C [88] and using (4.32), then furnishes λ as

λ =
∂,σφ : C : (Ju̇Ks ⊗ N )sym

∂,σφ : C : ∂,σg
= ζ̇

∂,σφ : C : (m ⊗ N )sym

∂,σφ : C : ∂,σg
. (4.37)

For a frequently employed class of potential functions, such as the later adopted Rankine

type (cf. Chapter 5), the partial derivative ∂,σg is determined as (m ⊗ N ), such that from
(4.37) it is evident that

λ = ζ̇ . (4.38)

Hence, the Lagrange multiplier λ has a clear physical meaning, it represents the current change
in the amplitude of the displacement discontinuity.

4.3.3 Strong discontinuity condition

The condition for the initial formation of a strong discontinuity, i.e., a jump in the displacement
field, is termed strong discontinuity condition 3. It allows to identify the orientation vector N

of the discontinuity surface Ωs. It should be noted, that formation of a strong discontinuity
often is preceeded by a weak discontinuity, representing a jump in the displacement gradient
field. For models only accounting for strong discontinuities, which are the focus of this work,
this distiction is, however, dispensable. Yet, for the later adopted Rankine criterion (Chapter
5), conditions for weak and strong discontinuity, respectively, appear to be equivalent [75]. The
following representation is essentially based on the work of Simo et al. [116] and Oliver [88].

3Sometimes, it is also referred to as localization condition, e.g. Regueiro & Borja [100].
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Derivation of the strong discontinuity condition relies on the notion of a regular distribution
of the stress field, e.g. [100]. Considering equation (4.31), the stress vector for an elastoplastic
continuum material is defined by

ṫ = C :
[
∇

sym ˙̄u − ε̇ϕ + (Ju̇Ks ⊗ N )sym δs − λ ∂,σg
]
• N . (4.39)

Again assuming the dissipative mechanism to be restricted to the discontinuity surface ∂sΩ,
we can substitute λ by the previously derived definition (4.37) and rewrite (4.39) as

ṫ = N • C :
[
∇

sym ˙̄u − ε̇ϕ

]
+ N •

[

C − C : ∂,σg ⊗ ∂,σφ : C

∂,σφ : C : ∂,σg

]

︸ ︷︷ ︸

C
perf
ep

: (Ju̇Ks ⊗ N )sym δs , (4.40)

with C
perf
ep as the elastoplastic continuum tangent for perfect plasticity. If the stress vector is

to remain regularly distributed, the singular contributions in (4.40) must vanish. This implies

Q(N ) • Ju̇Ks
!
= 0 , (4.41)

where the acoustic tensor Q is defined as

Q(N ) := N • C
perf
ep • N , (4.42)

e.g. Simo et al. [116], Oliver [88] and Regueiro & Borja [100].

In order to admit non-trivial solutions Ju̇Ks 6= 0 of equation (4.42), the acoustic tensor must
become singular, i.e.,

det(Q(N ))
!
= 0 . (4.43)

The normal vector N identifying the direction of the discontinuity can now be computed from
condition (4.43). In some cases analytical solutions can be derived, see, e.g., Oliver [88];
generally however, it is required to revert to numerical solution procedures.

4.3.4 Condition of uniqueness

Having identified the formal analogy between the constitutive response of a material point in
Ω±

ϕ (4.35) and the classical flow theory of plasticity, cf. Section 2.4.2, it is possible to transfer
some insights from the latter to the present setting.

The elastoplastic tangent constitutive tensor Cep (2.80) is adapted by simply replacing ∂,σg
with (∂,tg ⊗∇ϕ)sym from (4.35). Focusing on associative evolution equations, i.e., h ≡ φ and
g ≡ φ, the tangent constitutive tensor in a strong discontinuity context arises as

Cϕ = C −
C : (∂,tφ ⊗ ∇ϕ)sym ⊗ ∂,σφ : C

∂,σφ : C : (∂,tφ ⊗ ∇ϕ)sym + ∂,qφ • H • ∂,qφ
. (4.44)
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In order to render a unique behavior, the denominator of (4.44) is required to be positive
(Jirásek [53]):

∂,σφ : C : (∂,tφ ⊗ ∇ϕ)sym + ∂,qφ • H • ∂,qφ > 0 (4.45)

In view of equation (4.35), the above condition corresponds to a snap-back in the σ −∇
symū

relation (Mosler [75]).

Remark. As will emerge in the discretized setting, see Section 4.5.2, via ∇ϕ condition (4.45)
actually poses a restriction on the maximum extension of the discretized localization zone Ωϕ

and/or the order of polynomial approximation within the discretized localization zone Ωϕ. 2

4.4 A mixed finite element formulation

From the strong discontinuity kinematics in Section 4.1 the strain field accounting for strong
discontinuities is in a general fashion written as — cf. equation (4.13) —

ε = ∇
symū + ε̃ , (4.46)

composed of a regular strain field ∇
symū stemming from the compatible part of the displace-

ment field and an enhanced term ε̃, containing a singular contribution, as well:

ε̃ := − (µ ⊗ ∇ϕ)sym + (µ ⊗ N )sym δs (4.47)

The displacement jump at the discontinuity surface is denoted by µ rather than JuKs to em-
phasize its element local character — as will be seen, in the present context the discontinuity
does not necessarily need to be continuous across element boundaries. Interpreting the en-
hanced term as a consequence of an incompatible deformation mode, the strain field (4.46)
can readily be associated with the concept of enhanced assumed strains, which was discussed
in the previous Section 2.3.

There it was shown, that starting from a general Hu-Washizu three-field variational basis the
introduction of a split of the strain field into a compatible and an enhanced portion (cf. equa-
tion (2.45)) along with the enforcement of an L2-orthogonality condition between enhanced
strain field and stress field (cf. equation (2.49)) removes the stress field from the variational
formulation. Thus, the modified variational problem appears as constituted of the displace-
ment field and the enhanced strain field and their variations, only (cf. equations (2.51) and
(2.52)). Upon discretization (cf. Section 3.1) and the introduction of corresponding interpo-
lations for the variable fields — in the general case furnishing a Petrov-Galerkin scheme
—, the local enhanced strain field variables are eliminated on element level (cf. equations
(3.17)). For convenience, we shall rewrite the linearized system of equations around a state of
equilibrium:

(
bbKe − bgKe(

ggKe)
−1 gbKe

)

︸ ︷︷ ︸

K̃e

ḋ = ḟe and

µ̇ = −(ggKe)
−1 gbKe ḋ ,

(4.48)



72 4. Embedded strong discontinuities

where ḟe is a generic symbol denoting a change of the elemental force vector, without differ-
entiation between external and internal forces.

So far, the question of constructing appropriate enhanced strain field interpolations has not
been addressed. As can be imagined, the choice is not completely arbitrary. In fact, certain
restrictions apply (Simo & Armero [112]). Namely,

(i) variational consistency

(ii) patch-test conformity (constant nominal stress field)

(iii) stability

of the formulation have to be assured. In the present context, with view of Proposition 4.2.1,
a fourth condition is of practical relevance:

(iv) traction continuity over the discontinuity surface ∂sΩ

Subsequently, these issues are discussed more detailed.

4.4.1 Strong discontinuity kinematics and traction continuity

We have already identified the enhanced part ε̃ of the general strain field (4.47). To justify
the association with the enhanced assumed strain concept and assure variational consistency
of the approach, the fundamental L2-orthogonality between the enhanced strain variation and
stress field (cf. Section 2.3.6) is to be addressed.

To this end, consider the enhanced strain test function space δε̃ according to (3.10)2 and let
σ denote the assumed variable stress field. Then, the L2-orthogonality condition (2.49) for
the discretized setting is enforced on element level according to

∫

Ωe

δε̃ : σ dV
!
= 0 . (4.49)

Furthermore, in order to satisfy the patch-test, the assumed stress field is required to contain
at least piecewise constant functions. Thus, equation (4.49) implies

∫

Ωe

δε̃ dV
!
= 0 . (4.50)

Now addressing the question of choosing admissible functions for δε̃, it can be shown, that a
standard Bubnov-Galerkin approach for the enhanced strain test functions of the form

δε̃ = − (δµ ⊗ ∇ϕ)sym + (δµ ⊗ N )sym δs (4.51)
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proves to be insufficient — equation (4.51) is obtained by simply adopting the same approach
as for the enhanced strain trial space (4.47). For such a scheme, it is evident that condition
(4.50) is only satisfied in special situations. To remedy this deficiency, we slightly modify the
above equation (4.51) and propose in accordance with Simo & Oliver [115] and Oliver

[87, 88]

δε̃ = −Ae
s

V e
(δµ ⊗ N )sym + (δµ ⊗ N )sym δs ; (4.52)

vector δµ be arbitrary to define the test function space for the enhanced strain field. This
choice still reflects the split in a regular and a singular contribution; it is, however, independent
of the transmission function ϕ(X). Using the property (A.2) of the Dirac-delta distribution,
see Appendix A, it can readily be verified that for this particular form of δε̃, condition (4.50) is
satisfied. It should be noted, that by introducing (4.52) — instead of (4.51) — for the enhanced
strain variation Ansatz, we obviously depart from the notion of a Bubnov-Galerkin scheme
and instead migrate to a more general Petrov-Galerkin approach.

If we now adopt (4.52) and insert it into the internal equilibrium condition (2.51)2 of the
underlying variational problem,we have

∫

Ωe

σ̂ : δε̃ dV = 0 (4.53)

⇔ 1

V e

∫

Ωe

σ̂ : (δµ ⊗ N ) dV =
1

Ae
s

∫

Ωe

σ̂ : (δµ ⊗ Nδs) dV , (4.54)

which can equivalently 4 be written as

1

V e

∫

Ωe

δµ • (σ̂N ) dV =
1

Ae
s

∫

Ωe

δµ • (σ̂Nδs) dV . (4.55)

With δµ being arbitrary and again accounting for the properties of the Dirac-delta distribu-
tion (A.2), it follows from (4.55), that

1

V e

∫

Ωe

σ̂N dV =
1

Ae
s

∫

Ωe

σ̂Nδs dV

=
1

Ae
s

∫

∂sΩe

σ̂N dA

=
1

Ae
s

∫

∂sΩe

ts dA . (4.56)

Identifying ts as the traction vector on the discontinuity surface δsΩ, identity (4.56) renders,
in an integral sense, the condition of traction continuity (4.21) at the discontinuity surface.
This means, the variational basis (2.51) can be interpreted as the classical condition of weak

4consider the identity A : (a ⊗ b) = a • (Ab)
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equilibrium for the bulk material enhanced by the additional requirement of traction continuity
across the discontinuity surface in an integral sense

∫

Ω

∇
symδu : σ̂ dV −Wext(δu) = 0

− Ae
s

V e

∫

Ωe

δµ • σ̂N dV +

∫

∂sΩe

δµ • ts dA = 0
(4.57)

Hence, from a mechanical point of view, the approach possesses the advantageous quality of
reproducing both the kinematics (4.47) induced by the strong discontinuity and the statical
requirement of traction continuity (4.21) — giving rise to its classification as a statically and
kinematically optimal nonsymmetric (SKON) method, Jirásek [52]. The attribute “non-
symmetric” identifies the price for these distinguished features: the loss of symmetry of the
condensed stiffness matrix K̃e (cf. Section 3.1.2).

We summarize as follows:

Proposition 4.4.1 (Weak traction continuity). Using the particular choice (4.52) for the
enhanced gradient variation Ansatz δε̃, the internal equilibrium condition (2.51)2 of the un-
derlying variational equations inherently — and variationally consistent — constitutes traction
continuity along the discontinuity surface δsΩ in a weak (integral) sense, see equation (4.56).

4.4.2 Stability considerations

Of further interest is the discussion of stability of the formulation. In the context of the
adopted general Petrov-Galerkin discretization, the stability condition is equivalent to
the condition of unique solvability of the linearized system of equations (3.14), provided that
appropriate boundary conditions are applied, i.e., the system is not kinematically unstable.
This notion shall be explored in the following.

Rendering the linearized system of equations (3.14) uniquely solvable, poses the requirement
of regularity on the stiffness matrix Ke, respectively its condensed form K̃e (4.48). Using
equations (3.14) and (3.15), the enhanced stiffness matrix is recast here as

Ke =

[
BTCB BTCG

ĜTCB ĜTCG

]

, (4.58)

where integral signs have been omitted for the sake of clarity.

Assuming the material matrix C to be regular, the conventional element stiffness matrix bbKe

according to equation (3.15)1 is considered to be regular, as well. A closer investigation of
the enhanced stiffness matrix (4.58) by comparison of the respective terms in the first and
second row reveals: In order to render the equations represented by the entries in Ke linear
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independent, i.e., to maintain the regularity of Ke, matrix B — representing the gradient of
the displacement trial function space ∇

symVh — and matrix ĜT — representing the function
space of the enhanced strain test functions Ẽh

δ — must be linear independent.

Furthermore, as already noted in Section 3.1.2, the derivation of the condensed system of
equations (4.48) is based on the assumption of regularity of matrix ggKe. Recalling from
equation (3.15), that

ggKe =

∫

Ωe

ĜTCG dV

and noting that C is regular, we conclude, that the regularity condition is met, if the columns
of Ĝ and G are each linearly independent.

The foregoing considerations can be summarized in accordance with Simo & Oliver [115]
and Simo & Rifai [117]:

Proposition 4.4.2 (Stability). With bbKe being regular, the system of equations (3.14),
respectively its condensed form (4.48), is uniquely solvable if, and only if,

(i) ggKe is regular; satisfied, if the columns of Ĝ and G, respectively, are linearly indepen-
dent.

(ii) Ẽh
δ ∩ ∇

symVh = ∅; equivalently, the enhanced strain test function space must be lin-
early independent of the compatible strain field stemming from the displacement trial
functions 5.

In the present setting, the adopted choice for the enhanced strain test functions reads (cf.
(4.52))

δε̃ = −Ae
s

V e
(δµ ⊗ N )sym + (δµ ⊗ N )sym δs . (4.59)

For this choice, it can readily be verified that the spaces of enhanced strain test functions Ẽh
δ

and compatible strain field trial functions ∇
symVh are linearly independent — and therefore,

requirement (ii) of Proposition 4.4.2 is satisfied. Requirement (i) is rather a technical issue,
which is met likewise by the adopted approaches for ε̃ and δε̃.

4.4.3 Transition to an equivalent continuum formulation

In the following, the close affinity of the precedent approach to a pure continuum formulation
shall be illustrated. To begin with, the discretized form of the variational basis (3.12) — in
view of the advocated enhanced strain trial and test functions (4.47) and (4.52), respectively
— shall be devised.

5Note, that this restriction applies to the function space Ẽh
δ of the enhanced strain test functions and not

to the function space Ẽh of the corresponding trial functions!
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4.4.3.1 Discretized weak form

Using matrix notation (cf. Section 3.1.2), and with view of decomposition (4.46), the strain
rate at a point X ∈ Ω±

e in a finite element is recalled as

ε̇(X) = B(X)ḋ + G(X)µ̇ , (4.60)

where now, from the strain field definition (4.47), matrix G of an element can be cast as

G = −L∇ϕ = −
















∂ϕ

∂X
0 0

0 ∂ϕ

∂Y
0

0 0 ∂ϕ

∂Z

∂ϕ

∂Y

∂ϕ

∂X
0

0 ∂ϕ

∂Z

∂ϕ

∂Y

∂ϕ

∂Z
0 ∂ϕ

∂X
















. (4.61)

Further, considering the enhanced strain test function Ansatz (3.10), from equation (4.52), we
express matrix Ĝ as composed of a regular and a singular contribution:

Ĝ = −Ae
s

V e
g + g δs , (4.62)

where

g :=











N1 0 0
0 N2 0
0 0 N3

N2 N1 0
0 N3 N2

N3 0 N1











. (4.63)

Introducing the above definitions into the variational basis (3.12), the discretized weak form
of equilibrium reads

nel

A
e=1

∣
∣
∣
∣
∣

∫

Ωe

BT σ̂ dV −
∫

Ωe

NT b dV −
∫

∂Ωe

NT t∗ dA = 0

nel

A
e=1

∣
∣
∣
∣
∣
−Ae

s

V e

∫

Ωe

gT σ̂ dV +

∫

∂sΩ

ts dA = 0 .

(4.64)

Naturally, the above system of equations represents the discretized counterpart to equations
(4.57).
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4.4.3.2 Linearized weak form

In the same manner, i.e., by employing the definitions of G (4.61) and Ĝ (4.62), the linearized
system of equations (3.14) is rewritten as

nel

A
e=1

∣
∣
∣
∣
∣

[
bbKe

bgKe
grbKe

grgKe + hKe

]{

ḋ
µ̇

}

=

{
f ext
e − f int

e

−he

}

, (4.65)

where matrices bbKe and bgKe already have been defined in (3.15). Matrices grbKe and grgKe

are determined by the regular portion of Ĝ, so that we have

bbKe :=

∫

Ωe

BTCB dV bgKe :=

∫

Ωe

BTCG dV

grbKe := −Ae
s

V e

∫

Ωe

gTCB dV grgKe := −Ae
s

V e

∫

Ωe

gTCG dV .

