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Abstract

The purpose of this thesis is to create a coupling of the formal specification
framework Focus in the generic theorem prover Isabelle/HOL, a logical frame-
work based on Higher-Order Logic. The main focus of this work is on specifi-
cation and verification of systems that are especially safety critical – embedded
real-time systems.

Isabelle/HOL is an interactive semi-automatic theorem prover and in the
proofs of some system properties human time must be invested. These proofs
strongly depend on the specifications of the system and the properties. By con-
sidering the framework “Focus on Isabelle”, which is result of the coupling, we
can influence the complexity of proofs already during the specification phase,
e.g. reformulating specification to simplify the Isabelle/HOL proofs for a trans-
lated Focus specification. Thus, the specification and verification/validation
methodologies are treated as a single, joined, methodology with the main fo-
cus on the specification part. This methodology uses particularly the idea of
refinement-based verification, where the verification of system properties can be
treated as a validation of a system specification with respect to the specification
representing the properties.

The key contributions of the thesis are

X Deep embedding of that part of the framework Focus, which is ap-
propriate for the specification of real-time systems, into Isabelle/HOL.
“Focus on Isabelle” enables to validate and verify system specifications
in a methodological way.

X Syntax extensions for Focus for the argumentation over time intervals:
a special kind of tables, timed state transition diagrams, and a number of
new operators. The deep embedding into Isabelle/HOL includes all these
extensions.

X Schemata for automatic correctness proofs in Isabelle/HOL of the syntac-
tic interfaces for specified system components.

The feasibility of the proposed approach was evaluated on three case studies
that cover different application areas:

X Steam Boiler System (process control),

X FlexRay communication protocol (data transmission),

X Automotive-Gateway System (memory and processing components, data
transmission).

The results of “Focus on Isabelle” can also be extended to a complementary
approach, “Janus on Isabelle”, that presents a coupling of the formal specifi-
cation framework for services, Janus, with Isabelle/HOL.
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1. Introduction

1.1. Motivation

Embedded systems is one of the most challenging fields of systems engineering:
such a system must meet real-time requirements, is safety critical and dis-
tributed. The current practice in industry of ensuring that a software system
fulfills its requirements is testing. However, testing can only demonstrate the
presence, but not the absence of errors. Therefore, developing complex, safety
critical systems it is insufficient only to test them. The increasing combinato-
rial complexity and the safety and quality requirements of embedded real-time
systems implies that we need another solution to the problem. It is now widely
recognized that only formal methods can provide the level of assurance required
by the increasing complexity and the high safety and quality requirements to
such systems, because these allow not only to test correctness and safety, which
is not enough for such kinds of interactive systems, but also to prove that the
requirements are met: verification guarantees fulfillment of the requirements.
Coupling a specification framework with some verification system will reduce
the lavishness and error-proneness of system specifications.

For the development of embedded real-time systems in most cases experts of
different disciplines have to cooperate, and for such a cooperation a specification
of the developing system, i.e. precise and detailed description of its behavior
and/or structure, is important. Embedded system are real, but their behav-
iors are mathematical objects and about mathematical objects one can argue
formally. One aim of formal methods is to prove or to automatically evaluate
behavior properties of a system in a systematic way, based on a clear mathe-
matical theory. A formal specification is in general more precise than a natural
language one, but it can also contain mistakes or disagree with requirements.
Therefore, for safety critical systems it is not enough to have detached formal
specifications – for this case verification is needed. This is the only way to make
sure that the specification conforms to its requirements and is consistent.

This approach introduces a coupling of a specification framework with a verifi-
cation system. Given a system, represented in a formal specification framework,
one can verify its properties by translating the specification to a Higher-Order
Logic and subsequently using the theorem prover Isabelle/HOL (or the point
of disagreement will be found). Moreover, using this approach one can validate
the refinement relation between two given systems. The approach uses partic-
ularly the idea of refinement-based verification, where a verification of system
properties can be treated as a validation of a system specification with respect
to the specification of the properties.

To design a large (real) system a number of refinement steps are needed – it is
in most cases even impossible to make a concrete specification (implementation)

1



1. Introduction

from its abstract requirements specification in a single step. A system develop-
ment process has several levels of abstraction. In most cases a more abstract
specification is more readable and easier to understand, as well as it has more
chances to be reused. Thus, designing a system, a refinement relation must be
shown not only between requirements and architecture specifications, but for
every step on which a more abstract specification is refined to a more precise one.
The proofs of refinement relations between specifications of neighbor levels of
abstractions are in general simpler and shorter than the proof of the refinement
relation between the most abstract and the most concrete specifications.

In order to design systems in a step-wise, modular style we use Focus [BS01],
a framework for formal specifications and development of interactive systems.
This framework provides a number of specification techniques for distributed
systems and concepts of refinement. Formal specifications of real-life systems
can become very large and complex, and are as a result hard to read and to
understand. Therefore, it is too complicated to start the specification process
in some low-level framework, First-Order or Higher-Order Logic etc. directly.
To avoid this problem Focus supports a graphical specification style based on
tables and diagrams. Focus is preferred here over other specification frame-
works also since it has an integrated notion of time and modeling techniques
for unbounded networks (specification replications, sheaves of channels). For
example, the B-method [Abr96] is used in many publications on fault-tolerant
systems, but it has neither graphical representations nor integrated notion of
time. Moreover, the B-method also is slightly more low-level and more focused
on the refinement to code rather than formal specification.

The first attempt to represent the first version of the Focus syntax [BDD+92]
(without representation of time, modeling techniques for unbounded networks,
etc.) in a verification system was done by B. Schätz and K. Spies (see [SS95]). In
this approach the HOLCF specialization of the theorem prover Isabelle was cho-
sen. HOLCF (see [Reg94], [Reg95] and [MNvOS99]) is the definitional extension
of Church’s Higher-Order Logic with Scott’s Logic for Computable Functions
that has been implemented in Isabelle. HOLCF supports the standard domain
theory but also coinductive arguments about lazy datatypes. The main disad-
vantage of using HOLCF in practice is the difficulty of logic understanding in
comparison to HOL.

A number of methods for the implementation of interactive systems in the
first version of Focus were described also by O. Slotosch (see [Slo97]).

