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Abstract— We introduce a new theoretical framework which
comprises linear precoding, Tomlinson-Harashima precoding
(THP), and vector precoding(VP). Whereas linear precoding
generates the transmit signal by linearly transforming the data
signal, THP and VP linearly transform the superposition of the
data signal and a signal obtained by a search in a lattice. We
observe that THP is constrained VP, i.e., the search in the lattice
is constrained. Moreover, we are able to develop a new precoding
scheme, scaled vector precoding(SVP), whose diversity order
lies between the diversity orders of THP and VP. By including
lattice reduction in SVP, we end up with a generalization of
Babai’s nearest-plane algorithm. Our simulations reveal that
lattice reduction and also the new SVP are advantageous for
the zero-forcing variants of nonlinear precoding. However, the
improvement of THP based on the minimum mean square error
criterion by lattice reduction and/or SVP is modest.

I. I NTRODUCTION

In the broadcast setup, one transmitter serves several non-
cooperative receivers, i.e., no receiver has access to the
received signals of the other receivers. Therefore, the data
signals for the different receivers have to be processed prior
to transmission such that the channel acts like an equalizer,
i.e., precoding has to be employed.

The transmit signal of linear precoding results from a
linear transformation of the data signal (see [1] and the
references therein). To avoid interference between the user’s
data streams, the transmit filters of linear precoding have to lie
in a subspace (nearly) orthogonal to the channels of the other
users. Consequently, little degrees of freedom are available
to exploit the diversity offered by the channel with multiple
transmit antennas and the diversity order of linear precoding
is poor, that is, the slope of the error curves is small for high
signal-to-noise ratio(SNR).

THP, initially proposed for dispersive single input single
output systems (e.g., [2]), was adopted to systems with a cen-
tralized transmitter and several decentralized non-cooperative
users in [3], [4], [5].Zero-forcing(ZF) THP is very popular
[3], [4], [6], [7], [8], [9], [10], where the interference between
the user’s data streams is perfectly suppressed by applying
modulo operations in the feedback loop at the transmitter and
to the received signals. However, THP based on theminimum
mean square error(MMSE) criterion is clearly superior to
ZF-THP [5]. In [11], an efficient algorithm for the THP filter
computation was proposed with a complexity close to that of
linear precoding. THP has a low complexity and substantially

outperforms linear precoding, but it also suffers from a poor
diversity order, because the transmit filter applied to the data
signal of the user to be precoded last lies in the same restricted
subspace as for linear precoding.

Like THP, VP exploits the degrees of freedom available due
to the receivers’ modulo operators [12]. VP linearly transforms
the superposition of the data signal and aperturbation signal.
The interference is completely suppressed by ZF-VP, where
the linear transformation is the channel pseudo inverse and the
perturbation signal is chosen to minimize the unscaled transmit
power [12], [9], [13]. Contrary, MMSE-VP, which was derived
in [14] (see also [15] for a suboptimal solution), applies a
regularized pseudo inverse and the pertubation signal is found
by minimizing themean square error(MSE). For any type of
VP, the perturbation signal is found via a closest-point search
in a lattice (e.g., [12], [14]). Note that such a search is NP-
hard [16, Section 5.3]. Consequently, the complexity of VP is
prohibitive. Any type of VP is superior to the respective type of
THP, e.g., ZF-VP is superior to ZF-THP. Interestingly, MMSE-
THP outperforms ZF-VP for realistic SNR values (see [14])
although the complexity of THP for finding a transmit vector
from one data vector is only quadratic (as for linear precoding).
However, MMSE-THP is clearly inferior to MMSE-VP and
no precoding technique is available up to now which offers
a complexity-performance trade-off between the two extreme
cases THP and VP.

Windpassingeret al. [13] suggested to replace the full
closest-point search of ZF-VP with thenearest-plane approxi-
mationof Babai [17], whose approximate solution is found at a
complexity similar to that of THP but with full diversity order
and a performance close to that of ZF-VP. The approximate
solution of [13] requires the use of theLenstra, Lenstra,
Lovász (LLL) lattice basis reduction algorithm, which has
quartic complexity [16, Section 5.3]. The application of lattice
reduction has not been considered for MMSE-VP yet.

