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Abstract— Traditionally, channel estimation and equalization
are optimized separately and independently: The channel esti-
mate is simply plugged into the equalizer as if it had no errors.
We propose a new method for joint pilot symbol assisted channel
estimation and equalization and apply it to the design of the
space-time decision feedback equalizer. The explicit solution of
this joint approach is obtained with the same order of complexity
as a separate design and results in a significant performance
improvement. Furthermore, we discuss its relation to robust
optimization and regularization techniques for equalizer design.

Index Terms— decision feedback equalization, channel estima-
tion, multiuser detection, adaptive antennas

I. INTRODUCTION

A wireless communication link with a frequency selec-
tive channel, multiple transmit (no cooperation among trans-
mitters), and multiple receive antennas is considered. Pilot
symbols are available, e.g. time multiplexed, for channel
estimation. The standard approach to optimize a receiver for
equalization of a frequency selective MIMO channel with
coherent detection is: 1) Estimation of the channel parameters
with an a priori chosen method (e.g. maximum likelihood,
linear minimum mean square error (LMMSE), correlator) from
the received pilot sequence. 2) Optimization of the equalizer
assuming that the channel parameters are perfectly known.
3) Application of the channel estimates to the equalizer design
as if they were known without errors.

This approach of separate optimization of pilot symbol
assisted channel estimation [1] and channel equalization, has
the advantage that standard methods [2], [3] can be applied
and combined. This advantage is obtained at the expense that
synergies of joint optimization cannot be exploited resulting in
a performance loss. Different channel estimation methods have
to be investigated for a given equalization paradigm to find
out the best combination. Finally, the assumption of perfect
channel knowledge made for equalizer design is not justified.

As a consequence a joint optimization of pilot assisted
channel estimation and equalization should be performed.1

Some previous approaches to joint channel estimation and
equalization are not based on the availability of a pilot
sequence, but operate in a blind fashion (see e.g. a summary in
[4]). They have a significantly increased complexity compared

1This is true for a finite SNR and a finite number of pilot symbols.
Asymptotically both optimization tasks will be separated.

to the corresponding method of equalization based on perfect
channel knowledge. Others solve the problem based on pilots
but iteratively, e.g., [5], [6]. The channel estimate obtained
from a pilot sequence can also be improved iteratively, e.g., to
track the time-variant channel [7], [8]. Robust optimization of
preequalization at the transmitter taking into account channel
estimation errors is considered in [9], [10].

Our novel approach to joint optimization follows the
Bayesian paradigm minimizing the average cost function,
where the expectation is taken w.r.t. the unknown channel
parameters conditioned on the received pilot sequence (Sec.
III). This general paradigm may be applied to equalizers,
whose optimization problem can be translated into a cost
function with constraints for which all parameters are known.
In contrast to, e.g., [5], [6] it is not an iterative approach.
As an example, we present the joint optimization of space-
time decision feedback equalization (ST-DFE) for frequency
selective MIMO channels (Sec. IV) [11], [12], [13]. Incorpo-
rating a latency time as well as spatial ordering the solution for
the ST-DFE based on the minimum mean square error (MSE)
is briefly stated in Sec. IV-A, which serves as a basis for
applying the novel joint optimization (Sec. IV-B). The relation
of this approach to regularization and stochastic programming
is sketched in Sec. IV-C. The solution of the joint optimization
has the same order of complexity as the standard design with
separate optimization (Sec. IV-D), but leads to a significant
performance improvement, as can be seen from the simulations
in Sec. V. In the Appendix a brief derivation of the solution
for the standard optimization approach of the ST-DFE is given,
which is stated in Sec. IV-A. Also notation used in Sec. IV-A
is introduced here (see [14] for more details).

Notation: Random vectors and matrices are denoted by
lower and upper case sans serif bold letters, whereas the
respective realizations or deterministic variables are italic.
The operators ∗, E[•], Ea[•], (•)T, (•)H, and tr(•) stand for
convolution, a general expectation, expectation with respect
to a, transpose, Hermitian transpose, and trace of a matrix,
respectively. ei is the i-th column of an N×N identity matrix
IN and 0M×N the M ×N matrix of zeros.

II. SYSTEM MODEL AND ASSUMPTIONS

Data symbols sd[n] ∈ B
K from a set of QAM symbols

B are transmitted from K antennas via a frequency selective
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MIMO channel H[n] =
∑L

�=0 H�δ[n− �] ∈ C
M×K of order

L (Fig. 1). The received signal of M antennas is

yd[n] = H[n] ∗ sd[n] + nd[n] ∈ C
M , (1)

where nd[n] ∼ Nc(0,Cn) is additive temporally white com-
plex Gaussian noise with covariance matrix Cn ∈ C

M×M .

