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Im Traum, im letzten Morgentraume stand ich heut auf

einem Vorgebirge, - jenseits der Welt, hielt eine Wage und

wog die Welt.< ... >

Messbar für Den, der Zeit hat, wägbar für einen guten

Wäger, erfliegbar für starke Fittiche, errathbar für göttliche

Nüsseknacker: also fand mein Traum die Welt< ... >

Wie sicher schaute mein Traum auf diese endliche Welt,

nicht neugierig, nicht altgierig, nicht fürchtend, nicht

bittend: -

- als ob ein voller Apfel sich meiner Hand böte, ein reifer

Goldapfel, mit kühl-sanfter sammtener Haut: - so bot sich

mir die Welt: -

- als ob ein Baum mir winke, ein breitästiger, starkwilliger,

gekrümmt zur Lehne und noch zum Fussbrett für den

Wegmüden: so stand die Welt auf meinem Vorgebirge: -

- als ob zierliche Hände mir einen Schrein entgegentrügen, -

einen Schrein offen für das Entzücken schamhafter

verehrender Augen: also bot sich mir heute die Welt

entgegen: -

- nicht Räthsel genug, um Menschen-Liebe davon zu

scheuchen, nicht Lösung genug, um Menschen-Weisheit

einzuschläfern: - ein menschlich gutes Ding war mir heut

die Welt, der man so Böses nachredet!

F. W. Nietzsche ”Also sprach Zarathustra“





Abstract

The NMR spectroscopy is a constantly changing field, with both hardware and methodol-
ogy developing in concert and influencing each other. The constantly increasing magnetic
field strengths of modern spectrometers bring an advantage of better signal-to-noise ra-
tios and increased resolution, but make even basic tasks, like the uniform excitation of
one-dimensional 13C spectra, to a technical challenge. Also the sample preparation gets
more and more sophisticated, as for example with the exciting development in the field
of partially oriented molecules where arbitrary scaling of alignment poses a fundamental
problem. Finally, the development of novel pulse sequence techniques, the ßoftwareöf
NMR spectroscopy, will always be a central aspect in modern NMR. All these fields have
been addressed with various approaches in this thesis. Optimal control of spin dynamics
is shown to be a highly efficient mathematical tool for the design of all kind of com-
plex pulses like broadband excitation, inversion, or universal rotation pulses, or ”pattern
pulses“ with almost unlimited flexibility in their offset and rf-amplitude profiles. In a sep-
arate series of projects, various polymer gels have been produced chemically as orienting
media without lower limit of alignment. With the introduction of such media a signifi-
cant improvement of alignment scalability could be achieved, which opens the possibility
of measuring anisotropic NMR-parameters to a wide range of small to medium-sized or-
ganic molecules. Within the projects, a number of new and significantly improved pulse
sequences has been developed as well as several simulation programs which are briefly
described.





Zusammenfassung

Die NMR-Spektroskopie ist ein sich stetig wandelndes Gebiet mit Weiterentwicklungen in
Hardware und Methodik, die sich gegenseitig beeinflussen. Die immer weiter ansteigenden
Magnetfeldstärken moderner Spektrometer bringen die Vorteile eines besseren Signal-zu-
Rausch-Verhältnisses und höherer Auflösung, machen aber auch ganz einfache Aufgaben
wie z.B. die gleichmäßige Anregung in eindimensionalen 13C-Spektren zu einer technis-
chen Herausforderung. Auch die Probenpräparation wird immer anspruchsvoller, so z.B.
auf dem Gebiet der partiell orientierten Moleküle, in dem eine stufenlose Skalierbarkeit
der Orientierung ein fundamentales Problem darstellt. Schließlich wäre da noch die En-
twicklung neuer Pulssequenzen, der ”NMR-Software“, die eine zentrale Rolle in der mod-
ernen NMR-Spektroskopie spielt. All diese Aspekte wurden in der vorliegenden Arbeit
in verschiedenen Ansätzen behandelt. So wurde gezeigt, dass optimale Steuerungsthe-
orie angewendet auf spindynamische Prozesse ein effizientes mathematisches Werkzeug
ist, um alle Arten komplexer Pulse zu entwerfen, wie z.B. Breitbandanregungs- und -
inversionspulse, universelle Rotationspulse oder ”Pattern-Pulse“ mit fast unbegrenzter
Flexibilität in ihren Offset- und Radiofrequenzamplituden-Abhängigkeiten. In einer Reihe
anderer Projekte wurden Polymergele als Medien ohne unteres Limit in ihrem Orien-
tierungsvermögen hergestellt. Durch die Einführung solcher Orientierungsmedien kon-
nte die Skalierbarkeit der Ausrichtung signifikant verbessert werden, was die Messung
anisotrope NMR-Parameter kleiner bis mittelgroßer organischer Moleküle ermöglicht. In-
nerhalb dieser Projekte wurden eine Reihe neuer und deutlich verbesserter Pulssequenzen
und einige Simulationsprogramme entwickelt, die kurz beschrieben werden.
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Introduction and scope of the work

The progress in NMR seems to be unstoppable and the state of staleness simply didn’t have
a chance to establish in this exciting field: one just starts to think that there is a passing
moment to take a breather and in this very moment new groundbreaking developments
emerge in some place of already quite vast field of modern NMR spectroscopy. A constant
flow of new ideas (begged, borrowed or stolen, whatsoever [1]) doesn’t seize to occupy the
minds of NMR spectroscopists.

One such idea is the idea to apply the formalism of optimal control theory (a relatively
old mathematical formalism, widely used in engineering and economics) to the design of
very basic building blocks of NMR spectroscopy: RF-pulses. Chapter 1 of the actual
work is concerned with this topic. The general optimization procedure for a single spin is
described and applied to manipulate the ensembles of uncoupled spins with a high degree
of control. With the aid of the optimization procedure some very general NMR problems
could be investigated, like the limits of broadband excitation and inversion in ensembles
of uncoupled spins (Section 1.3.3). The algorithm allows to search for optimal pulses
within limited search spaces, producing pulses with very special properties best suited
for particular NMR applications. In Section 1.5 the unprecedented flexibility provided by
the optimization procedure allowed to create pulses with very peculiar excitation profiles,
so-called ”pattern pulses“. The optimization of another type of pulses of more direct
practical use is presented in the following section - so-called universal rotation pulses. We
could successfully apply the optimal control algorithm to create this kind of pulses, which
allow the direct exchange of hard pulses by the optimized ones in any conventional pulse
sequence (c.f. Section 1.7), but also found an easy procedure to create such pulses from
usual point-to-point pulses utilizing very general symmetry properties (Section 1.6). The
detailed analysis of the optimized universal rotation pulses showed that such symmetry
properties are a general feature in this class of pulses. Equipped with all neccesary tools,
we could apply the optimized pulses to two very commonly used NMR experiments, HSQC
and HMBC, which significantly improved their performance (Section 1.8).

The second part of this work is dedicated to the development of new alignment media
for use in high-resolution NMR spectroscopy. The measurements in aligned media are
nowadays among the hottest topics in NMR. The re-introduction of dipolar interactions,
otherwise averaged out in usual isotropic samples, reveals quite an amount of structural
information, and hence, since few years has significantly changed the field of biomolecular
NMR and is going to do this with NMR of small molecules. Until recently, the use of
this technique for the small molecules was very limited due to the fact, that only very

1



2 Introduction

few alignment media were available for typical organic solvents. Here, new media are
introduced: polystyrene (Section 2.2) and poly(vinyl acetate) (Section 2.3) anisotropically
swollen and stretched can be used as alignment media for a large range of organic solvents.
In addition, gelatin gels swollen and stretched in water were introduced as an alignment
media to measure residual dipolar couplings. Due to the chiral character of its structure,
it can also be used to discriminate enantiomers with the aid of RDCs, as shown in Section
2.4. The practical aspects of applicability of these media are investigated, the problems
emerging with it and the ways to overcome these. But the application of the technique
to small molecules also requires new tools to access as many residual dipolar couplings
as possible. Section 2.5 therefore describes various improved approaches for measuring
long-range heteronuclear RDCs.

Chapter 3 occupies with another topic being highly popular these days which is based
on a very old idea - Hadamard spectroscopy. Hadamard spectroscopy today represents
an alternative to conventional Fourier transform spectroscopy. Typically, the selective
inversion of several narrow frequency bands is achieved by tailored inversion pulses in place
of t1-evolution periods. However, band-selective inversion can also be achieved during
coherence transfer steps, thereby shortening the period during which the magnetization
is in the transverse plane. Using CW heteronuclear cross-polarization (CW-HCP) as an
example for highly selective coherence transfer, the implementation of Hadamard encoding
within a transfer step is presented. Transfer characteristics, the preparation of multiple
frequency selective CW-HCP and the possibility of acquiring spin state selective spectra
are discussed in detail.

The software developed in the course of this work is described in the Appendix, as
well as some of the pulse programs for Bruker Avance spectrometers.



Chapter 1

Optimizations

Was ist gut? - Alles, was das Gefühl der Macht, den Willen

zur Macht, die Macht selbst im Menschen erhöht.

Was ist schlecht? - Alles, was aus der Schwäche stammt.

Was ist Glück? - Das Gefühl davon, daß die Macht wächst,

daß ein Widerstand überwunden wird.

Friedrich W. Nietzsche, ”Der Antichrist“

Do what thou wilt shall be the whole of the Law.

Aleister Crowley, ”The Book of the Law“

1.1 Introduction

Since the introduction of pulsed Fourier-Transformation NMR spectroscopy, radiofre-
quency pulses have become the most essential, the indispensable building block of lit-
erally every NMR experiment. Some time later experimental imperfections, inherently
connected to the non-ideality and hence limited performance of RF-pulses, have become
apparent. Attempts to improve the situation were undertaken very soon by applying series
of pulses (so called composite pulses) either designed by purely intuitive approach or, later,
by numerical optimizations. When it was realized, that not only the phases of individual
pulses can be changed (which is the case for composite pulses), but also the amplitudes, a
whole new field of so called shaped pulses was invented. The use of shaped pulses opened
completely new perspectives in NMR, connected with selective or band-selective excita-
tion/inversion achieved by such pulses, but it also allowed much larger flexibility in the
design of very basic RF-pulses. From this moment on, the ’only’ problem in designing
better pulses was to find an appropriate algorithm and enough computational power. But
this appeared to be quite a significant problem. In principle, finding an RF pulse, which
satisfies certain conditions imposed by the researcher (providing excitation, inversion or
some other rotation over a given range of offsets, whatsoever), is nothing else but a usual

3



4 Chapter 1. Optimizations

mathematical problem of finding an extremum of a multidimensional function. One has
to be able to calculate a value of this function (we will call it a cost or performance func-
tion) in every point of space, as well as gradients with respect to every variable. Then
it’s just a matter of applying routine mathematical tools to find an extremum. However,
for every realistic problem in NMR such an approach is absolutely unfeasible in terms of
the amount of calculations involved. So, while direct optimization is not possible, many
different algorithms were proposed, none providing a general approach, but rather being
limited to some family of either pulse shapes or treated problems.

In contrast, an approach based on optimal control theory, a mathematical formal-
ism widely used for various kind of applications from engineering to economics and first
applied in NMR for the optimization of band- selective pulses in MRI [2–4], brought a
way to perform a general optimization with an enormously reduced number of required
calculations. In this procedure a gradient towards better performing parameters is cal-
culated efficiently based on an analytical formula that allows a significant increase in the
number of independently optimized parameters. Because of the high efficiency of the
algorithm the space of possible pulse shapes used in the optimization is not restricted to
any pulse family. In spin systems where the theoretical limits of quantum evolution were
known [5–11], numerical algorithms based on principles of optimal control theory, provide
pulse sequences which approach the physical limits [12–14].

1.2 Gradient ascent pulse engineering

1.2.1 Optimal control theory

Optimal control theory is a mathematical field that is concerned with control policies that
can be deduced using optimization algorithms [15,16]. In other words, this theory provides
a way to find such controls for a given dynamic system, which drive it from initial state
to a target one in a most efficient way (time- efficient, fuel-efficient, whatsoever). It is
based on a classical Euler-Lagrange formalism, developed by Leonhard Euler and Joseph-
Louis Lagrange in the 1750s and being the major formula of the calculus of variations. It
provides a way to solve for functions which extremize a given cost functional. It states,
that given a functional L(t,x(t),u(t)) with continuous first and second derivatives, any
function f which extremizes the cost functional

J [x] =

∫ t1

t0

L[t,x(t),u(t)]dt, (1.1)

must also satisfy the ordinary differential equation

∂L
∂x

− d

dt

∂L
∂u

= 0. (1.2)

It is analogous to the result from calculus that a function attains its extreme values
when its derivative vanishes. In classical mechanics, where the formalism was originally
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invented, the functional L is the Lagrange operator, u = dx/dt, x(t0) and x(t1) are fixed,
and the curves x(t) and u(t) are required to be continuous. The necessary condition that
such a curve is an optimal curve is that the variation δJ at all points of the path are
equal to zero, which results in equation 1.2.

The optimal control theory generalizes this formalism to other kinds of functionals and
typically includes in addition to the “running” cost function L a final cost term Φ[x(t1)],
which depends on the state in which the system ends up:

J [x] =

∫ t1

t0

L[t,x(t),u(t)]dt+ Φ[x(t1)], (1.3)

where x(t) represents the state of the system, while u(t) represents controls to be opti-
mized.

A more significant generalization for the development of optimal control theory is the
removal of the restriction that u be continuous. For practical NMR applications, the RF
amplitude, phase, and/or frequency must be allowed to make discontinuous jumps.

Additional constraints, which can be imposed on points of the optimizing curve, of
the form g(x) = c, are included in the formalism by introducing Lagrange multipliers λj

for each constraint equation gj, which transforms the equation 1.3 for L to a similar one
for the function

h = L −
∑

j

λjgj . (1.4)

1.2.2 Transfer between Hermitian operators

The basic theoretical ideas behind the application of the optimal control theory to the
problem of pulse design are fixed in [13]. As the general case consider the transfer be-
tween Hermitian operators in the absence of relaxation. The state of the spin system is
characterizes by the density operator ρ(t), and its equation of motion is the Liouville-von
Neumann equation [17]

ρ̇(t) = −i
[(

H0 +

m∑

k=1

uk(t)Hk

)

, ρ(t)

]

, (1.5)

where H0 is the free evolution Hamiltonian, Hk are the radiofrequency (rf) Hamiltonians
corresponding to the available control fields and u(t) = (u1(t), u2(t), . . . , um(t)) represents
the vector of amplitudes that can be changed and which is referred to as control vector.
The problem is to find the optimal amplitudes uk(t) of the rf fields that steer a given
initial density operator ρ(0) = ρ0 in a specified time T to a density operator ρ(T ) with
maximum overlap to some desired target operator C. For Hermitian operators ρ0 and C,
this overlap may be measured by the standard inner product

〈C|ρ(T )〉 = tr{C†ρ(T )}. (1.6)



6 Chapter 1. Optimizations

Hence, the performance index Φ0 of the transfer process can be defined as

Φ0 = 〈C|ρ(T )〉 (1.7)

In the following we will assume that the chosen transfer time T is discretized in N
equal steps of duration ∆ = T/N and during each step the control amplitudes uk are
constant, i.e. during the jth step the amplitude uk(t) of the kth control Hamiltonian is
given by uk(j) (see Fig. 1.1). The time-evolution of the spin system during a time step j
is given by the propagator

Uj = exp

{

−i∆t
(

H0 +

m∑

k=1

uk(j)Hk

)}

(1.8)

The final density operator at time t = T is

ρ(T ) = UN · · ·U1ρ0U
†
1 · · ·U †

N , (1.9)

and the performance function Φ0 (Eq. 1.7) to be maximized can be expressed as

Φ0 = 〈C|UN · · ·U1ρ0U
†
1 · · ·U †

N 〉. (1.10)

Using the definition of the inner product (Eq. 1.6) and the fact that the trace of a product
is invariant under cyclic permutations of the factors, this can be rewritten as

Φ0 = 〈U †
j+1 · · ·U †

NCUN · · ·Uj+1
︸ ︷︷ ︸

λj

|Uj · · ·U1ρ0U
†
1 · · ·U †

j
︸ ︷︷ ︸

ρj

〉, (1.11)

where ρj is the density operator ρ(t) at time t = j∆t and λj is the backward propagated
target operator C at the same time t = j∆t. Let us see how the performance Φ0 changes
when we perturb the control amplitude uk(j) at time step j to uk(j) + δuk(j). From Eq.
1.8, the change in Uj to first order in δuk(j) is given by

δUj = −i∆tδuk(j)H̄kUj (1.12)

with

Hk∆t =

∫ ∆t

0

Uj(τ)HkUj(−τ)dτ (1.13)

and

Uj(τ) = exp

{

−iτ
(

H0 +

m∑

k=1

uk(j)Hk

)}

. (1.14)

This follows from the standard formula

d

dx
eA+xB|x=0 = eA

∫ 1

0

eAτBe−Aτdτ. (1.15)
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1 Nj

uk

0 Dt T
t

Figure 1.1: Schematic representation of a control amplitude uk(t), consisting of N steps
of duration ∆t = T/N . During each step j, the control amplitude uk(j) is constant.
The vertical arrows represent gradients δΦ0/δuk(j), indicating how each amplitude uk(j)
should be modified in the next iteration to improve the performance function Φ0

For small ∆t (when ∆t ≪‖ H0 +
∑m

k=1 uk(j)Hk ‖−1), Hk ≈ Hk and using Eqs. 1.11
and 1.12 we find to first order in ∆t

δΦ0

δuk(j)
= −〈λj|i∆t[Hk, ρj]〉. (1.16)

We increase the performance function Φ0 if we choose

uk(j) → uk(j) + ǫ
δΦ0

δuk(j)
, (1.17)

where ǫ is a small step size. This forms the basis of the following algorithm, the so-called
gradient ascent pulse engineering (GRAPE):

1. Guess initial controls uk(j).

2. Starting from ρ0, calculate ρj = Uj · · ·U1ρ0U
†
1 · · ·U †

N for all j ≤ N .

3. Starting from λN = C, calculate λj = U †
j+1 · · ·U †

NCUN · · ·Uj+1 for all j ≤ N .

4. Evaluate δΦ0/δuk(j) and update the m×N control amplitudes uk(j) according to
Eq. 1.17.

5. With these as new controls, go to step 2.
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The algorithm is terminated if the change in the performance index Φ0 is smaller
than a chosen threshold value. Clearly, since the algorithm is based on a gradient ascent
procedure, there is no guarantee that it will converge to a global minimum. However, at
each step the algorithm moves in the direction of increasing performance (see Fig. 1.1),
so we can be assured that it converges to control amplitudes that are extremal points of
the desired performance function. To expedite the process of this convergence, we can
adopt standard conjugate gradient methods [15].

The important advantages of the optimal control related approach are best highlighted
by comparing the GRAPE algorithm to conventionally used numerical difference methods
to calculate the gradient δΦ0/δuk(j) by computing Φ0 for the given pulse sequence uk(j)
as well as for small variations of all m×N control amplitudes. For example, for N = 500
and m = 4, the conventional approach would require to calculate 2001 full time evolutions
of the density operator from t = 0 to T . In contrast, the GRAPE approach to calculate the
same gradient δΦ0/δuk(j) only requires two full time evolutions (one to propagate ρ0 from
t = 0 to T and one to back-propagate λN from t = T to 0), i.e., it is orders of magnitude
faster. This makes it possible to efficiently optimize NMR pulse sequences in much larger
parameter spaces. As conventional approaches were typically limited to a few dozens
of control variables, a typical strategy was to restrict the optimization to certain pulse
families, such as composite pulses with a limited number of flip and phase angles [18,19],
Gaussian pulse cascades [20], spline functions [21], or Fourier expansions [22]. In contrast,
the GRAPE algorithm allows for much higher flexibility as the number of pulse parameters
to be optimized can be orders of magnitude larger compared to conventional approaches.

1.2.3 Application to an ensemble of non-interacting spins

In general, the implementation of the above algorithm implies manipulations with 2N ×2N

spin-state and rotation matricies for a N -spin case. Not only the matrix multiplications
are quite time consuming operations, but much more so are the matrix diagonalization
procedures, required to calculate the evolution of a state for every uk(j) step. But in the
case of an ensemble of non-interacting spins the calculations can be significantly simplified
if performed in three dimensional real space, where the rotations of spins are governed by
Bloch equations, so that there is no need in operations with matrices.

For optimal control of a system of non-interacting spins in NMR, the goal is to find
the trajectory for the magnetization vector M(t) that optimizes a suitably chosen cost
functional J . In units of angular frequency (rad/s) and in terms of two available control
fields ux(t) and uy(t), the effective RF field in the rotating frame is

ωe = ω1(t)[cosφ(t)x̂ + sinφ(t)ŷ] + ∆ω(t)ẑ =

= ux(t) + uy(t) + ∆ω(t)ẑ =

= ωrf(t) + ∆ω(t)ẑ (1.18)

which encompasses any desired modulation of the amplitude ω1, phase φ, and frequency
offset ∆ω of the pulse. The possible trajectories M(t) are constrained to satisfy the Bloch
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equation
Ṁ = ωe × M , (1.19)

which therefore introduces three Lagrange multipliers λj. The three constant functions
gj in Eq. 1.4 are then simply the components of the vector

g = ωe × M . (1.20)

Since ωe(t) controls the evolution of M(t), the goal of finding the optimum trajectory
is the same as finding the optimal RF sequence to apply to the sample. Given an initial
state M(t0) and a desired final or target state F at the end of the pulse, we want to
optimize

J [M ] =

∫ tp

t0

L[t,M(t),ωe(t)]dt+ Φ[M(tp)] (1.21)

over the interval [t0, tp]. Including the Bloch equation constraints on M , the requirement
δJ = 0 (which is the case, when the functional J is extremized) implies

λ̇ = −∂h/∂M (1.22)

with initial condition
λ(tp) = ∂Φ/∂M (1.23)

for the time evolution of λ, and

∂h(t)/∂ωe(t) = 0, (1.24)

at all points of the optimal trajectory, which provides a means for adjusting the RF
controls. By analogy with the Hamiltonian formalism of classical mechanics, M and λ

are conjugate variables, since

Ṁ = ωe × M = ∂h/∂λ (1.25)

according to equations 1.4 and 1.20.
For all of the applications discussed later here, the running cost, given by the function

L in Eq. 1.21, was set equal to zero. We then find that the optimization of the final cost
J = Φ[M(tp)] has an especially simple geometrical interpretation for the particular choice

Φ = M(tp) · F , (1.26)

which quantifies the degree to which M(tp) = F , and where F is just the state, we want
our system to reach at the end of the control system, the target state. In this case, Eq.
1.4 becomes

h = λ · (ωe × M) = ωe · (M × λ). (1.27)

And from Eq. 1.23 we get particularly simple relation:

λ(tp) = F . (1.28)
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The conditions that must be satisfied at each time for the cost to be maximized are

Ṁ = ωe × M , (1.29)

λ̇ = ωe × λ, (1.30)

∂h

∂ωe

= M × λ = 0. (1.31)

Note here, that while the magnetization M is defined for a time moment t0, the variable
λ, which is not just conjugate to M , but also has identical equation of motion, is defined
by Eq. 1.28 at time moment tp, at the end of a sequence.

This provides us with all necessary tools for an optimization. As illustrated in Fig. 1.2,
a sequence which transforms M(t0) forward in time to the desired target state F therefore
transforms λ(tp) = F backwards in time to M(t0). For the optimal pulse, we then have
Mopt(t) = λopt(t), which satisfies the stationary condition given by Eq. 1.31. For a
non-optimal pulse, (M × λ) at each point of the two trajectories gives the proportional
adjustment to make in the control field ωe(t). And the procedure for optimizing the cost
can be incorporated in the following algorithm:

1. Choose an initial RF sequence ω
(0)
e .

2. Evolve M forward in time from the predefined initial state M(t0).

3. Evolve λ backwards in time from the predefined target state F .

4. ω
(k+1)
e (t) −→ ω

(k)
e (t) + ǫ[M(t) × λ(t)]

5. Repeat steps 2 - 4 until a desired convergence of Φ is reached.

Since the Bloch equation governs the evolution of both vectors, M and λ, and represents
an instantaneous rotation about ωe(t), which preserves both the length of these vectors
and angle between them, step 3 can be replaced by

3′ Calculate M(tp) × λ(tp) and evolve this vector backwards in time.

which eliminates repeated calculation of (M × λ) at each t in step 4.

Provided we have a m-component control field (for a usual RF-pulse m = 2, which
are x- and y-components or amplitude and phase), digitized in n time increments, the
cost function to be optimized is a function of N = mn variables. Many methods exist
for finding an extremum (minimum or maximum) of an N -dimensional function (see, for
example, [23]). Typically, they utilize various strategies for stepping downhill (uphill) until
a minimum (maximum) of the function is reached. A general function, with no closed form
analytical expression for calculating the gradient (i.e., the direction of steepest descent),
which is the case for a general NMR RF-pulse, can require on the order of N evaluations
to take a single step towards the extremum. Each evaluation of the cost function we want
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Pulse shape

t0 tF
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l(t )=FF

M(t)

l(t)
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F

G(t )=0p
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F=M(t ) FF
.
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M (t)opt F=1

F<1

Figure 1.2: Optimization scheme. For a given RF sequence ωe(t) (middle), the initial
state M(t0) evolves to some final state M(tF) through a sequence of intermediate states,
shown schematically as the solid line connecting M(t0) and M(tF) (bottom). If this final
state M(tF) is not the same, as the defined target state F , the quality factor Φ < 0.
To calculate the gradients at a given point of the pulse shape the initial state M(t0)
is evolved towards this time point, as well as the desired final target state F , which is
equal to the Lagrange multiplier term λ(tp) according to Eqs. 1.23 and 1.26, is evolved
backwards in time towards this time point (top). The cross product of the two states at
this time point gives the proportional adjustment to make for the control fields ωe(t). The
separate paths for M(t) and λ(t) become equal for the optimized RF sequence ωopt(t)
that drives M(t0) to λ(tp) = F .
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to optimize requires, in turn, a time evolution of the initial state over the sequence of
control fields. By contrast, optimal control theory requires only the two evolutions shown
in Fig. 1.2 to determine the best direction to step and improve the cost. It provides
therefore an enormous efficiency gain compared to traditional procedures and opens the
door to a host of problems that otherwise might be too demanding computationally to be
tractable.

1.2.4 Synthesis of unitary transformations

Two important classes of composite and shaped pulses are point-to-point rotations (PP
pulses) and universal rotations (UR pulses). PP pulses (also denoted class B2 pulses [18])
are designed to rotate a magnetization vector from a given initial direction as closely as
possible to a desired final direction, e.g. from the z axis to the x axis for excitation or from
z to −z for inversion pulses. In contrast, UR pulses (also denoted class A pulses [18],
constant rotation pulses [19], general rotation pulses [24], plane rotation pulses [25] or
simply universal pulses [26]) are designed to induce an effective rotation with a defined
direction of the rotation axis and a defined rotation angle not only for a given initial
vector orientation but for any arbitrary initial vector. Applications where UR pulses are
required include refocusing and mixing pulses in two-dimensional experiments. The de
novo design of UR pulses is generally assumed to be considerably harder than the design
of robust PP pulses.

The problem to create in a given time T a desired unitary propagator is also considered
in [13]. The equation of motion for the propagator of a closed quantum system is

U̇ = −i
(

H0 +
m∑

k=1

uk(t)Hk

)

U. (1.32)

At t = 0, the initial propagator is U(0) = 1.
First, we consider the problem to approach a desired propagator UF by applying a

pulse sequence uj(t) such that at the final time

||UF − U(T )||2 = ||UF ||2 − 2Re〈UF |U(T )〉 + ||U(T )||2 (1.33)

is minimized, which is equivalent to maximizing Re〈UF |U(T )〉. Hence, we can define the
performance function to be optimized by the pulse sequence as

Φ0 = Re〈UF |U(T )〉
= Re〈UF |UN · · ·U1〉
= Re〈U †

j+1 · · ·U †
NUF

︸ ︷︷ ︸

Pj

|Uj · · ·U1
︸ ︷︷ ︸

Xj

〉. (1.34)

and the corresponding gradient δΦ0/δuk(j) to first order in ∆t is given by

δΦ0

δuk(j)
= −Re〈Pj|i∆tHkXj〉. (1.35)
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While the performance index Φ0 may be of theoretical interest, for practical applications,
it is sufficient to approach the target propagator UF only up to an arbitrary phase factor
exp{iφ} and

||UF − eiφU(T )||2 = ||UF ||2 − 2Re〈UF |eiφU(T )〉 + ||U(T )||2 (1.36)

is to be minimized for choice of φ, which is equivalent to maximizing the performance
function

Φ1 = |〈UF |U(T )〉|2

= 〈UF |UN · · ·U1〉〈U1 · · ·UN |UF 〉
= 〈Pj|Xj〉〈Xj|Pj〉 (1.37)

with the operators XJ and Pj as defined in Eq. 1.34. The corresponding gradient
δΦ1/δuk(j) to first order in ∆t is given by

δΦ1

δuk(j)
= − 〈Pj|Xj〉〈i∆tHkXj|Pj〉 − 〈Pj|i∆tHkXj〉〈Xj|Pj〉

= − 2Re{〈Pj|i∆HktXj〉〈Xj|Pj〉}. (1.38)

1.2.5 Unitary rotations in an ensemble of uncoupled spins

As in the case of point-to-point transformations in an ensemble of non-interacting spins,
where calculations can be simplified by using three-dimensional rotations instead of matrix
manipulations, the optimization of unitary transformations can be simplified as well.

Normally, for the description of three-dimensional rotations the use of the Eulerian
angles α, β, γ is well established [27–30]. And, as a matter of fact, all of the optimizations
of point-to point transformations throughout this work were performed with the use of
the Eulerian angles. But as elegant as the formal definition may be, it is cumbersome
to picture the result of a physical rotation with given values of the Eulerian angles or
to predict the result of two successive rotations given by two different sets of angles.
A description of rotations more readily acceptable to average human intuition than the
Eulerian angles would require specification of the three directional cosines lxx, lyy, lzz of the
rotation axes, the rotation angle θ, and a composition rule for the evaluation of successive
rotations around different axes. Then, without leaving the realm governed by simple
Bloch equations, we only have to assure that the net effect of the optimized pulse would
be the rotation with identical rotation axes and rotation angles on every offset within the
defined performance range.

Such a formalism has already been established by W. R. Hamilton in 1843 [31] in
connection with an extension of the vector calculus. The four variables lxx, lyy, lzz, and
θ are related to the four elements of a quaternion on which Hamilton wrote his last
major opus [32]. All the formulas necessary for our calculations, the relationship of the
quaternion elements to the Eulerian angles, the directional cosines of the rotation axis,
and the respective rotation angle are reviewed in [33].



14 Chapter 1. Optimizations

Starting with a general description of three dimensional rotations, the Eulerian angles
α, β, γ can be replaced by a different set of variables such as the elements of a 2×2 unitary
matrix with determinant 1 [30]

u =

[
a b

−b∗ a∗

]

, (1.39)

where |a|2 + |b|2 = 1. Since a and b are complex, this leaves three independent parameters
corresponding to the three Eulerian angles. A positive rotation of coordinates x, y, z
achieved by the matrix u is given as

[
z′ x′ − iy′

x′ + iy′ −z′
]

= u

[
z x− iy

x+ iy −z

]

u−1, (1.40)

where the elements of u are related to the Eulerian angles by [30]

a = cos
β

2
ei(α+γ)/2,

b = sin
β

2
e−i(α−γ)/2. (1.41)

In this form u is identified as the rotation matrix of a spin 1/2. The appearance of
half angles expresses the two-fold homomorphism between the 2 × 2 rotation matrices
and the group of three-dimensional pure rotations: The Eulerian angles are determined
within multiples of 2π but the half angles are determined only within multiples of π. Since
all trigonometric functions and complex exponentials change sign when the argument is
changed by π, the matrix u suffers a sign ambiguity. This, however, does not affect the
outcome of the transformation 1.40, since the transformation is quadratic in the rotation
matrix.

Considering successive rotations in the following, the rotation matrix u2 will be eval-
uated which combines a rotation u0 followed by a rotation u1, in an axis fixed coordinate
frame

u2 = u0u1. (1.42)

The resulting elements are given by
[

a2 b2
−b∗2 a∗2

]

=

[
a0a1 − b0b

∗
1 a0b1 + b0a

∗
1

−b∗0a1 − a∗0b
∗
1 −b∗0b1 + a∗0a

∗
1

]

. (1.43)

It is now convenient to rewrite 1.43 in terms of the real and imaginary parts of a and b:

a = D + iC,

b = B + iA, (1.44)

where from 1.41

A = −sin
β

2
sin

α− γ

2
, B = sin

β

2
cos

α− γ

2
,

C = cos
β

2
sin

α + γ

2
, D = cos

β

2
cos

α + γ

2
. (1.45)
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The four terms A, B, C and D form a quaternion. Since they are interrelated by

A2 +B2 + C2 +D2 = 1 (1.46)

the four quaternion elements correspond to three independent variables.

From 1.43 and 1.44 the elements of the quaternion of the composite rotation are
derived in terms of the quaternion elements of the first and the second rotation







A2

B2

C2

D2







=







+D1 −C1 +B1 +A1

+C1 +D1 −A1 +B1

−B1 +A1 +D1 +C1

−A1 −B1 −C1 +D1






·







A0

B0

C0

D0






. (1.47)

The usefulness of quatemions is based on the connection of the quaternion elements to the
rotation angle θ and the directional cosines lxx, lyy, lzz of the rotation axis. The quaternion
elements A, B, C and D can be expressed in these terms [33] as follows:

A = lxxsin θ/2,

B = lyysin θ/2,

C = lzzsin θ/2,

D = cos θ/2. (1.48)

In the case of an ensemble of non-interacting spins, where two control fields ux(t) and
uy(t) have to be optimized, this can be rewritten as

A(j) = ux(j) sin{θ(j)/2},
B(j) = uy(j) sin{θ(j)/2},
C(j) = ∆ω sin{θ(j)/2},
D(j) = cos{θ(j)/2} (1.49)

for every digit j, with offset ∆ω and rotation angle θ(j) expressed as

θ(j) = ∆t ·
√

u2
x(j) + u2

y(j) + (∆ω)2. (1.50)

It has to be noticed that these quaternion elements describe positive rotations of co-
ordinates. The quaternion elements for positive rotations of functions are obtained by
replacing θ by −θ, because rotations of coordinates and rotations of functions correspond
to inverse operations [30]. In agreement with Eq. 1.45 this produces a change of sign for
A, B, and C.

The performance index of the transfer process can then be expressed (cf. Eqs. 1.34),
as

Φ0 = AF ·A(T ) +BF · B(T ) + CF · C(T ) +DF ·D(T ), (1.51)
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and the corresponding gradients to first order in ∆t are given by

δΦ0

δux(j)
= −APDX − BPCX + CPBX +DPAX ,

δΦ0

δuy(j)
= APCX − BPDX − CPAX +DPBX , (1.52)

where indexes X and P correspond to quaternion representations of operators Xj and Pj

in Eqs. 1.34.
Whereas for the performance function Φ1 (cf. Eq. 1.37) one can write:

Φ1 = [AF · A(T ) +BF · B(T ) + CF · C(T ) +DF ·D(T )]2, (1.53)

and the corresponding gradients to first order in ∆t are given by

δΦ0

δux(j)
= (−APDX −BPCX + CPBX +DPAX)(APAX +BPBX + CPCX +DPDX)

δΦ0

δuy(j)
= (APCX − BPDX − CPAX +DPBX)(APAX +BPBX + CPCX +DPDX) .(1.54)

Similary to the section 1.2.3, where for an ensemble of non-interacting spins the full
quantum mechanical description could be reduced to vector rotations in three-dimensional
space, we here reduced the full quantum mechanical description to rotations of four-
component vectors, sufficient to describe an ensemble of non-interacting spins.

Equipped now with all necessary equations, we can modify the basic GRAPE algo-
rithm to perform optimizations of unitary rotations. This will take the following form:

1. Guess initial controls uk(j).

2. Starting from U(0) = 1, calculate Uj = UjUj−1 · · ·U1 for all j ≤ N .

3. Starting from UF = C, calculate λj = U †
j+1 · · ·U †

NC for all j ≤ N .

4. Evaluate δΦ0/δuk(j) and update the m×N control amplitudes uk(j) according to
Eq. 1.17.

5. With these as new controls, go to step 2.
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1.3 Broadband excitation and inversion

Modern high resolution NMR spectrometers with very high magnetic fields result in large
offset ranges that have to be covered by modern pulse sequences. Especially 13C and 19F
nuclei with their large offset ranges pose problems to conventional hard pulses. But also
weak 15N pulses of common triple resonance probeheads, for example, make it impossible
to cover the whole nitrogen spectrum of uniformly labeled nucleic acids. The increased
offset ranges could in principle be covered by stronger hard pulses, but high spectrometer
frequencies close to 1 GHz limit the technically available maximum rf-amplitude. An
effective alternative to the hard pulse for covering the necessary bandwidth therefore is
urgently needed.

The development of cryogenic probe heads allows NMR-measurements with signifi-
cantly improved signal to noise ratios. However, the large temperature gradient in such
a probehead leads to a coil design with significantly increased B1-field inhomogeneity
compared to conventional probeheads. As a consequence the sensitivity gain due to the
cryogenic cooling is reduced with every uncompensated pulse. With robust pulses that are
compensated for strong variations in rf-amplitude this loss in sensitivity could be strongly
reduced. Optimal control theory is an ideal tool for the design of such pulses.

In the algorithm described above, the initial state for an excitation pulse M(t0) = ẑ

and the target state F = x̂, while for inversion pulse the target state F = −ẑ. Since
no pulse can effectively excite or invert an infinite range of offsets, one needs to define
a range of offset of interest and chose a number of points, say k, over this offset range,
where the performance of the pulse will be checked. Furthemore, one can be interested in
getting a pulse, which tolerates miscalibration. therefore, the amplitude can be calculated
as ω1(t) = αω0

1(t) for a set of l scaling factors α. So, for a range of chemical shift offset,
and also a range of non-ideal RF fields, the cost function Φ is calculated for every offset
and every RF scaling factor α (N = kl points altogether) and the average cost 〈Φ〉 is then
used as the performance criterion of the pulse:

〈Φ〉 =
1

noff nrf

noff∑

i=1

nrf∑

j=1

α
(i)
rf α

(j)
off Mij(tp) · F , (1.55)

where αrf and αoff are eventual weighting factors, i = 1..noff being the offsets and j =
1..nrf the scaled rf-amplitudes calculated for each pulse of length tp, e.g. to include
the effects of rf-inhomogeneity or rf-amplitude misadjustments. Similarly, the value of
M × λ is calculated for every combination of resonance offset and RF field, and the
average of all these values, 〈M × λ〉, is used in step (3′). Since frequency modulation
is equivalent to phase modulation, with ∆ω(t) = dφ(t)/dt, only amplitude and phase
modulations were considered in the current implementation of the algorithm. The value
of ∆ω in Eq. 1.18 is then time-independent. and gives the chemical shift of the irradiated
spin. Since one cannot apply a RF pulse with z component, only the transverse or (x, y)
components of ωe are modified in step 4. This effectively ignores the information contained
in the z component of M × λ for optimizing the cost. The stepsize, ǫ, can be chosen
sufficiently small to ensure the solution always tends steadily towards the optimum, but
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this can be overly time-consuming, involving many unnecessarily small steps during some
iterations. Instead, the largest step providing improvement in the cost is determined at
each iteration by bracketing the optimal step size among three values and using a simple
1D line minimization routine [23]. The efficiency of the optimization is further enhanced
using a conjugate gradient method to determine the step direction.

1.3.1 First application to broadband excitation

For the first application of the optimal control theory to the problem of broadband excita-
tion reported in [34], the average 〈M×λ〉, calculated using steps 2 and (3′), was calculated
over a combination of 81 resonance offsets in the range ±20 kHz, incremented by 500 Hz,
and 5 RF scalings given by α = (0.95, 0.975, 1.0, 1.025, 1.05). The RF values were weighted
according to a Gaussian distribution exp[−(1 − α)2/(2σ2)], with σ = 0.042 giving a full
width at half-maximum (FWHM) of 0.1, or 10% of the nominal RF value. The resonance
offsets were weighted equally. The two RF control fields (ω1)x and (ω1)y were digitized
in 0.5 µs steps over the 2ms pulse length. RF inhomogeneity in the amplitude ω1(t) was
incorporated by scaling the ideal RF amplitude ω0

1(t) according to ω1(t) = αω0
1(t) for

constant factors α. So, the optimized cost function had a total of 8000 independent con-
trol parameters (4000 time digits, 2 components each) to be optimized over 405 possible
combinations of RF scale factor and resonance offset, which for traditional optimization
methods would present a formidable challenge.

