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Abstract—We introduce a new theoretical framework which outperforms linear precoding, but it also suffers from a poor
comprises linear precoding, Tomlinson-Harashima precoding diversity order, because the transmit filter applied to the data

(THP), and vector precoding(VP). Whereas linear precoding  gigna) of the user to be precoded last lies in the same restricted
generates the transmit signal by linearly transforming the data . .
subspace as for linear precoding.

signal, THP and VP linearly transform the superposition of the ; ) .
data signal and a signal obtained by a search in a lattice. We  Like THP, VP exploits the degrees of freedom available due

observe that THP is constrained VP, i.e., the search in the lattice to the receivers’ modulo operators [12]. VP linearly transforms
is constrained. Moreover, we are able to develop a_new_precoding the superposition of the data signal angdeaturbation signal
scheme, scaled vector precodindSVP), whose diversity order ypg interference is completely suppressed by ZF-VP, where
lies between the diversity orders of THP and VP. By including . S .
lattice reduction in SVP, we end up with a generalization of the Imear_tran_sformanon is the chf':lr_m(_al pseudo inverse and the
Babai's nearest-plane algorithm. Our simulations reveal that Perturbation signalis chosen to minimize the unscaled transmit
lattice reduction and also the new SVP are advantageous for power [12], [9], [13]. Contrary, MMSE-VP, which was derived
_the zero-forcing variants of nonlinea_r _precoding. However, the jn [14] (see also [15] for a suboptimal solution), applies a
improvement of THP based on the minimum mean square error  reqy|arized pseudo inverse and the pertubation signal is found
criterion by lattice reduction and/or SVP is modest. S
by minimizing themean square erro(MSE). For any type of

VP, the perturbation signal is found via a closest-point search
in a lattice (e.g., [12], [14]). Note that such a search is NP-

In the broadcast setup, one transmitter serves several npard [16, Section 5.3]. Consequently, the complexity of VP is
cooperative receivers, i.e., no receiver has access to fhehibitive. Any type of VP is superior to the respective type of
received signals of the other receivers. Therefore, the datP, e.g., ZF-VP is superior to ZF-THP. Interestingly, MMSE-
signals for the different receivers have to be processed pritMP outperforms ZF-VP for realistic SNR values (see [14])
to transmission such that the channel acts like an equalizglthough the complexity of THP for finding a transmit vector
i.e., precoding has to be employed. from one data vector is only quadratic (as for linear precoding).

The transmit signal of linear precoding results from Bowever, MMSE-THP is clearly inferior to MMSE-VP and
linear transformation of the data signal (see [1] and thm precoding technique is available up to now which offers
references therein). To avoid interference between the user'somplexity-performance trade-off between the two extreme
data streams, the transmit filters of linear precoding have to tases THP and VP.
in a subspace (nearly) orthogonal to the channels of the otheWindpassingeret al. [13] suggested to replace the full
users. Consequently, little degrees of freedom are availablesest-point search of ZF-VP with timearest-plane approxi-
to exploit the diversity offered by the channel with multiplenationof Babai [17], whose approximate solution is found at a
transmit antennas and the diversity order of linear precodisgmplexity similar to that of THP but with full diversity order
is poor, that is, the slope of the error curves is small for higind a performance close to that of ZF-VP. The approximate
signal-to-noise ratio(SNR). solution of [13] requires the use of theenstra, Lenstra,

THP, initially proposed for dispersive single input singlé.ovasz (LLL) lattice basis reduction algorithm, which has
output systems (e.g., [2]), was adopted to systems with a ceuoartic complexity [16, Section 5.3]. The application of lattice
tralized transmitter and several decentralized non-cooperatieeuction has not been considered for MMSE-VP yet.
users in [3], [4], [5].Zero-forcing (ZF) THP is very popular  The contributions of this paper are as follows. We introduce
[31, [4], [6], [7], [8], [9], [10], where the interference betweera new theoretical framework comprising THP and VP which
the user’'s data streams is perfectly suppressed by applying review in Section Il and IV, respectively. Based on this
modulo operations in the feedback loop at the transmitter afidmework, we observe that THP is constrained VP, i.e., the
to the received signals. However, THP based omtidmum search in the lattice is constrained. Inspired by [9], we develop
mean square erro(MMSE) criterion is clearly superior to a new precoding scheme in Section V, which we called
ZF-THP [5]. In [11], an efficient algorithm for the THP filter vector precodingSVP), whose diversity order lies between the
computation was proposed with a complexity close to that diversity orders of THP and VP. By including lattice reduction
linear precoding. THP has a low complexity and substantialiy SVP, we end up with a generalization of the nearest-plane

