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Im Traum, im letzten Morgentraume stand ich heut auf
einem Vorgebirge, - jenseits der Welt, hielt eine Wage und
wog die Welt.< ... >

Messbar fiir Den, der Zeit hat, wigbar fiir einen guten
Wiger, erfliegbar fiir starke Fittiche, errathbar fiir géttliche
Niisseknacker: also fand mein Traum die Welt< ... >

Wie sicher schaute mein Traum auf diese endliche Welt,
nicht neugierig, nicht altgierig, nicht fiirchtend, nicht
bittend: -

- als ob ein voller Apfel sich meiner Hand bote, ein reifer
Goldapfel, mit kiihl-sanfter sammtener Haut: - so bot sich
mir die Welt: -

- als ob ein Baum mir winke, ein breitéstiger, starkwilliger,
gekriimmt zur Lehne und noch zum Fussbrett fiir den
Wegmiiden: so stand die Welt auf meinem Vorgebirge: -

- als ob zierliche Hénde mir einen Schrein entgegentriigen, -
einen Schrein offen fiir das Entziicken schamhafter
verehrender Augen: also bot sich mir heute die Welt
entgegen: -

- nicht Réthsel genug, um Menschen-Liebe davon zu
scheuchen, nicht Losung genug, um Menschen-Weisheit
einzuschlafern: - ein menschlich gutes Ding war mir heut
die Welt, der man so Bdses nachredet!

F. W. Nietzsche ”Also sprach Zarathustra“






Abstract

The NMR spectroscopy is a constantly changing field, with both hardware and methodol-
ogy developing in concert and influencing each other. The constantly increasing magnetic
field strengths of modern spectrometers bring an advantage of better signal-to-noise ra-
tios and increased resolution, but make even basic tasks, like the uniform excitation of
one-dimensional '*C spectra, to a technical challenge. Also the sample preparation gets
more and more sophisticated, as for example with the exciting development in the field
of partially oriented molecules where arbitrary scaling of alignment poses a fundamental
problem. Finally, the development of novel pulse sequence techniques, the Boftwareof
NMR spectroscopy, will always be a central aspect in modern NMR. All these fields have
been addressed with various approaches in this thesis. Optimal control of spin dynamics
is shown to be a highly efficient mathematical tool for the design of all kind of com-
plex pulses like broadband excitation, inversion, or universal rotation pulses, or ”pattern
pulses with almost unlimited flexibility in their offset and rf-amplitude profiles. In a sep-
arate series of projects, various polymer gels have been produced chemically as orienting
media without lower limit of alignment. With the introduction of such media a signifi-
cant improvement of alignment scalability could be achieved, which opens the possibility
of measuring anisotropic NMR-parameters to a wide range of small to medium-sized or-
ganic molecules. Within the projects, a number of new and significantly improved pulse

sequences has been developed as well as several simulation programs which are briefly
described.






Zusammenfassung

Die NMR-Spektroskopie ist ein sich stetig wandelndes Gebiet mit Weiterentwicklungen in
Hardware und Methodik, die sich gegenseitig beeinflussen. Die immer weiter ansteigenden
Magnetfeldstéirken moderner Spektrometer bringen die Vorteile eines besseren Signal-zu-
Rausch-Verhéltnisses und hoherer Auflésung, machen aber auch ganz einfache Aufgaben
wie z.B. die gleichmiifiige Anregung in eindimensionalen '*C-Spektren zu einer technis-
chen Herausforderung. Auch die Probenpraparation wird immer anspruchsvoller, so z.B.
auf dem Gebiet der partiell orientierten Molekiile, in dem eine stufenlose Skalierbarkeit
der Orientierung ein fundamentales Problem darstellt. Schliellich wére da noch die En-
twicklung neuer Pulssequenzen, der ” NMR-Software“, die eine zentrale Rolle in der mod-
ernen NMR-Spektroskopie spielt. All diese Aspekte wurden in der vorliegenden Arbeit
in verschiedenen Ansitzen behandelt. So wurde gezeigt, dass optimale Steuerungsthe-
orie angewendet auf spindynamische Prozesse ein effizientes mathematisches Werkzeug
ist, um alle Arten komplexer Pulse zu entwerfen, wie z.B. Breitbandanregungs- und -
inversionspulse, universelle Rotationspulse oder ”Pattern-Pulse“ mit fast unbegrenzter
Flexibilitét in ihren Offset- und Radiofrequenzamplituden-Abhéngigkeiten. In einer Reihe
anderer Projekte wurden Polymergele als Medien ohne unteres Limit in ihrem Orien-
tierungsvermogen hergestellt. Durch die Einfithrung solcher Orientierungsmedien kon-
nte die Skalierbarkeit der Ausrichtung signifikant verbessert werden, was die Messung
anisotrope NMR-Parameter kleiner bis mittelgrofier organischer Molekiile ermoglicht. In-
nerhalb dieser Projekte wurden eine Reihe neuer und deutlich verbesserter Pulssequenzen
und einige Simulationsprogramme entwickelt, die kurz beschrieben werden.
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Introduction and scope of the work

The progress in NMR seems to be unstoppable and the state of staleness simply didn’t have
a chance to establish in this exciting field: one just starts to think that there is a passing
moment to take a breather and in this very moment new groundbreaking developments
emerge in some place of already quite vast field of modern NMR spectroscopy. A constant
flow of new ideas (begged, borrowed or stolen, whatsoever [1]) doesn’t seize to occupy the
minds of NMR spectroscopists.

One such idea is the idea to apply the formalism of optimal control theory (a relatively
old mathematical formalism, widely used in engineering and economics) to the design of
very basic building blocks of NMR spectroscopy: RF-pulses. Chapter 1 of the actual
work is concerned with this topic. The general optimization procedure for a single spin is
described and applied to manipulate the ensembles of uncoupled spins with a high degree
of control. With the aid of the optimization procedure some very general NMR problems
could be investigated, like the limits of broadband excitation and inversion in ensembles
of uncoupled spins (Section 1.3.3). The algorithm allows to search for optimal pulses
within limited search spaces, producing pulses with very special properties best suited
for particular NMR applications. In Section 1.5 the unprecedented flexibility provided by
the optimization procedure allowed to create pulses with very peculiar excitation profiles,
so-called "pattern pulses”. The optimization of another type of pulses of more direct
practical use is presented in the following section - so-called universal rotation pulses. We
could successfully apply the optimal control algorithm to create this kind of pulses, which
allow the direct exchange of hard pulses by the optimized ones in any conventional pulse
sequence (c.f. Section 1.7), but also found an easy procedure to create such pulses from
usual point-to-point pulses utilizing very general symmetry properties (Section 1.6). The
detailed analysis of the optimized universal rotation pulses showed that such symmetry
properties are a general feature in this class of pulses. Equipped with all neccesary tools,
we could apply the optimized pulses to two very commonly used NMR experiments, HSQC
and HMBC, which significantly improved their performance (Section 1.8).

