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Abstract

In this thesis a self-consistent and conserving theory for the thermodynamics of an attractive, two-
component Fermi gas near a Feshbach resonance is presented. The work is motivated by the numerous
fascinating experiments which, in the last decade, have been carried out in the field of dilute ultra-cold
atomic gases.

In order to cover both normal and super-fluid phase we extend the many-body formalism devel-
oped by Luttinger and Ward and by DeDominicis and Martin. Employing a ladder approximation
to treat the formation of pairs at low densities, the resulting self-consistent integral equations for the
normal and anomalous Green functions are solved numerically for arbitrary coupling.

The critical temperature, the equation of state and the entropy are determined as a function of the
dimensionless parameter 1/kFa, which controls the crossover from the BCS-regime of extended pairs
to the BEC-regime of tightly bound molecules. The associated dimers turn out to be described by a
Popov-type approximation of a gapless, repulsive Bose-gas. The transition to the normal state in this
approximation is weakly first order, in contrast to the expected continuous transition. In spite of this
problem, our results compare well with recent numerical and field-theoretic approaches at the unitarity
point.
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Chapter 1

Introduction

The problem of quantum gases at low temperature has always aroused a lot of interest in the scientific
community. In fact, below a certain critical temperature, both Bose gases 1 and Fermi gases with an
attractive interaction assume a non-trivial behavior becoming superfluid. However the mechanisms
which underly this phenomenon are quite different depending on the fermionic or bosonic nature of
the particles.

A bosonic gas undergoes Bose-Einstein condensation for temperatures lower than a certain con-
densation temperature Tc. In this phase a macroscopic number of bosons condensates into the zero
momentum state, thus the ground-state expectation value of the boson field operator 〈ψ(r, t)〉 remains
finite in the thermodynamic limit. This reflects a macroscopic quantum coherence of the bosons in
the condensate and may be viewed as the order parameter of the superfluid transition. While the the-
oretical background of Bose-Einstein condensation dates back to the original works of Bose [1] and

Einstein [2], a Bose-Einstein condensate of atoms has been realized only at the end of the century in a
gas of trapped alkali atoms [3, 4, 5]. Trapped alkali gases are relatively simple systems which behave
like systems of point particles with a simple local interaction, therefore the study of weakly interacting
Bose gases has become a very active field of research in the past ten years [6, 7, 8, 9].

On the other hand a fermionic system with an attractive interaction becomes superfluid at suffi-

ciently low temperatures (electrons in a metal). The basic idea is that pairing between particles in
the states (k ↑) and (−k ↓) occurs if the interparticle potential is attractive which makes the Fermi sea
unstable. These pairs can condense into the zero momentum state and develop a macroscopic quantum
coherence. In this case, the order parameter of the transition is given by the average of two fermion
operators 〈ψσ1(r1, t1)ψσ2(r2, t2)〉. Cooper has shown [10] that in a weakly interacting Fermi gas an
infinitesimal attractive interaction is already sufficient for the formation of bound momentum pairs,
which are called Cooper pairs. Following this observation Bardeen, Cooper and Schrieffer developed
a microscopic theory of superconductivity [11] (BCS-theory) which represents one of the most suc-
cessful applications of many-body techniques and whose prediction are in very good agreement with

1In the case of repulsive interactions, superfluidity will only occur provided these are weak enough.

1
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Figure 1.1: Pairing for weak and strong coupling. For weak coupling the fermions forms Cooper pairs
which are very large and penetrate each other. In the limit of strong coupling the fermions are bound
to form bosonic dimers which are far away from each other. The symbol ξ in the Figure is the size of
a pair and k−1

F represent the average distance between the fermions. The ratio kFξ between the size of
the pairs and the interparticle spacing defines different physical regimes. The weak coupling regime
is defined by kFξ � 1, while kFξ � 1 indicates the strong coupling regime. The crossover region
coincides with the intermediate regime defined by kFξ ∼ 1.

experimental data.

1.1 From Cooper pairing to Bose Einstein condensation

The Cooper pairs, which are formed if the temperature is sufficiently low, are not well defined particles
in real space. The pairs are normally very large and penetrate each other. On the other hand, if the
attractive interaction becomes very strong the size of the pairs will eventually become smaller than
the interparticle spacing defined by 1/kF and the fermions will bind together to form bosonic dimers.
The dimers form a dilute weakly interacting Bose gas which at low temperature becomes superfluid
through Bose-Einstein condensation.

The BCS theory and the Bose-Einstein condensation of bosonic dimers can be viewed as two
limiting cases of superfluidity in a Fermi system for weak and strong attractive interaction respectively.
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Figure 1.2: Phase diagram of a Fermi system with attractive interaction. The critical temperature
of the superfluid transition is plotted as a function of the coupling strength. For weak coupling the
system is a Fermi liquid while for strong coupling is a Bose liquid of molecules. The two limiting
regimes are separated by an intermediate region where the Fermi liquid theory breaks down and one
goes continuously from fermionic to bosonic statistics. In the region below the Tc-curve the system is
in the superfluid state.

The strength of the interaction is characterized by the quantity kFξ, where ξ is the diameter of the pairs
and k−1

F represent the average distance between the fermions. Hence kFξ is the ratio between the size
of the pairs and the interparticle spacing. For weak coupling the diameter of the Cooper pairs is much
larger than the average distance between the fermions, thus the BCS theory is valid in the regime
defined by kFξ � 1. This situation is schematically shown in Figure 1.1 on the left hand side. On the
other hand the regime of strong coupling is defined by the relation kFξ � 1. In this case the pairs are
small and far away from each other as is depicted on the left hand side of Figure 1.1. The intermediate
regime kFξ ∼ 1 defines the region where the crossover from BCS superconductivity to Bose-Einstein
condensation of dimers happens. Allowing the attractive interaction between the fermions to assume

arbitrary strength one can describe how the fermionic system smoothly goes from being a superfluid
system of BCS type (where the interaction is arbitrarily weak) to a Bose-Einstein condensate (BEC)
of diatomic molecules or dimers (where the interaction is arbitrarily strong). The Cooper pairs, which
need an attractive interaction to be formed, could be seen as ”bosonic-like” molecules which then are
driven statistically to condense. BCS theory is a special case where the formation of the pairs and the
condensation occurs at the same temperature.
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The first attempt to extend the BCS theory to arbitrary coupling dates back to Eagles [12] and
Leggett [13] which independently noted that the BCS ground state wave function is capable of describ-
ing a continuous evolution from BCS like behaviour to Bose-Einstein condensation as the strength of
the attractive interaction between the fermions is increased. Using a variational ansatz with a BCS
trial wave function it is possible to derive two equations to determine the energy gap ∆ and the chem-
ical potential µ as a function of the coupling strength for T = 0. Noziéres and Schmitt-Rink [14]
first attempted to solve the problem at finite temperatures by using the many-particle quantum field
theory with temperature dependent Green’s functions and the so called ladder approximation. Within
this theory they determined the critical temperature of the superfluid transition in the whole region
from the weak coupling to the strong coupling limit. Another approach, based on a functional integral
representation of the interacting fermion system is due to Drechsler and Zwerger [15]. This theory,
originally designed for a two dimensional system was later extended to three dimensions [16]. A self-
consistent quantum field theory approach to the crossover problem was given by Haussmann [17, 18].
The critical temperature of the superfluid transition as a function of the coupling strength obtained by
the theories listed above qualitatively looks like the curve depicted in Figure 1.2. For weak coupling
the system is a Fermi liquid where the gas is composed of fermionic particles, in the strong coupling
regime the fermions are tightly bound into bosonic molecules. Outside the BCS regime, superfluidity

emerge out of a non-Fermi liquid normal state where single fermions and bound pairs coexist. This
intermediate regime, indicated in Figure 1.2 by the colored region, is also called ”unitary regime”.

Except for very weak coupling, pairs form and condens at different temperatures. For relatively
strong coupling the temperature at which pairs are formed is related to the binding energy of the pairs

kBT ∗ ∝ εb. Below a certain critical temperature the preformed bosonic molecules undergoes Bose-
Einstein condensation at a critical temperature which is approximately given by the Bose-Einstein
condensation temperature Tc,BE . Furthermore the binding energy εb depends on the strength of the
interaction, thus for strong coupling T ∗ is much larger than Tc. If the coupling strength is reduced, the
dissociation temperature T ∗ decreases sensibly while the critical temperature remains nearly constant.
In the unitary region the dissociation temperature will reach the same order of magnitude of the critical
temperature Tc. In the BCS limit the formation of Cooper pairs and superfluidity occur precipitously
at the same temperature Tc. The critical temperature is thus given by the BCS critical temperature
Tc,BCS which decreases exponentially with the coupling strength.

1.2 Cold atomic gases

An experimental realization of the system described above can be achieved by using degenerate atomic
gases. These gases can be manipulated with a high level of control, this fact together with the detailed
understanding of the atomic interactions allows a precise comparison between experimental and theo-
retical results. The major step toward the realization of such a system was the development of cooling
techniques which allowed to obtain first a degenerate gas of bosons at temperatures below the con-
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Figure 1.3: Schematic representation of the mechanism of a Feshbach resonance. A Feshbach reso-
nance occurs when a bound state in the closed channel lies in proximity to the scattering threshold of
an open channel potential. The symbol ν denotes the detuning of the bound state from the edge of the
collision continuum. δ represents the energy shift between the two channels.

densation temperature [3, 4, 5] and then to achieve degeneracy in a Fermi gas of 40K atoms [19]. The
common technique to cool down bosonic gases is evaporative cooling. It consists in systematically
removing only the more energetic atoms (i.e. the hottest atoms) in the trap. Effective evaporative
cooling requires that the atoms in the gas undergo elastic thermalizing collisions. Although the way
to obtain a degenerate Fermi gas is similar to the method employed in achieving BEC, it is neces-
sary to take into account the Pauli statistics. In fact, due to their nature, fermions in the same state
tend to avoid each other and a consequence is that s-wave interactions, which dominate the low en-
ergy scattering would vanish between a single species of fermions. The absence of s-wave scattering
would prohibit the fermions to thermalize quickly, which is a necessary part of the cooling process.
To overcome this problem the group at Jila [19] used a mixture of atoms within the two hyperfine

levels: |F = 9/2,mF = 9/2〉 and |F = 9/2,mF = 7/2〉, where F = 9/2 is the total atomic spin and mF

is the magnetic quantum number. In this configuration fermions with the same spin will not interact,
but two atoms in different spin states will. A more useful way to cool fermions is to sympathetically
cool them with bosons: the bosons are evaporatively cooled as usual, while the fermions are cooled
by interaction with the bosons. This technique was employed to create degenerate mixtures of 6Li

cooled to temperatures as low as 200 nK using either 7Li ([20, 21, 22]) or 23Na ([23]) as ”refrigerant”,
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a degenerate mixture of 40K and 87Rb was obtained at the same time by the group in Firenze [24].

One of the most interesting features of cold atomic gases is the ability to finely tune the atomic in-
teractions. This is achieved by using Feshbach resonances which can be precisely tuned by a magnetic
field. Feshbach resonances in a dilute atomic gas were observed first in bosonic gases [25, 26, 27, 28]
and later in Fermi systems [29, 30, 31, 32]. In Figure 1.3 is depicted a schematic representation of a
Feshbach resonance. The open channel is associated with a triplet spin state, a Feshbach resonance
arises when a bound state in the closed channel lies near the zero energy corresponding to the con-
tinuum of scattering states in the open channel. The electronic Zeeman coupling to the triplet state
associated with the open channel makes it possible to shift the relative position of the two potentials by
application of a magnetic field. This shift is indicated in the Figure by δ. In this way the resonance is
magnetically tunable and the scattering length of the system will vary continuously with the magnetic
field, becoming infinite at the value of the field which correspond to the Feshbach resonance. The
deviation of the field from the resonance is indicated in Figure 1.3 by the detuning parameter ν. When

ν is large and positive, the singlet state associated with the closed channel lies much above the open
channel and does not play an important role. On the other hand if ν is large and negative the physics
is defined by the closed channel.

The magnetic field, by detuning the two channels, influences the scattering properties of the sys-
tem. At this stage it is useful to introduce the s-wave scattering length a, which in the low-energy
limit is associated with the scattering amplitude of the two body scattering process. It turns out that
the scattering length varies with the magnetic field according to

a = abg

(
1 − ∆B

B − B0

)
, (1.1)

where abg is the off-resonant background scattering length in the absence of the coupling to the closed
channel. Furthermore ∆B is a measure of the width of the resonance, B0 is the value of the magnetic
field just on resonance and B−B0 ∼ ν. Thus the scattering length a is negative when there is no bound
state, it becomes −∞ just before the bound state appears and +∞ as the bound state stabilizes. As the
interaction becomes increasingly strong, the scattering length approaches 0 from the positive side

The ability to tune the interparticle interactions in atomic gases via Feshbach resonances allows to

control the process of molecular formation and dissociation. Fermionic molecules have lifetimes of the
order of several seconds [33, 34, 35, 36]. This surprisingly long lifetime allows the realization of Bose-
Einstein condensates of molecules [37, 38, 39] and the subsequent exploration of the crossover from
a Bose-Einstein condensate to a BCS-like state of weakly bound fermion pairs [40, 41, 42, 43, 44].

1.3 Outlook and overview

The structure of this thesis will be as follows.

Chapter 2 will present the formalism of Luttinger and Ward for interacting fermions and the for-
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malism of De Dominicis and Martin. A section will be dedicated to the Ward identity and the Thouless
criterion. In Chapter 3 a set of self-consistent equations for the Green’s function and the vertex func-
tion will be derived within the formalism of Luttinger and Ward previously described. The numerical
results obtained by solving the self-consistent equation will be reported and commented. Chapter 4
is dedicated to the thermodynamics of the crossover. We will write explicitly the grand canonical
thermodynamic potential within the formalism of Luttinger and Ward, and the entropy obtained from
the theory developed by De Dominicis and Martin. Further we will show that, within our approxima-
tion the two formalism previously described are equivalent and produce the same set of self-consistent
equations. The numerical results relative to the thermodynamic potentials are reported and commented
in Chapter 5. Chapter 6 is dedicated to the description of the numerics we used to produce the present
results.





Chapter 2

Many-body theory of interacting
fermions

2.1 Luttinger-Ward formalism

2.1.1 Introduction

A system of interacting fermions can be successfully described in the many body formalism due Lut-
tinger and Ward[45]. The formalism was originally developed to investigate the perturbation series
for the ground state energy of a many-fermion system to arbitrary order in the interaction by using a

Feynman diagrammatic technique. Starting from the grand canonical partition function for the sys-
tem they obtain an expression for the grand canonical thermodynamic potential of an homogeneous
interacting Fermi gas in a non-superfluid regime as unique functional of the Green’s function.

This formalism, originally developed to explore the properties of non-superfluid Fermi systems,
is also suited to describe superfluid systems. In more recent works the theory of Luttinger and Ward
has been used to investigate the problem of the crossover of a Fermi liquid from BCS superfluidity to

Bose-Einstein condensation [18, 17] which has been described in the previous Chapter. The crossover
problem is more complicated than the original one, in fact the theory has to be capable to describe
two different phenomena: the formation of pairs due to the attractive interaction and the transition to
a superfluid regime below a certain critical temperature Tc. In the limit of weak interactions pairing
between the fermions occurs simultaneously with the superfluid transition and the process is driven
by individual excitations that can be described by a purely fermionic theory. On the other side, if the
interaction is strong enough, the formation of pairs occurs at a temperature scale much higher than the
critical temperature Tc. The superfluid transition in this regime is thus driven by collective excitations
of a bosonic nature.

In section 2.1.2 we will describe the original formalism which, in Chapter 3, will be adapted to
describe a fermionic system which can eventually become superfluid.

9
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2.1.2 Formalism

Formally we start from the grand canonical partition function at finite temperature

Z = e−βΩ = Tr{exp(−β[Ĥ − µN̂])}. (2.1)

The properties of the system are described by average of physical quantities which, in the grand
canonical ensemble, are given by:

〈· · · 〉 = Z−1Tr{· · · exp(−β[Ĥ − µN̂])}. (2.2)

From the definition (2.1) we can derive the grand canonical thermodynamic potential by taking the
logarithm Ω = −kBT ln(Z). The partition function and the grand-potential are normally expressed by
a perturbation series, to obtain it we decompose the Hamiltonian H into a free Hamiltonian H0 − µN

which describes the noninteracting system and an interaction part H1 (see for instance [46]). From the
interacting part of the Hamiltonian H1 we define the S -matrix

S = T exp
{
−~−1

∫ ~β

0
dτH1(τ)

}
(2.3)

where τ is the imaginary time which varies in the interval 0 ≤ τ ≤ ~β and H1(τ) is defined by

H(τ) = exp
[
(H0 − µN)τ/~

]
H1

[−(H0 − µN)τ/~
]
. (2.4)

The partition function can be rewritten in terms of the S -matrix as

Z = Z0〈T exp
{
−~−1

∫ ~β

0
dτH1(τ)

}
〉0 (2.5)

where Z0 = Tr{exp[−βH0 − µN]} is the partition function of the free fermions. The averages in the
noninteracting system are defined by 〈. . . 〉0 = Z−1

0 Tr{. . . exp[−βH0 − µN]}. The expression (2.5) is
a very compact way to write the the perturbation series which is in practice generated by expanding

the S -matrix in powers of the interaction and then evaluating the averages 〈. . . 〉0 by using the Wick
theorem. In this way we obtain a perturbation series where in the Feynman diagrams the propagator
lines are identified by the free Green’s function

G0,XX′ = 〈T[
ψXψ

†
X′
]〉0. (2.6)

The Feynman diagrams can be partially resummed to obtain a perturbation series in terms of a smaller
number of irreducible diagrams in which the propagator lines are now identified by the exact Green’s
function defined by

GXX′ = 〈T[
ψXψ

†
X′
]〉. (2.7)
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The resummation can be performed by Legendre transformation [47]. This is achieved by introducing
an external field which couples to a quadratic form of the fermionic field operators. In such a way a
generalized partition function can be obtained which generates the Green’s function by a functional
derivative. A Legendre transformation is then performed to get an expression for the grand potential
as a function of the Green’s function. After having introduced the external field AXX′ the generalized
Partition function reads

Z[A] = Z〈Teψ
†Aψ〉. (2.8)

The one-particle Green’s function defined in (2.7) can be obtained from the generalized partition
function (2.8) through a functional derivative:

δZ[A]
δAXX′

∣∣∣∣∣∣
A=0

= −Z〈T[
ψX′ψ

†
X
]〉 = −ZGX′X . (2.9)

Alternatively we can obtain a generalized Green’s function, which depend on the external field AXX′ ,
from the first variation of the free energy F[A] = − ln Z[A]:

δF[A]
δAXX′

= GX′X . (2.10)

Instead of F[A] we may consider the functional of the Green’s function

Ω[G] = F[A] −GX′XAXX′ , (2.11)

obtained by a Legendre transformation from the external field A to G. According to (2.11), the first

variation of the functional Ω[G] with respect to the variable GX′X inverts the relation (2.9) expressing
the external field AXX′ as a function of the one-particle Green’s function G:

δΩ[G] = −AXX′δGX′X . (2.12)

For an interacting system the functional Ω[G] reads

Ω[G] = −Tr{− ln G + [G−1
0 G − 1]} − Φ[G]. (2.13)

The first term in (2.13) is obtained from the free energy for the noninteracting system. The trace
Tr that appears in (2.13) is a very short hand notation for a fourfold trace defined with respect to
the formal index X = (r, τ, σ), which comprises the space-time coordinates and the spin index 1.
The functional Φ[G] contains all term due to the interaction and is definite by an infinite perturbation
series of irreducible Feynman diagrams. The self-energy can be defined from Φ[G] trough a functional

1The formal index X can comprise another additional index α which distinguishes the fermion field operators between
annihilation and creation operators.
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derivative
ΣX′X = −δΦ[G]

δGXX′
. (2.14)

We may now compare the first variation of the functional (2.13) with (2.12). The field AXX′ is an
auxiliary parameter introduced to perform the Legendre transformation, therefore it should vanish in
a real physical system. Using this fact and the relation (2.14) we get a stationarity condition which
determines the full matrix Green’s function:

δΩ[G]
δG

= G−1 −G−1
0 + Σ = 0. (2.15)

The condition (2.15) is also known as Dyson equation and is usually written in the form

G−1
XX′ = G−1

0,XX′ − ΣXX′ . (2.16)

Equation (2.16) together with the functional derivative (2.14) forms a set of self-consistent equations
for the Green’s function. The numerical value of the functional (2.13) at the stationary point defined
by (2.15) is the grand canonical potential Ω(T, µ) of the system:

Ω(T, µ) = −kBT ln Z = kBT F[0] = kBTextr{Ω[G]}, (2.17)

where extr{Ω[G]} is an extremum in the sense of a saddle point. The grand thermodynamic potential
is then defined by the equation (2.13) and the stationarity condition (2.15).

2.1.3 Resummation of the perturbation series

To get an explicit form for the functionals Ω[G] and Φ[G] we start from the perturbation series for the

partition function Z[A] which is generated by expanding the S -matrix as anticipated in section 2.1.2

Z[A] = Z0[A]
{
1 + sum over all vacuum diagrams

}
. (2.18)

The expansion contains all the diagrams, including the disconnected ones. A first resummation is
obtained by taking the logarithm F[A] = − ln Z[A]. Indeed the perturbation series which is obtained
for the functional F[A] contains only the subclass of connected diagrams

F[A] = F0[A] − {
1 + sum over all connected vacuum diagrams

}
. (2.19)

From F[A] we can obtain the Green’s function by the functional derivative (2.10). In terms of Feynman
diagrams GXX′ is represented by an open propagator line ad closed loops connected by interaction
lines. Such a diagram fall into pieces if a propagator line is cut at a certain point, anyway the diagrams
can be regrouped and the Green’s function can be written in terms of a series which contains only
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+ + + +(a) Σ = +

+ + + . . .

(b) Σ = + + + + . . .