I. INTRODUCTION



algorithm in Section VI. Our simulations in Section VIl reveainteger multiples ofr [11]. The constant has to be chosen
that lattice reduction and also the new SVP are advantagesush thatM(z) = z,Vz € A. We see that the modulo operator
for the zero-forcing variants of nonlinear precoding. Howevek[(e) can be substituted with the addition of a perturbation
the improvement of THP based on the minimum mean squarector a[n] € 7Z” + jrZ". This addition can be shifted
error criterion by lattice reduction and/or SVP is modest. outside the loop. The resulting linear representation without
Notation: Throughout the paper, we denote vectors artle modulo operators is depicted in Fig! 3MMSE-THP
matrices by lower and upper case bold letters, respectively.
We useE[s], (o), (o)1, tr(e), ‘@', R(e), and I(e) for s[n] 1T  3[n] o) P H gIp [n]
expectation, transposition, conjugate transposition, the trac
of a matrix, the Kronecker product, the real part, and the
imaginary part, respectively. Thd x N identity matrix is
Iy. We refer to the imaginary unit gs F

Mok

Il. SYSTEM MODEL Fig. 2. Block Diagram for Tomlinson-Harashima Precoding.
We consider theMultiple Input Multiple Output(MIMO)
broadcast system wittB users illustrated in Fig. 1 where
n is the time index. At the base statioh; > B transmit In i R
n] 91Bd[n] 3[n]

antennas are deployed. Each user has a single receive antefivig dln] IT v[n] Pyl
and is assigned a data stream. The data signdig,i = 3%[:> 2 j[;> ﬁ?j
1 , B, are independent complex valued baseband signals
[n]
F

and take values from a signal constellatian The signal «a aln)

vectors[n] = [s1[n], ..., sg[n]]T is precoded at the transmit-

ter and the resulting output signg[n] is transmitted over a _ _ S

flat fading MIMO channelH € CB*Na with tap-gain[H], ; Fig. 3. Equivalent Linear Representation without the Modulo Operators.

from transmit antenna to receive antenng. The signal of

interest is perturbed at the receiver by the additive zero-megas to minimize the MSE ofi[n] with respect tod[n], i.e.,

complex Gaussian noise vectgfn] with covariance matrix the variance of the error signain] = d[n] — d[n]. The

®,, = 0, 1p, leading to the observation backward filter F' has a lower triangular structure with zero
[n] = Hyn] + nln]. 1) ][nain diagonal, since or_1|y alrea_dy precoded symbols can be

ed back. The permutation matrix

The receive processing is restricted to a scaled identity matrix B

since the receivers are non-cooperative. We consider the trans- I — Z e.eTl )

mission of a block of vectorg[n| of length Ng, over which ~ ok

the channelH is assumed to be constant and perfectly known

at the transmitter. reorders the elements sfn] according to the precoding order
O = (ki,...,kp). The precoding orde® is part of the
s[n] yln] H z[n] gIp 80 optimization. Note thailT is unitary, i.e., JI-' = IT". We _
assume that the elements ofn| are uncorrelated and their
ﬁ Precoder W covariance matrix is
B Na B
n(n] &, = diag(o? ,..00)
Fig. 1. Transmit Processing Reference Model wheres? = o? and ‘712;7, =7%/6 fori=2,...,B [11]. The
MSE can be written as
6 =E [lel3] = tr(e..), 3)
[1l. TOMLINSON-HARASHIMA PRECODING