The second part of this work is dedicated to the development of new alignment media
for use in high-resolution NMR spectroscopy. The measurements in aligned media are
nowadays among the hottest topics in NMR. The re-introduction of dipolar interactions,
otherwise averaged out in usual isotropic samples, reveals quite an amount of structural
information, and hence, since few years has significantly changed the field of biomolecular
NMR and is going to do this with NMR of small molecules. Until recently, the use of
this technique for the small molecules was very limited due to the fact, that only very



2 Introduction

few alignment media were available for typical organic solvents. Here, new media are
introduced: polystyrene (Section 2.2) and poly(vinyl acetate) (Section 2.3) anisotropically
swollen and stretched can be used as alignment media for a large range of organic solvents.
In addition, gelatin gels swollen and stretched in water were introduced as an alignment
media to measure residual dipolar couplings. Due to the chiral character of its structure,
it can also be used to discriminate enantiomers with the aid of RDCs, as shown in Section
2.4. The practical aspects of applicability of these media are investigated, the problems
emerging with it and the ways to overcome these. But the application of the technique
to small molecules also requires new tools to access as many residual dipolar couplings
as possible. Section 2.5 therefore describes various improved approaches for measuring
long-range heteronuclear RDCs.

Chapter 3 occupies with another topic being highly popular these days which is based
on a very old idea - Hadamard spectroscopy. Hadamard spectroscopy today represents
an alternative to conventional Fourier transform spectroscopy. Typically, the selective
inversion of several narrow frequency bands is achieved by tailored inversion pulses in place
of t1-evolution periods. However, band-selective inversion can also be achieved during
coherence transfer steps, thereby shortening the period during which the magnetization
is in the transverse plane. Using CW heteronuclear cross-polarization (CW-HCP) as an
example for highly selective coherence transfer, the implementation of Hadamard encoding
within a transfer step is presented. Transfer characteristics, the preparation of multiple
frequency selective CW-HCP and the possibility of acquiring spin state selective spectra
are discussed in detail.

The software developed in the course of this work is described in the Appendix, as
well as some of the pulse programs for Bruker Avance spectrometers.



Chapter 1

Optimizations

Was ist gut? - Alles, was das Gefiihl der Macht, den Willen
zur Macht, die Macht selbst im Menschen erhoht.

Was ist schlecht? - Alles, was aus der Schwiche stammt.
Was ist Gliick? - Das Gefiihl davon, dafl die Macht wachst,
daf} ein Widerstand iiberwunden wird.

Friedrich W. Nietzsche, ”Der Antichrist“
Do what thou wilt shall be the whole of the Law.

Aleister Crowley, ”The Book of the Law“

1.1 Introduction

Since the introduction of pulsed Fourier-Transformation NMR spectroscopy, radiofre-
quency pulses have become the most essential, the indispensable building block of lit-
erally every NMR experiment. Some time later experimental imperfections, inherently
connected to the non-ideality and hence limited performance of RF-pulses, have become
apparent. Attempts to improve the situation were undertaken very soon by applying series
of pulses (so called composite pulses) either designed by purely intuitive approach or, later,
by numerical optimizations. When it was realized, that not only the phases of individual
pulses can be changed (which is the case for composite pulses), but also the amplitudes, a
whole new field of so called shaped pulses was invented. The use of shaped pulses opened
completely new perspectives in NMR, connected with selective or band-selective excita-
tion/inversion achieved by such pulses, but it also allowed much larger flexibility in the
design of very basic RF-pulses. From this moment on, the ’only’ problem in designing
better pulses was to find an appropriate algorithm and enough computational power. But
this appeared to be quite a significant problem. In principle, finding an RF pulse, which
satisfies certain conditions imposed by the researcher (providing excitation, inversion or
some other rotation over a given range of offsets, whatsoever), is nothing else but a usual
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mathematical problem of finding an extremum of a multidimensional function. One has
to be able to calculate a value of this function (we will call it a cost or performance func-
tion) in every point of space, as well as gradients with respect to every variable. Then
it’s just a matter of applying routine mathematical tools to find an extremum. However,
for every realistic problem in NMR such an approach is absolutely unfeasible in terms of
the amount of calculations involved. So, while direct optimization is not possible, many
different algorithms were proposed, none providing a general approach, but rather being
limited to some family of either pulse shapes or treated problems.

In contrast, an approach based on optimal control theory, a mathematical formal-
ism widely used for various kind of applications from engineering to economics and first
applied in NMR for the optimization of band- selective pulses in MRI [2-4], brought a
way to perform a general optimization with an enormously reduced number of required
calculations. In this procedure a gradient towards better performing parameters is cal-
culated efficiently based on an analytical formula that allows a significant increase in the
number of independently optimized parameters. Because of the high efficiency of the
algorithm the space of possible pulse shapes used in the optimization is not restricted to
any pulse family. In spin systems where the theoretical limits of quantum evolution were
known [5-11], numerical algorithms based on principles of optimal control theory, provide
pulse sequences which approach the physical limits [12-14].

1.2 Gradient ascent pulse engineering

1.2.1 Optimal control theory

Optimal control theory is a mathematical field that is concerned with control policies that
can be deduced using optimization algorithms [15,16]. In other words, this theory provides
a way to find such controls for a given dynamic system, which drive it from initial state
to a target one in a most efficient way (time- efficient, fuel-efficient, whatsoever). It is
based on a classical Euler-Lagrange formalism, developed by Leonhard Euler and Joseph-
Louis Lagrange in the 1750s and being the major formula of the calculus of variations. It
provides a way to solve for functions which extremize a given cost functional. It states,
that given a functional L(t, x(t), u(t)) with continuous first and second derivatives, any
function f which extremizes the cost functional

Tle] = /t Ll (), w(t))dt, (1.1)

must also satisfy the ordinary differential equation

oL docL

It is analogous to the result from calculus that a function attains its extreme values
when its derivative vanishes. In classical mechanics, where the formalism was originally
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invented, the functional £ is the Lagrange operator, u = dx/dt, (ty) and x(t;) are fixed,
and the curves () and u(t) are required to be continuous. The necessary condition that
such a curve is an optimal curve is that the variation 67 at all points of the path are
equal to zero, which results in equation 1.2.

The optimal control theory generalizes this formalism to other kinds of functionals and
typically includes in addition to the “running” cost function £ a final cost term ®[x(¢)],
which depends on the state in which the system ends up:

T[] :/1E[t,a:(t),u(t)]dt+(I)[ac(tl)], (1.3)

to

where x(t) represents the state of the system, while w(t) represents controls to be opti-
mized.

A more significant generalization for the development of optimal control theory is the
removal of the restriction that w be continuous. For practical NMR applications, the RF
amplitude, phase, and/or frequency must be allowed to make discontinuous jumps.