H[n]sd[n] yd[n]

nd[n]

Fig. 1. Frequency selective MIMO channel.
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Fig. 2. Channel and Receiver Model

Pilot channel: Np pilot symbols sp[n] ∈ B
K with n ∈

{−L, · · · , Np − 1} are time multiplexed including L guard
symbols. The received pilot sequence yp[n] is defined similar
to (1) and can be rewritten as

yp = Sph + np ∈ C
MNp , (2)

where Sp = S′T
p ⊗ IM ∈ C

MNp×(L+1)KM is block
Toeplitz, S′

p ∈ C
K(L+1)×Np has block Toeplitz structure

with first block row [sp[0], · · · , sp[Np − 1]] and first column
[sp[0]T, · · · , sp[−L]T]T, yp = [yp[0]T, · · · , yp[Np − 1]T]T,
and np = [np[0]T, · · · ,np[Np−1]T]T. All channel coefficients
are summarized in h = vec([H0, · · · ,HL]). The additive
noise np[n] is distributed as nd[n]. The channel is assumed
to be i.i.d. block fading and Gaussian h ∼ Nc(µh,Ch) with
mean µh = E[h] and covariance Ch = E[(h−µh)(h−µh)H].

III. JOINT OPTIMIZATION OF CHANNEL ESTIMATION AND

EQUALIZATION

Consider the cost function CS(P,h,MS), e.g. the mean
square error (MSE), to design an equalizer: It depends on
the independent parameters P ∈ P, where P also includes
constraints independent of h, a set of model parameters
MS ∈ MS assumed to be perfectly known, and the channel
parameters h, which are unknown and have to be estimated
from yp (Eqn. 2). The standard approach uses the estimated
parameters ĥ as if they were error-free to obtain the optimum
equalizer coefficients PS, as depicted in Fig. 3,

PS = argmin
P∈P

CS(P, ĥ,MS). (3)

To estimate the channel the receiver relies on sp[n] and
yp (Fig. 2). Given these the channel can be modeled as a
random variable from the point of view of the receiver, e.g.

h ∼ Nc(µh,Ch). Thus, the cost function CS(P,h,MS) is
now a random variable, too.

sp[n]

yp[n]
MS

PSĥ Optimization of Equalization

PS = argmin
P∈P

CS(P, ĥ,MS)
Channel

Estimation

Fig. 3. Standard receiver design: Separate optimization of pilot symbol
assisted channel estimation and equalization.

For a joint optimization the receiver exploits its knowledge
about the channel through yp and aims at minimizing the mean
cost, which is the conditional mean estimate of the cost, given
the received pilot sequence

CJ(P,yp,MJ) = Eh[CS(P,h,MS)|yp]. (4)

The set of model parameters assumed known in the joint
optimization MJ ∈ MJ = MS ∪ {p(h|yp)} is now extended
by the conditional probability density function p(h|yp) or,
alternatively, its parameters {p(h|yp)} ≡ {µh|yp

,Ch|yp
} in

case of Gaussian distributed channel parameters (see Sec. IV-
B) [3]. The joint optimization problem is now given as

PJ = argmin
P∈P

CJ(P,yp,MJ) (5)

and does not depend on the channel coefficients h, but on
the received pilot symbols yp. Thus, it directly chooses the
optimum equalizer parameters P without explicit estimation
of the channel (Fig. 4).

This approach is feasible if the standard optimization prob-
lem (3) can be transformed such that the constraints are either
deterministic, i.e., depend on perfectly known parameters, or
can be approximated by including them in the cost function
(e.g. zero forcing constraints [10]).

sp[n]

yp[n]

MJ

PJ

Joint Optimization
of Channel Estimation

& Equalization

PJ = argmin
P∈P

CJ(P,yp,MJ)

Fig. 4. Joint optimization of receiver: Joint pilot symbol assisted channel
estimation and equalization.