The optimal control algorithm, implemented according to the design criteria of the
previous section, converged to the excitation pulse displayed in Fig. 1.3. The algorithm
requires less than 30 min of CPU time to generate the pulse on a 1.5GHz Pentium IV
processor.

The seemingly random appearance of the pulse belies its function: each increment
of the pulse delivers the precise RF amplitude and phase required to maximize the final
x magnetization over the target ranges in RF inhomogeneity and resonance offset for
the given (random) initial RF waveform. The inverse transformation Ix → Iz can be
obtained by applying the time-reversed pulse, with each phase incremented by 180◦. The
theoretical performance of the pulse, assuming simple Bloch equation evolution of the
irradiated spins (as in the optimization procedure), is illustrated in Fig. 1.4. Contours of
x magnetization, Mx, are plotted in the upper panel as functions of resonance offset and
RF inhomogeneity. The phase of the excited magnetization is shown similarly in the lower
panel. Over a ±5% variation in the nominal RF delivered by the coil and resonance offsets
of ±20 kHz, the excited magnetization Mx is at least 99.5% of the initial z magnetization,
M0.

For this pulse a commonly used figure-of-merit (FOM), defined as the total excitation
bandwidth satisfying the benchmark divided by the peak RF amplitude, is equal to 2.3,
which is comparable to the best values of the previous broadband excitation pulses, with
the exception of the 12 ms ABSTRUSE pulse [35], which gives a much higher FOM at the
price of increased vulnerability to J-coupling and relaxation effects. The FOM, however,
provides no measure for the uniformity of the performance as a function of changing RF
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Figure 1.3: Broadband excitation pulse. The deceptively “random” appearance in pulse
amplitude (upper panel) and phase (lower panel) as a function of time efficiently chore-
ographs the transformation Iz → Ix over a 40 kHz range of resonance offsets with moderate
tolerance to RF miscalibration (see Fig. 1.4). The pulse length was fixed at 2 ms, result-
ing in a maximum RF amplitude for the pulse of 17.5 kHz. A 2 ms pulse of constant 8.5
kHz RF amplitude would have the same power requirements as the pulse shown. Figure
taken from [34].
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Figure 1.4: Simulated performance of the optimized pulse of Fig. 1.3. Starting with
initial z magnetization M0, the magnitude Mx (upper panel) and phase φ (lower panel)
of the excited magnetization is plotted as a function of resonance offset and RF field B1,
represented as a fraction of the nominal field B0

1 . Contour lines displayed for Mx are
[0.995, 0.99, 0.96], and those for the phase of the excited magnetiztion are [4◦, 8◦, 16◦].
Figure taken from [34].
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calibration or homogeneity.
The longer an excitation pulse is, the more important the potential effects of J-

coupling during the pulse, and 2ms is sufficiently long that this could be a significant
concern. However, it was shown on simulations as well as experimentally [34], that for a
heteronuclear systems the performance of the pulse is essentially the same, as it is for a
single spin shown in Fig. 1.4.

1.3.2 Limiting the pulse amplitude

Although the 2ms pulse for the broadband excitation optimized by means of optimal
control theory, (BEBOP), described just above, performs extremely well, shorter pulses
are also desirable in order to minimize relaxation effects. At the same time, peak RF
amplitude must remain below probe limits (e.g., available for 13C spectroscopy). In the
procedure described above the maximum amplitude of the RF controls was not explicitly
constrained – a chosen pulse length and convergence factor for terminating the algorithm
resulted in an unspecified maximum pulse amplitude. This is, however, unpractical, while
any attempt to optimize a shorter pulse in order to eventually improve its relaxation
properties will inevitably result in final amplitude driven up by the algorithm to always
higher values in order to achieve convergence. By decreasing the length of a pulse we
wish to optimize at some point we will reach the situation, where for every optimization
attempt with all possible starting sequences the produced peak amplitude will be so high,
that any practical application of such a pulse on real spectrometers will be just impossible.
So, one has to change the algorithm in a way, that only pulses with amplitudes below
some limit can be produced. In other words we need to limit the space of allowed control
amplitudes, so that ω1(t) < ωmax for every t.

The procedure for optimizing the cost, subject to the constraint that the RF amplitude
at each time, ω1(t), be no greater than a chosen maximum amplitude ωmax, is incorporated
in the following algorithm [36]:

1. Choose an initial RF sequence ω
(0)
e .

2. Evolve M forward in time from the predefined initial state M(t0).

3. Calculate M(tp) × λ(tp) and evolve it backwards in time.

4. ω
(k+1)
e (t) −→ ω

(k)
e (t) + ǫ[M(t) × λ(t)].

5. For any ω1(t) > ωmax, set ω1(t) → ωmax.

6. Repeat steps 2 - 5 until a desired convergence of Φ is reached.

The RF clipping in step 5 is implemented by adjusting (ω1)x and (ω1)y to satisfy the
constraint on maximum RF amplitude without changing the phase of ω1

This modified algorithm was implemented in [36] with all parameters set to the same
values as in [34], only the length of the pulse was set to a shorter value of 500µs. But this
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Figure 1.5: Broadband excitation pulse obtained using the optimal control algorithm
described in the text. Application of pulse amplitude (upper panel) and phase (lower
panel) produces the transformation Iz → Ix over a 40 kHz range of resonance offsets with
tolerance to RF miscalibration sufficient for typical high-resolution NMR probes (see Fig.
1.6). The maximum RF amplitude was limited to 17.5 kHz by clipping whenever the
amplitude exceeded this value, forcing the algorithm to search for another solution. A
500 µs pulse of constant 13.5 kHz RF amplitude would have the same power requirements
as the pulse shown. Figure taken from [36].

time the maximal possible RF amplitude was constrained to 17.5 kHz, a value of reached
peak amplitude in previous implementation of the algorithm. The amplitude and phase
of the resulting excitation pulse, digitized in 0.5 µs increments, are plotted as a function
of time in Fig. 1.5 for comparison with the earlier result. The figure clearly shows the
cutoff for the maximum RF amplitude, resulting in a constant amplitude of 17.5 kHz
during extended periods of the pulse.

The theoretical performance of the pulse, assuming simple Bloch equation evolution of
the irradiated spins (as in the optimization procedure), is illustrated in Fig. 1.6. Contours
of x magnetization, Mx, are plotted in the upper panel as functions of resonance offset
and RF inhomogeneity. The phase of the excited magnetization is shown similarly in the
lower panel. Over a ±5% variation in the nominal RF delivered by the coil and resonance
offsets of ±20 kHz, the excited magnetization Mx is still at least 99.5% of the initial
z magnetization, M0, but the phase is now less than 2◦, compared to 4◦ for the 2 ms
pulse. The 99% contours cover almost a ±15% variation in nominal RF, and the phase
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Figure 1.6: Simulated performance of the optimized pulse of Fig. 1.5. Starting with
initial z magnetization M0, the magnitude Mx (upper panel) and phase φ (lower panel)
of the excited magnetization are plotted as a function of resonance offset and RF field
B1, represented as a fraction of the nominal field B0

1 . Contour lines displayed for Mx are
[0.995, 0.99], and those for the phase of the excited magnetization are [2◦, 4◦], demon-
strating practically ideal performance even beyond the range of RF (±5%) and resonance
offset (±20 kHz) variations considered in the optimal control implementation. Figure
taken from [36].
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of the final magnetization is on the order of only 4◦ over this larger RF range, operating
over the same 40 kHz bandwidth. The nearly ideal pulse performance illustrated in Fig.
1.6 indicates that there is some latitude within the constraints of the design criteria for
further shortening the pulse length, since perfect performance may not be necessary.

1.3.3 Exploring the limits of broadband excitation and inversion

As we see, the optimal control theory is a powerful tool, which allows one to design
RF pulses covering large offset ranges and showing significant degree of tolerance against
miscalibration. Nonetheless, all attempts to optimize pulses so far were just a kind of blind
search, the pulse parameters were chosen more or less arbitrarily with the hope, that this
choice will allow the algorithm to produce reasonably performing pulses. Depending on
demands one wants the pulse to meet, such a search for optimal parameters can be a rather
time consuming procedure, while every change will require a full optimization run in order
to see whether a sufficiently good pulse can be produced under these conditions. It will be
therefore quite useful to know the minimal necessary conditions, like duration and peak
RF amplitude, a pulse should meet in order to produce a desired degree of excitation
or inversion for a given range of offsets and given tolerance to RF power miscalibration.
More to say, once we know, that for certain spin systems, where the theoretical limits of
quantum evolution were known [5–11], numerical algorithms based on principles of optimal
control theory, provide pulse sequences which approach the physical limits [12–14], then
such search can pretend on some generality and show the estimates to the physical limits
for robust broadband excitation and inversion. In particular we want to specify upper
limits for the minimum durations of pulses as a functions of bandwidths and RF variation.

For this purpose a systematic study of the pulse performance was performed with
tools of optimal control theory. Sets of excitation and inversion pulses were calculated for
bandwidths of 10, 20, 30, 40, and 60 kHz considering both ideal rf amplitude (scale factor
of 1) and a variation of ±20 percent in the factor used to scale the rf amplitudes. Also sets
of pulses for a fixed bandwidth of 20 kHz with variations of ϑ of ±10, ±20, ±30, and ±40
percent in rf scale factor were optimized to test robustness against B1-field inhomogeneity.
In all cases, the nominal (unscaled) rf-amplitude was limited to 10 kHz using the method
described in the previous section. For each set, pulse lengths tp were varied in ranges as
listed in Table 1.1. Generally, pulse durations were incremented until the quality factor
Φ exceeded 0.995. Each chosen bandwidth was divided into equal increments, with noff =
100 for 10 kHz bandwidth, noff = 200 for bandwidths of 20, 30, and 40 kHz and noff = 300
for 60 kHz bandwidth. nrf was chosen equal to 5 with equidistant percentage amplitude
changes whenever variations in rf-amplitude were included in the calculations. The time
digitization for the optimized shapes was 0.5 µs in all cases.

One hundred randomized starting pulses were generated to start 100 optimizations
for each data point in Figs. 1.8 and 1.9. As with all gradient-based optimizations, the
optimal control algorithm can terminate at a local, rather than the global, extremum.
The pulse found by the algorithm depends on the (random) pulse chosen to start the
procedure. However, in contrast to conventional optimization procedures, a significant
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Table 1.1: Constraints used for BEBOP and BIBOP optimizations

rf-limit (kHz) ∆νa (kHz) noff ϑb (%) tp excitation (µs) tp inversion (µs)

10 10 100 — 2.5 - 85 2.5 - 122.5

10 20 200 — 2.5 - 142.5 2.5 - 182.5

10 30 200 — 2.5 - 217.5 2.5 - 247.5

10 40 200 — 2.5 - 267.5 2.5 - 312.5

10 60 300 — 2.5 - 422.5 2.5 - 457.5

10 20 200 ± 10 2.5 - 247.5 2.5 - 242.5

10 20 200 ± 20 2.5 - 337.5 2.5 - 307.5

10 20 200 ± 30 2.5 - 442.5 2.5 - 352.5

10 20 200 ± 40 2.5 - 667.5 2.5 - 417.5

10 5 100 ± 20 30 - 60 40 - 115

10 10 200 ± 20 50 - 125 50 - 170

10 20 200 ± 20 100 - 190 85 - 212.5

10 30 300 ± 20 150 - 285 200 - 250

10 40 300 ± 20 180 - 405 265 - 385

10 50 300 ± 20 200 - 540

a) ∆ν is defined as the excitation/inversion bandwidth used in the optimization. b) ϑ is
the range of rf amplitude scaling incorporated in the optimization.

percentage of the optimal control trials converges to similar values, even in cases with
tight constraints. In addition, the quality factors cited as establishing limits on pulse
performance are very high, approaching the ideal value of one (see Fig. 1.7 and Fig.
1.13). Any potential improvement in these limits will therefore be relatively small.

The convergence of every single optimization was very fast ranging from seconds for
the shortest pulses to tens of minutes for the longest ones with larger noff and nrf on a
single AMD Athlon 1500+ processor Linux-based PC.

The results of the optimizations of excitation and inversion pulses are shown in Figs.
1.8 and 1.9, respectively: The performance of the optimized pulses described by the
quality factor Φ is given as a function of pulse length on a linear scale in Figs. 1.8 A,
D and 1.9 A, D. A logarithmic scale is used in Figs. 1.8 B, E and 1.9 B, E to show the
differences at longer pulse durations more clearly. As expected, higher demands in terms
of bandwidth or tolerance to rf-amplitude variation lead to reduced quality factors that
can, however, be compensated by increased pulse lengths. In all cases pulses with more
than 99.5 percent excitation or inversion over the entire offset and rf-amplitude ranges
could be found for unexpectedly short pulse durations of significantly less than 700 µs. A
question of considerable practical interest is the minimum pulse length needed to achieve
an excitation or inversion of a given quality. This information is shown in Figs. 1.8 C, F
and 1.9 C, F.
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Figure 1.7: Histogram distribution of quality factors Φ obtained for 100 optimizations for
excitation pulses of 20 kHz bandwidth, of 300 µs duration, and ±20 % rf-variation (open
bars); 600 µs duration and ±40 % variation in rf-amplitude (black bars). A significant
percentage of the optimizations is close to the maximum quality factors of 0.9955 and
0.9957, respectively.

The relation between the duration and bandwidth is roughly linear for both types of
pulses for the investigated offset and rf ranges.

The dependence of the quality factor on the pulse duration is not a single round
curve, but shows a step or wave-like behavior (c.f. Figs. 1.8 A,D and 1.9 A,D). A more
detailed analysis reveals that steps are related to specific pulse families of optimal pulses.
Representatives of such pulse families are shown in Fig. 1.7 for excitation. For very short
pulses, optimal control theory found that hard pulses with constant amplitude and phase
provided the best performance. For longer pulses, the algorithm introduced 180◦ phase
shifts resulting in pulses very similiar to phase-alternating composite pulses with one, two,
and three phase jumps. If the pulse length increases further, the phase jumps ’morph’
into more continuous phase changes. As was shown in [36], even longer pulses will have
significant amplitude modulation, interspersed with periods of maximum rf amplitude.
If the pulse is sufficiently long, the amplitude will not necessarily reach the rf limit [34].
The pulse families shown in Fig. 1.7 each correspond to a ’step’ in Fig. 1.8 A,D.

Pulses optimized for inversion all show constant rf-amplitude over the entire length,
but the observed step-like behavior still corresponds to certain pulse patterns. As for
excitation, hard pulses and pulses with a single 180◦ phase jump give best results for very
short pulse durations and bandwidths up to 30 kHz. E.g. for a bandwidth of 20 kHz
and assuming no variation in rf amplitude, Fig. 1.11 B shows the numerically optimized
pulse with a total duration of 67.5 µs, which represents a phase-alternating composite
pulse {52◦x,191◦−x}. For this bandwidth, such two-component phase-alternating pulses of
the general form {αx, β−x} are found to be optimal for pulse durations between 52.5
and 72.5 µs. In this range, the flip angle β of the numerically found optimal pulses is
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Figure 1.8: Maximum quality factors reached for broadband excitation pulses (BE-
BOP) with rf-amplitude limited to 10 kHz under various optimization constraints. The
maximum quality factors Φ with respect to pulse duration is given for the five different
bandwidths ∆ν equal to 10 kHz, 20 kHz, 30 kHz, 40 kHz, and 60 kHz on a linear (A) and
logarithmic scale (B). In C, the pulse lengths for quality factors of 0.98, 0.985, 0.99, and
0.995 are plotted as a function of the desired bandwidth and provide an estimate for the
minimum pulse duration needed for specific requirements. The maximum quality factors
Φ with respect to rf-variation are shown for no variation and rf-ranges ϑ of ±10 %, ±20 %,
±30 %, and ±40 % on a linear (D) and logarithmic scale (E) for a fixed bandwidth of
20 kHz. In (F), the minimum pulse duration tp are shown as a function of the rf variation
±ϑ for quality factors Φ =0.98, 0.985, 0.99, and 0.995.
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Figure 1.9: Maximum quality factors reached for broadband inversion pulses (BIBOP)
with rf-amplitude limited to 10 kHz under various optimization constraints. Again, max-
imum quality factors Φ with respect to pulse duration are given for the five different
bandwidths ∆ν equal to 10 kHz, 20 kHz, 30 kHz, 40 kHz, and 60 kHz on a linear (A) and
logarithmic scale (B). In C, the pulse lengths for quality factors of 0.98, 0.985, 0.99, and
0.995 are plotted as a function of the desired bandwidth and provide an estimate for the
minimum pulse duration needed for specific requirements. The maximum quality factors
Φ with respect to rf-variation are shown for no variation and rf-ranges ϑ of ±10 %, ±20 %,
±30 %, and ±40 % on a linear (D) and logarithmic scale (E) for a fixed bandwidth of
20 kHz. In (F), the minimum pulse duration tp are shown as a function of the rf variation
±ϑ for quality factors Φ =0.98, 0.985, 0.99, and 0.995.
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Figure 1.10: Amplitude and Phase for optimized excitation pulses of various dura-
tions found in the optimization for a bandwidth of 30 kHz and no rf-variation. Al-
though no restrictions to the pulse shape were made, phase-alternating composite pulses
are found for pulse durations of up to 82.5 µs (pulses shown in A-D correspond to
63◦y, {29◦−y, 88◦y}, {32◦y, 85◦−y, 126◦y}, and {29◦−y, 68◦y, 88◦−y, 112◦y}, while smooth phase-
modulations were found for longer pulses.

approximated by β ≈ α+145◦. Hence, the overall on-resonance flip angle (α−β) of these
pulses is only about 145◦ for this family of short pulses, which achieve the best possible
average inversion over the full 20 kHz offset range. For a bandwidth of 30 kHz, two-
component phase-alternating pulses {αx, β−x} are found for durations between 52.5 and
62.5 µs with β ≈ α+125◦. For a bandwidth of 10 kHz, two-component phase-alternating
pulses are found for durations between 52.5 and 87.5 µs with β ≈ α + 165◦, e.g. for
a duration of 87.5 µs, the numerically optimized pulse is {76◦x, 239◦−x}, which is similar
to the well known pulse {90◦x, 270◦−x} [37, 38]. For longer pulse durations and broader
bandwidths, a pulse family with smoothly modulated phase is found to be superior to
phase-alternating composite pulses (c.f. Fig. 1.11 C-E for a bandwidth of 20 kHz). The
number of modulations in the phase marks different subclasses that again correspond to
slight steps in Fig. 1.9 A, D. Although no symmetry constraints were imposed in the
optimization, pulses of this class are perfectly symmetric around the pulse center. In
Fig. 1.12 the phase and frequency of three such pulses is shown. The central smooth
frequency sweep is strongly reminiscent of adiabatic pulses, which have a high degree
of tolerance to rf inhomogeneity or miscalibration. However, the class of pulses derived
here has constant maximum amplitude and therefore shows very low adiabaticity at the
pulse edges. Instead, a pronounced frequency swing is observed that seems to achieve a
similar effect as the amplitude modulation at the edges of adiabatic pulses. In general,
the optimized pulses are similar to BIP pulses derived in [39] with only slightly improved
inversion properties.

For comparison of the BEBOP and BIBOP pulses with already known excitation and
inversion pulses we calculated the quality factor Φ for a large number of short published
pulses. In all cases we set the maximum rf-amplitude to 10 kHz for consistent results.
In addition, we set up comparisons without considering rf-amplitude variation and con-
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Figure 1.11: Amplitude and phase behavior for optimal inversion pulses of various
durations found for an optimization bandwidth of 20 kHz and no rf-variation. Constant
amplitude pulses were obtained for all pulse lengths. While hard and phase-alternating
composite pulses appear to be optimal for very short durations (pulses shown in A,B
correspond to 112.5◦x and {52◦x, 191◦−x} ), a symmetric class of pulses with smooth phase
modulations seems to be optimal for pulse lengths longer than 70 µs.

sidering a variation ϑ of ±20 %. For all pulses we numerically determined the maximum
bandwidth in which the quality factor Φ reaches 0.98. In detail, composite pulses we used
for comparison were taken from [18, 40, 41] for excitation and from [18, 41–45] for inver-
sion. In addition we derived optimum sech/tanh and tanh/tan adiabatic pulses for several
bandwidths as described in [46] and implemented most of the BIP inversion pulses [39].
The results are shown in Fig. 1.13: In the case of excitation no pulse reaches the perfor-
mance of BEBOP pulses, considering variations in rf-amplitude none of the tested pulses
does reach a quality factor of 0.98 (Fig. 1.13 A,B). In the case of broadband inversion,
only the 90y240x90y pulse [18] achieves the limit when no rf-variation is considered (Fig.
1.13 C). As shown in Fig. 1.13 D, the BIP pulses [39] closely approach the limits found
by our algorithm if rf-amplitude variations of ±20 % are included in the calculations.

Some of the limitations to the applicability of the presented BEBOP and BIBOP
pulses should be pointed out. All pulses are optimized starting with initial ±Mz mag-
netization. The pulse is not defined for any other starting magnetization. However, if a
BEBOP pulse shall be used to transfer Mx magnetization to Mz , the time reversed pulse
shape can be used. In addition, as with most other optimized excitation and inversion
pulses, BEBOP and BIBOP pulses do not result in uniform unitary rotations. Initial
magnetization components different from Mz will not be transfered the same way as a
hard pulse would do. BIBOP pulses therefore cannot be used as refocussing pulses. The
refocussing of a single transverse magnetization component (e.g. −Mx) can be achieved
by the application of two pulses, first a time-reversed and 180◦ phase shifted BEBOP
pulse and then the original BEBOP pulse. In this case the magnetization component is
refocussed in two steps: −Mx →Mz →Mx.

BEBOP and BIBOP pulses are, of course, scalable in the same way as conventional
pulses. A pulse applied with twice the rf-amplitude will have half the duration and cover
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Figure 1.12: The phase behavior of the pulses shown in Fig. 1.11 C-E has been con-
verted to frequency modulation for comparison. A symmetric non-linear frequency sweep
is observed. While the frequency sweep observed in the pulse center is reminiscent of
adiabatic pulses, the swings at the pulse edges are not of high adiabaticity.
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Figure 1.13: Comparison of the maximum bandwidths with a quality factor Φ of 0.98
for previously reported broadband excitation (A,B) and inversion pulses (C,D) relative
to BEBOP and BIBOP pulses obtained here. BEBOP and BIBOP pulses are indicated
by filled diamonds which are connected by solid lines. (A) For excitation, BEBOP pulses
were compared with pulses from [41] (squares) and other pulses cited in [47] from original
references [18, 40] (filled triangles). (B) By taking a rf-variation of ±20 % into account,
none of the composite pulses reached a quality factor of 0.98. (C) Inversion pulses com-
pared to BIBOP were taken from [44] (filled triangles), [41] (open triangles), [39] (open
circles), [46] (open squares), and other inversion pulses cited in [47] from original refer-
ences [18, 42, 43, 45]. Only a 90y240x90y pulse reaches the performance of BIBOP pulses.
(D) The same comparison including ±20 % rf-variation. Only few composite pulses, adi-
abatic and BIP pulses reach a quality factor of 0.98. The shapes of the BIP pulses [39]
are almost identical to the optimum BIBOP pulses.
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twice the bandwidth of the original pulse with the same robustness with respect to relative
variations of the rf-amplitude. The data presented will therefore be useful as an estimate
for most pulse requirements.

Besides practical aspects on the application of pulses in modern spectroscopy some
theoretical aspects of this study should be noted. The length of a well B1-field compen-
sated excitation pulse exceeds the time of an equally well compensated inversion pulse.
We therefore conclude that a controlled phase in the transverse plane in the presence of
B1-field inhomogeneity is a rather difficult task especially if the bandwidth exceeds the
maximum allowed rf-amplitude. Compensation for variation in rf-amplitude introduces
phase modulation already for pulses of the length of a hard 90◦ pulse and amplitude mod-
ulation for slightly longer pulses. It seems that the phase-alternating composite pulses
obtained from broadband studies therefore are a result of the bandwidth only, while B1-
compensation could be better achieved by smooth phase and amplitude changes.

Finally, for relatively short inversion pulses a symmetric class of pulses with constant
amplitude appears to be optimal. The pulses show a frequency sweep similar to adiabatic
pulses in the center but a distinct ’frequency swing’ at the pulse edges and closely resemble
the BIP pulses [39].

1.3.4 Constant amplitude pulses

The BEBOP pulses obtained to date and demonstrated above exhibit nearly ideal perfor-
mance, but their rapid and extreme amplitude jumps can require some monitoring and
adjustment of system hardware, primarily with regard to amplifier linearity and accurate
output of the waveform generators. It was demonstrated that this is not a problem for
modern NMR-consoles with linearized amplifiers and fast amplitude and phase switching
times. For NMR-spectrometers equipped with non-linearized amplifiers, however, con-
stant amplitude pulses would be more convenient. In addition, encouraged by the success
of optimal control theory in designing broadband pulses with outstanding performance,
we therefore consider a problem which has been resistent to a successful solution: nearly
calibration-free broadband excitation. To accomodate the majority of 13C probes in use,
the pulse should operate equally well for a peak RF output anywhere in the range 10–20
kHz (25–12.5 µs pulse width).

As was shown above, for a given bandwidth and tolerance to RF variability, an optimal
control algorithm which allows amplitude and phase modulation and limits the maximum
RF amplitude produces a purely phase-modulated pulse when the pulse length is reduced
below a certain level – the algorithm pins the RF to its maximum allowed value at all
times during the pulse in attempting to optimize pulse performance. For longer pulse
lengths, the algorithm is able to converge to a solution using lower, time-variable values
of the amplitude without having to consider larger RF values. Instead of reducing pulse
length by trial-and-error until constant amplitude pulses are found, it is more efficient to
derive them directly. The algorithm described above only needs to be slightly modified
to perform such kind of task. For a constant amplitude phase-modulated pulse, ω1 in Eq.
1.18 is time-independent and the only control is the phase, φ. Plugging ωe from Eq. 1.18
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Figure 1.14: Phase modulation of the constant amplitude 1 ms PM-BEBOP pulse. This
pulse performs the point-to-point transformation Iz → Ixover a 50 kHz range of resonance
offsets for constant RF amplitude set anywhere in the range 10 - 20 kHz

into Eq. 1.27 and setting ∂h/∂φ = 0 gives, together with the previous conditions on the
evolution of M and λ, the same requirements to optimize the cost, as in Eqs 1.29, 1.30,
while instead of Eq. 1.31 we now have

ωrf · (λMz − Mλz) = 0. (1.56)

The algorithm, modified with accordance to this condition, now has the following form:

1. Choose an initial RF sequence ω
(0)
e .

2. Evolve M forward in time from the predefined initial state M(t0).

3. Evolve λ backwards in time from the predefined target state F .

4. ω
(k+1)
e (t) −→ ω

(k)
e (t) + ǫωrf · (λMz − Mλz)

5. Repeat steps 2 - 4 until a desired convergence of Φ is reached.

Since the optimization is performed over a range of chemical-shift offsets and variations
in the peak RF calibration, the gradient used in step 4 is averaged over the entire range.

Pulse performance, in general, depends on the pulse duration, with pulses of sufficient
length giving the optimal control algorithm the flexibility to obtain practically ideal results
in many cases. In addition, as shown in the previous section, excitation (and inversion)
efficiency undergoes a steep drop in performance below a minimum pulse length, which
depends on the parameters defining the optimization. Increasing pulse length significantly
above this minimum provides only marginal improvement, so the shortest pulse that
provides acceptable performance is the goal. Choosing 2 ms for the pulse length initially
and optimizing with the new algorithm provided a pulse that transforms 99.9% of initial



1.3. Broadband excitation and inversion 35

z magnetization to within 1.5◦ of the x-axis over a resonance offset range of 50 kHz for a
constant RF amplitude anywhere in the range 1020 kHz. This nearly ideal performance
can be traded for shorter pulse length. Since performance drops rapidly for shorter pulses,
we find that overdigitizing the initial waveform used in the optimal control procedure gives
the algorithm additional flexibility in finding the best solution. Every other point of the
resulting pulse is used as the initial input for generating a new pulse, and this procedure
is continued until a minimal digitization with acceptable performance is reached. For a
1 ms pulse length, 320,000 random phases were input initially (∼3 ns per time step).
Such a large number of parameters would be extremely difficult, if not impossible, to
optimize using conventional methods. This breeder pulse resulted in the final 625-point
pulse shown in Fig. 1.14.

Experimental excitation profiles were implemented on Bruker Avance spectrometers
equipped with SGU units for RF control and linearized amplifiers. For testing the perfor-
mance of the phase modulated BEBOP pulses a sample of 99.96% D2O was doped with
CuSO4 to a final T1 relaxation time of ∼500 ms. To reduce effects of B1-field inhomo-
geneity, approximately 40 µl of this solution was placed in a Shigemi limited volume tube.
The maximum RF amplitude was calibrated using a square shaped pulse. Offset profiles
were then obtained by varying the offset of the shaped pulses from -27 kHz to 27 kHz
in steps of 1 kHz. In order to also monitor the B1-field dependence of the pulses, the
experiments were repeated with ±1, ±2, and ±3 dB attenuation relative to a central RF
amplitude, corresponding to RF amplitudes of 10.0, 11.2, 12.6, 14.1, 15.8, 17.8, and 20.0
kHz. The results are shown in Fig. 1.15. The experimental data represent a considerable
improvement over the maximum attainable performance of a phase-corrected hard pulse,
opening the door to practically calibration-free excitation pulses.
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Figure 1.15: Excitation profiles for the residual HDO signal in a sample of 99.96% D2O
are displayed as a function of resonance offset (1 kHz increments) and RF power levels
applied using the 1 ms PM-BEBOP pulse of Fig. 1.14. The pulse with nominal RF
amplitude of 15 kHz was applied with constant amplitudes of 10 kHz (+3 dB), 11.2 kHz
(+2 dB), 12.6 kHz (+1 dB), 14.1 kHz (0 dB), 15.8 kHz (-1 dB), 17.8 kHz (-2 dB), and
20 kHz (-3 dB). The experimental performance of the pulse is in excellent agreement with
theory, producing practically perfect excitation, Mx > 0.99M0, over ±25 kHz for RF
variability within 6 dB (±33.3%) of the nominal value.



1.4. Power limited pulses 37

1.4 Power limited pulses

1.4.1 Theory

Fundamental limitations comes to the fore, whenever one wants to apply a train of rf-
pulses, which is indispensable in most pulse sequences used in modern applications of
NMR spectroscopy. Such essential building blocks of many pulse sequences as spin lock,
homo- and heteronuclear Hartmann-Hahn transfer or any kind of decoupling sequence are
nothing else than more or less long pulse trains. Whenever one uses such elements in a
pulse sequence, extreme care should be taken when setting their power level in order not
to damage the probehead or amplifier.

It is therefore of utmost importance to optimize pulses or pulse trains, which provide
the best available performance for e.g. excitation or inversion for a given average rf-power.

The algorithm described in previous sections only needs to be slightly modified to
perform this task. The procedure for optimizing the cost, subject to the constraint that
the average rf-power of the pulse be no greater than a chosen maximum power is very
similar to that for optimizing pulses with limited rf-amplitude (see paragraph 1.3.2), with
the only significant difference, that the root mean square value ωrms of the piecewise
constant rf-amplitude has to be calculated for the pulse shape as a whole and is checked
to be less then the predefined limit:

1. Choose an initial rf sequence ω
(0)
e .

2. Evolve M forward in time from the predefined initial state M(t0).

3. Calculate M(tp) × λ(tp) and evolve it backwards in time.

4. ω
(k+1)
e (t) −→ ω

(k)
e (t) + ǫ[M(t) × λ(t)].

5. Calculate ωrms =

√
Pn

i=1
ω2

i (t)

n

6. If ωrms > ωdef
rms, with ωdef

rms as the defined limit of the root mean square power, then

for every ω1(t) set ω1(t) → ω1(t) · ωdef
rms

ωrms
,

7. Repeat steps 2 - 6 until a desired convergence of Φ is reached.

Since the optimization is performed over a range of chemical-shift offsets and variations
in peak rf calibration, the gradient used in step 4 is averaged over the entire range.

1.4.2 Optimizations

As was calculated in Section 1.3.3 for the case of pulses with limited rf-amplitude, it would
also be useful for pulses with limited average rf-power to know the minimal necessary
conditions, like duration and average rf-amplitude, a pulse should meet in order to produce
a desired degree of excitation or inversion for a given range of offsets and given tolerance
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Table 1.2: Constraints used for optimizations of pulses with limited average rf-power

∆νa (kHz) ϑb (%) tp excitation (µs) tp inversion (µs)
10 — 5 - 45 5 - 105
20 — 5 - 65 5 - 155
30 — 5 - 85 5 - 205
40 — 5 - 105 5 - 265
50 — 5 - 125 5 - 325
10 ± 10 5 - 95 5 - 135
10 ± 20 5 - 135 5 - 155
10 ± 30 5 - 185 5 - 195
10 ± 40 5 - 235 5 - 245
20 ± 10 5 - 125 5 - 175
20 ± 20 5 - 185 5 - 225
20 ± 30 5 - 255 5 - 295
20 ± 40 5 - 375 5 - 345
30 ± 10 5 - 175 5 - 255
30 ± 20 5 - 245 5 - 305
30 ± 30 5 - 345 5 - 325
30 ± 40 5 - 405 5 - 355

a) ∆ν is defined as the excitation/inversion bandwidth used in the optimization. b) ϑ is
the range of rf-amplitude scaling incorporated in the optimization.

to rf-power miscalibration. For this purpose a systematic study of the pulse performance
was performed with tools of optimal control theory. Sets of excitation and inversion
pulses were calculated for bandwidths of 10, 20, 30, 40, and 50 kHz considering ideal rf-
amplitude (scale factor of 1). Also sets of pulses for bandwidths of 10, 20 and 30 kHz with
variations of ϑ of ±10, ±20, ±30, and ±40 percent in rf scale factor were optimized to
test robustness against B1-field inhomogeneity. In all cases, the root mean square average
rf-amplitude was limited to 10 kHz using the method described above. For each set,
pulse lengths tp were varied in ranges as listed in Table 1.2. Generally, pulse durations
were incremented until the quality factor Φ exceeded 0.995. Each chosen bandwidth was
divided into equal increments, with noff = 100. nrf was chosen equal to 5 with equidistant
percentage amplitude changes whenever variations in rf-amplitude were included in the
calculations. The time digitization for the optimized shapes was 0.5 µs in all cases. One
hundred randomized starting pulses were generated to start 100 optimizations for each
data point in Figs. 1.16 and 1.17. Like in the case of pulses with limited rf-amplitudes,
the convergence of every single optimization was very fast ranging from seconds for the
shortest pulses to tens of minutes for the longest ones with larger noff and nrf on a single
AMD Athlon 1500+ processor Linux-based PC.

The results of the optimizations of excitation and inversion pulses are shown in Figs.
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Figure 1.16: Maximum quality factors reached for broadband excitation pulses with
average rf-power limited to 10 kHz under various optimization constraints. The maximum
quality factors Φ with respect to pulse duration is given for the five different bandwidths
∆ν equal to 10 kHz, 20 kHz, 30 kHz, 40 kHz, and 50 kHz on a linear (A) and logarithmic
scale (B). In C, the values of peak rf-power of corresponding pulses are plotted as a
function of pulse length. The maximum quality factors Φ with respect to rf-variation are
shown for no variation and rf-ranges ϑ of ±10 %, ±20 %, ±30 %, and ±40 % on a linear
(D) and logarithmic scale (E) for a fixed bandwidth of 20 kHz. In (F),the values of peak
rf-power of corresponding pulses are plotted as a function of pulse length.
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Figure 1.17: Maximum quality factors reached for broadband inversion pulses with
average rf-power limited to 10 kHz under various optimization constraints. The maximum
quality factors Φ with respect to pulse duration is given for the five different bandwidths
∆ν equal to 10 kHz, 20 kHz, 30 kHz, 40 kHz, and 50 kHz on a linear (A) and logarithmic
scale (B). In C, the values of peak rf-power of corresponding pulses are plotted as a
function of pulse length. The maximum quality factors Φ with respect to rf-variation are
shown for no variation and rf-ranges ϑ of ±10 %, ±20 %, ±30 %, and ±40 % on a linear
(D) and logarithmic scale (E) for a fixed bandwidth of 20 kHz. In (F),the values of peak
rf-power of corresponding pulses are plotted as a function of pulse length.
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Figure 1.18: Amplitude and Phase for optimized excitation pulses of various durations
with limited power deposition found in the optimization for a bandwidth of 30 kHz and
10% rf-variation. Pulses very similar to the polychromatic pulses [48] were found in all
optimizations.

1.16 and 1.17, respectively: The performance of the optimized pulses described by the
quality factor Φ is given as a function of pulse length on a linear scale in Figs. 1.16 A,
D and 1.17 A, D. A logarithmic scale is used in Figs. 1.16 B, E and 1.17 B, E to show
the differences at longer pulse durations more clearly. Figs. 1.16 C, F and 1.17 C, F
show peak rf-amplitudes in corresponding pulses. As expected, higher demands in terms
of bandwidth or tolerance to rf-amplitude variation lead to reduced quality factors that
can, however, be compensated by increased pulse lengths. The relation between duration
and bandwidth is roughly linear for both types of pulses for the investigated offset and rf
ranges.

In contrast to optimizations with limited rf-amplitude, in the case of limited average
amplitudes the dependence of the quality factor on the pulse duration shows a step or
wave-like behavior only for excitation pulses with large toleration to rf-inhomogeneity (c.f.
Fig. 1.16 D). In all other cases the corresponding dependencies are all smooth curves. This
might suggest, in contrast to the considerations in Section 1.3.3, that all pulses resulting
in such optimizations should belong to a single pulse family with eventual exception of
pulses optimized to tolerate large rf-inhomogeneities. The detailed inspection of pulse
shapes, some typical representatives of which are shown in Fig. 1.18 for excitation, shows
that they indeed all belong to a single pulse family, even the pulses optimized to tolerate
large rf-inhomogeneities. The shortest pulses, looking very similar to conventional hard
pulses with only slight modulation in amplitude, might at first glance appear different
compared to longer pulses. However, a closer look reveals, that they all have shapes
similar to the left half of a sinc curve: the shortest pulses being only a small piece of it,
with longer pulses accomodating longer ”tails“ of it. With even longer pulse lengths the
phase jumps become smoothened and amplitudes get finer modulations. The sinc shape
of the pulses resembles that of polychromatic pulses for wideband excitation described
in [48], which, however, were designed without any constraints in power deposition.

Detailed investigation of shapes produced for inversion pulses (c.f. Fig. 1.19) reveals,
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Figure 1.19: Amplitude and phase behavior for optimal inversion pulses of various
durations with limited power deposition found for an optimization bandwidth of 30 kHz
and 10% rf-variation. Two major pulse classes are observed: phase-alternating pulses and
pulses with smooth adiabatic-like phase, in both cases with smoothly varying amplitudes.

that basically only two families emerge. One family consists of pulses with few periods
with constant phase with every such period having smoothly modulated amplitude, as a
rule with one distinct maximum in the center of the period. The other family resembles
inversion pulses optimized in section 1.3.3 (c.f. Fig. 1.11) and the so-called BIP pulses [39]
with smoothly modulated amplitudes. The pulses of the second family are very similar to
pulses derived in [49] for optimized decoupling at low power levels with essentialy identical
requirements. Interesting is, that the two pulse families are not chracteristic for certain
pulse length regions, like they are for pulses with limited rf-amplitude, causing their step-
wise appearance of the performance curve. The representatives of both families can be
met among pulses of any length.