Figure 2.1: Perturbation series for the self-energy in terms of the bare Green’s function G0,XX′ (a) and
in terms of skeleton diagrams with thick propagator lines (b). The thick propagator lines are identified
with the exact Green’s function GXX′ .

one-particle irreducible diagrams (i.e. diagrams that don’t fall into pieces if a propagator line is cut):

G = G0 + G0ΣG0 + G0ΣG0ΣG0 + . . . , (2.20)

where Σ is the self energy and contains only one-particle irreducible diagrams with amputated ex-
ternal lines. The series of Feynman diagrams that gives the self energy is depicted in Figure 2.1a.
The self-energy can be resummed further by taking only the skeleton diagrams (i.e. those diagrams
that don’t contain self-energy sub-diagrams) and substituting the propagator line with a thick line.
In practice this correspond to substituting the free fermion Green’s function with the exact Green’s
function. As an example we can look at Figure 2.1, the diagrams 3 and 4, and 5 and 6 in Figure
2.1a, contain self-energy sub-diagrams while the rest are skeleton diagrams, thus in the resummation
procedure are resummed in the first and second diagram in Figure 2.1b respectively. The functional

Φ[G] is related to the self-energy by the functional derivative (2.14). In term of Feynman diagrams a
functional derivative correspond to cut a propagator line in a closed loop, thus by comparing (2.14)
with the diagrams for the self-energy, which to the second order can be represented by the skeleton
diagrams in Figure 2.1b, we can derive the infinite perturbation series for the functional Φ[G] where
the amputated external propagator lines are closed to form a loop. Hence, by means of (2.13), for the
grand thermodynamic potential we get the series of diagrams
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Figure 2.2: Self-consistent ladder approximation for the functional Φ[G] and for the self-energy Σ

Φ[G] =


Sum of all vacuum irreducible diagrams

with thick propagator lines identified by G

 . (2.21)

An approximation for Φ[G] is obtained by truncating the series, so that an infinite subclass of di-
agrams is resummed exactly . This kind of approximations are called conserving approximations
[48, 49]. The name derives from the fact that, whenever the self-energy Σ can be written as derivative
of a functional Φ[G], the approximation satisfies certain conservation laws if Φ[G] possess the relative
symmetries. Thus if, for instance, the functional Φ[G] is invariant under the local Gauge transforma-
tion GXX′ → exp(iλX)GXX′ exp(−iλX′) then the particle number is locally conserved. Furthermore if
Φ[G] is invariant under spatial and time translation, the total momentum and the total energy are con-
served respectively. In particular, for Fermi systems conserving approximations satisfy the Luttinger
theorem [50] which states that the volume enclosed in the Fermi sphere only depends on the particle
density. A suitable approximation that treats two-particle collision and the formation of pairs correctly

is a ladder approximation. In this approximation the functional Φ[G] and his functional derivative ΣXX′

are expressed by the infinite series of Feynman diagrams depicted in Figure 2.2. The approximation
is self-consistent because the propagator lines are identified with the full matrix Green’s function.

The one-particle Green’s function, which is determined self-consistently in ladder approximation,
describes the properties of the single fermions. In the present work we are also interested in the
collective modes of the interacting Fermi system which are described by the two-particle Green’s
function. A generalized two-particle Green’s function can be generated by the second functional
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Y Y
′

X
′

X
′

Y

XX X X
′

YY
′

Y
′

= +

Figure 2.3: Bethe-Salpeter equation for the vertex function in self-consistent ladder approximation

derivative of the partition function

δ2Z[A]
δAXX′δAYY′

= Z[A]〈T [
ψX′ψY′ψ

†
Yψ
†
X
]〉, (2.22)

where the two-particle Green’s function is defined by

G(2)
XX′,YY′ = 〈T [

ψXψYψ
†
Y′ψ
†
X′
]〉. (2.23)

Inserting the usual perturbation series for the partition function (2.18) it is possible to obtain a per-
turbation series of G(2)

XX′,YY′ [51]. The diagrams of the two-particle Green’s function can be partially
resummed to get

G(2)
XX′,Y′Y = GXX′GY′Y + χXX′,Y′Y − χXX′,U′UΓUU′,W′WχWW′,Y′Y , (2.24)

where χXX′,Y′Y is the pair propagator and is defined by

χXX′,YY′ = −GXY′GYX′ (2.25)

and ΓXX′,YY′ is the vertex function. It is possible to expand ΓXX′,YY′ in terms of an irreducible vertex
function, thus we get a series that can be resummed to obtain the integral equation

ΓXX′,Y′Y = Γ1,XX′,Y′Y − Γ1,XX′,U′UχUU′,W′WΓWW′,Y′Y . (2.26)

Equation (2.26) is also known as Bethe-Salpeter equation. For a normal fluid system the Bethe-

Salpeter equation (2.26) is represented in ladder approximation by the Feynman diagrams in figure 2.3.

2.2 Ward identity and Thouless criterion

The symmetries of a system implies relation between Green’s functions and vertex function which
are known as Ward identities. These identities can be also derived for systems which presents a
spontaneously broken symmetry related to a second-order phase transition. In this section we will



16 Chapter 2. Many-body theory of interacting fermions

derive a Ward identity which involve the variation of the self-energy. We consider the Jacobi matrix
of the Legendre transformation from AXX′ to GXX′ . The functional derivative that defines the matrix is
related to the second functional derivative of the free energy functional F[A]:

δGXX′

δAYY′
=

δ2F[A]
δAXX′δAYY′

. (2.27)

Using the definitions (2.7) and (2.9) for the one-particle Green’s function and (2.22) for the two-
particles Green’s function, the Jacobi matrix can be rewritten in terms of the pair propagator and the
vertex function:

δGXX′

δAYY′
= −

[
G(2)

XX′,Y′Y −GXX′GY′Y
]

= − [
χXX′,Y′Y − χXX′,W′WΓWW′,U′UχUU′,Y′Y

]
, (2.28)

where in the last equality the relation (2.24) has been used. The inverse Jacobi matrix can be written
using the result (2.27) and the identity χ − χΓχ = [χ−1 + Γ1]−1:

δAXX′

δGYY′
=

δ2Ω[G]
δGXX′δGYY′

= − [
χXX′,Y′Y − χXX′,W′WΓWW′,U′UχUU′,Y′Y

]−1
= −

[
χ−1

XX′,Y′Y + Γ1,XX′,Y′Y
]
.

(2.29)

We can now calculate the variation of the self-energy with respect to GXX′ . In order to do that we need
first to calculate the variation of the functional Φ[G]. Using the equation (2.13) we can write

δΦ[G]
δGXX′

=
(
G−1

XX′ −G−1
0,XX′

)
− δΩ[G]
δGXX′

. (2.30)

Recalling the definition (2.14) of the self energy and using the result (2.29) we obtain the first variation
of the self-energy ΣXX′

δΣXX′

δGYY′
= −χ−1

XX′Y′Y +
(
χ−1

XX′Y′Y + Γ1,XX′,Y′Y
)

= Γ1,XX′,Y′Y . (2.31)

Next we consider a transformation which depend on a continuous parameter λ. We assume that the
variation of the Green’s function δλGXX′ and of the external parameter δλAXX′ can be determined
explicitly. From the relation (2.29) we can get the variation of the inverse external parameter with
respect to λ:

δλA−1
XX′ = −

[
χ−1

XX′,Y′Y + Γ1,XX′,Y′Y
]
δλGYY′ . (2.32)

The previous relation can be used to get a Ward identity correlated to the existence of massless Gold-

stone modes due to a spontaneously broken symmetry. Using the identity χ−1 + Γ1 = χ−1Γ−1Γ1 we
can rewrite (2.32) to get

−Γ−1
XX′,Y′YΓ1,YY′,U′UδλGUU′ = χXX′,Y′YδλAYY′ . (2.33)
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Inserting result (2.31) into (2.33) we obtain a Ward identity for the self-energy δλΣXX′ :

−Γ−1
XX′,Y′YδλΣYY′ = χXX′,Y′YδλAYY′ . (2.34)

Let’s now consider a continuous transformation which is related to a global change of phase of the
fermionic fields

ψσ(r)→ eiλψσ(r) , ψ†σ(r)→ e−iλψ†σ(r), (2.35)

the system is invariant under this transformation hence the variation δλΩ[G] vanishes for all G, thus
we can argue, by means of the definition (2.12), that δλAXX′ = −δ[δλΩ[G]]/δGX′X = 0. Finally we
obtain the Ward identity

Γ−1
XX′,Y′YδλΣYY′ = 0. (2.36)

This symmetry is broken in the superfluid phase of the system where the average 〈T[
ψXψX′

]〉 assumes
a finite value. In this phase the order parameter ∆ ∼ 〈T[

ψXψX′
]〉 is transformed by (2.35) as ∆→ e2iλ∆.

Clearly the thermodynamic potentials must remain invariant under a global change of phase both in
the normal and in the superfluid state, thus the Ward identity (2.36) must be always verified. The
previous identity is trivially satisfied if the system is in his disordered phase in fact, above Tc the
order parameter of the system vanishes and hence the variation δλΣXX′(∆) is always zero. Below the
critical temperature δλΣXX′(∆) , 0, thus, in order to satisfy the identity (2.36), the inverse of the
vertex function must have a zero eigenvalue, this corresponds to a pole in the vertex function which
is related to physical phenomena as sound, pair formation, superconductivity and is an evidence of
the existence of massless Goldstone modes of a second order phase transition. The consequence of
the identity (2.36) that the vertex function has a pole below the critical temperature Tc is known as
Thouless criterion for superconductivity [52].

2.3 De Dominicis and Martin formalism

2.3.1 Introduction

De Dominicis and Martin [47] went beyond the theory developed by Luttinger and Ward: they showed
that the dynamical and thermodynamical properties of an interacting quantum system may be ex-
pressed in terms of renormalized propagators and vertices. Their formulation is sufficiently general
to describe Bose or Fermi systems with several component either in the normal and in the superfluid

state. The formalism developed by De Dominicis and Martin is particularly well suited to describe the
crossover problem because it deals with the one-particle Green’s function, which describes the prop-
erties of the single fermions , and, trough the two-particle Green’s function, with the vertex function,
which describes the bosonic properties of the bound fermions. They introduce up to four external
fields that couple with products of the field operators and then perform up to four Legendre transfor-
mation. For normal and superfluid fermionic systems, which is the case we are interested in, only
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two external fields are needed which couple to even products of the fields operators. The conjugate
variables are the one-particle Green’s function and the two-particles Green’s function.

2.3.2 Formalism

We follow what has been done in section 2.1.2. First we make a Legendre transformation from the
external field to the Green’s function to obtain a functional which generates the one-particle Green’s
function. Next we proceed with a second Legendre Transformation by introducing an external field
which couples to second order product of the field operators ψX and ψ†X . The resulting functional is a
function of both the one-particle Green’s function and two-particles Green’s function, the latter being
related to the vertex function by the relation [47]:

G2,X1X2X3X4 =GX1X3GX2X4 −GX1X4GX2X3 −GX1X2GX3X4

−GX1Y1GX2Y2ΓY1Y2Y3Y4GY3X3GY4X4 .
(2.37)

The two-particles Green’s function can be thus expressed in terms of products of the one-particle
Green’s function and the connected part of the two-particles Green’s function. Both G2 = G2,X1X2X3X4

and the vertex function Γ = ΓX1X2X3X4 have four arguments which are indicated by the four formal
indices Xi. The last term of equation (2.37) represent the connected part of the two-particles Green’s
function and describes the correlation effects. The vertex function ΓX1X2X3X4 can be obtained from this
term by complete amputation of the four external propagator lines and is a more convenient variable
to deal with.

The natural functional for the bare coupling constants is the logarithm of the partition function,
while the functional for the renormalized variables turns out to be:

F(2)[G, Γ] =1
2 Tr{− ln G + [(−i~ωn)G − 1]}
+ 1

2 Tr{ln[1 − 1
2 Γ̄] + 1

2 Γ̄ + 1
2 [ 1

2 Γ̄]2 − (1/4!)[Γ̄]2}
+K (2)[G, Γ].

(2.38)

The connected part of the two-particle Green’s function appears explicitly in the functional (2.38) and

is expressed with the help of the modified vertex function Γ̄ defined by

Γ̄X1X2X3X4 = G1/2
X1Y1

G1/2
X2Y2

ΓY1Y2Y3Y4G
1/2
Y3X3

G1/2
Y4X4

, (2.39)

where the four external propagator lines are amputated only half way. For a proper definition of the
second trace and the related matrix products the four indices of the modified vertex function must be
grouped into pairs according to Γ̄ = Γ̄(X1X2)(X3X4). The last term in (2.38), the functional K (2)[G,Γ],
is defined with the infinite perturbation series of 2-line irreducible Feynman diagrams depicted in
Figure 2.4, where the propagator lines and the vertices are dressed and identified by the one-particle
Green’s function G and by the vertex function Γ, respectively.
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+ ...+K(2)[G,Γ] =

Figure 2.4: The functional K (2)[G, Γ] is the sum of all 2-line irreducible diagrams. The propagator
lines and the vertices (full circles) are dressed and identified with G and Γ, respectively.

A stationary principle for the functional F(2) [G,Γ], subject to the constraint that all conserved
quantities are kept constant, provides a fully renormalized description of the system. The numerical
value of the functional at its stationary point is the dimensionless entropy of the system S/kB = F(2).
In the original work of De Dominicis and Martin the maximum of the entropy is found, under the
constraint of given values of the internal energy and particles number, starting from the functional:

W[G,Γ] = F(2)[G,Γ] − λUU[G, Γ] − λN N[G], (2.40)

where λU and λN are the two Lagrange parameters for the constraints, while in the present work the

grand thermodynamic potential will be equivalently used:

Ω[G, Γ] = U[G, Γ] − T S [G, Γ] − µN[G], (2.41)

here the Lagrange parameters are the temperature T and the chemical potential µ. Both the functionals
(2.40) and (2.41) must be stationary under small variation of the one-particle Green’s function and the
vertex function. The one-particle Green’s function G and the vertex function Γ are thus uniquely
determined by the stationarity criteria

δΩ[G,Γ]/δG = 0 and δΩ[G, Γ]/δΓ = 0. (2.42)

At the beginning of the paragraph it was pointed out that De Dominicis and Martin go beyond the
theory of Luttinger and Ward, now it is important to stress in which sense the theory described in this

section is an extension of the one described in section 2.1.

Within the formalism of Luttinger and Ward a Legendre transformation is performed which defines
a functional of the one-particle Green’s function. The saddle point value of this functional can be
then identified with the grand canonical potential. The Green’s function is obtained by the stationary

condition (2.15), while the vertex function has to be derived by using a further equation, i.e. the Bethe-
Salpeter equation, which is not obtained by a stationarity condition of the functional. In the theory of
De Dominicis and Martin a second Legendre transformation from the bare two particle interaction to
the two-particle Green’s function leads to a functional associated with the physical entropy which is a
functional of the one-particle Green’s function and, through the two-particle Green’s function, of the
vertex function. From the entropy (2.38) we can then obtain the grand canonical potential as a function
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of the Green’s function and the vertex function (see equation (2.41)). The vertex function is in this
case obtained from the second of the stationarity conditions (2.42). The two formalism are related to
each other by a Legendre transformation which can be interpreted as a resummation procedure that
renormalizes the vertex.

We can now compare the two functionals (2.13) and (2.38). The first trace in the two functionals
(2.13) and (2.38) describes the single particle contribution to the grand canonical potential and to the
entropy respectively. A comparison between the two terms shows that the two traces are identical.
The second trace in (2.38) represent, together with the functionalK (2)[G, Γ], the inverted perturbation
series of the ladder diagrams. It includes both the particle-particle and particle-hole interaction which
describe the formation of pairs and the screening of the interaction. Keeping only the particle-particle
contribution in the second trace of (2.38) and putting the functional K (2)[G,Γ] to zero, it is possible
to recover the functional Φ[G] obtained within the formalism of Luttinger and Ward.

The equivalence of the two formalisms in this approximation can be verified by getting the vertex
function Γ from the second stationarity condition in (2.42) and inserting the resulting function in the
grand-thermodynamic potential obtained from the entropy functional through the relation (2.41). The
resulting functional coincides with the grand-potential of the Luttinger and Ward formalism.



Chapter 3

Solution of the self-consistent equations

The results described on a general level in Chapter 2, can be successfully applied to a fermionic system
with an attractive interaction.

In the following we will focus on a Fermi system where the attractive interaction can be tuned to
explore the interplay between pairing phenomena and superfluidity when the system goes from weak
to strong coupling.

By solving the self-consistent equations for the Green’s and the vertex function we can directly
calculate parameter of the system like the critical temperature Tc, the order parameter of the superfluid
transition ∆ and the chemical potential µ over the whole crossover. The numerical results will be
compared in the two limits with the BCS-theory and the theory of weakly interacting Bose gases.

3.1 Derivation of the Green’s and the vertex functions within the for-
malism of Luttinger and Ward

The interacting Fermi system, in second quantization representation is described by the Hamiltonian:

Ĥ =

∫
ddr

∑

σ

~2

2m
[∇ψ†σ(r)][∇ψσ(r)]

+
1
2

∫
ddr

∫
ddr′

∑

σσ′
Vσσ′(r − r′)ψ†σ(r)ψ†σ′(r

′)ψσ′(r
′)ψσ(r),

(3.1)

where ψ†σ(r) and ψσ(r) are the fermionic creation and destruction operators, σ labels the internal
degree of freedom such as , for example, two different hyperfine states. We assume that the range
of the resonant interaction is much smaller that the background scattering length abg and the Fermi
wavelength λF . In this approximation we take the range of the effective interaction to zero so that the
interaction potential can be replaced by a delta potential V(r) ∼ δ(r) between fermions of opposite

21
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spin
V(r − r′) = g0δ(r − r′), (3.2)

here g0 is a parameter corresponding to the bare coupling strength. For dimensions d ≥ 2 the delta
potential interaction causes an ultraviolet divergence in the Feynman diagrams, thus a renormalization
of the coupling strength will be required.

The quantum field-theoretic description of an interacting fermionic system that undergoes a super-
fluid transition can be described, at finite temperature T by the Matsubara formalism which introduces
an imaginary time variable τ defined on the interval 0 ≤ τ ≤ ~β where β = 1/kBT . In this formalism
we can define the following averages of the fermionic fields

〈T[
ψσ(r, τ)ψ†σ′(r

′, τ′)
]〉 = δσσ′G(r − r′, τ − τ′) (3.3)

and
〈T[

ψσ(r, τ)ψσ′(r
′, τ′)

]〉 = εσσ′F (r − r′, τ − τ′), (3.4)

where εσσ′ is the spin function of a fermion pair with zero spin and δσσ′ is the Kronecker delta.
The equation (3.3) represent the normal Matsubara Green’s function while (3.4) is also known as
the anomalous Matsubara Green’s function. The latter is proportional to the order parameter of the
superfluid transition and vanish when the system is in its disordered phase. The normal and anomalous
Green’s function (3.3) and (3.4) can be written in a more compact way using Nambu’s notation [53].

In this notation a new index α is introduced which will distinguish the fermion field operators between
annihilation and creation operators:

(
Φα
σ

)
=


ψσ

ψ†σ

 ,
(
Φ̄α
σ

)
=

(
ψ+
σ , ψσ

)
. (3.5)

The average of the fields (3.5) defines a Green’s function which includes both the normal and the
anomalous Green’s functions

〈T[
Φα
σ(r, τ)Φ̄α′

σ′(r
′, τ′)

]〉 = Gαα′
σσ′(r − r′, τ − τ′). (3.6)

Thus the Green’s function will become a matrix whose off-diagonal elements are the anomalous
Green’s functions

Gαα′
σσ′(r − r′, τ − τ′) =


δσσ′G(r − r′, τ − τ′) εσσ′F (r − r′, τ − τ′)
−εσσ′F ∗(r′ − r, τ − τ′) −δσσ′G(r′ − r, τ′ − τ)

 . (3.7)

In the Nambu representation the propagator lines in the Feynman diagrams are undirected because the
matrix Green’s function includes both direction. Moreover, this representation allows the introduction
of a symmetric interaction vertex which is invariant under permutation of the four external lines and
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can be identified with the bare interaction vertex Γ0. Since the interaction (3.2) is spin independent,
the spin indices don’t need to be treated explicitly. Hence the matrix structure due to the spin indices
can be simplified and the 4 × 4 matrix (3.7) can be reduced to a 2 × 2 matrix

G(r − r′, τ − τ′) =


G(r − r′, τ − τ′) F (r − r′, τ − τ′)
−F ∗(r′ − r, τ − τ′) −G(r′ − r, τ′ − τ)

 . (3.8)

The spin degrees of freedom will be taken into account multiplying by a factor 2 each closed fermion
loop in the Feynman diagrams.

For a homogeneous system we can define the Fourier transformation for the matrix Green’s func-

tion and the matrix self-energy

Gα,α′ (r, τ) =
1
β

∫
d3k

(2π)3

∑

ωn

ei(k·r−ωnτ)Gα,α′ (k, ωn) , (3.9)

where ωn = π(2n + 1)/~β are the fermionic Matsubara frequencies. Defining the inverse free fermions
matrix Green’s function

G−1
0 (k, ωn) =


−i~ωn + (εk − µ) 0

0 −i~ωn − (εk − µ)

 (3.10)

we can write the Dyson equation obtained from the stationarity condition (2.15) as a function of the
momentum and the Matsubara frequencies:

G−1
αα′ (k, ωn) = G−1

0,αα′ (k, ωn) − Σαα′ (k, ωn) , (3.11)

where, according to (2.14), the self-energy Σαα′(k, ωn) is defined by the functional derivative

Σαα′(k, ωn) = − 1
βV

δΦ[G]
δGα′α

, (3.12)

here the factor 1
βV is the correct normalization factor in Fourier space.