The contributions of this paper are as follows. We introduce
a new theoretical framework comprising THP and VP which
we review in Section III and IV, respectively. Based on this
framework, we observe that THP is constrained VP, i.e., the
search in the lattice is constrained. Inspired by [9], we develop
a new precoding scheme in Section V, which we callscaled
vector precoding(SVP), whose diversity order lies between the
diversity orders of THP and VP. By including lattice reduction
in SVP, we end up with a generalization of the nearest-plane



algorithm in Section VI. Our simulations in Section VII reveal
that lattice reduction and also the new SVP are advantageous
for the zero-forcing variants of nonlinear precoding. However,
the improvement of THP based on the minimum mean square
error criterion by lattice reduction and/or SVP is modest.

Notation: Throughout the paper, we denote vectors and
matrices by lower and upper case bold letters, respectively.
We useE[•], (•)T, (•)H, tr(•), ‘⊗’, <(•), and =(•) for
expectation, transposition, conjugate transposition, the trace
of a matrix, the Kronecker product, the real part, and the
imaginary part, respectively. TheN × N identity matrix is
IN . We refer to the imaginary unit asj.

II. SYSTEM MODEL

We consider theMultiple Input Multiple Output(MIMO)
broadcast system withB users illustrated in Fig. 1 where
n is the time index. At the base station,Na ≥ B transmit
antennas are deployed. Each user has a single receive antenna
and is assigned a data stream. The data signalssi[n], i =
1, . . . , B, are independent complex valued baseband signals
and take values from a signal constellationA. The signal
vectors[n] = [s1[n], . . . , sB[n]]T is precoded at the transmit-
ter and the resulting output signaly[n] is transmitted over a
flat fading MIMO channelH ∈ C

B×Na with tap-gain[H ]j,i
from transmit antennai to receive antennaj. The signal of
interest is perturbed at the receiver by the additive zero-mean
complex Gaussian noise vectorη[n] with covariance matrix
Φηη = σ2

ηIB , leading to the observation

x[n] = Hy[n] + η[n]. (1)

The receive processing is restricted to a scaled identity matrix
since the receivers are non-cooperative. We consider the trans-
mission of a block of vectorsy[n] of lengthNB, over which
the channelH is assumed to be constant and perfectly known
at the transmitter.

s[n] y[n] x[n] gIB

Na

Precoder

B B

H

η[n]

ŝ[n]

Fig. 1. Transmit Processing Reference Model

III. T OMLINSON-HARASHIMA PRECODING

We begin by reviewing the principle of THP for frequency
flat MIMO channels [11]. Fig. 2 depicts the reference model.
The modulo operator is defined element-wise:

M(x) = x−
⌊
<(x)

τ
+

1
2

⌋
τ − j

⌊
=(x)

τ
+

1
2

⌋
τ.

whereb•c denotes the floor operation which gives the largest
integer smaller than or equal to the argument. So, the mod-
ulo operatorM(•) maps the real and imaginary part of its
argument elementwise to the interval[−τ/2, τ/2) by adding

integer multiples ofτ [11]. The constantτ has to be chosen
such thatM(x) = x,∀x ∈ A. We see that the modulo operator
M(•) can be substituted with the addition of a perturbation
vector α[n] ∈ τZ

B + j τZ
B . This addition can be shifted

outside the loop. The resulting linear representation without
the modulo operators is depicted in Fig. 3.1 MMSE-THP

PΠs[n]

y[n]

v[n]

F

gIBs̃[n]

η[n]

M(•) M(•)
H ŝ[n]

Fig. 2. Block Diagram for Tomlinson-Harashima Precoding.

...

PΠs[n] y[n]v[n]d[n] ŝ[n]

α̂[n]
F

gIB

α[n]

d̂[n]

Fig. 3. Equivalent Linear Representation without the Modulo Operators.

tries to minimize the MSE of̂d[n] with respect tod[n], i.e.,
the variance of the error signalε[n] = d[n] − d̂[n]. The
backward filterF has a lower triangular structure with zero
main diagonal, since only already precoded symbols can be
fed back. The permutation matrix

Π =
B∑

i=1

eie
T
ki

(2)

reorders the elements ofs[n] according to the precoding order
O = (k1, . . . , kB). The precoding orderO is part of the
optimization. Note thatΠ is unitary, i.e.,Π−1 = ΠH. We
assume that the elements ofv[n] are uncorrelated and their
covariance matrix is

