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Abstract— An alternative decomposition method for

sum-utility maximization in the multi-user downlink is

proposed. The proposed method is based on repeated local

approximations of the Pareto efficient boundary of the

rate region. Similar to known “Layering as Optimization”

approaches, the utility maximization problem is vertically

decomposed into a set of coupled sub-problems. Mathe-

matically, however, the proposed method is not based on

primal or dual decompositions, but on an optimization on

manifolds.

I. INTRODUCTION

In network utility maximization (NUM), routing and

resource allocation are optimized to maximize a sum

utility over all nodes. To this end, an optimization

problem is formulated and solved. Recently, techniques

to decompose the NUM optimization problem into a set

of coupled subproblems have received wide attention

[1], [2]. In these works, each subproblems is associ-

ated with a layer, giving rise to the term “Layering

as Optimization Decomposition” (LOD), see [2] and

references therein. The LOD framework provides two

main classes of decompositions: horizontal decompo-

sition and vertical decomposition. In this work, utility

maximization in the wireless multi-user downlink is

considered, in the following denoted as downlink utility

maximization (DUM) problem. A central transmitter is

assumed, therefore the focus is on a vertical decomposi-

tion into functional modules. As the downlink represents

just a very simple case of a network, the techniques

developed in the LOD framework are readily applicable

[2]. Within the LOD framework, from an optimization

viewpoint the main techniques employed are primal and

dual decompositions. In this work, a different approach

to achieve a vertical decomposition is proposed. The key

idea is to view the DUM problem as an optimization

over a manifold. This allows to directly apply results

from the optimization literature to the DUM problem.

As in the LOD framework, a decomposition into a set

of coupled subproblems is achieved. The coupling as

well as the subproblems, however, are of a very different

type. In particular, it is sufficient to compute a single

update in the APP layer subproblem for each inter-

problem iteration, while a dual decomposition requires a

completely solved APP layer problem at each iteration.

Moreover, the coupling between layers is not based on a

subgradient iteration, but on a first order approximation

of the manifold, which may lead to faster convergence.

These observations hint at the competitiveness of the

proposed approach compared to a duality-based decom-

position.

II. DUM PROBLEM

Let R ⊂ RK0,+ denote the achievable rate region of a

K user downlink (resp. broadcast channel). In general,

if information rates are used as performance metric,

R completely characterizes the PHY layer. Which rate

vectors r ∈ RK0,+ are achievable depends on the specific

choice of the PHY layer system model. In this work, it

is assumed that the PHY layer provides a time-sharing

mode, i.e., it is assumed that the rate region R is convex.

Let uk(rk) express the utility perceived by user k

given a rate rk is allocated to user k. It is assumed that uk
is differentiable, monotonically increasing, and concave.

Define the sum-utility u : RK0,+ → R by

u(r) =

K
∑

k=1

uk(rk).

Downlink utility maximization seeks to maximize sum-

utility over the set of achievable rates:

max
r∈R
u(r). (1)

In the form of (1), DUM is a simple version of the

general NUM problem in [2]. Recently, similar setups

were considered in [3], [4].



III. DUAL DECOMPOSITION

As already stated in the introduction, the techniques

from the LOD framework are readily applicable to the

DUM problem. In this section, the application of a dual

decomposition to achieve a vertical decomposition into

functional modules is briefly summarized.

Following [2], the DUM problem is first modified by

introducing additional variables:

max
r,s
u(s) s.t. s ≤ r, r ∈ R. (2)

After introducing the Lagrangian

L(s, r,λ) = u(s) + λT(r − s)

the dual function is given by

g(λ) = gA(λ) + gP(λ),

with λ > 0K (the cases λk = 0 can be excluded) and

gA(λ) = max
s
u(s) − λTs, and (3)

gP(λ) = max
r∈R
λTr. (4)

For a fixed λ, the optimization is decomposed into

two independent subproblems (3) and (4). Subproblem

(3) can be solved at the APP layer, subproblem (4) is

solved at the PHY layer. The optimum λ is found via

a subgradient method. For each subgradient iteration,

problems (3) and (4) have to be solved for the current

λ. Subproblem (4) is a weighted sum-rate maximization

(WSRmax). WSRmax is a well-researched problem and

efficient solutions exist for a wide range of PHY layer

setups. To summarize, two fundamental features are

provided by the dual decomposition:

1) vertical decomposition of the original problem into

two “inner” subproblems, which can be solved

independently at each iteration, and an “outer”

subgradient-based optimization,

2) re-use of existing algorithms to solve PHY sub-

problem.