The interaction term in the Hamiltonian (3.1) implies that the equation of motion involves the
two-particles Green’s function. A more suitable variable to deal with is the the vertex function which

can be expressed by the Bethe-Salpeter equation (2.26) in terms of the irreducible vertex function Γ1.
The irreducible vertex function is also represented by an infinite series of irreducible diagrams thus an
approximation is needed. To the lowest order it is possible to replace Γ1 by the bare interaction vertex
Γ0 which can be identified with the interaction strength g0. Within this approximation and exploiting
the local nature of the interaction, the integral equation (2.26) becomes, after a partial diagonalization
in Fourier space [18], a simple matrix equation. For dimensions d ≥ 2 the Bethe-Salpeter equation
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can be written as:
Γ−1
α1α

′
1,α
′
2α2

(K,Ωn) = Γ−1
0,α1α

′
1,α
′
2α2

+ χα1α
′
1,α
′
2α2

(K,Ωn) (3.13)

where χα1α
′
1,α
′
2α2

is the pair propagator defined in (2.25) and can be expressed in terms of the matrix
Green’s function Gαα′(k, ωn)

χα1α
′
1,α
′
2α2

(K,Ωn) =

∫
d3k

(2π)3

1
β

∑

ωn

Gα1α2
(K − k,Ωn − ωn)Gα′1α

′
2
(k, ωn). (3.14)

The local interaction with the delta potential implies an ultraviolet divergence in the pair propaga-
tor thus we need to regularize it by redefining the interaction strength. Consequently, the tensors
Γ−1
α1α

′
1,α
′
2α2

(K,Ωn) and χα1α
′
1,α
′
2α2

(K,Ωn) reduce into 2 × 2 matrices. The simplification arises from
the fact that only part of the pair propagator is ultraviolet divergent. In particular the contribution
of the particle holes excitations to the pair propagator χph = χ11,11 together with the component of
χα1α

′
1,α
′
2α2

(K,Ωn) which involve the anomalous Green’s functions are finite while the particle-particle
contribution, which is given by the component χ12,12 is ultraviolet divergent. To renormalize the di-
vergence we define the interaction parameter g as follows

1
g

=
1
g0

+

∫
ddk

(2π)d

m
~2k2 . (3.15)

The interaction (3.2) is the zero limit of a potential which implies only low-energy s-wave scattering,
this implies that the scattering amplitude do not depend on the angle so g is a constant parameter. In
d = 3 the scattering amplitude g is connected to the scattering length by the simple relation

g =
4π~2

m
· a. (3.16)

We now look at the renormalized interaction parameter g, by introducing an ultraviolet cutoff Λ, the
integral in (3.15) becomes ∫

|k|<Λ

ddk
(2π)d

m
~2k2 =

Ωd

(2π)d

m
~2

Λd−2

d − 2
, (3.17)

which is, in the three-dimensional case, ultraviolet divergent in the limit Λ→ ∞. Since the scattering
amplitude g is kept constant, the bare interaction vertex g0 must be taken to zero in the limit where
the cut-off Λ diverges, this implies that the diagrams which involve the finite contribution to the pair-
propagator will vanish because of g0 → −0. The only contribution that remains is the particle-particle
contribution which is renormalized by (3.15) and generates the ladder diagrams depicted in Figure

2.3. This argument is also used by Strinati and Pieri [54] but it is not clear weather these vanishing
terms do not contribute after the re-summation of infinitely many terms of the perturbation series.
In the following we will anyway concentrate only on the particle-particle contribution. If we now
look at the particle-particle contribution to the pair propagator, we note that the four tensor indices
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are pairwise identical which means that two of them are redundant. The tensor χα1α
′
1,α
′
2α2

can be thus
described through a matrix defined by only two indices. The renormalization of the remaining term of
the interaction vertex can be performed as follows: in the pair propagator we separate the ultraviolet
divergence by introducing the renormalized propagator Mαα′(K,Ωn)

χαα′(K,Ωn) = Mαα′(K,Ωn) +

∫
ddk

(2π)d

m
~2k2 .

Inserting the expression (3.14) in the Bethe-Salpeter equation (3.13) and taking the ultraviolet di-

vergence to the renormalized coupling strength (3.15), we obtain the renormalized Bethe-Salpeter
equation

Γ−1
αα′(K,Ωn) = g−1δαα′ + Mαα′(K,Ωn), (3.18)

where

Mαα′(K,Ωn) =

∫
d3k

(2π)3


1
β

∑

ωn

Gαα′(K − k,Ωn − ωn)Gαα′(k, ωn) − m
~k2 δαα

′

 (3.19)

is the renormalized pair propagator. Performing a Fourier back transformation we obtain the regular-
ized pair propagator in real space and imaginary time

Mαα′(r, τ) = [Gαα′(r, τ)]2 −C δαα′δ(r)δB(τ/~), (3.20)

where the divergence of the first term is canceled by the constant C defined by the integral (3.17)
which is infinite in the limit Λ→ ∞. The function δB(τ/~) is the Bosonic delta function defined by

δB(τ/~) =
1
β

∑

Ωn

e−iΩnτ =
∑

n

δ(τ/~ + nβ), (3.21)

which is periodic in the variable τ. Once the renormalized pair-propagator is known, it is possible to
calculate the functional Φ[G] defined by the ladder approximation in Figure 2.2 [18]

Φ[G] = −βLd g|F(r = 0, τ = 0)|2 − 1
2
βLd

∫
ddK
(2π)d

1
β

∑

Ωn

Tr
{
ln

[
1 + g0χ

]}
. (3.22)

An analytical expression for the self-energy can be obtained by the functional derivative of (3.22)
which gives

Σαα′(r, τ) = Σ1,αα′δ(r)δF(τ/~) + Gαα′(−r,−τ)Γαα′(r, τ). (3.23)

The second term of equation (3.23) includes the particle-particle contribution to the self-energy while

Σ1,αα′ is the non-diagonal part of the Fock term, which involves the anomalous propagator and is given
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by

Σ1 =


0 g0F(r = 0, τ = 0)

g0F∗(r = 0, τ = 0) 0

 . (3.24)

In the first term of equation (3.23), δF(τ/~) is the fermionic delta function defined by

δF(τ/~) =
1
β

∑

ωn

e−iωnτ =
∑

n

(−1)nδ(τ/~ + nβ), (3.25)

which is anti-periodic in the variable τ.

The non-diagonal terms in the matrix (3.24) define the order parameter

∆ = gF (r = 0, τ = 0) = g
∫

ddk
(2π)d

1
β

∑

ωn

F (k, ωn), (3.26)

which is expected to be nonzero for a superfluid fermion system. For a zero range interaction the
integral in equation (3.26) results to be also ultraviolet divergent, thus the order parameter needs to be
renormalized too. Using (3.15) we can replace the interaction parameter g0 by the scattering amplitude
obtaining

∆ = g
∫

ddk
(2π)d

[
F (k, τ = 0) + ∆

m
~2k2

]
. (3.27)

The equations (3.11), (3.23) and (3.18) together with (3.20) form the set of self-consistent equations

G−1
αα′ (k, ωn) = G−1

0,αα′ (k, ωn) − Σαα′ (k, ωn) ,

Σαα′ (r, τ) = Σ1,αα′δ (r) δF (τ/~) + Gαα′ (−r,−τ) Γαα′ (r, τ) ,

Γ−1
αα′ (K,Ωn) = g−1δαα′ + Mαα′ (K,Ωn) ,

Mαα′ (r, τ) = [Gαα′ (r, τ)]2 −C δαα′δ(r)δB(τ/~).

(3.28)

which can be numerically solved to get the full matrix Green’s function Gαα′(k, ωn) and the vertex
function Γαα′(K,Ωn).

3.2 Validity of the Ward identity in the self-consistent approximation

In Chapter 2 the Ward identity (2.36) was derived for exact theory and we said that it is true up

to all the orders in perturbation theory. However, in the present theory it is only an approximation
due to the fact that the exact functional which enters either in the Luttinger and Ward theory or in
the theory of De Dominicis and Martin is truncated. A consequence of this truncation is that the
functional derived within this approximation will not obey the Ward identity. The function Γαα′(K,Ωn)
obtained from the self-consistent equations is equivalent to the vertex function Γ defined by the Bethe-
Salpeter equation depicted in Figure 3.1, where the irreducible vertex function Γ1 defined by the
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= +

Figure 3.1: Bethe-Salpeter equation in the lowest order approximation. The irreducible vertex function
Γ1 is replaced by the bare vertex function Γ0

functional derivative (2.31) is replaced, in the lowest order approximation, by the bare vertex Γ0

[18]. In this approximation the vertex Γ0 is given by the second functional derivative of the Hartree-
Fock functional ΦHF[G], which is equivalent to the functional derivative of the Hartree-Fock self-
energy. Thus, the Ward identity (2.36) in this self-consistent approximation will involve the variation
δλΣHF , where ΣHF does not depend either on the Fermi wave vector or on the fermionic Matsubara
frequencies. The off-diagonal terms of ΣHF are given by Σ1,αα′ defined in (3.24) which is the order
parameter (∆α) = (∆,∆∗). However, to derive the self-consistent equations (6.5)- (6.8) we used a self-
consistent ladder approximation for the functional Φ[G] hence in equation (2.34) the variation δλAHF

does not vanish. If we now compare the variation of the functional δΩ[G]/δG in self-consistent ladder
approximation and in Hartree-Fock approximation using the definitions (2.12) and (2.15), we can
estimate how large is the parameter AHF

AHF = Σ − ΣHF . (3.29)

The variation δλ is related to a global change of phase, thus the variation δλAHF possesses only the
off-diagonal elements. From the definition (3.23) for the self-energy we note that the first term Σ1,αα′ ,
whose off-diagonal components are proportional to ∆, is canceled by the off-diagonal part of the
Hartree-Fock self-energy ΣHF . The leading off-diagonal term of the external parameter AHF is thus
given, according to (3.29), by the product G(−r,−τ)Γ(r, τ). Now, if we look at the Dyson equation
(3.11), we see that the leading off-diagonal term of the Green’s function is included in the self-energy,
hence it is of the order O(|∆|). This implies that the renormalized pair propagator (3.20) and the vertex
function defined by the Bethe-Salpeter equation (3.18) have off-diagonal terms which are proportional

to |∆|2. Finally, we can say that the off-diagonal terms of G · Γ are of the order O(|∆|3). Thus close to
Tc, where the order parameter is exponentially small the variation δλAHF = O(|∆|3). Finally the Ward
identity in our self-consistent approximation can be written in the following way:

Γ−1
αα′(K = 0,Ωn = 0)∆α′ = O

(
|∆|3

)
. (3.30)

As a consequence of the violation of the Ward identity (3.30), the present theory does not have a
collective mode whose energy vanishes in the long wavelength limit, i.e. it violates the Thouless
criterion. For T = Tc the vertex function is diagonal and both the eigenvalues are zero. In this case
the Thouless criterion is valid. The fact that the theory does not satisfy the Goldstone theorem for
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continuous symmetries is a general problem of conserving approximations based on the Luttinger and
Ward formalism. This fact has already been pointed out by Hohenberg and Martin [55] for superfluid
Bose systems where it is known as violation of the Hugenholtz-Pines theorem.

3.3 Weak coupling limit

In the regime of weak couplings the s-wave scattering length a is small, consiquently the bare vertex
function Γ0, which is represented in Figure 3.1 by a open circle is small. Thus a correct description
of the system is given by the lowest order approximation where we replace the vertex function by the
bare one which, in the limit a→ 0, is given by

Γ(K,Ωn) =
4π~2

m
· a. (3.31)

Expression (3.31) corresponds to the scattering amplitude of low-energy s-wave scattering. If we
retain the Hartree-Fock terms only, the self-energy Σ is then given by

ΣHF =


ΓHFG(r = 0, τ = −0) ∆

∆∗ −ΓHFG(r = 0, τ = −0)

 =


−2π~2

m a · nF ∆

∆∗ 2π~2

m a · nF

 (3.32)

to obtain the last identity we made use of the density equation

nF = −2G(r = 0, τ = −0). (3.33)

From the self-energy ΣHF , using the Dyson equation, the Hartree-Fock equation for the matrix Green’s
function can be obtained, which turns out to be the Gorkov equation for the normal and anomalous
Green’s functions:

G−1
HF(k, ωn) = G−1

0 (k, ωn) − ΣHF =


−i~ωn + (ε̄k − µ) −∆

−∆∗ −i~ωn − (ε̄k − µ)

 , (3.34)

where ε̄k is the Hartree-Fock energy

ε̄k = εk +
4

3π
εF · kFa. (3.35)

Inverting the 2 × 2 matrix (3.34) we obtain the normal Green’s function

GHF(k, ωn) = u2
k

1
−i~ωn + Ek

− v2
k

1
i~ωn + Ek

(3.36)
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and the anomalous Green’s function

FHF(k, ωn) =
∆

2Ek

(
1

−i~ωn + Ek
+

1
i~ωn + Ek

)
, (3.37)

where Ek is the usual spectrum of the fermionic quasi-particles

Ek =

√
(ε̄k − µ)2 + |∆|2 (3.38)

and the coefficient uk and vk are given by

u2
k =

1
2

1 +
ε̄k − µ√

(ε̄k − µ)2 + |∆|2

 (3.39)

v2
k =

1
2

1 −
ε̄k − µ√

(ε̄k − µ)2 + |∆|2

 . (3.40)

The standard equation of the BCS-theory for the gap can be obtained by inserting the anomalous
Green’s function FHF(k, ωn) into the equation (3.27) for the order parameter:

1 = −4π~2

m
a

∫
d3k

(2π)3

[
1

2Ek
tanh

(
Ek

2kBT

)
− m
~2k2

]
. (3.41)

The integral (3.41) is regularized by the last term in the square bracket. By solving the gap-equation
(3.41) for T = 0 the energy gap is obtained

∆(BCS )(T = 0) =
8εF

e2 exp(−π/2kF |a|), (3.42)

while setting ∆ = 0 in (3.41) it is possible to obtain the critical temperature for the superfluid transition

kBT BCS
c =

8eγE

πe2 εF exp (−π/2kF |a|) h 0.61εF exp (−π/2kF |a|) , (3.43)

here γE = 0.5772... is the Euler’s constant and 2kF |a|/π = N(0)g is the dimensionless coupling con-
stant, with N(0) = mkF/2π2~2 the standard density of state per spin at the Fermi energy. Corrections
to the leading order of the BCS-result have been given by Gorkov and Melik-Barkhudarov [56], who
went beyond the first order approximation by considering density fluctuations, the corrections to the
first order are due to induced interactions, where one fermion sees the polarization in the Fermi gas
due to a second fermion. In the gap equation the interaction g = 4π~2/m · a is replaced by an effective
interaction g→ g + δV . In the new effective interaction are retained all the irreducible diagrams up to
the second order, which are depicted in Figure 3.2. The density induced interaction leads to a positive
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−iδV = + + +

Figure 3.2: Second order correction to the interaction g

correction of the dimensionless coupling constant according to

g→ g + g2N(0)
1 + 2 ln 2

3
. (3.44)

Since the correction to the attractive two-body scattering amplitude g is positive, the induced interac-
tion weaken the interaction between the fermions and leads to a reduction of the transition temperature
by a factor (4e)−1/3 ≈ 0.45. The critical temperature obtained by Gorkov and Melik-Barkhudarov is

thus given by

kBTGM−B
c =

eγE

π

(
2
e

)7/3

εF exp (−π/2kF |a|) h 0.28εF exp (−π/2kF |a|) . (3.45)

3.4 Strong coupling limit

In the weakly interacting limit −∞ < ν = 1/kFa . −1 our fermionic system converge to the BCS-
theory. Increasing the strength of the interaction reflects in our model an increase of the dimensionless
parameter ν. As long as ν < 0, there are only unbound scattering states but when the inverse scattering
length crosses zero, the fermions will start to bind into pairs with a diameter of the order of a while
the average distance between the fermions is given by k−1

F . If we require the system to be in the strong
coupling regime, where

ν =
1

kFa
� 1, (3.46)

then the distance between the pairs is much larger than their size and at low frequency and momenta
the system behaves like a bosonic system. In fact for a two particle system the binding energy of a
pair is

εb =
~2

ma2 . (3.47)

The ratio εb/εF ∝ ν2 implies that in the regime defined by (3.46), εF � εb, hence at low energies
quantum fluctuation are too small to break up the pairs and the physics of the system is dominated
by bosonic degrees of freedom. The present crossover theory described by the set of equation (3.28),
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converges in the strong coupling regime to the Hartree-Fock-Bogoliubov theory [17, 18]. Under the
condition that we are in the low energy limit, where kBT , ~Ωn and ~2K2

F/4m are much smaller than
the binding energy εb, the vertex function can be written in the following way

Γ−1
αα′(K,Ωn) = −[8πε2

ba3]−1 ·

−i~Ωn + ~2K2

4m +
|∆|2
2εb

− ∆2

2εb

− (∆∗)2

2εb
i~Ωn + ~2K2

4m +
|∆|2
2εb

 (3.48)

up to the leading order in εb. On the other hand the Green’s function of a weakly interacting Bose gas
is given by the matrix [57]

G−1
B,αα′(K,Ωn) =


−i~Ωn + ~2K2

4m + TB|ΨB|2 TBΨ2
B

TB(Ψ∗B)2 i~Ωn + ~2K2

4m + TB|ΨB|2
 , (3.49)

where T = 4π~2add/2m is the bosonic T -matrix and ΨB is the average Bose field operator. If we
identify the order parameter ∆ with the bosonic order parameter ΨB through the relation

∆ = ±i[8πε2
ba3]1/2ΨB, (3.50)

the vertex function (3.48) resembles, up to the factor −[8πε2
ba3]−1, the inverse Green’s function of a

superfluid interacting bosonic system

GB(K,Ω) = [8πε2
ba3]−1 · Γ(K,Ωn), (3.51)

where the bosonic scattering length is given by a(B)
bb = 2a and the T -matrix for the bosonic system

reads TB = 4π~2a/m. It is important to note that the validity of the relation between the vertex (3.48)
and the bosonic Green’s function is only assured in the limit of strong coupling and low frequency and
momenta. Indeed only in this limit the particles behave like bosons. In fact, in the limit |k| → ∞, the
diagonal part of the vertex function asymptotically behaves like (see also section 6.2)

Γ (K,Ωn) ≈ 8π
1

1
kFa −

√
−iΩn

2 + K2

4 − µ
. (3.52)

The different behaviour GB(K,Ωn) ∼ Ω−1
n of the Green’s function compared to that of the vertex

function Γ(K,Ωn) ∼ Ω
−1/2
n , due to the two particle continuum associated with broken pairs, is evidence

of the composite nature of the bosonic dimers. However, if the coupling constant becomes very large
ν � 1, the two particle continuum moves up to very large frequencies of the order of the binding
energy εb ∼ ν2.

According to this approximation, the scattering length of the weakly interacting bosons is found to
be twice the fermionic scattering length. However Petrov et al. [58] have recently calculated the exact
dimer-dimer scattering length by studying the four fermion problem and found the value add = 0.62 a.
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Since in this regime the gas behaves like a weakly interacting gas of Bosons with a positive scattering
length we expect that the system becomes superfluid below a critical temperature Tc which, to the
zeroth order approximation, is the temperature T (BEC)

c where an ideal Bose gas with density nB = n/2
and mass mB = 2m undergoes Bose-Einstein condensation:

kBT (BEC)
c = 3.31

~2n2/3
B

mB
= 0.218εF . (3.53)

The leading correction to this results arise from the residual interaction between the tightly bound
bosonic dimers and the exact dependence of the critical temperature of the dilute repulsive bosonic
gas on the interaction strength. The correction results to be positive and linear in the scattering length
[59][60][61]

Tc/T
(BEC)
c = 1 + cn1/3

B add, (3.54)

where the numerical constant assumes the value c ≈ 1.31. The result (3.54) tells us that for the
homogeneous case the evolution of the critical temperature from the BCS-regime to the BEC-regime
as a function of the dimensionless coupling constant ν = 1/kFa necessarily exhibits a maximum, since
the asymptotic result for the ideal Bose gas is approached from above. The maximum in the curve of
the critical temperature has been already predicted in early studies of the critical temperature along
the BCS-BEC crossover by Nozières and Schmitt-Rink [14] and by Randeria [62] but still the high
and the location of the maximum has not been determined in a reliable manner.

3.5 Global phase diagram

To study the physics of the system in the intermediate regime −1 . ν = 1/kFa . 1, we need to numer-
ically solve the set of equations (3.28). In order to do this we use as input parameter the temperature
and the order parameter. The coupling constant ν and the chemical potential of the system are then
determined self-consistently. Thus, the solution of the self-consistent equations (3.28) determines the
state of the system by giving, as direct result the temperature of the system, the order parameter of
the superfluid transition, the coupling constant and the chemical potential. In Figures 3.3 and 3.4 is
depicted the order parameter of the system as a function of the dimensionless coupling constant and
the dimensionless temperature. The order parameter vanishes in the limit of weak coupling accord-
ing to the exponential law predicted by the BCS theory. In the opposite limit of strong coupling, the

behaviour can be derived from µn→ −∆2/2g. This behaviour reflects the fact that the fermion chem-
ical potential in the strong coupling limit is governed by the potential energy which is, in the limit
ν → ∞, the binding energy. From Figure 3.3 one can clearly see that there is a region where the gap
is multivalued. This region of multivaluedness near Tc, which is evidence of a first order transition,
is an artefact of our approximation and will be present in all the thermodynamic potentials calculated
within our theory.
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Figure 3.3: Three dimensional view of the order parameter. From this picture one can clearly see the
region around the critical temperature where the order parameter becomes multivalued. This multival-
ued behaviour is charaterisitc of a first-order transition.
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Figure 3.4: Projection of the order parameter on the θ − ν plane.
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The crucial quantity which determines the overall structure of the phase diagram is then the critical
temperature Tc where the transition from the normal system to the superfluid system occurs. As we
have pointed out in sections 3.3 and 3.4, the behaviour of the critical temperature is well known in
the two extreme limits. For weak coupling the fermionic gas can be described by a BCS-like theory,
while for strong attractive interaction the fermions are bound into dimers and the theory converge
to an effective theory of repulsively interacting bosons. These approximation works fine because
the relevant quasi-particles, the fermions in the weak coupling limit and the bosons in the strong
coupling limit, are well defined and have long life times. This is not the case for intermediate couplings
−1 . ν = 1/kFa . 1 where the quasi-particles are short-lived. The range of temperatures around Tc

where the order parameter and the thermodynamic potentials are multivalued can be clearly identified
in Figure 3.5 as the region bounded by the upper and lower Tc curves respectively. In the above-
mentioned figure the critical temperature is depicted as dimensionless ratio θc = Tc/TF together with
the limits in the BSC and BEC regime.