IV. APPLICATION TO SPACE-TIME DECISION FEEDBACK

EQUALIZATION (ST-DFE)

The FIR space-time decision feedback equalizer (ST-DFE)
[11] depicted in Fig. 5 consists of the matrix FIR feedforward
filter G[n] =

∑F
f=0 Gfδ[n − f ] ∈ C

K×M of order F , the

temporal feedback filter B[n] =
∑FB

i=1 Biδ[n − i] ∈ C
K×K

of order FB = F +L− ν, and the spatial feedback filter D ∈
C

K×K
lower , where C

K×K
lower denotes the set of lower triangular K×
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K matrices with zero main diagonal to ensure spatial causality
of D. We collect the corresponding FIR filter coefficients in

G = [G0, · · · ,GF ] ∈ C
K×M(F+1) and (6)

B = [B1, · · · ,BFB ] ∈ C
K×KFB . (7)

The K×K permutation matrix P (O) =
∑K

i=1 eie
T
bi

describes
the spatial ordering O ∈ O, where the index bi of the i-th
detected symbol eT

bi
sd[n−ν] is the i-th element of the K-tuple

O and ν is the latency time. The set of all possible orderings
is O = {[b1, . . . , bK ] | bi ∈ {1, . . . ,K}\{b1, . . . , bi−1}}. The
symbolwise nearest neighbor mapping from the complex plane
to the finite symbol constellation B is denoted by Q(•).

yd[n]

ŝd[n]

s̃d[n]

D

Q(•)G[n]

B[n]

P (O),T

Fig. 5. Structure and parameters of FIR ST-DFE [11].

A. Standard Approach

In the sequel, we consider a ST-DFE minimizing the mean
square error (MSE)

σ2
ε,S(P,h,MS) = E[‖sd[n− ν]− P (O),Ts̃d[n]‖22]. (8)

under the common assumption of correctly detected symbols,
i.e., ŝd[n] = sd[n]. As the standard approach is well known in
the literature [11], [12], [13], we only give a short derivation
of the solution in the Appendix. For understanding the main
features of our new approach with a joint optimization in the
next section, only the structure of the standard solution below
is of importance.

The resulting optimization problem is

PS = argmin
P∈P

σ2
ε,S(P,h,MS) (9)

with the set of independent variables to be optimized

P =
{

G ∈ C
K×M(F+1),B ∈ C

K×KFB ,

D ∈ C
K×K
lower , ν ∈ {0, · · · , F + L},O ∈ O

}
(10)

and the set MS = {Cn, σ
2
s } of parameters assumed known.

The data symbols are zero mean with C s̄d = σ2
s IK(L+F+1).

The solution for the filter coefficients is sketched in the
Appendix, where also the necessary definitions are given, and
reads as

GS =
K∑

k=1

ek(eT
νS+1 ⊗ eT

bS,k
)HH(HΠ(OS,νS)

k HH+σ−2
s C n̄)−1,

BS = −GSH(IF+L+1 ⊗ P (OS),T)S(νS),T, and (11)

DS =
K∑

k=1

ekeT
k GSH(eνS+1 ⊗ IK)P (OS),T(SkST

k − IK).

Besides some notational details, we make the following
observations: From the solution in (11) we see that the
temporal feedback filter BS cancels intersymbol interference
from previously detected symbols (determined by latency time
νS), the spatial feedback filter DS cancels multiple access
or interstream interference from already detected symbols
(determined by spatial ordering). In essence the feedforward
filter GS has the same structure as any MMSE solution—
besides the notation required for describing spatial ordering
and latency time—and suppresses interference from symbols,
which have not been detected yet. For high SNR it converges
to the zero forcing solution.

A suboptimum but efficient solution [13], [12] for the
latency time νS and the ordering OS is given in Eqn. (33)
of the Appendix.

B. Joint Optimization

Based on this brief review of the main ST-DFE results we
can proceed with our new method for direct pilot assisted
equalizer design from Eqn. (5).

As discussed in Sec. III the channel parameters h in (9)
have to be estimated and are only known with errors. The
standard optimization does not account for this effect, which
could be done applying robust optimization techniques (see
Sec. IV-C). But explicit channel estimation is not necessary
with joint optimization as will be seen in the sequel.