The first attempt of coupling of Focus with an automatic verification system
was done by J. Schumann and M. Breitling [SB99]. As the verification system
was chosen SETHEO [LSBB92], an automatic theorem prover for proving the
unsatisfiability of formulas in First-Order Clause Logic. This case study of
J. Schumann and M. Breitling has shown that such a coupling is in principle
possible, but there are also a number of problems and open questions.

In our approach we chose a prover for Higher-Order Logic, because the
power of First-Order Logic is not enough to represent in a direct way sev-
eral specifications of distributed interactive systems. As the verification system
Isabelle/HOL we have chosen Isabelle/HOL [NPW02, Wen04], an interactive
semi-automatic theorem prover for Higher-Order Logic. The disadvantage of

2



1.2. Isabelle/HOL

only semi-automated proofs is compensated by the advantage of using Higher-
Order Logic.

A mapping of operators in Focus to the corresponding definitions in HOL
alone is not sufficient for the method to become easy. Because of this, we
also present the specification and proof methodology – the main point in our
methodology is an alignment on the future proofs to make them simpler and
appropriate for application not only in theory but also in practice. For this
we have performed a number of case studies, whose results have helped us
to find out different problem points and corresponding solutions for the cou-
pling Focus and Isabelle/HOL. The proofs of some system properties can take
considerable (human) time since the Isabelle/HOL is not fully automated. But
considering the framework “Focus on Isabelle”, which is presented here, we can
influence on the complexity of proofs already doing the specification of systems
and their properties, e.g. modifying (reformulating) specification to simplify the
Isabelle/HOL proofs for a translated Focus specification. Thus, the specifica-
tion and verification/validation methodologies are treated as a single, joined,
methodology with the main focus on the specification part.

The thesis presents not only the approach of coupling of Focus with Is-
abelle/HOL (as deep embedding), namely “Focus on Isabelle”, but also a
complementary approach, “Janus on Isabelle”, that presents a coupling of a
Janus with Isabelle/HOL. Janus [Bro05] is a specification framework for ser-
vices, that is build on the base of Focus and uses different, but similar syntax
and semantics.

The remainder of this chapter gives an overview of the thesis: Sections 1.2,
1.3 and 1.4 introduce the main concepts of Isabelle/HOL, Focus and Janus
respectively, and Section 1.5 gives an overview over the remainder of the thesis.

1.2. Isabelle/HOL

Isabelle [NPW02] is a specification and verification system implemented in the
functional programming language ML. Isabelle/HOL is the specialization of Is-
abelle for Higher-Order Logic. To specify a system with Isabelle is done by
creating theories. Isabelle/HOL allows also to deal with induction without ad-
ditional efforts. A theory is a named collection of types, functions (constants),
and theorems (lemmas). Similar to the module concept from Focus, we can
understand a theory in Isabelle as a module. The general format of a theory T is

theory T = Main + B1 + . . .+ Bn:
declarations, definitions, lemmas with proofs

end

where B1, . . . , Bn are the names of existing theories that T is based on and
declarations, definitions, lemmas with proofs represents the newly introduced con-
cepts.

The base types in Isabelle/HOL are bool, the type of truth values and nat,
the type of natural numbers. The base type constructors are list, the type of
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lists, and set, the type of sets. Function types are denoted by ⇒. The operator
⇒ is right-associative. The type variables are denoted by ’a, ’b etc.

A new datatype can be defined using keyword datatype. The general form of
the definition is

datatype (α1, . . . , αn) t = C1 τ11 . . . τ1k1 | · · · | Cm τm1 . . . τmkm

where αi are distinct type variables, Ci are distinct constructor names and τ ij
are (defined) types.

Type synonyms are created by a types command:

types number = nat

Terms in Isabelle/HOL are formed as in functional programming by applying
functions to arguments. Terms may also contain λ-abstractions.

The notation t :: τ is used, if for a term t an explicit type constraint τ is
needed.

Isabelle/HOL supports also some basic constructs from functional program-
ming, like

if b then t1 else t2

let x = t in u (is equivalent to u where all occurrences of x
are replaced by t)

case e of c1 ⇒ e1 | · · · | cn ⇒ en (evaluates to ei if e is of the form ci)

A recursive function or predicate can be declared in Isabelle/HOL by the key-
word consts:

consts function name :: function type

The keyword primrec indicates that the recursion in the definition is of par-
ticularly primitive kind.

Arbitrary total recursive functions can be defined by means of recdef1 (see
[NPW02]): recursion need not involve datatypes, termination is proved by show-
ing that the arguments of all recursive calls are smaller in a suitable sense.

Constants are defined in Isabelle/HOL by the keyword constdefs, e.g.

constdefs xor :: bool ⇒ bool ⇒ bool

xor def A B ≡ (A ∧ ¬B) ∨ (¬A ∧ B)

A theorem (lemma) can be proved, e.g. in the following ways.

1 This kind of definitions is in general more complicated that the primrec definition: ter-
mination function must be defined explicitly, in most cases Isabelle/HOL needs also some
(nontrivial) hints to prove the termination. If it is possible, it is better to restrict the
definition of a Focus function or predicate to the primitive kind.
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X Automatically:
apply auto
apply clarify
etc.

X Theorems about recursive functions are proved by induction (on the ar-
gument i on which the function is defined by recursion):
apply (induct i) (for recdef-definitions - induct tac instead of induct)

X Using simplification rules, adding to the simplification rules function def-
initions, or ignoring the theorem assumptions (to avoid loops) by simpli-
fication, etc.:

� apply simp

� apply (simp add: Let def) (expand let-construct)

� apply (simp add: xor def) (add the definition of the xor function to
the simplification)

� apply (simp (no asm)) (assumptions are not simplified and not used
in the simplification of the conclusion)

� apply (simp (no asm simp)) (assumptions are not simplified, but are
used in the simplification of the conclusion)

� apply (simp (no asm use)) (assumptions are simplified, but are not
used in the simplification of each other or the conclusion)

X Using automatic case splits, like
apply (split split if) (split if-expression)

X Using rules of natural deduction.

X Generating new subgoal (the corresponding new assumption will be added
to the current goal)
apply (subgoal tac “new assumption”)

X Using predefined theorems or lemmas.

A large collection of predefined Isabelle/HOL theories, e.g. sets, ordered rings
and fields, exponentiations, division operators etc, is presented on the Isabelle/HOL
official web site http://isabelle.in.tum.de/library/index.html.