Additional constraints, which can be imposed on points of the optimizing curve, of
the form g(x) = ¢, are included in the formalism by introducing Lagrange multipliers \;
for each constraint equation g;, which transforms the equation 1.3 for £ to a similar one
for the function

J

1.2.2 Transfer between Hermitian operators

The basic theoretical ideas behind the application of the optimal control theory to the
problem of pulse design are fixed in [13]. As the general case consider the transfer be-
tween Hermitian operators in the absence of relaxation. The state of the spin system is
characterizes by the density operator p(t), and its equation of motion is the Liouville-von
Neumann equation [17]

pt) = —i

k=1

where Hy is the free evolution Hamiltonian, Hj, are the radiofrequency (rf) Hamiltonians
corresponding to the available control fields and u(t) = (u1(t), us(t), . .., un(t)) represents
the vector of amplitudes that can be changed and which is referred to as control vector.
The problem is to find the optimal amplitudes wuy(¢) of the rf fields that steer a given
initial density operator p(0) = po in a specified time 7" to a density operator p(7T) with
maximum overlap to some desired target operator C'. For Hermitian operators p, and C,
this overlap may be measured by the standard inner product

(Clo(T)) = tr{Cp(T)}. (L6)
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Hence, the performance index ®, of the transfer process can be defined as
Dy = (Cp(T)) (L.7)

In the following we will assume that the chosen transfer time T is discretized in N
equal steps of duration A = T/N and during each step the control amplitudes wuy are
constant, i.e. during the jth step the amplitude u(t) of the kth control Hamiltonian is
given by uy(j) (see Fig. 1.1). The time-evolution of the spin system during a time step j
is given by the propagator

U; = exp {—iAt (Ho + zm:uk(j)Hk> } (1.8)

k=1

The final density operator at time t = T is

p(T) =Uy -+ UipoUf -+ - UY, (1.9)
and the performance function ®; (Eq. 1.7) to be maximized can be expressed as

Dy = <C‘UN"'U100U1T"'UJTV>- (1.10)

Using the definition of the inner product (Eq. 1.6) and the fact that the trace of a product
is invariant under cyclic permutations of the factors, this can be rewritten as

S/

Oy = (Ul - ULCUy - Upsr | Uj - - UrpoUy - - - UJ), (1.11)

X o
where p; is the density operator p(t) at time ¢ = jA¢ and \; is the backward propagated
target operator C' at the same time ¢t = jAt. Let us see how the performance ®, changes

when we perturb the control amplitude ux(j) at time step j to ug(j) 4+ dug(j). From Eq.
1.8, the change in U; to first order in duy(j) is given by

6U; = —iAtdug (5)HLU; (1.12)

with A
HiAt = / U;(t)HyU;(—7)dr (1.13)
0

and
Uj(1) = ea:p{—zﬁ‘ <H0+Zuk(j)7-{k> } (1.14)
k=1
This follows from the standard formula
d

1
eATTB| o = eA/ e Be=dr. (1.15)
dx 0
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u b
TTTl
W
i b
A
1 j N
0 At T

Figure 1.1: Schematic representation of a control amplitude u(t), consisting of N steps
of duration At = T'/N. During each step j, the control amplitude wuy(j) is constant.
The vertical arrows represent gradients 0®g/dug(j), indicating how each amplitude wuy(j)
should be modified in the next iteration to improve the performance function ®

For small At (when At <|| Ho + > e, ux(j)Hi |71), Hi ~ Hjy and using Eqs. 1.11
and 1.12 we find to first order in At

0dq
our(J)

= —(\liAt[Hx, py)). (1.16)

We increase the performance function @ if we choose

. . 5,
uk(j) = k() T ) (1.17)

where € is a small step size. This forms the basis of the following algorithm, the so-called
gradient ascent pulse engineering (GRAPE):

1. Guess initial controls u(j).
2. Starting from py, calculate p; = U - - UlpoUlT e UJTV for all j < N.
3. Starting from Ay = C, calculate \; = U-TJr1 e UJTVCUN -+ Ujqq forall j < N.

J

4. Evaluate d®y/0uy(j) and update the m x N control amplitudes wuy(j) according to
Eq. 1.17.

5. With these as new controls, go to step 2.
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The algorithm is terminated if the change in the performance index ®, is smaller
than a chosen threshold value. Clearly, since the algorithm is based on a gradient ascent
procedure, there is no guarantee that it will converge to a global minimum. However, at
each step the algorithm moves in the direction of increasing performance (see Fig. 1.1),
so we can be assured that it converges to control amplitudes that are extremal points of
the desired performance function. To expedite the process of this convergence, we can
adopt standard conjugate gradient methods [15].

The important advantages of the optimal control related approach are best highlighted
by comparing the GRAPE algorithm to conventionally used numerical difference methods
to calculate the gradient 09 /dug(j) by computing ® for the given pulse sequence wuy(j)
as well as for small variations of all m x N control amplitudes. For example, for N = 500
and m = 4, the conventional approach would require to calculate 2001 full time evolutions
of the density operator from ¢t = 0 to T". In contrast, the GRAPE approach to calculate the
same gradient 0®q/dux(j) only requires two full time evolutions (one to propagate po from
t =0 to T and one to back-propagate Ay from ¢t = T to 0), i.e., it is orders of magnitude
faster. This makes it possible to efficiently optimize NMR pulse sequences in much larger
parameter spaces. As conventional approaches were typically limited to a few dozens
of control variables, a typical strategy was to restrict the optimization to certain pulse
families, such as composite pulses with a limited number of flip and phase angles [18,19],
Gaussian pulse cascades [20], spline functions [21], or Fourier expansions [22]. In contrast,
the GRAPE algorithm allows for much higher flexibility as the number of pulse parameters
to be optimized can be orders of magnitude larger compared to conventional approaches.

1.2.3 Application to an ensemble of non-interacting spins

In general, the implementation of the above algorithm implies manipulations with 2% x 2V
spin-state and rotation matricies for a N-spin case. Not only the matrix multiplications
are quite time consuming operations, but much more so are the matrix diagonalization
procedures, required to calculate the evolution of a state for every wug(j) step. But in the
case of an ensemble of non-interacting spins the calculations can be significantly simplified
if performed in three dimensional real space, where the rotations of spins are governed by
Bloch equations, so that there is no need in operations with matrices.

For optimal control of a system of non-interacting spins in NMR, the goal is to find
the trajectory for the magnetization vector M (t) that optimizes a suitably chosen cost
functional 7. In units of angular frequency (rad/s) and in terms of two available control
fields u,(t) and u,(t), the effective RF field in the rotating frame is

we = wi(t)[cosp(t)@ +sino(t)y] + Aw(t)z =
Uy (t) + uy(t) + Aw(t) 2 =
= wi(t) + Aw(t)z (1.18)

which encompasses any desired modulation of the amplitude w;, phase ¢, and frequency
offset Aw of the pulse. The possible trajectories M (t) are constrained to satisfy the Bloch
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equation .
M =w, x M, (1.19)

which therefore introduces three Lagrange multipliers )\;. The three constant functions
g; in Eq. 1.4 are then simply the components of the vector

g =wex M. (1.20)

Since we(t) controls the evolution of M (t), the goal of finding the optimum trajectory
is the same as finding the optimal RF sequence to apply to the sample. Given an initial
state M (ty) and a desired final or target state F' at the end of the pulse, we want to
optimize

JIM] = /t Y Lt M), wot))dt + [M(t,)] (1.21)

over the interval [to, t,]. Including the Bloch equation constraints on M, the requirement
dJ = 0 (which is the case, when the functional J is extremized) implies

A= —0h/OM (1.22)
with initial condition
A(t,) = 09 /0M (1.23)
for the time evolution of A, and
Oh(t)/Owe(t) =0, (1.24)

at all points of the optimal trajectory, which provides a means for adjusting the RF
controls. By analogy with the Hamiltonian formalism of classical mechanics, M and A
are conjugate variables, since

M = w, x M = 0h/OX (1.25)

according to equations 1.4 and 1.20.