(4.66)

Matrix hKe is assembled from contributions stemming from the singular portion of Ĝ. Con-
sidering that

∫

Ωe

gTCB δs dV ḋ +

∫

Ωe

gTCG δs dV µ̇ =

∫

∂sΩe

gTC
(

Bḋ + Gµ̇

)

︸ ︷︷ ︸

=ε̇ (4.60)

dA

=

∫

∂sΩe

gT ˙̂σ dA =

∫

∂sΩe

ṫs dA , (4.67)

and assuming the rate form constitutive of the tractions at the discontinuity being given by
ṫs := H µ̇, we arrive at the definition

hKe :=

∫

∂sΩe

H dA . (4.68)

Matrix H can readily be interpreted as tangential constitutive assembled from the softening
moduli of the respective directions. The remaining quantities are accordingly rendered as

f ext
e :=

∫

Ωe

NTb dV +

∫

∂Ωe

NT t∗ dA

f int
e :=

∫

Ωe

BT
σ̂ dV

he :=

∫

Ωe

ĜT
σ̂ dV = −Ae

s

V e

∫

Ωe

gT
σ̂ dV +

∫

∂sΩe

ṫs dA ,

(4.69)

cf. definitions (3.16).
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Remark. Notably, the element related cross-sectional area Ae
s of the discontinuity surface is

not necessarily required to be computed explicitly. Assuming the tractions along the elemental
discontinuity surface to be constant, the second integral term in (4.64)2 can be recast as

∫

∂sΩe

ts dA = Ae
s ts , (4.70)

so that Ae
s can be eliminated from the discretized weak form (4.64) and the corresponding

linearized equations (4.65). 2

4.4.3.3 Equivalent continuum formulation

In analogy to Section 3.1.2 the system of equations (4.65) can equivalently be expressed in a
statically condensed format. In view of equations (3.17), we obtain

K̃e = bbKe − bgKe

[
grgKe + hKe

]−1 grbKe and

µ̇ = −
[
grgKe + hKe

]−1
(

he + grbKeḋ
)

.
(4.71)

The affinity to a pure continuum formulation can be illustrated when expanding the above
expression for the condensed stiffness matrix:

K̃e =

∫

Ωe

BTCB dV

−
∫

Ωe

BTCG dV



−Ae
s

V e

∫

Ωe

gTCG dV +

∫

∂sΩe

H dA





−1

−Ae
s

V e

∫

Ωe

gTCB dV





(4.72)

Assuming, for the moment, a constant strain state over the element domain, the integrals can
be eliminated from the formulation, yielding

K̃e = V eBT
[

C − CG
[
−Ae

sg
TCG + Ae

sH
]−1 (−Ae

sg
TC
)]

B

= V eBT
[

C − C(−G)
[
gTC(−G) + H

]−1
gTC

]

︸ ︷︷ ︸

C̃

B ; (4.73)

matrix C̃ representing the equivalent continuum tangent. This notion can be further explored,
if the direction of the displacement jump is assumed to be fixed, so that the enhanced variable
vector µ reduces to a scalar magnification of m according to

µ = ζm . (4.74)

Then, g and G are substituted by gm and Gm, respectively, finally rendering the equivalent
continuum tangent as

C̃ = C − C (−Gm) (gm)T C

(gm)T C (−Gm) + H
, (4.75)
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see also Wells [128]. Identifying gm as the gradient of the yield function and (−Gm) as the
gradient of the plastic potential, equation (4.75) identically reflects the, generally unsymmetric,
continuum tangent of an elasto-plastic material with non-associative flow rule and hardening
modulus H; compare to Cep, as defined by equation (2.80).

This finding suggests the possibility of a treatment of strong discontinuities within a pure
continuum formulation, as it was already motivated in Section 4.3. Although the formal
equivalence as derived above is exact only for the case of constant strain elements — due to
the elimination of the integrals in (4.73) — the continuum notion can be adopted in order to
develop a generalization of the concept. As will be elaborated in Section 4.5.1, this finally
facilitates a convenient algorithmic formulation for arbitrary finite elements. Furthermore, as a
consequence of the continuum concept, the enhanced degrees of freedom µ̇ can be eliminated
on integration point level — featuring the particular advantage that a static condensation
procedure on element level renders dispensable.

Remark. It should be noted that the non-symmetric character of the affine continuum tangent
(4.75) is a direct consequence of the adopted Petrov-Galerkin approach. The continuum
notion once more reveals the essential properties of the adopted SKON approach (cf. Section
4.4.1): statical and kinematical optimality, due to different choices regarding enhanced strain
trial and test function spaces (cf. equations (4.47) and (4.52), or alternatively, the respective
matrix forms (4.61) and (4.62)) — gained at the cost of symmetry. 2

4.5 Adaptation to a high-order finite element approach

With particular focus to a possible application within a high-order finite element framework,
the present section is dedicated to extending the so far developed concept. To this end,
Section 4.5.1 takes the discussion of Section 4.4.3 on and initially casts the strong discontinuity
formulation in a pure continuum format which dispenses with the restriction of one localization
plane per finite element. Subsequently, Section 4.5.2 presents a consequent reassessment of
the strong discontinuity kinematics, proving essential for the extension to high-order finite
element approximations.

4.5.1 Generalization of the concept

Based on the notion that each integration point of a finite element represents a volume of finite
size, the present section abandons the restriction of one localization plane per finite element
— instead, the possibility of separate and independent localization planes is postulated for
each integration point under consideration. An equivalent setting is adopted by Mosler &

Meschke [78, 80] and Mosler [75].

Subsequently, the basic lines of the formulation regarding Gauss point associated disconti-
nuities in dependence on Mosler & Meschke [78, 80] are developed. That followed, an
alternative notion to the problem is presented in Section 4.5.1.2.
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4.5.1.1 Formulation for Gauss point associated discontinuities

To begin with, we consider a material point in Ω± whose response is determined by deformation
localization in the adjacent discontinuity surface ∂sΩe with normal N . The behavior in the
bulk material be subject to Hooke’s law. Then, according to equation (4.35), the evolution
of stress in the bulk material is described by

σ̇ = C :
(

∇
sym ˙̄u − λ

(

∂,tg ⊗ ∇ϕ
)sym)

, (4.76)

where the term λ ∂,tg reflects the enhanced displacements rates µ̇, i.e., the jump JuKs at the
discontinuity surface, cf. equation (4.25)1. Furthermore, satisfaction of the previously derived
weak traction continuity condition (4.57)2 requires 6

1

V e

∫

Ωe

σ̇N dV =
1

Ae
s

∫

δsΩe

ṫs dA . (4.77)

In the present setting, the statement of weak traction continuity (4.77) must hold for every con-
sidered Gauss point i with associated localization surface ∂sΩ

(i) [78]. Figure 4.5 schematically
depicts the situation of a quadrilateral element with two Gauss points exhibiting localized
response.

1 2

34

N (2)

N (3)

∂sΩ
(2)

∂sΩ
(3)

Figure 4.5: Schematic sketch of a quadrilateral element with two localization surfaces associated to
Gauss points 2 and 3, respectively.

Considering a particular Gauss point and adopting equation (4.76), the left hand side of the

6To improve readability, the superscript •̂, denoting the stress field computed from the assumed strain by
evaluation of the respective constitutive law, is omitted here and in the remainder of the work. Since the
asssumed variable stress field has been removed from the formulation by means of the L2-orthogonality (see
Section 2.3.6) there is no further risk of confusion.
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weak traction continuity condition (4.77) can be reformulated as 7

1

V e

∫

Ωe

σ̇N dV

=
1

V e

∫

Ωe

[

C :
(

∇
sym ˙̄u − λ

(

∂,tg ⊗ ∇ϕ
)sym )]

N dV

=
[

C :
(

∇
sym ˙̄u − λ

1

V e



∂,tg ⊗
∫

Ωe

∇ϕ dV





sym
)

︸ ︷︷ ︸

σ̇

]

N , (4.78)

such that the rate form constitutive law now can equivalently be cast as

σ̇ = C :
(

∇
sym ˙̄u − λ

(

∂,tg ⊗ ∇ϕ
)sym)

, (4.79)

where

∇ϕ(X) :=
1

V e

∫

Ωe

∇ϕ(ξ) dV . (4.80)

Considering Proposition 4.4.1, we conclude: Adopting the so modified constitutive law (4.79)
together with equation (4.80) at integration point level, facilitates satisfaction of the weak
traction continuity condition (4.77) and hence, fulfills the variational equation (4.57)2.

A particular asset of this approach is the elimination of the enhanced degrees of freedom
µ̇ on integration point level, which consequently renders dispensable an otherwise required
static condensation procedure on element level. This also means that the overall structure of
the finite element algorithm remains unchanged by the incorporation of strong discontinuities
in the proposed manner — which features a distinct computational advantage. Adversely
assessed, on the other hand, can be the fact that evaluation of the constitutive response via
∇ϕ now incorporates element information — hence, a clear distinction between element and
material information is lost.

4.5.1.2 An alternative notion to the problem

Definition of the transmission function gradient ∇ϕ according to equation (4.80) closely re-
sembles the concept of nonlocal models (Pijaudier-Cabot & Bažant [95, 9]). The fun-
damental idea of nonlocal models is manifested by replacing a certain local variable by its
nonlocal counterpart and so allowing for the influence of the neighborhood on the consid-
ered material particle. In general, the nonlocal counterpart (•) of some local quantity (•) is
specified by

(•)(X) =

∫

Ω

a(X, ξ) (•)(ξ) dV , (4.81)

7Note, that for the considered integration point the quantities ts, m, N and ∇
symū are independent of X!
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where a(X, ξ) represents the nonlocal weight function, which frequently is taken as a function
of the distance between source point position ξ and considered material point (effect point)
position X, see e.g., Jirásek [51]. Characteristical, this distance is related to an internal
length scale l that is considered as a material parameter; further, the weight function is
constructed such that it attains its positive maximum at X and fades, often monotonically,
with increasing distance |ξ − X|. In addition, to facilitate the correct reproduction of a
constant local field, the nonlocal weight function must suffice condition

∫

Ω

a(X, ξ) dV = 1 ,∀X ∈ Ω . (4.82)

When adopting such a nonlocal model to materials that exhibit strain softening (see, e.g.,
references [8], [103] and [57]), the internal length scale l directly influences the extension of
the localization zone. The nonlocal formulation thus is employed as a localization limiter by
preventing the localized zone from contracting with further refinement of the discretization and
is therefore qualified as a regularization technique. Noteworthy, apart from the localization
limiter capability, nonlocal formulations also provide for a smoothing effect [41], which of
course directly correlates with the type of employed weight function.
To transfer this notion to our present setting we specify a nonlocal weight function as

a(X, ξ) :=
χe

Ve

,∀X ∈ Ω , (4.83)

where χe is defined according to (3.9); obviously, this definition suffices condition (4.82). Then,
with this weight function at hand, due to equation (4.81), the modified transmission function
gradient ∇ϕ according to equation (4.80) can readily be identified as the nonlocal average to
∇ϕ.

Adopting this view, nonlocal averaging motivates an alternative perception of the traction
continuity condition (4.77). To this end, the domain of a finite element is notionally split into
finite portions Ω(i) associated with the respective Gauss points, such that Ωe =

⋃ngp

i=1 Ω(i),
where ngp denotes the number of elemental Gauss points (Figure 4.6a). For each of these
subdomains the possible formation of a discontinuity plane δsΩ

(i) is accounted for. Then,
considering this partitioning for the formulation of the L2-orthogonality condition (4.49) and
the approach for the enhanced strain test functions (4.52), the traction continuity condition
(4.77) can finally be recast as

1

V (i)

∫

Ω(i)

σ̇N (i) dV =
1

A
(i)
s

∫

δsΩ(i)

ṫs dA , (4.84)

with V (i) and A
(i)
s representing volume respectively discontinuity surface area associated to

Gauss point i. Equation (4.84) must be fulfilled for each affected Gauss point.

Figure 4.6b schematically depicts the situation of a planar quadrilateral element, where two
Gauss points are subject to discontinuous response.
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Figure 4.6: (a) Schematic sketch of a quadrilateral element partitioned into Gauss point associated
subdomains Ω(i). (b) Formation of two localization surfaces associated to Gauss points
2 and 3, respectively.

Assuming a sufficiently high order of integration, rates of stress and traction can be consid-
ered as approximately constant over the correspondingly small domains Ω(i) and δsΩ

(i). In
consequence, equation (4.84) reduces to

σ̇N (i) = ṫs ; (4.85)

constituting a completely independent and Gauss point local treatment of the former integral
type traction continuity condition.

For the evaluation of the stress rate σ̇ in equation (4.85) now the notion of nonlocal averaging of
the transmission function gradient ∇ϕ is adopted. Accordingly the stress rates are determined
subject to (4.79) using the nonlocal average (4.80). As an important aspect of the nonlocal
averaging procedure a smoothing of the transmission function gradient ∇ϕ is introduced.
On the one hand, this smoothing effect indeed proves beneficial from a numerical point of
view; tests show that it considerably contributes to the robustness of the approach. On the
other hand, nonlocal averaging reflects the physical property that the kinematics of multiple
localization surfaces within one finite element are in fact not mutually independent.

The notion of nonlocal averaging also substantiates that via the transmission function under
the terms of (4.80) an element size related internal length scale is implicitly introduced into
the formulation.

4.5.2 Reassessment of the strong discontinuity kinematics

With special attention to a high-order finite element framework, this section resumes the
discussion and motivation of a suitable choice for the transmission function ϕ(X), respectively
its gradient ∇ϕ(X), put forth by the strong discontinuity kinematics of Section 4.1. There,
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it was already indicated, that the choice of ϕ(X) is not completely arbitrary — subsequently,
the decisive characteristics are elaborated and discussed thoroughly.

4.5.2.1 Equivalence of standard and reformulated discontinuity kinematics

Again, let us assume the situation of a body Ω with a localization surface ∂sΩ. Then, in view
of the previously described rate form constitutive framework, we restate the modified version
of the strong discontinuity kinematics (4.14) and write the enhanced strain rates within the
domain Ω as

ε̇ = ∇
sym ˙̄u − (Ju̇Ks ⊗ ∇ϕ)sym + (Ju̇Ks ⊗ N )sym δs . (4.86)

We recall that the modified version of strong discontinuity kinematics was initially motivated
by a more convenient treatment of the Dirichlet constraints (Section 4.1.2), furnished by
the displacement field decomposition (4.11):

u̇(X, t) = ˙̄u(X, t) + Ju̇K(X, t) (Hs(X) − ϕ(X))
︸ ︷︷ ︸

=:Ms (4.9)

, ∀X ∈ Ω (4.87)

The departure point for its development, however, was the standard form of strong disconti-
nuity kinematics, derived from a physically justified decomposition of the displacement field
into regular and jump terms according to (4.4):

u̇(X, t) = ˙̆u(X, t)
︸ ︷︷ ︸

regular

+ Ju̇K(X, t) Hs(X)
︸ ︷︷ ︸

jump term

, ∀X ∈ Ω (4.88)

To elaborate on the equivalence between the two formulations (4.88) and (4.87), it is important
to realize that in a general three-dimensional setting, the decompositions are relevant only to
those components of the displacement field that represent the direction of the displacement
jump m(X, t), which in a general setting can be a function of space and time. Thus, as
necessary conditions to assure the equivalence between the physical formulation (4.1) and the
algorithmically motivated formulation (4.8), we require the above equations (4.88) and (4.87),
respectively, to yield the same rates for the displacement component falling together with the
direction of the displacement jump m. At a given instant t, considering identity (4.7), we
formally enforce 8

( (
˙̄u(X) − Ju̇K(X) ϕ(X)

)
• m(X)

)

m(X)
!
=
(

˙̆u(X) • m(X)
)

m(X) , (4.89)

from which immediately follows, that

ϕ(X) =

(

˙̄u(X) − ˙̆u(X)
)

• m(X)

Ju̇K(X) • m(X)
. (4.90)

8The vector um resulting from the projection of u on the unit vector m is computed according to
um = u•m

|m|
m
|m| = (u • m) m
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In the present case we have, consistent with definition (4.32), m = const. with respect to
space; therefore equation (4.90) can be rendered in the alternative form

ϕ(X) =
1

ζ̇

(

˙̄u(X) − ˙̆u(X)
)

• m , (4.91)

where advantage was taken of the fact that m • m = 1.

4.5.2.2 Discretized setting

In the following, for further development of the approach within the framework of a finite
element context, we consider — as in Section 3.1.2 — the body Ω being represented by means
of a union of finite elements Ωe, so that Ω =

⋃nelm

e=1 Ωe. Then, the standard finite element
assembly procedure outlined in Section 3.1.2, manifests the continuum body’s response as
independently determined and subsequently assembled contributions of the individual finite
elements. Consequently, and conforming with this approach, we now associate the previously
derived strong discontinuity kinematics with the domain of one finite element Ωe, more pre-
cisely we set Ωϕ ≡ Ωe. The advantage of this specific choice is twofold. First, as already
alluded to in Section 4.1.2, since uh(X, t) = ūh(X, t) , ∀X ∈ ∂Ωe, the Dirichlet conditions
on ∂Ωe can conveniently be incorporated. Second, adopting this view, from equation (4.87) we
readily identify ˙̄u as the compatible displacement field spanned by the element basis functions.
At a given instant t we have:

˙̄uh(X) =

nN∑

i=1

NN
i (X) ḋ

N

i +

nE∑

i=1

NE
i (X) ḋ

E

i +

+

nF∑

i=1

NF
i (X) ḋ

F

i +

nB∑

i=1

NB
i (X) ḋ

B

i , (4.92)

where superscripts N , E, F and B denote the nodal, edge, face and internal (bubble) modes,
respectively.