The lower Tc curve (depicted in Figure 3.5 by the red dashed line) has been determined by im-
plementing the Thouless criterion and is defined as the lowest temperature for which the normal-fluid
state is stable. Such a definition for Tc was already used in previous works [63] and [18], and pro-
duces for the critical temperature a curve which increases monotonically as a function of the coupling
constant ν. Consequently, the value T (BEC)

c for the ideal Bose gas is approached from below, which
is in contrast with the result (3.54) and with the previous works of Nozières and Schmitt-Rink [14],
Randeria [62], Drechsler and Zwerger [15], and Sá De Melo et al. [64].

In order to determine a sensible value for the critical temperature within our approach we have
determined Tc from the criterion that it is the maximum temperature at which the order parameter
∆(T ) is nonzero. The Tc curve (full black line in Figure 3.5) obtained from the last criterion exhibits
a maximum on the BEC-side of the crossover around ν ≈ 1, which is the behaviour expected on
general grounds. As a consequence of the maximum in the Tc curve our theory approaches the critical
temperature of the ideal Bose gas from above which is consistent with the enhancement of the critical
temperature predicted by the functional form (3.54) in the BEC limit (ν � 1).

As a comparison we plotted in Figure 3.5 two additional curves in the strong coupling regime
which are obtained from the relation (3.54). The data depicted by the red squares are obtained by
substituting the exact result for the dimer-dimer scattering length add = 0.62a and the numerical
constant c ≈ 1.31 obtained from Monte Carlo calculations [65, 66, 67] while the dash-dotted blue line
is obtained by using the Born approximation for the dimer-dimer scattering length a(B)

dd = 2a and the
numerical constant c ≈ 0.58 which are consistent with our Popov-approximate theory. Even though
our theory predicts a scattering length which differs from the exact value the agreement of our results
with the exact results is very good.

On the BCS-side our estimate of the critical temperature is compared with the BCS result (3.43)
for the critical temperature (yellow dashed line) and the Gorkov Melik-Barkhudarov correction to this
result (green squares). Even in this regime, the agreement of the present theory with the approximation
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B a(0)

dd and c = 1.31 (QMC) and add = 0.62 a. Yellow dashed line
and green triangles show the BCS result without and with Gorkov and Melik-Barkhudarov corrections.

for extremely weak coupling is evident.
The other physical parameter which can be directly calculated in the self-consistent approximation

is the chemical potential. Since our calculation extends to all temperature and coupling strength, we
are able to calculate the chemical potential in a wider range of temperatures for arbitrary values of the
coupling constant. Figure 3.6 and 3.7 depict surface plot of the chemical potential as a function of the
dimensionless temperature and coupling constant and its projection onto the θ − ν plane. In the weak
coupling limit the numerical results approach the result expected for an ideal Fermi gas µ→ εF as can
be seen in the surface plot depicted in Figure 3.6. On this side of the crossover there are essentially
no bound pairs, the system is a Fermi liquid and only below the critical temperature Tc there will be
a few cooper pairs. On the Bose side the difference between the chemical potential and the binding
energy εb = ~2/ma2 = εF · 2ν2 is plotted. In the strong coupling limit 1/kFa � 1 the fermions are
bound together into dimers and we expect µ → −εb/2 = −εFν

2. The difference µ + εb/2 approaches
zero from the positive side which is an evidence of the repulsive interaction between the pairs.
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Chapter 4

Thermodynamics of the crossover

4.1 Thermodynamic potentials

The functional Ω[G] obtained within the formalism of Luttinger and Ward can be explicitly derived
starting from the functional (2.13) with the stationarity condition (2.15) and inserting the ladder ap-
proximation for the functional Φ[G], which has already been explicitly calculated in a previous work
[18]

Ω[G] = −Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G(k, ωn)] + [G0(k, ωn)−1G(k, ωn) − 1]

}

+ Ld g0|F (0, 0)|2 +
1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr
{
ln[1 + g0 χ(K,Ωn)]

}
.

(4.1)

The functional (2.13) is written in a very compact way, in fact the trace that appears in it is fourfold.

In (4.1) the four traces have been written explicitly: the first one is taken with respect to the position
r, which is represented by the integral over the wave vector k. The second trace is taken with respect
to the imaginary time τ and is represented by the sum over the Matsubara frequencies. The trace
over the spin indices has been suppressed and replaced by an extra factor 2. Finally in the formula
(4.1) survives only one trace which is the one over the Nambu indices. The matrix Green’s functions
G0(k, ωn) and G(k, ωn) are defined by (3.10) and (3.7) while the pair propagator χ(K,Ωn) is defined by
(3.14). The kinetic energy and the chemical potential are included via the free matrix Green’s function
G0(k, ωn), the temperature T is included directly by means of the factor β and indirectly through the
fermionic and bosonic Matsubara frequencies ωn = 2π(n + 1)/β and Ωn = 2πn/β. The interaction
is included in (4.1) by the bare interaction parameter, which needs to be renormalized following the
procedure which is explained in section 3.1. Fermionic and bosonic functions are distinguished by
their arguments. Fermionic wave vectors and the fermionic Matsubara frequencies are denoted by
small letters while the bosonic wave vectors and Matsubara frequencies are denoted by capital letters.

The fermionic Green’s function and the pair propagator as a function of the wave vector and the

37
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Matsubara frequencies are obtained through a Fourier transformation with respect to the position r
and the imaginary time τ. The second term in the (4.1) is defined by the anomalous Green’s function
(3.4). The volume Ld is supposed to be a cube with edge length L and the limit L→ ∞ is taken in the
renormalization procedure.

In the formalism of De Dominicis and Martin the renormalization of the coupling strength is
obtained replacing the bare coupling constant with the vertex function via a Legendre transformation.

The resulting functional is the dimensionless entropy given by (2.38). From the functional F(2)[G,Γ]
we can derive an explicit expression for the entropy. If we restrict the second trace of (2.38) to the
particle-particle ladders and set K (2)[G,Γ] to zero as described in section 2.3, the entropy functional
reads

S [G,Γ]/kB = βLd
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G(k, ωn)] + [−i~ωnG(k, ωn) − 1]

}

+
1
2
βLd

∫
ddK
(2π)d

1
β

∑

Ωn

Tr
{
ln[1 − χ(K,Ωn) Γ(K,Ωn)] + χ(K,Ωn) Γ(K,Ωn)

}
.

(4.2)

The first term of the functional (4.2) is the same as in (2.38) where the trace is written explicitly and it
doesn’t need any further explanation, on the other hand, the second term needs a more careful analysis.
In our approximation the restriction to particle-particle ladders implies that the Nambu indices are
pairwise identical, that means they reduce from four to two. In this way the vertex function Γ can

be represented by a 2 × 2 matrix like for the matrix Green’s function. With this simplification the
pre-factor of Γ in equation (2.38) changes. The factor 1/2 disappears and the quadratic terms in the
second trace cancels. With the further simplification K (2)[G,Γ] = 0 the trace reduces to

1
2

Tr
{
ln[1 − Γ̄] + Γ̄

}
. (4.3)

Using the definition of Γ̄ given by (2.39), together with the definition (3.14) of the pair propagator
χ(K,Ωn), the modified vertex function can be rewritten in the following way

Γ̄(K,Ωn) = χ1/2(K,Ωn)Γ(K,Ωn)χ1/2(K,Ωn) = χ(K,Ωn)Γ(K,Ωn). (4.4)

Furthermore, we note that the two-particle Green’s function and hence the vertex function Γ, depend on
four wave vectors, where only three of them are independent because of the momentum conservation.

Since we restrict ourself only to particle-particle ladder in the present approximation, Γ is the scattering
amplitude of two fermions in the many particle system. The three independent wave vectors can be
then chosen as the center of mass wave vector K, the relative incoming wave vector and the relative
outcoming wave vector. Since the interaction is assumed to be elastic and of s-wave type, the scattering
amplitude does not depend on the incoming and outcoming wave vectors, hence the vertex function
Γ depends only on the center of mass wave vector K. The same argument can be repeated for the
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Matsubara frequencies so that, in the end we can assume that the vertex function is a function of
the center of mass wave vector K and the center of mass Matsubara frequencies Ωn only. The spin
dependence can be factored just as it has been done for the Green’s function and can be incorporated
in the pre-factors including a factor 2 for each closed fermionic loop.

From the entropy functional we can obtain an explicit expression for the grand-thermodynamic
potential in the formalism of De Dominicis and Martin. According to (2.41), in order to do that we
need to find an explicit expression for the internal energy and for the particle number. Within the
present formalism the internal energy can be explicitly evaluated in terms of the Green’s function G

and the vertex function Γ. From the thermal average

U = 〈Ĥ〉 = Z−1 Tr{Ĥ exp(−β[Ĥ − µN̂])}, (4.5)

using the delta potential interaction and inserting the Hamiltonian (3.1) in the (4.5) we obtain:

U =

∫
ddr

∑

σ

~2

2m
〈[∇ψ†σ(r)][∇ψσ(r)]〉

+
1
2

∫
ddr

∑

σσ′
g0 〈ψ†σ(r)ψ†σ′(r)ψσ′(r)ψσ(r)〉.

(4.6)

The first term in the (4.6) represent the kinetic energy and can be expressed in terms of the Green’s
function, it contains, in fact, an average of two fermionic fields, that can be expressed through equation
(3.3) in terms of the normal Green’s function. The first integral of the (4.6) can be rewritten as follows:

∫
ddr

∑

σ

~2

2m
〈[∇ψ+

σ(r)][∇ψσ(r)]〉

= −2
∫

ddr
∫

ddk
(2π)d

∫
ddk′

(2π)d ·
~2

2m
k · k′e−ir·(k−k′)〈a(k, τ)†a(k′, τ)〉

= −2
∫

ddk
(2π)d

~2k2

2m
G(k, τ = −0).

(4.7)

The second integral in the (4.6) can be expressed by four terms. It contains an average of four
fermionic fields which, using the Wick theorem and following De Dominicis and Martin, can be
separated into three products of single particle Green’s functions plus a term which take into account
the correlations:

〈T[
ψ(X1)ψ(X2)ψ†(X3)ψ†(X4)

]〉 =〈T[
ψ(X1)ψ†(X3)

]〉〈T[
ψ(X2)ψ†(X4)

]〉
−〈T[

ψ(X1)ψ†(X4)
]〉〈T[

ψ(X2)ψ†(X3)
]〉

−〈T[
ψ(X1)ψ(X2)

]〉〈T[
ψ†(X3)ψ†(X4)

]〉
−Γ̄X1X2X3X4 .

(4.8)
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The three product of one-particle Green’s function represent the Hartree energy, the Fock energy
and the Bogoliubov energy. The connected part of the two-particle Green’s function provides the
correlation energy. The third product can be finally expressed in terms of the anomalous Green’s
function. Instead of calculating directly the averages in (4.8) we can get an explicit expression of the
potential energy in a simpler way. We have applied the self-consistent ladder approximation to get a
closed formula for the grand thermodynamic potential, thus we will apply the same approximation to
evaluate the potential energy. In order to evaluate the average

〈Hpot〉 =
1
2

∫
ddr

∑

σσ′
g0 〈ψ†σ(r)ψ†σ′(r)ψσ′(r)ψσ(r)〉 (4.9)

we note that
〈Hpot〉 = Z−1Tr

{
Ĥpot e−β(Ĥkin−µN̂+Ĥpot)

}
= −1

β
g0
∂ ln Z
∂g0

= g0
∂Ω

∂g0
, (4.10)

where Ω is the grand thermodynamic potential, g0 the bare interaction strength and the partial deriva-
tive are taken at constant T and µ and volume. As can be seen from (4.1), the functional Ω depends
explicitly on the interaction strength. However there is also an implicit dependence due to the presence
of the full Green’s function G(k, ωn). Anyway at equilibrium the grand thermodynamic potential is
defined by its value at the saddle point

δΩ[G]
δG

= 0,

hence we don’t have to worry about the implicit derivative δΩ/δG ·∂G/∂g0 and the calculation reduces
to a straightforward partial derivative of the last two term of the functional (4.1):

〈Hpot〉 = g0

Ld |F (0, 0)|2 +
1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr
{
[1 + g0 χ(K,Ωn)]−1 · χ(K,Ωn)

}
 (4.11)

the quantity in the trace can be further rewritten with the help of the Bethe-Salpeter equation [1 +

g0 χ(K,Ωn)]−1 = Γ(K,Ωn)/g0 = 1−χ(K,Ωn)Γ(K,Ωn) and the internal energy take then the following
explicit form:

U[G,Γ] = − 2 Ld
∫

ddk
(2π)d εk G(k, τ = −0) + Ld g0|F (0, 0)|2

+
1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

g0 Tr
{
χ(K,Ωn) − χ(K,Ωn) Γ(K,Ωn) χ(K,Ωn)

}
.

(4.12)

An explicit expression for the particles number in terms of the one-particle Green’s function can
be derived starting from the definition

N = 〈N̂〉 =

∫
ddr

∑

σ

〈ψ†σ(r)ψσ(r)〉. (4.13)
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Proceeding as for the internal energy, the equation for the particle number can be rewritten in the
standard form:

N[G] = −2 Ld
∫

ddk
(2π)d G(k, τ = −0). (4.14)

Combining the expression for the entropy and the results obtained for the internal energy and the
particle number, we can now write the grand-thermodynamic potential in a explicit way by exploiting
the thermodynamic relation (2.41). As a result we get, within the formalism of De Dominicis and
Martin a functional for the grand thermodynamic potential which is essentially different from the one
calculated within the formalism of Luttinger and Ward:

Ω[G,Γ] = − 2 Ld
∫

ddk
(2π)d (εk − µ) G(k, τ = −0) + Ld g0|F (0, 0)|2

− Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G(k, ωn)] + [−i~ωnG(k, ωn) − 1]

}

+
1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

g0 Tr
{
χ(K,Ωn) − χ(K,Ωn) Γ(K,Ωn) χ(K,Ωn)

}

− 1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr
{
ln[1 − χ(K,Ωn) Γ(K,Ωn)] + χ(K,Ωn) Γ(K,Ωn)

}
.

(4.15)

Although at this stage the functionals (4.1) and (4.15) are formally different, it can be shown that the
value of the functional (4.15) at stationarity coincides exactly with the grand-thermodynamic potential
Ω[G] expressed by (4.1) (see Appendix A).

Alternatively, a functional for the entropy can be derived from the Luttinger and Ward grand-
potential according to the thermodynamic relation S = −∂Ω/∂T . Again we will obtain a formal
expression for the entropy which is different from (4.2). However, if G and Γ satisfy the self-consistent
equation the two functionals will become identical. The equivalence of the different functionals in
thermal equilibrium is necessary for the consistency of the theory and the compatibility of the self-
consistent ladder approximation for all thermodynamic quantities.

4.2 Derivation of the self-consistent equations within the formalism of
De Dominicis and Martin

In this section the Dyson equation (3.11) and the Bethe-Salpeter equation (3.18), already written in
Chapter 3 within the formalism of Luttinger and Ward, will be derived from the first variation of the
functional (2.42) by means of the stationarity criteria (2.42).

First we will derive the Bethe-Salperter equation (3.13) from the variation δΓΩ[G, Γ], where Γ is
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varied and G is kept constant:

δΓΩ[G,Γ] =
1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr
{ [
−g0χ(K,Ωn) − 1 +

[
1 − χ(K,Ωn)Γ(K,Ωn)

]−1
]

× χ(K,Ωn)δΓ(K,Ωn)
}
.

(4.16)

The quantity δΓ(K,Ωn) is arbitrary thus the condition δΩ[G,Γ]/δΓ = 0 implies that the the argument
of the integral (4.16) must vanish:

−g0χ(K,Ωn) +
[
1 − χ(K,Ωn)Γ(K,Ωn)

]−1 − 1 = 0 (4.17)

Equation (4.17) is nothing but the Bethe-Salpeter equation. In fact, if we multiply it from the right
side by [1 − χ(K,Ωn)Γ(K,Ωn)] and from the left side by χ(K,Ωn), we get

Γ(K,Ωn) = g0 − g0χ(K,Ωn)Γ(K,Ωn) (4.18)

which is exactly the Bethe-Salpeter equation and can be written in the same form as in (3.13) by
multiplying it by Γ(K,Ωn)−1 from the right.

Considering the variation of Ω[G,Γ] with respect to G, where Γ is kept constant we get the Dyson
equation (3.11). In order to perform the variation explicitly, we need to express the dependence on
the Green’s function G(k, ωn) of the first two terms in the grand-canonical potential (4.15). To this
purpose we rewrite the kinetic energy in the following form:

2Ld
∫

ddk
(2π)d

1
β

∑

ωn

(εk − µ)G(k, ωn) =

= Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr




(εk − µ) 0

0 −(εk − µ)



G(k, ωn) F (k, ωn)
F ∗(k, ωn) −G∗(k, ωn)




= Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{(

G−1
0 (k, ωn) + i~ωn

)
G(k, ωn)

}
,

(4.19)

The term Ld g0|F (0, 0)|2 has to be treated in the same way. Noting that ∆ = g0F (0, 0) we can write

2Ld g0|F (0, 0)|2 = LdTr


∆F∗(r = 0, τ = 0) 0

0 ∆∗F(r = 0, τ = 0)



= Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr




0 ∆

∆∗ 0



G(k, ωn) F (k, ωn)
F ∗(k, ωn) −G∗(k, ωn)




= Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr {Σ1G(k, ωn)}

(4.20)
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where Σ1 is the Fock contribution to the self-energy defined by the matrix (3.24). The two terms (4.19)
and (4.20) can be now grouped together with the third integral in the functional (4.15), thus the first
three contribution to the grand-thermodynamic potential read:

Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{
ln[G(k, ωn)] +

[
−G−1

0 (k, ωn) + Σ1
]
G(k, ωn)

}
− Ld |∆|2

g0
. (4.21)

Noting that the pair propagator χ(K,Ωn) is a product of Green’s functions, the variation with respect
to G(k, ωn) of the grand-potential functional finally reads:

δGΩ[G,Γ] = Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{[

G(k, ωn)−1 −G0(k, ωn)−1 + Σ1
]
δG(k, ωn)

}

+
Ld

2

∫
ddK
(2π)d

1
β

∑

Ωn

Tr
{
g0

[
1 − χ(K,Ωn)Γ(K,Ωn)

]
δχ(K,Ωn)

− g0 δχ(K,Ωn) Γ(K,Ωn) χ(K,Ωn)

+
[
1 − χ(K,Ωn) Γ(K,Ωn)

]−1δχ(K,Ωn) Γ(K,Ωn)

− δχ(K,Ωn) Γ(K,Ωn)
}
.

(4.22)

The second integral can be simplified by using the Bethe-Salpeter equation. Equation (4.17) implies
that the last three terms of this integral cancel. Applying (4.18) to the remaining term, for the second

integral we obtain
1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr
{
Γ(K,Ωn) δχ(K,Ωn)

}
. (4.23)

From (3.14) we obtain the variation of the pair propagator

δχαα′(K,Ωn) = 2
∫

ddk
(2π)d

1
β

∑

ωn

Gαα′(K − k,Ωn − ωn) δGαα′(k, ωn) . (4.24)

We insert this result into (4.23), interchange the order of boson and fermion integration/summation,

and write the trace and the matrix product explicitly in terms of the Nambu indices. Thus, equation
(4.23) is transformed into

Ld
∫

ddk
(2π)d

1
β

∑

ωn

∑

αα′

[∫ ddK
(2π)d

1
β

∑

Ωn

Γαα′(K,Ωn) Gα′α(K − k,Ωn − ωn)
]
δGα′α(k, ωn) . (4.25)

According to (3.23), we recognize the term in the square brackets in equation (4.25) as the particle-
particle contribution to the self energy Σ̃αα′(k, ωn). Putting everything together leads to

δGΩ[G,Γ] = Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{[

G(k, ωn)−1 −G0(k, ωn)−1 + Σ1 + Σ̃(k, ωn)
]
δG(k, ωn)

}
. (4.26)
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Since the variation δG is arbitrary, the the stationarity condition δΩ[G, Γ]/δΓ = 0 yields

G(k, ωn)−1 = G0(k, ωn)−1 − Σ1 − Σ̃(k, ωn), (4.27)

which is the Dyson equation (3.11) with Σ(k, ωn) = Σ1 + Σ̃(k, ωn) the self energy.

4.3 Thermodynamics in the weak coupling limit

We can now obtain the mean-field approximation for the thermodynamic potentials. In order to do
that we first need to write explicitly the mean-field Green’s function (3.34) in the functionals (4.1) and
(4.12). To this purpose we replace the free fermions Green’s function G0(k, ωn) with G1(k, ωn) by
rewriting the Dyson in the following way

G−1(k, ωn) = G−1
1 (k, ωn) − Σ̃αα′(k, ωn), (4.28)

where Σ̃αα′(k, ωn) is the particle-particle contribution to the self-energy (see equation (3.23)).

First we consider the grand-thermodynamic potential (4.1). Using result (4.20) we can rewrite the
first two terms of Ω[G] as follows

−Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G(k, ωn)] + [G1(k, ωn)−1G(k, ωn) − 1]

} − Ld |∆|2
g0

, (4.29)

thus, rewriting the last term of (4.1) by means of the Bethe-Salpeter equation, the grand-thermodynamic
potential reads

Ω[G] = − Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G(k, ωn)] + [G1(k, ωn)−1G(k, ωn) − 1]

}

− Ld |∆|2
g0

+
1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr
{− ln[Γ(k, ωn)/g0]

}
.

(4.30)

The internal energy and the particle number can be combined thus, using (4.19), (4.20), the mean-field
Dyson equation (3.34) and the Bethe-Salpeter equation (4.18), we obtain

U[G,Γ] − µN[G] = − Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{
(G1(k, ωn)−1 + i~ωn)G(k, ωn)

}

− Ld |∆|2
g0
− 1

2
Ld

∫
ddK
(2π)d

1
β

∑

Ωn

Tr
{
Γ(k, ωn)/g0 − 1

}
.

(4.31)

The entropy functional (4.2) contains neither G0(k, ωn) nor G1(k, ωn), anyway we can simplify the
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formula by using the Bethe-Salpeter equation 1

S [G, Γ]/kB = βLd
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G(k, ωn)] + [−i~ωnG(k, ωn) − 1]

}

+
1
2
βLd

∫
ddK
(2π)d

1
β

∑

Ωn

Tr
{
ln[Γ(k, ωn)/g0] + [Γ(k, ωn)/g0 − 1]

}
.