For detailed description of Isabelle/HOL see [NPW02] and [Wen04].

1.3. FOCUS

Focus [BS01] is a framework for formal specifications and development of dis-
tributed interactive systems. A distributed system in Focus is represented by
its components that are connected by communication lines called channels, and
are described in terms of its input/output behavior, which is total. The compo-
nents can interact and also work independently of each other. A specification

5
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can be elementary or composite – composite specifications are built hierar-
chically from the elementary ones. Elementary specifications are divided into
untimed, timed, and time-synchronous according their level of time abstraction
(see Section 1.3.1).

The channels in this specification framework are asynchronous communica-
tion links without delays. They are directed, reliable, and order preserving.
Via these channels components exchange information in terms of messages of
specified types. Messages are passed along the channels one after the other and
delivered in exactly the same order in which they were sent.

In Focus any specification characterizes the relation between the communica-
tion histories for the external input and output channels. The formal meaning
of a specification is exactly this external input/output relation. The Focus
specifications can be structured into a number of formulas each characterizing
a different kind of property, the most prominent classes of them are safety and
liveness properties.

1.3.1. Concept of Streams

The central concept in Focus are streams, that represent communication his-
tories of directed channels. For any set of messages M , M ω denotes the set of
all streams, M∞ and M ∗ denote the sets of all infinite and all finite streams
over the set M respectively.

M ω def= M ∗ ∪M∞

M ∗ def=
⋃

n∈N([1..n] → M )

M∞ def= N+ → M

In Focus streams are represented as functions mapping natural numbers to
messages, where a message can be for the case of untimed stream only a data
message of some type and for the case of timed stream either a data message
or time tick (represented by

√
).

An empty stream is denoted in Focus by 〈〉.
M ω denotes in Focus the set of all timed streams, M∞ and M ∗ denote the

sets of all infinite and all finite timed streams over the set M respectively:

M ω = M ∗ ∪M∞

M ∗ def=
⋃

n∈N([1..n] → M ∪ {
√
})

M∞ def= N+ → M ∪ {
√
}

Defined in this way, streams are functions mapping the indexes in their domains
to their messages. A timed stream is represented by a sequence of messages and
time ticks, the messages are also listed in their order of transmission. The ticks
model a discrete notion of time (see also Section 1.4).
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1.3.2. Operators on Streams

The domain and the range of a stream are defined in Focus like for the func-
tions:

dom ∈ M ω → {[1, . . . ,n] | n ∈ N} ∪ {N∞}
rng ∈ M ω → P(M )

The length operator for streams

# ∈ M ω → N∞

yields the length of the stream to which is applied:

#s = k ⇔ s ∈ [1, . . . , k ] → M

The nth message of a stream s can be denoted in Focus either by s(n) or by
s.n. We prefer the second kind of notation.

Another basic Focus operator on streams is the concatenation operator :

_ ∈ M ω ×M ω → M ω

The concatenation of two streams produces a stream that starts with the mes-
sages of the first stream followed by the messages of the second stream:

(s _ r).k
def
=

{
s.k if 1 ≤ k ≤ #s

r .(k −#s) if #s < k ≤ #s + #r

By this definition it follows that

#s = ∞ ⇒ s _ r = s

The append function m & s results concatenation of the message m to the head
of stream s:

m & s def= 〈m〉_s

The first and rest operators yield the first element of the stream and the stream
without the first element respectively:

ft ∈ M ω → M ∪ {⊥}, rt ∈ M ω → M ω

ft.s def=

{
⊥ if #s = 0

s.1 otherwise

rt.s def=

{
〈〉 if #s = 0

r otherwise , where s = (ft.s) & r

A stream r is a prefix of a stream s if r is an initial segment of s or if r is equal
to s. The prefix ordering relation is defined as follows:

v ∈ M ω ×M ω → Bool

r v s def= ∃ t ∈ M ω : r _ t = s

7
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The truncation operator

| ∈ M ω × N∞ → M ω

is used to truncate a stream at a certain length:

s|j =

{
r if 0 ≤ j ≤ #s,where #r = j ∧ r v s

s otherwise

The filtering operator

SO ∈ P(M )×M ω → M ω

filters away messages that do not belong to the filtering set. M SO s denotes the
substream of s obtained by removing all messages in s that does not belong to
the set M . The Focus definition for a finite stream s:

M SO 〈〉 = 〈〉
m ∈ M ⇒ M SOm & s = m &M SO s

m 6∈ M ⇒ M SOm & s = M SO s

For an infinite stream one additional equation is used:

(rng.s ∩M ) = {} ⇒ M SO s = 〈〉

The stuttering removal operator

∝ ∈ M ω → M ω

removes consecutive repetitions of messages:

∝.〈〉 = 〈〉
∝.〈m〉 = 〈m〉
∝.〈m〉∞ = 〈m〉

∝.(m1 &m2 & s) =

{
∝.(m2 & s) if m1 = m2

m1 & ∝.(m2 & s) otherwise

The application operator

map ∈ M ω × (M → T ) → T ω

applies a function g ∈ M → T to each element of a stream:

map(〈〉, g) = 〈〉
map(m & s, g) = g(m) &map(s, g)

Time abstraction operator has the signature

∈ M ω → M ω

8
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and is formally defined by

s = M SO s

s denotes in Focus the untimed stream obtained by removing all ticks in s.
For example,

〈m1,
√

,m2,m3,
√

,m4,m5,m6,
√

,m7〉 = 〈m1,m2,m3,m4,m5,m6,m7〉

The timed truncation operator

↓∈ M ∞ × N∞ → M ∗

truncates a timed infinite stream at a certain point in time:

s↓n
def=


s if n = ∞
〈〉 if n = 0

r otherwise , where r v s ∧#{
√
} SO r = n ∧ r .#r =

√

For example, let

s = 〈m1,
√

,m2,m3,
√

,m4,m5,m6,
√

,m7,
√

. . . 〉,

then

s↓0 = 〈〉
s↓1 = 〈m1,

√
〉

s↓2 = 〈m1,
√

,m2,m3,
√
〉

s↓3 = 〈m1,
√

,m2,m3,
√

,m4,m5,m6,
√
〉

. . .

Thus, the last message in the truncated stream s↓n (if it is nonempty) is always
a tick

√
.