Figures 1.20 and 1.21 show the performance curves of power limited pulses with
those of pulses optimized with limited amplitudes and same average power. Clearly, the
pulses with limited average rf-amplitude are generally better performing. The maximum
difference is achieved for excitation pulses with large offsets. The differences for inversion
pulses are generally less prominent. The introduction of rf-inhomogeneity further reduces
the differences in performance.
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Figure 1.20: Comparison of maximum quality factors of power limited pulses (circles)
with quality factors of pulses optimized with limited rf-amplitude (filled diamonds, same
as in Figs. 1.8 and 1.9) for excitation (A, B) and inversion (C, D) pulses and offset ranges
of 20 kHz (A, C) and 40 kHz (B, D).
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Figure 1.21: Comparison of maximum quality factors of power limited pulses (circles)
with quality factors of pulses optimized with limited rf-amplitude (filled diamonds, same as
in Figs. 1.8 and 1.9) for excitation (A, B) and inversion (C, D) pulses and rf-inhomogeneity
ranges of ±10% (A, C) and ±40% (B, D).
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1.5 Pattern pulses

Radiofrequency pulses with the only effect of effective excitation or inversion of some
range of chemical shift offsets are by no means the only kind of pulses used in modern
NMR. Pulses with specifically defined excitation or inversion profiles have a long history in
NMR [18,19,50–53]. Not only pulses which are broadband with respect to offset and/or rf
amplitude, but also selective and band-selective pulses have found numerous applications
in NMR spectroscopy and imaging. A particularly powerful approach for the design of
such pulses is based on principles of optimal control theory [2, 13, 15, 54], which make it
possible to optimize a large number of pulse-sequence parameters very efficiently. We
managed to design the pulses which create arbitrary excitation patterns as a function of
offset and rf amplitude.

1.5.1 Theory

Here, we use essentially the same algorithm as described in section 1.3.2 and restrict the
following discussion to excitation pulses that create x magnetization if applied to initial
z magnetization. However, the results can be immediately generalized to other pulses,
such as saturation or inversion pulses. (In fact, the design of selective inversion pulses
is generally considered to be an easier problem than the design of selective excitation
pulses [51, 55].)

For conventional pulses, the desired excitation profile as a function of offset (ν0) and
rf amplitude (ν1) typically has the form of a rectangle. The width ∆ν0 of this rectangular
profile corresponds to the bandwidth of frequency offsets to be covered, whereas the
height ∆ν1 of the rectangle specifies the range of rf amplitudes ν1 for which the pulse
is expected to be functional. For example, for a broadband excitation pulse which is
also robust with respect to rf amplitude variations due to pulse miscalibration or due
to rf inhomogeneity, both ∆ν0 and ∆ν1 should be large, see e.g. [34, 36, 51, 55–57]. In
contrast, for offset-selective or rf amplitude-selective pulses, ∆ν0 or ∆ν1 should be small,
respectively [19, 51, 55, 58–66]. However, as shown below, it is possible to create much
more sophisticated patterns of excitation as a function of ν0 and ν1.

In Fig. 1.22 A-D, a series of simple test patterns is shown. In these examples, the
test patterns were specified as the desired orientation of the target magnetization vector
Mt after the pulse (white: Mt = (1, 0, 0), black: Mt=(0, 0, 1)) on a grid of N0 equally
spaced offsets ν0 between −5 kHz and +5 kHz (but ± 10 kHz in Fig. 1 B) and N1 equally
spaced rf amplitudes ν1 between 6 kHz and 14 kHz. Here, the N0 × N1 grid of offsets
and rf amplitudes, for which the desired Mx component was specified, was chosen to be
40 × 16 (Fig. 1.22 A), 105 × 10 (Fig. 1.22 B), and 40 × 10 (Fig. 1.22 C, D).

Fig. 1.22 A represents an excitation profile that is band-selective with respect to rf
amplitude (9 kHz ≤ ν1 ≤ 11 kHz) and broadband with respect to offset (−5 kHz ≤ ν0 ≤
5 kHz). Conversely, Fig. 1.22 B represents a profile that is narrowband with respect to
offset (−1 kHz ≤ ν0 ≤ 1 kHz) and broadband with respect to rf amplitude (6 kHz ≤ ν1 ≤
14 kHz). Figures 1.22 C and D represent more general excitation patterns that cannot be
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specified by a rectangular excitation region with bandwidths ∆ν0 and ∆ν1. The pattern
in Fig. 1.22 C corresponds to a pulse that excites spins at different offsets, depending on
the rf amplitude. In particular, here the desired excitation freqency ν0 was proportional
to ν1. Conversely, the pattern in Fig. 1.22 D excites x magnetization for all combinations
of ν0 and ν1 in the given range, except for offsets that are proportional to the rf amplitude.

For these target patterns, we optimized rf pulses using the general optimal control
based gradient ascent strategy with the cost [57]

Φ =
∑

ν0

∑

ν1

‖Mt(ν0, ν1) − Mf(ν0, ν1)‖2, (1.57)

where Mf is the final magnetization vector after a given pulse, Mt is the target vector,
as specified in Fig. 1.22 A-D. Other cost functions can, in principle, be used as well.
In general, larger pulse durations result in larger flexibility of the achievable excitation
pattern. We have chosen pulse durations of 2, 3, 5, and 5 ms. Each pulse was digitized
in steps of 0.5 µs and the x and y amplitudes of all subpulses were optimized [34,36]. For
example, for a pulse duration of 5 ms, this corresponds to 20000 optimization parameters.
The amplitude and phase functions s(t) and φ(t) of the resulting pulses are shown in
Figs. 1.23 A-D. The performance of the optimized pulses was first analyzed by simulating
the excitation profiles numerically for the same range of offsets and rf amplitudes as in
Figs. 1.22 A-D (but on a finer grid of 100×21 combinations of ν0 and ν1). In all cases, a
reasonable match is found between desired and simulated excitation profiles.

The examples shown in Fig. 1.22 suggest that the power and flexibility of the opti-
mum control gradient ascent algorithm will allow to create arbitrary excitation patterns,
provided the specified pulse duration is suffiently long. As a non-trivial test case, we
specified the more complex pattern shown in Fig. 1.24. Here, the target pattern was
defined on a grid of N0 = 120 equally spaced offsets ν0 between ± 10 kHz and N1 = 20
equally spaced rf amplitudes between 6 kHz and 14 kHz. A pulse with a duration of 5 ms
was optimized (data not shown), which created the simulated excitation pattern shown
in Fig. 1.24 B. Analogously, some other complicated excitation patterns were successfully
realized, as Figs 1.25, 1.26 show.

1.5.2 Experimental

The new pattern pulses were tested experimentally using a sample of 99.96% D2O doped
with CuSO4 to a final T1 relaxation time of ∼ 500 ms. To reduce effects of B1 field
inhomogeneity, approximately 40 µl of this solution was placed in a Shigemi limited
volume tube. The experiments were performed on a Bruker DMX 900 spectrometer
equipped with modern SGU units for RF control and linearized amplifiers.

We used two different approaches to acquire the experimental ν0-ν1 pattern of a given
pulse. In the first approach, which, for example, was used to acquire excitation profiles
on Fig. 1.26 B, a spectrum of the sample is acquired for each combination of ν0 and
ν1. The resulting peak amplitude as a function of offset and rf amplitude respresents
the experimental excitation pattern. For example, for N0=41 offset values and N1=20
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Figure 1.22: Simple target patterns as a function of offset ν0 and maximum rf amplitude
ν1 are shown in A-D. For initial z magnetization, the desired orientation of the target
magnetization vector Mt after the pulse is color coded: (white: Mt = (1, 0, 0), black:
Mt = (0, 0, 1)). For the corresponding optimized pulses shown in Fig. 2, simulated (A′-
D′) and experimental (A′′-D′′) excitation profiles are presented, where the grey scale of
the contour plots represents the actual x component of the final magnetization vector
after the pulse (white: Mx = 1, black: Mx = 0).



48 Chapter 1. Optimizations

Figure 1.23: Pulse amplitude and phase functions s(t) and φ(t) of shaped pulses opti-
mized to approach the target patterns shown in Fig. 1.22 A-D.
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Figure 1.24: More complex target excitation pattern (A) and the corresponding simu-
lated (B) and experimental (C) excitation profile of an optimized pulse.
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Figure 1.25: Simulated excitation profile of yet another optimized pulse with complex
target excitation pattern.

different rf amplitude settings, this requires the acquisition of N0N1= 820 scans. Hence,
with a typical delay of 1 s between scans, the acquisition of a detailed two-dimensional
excitation pattern requires about 14 minutes.

Alternatively, for each rf amplitude ν1, the response of the spins can be simultane-
ously acquired for a desired offset range in a single shot by performing the experiments
in the presence of a B0 field gradient [67, 68]. As we were interested only in the x com-
ponent of the final magnetization vectors, we used the following variant of the single
shot experiment, which is insensitive to imperfect gradient switching (c.f. Fig. 1.28).
The experiment exploits the excellent broadband excitation characteristics of BEBOP
pulses [34, 36], which have been calibrated and tested on our spectrometer before. Here,
we used a BEBOP pulse with a maximum rf amplitude of ν1=17.5 kHz and a duration
of 125 µs [57], which transforms z magnetization to x magnetization over a bandwidth
of 40 kHz. (For actual calibration experiments, a more robust pulse, such as the 500 µs
BEBOP pulse should be used, which is insensitive to ν1 variations of about ± 2 dB [36]).
Immediately after the shaped pulse of interest is applied to the sample, the resulting x
magnetization is flipped to the z axis by a time-reversed BEBOP pulse. Any remaining
transverse magnetization is defocused by the gradient during a delay δ = 1.2 ms and
finally the stored z magnetization is brought back to the x axis by the BEBOP pulse and
is detected. Fourier transformation of the FID yields the excitation profile of the shaped
pulse of interest. The single shot approach for each ν1 setting significantly reduces the
time required to measure the experimental excitation pattern as a function of ν0 and ν1,
e.g. in the example given above, the time is reduced from 14 minutes to only 20 seconds.
A disadvantage of the single-shot approach is that distorted patterns can result if B0
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Figure 1.26: Simulated performance of another optimized pulse with complex excitation
pattern (A) and the corresponding experimental (B) excitation profile, acquired in a tradi-
tional fashion, where each peak is a separetely acquired spectrum for a given combination
of ν0 and ν1.
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Figure 1.27: Possibly the first ever television test chart, this very simple pattern was
broadcast by the BBC in 1934 using Baird’s 30 line TV system. Figure taken from
http : //www.meldrum.co.uk/mhp/testcard/bbc tune.html

gradient and B1 inhomogeneity are spatially correlated. Conversely, this effect may be
useful to measure such correlations.

Figs. 1.22 A′′-D′′ and 1.23 C show experimental excitation patterns acquired using the
first approach for N0=41 different offsets ν1 and N1=17 different rf amplitudes (except for
Fig. 1.22 A′′, where N1=20). In all cases, an excellent match is found between simulated
and experimental excitation patterns.

1.5.3 Calibration pulses

The simple patterns created in this exploratory study are reminiscent of early test pat-
terns used to calibrate TV sets. For example, in 1934, the BBC used a simple test card
which showed a circle over a horizontal line (Fig. 1.27). In the following decades, more
sophisticated test patterns were designed and are still being used by engineers to calibrate
monitors. Similarly, specifically designed pattern pulses could also become a useful tool
for setting up experiments and testing spectrometer hardware.

As an illustrative example, consider the calibration of rf amplitudes. Conventionally,
this is done by iteratively changing rf amplitude of a rectangular pulse with fixed duration,
determining the zero crossing of the signal where the flip angle is 180◦ (or an integer
multiple of 180◦). In contrast to this approach, it might be of advantage, to be able
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Figure 1.28: Schematic representation of an experiment for the acquisition of the exci-
tation profile as a function of offset ν0 in a single shot. The investigated excitation pulse
of duration T (grey rectangle) is applied in the presence of the gradient G1. Immediately
after the excitation pulse, x magnetization is brought back to the z axis by a time re-
versed broadband excitation pulse (BEBOP-tr) [34,36,56,57], and during the delay δ any
remaining transverse magnetization is dephased by applying a gradient G2. Finally, in
the presence of G1, the stored z magnetization is rotated to the x axis by a BEBOP pulse
and the FID is recorded.

to measure the current attenuation missetting of the amplifier in a single shot and to
simply adjust the attenuator setting accordingly. The simple pattern shown in Fig. 1.22
C directly translates rf amplitude into excitation frequency and hence, the rf amplitude
ν1 can be directly infered from the excitation frequency in a single shot experiment. The
flexibility of pattern pulses makes it possible to design more sophisticated calibration
pulses which provide internal ”tick marks“ to directly quantify a given rf misadjustment.
To illustrate this approach, we designed the test pattern shown in Fig. 1.29 A for the
calibration of a rf pulse with an amplitude ν1 of 10 kHz. The desired excitation pattern
consists of five separate frequency bands at the offsets 0 kHz, ± 1.5 kHz, and ± 3.5 kHz,
which were designed to have different bandwidths in order to be easily distinguishable.
For the desired rf amplitude of 10 kHz, the central band at an offset of 0 kHz is not
excited, whereas the bands at −1.5 kHz and −3.5 kHz are negative (corresponding to
−x magnetization) and the bands at +1.5 kHz and +3.5 kHz are positive (corresponding
to +x magnetization). If the actual rf amplitude is only 6 kHz, all five bands in the
excitation profile are positive, whereas for an rf amplitude of 14 kHz, all five bands are
negative. For any intermediate rf amplitude, the resulting excitation profile as a function
of ν0 allows to determine the actual misadjustment of the rf amplitude. A corresponding
pulse with a duration of 6 ms was optimized to create this pattern and the simulated
excitation profile is shown in Fig. 1.29 B.
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Figure 1.29: Example of a specifically designed test pattern for the experimental cali-
bration of rf amplitudes in a single shot, (A) target excitation pattern (white: Mx = 1,
grey: Mx = 0, black: Mx = −1). In (B), the simulated excitation pattern of an optimized
pulse is shown. At the rf amplitudes indicated by dashed horizontal lines (6.3 kHz, 7.4
kHz , 8.7 kHz, 10.0 kHz, 11.2 kHz, 12.6 kHz, and 14.1 kHz, corresponding to attenuations
of 4 dB, 2.6 dB, 1.2 dB, 0dB, -1 dB, -2 dB, and -3dB, respectively), the experimental
single shot spectra shown in (C) were acquired.
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The characteristic excitation profile of a single shot experiment provides a direct
check if the rf power is set correctly or by what amount the rf attenuation needs to
be corrected. Fig. 5 C shows seven experimental single shot spectra for rf amplitudes
between 6.3 and 14.1 kHz, corresponding to rf amplitude missettings between +4 and −3
dB. Each of these spectra would allow to determine the necessary attenuator correction
to achieve the desired pulse amplitude. In practice, several such calibration pulses with
different grid resolution could be used for rough and subsequent fine adjustment of the
rf power level.

Here we demonstrated the ability to design complex excitation patterns as a function
of offset and rf amplitude, using efficient optimization algorithms based on ideas from op-
timal control theory. Clearly, the achievable resolution in ν0 and ν1 of a desired excitation
pattern depends on the pulse duration, the pulse digitization and the number of opti-
mization parameters. We expect that the ability to create virtually arbitrary excitation
patterns as a function of ν0 and ν1 will find numerous applications in NMR spectroscopy
and imaging. For example, the flexibility of pattern pulses makes it possible to excite a
predefined region of interest in localized NMR experiments in the presence of both B0 and
B1 gradients. The presented pattern pulses are point-to-point transformations that rotate
a given initial magnetization vector to a desired final vector, however the methodology
is also applicable to the development of potentially useful general rotation pulses (vide
infra).
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1.6 Creating universal rotations from point-to-point

transformations

All the pulses described in previous sections are point-to-point rotations, therefore for
every offset they are defined for they rotate the initial state z to some defined target
state. The rotation axis, however, is generally undefined. It means, that, while for every
single value of chemical shift offset the performed rotation is a unitary one, the rotation
axes for different chemical shift offsets are different and do not correlate with each other.

However, here we found a surprisingly simple recipe for constructing a desired UR
pulse from a PP pulse with half the flip angle. This allows one to draw from the vast
literature on PP pulses [18–20,50–53] and to exploit efficient PP pulse optimization algo-
rithms [2, 13, 34, 36, 56, 57, 69] for the design of UR pulses with unprecedented flexibility.

And of course, the algorithm described in previous sections can also be modified in
a way to allow one to optimize directly the universal rotations pulses. In cases, where
no suited half-angle pulse is available to produce the universal rotation, such direct opti-
mization is an alternative to the optimization of the half-angle pulse.

1.6.1 Construction procedure

In order to demonstrate the basic construction principle, we first consider the special case
of UR rotations around the x axis before turning to general UR pulses with arbitrary
rotation axes.

The unitary transformation Uk(α) corresponding to a rotation by angle α around axis
k (equal to x, y, or z) is given by

Uk(α) = exp{−i α Ik}. (1.58)

We can decompose the rotation operator Ux(α) into two consecutive rotations of angle
α/2 around the x axis as

Ux(α) = Ux(α/2 ) Ux(α/2 )

= Ux(α/2)
[
Uy(π)Ux(−α/2 )U−1

y (π)
]

=
[
Ux(α/2)Uy(π)U−1

x (α/2)
]
U−1

y (π), (1.59)

where in the second line we have used the well-known relation U exp{A}U−1 =
exp{UAU−1} for A = −i (α/2)Ix and U = Uy(π) which yields Ux(α/2) =
Uy(π)Ux(−α/2 )U−1

y (π). In the last line we have simply regrouped the operators and
written Ux(−α/2 ) = U−1

x (α/2 ). But this grouping now represents a rotation by α/2
about the x axis, which is applied to the operator Iy in the exponent of Uy(π). However,
this result can be achieved by any PP rotation which has the same net effect, rotating Iy
to an angle α/2 above the y axis in the y, z plane (ie., Iy → Iycosα

2
+ Izsin

α
2
). Hence,

letting V (ν) represent the propagator of such a composite (or shaped) PP pulse V, which
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is applied to a spin with a given offset ν, we can also express Ux(α) as

Ux(α) =
[
V (ν)Uy(π)V −1(ν)

]
U−1

y (π)

= V (ν)
[
Uy(π)V −1(ν)U−1

y (π)
]
. (1.60)

We thus consider how V −1(ν) transforms under a π rotation about the y axis. The
following relations hold for any unitary transformation W (ν) effected by a composite
pulse W at offset ν. For the time-reversed pulse Wtr, the propagator W tr(−ν) at offset
−ν is [18]

W tr(−ν) = Uz(π)W−1(ν)U−1
z (π). (1.61)

For the phase-inverted pulse W, with the algebraic signs of all phases (expressed in
rad or degrees) inverted, the resulting propagator at offset ν is [18]

W (ν) = Ux(π)W (−ν)U−1
x (π). (1.62)

Note that the symmetry relations [18] for phase-reversed pulses as defined above are
different from the symmetry relations derived for 180◦ phase shifted pulses [70], which
have been denoted phase inverted pulses. As a direct consequence of Eqs. 1.61 and 1.62,

the propagator W
tr
(ν) for the time-reversed and phase-inverted pulse W

tr
is given by

W
tr
(ν) = Ux(π)W tr(−ν)U−1

x (π)

= Ux(π)
[
Uz(π)W−1(ν)U−1

z (π)
]
U−1

x (π)

= Uy(π) W−1(ν) U−1
y (π), (1.63)

where we have inserted Eq. 1.61 in the second line and used Ux(π)Uz(π) = Uy(π). As
this general relation also holds for the special case W (ν) = V (ν), we can finally express
Eq. 1.60 in the form

Ux(α) = V (ν) V
tr
(ν). (1.64)

Hence, in a desired range of offsets ν, a UR pulse corresponding to a rotation around
the x axis by an angle α can be constructed based on a composite or shaped pulse V
which simply effects a PP rotation from Iy to (Iycosα

2
+ Izsin

α
2
) in the desired range of

offsets. First, the time-reversed and phase-inverted PP pulse is applied, followed by V.
The phase inverted version of a 90◦y pulse is a 90◦−y pulse, where the sign of the pulse phase
φ = π/2 (corresponding to “y” in the usual short-hand notation) is changed to φ = −π/2
(corresponding to “−y”). However, the phase inverted version of a 90◦x pulse is also a 90◦x
pulse (not a 90◦−x pulse), because here φ = 0 (corresponding to “x”) remains φ = 0 if the
sign of φ is inverted. An explicit construction example is provided in Fig. 1.30.

As shown in section 1.6.2 A (vide infra, it is straightforward to generalize the result
of Eq. 1.64 for UR pulses with rotation angle α and any rotation axis, i.e. with arbitrary
azimuthal angle θ and phase ϕ. The construction of such a general UR pulse U(α, θ, ϕ)
can be summarized as follows:
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Figure 1.30: Demonstration of the construction principle for universal rotation pulses.
Starting from a point-to-point transformation pulse V that transforms Iy magnetization

into Iy cos (α/2)+Iz sin (α/2), the time reversed and phase inverted pulse V
tr

is produced.

The combined UR pulse consists of V
tr

followed by V, effecting the rotation Ux(α) =

V V
tr
. The same procedure can be applied to produce UR pulses around an arbitrary

rotation axis (see text for details).



1.6. Creating universal rotations from point-to-point transformations 59

1. Pick (or design [13, 34, 36]) a (composite or shaped) PP pulse V which effects the
rotation 



0
1
0



 →





− sin α
2

cos θ
cos α

2

sin α
2

sin θ



 (1.65)

for a desired range of offsets ν, where the initial vector corresponds to Iy and the final
vector corresponds to (Iy cos α

2
+ Iγ sin α

2
) = (Iy cos α

2
+ Iz sin α

2
sin θ− Ix sin α

2
cos θ),

c.f. section 1.6.2 A.

2. Construct a combined pulse U(α, θ, 0) consisting of the time-reversed and phase-

inverted PP pulse V
tr

followed by the PP pulse V.

3. Create the desired UR pulse U(α, θ, ϕ) by shifting all phases of the individual pulse
elements of U(α, θ, 0) by ϕ.

As a simple example, consider the construction of a refocussing pulse effecting a
universal 180◦x rotation (i.e. a UR pulse with α = π, θ = π/2, and ϕ = 0) in the offset
range νmin ≤ ν ≤ νmax. According to Eq. 1.65 in step 1, we first need to find a pulse V
which effects the PP rotation





0
1
0



 →





0
0
1



 , (1.66)

i.e. which flips Iy to Iz for the desired range of offsets. Suppose we are given a PP
excitation pulse W which rotates Iz to −Iy in the offset range −νmax ≤ ν ≤ −νmin. From
Eq. 1.61, it follows that the time-reversed pulse Wtr corresponds to a pulse V which
effects the required PP transformation from Iy to Iz (c.f. relation 1.66) in the desired
range νmin ≤ ν ≤ νmax. In step 2, a UR pulse U(π, π/2, 0) can be constructed by first

applying the pulse V
tr

= W, (the phase-inverted version of the excitation pulse W),
followed by V = Wtr (the time-reversed version of the excitation pulse W). As in the
given example ϕ = 0, step 3 has no effect. This procedure is illustrated in Fig. 1.31
for the case of a broadband PP excitation pulse W of 500 µs duration as previously
optimized using optimal control theory [36] with νmax = −νmin = 20 kHz. Figure 1.31 A
shows amplitude and phase of the pulse. Note that the pulse phase was shifted by −π/2
compared to Fig. 1 of [36] in order to effect a z to −y rather than a z to x PP rotation.

The combined UR 180◦x pulse consisting of V
tr

= W followed by V = Wtr is shown in
Fig. 1.31 A′. Figs. 1.31 B,C and 1.31 B′,C′ show the effective rotations as a function of
offset for the PP pulse W and for the combined UR 180◦x pulse. As expected, the effected
rotations of the constructed UR pulses closely approach the desired rotation in the active
range of offsets, where the PP pulse is functional.

Note that the presented approach would yield an exact 180◦x UR pulse if the excitation
pulse W would be perfect. This is in sharp contrast to a previously suggested approach
[71] for the design of refocussing pulses, which attempts to construct 180◦x UR pulses by
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Figure 1.31: Example for the construction of a refocussing pulse out of a previously
published PP excitation pulse [36]. (A) Amplitude and phase of the original excitation
pulse, (A′) the constructed refocussing pulse using the procedure described in Fig. 1.30,
and (A′′) a pulse constructed for refocussing using the procedure described in [71]. The
corresponding offset profiles of the effective rotations are displayed in B,B′, and B′′: x, y,
and z components of the rotation vector ~r = β~e, where β is the effective rotation angle
and ~e is the unit vector pointing along the rotation axis, are given in radians. In C, C′,
and C′′ the rotation axes ~e are visualized in a 3D-plot for 100 offsets ν equally spaced in
the range between ± 20 kHz. A universal 180◦x rotation is achieved in the entire offset
range only for the refocussing pulse shown in A′. For excitation pulses the vectors lie in
a tilted plane (c.f. section 1.6.2 B), while the pulse shown in A′′ is a PP inversion pulse
with rotation axes in the x− y plane (c.f. section 1.6.2 C).
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simply applying an excitation pulse W (rather than W) followed by the time-reversed
excitation pulse Wtr. For comparison, the resulting effective rotations are shown as a
function of offset in Fig. 1.31 B′′,C′′. While the original excitation pulse has rotation axes
distributed in a tilted plane as derived in section 1.6.2 B, the composite pulse consisting of
the pulse W followed by Wtr still shows a variety of rotation axes with respect to offset in
the x, y plane, resulting in an inversion pulse (for a detailed derivation see sectioon 1.6.2
C). Hence, the approach of Ref. [71] in general does not provide a functional refocussing
pulse, in contrast to the procedure presented here. The two approaches are of course
equivalent for the special case of purely amplitude-modulated pulses with phase x or −x,
where W= W, i.e. if the excitation pulse is invariant under phase inversion. Hence, time-
symmetric phase-alternating composite 180◦x UR pulses result from phase-alternating 90◦

PP pulses. Conversely, 90◦ PP pulses can be obtained from the first half of symmetric
phase-alternating composite 180◦x UR pulses, as previously shown in [41].

The general construction principle presented here, based on PP pulses of dura-
tion T , always results in UR pulses of duration 2T with symmetric rf amplitude, i.e.

νrf(t) = νrf(2T − t) where νrf(t) =
√

(νrf
x (t))2 + (νrf

y (t))2. For rotations with ϕ = 0, the x

component of the rf amplitude νrf
x is symmetric, i.e. νrf

x (t) = νrf
x (2T − t), whereas the y

component is antisymmetric with νrf
y (t) = −νrf

y (2T−t). Note that pulses of this symmetry
class are known to give net rotation axes in the xz plane [72].

Experimental results for the pulses from Fig. 1.31 A′ and A′′ are shown in Fig.
1.32. All experiments were acquired on a Bruker Avance 250 spectrometer with linearized
amplifiers and SGU400 boards for pulse control using a copper sulfate doped 99.9 %
D2O sample. For validation of the refocussing pulse an echo experiment as shown in Fig.
1.32A was performed with offsets of the shaped pulse varied from -22 kHz to 22 kHz
to cover and exceed its 40 kHz refocussing bandwidth. Over the whole bandwidth the
theoretical performance is achieved. For comparison, Fig. 1.32C shows the effect of the
pulse constructed according to [71].

The presented procedure describes a surprisingly simple method for the construction
of universal rotation (UR) pulses from point-to-point (PP) pulses. For a general rotation
with an arbitrary flip angle α, a specific PP pulse with flip angle α/2 is required. For
example, refocussing pulses can be constructed from known excitation pulses in a straight-
forward way. However, since excitation pulses are usually optimized starting from Iz, they
have to be time reversed first for constructing the UR pulse. The resulting refocussing
pulses are only twice as long as the initial excitation pulses used for construction. With
recent improvements in short broadband excitation pulses [34, 36, 56, 57, 69] relatively
short and robust refocussing pulses can be constructed using the presented approach. The
proposed construction principle is very general and can be used for obtaining broadband as
well as selective, or pattern-type UR pulses. Potential applications of robust pattern-type
UR pulses include NMR imaging techniques and NMR-spectroscopy in inhomogeneous
B0-fields [73] and robust local operations in quantum information processing.
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Figure 1.32: Experimental validation of the refocusing pulses shown in Fig. 1.31 A′.
The pulse sequence uses an echo with delay ∆ = 100 ms after excitation (A). The offset
of the shaped refocusing pulse was varied in increments of 1 kHz for the range of -22 kHz
to 22 kHz with results shown in B. Excellent refocusing properties are obtained for a
±20 kHz offset range, for which the original excitation pulse (Fig. 1.31 A) was optimized.
The pulse constructed using the procedure described in [71] (c.f. Figs. 1.31 A′′ - C′′)
produces the offset profile shown in C.
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1.6.2 Some helpful formulas

A: Decomposition of arbitrary rotations into PP pulses

Here we derive the decomposition of a general universal rotation (UR) into two point-
to-point (PP) pulses of half the flip angle. A general UR can be characterized by the
orientation of the rotation axis and by the rotation angle α around this axis. The orien-
tation of the rotation axis is uniquely defined by the azimuthal angle θ (with 0 ≤ θ ≤ π)
and the phase ϕ (with 0 ≤ ϕ ≤ 2π). For the special case, where the rotation axis points
along the x axis (i.e. θ = π/2 and ϕ = 0), the decomposition was derived in the main text
(Eqs. 1.58-1.64). We first generalize this derivation for arbitrary θ (but still assuming
ϕ = 0), which corresponds to a rotation axis in the x-z plane. The corresponding unitary
operator is

U(α, θ) = exp{−i α Iθ} (1.67)

with
Iθ = Iz cos θ + Ix sin θ. (1.68)

Using the identities

exp{−i
α

2
Iθ} = exp{−i π Iy} exp{i α

2
Iθ} exp{i π Iy} (1.69)

and
exp{−i

α

2
Iθ} Iy exp{i α

2
Iθ} = Iy cos

α

2
+ Iγ sin

α

2
(1.70)

with

Iγ = i[Iy, Iθ] = Iz sin θ − Ix cos θ, (1.71)

U(α, θ) can be rewritten as

U(α, θ) = exp{−i
α

2
Iθ} exp{−i

α

2
Iθ}

= exp{−i
α

2
Iθ} exp{−i π Iy} exp{i α

2
Iθ} exp{i π Iy}

= exp{−i π (exp{−i
α

2
Iθ} Iy exp{i α

2
Iθ})} exp{i π Iy}

= exp{−i π (Iy cos
α

2
+ Iγ sin

α

2
)} exp{i π Iy}. (1.72)

Given any composite (or shaped) pulse effecting PP rotations Vθ(ν) which transform
Iy to (Iy cos α

2
+ Iγ sin α

2
) = (Iy cos α

2
+ Iz sin α

2
sin θ − Ix sin α

2
cos θ) for a range of offsets

ν, i.e.

Vθ(ν) Iy V
−1
θ (ν) = Iy cos

α

2
+ Iγ sin

α

2
, (1.73)

Eq.1.72 can be written in the form

U(α, θ) = exp{−i π (Vθ(ν) Iy V
−1
θ (ν))} exp{i π Iy}

= Vθ(ν) exp{−i π Iy } V −1
θ (ν) exp{i π Iy}

= Vθ(ν) V
tr

θ (ν), (1.74)
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where in the final step we used Eq. 1.63 with W (ν) = Vθ(ν).
This decomposition of a UR pulse with a rotation axis in the x-z plane (i.e. ϕ = 0)

can readily be generalized for arbitrary UR pulses with a unitary operator

U(α, θ, ϕ) = exp{−i ϕ Iz} U(α, θ) exp{i ϕ Iz}
= exp{−i ϕ Iz} Vθ(ν) V

tr

θ (ν) exp{i ϕ Iz}
= exp{−iϕIz} Vθ(ν) exp{iϕIz}

× exp{−iϕIz} V
tr

θ (ν) exp{iϕIz}. (1.75)

Hence, given a composite pulse corresponding to U(α, θ) = Vθ(ν) V
tr

θ (ν) for ϕ = 0,
the general UR pulse with U(α, θ, ϕ) can be constructed simply by adding ϕ to the phase
of each individual element of the composite pulse.

B: Rotation vectors for PP pulses

Consider any pair of initial and final vectors ~vi and ~vf . The angle η between the two
vectors is defined by cos η = ~vi · ~vf with 0 ≤ η ≤ π. For a PP rotation from ~vi to ~vf ,
the rotation axis must be located in the plane through the origin which is orthogonal to
~vi − ~vf . The actual rotation angle β (i.e. the length of the rotation vector) depends on
the orientation of the unit rotation vector ~e in this plane:

cosβ = −1 − (1 + cos 2γ) cos 2η
2

1 − sin 2γ cos 2η
2

,

where γ is the angle between the unit vector ~e and the vector ~vi × ~vf , with cos γ =
~e · (~vi × ~vf ). The rotation angle β is positive for |γ| ≤ π/2 and negative for |γ| > π/2.
For example, if ~e is parallel or antiparallel to ~vi × ~vf (i.e. γ = 0 or γ = π), the rotation
angle β is η or −η, respectively. If ~e is colinear to ~vi + ~vf (i.e. γ = ±π/2), the rotation
angle β is π.

C: Rotation vectors for symmetrized pulses according to
reference [71]

Here we analyze the effect of an excitation pulse W followed by the time-reversed exci-
tation pulse Wtr as suggested in [71]. We assume that the PP pulse W transforms Iz to
Iγ for a given range of offsets ν, i.e.

W (ν) Iz W
−1(ν) = Iγ , (1.76)

where Iγ is in the transverse plane (e.g. Iγ = Iy). Subsequent application of Wtr to Iγ
yields

W tr(ν)Iγ{W tr(ν)}−1 = exp{−iπIz}W−1(−ν) exp{iπIz}Iγ
× exp{−iπIz}W (−ν) exp{iπIz}

= − exp{−iπIz}W−1(−ν) Iγ W (−ν) exp{iπIz}, (1.77)
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where we used Eq.1.61 and exp{iπIz}Iγ exp{−iπIz} = −Iγ . Eq. 1.77 can be further
simplified, provided the excitation profile of the PP pulse W is symmetric with respect
to offset. In this case, Iz is transformed to Iγ not only for offset ν but also for offset −ν,
i.e.

W (−ν) Iz W−1(−ν) = Iγ. (1.78)

Multiplying Eq. 1.78 from the left by W−1(−ν) and from the right by W (−ν), we find

W−1(−ν) Iγ W (−ν) = Iz (1.79)

and Eq. 1.77 can be written as

W tr(ν)Iγ{W tr(ν)}−1 = − exp{−iπIz} Iz exp{iπIz}
= −Iz. (1.80)

Hence, for an excitation pulse W which transforms Iz to Iγ for offset ν and −ν, the
application of W followed by Wtr results in a PP inversion pulse which transforms Iz
to −Iz . However, in general this combined pulse is not a refocussing pulse because the
effective axis of the π rotation can be located anywhere in the transverse plane, c.f. Fig.
1.31 C′′. Only for the special case of a purely amplitude-modulated pulses W with phase
x or −x, the resulting symmetric PP pulse is also a UR pulse with a unique rotation
axis [74].



66 Chapter 1. Optimizations

1.7 Direct optimizations of universal rotations

Though in a previous section we described the procedure to create universal rotations
from point-to-point transformation, this doesn’t answer all the questions about universal
rotations. First, we cannot say anything about generality of this approach - it is well
possible, that the proposed procedure is not optimal and the same universal rotations
could be implemented more efficiently with other pulses. Second, not every rotation can
be realized with this construction procedure - since the inherent symmetry of constructed
pulses implies that rotation axes for all offsets lie in one plane, no rotation with offset
dependent rotation axes with some of the axes lying off that plane can be produced this
way. Therefore we have at least two reasons to apply the GRAPE algorithm to explicitly
optimize universal rotations: we need a tool to create rotations we cannot create by
construction from point-to-point transformations, and we want to test the performance
limits of universal rotation pulses, similarily as we did in section 1.3.3, and compare them
to the performance of constructed pulses.

1.7.1 Choice of the optimization function

An important step in the application of the GRAPE algorithm is the choice of the per-
formance function, since it defines the whole optimization flow. In a simplest analogy
to a point-to-point transformation on ensemble of non-interacting spins one can choose
a scalar product between target propagator and propagator at the end of the optimized
pulse as the performance function, as this product is defined in Eqn. 1.34. However,
the propagator U optimized this way will be only one particular case of a more general
family of propagators eiφU with phase factor eiφ equal to 1. So, for the sake of generality
a quality factor has to be used, that is insensitive to the phase factor, e.g. the squared
scalar product, defined in Eqn. 1.37.

Though the aforementioned concerns about phase factors are generally correct, for a
considered case the phase factor can take only certain values. Since the propagators of
interest are all generated by the traceless spin Hamiltonians, (and are though elements of
the special unitary group, U ∈ SU(2)), the well known property det{eA} = etr{A} implies
for all our propagators U that det{U} = +1. The same should of course remain true for
a propagator eiφU . Thus using the property det{rA} = det{rEn · A} = rndet{A}, which
holds for any n× n matrix A and all scalars r, for our 2 × 2 propagators U we can write

det{eiφU} = (eiφ)2det{U} = +1. (1.81)

Therefore (eiφ)2 should also be equal to +1 and the equation

(eiφ)2 = cos2φ+ isin2φ = +1, (1.82)

has the solution φ = nπ, which implies, that eiφ = ±1 or in other words, the phase
factor can only have two values, +1 and −1. Thus, as a result of optimisations with
performance function Φ1 as defined in Eqn. 1.37 one can expect pulses, approaching
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Table 1.3: Constraints used for optimizations of universal rotations

∆νa (kHz) noff tp, (µs) rotation type performance function

10 200 10 - 170 90◦ |〈UF |U(T )〉|2
20 500 10 - 310 90◦ |〈UF |U(T )〉|2
30 500 10 - 430 90◦ |〈UF |U(T )〉|2
10 100 10 - 180 180◦ |〈UF |U(T )〉|2
20 100 10 - 330 180◦ |〈UF |U(T )〉|2
30 100 10 - 490 180◦ |〈UF |U(T )〉|2
10 100 10 - 140 90◦ +〈UF |U(T )〉
20 100 10 - 250 90◦ +〈UF |U(T )〉
30 100 10 - 380 90◦ +〈UF |U(T )〉
40 100 10 - 490 90◦ +〈UF |U(T )〉
50 100 10 - 630 90◦ +〈UF |U(T )〉
10 100 10 - 150 180◦ +〈UF |U(T )〉
20 100 10 - 290 180◦ +〈UF |U(T )〉
30 100 10 - 360 180◦ +〈UF |U(T )〉
10 100 10 - 190 90◦ −〈UF |U(T )〉
20 100 10 - 290 90◦ −〈UF |U(T )〉
30 100 10 - 350 90◦ −〈UF |U(T )〉
40 100 10 - 520 90◦ −〈UF |U(T )〉
50 100 10 - 650 90◦ −〈UF |U(T )〉

a) ∆ν is defined as offset range used in the optimization.

either the target propagator UF or the propagator −UF . Intuitively the latter can be
understood as rotation in the opposite direction with rotation angle 2π−α, with α being
the target rotation angle. Two such rotations are fully equivalent in their effect and
virtually undistinguishable. It is also clear, that all the cases should become equivalent
for 180◦ rotation.

A systematic study of the pulse performance, similar to the one performed in section
1.3.3, was performed on universal rotation pulses with tools of optimal control theory.
Sets of 90◦ and 180◦ rotations were calculated for different bandwidths. Moreover, for
every parameter set we performed the otimization series with various choices of perfor-
mance functions: the square of the scalar product Φ1 (Eqn. 1.37) and the simple scalar
product Φ1 (Eqn. 1.34), once with unchanged target propagator UF , and once with target
propagator −UF = eiπUF . In all cases, the nominal (unscaled) rf-amplitude was limited
to 10 kHz. For each set, pulse lengths tp were varied in ranges as listed in Table 1.3. Gen-
erally, pulse durations were incremented until the corresponding quality factor exceeded
0.995. Each chosen bandwidth was divided into equal increments, with noff = 100. The
time digitization for the optimized shapes was 0.5 µs in all cases.
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Figure 1.33: Histogram distribution of quality factors Φ obtained for 500 optimizations
of 90◦ (A, C) and 180◦ (B, D) rotations with 40 kHz bandwidth, 230 µs duration and no
rf-variation. The performance function was chosen as Φ1 = |〈UF |U(T )〉|2 in (A) and (B)
and as Φ0 = Re〈UF |U(T )〉 in (C) and (D). Whereas in cases (C) and (D) very narrow
distribution of quality factors is achieved around the optimal one, in cases (A) and (B)
the distribution is very broad and only a small part of initial random pulses leads to an
optimal quality factor.
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As in section 1.3.3, initially one hundred randomized starting pulses were generated to
start 100 optimizations for each data point in Figs. 1.34 and 1.35. However, it turned out
that distributions of quality factors obtained for every starting random pulse, appeared to
be quite different for the two different choices of performance functions. The distribution
for the performance function Φ0 (scalar product) resembles that of the quality factors for
point-to-point transformations (see Fig. 1.33 C and D and compare to Fig. 1.7), whereas
the distribution for the performance function Φ1 (square of the scalar product) was much
broader and only very little part of initial pulses converged to the optimal values (see
Fig. 1.33 A and B). Apparently, the possible ambiguity in the final phase factor makes
the search space larger and the search procedure less efficient. However, for the case of
180◦-rotation (Fig. 1.33 B), where all possible phase factors are equivalent, the search
efficiency is only slightly better than for 90◦-rotation (Fig. 1.33 A). Therefore, the number
of randomized starting pulses was increased for optimizations of 90◦-rotations with larger
offset ranges and performance function Φ1.