Finally, to complete a formulation for ϕ(X), respectively its discretized form ϕh(X), that
satisfies both conditions (4.10) and (4.90), it remains to address the nature of the function
˙̆u(X) contained in (4.90). To this end, we consider a continuum body Ω subjected to a
displacement rate u̇(X). Let u̇(X) effect an active localization surface ∂sΩ within the body,
i.e., an increase of the jump amplitude ζ. Then, in virtue of the fundamental displacement
field decomposition (4.87), ˙̆u(X) describes the change of the displacement field in the domains
Ω+

ϕ and Ω−
ϕ adjacent to the discontinuity surface ∂sΩ (cf. Figure 4.2). Furthermore, consistent

with Proposition 4.3.1, deformation is concentrated into the localization zone, resulting in an
increase of the discontinuity, i.e., the displacement jump. This, in turn, reduces the amount of
traction that can be transferred across the localization surface — a result of the progressing
softening response. The important point is, that the adjacent domains Ω+

ϕ and Ω−
ϕ must

then unload to satisfy the traction continuity condition stated in Proposition 4.2.1. Notably,
this unloading behavior is of passive character since it is completely induced by the softening
response of the localization surface ∂sΩ. As a consequence, higher-order displacement rates
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˙̆u•m in the adjacent regions Ω+
ϕ and Ω−

ϕ will not be stimulated. This situation is comparable
to a prestrained continuum body that is subject to a change (release) of the prestraining
traction on its boundary.

From the foregoing argumentation we conclude:

Hypothesis 4.5.1. The order of interpolation for ˙̆u • m should be linear at most, a higher-
order interpolation would tend to enforce unphysical unloading patterns in the regions Ω+

ϕ and
Ω−

ϕ adjacent to the softening localization surface.

+=
[u̇ • m]

N NN

[ ˙̄u • m] [ ˙̂u • m]

Ju̇Ks

Figure 4.7: Decomposition of higher-order displacement rates with jump discontinuity

Additionally, equations (4.10) — which assure a proper representation of the Dirichlet

conditions at the element boundary ∂Ωe — together with equation (4.7) imply that

˙̆uh(X)
!
=

{

˙̄uh(X) − µ̇ ∀X ∈ ∂Ω+
ϕ

˙̄uh(X) ∀X ∈ ∂Ω−
ϕ

. (4.93)

As before, the displacement jump Ju̇Ks at the discontinuity surface is reflected in the element
local enhanced variables µ̇ := ζ̇m. An interpolation for ˙̆u(X) that both accounts for (4.93)
and reflects the low order interpolation requirement of hypothesis 4.5.1 can conveniently be
constructed from the element Ansatz functions as

˙̆uh(X) =

nN∑

i=1

NN
i (X) ḋ

N

i +

nE,F,B∑

i=1

NE,F,B
i (X) ḋ

E,F,B

i

︸ ︷︷ ︸

˙̄uh(X)

−

−
n

Ω+
∑

i=1

NN
i (X) µ̇ −

nE,F,B∑

i=1

NE,F,B
i (X)

(

ḋ
E,F,B

i • m
)

m . (4.94)

Observe, that the first subtracted term involves the nodal shape functions only of those nodes
that are associated with Ω+ — and therefore assures compatibility with the Dirichlet con-
straint (4.93). The last term, in turn, effectively eliminates the high-order contributions for
˙̆u • m, and thus satisfies the low-order interpolation requirement stated in Hypothesis 4.5.1.

With this definition at hand the transmission function ϕh(X), as defined by (4.91), is finally
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obtained as

ϕh(X) =
1

ζ̇

(

˙̄uh(X) − ˙̆uh(X)
)

• m

=
1

ζ̇

(
n

Ω+
∑

i=1

NN
i (X) µ̇ +

nE,F,B∑

i=1

NE,F,B
i (X) ḋ

E,F,B

i

)

• m

=

n
Ω+
∑

i=1

NN
i (X)

︸ ︷︷ ︸

ϕh,base

+
1

ζ̇

nE,F,B∑

i=1

NE,F,B
i (X)

(

ḋ
E,F,B

i • m
)

︸ ︷︷ ︸

ϕh,int

, (4.95)

where once more the identity m • m = 1 was exploited.

The so obtained definition of ϕh is constituted of a term ϕh,base reflecting the transmission
function commonly adopted for low-order finite elements (see, e.g., references [87], [100], [130],
[79] and [41]) and an additional ϕh,int term accounting for the possible effect due to higher-
order modes. It should be noted, that expression (4.95) represents a generalization of the
standard concept — in the absence of higher-order contributions it simply reduces to

ϕh(X) =

n
Ω+
∑

i=1

NN
i (X) . (4.96)

Remark. An alternative motivation for the derivation of function ϕh is set out as follows. As
alluded to in Section 4.1, ϕh essentially transmits the effect of the displacement jump to the
boundaries of the numerical localization zone, which in the model is represented by Ωϕ. For
low order finite elements with p = 1 due to the constrained kinematics the element essentially
localizes as a whole, such that the boundaries of the numerical localization zone indeed coincide
with the element boundaries ∂Ωe. Higher-order modes, on the contrary, are qualified to resolve
the discontinuity in a more localized manner, such that localization is restricted to a portion
of the element domain only. Consequently, the actual numerical localization zone no longer
is congruent with the assumed domain Ωϕ ≡ Ωe — an effect which must be reflected in
the transmission function ϕh. Viewed in this light, formula (4.95) exploits the higher-order
contributions as an adaptive measure for the extension of the actual numerical localization
zone and thus adjusts to the localization response independent of finite element size and
displacement field’s order of polynomial approximation. If we further consider, that in the
present approach the effect of the discontinuity is captured on continuum level, it appears
natural that the discontinuity’s actual discretization, possibly reproduced by higher-order
polynomial contributions, in some way must enter the continuum formulation.

Following up Hypothesis 4.5.1 and the argument outlined above, the commonly accepted notion
that ϕh only has to suffice conditions (4.10) — which facilitate a consistent representation of
the Dirichlet conditions at the element boundary ∂Ωe — and otherwise is arbitrary, appears
improper in a generalized framework. 2

The ‘base’ contribution to the transmission function ϕh(X) depends according to equation
(4.95) on the number of element nodes nΩ+ located in Ω+. In order to distinguish the various



88 4. Embedded strong discontinuities

(a) (b) (c) (d)

Figure 4.8: Schematic representation of four possible numerical localization modes for a hexahedral
element. Nodes in Ω+ are marked black, nodes in Ω− are marked white. (a) One node
in Ω+. (b) Two nodes in Ω+. (c) Three nodes in Ω+. (d) Four nodes in Ω+.

possible configurations, Mosler [75] introduced the term numerical localization mode. Figure
4.8 qualtitatively illustrates possible configurations for a hexahedral element.

Depending on the actual prevailing numerical localization mode, diverse definitions of the
regularizing function Ms (4.87) emerge. Figure 4.9 demonstrates two possible configurations
for Ms for the two-dimensional case by means of a quadrilateral element.

−1

 0

 1

−1

 0

 1

(a) (b)

Figure 4.9: Two possible numerical localization modes for a quadrilateral element. Shape of Ms

exemplified in the absence of higher-order contributions. (a) Discontinuity ∂sΩ crossing
two opposite element edges. (b) Discontinuity ∂sΩ crossing adjacent element edges.

With a view to the enhanced strain formulation according to (4.86), the derivation is finally
completed by establishing the corresponding gradient to ϕh as

∇ϕh(X) =

n
Ω+
∑

i=1

∇NN
i (X)

︸ ︷︷ ︸

∇ϕh,base

+
1

ζ̇

nE,F,B∑

i=1

∇NE,F,B
i (X)

(

ḋ
E,F,B

i • m
)

︸ ︷︷ ︸

∇ϕh,int

. (4.97)

The actual numerical evaluation of (4.95) and (4.97), respectively, is treated in Section 5.2.1.
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Chapter 5

A model for the simulation of brittle
mode-I material failure

The line between failure and success
is so fine that we scarcely know when we pass it.

– Elbert Hubbard.

In Section 4.3, a general framework for coupling embedded strong discontinuities with a plas-
ticity type discrete traction-separation law has already been discussed. The present chapter
finally carries over this concept to a specific formulation suitable for the simulation of brittle
mode-I material failure. The chapter is split into two main parts. The first part describes the
essential characteristics of the adopted model while the second part is devoted to algorithmic
aspects of the implementation.

5.1 Model characteristics

5.1.1 The Rankine criterion

Following up Section 4.3 we start with the adoption of the general form of admissible stress
space Eσ according to (4.26):

φ(σ, q) = ‖t‖ − q(α) (5.1)

Equation (5.1) can be further refined as

φ(σ, q) = t • m − q(α)

= (σ N ) • m − q(α)

= (m ⊗ N ) : σ
︸ ︷︷ ︸

tm

−q(α) (5.2)
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— i.e., by selecting an appropriate norm, the first term on the right hand side of (5.2) now
represents the traction component tm in the direction m at the discontinuity surface, where
the discontinuity surface is described by its normal N . If we further choose q = ‖ts‖ and
require φ(σ, q) 6 0, the local form (5.2) then effectively poses a restriction on the traction
component tm, in dependence of the kinematic variable α (cf. [75, 41]).

Subsequent derivations are based on the assumption of associative plasticity, i.e., hardening
law and flow rule are determined by the potentials h ≡ φ and g ≡ φ, compare equations (2.72),
(2.71) and (4.29). For this choice, we observe that

∂,σg ≡ ∂,σφ = m ⊗ N , (5.3)

so that in view of (4.37) we confirm the identity (4.38), i.e., λ = ζ̇. Further, from the evolution
equation (4.29)2 together with (5.2) and (4.38), we obtain

α̇ = λ
∂φ(σ, q)

∂q
≡ λ

∂φ(σ, q)

∂q
= −λ = −ζ̇ . (5.4)

With ζ denoting the amplitude of the displacement discontinuity, which in the context of
brittle material failure corresponds the the actual crack opening, equation (5.2) can be recast
in a physically motivated form:

φ(σ, q) = (m ⊗ N ) : σ − q(ζ) (5.5)

In this form, for the limit case φ(σ, q) = 0, it is obvious that equation (5.5) indeed describes
a discrete interface law.

Recalling m as the direction of the displacement jump, compare (4.32), an interface law
describing the behavior for mode-I separation is readily obtained by setting

m ≡ N . (5.6)

Doing so, the discrete form of the well-known Rankine yield criterion is recovered as

φ(σ, q) = (N ⊗ N ) : σ
︸ ︷︷ ︸

tn

− q(ζ)
︸︷︷︸

ft(ζ)

, (5.7)

where the admissible traction vector normal component tn is related to the tensile strength of
the material ft. The tensile strength in turn depends on the amplitude of the displacement
jump ζ, i.e., the crack opening, across the discontinuity surface ∂sΩ. Hence, the discrete
Rankine interface law furnishes a unique relationship between the admissible traction across
the (crack) interface, represented by the discontinuity surface ∂sΩ and the separation of the
disjoint parts Ω+ and Ω−.

Figure 5.1a depicts the Rankine yield function in the two-dimensional principal stress space.
Conforming with (5.7), the onset of inelastic deformation localization is characterized as the
instant when the maximum principal stress for the first time attains the tensile strength of
the material. Prior to that moment the material is — in a simplified manner — assumed to
exhibit purely linear elastic response.
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5.1.2 Softening relationship

A typical example for material failure is the formation of a crack in brittle materials. In this
context, the magnitude of the displacement jump represents the crack opening. Typically, the
amount of traction that can be transferred across the crack directly depends on its current
opening state. For mode-I material failure, the tensile strength ft is employed as equivalent
stress or rather equivalent traction. Since it is considered to be a decaying function in terms
of crack opening, it is usually referred to as softening relationship. As already alluded to
in Sections 1.1 and 1.2, for many materials the specific fracture energy Gf can be regarded
as a material constant. According to CEB-FIB Model Code [32] the specific fracture energy
for plain concrete is defined as the energy required to propagate a tensile crack of unit area.
Adopting the notion of constant fracture energy, softening relationships are based on the
requirement

∞∫

0

q(ζ) dζ = Gf . (5.8)

In this work, two variants of softening relationships obeying (5.8) are employed, a linear and
an exponential one. The exponential relationship, Figure 5.1b, is given as

q(ζ) = ftu exp

(

− ζ

ζu

)

, (5.9)

whereas the linear relationship reads

q(ζ) =

{

ftu

(

1 − ζ

ζu

)

for 0 < ζ 6 ζu

0 for ζ > ζu .
(5.10)

In both relations ftu denotes the uniaxial tensile strength and the auxiliary parameter ζu is
computed as

ζu :=
Gf

ftu

(5.11)

for the exponential law and

ζu := 2
Gf

ftu

(5.12)

in the linear softening case, respectively.

5.1.3 Determining the discontinuity normal

The considered constitutive model of Rankine type is characterized by a linear elastic pre-
peak behavior. Evaluation of the strong discontinuity condition (4.43) for the Rankine case
turns out to be particular convenient. It can be shown (see, e.g, Mosler [75]) that in this case
the strong discontinuity condition is identically satisfied for the direction of maximum principal
stress. The vector N ≡ m is therefore obtained as the direction of maximum principal stress,
an explicit evaluation of the strong discontinuity condition (4.43) is dispensable.
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arctan(H)

ftu

ftu
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ζu
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φ (σ, q(ζ))

(a) (b)

Eσ

Figure 5.1: Representative constitutive model for mode-I material failure: (a) Rankine failure sur-
face in the two-dimensional principal stress space, (b) fracture energy objective expo-
nential softening law

5.2 Algorithmic treatment

The principal objective of the constitutive algorithm is the evaluation of the previously es-
tablished constitutive relationship (4.79). Introducing the equivalences ∂,tg = m and λ = ζ
developed above, the constitutive relation is recast as:

σ̇ = C :
(
∇

sym ˙̄u − ε̇ϕ

)
∀X ∈ Ω \ ∂sΩ (5.13)

In equation (5.13), the symmetric second-order strain tensor ε̇ϕ is determined by the flow rule

ε̇ϕ = ζ̇
(
m ⊗ ∇ϕh

)sym
, (5.14)

with ∇ϕh being defined subject to (4.80) as

∇ϕh(X) :=
1

V e

∫

Ωe

∇ϕh(ξ) dV . (5.15)

The rate of the displacement jump amplitude ζ̇ takes over the role of the Lagrange mul-
tiplier λ in standard flow theory of plasticity. It is determined from the traction continuity
requirement in ∂sΩ, represented by the condition φ(σ, q) 6 0, where the yield function φ is
defined according to (5.7). In Section 4.3.2.1, we have already pointed out the formal equiva-
lence of this setting to a formulation resulting from the classical flow theory of plasticity. As a
consequence, standard algorithms of computational plasticity such as described, e.g., in Ortiz

& Martin [93], Simo & Hughes [114], Zienkiewicz & Taylor [135], Crisfield [23, 24]
or Jirásek [51], can be adopted with minor modifications. Due to the notion of assuring
the admissibility of the stress state subject to some yield condition, this class of algorithms
frequently goes by the name return mapping strategies or simply stress return algorithms. In
this work, an implicit scheme is employed and will be described in detail in Section 5.2.2.
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5.2.1 Computing the transmission function ϕ

In view of equation (5.13) we start by establishing the transmission function ϕh (4.95), respec-
tively its gradient ∇ϕh (4.97). Following the composition of equation (4.95), computation of
the transmission function ϕh is carried out in two steps — related to the respective contribu-
tions of ϕh,base and ϕh,int.

5.2.1.1 Identification of the nodal shape function basis contributions

Focusing for the moment on the nodal shape function contributions to ϕh, computation of
ϕh,base can be realized in a straight-forward and convenient manner. To clarify this, we consider
a sampling point — typically a Gauss integration point — with position vector X, located
inside a finite element with domain Ωe. We assume that for this integration point localization
is signaled and the discontinuity surface normal direction N is established according to Section
5.1.3. Then, the element nodes i lying in the direction of N , i.e., XN

i ∈ Ω+
e , can be identified

by a simple scalar product operation. Summing up the contributions of the associated shape
functions NN

i , finally furnishes ϕh,base. The structure of the resulting algorithm is illustrated
in Algorithm 5.1. The algorithm renders very efficient since no additional effort is required
to evaluate the nodal shape functions NN

i at the position X of the considered Gauss point
— the respective contributions are already available from the finite element displacement
approximation.

Algorithm 5.1: Computation of the transmission function ϕ

initialize ∀X ∈ ∂sΩe : ϕh,base = 0
for i = 0 to nN do

proj = (XN
i − X) • N

if proj > 0 then
ϕh,base = ϕh,base + NN

i

end

end

The procedure for computation of the actually required gradient ∇ϕh,base follows completely
analogous lines, with the only difference that in place of the nodal shape function contributions
NN

i , contributions of the respective gradients ∇NN
i are summed up.

The required average ∇ϕh,base according to equation (5.15) is numerically obtained by Gauss

integration. To this end, the above procedure is repeated separately for all Gauss points
within the element domain Ωe, the weighted contributions are summed up and finally divided
by the element volume V e.

Depending on the orientation of the discontinuity surface within the element and the element
geometry, the resulting transmission function gradient ∇ϕh,base may not be aligned with N .
As a consequence spurious strains might develop, such that a normal displacement in direction
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N of the discontinuity also induces significant lateral sliding along the discontinuity surface.
This, in turn holds the potential of spurious stress generation (stress locking). But even if
stress locking is avoided, the undesired sliding behavior can be the source of instabilities and
spoils the robustness of the procedure, also refer to [128]. The effect becomes particular severe
if the discontinuity surface is considered fixed and is not allowed to rotate with time, i.e.,
Ṅ = 0. An ad hoc remedy to overcome this pathological behavior, is the elimination of the
spurious lateral contributions from the transmission function gradient ∇ϕh,base by a coercive

alignment of ∇ϕh,base to N . Numerical tests confirm that this modification crucially improves
on the convergence behavior of the method, see also [128].