Φvv = diag(σ2
v1

, ...σ2
vB

)

whereσ2
v1

= σ2
s andσ2

vi
= τ2/6 for i = 2, . . . , B [11]. The

MSE can be written as

φ = E
[
‖ε‖22

]
= tr(Φεε), (3)

whereΦεε is the covariance matrix ofε[n] as defined in [11].
The transmit power is constrained to beEtr. The optimization
problem reads as

{Fopt, Popt, gopt,Oopt} = argmin
{F ,P ,g,O}

φ (4)

s.t. E
[
‖y[n]‖22

]
= Etr (5)

SiFei = 0 for i = 1, . . . , B

1Figs. 2 and 3 are fully equivalent. In fact, Fig. 3 still includes the modulo
operators represented by the signalsα[n] and α̂[n].



where Si = [Ii,0i×B−i] ∈ {0, 1}i×B and ei is the i-th
column of theB×B identity matrix. Using Lagrangian mul-
tipliers we obtain the THP filters depending on the precoding
orderO

Fopt = I −
B∑

i=1

ΠΦ−1ΠTST
i (SiΠΦ−1ΠTST

i )−1Sieie
T
i ,

Popt = g−1
opt

B∑
i=1

HHΠTST
i (SiΠΦ−1ΠTST

i )−1Sieie
T
i ,

where

Φ = (HHH + ξI)−1 and ξ = tr(Φηη)/Etr. (6)

SinceΦ is Hermitian, its Cholesky factorization with symmet-
ric permutation reads as

ΠΦΠT = LHDL, (7)

whereL is a unit lower triangularmatrix andD a diagonal
matrix. Using (7), the above expressions for the THP filters
can be rewritten as

Fopt = I −L−1, Popt = g−1
opt H

HΠTLHD. (8)

With (8), the MSE from (3) can be expressed as

φ = tr(Φεε) = ξ tr(ΦvvD) = ξ

B∑
i=1

σ2
vi

di. (9)

The Cholesky factorization (7) can be calculated iteratively
such that the MSE in (9) is minimized. The precoding orderO
is determined this way. The Cholesky factorization algorithm
is described in detail in [11].

There are two different variants of THP. We can either
calculate the weightgopt such that (5) is fullfiled based on
the assumed statistics ofv[n], or we can calculategopt such
that the power, averaged over a transmit block of lengthNB,
fulfills the power constraint, i.e.,

1
NB

NB∑
i=1

‖y[n]‖22 = Etr. (10)

We use the second approach to conform with our general
system description from Section II.

IV. V ECTORPRECODING

We now review the MMSE vector precoder as described in
[14]. Fig. 4 depicts the system model. The perturbation vector
α[n] ∈ τZB + j τZB is first added to the signals[n] and the
sumd[n] is then filtered with the linear filterP , such that the
MSE

φ(α[n], y[n], g) =
1

NB

NB∑
n=1

E
[∥∥∥d[n]− d̂[n]

∥∥∥2

2

∣∣∣∣ s[n]
]

, (11)

averaged over a block of lengthNB, is minimized. Note that
the expectation in the above MSE definition is conditioned on
the data signals[n], sinces[n] is known to the transmitter.
The optimization problem reads as

P Hs[n] y[n]
M(•)

ŝ[n]d[n]

BB Na

gIB

η[n]α[n]
d̂[n]

Fig. 4. Vector Precoder System Model.

{αopt[n], yopt[n], gopt} = argmin
{α,y,g}

φ(α[n], y[n], g) (12)

s.t.
1

NB

NB∑
n=1

‖y[n]‖22 = Etr (13)

and using Lagrangian multipliers, the solution is found to be

yopt[n] = g−1
opt H

H(HHH + ξIB)−1d[n], (14)

where gopt is chosen such that it fulfills the transmit power
constraint (13). With (14), the MSE in (11) becomes

φ(α[n], y[n], g) =
ξ

NB

NB∑
n=1

(s[n] + α[n])HΦ(s[n] + α[n]).

The matrixΦ and the scalarξ can be found in (6). Obviously,
the n-th summand ofφ(α[n], y[n], g) only depends onα[n].
Therefore, each summand of the MSEφ(α[n], y[n], g) can be
minimized separately by choosing the respective perturbation
vector:

αopt[n] = argmin
α[n]∈τZB+j τZB

∥∥∥D1/2L(s[n] + α[n])
∥∥∥2

2
, (15)

where we used the Cholesky factorizationΦ = LHDL. The
matricesD and L have the same properties as in (7). We
used the specific Cholesky factorization so as to conform
with the THP reference model from Section III.2 Note that
the calculation ofα[n] in (15) results from a closest point
search in aB-dimensional lattice [18], which makes VP
computationally intensive.