Following (4) the new cost function of ST-DFE is

σ2
ε,J(P,yp,MJ) = Eh[σ2

ε,S(P,h,MS)|yp] (12)

resulting in the joint optimization problem

PJ = argmin
P∈P

σ2
ε,J(P,yp,MJ) (13)

with the set of model parameters

MJ = MS ∪ {µh,Ch,Sp}. (14)

Compared to (8) - due to linearity of the expectation - the
following substitutions for the Gram of the channel matrix
HHH and the channel matrix have to be made to obtain (12):

HHH ←− E[HHH|yp] and (15)

H ←− Ĥ = E[H|yp]. (16)

The first expression is the conditional mean estimator of the
Gram matrix based on yp. With selection matrix Σ� (29) and
(28) it can be written as

E[HHH|yp] =
L∑

�=0

L∑
�′=0

Σ�ΣT
�′ ⊗ E[H�H

H
�′ |yp]

E[H�H
H
�′ |yp] =

K∑
k=1

E[h�,kh
H
�′,k|yp],

(17)

where h�,k is the k-th column of H�. Thus, it can be
computed as a sum of subblock matrices of the conditional
correlation matrix E[hhH|yp] of h. To simplify the conditional
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expectation we assume that h and yp are jointly complex
Gaussian distributed [3] and obtain

E[hhH|yp] = ĥĥ
H

+ Ch|yp
. (18)

The conditional covariance matrix is given as

Ch|yp
= Ch −WSpCh (19)

and the conditional mean of h, which is the LMMSE (condi-
tional mean) channel estimator,

ĥ = E[h|yp] = µh + W (yp − Spµh) (20)

W = ChS
H
p (SpChS

H
p + Cnp)−1 with Cnp = E[npn

H
p ].

From (17) and (18) we observe that the conditional mean of
the Gram (15) can be expressed as the sum of the Gram of the
LMMSE channel estimate Ĥ and the conditional covariance
matrix

E[HHH|yp] = ĤĤ
H

+ CH|yp
. (21)

With the definition of the conditional covariance matrix of H
and the fact that the estimation error and yp are uncorrelated
for LMMSE estimation [3] we have

CH|yp
= E[(H− E[H|yp])(H− E[H|yp])H], (22)

which can be interpreted as the covariance matrix of the
estimation error with the mean square error on the diagonal.

The conditional mean estimator Ĥ of H in (16) is derived
similarly using (20) and considering the block Toeplitz struc-
ture (cf. 28) of Ĥ: E[H|yp] =

∑L
�=0 Σ� ⊗ E[H�|yp].

Thus, the solution of the joint optimization problem (13) is
given by (11) and (33) with the following substitutions

C n̄ ←− C n̄ + σ2
s CH|yp

H ←− Ĥ = E[H|yp].
(23)

This is a consequence from applying (15) and (16) with the
preceding results to (8).

It shows two structural differences compared to the standard
solution (11) and (33): 1) It does not depend on the channel
parameters h, but on the received pilot sequence yp. 2) All
inverses include an additional (structured) loading matrix
CH|yp

. Obviously, the residual uncertainty about the channel
coefficients is represented as an additional “noise source”.

C. Interpretation

The approach in (5) and (13) can be viewed as a pilot
assisted equalizer design without explicit estimation of the
channel. From (23) we conclude that the solution of the joint
optimization of channel estimation and ST-DFE (cf. Eqn.
12) results in LMMSE channel estimation together with a
loading (23) in the inverse for computing the forward filter G
in (11) and in the latency time/ordering optimization (33), that
represents the correlations in the estimation error. This obser-
vation allows further conclusions w.r.t. robust optimization as
described below.

The cost function (12) can be rewritten as

σ2
ε,J(P,yp,MJ) = σ2

ε,S(P, ĥ,MS) + σ2
s tr(GCH|yp

GH),

where the second term represents a Tikhonov regularization
[15] of the feedforward filter G with the regularization pa-
rameter given by the model MJ.

Our approach of joint optimization is equivalent to a ro-
bust optimization based on the paradigm of static stochastic
programming [16], if an LMMSE channel estimator (20) is
chosen. (Additional approaches for robust optimization are
discussed in [17].) It models the channel as a random variable
centered at the channel estimate and a stochastic estimation
error described by its first and second order statistics:

H = Ĥ + E with CE = E[EEH]. (24)

We assumed E[E] = 0 for simplicity. In this case CH|yp
is

equal to the covariance CE of the channel estimation error E
(compare to [9]). The robust cost function for h = ĥ + e is

σ2
ε,R(P, ĥ,MR) = Ee[σ2

ε,S(P, ĥ + e,MS)] (25)

= σ2
ε,S(P, ĥ,MS) + σ2

s tr(GCEGH).

Note, that for robust optimization no assumption on the
distribution of the error is needed—only knowledge about its
first and second order statistics is required—, whereas for the
joint optimization in Sec. IV-B we assumed a joint Gaussian
distribution of h and yp.