The predicate

ts ∈ M ∞ → Bool

holds for a timed stream s, iff s is time-synchronous in the sense that exactly
one message is transmitted in each time interval:

ts(s) def= ∀ j ∈ dom.s : (even(j ) ⇔ s.j =
√

)

The Focus time stamp operator tm s k yields the time interval in which the
kth message in the time stream s is transmitted.

k ∈ dom.s =⇒ tm(s, k) def= min{j ∈ N | #s ↓j ≥ k}

For example, let

s = 〈m1,m2,
√

,
√

,m3,m4,m5〉,

then

tm(s, 1) = 1

tm(s, 2) = 1

tm(s, 3) = 3

9
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1.3.3. Specification Styles

Focus supports a variety of specification styles which describe system compo-
nents by logical formulas or by diagrams and tables representing logical formulas
(see Figure 1.1):

X Relational Style – specification is expressed directly as a relation between
the input and output streams.

X Equational Style – the behavior is described as equations, the specifi-
cations look very much like programs coded in a functional program-
ming language, this style is suited for the later implementation-dependent
stages of system development, but it can also be used at the requirements
specification level.

X Assumption/Guarantee Style (A/G Style, Assumption/Committment Sty-
le) – a component is specified in terms of an assumption and a guarantee,
what means whenever input from the environment behaves in accordance
with the assumption, the specified component is required to fulfill the
guarantee.

X Graphical Style – based on tables and diagrams that are more readable
and which can be schematically translated into equational or relational
style (or into specifications expressed in predicate logic).2

It is also possible to use in Focus a combination of specification styles – one
part of specification is expressed in one style and another part in another style.
For example, we can specify a system in A/G style, where the assumption part
is specified in the equational or in the relational style and the guarantee part
is specified in the graphical style (see the FlexRay case study in Section 4.2).

1.3.4. Elementary and Composite Specifications

In Focus we can have both elementary and composite specifications. Elemen-
tary specifications (see Figure 1.1) are the atomic blocks for system represen-
tation, and in this case we distinguish among three frames, which correspond
to the stream types in the specification: the untimed, the timed and the time-
synchronous frame (see Section 1.3.1).
Any elementary Focus specification has the following syntax:

Name (Parameter Declarations) Frame Labels

in Input Declarations

out Output Declarations

Body

Name is the name of the specification; Frame Labels lists a number of frame
labels, e.g. untimed, timed or time-synchronous, that correspond to the stream

2 There exists of course also a schematic translation in the other direction.
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Elementary Specifications

Untimed Frame Timed Frame Time-Synchronous Frame

Relational StyleA/G StyleGraphical StyleEquational Style

Figure 1.1.: FOCUS Specification Frames and Styles: Elementary Specifications

types in the specification (see Section 2.2); Parameter Declarations lists a num-
ber of parameters (optional); Input Declarations and Output Declarations list
the declarations of input and output channels respectively. Body characterizes
the relation between the input and output streams, and can be a number of
formulas, or a table, or diagram or a combination of them.

Having a timed specification we have always to deal with infinite timed
streams by the definition of semantics of timed frame.

Definition: 1.1
The semantics of any elementary timed specification S (written [S]) is defined
in [BS01] to be the formula:

iS ∈ I∞S ∧ oS ∈ O∞
S ∧ BS (1.1)

where iS and oS denote (lists of) input and output channel identifiers, IS and
OS denote their corresponding types, and BS is a formula in predicate logic
that describes the body of the specification S . denotes the corresponding .

2

To denote that the (lists of) input and output channel identifiers, I and O , build
the syntactic interface of the specification S the following notation is used:

S ∈ (I �O)

The sets (lists) iS and oS of input and output channel identifiers of the specifi-
cation S must be disjoint (see also Section 3.2).

For the most general case of specification we also need to argue about its param-
eters. For these purposes we extend the definition from [BS01] of the semantics
of an elementary timed specification (Definition 1.1) to one of an elementary
timed parameterized specification:

11
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Definition: 1.2
For any elementary timed parameterized specification S we define its semantics,
written [S], to be the formula:

iS ∈ I∞S ∧ pS ∈ PS ∧ oS ∈ O∞
S ∧ BS (1.2)

where iS and oS denote lists of input and output channel identifiers, IS and
OS denote their corresponding types, pS denotes the list of parameters and PS

denotes their types, BS is a formula in predicate logic that describes the body
of the specification S . 2

Composite specifications (see Figure 1.2) are built hierarchically from elemen-
tary ones using constructors for composition and network description and can
be represented in the graphical, the constraint and operator style. Semantics of
a composite Focus specification is defined in [BS01] as given below.

Composite Specifications

Graphical Style Constraint Style Operator Style

Figure 1.2.: FOCUS Specification Styles: Composite Specifications

Definition: 1.3
For any composite specification S consisting of n subspecifications S1, . . . ,Sn ,
we define its semantics, written [S], to be the formula:

[S]
def
= ∃ lS ∈ L∞S :

n∧
j=1

[Sj ] (1.3)

where lS denotes a list of local channel identifiers and LS denotes their corre-
sponding types. 2

Remark: A component S with input channels i1, . . . , in , output channels
o1, . . . , om and parameters p1, . . . , pk (e.g. in some composite specification) can
be referred in constraint style by

(o1, . . . , om) := S (p1, . . . , pk )(i1, . . . , in)

Remark: One Focus stream can be an input of many components with-
out using an extra component to split this stream, but to merge a number of
streams into one stream some extra component is needed.
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1.3.5. Sheaves and Replications

A specified system can contain a number of copies of channel of the same type
or several instances of the same component. If this number of copies is finite,
fixed and small enough to have a readable specification we can use the simple
composition kinds. In the cases when

(1) the number of copies must be specified as some variable of type N or

(2) the number of copies is finite and fixed, but too large to have a readable
system specification

the additional notions of sheaf of channels and replication of specifications are
needed.

If a number of channels (streams) of the same type need to be represented in
a specification, the concept of sheaf of channels [BS01] can be used. A sheaf of
channels in Focus can be understood as an indexed set of channels. A system
with the input sheaf of channels x1, . . . , xk (each of the channels has the type
M1), and the output sheaf of channels y1, . . . , yr (each of the channels has the
type M2) will be represented in Focus as the following specification S :

S Frame Labels

in x [{1, . . . , k}] : M1

out y [{1, . . . , r}] : M2

Body

The Focus technique for replication of specifications allows us to specify in
simple and readable way a system that uses a number of several instances of
the same component. Let discuss the Focus representation of the specification
replication [BS01].