V. SCALED VECTORPRECODING

A. System Model

In our novel system, we combine the architectures of THP
and VP (see also [9]). The system model is depicted in Fig. 5.
Although the loopback is obsolete, it is necessary for the
derivation of the optimum precoding order. The permuted
perturbation vectorα′[n] = Πα[n] is split into B/p groups
of p consecutive elements:3

α′[n] =
[
α′

1[n], . . . ,α′
B/p[n]

]T
,

α′
i[n] = [α′pi−p+1[n], . . . , α′pi[n]]T, i = 1, . . . , B/p.

(16)

Thep elements of every group are computed jointly, but con-
trary to VP, the elements of the other groups are assumed to be
constant. Note that we do not make any specific assumptions
for the computation of the perturbation signalα[n] besides the

2We could in fact use any square root ofΦ
3For notational simplicity, we assume thatB is an integer multiple ofp.



constraint that the entries are computedp-elements-wise. This
is in contrast to THP, where the element-wise computation of
α[n] results from the modulo operatorM(•). The groups of
p elements ofΠd[n], corresponding toα′

1[n], . . . ,α′
B/p[n],

are then circulated in the loop inB/p iterations. This scheme
is thus operating with vectors of lengthp instead of single
elements like THP. Note thatp is a system parameter and does
not take part in the optimization. The feedback matrixF has
again a lower triangular structure but itsp×p diagonal blocks
are zero, since thep elements of one groupα′

i[n] are computed
jointly and can only be fed back after computation. At this
point, we assume that the elements ofv[n] are correlated
only inside thep-groups and thus,Φvv has a block diagonal
structure withp× p blocks on the diagonal. Whenp = 1, our
system converges to THP with the exception that in our case,
α[n] is not constrained to evolve from the modulo operation
M(•). However, these two schemes are equivalent, as we will
see later. Whenp = B, we calculate all elements ofα[n]
jointly in one step and our system converges to VP from
Section IV.

Ps[n]
M(•) ŝ[n]d[n] v[n] x[n]

F

B BNa

gIBΠ H

η[n]α[n]
d̂[n]

Fig. 5. Scaled Vector Precoding Reference Model.

B. MMSE Scaled Vector Precoding

In the MMSE approach, we try to minimize the MSE of
d̂[n] with respect tod[n], i.e., the variance of the error signal
ε[n] = d[n]− d̂[n]. From Fig. 5, we have that

d̂[n] = gHPv[n] + gη[n]. (17)

The output signal of the feedback loop with the feedback filter
F is v[n] = Πd[n] + Fv[n], which yields

d[n] = ΠT(I − F )v[n].

Thus, the MSE is given by

φ = E
[‖ε‖22] = tr(Φεε) =

= tr
(
(I − F )Φvv(I − F H) + g2HPΦvvP

HHH

−gΠT(I − F )ΦvvP HHH − gHPΦvv(I − F H)Π
+g2Φηη

)
. (18)

The optimization problem for MMSE-SVP reads as

{Fopt, Popt, gopt,Oopt, αopt[n]} = argmin
{F ,P ,g,O,α[n]}

φ (19)

s.t.
1

NB

NB∑
i=1

‖y[n]‖22 = Etr (20)

SpiF (ei ⊗ Ip) = 0 for i = 1, . . . , B/p (21)

whereei is now thei-th vector of the(B/p×B/p) identity
matrix andSi = [Ii,0i×B−i] ∈ {0, 1}i×B. The last constraint

(21) ensures that the feedback filterF is lower triangular with
p×p zero blocks on the main diagonal. This structural property
of the feedback filterF is necessary, since the perturbation
vector is computed group-wise. The precoding orderOopt
will be found later through a modified Cholesky factorization
algorithm and the rule to find the perturbation signalαopt[n]
will be obtained in a final step. Using Lagrangian multipliers,
we obtain

Fopt = I −
B/pX

i=1

ΠΦ−1ΠTST
pi(SpiΠΦ−1ΠTST

pi)
−1Spi(eie

T
i ⊗ Ip)

Popt = g−1

B/pX

i=1

HHΠTST
pi(SpiΠΦ−1ΠTST

pi)
−1Spi(eie

T
i ⊗ Ip).