We begin by reviewing the principle of THP for frequencyvhere®.. is the covariance matrix of[n] as defined in [11].
flat MIMO channels [11]. Fig. 2 depicts the reference modelhe transmit power is constrained to Bg.. The optimization

The modulo operator is defined element-wise: problem reads as
%(m) 1 . %(x) 1 {Fopt; Popt; YJopt, Oopt} = argmin ¢ (4)
M(z) =2 — + 5|7 + 5| ™ {F,P,g,0}
T
st B|lylll3] = B (5)

where | e | denotes the floor operation which gives the largest
integer smaller than or equal to the argument. So, the mod-

ulo operatorM(o) maps the er'aI and imaginary part _Of its IFigs. 2 and 3 are fully equivalent. In fact, Fig. 3 still includes the modulo
argument elementwise to the interyalr/2,7/2) by adding operators represented by the signels:] and &[n].

SiFeiZO for iZl,...,B



where S; = [I;,0,x5_;] € {0,1}*F and e; is the i-th s[n] dn] P yln] H 91z 5[n]
column of theB x B identity matrix. Using Lagrangian mul- M(e) j
tipliers we obtain the THP filters depending on the precoding B Ny B J[n]
order© aln] n[n]
B .
Fopt _I_ Z Hdi_lﬂTSZT(Siﬂdi_lﬂTSZT)_lsieie;F, Fig. 4. Vector Precoder System Model.
i=1
B
POpt = go_p% Z HHHTS;'T(SiH@_lHTS;'T>_ISieieiTv {aopt[n]a yOpt[n]v gOpt} - ?rgrni?(ﬁ(a[n]v y[n]a g) (12)
=1 a,Y,9
where 1
st. =D lvblla =B (13)
& =(HH"+-¢I)"' and ¢ = tr(P,,)/Ey. (6) B =1

Since® is Hermitian, its Cholesky factorization with symmet—‘r’lnd using Lagrangian multipliers, the solution is found to be

ric permutation reads as Yoptln] = gO‘p%HH(HHH + ¢Ip)~Hd[n], (14)

oemn* = L"DL, (7)  where gopt is chosen such that it fuffills the transmit power

where L is a unit lower triangular matrix and D a diagonal constraint (13). With (14), the MSE in (11) becomes

matrix. Using (7), the above expressions for the THP filters ¢ Ne -
can be rewritten as ¢(aln], y[n], g) = N > (s[n] + aln])"®(s[n] + aln)).
n=1
— —1 _ —1lyggH T H
Fopr=1I—-L"", Popt = goptH " I1"L"D. (8) The matrix® and the scalag can be found in (6). Obviously,
With (8), the MSE from (3) can be expressed as the n-th summand ofp(a[n], y[n], g) only depends omx[n].
5 Therefore, each summand of the M8kx[n], y[n], g) can be
- - - 2 4 minimized separately by choosing the respective perturbation
¢ = tr(dee) = Etr(Py,D) = & 2_; opd;. ) \ector
B 2
The Cholesky factorization (7) can be calculated teratively aon{n] = argmin || DV2L(sln] + afn))| , (1)
such that the MSE in (9) is minimized. The precoding or@er a[nleTZB+j T2 2
is determined this way. The Cholesky factorization algorithfjhere we used the Cholesky factorizatidn= LEDL. The
is described in detail in [11]. matrices D and L have the same properties as in (7). We

There are two different variants of THP. We can eithgiseqd the specific Cholesky factorization so as to conform
calculate the weighop: such that (5) is fullfiled based onith the THP reference model from Section 3INote that
the assumed statistics ofr], or we can calculatgop SUCh  the calculation ofa[n] in (15) results from a closest point
that the power, averaged over a transmit block of len§#) search in aB-dimensional lattice [18], which makes VP

fulfills the power constraint, i.e., computationally intensive.
Ng
1 V. SCALED VECTORPRECODING
= 2 lylnlll; = B (10)
B, A. System Model
We use the second approach to conform with our generaln our novel system, we combine the architectures of THP
system description from Section II. and VP (see also [9]) The system model is depicted in Fig. 5.
Although the loopback is obsolete, it is necessary for the
IV. VECTORPRECODING derivation of the optimum precoding order. The permuted

We now review the MMSE vector precoder as described perturbation vector'[n] = ITa(n] is split into B/p groups
[14]. Fig. 4 depicts the system model. The perturbation vectof p consecutive elements:

aln] € 778 + j 7P is first added to the signai[n] and the / / / T
sumd|n] is then filtered with the linear filteP, such that the —¢'[n] = [01[71], » '7aB/p[n]:| ; (16)
MSE o] = [0 prlal, - )]s i =1, B/p.