C(constant p ∈ P) Frame Labels

in i1 : I1; . . . ; in : In

out o1 : O1; . . . ; om : Om

Body

Let Cid be a set of component identifiers and g ∈ Cid → P . A network
RepC consisting of exactly one instance of the specification C for each identifier
j ∈ Cid is described in Focus by the expression

⊗j∈CidC (g(j ))(i1[j ], . . . , in [j ], o1[j ], . . . , om [j ]) (1.4)

where ⊗ denotes in Focus the mutual feedback operator, which is defined as
follows:

[[ S1 ⊗ S2 ]] def= ∃ l ∈ L∞ : [[ S1 ]] ∧ [[ S2 ]]

13
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The syntactic interface of RepC is equal to the union of the external interfaces
of its component specifications:

IRepC = i1[Cid ]; . . . ; in [Cid ]

ORepC = o1[Cid ]; . . . ; om [Cid ]

The graphical representation of the specification RepC is given below.

RepC(const p1, . . . ,pN ∈ P) glass-box

C(g(c))

i1[j]: I1 in[j]: In… 

o1[j]: O1 om[j]: Om… 

j  Cid

Because all inputs and outputs of RepC are sheaves of channels – n input and
m output sheaves, and moreover, the parameters of the specification RepC also
build a sheaf.

1.3.6. Refinement

System refinement provides a natural mechanism for structuring complex sys-
tems for increased readability. It is now widely recognized that it is not ad-
visable and in most cases even impossible to make a concrete implementation
of a large system from its abstract requirements specification in a single step.
In practice a stepwise development is used – the requirements specification is
refined into a concrete implementation stepwise, via a number of intermediate
specifications (see [Bro97]).

Thus, a system development process has several levels of abstraction: from a
requirement specification to a concrete implementation description. All these
levels can be split into the following phases:

1. Requirement phase: Developing abstract formalization of an informal
description. It will be used as the basis for the next phases.

2. Design phase: Developing the architecture of the system and refining it
up to required level of granularity.

3. Implementation phase: Transformation of the specification, developed
in the design phase, into one of the supplied implementation languages.

The presented here approach concentrates on the first two phases.

The Focus specification framework uses three basic refinement relations:
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Behavioral Refinement:
The related specifications S1 and S2 must have the same syntactic in-
terface. The refined specification S2 may meet further requirements in
addition to the requirements on the more abstract specification S1. At
the same time, the more concrete specification S2 must meet all the re-
quirements on the specification S1. This kind of refinement is used to
reduce the number of possible output histories for a given input history.
The formal definition of behavioral refinement [BS01] (also called property
refinement) is presented in Section 3.1.2.

Interface Refinement:
This kind of refinement is a generalization of the behavioral refinement
– it allows to work on the different levels of interface abstraction: the
related specifications S1 and S2 may have different syntactic interface.
The interface refinement is used, e.g. when

X the datatypes of messages and channels is changed,

X one channel is represented by several channels or vice versa,

X one step of interaction is replaced by several steps of interaction or
vice versa,

X additional error handling is included into a system specification, etc.

The formal definition of interface refinement [BS01] is presented in Section
3.1.3.

Conditional Refinement:
The conditional refinement is a generalization of the interface refinement
– it allows the introduction of additional input assumptions. The formal
definition of conditional refinement [BS01] is presented in Section 3.1.4.

We are using the definitions of refinement from [BS01].

Definition: 1.4
A specification S2 is called a behavioral refinement (S1  S2) of a specification
S1 if

X they have the same syntactic interface and

X any I/O history of S2 is also an I/O history of S1.

The relation  of behavioral refinement is defined (see also [BS01]) by equiva-
lence

(S1  S2) ⇐⇒ ([S2] ⇒ [S1]) (1.5)

2

Formally it means, that any I/O history of S2 is an I/O history of S1, but S1

may have additional I/O histories.
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Definition: 1.5
Let S1, S2, D , and U be specifications s.t.

S1 ∈ (I1 �O1), S2 ∈ (I2 �O2), D ∈ (I1 � I2), U ∈ (O2 �O1)

The relation
(D ,U )
 of interface refinement is defined as follows.

S1
(D ,U )
 S2

⇔ S1  (D � S2 � U )

⇔ [[ D � S2 � U ]] ⇒ [[ S1 ]]

(1.6)

where � denotes in Focus piped composition of specifications.
2

U and D are called representation specifications, and S1 and S2 the abstract
and concrete specification, respectively (see Figure 1.3).

S1

S2

D U

abstract level

concrete level

Figure 1.3.: Interface Refinement

Interface refinement is a generalization of behavioral refinement, and conditional
refinement can be seen as generalization of interface refinement.

Definition: 1.6
Let S1, S2, D , U , and C be specifications s.t.

S1 ∈ (I1 �O1), S2 ∈ (I2 �O2)

D ∈ (I1 � I2), U ∈ (O2 �O1), C ∈ (O1 � I1),

The relation
(D ,U )
 C of conditional interface refinement is defined as follows.

S1
(D ,U )
 C S2

⇔ S1  C (D � S2 � U )

⇔ [[ C ]] ∧ [[ D � S2 � U ]] ⇒ [[ S1 ]]

(1.7)

2
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S1

S2

D U

abstract level

concrete level

C

Figure 1.4.: Conditional Interface Refinement

Figure 1.4 illustrates the definition above. The specification C is called here
condition and represents the additional input assumptions.