The results of the optimizations of 90◦ and 180◦ rotations are shown in Figs. 1.34
and 1.35, respectively: the performance of the optimized pulses described by the quality
factors Φ0 or Φ1, respectively, is given as a function of the pulse length. Similarily to the
curves in section 1.3.3, these curves show a step-like behaviour, but if former ones generally
had the property, that for longer pulses the best reached quality factor is at least as good
as the best quality factor for any of the shorter pulses, actual curves for 90◦ rotations
have systematic oscillations of the best reached quality factor, so that for certain pulse
lengths much shorter pulses can provide significantly better performance. This can be
explained by the presence of the offset term in the effective Hamiltonian and the necessity
to cancel its effect. So, for point-to-point transformations with initial magnetization
M(t0) = Mz this initial state is not affected by the offset term and therefore any extention
of the applied pulse with points with zero amplitude should not modify the effect of the
pulse and hence provides the lower limit for best possible performance of the optimized
pulse with such elongated duration. In contrast, universal rotations do not imply any
particular initial or target magnetization state, but rather should perform equally when
applied to any magnetization. The offset term is explicitely included in every optimization
step, therefore any additional digits to the pulse shape have to be compensated, which is
apparently not always effectively possible. However, as Fig. 1.35 shows, for 180◦ rotations
this compensation is possible, and the curves do not show oscillations anymore, but rather
a stepwise increase in pulse performance with increased pulse duration. Obviously, in the
case of 180◦ rotation with rotation axes in the xy-plane the offset terms are refocused,
and the pulse can also be elongated by adding equal periods with zero amplitude at the
beginning and at the end of the pulse shape (so that the offset evolution during this added
period could be refocused) wthout losses in performance.

1.7.2 Role of the phase factor

As was mentioned in section 1.2.4, for practical applications it is sufficient to approach
the target propagator UF only up to an arbitrary phase factor eiφ, and the performance



70 Chapter 1. Optimizations

Figure 1.34: Maximum quality factors reached with different performance functions
for broadband universal 90◦ rotations with rf-amplitudes limited to 10 kHz and various
chemical shift offset ranges with respect to pulse duration. Optimization function Φ1 =
|〈UF |U(T )〉|2, allowing all values for the phase factor eiφ was used in (A), while function
Φ0 = 〈UF |U(T )〉 was used in (B) and (C) with predefined values eiφ = +1 in (B) and
eiφ = −1 in (C). The maximum quality factors with respect to pulse duration are given
for the three different bandwidths ∆ν equal to 10 kHz, 20 kHz and 30 kHz.
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Figure 1.35: Maximum quality factors reached with different optimization functions
for broadband universal 180◦ rotations with rf-amplitudes limited to 10 kHz and various
chemical shift offset ranges with respect to pulse duration. The performance function
Φ1 = |〈UF |U(T )〉|2, allowing all values for the phase factor eiφ, was used in (A), while the
function Φ0 = 〈UF |U(T )〉 was used in (B) with predefined value eiφ = +1. The maximum
quality factors with respect to pulse duration are given for the three different bandwidths
∆ν equal to 10 kHz, 20 kHz and 30 kHz.
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function Φ1 defined in equation 1.37 assures that the search for an optimum is performed
within the full space of all possible transformations, or in other words, all values of the
phase factor eiφ are allowed. Whereas the choice of the performance function Φ0 as defined
in Eqn. 1.34 limits the space of allowed transformations to the phase factor eiφ = +1
only.

However, as was already pointed out in the previous section, for a given class of
transformations the phase factor in question can only have two values, +1 and −1. This
mirrors the fact, that in a given system the rotation around the axis γ with rotation angle
ψ is fully equivalent to a rotation around the axis −γ with rotation angle 2π − ψ. In
other words, the target propagator UF is up to the direction of the rotation equivalent
to propagator −UF . It can happen that, depending on the chosen constraints for the
rotation to be optimized, one target propagator, UF or −UF , could easier be reached
then the other. Thus every optimization with performance function Φ1 results in pulses
performing either transformation UF or transformation −UF , and therefore every curve
in Fig. 1.34 A should be a combination of corresponding curves from Figs. 1.34 B and C.
A closer look to these curves and their juxtaposition is provided in Fig. 1.36. The value
of the function Φ0 is evaluated for every optimized pulse obtained in the optimization
with performance function Φ1 and its absolute value is plotted as a function of pulse
length in Fig. 1.36 C and F, while its sign is marked on the plots. As expected, a part of
the pulses has negative values of the function Φ0 and the other part has positive values.
Moreover, they are not randomly distributed, but arranged in periods, and these periods
with different signs of the performance function alternate periodically, with period length
of about 55 µs, which at the chosen power level of 10 kHz is slightly longer then a π-
rotation. The periods where the optimized pulses have positive value of the performance
function Φ0, the performance of the best pulse optimized with predefined positive value
of the phase factor eiφ gets better then the performance of the best pulse optimized with
predefined negative value of the phase factor; while periods with negative value of the
performance function Φ0 correspond to the periods where pulses with predefined negative
value of the phase factor become best performing. This can be seen in Figs. 1.36 A and
D, where the crossover periods of performances for eiφ = ±1 are indicated. Not only signs
and period lengths are identical, so are the values on the curves, as can be seen when
comparing the plots B with C and E with F in Fig. 1.36. Thus, the optimization which
does not limit the value of the phase factor of the propagator, depending on the pulse
length, results in same pulses as the best of either optimization with positive or negative
performance function Φ0 only. The situation is somewhat easier for 180◦-rotation with
rotation axis in the xy-plane since the two possible values of the phase factor describe
identical rotations. Therefore, the 180◦ pulses optimized with the performance function
Φ1 are practically identical to pulses optimized with Φ0 (c.f. Fig. 1.35).

1.7.3 Comparison to constructed rotations

As was shown in section 1.6, it is possible to construct a universal rotation pulse from
pulse performing point-to-point transformation with half the desired flip-angle. The same
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Figure 1.36: Comparison of maximum quality factors reached for optimizations of 90◦

rotations with performance function Φ0 with different predefined phase factors for 10 kHz
(left column) and 20 kHz (right column) offset ranges. Curves from Fig. 1.34 showing
maximum quality factor vs. the pulse length for two possible phase factors are juxtaposed
in (A) and (D), with corresponding combined best performances shown in (B) and (E).
Performance curves obtained with performance function Φ1 for the same offset ranges are
shown in (C) and (F) with quality factors of final optimized pulses reevaluated according
to the formula of performance function Φ0 for which the absolute value is shown. Regions
where rotations with different signs of the phase factor provide best performances are
separated by dashed lines.



74 Chapter 1. Optimizations

Table 1.4: Constraints used for optimizations of PP-pulses to be compared with UR-
pulses

∆νa (kHz) noff tp, (µs) flip angle

10 100 5 - 70 π/4

20 100 5 - 125 π/4

30 100 5 - 195 π/4

40 100 5 - 245 π/4

50 100 5 - 295 π/4

10 100 5 - 105 3π/4

20 100 5 - 150 3π/4

30 100 5 - 190 3π/4

40 100 5 - 225 3π/4

50 100 5 - 320 3π/4

a) ∆ν is defined as offset range used in the optimization.

rotations can also be optimized directly with procedures described in this chapter. It is
therefore interesting to assess how the two procedures correlate, if at all, and to figure
out whether the rotations constructed from point-to-point transformations can approach
the optimal performance and under which circumstances.

As we just figured out, the optimizations of universal rotations result generally in two
families of transformations differing in the sense of effective rotation, one or the other
being preferred for the chosen parameter set. The effective rotation angle of one familie
of transformations being the actual target angle ψ, and 2π−ψ being the effective rotation
angle of the other family. This underlines the fact, that any universal rotation can be
constructed from point-to-point transformations in two ways: either from PP-pulse with
flip angle ψ/2 or from PP pulse with flip angle (2π − ψ)/2 (for the special case of 180◦-
rotation these two situations are obviously identical). Therefore we have to compare two
different families of optimized pulses with two different families of constructed pulses.

For that purpose we optimized sets of PP-pulses for the same optimization param-
eters as for UR-pulse sets described in Table 1.3. Naturally, since now the pulses have
to perform only point-to-point transformations with half the flip angle, the ranges of
optimized pulse lengths differ now from lengths of the UR-pulse. According to aforemen-
tioned considerations we had to optimize sets of PP-pulses with flip angle of π/4 and
with flip angle of 3π/4 to compare with universal rotations with flip angle π/2, as well
as sets of PP-pulses with flip angle π/2 to compare with universal rotations with flip
angle π. The latter however did not require extra optimization runs, since one can use
pulses optimized in section 1.3.3. To be relevant for the comparison to the construction
procedure all optimizations of these point-to-point pulses have to consider M0 = My as
initial magnetization. Full parameter sets of optimized pulses are listed in Table 1.4.
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Figure 1.37: Comparison of constructed and directly optimized universal rotations.
Maximal quality factors reached for optimizations of 90◦ rotations with performance func-
tion Φ0 and phase factors preset to +1 (A) and -1 (C) in comparison with maximal quality
factors reached for optimizations of point-to-point pulses with flip angle π/4 (B) and 3π/4
(D) and same optimizations parameters as for the plots (A) and (C) respectively.

The results of the calculations are shown in Fig. 1.37. One can see that the curves for
90◦ universal rotation propagators with phase factor +1 (plot A) are identical to the curves
for point-to-point pulses with flip angle 45◦ (plot B) with the only difference that the latter
is exactly two times shorter. Analogously, the curves for 90◦ universal rotation propagators
with phase factor -1 (plot C) have identical appearance as the curves for point-to-point
pulses with flip angle 135◦ (plot D) with latter curves being again two times shorter,
then the former ones. Remarkably, the point-to-point pulses show strongly oscillating
curves, unlike the curves for excitation pulses from section 1.3.3. The reason for this was
discussed in the previous section: since both initial and target magnetization states have
transverse components, for shorter pulses the additional chemical shift evolution cannot
be refocused with increased pulse length.

The quality factors of point-to-point pulses cannot be directly compared with the ones
of universal rotations, because they are defined differently. But the direct comparison of
quality factors of UR-pulses constructed from these optimised half flip-angle PP-pulses
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with quality factors of directly optimized pulses of the same length (twice the length of
th PP pulse) shows that they are basically identical with differences up to only ±0.01%
for the 10 kHz offset range and ±4% for the 50 kHz offset range. This shows that these
two ways of obtaining universal rotations are largely equivalent, and the construction of
universal rotations from point-to-point transformations produces pulses that are already
optimal for a chosen parameter set. However, the direct optimization procedure is by no
means redundant: one can easily imagine a situation where the construction procedure
simply is not able to create a desired universal rotation which otherwise can be created by
direct optimization. Since the construction procedure implies that the rotation axes are
symmetric with respect to the offset (see section 1.6), it is generally impossible to create
UR-pulses with rotation axes varying with offset or rf-amplitude (a ”pattern rotation“
similar to ”pattern pulses“ described in section 1.5) by simple construction out of PP-
pulses.

1.7.4 Symmetry properties of universal rotations

The comparison of performance efficiencies of directly optimized universal rotation pulses
has shown that they are equivalent to the efficiencies of pulses constructed out of point-
to-point transformations. It is therefore interesting to figure out, how do the pulse shapes
correspond to each other. The construction procedure generates pulses with symmetric
pulse shape: if presented in cartesian coordinates they have one component symmetric
with respect to the center of the shape, the other component is antisymmetric. The opti-
mization procedure does not impose any symmetry constraints whatsoever. The question
therefore is, whether the directly optimized pulses also have the same kind of symmetry,
or if there are also some other pulse families with equal performance.

Some typical representative pulse shapes from direct optimization of 90◦-rotation over
30 kHz offset range are shown in Fig. 1.38. As for other optimizations in previous sections,
for very short pulse lengths the usual hard pulse with constant amplitude and phase has
the best performance. With increasing pulse length the hard pulse first gets slightly
more complicated, this time by two symmetrically placed 180◦ phase jumps. With pulses
getting longer, the pulse shapes also get more complicated. Fig. 1.38 shows that most of
the optimized pulses do possess in fact a certain symmetry. As expected, we encounter
pulses with the same symmetry as in the construction procedure (Fig. 1.38 D) with
one component being symmetric and the other antisymmetric, but also pulses with both
components symmetric, as well as pulses where one component has zero intensity, which
can also be considered as a special case of one of the previous symmetries. A fourth class
of pulses (though relatively small percentage of all optimized pulses) has shapes which
are neither symmetric nor antisymmetric in any of its components.

Since no symmetry constraints were imposed on the pulse shapes during the optimiza-
tions, it is of no surprise that some of the produced pulses have nonsymmetrical pulse
shape. It is more surprising that such nonsymmetrical pulses constitute only a small mi-
nority among pulses with symmetrical pulse shapes. Among symmetric pulses we could
figure out two distinct kinds of symmetry: pulses with both symmetric components (called
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Figure 1.38: Pulse shapes of some universal π/2-rotation pulses optimized for 30 kHz
offset range. Amplitudes and phases are shown (upper two rows) as well as representations
in Cartesian Coordinates (lower two rows). To underline the symmetries of the pulses
reference dashed lines are drawn at the middle of time and amplitude scales in the lower
two rows.
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Table 1.5: Constraints used for optimizations of PP-pulses with imposed symmetry
constraints

∆νa (kHz) noff tp, (µs) rotation angle phase factor symmetry type

30 100 10 - 380 π/2 +1 I

30 100 10 - 380 π/2 +1 II

30 100 10 - 380 π/2 +1 III

30 100 10 - 380 π/2 +1 IV

30 100 10 - 350 π/2 -1 I

30 100 10 - 350 π/2 -1 II

30 100 10 - 350 π/2 -1 III

30 100 10 - 350 π/2 -1 IV

30 100 10 - 360 π +1 I

30 100 10 - 410 π +1 II

30 100 10 - 230 π +1 III

30 100 10 - 230 π +1 IV

a) ∆ν is defined as offset range used in the optimization.

type I) and pulses with one symmetric component and other antisymmetric (called type
II). However one can imagine two more similar kinds of symmetry: the one with one
symmetric component and the other antisymmetric (like type II, but with exchanged
components, called type III), and the type with both components being antisymmetric
(called type IV). The question is whether the universal rotations with symmetries of types
III and IV really cannot be as good as those with symmetries of types I and II, or if it is
just a coincidence, that only universal rotation with symmetries I and II were produced
in optimizations. To figure that out we performed a series of optimizations where we in-
tentionally imposed the discussed symmetry constraints onto the pulse shapes. For each
set of parameters, pulse lengths were varied in ranges as listed in Table 1.5.

The results of the optimizations are shown in Fig. 1.39. The performance of the
optimized pulses described by the quality factor Φ0 is given as a function of pulse length for
90◦-rotations (A) with propagator phase factor +1, 90◦-rotations with phase factor -1 (or
equivalent to 270◦-rotations)(B) and for 180◦-rotations (C). For every rotation type four
different symmetry constraints were imposed. For comparison, results of optimizations
with same optimization parameters and without symmetry constraints are shown in Fig.
1.39 A’-C’. As can be seen, the two symmetry classes which we have observed amongst
shapes optimized without symmetry constraints have almost identical performance curves
on the whole optimization interval, with pulses of class II being slightly better performing
over the short interval between 150 and 200 µs for 90◦-rotations (Fig. 1.39 A), and
pulses of class I being slightly better performing over the short interval between 80 and
160 µs for 270◦-rotations (Fig. 1.39 B). The pulses with symmetry of the type III and
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Figure 1.39: Comparison of universal rotation pulses optimized with symmetry con-
straints imposed (A-B) with pulses optimized with no symmetry constraints (A’-C’).
π/2-rotations (A, B) and π-rotations (C) were optimized for a 30 kHz offset range with
performance function Φ0 and phase factors preset to +1 (A) or -1 (B), respectively (see
text). Pulses without symmetry constraints were optimized under identical conditions.
Four symmetry types were used (see text for details).
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IV have clearly worse performance, and therefore it is clear why they did not show out in
optimizations with unrestricted symmetries. In the case of 180◦-rotations (Fig. 1.39 C)
the figure is similar: the curves for the pulses with symmetry types I and II are almost
identical, while those for symmetry types III and IV not only indicate worse performance
of corresponding pulses, but they have quality factor value of exactly zero for pulses of
any duration. Moreover, in every plot the best performing symmetric pulses have the
same performance as best optimized pulse from the right column of Fig. 1.39. One
can thus conclude, that for a given set of parameters the subspace of symmetric pulses
of types I and II is already optimal. Though few unsymmetric pulses emerged during
unconstrained optimization, they could in fact be suboptimal pulses with uncompletely
converged optimizations (with the optimal symmetric pulse being only slightly better and
of virtually undistinguishable performance), and the subspace of symmetric pulses would
indeed be the subspace of optimal solutions.

As was pointed out in [72], the symmetries of the total rotation Rtot applied to a
magnetization lead without further manipulation to symmetries of the magnetization
response. Also the fact that for 180◦-rotations the two out of four possible symmetries
produce pulses with quality factor of exactly zero clearly indicates that in that case the
symmetry alone leads to a rotation fully orthogonal to the target rotation. It is therefore
interesting to figure out which symmetries in the magnetization responses are introduced
by the four symmetry types we are dealing with. Therefore to gain first insight to these
symmetries we investigated the effective rotation produced by such symmetric pulses.
Fig. 1.40 shows the x, y and z components of the rotation vectors ~r = β~e, where β is the
effective rotation angle and ~e is the unit vector pointing along the rotation axis, for four
optimized pulses with four different symmetry types and 60 kHz offset range, whereas the
pulses were optimized for the offset range of only 30 kHz. At a first glance one can see that
in cases of rotations with one symmetric component and one antisymmetric one rotation
component cancels completely, while rotations with both symmetric components or both
antisymmetric components have rotation components symmetric or antisymmetric with
respect to the rf-offset. In the following we consider this properties in more detail for all
four cases.

Fully symmetric case

To show the offset properties of rotations introduced by the symmetry of the rotation we
use the notations introduced in [72] and some formulas derived there.

A composite rotation can be represented as a series of piecewise constant rotations,
which for a rotation at an offset ω can be represented as

Rtot(ω) = Rn · · ·R2R1, (1.83)

and the effective rotation caused by the same pulse train at the offset −ω can therefore
be represented as

Rtot(−ω) = RZ
n · · ·RZ

2 RZ
1 , (1.84)
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Figure 1.40: The offset profiles of four pulses optimized to perform π/2-rotation around
y-axes with symmetry constraints imposed: (A) both x- and y-components of the pulse
shape are symmetric, (B) x-components is symmetric, y antisymmetric, (C) x-components
is antisymmetric, y symmetric, (D) both x- and y-components are antisymmetric. x, y
and z components of the rotation vector ~r = β~e, where β is the effective rotation angle
and ~e is the unit vector pointing along the rotation axis, are given in radians.
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where the superscript Z represents the reflection of a rotation axis across the plane z = 0
(then, as shown in [72], [R(Vx, Vy, Vz)]

Z = R(Vx, Vy,−Vz)). While our rotation is fully
time symmetric, one can rewrite Eqn. 1.84 as

Rtot(−ω) = RZ
1 RZ

2 · · ·RZ
n

= RZ
tot(ω). (1.85)

Hence, for the fully time symmetric rotation the rotation components x and y are sym-
metric with respect to the rf-offset, while the z-component is antisymmetric, which can
also be observed in Fig. 1.40 A.

Fully antisymmetric case

Consider now the case of a rotation with x and y components of the pulse shape being
antisymmetric, for which therefore holds

Rm = RXY
n+1−m. (1.86)

Thus for a negative offset −ω we can write

Rtot(−ω) = RZ
n · · ·RZ

2 RZ
1

= RZXY
1 RZXY

2 · · ·RZXY
n

= R−1
1 R−1

2 · · ·R−1
n , (1.87)

where in the second line we have used the property 1.86 and then Eqn.(4) from [72],
RXY Z = R−1. Using Eqn.(6) from [72] we can rewrite the last equation as

Rtot(−ω) = R−1
1 R−1

2 · · ·R−1
n

= (Rn · · ·R2R1)
−1

= R−1
tot(ω) = RZXY

tot (ω). (1.88)

Hence, all rotation components of such pulse shape are antisymmetric with respect
to the rf-offset, which is also observed in Fig. 1.40 D.

Symmetric/antisymmetric case

For the case where the x component of a pulse shape is symmetric and the y component
antisymmetric we can write

Rtot = Rn · · ·R2R1

= RY
1 RY

2 · · ·RY
n

= (Rn · · ·R2 · · ·R1)
Y

= RY
tot, (1.89)
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which means that this rotation is invariant with respect to reflection in the xz-plane, or
in other words, that this rotation has all its components lying in the xz-plane, with the
y-component of the rotation being strictly zero. This can also be seen in Fig. 1.40 B.

Analogously, for a case of a rotation with the y component of a pulse shape being
symmetric and the x component being antisymmetric we will get

Rtot = RX
tot, (1.90)

which would mean that this rotation has all its components lying in the yz-plane, with
x-component of the rotation being strictly zero. This can also be seen in Fig. 1.40 C.

No surprise therefore, that in the case of 180◦ rotations around the y axis, as has
been optimized for the plots of Fig. 1.39, the rotations with symmetry types III and IV
generated rotations fully orthogonal to the desired ones: in the first case the rotation
components are all zero for the defined rotation axis, and in the second case the desired
propagator can only be achieved one half of the offsets, while the other half will then
experience the rotation in opposite direction.
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1.8 Experimental applications of optimized pulses

Although dual compensation for RF inhomogeneity/miscalibration and chemical shift
offset effects in excitation has been difficult to achieve [18,35,41,48,50,75–82], broadband
excitation by optimized pulses (BEBOP) has been shown (vide supra) to be an effective
solution for RF tolerance of 10–15%, which is typical of calibrated pulses output by high-
quality RF probes. Broadband in this context refers to a pulse capable of uniformly
exciting the entire 13C chemical shift range at field strengths of 800–900 MHz, requiring
a bandwidth of 40–50 kHz.

Broadband pulses which tolerate an even higher degree of RF inhomogeneity could
also be useful. NMR-spectroscopy on natural products is one potential application. For
example, calibration of 13C-pulses is extremely difficult for natural abundance samples at
very low concentration. Moreover, significant variations in pulse length can be caused by
varying salt concentrations. Sufficient RF tolerance would remove the need for painstak-
ingly accurate pulse calibrations, which are also important for optimal sensitivity of many
complex multidimensional experiments or the automated acquisition of a large number
of strongly differing samples. To accommodate the majority of 13C probes in use, the
pulse should operate equally well for a peak RF output anywhere in the range 10–20
kHz (25–12.5 ls pulse width). The constant-amplitude pulse satisfying all this conditions
was optimized by means of optimal control theory and described above in section 1.3.4.
The assessment of the performance of this pulse in comparison with other existing pulses
and its applications in HSQC and HMBC-type experiments are discussed in a following
section.

1.8.1 Pulse performance and comparison to existing pulses

Although adiabatic pulses accomodate a wide range of peak power levels, the exceptional
bandwidth of adiabatic inversion for a given peak RF amplitude does not translate to
excitation. The orientation of the effective RF field at the end of an adiabatic excitation
pulse, which, ideally gives the location of the magnetization, is not in the transverse plane
for nonzero chemical shift offset. Other existing excitation pulses [18,35,41,48,50,75–82]
provide only limited dual compensation for RF variability and resonance offset. More-
over, they have not demonstrated a performance advantage over phase-compensated hard
pulses, so hard 90◦ pulses could be considered the benchmark for broadband performance
in sequences that are readily phase-corrrected.

The theoretical performance of the optimized pulse of Fig. 1.14 and of a conventional
hard pulse are illustrated in Fig. 1.41. Contours of resulting x magnetization, Mx, are
plotted as functions of resonance offset and RF amplitude of the pulses (Fig. 1.41 A,C).
Similarly, the contours of magnetization in the transverse plane,

√
M2

x +M2
y , are shown

for the hard pulse in comparison (Fig. 1.41 B). The Mx magnetization excited by a hard
pulse is strongly dependent on offset, with a narrow bandwidth of approximately ±2.5
kHz for greater than 99% excitation, using a calibrated RF amplitude of 15 kHz (Fig. 1.41
A). In most applications, however, excitation pulses are used around evolution periods, in



1.8. Experimental applications of optimized pulses 85

Figure 1.41: Simulated performance of a hard excitation pulse (A,B) and the optimized
PM-BEBOP pulse of Fig. 1.14 (C) with nominal RF amplitude of 15 kHz each. Theo-
retical transfer from initial z magnetization M0 to Mx (A,C) and M0 to the transverse
plane

√
M2

x +M2
y (B) is shown. White areas correspond to transfers larger than 99.5 %,

light gray to transfer between 99.0 and 99.5 % and darker gray to transfer below 99.0 %.
While transfer to Mx for the hard pulse has very limited bandwidth and tolerance to
RF variation (A), the phase modulated BEBOP pulse shows almost perfect excitation
over the whole offset and RF amplitude range shown. In readily phase- compensated
pulse sequences the transfer of initial magnetization to the transverse plane is important,
as shown in (B) for the hard pulse. The performance of the hard pulse in this case is
strongly improved compared to its transfer properties to Mx, but there is significant loss
per applied pulse for amplitudes lower than the nominal 15 kHz.
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Figure 1.42: The phase behavior of the optimized PM-BEBOP pulse of Fig. 1.14 is
plotted as a function of RF amplitude ν1 and resonance offset ν0. Phase deviations from
an ideal excitation pulse are shown in 1◦ steps in different shades of gray (see scale to
the right). For almost the entire range of offsets and RF amplitudes, the phase is less
than 2 – 3 ◦, with minor distortion in the 6 – 9 ◦ range at the lowest RF (10 kHz) in the
optimized range.

which case phase deviations can be compensated by a first order phase correction. Hence,
the excitation profile of transverse magnetization,

√
M2

x +M2
y , is more appropriate for a

comparison, resulting in a bandwidth of ±12.5 kHz with larger than 99% excitation for a
calibrated 15 kHz hard pulse (Fig. 1.41 B).

Regardless of the application, hard excitation pulses are significantly affected by RF
miscalibrations. On-resonance, where the performance is best, only 90 % of magnetization
is brought into the transverse plane if the pulse amplitude deviates by 25 % from its
nominal value. For the optimized phase- modulated BEBOP (PM-BEBOP) pulse of 1 ms
duration the excited magnetization Mx is better than 99% of the initial z magnetization,
M0, over the targetted factor of 2 variation in the nominal RF delivered by the coil
and resonance offsets of ±25 kHz, as shown in Fig. 1.41 C. Phase deviations over the
optimization window are typically less than 2 – 3 ◦ (cf. Fig. 1.42), which is sufficient
for the majority of NMR experiments. In applications with a high dynamic range, as for
example in 1H-NOESY experiments, this phase behavior might not be adequate. In such
cases, pulses with more stringently optimized phase behavior (and shorter pulse length)
can be used [36, 57], with the proviso that they also require more accurate calibration.
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The experimentally acquired excitation profiles of this pulse, showing an excellent match
with theory, are presented in Fig. 1.15.

1.8.2 2D – applications

The benefits of using PM-BEBOP in practical NMR applications are well- illustrated by
13C-1H correlated experiments, as e.g. HSQC or HMBC. An important element of these
types of experiment is the sub-sequence 90◦–t1–90◦ applied to the 13C spins to encode the
frequencies for the first dimension of the 2D spectrum. The linear phase roll of a hard 90◦

pulse is commonly eliminated from the first spectral dimension by subtracting a constant
time (equal to 4 t90/π) from t1. Details of the mechanism responsible for this “rephasing”
are straightforward, but it suffices to note merely that one can expect approximately
phase-corrected performance from hard 90◦ pulses in HSQC-type sequences, at least in
the absence of RF inhomogeneity.

Two-dimensional spectra were recorded on a Bruker Avance 500 spectrometer using
a ≈500 mM menthol sample dissolved in CDCl3. Standard HSQC [83, 84] and HMBC
experiments [85,86] were acquired with variations in offset, RF amplitude, and the kind of
pulses applied on 13C nuclei. The maximum RF amplitude of the Bruker TXI probehead
used corresponds to 14.3 kHz (equivalent to a 90◦ pulse of 17.5 µs). To avoid maximum
power for the shaped pulses, we used slightly lower RF amplitudes of 12 kHz for the
nominal power. This scales to a 1.2 ms PM-BEBOP pulse covering ±20 kHz bandwidth
(rather than the 15 kHz nominal amplitude corresponding to the 1 ms pulse, which has
a bandwidth of ±25 kHz). The total sweep width needed for covering the 13C-spectra of
menthol on a 500 MHz spectrometer is ≈8 kHz. We therefore decided to record three
spectra with 0, 8, and 16 kHz offset relative to the center of the 13C- spectral width, leading
to a coverage of offsets corresponding to −4-4 kHz, 4- 12 kHz, and 12-20 kHz, respectively.
Since spectral width and offsets are matched, no folding artefacts were observed.

Based on the procedure described in section 1.5.1 we also constructed a 2.4 ms univer-
sal rotation 180◦ pulse (consisting of both the phase and time- reversed and the original
PM-BEBOP pulse of 1.2 ms duration each) with identical active bandwidth. The per-
formance of the resulting refocussing pulse with respect to offset and RF amplitude in
comparison to a hard 180◦ pulse is shown in Fig. 1.43. In order to test the robustness of
the pulse sequences with respect to variation in RF amplitude, hard and shaped pulses
were set to 8, 10, and 12 kHz RF amplitude.

For each combination of offset and RF amplitude three HSQC and three HMBC ex-
periments were acquired using only hard pulses, hard excitation but shaped PM- BEBOP-
based 180◦ pulses, and only shaped PM-BEBOP excitation and PM- BEBOP-based refo-
cussing pulses, respectively, on 13C nuclei (Fig. 1.44, 1.45). In the series of experiments
with shaped excitation pulses, the 90◦ flip back pulse after the 13C evolution period was
replaced by the time reversed PM-BEBOP pulse for optimal transfer Mx → Mz. In
Figs. 1.46 and 1.47 representative slices of all 2D-spectra acquired through the signals
corresponding to C6H

eq
6 and C1H7, respectively, are shown. The slices taken from HMBC

spectra are shown in magnitude mode.
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Figure 1.43: Simulated refocusing performance is shown as a function of RF amplitude ν1

and resonance offset ν0 for a hard 180◦ pulse generating the transformations (A) −Mx →
Mx, (B)My →My, and (C)Mz → −Mz . The corresponding performance of a shaped 180◦

pulse constructed from the optimized PM-BEBOP pulse of Fig. 1.14 using the procedure
described in section 1.5.1 is shown in the second column of figures. The nominal RF
amplitude is 15 kHz in all cases. White areas correspond to transfers larger than 98.0 %,
light gray to transfer between 95.0 % and 98.0 %, gray to lower positive transfer, and
dark gray to transfer where the resulting magnetization is still negative. While refocusing
for the hard pulse has very limited bandwidth and tolerance to RF variation, the pulse
constructed from the PM-BEBOP pulse shows very good refocusing properties over the
whole offset and RF amplitude range shown.
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On resonance and with correctly calibrated hard pulses, the performance of all three
HSQC experiments is more or less identical (c.f. Fig. 1.46 A). However, as soon as either
RF amplitude or resonance offsets are changed, the signal intensity of the hard pulse
HSQC decreases substantially and at offsets larger than 15 kHz the signal falls to ≈0 (c.f.
Fig. 1.46 C-C′′). In addition, large phase rolls are observed in the indirect dimension.

Most of the signal loss is due to the bad performance of the uncompensated hard
180◦ pulses. As expected from previous reports [78,79,87,88], exchanging the hard pulses
with the PM-BEBOP-based refocussing pulse recovers most of the signal, so that for RF
amplitudes 3.5 dB lower than the nominal value and an 8 kHz offset the signal intensity
is practically identical to the on resonance case with calibrated RF amplitude.

In comparison, it is difficult to find broadband adiabatic refocusing pulses that achieve
the performance of the new pulse shown in Fig. 1.43. To work properly, they must be
sufficiently adiabatic, which is determined by pulse length, peak RF, and the frequency
sweep range of the pulse (related to bandwidth). Typical adiabatic pulse shapes require
pulse lengths of 34 ms to refocus over a 20 % smaller bandwidth and smaller range of
RF tolerance. The best adiabatic refocusing we could find (matching the 98 % refocusing
of Fig. 1.43) was achieved with WURST-20 [89]. Using a 0.5 ms pulse with a 94 kHz
frequency sweep as the constituent inversion pulse of the 3π procedure described in [79]
resulted in a 2 ms refocusing pulse which covered the full 50 kHz bandwidth for peak RF
in the range 11.5–22 kHz

Nevertheless, for larger offsets and lower RF amplitudes the overall intensity of ex-
periments is also affected by the decreased performance of hard excitation pulses. At an
offset of 16 kHz and a 3.5 dB miscalibrated RF amplitude, for example, the signal inten-
sity is reduced by about one third (Fig. 1.46C′′). When all carbon pulses are replaced
by PM-BEBOP excitation and refocussing pulses, the signal intensity is restored also in
these cases and virtually identical performance for the HSQC experiment is observed for
the whole range of offsets and RF amplitude settings shown in Fig. 1.46.

The set of experiments recorded for the state of the art HMBC basically lead to
identical results with respect to signal intensities (cf. Fig. 1.47). PM-BEBOP pulses
appear to have a utility for excitation and refocussing pulses similar to adiabatic pulses
for RF-compensated inversion, with no variation in pulse performance over the targetted
offset and RF amplitude ranges.

We see, that a 1 ms pulse is capable of uniformly exciting the entire 200 ppm 13C
chemical shift range of a potential 1 GHz spectrometer for a peak RF amplitude anywhere
in the range 10–20 kHz. This provides an unprecedented combination of bandwidth
and tolerance to RF inhomogeneity. HSQC and HMBC experiments show the practical
benefits of the new pulse. To the best of our knowledge, this is the first time that any
shaped or composite RF pulse has proven to be significantly better than hard 90◦ pulses
in applications where the linear phase roll of the hard 90◦ pulse is compensated (HSQC)
or irrelevant (HMBC single-bond filter). For probes which have a peak RF in this range,
which should cover the vast majority of probes, one needs only to set the RF slightly lower
then maximum power to ensure complete and distortionless excitation. This removes one
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Figure 1.44: HSQC pulse sequences used for the comparison of signal intensities shown
in Fig. 1.46. The reference HSQC based on hard pulses is shown in (A). In the sequence
shown in (B) all 13C-pulses are replaced by PM-BEBOP-based excitation and refocussing
pulses. PM-BEBOP pulses are schematically shown as rectangular pulses (representing
constant RF amplitude) containing a wavy line (representing phase-modulation). Phase
and/or time reversals are illustrated by vertical and/or horizontal mirroring of the wavy
lines in the boxes, respectively. Phases are ϕ1 = x, ϕ2 = x,−x, ϕ3 = x, x,−x,−x,
ϕ4 = 4(x), 4(−x), ϕrec = x,−x, x,−x,−x, x,−x, x. G1, ϕ1, ϕ2, and ϕrec are cycled ±
according to echo/antiecho acquisition scheme. If not stated otherwise, all pulses have x
phase.
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Figure 1.45: HMBC pulse sequences used for the comparison of signal intensities shown
in Fig. 1.47. The reference HMBC based on hard pulses is shown in (A). In the sequence
shown in (B) all 13C-pulses are replaced by PM-BEBOP-based excitation and refocussing
pulses. PM-BEBOP pulses are schematically shown as rectangular pulses (representing
constant RF amplitude) containing a wavy line (representing phase-modulation). Phase
and/or time reversals are illustrated by vertical and/or horizontal mirroring of the wavy
lines in the boxes, respectively. Phases are ϕ1 = 4(x), 4(−x), ϕ2 = 8(x), 8(−x), ϕ3 =
−x, x, ϕ4 = x, x,−x,−x, ϕrec = x,−x,−x, x,−x, x, x,−x,−x, x, x,−x, x,−x,−x, x.If
not stated otherwise, all pulses have x phase. Echo and antiecho selections were achieved
using gradients. The gradient pulses were 1ms long. The applied gradient strength ratios
are: G1 : G2 : G3 = 33 : 50 : −30 for echo and G1 : G2 : G3 = 33 : 30 : −50 for antiecho.
The carbon pulse phase ϕ3 and ϕrec were incremented by π for every second t1 increment
to obtain States-TPPI-like data.
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of the major obstacles to automated NMR, which has been the need to accurately calibrate
the constituent RF pulses in complex 2D pulse sequences. As noted, adiabatic pulses are
tolerant to a wide range of RF miscalibration only as an inversion pulse.
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Figure 1.46: Traces through the C6-H
eq
6 signal of several HSQC spectra of menthol in

CDCl3 recorded with varying offsets, RF amplitudes, and 13C pulses used. RF amplitudes
were 12 kHz (A,B,C), 10 kHz (A′, B′, C′), and 8 kHz (A′′, B′′, C′′) and on-resonant
offsets were set to 0 kHz (A-A′′), 8 kHz (B-B′′), and 16 kHz (C-C′′) (see main text for
details). For each of the offset and RF amplitude combination the traces for three different
HSQC experiments using different 13C-pulses (see Fig. 1.44) are shown: only hard pulses
(left), hard excitation and PM-BEBOP-based shaped 180◦ pulses (middle), and only
PM-BEBOP excitation, and PM-BEBOP-based refocussing pulses (right). For B′′ 2D-
regions are also shown for the three different experiments for a better demonstration of the
spectral quality. The circled signals correspond to the above traces. In the 2D-regions of
hard pulse acquired spectra phase distortions can clearly be seen. These phase distortions
have been corrected for all traces shown above in order to have a fair comparison of the
intensities present in the various spectra.
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Figure 1.47: Traces through the C1-H7 signal in HMBC spectra analogous to the traces
of HSQC spectra shown in Fig. 1.46. The replacement of hard 180◦ pulses by the BEBOP-
constructed 180◦ pulse expectedly results in a strong improvement of the signal intensity
(see also [78,79,87–89]). Further improvements can be seen if both PM-BEBOP excitation
and PM-BEBOP-based refocussing pulses are used for 13C: signal intensities basically stay
constant for all RF amplitudes and offsets recorded.



Chapter 2

Partial alignment

It is the stretched soul that makes music.

Eric Hoffer, ”Reflections on the Human Condition“

2.1 Introduction

Since all NMR active nuclei have non-zero magnetic moments and are therefore mag-
netic dipoles, they magnetically interact with each other through space, as all magnets
do. These couplings, which depend on the relative orientation of the dipoles and their
distance from each other, are the dominant interactions among other observable inter-
actions in solid state NMR. It’s still the largest interaction between nuclear spins of a
liquid sample, though many of the ordinary users are not aware of this. Under isotropic
solution conditions large internuclear dipolar couplings and other orientation-dependent
magnetic interactions average to exactly zero as a result of Brownian rotational diffusion,
which is many orders of magnitude faster than the time it takes to record an NMR signal.
This averaging makes it possible to achieve high-resolution spectra with relative ease in
liquid state NMR. However, solid state NMR allows spectroscopists to extract a wealth
of structural information by measuring these interaction, which is of course lost in liquid
state, where dipolar couplings vanish. However, back in 1963 a possibility was discov-
ered to regain structural information contained in dipolar couplings, without losing the
advantages of high-resolution NMR, — the partial orientation of solute molecules [90].

2.1.1 The Alignment Tensor

The key concept crucial for understanding residual dipolar couplings is the so-called align-
ment tensor. The alignment tensor characterizes the partial alignment acquired by the

95
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molecule in the alignment medium and once known, allows to calculate the expected
residual dipolar coupling constant for any spin pair. Almost every application of residual
dipolar couplings necessarily includes the determination of the alignment tensor and its
analysis.