(4.32)

The mean-field approximation for the potentials can be obtained by substituting the matrix Green’s
function G(k, ωn) by G1(k, ωn) and by neglecting all terms containing the vertex function. Thus, for
the grand-thermodynamic potential, we obtain:

ΩMF[G] = −Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G1(k, ωn)] − Ld |∆|2

g0
, (4.33)

for the combination of the internal energy and the particle number we get the approximation

UMF[G,Γ] = −Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{
(G1(k, ωn)−1 + i~ωn)G1(k, ωn)

} − Ld |∆|2
g0

, (4.34)

finally for the mean-field entropy we obtain

S MF[G, Γ]/kB = βLd
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G1(k, ωn)] + [−i~ωnG1(k, ωn) − 1]

}
. (4.35)

4.4 Evaluation of the sums over the fermionic Matsubara frequencies

In all the thermodynamic functionals which have been derived in the previous sections appear sums
over Matsubara frequencies of matrices of the type

A(k, ωn) =


A(k, ωn) B(k, ωn)
−B(k, ωn)∗ A(k, ωn)∗

 . (4.36)

Most of these sums are not well defined, in fact the functions which need to be summed do not decay
to zero fast enough to make the series converge. However this problem can be avoided by performing
a Fourier back transformation of the function from the frequencies ωn to the imaginary time τ. The
Fourier transformations results,in fact, to be finite for every τ, thus we can obtain a finite result from
the Fourier back transformation by taking the limit τ→ 0−.

1If we simplify in the entropy functional the term involving the vertex function by using the Bethe-Salpeter equation
we can easily see that the thermodynamic relation Ω = U − T s − µN yields the same result for the grand-thermodynamic
potential obtained within the formalism of Luttinger and Ward.
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We define the sums in the functionals (4.29), (4.30) and (4.31) in the following way

1
β

∑

ωn

Tr
{
A(k, ωn)

}
= 2A(k, τ = −0), (4.37)

where A(k, τ) is assumed to be real and is defined as the Fourier transformation of function of the
type A(k, ωn) = − ln[G(k, ωn)] or A(k, ωn) = [G0(k, ωn)−1G(k, ωn)−1]. It is thus possible to compute
the mean-field functionals (4.33), (4.34) and (4.35). In the grand canonical potential we have the sum

∑

ωn

Tr
{− ln[G1(k, ωn)]

}
=

∑

ωn

ln
(
−E2

k − ~2ω2
n

)
,

which can be computed by taking the limit

lim
τ→0−

∑

ωn

e−iωnτ ln
(
−E2

k − ~2ω2
n

)
= lim

τ→0−

[
− 2
|τ| + ln

(
1 + eβEk

)
ln

(
1 + e−βEk

)]
. (4.38)

The result is obviously divergent in the limit τ → 0− but the series can be regularized by subtracting
the free fermion result

∑
ωn ln

[−(εk − µ)2 − ~2ω2
n
]
, thus for the regularized sum we get the result

∑

ωn

ln


−E2

k − ~2ω2
n

−(ε2
k − µ)2 − ~2ω2

n

 =
[
2 ln

(
1 + e−βEk

)
+ βEk − β(εk − µ) − 2 ln

(
1 + e−βξk

)]
. (4.39)

The last term is the result in the limit ∆ → 0, which is exactly the free fermions term which we
subtracted to renormalize the sum, thus if we neglect the last logarithm in the (4.39), the grand ther-
modynamic potential reads:

ΩMF = −Ld
∫

ddk
(2π)d

[
Ek − (εk − µ)

] − 1
β

∫
ddk

(2π)d

[
2 ln

(
1 + e−βEk

)]
− Ld |∆|2

g0
. (4.40)

Using the same recipe we can calculate the mean-field approximation for the internal energy which
reads:

UMF − µNHF = 2Ld
∫

ddk
(2π)d

{
Ek

1 + eβEk
+

1
2

[
Ek − (εk − µ)

]} − Ld |∆|2
g0

, (4.41)

where

E0 = −2Ld
∫

ddk
(2π)d

{
1
2

[
Ek − (εk − µ)

]} − Ld |∆|2
g0

(4.42)

reduces to the BCS condensation energy after the renormalization of the coupling constant g0 → g

defined in (3.15). To get the energy functional in the form (4.41), we considered the first two terms of
the functional (4.12) and the particle number, and used the relation

Ld g0|F (0, 0)|2 = 2Ld ∆

∫
ddk

(2π)d F (k, τ = 0) − Ld |∆|
g0
.
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Looking at the entropy functional (4.35) we note that, multiplying the second term in the trace by
G−1

1 (k, ωn) · G1(k, ωn), we obtain exactly the argument of the trace in the internal energy functional
(4.34). On the other hand, the first term of the mean-field entropy coincides with the first term in the
mean-field grand thermodynamic potential. Combining the results (4.40) and (4.41) we obtain the
mean-field expression for the entropy:

S MF/kB = 2Ld
∫

ddk
(2π)d

{
ln

(
1 + e−βEk

)
+ β

Ek

1 + eβEk

}

= −2Ld
∫

ddk
(2π)d {(1 − nk) ln (1 − nk) + nk ln nk} ,

(4.43)

where nk = 1/[1 + exp(βEk)] is the Fermi distribution of the quasi-particles.

If we look more carefully at the equations (4.40) and (4.41) we note that the convergence of the

integrals over the wave vector is assured by the term Ld |∆|/g0, which compensates the divergence of
the term [Ek − (εk − µ)]. The regularization has been chosen in such a way that, in the non-interacting
case, the results for the ideal Fermi gas are obtained, i.e. the term E0 vanishes. On the other hand, the
Entropy functional (4.43) does not need to be regularized.

4.5 Corrections to the mean-field approximation

In section 4.3 we derived the general form of the thermodynamics potentials of the system in lad-
der approximation and we got, starting from these functional, an explicit expression for the grand-
thermodynamic potential, for the internal energy combined with the particle number and for the en-
tropy of the system in mean-field approximation by computing the sums over the fermionic Matsubara
frequencies. In the present section we will go beyond the mean-field approximation, in fact, while it
describes correctly a fermionic system at zero temperature for arbitrary coupling strength [68], the
mean-field approximation is not suited to describe properly the transition from the Fermi superfluidity
to Bose-Einstein condensation at finite temperature. In fact, in this approximation the condensation
and formation of pairs occurs at the same temperature and the superfluidity is destroyed by fermionic
excitations. This picture describes correctly the system in the case of weak coupling, where the transi-
tion to superfluidity is driven by a gain in the potential energy associated to the formation of pairs, but
doesn’t apply when the interaction is sufficiently strong. In the latter case the transition from the nor-
mal to the superfluid system is driven by a gain in the kinetic energy, associated with the condensation

of the pairs, which are formed at higher temperatures. A proper description of the BCS-BEC crossover
at finite temperatures requires then to include excitations, which drive the superfluid parameter to zero
without destroying pairs. The correction to the mean-field grand-thermodynamic potential, energy
and entropy can be obtained by subtracting the mean-field functionals (4.40), (4.41) and (4.43) from
the general formulas (4.33)- (4.35). This decomposition in a mean-field part plus a correction results
to be very convenient for the numerical calculations. In fact, the Matsubara sums in the mean-field
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approximation can be computed analytically, as has been shown in section 4.4 and we are left only
with the integrals over the wave vectors which need to be computed numerically.

The most challenging part, at this stage, is the computation of the corrections ∆Ω = Ω − ΩMF ,
∆S = S − S MF and ∆(U − µN) = U − UMF − µ(N − NMF). If we write the difference explicitly, we
obtain for the grand thermodynamic potential the following correction

∆Ω = − Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G1(k, ωn)−1G(k, ωn)] + [G1(k, ωn)−1G(k, ωn) − 1]

}

+
1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr
{− ln[Γ(K,Ωn)/g0]

}
,

(4.44)

the correction for the combination of the internal energy and the particle number read

∆U − µ∆N = − Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{
[G1(k, ωn)−1 + i~ωn][G(k, ωn) −G1(k, ωn)]

}

− 1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr
{
[Γ(K,Ωn)/g0 − 1]

}
,

(4.45)

and the correction for the entropy is given by

∆S/kB =β Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G1(k, ωn)−1G(k, ωn)] + (−i~ωn)[G(k, ωn) −G1(k, ωn)]

}

− 1
2
β Ld

∫
ddK
(2π)d

1
β

∑

Ωn

Tr
{− ln[Γ(K,Ωn)/g0] + [Γ(K,Ωn)/g0 − 1]

}
.

(4.46)

In formulas (4.44)-(4.46) the sums over the fermionic Matsubara frequencies ωn converge so that the
regularization described in section 4.4 is not needed. However, the sums over the bosonic Matsubara
frequencies Ωn are not well defined and must be regularized. Thus, for a numerical evaluation the
formulas (4.44)-(4.46) must be transformed further, which will be done in section 4.6.

4.6 Renormalization of the thermodynamic potentials

The formulas derived in the sections 4.4 and 4.5 are still divergent and need a further renormaliza-

tion, in fact the term 1/g0 diverges thus the interaction strength has to be replaced by the scattering
amplitude g following (3.15).

First we look at the mean-field formulas (4.40)- (4.43). As has been already pointed out, the
formulas are finite except for the term defined by (4.42). The condensation energy E0 is composed by
two diverging terms, an infinite integral and a term proportional to 1/g0, which compensate each other.
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After the renormalization of the coupling constant 1/g = 1/g0 +
∫

ddk/(2π)dm/(~2k2) we obtain

E0 = −2Ld
∫

ddk
(2π)d

{
1
2

[
Ek − (εk − µ)

] − |∆|
2

2εk

}
− Ld |∆|2

g
. (4.47)

In this expression for the condensation energy both the integral over the wave vector and the last term
converge separately2.

The next step is to regularize the correction to the mean-field functionals (4.44)- (4.46). We
start with the last term of the correction to the grand thermodynamic potential (4.44). The logarithm
containing the interaction strength g0 can be rewritten as

ln
[
Γ(K,Ωn)/g0

]
= ln

[
Γ(K,Ωn)/g

]
+ ln[1 g/g0].

The second logarithm does not depend on the bosonic Matsubara frequencies thus the back Fourier
transformation of this term is proportional to

1
β

∑

Ωn

e−iΩnτ =
∑

n

δ(τ/~ + nβ) = δB(τ/~) (4.48)

hence, following what had been already done in section 4.4, the sum defined as

1
β

∑

Ωn

Tr
{
A(K,Ωn)

}
= 2A(K, τ = −0) (4.49)

vanishes. In the renormalized correction formula ∆Ω[G] the last term can be thus replaced by

1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr
{− ln[Γ(K,Ωn)/g]

}
. (4.50)

Finally the complete renormalized correction to the mean-field functional for the grand thermody-
namic potential reads

∆Ω = − Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G1(k, ωn)−1G(k, ωn)] + [G1(k, ωn)−1G(k, ωn) − 1]

}

+
1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr
{− ln[Γ(K,Ωn)/g]

}
.

(4.51)

The integral over the wave vector is finite and can be computed without problem. However for the
computation of the sum over the bosonic Matsubara frequencies, the definition (4.49) has to be used.

Next we have to renormalize the second term of the correction (4.45). Using the Bethe-Salpeter
equation Γ(K,Ωn) = g0 − g0χ(K,Ωn)Γ(K,Ωn), we can rewrite the trace as the product of the matrix

2The integrals over the wave vector in all the formulas that we will use are convergent in any dimension 2 < d < 4
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vertex function Γ and the pair propagator χ. Furthermore, we can rewrite the pair propagator as
product of one-particle Green’s function by using definition (3.14). By interchanging the order of
integration we can then combine the vertex function and the Green’s function into the particle-particle
contribution of the self-energy by using Σ(r, τ) = G(−r,−τ)Γ(r, τ). Finally, by means of the Dyson
equation G(k, ωn)−1 = G(k, ωn)−1

0 − Σ1 − Σ̃(k, ωn) = G(k, ωn)−1
1 − Σ̃(k, ωn), we can replace the self-

energy in favor of the Green’s function G and the mean-field Green’s function G1. Thus, we get

− Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr {Γ(K,Ωn)/g0 − 1}

= Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr {Γ(K,Ωn)χ(K,Ωn)}

= Ld
∫

ddK
(2π)d

1
β

∑

Ωn

∑

αα′

Γαα′(K,Ωn) ·
∫

ddk
(2π)d

1
β

∑

ωn

Gαα′(K − k,Ωn − ωn)Gαα′(k, ωn)



= Ld
∫

ddk
(2π)d

1
β

∑

ωn

∑

αα′



∫
ddK
(2π)d

1
β

∑

Ωn

Gαα′(K − k,Ωn − ωn)Γαα′(K,Ωn) ·Gαα′(k, ωn)



= Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{
Σ̃(k, ωn)G(k, ωn)

}

= Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{
G−1

1 (k, ωn) [G(k, ωn) −G1(k, ωn)]
}
.

(4.52)

In the equalities (4.52) we replaced, by inverting the order of integration the bosonic integral and the
bosonic Matsubara sum, by fermionic ones thus it is now possible to combine the first term and the
second term of the functional (4.45). Hence, noting that G−1

1 (k, ωn) + 2i~ωn = G−1
1 (k,−ωn), we can

considerably simplify the correction ∆U − µ∆N to get:

∆U − µ∆N = −1
2

Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{
G−1

1 (k,−ωn)[G(k, ωn) −G1(k, ωn)]
}
. (4.53)

Again the integral is finite while to perform the sum over the fermionic frequencies we need to use
definition (4.37).

Concerning the correction to the entropy, we can rewrite the second term in the first integral of the
functional (4.46) as

−
[
i~ωn + G−1

1 (k, ωn)
]

[G(k, ωn) −G1(k, ωn)] + G−1
1 (k, ωn)[G(k, ωn) −G1(k, ωn)].

The first term results to be the same as the first term in the energy functional, hence we can combine
the integral of this term with the last term of (4.46) and renormalize it by using the result (4.52).
Furthermore, we can use (4.50) to renormalize the other diverging logarithm in the formula (4.46).
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Putting the two results together we get the renormalized form of the correction to the mean-field
entropy 3:

∆S/kB =β Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G1(k, ωn)−1G(k, ωn)] + [G1(k, ωn)−1G(k, ωn) − I]

− 1
2
β Ld

∫
ddk

(2π)d

1
β

∑

ωn

Tr
{
G−1

1 (k, ωn)[G(k, ωn) −G1(k, ωn)]
}

− 1
2
β Ld

∫
ddK
(2π)d

1
β

∑

Ωn

Tr
{− ln[Γ(K,Ωn)/g]

}
.

(4.54)

The final results for the thermodynamic potential can be written by putting together the mean-
field result (4.40)-(4.43) and the correction formulas (4.51)-(4.54). Each term of the general formulas
Ω = ΩMF + ∆Ω, S = S MF + ∆S and ∆(U − µN) = U − UMF − µ(N − NMF) is now finite and can be
numerically computed.

3The same result can be obtained by using the thermodynamic relation Ω = U − TS − µN.





Chapter 5

Numerical results of the thermodynamic
potentials

In the following we will use the results obtained in the previous Chapters and we will give an overview
of the thermodynamics of the interacting fermionic system at arbitrary coupling in both the super-

fluid and the normal regime. We calculate the thermodynamic potential in the region of the phase
diagram where the dimensionless temperature θ = kBT/εF varies in the interval 0 < θ ≤ 0.5 and the
dimensionless coupling strength ν = 1/kFa varies in the interval −5 ≤ ν ≤ 5. We will also have a
section focusing at the physics at the nontrivial point, usually called unitary point, where the scattering
length of the system becomes infinite. Our numerical data will be then compared with other numerical
and experimental results.

5.1 Entropy and pressure

From the knowledge of the Green’s function and the vertex function, by combining the the mean-
field formulas (4.40) and (4.43) and the correction to the mean-field approximation (4.44) and (4.54)
derived in section 4.1, we are able to calculate the entropy and the pressure of the system.

In Figure 5.1 we show the entropy as a function of the dimensionless temperature θ = T/TF at
five different coupling constant starting from ν = −2 in the weak coupling limit to ν = 2 in the strong
coupling limit. This picture highlights the multi-valued character of the entropy which has already
been discussed before, moreover it is also to see a rather sharp drop in the entropy for values of the

coupling constant ν & 1. Figures 5.2 and 5.3 depict a surface plot of the entropy as a function of the
dimensionless temperature θ = T/TF and the dimensionless coupling constant ν and a projection of
this surface onto the ν-θ plane respectively. Looking at the three dimensional surface plot in Figure
5.2 one can clearly see that the drop in the entropy occurs in the region −1 . ν . 1 where the Fermi
gas becomes a bosonic gas of dimers. This feature is seen in the projection onto the ν-θ plane by a
drastic change in the color indicating the value of S/kBT . From the analysis of the entropy we can

53
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Figure 5.1: Entropy as a function of the dimensionless temperature θ = T/TF at various coupling
strength.

derive a criterion to determine the critical temperature of the super-fluid transition which is essentially
equivalent to the one used in section 3.5. We use the fact that the entropy is continuous at Tc, hence
the best approximation for the critical temperature is where the jump in the entropy between the two
branches characterizing the super-fluid and the normal regime has a minimum. This criterion would
lead to a curve for the critical temperature which is identical to the one depicted on Figure 3.5 by the

full black line.
In Figures 5.4 and 5.5 we show the pressure of the system obtained from the formulas (4.40) and

(4.51) for the grand thermodynamic potential by using the relation p = −Ω/V . As can be noticed from
the three dimensional view in Figure 5.4 also the pressure present a marked drop beyond ν ∼ 1 where
the bosonic dimers dominate. At zero temperature and in the region of weak coupling ν � −1 the
numerics approaches the result of the ideal gas p(T = 0)/nεF → 2/5. At higher temperatures, when
the thermal energy is comparable with the binding energy kBT ∼ O(εb = 2εFν

2) the pairs break up
and on both sides we will have free fermions. In this regime the results approaches the Boltzmann
limit over the whole crossover.
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Figure 5.2: Entropy as a function of θ and ν obtained using the formulas (4.43) and (4.54).
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Figure 5.3: Entropy projected onto the θ-ν plane
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Figure 5.4: Pressure as a function of the dimensionless temperature θ = T/TF at various coupling
strength.
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Figure 5.5: Projection of pressure onto the θ − ν plane.
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Figure 5.6: Chemical potential µ at the super-fluid transition as a function of the coupling constant
ν = 1/kFa. On the Fermi side the numerical result is compared with the asymptotic result for the
weakly interacting Fermi gas µ = εF[1 + (3/4π) · 1/ν]. On the Bose side the difference µ + εb/2 in
units of the Fermi energy εF is plotted, where εb/2 = εFν

2.

5.2 Zero temperature results

In this section we will report about the parameters of the system as a function of the dimensionless
coupling constant ν at zero temperature. These data are then compared with numerical and experimen-
tal results in section 5.4. The two parameter which, together with the critical temperature Tc, define
the state of the system are the order parameter of the super-fluid transition ∆ and the chemical poten-
tial µ. The first is an input parameter of the problem while the latter is calculated self-consistently by
solving the set of equations (3.28).

The behavior of the chemical potential µ reflects directly the effects of BEC-BCS crossover. This

can be clearly seen in Figure 5.6 and 5.7 where the chemical potential is plotted over the whole
crossover. In Figure 5.6 is depicted the chemical potential µ as a function of the dimensionless cou-
pling constant in units of the Fermi energy εF at zero temperature where we subtracted, on the Bose
side, the binding energy of the pairs divided by two εb/2 = εFν

2. In the weak coupling limit the
numerical results approach the result expected for an ideal Fermi gas µ → εF . As a comparison
we show the correction to the chemical potential for weak couplings obtained in the Hartree-Fock
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Figure 5.7: Typical behavior of the T = 0 chemical potential. As the pairing strength increases from 0,
the chemical potential µ starts to decrease and then becomes negative. The coupling constant at which
the chemical potential vanish is where the system changes from fermionic (µ > 0) to bosonic (µ < 0).
The region comprised between this value and ν ∼ −1 defines the unitary region.

approximation which is given by the formula

µ

εF
= 1 +

3
4π

kFa (5.1)

and is represented by the dotted red line. On this side of the crossover there are essentially no bound
pairs, the system is a Fermi liquid and only below the critical temperature Tc there will be a few
cooper pairs. In Figure 5.7 the chemical potential µ is compared, on the Bose side, with the binding
energy (red-dashed line). In the strong coupling limit 1/kFa � 1 the fermions are bound together into
dimers and we expect µ → −εb/2 = −εFν

2. The full line approaches the red-dashed line from above
for ν → ∞, hence the difference µ + εb/2 is positive and represent an energy due to the repulsive
interaction of the pairs. Clearly for coupling strengths ν � 1 the absolute value of the chemical
potential µ is much greater than the Fermi energy µ � −εF . This means that the dimers need more
than a Fermi energy εF to break into two free fermions and so the quantum fluctuation are too weak to
break up the pairs. We can then conclude that, if the system is at a temperature which is smaller than
the dissociation temperature kBT ∗ ∼ εb, the fermions are bound into pairs and the system behaves like

a Bose gas.

The value of the dimensionless coupling constant where the chemical potential µ vanishes can be
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Figure 5.8: Order parameter at zero temperature as a function of the dimensionless coupling constant
(solid black line). The numerical result are compared with the BCS result ∆(BCS )(T = 0)/εF =

8/e2 exp(−π/2kF |a|) (red dashed line) in the weak coupling limit and with the square root behaviour
∆(T = 0) = εF

√
16/3πkF |a|[1 − 1/21/2(8/3πkFa)3/2] (blue dash-dotted line) in the strong coupling

limit.

viewed as a crossing point. For positive values of µ the system has a remnant Fermi surface, and we
say that it is ”fermionic”. For negative µ, the Fermi surface is gone and the material is ”bosonic”. In
our calculation this crossing point occurs at the value ν ≈ 0.41.

The order parameter of the super-fluid transition at zero temperature is shown in Figures 5.8.