S[n]] (11) The p elements of every group are computed jointly, but con-
’ trary to VP, the elements of the other groups are assumed to be
constant. Note that we do not make any specific assumptions

averaged over a block of length, is minimized. Note that . . " .
the expectation in the above MSE definition is conditioned C]:Rr the computation of the perturbation sigrellr] besides the

the data signak[n], sinces[n] is known to the transmitter.  2we could in fact use any square root &
The optimization problem reads as 3For notational simplicity, we assume thBtis an integer multiple of.

slalnl.yinl.9) = 5 S ot - o




constraint that the entries are compugedlements-wise. This (21) ensures that the feedback fil#ris lower triangular with

is in contrast to THP, where the element-wise computation B p zero blocks on the main diagonal. This structural property

of the feedback filterF' is necessary, since the perturbation
an] results from the modulo operatdd(e). The groups of vector is computed group-wise. The precoding ord&yy

p elements offId[n], corresponding tax;[n], ..., a%,,[nl, il be found later through a modified Cholesky factorization
are then circulated in the loop iB/p iterations. This scheme algorithm and the rule to find the perturbation sigm@%ﬁt[n]
is thus operating with vectors of lengfhinstead of single will be obtained in a final step. Using Lagrangian multipliers,

elements like THP. Note thatis a system parameter and doe¥e obtain

not take part in the optimization. The feedback matfixhas B/p S R -
again a lower triangular structure but jisc p diagonal blocks Fop=1 - & 'S, (SpIlI® 'IT"S,,) ' Spi(eie] @ I,)
are zero, since theelements of one groug;[n] are computed B:/1

p

jointly and can only be fed back after computation. At thi 4 Hoo T T T AT T
point, we assume that the elements ] are correlated =g ;H T Spi(Sp T2 ITSpi) — Spieies @ Ip).

only inside thep-groups and thusg,,, has a block diagonal " i

structure withp x p blocks on the diagonal. When= 1, our  NOté thatFop and Pope depend on the precoding ordéy,

system converges to THP with the exception that in our cad¥)c€ the permutation matrifl is a function of O (see
a[n] is not constrained to evolve from the modulo operationd: 2)- At this point, we perform a modifielock Cholesky

M(e). However, these two schemes are equivalent, as we wiftorization of® with symmetric permutation

see later. Wherp = B, we calculate all elements ak[n] oemn® = LtiDrL, (22)
jointly in one step and our system converges to VP from
Section IV. where L is a block unit lower triangularmatrix with p x p

identity submatrices on the main diagonal, dids a positive
definite block diagonalmatrix with p x p submatrices on the
main diagonal. Employing (22), we get for the MMSE-SVP
filters:

Fopr=I—-L7", Popt = go H'IT'L" D. (23)

Fig. 5. Scaled Vector Precoding Reference Model. This result is analogous to (8). Nevertheless, the matrlces
and.D now have g x p-block structure, in contrast to (7). We
can calculatgyop: using the transmit power constraint in (20).