For all of the applications discussed later here, the running cost, given by the function
L in Eq. 1.21, was set equal to zero. We then find that the optimization of the final cost
J = ®[M(t,)] has an especially simple geometrical interpretation for the particular choice

o =M(,)- F, (1.26)

which quantifies the degree to which M (t,) = F', and where F is just the state, we want
our system to reach at the end of the control system, the target state. In this case, Eq.

1.4 becomes
h=XA(Wex M) =we- (M x X). (1.27)

And from Eq. 1.23 we get particularly simple relation:

A(t,) = F. (1.28)
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The conditions that must be satisfied at each time for the cost to be maximized are

M =w.x M, (1.29)
A =we X A, (1.30)
oh
=M xA=0. 1.31
Do X 0 (1.31)

Note here, that while the magnetization M is defined for a time moment t,, the variable
A, which is not just conjugate to M, but also has identical equation of motion, is defined
by Eq. 1.28 at time moment ¢, at the end of a sequence.

This provides us with all necessary tools for an optimization. As illustrated in Fig. 1.2,
a sequence which transforms M (t,) forward in time to the desired target state F' therefore
transforms A(¢,) = F' backwards in time to M (¢y). For the optimal pulse, we then have
M, (t) = Aope(t), which satisfies the stationary condition given by Eq. 1.31. For a
non-optimal pulse, (M x A) at each point of the two trajectories gives the proportional
adjustment to make in the control field w,(t). And the procedure for optimizing the cost
can be incorporated in the following algorithm:

1. Choose an initial RF sequence wéo).

2. Evolve M forward in time from the predefined initial state M ().
3. Evolve X backwards in time from the predefined target state F'.

4. wF ) — WP (1) + [ M(t) x A(t)]

5. Repeat steps 2 - 4 until a desired convergence of ® is reached.

Since the Bloch equation governs the evolution of both vectors, M and A, and represents
an instantaneous rotation about w, (), which preserves both the length of these vectors
and angle between them, step 3 can be replaced by

3" Calculate M (t,) x A(t,) and evolve this vector backwards in time.

which eliminates repeated calculation of (M x A) at each ¢ in step 4.

Provided we have a m-component control field (for a usual RF-pulse m = 2, which
are z- and y-components or amplitude and phase), digitized in n time increments, the
cost function to be optimized is a function of N = mn variables. Many methods exist
for finding an extremum (minimum or maximum) of an N-dimensional function (see, for
example, [23]). Typically, they utilize various strategies for stepping downhill (uphill) until
a minimum (maximum) of the function is reached. A general function, with no closed form
analytical expression for calculating the gradient (i.e., the direction of steepest descent),
which is the case for a general NMR RF-pulse, can require on the order of N evaluations
to take a single step towards the extremum. Each evaluation of the cost function we want
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G(t,)=M(t,)xA(t)
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Figure 1.2: Optimization scheme. For a given RF sequence w,(t) (middle), the initial
state M (1) evolves to some final state M (tr) through a sequence of intermediate states,
shown schematically as the solid line connecting M (ty) and M (tr) (bottom). If this final
state M (tg) is not the same, as the defined target state F', the quality factor & < 0.
To calculate the gradients at a given point of the pulse shape the initial state M (to)
is evolved towards this time point, as well as the desired final target state F', which is
equal to the Lagrange multiplier term A(t,) according to Eqs. 1.23 and 1.26, is evolved
backwards in time towards this time point (top). The cross product of the two states at
this time point gives the proportional adjustment to make for the control fields w,(t). The
separate paths for M (t) and A(f) become equal for the optimized RF sequence wy(t)
that drives M (ty) to A(t,) = F.
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to optimize requires, in turn, a time evolution of the initial state over the sequence of
control fields. By contrast, optimal control theory requires only the two evolutions shown
in Fig. 1.2 to determine the best direction to step and improve the cost. It provides
therefore an enormous efficiency gain compared to traditional procedures and opens the
door to a host of problems that otherwise might be too demanding computationally to be
tractable.

1.2.4 Synthesis of unitary transformations

Two important classes of composite and shaped pulses are point-to-point rotations (PP
pulses) and universal rotations (UR pulses). PP pulses (also denoted class B2 pulses [18])
are designed to rotate a magnetization vector from a given initial direction as closely as
possible to a desired final direction, e.g. from the z axis to the z axis for excitation or from
z to —z for inversion pulses. In contrast, UR pulses (also denoted class A pulses [18],
constant rotation pulses [19], general rotation pulses [24], plane rotation pulses [25] or
simply universal pulses [26]) are designed to induce an effective rotation with a defined
direction of the rotation axis and a defined rotation angle not only for a given initial
vector orientation but for any arbitrary initial vector. Applications where UR pulses are
required include refocusing and mixing pulses in two-dimensional experiments. The de
novo design of UR pulses is generally assumed to be considerably harder than the design
of robust PP pulses.

The problem to create in a given time T a desired unitary propagator is also considered
in [13]. The equation of motion for the propagator of a closed quantum system is

U=—i (Ho + Xm: uk(t)Hk> U. (1.32)

At t = 0, the initial propagator is U(0) = 1.
First, we consider the problem to approach a desired propagator Ur by applying a
pulse sequence u;(t) such that at the final time

1UF = U(D)|* = ||Ur|]* = 2Re(Up|U(T)) + [|U(T)][* (1.33)

is minimized, which is equivalent to maximizing Re(Ur|U(T")). Hence, we can define the
performance function to be optimized by the pulse sequence as

Dy = Re(Ur|U(T))
= RG<UF|UNU1>
= Re(Ul,, - UNUF|U;---Th). (1.34)
— T x
P; J

and the corresponding gradient d®q/du(j) to first order in At is given by

0Dy
5Uk(j)
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While the performance index ®, may be of theoretical interest, for practical applications,
it is sufficient to approach the target propagator Up only up to an arbitrary phase factor

exp{i¢p} and
|Ur — e?U(D)|]* = [|UF|]* — 2Re(Up|eU(T)) + [|U(T)||* (1.36)

is to be minimized for choice of ¢, which is equivalent to maximizing the performance
function

o = [(Up|lUD))?
— (Up|Uy - U Uy - Uy |Us)
= (B X;)(X;|P)) (1.37)

with the operators X; and P, as defined in Eq. 1.34. The corresponding gradient
0Py /dui(j) to first order in At is given by

0D,
5Uk(j)

= — (Pj| X)) (iAtHL X5 | Py) — (PjliAtH X)X Py)
= — 2Re{(P}[iAHtX,;)(X,|P;)}. (1.38)

1.2.5 Unitary rotations in an ensemble of uncoupled spins

As in the case of point-to-point transformations in an ensemble of non-interacting spins,
where calculations can be simplified by using three-dimensional rotations instead of matrix
manipulations, the optimization of unitary transformations can be simplified as well.

Normally, for the description of three-dimensional rotations the use of the Eulerian
angles «, 3, v is well established [27-30]. And, as a matter of fact, all of the optimizations
of point-to point transformations throughout this work were performed with the use of
the Eulerian angles. But as elegant as the formal definition may be, it is cumbersome
to picture the result of a physical rotation with given values of the Eulerian angles or
to predict the result of two successive rotations given by two different sets of angles.
A description of rotations more readily acceptable to average human intuition than the
Eulerian angles would require specification of the three directional cosines l,,, ly,, [, of the
rotation axes, the rotation angle #, and a composition rule for the evaluation of successive
rotations around different axes. Then, without leaving the realm governed by simple
Bloch equations, we only have to assure that the net effect of the optimized pulse would
be the rotation with identical rotation axes and rotation angles on every offset within the
defined performance range.