Note thatFopt and Popt depend on the precoding orderO,
since the permutation matrixΠ is a function ofO (see
Eq. 2). At this point, we perform a modifiedblock Cholesky
factorization ofΦ with symmetric permutation

ΠΦΠT = LHDL, (22)

whereL is a block unit lower triangularmatrix with p × p
identity submatrices on the main diagonal, andD is a positive
definiteblock diagonalmatrix with p× p submatrices on the
main diagonal. Employing (22), we get for the MMSE-SVP
filters:

Fopt = I −L−1, Popt = g−1
opt H

HΠTLHD. (23)

This result is analogous to (8). Nevertheless, the matricesL
andD now have ap×p-block structure, in contrast to (7). We
can calculategopt using the transmit power constraint in (20).
Using (23) and (18) together withgopt resulting from (23), the
MSE becomes

φ = tr(Φεε) = ξ tr(ΦvvD). (24)

Now we make the assumption that the elements ofv[n] are in
fact uncorrelated. This assumption is supported by simulation
results which show that the correlation inside the groups of
p elements is weak. Thus,Φvv = diag(σ2

v1
, . . . , σ2

vB
), where

the variancesσ2
vi

inside a group ofp elements is the same,
i.e., σ2

vi
= σ2

group,j , ∀i ∈ {(j − 1)p + 1, . . . , jp}. Under this
simplifying assumption,4 the MSE in (24) can be written as

φ = ξ

B∑
i=1

σ2
vi

di. (25)

The resulting MSE depends on the variancesσ2
vi

and the
diagonal entries ofD. We see that the optimality of the
filter solution (23) depends on the calculation of the block
Cholesky factorization (22) via the diagonal entries ofD
in the MSE. Since the block Cholesky factorization (22) is
a function of the permutation matrixΠ , (24) tells us how
to choose the precoding orderO: We have to compute (22)
such that

∑B
i=1 σ2

vi
di is minimized. The minimization of the

4For the algorithm in Table I, this assumption was made. The algorithm
can be rewritten to take account of the correlations inside a group. However,
the covariance matrixΦvv has to be known in this case, that is, it must be
estimated.



TABLE I

CALCULATION OF THE BLOCK CHOLESKY FACTORIZATION

factorize:ΠΦΠT = LHDL (find: Π, L, D)
Π = IB , D = 0B

for i = B/p, . . . , 1
k = [pi− p + 1, pi− p + 2, . . . , pi]
m = [1, 2, . . . , pi− p]
find thep smallest values ofdiag(Φ(1 : pi, 1 : pi)) and place their

indices inq
Πi = IB whose rowsk are exchanged with the rows with indicesq
Π = ΠiΠ
Φ = ΠiΦΠi

D(k, k) = Φ(k, k)
Φ(1 : pi, k) = Φ(1 : pi, k)D−1(k, k)
Φ(m, m) = Φ(m, m)−Φ(m, k : pi)D(k, k)ΦH(m, k : pi)

LH = upper triangular part ofΦ

whole sum is a difficult combinatorial problem, because all
possible combinations of data streams in groups have to be
tested. Therefore, we propose a suboptimal algorithm which
computes the factorization successively trying to minimize
every summand of the MSE in (25) separately under the
assumption that the indices of the groups to be precoded later
are already fixed. Note that the values ofσ2

vi
are not necessary

for this heuristic rule, since we assumed thatσ2
vi

is equal inside
a group ofp elements. Table I summarizes the pseudo code of
the proposed block Cholesky factorization. The factorization
algorithm in [11] is a special case of the proposed algorithm
in Table I, forp = 1.

We conclude with the computation of the perturbation vector
α[n] = ΠTα′[n]. As mentioned earlier, the perturbation
vectorα[n] is computed group-wise, i.e., thep entries ofα[n]
corresponding to thei-th group are found for fixed values of
the groups1, . . . , i− 1.

When replacing the covariance matrixΦvv by its sample
mean estimate

∑NB

n=1 v[n]vH[n]/NB in the MSE expression
(24), we get

φ =
ξ

NB

NB∑
n=1

(Πs[n] + α′[n])H LHDL (Πs[n] + α′[n]) .

(26)
Here, we usedv[n] = Π(s[n] + α[n]) + Fv[n] and (23).
We observe that then-th summand only depends on the
n-th perturbation vector and is independent of the other
NB−1 perturbation vectors. Thus, the perturbation vectors can
be found separately by minimizing the respective summand.
Obviously, minimizing then-th summand of the above MSE is
equivalent to the VP rule in (15), if no restrictions are imposed
on the computation ofα[n].