B. MMSE Scaled Vector Precoding Using (23) and (18) together witjy resulting from (23), the
_In the MMSE approach, we try to minimize the MSE of'SE becomes
d[n] with respect tad[n], i.e., the variance of the error signal ¢ = tr(P..) = Etr(P,, D). (24)

e[n] = d[n] — d[n]. From Fig. 5, we have that
Now we make the assumption that the elements|of are in

d[n] = gH Pv[n] + gn[n|. (17)  fact uncorrelated. This assumption is supported by simulation
The output signal of the feedback loop with the feedback filtgpSults which show that the correlation inside the groups of
F is v[n] = IId[n] + Fv[n], which yields p elements is weak. Thu®,,, = diag(o; ,...,0,,), Where
T the variancemﬁi inside a group ofp elements is the same,
d[n] = I1"(I — F)v[n]. ie., 02 = 020un;s Vi € {(j = 1)p+1,...,jp}. Under this
Thus, the MSE is given by simplifying assumptior,the MSE in (24) can be written as
B
¢»=E [”5”3} =tr(Pee) = ¢ = gzggidi' (25)
=tr (I - F)®,,(I - F") + ¢"HP®,,P"H" o

—gII"(I — F)®,,P"H" —gHP®,,(I - F)II  The resuling MSE depends on the varianegs and the
+g2d5m,). (18) diagonal entries ofD. We see that the optimality of the
filter solution (23) depends on the calculation of the block
Cholesky factorization (22) via the diagonal entries DOf
{Fopt, Popt Jopt, Oopt, Coptn]} = argmin ¢ (19) in the MSE. Since the block Cholesky factorization (22) is
{F,P,g,0,a[n]} a function of the permutation matritZ, (24) tells us how
1 Qe ) to choose the precoding ordér. We have to compute (22)
st N > lylnll;=E«  (20) such thaty2” o2 d; is minimized. The minimization of the
=1

The optimization problem for MMSE-SVP reads as

SpiF(e;®I,)=0 for i=1,....,B/p (22) 4For the algorithm in Table I, this assumption was made. The algorithm

. . . . can be rewritten to take account of the correlations inside a group. However,
wheree; is now thei-th vector of the(B/p x B/p) identity  the covariance matrix,., has to be known in this case, that is, it must be
matrix andS; = [I;,0,x5_;] € {0,1}*5. The last constraint estimated.



TABLE |

CALCULATION OF THE BLOCK CHOLESKY FACTORIZATION the elements of th@-th group are CompUted based onIy on

the already computed elements of the previpus1 groups.

factorize: ITSITT = LN DL (find: IT, L, D) The proposed heuristic rule reads as

ImI=1Iz, D=0p )

fori=B/p,....1 a omln] = argmin D211, LIT (Hs[n]Jro/[n])H
k= [}Ei7p+ 1,pif]p+2,...,pi] i,0pt a{[TL]egzijj o pideddpi )
m = 17277171—]7 ‘
find thep smallest values ofliag(®(1 : pi, 1 : pi)) and place their fori=1,...,B/p (28)

indices ing ] ) . ) ]
IT; = Iy whose rowsk are exchanged with the rows with indicgs|  where o/[n] is given in (16). Due to the right projec-
gfgg}'_[_ tor matrix IT,;, only the parts[skl,...,skm,o,...,O]T and
. 7’ ’ T T T

D(k, k) = B(k, k) [} oty -+ 5y opp @750, 0] of the vectorss[n] and
D(1: pi, k) = B(1 : pi, k) D~ (k, k) . o/[n], respectively, are used. Hence, the valueadf,y[n]
B(m, m) = b(m, m) — P(m, k : pi)D(k, k)P (m, k : pi) ; : '

LH — upper triangular part o er?nds oinlylon the previously calculated parfs,,[n| for

g=1...;1—1.

When p = 1, the block Cholesky factorization in (22) is

whole sum is a difficult combinatorial problem, because )€ same as the Cholesky factorization in (7). Consequently,
P ' e filters in (23) are equal to the filters in (8). As shown in

possible combinations of data streams in groups have to ependix I, the perturbation vectar[n] computed by (28) is

tested. Therefore, We propose a suk_)optlmal_ a'go”‘hr.“ .Wh'ﬁw same with the perturbation vector calculated by the modulo
computes the factorization successively trying to minimize

; operator in the loop of the THP. Thus, fpr= 1 this scheme
every summand of the MSE in (25) separately under thgerges to the THP of Section IIl.