Such a formalism has already been established by W. R. Hamilton in 1843 [31] in
connection with an extension of the vector calculus. The four variables l,;,{,,, .., and
0 are related to the four elements of a quaternion on which Hamilton wrote his last
major opus [32]. All the formulas necessary for our calculations, the relationship of the
quaternion elements to the Eulerian angles, the directional cosines of the rotation axis,
and the respective rotation angle are reviewed in [33].
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Starting with a general description of three dimensional rotations, the Eulerian angles
a, (3, v can be replaced by a different set of variables such as the elements of a 2 x 2 unitary
matrix with determinant 1 [30]

a b
= 1.
=] S5 o] (1.30)
where |a|?+[b]> = 1. Since a and b are complex, this leaves three independent parameters
corresponding to the three Eulerian angles. A positive rotation of coordinates x,y, z
achieved by the matrix u is given as

2 =1y | z r—iy | _
4 =7 } _u{xjtiy —z }u ’ (1.40)
where the elements of u are related to the Eulerian angles by [30]
a= coséei(‘”'yw,
2
b= singe—“a—ﬂ/?. (1.41)

In this form wu is identified as the rotation matrix of a spin 1/2. The appearance of
half angles expresses the two-fold homomorphism between the 2 x 2 rotation matrices
and the group of three-dimensional pure rotations: The Eulerian angles are determined
within multiples of 27 but the half angles are determined only within multiples of 7. Since
all trigonometric functions and complex exponentials change sign when the argument is
changed by 7, the matrix u suffers a sign ambiguity. This, however, does not affect the
outcome of the transformation 1.40, since the transformation is quadratic in the rotation
matrix.

Considering successive rotations in the following, the rotation matrix us will be eval-
uated which combines a rotation uq followed by a rotation uq, in an axis fixed coordinate

frame
U = UgU7. (142)

The resulting elements are given by

|: as bg :| _ [ apaq —bolf{ CL(]bl +b0a>{

14
—by a} —byar — agby  —byb1 + agaj (1.43)

It is now convenient to rewrite 1.43 in terms of the real and imaginary parts of a and b:

a=D+1C,
b= B +iA, (1.44)
where from 1.41
A= —singsina ; 7, B = sin§cos¥,
B . a+y o+
— = D = = . 1.4
C cossin—p—, co8 5 COs— (1.45)



1.2. Gradient ascent pulse engineering 15

The four terms A, B, C and D form a quaternion. Since they are interrelated by
A2+ B+ C*+D*=1 (1.46)

the four quaternion elements correspond to three independent variables.
From 1.43 and 1.44 the elements of the quaternion of the composite rotation are
derived in terms of the quaternion elements of the first and the second rotation

Ay +D; —C1 +B; +4; Ag
By | _ | +Ci +D1 —Ay +B1 | | Bo (1.47)

The usefulness of quatemions is based on the connection of the quaternion elements to the
rotation angle ¢ and the directional cosines l,,, [, [.. of the rotation axis. The quaternion
elements A, B, C' and D can be expressed in these terms [33] as follows:

A = lz,sin 0/2,
B =1,,sin §/2,
C =1,sin /2,
D = cos 6/2. (1.48)

In the case of an ensemble of non-interacting spins, where two control fields u,(t) and
u,(t) have to be optimized, this can be rewritten as

A(J) = u(j) sin{6(5)/2},
B(j) = uy(j) sin{6(j)/2},
C(j) = Aw sin{6(j)/2},

D(j) = cos{0(j)/2} (1.49)

for every digit j, with offset Aw and rotation angle 0(j) expressed as

0(j) = At - \Jui(§) + u(d) + (Aw)?. (1.50)

It has to be noticed that these quaternion elements describe positive rotations of co-
ordinates. The quaternion elements for positive rotations of functions are obtained by
replacing 6 by —6, because rotations of coordinates and rotations of functions correspond
to inverse operations [30]. In agreement with Eq. 1.45 this produces a change of sign for
A, B, and C.

The performance index of the transfer process can then be expressed (cf. Eqs. 1.34),
as

Oy = Ap - A(T) + Bp - B(T) + Cp - C(T) + Dy - D(T), (1.51)
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and the corresponding gradients to first order in At are given by

®
0 0 — _ApDyx — BpCx + CpBx + DpAx,
dug(j)
% _ ApCx — BpDx — CpAx + DpBy, (1.52)
ouy(4)

where indexes X and P correspond to quaternion representations of operators X, and P;
in Egs. 1.34.
Whereas for the performance function ®; (cf. Eq. 1.37) one can write:

&, = [Ap - A(T)+ By - B(T) + Cp - O(T) + D - D(T))?, (1.53)

and the corresponding gradients to first order in At are given by

5O
5u (?7) = (=ApDx — BpCx + CpBx + DpAx)(ApAx + BpBx + CpCx + DpDx)
5O
o ((;,) = (ApCx — BpDx — CpAx + DpBx)(ApAx + BpBx + CpCx + DpDyx) (1.54)
Yy

Similary to the section 1.2.3, where for an ensemble of non-interacting spins the full
quantum mechanical description could be reduced to vector rotations in three-dimensional
space, we here reduced the full quantum mechanical description to rotations of four-
component vectors, sufficient to describe an ensemble of non-interacting spins.

Equipped now with all necessary equations, we can modify the basic GRAPE algo-
rithm to perform optimizations of unitary rotations. This will take the following form:

1. Guess initial controls u(j).
2. Starting from U(0) = 1, calculate U; = U;U;_y - - - U; for all j < N.
3. Starting from Up = C, calculate \; = U}H e U]TVC’ for all 7 < N.

4. Evaluate d®q/dui(j) and update the m x N control amplitudes ug(j) according to
Eq. 1.17.

5. With these as new controls, go to step 2.
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1.3 Broadband excitation and inversion

Modern high resolution NMR spectrometers with very high magnetic fields result in large
offset ranges that have to be covered by modern pulse sequences. Especially *C and *F
nuclei with their large offset ranges pose problems to conventional hard pulses. But also
weak N pulses of common triple resonance probeheads, for example, make it impossible
to cover the whole nitrogen spectrum of uniformly labeled nucleic acids. The increased
offset ranges could in principle be covered by stronger hard pulses, but high spectrometer
frequencies close to 1 GHz limit the technically available maximum rf-amplitude. An
effective alternative to the hard pulse for covering the necessary bandwidth therefore is
urgently needed.

The development of cryogenic probe heads allows NMR-measurements with signifi-
cantly improved signal to noise ratios. However, the large temperature gradient in such
a probehead leads to a coil design with significantly increased Bi-field inhomogeneity
compared to conventional probeheads. As a consequence the sensitivity gain due to the
cryogenic cooling is reduced with every uncompensated pulse. With robust pulses that are
compensated for strong variations in rf-amplitude this loss in sensitivity could be strongly
reduced. Optimal control theory is an ideal tool for the design of such pulses.