If D and U are identities, we speak about conditional behavioral refinement
and write

S1  C S2

1.3.7. Causality

For a timed Focus specification S the relation RS is called the I/O behavior
of S :

RS ⊆ IS ∞ ×OS
∞

We distinguish two kinds of causality for I/O behaviors:

X Weak causality

∀ x , y ∈ I ∞; t ∈ N : x↓t = y↓t ⇒ (R.x )↓t = (R.y)↓t (1.8)

X Strong causality

∀ x , y ∈ I ∞; t ∈ N : x↓t = y↓t ⇒ (R.x )↓t+1 = (R.y)↓t+1 (1.9)

whereR.x and (R.x )↓t are defined for any x ∈ IS ∞, t ∈ N andR ∈ IS ∞×OS
∞

by

R.x def= {y ∈ O ∞ | (x , y) ∈ R}
(R.x )↓t

def= {y↓t ∈ O ∞ | y ∈ R.x}

Specifying embedded real-time systems we always need (at least) weak causality.
The strong causality is required to prevent Zeno paradoxes, if we want to have
feedback loops (see Section 2.12.4).
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1.4. JANUS

In this approach we use a highly simplified Janus [Bro05] representation of the
service notion. Janus is a formal model of services and layered architectures
that is based on the Focus theory of distributed systems. A Janus service,
like a Focus component, has a syntactic interface, but, in comparison to a
component, a service has a partial behavior – it is defined only for a subset of
its input histories.

Given a set M , by M ∗ and M ∞ will be denoted the set of finite and and
the set of infinite sequences of elements of M respectively – both in Janus and
in Focus. In Janus another definition for the timed streams as in Focus is
introduced. The set of non-timed (finite and infinite) streams in Janus will be
denoted also like in Focus by

M ω def= M ∗ ∪M ∞

A timed finite and infinite Janus streams M ∗ and M∞ over the set of messages
M is defined respectively by the following functions

M ∗ def=
⋃

n∈N([1..n] → M ∗)

M∞ def= N → M ∗

M ω = M ∗ ∪M∞

Thus, in Janus no
√

are used and the time intervals are represented directly.3

In general, there is nothing against usage the Janus notations for the Focus
specifications, because definitions have at the result very similar semantics.
In our approach we define operators which cover the details of time interval
representation. Thus, the results of “Focus on Isabelle” can be also extend to
a complementary approach, “Janus on Isabelle”, that presents a coupling of a
Janus with Isabelle/HOL.

Remark: In contrast to Focus, the numeration of time intervals and of
the elements in a sequence starts in Janus (like in our Isabelle/HOL formal-
ization of streams) from 0 and not from 1 (e.g. N → M ∗ and not N+ → M ∗).

1.5. Outline

The thesis is organized as follows: Chapters 2 and 3 are the technical core of the
thesis. Chapter 2 introduces a coupling and an implementation of the formal
specification framework Focus in the generic theorem prover Isabelle/HOL –
the translation of the elements of the Focus language – datatypes, streams
(with comparison to other approaches in this area), operators, functions and
predicates, different kinds of specification, and a number of Focus extras4 –

3 Our method to represent Focus (and Janus) streams in Isabelle/HOL is equal to the
Janus method modulo Isabelle/HOL syntax.

4Sheaves of channels, specification replications, etc.
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1.5. Outline

into Isabelle/HOL, i.e. deep embedding of Focus into Isabelle/HOL. In this
chapter also are presented a number of syntax extensions for specification of
timed systems. Chapter 3 presents the ideas of the specification and verification
methodology, as well as the ideas of the so-called refinement-based verification.
Chapter 4 shows feasibility of the approach on three case studies that cover
different application areas and the different specification elements (ordered by
their size):

X Steam Boiler System (process control),

X FlexRay communication protocol (data transmission),

X Automotive-Gateway System (memory and processing components, data
transmission).

Chapter 5 summarizes the whole work.The Isabelle/HOL definitions and lem-
mas about the Focus operators are presented in Appendix A. Appendix B
contains the Isabelle/HOL specifications and proofs for the case studies.
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This chapter introduces a coupling and an implementation of the formal spec-
ification framework Focus in the generic theorem prover Isabelle/HOL. We
present here the translation of the Focus specifications of embedded real-time
systems into Isabelle/HOL for proving properties of these systems.

The main questions discussed in this chapter are:

X How will the translation of Focus specifications and main concepts into
Isabelle/HOL (deep embedding) be done?

X Is there anything special on the specification of embedded real-time sys-
tems?

X Which of the streams representation approaches is more appropriate for
the case of Focus specifications of embedded real-time systems?

X Do we need some restrictions on specifications of such systems? Can we
use this knowledge to simplify the specification in Focus and make it in
methodological way?

X How will Focus datatypes be represented in Isabelle/HOL?

X How will the standard Focus operators be represented in Isabelle/HOL?

X Do we need some special operators or definitions for simplification of the
Focus specification of the embedded real-time systems?

X Which kind of graphical specification techniques is especially appropriated
in this case?

X How the semantics of a Focus specification be defined in Isabelle/HOL?

X Is there anything special on the specification with sheaves of channels or
with replications?

X How the correctness of the relations between the sets of input, output
and local channels can be proved? Can we define some proof schemata to
make these proofs automatically?

X Are in Focus some kinds of specification constructions which are not very
well situated to the translation to Isabelle/HOL? If this is the case, how
we can reformulate them without changing their semantics?
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2. Focus on Isabelle

2.1. Specification of Embedded Real-Time Systems

In this section we discuss the special features of the specification of embed-
ded real-time systems: why the focus on the timed domain is such important
and how the original Focus syntax can be extended to have more readable
specifications of such kind of systems.

Specifying embedded real-time systems we always need to argue about time.
The notion of time takes center stage for this kind of systems and abstracting
from time we may loose very important properties, e.g. the causality property,
that are not only very important for the system, but also help us to make proofs
easier. Thus, the timed domain is the most important one for representation of
distributed systems with real-time requirements. Therefore, the better way to
represent a real-time system in Focus is to use timed specification, or, more
precisely, specifications with timed or time-synchronous frame (see Section 1.3.4).
All input, output and local streams in such specifications are timed or time-
synchronous and, by the Focus definition of timed stream, infinite.

Specification of a real-time system in the untimed frame may be in some cases
shorter or more elegant from mathematical point of view, but case studies have
shown, that to understand such specifications and to argue about their prop-
erties is in many cases much more difficult in comparison to the corresponding
specifications in the timed frame that use causality property explicitly. More-
over, abstraction from timing aspects can easily lead to specification mistakes
because of difficulties of correct abstraction.

Hence, we can restrict the Focus specification domain for representation
embedded real-time systems to only timed and time-synchronous systems. This
simplifies the translation into Isabelle and also allows us to concentrate on the
timing properties to have not only more clear and readable specifications, but
also simpler proofs about them.