The Hamiltonian of the dipolar interaction between two heteronuclear spins I and S
with gyromagnetic ratios γI and γS and internuclear distance rIS is given [17] by:

HD(t) = − µ0h̄

8πr3
IS

γIγS(3 cos2 ϑ(t) − 1) · 2IzSz, (2.1)

where ϑ(t) is a time dependent (due to molecular tumbling) angle between internuclear
vector and direction of the external magnetic field. This can be written shorter as

HD(t) = πD · 2I
z
S
z
, (2.2)

where the dipolar coupling constant D is given by:

D = − κ

r3
IS

(

cos2 ϑ(t) − 1

3

)

(2.3)

and

κ = − 3

8π2
γIγSµ0h̄ (2.4)

This dipolar coupling constant is scaled by fast motions originating from Brownian motion
and dynamics within the molecule. In isotropic solutions it is averaged to zero. In the
oriented medium the averaging is not complete and one can observe the residual dipolar
coupling with constant D:

D = − κ

r3
IS

(

cos2 ϑ(t) − 1

3

)

, (2.5)

which depends on the average alignment of the molecule.
If the “alignment properties” of the molecule are known, then it is possible to calculate

D for any pair of spins in that molecule, and full and comprehensive theory on that behalf
was provided by Saupe already in 1964 [91]. As was shown in a nice review [92], main
points of which are used here, this calculations can be surprizingly simple.

In the frame of reference, which is fixed to the molecule , the term cos2 ϑ(t) can be
conveniently expressed with the help of a probability tensor P, which is a second order
approximation of the orientational probability distribution of the direction of the external
magnetic field in the molecular fixed frame of reference [93, 94]. This probability tensor
P can be represented by an ellipsoid with a fixed orientation in the chosen molecular
frame (x, y, z). The principal values Px̃, Pỹ, and Pz̃ of the probability tensor are the
probabilities to find the magnetic field along the corresponding principal axes of the
probability ellipsoid, and hence Px̃ + Pỹ + Pz̃ = 1.

The principal axes of the probability ellipsoid define a special molecular fixed axis
system (x̃, ỹ, z̃), in which the calculation of residual dipolar coupling constant is especially
simple: if we know the three Cartesian components rx̃, rỹ, and rz̃ of any given internuclear
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unit vector ~r in this principal axis system, the term cos2 ϑ(t) in Eq. 2.5 is simply given
by

cos2 ϑ(t) = Px̃r
2
x̃ + Pỹr

2
ỹ + Pz̃r

2
z̃ . (2.6)

By inserting this equation into Eq. 2.5 the residual dipolar coupling constant can be
predicted for any arbitrary spin pair in a molecule, as long as the orientation and principal
values of the probability tensor are known.

More often, instead of describing the orientation of a molecule in terms of the proba-
bility tensor P (which corresponds in general to a real symmetric 3 × 3 matrix with trace
1), it is described in terms of its traceless part P - 1/3 1, which is called the alignment
tensor A [95]:

A = P− 1

3
1. (2.7)

The three principal axes of A and P are identical and the three principal components of
the alignment tensor A are simply given by

Ax̃ = Px̃ −
1

3
, Aỹ = Pỹ −

1

3
, Az̃ = Pz̃ −

1

3
. (2.8)

The probability tensor A is traceless, hence Ax̃ +Aỹ +Az̃ = 0, and therefore one or two of
its components are always negative, in contrast to the probability tensor, which is always
positive.

In terms of the principal components of the alignment tensor A, the term
(cos2 ϑ(t) − 1/3) in Eq. 2.5 can be expressed as

(

cos2 ϑ(t) − 1

3

)

= Ax̃r
2
x̃ + Aỹr

2
ỹ + Az̃r

2
z̃ . (2.9)

This equation is also very often represented in spherical coordinates. Then, instead of
having rx̃, rỹ, and rz̃ components of the bond vector in the tensor frame of reference, one
deals with azimuthal and axial angles θ and φ. Equation 2.9 takes the following form:

(

cos2 ϑ(t) − 1

3

)

=
Az̃

2
(3 cos2 θ − 1) +

Ax̃ −Aỹ

2
sin2 θ cos 2φ. (2.10)

Often, the axial component Aa and the rhombic component Ar of the alignment tensor
are defined as [95]

Aa =
3

2
Az̃, Ar = Ax̃ − Aỹ. (2.11)

With these definitions, Eqs. 2.9 and 2.10 can be expressed as
(

cos2 ϑ(t) − 1

3

)

=
1

3

{

Aa(3 cos2 θ − 1) +
3

2
Ar sin2 θ cos 2φ

}

. (2.12)

If one of these equations is inserted into Eq. 2.5, it is again possible to predict the
residual dipolar coupling constant for any arbitrary spin pair in a molecule, provided that
the orientation and principal values of the alignment tensor are known.
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Conversely, the alignment tensor A (or the probability tensor P) can be determined
if a sufficient number of experimental dipolar coupling constants are measured for a given
molecule [96]. It can be shown [92] that the alignment tensor A (and the probability
tensor P) is characterized by five independent parameters. Therefore, at least five dipolar
coupling constants need to be measured in order to determine the five unknown parameters
[96].

2.1.2 Alignment media

Three different ways of introducing partial alignment are known today: orientation via
paramagnetic ions, alignment in a liquid crystalline phase, typically a lyotropic mesophase,
alignment in a stretched gel. When a molecule has considerable magnetic susceptibility
anisotropy, the molecule orients partially under the strong magnetic field. In the other
two cases orientation is induced by an oriented molecular lattice, which then partially
aligns the molecules of interest via steric or electrostatic interactions.

Paramagnetically induced alignment

Placing a molecule with an anisotropic magnetic susceptibility in a strong magnetic field
causes a partial cancellation of the random Brownian motion, and a net alignment results,
though very small, but measurable by NMR in some cases, as was shown back in 1980s [97,
98]. Paramagnetic alignment can be induced in molecules containing a paramagnetic ion,
or such an ion can be bound to a specific ionic binding site, which either is present naturally
or in some cases can be engineered by a paramagnetic tag. However, the self-aligning
paramagnetic ion not only introduces RDCs but also an effect known as pseudo contact
shift, which itself can be used for structure elucidation, but significantly complicate the
evaluation of the spectra.

And though the paramagnetic alignment effect is very small, in 1995, James H. Preste-
gard and coworkers demonstrated that paramagnetic alignment of certain proteins (in this
case cyanometmyoglobin, which has a very highly anisotropic paramagnetic susceptibil-
ity), taken at very high field, could be used complementary to NOEs to determine a
tertiary fold [99]. Later this method was also used for exploring domain dynamics of
protein calmodulin chelated to Tb3+ or Tm3+ [100].

Liquid Crystalline Phases

Liquid crystals have been the first alignment media, introduced in 1963, as the
first spectrum of benzene partially oriented in the nematic mesophase of 4,4′-di-n-
hexyloxyazoxybenzene was reported, a spectrum with at least 30 reasonances and a width
of a multiplet pattern of approximately 2500Hz [90]. Following this result, a flood of NMR
spectra in various liquid crystalline phases was reported (see e.g. refs [94,101–104]) using
mainly nematic mesophases but also smectic [105–107], destroyed cholesteric [103, 108],
and lyotropic nematic mesophases [109, 110]. Liquid crystals orient spontaneously in a
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magnetic field and the weak interaction with the solute produces the desired partial orien-
tation. Liquid crystalline phases, however, have a first order phase transition and therefore
a limitation to a minimum alignment. It turned out that the orientation introduced by
liquid crystalline phases generally is very strong, yielding numerous large splittings by
RDCs that can hardly be interpreted for more complex organic molecules. Additionaly,
the strength of the introduced alignment is proportional to the strength of the inducing
external magnetic field.

Poly-γ-benzyl-L-glutamate, dissolved in solvents like dichloromethane, chloroform,
or dimethylformamide, was introduced by Panar and Phillips [108]. It was one of the
least orienting liquid crystals known at that time and was used for the first success-
ful measurement of RDCs in an organic solvent to obtain structural information of a
small molecule [86,111,112]. Currently, new liquid crystalline phases for organic solvents
have been developped that can achieve lower degrees of anisotropies. 4-n-Penthyl-4′-
cyanobiphenyl [113] and Poly-γ-ethyl-L-glutamate [114] seem to be two promising candi-
dates for the measurement of RDCs in small molecules. The existence of liquid crystalline
phases with very low induced anisotropies was proven in last years in the field of biomolec-
ular NMR. Several lipid/detergent mixtures [95, 115], filamentous phage [116], and other
liquid crystalline phases [117, 118] were used to successfully measure RDCs for strucrure
refinement of proteins and nucleic acids. These alignment media are, of course, also
applicable to small molecules in aqueous solutions [119–124].

Stretched Polymer Gels

It was shown already in 1981 by Deloche and Samulski [125], that partial alignment
can also be achieved by mechanical stretching of polymer gels. In polymer NMR this
technique has since become standard to obtain information about polymer properties, but
remained largely unnoticed by the rest of NMR community, occupied with chemical and
biochemical applications. Only in the year 2000 the use of these stretched polymer gels was
reinvented for aligning molecules dissolved inside the gel to obtain RDCs for structural
investigation. The approach was called “strain induced alignment in a gel” and was
demonstrated on stretched polyacrylamide [126–129], and polyacrylamide/acrylate [130]
copolymers. Several ways of aligning by using a shigemi plunger [126], teflon funnels [131],
or glass capillaries [130] have been developed and successfully applied to proteins as well
as small molecules. An advantage of this method over liquid crystalline alignment media is
independence of alignment with respect to the external magnetic field and wide scalability
of the alignment.

2.1.3 Applications of RDCs

Since their re-introduction in the NMR community [95, 99], residual dipolar couplings
have soon found broad appreciation, primarily in biomolecular NMR spectroscopy. While
NOEs are local distance restraints, RDCs provide complementary long-range orientational
information. And this information is now being widely used alongside of NOEs for the
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Figure 2.1: Measured DCH RDCs for menthol in a PS/CDCl3 gel (data taken from the
Table 2.3). Axial and equatorial protons of can easily be distinguished by RDCs even
without knowing the alignment tensor.

refinement of macromolecular structures (see e.g. review [132]). For small molecules,
however, the potential of RDCs remained largely undiscovered until some very promising
applications were reported recently.

Maybe the most elegant application of RDCs is found in six-membered chair-like
rings, where RDCs can be used directly to distinguish axial and equatorial protons without
having the need to derive an alignment tensor [123]. The method uses the fact that all axial
C-H vectors are oriented in the same direction and therefore must have virtually identical
DCH couplings (this can also be seen on the data in the Table 2.3). The assignment then
can simply be achieved by looking at the occurence of identical RDCs: all protons with
very similar DCH RDCs are axial while all others are equatorial (cf. Fig. 2.1).

The use of RDCs can also facilitate the assignment of prochiral protons of methylene
groups in NMR spectra. Normally such assignment is acheved based on NOE information,
but in many cases this is not possible, whether while the CH2 group is isolated and there
are no neighbouring protons or while the difference in distances to those are very small
and undistinguishable by NOEs. If the alignment tensor is known then such assignment
can be done even in those cases [86, 111], as also an example in section 2.3 illustrates.

Another important application can also be found in the determination of Z/E con-
figurations [112] and the determination of the relative chirality of stereochemical cen-
ters [124, 133] even in different parts of the molecule that might be spatially distant.
For this technique, structural models of all possible configurations have to be built first.
The measured RDCs are then compared with RDCs backcalculated from the different
structures. The best structural model provides the best fit.
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A challenging application is the determination of the sugar pucker with RDCs. Freed-
berg [122] has shown that the RDCs measured for sucrose cannot be explained by a single
conformation. On the other hand, a large number of potential sugar puckers can be ruled
out, giving more insight into the population of structures and the dynamic behavior of
sugars.

One should keep in mind that the alignment tensor is a value associated with a cer-
tain rigid structure and therefore it is difficult to handle dynamic regions in molecules.
RDCs in dynamic regions are averaged over all populated states and might lead to mis-
interpretations if the populated structures differ significantly. However, the use of several
different alignment media should make it possible to unambiguously identify flexible re-
gions in a molecule and together with the improved prediction of alignment tensors [134],
determined RDCs might be fitted to a small ensemble of structures in the future.
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2.2 Stretched polystyrene gels for partial alignment of

small organic molecules

In today’s high resolution NMR of biomacromolecules the measurement of residual dipolar
couplings (RDCs) can be viewed as a standard method for obtaining structural informa-
tion and a large abundance of aqueous alignment media such as lipid bicelles [95, 115],
stretched polyacrylamide gels [126, 128], filamentous phage [116] and other liquid crys-
talline phases [117,118] are used. The field of small molecule NMR, however, started only
recently to realize the potential of this new structural parameter and few, nevertheless
impressive, demonstrations have been published so far [86,111, 112,114,119–124,129].

A limiting step for the application of RDCs to small molecules is still the availability
of alignment media for organic solvents. Liquid crystalline phases such as poly-γ-benzyl-
L-glutamate (PBLG) [86, 108, 111, 135] are known to align organic molecules in CDCl3
and similar apolar organic solvents. Liquid crystals, however, have the disadvantage that
for the phase transition a minimum concentration is needed and therefore only anisotropy
larger than a certain minimum is induced in the sample. The strength of alignment
depends also on the magnetic field of the spectrometer, while latter is the force, which
forces molecules to orient. The development of specially designed crystalline phases with
lower minimum alignment, as shown in the case of 4-n-pentyl-4’-cyanobiphenyl (PCBP)
[113] and poly-γ-ethyl-L-glutamate (PELG) [114], will improve the applicability of such
systems.

An alternative is given by strain induced alignment in a gel (SAG), which is in-
dependent of the magnetic field and scalable over a wide range. In aqueous solutions
mechanically stretched polyacrylamide [126–128,131] and an acrylamide/acrylate copoly-
mer [130] were applied. But polymeric gels are also generally suited for partial alignment
in organic solvents as was shown by the pioneering work of DeLoche and Samulski [125]
and many follow up applications in polymer NMR spectroscopy (e.g. see [136–139]).

We developed an easy to apply and scalable method for the alignment of organic
molecules and measurement of residual dipolar couplings in cross-linked polystyrene in
different organic solvents, which can be extended to a large number of polymer/solvent
combinations.

2.2.1 Gel preparation

Crosslinked polystyrene sticks were prepared in glass tubes with inner diameters of 3.4
mm and 4.0 mm. The glass tubes were carefully dried and treated with a 1:1 mixture
of chlorotrimethylsilane and dichlorodimethylsilane for 18 hours to ensure apolar sur-
faces. After washing with dichloromethane (5 times) the tubes were dried at 50◦C and
one end was sealed by melting. Styrene (99%, Fluka) and divinylbenzene (80%, Fluka)
were filtered (basic aluminum oxids, pH 10, Fluka) and distilled under reduced pressure.
Immediately before polymerization the monomers were degassed for 15 minutes by ultra-
sound in vacuo and ventilated in an argon atmosphere. After carefully mixing styrene,
divinylbenzene and 2,2’-azobis(2-methylpropionitrile) (AIBN) to desired concentrations
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Figure 2.2: Photography of the cross-linked PS stick in different states of swelling. From
left to right: unswollen polymer stick in standard 5 mm NMR-tube, polymer stick directly
after polymerization, free polymer stick completely swollen, polymer stick swollen in the
NMR-tube.

the mixture was filled into the prepared glass tubes and their tops sealed. Polymerization
was performed for 5 days at 45◦C and 2 days at 60◦C. After breaking the glass tubes,
bubble-free parts of the polymer sticks were cut into pieces of 1.0 cm to 1.5 cm length.
All samples used for measurements were prepared by putting polystyrene sticks of defined
diameters directly into NMR tubes and letting them swell in the chosen solvent for one to
fourteen days (see Fig. 2.2). The swelling processes were monitored by acquiring 2H NMR
spectra of the deuterated solvents: with progressing swelling and stretching of a polymer
the initially sharp single signal broadens irregularly, then turns into two broad lines and fi-
nally ends up with two relatively sharp lines for well equilibrated samples. Swelling times,
necessary to obtain equilibrated sample differ significantly for different solvents used and
different diameters of the polymer stick taken. Shortest swelling times were observed for
samples swollen in dichloromethane; in this case, most of the polystyrene sticks of 3.4 mm
diameter reached equilibrium state within 24 hours. Similar sticks swollen in chloroform
were ready to use in about 2-3 days, while slowest swelling was observed for dioxane and
benzene in which PS-sticks required up to two weeks to reach equilibrium. Within limits,
the speed of the swelling process could be increased by increasing the sample temperature.
In the end, all PS-sticks dissolved in one of the solvents discussed in the text resulted in
nicely equilibrated samples with uniform splittings in the 2H NMR spectra.

2.2.2 Physical properties of polystyrene gels

Of course, the method of measuring RDCs in stretched polystyrene gels has its limitations
and we tried to find out the range of conditions under which stretched PS gels still show
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Figure 2.3: Temperature dependence of the quadrupolar deuterium splitting νQ of
CDCl3 added to the stretched PS-gel sample swollen in chloroform (solid line) and ben-
zene (dashed line).

alignment properties that allow RDC measurement. A physical parameter of central
importance is the sample temperature. Most liquid crystals show a phase transition
with a specific transition temperature below or above which no partial alignment can
be achieved [95, 101]. We therefore studied the anisotropy change of stretched PS-gels,
monitored by the quadrupolar deuterium splitting, over the full temperature range of
liquid CDCl3 and C6D6. The result is shown in Fig. 2.3: no abrupt changes could be
observed, only a steady increase of the observed splitting of 1.1 and 0.35 percent on
average per degree towards lower temperatures. Therefore no general limitation of the
method can be seen in the temperature range of CDCl3 and C6D6 as solvents, but for
practical applications it should be noticed that a defined temperature must be chosen to
guarantee identical alignment conditions if RDCs measured in different experiments shall
be compared.

An important parameter for the mechanism of alignment is the static magnetic field
dependence of the induced anisotropy. While gel-alignment due to mechanical stretch-
ing should be independent of the magnetic field, auto-alignment of polymer chains as
previously observed for macromolecules [98,99] and liquid crystalline phases [111] should
be field dependent. After careful calibration of the temperature, a series of quadrupo-
lar splittings of a PS/CDCl3 gel sample was measured for four different magnetic field
strengths with the results shown in Table 2.1. The measured splittings are all within the
error due to temperature variations and spectral noise, which we conservatively estimate
to be about ±0.2 Hz. From this result we can deduce that the anisotropy of the gel
originates from mechanical stretching only and no auto-alignment of the polymer chains
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Table 2.1: Magnetic field strength dependence of quadrupolar coupling

B0 field, MHz

250 600 750 900

splitting, Hz 58.8 59.0 59.0 58.9

occurs, which is consistent with the finding that non-crosslinked PS dissolved in CDCl3
does not cause any measurable quadrupolar deuterium splitting. This also implies that no
lower anisotropy limit is imposed by the PS-gel alignment method since the mechanical
stretching of the polymer can be varied continuously.

Of course, the alignment properties of a stretched PS-gel also depend on the consis-
tency of the gel itself. Apperently, the anisotropy induced by the gel should dependent
on the amount of cross linking agent used for polymerization. We performed the poly-
merization at 45◦C with 2,2’-Azobis(2-methylpropionitrile) (AIBN) as a radical starter
and different amounts of divinylbenzene (DVB) as crosslinker ranging from 0.05% to 5%
(v/v). Five samples per concentration were swollen in CDCl3 and quadrupolar deuterium
splittings were recorded. The resulting graph is shown in Fig. 2.4 B: Anisotropies cor-
responding to quadrupolar deuterium splittings in the range of 0-540 Hz for PS-sticks
with initial diameter of 4.0 mm could be achieved, which should basically cover all needs
for partial alignment. Under these polymerization conditions we could not find any sig-
nificant dependence of induced anisotropy on the amount of radical starter. However,
if the polymerization is performed under higher temperatures (80 - 120 ◦C) and using
dibenzoylperoxide (DBP) as a radical starter, such dependence is present and is shown
in Fig. 2.4 A. Though, such polymerizations resulted in polymers of much lesser homo-
geneity, very often with such large amount of air bubbles inside, that no NMR study
could be thinkable. Therefore, we came to a procedure described above, with moderate
polymerization temperatures and AIBN as a radical starter.

A point of major interest in the applicability of PS-gels is the range of solvents in
which molecules can be aligned. We therefore did a series of experiments where we tried
to swell PS-sticks in a number of organic solvents. In line with the very low solubility
of non-crosslinked PS [140], no swelling could be observed for very apolar solvents like
octane and relatively polar solvents like acetone or acetonitrile. However, dichloromethane
(DCM), tetrahydrofuran (THF), benzene, and dioxane showed significant swelling and
were used for further experiments. The DVB-dependence of the induced anisotropy was
measured by adding 5-10 % of CDCl3 to the otherwise undeuterated solvents (Fig. 2.4 C).
Quadrupolar deuterium splittings in the range of 0-400 Hz could be obtained for DCM and
THF as solvents, showing overall similar behavior to chloroform. Benzene and dioxane
both showed a relatively slow swelling with a different behaviour concerning quadrupolar
splitting. Samples of 3.4 mm initial polymer diameter swollen in benzene result in similar
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Figure 2.4: deuterium quadrupolar splitting νQ of CDCl3 as a measure of induced
anisotropy with respect to amount of radical starter and cross-linked agent DVB used
for PS polymerization. (A) νQ values of CDCl3 for different amounts of DBP used for
polymerization at high (80 - 120◦C) temperatures with 0.16% DVB. (B) νQ values of
CDCl3 are averaged ofer 4 - 5 different samples for each data point with standard devi-
ations as error bars. Samples were prepared with PS sticks of 4 mm diameters. (C) νQ

values are shown for 5 - 10% CDCl3 added to the solvents dichloromethane, tatrahydro-
furane, dioxane, and benzene. Samples were prepared with PS sticks of 3.4 and 4 mm
diameters for the four solvents as indicated in the graph. Only one sample/data point was
prepared. Deviations from a smooth curve as in (B) are probably due to variations in inner
diameters of NMR tubes and glass tubes used for polymerization and slight distortions
from a perfect cylindrical shape of some PS sticks used.
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Figure 2.5: Structures of norcamphor (left) and menthol (right)

quadrupolar splitting as chloroform samples with 4 mm initial PS-stick diameter. Samples
swollen in dioxane, on the other hand, show smaller quadrupolar splittings, than observed
for the other solvents.

2.2.3 Alignment in polystyrene gels

Though the initial NMR studies on swollen and stretched polymers were performed to
study the state of polymer itself [125], it is the state of a dissolved small molecule which we
are concerned with, while it is the longing for structural information about this molecule,
which brings one to dissolve it in the orienting medium.

Sample preparation, measurements and evaluation

The preparation involved several steps. First, norcamphor was added on top of already
prepared PS-gel samples which were kept at room temperature for 2-3 days to allow
for diffusion of the small molecule into the gel. The samples were then used to acquire
standard coupled 1H-13C HSQC spectra with sensitivity enhancement and phase sensitive
echo/antiecho gradient selection [141–143]. All 2D spectra were measured on Bruker DMX
600 spectrometers with 3.5 ppm spectral width in the 1H-dimension (4096 complex points)
and 70 ppm (256 increments) in the indirect 13C-dimension. With 2 transients acquired
per increment the total experiment time for each HSQC spectrum was about 16 minutes.
Spectra were processed with exponential multiplication (with an additional linebroadening
of 1 Hz) in the directly recorded dimension and a 90◦-shifted sine-bell window function in
the indirect dimension. Coupling constants were measured with the aid of the program
SPARKY [144] using automated peak picking and by individually phasing the doublet
components at slices along the direct detected dimension in cases of slight phase twists (c.f.
procedure described in [123]). It turned out that the latter procedure gave more reliable
results with deviations relative to the automated peak picking of up to 2 Hz. The errors
of the coupling constants determined by the more elaborate procedure were generally
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Figure 2.6: Region of the 1H,13C-correlation spectra (HSQC) acquired on 50 mg strych-
nine in CDCl3 (left) and in a PS-gel swollen in CDCl3 (right) at 300◦ K. 1JCH and
1JCH + DCH couplings, respectively, are given next to the corresponding cross peaks.
As can be seen from the 1D-slice at 37.8 ppm the couplings are easily measured. The
broad signals of the PS-polymer are indicated with an asterisk.

below ±0.5 Hz, which was used as a conservative estimate for subsequent calculations.
The alignment tensors were finally derived using only RDCs from signals without second
order effects with the program PALES [134] using the bestFit option. Relative orientations
in 5D-space and errors estimations of the alignment tensor calculations were calculated
with the corresponding options in the PALES program. Samples for various solvents
containing menthol were prepared and measured in the same way as norcamphor samples
but no attempt to derive alignment tensors was pursued since only four C,H-vectors point
in different directions.

For the initial proof of principle, that a small organic molecule diffuses inside the
PS gel and gets oriented in there, we used strychnine, a standard sample in NMR spec-
troscopy [145]. A polymer stick with 0.16% DVB and 0.3% DBP and a resulting quadrupo-
lar splitting in the deuterium spectrum of 25 Hz was used. Two HSQC-spectra without
heteronuclear decoupling during acquisition were recorded for strychnine in CDCl3 alone
as reference and dissolved in the aligned polymer stick. The parts of these spectra are
shown in Fig. 2.6. The PS-signals could easily be distinguished from strychnine sig-
nals because by their broad lines and practically no overlap between the resonances was
observed. The difference of the coupling constants in aligned and non-aligned spectra
directly results in the residual dipolar couplings DCH. All dipolar couplings are in the
range of -11 to 13 Hz, so that the sign of the couplings is unambiguously given by the
larger 1JCH-coupling (>120 Hz).

This shows, that polystyrene, swollen into a gel and stretched in organic solvents,
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represents a system, allowing alignment of small organic molecules, easily scalable by
modifications in polymer compositions or in size of used polymer stick, and in which the
measurement of residual dipolar couplings can be performed relatively easy.

Orientations in different solvents

To further characterize the influence of organic solvent on the swelling of a gel and on the
resulting orientation of dissolved molecules, we derived the alignment tensors for norcam-
phor (for structure see Fig. 2.5) as a test sample which is soluble in all solvents of interest
and allows an accurate determination of alignment tensors with only few measured RDCs.
A total of four out of ten signals in the HSQC-spectra of norcamphor showed strong cou-
pling artefacts and were not used for the alignment tensor determination. The remaining
six dipolar DCH-couplings are summarized in Table 2.2 together with the parameters of
the alignment tensors as derived by the program PALES [134]. A first inspection of RDCs
obtained already reveals that alignment for the five different solvents is very similar but
not identical: All derived alignment tensors have a strong negative Azz component, but
its orientation and the rhombic components differ slightly. The relative angles of the
resulting alignment tensors relative to each other are summarized in Table 2.4, varying
from 10◦ to 21◦ for the different solvent combinations. The alignment tensors for DCM
and chloroform are very similar, but for THF, dioxane, and benzene as solvents the three
eigenvector components Axx, Ayy and Azz are tilted considerably with respect to each
other. In Fig. 2.7 the tensors for the five different solvents are shown in an orientation
that pronounces the differences in alignment

We also measured sets of 1H,13C-RDCs for menthol in PS-gels swollen in the five dif-
ferent solvents. 1H,13C-RDCs are summarized in Table 2.3. Although the limited number
of differently oriented C-H vectors in menthol does not allow the reliable determination of
alignment tensors, the comparison of RDCs leads again to the conclusion that alignment
in PS-gels is solvent dependent. So, for example, most RDCs measured in THF show sign
inversion compared to RDCs from other solvents, which is unambiguous evidence that
the alignment tensors differ in this case.

The difference in alignment of norcamphor and menthol in the five different solvents
can be explained in many ways: Most likely there are specific interactions of the solvent
with either the organic molecule of interest and/or the PS-polymer. Also, the structure of
the polymer or the solute itself might change in the different solvents. Maybe the different
alignments can also be explained by variations in the dielectric constants for the solvents
used (on this subject see e. g. [146]). Solvent dependent alignment was also observed for
Polyvinylacetate as a polymer (vide infra) and it will be very interesting to study these
effects with additional solutes and polymer gels.

2.2.4 NMR properties of polystyrene gels

Spectra of partially aligned samples are different from conventional isotropic liquid sam-
ples. In general, more complex multiplet patterns because of additional dipolar couplings
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Figure 2.7: Illustration of the alignment tensors of norcamphor in stretched PS gels
prepared in different organic solvents: (A) orientation of norcamphor as reference frame for
the alignment tensors (axes Axx, Ayy, and Azz drawn with their length proportional to the
magnitude of the Eigenvalues and with the orientation according to the Eigenvectors of the
alignment tensors) in (B)-(F). Alignment tensors were derived with the program PALES
for samples swollen in chloroform (B), dichloromethane (C), dioxane (D), tetrahydrofurane
(E), and benzene (F) (cf. Table 2.2). Positive components of the alignment tensors are
shown in red, and negative tensor components, in blue. The view angle relative to the
molecule was chosen to pronounce the differences in alignment tensors.

Table 2.3: Measured 1H,13C-RDCs for menthol in stretched PS gels swollen in organic
solvents

coupling CDCl3 DCM dioxane THF benzene

DC1−H1 -3.6 -8.7 -7.2 2.7 -3.0

DC2−H2 -3.3 -9.7 -2.4 6.3 -2.0

DC3−H3a -4.9 -12.7 -17.7 16.5 1.2

DC3−H3e -0.9 -2.9 -13.6 -3.1 4.2

DC4−H4a -4.4 -20.2 -7.1 -0.9 -5.6

DC4−H4e 6.2 -5.0 -10.3 -14.0 6.2

DC5−H5 -4.4 -10.7 -5.9 -0.4 -5.0

DC6−H6a -4.8 -16.9 -11.4 1.2 -2.8

DC6−H6e 0.1 -3.1 -8.4 -5.3 -0.2



112 Chapter 2. Partial alignment

Table 2.4: Relative angles (deg) of the alignment tensors of norcamphor in solvents (see
Table 2.2) in five-dimensional (5D) space as calculated with the program PALES

5D-angles

CDCl3 DCM dioxane THF benzene

CDCl3 10.5 21.2 14.6 20.9

DCM 10.5 16.9 13.4 18.2

dioxane 21.2 16.9 20.1 17.6

THF 14.6 13.4 20.1 10.4

benzene 20.9 18.2 17.6 10.4

through space must be expected that mostly lead to what looks like a single broad line (cf.
Fig. 2.9). On the other hand, narrowed signals can be observed in few cases when RDCs
of opposite sign reduce the splitting due to already existing J-couplings (e.g. left signal
23 in Fig. 2.9 B and C). The appearance of a spectrum depends on many parameters
like the density of NMR-active nuclei, the strength and orientation of alignment and the
J-coupling network.

But what is the line width that can be principally achieved in a stretched PS-gel? The
consistency of the polymer can be considered quite heterogeneous with a wide distribution
of shorter and longer polymer chains and varying concentrations of cross-links between
chains which might affect the line shape of a sample. We therefore tried to get a good
shim for a swollen PS-gel with an intermediate induced anisotropy (νQ (CDCl3) ≈ 110
Hz): A line width below 1 Hz for the CHCl3 proton signal was easily obtained as shown
in Fig. 2.8 A. Line shape distortions due to gel micro- heterogeneity therefore must be of
minor importance and can be neglected.

Besides the multiplet pattern also resonance frequencies are affected by the stretched
PS-gel (Fig. 2.9 B and C). Two effects are expected: first, PS works as a co-solvent that
shifts all resonances upfield compared to the conventional liquid CDCl3 sample; second, a
change in chemical shifts is directly induced by the anisotropy of the stretched gel, leading
to so-called residual chemical shift anisotropy (RCSA) [147–151]. Chemical shift changes
in aliphatic regions as shown in Fig. 2.9 B and C are practically solely due to the co-
solvent effect since CSA is negligibly small in this case (for sizes of measured RCSA, see
e.g. [101]). Aromatic 13C-chemical shifts, however, might be significantly shifted due to
relatively strong RCSA. The main disadvantage resulting from the chemical shift changes
is that in certain cases it might be necessary to repeat parts of the assignment process.

Finally, the main drawback of PS-gels as alignment media are the undesired NMR
signals originating from the polymer itself. In Fig. 2.8 C the proton spectrum of a strych-
nine PS-gel sample is shown with broad PS signals in the aromatic and aliphatic region.
The difference in line width of strychnine and PS signals allows their clear distinction and
the measurement of coupling constants out of one-dimensional experiments is possible but
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Figure 2.8: Achievable line width and polymer signals in a stretched PS gel. (A) Signal
of residual CDCl3 in the gel: Although most signals are broadened due to residual dipolar
couplings, the experimentally achievable line width in a PS gel is not significantly larger
than in conventional liquid samples. (B) Typical quadrupolar splitting of CDCl3 as ob-
served in equilibrated PS-gel samples. (C) A 1D-spectrum of a 50 mg strychnine sample
in a stretched PS gel is shown. The strong broad signals in the aliphatic and aromatic
regions originate from PS. (D) The polymer signals do not interfere with the signals of
strychnine in heteronuclear 2D-experiments. In the case of strychnine the full set of 1H-
13C heteronuclear RDCs can be measured. 2D-contours resulting from PS-gel signals are
marked with asterisk.
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Figure 2.9: Chemical shift changes of strychnine (A) due to PS gel and section of 1D-
spectra of strychnine acquired in CDCl3 (B) and in a stretched PS gel swollen in CDCl3
(C). PS as a cosolvent causes upfield changes in chemical shifts, and small additional
changes due to RCSA might be present. Chemical shifts in both spectra were referenced
to internal TMS.

difficult. In two- dimensional spectra the situation is strongly improved, since the proba-
bility of signal overlap is reduced and data analysis can be accomplished in a conventional
way. Strychnine e.g. allows the measurement of a complete set of 1H-13C dipolar coupling
constants from an uncoupled HSQC spectrum because only one aromatic signal partially
overlaps with PS, for which the reliable measurement of RDCs is still possible (Fig. 2.8
D). However, suppression of PS-signals would increase the overall quality of the spectra
and allow the measurement of less concentrated samples. We therefore tested two relax-
ation filtering approaches for PS-signal reductions: The first filter uses the difference in
T2 relaxation rates of the small molecule of interest compared to the large polymer and
is accomplished by a spin lock period in which the magnetization is kept in the xy-plane
(Fig 2.10 A). A second method uses a z-filter period to suppress spin pairs with efficient
relaxation pathways for the operator 2IzSz. The relaxation in this case is mainly deter-
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mined by 1H-1H NOE which is quite efficient for the PS-polymer network (Fig. 2.10 B).
The separation in this case is therefore best if the molecule of interest has a correlation
time with vanishing nuclear Overhauser enhancement. The quality of suppression for both
approaches can be seen in Fig. 2.11 for various filter periods: Both methods work well for
the backbone aliphatic PS-signals which are already strongly reduced in the conventional
HSQC (Fig. 2.11 A) and can be suppressed completely with relaxation filter delays of
100 ms (Fig. 2.11 B and D). The aromatic PS-signals instead appear to have relatively
short correlation times, probably due to the increased flexibility in the side chain. Long
relaxation filter periods are necessary for partial suppression of these signals and even
after 500 ms relaxation filter periods, aromatic PS-signals remain visible (Fig. 2.11 C and
E).

In comparison of the two methods introduced in Fig. 2.10, spin locking provides the
slightly better PS-signal suppression for identical filter periods. However, the approach
can lead to offset dependent suppression and even inversion of desired signals (Fig. 2.11C)
if the spin lock field used cannot cover the bandwidth of the spectrum. In addition,
irradiation of medium to high power rf for longer periods will lead to significant sample
heating. Here, an extended z-filtering delay appears to be a very attractive alternative.
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Figure 2.10: HSQC-pulse sequences with building blocks used to suppress signals origi-
nating from PS. (A) Standard HSQC experiment with additional spin lock period (SL) as a
T2 relaxation filter. (B) Standard HSQC experiment with extended z-filter delay τ which
uses the difference of 1H-1H NOE relaxation rates of the polymer network relative to the
small molecule observed. Phase cycles are: Φ1 = y; Φ2 = x,−x; Φ3 = x, x,−x,−x; Φ4 =
Φ5 = x, x, x, x,−x,−x,−x,−x; Φrec = x,−x, x,−x,−x, x,−x, x. Filled and open bars
correspond to 90◦ and 180◦ pulses, respectively, with x-phase unless indicated otherwise.
∆ = 1/1JCH , δ compensates for G1 gradient duration. Gradients are of equal length
(1ms) with ratio G1:G2 = 80:20.1 for 1H,13C-correlation. Phase sensitive detection in
the indirect dimension is achieved by cycling G1, Φ2 and Φrec according to echo-antiecho
mode.
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Figure 2.11: (A-E) Traces of aromatic and aliphatic regions from HSQC spectra with
relaxation filters implemented as described in Fig. 2.10. No filtering (A), spin lock
filtering with 100 ms (B) and 400 ms (C) spin lock times, and z- filtering with 100 ms
(D) and 400 ms (E) z-filter delays. Broad polymer signals are indicated with asteriks,
all other relatively sharp signals originate from strychnine dissolved into the gel. While
aliphatic signals can easily be suppressed by both methods (their intensities are already
strongly reduced in the HSQC experiments without relaxation filter (A)), suppression of
the more flexible aromatic PS-signals can only be achieved with significant loss of desired
strychnine signals. Spin locking (with 3000 Hz rf-amplitude used) can lead to inversion
or even suppression of strychnine signals (C), an effect not observed for the z-filtering
method (E).
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2.3 Stretched poly(vinyl acetate) gels

As was already mentioned above, a number of alignment media are known for aqueous
solutions, such as bicelles [115], filamentous phage [116], liquid crystalline phases [117],
or stretched polyacrylamide based gels [126, 128]. For relatively apolar organic solvents,
liquid crystals like poly-γ- benzyl-L-glutamate (PBLG) [86,111,112,135] or deuterated 4-
n-pentyl-4-cyanobiphenyl (PCBP) [113] as well as stretched polystyrene (PS, vide supra)
and polydimethylsiloxane (PDMS) [133] gels were used to obtain structural information
from RDCs. For polar organic solvents like methanol or DMSO, however, no alignment
medium was available for a long time. Here the use of stretched polyvinylacetate (PVAC)
gels for partial orientation of molecules dissolved in polar organic solvents is described.
Lately, some new promising alignment media compatible with polar organic solvents
were also reported, like the copolimer of 2-(acrylamido)-2-methylpropanesulfonic acid
and N,N -dimethylacrylamide linked with N,N ′-methylenebisacrylamide [152] or poly-
acrylonitrile [153].

2.3.1 Gel preparation

Crosslinked PVAC-polymer sticks were produced in a similar way as described previously
for PS. Glass tubes with inner diameters of 2.4 mm, 3.4 mm and 4.0 mm were sealed
by melting on one end and dried carefully, followed by a treatment with a 1:1 mixture
of chlorotrimethylsilane and dichloromethylsilane for 18 h to ensure hydrophobic glass
surfaces. After washing with dichloromethane tubes were dried at 50◦C. Vinyl acetate
(Fluka) and adipic acid divinyl ester (ABCR) were filtered with basic aluminum oxide
(pH 10) and distilled under reduced pressure. The monomers then were degassed for 15
minutes under vacuum in an ultrasonic bath and ventilated with argon. Immediately
afterwards vinyl acetate, adipic acid divinyl ester and azoisobutyronitrile were mixed in
the desired concentrations and filled into the glass tubes. The open end was sealed by
melting and polymerization performed for 5 days at 45◦C and another two days at 60◦C.

2.3.2 Alignment properties of PVAC gels

As a first test we put crosslinked PVAC-sticks in various organic solvents and watched the
swelling behavior. The sticks were swelling in basically all tested solvents, such as chloro-
form, tetrahydrofurane (THF), dioxane, benzene, ethylacetate (EtAc), acetone, acetoni-
trile (MeCN), methanol (MeOH) and DMSO. We repeated the swelling inside NMR-tubes
and added 5 % (v/v) CDCl3 to the non- deuterated solvents to be able to monitor any
induced anisotropy by the deuterium quadrupolar splitting νQ. In all cases significant
splittings with sharp lines could be observed (Table 2.5) after letting the gels equilibrate
for 13 days. In addition, we recorded the dependence of the quadrupolar splitting on the
amount of crosslinker used for polymerization for four solvents (DMSO, MeOH, THF, and
dioxane; c.f. Fig. 2.12). The resulting curves are similar to the one observed for PS-gels
(see Fig. 2.4), corroborating the general trend that higher crosslinking concentrations
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Table 2.5: Quadrupolar deuterium splittings (Hz) of CDCl3 (5 % v/v) added to PVAC
sticks (0.1 % v/v cross linker, 3.4 mm and 4.0 mm inner diameter) swollen in various
non-deuterated solvents.