Joint optimization can be viewed as a technique to improve
the interface between channel estimator and equalizer com-
municating the statistical properties of the estimation error.
Contrary to worst case robust optimization (min-max) [17] this
approach easily incorporates the structure of the estimation
error into the design with little additional complexity.

D. Complexity

At first glance, one might predict that the computational
complexity of solving two problems jointly increases compared
to a separate solution of both, as the problem statement is more
“complicated” and involves more parameters. In contrast to
this intuition, the solution of the new approach (13) is obtained
with the same order of complexity as a separate optimization
with an MMSE ST-DFE (9) and an LMMSE channel estimator
(20): the joint solution can be derived by simply substituting
(23) into the standard solution (11) and (33) as shown in Sec.
IV-B.

V. PERFORMANCE

Monte Carlo simulations for the mean uncoded bit error
rate (BER) are shown for the following parameters: 16-QAM
modulation, M = 8 receive antennas in an uniform linear
array with half wavelength interelement spacing, K = 6
transmitters, channel order L = 3, filter order F = 8, Np = 30
QPSK pilot symbols. The BER is averaged over 1000 blocks
each with 300 symbols for every transmitter. The channels
between the K transmitters are uncorrelated and angles of
arrival at the receiver are Laplace distributed (angular spread
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of 10◦) [18]. The power delay profile is exponential with rate
of decay 1µs (symbol rate 1.28MHz). An LMMSE channel
estimator (20) is used for the standard design of the ST-DFE,
whereas the joint optimization uses the solution from (23).
Latency time optimization and spatial ordering is performed
as described above in (33).

Two scenarios are considered (Fig. 6): 1) The channel
remains constant during reception of the pilot sequence and
data (solid lines). The joint optimization gains 2 dB compared
to a separate design, which loses about 4.7 dB at an BER
of 10−2 compared to perfect channel knowledge. 2) A delay
of 300 symbols between pilot sequence and application of
the ST-DFE to equalize the channel is assumed, which is
a rough model for equalizing the channel at the end of
the data block (dashed lines). In this case the channel has
a maximum Doppler frequency of 5 · 10−5 (Jakes Doppler
spectrum) normalized to the symbol period, i.e., temporally
correlated. Now, the BER of standard design saturates due
to large errors in channel knowledge (Fig. 6). A joint design
tremendously decreases the error floor.

The improved performance is due to the exchange of
information about the size of the estimation errors and their
structure described by the estimation error covariance matrix
CH|yp

in (21).
As mentioned before, the joint optimization converges to a

separate optimization for large number Np of pilot symbols.
To investigate the convergence behavior, Fig. 7 shows the
BER performance in scenario 1 for Np ∈ {10, 50, 100}. For
Np = 100 the gain of the joint optimization over the standard
optimization is already small. Below Np = 50 the estimation
error is large enough that the equalizer design gains from
knowledge of its size and structure. This is the interesting
region of operation for joint optimization. Of course, for
Np = 10 the BER performance is not acceptable anymore
due to the small number of pilots; by joint optimization we
gain significantly but not sufficiently in this case.

Comparing the case of Np = 100 and Np = 50 for
moderate SNR we observe a similar performance for the joint
design with Np = 50 and the standard design for Np = 100:
With joint design the pilot symbols are used more efficiently,
which results in an SNR gain or may also be used to reduce
the number of pilot symbols.

VI. CONCLUSIONS

A paradigm for joint optimization of pilot symbol assisted
channel estimation and equalization was presented. As an
example, it is applied to MMSE optimization of a space-
time decision feedback equalizer. But it is also applicable
to a wide range of linear and non-linear equalizer designs,
such as zero-forcing, Wiener filter, and other DFE approaches.
The solution shows that the joint optimization is equivalent to
LMMSE channel estimation and a structured loading of the
inverse in the filter design with the estimation error covariance
matrix. It can be interpreted as an improved interface between
channel estimator and equalizer communicating the statistical
properties of the estimation error. Large performance gains are
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perfect channel knowledge

Fig. 6. Comparison of joint optimization of channel estimation and ST-
DFE with a separate optimization (solid lines: constant channel—scenario 1;
dashed lines: time delay between pilot and equalization—scenario 2).
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=50
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Fig. 7. Joint and separate optimization for different number of pilot symbols
Np ∈ {10, 50, 100} (scenario 1). With increasing number of pilot symbols
Np the joint design converges to a separate design.

obtained with the same order of computational complexity as
for the standard design.