Considering causality (weak or strong) it is simpler and also more readable
to argue not about single messages in a timed stream, but about a sequence of
messages that are present in this stream at some time interval. This sequence
can be in general empty, contain a single message or a number of messages. In
the case of time-synchronous stream this sequence must always contain exactly
one message.

For easier argumentation about the behavior of a component at some time
interval we introduce in Focus a special kind of tables and a number of new
operators (see Section 2.5).

The concrete meaning of a time interval is not defined in the Focus specifi-
cation, but it must be specified additionally as a remark to the specification.
Otherwise a number of questions can be obtained, e.g. the following ones: Do
all time intervals have the same duration? If all time intervals have the same
(constant) duration, how much seconds (nanoseconds, milliseconds, minutes,
hours, etc.) does it take?

This interpretation flexibility allows to specify systems also for the case where
the “time intervals” does not have the same (constant) duration and are un-
derstood as a formal technique for a causality representation.
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2.2. Stream Representation

2.2. Stream Representation

As mentioned in the previous section, the timed domain is the most impor-
tant one for representation of distributed systems with real-time requirements.
Therefore, we restrict our approach only to the timed specifications. With other
words, to specify the behavior of a real-time system one simply needs to use
infinite timed streams – to represent the input and the output streams.

The type of finite timed streams will be used only if some argumentation
about a timed stream that was truncated at some point of time is needed.

The type of finite untimed streams will be used to argue about a sequence of
messages that are transmitted during a time interval.

The type of infinite untimed streams will be used in the case of timed spec-
ifications only to represent local variables of Focus specifications (see also
Section 2.7).

There are different ways of formalizing streams. They have different advan-
tages and disadvantages. One of the ways to represent Focus streams is to use
the coalgebraic approach (see [JR97]), but the representation of Focus streams
in a coalgebraic domain (see [Spi03]) is more difficult to understand in practice
as an inductive one in Isabelle/HOL, especially for the case of restriction the
specification domain to only real-time systems.

The representation of Focus streams in Isabelle/HOLCF that was done by
D. von Oheimb (see [vO05]) does not cover representation of Focus timed
streams, which are the most important for the specification of embedded real-
time systems. HOLCF (see [Reg94], [Reg95] and [MNvOS99]) is the definitional
extension of Church’s Higher-Order Logic with Scott’s Logic for Computable
Functions that has been implemented in Isabelle. HOLCF supports standard
domain theory but also coinductive arguments about lazy datatypes. The main
disadvantage of using HOLCF in practice is difficulty of logic understanding in
comparison to HOL.

The further development of the Focus stream representation in Isabelle/
HOLCF is presented by the approach of B. Gajanovic and B. Rumpe [GR06],
that covers HOLCF specification of many important operators on streams, like
concatenation, delete prefixes, take an element of the stream etc., as well as the
properties of these operators. But this representation of the Focus streams
in Isabelle/HOLCF covers only the general representation of streams, and ab-
stracts from the representation of timing aspects as well as from the question
how to deal with proofs for such translated specifications. Thus, the repre-
sentation of the timing aspects can be done as an extension, but the resulting
construction will be much more complicated than is needed for system specifi-
cation in the embedded real-time domain.

To represent Focus streams in Isabelle/HOL we need to take into account
both properties of Focus and Isabelle/HOL. In Isabelle/HOL we can represent
streams in the two following ways. The first way is the representation of streams
as

α seq = N → α option

where the datatype
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2. Focus on Isabelle

α option ≡ None | Some α

and None denotes a non-existing element (see [Pau94] and [NS95]). This ap-
proach is claimed to be inconvenient in practice to prove equalities of arbitrary
functions (see [DGM97]), because for every operation over such a stream the
notion of stream normal form must be used explicitly to avoid the case in which
None appears within a sequence the specification, but it is not straightforward
to construct the normal form.

The second way, the representation of streams as the disjoint sum of finite
stream (lists) and infinite streams (functions), has been chosen by C.-T. Chou
and D. Peled (see [CP96]) and by S. Agerholm (see [Age94]). The main dif-
ficulties (see [DGM97]) in using this approach arise from type comparison in
the definitions of stream processing functions – all inputs are finite, all inputs
are infinite or some of them are finite and some infinite – several versions of
function definitions are needed. But in the case we work only with timed frames
we do not have this disadvantage, because we deal with timed streams that are
always infinite1. Moreover, such a representation in this case leads to more
clear specification structure. This representation is the most natural one to
Focus and will be used in this approach for the our representation of Focus
in Isabelle/HOL.

To represent a discrete notion of time we will use the Janus representation of
infinite timed streams: an infinite timed stream of some type M is represented
as a function from natural numbers to the finite sequences (lists) of the type
M that, where each finite sequence corresponds to the sequence of messages
transmitted in the corresponding time interval. A finite timed stream of some
type M is represented as a finite sequences of finite sequences (lists) of the type
M , where again each finite sequence of the type M corresponds to the sequence
of messages transmitted in the corresponding time interval.

The definition in Isabelle/HOL of corresponding types is given below:

X Finite timed streams of type ′a are represented by the type ′a fstream,
which is an abbreviation for the type ’a list list.

X Finite untimed streams of type ′a are represented by the list type: ′a list.

X Infinite timed streams of type ′a are represented by the type ′a istream,
which represents the functional type nat ⇒ ′a list.

X Infinite untimed streams of type ′a are represented by the functional type
nat ⇒ ′a.

datatype ′a stream = FinT ′a fstream
| FinU ′a list
| InfT ′a istream
| InfU nat ⇒ ′a

1 The timed streams must be infinite because time never halts.
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2.2. Stream Representation

Remark: Translating definitions about finite untimed streams (lists) we
will use predefined Isabelle/HOL theory List.thy. This theory is easy to use and
it has a number of proved properties about lists that can be useful for making
proofs. We also define a number of additional lemmas about lists that were
useful in the case studies (see Chapter 4) as the theory ListExtras.thy (see Ap-
pendix A.5).

A special kind of streams are time-synchronous streams, where each message
represents one time interval (such kind of stream does not contain

√
). In

Focus these streams are represented as untimed streams given a particular
timed interpretation, i.e. their semantics is timed, but the syntax is equal to
the syntax of untimed streams. Strictly speaking, the Focus time-synchronous
streams cannot be combined in a composite specification with any other kind
of streams, neither with untimed streams, because of different semantics, nor
with timed streams, because of different syntax.