MeCN Acetone EtOAc Benzene CDCl3
3.4 mm 36.6 33.8 49.4 83.1 72.8

4.0 mm 47.5 54.7 67.7 –a) 106.1

DMSO MeOH THF Dioxane

4.0 mm 10.0 35.2 54.6 39.5

a) Gel disrupted during swelling

lead to stronger induced anisotropies [133].
In a next step we tested the alignment properties of norcamphor in PVAC-gels swollen

in the four deuterated solvents available in our laboratory. Norcamphor (cf. Fig. 2.5) was
chosen as a sample for two reasons: it is highly soluble in almost every organic solvent and
its protons all point in different directions. In DMSO-d6, methanol-d4, acetonitrile-d3, and
CDCl3 we were able to measure at least six DCH RDCs and derive the alignment tensors
using the program PALES with the bestFit option [134] (see Table 2.6). Interestingly, the
four alignment tensors differ significantly: Da/Dr ratios differ for the four solvents and
the axial component for methanol even has the opposite sign compared to the others. We
can only speculate about this different behavior, but most probably specific interactions
of the solvents with the polymer and/or the solute lead to this phenomenon. However,
the most important result for the use of stretched PVAC- gels as alignment media is that
RDCs in the desired range of ±20 Hz can be measured in all cases.

2.3.3 Application to a natural product

A large field of potential applications is the structure determination of natural products.
We therefore applied the method also to the well-characterized antibiotic sphaeropsidin
A as a more realistic test sample [154, 155]. After diffusion of 6 mg of sphaeropsidin A
into an already swollen PVAC/DMSO gel with a quadrupolar CDCl3 splitting of 10.1 Hz,
two coupled HSQC-spectra, optimized for aliphatic and olefinic nuclei, respectively, were
acquired on a Bruker DMX900 spectrometer (Fig. 2.13). Compared to sphaeropsidin A
cross peaks, relatively strong PVAC and DMSO signals are present in both spectra, but
DCH RDCs can still be measured in most cases since sphaeropsidin A and PVAC signals
do not overlap. Only the methylene protons attached to C11 show significant overlap and
second order effects so that a reliable RDC measurement was not possible. All couplings
were carefully measured by extracting slices out of the 2D-spectra and applying the phase
correction approach described in detail in [123]. As a starting point we looked at the eight
C-H-vectors containing the atoms C1, C2, C3, C5, and C14. The diastereotopic protons
of the methylene groups of C2 and C3 were easily derived by using the simple method to
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Figure 2.12: Dependence of the quadrupolar deuterium splitting νQ of CDCl3 on the
amount of cross linker adipic acid divinyl ester (AVE). To obtain the splittings 5 % (v/v)
of CDCl3 has been added to the PVAC-sticks swollen in the otherwise non-deuterated
solvents
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Table 2.6: RDCs and alignment tensor parameters of norcamphora) dissolved in PVAC
gels that are swollen in different deuterated solvents.

[D6]DMSO CD3OD CD3CN CDCl3
∆νQ(CDCl3) 18.5 Hzb) 70.4 Hzb) 85.2Hzc) 21.7 Hzd)

RDCs

C1 −H1 -2.37 -0.86 1.24 0.31

C3 −H3x -3.61 -12.61 -1.04 -0.44

C3 −H3n -15.51 -7.24 -8.51 -2.07

C4 −H4 10.31 18.22 6.21 1.29

C7 −H7a 15.71 -7.79 0.61 -3.70

C7 −H7s -10.83 8.22 -6.18 -3.97

Axx −1.6180 × 10−4 4.1254 × 10−5 −3.1161 × 10−5 −8.9383 × 10−6

Ayy −3.6670 × 10−4 9.2611 × 10−4 −2.1580 × 10−4 −7.5429 × 10−5

Azz 5.2850 × 10−4 −9.6736 × 10−4 2.4696 × 10−4 8.4368 × 10−5

Da 2.6425 × 10−4 −4.8368 × 10−4 1.2348 × 10−4 4.2184 × 10−5

Dr 6.8302 × 10−5 −2.9495 × 10−4 6.1546 × 10−5 2.2164 × 10−5

R 0.992 0.990 1.000 0.854

a) Norcamphor ≈ 130 mg/sample. b) PVAC: 0.5 % crosslinker, stick diameter 4.0 mm.
c) PVAC: 0.2 % crosslinker, stick diameter 4.0 mm. d) PVAC: 0.1 % crosslinker, stick
diameter 2.4 mm.
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distinguish between axial and equatorial C-H-vectors [123]. The initial alignment tensor
derived from the six unambiguous DCH couplings then allowed us to do the prochiral
assignment of the methylene groups containing C1 and C12 (for methodology used see
e.g. [86, 111]). This is remarkable, because in both cases the difference in distance of ax-
ial/equatorial or syn/anti protons, respectively, to unambiguously identified neighbouring
protons like H5 or the methyl group containing C17 is only ≈ 0.1 Å, too little to reliably
be identified by NOEs. By deriving DCC RDCs out of the measured DCH couplings with
the formula 2.13 finally also the methyl groups at C4 could be assigned. RDCs of spin
pairs containing C15, C16, and C17 could not be fitted to any reasonable structural model.
This most probably is indicative for intrinsic dynamics that lead to averaged RDCs at
this part of the molecule. Taking into account the significant changes in chemical shifts
of C14 - C16, and H14 - H16 it might even be concluded that the gel introduces a difference
in population of the exchanging conformations in this region. However, this effect is not
yet understood and we can only speculate. The 12 remaining assigned RDCs were used
to refine the alignment tensor that is shown together with the correspondence of experi-
mentally determined and backcalculated RDCs in Fig. 2.14 B-D. The correlation factor
R of 0.966 in this case is a clear indication that the structural model is consistent with
the experimental data, which also can be seen easily in Fig. 2.14 E.

So, stretched PVAC-gels can be used as scalable alignment media for polar or-
ganic solvents. With this possibility the gap between relatively apolar solvents like
dichloromethane or chloroform and aqueous solutions is closed and RDCs can now be mea-
sured in practically all common NMR-solvents. The applicability of the new alignment
method is demonstrated on norcamphor and the antibiotic sphaeropsidin A. Although
PVAC-signals did not pose a serious problem in heteronuclear correlation experiments,
more sophisticated NMR-methods like relaxation filters (vide supra) can be included in
experiments to obtain spectra of higher quality.
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Figure 2.13: Aliphatic (top) and olefinic (bottom) coupled 13C,1H-HSQC spectra ac-
quired on 6 mg sphaeropsidin A dissolved in a PVAC/DMSO-gel. DMSO signals (DMSO),
PVAC signals (*) and signals originating from unpolymerized monomers (#) are indicated
in the spectra. Slices at the dotted lines are shown to give an impression on the overall
quality of the cross peaks.
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Figure 2.14: Correspondence between experimental and backcalculated RDCs of
sphaeropsidin A dissolved in a PVAC/DMSO gel. (A) Structure and numbering of
sphaeropsidin A. (B) and (C) color representation of the experimental and backcalculated
RDCs, respectively, onto sphaeropsidin A. Red corresponds to negative, blue to positive,
white to intermediate and green to no RDCs measured. (D) Representation of the align-
ment tensor in the coordinate frame of sphaeropsidin as shown in (B,C) with red being
negative and blue positive tensor axes. (E) The plot of experimental vs. backcalculated
RDCs shows a good correlation.
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2.4 Stretched gelatin gels as chiral alignment medium

It is well known, that orienting medias can be used not only to measure RDCs, but also
as a chiral auxiliary to perform NMR experiments on mixtures of chiral substances, al-
lowing enantiomeric discrimination (see e.g. ref [156]). In general, verification of the
enantiomeric purity of a product and measurement of the enantiomeric excess is becom-
ing more and more an everyday problem in modern organic chemistry, requiring thus a
development of convenient methods for this purpose. Classical NMR-methods used to dif-
ferentiate enantiomers with an aid of some chiral auxiliaries like chiral derivatising agents,
lanthanide chiral shift reagents or chiral solvating agents [156, 157] only work for func-
tionalized chiral molecules of interest which can interact with these auxiliaries to build a
detectable diastereomeric compound or adduct. In contrast, chiral orienting media pro-
vide an enantiomer discrimination due to the differential ordering effect of enantiomers
inside the chiral oriented phase [158,159]. So, even compounds possessing no polar groups
and are thus bad candidates for the common means used in laboratories, like saturated
chiral hydrocarbons [160], and even prochiral elements in symmetrical molecules [161,162]
can be distinguished by NMR spectroscopy in such media.

So far only surfactant bilayers [163–165] and various other chiral liquid crystalline me-
dia [166–170] or non-chiral liquid crystals combined with chiral cages [171] were reported
to be suited for the task of enantiomeric discrimination. Such media are usually not easy
to prepare, operate as a rule only within certain temperature intervals and their orien-
tation depends on the strength of the magnetic field. In contrast, covalently crosslinked
stretched polymer gels, as was shown above (also see refs. [126,128]), are relatively easy to
handle and provide field-independent orientation. We tried therefore to realize a partial
alignment using chiral gels. Gelatin in the form of “Gummibärchen” (famous German
sweets) was used for the initial proof that alignment can be achieved with this kind of
polymer. In further experiments we were able to show that stretched gelatin gels as chiral
alignment media not only provide an approach with which it is possible to obtain struc-
tural information via residual dipolar couplings [95,99], but also to discriminate between
enantiomers and to measure enantiomeric excess. Hereby it is interesting to note that
gelatin represents a new subfamily of gels used for alignment media: polymer gels with
the spatial structure almost solely stabilized by hydrogen bonds.

2.4.1 Sample preparation

Gummibärchen of a well-known German brand were swollen in deionized water to about
twice their original dimensions (Fig. 2.15). After cutting the swollen bodies to a roughly
cylindrical shape, they were dried on a glass capillary and inserted into NMR tubes
together with D2O. After two days of equilibration, deuterium NMR-spectra with a clearly
visible quadrupolar splitting in the range of ≈20 Hz (Fig. 2.17 a) were acquired. After this
successful proof that partial alignment can be achieved with gelatin-based gels, a more
elaborate strategy was pursued: Gelatin gels were prepared from standard household
gelatin (Dr. Oetker) by following the procedure prescribed by the manufacturer. Heated
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Figure 2.15: Various stages of the preparation of stretched gelatin samples. (A) Gum-
mibärchen, (B) Gummibärchen swollen in water, (C) 10% gelatin gel prepared in pipette
tip , (D) gel after drying in pipette tip, (E) equilibrated gelatin sample with a D2O
deuterium splitting of 117 Hz (Fig. 2.17 B).

gelatin solution (≈10% (w/v)) was poured for the gelation in a standard pipette tip with
a sealed tip end and left for drying (Fig. 2.15). After several weeks, solid sticks of ≈1.9
mm diameter and uniform appearance were obtained and directly put into NMR tubes
for constrained swelling upon addition of D2O (similar to the procedure described above
for polystyrene sticks). After a couple of days of swelling and a single solvent exchange
to wash out unwanted substances, the gel showed a D2O quadrupolar splitting of 117
Hz at 25◦C (Fig. 2.17 B). A mixture of 30 mg L-alanine and 25 mg D-alanine (9% ee)
was added to the sample and allowed for diffusing into the gel. Despite the polar nature
of the solutes added and the hydrogen-bond stabilized 3D-structure of the gel, no gel
deterioration and hence no change in the deuterium quadrupolar splitting of the solvent
was observed over a period of two months. A specially designed J-experiment (Fig. 2.16)
was acquired that allowed separation of the two enantiomers.

2.4.2 Measurement of enantiomeric excess

In principle, any order-dependent NMR interaction can be used for the distinction of enan-
tiomers. So far mostly 1D- [158,159,163,167,168,170–178] and 2D- [159,160,179–181] 2H
spectra at natural abundance are reported which use the difference in residual quadrupo-
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Figure 2.16: 1H,13C-BIRDd,X-J-experiment for the phase sensitive, high resolution
detection of one bond (DCH +1 JCH)-couplings. 90◦ and 180◦ pulses are indicated
by solid and open bars, respectively, with phase along x unless indicated otherwise.
Phase cycles are φ1 = y, y, y, y,−y,−y,−y,−y;φ2 = x, x,−x,−x;φ3 = x,−x;φrec =
x,−x, x,−x,−x, x,−x, x. The delay ∆ = 1/(1JCH + DCH), τ and τ ′ are delays for gra-
dient application. Typically, gradients of 1 ms duration with 200 µs recovery delay were
used with gradient strength ratios G1:G2:G3 = 80:30:20.1. The BIRDd,X-element for sup-
pression of long-range 1H,13C - couplings is shaded gray. Phase sensitive States-TPPI can
be achieved by cycling φ1. Alternatively, simple t1-incrementation can be applied using
the processing procedure described in [184,185].

lar couplings for this purpose. However, low natural abundance of deuterium nuclei
makes experimental times long or requires the use of deuterated compounds. Recently, J-
spectroscopy on 1H [179] and 13C [182] nuclei was proposed as an alternative technique in
which case different alignment tensors of the enantiomers lead to distinguishable NMR sig-
nals. However, the relatively strong minimum alignment of known chiral liquid crystalline
alignment media results in RDCs that easily can reach the size of 1JCH coupling constants
(see for example [111]) and one is therefore limited to very basic NMR-experiments with
known disadvantages: 1H-J-spectra are not phase sensitive and broadened linewidths due
to 1H, 1H-RDCs lead to hardly interpretable spectra in many cases. Directly detected
13C-J-spectra, on the other hand, have the disadvantage of a low signal to noise ratio.
In contrast, compressed gels with relatively weak induced alignments make the use of
conventional heteronuclear pulse sequence building blocks possible since the condition
DCH ≪ 1JCH is fulfilled. We therefore were able to design a 1H excited and detected 13C,
1H-correlated pulse sequence with an additional BIRDd,X-element [183] for the suppression
of long range 13C, 1H scalar and dipolar couplings during the J-evolution period (Figure
2.16). This experiment has reasonable signal intensity and due to phase sensitive detec-
tion and reduced multiplicity of the cross peaks, the signal width in the indirect dimension
allows the distinction of very small differences in one-bond DCH coupling constants.
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Figure 2.17: NMR-spectra acquired on stretched gelatin samples. (A) 2H-spectrum of
a stretched Gummibärchen-sample swollen in D2O. The measured quadrupolar splitting
is clear evidence for partial alignment. (B) 2H-spectrum of the gelatin sample prepared
as described in the text. So far, the alignment is stable for more than two months. (C)
1H,13C-BIRDd,X-J-spectrum of L-Ala/D-Ala (1.2:1) diffused into the gelatin sample. The
two enantiomers are clearly distinguished and integration leads to a measured ee of 7%
with an estimated error of ±5%. The spectrum was acquired using the sequence described
in Figure 2.16 with 2048 t1-increments and processed in both dimensions in phase sensitive
mode.
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The pulse sequence was applied to the L-alanine/D-alanine (1.2:1) sample diffused in
a stretched gelatin gel: Two β-CH3-multiplets are observed with a well-resolved difference
in outer J-multiplet components of 2.5 Hz (Figure 2.17 C). A control experiment with
a sample prepared with L-alanine revealed only one signal at the same position as the
stronger component of the mixed sample, providing clear evidence for the difference of
DCH RDCs of the enantiomers in the chiral alignment medium being the origin of the
split signal. Signal separation of the proposed experiment even allows integration of the
cross peaks to determine enantiomeric excess. In the present case an ee of 7% ± 5%
is obtained, very close to the expected value. Regarding signal integration, it should
be noted that for the proposed experiment the coherence transfer and therefore also the
cross peak intensities depend on the scalar and dipolar coupling constants according to
sin2(π[1JCH +DCH]∆/2) cos(π[1JCH +DCH]∆). For the case shown in Figure 2.17 C this
leads to a systematic error of less than 0.3% in ee.

So, this demonstrates the usefulness of gelatin gels for the partial alignment of
molecules in aqueous solutions. They form three-dimensional networks of polypeptide
chains due to the partial renaturing of native collagen [186], so no additional crosslinking
agent is necessary to connect the polymer chains as in other gels used for the same
purpose [126, 128, 133, 152, 187, 188]. Interestingly, such a polymer network, almost
solely crosslinked by hydrogen bonds, is able to withstand the forces present in the con-
strained swollen gels. However, gelatin gels are generally not stable at temperatures above
35◦C [186], and chemical stability of the stretched gels with respect to solutes needs to
be studied in more detail. Surprisingly, even at large pH range and room temperature
prepared samples did not change alignment properties for more than two months.

Chiral alignment media lead to differential orientation of enantiomers and therefore
allow discrimination of enantiomeric mixtures by NMR-spectroscopy [159]. To our knowl-
edge, gelatin is the first chiral alignment medium that combines the possibility of enan-
tiomeric distinction with the advantages of partial alignment due to mechanical stretching.
The easily scalable alignment in this case opens the possibility to use more sophisticated
NMR-spectroscopical methods to enhance sensitivity and obtain sharper lines because of
reduced multiplet patterns. The combination of chiral gel based alignment media, provid-
ing alignment independent of the magnetic field, and field-independent J-spectroscopy-
based measurement techniques might eventually allow conducting these measurements
even on low-field, low-cost NMR- spectrometers as long as chemical shift resolution is not
necessarily needed. The approach is not limited to gelatin, but most probably other chiral
gels or achiral gels with chiral cages can be found which then should allow enantiomer
discrimination also in nonaqueous solutions.
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2.5 Measurement of Residual Dipolar Couplings

NMR experiments on oriented samples have some specialities in the setup. In most of
the cases they should be run unlocked, because the lock signal is usually split by the
quadrupolar coupling of the deuterium nuclei. As a consequence, the spectrometer might
lock on one or the other half of the doublet and the spectrometer frequency references that
are based on the defined lock signal typically lead to wrongly referenced chemical shifts.
In the worst case, the lock control system might eventually jump from one deuterium line
to the other, correspondingly changing all the chemical shift references, which would be
fatal to any 2D or long-running 1D experiment. Similarily, the lock signal cannot be used
to shim the sample, since the usual shimming procedure maximizing the lock signal would
in this case lead to a collapse of the naturally split signal into an artificial singulet, cor-
respondingly distorting the natural lineshapes of all other lines in the spectrum. Instead,
it is necessary to shim on the integral of the FID or directly on the spectrum. Otherwise
the acquisition is straightforward.

Of course, depending on the chosen alignment medium, solvent and sample concentra-
tion, necessary measures should be taken to eventually suppress the signals of the solvent
and of the alignment medium, as for example was described in section 2.2.4.

In some favorable cases RDCs are measurable even in usual 1D experiments (if the
assignment is known). Though it is highly improbable to meet the conditions to be able
to measure proton-proton RDCs in simple 1D experiments (the alignment will either be
too small and unmeasurable or strong enough to broaden all the lines to a degree where
multiplets collapse), proton-coupled 13C spectra provide useful information in this regard.
In fact, if the alignment is so strong that RDCs are on the order of 1JCH coupling con-
stants, one-dimensional experiments provide the only viable way to measure RDCs [111].
However, if the largest RDCs are in the desired range of ±30 Hz, more advanced NMR
experiments with high sensitivity and better resolution can be applied. The most easily
measurable RDCs are one bond DCH couplings, which can be measured using standard
coupled HSQC or HMQC experiments (vide infra). Some methods to measure one bond
and long range DCH couplings are discussed in detail in this section.

2.5.1 One-bond heteronuclear couplings

As was already mentioned above, the most easily measurable RDCs are one bond DCH

couplings, which can be measured using standard coupled HSQC or HMQC experiments
[86, 111, 112, 123, 124, 129] (see for example Figs. 2.6 and 2.13). However, in many cases
the resolution of standard HSQC/HMQC experiments is not sufficient, especially for large
biomolecules with strongy overlapped spectra and lines broadened due to relaxation, and
in alignment media with very large and non scalable alignment. For such cases a large
number of specialized techniques was developed in the field of biomolecular NMR to
accurately measure one bond DCH and DNH couplings. Some examples of these are spin-
state selective excitation [189,190] and coherence transfer [191], IPAP [192], J modulation
[193], JE-TROSY [185], and quantitative J experiments [194]. For methylene groups, the
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socalled SPITZE-HSQC provides a separation of multiplet components in four spectra
that allow RDC determination in more crowded regions [195]. In most of the experiments
the use of BIRD filtering techniques can further improve spectra by selectively decoupling
long-range C-H couplings [183, 196, 197], as was used for this purpose also in section
2.4. Due to the fast averaging, DCH RDCs of methyl groups cannot be used directly as
structural information. However, they can be converted into DCC RDCs to the attached
carbon via the formula [86]:

DCC = DCH3

(

−3
γC

γH

)

· r
3
CH

r3
CC

(2.13)

One of the advantages of stretched polymer gels as alignment media are their usually
relatively low and scalable induced anisotropy and correspondingly relatively small sizes
of residual dipolar couplings. Therefore the achievable spectral quality in this case is
comparable to that of isotropic samples. The measurements of one bond heteronuclear
couplings in such alignment media is relatively straightforward and in most cases can
be performed with the same methods as in isotropic samples, as shown in Fig. 2.6.
However, because of the variation in (1JCH +DCH) couplings, which is significantly larger
than usual variations in 1JCH-couplings, the INEPT-delays in HSQC pulse sequences will
be inevitably mismatched for a big part of present couplings, whatever average value
one would chose for this delay. In this situation the incompletely refocused antiphase
magnetisation will contribute to the phase distortions of corresponding spectral lines,
as can be seen in Fig. 2.19 A. If this distortion is moderate and there is no overlap
with other multiplets with significantly different coupling, one can simply phase each line
separately and then measure the distance between correctly phased lines and hence the
coupling [123]. However, this approach is not only time consuming, but simply will not
work in a case, where two doublets with significantly different couplings overlap, while in
this case the two overlapping doublets have different phase distortion and therefore might
not be correctly phasable.

This situation can be significantly improved with a simple trick. First, to reduce
losses associated with imperfect INEPT-transfer the simple version of the HSQC pulse
sequence has to be used, the one without sensitivity enhancement and only one INEPT
delay in the back-transfer step. Now the unwanted antiphase component at the end of the
INEPT-transfer step can be converted into double-/zero-quantum terms by a simple 90◦

pulse and the phase distortions casued by dispersive antiphase components are removed.
The corresponding pulse sequence can be seen in Figure 2.18 A. Applied to an oriented
sample with large distribution of effective one-bond couplings, this pulse sequence results
in a spectrum with pure phases of all present multiplets, as can be seen in Fig. 2.19 B.
The deviation of the effective length of the INEPT delay from the ideal value is reflected
now in the reduced signal intensity, since only part of the magnetization is transformed
into observable magnetization.

With slight modifications, this pulse sequence can also be used to create pure an-
tiphase spectra. It can be done simply by removing the carbon refocusing pulse in the
final INEPT-transfer step. The final 90◦ pulse on carbon can be either removed, or com-
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Figure 2.18: Pulse sequences for the Clean-HSQC, in-phase (A) and anti-phase (B)
versions. Narrow and thick bars represent 90◦ and 180◦ RF-pulses, respectively. Unfilled
rectangles represent 1 ms spin-lock pulses. Pulse phases are along x unless indicated
otherwise. Phase cycles are: φ1 = x,−x; φ2 = x, x,−x,−x; φ3 = 4(x)4(−x); φ4 = x,−x;
φrec = x,−x, x,−x,−x, x,−x, x. The INEPT-delay ∆ = 1/(2 1JCH) is typically set to
3.846 ms corresponding to 1JCH = 130 Hz. Echo and antiecho sselections vere achieved
using gradients. Applied gradient strength ratios are: G1 : G2 = 80 : 20.1. φ1 was
incremented according by π for each t1 increment to obtain to States-TPPI-like data.
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Figure 2.19: Region of HSQC spectra on strichnine with a peak with 150 Hz splitting
and INEPT delays matched to a coupling value of 100 Hz. Conventional HSQC (A)and
HSQC with cleansing pulse at the end of the final INEPT delay (B). (Figure courtesy of
Andreas Enthart)

pensated with another 90◦ pulse with different phase, so that the simple phase cycle
removes additional artifacts due to possible imperfections of proton pulses. This variant
of a pulse sequence is shown in Fig. 2.18 B. The combination of the two sequences can
now be used in an IPAP fashion to extract the subspectra with α- and β-components of a
multiplet to eventually resolve overlapping signals, like e.g. in a case of a CH2 group where
the right component of the downfield proton signal overlaps with the left component of
the upfield signal.

2.5.2 Long-range heteronuclear couplings

The other important source of structural information carried by the RDCs and widely
used since the introduction of alignment media with sufficiently low induced anisotropy
for conformational studies also for larger organic molecule, are long-range heteronuclear
couplings [95, 113–117, 126, 128, 152, 187, 188, 198]. Therefore there exist a demand for
accurate measurement of long range nJCH and the corresponding DCH residual dipolar
couplings (RDCs). In contrast to the 3JCH coupling determination in isotropic samples,
the sign information of the long-range couplings is of equivalent importance in partially
aligned samples.

Long range heteronuclear coupling constants have also always played an important role
in NMR-spectroscopical studies of small to medium-sized molecules before the introduc-
tion of residual dipolar couplings. Especially 3JCH coupling constants follow the Karplus
relation and build a more reliable tool for the determination of relative configurations as
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e.g. NOE connectivities, which often do not allow unambiguous conclusions [199–210].

On our search for reliable experiments for detecting long-range heteronuclear RDCs,
we examined a large number of pulse sequences. Out of the manifold of different tech-
niques, the three experimental schemes discussed here are among the best available for
measuring nJCH and the corresponding DCH couplings. In this context, most selected pulse
sequences were also subject to modifications that resulted in improved spectral quality
in our hands. Since all presented methods have been derived during recent years, it can
also be understood as a kind of extension to the excellent survey provided by Marquez et
al. [211],in which most of the previously published methods are already compared.

Three experiment types are explored in the following: The intensity and multiplet
pattern based coupling measurement out of an HMBC with a corresponding reference
HSQC [86], the pattern-based coupling extraction from CPMG-type transfer experiments
[212–214], and the displacement based coupling determination from IPAP-type HSQC-
TOCSY experiments [215, 216].

HMBC and correlated reference HSQC

The idea of using a reference experiment for coupling extraction exists for quite some time
now [217, 218]. For heteronuclear long-range couplings usually proton-based reference
experiments are recorded with identical phase distortions as the corresponding HMBC-
type spectrum. This approach was recently extended significantly in the way that a given
multiplet pattern can be fitted to its shape and intensity simultaneously by acquiring the
corresponding reference HSQC with identical phase distortions due to 1H,1H couplings
[86]. Since signal intensities in HMBC experiments are proportional to sin π nJCHT (T
being the effective long-range transfer period), they can equally be used for coupling
determination so long as the lineshape and intensity of a reference signal of an already
determined coupling are known [86].

The pulse sequences for an HMBC and its corresponding reference HSQC are shown
in [86] and Figure 2.20, respectively. The originally published reference HSQC [86] in-
volves two consecutive t1-evolution periods and the resulting spectra in our hands con-
tained considerable t1-noise.It is also clear that intensities of the reference HSQC com-
pared to the HMBC would vary significantly for molecules with non-negligible transverse
relaxation.We therefore redesigned the reference experiment as shown in Figure 2.20B:
after the initial filter for one-bond-coupled coherences, 2IxSz terms are converted in het-
eronuclear ZQ/DQ-terms to avoid further coupling evolution. In this way, the reference
experiment duration could be reduced to be identical to the corresponding HMBC experi-
ment in Figure 2.20A. As long as the relaxation of the ZQ/DQ-term does not significantly
differ from the relaxation of the antiphase term 2IxSz present in the HMBC, the intensity
and pattern based fitting procedure will be applicable.

A second modification to both experiments is the introduction of constant time (CT)
evolution on carbon [219,220] for improved cross peak appearance (see Figure 2.21). The
main advantage is the elimination of the carbon chemical shift dependence of the measured
multiplet lineshape, which helps to reduce errors in the subsequent fitting procedures.
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Figure 2.20: Pulse sequences for the constant-time HMBC (A) and reference constant-
time HSQC experiment (B). Narrow and thick bars represent 90◦ and 180◦ RF-pulses,
respectively. Pulse phases are along x unless indicated otherwise. Phase cycles are:
φ1 = 4(x), 4(−x); φ2 = 8(x), 8(y); φ3 = −x, x; φ4 = x, x,−x,−x; φ5 = 4(y), 4(−y);
φrec = x,−x,−x, x,−x, x, x,−x,−x, x, x,−x, x,−x,−x, x. The long-range polarization
transfer delay ∆ is typically set to 62.5 ms, which corresponds to optimal transfer for a
long-range heteronuclear coupling value of nJCH = 8Hz. The length of the constant time
period T is set up according to the chosen spectral width in the indirect dimension and
number of increments. Echo and antiecho selections were achieved using gradients. The
gradient pulses were 1 ms long. The applied gradient strength ratios are: G1 : G2 : G3 =
33 : 50 : −30 for echo and 33 : 30 : −50 for antiecho. The carbon pulse phase φ3 and φrec

were incremented by π for every second t1 increment to obtain States-TPPI-like data.
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A B

Figure 2.21: A typical cross-peak acquired using a conventional HMBC sequence (A)
and a constant-time HMBC (B). Dashed lines represent negative contour levels.

We applied the pulse sequences to two widely used test samples, strychnine and men-
thol dissolved in CDCl3. The overall quality of all spectra was good with no significant
artefacts visible. The phase-sensitive processing of the data results in very complex mul-
tiplet patterns with significant dispersive contributions from homonuclear antiphase co-
herences. For the visualization of typical cross peaks and to give an impression of the
accuracy of the fitting procedure, two characteristic signals from each CT-HMBC spec-
trum are shown in Figure 2.22 with the corresponding lineshape and intensity fits for
the best determined couplings and for small deviations of ±0.6 Hz. While the fit for
large couplings is mainly determined by the lineshape, small couplings apparently profit
significantly from the strong intensity dependence of their fit. This is, of course, due
to the differences in transfer efficiency, which are proportional to sin π nJCHT and are
most sensitive for deviations of small nJCH couplings, for which the sine changes approx-
imately linearly. Larger nJCH couplings close to ideal transfer conditions, instead, show
very similar signal intensities since the transfer efficiency describes a plateau in this case.

We found that coupling constants for the two test molecules could be determined quite
reliably. The complex multiplet patterns with mixed absorptive and dispersive contribu-
tions help with the applicability of the fitting procedure but also make the acquisition of
large data sets necessary. The coupling extraction procedure is not yet implemented in any
available software, so that we had to write a minimization script for the fitting ourselves.
The coupling determination from HMBC-type spectra is generally not sign-sensitive, as
can also be seen in the original paper for the described procedure [86]. This fact strongly
limits its use for the determination of long-range RDCs, where the sign contains valuable
structural information.

CPMG-based experiments

Two kinds of CPMG-based, purely absorptive pulse sequences for measuring nJCH cou-
plings can be found in the literature. The LR-CAHSQC [212] with a slight modification
using composite pulses [213] and the socalled BIRDr,X-CPMG-HSQMBC [214]. Sequences
for both experiment types are shown in Figure 2.23 with small additional changes: in the
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Figure 2.22: Some fitting results for cross-peaks between H1 and C2 (A), and H1 and
C3 (B) of menthol and between C12 and H11,ax and C12 and H11,eq (C, D) of strychnine
in chloroform. The rows extracted from HMBC spectra are plotted grey and best fits
are shown with solid lines. To assess the precision of measurement, two more traces are
shown for each case, with 0.6 Hz larger (dashed line) and 0.6 Hz smaller (dotted line)
trial couplings.
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LR-CAHSQC version no suppression of heteronuclear one-bond coherences is applied since
homonuclear isotropic mixing conditions distribute magnetization into the spin system
anyway and in the BIRDr,X-CPMG-HSQMBC the conventional BIRDr,X filter element is
replaced by a CAGEBIRDr,X filter [221] for a more consequent use of the CPMG prop-
erties. For convenience, we will refer to the CAGEBIRDr,X-CPMG-HSQMBC as the
CBC-HSQMBC in the rest of the work.

CPMG-type periods for the transfer via small heteronuclear couplings were first ap-
plied in 1H,31P-correlation experiments [222]. Due to the repeating inversion elements
with typically an XY16 supercycle [223, 224], TOCSY conditions are fulfilled for scalar
couplings [212, 222, 225, 226], leading to inphase transfer solely via undetectable ZQ-
coherences. The absence of observable homonuclear antiphase coherences during the
CPMG periods finally allows the phase sensitive detection of heteronuclear long-range
correlations in pure absorption and with higher efficiency than previously published meth-
ods.

However, the approach comes with certain limitations. Every multiple pulse se-
quence has an offset dependence with respect to its Hartmann-Hahn matching condi-
tions. The corresponding offset dependence of a typical XY16-expanded CPMG-sequence
(rfmax =20 kHz, ∆/2 = 100 µs) for the homonuclear Hartmann-Hahn transfer I1x → I2x

and the offset dependence describing the evolution of initial inphase coherences into un-
wanted antiphase terms I1x + I2x → 2I1yI2z are given in Figure 2.24A and B, respectively.
Clearly visible is the correlation of efficient TOCSY inphase transfer (light area in Fig-
ure 2.24A) with the absence of antiphase coherences (black area in Figure 2.24B). The
bandwidth for reasonable antiphase suppression can be estimated to be ≈3000 Hz along
the antidiagonal, which covers most protons on small to medium-sized spectrometers but
does not allow coverage of the full proton chemical shift range on high fields. A similar
offset dependence exists for the inversion of carbon nuclei. For typical 13C rf-amplitudes
of rfmax = 12.5 kHz and a CPMG-delay ∆/2 = 100 µs the inversion bandwidth covers
≈11.8 kHz, which, of course, might be compensated to some extend by using appropriate
composite pulses [39, 56, 213,227].

The main difference between the LR-CAHSQC and the CBC-HSQMBC is the transfer
efficiency via long-range couplings to carbons directly attached to protons. For the LR-
CAHSQC all nuclei of the corresponding spin system, i.e. the carbon and the coupled
proton network, contribute to the coherence transfer. The most simple, non-trivial case
is a three spin system consisting of a carbon, the directly bound proton and a remotely
coupled proton, as shown in Figure 2.25A and B. The coherence transfer function of
the resulting ILL coupling topology (homonuclear isotropic mixing and heteronuclear
longitudinal mixing conditions [228]) is mainly modulated by the homonuclear isotropic
transfer and additional modulations are due to the large heteronuclear one-bond coupling.
Depending on the combination of sign and size of the participating coupling constants and
the transfer time chosen for the LR-CAHSQC, corresponding cross peaks can be inverted
or even vanish (see the two cases shown in Figure 2.25 for a typical 3JCH (A) and 2JCH

coupling network (B)).

In the CBC-HSQMBC, instead, the effective coupling topology is reduced to 0L0, i.e.
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Figure 2.23: Pulse sequences for the LR-CAHSQC (A) and CBC-HSQMBC
(CAGEBIRDr,X-CPMG-HSQMBC) experiment (B). Narrow and thick bars represent 90◦

and 180◦ RF-pulses, respectively. The unfilled rectangle represents a spin-lock pulse
(1ms). Pulse phases are along x unless indicated otherwise. Phase cycles are: φ1 = x,−x;
φ2 = x, x,−x,−x; φrec = x,−x,−x, x. The long-range polarization transfer delay T is
typically set to 62.5 ms to roughly correspond to the usual transfer delay for the long-range
coupling of ≈8 Hz. The CPMG-delay τ should be set equal or larger than 100 µs. The
number of cycles in the CAGEBIRD element m corresponds to a single XY16 supercycle
for the CPMG period. n is set to several XY16 supercycles in order to accomodate for the
overall transfer duration T . Echo and antiecho selections were achieved using gradients
G3 and G5. Gradient pulses have typical durations of 1ms. Applied gradient strength
ratios are: G1 : G2 : G3 : G4 : G5 = 33 : 50 : ±80 : 41.7 : 20.1. The carbon pulse phase
φ1 and the receiver phase φrec were incremented by π for every second t1 increment to
obtain States-TPPI-like data.
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Figure 2.24: Transfer properties of a CPMG pulse train as used in a pulse sequence
of Fig. 2.23 with delay τ = 100µs and a hard inversion pulse applied at 20 kHz RF-
power. Transfer is simulated for a homonuclear two-spin system with a J =12.63 Hz
isotropic coupling and optimal transfer length of 1/(2J) =39.6 ms. The offset dependence
of the transfer efficiency are shown for typical TOCSY-transfer I1x → I2x (A) and the
evolution of inphase into undesired antiphase terms I1x + I2x → 2I1yI2z (B). For the
CPMG parameters chosen an active bandwidth for reasonable antiphase suppression can
be derived to be approximately 3000 Hz along the antidiagonal.

an effective heteronuclear two spin system, because the directly bound proton is decoupled
by the CAGEBIRDr,X element (Figure 2.25 C,D). This reduction of the effective spin
system in the CBC-HSQMBC experiment compared to the LR-CAHSQC clearly gives
an advantage concerning its applicability to compounds of unknown spin systems, since
the effective spin systems are reduced and also unnecessary one-bond correlations are
effectively removed.

Examples cross peaks for coupling extraction from lineshape fitting using the LR-
CAHSQC and CBC-HSQMBC are given in Figure 2.26 B-E. The corresponding reference
lineshapes can either be obtained from a conventional proton 1D-experiment or from slices
of an HSQC. In the LR-CAHSQC the reference might also be taken from the corresponding
one-bond correlation, if present. This case is shown in 2.26 A.

For most signals the coupling measurement is straightforward and accuracy of the de-
termined coupling is mainly limited by the signal-to-noise ratio of the corresponding cross
peak. However, signals with broad multiplets and no characteristic, easily recognizeable
pattern pose a problem. In such cases, as for example demonstrated in Figure 2.27 for
the H1-C6 and H2-C1 cross peaks of menthol, lineshape fitting alone can result in a large
uncertainty of up to several Hz.
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Figure 2.25: The calculated efficiency of the transfer of in-phase proton magnetiza-
tion to anti-phase carbon magnetization by a CPMG train for two typical constellations
corresponding to 3JCH (A,C) and 2JCH (B,D) cases. Transfer functions for both the LR-
CAHSQC corresponding to an effective ILL spin topology (A,B) and the CBC-HSQMBC
with its effective 0L0 topology (C,D) are calculated. Vertical lines correspond to the
mixing times used in actual experiments.



142 Chapter 2. Partial alignment

Figure 2.26: Pattern-fitting procedure for coupling extraction out of both CPMG-based
methods presented.(A) Reference signal taken from the H2-C2 cross peak of the LR-
CAHSQC with the construction of the resulting antiphase multiplet sketched next to
it. (B,C) example cross peaks taken from the LR-CAHSQC to indicate the pseudo-sign-
sensitive measurement discussed in the text. (D,E) Identical cross peaks in the CBC-
HSQMBC with no inversion of the multiplet-tilt.
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Figure 2.27: Two examples of insufficient accuracy in coupling constant determination
using the pattern-fitting approach. Slices through cross-peaks between H1-C6 (left, a) and
H2-C1 (right, a′) of the LR-CAHSQC acquired on menthol in CDCl3 are shown together
with several pattern-fits for various couplings.Couplings constants as determined by the
HSQC-TOCSY-IPAP approach (Figure 2.28) are 3.4 Hz (a) and 1.8 Hz (a′). The trial
peaks have been calculated for coupling constants of 3 Hz (b), 8 Hz (c), 15 Hz (d), and
2.0 Hz (b′), 4.2 Hz (c′), and 6.8 Hz (d′).
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A noteworthy effect concerning the pseudo-sign-sensitive determination of coupling
constants should be mentioned: For a transfer time T =62.5 ms the LR-CAHSQC pro-
vided all coupling constants of menthol with the correct relative sign (negative for 2JCH,
positive for 3JCH couplings) as demonstrated in Figure 2.26 for two example cross peaks.
This somewhat surprising result can be rationalized using the ILL topology of Figure 2.25.
Since the coherence transfer function is mainly influenced by the homonuclear coupling
under isotropic mixing conditions, coherence transfer at T =62.5 ms is achieved with iden-
tical sign for both 2JCH and 3JCH situations (Figure 2.25A and B, respectively). The final
evolution of the long-range antiphase coherence during acquisition is then sign-sensitive
with sin π nJCH (as seen in Figure 2.26). Although the pseudo sign sensitivity in the
coupling measurement might be present in many cases involving carbons with directly
attached protons, coherence transfer properties are strongly influenced by the proton
spin system and also depend strongly on the transfer time T used. It must be clearly
stated that the LR-CAHSQC is generally not sign-sensitive. In the CBC-HSQMBC,
multiplet patterns always have the same construction direction independent of the nJCH

sign (cf. Figure 2.26). Exceptions only occur in the case of negative 1H,1H coherence
transfer [229, 230].