In Section IV, a decomposition is proposed that provides

similar features, while being based on significantly dif-

ferent optimization methods.

IV. AN ITERATIVE EFFICIENT SET APPROACH

Due to the monotonicity of the utility functions uk,

the sum utility is monotone in r:

r ≤ r′ ⇒ u(r) ≤ u(r′). (5)

Define the Pareto efficient set as follows:

E =
{

r ∈ R : @r′ ∈ R with r′ > r
}

. (6)

Verbally, E contains the largest rate vectors (under the

partial Pareto order). Due to (5), maximizing sum-utility

over the entire rate region is equivalent to maximizing

over the Pareto efficient boundary of R, i.e.,

max
r∈R
u(r) = max

r∈E
u(r). (7)

A closed-form expression for E is in general not avail-

able. In most cases, however, algorithms for computing

points r ∈ E are known, such as, e.g., algorithms for

maximizing the weighted sum-rate. Now, the following

additional assumptions are made:

1) At all points r ∈ E with rk > 0,∀k exists a tangent

space Tr of E .

2) At all such points r, an orthonormal basis Q ∈
RK×K−1 of Tr is available.

In other words,

Êr =
{

r +Qµ,µ ∈ RK−1
}

,

represents a first-order approximation of E around r. Let

r∗ ∈ E denote a rate vector that maximizes sum-utility,

and assume that r∗ is unique. Obviously, starting at an

arbitrary r ∈ E , the goal is to move toward r∗. To do

so, the first order approximation Êr is provided to the

APP layer. The APP layer determines an update Qµ̃,

resulting in

r̃ = r +Qµ̃.

In this work, a gradient-based update is considered, i.e.,

µ̃ = tQT∇u(r), (8)

with a stepsize t ≥ 0. Note that for orthogonal Q,

∆r = r̃ − r = tPr∇u(r),

where Pr is the orthogonal projector on Tr.

In general, r̃ 6∈ E , therefore the PHY layer has to

project r̃ back onto E , resulting in a new r′ ∈ E .

Provided that a sufficient increase in u was achieved (by

proper adjustment of the stepsize t), a new approxima-

tion is computed at r′ and the whole process is repeated

until r′ = r∗.
There exist different possibilities to project r̃ on E .

Due to the nature of E , a Euclidean projection on E
seems prohibitive. Instead, a projection orthogonal to the

tangent space Tr is employed. Let n denote the unit-

norm vector that is orthogonal to Tr and points away

from R. To project r̃ on E , the following problem is

solved:

max
x,r
x s.t. r̃ + xn ≤ r, r ∈ R.



The Lagrangian is given by

L(x, r) = x+ λT (r − r̃ − xn).

The dual function follows as

g(λ) = sup
x∈R

r∈R

(

x(1− λTn) + λT(r − r̃)
)

=

{

+∞, λTn 6= 1,

maxr∈R λ
T(r − r̃), λTn = 1.

(9)

Note that for λTn = 1, again a weighted sum-rate

maximization problem is to be solved. Let r∗(λ) denote

an optimizer of the weighted sum-rate maximization in

(9). The optimum dual variable λ is found by solving

min
λ≥0

λT(r∗(λ)− r̃) s.t. λTn = 1 (10)

via a subgradient method.

Similar to the dual decomposition, a dual problem

is solved via a subgradient method. However, in the

efficient set approach, there are now two iteration lev-

els: outer iterations based on a gradient update and

inner iterations within the PHY layer to determine the

projection. In contrast to the dual decomposition, the

inner subgradient iterations performed for projection on

E do not involve the application layer. While in the

dual decomposition the APP layer has to fully solve an

optimization problem (3) for each subgradient iteration,

in the proposed efficient set method, the APP only has

to compute a gradient at each outer iteration.

A fundamental assumption is the availability of a tan-

gent space basisQ. If a weighted-sum rate maximization

is employed in the projection step, the computation of

Q is trivial. Let λ′ denote the optimum dual variable of

(10) and r′ a rate vector that maximizes the weighted-

sum rate for this particular weighting λ′, i.e.,

(λ′)Tr′ = max
r∈R

(λ′)Tr.

It is known that λ′ is orthogonal to the tangent space

Tr′ at r′ (see [5] for an intuitive treatment), thus

Tr′ = null
(

(λ′)T
)

.

In other words, a basis Q of Tr′ is found by comput-

ing an orthonormal basis of null((λ′)T) — thus, the

proposed projection algorithm provides a basis of the

tangent space needed for the next iteration “almost for

free”.