5.2.1.2 Higher-order contributions

From an algorithmic point of view it proves convenient to slightly revise the definition of
∇ϕh subject to (4.97). For this purpose, we recall that the essential characteristic of the
higher-order contributions is the adaptive scaling of the transmission function in order to
account for the kinematically improved representation of the discontinuity (cf. Section 4.5.2.2).
Exploiting this interpretation, we introduce a scalar factor c(ζ̇) to the previously established
basis contribution ∇ϕh,base, such that

∇ϕh = ∇ϕh,base c(ζ̇) , (5.16)

where

c(ζ̇) := 1 +

≈1
︷ ︸︸ ︷

h(ζ̇) ζ̇
∇ϕh,int • m

∇ϕh,base • m

= 1 + h(ζ̇)

[
nE,F,B∑

i=1

∇NE,F,B
i (X) (ḋ

E,F,B

i • m)

]

• m

∇ϕh,base • m
. (5.17)

The auxiliary function h(ζ̇) is introduced for numerical reasons in order to guarantee a well
defined behavior for ζ̇ = 0. It is constructed such, that for values ζ̇ > 0 it converges fast and
asymptotically against 1/ζ̇. Possible definitions are, e.g.,

h(ζ̇) :=
1

ζ̇ + ǫ exp(−ζ̇)
(5.18)

or

h(ζ̇) :=
1

√

ζ̇2 + ǫ
, (5.19)

where ǫ ≪ 1 ∈ R
+ denotes a small numerical constant.

Given the definitions (5.17) and (5.18) respectively (5.19), equation (5.16) represents an al-
gorithmically equivalent form of the original definition (4.97) of the transmission function
gradient ∇ϕh — regarding its effect in the direction m of the displacement jump.
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Figure 5.2: Family of auxiliary functions h(ζ̇) for different choices of parameter ǫ in comparison with
the graph of 1/ζ̇.

Figure 5.2 shows the graphs of a family of auxiliary functions h(ζ̇) for different choices of
parameter ǫ over a range 0 < ζ̇ ≪ 1. With a view to the required linearization, the exponential
type function (5.18) is preferable over type (5.19) due to the consistent curvature of the graph.
For the numerical analyses, equation (5.18) is adopted with a choice of parameter ǫ equal to
1.e−10.

5.2.2 Stress evaluation

Within the adopted finite element framework, for time tn+1 the incremental iterative overall
solution procedure provides an updated displacement field ūn+1, the corresponding strains
ε̄n+1 and the state variables (q, εϕ)n, which are related to the previous converged equilibrium
state at time tn. For this new deformation state now the corresponding updated fields σn+1

and (q, εϕ)n+1 are sought.

Hence, the intrinsic task of the stress return algorithm can be described as a mapping of the
form

(ε̄n+1,σn, ε
ϕ
n, qn) −→

(
ε̄n+1,σn+1, ε

ϕ
n+1, qn+1

)
∀X ∈ Ω \ ∂sΩ . (5.20)

Notably, the mapping is performed for X ∈ Ω \ ∂sΩ. By employing the traction continuity
condition for the interface law in ∂sΩ the need to explicitly consider the singular strains
εδ ∈ ∂sΩ is avoided. Instead, the effect of the discontinuity on the adjacent bulk material
is modeled. As a consequence, the otherwise required approximation of the Dirac-delta
distribution by numerical regularization [88] becomes completely dispensable.
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In order to establish such a mapping, the integration of the rate form constitutive relationship
(5.13) over the interval tn to tn+1 is required. In general, a closed form solution is — due to
the complexity of the constitutive relation — impossible to obtain, hence a numerical solution
procedure must be adopted. Such a scheme can be written generically as

xn+1 = xn +

tn+1∫

tn

ẋdt

≈ xn + (tn+1 − tn) (β ẋn + (1 − β)ẋn+1) (5.21)

with 0 6 β 6 1.

Depending on the choice of β different strategies are recovered. For β = 1 an explicit method
is established (Forward-Euler), where computation of the unknown state xn+1 is based exclu-
sively on information available from the known state xn. Such a procedure is computationally
convenient, it exhibits however all the well-known drawbacks regarding conditional stability,
i.e., sensitivity to the pseudo time step size ∆t = tn+1 − tn. Moreover, when transferred to
the present context, admissibility of the computed stress state at time tn+1, i.e., satisfaction
of φ(σn+1, qn+1) 6 0, is not guaranteed [135]. Choosing β = 0 on the other hand, renders
a fully implicit scheme (Backward-Euler) which offers the distinct feature of unconditional
stability. In addition, for this approach the admissibility of the computed stress state at time
tn+1 inherently is assured. The price for these benefits lies in the fact that now computation
of the unknown state xn+1 requires information of the unknown state itself, and therefore
indespensably entails an iterative process. Combined approaches with 0 < β < 1 are possible,
as well — this issue shall, however, not be further addressed in this work. Instead, owing to
the advantageous characteristics set out above, for the present context the notion of a fully
implicit Backward-Euler scheme is adopted. Due to its superior stability features, the im-
plicit scheme has gained increasing popularity and a huge amount of literature is available
on this topic. A comprehensive algorithmic overview is given, e.g., in Crisfield [23, 24],
Zienkiewicz & Taylor [135] and the work of Simo & Hughes [114] can be regarded as a
definitive book on this topic.

The essential ingredients of the implicit approach shall subsequently be elaborated. To this
end, we start by rewriting the constitutive relationship (5.13) in a corresponding incremental
form. At time tn+1 the stress state is dermined by

σn+1 = C :
(
∇

symūn+1 − ε
ϕ
n+1

)
. (5.22)

Adopting the Backward-Euler integration scheme, the inelastic strain ε
ϕ
n+1 is computed

subject to the flow rule (5.14) as

ε
ϕ
n+1 = εϕ

n + ∆ζ Gn+1 , (5.23)

where the symmetric second-order tensor εϕ
n denotes the accumulated inelastic strains in the

localization surface ∂sΩ at the previous time step tn and the, likewise symmetric, second-order
tensor

G :=
(
m ⊗ ∇ϕh

)sym
(5.24)
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has been introduced to simplify notation. Due to the Backward-Euler assumptions, the
increment of inelastic strain in (5.23) is completely determined by the state at time tn+1.

1

Analogously, we write the flow rule for the displacement like internal variable α according to
(4.29)2 as

αn+1 = αn + ∆ζ
(
∂,qφ

)

n+1
. (5.25)

With ūn+1 and state variables (q, εϕ)n being given, a trial stress state can simply be established
by assuming a non-localized response, i.e., taking ∆ζ = 0 in equation (5.23). If the so obtained
stress state suffices condition φ(σtrial

n+1, qn) 6 0, it is admissible and the assumption of a non-
localized response was justified. If on the other hand localization is signaled, then ∆ζ > 0
holds and from the Karush-Kuhn-Tucker conditions (4.30) we have the constraint

φ(σn+1, qn+1) = 0 . (5.26)

Equations (5.22), (5.23) and (5.25) then form a nonlinear system of equations that can be
solved for the unknowns σn+1, qn+1 and ∆ζ using any suitable iterative technique.

With the objective of developing such an iterative scheme, in what follows the Newton-

Raphson procedure is adopted due to its favorable quadratic convergence properties. Thereby,
we follow the basic lines given in [114] and later particularize the formulation with a view to
the present setting. We start by defining from equations (5.22), (5.23) and (5.25) the residuals

Rε := ∇
symūn+1 − εϕ

n − C
−1 : σn+1 − ∆ζ Gn+1 (5.27)

and

Rα := αn+1 − αn − ∆ζ (∂,qφ)
n+1 (5.28)

For subsequent use we also recall the previously established correlation H = −∂q/∂α, cf.
equation (2.78), which — accounting for the scalar character of q and α — in the present
context reduces to

Hn+1 := −
(

∂q

∂α

)

n+1

⇐⇒ H−1
n+1 := −

(
∂α

∂q

)

n+1

. (5.29)

Hence, a solution (σ, q,∆ζ) 2 to the nonlinear system of equations must satisfy the yield
condition (5.26) in consideration of the additional constraints posed by relations (5.27) and
(5.28) according to







Rε (σ, ∆ζ)
Rα (q,∆ζ)
φ (σ, q)






=







0
0
0






. (5.30)

1It should further be noted, that in the most general case G depends on the stresses σ via m, the jump
rate ζ̇ and also on the displacement gradient rates via the enhancement (5.17), which accounts for the internal
mode contributions.

2To clarify notation, the index (•)n+1 is omitted here and in the following. Within the Backward-Euler

approach, it is unambigous that all quantities are related to the instant tn+1.
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Assuming equations (5.30) are not satified for the current state (σ, q,∆ζ)k, an improved state
(
σ, q,∆ζ

)

k+1
=
(
σ, q,∆ζ

)

k
+
(
∆σ, ∆q,∆2ζ

)

k
(
α
)

k+1
=
(
α
)

k
+
(
H−1 ∆q

)

k

(5.31)

can be obtained by a linear extension around the state k. To this end, a truncated Taylor

series is applied to equations (5.27), (5.28) and (5.26) to finally render the linearized system
of equations







Rε

Rα

φ







k+1

=







Rε

Rα

φ







k

+







∆Rε

∆Rα

∆φ







k

!
=







0
0
0






(5.32)

with 3







∆Rε

∆Rα

∆φ







k

=





− (C−1 + ∂,σG ∆ζ) −∂,qG∆ζ − (G + ∂,ζG ∆ζ)
−∂,σ∂,qφ ∆ζ − (H−1 + ∂,q∂,qφ ∆ζ) −∂,qφ

∂,σφ ∂,qφ 0





k







∆σ

∆q
∆2ζ







k

.

(5.33)

The linear system of equations (5.32) could now be solved for (∆σ, ∆q,∆2ζ), the current
state k would be updated according to (5.31) and the whole process iteratively repeated until
condition (5.30) is satisfied within a specified tolerance. For the considered family of yield
surfaces (5.2), however, the linearized system of equations (5.32) can be further tapered,
furnishing a more efficient implementation. Employing (5.29) in accordance with the flow rule
(4.29)2, we note that

∆q = −H ∆α = −H
∂φ

∂q
∆2ζ (5.34)

Substituting this equivalence into (5.33) and accounting for ∂,qG = ∂,σ∂,qφ ≡ 0, furthermore
∂,q∂,qφ ≡ 0, the system of equations (5.32) is cast in an equivalent reduced form

[
(C−1 + ∂,σG∆ζ) (G + ∂,ζG ∆ζ)

∂,σφ −∂,qφ H ∂,qφ

]

k

{
∆σ

∆2ζ

}

k

=

{
Rε

−φ

}

k

. (5.35)

The just developed procedure can — due to its close connection to the principle of maximum
dissipation, cf. Section 2.4.2.1 — be interpreted as closest point projection strategy. This
notion is particularly justified in case of associated flow and hardening rules for which a
geometrical interpretation of the return mapping procedure is readily available, as illustrated
in Figure 5.3.

A compact strucure chart of the complete return mapping algorithm is provided in Algorithm
5.2.

3In the present tensorial notation, the matrix product in equation (5.33) must be interpreted in a slightly
different manner: components related to ∆σ are multiplied subject to a double contraction “:”, while for
components related to ∆q and ∆2ζ a standard single contraction “·” applies. For the actual numerical imple-
mentation, of course, the tensorial components are transferred to their respective matrix equivalents.
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∂Eσ (φn = 0)

∂Eσ (φn+1 = 0)

σn

σn+1
σtrial

n+1

Figure 5.3: Geometrical interpretation of the closest point projection algorithm.

5.2.3 Algorithmic constitutive tangent

In order to maintain the quadratic convergence properties of the global incremental-iterative
Newton-Raphson solution process, it is essential to assure the consistency of the employed
material tangent operator with the actual algorithmic formulation of the constitutive inte-
gration algorithm. The notion of a consistent tangent stiffness was established by Simo &

Taylor [118], it is frequently also referred to as algorithmic tangent stiffness [51]. In this
work we prefer the term algorithmic over consistent to emphasize the inherent difference to
the (also consistently derived) continuum tangent stiffness, which for the elastoplastic case has
already been defined by (2.80). Due to the popularity of implicit return mapping schemes,
the available literature on the topic of algorithmic tangent stiffness is just as comprehen-
sive. Representatively, the early work of Ortiz & Martin [93], dealing with the aspect of
symmetry-preservation of the approach, shall be mentioned.

As already alluded to in the previous section, starting from an equilibrium state at time tn with
a corresponding strain state ε̄n, the global solution process with each iteration k provides an
iteratively updated state ε̄n+1,k related to the current time tn+1 until convergence is reached,
i.e., equilibrium is fulfilled. The essential role of the constitutive algorithm in this framework
is the mapping of the strain state ε̄n+1,k to a corresponding stress state σn+1,k = θn+1(ε̄n+1,k),
resulting from a strain increase from ε̄n to ε̄n+1,k — where the mapping function θn+1(ε̄)
generally depends on the state variables of the previous equilibrium state at time tn. In place
of the continuum tangent (2.80)

Cep(ε̄) :=
∂σ

∂ε̄

the algorithmic tangent is then defined as

C
n+1
alg (ε̄) :=

∂θn+1(ε̄)

∂ε̄
. (5.36)

It is important to note that due to its dependency on the previous equilibrium state, the
mapping function θn+1 reflects the incremental character of the approach and therefore, in
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general

C
n+1
alg (ε̄) 6= Cep(ε̄) , (5.37)

unless ε̄ ≡ ε̄n.

To derive an algorithmic tangent formulation for the present setting, we extend the basic
lines set out in [114]. Differentiating the algorithmic constitutive relationship (5.22) and the
algorithmic flow rule (5.23), we obtain

dσn+1 = C :
(
dε̄n+1 − dε

ϕ
n+1

)
(5.38)

dε
ϕ
n+1 = ∆ζ ∂,σGn+1 : dσn+1 + (Gn+1 + ∆ζ ∂,ζGn+1) d∆ζ + ∆ζ ∂,ε̄Gn+1 : dε̄n+1 .

(5.39)

Substituting (5.39) into (5.38) yields

dσn+1 = Ξn+1 :
[(

I − ∆ζ ∂,ε̄Gn+1

)
: dε̄n+1 − (Gn+1 + ∆ζ ∂,ζGn+1) d∆ζ

]
, (5.40)

where the algorithmic fourth-order tensor Ξn+1 is defined according to

Ξn+1 :=
(
C

−1 + ∆ζ ∂,σGn+1

)−1
. (5.41)

In analogy to the continuum case, the result (5.40) is inserted into the algorithmic form of the
consistency condition (2.76)

∂,σφn+1 : dσn+1 + ∂,qφn+1 ∂,αqn+1 ∂,ζαn+1 d∆ζ = 0 (5.42)

⇔ ∂,σφn+1 : dσn+1 + ∂,qφn+1 (−H) ∂,qφn+1 d∆ζ = 0 (5.43)

in order to obtain the incremental Lagrange multiplier as

d∆ζ =
∂,σφn+1 : Ξn+1 :

(
I − ∆ζ ∂,ε̄Gn+1

)
: dε̄n+1

∂,σφn+1 : Ξn+1 : (Gn+1 + ∆ζ ∂,ζGn+1) + ∂,qφn+1 H ∂,qφn+1

. (5.44)

Finally, substituting (5.44) into (5.40) furnishes the expression for the algorithmic tangent
modulus as

C
n+1
alg :=

∂σ

∂ε̄

∣
∣
∣
∣
n+1

= Ξn+1 −
Ξn+1 : (Gn+1 + ∆ζ ∂,ζGn+1) ⊗ ∂,σφn+1 : Ξn+1 :

(
I − ∆ζ ∂,ε̄Gn+1

)

∂,σφn+1 : Ξn+1 : (Gn+1 + ∆ζ ∂,ζGn+1) + ∂,qφn+1 H ∂,qφn+1

.

(5.45)

5.2.3.1 Peculiarity for higher-order mode contributions

In the derivation of (5.45), we have tacitly assumed a dependency of G on ε̄, giving rise to
the term ∂,ε̄G. This dependency is due to the scaling factor c(ζ̇) (5.17) previously introduced
into equation (5.16), which accounts for the influence of higher-order modes. The nominator
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of (5.17) can be identified as the contribution of the internal modes to the normal strain rate
in the direction of the displacement jump m:

[
nE,F,B∑

i=1

∇NE,F,B
i (X) (ḋ

E,F,B

i • m)

]

• m = (m ⊗ m) : ˙̄ε
E,F,B

= ˙̄εE,F,B
mm . (5.46)

Using this cognition along with definitions (5.24) and (5.16), we rewrite the derivative ∂,ε̄G

as

∂G

∂ε̄
=
(
m ⊗ ∇ϕh,base

)sym ⊗
(

∂c( ˙̄εE,F,B
mm )

∂ε̄mm

∂ε̄mm

∂ε̄

)

. (5.47)

In the form of (5.47), the only term which can not be computed offhand, is the derivative
∂,ε̄mmc. To emphasize the dependency for the present context, the scaling factor c is denoted
as a function of the internal mode contributions, i.e., c = c( ˙̄εE,F,B

mm ). Hence, in view of (5.17)
it is evident that evaluation of

∂ ˙̄εE,F,B
mm

∂ε̄mm

(5.48)

is required to finally compute the sought derivative (5.47).

The coherence between strain rate contributions from internal modes and total strain rate
can, however, not be described analytically on the level of observation, i.e., material point
level. Hence, it is not possible to compute an exact algorithmic tangent in case internal mode
contributions are present.