Both CPMG-based pulse sequences allow transfer via dipolar couplings [226]. How-
ever, for the combination of dipolar and scalar couplings CPMG-type transfer does not
result in homonuclear isotropic mixing conditions, but rather in cylindrical mixing con-
ditions [231,232] with inphase to antiphase evolution. Therefore spectra will contain dis-
persive elements and the advantage compared to conventional HMBC-type experiments
is lost. In addition, 1H,1H-RDCs typically provide broad multiplet patterns without char-
acteristic elements and lineshape fitting alone does not lead to conclusive results, as was
demonstrated in Figure 2.27. Therefore the applicability of CPMG-based sequences seems
to be limited to isotropic samples.

HSQC-TOCSY-IPAP

The first experiment published for sign-sensitive measurement of long-range nJCH cou-
plings is the socalled HETLOC pulse sequence [216]. The E.COSY-type displacement in
the resulting spectra contains information about the nJCH and 1JCH couplings of a spe-
cific carbon to its directly attached proton and the remote proton with the corresponding
chemical shift of the cross peak in the directly acquired dimension. In addition to the
size, the relative sign of long-range vs. one-bond couplings can be determined by the tilt
of the E.COSY-pattern [233].

Many HSQC-TOCSY-type pulse sequences have been proposed based on the original
principle with all kind of modifications (see for example [196, 216, 234–239]). A signif-
icant improvement in terms of resolution was accomplished by the introduction of spin
state selectivity [215,240], which separates multiplet components into two subspectra and
therefore reduces the amount of signals in a single spectrum by a factor 2. The α and
β-components in these experiments are selected via spin state selective coherence trans-
fer [241]. This approach works well so long as INEPT transfer delays are matched with the
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corresponding one-bond 1JCH-couplings. Since one of our aims in the present study is the
potential application of pulse sequences to partially aligned samples with a wide distribu-
tion of (1JCH +DCH) couplings, we were looking for an improved version for a spin state
selective HSQC-TOCSY with clean α and β component spectra in this case. The resulting
pulse sequences based on the acquisition of an inphase (HSQC-TOCSY-IP) and antiphase
(HSQC-TOCSY-AP) spectrum are shown in Figure 2.28: Pure absorptive heteronuclear
inphase or antiphase coherences are achieved by removing all other heteronuclear terms
by phase cycled carbon pulses applied directly before the TOCSY mixing period. In ad-
dition, recently derived ZQ-suppression schemes [242] are introduced around the isotropic
mixing multiple pulse sequence which considerably clean up the spectrum (Fig. 2.29).

The construction of spin state selective subspectra out of the HSQC-TOCSY-IPAP
experiments is illustrated in Figure 2.30 for simple cases. For typical isotropic samples
with a narrow distribution of corresponding 1JCH coupling constants, INEPT transfer
periods result in close to ideal performance and inphase and antiphase spectra are of
equal intensity as long as aliphatic and aromatic regions are acquired separately. In such
a case, spectra can be simply added or subtracted, respectively.

In cases where aliphatic and aromatic region shall be covered in a single experiment
or where partial alignment causes a wide distribution of 1JCH + DCH couplings, IP and
AP spectra will be clean in the HSQC-TOCSY-IPAP experiments, but contain cross
peaks of different intensities. This difference in intensities has to be corrected for each
row by a simple procedure using standard functions for manipulation of 1D spectra as
implemented in most processing programs like for example XWINNMR or TOPSPIN:
First, identical rows have to be extracted from IP and AP spectra with corresponding
diagonal cross peaks due to the direct 1JCH coupling. For the diagonal cross peaks with
the large one-bond splitting, α and β components usually are well separated and clearly
identifiable in the spectra and the intensity of IP and AP rows are easily adjusted until
these diagonal components are of identical magnitude. Because the TOCSY transfer is
identical for both the HSQC-TOCSY-IP and the HSQC-TOCSY-AP, it is sufficient to
adjust the diagonal peak intensities (see also e.g. [243]). The intensity-adjusted rows can
be saved and the corresponding sum and difference subspectra can directly be used for the
nJCH coupling extraction by simply measuring the displacement of a certain cross peak
in the two subspectra.

With the described procedure for coupling determination, the HSQC-TOCSY-IPAP
approach can be applied identically to isotropic and partially aligned samples. The
method is entirely sign-sensitive relative to the direct 1JCH + DCH coupling which is
usually of positive sign. In addition, spectra are very clean and far easier to interpret
than other experiments examined. The major disadvantage of the approach is the limited
number of couplings that can be extracted due to two limitations: Firstly, couplings can
be measured only to carbons with directly attached protons, and secondly, not all remote
protons might be reachable by the applied mixing scheme. Although TOCSY transfer
provided excellent signal intensities for all potentially measurable long-range couplings
for our two test molecules, transfer via DIPSI-2 and a single mixing time might not lead
to sufficient signal intensities for all desired signals. In this case modifications to the mix-
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Figure 2.28: Pulse sequences for the HSQC-TOCSY-IPAP approach, involving the in-
phase HSQC-TOCSY-IP (A) and anti-phase HSQC-TOCSY-AP (B) sequences. Nar-
row and thick bars represent 90◦ and 180◦ RF-pulses, respectively. Unfilled rectan-
gles represent 1 ms spin-lock pulses. Pulse phases are along x unless indicated other-
wise. Phase cycles are: φ1 = x,−x; φ2 = x, x,−x,−x; φ3 = 4(x)4(−x); φ4 = x,−x;
φrec = x,−x, x,−x,−x, x,−x, x. The INEPT-delay ∆ = 1/(2 1JCH) is typically set to
3.846 ms corresponding to 1JCH = 130 Hz. Open rectangles with oblique line represent
adiabatic inversion pulses used in combination with gradient pulse GZQ as a filter to sup-
press unwanted zero-quantum coherences. The adiabatic pulses were chosen as smoothed
Chirp pulses with 50 kHz sweep width over a duration of 30 ms and 50 ms, respectively.
The GZQ gradient pulses are of corresponding durations and were calibrated using the
detailed procedure provided online at http://www-keeler.ch.cam.ac.uk. Other gradient
pulses are of 1 ms duration. Applied gradient strength ratios are: G1 : G2 = 64 : 16.1. φ1

was incremented according to States-TPPI phase sensitive detection.
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Figure 2.29: Arbitrarily chosen region of the HSQC-TOCSY-IP spectra of strychnine
acquired with (A) and without (B) ZQ-suppression scheme. Clearly the reduction of small
artefacts is visible throughout the spectra.

ing scheme can be tried like varying the mixing time, using tailored TOCSY sequences like
for example the HNHA or COIN-TACSY [244, 245], or even applying a totally different
homonuclear mixing scheme like a NOESY period. For partially aligned samples, also the
use of MOCCA-XY16 multiple pulse sequence might be considered which simultaneously
allows efficient transfer also via homonuclear JHH and DHH couplings [225, 226].

If resolution of the spectra is not sufficient, the pulse sequences of Figure 2.28 might
easily be extended to 3D versions with an additional 1H evolution period before the
homonuclear mixing scheme.

Experimental

All spectra shown in this section were recorded on a Bruker Avance 500 spectrometer
equipped with a TXI probehead using a ≈500 mM menthol and a ≈100 mM strychnine
sample dissolved in CDCl3. The CT-HMBC and reference CT-HSQC (c.f. Figure 2.20)
were acquired using a transfer delay ∆ = 62.5 ms with 8192 data points in 16 scans
(strychnine) and 4096 in 4 scans (menthol), respectively, for 640 increments. LR-CAHSQC
and BIRDr,X-HSQMBC spectra were acquired with overall 35.7 ms long CPMG transfer
periods with 100 µs delay τ (see Fig. 2.23) and 180◦ pulses applied with rf-amplitudes of
12.76 kHz on the proton channel and 7.16 kHz rf-amplitude on the carbon channel. 8192
data points in 16 scans (for strychnine) and 4096 data points in 4 scans (for menthol),
respectively, were collected for each of the 640 increments in the indirect dimension.
HSQC-TOCSY-IP and HSQC-TOCSY-AP spectra were acquired with 50 ms mixing time
using the DIPSI-2 mixing sequence [246] applied at 6.38 kHz RF-power and the MOCCA-
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Figure 2.30: The coupling measurement procedure in its simpliest form. Coupling
determination is illustrated on the same example cross peaks used in Figure 2.22: H1 -
C2 (A) and H1 - C3 (B) of menthol and C12 to both H11 (C, D) of strychnine. This time
the measurement is fully sign sensitive.
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XY16 scheme as described in [225,226] with ∆/d = 2.2, respectively. 8192 data points in 8
scans (strychnine) and 4096 data points in 2 scans (menthol), respectively, were collected
for each of the 640 increments in the indirect dimension.

All spectra had an overall spectral width for strychnine of 10 × 120 ppm (folded
signals did not overlap at the applied 13C resolution) and 6 × 80 ppm for menthol and
were processed by zero filling the data to 16384 points in the direct dimension and 1024
points in the indirect dimension. For apodization a 90◦-shifted squared sine-bell weighting
function was applied in both dimensions prior to Fourier-transformation.

Discussion

The precision of every coupling measurement strongly depends on the signal-to-noise ratio.
All experiments discussed here provide very good sensitivity compared to other approaches
for measuring long-range couplings. The CT-HMBC relies on the size of homonuclear and
heteronuclear couplings evolving during acquisition of the corresponding antiphase terms.
If these couplings are smaller than the linewidths, overlap of the multiplet components
of opposite sign will significantly reduce the cross peak intensities. The same must be
considered for heteronuclear couplings in the BIRDr,X-HSQMBC and LR-CAHSQC, while
homonuclear coherences (within limits) remain inphase during the CPMG transfer steps.
The HSQC-TOCSY-IPAP results in inphase subspectra only so that reduction of signal
intensities because of small involved couplings is not an issue in this case.

CPMG-based sequences and the HSQC-TOCSY-IPAP, on the other hand, depend on
the homonuclear coherence transfer functions active in a particular spin system. Optimal
sensitivity in this case can be achieved in principle by adjusting the TOCSY periods to
the desired spin system, but in practice only empirically derived mixing times are applied
once with more or less undefined intensities for the signals of interest. The sensitivity of
the LR-CAHSQC in particular depends on the chosen mixing time (see Figure 2.25) due
to the influence of the large heteronuclear one-bond coupling to the carbon of interest.

All experiments described here are designed for first order spectra. The presence of
strong coupling or second order artefacts influences the extraction of coupling constants
in several ways. For all intensity-based methods, 1H,1H homonuclear coherence transfer
via strong coupling contributions will lead to an exchange of 1H,13C coherences and corre-
sponding peak intensities are corrupted. Depending on the nature of the spin system this
might lead to stronger or weaker signals. Since practically all homonuclear coupled spins
have a slight second order contribution to their Hamiltonian, the measurement of cou-
plings with a precision of less than ≈0.2 Hz in general is whishful thinking. For coupling
extraction from pattern fitting like in the BIRDr,X-HSQMBC or the CT-HMBC with
the according reference-HSQC, the same caution has to be taken. Since the multiplet
pattern is fit from a signal split by the corresponding heteronuclear one-bond coupling,
second order effects on both multiplet components will be different. The effects will again
be different for the signal of the nJCH cross peaks of interest, since the chemical shift
for each multiplet component is again shifted by a few Hz with slightly changed strong
coupling contributions. The situation in the HSQC-TOCSY-IPAP is only better in the
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sense that second order effects are eventually easier recognizeable due to differences in
the peak shape of the α and β components. A measurement with higher accuracy is still
not possible.

Conclusion

For fast coupling measurement in isotropic samples and in cases where reliability and
precision of couplings is not of utmost importance, as for example for configurational
studies via 3JCH coupling constants in isotropic samples, the CBC-HSQMBC is most
likely the experiment of choice. A single measurement provides all information needed
and couplings can be extracted with reasonable effort.

For accurate coupling measurement with high reliability, we found that the HSQC-
TOCSY-IPAP gave best results. It is the only one of the presented experiments providing
the sign of the couplings relative to the large heteronuclear one-bond coupling. However,
coupling measurement is limited to 1H-attached carbons only. Therefore all remaining
couplings have to be measured with additional methods, preferrably e.g. the presented
CT-HMBC with its corresponding reference HSQC. Since lineshape and intensity are fitted
simultaneously, most reliable couplings are extracted. The missing sign-information must
then be inferred from other data.

The signal-to-noise ratio is comparable for all examined pulse sequences with maybe
the least average intensity for the LR-CAHSQC. For all other approaches signal intensities
strongly depend on the couplings present in a particular spin system.
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Hadamard spectroscopy

And now for something completely different.

Monty Python

3.1 Spin state selective Hadamard encoding during

transfer periods using multiple selective CW-HCP

In nuclear magnetic resonance, Hadamard encoding was first implemented in imaging
applications [247–250] and has recently become a viable alternative to Fourier transform
in multidimensional NMR spectroscopy [251–257]. If the resonance frequencies of desired
signals are known, a set of multiple selective inversion pulses can be created and applied
in a way that spectra are unambiguously reconstructed using the Hadamard transforma-
tion [258,259]. As in conventional multidimensional NMR spectroscopy, single scans add
up constructively without loss in sensitivity, but the number of incremented 1D-spectra
is only determined by the number of selectively inverted frequency regions and not by the
sweep width and desired resolution. This can lead to significant reductions in measure-
ment time especially for samples with few cross peaks and might also be used to selectively
correlate a subset of signals [259, 260] or the suppression of water [261].

Hadamard encoding is usually achieved with a multiple selective inversion pulse ap-
plied instead of a t1-evolution period [259]. The selectivity of the inversion pulse dictates
the pulse length and is of similar duration as a constant time period with identical reso-
lution. For larger molecules, however, this can affect signal intensity and shorter overall
experiment times are generally desireable. One possibility for reducing experiment dura-
tion is the use of highly selective transfer building blocks for direct Hadamard encoding
without additional inversion pulses. Such selective transfer is achieved e.g. by double se-
lective continuous wave heteronuclear cross polarization (CW-HCP) [262–264], for which a
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number of interesting applications has been shown [265–269], including spin state selective
spectroscopy [243,270,271].

In the following, general technical details for Hadamard encoding via multiple se-
lective transfer building blocks will be examined on the example of CW-HCP. Offset
effects, modifications of the building block for selective inversion during transfer, require-
ments for phase alignment and the application of spin state selectivity are discussed in
detail. Results are verified experimentally on a 15N,13C-labelled pentapeptide and uni-
formly 15N,13C-labelled ubiquitin.

3.1.1 Theory

Transfer Characteristics of CW-HCP

Continuous wave heteronuclear cross polarization (CW-HCP) has been shown in a nice
series of publications to provide doubly selective transfer with a very narrow transfer
bandwidth on both irradiated nuclei [262, 264]. Best results are achieved for a radiofre-
quency amplitude of rfcw =

√
3J/4 with J being the active coupling between the two

coupled spins. This low rf-amplitude results onresonant in a planar Hamiltonian [274]

Hx
p = πJ{IySy + IzSz} (3.1)

with full transfer after a transfer period of τ = 1/J . In contrast to conventional high-
power CW-HCP, the low relative ratio of rfcw and J yields a good compensation of B1-field
inhomogeneity [264]. Several transfers can be achieved with CW-HCP. The conventional
application would be the transfer of inphase to inphase magnetization Ix → Sx via planar
mixing as a result of CWx irradiation. However, if initial magnetization is oriented along
z perpendicular to the irradiation axis, i.e. Iz, only the one component of the Hamiltonian
orthogonal to both the irradiation and magnetization axes contributes to the transfer and
weak coupling evolution takes place resulting in transfer from inphase into ZQ/DQ terms
Iz → −2IxSy after τ = 1/J . Since the ZQ/DQ term 2IxSy can easily be converted into
antiphase magnetization by a simple 90◦ pulse, we will refer to this transfer as inphase
to antiphase in the following. These two transfer pathways have already been used for
reducing multiplets [274] and for bandwidth and spin state selective transfer [243,270,271]
and will be discussed here later in terms of their applicability to multiple selective transfer.

The offset dependence of both transfer types is shown in Figure 3.1 A and B. The
bandwidth of inphase to inphase coherence transfer is restricted to ≈0.55 J with additional
transition regions with undesired transfer up to approximately 2.4 J . The inphase to
antiphase transfer has similar selectivity in the target dimension but a slightly more
diffuse transition region in the initial dimension which, however, still provides sufficient
selectivity for many applications.

CW-HCP transfer can be further manipulated by irradiating CW with a shifted phase
on the second nucleus. The resulting onresonant transfers for an inverted, i.e. shifted by

180◦, CW-irradiation on the S spin are Ix
CWx(I)/CW

−x(S)−−−−−−−−−−→ −Sx and Iz
CWx(I)/CW

−x(S)−−−−−−−−−−→
+2IxSy with the corresponding inverted offset profiles. Since the rotating frames of the
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Figure 3.1: Offset dependence of inphase to inphase and inphase to antiphase transfers

using CW-HCP of duration 1/J applied in the following ways: (A) Sx
CWx(I,S)−−−−−→ Ix; (B)

Sz
CWx(I,S)−−−−−→ −2IySx; inphase to inphase transfer by irradiating at two offset frequencies

(± 2J (C) and ± J (D)) on spin I with overall rfcw =
√

3J/2 while only one frequency
is irradiated onresonant on spin S with rfcw =

√
3J/4; inphase to antiphase transfer by

irradiating at two offset frequencies ± 2J with an amplitude rfcw =
√

3J/2 on the I (E)
and S (F) spin, respectively, with the corresponding other spin irradiated onresonant with
rfcw =

√
3J/4. The plots were simulated using self-written code based on the simulation

program SIMONE [272,273].
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two heteronuclei are independently defined, the shift of the director of the CW-irradiation
generally results in a phase shift of the evolving coherences.

Multiple Selective CW-HCP and Hadamard Encoding

Multiple selective CW-HCP can be achieved by the addition of several constant amplitude
pulses with differing linear phase sweeps corresponding to the desired multiple frequen-
cies. The creation of such a pulse shape is easily performed using standard procedures
implemented for example in the Bruker pulse shape tool and is shown schematically for
two frequencies in Figure 3.3. Generally, for n separated irradiation frequencies on one
nucleus the rf-amplitude also increases to n times rfcw.

The multiple selectivity can be chosen independently for the two nuclei. Figures
3.1C-E contain examples where two frequencies are chosen for spin I, while only one
frequency is selected for the S spin for inphase to inphase and inphase to antiphase
transfer, respectively. Inphase to antiphase transfer with one frequency on the I spin
but two irradiated frequencies on the S spin is shown in Figure 3.1F. In the case of two
selected frequencies as shown in Figure 3.2A, transfer can occur between all four frequency
combinations. If a constant amplitude pulse at a single frequency is added with a 180◦

phase shift for the multiple selective CW pulse, the transfer at this specific frequency is
also inverted (Figure 3.2B-D).

The obtained offset dependencies for multiple CW irradiation are the sum of the
individual CW-HCP offset dependencies centered at the specified frequency combinations
of I and S spins. Overlap of transfer regions between two neighboring CW-frequencies
leads to incomplete or undesired transfer properties and should strictly be avoided. If
the minimum distance of 1.8 J between two irradiation frequencies is maintained, clean
multiple selective CW-HCP is achieved.

Hadamard spectra can be obtained with the S spin in the indirect dimension by
encoding positive and negative transfers [247,275]. This can be achieved by addition and
subtraction of the corresponding frequency components in the pulse shapes for the I and
S spin as described above. The most simple non-trivial case of two selected frequencies for
both the I and S nuclei is shown with its offset dependency plots in Figure 3.2. With the
combination of all positive transfers (Figure 3.2A), selective inversion of a single frequency
on the I spin, S spin, and both spins (Figure 3.2B-D), the spectra at all four frequency-
combinations can be reconstructed [275,276]. The Hadamard encoding can be extended to
4n selected irradiation frequencies by adding and subtracting the phase-modulated CW-
elements in the multiple selective CW-HCP according to the corresponding Hadamard
matrices [259].

Phase Alignment

When setting up experiments, special care has to be taken with respect to the correct
phase alignment when creating the multiple selective CW shaped pulses. Because CW
of different frequencies is added for the CW-HCP, a defined phase is only provided at a
single point of the resulting shapes, typically at the beginning or at the end of the shaped
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Figure 3.2: Hadamard matrix encoding for dual selective inphase to inphase transfer
using CW-HCP with selectively inverted CW-elements. All offset dependency plots were
simulated with CW irradiated on I and S spins at frequencies of ±1.5 J with an overall
amplitude of rfcw =

√
3J/2. While in (A) the phases of all CW-components have identical

phases, the CW-component at frequency -1.5 J is inverted on the S spin (B), I spin (C),
and both spins (D) to obtain the desired Hadamard-encoding during the multiple selective
transfer period.
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pulse (see Figure 3.3 for a simple vector addition of two CW frequencies). Magnetization
oriented along z obviously is not sensitive with respect to phase alignment. Transverse
coherences, instead, only result in defined transfers for the specified frequencies if the
corresponding pulse phases are identical. For the transfer Ix → Sx, for example, the
phases of the individual constant amplitude CW-pulses have to be aligned at the beginning
of transfer step for the I spin, while they have to be aligned at the end of the pulse shape
for the S spin. The inphase to antiphase transfer Iz → 2IxSy requires phase alignment at
the end of the shaped pulse for both spins. Two pulse sequences for Hadamard encoded
multiple selective CW-HCP based correlation experiments with inphase and antiphase
detection, respectively, are presented in Figure 3.4, with phase alignment of the multiple
selective CW indicated by open arrows.

Spin State Selectivity

For spin state selectivity with respect to the α and β states of the heteronucleus, the
resulting antiphase spectrum is added or subtracted from the inphase spectrum. As shown
previously [190, 191, 243, 277, 278], the combination of spin state selective heteronuclear
transfer with an homonuclear mixing step like TOCSY provides the possibility to measure
size and sign of long-range heteronuclear couplings.

3.1.2 Experimental

The applicability of the method is demonstrated on 2 mM uniformly 15N,13C-labelled
cyclic pentapeptide cyclo(-D-Pro-Ala-Ala-Ala-Ala-) (PA4) in DMSO-d6 (Figure 3.5), as
well as on 0.5 mM uniformly 15N,13C -labelled ubiquitin dissolved in 90% D2O / 10% H2O
(Figure 3.6).

The alanines of the pentapeptide PA4 result in four 15N-split doublets for the amide
protons in the 1H-1D. The inner two amide signals, however, are too close at a spectrom-
eter frequency of 600 MHz to be separated by multiple selective CW-HCP regarding the
heteronuclear coupling of 1JNH ≈ 90 Hz. While their separation of approximately 70 Hz
in 1H and 65 Hz in 15N results in significantly reduced transfer if all four amide groups
are irradiated simultaneously in the multiple selective transfer steps, full transfer can be
achieved for three amide groups, if only one of the central signals is irradiated (Figure
3.5B).

For the experimental verification of the multiple selective CW-HCP Hadamard en-
coding, we initially chose the most simple example corresponding to a 2 × 2 Hadamard
matrix. The two outer amide groups separated by 584 Hz in 1H and 530 Hz in 15N at
a 600 MHz spectrometer have been irradiated according to the pulse sequences shown
in Figure 3.4 and the multiple selective CW-HCP building blocks of 11.1 ms duration
constructed according to Figure 3.3 and Figures 3.2A,B. Hadamard-encoded inphase to
inphase and inphase to antiphase transfer could be achieved with the transfer elements as
described in the theory section. The subsequent addition/subtraction of the correspond-
ing spectra leads to individual inphase/antiphase signals and even to spin state selective
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Figure 3.3: Vector addition and phase alignment for multiple selective CW-HCP demon-
strated by the addition of two constant amplitude CW pulses. Onresonant CW with con-
stant amplitude and phase (top) is added vectorially with CW of constant amplitude at
a specific offset (middle) with phases of the individual pulses aligned along x (0◦) at the
beginning (A) and at the end (as also indicated by the open arrows at the very bottom).
The resulting pulse shapes are cosine-modulated pulses with a constant phase sweep of
twice the original maximum rf-amplitude (bottom). Coordinate systems with a vector
indicating the position of the CW-rotating frame have been introduced to visualize the
relative phases at the beginning and at the end of the individual pulses.
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Figure 3.4: Pulse sequences for Hadamard encoded multiple selective CW-HCP correla-
tions. (A) Sequence for the detection of inphase magnetization and (B) the corresponding
sequence for antiphase detection. Open arrows indicate points of phase alignment of the
multiple selective CW-HCP shaped pulses as demonstrated in Figure 3.3. Black bars rep-
resent 90◦ pulses, gray bars annotated with CWx mark mutliple selective CW-irradiation
with phase aligned along x at the open arrows and the open box with SL stands for a
spinlock period of typically 1-2 ms duration. The CWx-irradiation used for experiments
in all presented cases has a duration of 1/J . The purging gradient G1 is of medium
strength and typically 1-5 ms duration. With the magnetization of interest stored on spin
S along z, the combination of spinlock and purging gradient is known to provide excellent
suppression of unwanted signals [184, 243]. Hadamard encoding is achieved within the
CW-HCP pulse shapes as described in the text.
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spectra (Figure 3.5C).

A more elaborate example was recorded on ubiquitin, where four cross peaks were
arbitrarily chosen for selective transfer with relative frequencies of 0 Hz, 315 Hz, 527 Hz,
770 Hz on 1H and 0 Hz, 628 Hz, 895 Hz, 1075 Hz on 15N (Figure 3.6). In order to obtain
maximum selectivity, Hadamard encoding was performed on both channels simultaneously
[275], resulting in altogether 16 separate experiments for inphase spectra and another
16 experiments for antiphase spectra. These data have been combined by applying the
Hadamard transformation using a 4×4 Hadamard matrix for each channel separately [260,
275]. The encoded spectra are shown in Figure 3.6 B and C for the inphase and antiphase
case, respectively. Again, these subspectra can be added/subtracted to achieve additional
spin state selectivity (Figure 3.6D). Clearly visible are also the selectivity limitations of
the method for one of the obtained signals where the strong cross peak marked with an
asterisk resonates at an offset combination in the transition region of CW-HCP (Figure
3.1A). This leads to relatively efficient inphase transfer and the observed undesired signal.
Because the offset dependence of inphase to antiphase transfer is different (Figure 3.1B),
the resulting antiphase spectra contain other undesired artefacts resulting from transfer
of signals in the CW-HCP transition region.

All experiments were performed on a Bruker DMX 600 spectrometer. The multiple
selective pulses for CW-HCP transfers were created using the Bruker ”shape tool“ soft-
ware incorporated in XWINNMR version 3.5 by vector addition of square pulses with
phase slopes corresponding to the desired irradiation offsets. As part of the shape tool
also the phase alignment of the pulse shapes could be chosen as described in the theory
section. The Hadamard encoding was achieved by adding additional 180◦ phase shifts
to the corresponding individual frequency components. The pulse amplitudes were first
set to theoretical values of (

√
3/4)JNH per irradiation frequency, and then corrected by

systematically varying the amplitudes on both channels close to this value until reaching
maximum signal intensity.

For PA4, 4 scans per FID with 2048 points were recorded in all cases. The 1H,15N-
HSQC of ubiquitin was recorded with 2048 × 512 points and 4 scans per FID. The
corresponding multiple selective CW-HCP Hadamard-encoded spectra were acquired with
8192 data points, 64 transients per individual experiment and CW-irradiation periods of
11.1 ms duration. Additional low-power presaturation was applied for water suppression
in the case of ubiquitin. All spectra were zero-filled to twice the original number of
acquired points and apodized exponentially before Fourier transform.

3.1.3 Discussion

Highly selective CW-HCP has been shown to be a powerful tool for multiple selective
Hadamard encoding. However, several limitations to the technique apply. The main
disadvantage is probably the selectivity of transfer, which is limited by the heteronuclear
coupling. Significantly narrower transfer bandwidths are only feasible using CW-HCP-
based techniques with significantly longer transfer periods as for example described in
[262,264,279,280]. These longer transfer periods will result in reduced transfer efficiencies
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Figure 3.5: Demonstration of achievable multiple selective CW-HCP transfer and a
simple example for Hadamard-encoding including spin state selectivity using the 15N,13C-
labelled pentapeptide PA4. (A) 1H-1D of the amide region of PA4. (B) While multiple
selective 1H,15N CW-HCP cannot be achieved for all four alanine amide groups due to the
insufficient separation of only ≈0.8 1JNH of the inner signals (bottom), it is well possible for
three selected signals (top and middle). (C) Hadamard-encoding is demonstrated on the
two outer amide signals for which inphase and antiphase detected experiments (Figure 3.4)
have been detected using twice-selective CW-HCP with all individual constant amplitude
pulses added with the same phase (see Figure 3.2A) and with one phase on spin S inverted
before vector addition (see Figure 3.2B). By applying the 2× 2 Hadamard-matrix, which
is equivalent to addition/subtraction the two antiphase and inphase spectra, respectively,
subspectra with individual antiphase/inphase signals are obtained. By combining these
antiphase and inphase signals a second time in the IPAP manner, the four resulting
subspectra represent the muliplet components of the individual spin states.
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Figure 3.6: Application of the multiple selective CW-HCP Hadamard encoding on ubiq-
uitin by choosing four arbitrarily selected amide groups. (A) 1H,15N-HSQC of ubiquitin
with the four arbitrarily selected resonances indicated by circles. (B) The four resulting
spectra out of 16 individually recorded inphase spectra using the pulse sequence of Figure
3.4A after sequentially applying 4 × 4 Hadamard transformations on spins I (1H) and S
(15N). (C) The corresponding spectra resulting from the 16 antiphase spectra recorded
using the pulse sequence of Figure 3.4B and corresponding Hadamard encoded CW-HCP.
(D) By adding/subtracting inphase and antiphase spectra, individual multiplet compo-
nents can be obtained. Limitations due to undesired transfer in the transition region of
CW-HCP (see Figure 3.1) are marked in one case with an asterisk.
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due to relaxation.

Generally, it must be noticed that CW-HCP has quite large transition regions con-
cerning its coherence transfer offset dependence (see Figure 3.1). Other planar mixing
schemes [228] optimized for selective coherence transfer, as e.g. the Gaussian pulse shape
based PLUSH-TACSY [281] or the computer optimized kin-HEHAHA sequences [282],
might well reduce resulting offset dependent artefacts. One could also think of optimiz-
ing selective heteronuclear or even homonuclear transfer building blocks by e.g. optimal
control theory [13, 282, 283], which has shown its potential in many applications like the
design of specific pulse shapes [34, 56, 69, 284] or specifically optimized transfers in solid
and liquid state applications [285–289]

A comparison of selectivity of CW-encoding vs. conventional Hadamard-encoding
using selective inversion pulses of identical duration is shown in Figure 3.7. The selectivity
of CW-HCP is comparable to the selective inversion by a low-power CW pulse. Although
the CW-transfer is not optimal with respect to the transition region, the actual transfer
bandwidth is narrower as for example the bandwidth of a Gaussian inversion pulse with
a truncation level of 15 %. It can be assumed that the use of shaped pulses as e.g.
applied in the PLUSH-TACSY [281] will lead to a reduced transition region also in the
case of selective coherence transfer. Since physically the selectivity of a pulse sequence
element is mainly determined by the time spent in the transverse plane, this result is
not surprising. Potentially, the selectivity performance of a coherence transfer step might
also be improved if the sequences irradiated on the two nuclei are treated separately in
an optimization of band-selective transfer as has been previously demonstrated in [282].

In all multidimensional experiments coherence transfer steps are inevitable. The time
for coherence transfer is not fully used in conventional Hadamard encoding procedures
involving selective inversion pulses. In HSQC-type experiments, as shown here, a period of
at least 1/J with the magnetization in the transverse plane can be gained by including the
frequency selection into the transfer steps. This will generally result in higher sensitivity
because of reduced relaxation losses. Most likely the two Hadamard encoding approaches
can even be combined for obtaining spectra with higher selectivity and cleaner appearance.

Hadamard encoding with multiple selective CW-HCP requires several pulse shapes
to be created for each 1D-experiment due to the various phase alignment conditions that
must be fulfilled. The effort in this case is higher than in conventional Hadamard encoding
schemes and is very time consuming if pulses are created individually. Nevertheless, pulse
shape creation could easily be automated by a suitable computer program.

The original Hadamard encoding is restricted to frequency matrices that are multiples
of 4n. As has nicely been shown by Kupče and Freeman [290], the approach can be
extended to an arbitrary number of frequencies, if not only sign inversion but encoding
with 360◦/n phase shifts is used. This extension can be directly transferred to multiple
selective CW-HCP if the phases of the individual CW components are chosen accordingly.

In contrast to conventional Hadamard encoding using selective inversion pulses, mul-
tiple selective CW-HCP in principle offers the possibility to encode the frequencies of
both participating nuclei without increase in experiment time for each scan. In the sim-
ple 2D-like correlation experiments discussed in Figure 3.4, Hadamard encoding on both
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Figure 3.7: Comparison of offset dependencies of CW-HCP (a), selective inversion using
CW (b) and a Gaussian shaped pulse truncated at 15 % (c). The duration of CW-HCP
and the pulses in all cases is 11.111 ms. For CW-HCP the transfer profile of the S spin
is shown onresonant for the I spin (solid line) and for the I spin at an offset of ≈0.8 J
(dotted line).
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nuclei simultaneously is not necessary, since the proton dimension is directly detected
anyway. In 3D-experiments the situation is different and the possibility of simultaneously
encoding two frequency distributions in a single transfer element seems especially attrac-
tive in situations where fast relaxation processes limit the applicability of conventional
frequency-discrimination techniques.

As mentioned above, the presented approach seems promising whenever relaxation
prevents conventional Hadamard encoding using relatively long selective inversion pulses.
The decrease in experiment time due to the inherent selectivity of the doubly selective
CW-HCP will directly translate into gains in signal intensity. Possibly, the situation might
be improved even further by the introduction of relaxation optimized transfer elements
like the ROPE [8] and CROP [7] sequences, which both show an inherently bandwidth-
selective transfer comparable to CW-HCP.

The pulse sequences discussed in this chapter can be found in the Appendix 4.3.



Chapter 4

Appendix

4.1 Optimization program OCTOPUS

OCTOPUS is the main optimization program used throughout this work to perform opti-
mizations of all kinds of point-to-point transformations described in the previous chapters.
The program is written in the Fortran programming language and was compiled by the
INTEL R© Fortran Compiler 8.0 for Linux. The optimizations are performed according to
the formulas derived in chapter 1.2.3. The user has to list all optimization parameters in
a file with fixed format (vide infra) and run the optimization by the command

octopus −[options] optname,

where optname being the name of the parameter file. The parameter file has the following
form:

#*****************************************************************

# Optimization parameters

#*****************************************************************

Range, Hz = 100

Checks = 2

MaxB1 deviation, % = 10

nB1 = 1

Pulse length, us = 50

Timestep, us = 0.5

RF limit, Hz = 10000

Start RF, Hz = 10000

N_optimizations = 5

Seed = 216

Tolerance = 1.0d-6

#*******************************

# Initial state

#******************************

165



166 Chapter 4. Appendix

initial_x = 0

initial_y = 0

initial_z = 1

#*******************************

# Target state

#*******************************

target_x = 0

target_y = 0

target_z = -1

#****************************************************************

The user has to define the offst range in Hz which the pulse has to cover (Range in the file
above), the number of different offsets that are used in the calculation (Checks), the size
of included rf-amplitude variations in ±% of the nominal rf value (MaxB1 deviation) and
the number of different rf-amplitudes in the calculation (nB1, if it is equal to 1 then no
rf-inhomogeneity will be considered), the length of the optimized pulse and the length of
the single pulse digit (Timestep, should be smaller, then the pulse length), the maximum
allowed rf-amplitude or rf-power, respectively, (RF limit), and the maximum amplitude in
the intial generated random pulses (Start RF, can be also larger then the RF limit, will be
clipped later in the optimization; larger amplitudes of random pulses generally guarantee
the larger distribution of final quality factors, increasing thus the chances to get better
pulse), the overall number of optimized pulses (N optimizations), the seed for the random
numbers generator (Seed) and the convergency criterion Tolerance. The initial and target
magnetization states are defined by their x, y and z components, which do not neccesary
have to be normalized - the normalization is performed automatically. One can further
modify the optimization setup by chosing one of the following options:

• -c: to optimize pulses with constant rf-ampitude;

• -p: to optimize pulses with limited rf-power deposition, with parameter RF limit
limiting now the average rf-power;

• -u: to optimize a universal rotation; the program optimizes the point-to-point trans-
formation with half flip-angle and constructs the universal rotation according to the
procedure described in chapter 1.6;

• -s pattern file: to optimize a pattern pulse (see chapter 1.5; the optimization pattern
to be defined in the file pattern file, which should have the following format:

0123 · · ·333

32123 · · ·88
...

0123 · · ·333

32123 · · ·88
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with individual numbers defining the target magnetization state for a combination
of the offset and the rf-field strength, which is defined by the position of the cor-
responding number. The overall number of rf-miscalibrations calculated is then
defined by the amount of numbers in the row, and the number of offsets calculated
is defined by the amount of rows. The corresponding entries in the parameter file
are then ignored. The initial states for every cell of a pattern is the one defined
in the parameter file, and the target states are encoded by the numbers, with 0
standing for z, 1 or any other symbol for x, 2 for y, 3 for −x, 4 for −y and 5 for −z.

More than one option can be specified at the same time. Nonsense combination generate
a warning message (like -c and -p at the same time). Running the program without giving
the name of the optimization file generates a warning message and opens the help file.
The program first generates random pulses (number of which is defined by the parameter
N optimizations) and saves them in the temporary directory optname temporary, which
is removed at the end of the run. The quality factor is evaluated for every random pulse
and they are sorted accordingly. Then the optimization is started on every of the random
pulses. Resulted pulses are stored in the newly created directory optname results under
the names pulse1, pulse2 and so on. When all optimizations are performed, the optimized
pulses are reassorted according to their quality and converted to the format compatible
with Bruker software and saved under the names pulse1.bruker, pulse2.bruker and so
on (whereas initially they had x-y-amplitude representation). After the sorting the pulse
with the lowest number is the best performing pulse. The program generates the following
output protocol:

-------------------------------------------

Generating starting pulses...

Done.

Calculating transfer efficiencies...

Done.

te1( 1 )= -0.904332250071345

te1( 2 )= -0.956595183712871

te1( 3 )= -0.970209075730468

te1( 4 )= -0.979908039553965

te1( 5 )= -0.983564797426899

Starting 1st level OCT

te( 1 )= 0.999949999929785

te( 2 )= 0.999949999204033

te( 3 )= 0.999949973071452

te( 4 )= 0.999950000023467

te( 5 )= 0.999950000103240

Ranked efficiecies:

New te( 1 )= 0.999950000103240
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New te( 2 )= 0.999950000023467

New te( 3 )= 0.999949999929785

New te( 4 )= 0.999949999204033

New te( 5 )= 0.999949973071452

--------------------------------------------

In the same form this protocol is saved in a file under the name optname.log
In the case of pulses optimized with limited rf-power deposition the important param-

eter crucial for its practical application is the peak rf-power of the pulse. This is stored
in the header of the pulse shape in bruker format:

##$SHAPE_PARAMETERS= Power Limited pulse, Nominal RF= 10251.382

The resulting pulses are stored in two different representations. In the first one the
file has three columns: the first contains absolute values of the x-component of the rf-
amplitude, the second column the y component and the third the length of the corre-
sponding digit in seconds:

......

-8804.89926869434 3776.42019499668 5.000000000000000E-007

-8823.93621481248 3785.10026868566 5.000000000000000E-007

-8842.18282915578 3793.81545495536 5.000000000000000E-007

-8861.14966898076 3802.16648120918 5.000000000000000E-007

.......