In the algorithm described above, the initial state for an excitation pulse M (ty) = 2
and the target state F' = &, while for inversion pulse the target state F = —z. Since
no pulse can effectively excite or invert an infinite range of offsets, one needs to define
a range of offset of interest and chose a number of points, say k, over this offset range,
where the performance of the pulse will be checked. Furthemore, one can be interested in
getting a pulse, which tolerates miscalibration. therefore, the amplitude can be calculated
as wi (t) = awl(t) for a set of [ scaling factors a.. So, for a range of chemical shift offset,
and also a range of non-ideal RF fields, the cost function ® is calculated for every oﬁset
and every RF scaling factor a (N = kl points altogether) and the average cost (®) is then
used as the performance criterion of the pulse:

Noff  Nrxf

< = Noff Tt ZZ arf aoﬁ t ) F7 (155>

i=1 j=1

where o, and a.g are eventual weighting factors, ¢ = 1..n.g being the offsets and j =
1..ny¢ the scaled rf-amplitudes calculated for each pulse of length ¢,, e.g. to include
the effects of rf-inhomogeneity or rf-amplitude misadjustments. Similarly, the value of
M x A is calculated for every combination of resonance offset and RF field, and the
average of all these values, (M x A), is used in step (3'). Since frequency modulation
is equivalent to phase modulation, with Aw(t) = d¢(t)/dt, only amplitude and phase
modulations were considered in the current implementation of the algorithm. The value
of Aw in Eq. 1.18 is then time-independent. and gives the chemical shift of the irradiated
spin. Since one cannot apply a RF pulse with z component, only the transverse or (z,y)
components of w, are modified in step 4. This effectively ignores the information contained
in the z component of M x A for optimizing the cost. The stepsize, ¢, can be chosen
sufficiently small to ensure the solution always tends steadily towards the optimum, but
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this can be overly time-consuming, involving many unnecessarily small steps during some
iterations. Instead, the largest step providing improvement in the cost is determined at
each iteration by bracketing the optimal step size among three values and using a simple
1D line minimization routine [23]. The efficiency of the optimization is further enhanced
using a conjugate gradient method to determine the step direction.

1.3.1 First application to broadband excitation

For the first application of the optimal control theory to the problem of broadband excita-
tion reported in [34], the average (M x A), calculated using steps 2 and (3), was calculated
over a combination of 81 resonance offsets in the range +20 kHz, incremented by 500 Hz,
and 5 RF scalings given by ae = (0.95,0.975, 1.0, 1.025, 1.05). The RF values were weighted
according to a Gaussian distribution exp[—(1 — «)?/(20?)], with ¢ = 0.042 giving a full
width at half-maximum (FWHM) of 0.1, or 10% of the nominal RF value. The resonance
offsets were weighted equally. The two RF control fields (w;), and (wy), were digitized
in 0.5 us steps over the 2ms pulse length. RF inhomogeneity in the amplitude w;(t) was
incorporated by scaling the ideal RF amplitude w{(¢) according to w(t) = aw?(t) for
constant factors a. So, the optimized cost function had a total of 8000 independent con-
trol parameters (4000 time digits, 2 components each) to be optimized over 405 possible
combinations of RF scale factor and resonance offset, which for traditional optimization
methods would present a formidable challenge.

The optimal control algorithm, implemented according to the design criteria of the
previous section, converged to the excitation pulse displayed in Fig. 1.3. The algorithm
requires less than 30 min of CPU time to generate the pulse on a 1.5GHz Pentium IV
processor.

The seemingly random appearance of the pulse belies its function: each increment
of the pulse delivers the precise RF amplitude and phase required to maximize the final
x magnetization over the target ranges in RF inhomogeneity and resonance offset for
the given (random) initial RF waveform. The inverse transformation I, — I, can be
obtained by applying the time-reversed pulse, with each phase incremented by 180°. The
theoretical performance of the pulse, assuming simple Bloch equation evolution of the
irradiated spins (as in the optimization procedure), is illustrated in Fig. 1.4. Contours of
x magnetization, M,, are plotted in the upper panel as functions of resonance offset and
RF inhomogeneity. The phase of the excited magnetization is shown similarly in the lower
panel. Over a +5% variation in the nominal RF delivered by the coil and resonance offsets
of £20 kHz, the excited magnetization M, is at least 99.5% of the initial z magnetization,
MQ.

For this pulse a commonly used figure-of-merit (FOM), defined as the total excitation
bandwidth satisfying the benchmark divided by the peak RF amplitude, is equal to 2.3,
which is comparable to the best values of the previous broadband excitation pulses, with
the exception of the 12 ms ABSTRUSE pulse [35], which gives a much higher FOM at the
price of increased vulnerability to J-coupling and relaxation effects. The FOM, however,
provides no measure for the uniformity of the performance as a function of changing RF
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Figure 1.3: Broadband excitation pulse. The deceptively “random” appearance in pulse
amplitude (upper panel) and phase (lower panel) as a function of time efficiently chore-
ographs the transformation I, — I, over a 40 kHz range of resonance offsets with moderate
tolerance to RF miscalibration (see Fig. 1.4). The pulse length was fixed at 2 ms, result-
ing in a maximum RF amplitude for the pulse of 17.5 kHz. A 2 ms pulse of constant 8.5
kHz RF amplitude would have the same power requirements as the pulse shown. Figure
taken from [34].
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Figure 1.4: Simulated performance of the optimized pulse of Fig. 1.3. Starting with
initial z magnetization My, the magnitude M, (upper panel) and phase ¢ (lower panel)
of the excited magnetization is plotted as a function of resonance offset and RF field By,

represented as a fraction of the nominal field BY.

Contour lines displayed for M, are

[0.995, 0.99, 0.96], and those for the phase of the excited magnetiztion are [4°, 8°, 16°].

Figure taken from [34].
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calibration or homogeneity.

The longer an excitation pulse is, the more important the potential effects of J-
coupling during the pulse, and 2ms is sufficiently long that this could be a significant
concern. However, it was shown on simulations as well as experimentally [34], that for a
heteronuclear systems the performance of the pulse is essentially the same, as it is for a
single spin shown in Fig. 1.4.

1.3.2 Limiting the pulse amplitude

Although the 2ms pulse for the broadband excitation optimized by means of optimal
control theory, (BEBOP), described just above, performs extremely well, shorter pulses
are also desirable in order to minimize relaxation effects. At the same time, peak RF
amplitude must remain below probe limits (e.g., available for *C spectroscopy). In the
procedure described above the maximum amplitude of the RF controls was not explicitly
constrained — a chosen pulse length and convergence factor for terminating the algorithm
resulted in an unspecified maximum pulse amplitude. This is, however, unpractical, while
any attempt to optimize a shorter pulse in order to eventually improve its relaxation
properties will inevitably result in final amplitude driven up by the algorithm to always
higher values in order to achieve convergence. By decreasing the length of a pulse we
wish to optimize at some point we will reach the situation, where for every optimization
attempt with all possible starting sequences the produced peak amplitude will be so high,
that any practical application of such a pulse on real spectrometers will be just impossible.
So, one has to change the algorithm in a way, that only pulses with amplitudes below
some limit can be produced. In other words we need to limit the space of allowed control
amplitudes, so that wy(f) < Wy, for every t.