Its behaviour in the two limits, is clearly visible in the plot where our numerical result is compared
with the limits for ν � 1 and ν � −1. The black solid line represent the gap as a function of the
dimensionless coupling constant at zero temperature. The curve is compared for ν . −1 with the
BCS-result (red dashed line)

∆(BCS )(T = 0) =
8εF

e2 exp(−π/2kF |a|),

which has already been derived in section 3.3. In the strong coupling region the gap is related to the
boson order parameter ΨB via (3.50). For zero temperature the order parameter for the bosonic system
can be explicitly calculated [17]

|ΨB|2 =
nF

2
·
1 −

√
1
2
·
[

8
3π

kFa
]3/2

 . (5.2)
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Figure 5.9: Isothermal sound speed mc2 = ∂p/∂n as a function of v = 1/kFa for T = 0. The different
curves are explained in the main text.

Combining the two results (3.50) and (5.2) we obtain for the order parameter in the strong coupling
regime ν � 1 the approximation

∆(T = 0) = εF

√√
16/3πkF |a| ·

1 −
√

1
2
·
(

8
3π

kFa
)3/2. (5.3)

The asymptotic behaviour defined by (5.3) is is represented in Figure 5.8 by the blue dot-dashed line.

Another interesting quantity, which can be derived starting from our numerical results is the sound

speed. At low temperatures the entropy has to vanish, in accordance with the third law of thermo-
dynamics. The way it does, is in fact universal along the full BCS-BEC crossover. Indeed, at low
temperatures, the two-component Fermi gas is in a super-fluid state, independent of the strength of the
attractive interaction. On quite general grounds therefore, the low lying excitations above the ground
state are sound modes of the Bogoliubov-Anderson type, which are the Goldstone modes of the broken
gauge symmetry in a neutral super-fluid. These sound modes give rise to an entropy

S (T ) = V
2π2

45
kB

(
kBT
~c

)3

+ . . . (5.4)

which vanishes like T 3 for arbitrary coupling strength. The constant c in (5.4) is the sound speed which
is constant at low temperatures and may be determined from the pressure via the relation mc2 = ∂p/∂n.
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We can thus obtain the curve of the sound velocity over the whole crossover by deriving the numerical
data of the calculated pressure. Figure 5.9 displays (c/vF)2 at T = 0 as a function of coupling strength
in units of the the Fermi velocity vF . The dilute interacting Fermi gas limit (c/vF)2 = (1 + 2/(πv))/3
and the BEC limit (c/vF)2 = kFadd/(6π) for add = 0.62a are represented by the blue squares and the
green triangles respectively. The red triangles are obtained by extending the expression of the ground
state energy of a dilute weakly interacting Fermi gas [69, 70] with the help of a Padé approximation
to the strong coupling regime [71, 72]

E
εF N

' 3
5

+

2
3πkFa

1 − 6
35π (11 − 2 ln 2)kFa

(5.5)

and the thermodynamic identity

c2 =
1
m
∂

∂n

(
n2 ∂E/N

∂n

)
. (5.6)

The agreement of our numerical result with the Padé approximation on the negative side of the
crossover up to the point where the dimensionless coupling constant becomes zero is surprisingly
good. However in the regime defined by ν ≷ 1 our result underestimate the pressure and consequently
the sound speed which is derived from it.

5.3 Unitary limit

A nontrivial point of the phase diagram is where the scattering length becomes infinite, or equivalently
when the parameter which tunes the strength of the interaction, the dimensionless coupling constant
ν = 1/kFa, vanishes. This point is essentially where the Feshbach resonance lies, here the full many-
body problem is characterized by a single energy scale given by the Fermi energy εF . A consequence
of this feature is that the free energy per particle in units of the Fermi energy εF , and thus all the
thermodynamic quantities, is an universal function of the ratio θ = kBT/εF [73].

The study the physics near a Feshbach resonance is a very interesting problem because, from a
theoretical point of view the many body problem at unitarity is still not completely understood. On the
other hand the big effort that in the last few years many groups put in studying the problem gives us the
possibility to compare our results with a few experimental and numerical data obtained independently.

On the theoretical side, fixed node Green’s function Monte Carlo calculations provide for an ho-

mogeneous system at zero temperature reliable results for the gap parameter [74] [75], the equation of
state [76], the momentum distribution, condensate fraction and pair size [77] of the ground state for
arbitrary values of the dimensionless coupling strength. Numerical calculations of the negative Hub-
bard model provide the critical temperature the energy and the chemical potential at unitarity. Further,
field-theoretic results at finite temperature have been recently obtained by Nishida [87, 88, 89] and
Nikolić and Sachdev [90].

As we already mentioned, within the zero range pseudo-potential formulation of the crossover, at
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Figure 5.10: Pressure at unitarity as a function of the dimensionless temperature θ = T/TF calculated
using (4.40) and (4.51).
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Figure 5.11: Energy at unitarity as a function of the dimensionless temperature θ = T/TF calculated
using (4.41) and (4.53).The red dashed curve is obtained from the calculated pressure using the scaling
formula U = 3

2 pV valid at unitarity.
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Figure 5.12: Chemical potential at unitarity as a function of the dimensionless temperature θ = T/TF .

the point ν = 1/kFa = 0 the only relevant length scale is the Fermi wave length set by the density and
the energy scale is determined by the Fermi energy εF . All the thermodynamic functions acquire thus
a self-similar form [73]

F(T,V,N) = f (θ)NεF . (5.7)

In this section we report a series of plots which depict the behaviour of some thermodynamic quanti-
ties at the unitary point as a function of the dimensionless temperature θ = T/TF . Figure 5.10 shows
the pressure obtained from the calculated values for the grand-thermodynamic potential by using the
formulas (4.40) and (4.51) and the relation p = −Ω/V . In Figure 5.11 is depicted the temperature de-
pendence of the internal energy calculated in two different ways. The solid black line is the numerical
result obtained from the formulas (4.41) and (4.53). As comparison in the same Figure we show (red
dashed line) the result obtained from the calculated pressure by using the scaling relation U = 3/2pV

valid at the unitary point. Above Tc the scaling is fulfilled perfectly, however below Tc we note a
violation of the scaling law which is a consequence of the fact that we forced the Thouless criterion
for T < Tc.

The chemical potential at unitarity as a function of the dimensionless temperature is depicted
in Figure 5.12. Below the critical temperature Tc the chemical potential µ(T/TF) is an increasing
function, this behaviour can be understood from the fact that the thermodynamic at low temperature is
determined by the Bogoliubov-Anderson modes. In fact at a given volume and for all the values of the
coupling constant ν = 1/kFa the chemical potential can be related to the entropy and via the Maxwell
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Figure 5.13: Entropy at unitarity as a function of the dimensionless temperature θ = T/TF calculated
using (4.43) and (4.54).

relation
∂µ

∂T

∣∣∣∣∣∣
N,V

= − ∂S
∂N

∣∣∣∣∣∣
T,V
. (5.8)

In this way we can connect the temperature dependence of the chemical potential to the density de-
pendence of the entropy. According to (5.4), the entropy approaches zero with the power law ∼ T 3

thus the relation (5.8) shows that at low temperatures the chemical potential exhibits a T 4 dependence
with a pre-factor determined by

∂µ

∂T
=

3S
2Vmc2

s

∂2 p
∂n2 > 0 . (5.9)

Obviously, this argument is not confined to the unitarity point, showing that the chemical potential
at low T has a behaviour µ(T ) = µ(0) + O(T 4) for arbitrary coupling strengths along the BCS-BEC
crossover. For completeness we plot again the curve of the entropy at unitarity as a function of the
temperature which was discussed in section 5.1.

5.4 Comparison with theoretical and experimental results

The data at zero temperature, together with the thermodynamic potentials and their values at the
unitary limit furnish information which allows us to compare our theory with recent experimental data,
field theoretic results and numerical results provided by Monte Carlo simulations. A well documented
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Table 5.1: Recent experimental results for β compared with calculated values.

β

Bartenstein et al. [41] −0.68+0.13
−0.10

Experimental Bourdel (2004) et al. [44] −0.64(15)
results Duke (2005) [78] −0.49(4)

Partridge et al. [79] −0.54(5)
Astrakharchik et al. [76] −0.58(1)
Carlson et al. [74, 75] −0.56(1)

Calculated Hu/Liu/Drummond [80] −0.599
values Perali et al. [81] −0.545

Padé approximation [71, 72] −0.67
present work −0.64

quantity which determines the density profile of dilute fermions in a trap at unitarity and T = 0 is the
so called β parameter defined via

µ(T = 0) = εF(1 + β) . (5.10)

Very recently several experimental groups [41, 44, 78, 79] managed to measure this quantity in trapped
fermionic gases. All the experimental results for the β−parameter are relatively close to each other
and compatible within the error bars. That being so, its numerical estimation assumes a big relevance.
Our value of β ∼ −0.640 is very close to β = −0.67 obtained via simply Padé approximating the weak
coupling result for the ground state energy [71, 72] and the experimental results of Bartenstein et al.

[41] β = −0.68+0.13
−0.10 and Bourdel et al. [44] β = −0.64 ± 15 but smaller than the results obtained at

Duke [78], at Rice [79] (see Table 5.1) and recent QMC results [74, 75, 76] (see Table 5.3). Cur-
rently experimental uncertainties however preclude a detailed comparison with theoretical results. A
promising route in the direction of thermometry for trapped gases is provided via the reversible adia-
batic (isentropic) sweeps [41, 82] from the BEC limit. In Fig. 5.14 we depict the resulting changes in
temperature when moving across the unitarity limit for the homogeneous case. For the trapped case
this cooling mechanism was first advocated by Carr et al. [83] and recently quantitatively refined by
Hu et al. [84].

Finally, to facilitate quantitative comparison with various Quantum Monte Carlo and field-theoretic
results, we have collected available data from the literature. In Table 5.1 we collect data at the critical
temperature Tc taken from Burovski et al. [85] and Bulgac et al. [86]. Field-theoretic results have been
obtained very recently by Nishida [87, 88, 89] and by Nikolić and Sachdev [90]. Apart from the value
for Tc which is explicitly quoted in the paper by Bulgac (with errors) we have estimated the remaining
quantities from their presented results and utilized the scaling relation U = 3/2pV valid at unitarity
to fill in the missing data below. The T = 0 results are fixed node QM results by Astrakharchik et al.

[76] and Carlson et al. [74, 75].

Our results are in excellent agreement with those of Burovski et al. except for the value of the
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Figure 5.14: Temperature reduction on performing an isentropic sweep across v = 0 from v = 2 to
v = −2.

Table 5.2: Comparison with diagrammatic determinant Monte Carlo (Burovski et al. [85]), quantum
Monte Carlo (Bulgac et al. [86]), ε = 4 − d expansion (Nishida and Son [87, 88, 89]), Borel-Padé
approximation connecting an expansion in ε = 4 − d and one in ε = d − 2 [87]) and a 1/N expansion
(Nikolić and Sachdev)[90] at T = Tc.

Tc/εF µ/εF U/NεF P/nεF S/N
Bulgac 0.23(2) 0.45 0.41 0.27 0.99
Burovski 0.152(7) 0.493(14) 0.31(1) 0.207(7) –
Nikolić (N = 1) 0.136 0.585 0.164 0.109
Nishida (ε = 1) 0.249 0.18 0.212 0.135 0.698
Borel-Padé 0.183 0.294 0.270 0.172 0.642
present work 0.160 0.394 0.304 0.204 0.71

Table 5.3: Comparison with fixed node Green’s function Monte Carlo (Astrakharchik et al. [76] and
Carlson et al. [74, 75]) at T = 0.

µ/εF U/NεF P/nεF ∆

Astrakharchik 0.41(2) 0.25(1) 0.17(1)
Carlson 0.43(1) 0.26(1) 0.17(1) 0.54
present work 0.36 0.21 0.15 0.46
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Figure 5.15: Entropy at Tc as a function of v = 1/kFa. Numerical result (solid black) line obtained
with (4.43) and (4.46) compared with the limiting results: the BCS mean-field result (red triangles)
from (4.43) and (blue dashed) from (5.11) and the Shohno-Popov result (green dotted-dashed line)
from (5.13) and (5.14).

dimensionless chemical potential µ/εF and that of the entropy per particle at Tc. Now Burovski et al.

have obtained their values for the pressure p/nεF and the entropy S/NkB indirectly from the internal
energy and the chemical potential by using 3pV = 2U right at unitarity and the Gibbs-Duhem relation.
The different results for the chemical potential then entail the considerable discrepancy in the value of
S/NkB at Tc. For the entropy they obtain the value 0.2 ± 0.2 [91] which is meaningless due to the too
large error bar. Within our numerical scheme, the chemical potential is the most directly - via (4.14) -
obtainable quantity among the thermodynamic data.

In figure 5.15 is depicted the evolution of the of the entropy per particle S (Tc)/NkB right at the
critical temperature as a function of the dimensionless coupling ν = 1/kFa. In the BCS limit, the
entropy associated with single particle excitations can be calculated from the exactly soluble reduced
BCS-Hamiltonian and gives [57]

S (Tc)/NkB = (π2/2)(Tc/TF) . (5.11)

Since the ratio Tc/TF is exponentially small in the weak coupling limit, the entropy (5.11) associ-
ated with fermionic excitations is dominant compared to the contribution arising from the collective
Bogoliubov-Anderson mode. Indeed, extrapolating the corresponding low temperature entropy (5.4)
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associated with collective excitations up to the critical temperature gives rise to a contribution of order
(Tc/TF)3, which is negligible compared to (5.11). At very large coupling strengths, where the strongly
bound fermion pairs assumes the behaviour of Bose gas, for the entropy at right at the transition tem-
perature we obtain the universal number

S (Tc)/NkB =
5ζ(5/2)
4ζ(3/2)

= 0.6417... . (5.12)

where we have to note that the number of bosons NB = N/2 in this limit is just half the number of
fermions.

As can be clearly seen from Figure 5.15, the limiting value of the ideal Bose gas (5.12) is in good
agreement with the entropy of a noninteracting gas of bosonic quasi-particles which is obtained from
the Shohno-Popov theory of noninteracting bosonic quasi-particles in the range v > 1, according to
the formula

S/NkB = Ld
∫

ddK
(2π)d

{
(1 + nB

K) ln(1 + nB
K) − nB

K ln nB
K
}

(5.13)

with the standard distribution function

nB
K = 1/[exp(βEB

K) − 1] . (5.14)

The corresponding spectrum of excitation energies

EB
K =

[
(~2K2/2mB)2 + (~2K2/2mB) 2gB|ΨB|2]1/2 (5.15)

has the well known form of a Bogoliubov spectrum with a temperature dependent condensate density
nB,0 = |ΨB|2 and a positive Bose-Bose scattering amplitude gB.

It is interesting to note, that the entropy per particle right at Tc exhibits a maximum as a function
of the coupling constant of order S (Tc)/NkB ≈ 0.78 around the same coupling, where the critical
temperature exhibits a maximum.

Noting that the evolution of the entropy at the critical temperature S (Tc)/NkB over the whole
crossover is smooth, we can argue that the value for the entropy obtained by Burovski et. al at unitarity
would be too small. On the other hand the result obtained by Bulgac et al. seems to be too high.
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5.5 Conclusions

In the next Chapter we will give an exhaustive explanation of the numerical procedure used in this
work. Anyway, before entering into the numerical details, it is worth to summarize the main aspects
of the theoretical background of the present thesis and the results which have been achieved. Further-
more, we would like to mention the shortcomings of the present approach, highlight new interesting
problems and indicate possible future extension.

In this work we have studied the behaviour of a homogeneous attractive Fermi system in which the
strength of the interatomic potential can be varied to explore the whole regime from extremely weak
coupling to strong couplings. The problem has an experimental motivation. In fact, in the last decade,
a high number of very successful and interesting experiments has been carried out in the field of cold
atoms. The progress done in cooling techniques and in the laser trapping of atoms together with
the increasing ability of controlling atomic Feshbach resonances, made possible to realize systems in
which the interaction between the atoms can be tuned in a very precise way. By ramping across the
Feshbach resonance, one can continuously transform a fermionic atomic gas to a bosonic molecular
gas, both above and below the superfluid transition temperature thus making possible to observe the
formation of condensed pairs [37, 38, 39].

The results presented in this work are based on a self-consistent, Φ−derivable, conserving theory,
whose formal basis has been first posed by Luttinger and Ward and De Dominicis and Martin. Accord-
ing to the approach of these autors, the exact one- or two-particle Green’s functions serve as an infinite
set of variational parameters. Further, by means of the one- and two-particle Green’s functions, it is
possible to derive functionals which are related with the thermodynamic functionals of the system.

In order to obtain consistent thermodynamic results within our approach, it is essential that the
Green’s functions satisfy self-consistency conditions which reflect the stationarity of the appropriate
thermodynamic potentials. Formulations in which the free Green’s function is replaced by a full one
according to a choice of G0G0, GG0, GG at will, would, in general, not be enough to obey conservation
laws and thermodynamic identities which are granted to be obeyed in Φ-derivable formulations like
the one presented here. Self-consistency is a necessary issue of the formalism. Indeed, within the
formulation of Luttinger and Ward or De Dominicis and Martin, an appropriate functional for the
grand thermodynamic potential or for the entropy is made stationary by determing the space and time
dependent Green’s functions from the stationarity conditions. A very important issue of the present
formalism is the fact that self-consistency is only assured at the stationarity point of these functionals.
Indeed, only at this point it is possible to get functionals which can be associated to thermodynamic
quantities.

The stationarity conditions of the thermodynamic potentials have also been used to prove the
thermodynamic equivalence of the Luttinger and Ward and the De Dominicis and Martin formalisms
on the level of our approximate for the grand thermodynamic potential or the entropy.

The knowledge of the Green’s function and the vertex function allows us to provide quantitative
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results for the thermodynamic properties of the system over a range of temperatures which covers the
relevant regime of the degenerate gas and for values of the coupling constant over the whole crossover
from BCS super-fluidity to Bose-Einstein condensation.

The numerical calculations provide results for a number of universal ratios characterizing the
unitary Fermi gas both at zero temperature and at the critical temperature which agree remarkably
well with the results of most of the recent numerical and field-theoretic calculations at the unitarity
point.

A shortcoming of the present approach is clearly visible from the three-dimensional figures which
depict thermodynamic quantities such as the pressure and the entropy and the order parameter of the
super-fluid transition. According to the numerical data, our super-fluid phase transition appears to be
first order instead of being continuous. Moreover, in the region of strong coupling, where the physics
is dominated by bosonic degrees of freedom, the calculation provides which seem to be less accurate
than the ones provided for the weakly interacting regime. An evidence of this loss in the accuracy can
be seen in the figure depicting the sound speed at zero temperature.

A possible extension of the theory could be focused on the calculation of the fermionic spectral
functions A(k, ε) which are related to the fermion Green’s function. The position and the shape of
peaks in the spectral function would give an indication of the nature of the quasi-particles of the

system at different values of the coupling constant. In particular, it could be possible to estimate the
lifetime of the fermionic quasi-particles in the three different regime of weak, intermediate and strong
coupling and get information on the formation of dimers.

Another extension is suggested by new experiment carried out recently by a few experimental
group which have focused their work on fermionic super-fluidity in strongly interacting atomic gases
with controlled population imbalance in two spin components. These experimental studies open up
new intriguing problems. In particular, an increase in the imbalance leads to the disappearance of
super-fluidity. Further, phase separation of a unitary gas in a trap has been observed. This significant
experimental development could motivate future work aimed to the definition of a phase diagram in
the entire BCS-BEC crossover also in the case of a fermionic gas with an imbalanced population in
the spin component.



Chapter 6

Numerical calculations

The most challenging part of this work is the numerical calculation of the thermodynamic potentials.
The present chapter is written with the purpose to point out the relevant informations which, from

our point of view, are necessary to handle the problem in a satisfactory way. The central point of the
numerics is to solve the self consistent equations for the Green’s function and the vertex function. Once
these functions are calculated, it is in principle possible to compute the thermodynamic potentials
expressed by the formulas derived Chapter 4.

The functions that appears in the self-consistent equations are related to each other by a Fourier
transformation thus the numerics is essentially based on a high precision Fourier transformation which
allows us to transform the Green’s function together with the self-energy and the vertex function
several times back and forth from the momentum space to the real space and from the Matsubara
frequencies to the imaginary time until the convergence is reached. Furthermore, we need to integrate
the functionals defining the thermodynamic potentials. These functional have a singular behaviour
that needs to be regularized.

In the first section of this Chapter we will give an overview of the method we used to compute the
Green’s functions and the vertex function.

In the second part we describe how we regularized the functions involved in the self-consistent
equation and in the last section we will describe the numerical Fourier transformation which has been
used for the calculations.

6.1 Solution of the self-consistent equations

In chapter 2 a two sets of self-consistent equations have been derived which give an analytical expres-
sion for the matrix Green’s function G(k, ωn) and for the vertex function Γ(K,Ωn).

The Dyson equation (3.11) together with the self-energy (3.23) form the set of equation through
which the matrix Green’s function can be calculated. The second set of equation, which accounts for
the renormalized vertex function, is given by the Bethe-Salpeter equation (3.18) and the renormalized
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pair propagator (3.20). The Dyson equation and and the Bethe-Salpeter equation contain the three pa-
rameters that describe the state of the system. The temperature T , hidden in the bosonic and fermionic
Matsubara frequencies Ωn and ωn through β = 1/kBT , the chemical potential µ which appears in the
Dyson equation (3.11) and the inverse s-wave scattering length contained in the renormalized interac-
tion g = m/(4π~2aF) that appears in the renormalized Bethe-Salpeter equation (3.18). The system can
be equivalently described by the three parameters T , a−1

F and nF if the parameter µ is replaced by the
fermionic density nF = k3

F/3π
2.