The files in this representation are saved under names without extension: pulse1, pulse2
and so on. The second format the pulses are saved in is the format compatible with XWIN-
NMR and TOPSPIN software from Bruker. They have the header of corresponding format
containing additional information about the pulse, and the pulse shape is represented in
two columns: relative rf-amplitude in % and phase in degrees. The nominal rf-amplitude
corresponding to 100% is given in the header:

##TITLE= /akbl1/kk/simone_1/OCTOPUS/temp_results/pulse1.bruker

##JCAMP-DX=

##DATA TYPE= Shape Data

##ORIGIN= OCTOPUS optimization software

##OWNER= <kk>

##DATE= 11-Jun-07

##TIME= 11:00:38

##$SHAPE_PARAMETERS= Nominal RF (Hz): 10000.000

##MINX= 99.9999999999999

##MAXX= 100.000000000000

##MINY= 155.844761905960

##MAXY= 157.301385290965

##$SHAPE_EXMODE= Excitation
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##$SHAPE_TOTROT= 180.000000000000

##$SHAPE_TYPE= Inversion

##$SHAPE_USER_DEF=

##$SHAPE_REPHFAC=

##$SHAPE_BWFAC= 5.000000000000000E-003

##$SHAPE_BWFAC50=

##$SHAPE_INTEGFAC= 0.999999999999999

##$SHAPE_MODE= 0

##NPOINTS= 100

##XYPOINTS= (XY..XY)

100.0000000000, 156.8233825233

100.0000000000, 156.7169389969

...

100.0000000000, 155.8447619060

##END=
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4.2 Simulation programs

4.2.1 Simulation of pulse performance: program OCTOSIM

The program OCTOSIM simulates the performance of rf pulses over the defined range
of chemical shift offsets and rf-field amplitudes. It assumes an ensemble of uncoupled
spins and uses three dimensional rotations of magnetization vectors as they are also im-
plemented in the program OCTOPUS. Since the program is intended to simulate the
performance of pulses optimized with the program OCTOPUS it can directly be used
with input files of the latter.

Running the program

To run the program one has to deliver it with the pulse shape to be simulated and the
parameter file, containing all parameters relevant for a simulation. Simulation starts with
the command:

octosim parfilename pulsename

The parameter file can be either the same as used for the optimization of the corresponding
pulse shape, or its shortened form, containing only the data relevant for the optimization:

#*****************************************************************

# Optimization parameters

#*****************************************************************

Range, Hz = 20000

Checks = 120

MaxB1 deviation, % = 40

nB1 = 20

Pulse length, us = 25

RF limit, Hz = 10000

#*******************************

# Initial state

#*******************************

initial_x = 0

initial_y = 0

initial_z = 1

#*******************************

# Target state

#*******************************

target_x = 1

target_y = 0

target_z = 0

#****************************************************************
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The pulse has to be in Bruker format, hence in two columns with relative rf-amplitudes
in % and phases in degree separated by commata. The header of the file is ignored and
can therefore be omitted. The program generates the following messages:

Number of digits in a pulse: 1

Pulse length (us): 25.0000000000000

Digit length (us)= 25.0000000000000

te= 0.779056163677190

With te being the average quality factor of the pulse over the specified range of chemical
shift offsets and rf-amplitudes. The quality factor is calculated as the scalar product of
the magnetization at the end of the pulse with the target magnetization as it’s defined in
the input file. If the input values for the components of target or initial magnetization
define the vectors with amplitudes other then 1, they will automatically be normalized
before running the optimization.

Results and visualizations

As a result of the simulation the program generates four output files: the file Sim-
DataAxX.dat contains the values of all single chemical shift offsets used in the simulation,
the file SimDataAxY.dat contains the value of all single rf-amplitudes used in the simula-
tion. The files SimDataX.dat, SimDataY.dat, SimDataZ.dat contain correspondingly the
x, y and z components of the magnetization at the end of the pulse, with every data row
in the file corresponding to a single offset value and columns corresponding to the values
of rf-amplitudes, so for 3 rf-amplitudes and 12 offsets the files will have the form:

...

0.666974505012919 0.197150066460594 -0.261510194376641

0.664546402781363 0.191116890358538 -0.271462545615974

0.662145841995019 0.185151341624442 -0.281305538313521

0.659773461896480 0.179255044048590 -0.291036397275915

0.657429895576712 0.173429606004882 -0.300652373079853

0.655115769745181 0.167676619857728 -0.310150743111036

0.652831704501977 0.161997661374033 -0.319528812594351

0.650578313112047 0.156394289140539 -0.328783915614864

0.648356201781603 0.150868043986760 -0.337913416129152

0.646165969436836 0.145420448413765 -0.346914708966564

0.644008207505000 0.140053006029068 -0.355785220819931

0.641883499697983 0.134767200987841 -0.364522411225325

...

To visualize the simulation results we have written a script for the Matlab package, which
has the following form:

%-------------------------------------------------------------
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f1=figure;

u=-1.0:0.05:1.0;

clear;

fname=’/akbl1/kk/SIMULATION_PROGRAMS/OCTosim/SimDataAxX.dat’;

fid=fopen(fname,’r’);

axx=fscanf(fid,’%e’,[inf]);

status=fclose(fid);

fname=’/akbl1/kk/SIMULATION_PROGRAMS/OCTosim/SimDataAxY.dat’;

fid=fopen(fname,’r’);

axy=fscanf(fid,’%e’,[inf]);

status=fclose(fid);

fname=’/akbl1/kk/SIMULATION_PROGRAMS/OCTosim/SimDataX.dat’;

fid=fopen(fname,’r’);

gr=max(size(axy));

x=fscanf(fid,’%e’,[gr inf]);

status=fclose(fid);

fname=’/akbl1/kk/SIMULATION_PROGRAMS/OCTosim/SimDataY.dat’;

fid=fopen(fname,’r’);

y=fscanf(fid,’%e’,[gr inf]);

status=fclose(fid);

fname=’/akbl1/kk/SIMULATION_PROGRAMS/OCTosim/SimDataZ.dat’;

fid=fopen(fname,’r’);

z=fscanf(fid,’%e’,[gr,inf]);

status=fclose(fid);

subplot(3,2,1);

v=contour(axx,axy,x);

clabel(v);

title(’Mx’);

subplot(3,2,3);

v=contour(axx,axy,y);

clabel(v);

title(’My’);

subplot(3,2,5);

v=contour(axx,axy,z);

clabel(v);

title(’Mz’);

xy=sqrt(x.*x+y.*y);

subplot(3,2,2);

v=contour(axx,axy,xy);

title(’Mxy’);

clabel(v);

phase=360.0*atan(y./x)/2/pi;

subplot(3,2,4);
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v=contour(axx,axy,phase);

title(’Phase’);

clabel(v);

%-------------------------------------------------------------

To run the script one has to specify the correct full paths to the data files. The script
produces a figure with 5 subplots showing all three magnetization components as well as
the amount of magnetization in the xy-plane and its phase as a function of chemical shift
offset and rf-amplitude, as shown in Fig. 4.1.

4.2.2 Simulation of decoupling sequences

To investigate the performance of decoupling sequences composed of optimized pulses a
specialized program was written. The program calculates the evolution of a heteronu-
clear two-spin system with one spin being decoupled by the train of shaped pulses. The
program uses the subroutines from the SIMONE package [272,273] and calculates the evo-
lution of initial Ix magnetization in the system of two coupled spins with weak coupling
Hamiltonian. In contrast to the optimization and simulation programs described above,
this program (and the one described in the next chapter) uses quantum mechanical de-
scription and calculates the evolution of 4×4 matrixes in the Hilbert space corresponding
to an effective two-spin system.

Running the program

The program produces a series of FIDs for a series of different values of the chemical shift
offset of the decoupled nucleus. To run the program one has to deliver the pulse shape to
be simulated and the parameter file, containing all parameters relevant for the simulation.
Simulation starts with the command:

DecSim parfilename

The simulation results are saved in the file parfilename.out. The input file has the following
format:

#*****************************************************************

# Simulation parameters

#*****************************************************************

#------ Observe channel ----------------------

Spectral width, Hz = 10000

T2,s = 0.05

Time domain, points = 4096

#------Hamiltonian----------------------

Het. coupling constant, Hz = 150.0

#------ Decoupler channel ----------------------

Central frequency, Hz = 0.0
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Figure 4.1: Visualization in Matlab of the simulation of the performance of an optimized
pulse. The amounts of x, y and z magnetizations are shown in the left column, as well
as the phase and the amount of magnetization in the xy-plane in the right column as a
function of the chemical shift offset and rf-amplitude.
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Offset range, Hz = 30000

Checks = 20

Shape file = square10

Pulse power, Hz = 2500.0

Pulse length, us = 200

Phase cycle = 3

#----Here choose one of the followings:

#*********************************************************

# 1 - no cycle

# __

# 2 - MLEV-4 (RRRR)

# __

# 3 - MLEV-4(2)(RRRR)

# __ __

# 4 - MLEV-8 (RRRR RRRR)

# __ _ _ __ __

# 5 - MLEV-16 (RRRR RRRR RRRR RRRR)

# __ _ _ __ __ _ __ ___ __

# 6 - MLEV-32 (RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR)

# ____ ____

# 7 - XY-16 (XYXY YXYX XYXY YXYX)

# _

# 8 - WALTZ-4 (123 in MLEV expansion)

#*********************************************************

The fields have the following meanings:

• Spectral width, Hz

The spectral width of the observable nucleus, defines the sampling rate of the FID;

• T2,s

The rate of the exponential decay of the FID, defines the linewidth in the resulting
spectrum;

• Time domain, points

Number of points calculated for every single FID;

• Het. coupling constant, Hz

Heteronuclear coupling constant; the Hamiltonian is then defined as weak coupling
Hamiltonian;

• Central frequency, Hz

Chemical shift offset of the decoupled nucleus;
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• Offset range, Hz

Range of chemical shift offsets of the decoupled nucleus for which the FIDs are
calculated;

• Checks

Number of offsets of the decoupled nucleus, number of calculated FIDs

• Shape file

The name of a file defining the shape of the pulse, for which the performance for
decoupling is tested; the pulse should be situated in the same directory where the
program is started;

• Pulse power, Hz

The peak amplitude of the shaped rf-pulse in the decoupling sequence;

• Pulse length, us = 200

Length of the individual pulses in the decoupling sequence;

• Phase cycle

Chose one of the supercycles listed.

Results and visualization

While running the program generates the following message with all simulation parameters
listed:

*****************************************

--------- Observe Channel ------------------------

Spectral width: 10000.00 Hz

Dwell time: 0.10 ms

Transverse relaxation time: 0.05 s

Time domain: 4096

--------- Decoupler Channel ------------------------

Elementary pulse: square10

Central frequency: 1000.00 Hz

Offset range: 30000.00 Hz

Calculated points: 20

Pulse power: 2500.00 Hz

Elementary pulse length: 200.00 us

Phase cycle: MLEV-4(2)

*****************************************

And as a result of the simulation the file parfilename.out is created which has the following
appearance:
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# 10000.0000000000 4096

# 30000.0000000000

1.000000000000 0.000000000000

0.996926709256 0.000000000000

...

The header contains the information to help decipher the following rows of numbers: in
the first line the spectral width and number of points in the single FID, in the second
line the offset range of the decoupled nucleus. Then the calculated FIDs are recorded one
after each other with real part in the left column and imaginary part in the right. To
visualize the simulation results we have used the Matlab package for wich the following
script was written:

%-------------------------------------------------------------

clear;

f1=figure;

fname=’/akbl1/kk/SIMULATION_PROGRAMS/DecSim/input2.out’;

[sw, td]=textread(fname,’#%f%f’,1);

range=textread(fname,’# %f’,1,’headerlines’,1);

[a b]=textread(fname,’%f%f’,’headerlines’,2);

c=length(a);

N=c/td;

for k=1:N,

for j=1:td,

data(j,k)=a((k-1)*td+j)+b((k-1)*td+j)*i;

end;

end;

x=-range/2:range/(N-1):range/2;

y=-sw/2:sw/(td-1):sw/2;

spec=fft(data);

spec=fftshift(spec,1);

a=real(spec);

clear spec;

a=a/max(max(a));

v=[0:0.1:1];

contour(x,y,a,v);

axis([min(x) max(x) -100 100]);

xlabel(’Offset on S, Hz’);

ylabel(’Offset on I, Hz’);

colorbar;

%-------------------------------------------------------------

The script performs Fourier transformation of the FIDs and creates the contour plot of
stacked spectra, as shown in Fig. 4.2.
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Figure 4.2: Visualization in Matlab of the simulation of decoupling efficiency of a certain
decoupling scheme including optimized pulses. The 2D representation of a stack of spectra
is shown.
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4.2.3 Simulation of transfer efficiencies of homo- and heteronuclear

mixing sequences

The program HAHASIM was written to simulate the performance of different mixing se-
quences in homonuclear or heteronuclear two-spin systems. It is written in the FORTRAN
programming language and is compiled by INTEL R© Fortran Compiler 8.0 for Linux.

The program systematically changes two simulation parameters and calculates for
every pair the efficiency of the transfer from the defined initial state to the defined target
state. The user should define, which parameters have to be varied, and which should be
kept constant. Those available for variation are: offsets of both spins, RF powers on both
channels, and the scalar and dipolar coupling constants.

The user has to define the Hamiltonian, which can be either simple weak coupling
Hamiltonian 2πJhetIzSz, or full isotropic coupling Hamiltonian 2πJiso(IxSx + IySy + IzSz),
and can also include an extra term for dipolar coupling: 2πJdip(2IzSz − IxSx − IySy). Set-
ting one of the constants Jiso, Jhet, Jdip to zero eliminates the corresponding term from
the active Hamiltonian.

One can compose the mixing sequence out of arbitrary shaped pulses by defining an
elementary pulse of a sequence as a standard shape file in BRUKER format, which can
further be expanded into a cycle.

Transfer from any initial state can be performed and the amount of any state at the
end of the transfer can be checked by selecting corresponding terms in the input file.

Running the program

Simulation starts with the command

hahasim parfilename,

where parfilename is a name of an input file, where the user defines all simulation param-
eters. This file has the following format (Imortant: Do not change anything in this file
besides numbers on the right side of the “=” signs!):

#*****************************************************************

# Simulation parameters

#*****************************************************************

Heteronuclear (y/n): y

#------Spin I----------------------

Central frequency on spin I, Hz = 1000.0

Shape file for spin I = square1

Pulse power on I, Hz = 39

#------Spin S----------------------

Central frequency on spin S, Hz = 0.0

Shape file for spin S = square1

Pulse power on S, Hz = 39
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#------Hamiltonian----------------------

Isotropic coupling constant, Hz = 0.0

Het. coupling constant, Hz = 200.0

Dipolar coupling constant, Hz = 50.0

#--------------------------------------------------------------------

# Parameters to modify

# (set 1 and 2 for those to be modified

# or 0 for parameters kept constant)

#--------------------------------------------------------------------

Spin I offset = 1

Spin S offset = 2

Pulse power on I = 0

Pulse power on S = 0

Isotropic coupling constant = 0

Het. coupling constant = 0

Dipolar coupling constant = 0

#----Parameter 1-------------

First parameter range = 10000

First parameter number of points = 50

#----Parameter 2-------------

Second parameter range = 10000

Second parameter number of points = 50

#------General----------------------

Pulse length, us = 11111.11

Mixing time, ms = 11.11111

Phase cycle = 1

#----Here choose one of the followings:

# 1 - no cycle

# __

# 2 - MLEV-4 (RRRR)

# __ _ _ __ __

# 3 - MLEV-16 (RRRR RRRR RRRR RRRR)

# __ __

# 4 - MLEV-8 (RRRR RRRR)

# __ _ _ __ __ _ __ ___ __

# 5 - MLEV-32 (RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR)

# ____ ____

# 6 - XY-16 (XYXY YXYX XYXY YXYX)

#*****************************************************************

Initial state

#*****************************************************************

Ix = 1

Iy = 0
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Iz = 0

I+ = 0

I- = 0

Sx = 0

Sy = 0

Sz = 0

S+ = 0

S- = 0

# (Don’t forget 2!)

IxSx = 0

IxSy = 0

IxSz = 0

IxS+ = 0

...

#*******************************

Target state

#*******************************

Ix = 0

Iy = 0

...

#****************************************************************

The fields, that might not be self-explanatory, have the following meanings:

• Heteronuclear (y/n): y

Here we define, whether we want to simulate homonuclear (HEHAHA) or heteronu-
clear transfer (HOHAHA or TOCSY).

• Central frequency on spin I, Hz = 1000.0

Here we define the central or the only offset of spin I (the same later for spin S).

• Shape file for spin I = square1

Define the name of the file with the rf-shape to be applied on spin I. In the case of
a homonuclear simulation the similar entry for the spin S will simply be ignored. In
the case of a heteronuclear simulation take care that the size (number of digits) of
the shapes is the same on both channels.

• Pulse power on I, Hz = 39

Define the rf-power in Hz to be applied on the corresponding channel
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• Hamiltonian

In this section define the active Hamiltonian. By setting one of the constants to
zero the corresponding part of the Hamiltonian is set to zero and is ignored in the
calculation.

• Parameters to modify

In this section chose two parameters that will be varied in the smulation, e.g. if you
want to get a plot with the offset of spin 2 plotted vs. the offset of spin 1, then
set 1 in the line ”Spin I offset = 1“ and 2 in the line ”Spin S offset = 2.“ All other
parameters in this section should be marked with 0

• First parameter range = 10000

Here the parameter variation range should be set. For example, if you chose to vary
offset of spin I, then it will be varied around the value, defined before as ”Central
frequency on spin I“ within this range, so in the example shown from -4 kHz to
6 kHz.

• Initial state

and

Target state

Define, transfer between which state you want to simulate. Take care about correct
normalization coefficient (e.g. 2 for bilinear terms like IzSx) and its sign.

Results and visualization

When running the program produces the following output:

*****************************************

Performing homonuclear simulation

*****************************************

--------- Spin I ------------------------

Elementary pulse: testshape

Offset range: VARIABLE from -5000.00 Hz to 5000.00 Hz

with 101 points calculated

Central frequency: 0.00 Hz

Pulse power: 10000.00 Hz

--------- Spin S ------------------------

Elementary pulse: testshape

Offset range: VARIABLE from -5000.00 Hz to 5000.00 Hz

with 101 points calculated

Central frequency: 0.00 Hz
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Pulse power: 10000.00 Hz

--------- Hamiltonian -------------------

Isotropic coupling constant: 0.00 Hz

Heteronuclear coupling constant: 0.00 Hz

Dipolar coupling constant: 10.00 Hz

-----------------------------------------

Elementary pulse length: 90.00 us

Mixing time: 48.9600 ms

Phase cycle: XY-16

Overall number of building blocks: 34

Overall number of elementary pulses: 544

*****************************************

Initial state=

1 Z : 1.000

Target state=

1 Z: 1.000

-----------------------------------------

Calculating Spin I offset vs. Spin S offset

-----------------------------------------

...Done...

And the results of the simulation are stored in a file parfilename.out, which has the
following format:

Size 101 101

Data: w_I(Hz) w_S(Hz) te

-5000.00 -5000.00 0.0391543759472

-5000.00 -4900.00 0.0361719147664

-5000.00 -4800.00 0.0237784462478

-5000.00 -4700.00 0.0101656835866

...

where the header first indicates the number of data points in every simulation dimension
and in the second line the modified variables are indicated with actual simulation data
afterwards in three columns: value of both variables and the transfer efficiency. To
visualize the simulation results we used the following Matlab script:

%--------------------------------------------------------------

clear;

fname=’/akbl1/kk/SIMULATION_PROGRAMS/HAHAsim/dipsi2.inp.out’;

limit=1000;

[size1,size2]=textread(fname,’Size%f%f’,1);

[name1,name2]=textread(fname,’Data:%s%s’,1,’headerlines’,1);

[param1,param2,data]=textread(fname,’%f%f%f’,’headerlines’,2,’delimiter’,’ ’);

if param1(1) == param1(2)
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for i=1:size1,

for j=1:size2,

k(j,i)=data((size2*(i-1))+j);

end

x(i)=param1(size2*(i-1)+1);

end

for i=1:size2,

y(i)=param2(i);

end

end

if param2(1) == param2(2)

for i=1:size2,

for j=1:size1,

k(i,j)=data((size1*(i-1))+j);

end

y(i)=param2(size1*(i-1)+1);

end

for i=1:size1,

x(i)=param1(i);

end

end

v=[0:1/10:1];

map=[v’ v’ v’];

f1=figure;

f2=pcolor(x,y,k);

shading interp;

set(f1,’colormap’,map);

lighting phong;

axis square;

caxis([-1 1]);

xlabel(name1);

ylabel(name2);

colorbar;

%--------------------------------------------------------------

The script reads in the data into the data matrix the size of which is defined in the header
(in this case 101 × 101) and creates a contour plot, as shown in Fig. 4.3.
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Figure 4.3: Visualization in Matlab of the simulation of some exemplary Hartmann-
Hahn transfer.
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4.3 Pulse programs

4.3.1 Constant-time HMBC

;CT-HMBC

;Constant-time HMBC for the measurement of long-range heteronuclear couplings,

;should be applied together with reference experiment of pulse sequence CT-HSQC.ref

;avance-version

;K. Kobzar, B. Luy, J. Magn. Reson. 186, 131-141 (2007)

#include <Avance.incl>

#include <Grad.incl>

define list<gradient> EA1 = { cnst22 cnst23 }

define list<gradient> EA2 = { -cnst23 -cnst22 }

"p2=p1*2"

"p4=p3*2"

"d4=1/4*cnst4"

"d5=1/2*cnst5"

"l0=td1/2"

"d0=3u"

"d10=(in0*td1)/2"

"in10=in0"

"d11=30m"

"d6=d0*2+p2"

1 ze

100u UNBLKGRAD

2 d1 BLKGRAD

3 d11

4 p1 ph0

d4

(p2 ph0):f1 (p4 ph0):f2

d4 UNBLKGRAD

(p1 ph0):f1 (p3 ph0):f2

3u

p16:gp1*0.333333

d16

p1 ph1

d5

d10
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(p3 ph3):f2

d0

p2 ph2

d0

3u

p16:gp1*EA1

d16

(p4 ph0):f2

3u

p16:gp1*EA2

d16

d6

(p3 ph4):f2

d10

go=2 ph31

d1 mc #0 to 2

10u BLKGRAD

F1EA(igrad EA1 & igrad EA2, id0 & dd10 & ip3*2 & ip31*2)

exit

ph0=0

ph1=0 0 0 0 2 2 2 2

ph2=0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

ph3=2 0

ph4=0 0 2 2

ph31=0 2 2 0 2 0 0 2

2 0 0 2 0 2 2 0

;pl1 : f1 channel - power level for pulse (default)

;pl2 : f2 channel - power level for pulse (default)

;p1 : f1 channel - 90 degree high power pulse

;p2 : f1 channel - 180 degree high power pulse

;p3 : f2 channel - 90 degree high power pulse

;p4 : f2 channel - 180 degree high power pulse

;p16: homospoil/gradient pulse

;d0 : incremented delay (2D) [3 usec]

;d10 : decremented delay (2D), (in0*td1)/2

;d1 : relaxation delay; 1-5 * T1

;d5 : HMBC transfer delay (normally 1/(2J)XH long range)
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;d4 : inept delay (normally 1/(4J)XH long range)

;d11: delay for disk I/O [30 msec]

;d13: short delay [4 usec]

;d16: delay for homospoil/gradient recovery

;cnst4 : 1^J(XH)

;cnst5 : J(XH) long-range

;in0: 1/(2 * SW(X)) = DW(X)

;in10: =in0

;nd0: 2

;NS: 1 * n

;DS: >=16

;td1: number of experiments

;FnMODE: echo-antiecho

;cnst22: 0.5 for C-13, gradient multiplier

;cnst23: 0.3 for C-13, gradient multiplier

;use gradient files:

;gpnam1: SINE.100
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4.3.2 Reference constant-time HSQC

;CT-HSQC.ref

;Reference experiment to the constant-time HMBC (CT-HMBC)

;for the measurement of long-range heteronuclear couplings.

;avance-version

;K. Kobzar, B. Luy, J. Magn. Reson. 186, 131-141 (2007)

#include <Avance.incl>

#include <Grad.incl>

define list<gradient> EA1 = { cnst22 cnst23 }

define list<gradient> EA2 = { -cnst23 -cnst22 }

"p2=p1*2"

"p4=p3*2"

"d4=1/4*cnst4"

"d5=1/2*cnst5"

"l0=td1/2"

"d0=3u"

"d10=(in0*td1)/4"

"in10=in0/2"

"d6=d0*2+p2"

1 ze

100u UNBLKGRAD

2 d1 BLKGRAD

3 d11

4 p1 ph0

d4

(p2 ph0):f1 (p4 ph0):f2

d4 UNBLKGRAD

(p1 ph5):f1

3u

p16:gp1*0.333333

d16

(p1 ph1):f1 (p3 ph3):f2 ;produce MQ-terms that do not evolve

d5*0.5

d10

(p4 ph3):f2

d5*0.5

d10
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d0

p2 ph2

d0

3u

p16:gp1*EA1

d16

d10

(p4 ph0):f2

3u

p16:gp1*EA2

d16

d10

d6

(p3 ph4):f2

go=2 ph31

d1 mc #0 to 2

10u BLKGRAD

F1EA(igrad EA1 & igrad EA2, id0 & dd10 & ip3*2 & ip31*2)

exit

ph0=0

ph1=1 1 1 1 3 3 3 3

ph2=0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

ph3=2 0

ph4=0 0 2 2

ph5=1

ph31=0 2 2 0 2 0 0 2

2 0 0 2 0 2 2 0

;pl1 : f1 channel - power level for pulse (default)

;pl2 : f2 channel - power level for pulse (default)

;p1 : f1 channel - 90 degree high power pulse

;p2 : f1 channel - 180 degree high power pulse

;p3 : f2 channel - 90 degree high power pulse

;p4 : f2 channel - 180 degree high power pulse

;p16: homospoil/gradient pulse

;d0 : incremented delay (2D) [3 usec]

;d10 : decremented delay (2D), (in0*td1)/4

;d1 : relaxation delay; 1-5 * T1

;d5 : HMBC transfer delay (normally 1/(2J)XH long range)
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;d4 : inept delay (normally 1/(4J)XH long range)

;d11: delay for disk I/O [30 msec]

;d13: short delay [4 usec]

;d16: delay for homospoil/gradient recovery

;cnst4 : 1^J(XH)

;cnst5 : J(XH) long-range

;in0: 1/(2 * SW(X)) = DW(X)

;in10: =in0/2

;nd0: 2

;NS: 1 * n

;DS: >=16

;td1: number of experiments

;FnMODE: echo-antiecho

;cnst22: 0.5 for C-13, gradient multiplier

;cnst23: 0.3 for C-13, gradient multiplier

;use gradient files:

;gpnam1: SINE.100
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4.3.3 CAGEBIRDr,X-CPMG-HSQMBC (CBC-HSQMBC)

;CBC-HSQMBC

;K. Kobzar, B. Luy, J. Magn. Reson. 186, 131-141 (2007)

#include <Avance.incl>

#include <Grad.incl>

#include <Delay.incl>

"p2=p1*2"

"p4=p3*2"

"d0=3u"

"d9=1s/(cnst1*2)"

"d13=4u"

"d11=30m"

"DELTA=p16+d16+d13"

"FACTOR1=(d9/((p21+d20*2)*16))/2+0.5"

"d10=32*FACTOR1*(p21+d20*2)"

"l1=FACTOR1*2"

1 ze

d10 UNBLKGRAD

2 d1 pl1:f1 pl2:f2

10u BLKGRAD

(p1 ph1)

;first part of CPMG-transfer

4 d20 pl19:f1 pl20:f2

(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20
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(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20

(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20

(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph22):f1 (p21 ph22):f2)

d20

d20

(center (p20 ph23):f1 (p21 ph23):f2)

d20

d20

(center (p20 ph22):f1 (p21 ph22):f2)

d20

d20

(center (p20 ph23):f1 (p21 ph23):f2)

d20

d20

(center (p20 ph23):f1 (p21 ph23):f2)

d20

d20

(center (p20 ph22):f1 (p21 ph22):f2)

d20

d20

(center (p20 ph23):f1 (p21 ph23):f2)

d20

d20

(center (p20 ph22):f1 (p21 ph22):f2)

d20 pl1:f1 pl2:f2

lo to 4 times l1
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;CAGEBIRD-R,X-Filter

d13

p16:gp1

d16

(p1 ph2):f1

8 d20 pl19:f1 pl20:f2

(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20

(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20

(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20

(center (p20 ph20):f1 (p21 ph20):f2)

d20 pl1:f1 pl2:f2

lo to 8 times l8

(center (p2 ph2):f1 (p4 ph2):f2)

9 d20 pl19:f1 pl20:f2

(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20
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d20

(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20

(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20

(center (p20 ph20):f1 (p21 ph20):f2)

d20 pl1:f1 pl2:f2

lo to 9 times l8

(p1 ph4):f1

d13

p16:gp1

d16

;second part of CPMG-transfer

5 d20 pl19:f1 pl20:f2

(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20

(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20
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d20

(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph21):f1 (p21 ph21):f2)

d20

d20

(center (p20 ph20):f1 (p21 ph20):f2)

d20

d20

(center (p20 ph22):f1 (p21 ph22):f2)

d20

d20

(center (p20 ph23):f1 (p21 ph23):f2)

d20

d20

(center (p20 ph22):f1 (p21 ph22):f2)

d20

d20

(center (p20 ph23):f1 (p21 ph23):f2)

d20

d20

(center (p20 ph23):f1 (p21 ph23):f2)

d20

d20

(center (p20 ph22):f1 (p21 ph22):f2)

d20

d20

(center (p20 ph23):f1 (p21 ph23):f2)

d20

d20

(center (p20 ph22):f1 (p21 ph22):f2)

d20 pl1:f1 pl2:f2

lo to 5 times l1

p28 ph1

d13

(p1 ph2)

50u UNBLKGRAD

d13

p16:gp3

d16
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(p3 ph5):f2

d0

(p2 ph1)

d0

d13

p16:gp4*-1*EA

d16

(p4 ph1):f2

DELTA

(p3 ph6):f2

d13

p16:gp5

d16

(p1 ph1)

d13

p16:gp6

d16

(p2 ph1)

DELTA

go=2 ph31

d11 mc #0 to 2 F1EA(igrad EA, id0 & ip5*2 & ip31*2)

10u BLKGRAD

exit

ph1=0

ph2=1

ph3=2

ph4=3

ph5=0 2

ph6=0 0 2 2

ph20=0

ph21=1

ph22=2

ph23=3

ph31=0 2 2 0

;pl1 : f1 channel - power level for pulse (default)

;pl2 : f2 channel - power level for pulse (default)

;pl19 : f1 channel - power level for MOCCA

;pl20 : f2 channel - power level for MOCCA

;p1 : f1 channel - 90 degree high power pulse
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;p2 : f1 channel - 180 degree high power pulse

;p3 : f2 channel - 90 degree high power pulse

;p4 : f2 channel - 180 degree high power pulse

;p20 : f1 channel - 180 degree low power pulse

;p21 : f2 channel - 180 degree low power pulse

;p16: homospoil/gradient pulse

;p28: f1 channel - trim pulse

;d0 : incremented delay (2D) [3 usec]

;d1 : relaxation delay; 1-5 * T1

;d9 : Long-range polarization transfer delay

;d11: delay for disk I/O [30 msec]

;d13: short delay [4 usec]

;d16: delay for homospoil/gradient recovery [100 usec]

;d20: MOCCA delay [200 usec]

;cnst1: = J(XH) Long-range

;in0: 1/(2 * SW(X)) = DW(X)

;nd0: 2

;NS: 1 * n

;DS: >= 16

;td1: number of experiments

;FnMODE: echo-antiecho

;use gradient ratio: gp 1 : gp 2 : gp 3 : gp 4 : gp 5 : gp 6

; 61 : 70.3 : 50 : 80 : 41.7 : 20.1

;for z-only gradients:

;gpz1: 61%

;gpz2: 70.3%

;gpz3: 50%

;gpz4: 80%

;gpz5: 41.7%

;gpz6: 20.1%

;use gradient files:

;gpnam1: SINE.100

;gpnam2: SINE.100

;gpnam3: SINE.100

;gpnam4: SINE.100

;gpnam5: SINE.100

;gpnam6: SINE.100



4.3. Pulse programs 199

4.3.4 HSQC-TOCSY-IPAP

Pulse program for in-phase spectra

;HSQC-TOCSY-IP

;K. Kobzar, B. Luy, J. Magn. Reson. 186, 131-141 (2007)

#include <Avance.incl>

#include <Grad.incl>

#include <Delay.incl>

"p2=p1*2"

"p4=p3*2"

"d0=3u"

"d4=1s/(cnst2*4)"

"d11=30m"

"d13=4u"

"DELTA=p16+d16+p2+d0*2"

"DELTA1=d4-p16-d13-p3"

"FACTOR1=(d9/(p6*115.112))/2+0.5"

"l1=FACTOR1*2"

1 ze

10u UNBLKGRAD

d11 pl12:f2

2 d1 BLKGRAD

3 (p1 ph1)

d4 pl2:f2

(p2 ph1) (p4 ph6):f2

d4 UNBLKGRAD

p28 ph1

d13

(p1 ph2) (p3 ph3):f2

d0

p2 ph5
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d0

p16:gp1

d16

(p4 ph4):f2

DELTA

(p1 ph1) (p3 ph4):f2

d4

(p2 ph1) (p4 ph1):f2

d13

p16:gp2

DELTA1

(p1 ph10) (p3 ph8):f2

10u pl0:f1

300u gron0

p11:sp1:f1 ph1

100u groff

d16

10u pl10:f1

;begin DIPSI2

4 p6*3.556 ph23

p6*4.556 ph25

p6*3.222 ph23

p6*3.167 ph25

p6*0.333 ph23

p6*2.722 ph25

p6*4.167 ph23

p6*2.944 ph25

p6*4.111 ph23

p6*3.556 ph25

p6*4.556 ph23

p6*3.222 ph25

p6*3.167 ph23

p6*0.333 ph25

p6*2.722 ph23

p6*4.167 ph25

p6*2.944 ph23

p6*4.111 ph25
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p6*3.556 ph25

p6*4.556 ph23

p6*3.222 ph25

p6*3.167 ph23

p6*0.333 ph25

p6*2.722 ph23

p6*4.167 ph25

p6*2.944 ph23

p6*4.111 ph25

p6*3.556 ph23

p6*4.556 ph25

p6*3.222 ph23

p6*3.167 ph25

p6*0.333 ph23

p6*2.722 ph25

p6*4.167 ph23

p6*2.944 ph25

p6*4.111 ph23

lo to 4 times l1

;end DIPSI2

;------------------------------------------------------------

10u pl0:f1

300u gron0

p12:sp2:f1 ph1

100u groff

d16

10u pl1:f1

p1 ph1

go=2 ph31

d1 mc #0 to 2 F1PH(id0 & ip3)

100u BLKGRAD

exit

ph1=0

ph2=1

ph10=3

ph3=0 2

ph4=0 0 0 0 2 2 2 2



202 Chapter 4. Appendix

ph5=0 0 2 2

ph6=0

ph8=0 2

ph23=3

ph25=1

ph31=0 2 0 2 2 0 2 0

;pl1 : f1 channel - power level for pulse (default)

;pl2 : f2 channel - power level for pulse (default)

;pl10: DIPSI-2 power

;p1 : f1 channel - 90 degree high power pulse

;p2 : f1 channel - 180 degree high power pulse

;p3 : f2 channel - 90 degree high power pulse

;p4 : f2 channel - 180 degree high power pulse

;p6 : 90 degree low power pulse

;p16: homospoil/gradient pulse

;p28: f1 channel - trim pulse

;p11 : duration of first sweep

;p12 : duration of second sweep

;sp1 : strength for first sweep

;sp2 : strength for second sweep

;gpz0: gradient strength for ZQ suppression

;d0 : incremented delay (2D) [3 usec]

;d1 : relaxation delay; 1-5 * T1

;d9 : TOCSY mixing time

;d4 : 1/(4J)XH

;d11: delay for disk I/O [30 msec]

;d13: short delay [4 usec]

;d16: delay for homospoil/gradient recovery

;cnst2: = J(XH)

;in0: 1/(2 * SW(X)) = DW(X)

;nd0: 2

;NS: 1 * n

;DS: >= 16

;td1: number of experiments

;FnMODE: TPPI

;use gradient ratio: gp 1 : gp 2

; 80 : 20.1 for C-13

; 80 : 8.1 for N-15
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;for z-only gradients:

;gpz1: 80%

;gpz2: 20.1% for C-13, 8.1% for N-15

;use gradient files:

;gpnam1: SINE.100

;gpnam2: SINE.100

Pulse program for anti-phase spectra

;HSQC-TOCSY-AP

;K. Kobzar, B. Luy, J. Magn. Reson. 186, 131-141 (2007)

#include <Avance.incl>

#include <Grad.incl>

#include <Delay.incl>

"p2=p1*2"

"p4=p3*2"

"d0=3u"

"d4=1s/(cnst2*4)"

"d11=30m"

"d13=4u"

"DELTA=p16+d16+p2+d0*2"

"DELTA1=d4-p16-d13-p3"

"FACTOR1=(d9/(p6*115.112))/2+0.5"

"l1=FACTOR1*2"

1 ze

10u UNBLKGRAD

d11 pl12:f2

2 d1 BLKGRAD

3 (p1 ph1)

d4 pl2:f2
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(p2 ph1) (p4 ph6):f2

d4 UNBLKGRAD

p28 ph1

d13

(p1 ph2) (p3 ph3):f2

d0

p2 ph5

d0

p16:gp1

d16

(p4 ph4):f2

DELTA

(p1 ph1) (p3 ph4):f2

d4

(p2 ph1) ;(p4 ph1):f2

d13

p16:gp2

DELTA1

(p1 ph10) (p3 ph8):f2

(p3 ph9):f2

10u pl0:f1

300u gron0

p11:sp1:f1 ph1

100u groff

d16

10u pl10:f1

;begin DIPSI2

4 p6*3.556 ph23

p6*4.556 ph25

p6*3.222 ph23

p6*3.167 ph25

p6*0.333 ph23

p6*2.722 ph25

p6*4.167 ph23

p6*2.944 ph25

p6*4.111 ph23

p6*3.556 ph25

p6*4.556 ph23
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p6*3.222 ph25

p6*3.167 ph23

p6*0.333 ph25

p6*2.722 ph23

p6*4.167 ph25

p6*2.944 ph23

p6*4.111 ph25

p6*3.556 ph25

p6*4.556 ph23

p6*3.222 ph25

p6*3.167 ph23

p6*0.333 ph25

p6*2.722 ph23

p6*4.167 ph25

p6*2.944 ph23

p6*4.111 ph25

p6*3.556 ph23

p6*4.556 ph25

p6*3.222 ph23

p6*3.167 ph25

p6*0.333 ph23

p6*2.722 ph25

p6*4.167 ph23

p6*2.944 ph25

p6*4.111 ph23

lo to 4 times l1

;end DIPSI2

;------------------------------------------------------------

10u pl0:f1

300u gron0

p12:sp2:f1 ph1

100u groff

d16

10u pl1:f1

p1 ph1

go=2 ph31

d1 mc #0 to 2 F1PH(id0 & ip3)

100u BLKGRAD

exit
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ph1=0

ph2=1

ph10=3

ph3=0 2

ph4=0 0 0 0 2 2 2 2

ph5=0 0 2 2

ph6=0

ph8=0 0 2 2

ph9=0

ph23=3

ph25=1

ph31=0 2 2 0 2 0 0 2

;pl1 : f1 channel - power level for pulse (default)

;pl2 : f2 channel - power level for pulse (default)

;pl10: DIPSI-2 power

;p1 : f1 channel - 90 degree high power pulse

;p2 : f1 channel - 180 degree high power pulse

;p3 : f2 channel - 90 degree high power pulse

;p4 : f2 channel - 180 degree high power pulse

;p6 : 90 degree low power pulse

;p16: homospoil/gradient pulse

;p28: f1 channel - trim pulse

;p11 : duration of first sweep

;p12 : duration of second sweep

;sp1 : strength for first sweep

;sp2 : strength for second sweep

;gpz0: gradient strength for ZQ suppression

;d0 : incremented delay (2D) [3 usec]

;d1 : relaxation delay; 1-5 * T1

;d9 : TOCSY mixing time

;d4 : 1/(4J)XH

;d11: delay for disk I/O [30 msec]

;d13: short delay [4 usec]

;d16: delay for homospoil/gradient recovery

;d20: first z-filter delay [2 msec]

;d21: second z-filter delay [3 msec]

;cnst2: = J(XH)

;in0: 1/(2 * SW(X)) = DW(X)

;nd0: 2
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;NS: 1 * n

;DS: >= 16

;td1: number of experiments

;FnMODE: TPPI

;use gradient ratio: gp 1 : gp 2

; 80 : 20.1 for C-13

; 80 : 8.1 for N-15

;for z-only gradients:

;gpz1: 80%

;gpz2: 20.1% for C-13, 8.1% for N-15

;use gradient files:

;gpnam1: SINE.100

;gpnam2: SINE.100
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