Nevertheless, introducing the approximation

∂ ˙̄εE,F,B
mm

∂ε̄mm

≈
˙̄εE,F,B
mm

˙̄εmm

, (5.49)

i.e., assuming the portion of higher-order strain rate contributions to be constant, it is finally
possible to establish an approximate algorithmic tangent also for this extended case.

Clearly, the approximative character of the derivative (5.47) to a certain extent antagonizes
the quadratic convergence properties of the overall Newton-Raphson iteration process on
structural level. Therefore, in order to stabilize and accelerate the iterative process, the
standard Newton-Raphson procedure is enhanced by a secant-related Quasi-Newton sta-
bilization technique according to Crisfield [23] for the actual implementation. The scheme
is closely related to Quasi-Newton techniques such as the popular BFGS-method, named
after Broyden [19], Fletcher [42], Goldfarb [44] and Shanno [111]; for an overview see,
e.g., Luenberger [67].

5.3 Fixed or rotating discontinuity?

The plasticity formulation for mode-I failure in a strong discontinuity context developed in
preceding sections, relies on the basic assumptions of
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Algorithm 5.2: General closest point projection (Backward-Euler)

compute elastic trial stress σtrial
n+1 = C : (∇symūn+1 − εϕ

n)
compute yield function φ(σtrial

n+1, qn)
if φ(σtrial

n+1, qn) 6 0 then
(elastic response)
update:
ε

ϕ
n+1 = εϕ

n

αn+1 = αn

σn+1 = σn

qn+1 = qn

C
n+1
alg = C

return good
else

(localized response)
initialize:
ε

ϕ
n+1,0 = εϕ

n

σn+1,0 = σtrial
n+1

αn+1,0 = αn

qn+1,0 = qn

∆ζ0 = 0
for k = 0 to MaxIter do

compute Rε
k subject to (5.27)

if ‖Φ‖ < ǫ and ‖Rε
k‖ < ǫ then

update:
ε

ϕ
n+1 = ε

ϕ
n+1,k

αn+1 = αn+1,k

σn+1 = σn+1,k

qn+1 = qn+1,k

compute C
n+1
alg subject to (5.45)

return good

end
compute coefficent matrix subject to (5.35)
solve LSE (5.35) for (∆σ, ∆2ζ)k

update:
σn+1,k+1 = σn+1,k + ∆σk

∆ζk+1 = ∆ζk + ∆2ζk

ε
ϕ
n+1,k+1 = ε

ϕ
n+1,k + ∆2ζ Gn+1,k

αn+1,k+1 = αn+1,k + (∂,qΦ)
n+1,k

∆2ζk subject to (5.25)

qn+1,k+1 = qn+1,k − H ∂φ

∂q
∆2ζ subject to (5.34)

compute φ(σn+1,k+1, qn+1,k+1)
end
return bad

end
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• a general yield function of degree one according to equation (5.2),

• an associated flow rule and

• an associated hardening law.

However, the issue of characterizing the discontinuity itself has not yet been tackled, which
still offers the possibility for various sub-formulations of the model.

5.3.1 Rotating discontinuity

For the algorithmic derivation established so far, it has been tacitely assumed that both the
direction of the discontinuity normal N and the direction of the displacement jump m can
change with time, i.e., N = N (t) and m = m(t). In effect, also the tensor G (5.24) introduced
to the stress evaluation algorithm (Section 5.2.2) has to be considered as time dependent. This
general concept of a rotating discontinuity reflects the characteristics of rotating crack models
commonly adopted in the context of smeared crack models (e.g., Oliver [86], Jirásek [58]).

In the framework of strong discontinuities such a general concept is advocated by Mosler

[75, 76] and Mosler & Meschke [80].

To some extent, the concept of a rotating discontinuity contradicts the assumptions made
for derivation of the strong discontinuity kinematics, cf. Section 4.1, where the shape of the
discontinuity surface is assumed to remain unchanged over time. Based on this notion, algo-
rithmic formulations commonly rely on the assumption of stationarity regarding discontinuity
orientation and displacement jump direction, i.e., N = const. and m = const. (see, e.g.,
Oliver [88], Wells & Sluys [130], Feist [41]).

5.3.2 Fixed discontinuity

In the following, formulation of the model shall be specialized to the case of discontinuity
orientation and displacement jump direction being considered as invariant with respect to
time.

As already alluded to in Section 5.1.3, in case of the adopted Rankine yield condition with
linear elastic pre-peak range, the discontinuity normal N ≡ m is simply determined as the
direction of maximum principal stress. For the fixed discontinuity concept, this implies that
N is determined solely by the direction of principal stress at the onset of localization —
and remains unchanged in the further process. Hence, from ∂,σmn+1 = 0 it follows that
Gn+1 = G = const. (5.24), meaning that the direction of plastic flow remains constant. As a
consequence, the algorithmic modulus (5.41) reduces to

Ξn+1 = Ξ = C . (5.50)
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5.3.2.1 Modified kinematics

Once localization is initiated, the fixed discontinuity approach entails progress of localization
along the fixed direction m of the displacement jump. However, in all but the simplest
cases, in the progress of further loading stress redistribution effects will induce rotation of
principal stress axes. Thus, in the context of the adopted Rankine criterion for mode-I
failure, without further modification spurious shear stress transfer over the discontinuity may
develop and induce significant shear-locking effects. As a remedy, displacements tangential
to the discontinuity surface may be permitted which in effect prevents spurious shear stress
transfer. With N as the unit normal vector to the discontinuity surface ∂sΩ, the tangent unit
vectors T i with i = 1, . . . , 1 − ndim must suffice

N • T i = 0 for i = 1, . . . , 1 − ndim

T i • T j = 0 for i 6= j and i, j = 1, . . . , 1 − ndim .
(5.51)

The amplitude of the displacement jump in normal direction is denoted as ζn while the respec-
tive amplitudes of the tangential components are defined as ζt,i. Adopting these specifications,
the displacement jump across the discontinuity (4.32) is then rephrased as

JuKs = ζn N +

ndim−1∑

i=1

ζt,i T i . (5.52)

As before, the evolution of the normal traction component tn = (N ⊗ N ) : σ is ruled by the
traction separation law (5.7)

φn(σ, q) = tn − qn(ζn) . (5.53)

Accordingly, for the tangential traction components tt,i = (T i ⊗ N ) : σ a corresponding
interface relationship is defined as

φt,i(σ, q) = tt,i − qt,i(ζn, ζt,i) , (5.54)

where in general the stress like hardening variable qt,i also may depend on the amplitude of the
displacement jump in normal direction ζn. Under the the assumption of dominating mode-I
loading states, equation (5.54) may be simplified by setting

qt,i(ζn, ζt,i) = 0 , (5.55)

which corresponds to a zero shear retention factor (Mosler & Meschke [80]). It is impor-
tant to realize that for the considered mode-I failure the interface law for the normal traction
component is the primary condition which controls evolution of the discontinuity. The sec-
ondary interface laws for the tangential traction components are therefore activated only in
case mode-I induced localization has already occurred.
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In compliance with the decomposition of the displacement jump (5.52), the rate of the en-
hanced strain tensor (5.14) is rewritten as

ε̇ϕ = ε̇ϕn
+

ndim−1∑

i=1

ε̇ϕt,i

= ζ̇n Gn +

ndim−1∑

i=1

ζ̇t,i Gt,i , (5.56)

where the second order tensors Gn and Gt,i are defined due (5.24) as

Gn :=
(
N ⊗ ∇ϕh

)sym
(5.57)

Gt,i :=
(
T i ⊗ ∇ϕh

)sym
for i = 1, . . . , 1 − ndim . (5.58)

5.3.2.2 Analogy to multisurface plasticity algorithms

Utilizing above definitions for the stress evaluation algorithm, the strain residual (5.27) and
the residuals of the strain like internal variable (5.28) are redefined as

Rε := ∇
symūn+1 − εϕ

n − C
−1 : σn+1 − ∆ζn Gn,n+1 −

ndim−1∑

i=1

∆ζt,i Gt,i,n+1 (5.59)

and

{
Rα

n

Rα
t,i

}

:=

{
αn,n+1 − αn,n − ∆ζn (∂,qn

φn)
n+1

αt,i,n+1 − αt,i,n − ∆ζt,i

(
∂,qt,i

φt,i

)

n+1

}

i = 1, . . . , ndim − 1 , (5.60)

respectively. The extended system of equations is finally complemented by the constraints due
the active interface conditions:

φn(σn+1, qn,n+1) = 0

φt,i(σn+1, qt,i,n+1) = 0 i = 1, . . . , ndim − 1
(5.61)

The fixed discontinuity setting with extension to tangential sliding presented so far, is com-
pletely equivalent to the framework of multisurface plasticity. Consequently, the actual imple-
mentation facilitates adoption of concepts readily established in this context, see, e.g., Simo

& Hughes [114]. To this end, the solution of the system of equations determined by (5.59),
(5.60) and (5.61) for the updated stress state σn+1, softening state represented by qn,n+1,
qt,i,n+1 and jump amplitudes ζn,n+1 and ζt,i,n+1 in normal and tangential directions, respec-
tively, follows the same lines as set forth in Section 5.2.2 — i.e., by consistent linearization
and adopting a Newton-Raphson iterative procedure. Details of the algorithm are given,
e.g., in Simo & Hughes [114] or Lackner [66].
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5.3.3 Hybrid approach

The primary goal of the present strong discontinuity modeling approach is simulation and trac-
ing of non-intersecting macroscopic discontinuities within a continuum body. In this regard,
the fixed discontinuity concept would be the natural approach.

Decisive for the success of the fixed discontinuity approach, however, is the correct identi-
fication of the macroscopic discontinuity’s orientation at the onset of localization. A flawed
determination of the discontinuity’s orientation entails a high risk of introducing spurious stress
locking in the progress of further loading and even can completely block further propagation
of the localization zone.

In particular for brittle materials it can be observed that formation of a macroscopic discon-
tinuity (crack), in general is preceded by the development of secondary localization (microc-
racks) which must not necessarily be aligned with the macroscopic discontinuity path. Only
on further loading, these microcracks give rise to propagation of the macroscopic discontinu-
ity; either by alignment (rotation) and aggregation of multiple microcracks or by inducing
propagating stress and strain states, respectively. This cognition clarifies that identification
of the macroscopic discontinuity direction based on local stress and strain states, respectively,
can be misleading. Furthermore, in the context of the finite element method a material point
(e.g., Gauss point) in fact aggregates the effects within a finite volume, hence, this notion
becomes even more pronounced.

As a remedy, multiple cracking could be allowed for in the algorithmic implementation, see,
e.g., Jirásek & Zimmermann [58] for application in the context of a smeared model with
rotating cracks. Such an approach increases the algorithmic complexity, and at the same time
also considerably complicates the establishment of a numerically robust procedure.

An alternative conept is provided by strategies that employ additional nonlocal information
in order to correctly identify the macroscopic discontinuity direction. These strategies are
further discussed in Chapter 6.

In this work, a third approach is pursued. Accounting for the characteristic formation process
of a macroscopic discontinuity, a hybrid approach, combining rotating and fixed discontinuity
concepts, is devised. The model comprises two phases:

• Initiation phase:
After onset of localization has been signaled at a material point, a macroscopic discon-
tinuity starts to form. During this phase, the discontinuity’s orientation adapts to the
locally prevailing stress or rather strain state (rotating discontinuity approach).

• Propagation phase:
After a certain threshold is passed, the discontinuity is considered as macroscopic. From
now on, the orientation of the discontinuity is kept constant (fixed discontinuity ap-
proach). During the propagation phase, further loading will solely affect the amplitude
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of the displacement jump across the discontinuity, not the orientation of the discontinuity
itself.

A suitable threshold marking the transition between the two phases could be based on the
magnitude of the displacement jump across the discontinuity. For the actual implementation,
however, a dimensionless related quantity, identifying the decrease of the transmissible normal
traction across the discontinuity, is preferred:

ω :=
qn(ζn)

ftu

, (5.62)

with ftu denoting the uniaxial tensile strength of the material and qn reflecting the current
softening state of the normal traction interface law (5.53). The initiation phase is then bounded
by ω > ωthr while the propagation phase corresponds to values ω < ωthr.

Numerical tests indicate that ωthr ∈ [0.5, 0.8] represents a suitable range for the threshold
value ωthr. For analyses carried out in Chapter 6 a uniform value of ωthr = 0.5 is adopted.

Simulations performed in Chapter 6 are based on the adoption of tangential interface condi-
tions according to (5.55), corresponding to a zero shear retention factor, for the propagation
phase.

The actual implementation of the proposed hybrid approach offers the advantageous feature
of maintaining the single discontinuity concept on algorithmic level, which also significantly
enhances numerical stability. As illustrated further in Chapter 6, it contributes to stress
locking free propagation of the discontinuity under avoidance of elaborate nonlocal strategies.

Related concepts can be found in Jirásek & Zimmermann [59, 60]. In [59] the authors
advocate a rotating crack approach with transition to scalar damage in order to overcome
stress locking effects in the context of smeared crack modeling. A combination of smeared
crack and strong discontinuity formulation for triangular constant strain elements is presented
in [60].
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Chapter 6

Numerical studies

Everything will work just as you expect it to.
Unless your expectations are incorrect.

– Hyman Rosen.

The aim of the present chapter is the investigation of the capability of the embedded strong
discontinuity approach developed in foregoing Chapters 4 and 5 — with particular focus on
its application within a high-order finite element framework. To this end, numerical analyses
on various examples of structures exhibiting mode-I failure are carried out and discussed.

All simulations are performed on basis of a three-dimensional finite element discretization
using hexahedral elements. For the purpose of numerical simulation, the embedded strong
discontinuity modeling approach is implemented into the high-order finite element code AdhoC
[34] which is used exclusively for subsequent analyses.

6.1 Uniaxial tensile test

In dependence on the setting adopted in Section 1.1, we start with a simple model problem of
a bar loaded in uniaxial tension.

The model properties and the employed three-dimensional finite element discretization are
depicted in Figure (6.1). The bar has a uniform cross-sectional area of A = 0.5 m× 0.5 m. In
order to enforce a localized response despite the uniform geometry, the bar is supplied with
an ‘artificial’ imperfection zone — a region of extension 0.4 m with a slightly lower tensile
strength. For the numerical analyses this is realized, by assigning an increased tensile strength
by 1.25 % for the material outside the imperfection zone. The bar is clamped at one end. The
other end is subjected to a prescribed axial displacement load u which is applied uniformly
over the cross-sectional area in order to provide for a purely uniaxial response.
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During the analysis, the prescribed axial displacement u is increased monotonically up to a
maximum value of umax = 0.349 m, which corresponds approximately to the 8.72-fold value
of the theoretical crack initiation end section displacement of ucr = ftu

E
l = 0.04 m.

x

0.5m

limp = 0.4m

l = 2.0m

h
2
− 0.2m

h

u
rigidrigid

Elastic properties:

Young’s modulus E = 500.0 kN/m2

Poisson’s ratio ν = 0.0

Exponential softening law:

Tensile strength ftu = 10.0 kN/m2

Fracture energy Gf = 1.0 kNm/m2

Figure 6.1: Bar with imperfection: System and three-dimensional discretization

The purpose of this example is the elaboration of the basic assets and drawbacks of different
modeling approaches: classical continuum modeling without regularization, standard embed-
ded strong discontinuity and embedded strong discontinuity using the advocated p-adaptivity.
Subsequently, these are discussed in detail.

6.1.1 Classical continuum approach

In order to emphasize the notion set out in Section 1.1, a classical continuum modeling ap-
proach without any regularization is employed for the analysis of the problem outlined above.

To this end, we investigate in a first step three different discretizations, characterized by
different lengths h = 0.5 m, h = 1.0 m and h = 1.5 m for the localizing element, see Figure
6.1. The polynomial degree is kept constant with p = 1. Due to the simplicity of the model
problem, an analytical solution can readily be derived, which allows for a straight-forward
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assessment of the numerically computed response. Figure 6.2 plots axial stress over axial
displacement at the bar end section both for the theoretical and the numerically obtained
responses. It is evident that the numerical solution is not objective with respect to the finite
element size h. In complete accordance with the argumentation pictured in Section 1.1, the
numerical responses evidence an increasingly localized behavior with decreasing h. It should
be noted that due to the low-order polynomial approximation of the regular displacement
field with p = 1, the finite element which incorporates the imperfection zone localizes as a
whole, such that the extension of the numerical localization zone coincides with the element
dimension h. Therefore, for h = 1.0 m, the size of the numerical localization zone is by
coincidence ‘correct’, such that the fracture energy Gf can be reproduced and consequentially
the theoretical softening response is matched, see Figure 6.2.
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Figure 6.2: h-sensitivity of the standard continuum approach

Next, in order to investigate the sensitivity regarding the order of polynomial approximation,
a sequence of analyses is carried out with varying polynomial degree p = 1, 2, 3, 5 and constant
element size h = 1.0 m. The response curves in Figure 6.3 reveal a strong dependency on
the actual order of polynomial approximation p — such that with higher-order p the obtained
response is more localized. Higher-order polynomial approximation enhances the kinematic ca-
pabilities of the respective finite element; thus, with increasing p the extension of the simulated
softening zone decreases, furnishing a correspondingly decreased simulated fracture energy. In
conclusion, also in case of strain softening, an increasing order of polynomial approximation
p qualitatively corresponds to a decreasing finite element dimension h.