From the perspective of layering as optimization de-

composition, again a decomposition into two functional

modules takes place: At each outer iteration,

1) PHY layer: compute basis Q and project r̃ on E ,

2) APP layer: compute update Qµ̃.

Communication between layers is in terms of (r,Q)
(PHY → APP) resp. r̃ (APP → PHY).

V. OPTIMIZATION ON MANIFOLDS

In this section, the main results concerning the math-

ematical properties of the proposed decomposition ap-

proach are briefly discussed. Denote by C ⊂ E the set

of efficient rate vectors where at least one user has rate

zero. Define the open set M as follows:

M = E \ C. (11)

The assumption that a tangent space Tr exists at each

point in M corresponds to the assumption that M is a

differentiable manifold. Thus

max
r∈M
u(r) (12)

is an optimization over a differentiable manifold. Two

early works on optimization on manifolds are [6], [7].

In [7], steepest descent and Newton methods are gen-

eralized to optimization on manifolds by moving along

geodesics. Recently, optimization on manifolds has also

received attention in the signal processing community

(see [8] for an overview).

Define a local parameterization θr of M at r as

follows:

θr(µ) = r +Qµ+ nx(µ) ∈M.

According to the previous section, r + Qµ ∈ Êr and

nx(µ) corresponds to the projection step. Moreover,

θr(0) = r, and

∇θr(0) = QT,

where∇θr(µ) denotes the transpose of the Jacobian ma-

trix of θr at µ. Locally, maximizing u ◦ θr corresponds

to an unconstrained optimization problem. In particular,

the gradient at µ = 0 is given by

∇(u ◦ θr)(0) = QT∇u(r),

which is also the gradient used in Eq. (8). In other words,

the APP layer can compute the “correct” gradient update

based on Ê . This property clearly depends on the fact that

the projection step fullfills

∇x(0) = 0.

Finally, note that the parameterization θr corresponds to

the so-called “tangent restoration approach” in [7].
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Fig. 1. Iterative Efficient Set Method

VI. NUMERICAL RESULTS

In this section, some numerical results are presented

to outline the basic behaviour of the discussed decompo-

sition approaches. At the PHY layer, an OFDMA mode

with 512 subcarriers is considered. For this PHY setup,

an efficient algorithm to compute a (closely) optimum

subcarrier and power allocation under a weighted sum-

rate criterion is provided in [9]. The algorithm from [9] is

employed without an additional time-sharing mode. As a

result, the set of achievable rate points is non-convex and

the efficient set is non-smooth. Simulations show that

the algorithms discussed in this paper still provide good

performance in such a setting, see also [4]. A detailed

theoretical analysis of such non-convexity issues for a

finite number of subcarriers remains an open problem.

Results are limited to the case of K = 2 users. In this

case, the tangent space Tr is simply a line. Fig. 1 shows

an exemplary run of the efficient set-based decomposi-

tion. The dotted line corresponds to the Pareto efficient

boundary E of the rate region R. For the scenario under

consideration, the rate vector that maximizes sum-utility

is (approximately) r∗ = (0.4, 2.6). The algorithm is

initialized with a sum-rate maximizing rate vector at

(1.5, 1.6). In Fig. 1, crosses correspond to rate vectors

obtained by projecting on E (except for the initial value

at (1.5, 1.6)), and circles to rate vectors r̃ requested by

the APP layer. In order to save computational complex-
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Fig. 2. Dual Decomposition

ity, the projection is terminated early if an efficient rate

vector sufficiently close to r̃ is found. Due to the small

stepsize, the first order approximation is very good, and

circles and crosses are hardly distinguishable. In this

example, the optimum rate vector is found after 6 outer

iterations. In comparison, Fig. 2 shows the convergence

of a subgradient-based dual decomposition. In Fig. 2,

crosses correspond to solutions of the PHY subproblems

(i.e., rate vectors r ∈ R that maximize the weighted

sum-rate for a certain value of the Lagrangian multiplier

λ), while circles correspond to variables s. Due to the

fact that the dual decomposition does not exploit the

available local information about E , more outer iterations

are required to find the optimum “price” λ∗ and the

corresponding rate vector r∗.

VII. CONCLUSIONS

A novel approach to decompose the downlink utility

maximization problem is proposed. It is based on a local

approximation of the set of efficient rate vectors. Based

on an information exchange between layers, the APP

layer guides the PHY layer towards the optimum rate

allocation in an iterative manner. Mathematically, the

proposed method can be understood as an optimization

on a manifold. This allows for the direct application of

results from the optimization literature.
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