APPENDIX

The following sketch of the derivation for the ST-DFE
standard approach (Sec. IV-A) is based on [11], [12], [13].
See [14] for a detailed explanation with the same notation.

With the standard assumption of correctly detected symbols,
that is Q(s̃d[n]) = P (O)sd[n− ν], we get for the estimate

s̃d[n] = D P (O)sd[n− ν] + B[n] ∗ P (O)sd[n− ν]

+ G[n] ∗H[n] ∗ sd[n] + G[n] ∗ nd[n] ∈ C
K (26)

or in matrix-vector notation with eν+1 ∈ {0, 1}F+L+1:

s̃d[n] = (eT
ν+1 ⊗D + BS(ν))(IF+L+1 ⊗ P (O))s̄d[n]

+ GH s̄d[n] + Gn̄d[n] ∈ C
K . (27)
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Here, we introduced the block Toeplitz channel matrix

H =
L∑

�=0

Σ� ⊗H� ∈ C
M(F+1)×K(F+L+1) (28)

with selection matrix

Σ� = [0F+1×�, IF+1,0F+1×L−�], (29)

the data vector

s̄d[n] = [sTd [n], . . . , sTd [n− L− F ]]T,

and the noise vector

n̄d[n] = [nT
d [n], . . . ,nT

d [n− F ]]T.

The matrix S(ν) = [0KFB×K(ν+1), IKFB ] selects the last
KFB elements of the K(F+L+1)-dimensional symbol vector
s̄d[n] after permutation available for temporal feedback.

We consider a ST-DFE minimizing the mean square error
(MSE), which reads as (cf. Eqn. 8)

σ2
ε,S(P,h,MS) = σ2

s K−2σ2
s Re(tr(P (O),TGH(eν+1⊗IK))

+2σ2
s Re(tr((eT

ν+1⊗D+S(ν)B)(IF+L+1⊗P (O))HHGH))

+σ2
s tr(DDH + BBH) + tr(G (σ2

s HHH + C n̄)GH),

since sd[n− ν] = (eT
ν+1 ⊗ IK)s̄d[n] and D ∈ C

K×K
lower .

The resulting optimization problem is (9). For solving (9)
we split up the constraint D ∈ C

K×K
lower into constraints on the

rows of D:

eT
k DSk = 0T

K−k+1, k = 1, . . . , K, (30)

where Sk = [0K−k+1×k−1, IK−k+1]T selects columns with
zero elements in k-th row of D. With this reformulation of
the constraint, the Lagrange multiplier method is applied to
solve the optimization problem. Some additional properties
of the selection matrices are needed as detailed in [14]. In
the solution (11) the projector Π(OS,νS)

k is introduced. It sets
the last KFB and the k − 1 columns of H to zero, which
correspond to the previously detected symbols:

Π(OS,νS)
k = Π(νS)−

k−1∑
i=1

(eνS+1 ⊗ ebS,i
)(eT

νS+1 ⊗ eT
bS,i

) with

Π(νS) = IK(F+L+1) − S(νS),TS(νS). (31)

Note that Π(OS,νS)
i only depends on the indices

bS,1, . . . , bS,i−1 of the previously detected symbols. Plugging
the standard ST-DFE solution (11) into (8), yields for the
MSE:

σ2
ε,S(PS,h,MS) = σ2

s (K−tr(P (OS),TGSH(eνS+1⊗IK))).
(32)

Obviously, minimizing this MSE w.r.t. the latency time νS

and the ordering OS has prohibitive complexity, since the

inverse in (11) has to be computed K!(F + L + 1) times.
Therefore, we apply following suboptimum strategy instead:

νS = argmax
ν∈{0,··· ,L+F}

tr((eT
ν+1⊗IK)HHA(ν),−1H(eν+1⊗IK))

OS = [bS,1, · · · , bS,K ] with (33)

bS,k = argmax
b∈Ok

(eνS+1⊗eb)HHA
(OS,νS),−1
k H(eT

νS+1
⊗eT

b ),

A(ν) = A
(O,ν)
1 , and A

(O,ν)
k = HΠ(O,ν)

k HH + σ−2
s C n̄.

where Ok = {1, · · · ,K} \ {b1, · · · , bk−1}. Thus, we choose
the latency time νS under the assumption of an inactive spatial
feedback filter (as in [11]), i.e., D = 0K×K , and the ordering
OS is found successively by minimizing the MSE of the k-th
symbol eT

bk
sd[n − ν] under the assumption that the ordering

of the previous symbols is fixed (compare to [13], [12]).
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