Because of the local nature of the interaction the self-consistent equations are scaling invariant.
The scaling invariance can be exploited to study the system at a constant fermion density nF = −2 ·
G(r = 0, τ = −0), where all the quantities are rescaled by nF . The lengths will be then rescaled by the
Fermi wave number kF and the energies by the Fermi energy εF = ~2k2

F/2m. The Green function, the
vertex function, the self-energy and the renormalized pair propagator, can be thus rewritten in terms
of scaling functions depending on dimensionless variables

Gαα′ (k, ωn) = ε−1
F · G̃αα′ (k/kF , ~ωn/εF) , (6.1)

Σαα′ (r, τ) = k3
Fε

2
F · Σ̃αα′ (kFr, εFτ/~) , (6.2)

Γαα′ (K,Ωn) = k−3
F εF · Γ̃αα′ (K/kF , ~Ωn/εF) , (6.3)

Mαα′ (r, τ) = k6
F · M̃αα′ (kFr, εFτ/~) . (6.4)

We can now replace the functions in the equations (3.18), (3.11), (3.23) and (3.20) with (6.1)-(6.4) to
obtain a dimensionless set of self-consistent equations for the scaling functions :

G̃−1
αα′ (k/kF , ~ωn/εF) = G̃−1

0,αα′ (k/kF , ~ωn/εF) − Σ̃αα′ (k/kF , ~ωn/εF) , (6.5)

Σ̃αα′ (kFr, εFτ/~) = Σ̃1,αα′δ (kFr) δF (εFτ/~) + G̃αα′ (−kFr,−εFτ/~) Γ̃αα′ (kFr, εFτ/~) , (6.6)

Γ̃−1
αα′ (K/kF , ~Ωn/εF) =

1
8π

1
kFaF

δαα′ + M̃αα′ (K/kF , ~Ωn/εF) , (6.7)

M̃αα′ (kFr, εFτ/~) =
[
G̃αα′ (kFr, εFτ/~)

]2 − C̃ δαα′δ(kFr)δB(εFτ/~). (6.8)

The pre-factor C̃ of the delta functions that appear in equation (6.4) is a dimensionless infinite constant
defined by C̃ = ε−1

F k2
FC, where C is given by the integral (3.17).

At a fixed fermion density nF , the state of the system over the whole crossover from BCS su-
perconductivity to Bose-Einstein condensation can be described as a function of the dimensionless
interaction strength ν = 1/kFaF . The only two relevant parameters are in this case the dimensionless
temperature θ = kBT/εF and the dimensionless interaction strength, which varies from −∞ in the BCS
limit to∞ in the BEC limit.

The dimensionless Green’s function G̃αα′ (k/kF , ~ωn/εF) and vertex function Γ̃αα′ (K/kF , ~Ωn/εF)

can be numerically evaluated solving iteratively the equations (6.5)-(6.8). We start from the free
Green’s function G̃0,αα′ (k/kF , ~ωn/εF), using equation (6.8) we can get M̃αα′ (K/kF , ~Ωn/εF) and
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through the (6.7) the dimensionless vertex function Γ̃αα′ (K/kF , ~Ωn/εF). Once we have the vertex
function we can calculate the self-energy Σ̃αα′ (kFr, εFτ/~) and use it to obtain the dressed Green’s
function and the vertex function to the first order. The process has to be iterated until convergence is
achieved to get higher order approximations for G̃ and Γ̃.

In the whole process the functions defined by the equation (6.5)-(6.8), which have a nontrivial
behaviour over several decades on a logarithmic scale, must be repeatedly Fourier transformed from
the normal space variable r to the momenta k and K, and from the Matsubara frequencies Ωn and ωn

to the imaginary time τ and vice-versa. The numerical computation has to be done in such a way that
the precision of the Fourier integrals is preserved in the all iteration process. To achieve the degree of
accuracy needed, a rather sophisticated procedure [63] had to be developed which will be discussed in
detail in section 6.3.

Furthermore we must note that the functions G̃ and Γ̃ are slowly decreasing function for large
values of the variables (k/kF , ~ωn/εF) and (K/kF , ~Ωn/εF) respectively. This kind of behaviour of the
functions for large momenta and large Matsubara frequencies implies a singular behaviour for small
values of the variables (kFr, εFτ/~) of the function in real space. Because of their singular behaviour,
the functions G̃(kFr, εFτ/~) and Γ̃(kFr, εFτ/~) can not be integrated numerically for (kFr, εFτ/~) →
(0, 0). To make the calculation possible we must first eliminate the singular behaviour of the function.
We perform this numerical ”regularization” subtracting suitable gauge-functions from G̃, Γ̃, M̃ and Σ̃.
Once the singular behaviour has been weakened we can proceed with the numerical integration of the
differences ∆G̃, ∆Γ̃, ∆M̃ and ∆Σ̃.

An rather delicate issue of the whole process is the choice of the gauge-functions that need to be
subtracted from the original functions: we need to find functions which can be computed analytically
and that resemble the behaviour of the original function for small values of their arguments. Once
we have such functions, we can subtract them to the functions we need to calculate and only then we
can proceed with the numerical integration. The difference functions which have to be transformed by
the numerical procedure must be smooth enough and they must decay at least like ∆G,∆Γ ∼ 1/k2 for
large values of the integrating variable.

The details of the process will be given in section 6.2 where the gauge-functions and their Fourier
Transformation will be explicitly derived. To make the notation lighter, in the discussion that follows
we will refer to the gauge-functions by using letters without tilde. For the same reason we will also
refer to the dimensionless variables with the shorter symbols (r, τ), (k, ωn) and (K,Ωn).

6.2 Derivation of the gauge-functions

If we study the system for temperatures T > Tc, the calculations simplify considerably. In fact, above
the critical temperature Tc the anomalous Green’s function defined by (3.4) vanishes and we have to
deal only with functions instead of matrices. We start discussing this particular case because all the
relevant issue already appear at this level and the results obtained can be extended to the case T < Tc.
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G(0) (k, ωn)
−−−−−−→ ∆G (k, ωn) = G −G(0)

FT
y NFT

y
G(0) (r, τ)

+−−−−−→ ∆G (r, τ)

−−−−−→ G (r, τ)

Figure 6.1: Schematic diagram for the numeric evaluation of the Fourier integral for the Green’s
function

In this case the singular behaviour of the Green’s function is given by the free fermion Green’s function

G0(k, ωn) =
1

−iωn + (εk − µ)2 (6.9)

which, in real space and imaginary time variables can be written as:

G(0)(r, τ) =

∞∑

n=0

(−1)n eµ(τ+nβ)

[4π(τ + nβ)]
3
2

e−
r2

4(τ+nβ) , (6.10)

where the series is obtained using the Matsubara frequency sum (C.1) given in appendix C. Clearly
the n = 0 term of the series is divergent, in fact the limit τ→ 0+ is a delta function:

eµτ
e−

r2
4τ

(4πτ)
3
2

τ→0+

−−−−→ δ(r) .

To be able to perform the Fourier integral numerically, we need to regularize the Green’s function

G(k, ωn) by subtracting the free fermion Green’s function. The Green’s function in the Fourier space
can then be obtained by adding to the function ∆G(r, τ) the following function:

G(0)(r, τ) =



∑∞
n=0(−1)n eµ(τ+nβ)

[4π(τ+nβ)]
3
2

e−
r2

4(τ+nβ) for τ , 0

∑∞
n=1(−1)n eµ(nβ)

[4π(nβ)]
3
2

e−
r2

4nβ + δ(r) for τ = 0.

(6.11)

A schematic view of the numerical evaluation of the Green’s function defined by the equations (6.5)-
(6.6) is given by the diagram depicted in figure 6.1. Furthermore, since we are above the transition
temperature, we removed the Nambu indices αα′, this won’t cause any misunderstanding because
the only functions that have to be ”regularized” are the diagonal elements of the matrices defined in
section 3.1. The gauge-functions are denoted in the diagrams by the superscript (0) and this notation
will be used also in the next sections.
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The zeroth order pair propagator in (K,Ωn) space defined by the product of two Green’s functions

χ0 (k; K,Ωn) =
1
β

∑

ωn

G0

(
1
2

K + k,Ωn − ωn

)
G0

(
1
2

K − k, ωn

)
(6.12)

which is explicitly given by the sum

χ0 (k; K,Ωn) =
1
β

∑

ωn

1

−i (Ωn − ωn) + 1
2

(
1
2 K + k

)2 − µ
· 1

−iωn + 1
2

(
1
2 K − k

)2 − µ
. (6.13)

The series (6.13) can be summed by using contour integration (see Appendix C). As a result we obtain

χ0 (k; K,Ωn) =
1

−iΩn + 1
2

(
K2

2 + 2k2 − 2µ
) ·

(
1 − 1

e
1
2 ( 1

2 K+k)2−µ + 1
− 1

e
1
2 ( 1

2 K−k)2−µ + 1

)
. (6.14)

The renormalized pair propagator is defined in the zero order as follows

M0 (K,Ωn) = 4π
∫

d3k
(2π)3


1
β

∑

ωn

G0

(
1
2

K + k,Ωn − ωn

)
G0

(
1
2

K − k, ωn

)
− 1

k2

 . (6.15)

In equation (6.15), the sum over the fermionic Matsubara frequencies defines the pair propagator
χ0(k; K,Ωn) explicitly written in (6.14). In order to regularize M(r, τ) in the vicinity of the origin we
need to know explicitly the behaviour of the pair propagator for large wave vectors and then subtract
its Fourier transform from M(r, τ). It is clear from equations (6.15) and (6.14) that the asymptotic
behaviour of the regularized pair propagator for |k| → ∞ is given by the expression

M0(K,Ωn) ≈ 1

−iΩn + 1
2

(
K2

2 + 2k2 − 2µ
) . (6.16)

Integrating this contribution over the fermionic wave vector we obtain the function needed for the
regularization

M(0) (K,Ωn) = −4π
∫

d3k
(2π)3


1

iΩn + 1
2

(
−K2

2 − 2k2 + 2µ
) +

1
k2



= −
[(
−iΩn +

K2

4
− 2µ

)] 1
2

.

(6.17)

The formula (6.15) tells us the asymptotic behaviour of the pair propagator. This expression contains
the most singular divergence in the limit (r, τ) → 0. In practice, we found that, in order to obtain
stable numerical results it was necessary to perform further subtractions. In particular for the renor-
malized pair propagator M(K,Ωn) we find that, for the procedure to work properly, the following
gauge function has to be subtracted.
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M(0) (r, τ)
−−−−−−→ ∆M (r, τ) = M − M(0)

FT
y

yNFT+FT

M(0) (k, τ)
[
G2 − M(0)

]
(k, τ) −Cδ(τ)

FT
y

yNFT

M(0) (k,Ωn)
+−−−−−→

[
G2 − M(0)

]
(k,Ωn) −−−−−→ M (k,Ωn)

Figure 6.2: Schematic diagram for the numeric evaluation of the Fourier integral for the renormalized
pair-function. The function M is obtained from the Green’s function calculated as described in Figure
6.1 by using equation (6.8)

M(0) (K,Ωn) ≈ − 1
8π

√
−iΩn +

K2

4
− 2µ0

+
1

16π
1√

−iΩn + K2

4 − 2µ0

(µ − µ0)

+
1

64π
1

(
−iΩn + K2

4 − 2µ0
) 3

2

(µ − µ0)2 .

(6.18)

Using the results (C.3) (C.4) and (C.5) we can calculate the contribution of M(0)(K,Ωn) to the renor-
malized pair propagator in real space and imaginary time:

M(0) (r, τ) =



1
8π3

∑∞
n=0 e2µ0(τ+nβ)e−

x2
2(τ+nβ)

[
1

[2(τ+nβ)]3 +
µ−µ0

[2(τ+nβ)]2 +
(µ−µ0)2

2 [2(τ + nβ)]
]

for τ , 0

1
8π3

∑∞
n=1 e2µ0nβe−

x2
2nβ

[
1

(2nβ)3 +
µ−µ0
(2nβ)2 +

(µ−µ0)2

2 · 2nβ
]

for τ = 0 .
(6.19)

Once we have found an analytical expression for the function M(0)(r, τ) we can proceed following

the diagram depicted in figure 6.2 to get the renormalized pair propagator M(K,Ωn). As we have
already done for the pair propagator, to regularize the vertex function we need to know its asymptotic
behaviour for large K. From the definition (6.7) we can deduce that the vertex function has the same
asymptotic form as the pair propagator. Thus the zeroth order vertex function is dominated for large
wave vectors by the term

Γ0 (K,Ωn) = 8π
1

1
kFa −

√
−iΩn

2 + K2

4 − µ
. (6.20)
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∆Γ (K,Ωn)
NFT−−−−−→ ∆Γ (r, τ)

+

Γ(0) (K,Ωn)
FT−−−−−→ Γ(0) (r, τ)

Σ(r,τ)=G(−r,−τ)Γ(r,τ)−−−−−−−−−−−−−−−−→
∆Σ (k, τ)

NFT−−−−−→ ∆Σ (k, ωn)

+

Σ(0) (k, τ)
FT−−−−−→ Σ(0) (k, ωn)

→ Σ (k, ωn)

Figure 6.3: Schematic diagrams of the Fourier integration process for the vertex function and for the
self-energy defined by the equations (6.7) and (6.6).

To obtain higher order terms we expand in µ − µ0 and ν to get

1
8π

Γ0 (K,Ωn) ≈ − 1√
−iΩn

2 + K2

4 − µ
− µ − µ0

2
(
−iΩn

2 + K2

4 − µ
) 3

2

− 3
8

(µ − µ0)2

(
−iΩn

2 + K2

4 − µ
) 5

2

+

−
1

−iΩn
2 + K2

4 − µ
− µ − µ0(
−iΩn

2 + K2

4 − µ
)2 −

(µ − µ0)2

(
−iΩn

2 + K2

4 − µ
)3

 ν

+

−
1

(
−iΩn

2 + K2

4 − µ
) 3

2

− 3
2

µ − µ0(
−iΩn

2 + K2

4 − µ
)

5
2

− 15
8

(µ − µ0)2

(
−iΩn

2 + K2

4 − µ
) 7

2

 ν
2 .

(6.21)

In practice it turns out that some of the terms in (6.21) are redundant and don’t affect the precision of
the numerical Fourier transformation procedure. For the regularization purpose it is then enough to
build the gauge-function for Γ by retaining the following terms of the expansion (6.21)

Γ(0) (K,Ωn) ≈ − 8π√
−iΩn

2 + K2

4 − µ
− 8π

µ − µ0

2
(
−iΩn

2 + K2

4 − µ
) 3

2

− 8π

−iΩn
2 + K2

4 − µ
ν − 8π

(
−iΩn

2 + K2

4 − µ
) 3

2

ν2 .

(6.22)

The (6.22) can be now used to construct the function ∆Γ(K,Ωn), which will be transformed numer-
ically. Once the vertex function is known, it is straightforward to get the self-energy via equation
(6.6). Schematically we can proceed as described by the diagram depicted in figure 6.3. The Fourier
transformation of the function defined by (6.22) can be explicitly done by following the calculation
reported in Appendix C. The series over the bosonic Matsubara frequencies Ωn can be determined
using the results (C.2), (C.4) and (C.5). A further integration over the wave vector K produces

Γ(0) (r, τ) =



−∑∞
n=0 e2µ0(τ+nβ)e−

x2
2(τ+nβ)

[
16π

[2π(τ+nβ)]2 +
16[(µ−µ0)+2ν]

2π(τ+nβ) + 16πν

[2π(τ+nβ)]
3
2

]
, for τ , 0

−∑∞
n=1 e2µ0nβe−

x2
2nβ

[
16π

[2πnβ]2 +
16[(µ−µ0)+2ν]

2πnβ + 16πν

[2πnβ]
3
2

+ 16πνδ(r)
]
, for τ = 0 .

(6.23)
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Following the same reasoning done for G(0), M(0) and Γ(0) we can get the gauge-function Σ(0) for the
self-energy that appears in the diagram in figure 6.3. For the self-energy we need to distinguish three
cases. In fact, the definition Σ(r, τ) = G(−r,−τ)Γ(r, τ) implies that the self-energy assumes a singular
behaviour for both τ = 0 and τ = β. The singularity in τ = 0 is produced by the vertex function while
the Green’s function G(−r, τ = 0) is finite1. On the other hand, in the case τ = β, the Green’s function
G(−r,−β) assumes a singular behaviour, while the vertex function is regular.

Σ(r, τ) =



−G(r, β − τ)Γ(r, τ) ∀r, τ , 0, β

−G(r, β)Γ(r, 0) + 16πνG(r, β)δ(r) ∀r, τ = 0

−G(r, 0)Γ(r, τ) − Γ(r, β)δ(r) ∀r, τ = β.

(6.24)

The integration over the space variable r doesn’t give any problems and can be integrated numerically
without much effort. However the Fourier integral over the imaginary time τ needs to be regularized.

We define the function Σ(0)(k, τ)

Σ(0)(k, τ) =



16
√
πG(0, β)

∑∞
n=0 (−1)ne−( k2

2 −2µ0)(τnβ)
[

1√
2(τ+nβ)

+
(
µ − µ0 + 2ν2

) √
2(τ + nβ)

]

+16πνG(0, β) e−( k2
2 −2µ0)τ

1+e−( k2
2 −2µ0)β

− Γ(0, β) e−( k2
2 −2µ0)(β−τ)

1+e−( k2
2 −2µ0)β

τ , 0

16
√
πG(0, β)

∑∞
n=1 (−1)ne−( k2

2 −2µ0)nβ
[

1√
2nβ

+
(
µ − µ0 + 2ν2

) √
2nβ

]

+16πν G(0,β)

1+e−( k2
2 −2µ0)β

− Γ(0, β) e−( k2
2 −2µ0)β

1+e−( k2
2 −2µ0)β

+ 16πνG(0, β) τ = 0

16
√
π − G(0, β)

∑∞
n=1 (−1)ne−( k2

2 −2µ0)nβ
[

1√
2nβ

+
(
µ − µ0 + 2ν2

) √
2nβ

]

+16πν G(0,β)

1+e−( k2
2 −2µ0)β

− Γ(0,β)

1+e−( k2
2 −2µ0)β

− Γ(0, β) τ = β .

(6.25)
Subtracting the gauge-function Σ(0)(k, τ) to the product G(−r,−τ)Γ(r, τ) reduces the discontinuities
at τ = 0 and τ = β considerably. This allows us to successfully find the spline coefficient needed to
build the cubic interpolation which will be used for the numerical integration of the Fourier integral
(see section 6.3). Of course the function Σ(0)(k, τ) contains terms that are necessary to get the correct
asymptotic behaviour in the variables (k, ωn). Thus once we have performed the numerical integration
we need to add the contribution Σ(0)(k, ωn) generated by the gauge-function, to recover the Fourier

1The Green’s function is antiperiodic in the variable τ: G(r, τ) = −G(r, β − τ)
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transformation of the ”full” self-energy.

Σ(0)(k, ωn) =G(0, β)
8π√

−iωn
2 + k2

4 − µ0

+ G(0, β)
8πν

−iωn
2 + k2

4 − µ0

+ G(0, β)
4π(µ − µ0 + 2ν2)
(
−iωn

2 + k2

4 − µ0
) 3

2

+ Γ(0, β)
1

−iωn + k − µ0
.

(6.26)

Once the Green’s function and the vertex function are computed, we can use them to obtain the ther-
modynamic potentials given by the formulas (4.40)- (4.43) and (4.51)- (4.54).

6.2.1 Extension to the superfluid regime

If we want to solve the self-consistent equations for the superfluid system T < Tc the numerical calcu-
lation gets slightly more complicated. However the complications are only due to the fact that below
the transition temperature Tc the order parameter is finite and the Green’s and the vertex functions are
not diagonal anymore and the procedure becomes a bit heavier and time consuming. The off-diagonal
terms in the matrices G and Γ does not need to be regularized and can be directly integrated by the
numerical procedure.

The anomalous Green’s function given by the formula (3.27) is regularized by the term ∆/2k2.
The vertex function in the superfluid regime is given by the matrix

Γ−1(K,Ωn) =


ν

8π + M11(K,Ωn) M12(K,Ωn)
M12(K,Ωn) ν

8π + M∗11(K,Ωn)

 (6.27)

where the off-diagonal terms M12(K,Ωn) are obtained as a product of two anomalous Green’s func-
tions and is thus finite, on the other hand the diagonal terms need to be regularized. If we invert the
matrix we find that Γ11 reads

Γ11(K,Ωn) =
ν/8π + M∗11(K,Ωn)

|ν/8π + M11(K,Ωn)|2 − M2
12

. (6.28)

The irregular behaviour in the limit |k| → ∞ is given by the contribution

Γ0,11(K,Ωn) ≈ ν/8π + M∗11(K,Ωn)

|ν/8π + M11(K,Ωn)|2

= 8π
1

1
kFa − M11(K,Ωn)

= 8π
1

1
kFa −

√
−iΩn

2 + K2

4 − µ
.

(6.29)

This expression is exactly (6.20), hence the matrix vertex function can be easily regularized by using
the results obtained in section 6.2. Once we know how to regularize Γ(K,Ωn) we can proceed with
the regularization of the self-energy as we did for the case T > Tc.
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6.3 Fourier transformation procedure

In the theory occur two kind of functions. First there are fermionic functions like the matrix green
function G(r, τ) and the self energy Σ(r, τ). Secondly there are bosonic functions like the vertex
function Γ(r, τ) and the pair propagator χ(r, τ) and the renormalized pair propagator M(r, τ). The
Fourier transformation of these functions for arbitrary dimension are defined by

G(r, τ) =

∫
ddk

(2π)d

1
β

∑

ωn

ei(k·r−ωnτ) G(k, ωn) , (6.30)

Γ(r, τ) =

∫
ddK
(2π)d

1
β

∑

Ωn

ei(K·r−Ωnτ) Γ(K,Ωn) . (6.31)

The two integrals differs only in the Matsubara frequencies. The fermionic function are transformed

with respect to the frequencies ωn = (2n + 1)π/β, which are odds, while the bosonic functions are
transformed with respect to the even frequencies Ωn = 2nπ/β. In the three-dimensional case we can
simplify the integral by exploiting the spherical symmetry of the system. If we do that the functions
in the integrals (6.30) and (6.31) only depend on the absolute value of the variables k, K, r and the
Fourier transformation becomes two dimensional. For the Green’s function we have

G(r, τ) =
1

β(2π)2

∑

ωn

e−iωnτ

∫ ∞

0
dk

2k sin(kx)
x

G(k, ωn). (6.32)

We then only need to develop a continuous Fourier transform procedure that transforms the variable
k ↔ r, K ↔ r, τ → ωn and τ → Ωn respectively. Furthermore we need to transform the Matsubara

frequencies ωn and Ωn into the imaginary times τ via a Fourier series. The integral over k in equation
(6.32) can be rewritten as follows:

1
2π2x

∫ ∞

0
dk k sin(kx)G(k, ωn) =

1
2π2x

∫ ∞

0
dk sin(kx) fωn(k)

=
1

4π2x

∫ ∞

−∞
dk sin(kx) fωn(k)

=
1

4π2x
=m

[∫ ∞

−∞
dk eikx fωn(k)

]
,

(6.33)

since we are interested in the continuous Fourier transformation we will omit in the following dis-
cussion the dependence on the Matsubara frequency ωn. The second equality in (6.33) is justified
by the fact that the function we are dealing with are even function in the variable k and x, hence the
integrand k sin(kx)G(k, ωn) = sin(kx) fωn(k) is also an even function and the integral can be extended
to the whole real axis. The problem is thus reduced to the evaluation of integrals of the type:

f (x) =

∫ ∞

−∞
dk eikx f (k) (6.34)
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As has been already pointed out in section 6.1, the functions that need to be transformed numerically
have a nontrivial singular behaviour for values of the variable close to the origin, furthermore the
physical properties of the fermionic system are included in the functions G and Γ at intermediate
values of their variables. On the other hand it is important to get the correct behaviour of the function
for large values of their variables to get the right behaviour of the same function for small values of
the variables in the Fourier space. Therefore we need to develop a Fourier transformation procedure
which has a good resolution at small, intermediate and large values of the variables. We will sample
the functions at the following points:

km = (γ)−1 sinh(γ∆k m) m = 0,±1,±2, · · · ,±N. (6.35)

This choice of the sampling points automatically gives a good resolution on a logarithmic scale.