assumption that the indices of the groups to be precoded |a'{‘ I henp — B, IT,; — Iy and the decision rule is the same

are already fixed. Note that the values:@j are not necessary as (15). Furthermore, the block Cholesky factorization breaks

for this heuristic rule, since we assume_d thatis equal inside d?wn t0IIBIIT — D and L — I. The filters (23) become
a group ofp elements. Table | summarizes the pseudo code 0

the proposed block Cholesky factorization. The factorization Foptp—p = 0, Py = go—p% HYs11™ (29)
algorithm in [11] is a special case of the proposed algorithm _ )
in Table I, forp = 1. and the transmit vectay[n| is
We conclude with the computation of the perturbation vector y[n] = PII(s[n] + aopln]) = go‘p{HHdid[n], (30)
a[n] = II'a'[n]. As mentioned earlier, the perturbation
vectora[n] is computed group-wise, i.e., theentries ofa[n] Which is the same as (14). So, for= B this scheme merges
corresponding to thé-th group are found for fixed values ofto VP of Section IV.
the groupsl,...,i — 1. For values ofp betweenl and B we get a hybrid system
When replacin% the covariance matri,, by its sample Whose performance lies between THP and VP. The complexity
mean estimat({:nilv[n]vH[n]/NB in the MSE expression Of this scheme is dominated by the lattice search in (28).
(24), we get The search for the optimum vector is performed inpa
dimensional (complex) lattice. Consequently, the complexity
also lies between those of THP and VP. For the case where
p = 1, the search is actually a simple quantization operation
(26) and the complexity is the same as that of THP.
Here, we usedv[n] = II(s[n] + a[n]) + Fv[n] and (23). -
We observe that thea-th summand only depends on the ) ) )
n-th perturbation vector and is independent of the otherAS W€ saw, the_ loopback of Fig. S is obsolt_ate. Th_|s allows
Ng — 1 perturbation vectors. Thus, the perturbation vectors c4§ [0 use an equivalent model with only one linear filter—the
be found separately by minimizing the respective summarfePncatenation o#”, P and I1. The equivalent model is the
Obviously, minimizing the:-th summand of the above MSE isSame as in Fig. 4, with the linear filter

Ng
¢ = £ Z (IIs[n] + o/ [n)" LEDL (ITs[n] + o/ [n]).

N,
B n=1

. Equivalent System

equivalent to the.VP rule in (15), if no restrictions are imposed Poq = P(I— F)"'IT = g;&HHQ (31)
on the computation ofx[n].
We define the projector matrix The linear filter is simply a zero-forcing or MMSE filter

(according to the design criterion). The perturbation vector
aln] is computed beforehand following the rule (28). It is
now clear that the final scheme can be seescaded vector
precoding(SVP). The parametep scales the operation and
which leaves the first entries of a column vector unchangedwitches from VP = B), through some intermediate modes,
and sets the other elements to zero, when applied from thail THP (p = 1). The model depicted in Fig. 5 was necessary
left. The projection withIT; is used to include the restrictionfor finding the rule in (28) and for showing the equivalence
in the rule for the computation of the perturbation vector thatith THP.

Hi = Z 61‘61-T (27)
7j=1



D. Using the Real-Valued Model In the following, we will combine lattice-reduction with

We can as well apply the above analysis to the real-valulltf Proposed SVP. Since the LLL algorithm operates on real
representation of a MIMO system. The resulting dimensiondnatrices, we use the real-valued representation for the MIMO
ity is twice the dimensionality of the complex-valued modepystem. This will be indicated in the following with the index
Thus, the operation modetakes one more value, from= 1 'r'. We start with (26) and write the closest-point search as
up to p :.2B. As shown. |n_[19], using the real—yalued Qopt[n] = argmin (s;[n]+ oy [n)) B, (s [n] + au[n)), (33)
representation for successive interference cancellation (here, a[n]erz2B
the casep = 1-THP) yields a better performance than usin - T o~/ T T
the complex-valued representation. This gain results from t%lgere c[n] = [R(ec [n]), S(e7[n]]” and &, depends on

separation of the real and imaginary part of a data stre as Hy on H in (32). First, we perform the Cholesky

a N C H .
which are not forced to be precoded together in the real-valulgaqgtonzatlonglSr . ImIand th_en we apply the LLL. algorithm