The procedure for optimizing the cost, subject to the constraint that the RF amplitude
at each time, wy (t), be no greater than a chosen maximum amplitude wy,q,, is incorporated
in the following algorithm [36]:

1. Choose an initial RF sequence w0

2. Evolve M forward in time from the predefined initial state M ().
3. Calculate M (t,) x A(t,) and evolve it backwards in time.

4. wF () — WP () + e[ M () x Alt)].

5. For any w1 (t) > Wnaz, set wi(t) — Wnaz-

6. Repeat steps 2 - 5 until a desired convergence of ® is reached.

The RF clipping in step 5 is implemented by adjusting (w), and (wq), to satisfy the
constraint on maximum RF amplitude without changing the phase of w;

This modified algorithm was implemented in [36] with all parameters set to the same
values as in [34], only the length of the pulse was set to a shorter value of 500us. But this
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Figure 1.5: Broadband excitation pulse obtained using the optimal control algorithm
described in the text. Application of pulse amplitude (upper panel) and phase (lower
panel) produces the transformation I, — I, over a 40 kHz range of resonance offsets with
tolerance to RF miscalibration sufficient for typical high-resolution NMR, probes (see Fig.
1.6). The maximum RF amplitude was limited to 17.5 kHz by clipping whenever the
amplitude exceeded this value, forcing the algorithm to search for another solution. A
500 us pulse of constant 13.5 kHz RF amplitude would have the same power requirements
as the pulse shown. Figure taken from [36].

time the maximal possible RF amplitude was constrained to 17.5 kHz, a value of reached
peak amplitude in previous implementation of the algorithm. The amplitude and phase
of the resulting excitation pulse, digitized in 0.5 ps increments, are plotted as a function
of time in Fig. 1.5 for comparison with the earlier result. The figure clearly shows the
cutoff for the maximum RF amplitude, resulting in a constant amplitude of 17.5 kHz
during extended periods of the pulse.

The theoretical performance of the pulse, assuming simple Bloch equation evolution of
the irradiated spins (as in the optimization procedure), is illustrated in Fig. 1.6. Contours
of x magnetization, M,, are plotted in the upper panel as functions of resonance offset
and RF inhomogeneity. The phase of the excited magnetization is shown similarly in the
lower panel. Over a 5% variation in the nominal RF delivered by the coil and resonance
offsets of +20 kHz, the excited magnetization M, is still at least 99.5% of the initial
z magnetization, M, but the phase is now less than 2°, compared to 4° for the 2 ms
pulse. The 99% contours cover almost a +15% variation in nominal RF, and the phase
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Figure 1.6: Simulated performance of the optimized pulse of Fig. 1.5. Starting with
initial z magnetization My, the magnitude M, (upper panel) and phase ¢ (lower panel)
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of the final magnetization is on the order of only 4° over this larger RF range, operating
over the same 40 kHz bandwidth. The nearly ideal pulse performance illustrated in Fig.
1.6 indicates that there is some latitude within the constraints of the design criteria for
further shortening the pulse length, since perfect performance may not be necessary.

1.3.3 Exploring the limits of broadband excitation and inversion

As we see, the optimal control theory is a powerful tool, which allows one to design
RF pulses covering large offset ranges and showing significant degree of tolerance against
miscalibration. Nonetheless, all attempts to optimize pulses so far were just a kind of blind
search, the pulse parameters were chosen more or less arbitrarily with the hope, that this
choice will allow the algorithm to produce reasonably performing pulses. Depending on
demands one wants the pulse to meet, such a search for optimal parameters can be a rather
time consuming procedure, while every change will require a full optimization run in order
to see whether a sufficiently good pulse can be produced under these conditions. It will be
therefore quite useful to know the minimal necessary conditions, like duration and peak
RF amplitude, a pulse should meet in order to produce a desired degree of excitation
or inversion for a given range of offsets and given tolerance to RF power miscalibration.
More to say, once we know, that for certain spin systems, where the theoretical limits of
quantum evolution were known [5-11], numerical algorithms based on principles of optimal
control theory, provide pulse sequences which approach the physical limits [12-14], then
such search can pretend on some generality and show the estimates to the physical limits
for robust broadband excitation and inversion. In particular we want to specify upper
limits for the minimum durations of pulses as a functions of bandwidths and RF variation.

For this purpose a systematic study of the pulse performance was performed with
tools of optimal control theory. Sets of excitation and inversion pulses were calculated for
bandwidths of 10, 20, 30, 40, and 60 kHz considering both ideal rf amplitude (scale factor
of 1) and a variation of £20 percent in the factor used to scale the rf amplitudes. Also sets
of pulses for a fixed bandwidth of 20 kHz with variations of ¢ of 10, £20, £30, and £40
percent in rf scale factor were optimized to test robustness against B;-field inhomogeneity.
In all cases, the nominal (unscaled) rf-amplitude was limited to 10 kHz using the method
described in the previous section. For each set, pulse lengths ¢, were varied in ranges as
listed in Table 1.1. Generally, pulse durations were incremented until the quality factor
® exceeded 0.995. Each chosen bandwidth was divided into equal increments, with n.g =
100 for 10 kHz bandwidth, n.g = 200 for bandwidths of 20, 30, and 40 kHz and n.g = 300
for 60 kHz bandwidth. n, was chosen equal to 5 with equidistant percentage amplitude
changes whenever variations in rf-amplitude were included in the calculations. The time
digitization for the optimized shapes was 0.5 us in all cases.

One hundred randomized starting pulses were generated to start 100 optimizations
for each data point in Figs. 1.8 and 1.9. As with all gradient-based optimizations, the
optimal control algorithm can terminate at a local, rather than the global, extremum.
The pulse found by the algorithm depends on the (random) pulse chosen to start the
procedure. However, in contrast to conventional optimization procedures, a significant
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Table 1.1: Constraints used for BEBOP and BIBOP optimizations

25

rf-limit (kHz) — Av® (kHz)  neg  ¢° (%) 1, excitation (us) ¢, inversion (us)

10 10 100 — 25-85 2.5-122.5
10 20 200 — 2.5 -142.5 2.5 -182.5
10 30 200 — 2.5-217.5 2.5 -247.5
10 40 200 — 2.5 -267.5 2.5 -312.5
10 60 300 — 2.5-422.5 2.5 -457.5
10 20 200 £ 10 2.5-247.5 2.5 -242.5
10 20 200 £ 20 2.5-337.5 2.5-307.5
10 20 200 + 30 2.5 -442.5 2.5 -352.5
10 20 200 £ 40 2.5-667.5 2.5-417.5
10 d 100 £ 20 30 - 60 40 - 115
10 10 200 £ 20 20 - 125 50 - 170
10 20 200 £ 20 100 - 190 85 -212.5
10 30 300 £ 20 150 - 285 200 - 250
10 40 300 £ 20 180 - 405 265 - 385
10 20 300 £ 20 200 - 540

@) Av is defined as the excitation/inversion bandwidth used in the optimization. ) ¥ is
the range of rf amplitude scaling incorporated in the optimization.

percentage of the optimal control trials converges to similar values, even in cases with
tight constraints. In addition, the quality factors cited as establishing limits on pulse
performance are very high, approaching the ideal value of one (see Fig. 1.7 and Fig.
1.13). Any potential improvement in these limits will therefore be relatively small.