In order to perform the Fourier transformation we need to evaluate the sum

FT∆k
[
f (k)

]
(x) =

kmax∑

kmin

∆k eikx f (k), (6.36)

where k is a discrete variable and the integration step ∆k is constant. The sum (6.36) defines the
trapezoid sum of the integral ∫ kmax

kmin

dk eikx f (k).

If the value of the function is known at the points km, m = 0,±1,±2, · · · ,±N covering the whole
interval [xmin, xmax], the sum (6.36) can be divided into a sum of N trapezoid sums

FT∆k
[
f (k)

]
(x) =

kmax∑

kmin

∆k eikx f (k) =

N∑

m=0


km+1∑

km

∆k eikx f (k)



=

N∑

m=0

eikm x


lm∑

0

∆k eixhm f (km + hm)

 =

N∑

m=0

eikm xIm .

(6.37)

where k0 = kmin, kN+1 = kmax, lm = km+1 − km and hm = k − km. Since the formula (6.37) defines the
trapez sum of an integral, at the boundaries kmin and kmax the summand contributes only 1

2 to the total
sum. The quantities kmax − kmin and lm = km+1 − km must be integer multiples of ∆k.

The choice (6.35) for the sampling interval doesn’t allow us to use a standard procedure like a Fast

Fourier transform routine. Therefore a special procedure to calculate the Fourier integrals is needed.
The idea is to interpolate the sampled function f (k) for continuous values of k in the interval between
two sampling points with a cubic spline

f (km + hm) = am + bmhm + cmh2
m + dmh3

m . (6.38)
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The spline polynomial and its first two derivative are continuous at km and km+1, thus



am + bmhm + cmh2
m + dmh3

m = am+1

bm + 2cmhm + 3dmh2
m = bm+1

2cm + 6dmhm = 2cm+1 .

(6.39)

Furthermore, in the case of a natural spline the coefficient c0 and cN+1 vanish. Once the spline coef-
ficient have been calculated we can then easily evaluate the integral of the cubic polynomial over the
interval [km, km+1]. At this stage, the only thing that is left to do is to sum up the single contribution to
get the value of the whole integral. We now need to calculate explicitly the sums in the last equality
of equation (6.37) where we substitute the function f (km + hm) with its cubic interpolation (6.38). The
sum Im that appears in the equality (6.37) reads:

Im = amS 0(lm) + bmS 1(lm) + cmS 2(lm) + dmS 3(lm) (6.40)

where

S j(lm) =

lm∑

0

∆k h j
meixhm . (6.41)

The sums S j(lm) can be easily evaluated. Defining lm = ∆k n and hm = ∆k s we get for the sum S 0(lm):

S 0(lm) =

n∑

s=0

∆k eix∆k s = ∆k


1
2

+

n−1∑

s=1

eix∆k s +
1
2

eix∆k n



=
∆k
2


n−1∑

s=0

(
eix∆k

)s
+

n∑

s=1

(
eix∆k

)s


=
∆k
2

[
eix∆k n − 1
eix∆k − 1

+
eix∆k n+1 − eix∆k

eix∆k − 1

]

=
∆k
2i

cot
(

x∆k
2

)
·
(
eix∆k n − 1

)

= −ig0 (x,∆k) ·
(
eixlm − 1

)
,

(6.42)

once S 0(lm) is computed, the remaining sums can be derived by noting that

S j(lm) =

(
−i

∂

∂x

) j lm∑

0

∆keixhm . (6.43)

From equation (6.43) follows:

S 1(lm) = −g1(x,∆k) ·
(
eixlm − 1

)
− ig0(x, lm) · lmeixlm , (6.44)

S 2(lm) = ig2(x,∆k) ·
(
eixlm − 1

)
− 2g1(x, lm)lmeixlm − il2mg0(x, lm)eixlm , (6.45)



6.3. Fourier transformation procedure 83

and

S 3(lm) = g3(x,∆k) ·
(
eixlm − 1

)
+ 3ilmg2(x, lm)eixlm − 3l2mg1(x, lm)eixlm − il3mg0(x, lm)eixlm . (6.46)

where the functions g j(x,∆k) are defined in the following way:

g j(x,∆k) =

(
∂

∂x

) j
∆k
2

cot
(

x∆k
2

)
. (6.47)

Exploiting the results obtained for the S j(lm) and the property (6.39) of the spline polynomial, it is
now possible to evaluate the sum Im:

Im = − ig0(x,∆k)
(
am+1eixlm − am

)
− g1(x,∆k)

(
bm+1eixlm − bm

)

+ ig2(x,∆k)
(
cm+1eixlm − cm

)
+ g3(x,∆k)

(
eixlm − 1

)
.

(6.48)

Multiplying Im with eixkm and sum the terms over the whole range we finally obtain a discretized
expression for the Fourier integral (6.34):

FT∆k
[
f (k)

]
(x) = − ig0(x,∆k)

N∑

m=0

[
am+1eixlm+1 − ameixlm

]

− g1(x,∆k)
N∑

m=0

[
bm+1eixlm+1 − bmeixlm

]

+ ig2(x,∆k)
N∑

m=0

[
cm+1eixlm+1 − cmeixlm

]

+ g3(x,∆k)
N∑

m=0

[
eixlm+1 − eixlm

]
dm ,

(6.49)

all terms in the first three sums cancel except the end terms hence, using a natural spline for the
calculation, the final form of the discretized Fourier integral reads:

FT∆k
[
f (k)

]
(x) = − ig0(x,∆k)

[
aN+1eixlN+1 − a0eixl0

]

− g1(x,∆k)
[
bN+1eixlN+1 − b0eixl0

]

+ g3(x,∆k)
N∑

m=0

[
eixlm+1 − eixlm

]
dm .

(6.50)
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If we take the limit ∆k → 0 in the functions g j(x,∆k) that appear in the formula (6.50), we get



g0(x,∆k)
∆k→0−−−−→ 1

x

g1(x,∆k)
∆k→0−−−−→ − 1

x2

g2(x,∆k)
∆k→0−−−−→ 2

x3

g3(x,∆k)
∆k→0−−−−→ − 6

x4

,

substituting the limit g j(x, 0) in the the discrete sums (6.42), (6.44), (6.45), and (6.46) we exactly
recover the continuous Fourier integral. An important point still needs to be stressed, in fact the

Fourier integral of a cubic polynomial produces terms of the order x−4, x−3, x−2 and x−1 thus, while
for big values of x the procedure described above works fine without much effort, it breaks down in
the limit x → 0. This limit need a more careful approach, the discrete Fourier sum for x = 0 is given
by:

FT∆k
[
f (k)

]
(x = 0) =

kmax∑

kmin

∆k f (k) =

N∑

m=0


km+1∑

km

∆k f (k)

 =

N∑

m=0

Im , (6.51)

where Im is defined by (6.40) and the sums S j(lm) by:

S (x=0)
j (lm) =

lm∑

0

∆k (hm) j. (6.52)

The S (x=0)
j (lm) can be evaluated directly following the same calculation done for the general case:

S (x=0)
0 (lm) = lm, (6.53)

S (x=0)
1 (lm) =

1
2

l2m, (6.54)

S (x=0)
2 (lm) =

1
3

l3m ·
(
1 +

∆k2

2l2m

)
, (6.55)

S (x=0)
3 (lm) =

1
4

l4m ·
(
1 +

∆k2

2l2m

)
. (6.56)

Summing up all the term and considering that we are using a natural spline interpolation, the x → 0
limit of the discretized Fourier integral can be written in the form:

FT∆k
[
f (k)

]
(x = 0) =

[
aN+1kN+1 − a0k0

]
− 1

2

[
bN+1k2

N+1 − b0k2
0

]

− 1
4

N∑

m=0

dm
{(

k4
m+1 − k4

m

)
+ ∆k2

(
k2

m+1 − k2
m

)}
.

(6.57)
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The formulas (6.50) and (6.57) provide an expression that allows us to evaluate numerically Fourier
integrals of the type (6.33) either in the limit kmx > 1 and kmx→ 0.

The results obtained above can be used, with some little modifications, to perform the Fourier
transformation from the discrete Matsubara frequencies to the imaginary time. The sums that we need
to evaluate are of the type:

f (τ) =
1
β

∑

νn

e−iνnτ f (νn) =
1

2π

∑

νn

2ν0e−iνnτ f (νn) (6.58)

where νn can be even or odd integer multiple of ν0 = π/β and the function f (τ) is defined on the
interval 0 ≤ τ ≤ β. In this case we have to consider only those values fm = ν(m)

n corresponding to
the Matsubara frequencies ν(m)

n that lie closer to the sampling points xm given by the formula (6.35).
The procedure to evaluate the Matsubara sums follows what has already been done in the case of the
Fourier integral but in order to use the formulas (6.50) and (6.57) it is necessary to identify ∆k = 2ν0,
km = (2nm +1)ν0 in case we need to transform a fermionic function and km = 2nmν0 in case the Fourier

sum involves bosonic Matsubara frequencies.





Appendix A

Comparison between the Luttinger and
Ward and De Dominicis and Martin
functional at stationarity

The statement that, at stationarity, the functionals obtained in the Luttinger and Ward formalism coin-
cides with the ones obtained within the theory of De Dominicis and Marin can be directly verified by
calculating the functional with the values of the Green’s function and the vertex function obtained by
the stationarity condition (2.42). We start with the functional

Ω[G, Γ] = − 2 Ld
∫

ddk
(2π)d (εk − µ) G(k, τ = −0) + Ld g0|F (0, 0)|2

− Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G(k, ωn)] + [−i~ωnG(k, ωn) − 1]

}

+
1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr
{
g0

[
χ(K,Ωn) − χ(K,Ωn) Γ(K,Ωn) χ(K,Ωn)

]

− χ(K,Ωn) Γ(K,Ωn) − ln[1 − χ(K,Ωn) Γ(K,Ωn)]
}
,

(A.1)

First we rewrite the frist term of the functional by means of the identity (4.19):

2Ld
∫

ddk
(2π)d

1
β

∑

ωn

(εk − µ)G(k, ωn) = Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{(

G−1
0 (k, ωn) + i~ωn

)
G(k, ωn)

}
, (A.2)

It is now possible to simplify the functional (A.1) by combining the two intergals over the fermionic
variables together

−Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G(k, ωn)] + [G0(k, ωn)−1G(k, ωn) − 1]

}
, (A.3)
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functional at stationarity

Finally we consider the last integral in (A.1), we group together the first thre argument of the trace to
obtain

g0χ(K,Ωn) − g0χ(K,Ωn) Γ(K,Ωn) χ(K,Ωn) − χ(K,Ωn) Γ(K,Ωn)

= χ(K,Ωn)
[
g0 − g0Γ(K,Ωn) χ(K,Ωn) − Γ(K,Ωn)

]

if the vertex function fulfill the stationarity condition δΓΩ[G, Γ] = 0, the quantity in the square brackets
vanishes, thus we are left with the logarithm only, which, using the Bethe-Salpeter equation, can be
rewritten in the following way:

− ln[1 − χ(K,Ωn)Γ(K,Ωn)] = ln[g0Γ−1(K,Ωn)]. (A.4)

With this furter simplification the functional (A.1) reads:

Ω[G,Γ] = − Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G(k, ωn)] + [G0(k, ωn)−1G(k, ωn) − 1]

}

+ Ld g0|F (0, 0)|2 +
1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr
{
ln[g0 Γ−1(K,Ωn)]

}
.

(A.5)

The Luttinger and Ward grand-potential derived in section 4.1 reads

Ω[G] = −Ld
∫

ddk
(2π)d

1
β

∑

ωn

Tr
{− ln[G(k, ωn)] + [G0(k, ωn)−1G(k, ωn) − 1]

}

+ Ld g0|F (0, 0)|2 +
1
2

Ld
∫

ddK
(2π)d

1
β

∑

Ωn

Tr
{
ln[1 + g0 χ(K,Ωn)]

}
.

(A.6)

The integral over the bosonic variables in the functional (A.6) can be rewritten in the same form as in
(A.5) using again the Bethe-Salpeter equation. Hence the Luttinger and Ward theory can be recovered
from the functional obtained within the formalism of De Dominicis and Martin if the stationarity
condition are fulfilled.



Appendix B

Calculation of the pair propagator

In Chapter 6 we use the explicit expression of the pair propagator χ0(K,Ωn) to define the asymptotic
behaviour of the vetex function in the limit |k| → ∞. In the following we report the detailed calculation
to get from the definition of the pair propagator (6.13) to the final results (6.14) and (6.16). We need
to sum the series

χ(k; K,Ωn) =
1
β

∑

ωn

1
−i (Ωn − ωn) + ξ1

· 1
−iωn + ξ2

(B.1)

where

ξ1 =
1
2

(
K
2

+ k
)2

− µ, (B.2)

ξ2 =
1
2

(
K
2
− k

)2

− µ. (B.3)

The sum (B.1) is the result of the contour integral

I =

∫

CR

dz
2πi

1
z − iΩn + ξ1

· 1
−z + ξ2

· 1
eβz + 1

(B.4)

the contour CR being plotted in Figure B.1. A solution for the integral (B.4) is given by the sum over
the residues that lie into the the circle CR. The function nF(z) = 1/eβz + 1 has an infinite number of
poles on the imaginary axis at the values z = iωn, and its residues assume the value −1/β. The two
fraction in the integral have a pole for z = iΩn + ξ1 and z = ξ2 respectively. The integral I is hence
given by the following sum

I =
1
β

∑

ωn

1
−i (Ωn − ωn) + ξ1

· 1
−iωn + ξ2

+
1

−iΩn + ξ1 + ξ2
·
(

1
e−ξ1β + 1

− 1
e−ξ2β + 1

)
.

(B.5)
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ξ
1

C

2

ιω
ιΩ −ξ

n

n

Figure B.1: Contour for evaluation of frequency sum (B.1)

The first sum correspond to the definition (B.1) of the pair propagator, the sum ξ1 + ξ2 in the denom-
inator of the fraction in front of the second term can be rewritten by using the definitions (B.2) and
(B.3). If we now let the radius of the contour CR go to infinity, according to the Jordan’s lemma, the
contour integral (B.4) vanishes thus and we get the equality

1
β

∑

ωn

1

−i (Ωn − ωn) + 1
2

(
1
2 K + k

)2 − µ
· 1

−iωn + 1
2

(
1
2 K − k

)2 − µ
=

1

−iΩn + 1
2

(
K2

2 + 2k2 − 2µ
) ·

(
1 − 1

e
1
2 ( 1

2 K+k)2−µ + 1
− 1

e
1
2 ( 1

2 K−k)2−µ + 1

) (B.6)

which is exactly the result (6.14). We are now intrested in the behaviour at large wave vectors of the
pair propagator, it is easy to see that in tat limit the leading contribution is given by the first term of
(B.6). This is exactly the term we have to integrate over the fermionic wave vectors to get the result
(6.17).

The asympotic behaviour of the renormalized pair propagator is given by the integral

M(0)(K,Ωn) = −4π
∫

d3k
(2π)3


1

iΩn + 1
2

(
−K2

2 − 2k2
)

+ 2µ
+

1
k2

 . (B.7)

Exploiting the spherical symmetry of the problem we can reduce the integral (B.7) to a one-dimentional
integral. By integrating out the angles we are left with the integral over the module of the wave vector
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k, which, with the change of variable y = k/[iΩn + −K2

4 + 2µ] becomes:

M(0)(K,Ωn) = −2
π

∫ ∞

0
dk


1

iΩn + −K2

4 − k2 + 2µ
+

1
k2



=

√
iΩn + −K2

4
+ 2µ

∫ ∞

0
dy

1
1 − y2

= −2
π
· iπ

2

√
iΩn − K2

4
+ 2µ =

√
−iΩn +

K2

4
− 2µ.





Appendix C

Sum over Matsubara frequencies

To calculate the Fourier transformation for of gauge-functions defined in Chapter 6, we need to per-
form a few sums over bosonic and fermionic Matsubara frequencies.

1
β

∑

ωn

e−iωnτ
1

−iωn + ξ
=

e−ξτ

1 + e−βξ
(C.1)

where ωn = (2n + 1)π/β are fermionic Matsubara frequencies.

1
β

∑

Ωn

e−iΩnτ
1

− iΩn
2 + ξ

=
2e−2ξτ

1 − e−2βξ (C.2)

Ωn = 2nπ/β on the left hand side of (C.2) and in the rest of the discussion are bosonic Matsubara
frequencies. The evaluation of (C.1) and (C.2) is straightforward and we will skip the details.

1
β

∑

Ωn

e−iΩnτ

√
−i

Ωn

2
+ ξ =

1√
π

∞∑

m=0

e−2ξ(τ+mβ)

[
2 (τ + mβ)

]3/2 . (C.3)

The most direct approach for evaluating (C.3) is to perform a contour integration on a meromor-
phic function with poles at the even integers. In figure C.1 is depicted the contour for the evaluation
of the sum (C.3), on this contour the integral

∮
dz
2πi
· e−zτ

√
− z

2
+ ξ

eβz

eβz − 1

exactly reproduces the sum on the left hand side of (C.3), in fact the integrand has an infinite sequence
of singles poles at z = iΩn with residue

1
β

e−iΩnτ

√
− iΩn

2
+ ξ.
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η+

η−

Γ

γ

z =z = ιΩ n

r−r
2ξ

Figure C.1: Contour for evaluation of frequency sum (C.3), (C.4) and (C.5)

If r → ∞ Jordan’s lemma shows that the contribution of Γ vanish and the only non vanishing terms,
in the limit γ → 0, are given by the integrals:

i
∫ ∞

2ξ

dx
2πi

e−τx
√

x
2
− ξ · eβx

eβx − 1
+ i

∫ 2ξ

∞

dx
2πi

e−τx
√

x
2
− ξ · eβx

eβx − 1
.

The two contributions can be added together to give:

2
π

∫ ∞

0
dy
√

y
e−2τ(y+ξ)

1 − e2β(y+ξ) =
2
π

∫ ∞

0
dy
√

y
∞∑

m=0

e−2βm(y+ξ)e−2τ(y+ξ) =
1√
π

∞∑

m=0

e−2ξ(τ+mβ)

[
2 (τ + mβ)

]3/2 .

In the same way we can evaluate the sum:

1
β

∑

Ωn

e−iΩnτ
1√

− iΩn
2 + ξ

=
2√
π

∞∑

m=0

e−2ξ(τ+mβ)
√

2 (τ + m/θ)
. (C.4)

The proof of the next result is more tricky. We need to calculate

1
β

∑

Ωn

e−iΩnτ

(
− iΩn

2 + ξ
)3/2 .
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Again we can reproduce the sum using a contour integral

∮
dz
2πi

e−zτ

(
− z

2 + ξ
)3/2

eβz

eβz − 1

the integration contour being the same as in Figure C.1. When r → ∞ Jordan’s lemma tells us that the
contribution of the arch Γ to the integral vanishes and we are left with the integrals over γ, η+ and η−.
The contribution of the arch γ, in the limit γ → 0, is

Iγ ≈
4
π

1√
ε

e−2ξτ

1 − e−2βξ =
4
π

1√
ε

∞∑

m=0

e−2(τ−mβ)ξ,

where ε→ 0 is the radius of the small arch γ. Letting r → ∞ the last two integrals become

Iη− + Iη+ = −1
π

∫ ∞

2ξ+ε
dx

e−xτ

(
x
2 + ξ

)3/2

eβx

eβx − 1
.

We can rewrite the last fraction on the right hand side of the previous equation as a geometric series
and then make a change of variables to obtain

Iη− + Iη+ = −2
π

∞∑

m=0

[
e−2ξ(τ+mβ)

∫ ∞

ε
du

e−2u(τ+mβ)

u3/2

]
.

The integral in the square brackets can be evaluated in terms of the error function 1 as follows

∫ ∞

ε
du

e−2u(τ+mβ)

u3/2 =
2e−2ε(τ+mβ)
√
ε

− 2
√

2π(τ + mβ) ·
(
1 − 2

π

√
2ε(τ + mβ)

)
.

With the last result we get, in the limit ε→ 0:

Iη− + Iη+ = −4
π

1√
ε

∞∑

m=0

e−2ξ(τ+mβ) +
4√
π

∞∑

m=0

√
2 (τ + mβ) · e−2ξ(τ+mβ)

and finally, putting together the contributions Iγ, Iη− and Iη+ , we can write the sum as:

1
β

∑

Ωn

e−iΩnτ
1

(
− iΩn

2 + ξ
)3/2 =

4√
π

∞∑

m=0

√
2 (τ + mβ) · e−2ξ(τ+mβ). (C.5)

1To evaluate the integral we used the results
∫ ∞

ε

dx
e−αx

x3/2 =
2e−αε√

ε
− 2
√
πα

(
1 − Er f

(√
αε

))
, Er f

(√
αε

)
≈

2√
π

[
(αε)1/2 − (αε)3/2

3

]

and considered the first order only.
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