We define the projector matrix

Πi =
i∑

j=1

eie
T
i (27)

which leaves the firsti entries of a column vector unchanged
and sets the other elements to zero, when applied from the
left. The projection withΠi is used to include the restriction
in the rule for the computation of the perturbation vector that

the elements of thej-th group are computed based only on
the already computed elements of the previousj − 1 groups.
The proposed heuristic rule reads as

α′
i,opt[n] = argmin

α′
i[n]∈τZp+j τZp

∥∥∥D1/2ΠpiLΠpi(Πs[n] + α′[n])
∥∥∥2

2

for i = 1, . . . , B/p (28)

where α′
i[n] is given in (16). Due to the right projec-

tor matrix Πpi, only the parts[sk1 , . . . , skpi , 0, . . . , 0]T and
[α′,T

1,opt, . . . ,α
′,T
i−1,opt, α

′,T
i , 0, . . . , 0]T of the vectorss[n] and

α′[n], respectively, are used. Hence, the value ofα′
i,opt[n]

depends only on the previously calculated partsα′
j,opt[n] for

j = 1, . . . , i− 1.
When p = 1, the block Cholesky factorization in (22) is

the same as the Cholesky factorization in (7). Consequently,
the filters in (23) are equal to the filters in (8). As shown in
Appendix I, the perturbation vectorα[n] computed by (28) is
the same with the perturbation vector calculated by the modulo
operator in the loop of the THP. Thus, forp = 1 this scheme
merges to the THP of Section III.

Whenp = B, Πpi = IB and the decision rule is the same
as (15). Furthermore, the block Cholesky factorization breaks
down toΠΦΠT = D andL = I. The filters (23) become

Fopt,p=B = 0, Popt,p=B = g−1
opt H

HΦΠT (29)

and the transmit vectory[n] is

y[n] = PΠ(s[n] + αopt[n]) = g−1
optH

HΦd[n], (30)

which is the same as (14). So, forp = B this scheme merges
to VP of Section IV.

For values ofp between1 and B we get a hybrid system
whose performance lies between THP and VP. The complexity
of this scheme is dominated by the lattice search in (28).
The search for the optimum vector is performed in ap-
dimensional (complex) lattice. Consequently, the complexity
also lies between those of THP and VP. For the case where
p = 1, the search is actually a simple quantization operation
and the complexity is the same as that of THP.

C. Equivalent System

As we saw, the loopback of Fig. 5 is obsolete. This allows
us to use an equivalent model with only one linear filter—the
concatenation ofF , P and Π . The equivalent model is the
same as in Fig. 4, with the linear filter

Peq. = P (I − F )−1Π = g−1
opt H

HΦ. (31)

The linear filter is simply a zero-forcing or MMSE filter
(according to the design criterion). The perturbation vector
α[n] is computed beforehand following the rule (28). It is
now clear that the final scheme can be seen asscaled vector
precoding(SVP). The parameterp scales the operation and
switches from VP (p = B), through some intermediate modes,
until THP (p = 1). The model depicted in Fig. 5 was necessary
for finding the rule in (28) and for showing the equivalence
with THP.



D. Using the Real-Valued Model

We can as well apply the above analysis to the real-valued
representation of a MIMO system. The resulting dimensional-
ity is twice the dimensionality of the complex-valued model.
Thus, the operation modep takes one more value, fromp = 1
up to p = 2B. As shown in [19], using the real-valued
representation for successive interference cancellation (here,
the casep = 1–THP) yields a better performance than using
the complex-valued representation. This gain results from the
separation of the real and imaginary part of a data stream,
which are not forced to be precoded together in the real-valued
representation. However, recall that the real-valued channel
matrix is given by

Hr =
[<{H}−={H}
={H} <{H}

]
. (32)

From (32) we see that the diagonal values ofHr come
always in pairs which correspond to one data stream. This
is also true forΦ = (HHH + ξI)−1. Since the factorization
algorithm of Table I sorts the diagonal values ofΦ, the streams
corresponding to the same data stream will be selected at
the same time, whenp = 2, . . . , 2B. But since the real and
imaginary part of each data stream are not separated, we
obtain the same precoding order as in the complex-valued
representation. Hence, the performance for some value of
p in the complex-valued representation is the same as for
2p in the real-valued representation. Using the real-valued
representation is only meaningful forp = 1 (regular THP).