. on I" and obtainl}eq = I'T with the reduced basi§.q and
representation. However, recall that the real-valued chan

N Qells the unimodular transformation matrix [22]. The rule (33)
matrix is given by :
can be rewritten as
7 _ [RH} -S{H}
T S{H} R{H} |-

From (32) we see that the diagonal values Hf come )
always in pairs which correspond to one data stream. This =7 arginin
is also true ford = (HH™ + ¢I)~'. Since the factorization selnl<a

algorithm of Table | sorts the diagonal values@fthe streams

(32) Qope,n] =7 argmin || I (si[n] + 7z [n])|3
z[n]€Z2B
2

1
;F.sr[n] + FredT_lzr[n]

2
2

1
=7T argmin ||=I's([n] + Iteqz/[n]

corresponding to the same data stream will be selected at z/njez2B || T 5
_the same time, whep = 2,...,2B. But since the real and =T argmin (s, + 20/ (s] + 2), (34)
imaginary part of each data stream are not separated, we 2![n]ez2B

obtain the same precoding order as in the complex-value% , H P P .
representation. Hence, the performance for some value ‘8 ered’ = Ffeldrred andls, o, ?_:f sr. We used the auxiliary
riablesz; = ~ s andz{ = T~ "z. In (34), we have another

p in the complex-valued representation is the same as ik

2p in the real-valued representation. Using the real-valu&gPression ;or tth§ _closeslt_-ff nt dseardchb Of. (3:|3:).”Th<_a SetT]rCh
representation is only meaningful fpr= 1 (regular THP). IS now conducted n an “reduced basis. Foflowing the
heuristic utilized for (28) to get a group-wise computation of

VI. LATTICE-REDUCTION AIDED SCALED VECTOR the perturbation vector, the closest-point search in (28) can be
PRECODING reformulated as

Lattice-reduction techniques have become very popular dug _ .
: : . "2 appd7] = argmin
to their superior performance [20]. In fact, lattice-reduction “"** 2] €L
aided detectlon and precoding yield the fuII channel d|ver3|ty fori=1,...,2B/p, (35)
at low complexity. The most popular algorithm used for lattice-
reduction is the Lenstra, Lenstra, lasZ (LLL) algorithm, where the symmetrically permuted block Cholesky factoriza-
which has polynomial complexity [21]. Windpassinger substtion is performed ord’
tuted the closest-point search in VP (see Eg. 15) with Babai’s /7T H

; . . Ino'izr- =L "DL. 36
approximate solutions (see [17]), namely treunding-off (36)
and thenearest-planeapproximation [13]. These algorithmsThe final approximate solution is
operate in an LLL-reduced basis instead of the initial one. - T
The rounding-off procedure is similar to linear equalization appln] = TTIL 21 app (37)
and the nearest-plane algorithm is similar to decision-feedb&a@ince the iterative computation in (35) has multiple operation
equalization (DFE). The approximate solution of the nearestodes, for different values qf, it can be seen as a general-
plane algorithm fora[n] is computed through successice elization of Babai's nearest-plane approximation with optimized
ementwise quantization, taking into account previously quaorder.
tized values. The performance can be further improved by
choosing the appropriate precoding order. The complexity of
this scheme is the same as the complexity of DFE (or THP) The channel used for our simulations has i.i.d. unit variance
and the resulting BER curve is remarkably close to VP, &ayleigh fading coefficients and emulates an idealized rich-
shown in [13] Our heuristic rule (28) avoids the C|osesﬁcattering environment. The derivations in Sections lll, 1V,
point search of VP by Computing the Va|uesa,i‘h] element- and \Y/ I’efel’ to the MMSE appl’oaches. We aISO Simulated the
wise (p = 1). As a matter of fact, the case = 1 of zero-forcing approaches which are directly inherited from the
SVP corresponds to Babai's nearest-plane approximation withove results, by substituting in (6) with & = (HH")~".

optimized order, with the difference that the lattice basis hasFigs. 6 to 9 show the uncodetit error rate (BER) over
not been reduced. Eo/No = %;;2, whereR,, is the number of information bits

2
D'/ [1,, LIL,,(Is}[n] + 2{yfn))|

VII. SIMULATION RESULTS



per channel use and the noise is assumed to be white, tha
is, @, = o; I The modulation alphabet is QPSKY = 2).