To summarize, simulation of material softening behavior with a non-regularized continuum
approach exhibits the well-known defects already discussed in Section 1.1. In particular it is
both

• not objective with respect to the finite element size h and
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• not objective with respect to the order of polynomial approximation p.
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Figure 6.3: p-sensitivity of the standard continuum approach

6.1.2 Embedded strong discontinuity approach

Having illustrated the deficiencies of the standard continuum approach, the present section is
devoted to investigating the capability of the embedded strong discontinuity approach (ESD)
by means of the same model problem.

6.1.2.1 Standard approach

We start by adopting the standard approach, i.e., employing the transmission function ϕh as
defined by equation (4.96). A sequence of analyses with fixed polynomial degree p = 1 and
varying element size h = 0.5 m, h = 1.0 m and h = 1.5 m supports the expected invariance
with respect to the size of the localizing finite element, see Figure (6.4). The embedded strong
discontinuity formulation properly captures the kinematics of the displacement jump indepen-
dently of the dimensions of the parent finite element and hence, reproduces the theoretical
fracture energy and softening path.

A sensitivity analysis regarding the order of polynomial approximation p, however, discloses
a strong dependency of the simulated softening response on the chosen polynomial degree p,
cf. Figure (6.5).

Explanation of this behavior is again based on the increased kinematic capability of higher-
order polynomials to approximate the displacement jump across the discontinuity surface.



6.1. Uniaxial tensile test 113

 0

 2

 4

 6

 8

 10

 12

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

Embedded strong discontinuity - standard approach

Axial displacement, end section u [m]

A
x
ia

l
st

re
ss

σ
[k

N
/m

2
]

theoretical
p = 1, h = 0.5 m
p = 1, h = 1.0 m
p = 1, h = 1.5 m

Figure 6.4: h-objectivity of the standard ESD approach
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Figure 6.5: p-sensitivity of the standard ESD approach
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As a consequence, the numerical localization zone does not extend over the whole element
domain anymore. This notion is confirmed by Figure 6.6. There, Gauss integration points
that exhibit localized response are visualized for two representative choices regarding the order
of polynomial approximation, namely p = 1 and p = 5. It is evident that for p = 1 all Gauss

points of the respective element respond localized in a uniform manner. By contrast, for p = 5,
the localized response is concentrated on a portion of the element domain, represented by two
Gauss point layers only. The effect of deformation concentration within a portion of the
finite element, however, is not accounted for by the embedded strong discontinuity approach
in its standard form, i.e., with transmission function ϕh being defined according to (4.96).
As a consequence, the regularizing effect of the approach is lost for higher-order polynomial
approximations of the regular displacement field.

Remark. It is exactly this observation on which the advocated p-adaptive extension of the
transmission function ϕh is founded; compare the discussion given in Section 4.5.2.2. 2

(a)

(b)

Figure 6.6: Extension of the numerical localization zone in dependence on the order of polynomial
approximation p. Gauss integration points exhibiting localized response for (a) p = 1
and (b) p = 5.

Interestingly, for p = 2 the theoretical softening path is reproduced by the numerical sim-
ulation, see Figure 6.5. This is obviously achieved despite the neglection of higher-order
contributions to the transmission function ϕh — which, at first, poses a contradiction to the
foregoing argumentation. Can this apparent inconsistency in rationale be resolved? Closer
inspection motivates an answer that is as simple as it is self-evident: the quadratic modes
are not activated at all for this model problem, which means that the computed responses
for p = 1 and p = 2 are completely identical, compare also Figure 6.3. The reason for this
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behavior lies in the fact that quadratic modes are qualified only to a limited extent to con-
tribute to an improved kinematic representation of the jump discontinuity. In the present case,
where the discontinuity surface is located at mid-span of the localizing element, the quadratic
modes completely fall short of improving the kinematic representation of the discontinuity.
This notion is graphically illustrated in Figure 6.7.

N N

[ū · m] [ū · m]

p = 2 p = 3

Figure 6.7: Poor qualification of quadratic modes to approximate displacement jump

In view of the above considerations, finite element formulations that rely on a formally inde-
pendent treatment of the regular and the discontinuous parts ū and û of the displacement
field (4.8), investigated, e.g., in [78] and [75], appear prone to exhibit a problematic behavior.

We conclude that — within the framework of embedded strong discontinuities — formally
independent approaches for the approximation of the regular and the discontinuous parts of
the displacement field are not admissible in general: As shown above, this procedure does not
guarantee objectivity of the results with respect to the order of polynomial approximation
p adopted for the regular displacement field. For the special case of p = 2 in conjunction
with a standard approach for the transmission function ϕh, this effect is less apparent — due
to the poor qualification of quadratic modes to improve the kinematic representation of a
displacement jump.

6.1.2.2 p-adaptive extension

In order to round out the picture, the model problem is finally reanalyzed employing the em-
bedded strong discontinuity formulation in conjunction with the p-adaptive extension, which
was developed previously in Section 4.5.

In the previous section, on the one hand the regularizing effect of the standard ESD-approach
regarding the elemental discretization h could be affirmed, on the other hand however, a
failure of regularization with respect to the order of polynomial approximation p was identified.
Following up these outcomes and with a focus on the elimination of this deficiency, now the
capability of the advocated p-adaptive extension to the embedded strong discontinuity shall
be investigated.

To this end, analyses with different polynomial degrees p = 1, 2, 3, 5, 7, 9 are executed. The
obtained results show that with increasing order of polynomial approximation p of the reg-
ular displacement field, also the approximation of the kinematics of the displacement jump
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Figure 6.8: Simulation with order of polynomial approximation p = 9 for the regular displacement
field. (a) Numerical localization zone and ‘crack opening’ at the final loading stage
umax = 0.349 m. (b) ‘Crack opening’ distribution along the bar.
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is improved — giving rise to a ‘contraction’ of the simulated softening zone; compare Fig-
ure 6.6 for p = 1, 5 and Figure 6.8 for p = 9. Considering the regular displacement field,
the distribution of the axial component approaches the theoretical discontinuous distribution
with increasing degree of polynomial approximation. Accordingly, the obtained axial strain
distribution represents an increasingly refined approximation of the theoretical singular strain
distribution. Figure 6.9 depicts the respective distributions obtained for the simulation with
p = 9; qualitatively, they should be compared to the distributions that originated from the
initial theoretical reflections, see Figure 1.4.
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Figure 6.9: Simulation with order of polynomial approximation p = 9 for the regular displacement

field. Axial displacement and axial continuum strain distribution along the bar at final
loading stage umax = 0.349 m.

In contrast to the ESD standard approach, the advocated p-adaptive extension accounts for
this improved kinematic representation of the displacement field. In consequence, it accom-
plishes a reproduction of the theoretical fracture energy and softening path, independent of the
order of polynomial approximation; Figure 6.10 gives a synopsis of the computed numerical
responses for the different choices of p and the theoretical softening path, which are apparently
congruent.

Due to the traction continuity condition, which is inherent to the strong discontinuity ap-
proach, the resulting stress field is expected to be regularly distributed — also and in par-
ticular across the discontinuity surface, represented by the numerical localization zone. This
notion is confirmed by Figure 6.11 rendering a uniformly constant distribution of the axial
stress component along the bar.
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Figure 6.10: Objectivity of the p-adaptive ESD approach
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Figure 6.11: Simulation with order of polynomial approximation p = 9 for the regular displacement
field. Axial stress distribution along the bar at final loading stage umax = 0.349 m.
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6.2 Notched bar

For the preceding model problem, due to the regular geometry, a localized response had to
be enforced by artificially introducing an imperfection zone with slightly reduced material
strength. In order to explore the case of a ‘natural’ discontinuity formation and evolution, the
present section analyzes a second model problem featuring a geometrical imperfection. To this
end, a notched bar which is again subjected to uniaxial tension is considered. Configuration
and adopted material properties can be seen from Figure 6.12.

x
y

l/2

h

t = 0.5 m l

1.0 m
u, Frigidrigid

Elastic properties:

Young’s modulus E = 500.0 kN/m2

Poisson’s ratio ν = 0.0

Exponential softening law:

Tensile strength ftu = 10.0 kN/m2

Fracture energy Gf = 0.2 kNm/m2

Figure 6.12: Symmetrically notched bar: System configuration and material properties. The bound-
ary edges in the notch region are of quadratic shape with ordinates according to
y = ±

(
0.5 − h + 4h

l2
(x − l

2)2
)
. For the actually investigated configuration, h = 0.3 m

and l = 1.0 m.

As before, the geometry is discretized by three-dimensional hexahedral finite elements. Two
spatial discretizations are investigated, see Figure 6.13. For the refined mesh with 148 elements
the curved boundary is approximated in a polygonal manner and for the corresponding finite
element geometry a standard trilinear mapping is adopted, cf. Section 3.3.2. Analysis on this
mesh is carried out using a polynomial degree of p = 1 for the approximation of the regular
displacement field. The second mesh consists of 5 elements, only. Here, the element edges
affected by the notch are no longer straight but reparametrized according to their quadratic
shape, cf. Figure 6.12. Mapping of the corresponding elements is then performed using
the blending function method as described in Section 3.3.2. The second mesh is employed
for analyses with higher-order polynomial degrees p = 3, 5, 7, 9 for the approximation of the
regular displacement field.
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(a) (b)

Figure 6.13: Symmetrically notched bar, three-dimensional discretization. (a) h-refined mesh with
148 elements. (b) finite element mesh with 5 elements used for higher-order polynomial
approximation of the regular displacement field.

The objective of the investigation is threefold. As a consequence of the tapered shape of the
bar, stress concentration at the notches occurs upon loading. Therefore, initiation of failure
is expected to take place at the notches, succeeded by a vertical progress of the failure zone
towards the center of the bar. In contrast to the preceding model problem, the present model
problem involves both phases, namely crack initiation and crack propagation. Hence, the
first objective is to investigate the capability of the ESD p-adaptive approach in view of the
extended issue. Further, the curved geometry puts forth non-constant Jacobian matrices
(cf. Section 3.1.2.1) for the corresponding finite elements — which directly incorporates into
the strong discontinuity formulation via the adopted approach for the transmission function
ϕh (4.95). Therefore, the second objective is to assess the quality of the ESD p-adaptive
formulation in view of this aspect. Finally, due to the relative simplicity of the model problem,
results obtained by the ESD standard approach for p = 1 on the h-refined mesh (Figure 6.13a)
are expected to be essentially equivalent to results of respective simulations with higher-
order poylnomial approximations of the regular displacement field using the ESD p-adaptive
extension on the coarse mesh, Figure 6.13b.

The analyses are performed under displacement control. Instead of increasing the loading by a
constant increment size, an automatic adaptive stepping scheme according to Crisfield [22,
23] is applied as an efficient action to reduce the number of load increments that are required
to sufficiently fine resolve the failure process. To this end, as a simple heuristic measure for
the ‘degree of nonlinearity’, the actual number ni

n of required global level Newton-Raphson

iterations to achieve equilibrium for the current load increment is adopted. The step length for
the subsequent load increment ∆λg

n+1
1 is then obtained by scaling the current one according

to

∆λg
n+1 = ∆λg

n

(
ni

n

ndes

)κ

, (6.1)

1In the context of the overall incremental iterative solution procedure, the total load vector, given by f ext,
to be applied to the dicretized initially unloaded system is scaled by a factor λg

n, which is then successively
increased. In order to avoid confusion with the plastic multiplier λ introduced in Section 2.4.2, the superscript
(•)g has been introduced, here.
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where the input parameter ndes represents the number of ‘desired’ iterations. Exponent κ is
motivated by Schweizerhof [110] who successfully introduced κ = 0.5 in order to smooth
possible strong oscillations in the computed step length. Following this approach, the same
choice was adopted for the present analyses.

Figure 6.14 shows a synopsis of the numerically computed structural responses for all per-
formed analyses. In case of a uniform cross-sectional stress distribution, the theoretical load
carrying capacity of the considered model problem would amount to Ac · ftu = 2.0 kN . How-
ever, as a consequence of stress concentration at the notches, this theoretical value can never
be reached but represents an upper bound. As Figure 6.14 demonstrates, this notion is con-
firmed by all numerical simulations. Due to stress concentration effects at the notches, crack
initiation starts already well before the capacity limit is reached, cf. Figure 6.16a. As a
consequence of the henceforth decreasing traction capacity of the ‘cracked’ regions, further
stress concentration develops at the tips of these regions — finally enforcing a propagation of
the localization zone towards the center of the bar until a through-going crack has formed.
This mechanism of localization initiation and successive propagation is nicely resolved by all
numerical analyses — both for the ESD standard approach with p = 1 on the refined mesh
and for the ESD p-adaptive approach for higher-order polynomial approximations p of the
regular displacement field, for which the higher-order contributions directly incorporate into
the strong discontinuity formulation via the transmission function ϕh (4.95). Exemplarily,
Figure 6.16 depicts the evolution of the localization zone up to the formation of a straight
through-going crack for the analysis with p = 9. Likewise, a plot of stress evolution along the
centerline of the bar, see Figure 6.15, illustrates both a decrease of traction transferred over
the discontinuity (crack) with increasing amplitude of the discontinuity (crack opening) and
an associated homogenization of the stress state along the bar.

Considering the responses according to Figure 6.14 it emerges that the different simulations
essentially yield equivalent results. Remaining differences can be attributed to the degree of
resolution of the initial stress concentration at the notches leading to localization initiation.
In consequence, it appears that the rather coarse approach with p = 3 for the approximation
of the regular displacement field somewhat overpredicts the structural load carrying capacity.
Higer-order approximations with p = 5, 7, 9 on the other hand show a convergent behavior.
When compared to the results of the analysis, executed on the refined mesh using a low-
order p = 1 approximation for the regular displacement field, the high-order analysis results
represent a higher degree of resolution of the localization initiation process.

Corresponding to the straight evolution of the discontinuity, Figure 6.17 illustrates the normal
vectors N of the Gauss point related discontinuity planes for different loading stages.
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Figure 6.14: Notched bar in axial tension. Synopsis of numerical response for h-refined mesh and re-
sponses for different degrees p of polynomial approximation for the regular displacement
field.
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Figure 6.15: Notched bar in axial tension. Axial stress distribution along the centerline, evolution
and homogenization with increasing axial displacement u at the free bar end. Analysis
with order of polynomial approximation p = 9 for the regular displacement field.
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(a) u = 0.01344 m (b) u = 0.01604 m

(c) u = 0.01671 m (d) u = 0.01855 m

(e) u = 0.02298 m (f) u = 0.0600 m

Figure 6.16: Notched bar in axial tension. Evolution of the discontinuity band with increasing axial
displacement u at the free bar end. Analysis with order of polynomial approximation
p = 9 for the regular displacement field.
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(a) u = 0.01604 m (b) u = 0.01671 m

(c) u = 0.0600 m

Figure 6.17: Notched bar in axial tension. Normal vectors of the Gauss point related discontinuity
planes at different loading stages. Analysis with order of polynomial approximation
p = 9 for the regular displacement field.
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6.3 Three point bending test

For the preceding examples, both the instantaneous formation of an end-to-end localization
zone as well as the gradual propagation of the discontinuity until a continuous localization
zone is established, have been analyzed. The prevailing stress state in these tests, however,
was still of predominantly uniaxial character. To carry on the discussion to a more general
situation, in the present section a three point bending test is analyzed.

The three point bending test represents a standard benchmark for the validation of numerical
models for tensile failure, see, e.g., Meschke et al. [71]. The principal system setup and
the adopted geometry are illustrated in Figure 6.18. The beam is affixed by pinned supports
arranged at the left and right hand side endings of its bottom side. One support is left free
to move horizontally in order to prevent the development of consequential constraint forces.
The beam is loaded by an imposed vertical displacement applied at midspan at the beam’s
topside.

1.0 m1.0 m

0.
5

m

0.
16

7
m

t = 0.2 mu, F

Elastic properties:

Young’s modulus E = 30000.0 MPa

Poisson’s ratio ν = 0.2

Exponential softening law:

Tensile strength ftu = 1.0 MPa

Fracture energy Gf = 0.1 kNm/m2

Figure 6.18: Three point bending test: System configuration and adopted material properties.

As a result of the loading conditions, the beam is predominantly subjected to bending, with the
highest tensile stresses developing in axial direction at the bottom side of the midspan cross-
section. This effect is yet amplified by the notch. In consequence, localization is expected to
be naturally induced at the tip of the notch and to subsequently progress in vertical direction
towards the point of load application.

Following up the discussion of Section 5.3, the objective of the investigation is the assessment
and extended motivation of the advocated hybrid discontinuity approach.
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To this end, for analysis of the three point bending test two models are contrasted;

• the fixed discontinuity approach (FDA) assuming zero shear retention due equation
(5.55), and

• the hybrid discontinuity approach (HDA), where for the propagation phase likewise zero
shear retention is assumed.

Analyses are based on a three-dimensional hexahedral finite element discretization, see Figure
6.19. Regarding the order of polynomial approximation for the regular displacement field, a
uniform degree of p = 1 is adopted. 2 Simulations are performed under pure displacement
control up to a final vertical displacement of u = 0.5 mm at the point of load application.
Adopted material properties are given in Figure 6.18.

Figure 6.19: Three point bending test, three-dimensional discretization using hexahedral elements.

6.3.1 Simulated structural response

In a first step, the analysis is run employing the fixed discontinuity approach. In order to
prevent spurious shear transfer across the discontinuity, zero shear retention according to
(5.55) is adopted.

Due to observed stability problems, the solution process is terminated at a stage corresponding
to a vertical displacement of u = 0.31 mm at the point of load application. By this time,
the obtained response curve, depicting load over vertical displacement at the point of load
application (Figure 6.20), does not exhibit a distinct maximum. Instead, it shows a monoton-
ically increasing behavior such that neither a structural load carrying capacity nor structural
softening response can be identified.