VI. L ATTICE-REDUCTION AIDED SCALED VECTOR

PRECODING

Lattice-reduction techniques have become very popular due
to their superior performance [20]. In fact, lattice-reduction
aided detection and precoding yield the full channel diversity
at low complexity. The most popular algorithm used for lattice-
reduction is the Lenstra, Lenstra, Lov´asz (LLL) algorithm,
which has polynomial complexity [21]. Windpassinger substi-
tuted the closest-point search in VP (see Eq. 15) with Babai’s
approximate solutions (see [17]), namely therounding-off
and thenearest-planeapproximation [13]. These algorithms
operate in an LLL-reduced basis instead of the initial one.
The rounding-off procedure is similar to linear equalization
and the nearest-plane algorithm is similar to decision-feedback
equalization (DFE). The approximate solution of the nearest-
plane algorithm forα[n] is computed through successice el-
ementwise quantization, taking into account previously quan-
tized values. The performance can be further improved by
choosing the appropriate precoding order. The complexity of
this scheme is the same as the complexity of DFE (or THP)
and the resulting BER curve is remarkably close to VP, as
shown in [13]. Our heuristic rule (28) avoids the closest-
point search of VP by computing the values ofα[n] element-
wise (p = 1). As a matter of fact, the casep = 1 of
SVP corresponds to Babai’s nearest-plane approximation with
optimized order, with the difference that the lattice basis has
not been reduced.

In the following, we will combine lattice-reduction with
the proposed SVP. Since the LLL algorithm operates on real
matrices, we use the real-valued representation for the MIMO
system. This will be indicated in the following with the index
’r’. We start with (26) and write the closest-point search as

αopt,r[n] = argmin
αr[n]∈τZ2B

(sr[n]+αr[n])HΦr(sr[n]+αr[n]), (33)

where αr[n] = [<(αT[n]),=(αT[n]]T and Φr depends on
Φ as Hr on H in (32). First, we perform the Cholesky
factorizationΦr = Γ HΓ and then we apply the LLL algorithm
on Γ and obtainΓred = ΓT with the reduced basisΓred and
T is the unimodular transformation matrix [22]. The rule (33)
can be rewritten as

αopt,r[n] = τ argmin
zr[n]∈Z2B

‖Γ (sr[n] + τzr[n])‖22

= τ argmin
zr[n]∈Z2B

∥∥∥∥1
τ

Γsr[n] + ΓredT
−1zr[n]

∥∥∥∥
2

2

= τT argmin
z′

r [n]∈Z2B

∥∥∥∥1
τ
Γsr[n] + Γredz

′
r [n]
∥∥∥∥

2

2

= τT argmin
z′

r [n]∈Z2B

(s′r + z′r)
HΦ′(s′r + z′r), (34)

whereΦ′ = Γ H
redΓred ands′r = 1

τ T−1sr. We used the auxiliary
variableszr = 1

τ sr andz′r = T−1zr. In (34), we have another
expression for the closest-point search of (33). The search
is now conducted in an LLL-reduced basis. Following the
heuristic utilized for (28) to get a group-wise computation of
the perturbation vector, the closest-point search in (28) can be
reformulated as

z′i,r,app,p[n] = argmin
z′

i,r,p∈Zp

∥∥∥D1/2ΠpiLΠpi(Πs′r[n] + z′r,p[n])
∥∥∥2

2

for i = 1, . . . , 2B/p, (35)

where the symmetrically permuted block Cholesky factoriza-
tion is performed onΦ′

ΠΦ′ΠT = LHDL. (36)

The final approximate solution is

αr,app[n] = τTΠTz′r,app. (37)

Since the iterative computation in (35) has multiple operation
modes, for different values ofp, it can be seen as a general-
ization of Babai’s nearest-plane approximation with optimized
order.

VII. SIMULATION RESULTS

The channel used for our simulations has i.i.d. unit variance
Rayleigh fading coefficients and emulates an idealized rich-
scattering environment. The derivations in Sections III, IV,
and V refer to the MMSE approaches. We also simulated the
zero-forcing approaches which are directly inherited from the
above results, by substitutingΦ in (6) with Φ = (HHH)−1.