The convergence of every single optimization was very fast ranging from seconds for
the shortest pulses to tens of minutes for the longest ones with larger nog and n, on a
single AMD Athlon 1500+ processor Linux-based PC.

The results of the optimizations of excitation and inversion pulses are shown in Figs.
1.8 and 1.9, respectively: The performance of the optimized pulses described by the
quality factor ® is given as a function of pulse length on a linear scale in Figs. 1.8 A,
D and 1.9 A, D. A logarithmic scale is used in Figs. 1.8 B, E and 1.9 B, E to show the
differences at longer pulse durations more clearly. As expected, higher demands in terms
of bandwidth or tolerance to rf-amplitude variation lead to reduced quality factors that
can, however, be compensated by increased pulse lengths. In all cases pulses with more
than 99.5 percent excitation or inversion over the entire offset and rf-amplitude ranges
could be found for unexpectedly short pulse durations of significantly less than 700 us. A
question of considerable practical interest is the minimum pulse length needed to achieve
an excitation or inversion of a given quality. This information is shown in Figs. 1.8 C, F
and 1.9 C, F.
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Figure 1.7: Histogram distribution of quality factors ® obtained for 100 optimizations for
excitation pulses of 20 kHz bandwidth, of 300 us duration, and £20 % rf-variation (open
bars); 600 us duration and +40 % variation in rf-amplitude (black bars). A significant
percentage of the optimizations is close to the maximum quality factors of 0.9955 and
0.9957, respectively.

The relation between the duration and bandwidth is roughly linear for both types of
pulses for the investigated offset and rf ranges.

The dependence of the quality factor on the pulse duration is not a single round
curve, but shows a step or wave-like behavior (c.f. Figs. 1.8 A;D and 1.9 A)D). A more
detailed analysis reveals that steps are related to specific pulse families of optimal pulses.
Representatives of such pulse families are shown in Fig. 1.7 for excitation. For very short
pulses, optimal control theory found that hard pulses with constant amplitude and phase
provided the best performance. For longer pulses, the algorithm introduced 180° phase
shifts resulting in pulses very similiar to phase-alternating composite pulses with one, two,
and three phase jumps. If the pulse length increases further, the phase jumps 'morph’
into more continuous phase changes. As was shown in [36], even longer pulses will have
significant amplitude modulation, interspersed with periods of maximum rf amplitude.
If the pulse is sufficiently long, the amplitude will not necessarily reach the rf limit [34].
The pulse families shown in Fig. 1.7 each correspond to a ’'step’ in Fig. 1.8 A D.

Pulses optimized for inversion all show constant rf-amplitude over the entire length,
but the observed step-like behavior still corresponds to certain pulse patterns. As for
excitation, hard pulses and pulses with a single 180° phase jump give best results for very
short pulse durations and bandwidths up to 30 kHz. E.g. for a bandwidth of 20 kHz
and assuming no variation in rf amplitude, Fig. 1.11 B shows the numerically optimized
pulse with a total duration of 67.5 us, which represents a phase-alternating composite
pulse {527,191° }. For this bandwidth, such two-component phase-alternating pulses of

the general form {a,, f_.} are found to be optimal for pulse durations between 52.5
and 72.5 ps. In this range, the flip angle 8 of the numerically found optimal pulses is
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Figure 1.8: Maximum quality factors reached for broadband excitation pulses (BE-
BOP) with rf-amplitude limited to 10 kHz under various optimization constraints. The
maximum quality factors ® with respect to pulse duration is given for the five different
bandwidths Av equal to 10 kHz, 20 kHz, 30 kHz, 40 kHz, and 60 kHz on a linear (A) and
logarithmic scale (B). In C, the pulse lengths for quality factors of 0.98, 0.985, 0.99, and
0.995 are plotted as a function of the desired bandwidth and provide an estimate for the
minimum pulse duration needed for specific requirements. The maximum quality factors
® with respect to rf-variation are shown for no variation and rf-ranges ¢ of =10 %, £20 %,
+30 %, and +£40 % on a linear (D) and logarithmic scale (E) for a fixed bandwidth of
20 kHz. In (F), the minimum pulse duration ¢, are shown as a function of the rf variation

+19 for quality factors ® =0.98, 0.985, 0.99, and 0.995.
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Figure 1.9: Maximum quality factors reached for broadband inversion pulses (BIBOP)
with rf-amplitude limited to 10 kHz under various optimization constraints. Again, max-
imum quality factors ® with respect to pulse duration are given for the five different
bandwidths Av equal to 10 kHz, 20 kHz, 30 kHz, 40 kHz, and 60 kHz on a linear (A) and
logarithmic scale (B). In C, the pulse lengths for quality factors of 0.98, 0.985, 0.99, and
0.995 are plotted as a function of the desired bandwidth and provide an estimate for the
minimum pulse duration needed for specific requirements. The maximum quality factors
® with respect to rf-variation are shown for no variation and rf-ranges ¢ of £10 %, £20 %,
+30 %, and +40 % on a linear (D) and logarithmic scale (E) for a fixed bandwidth of
20 kHz. In (F), the minimum pulse duration ¢, are shown as a function of the rf variation
+4 for quality factors ® =0.98, 0.985, 0.99, and 0.995.
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Figure 1.10: Amplitude and Phase for optimized excitation pulses of various dura-
tions found in the optimization for a bandwidth of 30 kHz and no rf-variation. Al-
though no restrictions to the pulse shape were made, phase-alternating composite pulses
are found for pulse durations of up to 82.5 us (pulses shown in A-D correspond to
63,, 129°,,88,}, {32,,85%,,126,}, and {292, ,68;,88° 1127}, while smooth phase-
modulations were found for longer pulses.

approximated by  ~ a+ 145°. Hence, the overall on-resonance flip angle («— 3) of these
pulses is only about 145° for this family of short pulses, which achieve the best possible
average inversion over the full 20 kHz offset range. For a bandwidth of 30 kHz, two-
component phase-alternating pulses {a,, f_,} are found for durations between 52.5 and
62.5 pus with 8 ~ o+ 125°. For a bandwidth of 10 kHz, two-component phase-alternating
pulses are found for durations between 52.5 and 87.5 us with g =~ « + 165°, e.g. for

o

a duration of 87.5 us, the numerically optimized pulse is {769,239° }, which is similar
to the well known pulse {903,270°,} [37,38]. For longer pulse durations and broader
bandwidths, a pulse family with smoothly modulated phase is found to be superior to
phase-alternating composite pulses (c.f. Fig. 1.11 C-E for a bandwidth of 20 kHz). The
number of modulations in the phase marks different subclasses that again correspond to
slight steps in Fig. 1.9 A, D. Although no symmetry constraints were imposed in the
optimization, pulses of this class are perfectly symmetric around the pulse center. In
Fig. 1.12 the phase and frequency of three such pulses is shown. The central smooth
frequency sweep is strongly reminiscent of adiabatic pulses, which have a high degree
of tolerance to rf inhomogeneity or miscalibration. However, the class of pulses derived
here has constant maximum amplitude and therefore shows very low adiabaticity at the
pulse edges. Instead, a pronounced frequency swing is observed that seems to achieve a
similar effect as the amplitude modulation at the edges of adiabatic pulses. In general,
the optimized pulses are similar to BIP pulses derived in [39] with only slightly improved
inversion properties.

For comparison of the BEBOP and BIBOP pulses with alread