2The chosen finite element mesh along with the adopted low-order polynomial approximation yields a
rather coarse discretization of the problem at hand; it is, however, emphasized that the primary goal of
the investigation is a qualitative assessment of the respective characteristics of fixed and hybrid discontinuity
approach. Since quantitative aspects are of minor relevance in this context, the chosen discretization is regarded
as sufficiently fine to illustrate the principal differences inherent to the two approaches.
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The analysis is rerun, this time adopting the hybrid discontinuity approach with a threshold
value of ωthr = 0.5 (5.62) and likewise zero shear retention. As opposed to the foregoing
analysis stability problems are not observed and the simulation is continued up to a final
vertical displacement of u = 0.5 mm at the point of load application. Differences are also
manifest in the computed structural response. This time the corresponding response curve
clearly shows the expected pronounced maximum and softening response, cf. Figure 6.20.
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Figure 6.20: Three point bending test, load vs. vertical displacement at the point of load application.
Stress-locking for fixed discontinuity approach (FDA). Locking free response for the
advocated hybrid discontinuity approach (HDA).

6.3.2 Fixed discontinuity approach

Closer investigation of the numerical localization path reveals that localization indeed is trig-
gered at the notch tip and starts propagating vertically towards the load application point.
At a certain point, however, the localization pattern bifurcates in a diffuse manner. Figure
6.21 exemplarily depicts the state at a loading of u = 0.195 mm, where the initially unique
localization path has clearly branched out. The solution procedure obviously has bifurcated
to a secondary, spurious equilibrium path.

Upon thorough inspection, the reason for this behavior emerges as follows.

Figure 6.23 provides a magnification of the localization domain and illustrates the evolution
of the localization path with increasing loading of the beam. Depicted are the Gauss points,
grouped according to their finite element association. Shaded areas indicate localizing re-
sponse and lines represent normal directions of actual and potential localization planes at
the respective Gauss points. Potential localization planes are identified by the direction of
maximum principal tensile strain.
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Figure 6.21: Three point bending test, fixed discontinuity approach. Spurious localization pattern
at loading state u = 0.195 mm.

Clearly visible, already during the initial phase, the Gauss point related discontinuity planes
are not perfectly aligned with the macroscopic discontinutiy direction (Figure 6.23a–c). More-
over, it is noticable that the potential discontinuity planes ahead of the localization tend
towards a horizontal alignment, i.e., the respective normals are oriented (nearly) vertically.
The increasing misalignment of the Gauss point related discontinuity planes with the macro-
scopic discontinuity direction, finally blocks propagation of the discontinuity and triggers the
evolution of unphysical diffuse localization patterns, see Figure 6.23d–f. These localization
patterns are characterized by inconsistent orientation of the respective Gauss point disconti-
nuity normals.

It is important to note that this pathological behavior can only to a very limited extent
be alleviated by a refined discretization of the problem, as an illustration of the principal
structural load carrying behavior innervates. Figure 6.22 schematically sketches the flow of
forces through the structure by means of a simplified strut and tie model. The important
aspect is that due to the presence of the notch, the lower tie, representing the tensile zone
induced by bending, cannot proceed horizontally. This, on the other hand, entails the necessity
of a vertical tie positioned right above the notch in order to bybass it.

F

Figure 6.22: Three point bending test. Principal load carrying scheme illustrated by a simplified
strut (dashed lines) and tie (solid lines) model.

The effect is even amplified if starting from the notch tip a vertically propagating localization
path forms, such that the capacity of horizontal tensile stress stress transfer is continuously
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decreased — which would correspond to an extension of the notch; propagation therefore
additionally boosts the “by-passing effect”.

These considerations clarify, that presence of the notch (or corresponding localization zone)
indeed induces the formation of a predominantly vertically aligned tensile band above the
notch region. At a later loading stage these tensile strains may increase in such a way that
they even are responsible for localization initiation, giving rise to a nearly horizontally aligned
discontinuity ahead of the vertically aligned macroscopic discontinuity. In the context of the
FDA such a situation then would completely block propagation of the macroscopic discon-
tinuity. Figure 6.23f indeed illustrates the situation, where at the front of the localization
zone almost horizontally aligned Gauss point discontinuity planes have formed. Moreover,
the image of inclined lower ties (Figure 6.22) also illustrates that corresponding tensile strains
and stresses are not necessarily perfectly horizontal at the onset of localization.

In summary, the observations further encourage the perviously motivated notion (cf. Section
5.3.3) that identification of the macroscopic discontinuity direction based on the local strain
states at the onset of localization — as it is the case for the considered fixed discontinuity
approach — is not an appropriate means; instead the procedure is very likely to introduce
locking effects which can easily yield spurious localization patterns.

6.3.3 Hybrid discontinuity approach

Since the so far observed behavior for the fixed discontinuity concept exactly reflects the con-
siderations which led to the development of the hybrid discontinuity concept, it is interesting
to shed some more light on the behavior of the hybrid approach for this example.

In dependence on the discussion given in Section 5.3.3, the advocated hybrid approach dis-
tinguishes between initation phase and propagation phase. During the initiation phase, the
microscopic character of the discontinuity is accounted for by permitting continuous adap-
tation of the discontinuity direction to the possibly rotating direction of maximum principal
strain. This characteristic is maintained until a threshold, marking the onset of the propaga-
tion phase, is passed, cf. equation (5.62). Not until this point, the discontinuity is considered
as macroscopic and its orientation remains fixed.

Closer investigation reveals that the hybrid approach resolves previously observed problems
of locking and spurious localization. As evidenced by Figure 6.24a–c, the approach facilitates
the alignment of Gauss point related discontinuity planes with the vertical macroscopic dis-
continuity path in the process of further loading. As a consequence, locking effects are avoided
and localization propagates towards the point of load application along the expected vertical
path.

Figure 6.25 illustrates the progress of localization at the final loading state of u = 0.5 mm.
A unique localization pattern along the expected vertical path is observed. As can clearly be
seen, at this state of loading almost all deformation is concentrated into the localization zone,
which indicates a strong degree of energy dissipation as a result of the localization process.
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(a) u = 0.075 mm (b) u = 0.095 mm (c) u = 0.120 mm

(d) u = 0.145 mm (e) u = 0.158 mm (f) u = 0.195 mm

Figure 6.23: Three point bending test, fixed discontinuity approach. Spurious localization evolves
as a result of constrained adaptation of discontinuity orientation, leading to severe
stress-locking effects. (a)–(f) Gauss points in the vicinity of the localization domain
illustrating localization patterns at various loading stages. Lines indicate normal direc-
tions of actual and potential localization planes (direction of maximum principal tensile
strain).
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(a) u = 0.075 mm (b) u = 0.145 mm (c) u = 0.195 mm

Figure 6.24: Three point bending test, hybrid discontinuity approach. Correct representation of
macroscopic discontinuity orientation by orientation adaptation of microscopic discon-
tinuity planes, facilitating locking free propagation of the macroscopic discontinuity.
(a)–(c) Gauss points in the vicinity of the localization domain illustrating localiza-
tion patterns at various loading stages. Lines indicate normal directions of actual and
potential localization planes (direction of maximum principal tensile strain).

Figure 6.25: Three point bending test, hybrid discontinuity approach. Deformed configuration at
final loading state u = 0.5 mm (displacements scaled by a factor of 250).
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The advocated hybrid approach accounts for the multi-level character of the formation process
of a macroscopic discontinuity and, in conclusion, facilitates a locking-free self propagation of
the localization zone.

6.4 L-shaped panel

The L-shaped panel test has become a standard benchmark for validation of computational
models aiming at the numerical simulation of brittle, predominant mode-I failure. It has been
investigated by numerous researchers, both experimentally and numerically (e.g., Lackner

[66], Mosler [75], Oliver et al. [89] and Feist [41]).
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Figure 6.26: L-shaped panel: System configuration and material properties according to Winkler

[131].

Numerical analyses carried out subsequently are based on the setting adopted by Winkler

[131] for his test series A, which were executed on a plain concrete test specimen. Winkler’s
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experimental results have also been incorporated into the data base, set up by the Task Group
2.2 of the EU-Network Integrity Assessment of Large Concrete Dams (IALAD) 3.

The system setup and material properties determined by Winkler [131] are given in Figure
6.26. The lower horizontal edge of the specimen is clamped. A vertically acting point load F is
applied under displacement control at a distance of 30 mm to the end of the horizontal leg. The
chosen shape and loading conditions effect the onset of localization at the re-entrant corner.
Upon further loading, the localization zone (crack) starts to propagate into the interior of
the plate. As opposed to preceding examples, which yielded planar localization zones, for the
present case a curved shape is expected. Due to the — with regard to the panel’s boundaries
— non-aligned principal stress state prevailing in the vicinity of the re-entrant corner, the
localization zone initially propagates towards the interior of the plate at an angle. At later
loading stages progress is nearly horizontal. This behavior is also confirmed experimentally, a
detailed description of the observed crack propagation process is given in Winkler [131].

The objective of the present investigation covers two aspects. First, the capability of the
proposed p-adaptive ESD formulation to reproduce a curved discontinuity shall be assessed.
Of particular interest in this context is the evaluation of mesh bias sensitivity. As, e.g., reported
by Lackner [66] and Winkler [131] the numerically obtained crack paths are to a strong
degree attracted by the horizontal mesh lines and fall short of reproducing the theoretical —
and experimentally confirmed — initially curved shape of the localization zone. As for the
second aspect, the available test data also facilitates a quantitative conclusion regarding the
quality of simulated structural load carrying capacity and post-peak response.

For the analyses, again a three-dimensional finite element discretization using hexahedral
elements is adopted. Three different finite element meshes, illustrated in Figure 6.27, are
employed. All simulations are performed under displacement control using a constant incre-
ment size of ∆u = 0.01 mm. Since the investigation is not aiming at best possibly fitting
the numerical analyses to the experimentally obtained data, from the reported rather wide
scatter for the fracture energy Gf = 0.065 − 0.09 kNm/m2 simply an intermediate value of
Gf = 0.075 kNm/m2 is chosen and retained unchanged for all analyses.

6.4.1 Low-order polynomial approximation of the regular displace-

ment field

A first approach of the problem is based on simulations employing the three different finite
element meshes M-434, M-857 and M-1315 (Figure 6.27) along with a constant degree of
p = 1 for the polynomial approximation of the regular displacement field. The obtained
numerical responses are illustrated in Figure 6.28, where the applied load F is plotted over
the vertical displacement u at the point of load application. It emerges that analyses carried
out on the refined meshes M-857 and M-1315 yield almost identical response, with a somewhat
increased load carrying capacity and a slightly more pronounced ductile post-peak behavior
than analysis M-434. When compared to the experimental spectrum documented by IALAD,

3NW-IALAD Network Integrity Assessment of Large Concrete Dams. http://nw-ialad.uibk.ac.at
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(a) M-434 (b) M-857

(c) M-1315

Figure 6.27: L-shaped panel, three-dimensional discretization. Finite element meshes with (a) 434,
(b) 857 and (b) 1315 hexahedral elements.

cf. Figure 6.28, the numerically computed load carrying capacity complies remarkably well in
all three cases.

Investigation of the numerically identified localization zones — which represent the physical
crack paths — reveals that analysis M-434 fails to reproduce the curved shape of the crack
path in the vicinity of the re-entrant corner. The simulated localization zone extends from the
corner towards the opposite edge in a horizontal manner aligned with the finite element mesh,
see Figure 6.29b. The reason for this behavior is twofold. First, the chosen discretization is
not capable of resolving the stress and strain state around the re-entrant corner sufficiently
fine. In effect, localization planes associated with the respective Gauss points at the onset
of cracking are almost horizontal. Furthermore, due to the limited kinematic capabilities of
finite elements with low-order polynomial approximation of the regular displacement field,
once a localization plane at an element’s Gauss point is activated, orientation of the plane
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tends to dominate the behavior of the whole finite element. Therefore, if the initial direction
of the localization plane is aligned or almost aligned with the element edges, propagation of
the discontinuity is prone to follow the orientation of the finite element mesh. This effect is
frequently referred to as mesh bias, see e.g., Jirásek [59].
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Figure 6.28: L-shaped panel, load vs. vertical displacement at the point of load application. Il-
lustration of the computed numerical response for meshes M-434, M-857 and M-1315
using polynomial degree p = 1 for the approximation of the regular displacement field;
experimental spectrum according to IALAD. Elastic stiffness obtained from reference
solution using 22176 hexahedral elements and p = 1.

With further refinement of the finite element mesh, the strain and stress states leading to
onset of localization are approximated increasingly more accurate, such that the unfavourable
mesh bias effect is partially overcome. This notion is supported by the simulated localization
zones using the refined meshes M-857 and M-1315, see Figures 6.29c and 6.29d. Still, in
evidence there is some remaining alignment of the numerical localization zone to the element
topology in the vicinity of the re-entrant corner. In agreement with the already observed
almost identical response of analyses M-857 and M-1315 (Figure 6.28), also the computed
shapes of the respective localization zones show no qualitative difference, cf. Figures 6.29c
and 6.29d.

It is noticeable that the simulated initial pre-peak response is considerably stiffer than the
experimentally observed one; a fortiori, if one considers the initial loading stage to be ruled
by predominantly linear elastic material behavior, where localization effects are yet of minor
significance. In order to exclude locking effects due to insufficient resolution of the descretized
system, a convergence study for the linear elastic case is performed; on the one hand by
increasing the order of polynomial approximation p for the regular displacement field and
on the other hand by h-refinement of the employed finite element mesh. As a result, it is
concluded that analysis based on the chosen discretizations M-434, M-857 and M-1315 using
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(a) experimental scatter (b) M-434: p = 1

(c) M-857: p = 1 (d) M-1315: p = 1

Figure 6.29: L-shaped panel, numerically obtained crack patterns for finite element mesh M-434,
M-857 and M-1315 using order of polynomial approximation p = 1 for the regular
displacement field.
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a polynomial degree of p = 1 indeed approximates the initial elastic stiffness fairly well. For
comparison, the linear elastic response obtained from a reference mesh with 22176 hexahedral
elements, arranged in three layers over the thickness of the panel, using p = 1 is plotted in
Figure 6.28.

From this investigation, it is also confirmed that stress evolution in thickness direction of
the panel is of minor relevance, so that the plane stress assumption made by other analysts,
see e.g., [131], [89] and [41], poses an admissible simplification. In conclusion, differences
regarding the initial slope between analysis and experimental results cannot be explained by
numerical errors due to locking effects or insufficient refinement of the discretization; using the
given material properties, it is believed that the initial stiffness of the structure is reproduced
correctly by the chosen discretizations. Hence, for the following investigations, no attempt is
made to adapt the numerical solution to the experimentally obtained initial stiffness.

6.4.2 Discontinuity tracking

As set out in Chapter 4, the strain induced by the occurrence of displacement jumps is in-
corporated as incompatible elemental enrichment within the framework of enhanced assumed
strain methods. The embedded strong discontinuity approach therefore correctly captures the
effect of a discontinuity intersecting a finite element on the displacement field. Due to the
incompatible character of the enrichment, however, an inter elemental geometric continuity of
the discontinuity surface is external to the assumptions of the embedded strong discontinuity
approach.

In the context of fixed discontinuity approaches using low-order finite elements, the element
local character of the enrichment may trigger kinematic incompatibility of neighboring finite
elements, which may lead to severe locking, see, e.g., Jirásek [52], Wells [128].

As a remedy to avoid these situations and at the same time alleviate mesh bias effects men-
tioned above, strategies aiming at the reestablishment of a geometrically continuous disconti-
nuity path have been devised and applied in the context of low-order finite element approx-
imations. These strategies commonly go by the name tracking strategies. Concepts can be
distinguished into local and global tracking strategies, respectively (Oliver et al. [91]), and
hybrid methods (Feist [41]).

It is emphasized that these strategies are extraneous to the embedded strong discontinuity
approach and rely on nonlocal information, i.e., information in addition to the one supplied
by the considered material point and finite element, respectively.

Subsequently, a short highlight of the different strategies’ essential characteristics shall be
given.

Provided that information about the direction of propagation is given for all finite elements,
the local tracking strategy traces the discontinuity starting from a root element, where local-
ization was triggered, by exploiting knowledge about the element connectivity. This method
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is reported to be robust for two-dimensional cases exhibiting a single discontinuity line, in
case of three-dimensional settings, however, huge topological difficulties are encountered [91]
and this strategy is not practically applicable.

The global tracking strategy, on the other hand, relies on the establishment of a global po-
tential field from the likewise globally held information about the direction of propagation.
The potential field is constructed such that level sets then represent all admissible discon-
tinuity surfaces [91]. This strategy is consistently applicable both in two-dimensional and
three-dimensional settings, it is, however, not free of stability problems [41]. Moreover, com-
putational effort is increased considerably, since for every time increment identification of the
corresponding potential field requires the solution of a set of partial differential equations
which is in formal analogy to a stationary heat conduction boundary value problem [91].

The hybrid approach proposed by Feist [41] and applied in a two-dimensional setting, finally,
maintains the idea of the global tracking strategy, but circumvents the need for solution of
a large system of equations by also incorporating information about the element connectiv-
ity. The algorithm is, however, to a fairly strong degree dependent on the topology of the
adopted type of finite element and likewise not easily extended to three-dimensional situa-
tions. Additional expense is entailed by the fact that required information about the direction
of propagation is established by a nonlocal averaging procedure. This procedure is based on
the cognition that the strain and stress states computed locally at a material point only repre-
sent a crude approximation to the actual ones, e.g., Jirásek & Zimmermann [60], therefore
calculation of the direction of propagation based on local information only, can lead to locally
erroneous results (Feist [41]).