Figs. 6 to 9 show the uncodedbit error rate (BER) over
Eb/N0 = Etr

BRbσ2
η

, whereRb is the number of information bits



per channel use and the noise is assumed to be white, that
is, Φηη = σ2

ηI. The modulation alphabet is QPSK (Rb = 2).
The lattice search (28) is implemented with the sphere decoder
using the Schnorr-Euchner Strategy [18].

Fig. 6 depicts the complex-valued zero-forcing SVP for a
4 × 4 MIMO-system. We see how the intermediate variant
for p = 2 lies between the curves of THP and VP, and
how optimizing the precoding order improves performance.
Fig. 7 compares complex-valued zero-forcing SVP with the
real-valued counterpart. We see how for increasing values of
p we get higher diversity, since the search for the perturbation
vector is performed in higher dimensional lattices. We also
verify the observation of Sec. V-D that the performance for
somep for the complex-valued model is the same as2p of the
real-valued model.

Fig. 8 compares zero-forcing SVP with zero-forcing lattice-
reduction SVP (LR-SVP) for a8×8 MIMO-system. LR-SVP
clearly outperforms all variants of SVP forp < B. However,
the gain of LR-SVP forp > 1 is moderate. We can conclude
that the most favorable zero-forcing precoding technique is
LR-SVP for p = 1 (or nearest-plane VP), which has the most
attractive balance between low complexity and performance.

Fig. 9 makes the same comparison between the MMSE
variants of SVP and LR-SVP. However, in this case the
gap between SVP forp = 1 (MMSE-THP) and SVP for
p = B (MMSE-VP) is very small. Although the intermediate
variants of SVP and LR-SVP fill this gap, the gain is moderate
compared to the increased complexity. Even LR-SVP forp =
1 (nearest-plane VP) is not worth the additional computation of
the reduced lattice-basis, since it performs almost like SVP for
p = 1. Thus, the most favorable MMSE precoding technique
is SVP forp = 1 (MMSE-THP).
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Fig. 6. B = Na = 4, Zero-Forcing Variant, SVP, with and without Optimized
Precoding Order
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Fig. 7. B = Na = 8, Zero-Forcing Variant, Complex-Valued SVP (cSVP)
vs. Real-Valued SVP (rSVP)
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Fig. 8. B = Na = 8, Zero-Forcing Variant, SVP and LR-SVP

APPENDIX I

When p = 1, the decision rule forαj from (28) takes the
form

α′j = −Q

(
skj +

j−1∑
i=1

lj,i (ski + α̂′i)

)
(38)

where [L]i,j = li,j and Q(•) quantizes its argument to the
pointsτZ + j τZ. The valueŝαi, i = 1, . . . , j − 1 have been
already computed.skj is thej-the element ofΠs.

Meanwhile, the value ofαj,THP in THP can be found from
the loop of Fig. 2 as follows

αj,THP = vj − s̃j = M(s̃j)− s̃j = −Q(s̃j). (39)

We will show that the arguments in (38) and (39) are equal.
s̃ is calculated after the loopback and in general

s̃j = skj −
j−1∑
i=1

l−1
j,i vi (40)
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Fig. 9. B = Na = 8, MMSE Variant, SVP and LR-SVP

where [L−1]i,j = l−1
i,j . Since L is a unit lower triangular

matrix, L−1 is also unit lower triangular and the elements
of L can be easily found as a function of the elements of
L−1. In fact, by multiplying thej-th row of L−1 with the
i-th row of L we find the recursive equation

lj,i = −
j−1∑
m=i

l−1
j,mlm,i for i < j. (41)

First, sincel1,1 = l−1
1,1 = 1 we have thatα′1 = α1,THP = 0.

Next, sincel−1
2,1 = −l2,1 andv1 = sk1 we have that

α′2 = α2,THP = −Q(sk2 + l2,1sk1) (42)

andv2 = sk2 + α̂′2 + l2,1sk1 . If we assume that in general, for
m = 1, . . . , j − 1 we have

vm = skm + α̂′m +
m−1∑
i=1

lj−1,i(ski + α̂′i), (43)

then the expression for̃sj becomes

s̃j = skj −
j−1∑
i=1

l−1
j,i vi = . . .

= skj −
j−1∑
i=1

j−1∑
m=i

l−1
j,mlm,i(ski + α̂′i)

= skj +
j−1∑
i=1

lj,i(ski + α̂′i), (44)

where we used (41). From (44) we see that (38) and (39)
are equal. Furthermore, (43) holds also form = j and the
mathematical induction is complete.
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