The lattice search (28) is implemented with the sphere decoder |
using the Schnorr-Euchner Strategy [18].

oy

o

Fig. 6 depicts the complex-valued zero-forcing SVP for a &5’

4 x 4 MIMO-system. We see how the intermediate variant o -

. (] .

for p = 2 lies between the curves of THP and VP, and © :
A . . S "4~ p= 1, ISVP (real-THP)
how optimizing the precoding order improves performance. 2 o= p= 2. 1SVP
Fig. 7 compares complex-valued zero-forcing SVP with the = . -jﬂ;‘mg, rgﬁ
. . S ‘p=3,r
real-valued counterpart. We see how for increasing values of % fi..._. P16, TSVP (real-VP) *
p we get higher diversity, since the search for the perturbation :gi 3 S3vP (complex-THP)
vector is performed in higher dimensional lattices. We also —6—p= 4, cSVP
—p 8, cSVP (complex—VP)

verify the observation of Sec. V-D that the performance for  y*
somep for the complex-valued model is the same2aof the -
real-valued model.

4

= polN @8) °

Fig. 7. B = Na = 8, Zero-Forcing Variant, Complex-Valued SVP (cSVP)
Fig. 8 compares zero-forcing SVP with zero-forcing latticevs. Real-Valued SVP (rSVP)

reduction SVP (LR-SVP) for & x 8 MIMO-system. LR-SVP
clearly outperforms all variants of SVP fer< B. However,

the gain of LR-SVP fop > 1 is moderate. We can conclude S
that the most favorable zero-forcing precoding technique is
LR-SVP forp = 1 (or nearest-plane VP), which has the most 107}

attractive balance between low complexity and performance. o
L

Fig. 9 makes the same comparison between the MMSEm
variants of SVP and LR-SVP. However, in this case the &7

gap between SVP fop = 1 (MMSE-THP) and SVP for

—6—p=1, SVP (THP)

Uncoded

p = B (MMSE-VP) is very small. Although the intermediate Igz 230

variants of SVP and LR-SVP fill this gap, the gain is moderate || —p=8, svp (vp)

compared to the increased complexity. Even LR-SVPyfer . by LRTSVE (near. plane)

1 (nearest-plane VP) is not worth the additional computation of -8 -p=4, LR-SVP

the reduced lattice-basis, since it performs almost like SVP for ig 185 LLR; AR (vP)

p = 1. Thus, the most favorable MMSE precoding technique 10f8 o 4 2 x 6 5 10
is SVP forp = 1 (MMSE-THP). Ei/No (ZdB)

Fig. 8. B = Nz = 8, Zero-Forcing Variant, SVP and LR-SVP

APPENDIXI

Whenp = 1, the decision rule fory; from (28) takes the
form

j—1
oy =-Q <Sk-j + le,i (Sk; + 041)) (38)
=1
where[L]; ; = l; ; and Q(e) quantizes its argument to the
pointstZ + jt7Z. The valuesy;, i = 1,...,j — 1 have been

already computedsy; is the j-the element offs.
Meanwhile, the value ofy; tvp in THP can be found from
the loop of Fig. 2 as follows

£0 15 O[ijHp = ’Uj — §j = M(§j> — §j = — Q(§j> (39)
We will show that the arguments in (38) and (39) are equal.

Fig. 6. B = Na = 4, Zero-Forcing Variant, SVP, with and without Optlmlzeds is calculated after the Ioopback and in general
Precoding Order

Uncoded BER

|| - @ =p=1, ZF-THP
-8 - p:2

- - -p=4, ZF-VP
—e— p=1, without perm. ZF-THP
—&—p=2, without perm.
—p=4, wnhout perm. ZF-VP

° ° Eb/z\f’ (dB)

i1
5 =5k, = 1l (40)
=1
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