The bottom line of the diverse tracking strategies can be described as the identification of
those material points and corresponding directions for which localization is considered feasible
in order to ensure a continuous localization path. In essence, tracking procedures are means to
restrict the occurrence of localization to those elements or material points which are indicated
by the algorithm. Implicitly, this also may lead to exclusion zones in which localization, e.g.,
due to secondary cracking, is artificially prevented.

The overall rather expensive character of discontinuity tracking strategies, has triggered recent
research efforts towards formulations that aim at circumventing the need for those strategies,
see, e.g., Oliver et al. [90], Sancho et al. [107, 106, 108]. Also from a theoretical point of
view, it is not obvious that localization path continuity must be enforced in order to provide
for a meaningful discontinuity propagation and avoid locking.

In fact, as for the proposed p-adaptive ESD approach we devise the expectancy that enforce-
ment of a continuous localization path is dispensable for the following reasons:

• Raising the order of polynomial approximation for the regular displacement field provides
for an increased quality of resolution of strain and stress states. Therefore, localization
initiation is expected to be captured with increased precision both regarding the onset
of localization and its direction of propagation. This holds in particular, when compared
to approaches based on constant strain finite element discretizations.
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• Due to the increased kinematic capability, higher-order finite elements are much less
prone to locking behavior. As discussed in preceding examples, the proposed p-adaptive
ESD formulation facilitates a concentration of the localization zone to a portion of the
element. Shape of the discontinuity path is therefore less sensitive to mesh topology. In
consequence, mesh bias issues are anticipated to have an inferior impact.

• The advocated concept of a combined rotating – fixed discontinuity approach (cf. Sec-
tions 5.3 and 6.3) allows for initial secondary cracking without prevention of macroscopic
crack propagation.

6.4.3 Higher-order polynomial approximation of the regular dis-
placement field

In order to shed further light on the expectations motivated in the preceding section, the
numerical study of the L-shaped panel is continued by increasing the order of polynomial
approximation p for the regular displacement field.
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Figure 6.30: L-shaped panel, load vs. vertical displacement at the point of load application. Illustra-
tion of the computed numerical response for mesh M-434 using polynomial degree p = 1,
p = 3 and p = 5 for the approximation of the regular displacement field; experimental
spectrum according to IALAD.

Starting with finite element mesh M-434, the respective response curves obtained for polyno-
mial degree p = 3 and p = 5 show a very similar post-peak behavior, see Figure 6.30. When
compared to the response obtained by adopting p = 1 on the same mesh, post-peak behav-
ior proves to be slightly more ductile for the higher-order polynomial approximations. The
simulated load-carrying capacity is marginally increased (Figure 6.30).
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As for the refined meshes M-857 and M-1315 the situation is similar. Increasing the order
of polynomial approximation yields a more pronounced ductile post-peak behavior and at
the same time the predicted load carrying capacity is slightly reduced when compared to
the respective analyses with polynomial degree p = 1 (Figure 6.31). The slight reduction
in load carrying capacity for the higher-order p analyses can be attributed to the improved
numerical resolution of the localization initiation process. Notably, computed responses for
all higher-order p analyses show a convergent behavior, manifested by good correspondence
of the obtained response curves, cf. Figure 6.31. The computed load carrying capacity of
∼ 7.4 kN fits the experimentally observed range very well (Figure 6.31).

Assessing the simulated localization patterns, it is observed that the expected curved shape
of the localization path in the vicinity of the re-entrant corner is resolved considerably better
with higher-order polynomial approximations p of the regular displacement field. Adopting a
polynomial degree of p = 3 on the initial mesh M-434 features already a significantly improved
representation of the localization path (Figure 6.33c) — even when compared to patterns
obtained by low-order polynomial approximations p = 1 on the refined meshes (Figures 6.34b
and 6.35a). This observation also holds for the simulated structural response: Even a moderate
increase of the order of polynomial approximation from p = 1 to p = 3 leads to an almost
congruent prognosis of structural load carrying capacity and very similar post-peak responses
for all three investigated finite element meshes, cf. Figure 6.32.

The already constituted convergent behavior of the response curves is also reflected in the
obtained localization patterns for the analyses on refined meshes M-857 and M-1315. As
Figures 6.34c, 6.34d and 6.35b illustrate, the respective shapes of localization zones are nearly
identical — moreover, they represent a fairly good approximation to the experimental scatter
according to IALAD (Figure 6.34a). The slightly increased ductility in response, inherent to
the analyses with higher-order polynomial approximation p, can be attributed to the improved
resolution of the localization path and is likewise supported by experimental data.

Figure 6.36 exemplarily depicts the deformed configurations at the final loading state u =
1 mm, obtained from meshes M-857 and M-1315 using an order of polynomial approximation
of p = 5 and p = 3, respectively. It is evident that almost all deformation concentrates into
the localization zone. The portions of the panel (almost) separated by the localization zone
essentially undergo rigid body motion — indicating that the stored energy is dissipated almost
completely by the localization process.

In conclusion, the performed analyses support the assumptions set forth above. Raising the
order of polynomial approximation for the regular displacement field significantly enhances
the quality of the predicted shape of the localization zone, fairly insensitive to mesh topology.
No locking effects are observed and the solution shows a convergent behavior both regarding
structural response and predicted localization pattern. The important point is, that this is
achieved while maintaining a high degree of locality of the algorithmic formulation — in fact,
the only nonlocal ingredient is the smoothed transmission function ∇ϕh according to (5.15),
which still is of element local character. The proposed p-adaptive ESD formulation dispenses
with algorithmically and computationally elaborate, highly nonlocal tracking strategies, in-
stead a self propagating discontinuity can be established.
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Figure 6.31: L-shaped panel, load vs. vertical displacement at the point of load application. Il-
lustration of the computed numerical response for refined meshes M-857 and M-1315
with increasing order of polynomial approximation for the regular displacement field;
experimental spectrum according to IALAD.
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Figure 6.32: L-shaped panel, load vs. vertical displacement at the point of load application. Il-
lustration of the computed numerical response for meshes M-434, M-857 and M-1315
using polynomial degree p = 3 for the approximation of the regular displacement field;
experimental spectrum according to IALAD.
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(a) experimental scatter (b) M-434: p = 1

(c) M-434: p = 3 (d) M-434: p = 5

Figure 6.33: L-shaped panel, numerically obtained crack patterns for finite element mesh M-434 and
varying order of polynomial approximation p = 1, p = 3 and p = 5 for the regular
displacement field.
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(a) experimental scatter (b) M-857: p = 1

(c) M-857: p = 3 (d) M-857: p = 5

Figure 6.34: L-shaped panel, numerically obtained crack patterns for finite element mesh M-857 and
varying order of polynomial approximation p = 1, p = 3 and p = 5 for the regular
displacement field.
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(a) M-1315 p = 1 (b) M-1315: p = 3

Figure 6.35: L-shaped panel, numerically obtained crack patterns for finite element mesh M-1315 and
varying order of polynomial approximation p = 1, p = 3 for the regular displacement
field.

(a) (b)

Figure 6.36: L-shaped panel, deformed configuration at final loading state u = 1 mm for (a) mesh M-
857 with a polynomial degree of p = 5 for the approximation of the regular displacement
field and (b) M-1315 with a polynomial degree of p = 3 for the approximation of the
regular displacement field (displacements scaled by a factor of 100).
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In order to give an idea of the number of degrees of freedom and corresponding computational
cost, Figure 6.37 compares the observed CPU times for various refinement degrees and order
of polynomial approximation. It should be noted, however, that the number of corresponding
linear equation system solution sequences considerably scatters as a result of the iterative
solution procedure (cf. also the discussion in Section 5.2.3.1). Therefore, assessment of these
numbers should be made with care.

M-434 DOF CPU-time [s] time/DOF [s]

p = 1 2770 862 0.31
p = 3 5842 6428 1.10
p = 5 11026 34781 3.15

M-857 DOF CPU-time [s] time/DOF [s]

p = 1 5362 2475 0.46
p = 3 12082 16448 1.36
p = 5 11186 35021 3.13

M-1314 DOF CPU-time [s] time/DOF [s]

p = 1 8134 4242 0.52
p = 3 19910 37761 1.90

Figure 6.37: CPU-times for various refinement degrees and order of polynomial approximation p
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Chapter 7

Conclusive remarks

Daring ideas are like chessmen moved forward;
they may be beaten but they may start a winning game.

– Johann Wolfgang von Goethe.

Today, the finite element method along with its various specifications is an indispensable tool in
many engineering disciplines. As computer power increases and numerical models get further
refined, its field of application is extended more and more towards complex scenarios — with
the goal of highly realistic simulations of the underlying physical or chemical processes. In
the field of structural analysis, which was focused in this work, safety and profitability issues
determine the increasing importance of numerical assessment of structural failure or failure
of structural components. To this end, the extension of modeling approaches is required with
respect to loading regimes far beyond the spectrum of serviceability loads.

The present work concentrated on material induced failure phenomena. Closer investigation
of these processes reveals, that failure is often preceeded by the formation of a process zone
in which damage and other inelastic effects accumulate, and in which high strain gradients
prevail. As illustrated in Chapter 1, it is this phenomenon of strain localization or deforma-
tion localization which substantiates the insufficiency of the classical continuum mechanical
approach to this class of problems. Modeling approaches to overcome this deficiency are
presently almost exclusively developed in a low-order, mostly constant-strain, finite element
framework. Investigations for linear and nonlinear elliptic boundary value problems, however,
have shown that high-order finite elements yield very efficient discretizations when compared
to low-order h-version finite element approximations [37, 38, 36, 97, 84]. So, it was two essential
aspects that constituted the motive force for this work:

• The argument, that it is not only desirable from an academic point of view to extend the
scope of high-order finite elements to the field of deformation localization and material
failure and
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• the notion, that a high-order finite element approximation, due to its robust and rich
kinematics, is qualified to contribute to an effective locking-free modeling approach also
for the considered problem field of deformation localization and material failure.

Consistent advancement of both thoughts finally led to the development of the proposed p-
adaptive embedded strong discontinuity formulation (Chapter 4).

• With particular focus on large scale analyses, a macroscopic view of the failure process
was adopted; leading to enhancement of the classical continuum model by the possible
incindence of strong discontinuities, i.e., jumps in the displacement field. This procedure
also reflects the multi-scale character of the failure process.

• The effect of these discontinuities was incorporated into the three-dimensional finite
element formulation in terms of an element enrichment ; this mathematical incorpora-
tion offers the particular advantage of a widely discontinuity independent finite element
topology; it dispenses, e.g., with elaborate mesh adaption strategies [66]. The variational
framework for this formulation is posed by the generalized Hu-Washizu functional and
closely follows the concept of enhanced assumed strains.

• As opposed to previous works, a consistent formulation regarding the adoption of a high-
order finite element basis was established as a generalization of the standard approach.
It could be shown that the commonly accepted strategy for incorporation of strong
discontinuities is no longer sufficient in a generalized context. The extended p-adaptive
formulation was then deduced based on a novel reassessment of the strong discontinuity
kinematics.

• The formulation is cast on continuum level, which features an efficient elimination of the
additional degrees of freedom, associated with strong discontinuities, already within the
scope of the constitutive algorithm.

The p-adaptive embedded strong discontinuity approach was then specialized for the case of
brittle predominant mode-I material failure in Chapter 5. Accounting for the multi-phase
character of the failure zone formation process, the idea of a hybrid discontinuity approach
was developed. Numerical examples presented in Chapter 6, demonstrate the advocated ap-
proach’s consistency in a high-order finite element framework. In interaction with the hybrid
discontinuity concept, an approach was established that allows for a virtually locking-free soft-
ening response. Notably, the algorithmic formulation maintains a high degree of locality and
does not rely on elaborate strategies of highly nonlocal character. A benchmark simulation of
a plain concrete test, not only supports validity of the model, it also confirms that mesh bias
issues are significantly alleviated by increasing the polynomial order of displacement approxi-
mation. Finally, as the example illustrates, high-order p-extensions yield a superior resolution
of the failure process compared to corresponding low-order finite element approaches.

Future directions

Inspired by the work on this topic and based on the findings of this thesis, several aspects of
desirable future research evolve:
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• Extension of the material model
The present model for brittle predominant mode-I material failure could be adapted
to a more realistic representation of plain concrete characteristics. This could as a first
step, e.g., involve the incorporation of damage effects on the elastic stiffness which would
extend the range of application from montonic to cyclic loading conditions. As a second
aspect, of course, combination with nonlinear response under compressive stress states
would have to be considered. Furthermore, range of application could be extended in a
straight-forward manner to a different context by accounting for situations of predomi-
nant mode-II or combined mode material failure; as it is, e.g., the case in shear banding
in metals or soils.

• Algorithmic variation
Instead of casting the p-adaptive embedded strong discontinuity approach in a pure
continuum format, the enhanced degrees of freedom of the Gauss point associated
discontinuities could be treated on element level in analogy to the enhanced assumed
strain approach. Though this would entail the necessity of statical condensation of
the enhanced degrees of freedom on element level, such a procedure could be beneficial
for the performance of the solution process since then a consistent linearization of the
problem is feasible.

• Extension to a finite deformation setting
Due to the fact that in many cases structural failure is accompanied by large defor-
mations, it appears reasonable to extend the approach to the geometrically nonlinear
case.

• Enrichment based on the partition-of-unity concept
A completely different strategy is provided by the partition-of-unity concept [70, 5]. It
is attractive since it offers the possibility to incorporate arbitrary functions into the fi-
nite element Ansatz space, i.e., discontinuous functions representing displacement jumps
render an admissible option. In a two-dimensional setting, such a procedure has success-
fully been adopted for constant-strain elements [128]; generalization to three dimensions,
however, proves complex. Moreover, the approach does not seem to be easily extended to
a high-order finite element framework. Nevertheless, the appealing option of completely
mesh independent simulation of deformation localization and failure justifies further
research efforts in this direction.





151

Appendix A

The Dirac-delta distribution

The Dirac-delta function is sometimes referred to as unit impulse function. It was introduced
by the British theoretical physicist Paul Dirac. The Dirac-delta does not represent a
function in a strict mathematical sense, in fact it is classified as a distribution.

In a one-dimensional setting the Dirac-delta can informally be thought of a function δ(x)
that is infinite at x = 0 and adopts the value zero everywhere else, such that the total integral
over the interval (−∞, +∞) amounts to the value one (Figure A.1).

x

y

0.0

0.0

Figure A.1: Schematic representation of the Dirac-delta distribution.

More formally, the Dirac-delta is introduced by the property

+∞∫

−∞

f(x) δx dx := f(0) (A.1)
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for any continuous function f(x).

Extending this property to three dimensions yields

∫

Ω

f(X) δ (X − Xs)
︸ ︷︷ ︸

=:δs

dV :=

∫

∂sΩ

f(X) dA , (A.2)

where Xs ∈ ∂sΩ.
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Appendix B

The blending function method

B.1 Mapping for quadrilateral elements

Edge terms for the quadrilateral element depicted in Figure 3.8:

e1(ξ, η) =

[

E1(ξ) −
(1 − ξ)X1 + (1 + ξ)X2

2

](
1 − η

2

)

e2(ξ, η) =

[

E2(η) − (1 − η)X2 + (1 + η)X3

2

](
1 + ξ

2

)

e3(ξ, η) =

[

E3(ξ) −
(1 − ξ)X4 + (1 + ξ)X3

2

](
1 + η

2

)

e4(ξ, η) =

[

E4(η) − (1 − η)X1 + (1 + η)X4

2

](
1 − ξ

2

)

(B.1)

B.2 Mapping for hexahedral elements

Edge and face terms for the hexahedral element depicted in Figure 3.9:

B.2.1 Edge terms according to [63]

e1(ξ, η, ζ) =

[

E1(ξ) −
(1 − ξ)X1 + (1 + ξ)X2

2

](
1 − η

2

)(
1 − ζ

2

)
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e2(ξ, η, ζ) =

[

E2(η) − (1 − η)X2 + (1 + η)X3

2

](
1 + ξ

2

)(
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2

)

e3(ξ, η, ζ) =
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](
1 + η
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)(
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2
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2

](
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2

)(
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2

)

e5(ξ, η, ζ) =

[
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2

](
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2

)(
1 − η

2
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](
1 + ξ

2

)(
1 − η

2
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[

E7(ζ) − (1 − ζ)X3 + (1 + ζ)X7
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](
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2
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2
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e10(ξ, η, ζ) =

[
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2
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2

)(
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2

)
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[
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(B.2)

B.2.2 Face terms according to [63]

f1(ξ, η, ζ) =

[

F1(ξ, η)− 1

4

[

(1 − ξ)(1 − η)X1 + (1 + ξ)(1 − η)X2+

(1 + ξ)(1 + η)X3 + (1 − ξ)(1 + η)X4

]](1 − ζ

2

)

f2(ξ, η, ζ) =

[

F2(ξ, ζ)− 1

4

[

(1 − ξ)(1 − ζ)X1 + (1 + ξ)(1 − ζ)X2+
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]](1 − η

2

)
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f3(ξ, η, ζ) =

[

F3(η, ζ)− 1

4

[
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[7] Z.P. Bažant and L. Cedolin. Stability of structures. Oxford University Press, 1991.
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[35] A. Düster, H. Bröker, and E. Rank. The p-version of the finite element method for
three-dimensional curved thin walled structures. International Journal for Numerical
Methods in Engineering, 52:673–703, 2001.
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