For this reasons, such a stream is modeled in this approach as a timed stream
for which a predicate ts 2 holds (for more detail see Section 2.10). This repre-
sentation allows to combine timed and time-synchronous specification.

Remark: By the Focus definition both timed and time-synchronous
streams are infinite. It is important to note, that if we make a time-synchronous
stream untimed we get always an infinite stream, but making a timed stream
untimed we can get in some cases a finite untimed stream as result.

Remark: The numeration of stream elements starts in our Isabelle/HOL
representation from 0 because of the types definition in Isabelle/HOL, where
in Focus it starts from 1. This is taken into account in the representation of
the Focus operators in Isabelle/HOL. However, arguing about timed streams
via time intervals, e.g. using the operator ti (see Section 2.5.3) or a tiTable (see
Section 2.6), we avoid this problem automatically.

In [BS01] a large set of the operators on streams is defined. We have represented
the main part of them, which is needed to argue about real-time systems, in
Isabelle/HOL. We discuss here only the operators that are presented in Sec-
tion 1.3.2. We present only the signatures of another operators – the whole
representation is give in Appendix A as an Isabelle/HOL theory.

Remark: [ E ]Isab denoted here the Isabelle/HOL representation of the
Focus expression E .

2The predicate ts(s) is true, if every list of infinite stream s contains exactly one element
(see Section 1.3.2).
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2.3. Representation of Datatypes

Before we start to discuss the representation of the Focus operators in Is-
abelle/HOL, we need to illuminate how the Focus datatypes will be rep-
resented. Table 2.1 summarises the translation of Focus datatypes into Is-
abelle/HOL. As mentioned in Section 1.2, the base types in Isabelle/HOL are
bool, the type of truth values, and nat, the type of natural numbers. The base
type constructors are list, the type of lists, and set, the type of sets. The poly-
morphic types can be defined using type variables denoted by ’a, ’b etc.

An enumeration type can be represented in Focus in two ways that have the
same semantics:

type T = e1 | · · · | en and

type T = {e1, . . . , en}

We represent them in Isabelle/HOL by

datatype T = e1 | · · · | en

The Focus records type RV

type RV = con1(sel11 ∈ T 1
1 , . . . , sel1k1

∈ T 1
k1

)

. . .

| conn(seln1 ∈ T n
1 , . . . , selnkn ∈ T n

kn
)

will be translated into Isabelle/HOL as follows:

datatype

RV = con1 con type1 | . . . | conn con typen

where coni is a constructor name and the datatype con typei , 1 ≤ i ≤ n, is
defined as follows

record con typei =
seli1 :: [[T i

1 ]]Isab
. . .
seliki :: [[T i

ki
]]Isab

If Ti is a composed type, then its Isabelle/HOL semantics must be written
in “ ”. If some type consists only of one record, i.e. n = 1, we can represent
them in Isabelle/HOL simply using only a record-definition. For example, the
Isabelle/HOL semantics of the Focus type

type Config = conf (schedule : N ∗, cycleLength : N)

is specified by

record Config =
schedule :: “nat list”
cycleLength :: nat;
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2.3. Representation of Datatypes

The Isabelle/HOL semantics of an undefined Focus type M will be some type
variable (’a, ’b etc.). Thus, if a record type R is based on some undefined type
Ti (is polymorphic) and [[Ti ]]Isab = ’a, then ’a will be added to the Isabelle/HOL
definition of R between the keyword record and the name of type, R.

For example, let the datatype Data be undefined. Then the following Focus
type is polymorphic

type Message = msg (message id : N, ftcdata : Data)

and must be represented in Isabelle/HOL by

record ’a Message =
message id :: nat
ftcdata :: ’a;

Focus type, T Isabelle/HOL representation, [[T ]]Isab
N nat

Bool bool

M ∗ [[M ]]Isab list

M ∗ [[M ]]Isab fstream

M ∞ nat ⇒ [[M ]]Isab
M ∞ [[M ]]Isab istream

M ω [[M ]]Isab stream

x ∈ M ([[x ]]Isab :: [[M ]]Isab)

type T = e1 | · · · | en datatype T = e1 | · · · | en

type T = {e1, . . . , en} datatype T = e1 | · · · | en

type R =

constr(sel1 ∈ T1, . . . , selk ∈ Tk )

record R =

sel1 :: [[T1]]Isab
. . .

selk :: [[Tk ]]Isab

Table 2.1.: Isabelle/HOL representation of the FOCUS types (M is here some
datatype)
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2.4. FOCUS Operators Representation

In this section we discuss the representation of Focus operators (presented in
Section 1.3.2) in Isabelle/HOL. The new defined Focus operators as well as
their representation in Isabelle/HOL will be given in Section 2.5. Isabelle/HOL
specifications of all these operators are presented in Appendices A.1, A.2 and
A.3. From here, we add the prefix fin to all Isabelle/HOL operators defined on
finite timed streams, and the prefix inf to all Isabelle/HOL operators defined
on infinite timed streams.

2.4.1. nth Message of a Stream

This operator is more appropriate for untimed Focus streams. To use this op-
erator for timed streams is unusual, but we introduce it for all kind of streams.
For a finite untimed stream s we can use the Isabelle/HOL operator nth, pre-
defined in the theory List.thy3:

[[s.(n + 1)]]Isab ≡ nth s n

We can take the nth message of an infinite untimed stream s “directly”:

[[s.(n + 1)]]Isab ≡ s n

For finite and infinite timed streams we define operators fin nth, [[s.n]]Isab ≡
(fin nth s n), and inf nth, [[s.n]]Isab ≡ (inf nth s n), respectively.

consts
fin nth :: ′a fstream ⇒ nat ⇒ ′a
inf nth :: ′a istream ⇒ nat ⇒ ′a

primrec
fin nth Cons:

fin nth (hds # tls) k =
( if hds = []

then fin nth tls k
else ( if (k < (length hds))

then nth hds k
else fin nth tls (k − length hds) ))

primrec
inf nth s 0 =

hd (s (LEAST i .(s i) 6= []))
inf nth s (Suc k) =

( if ((Suc k) < (length (s 0 )))
then (nth (s 0 ) (Suc k))
else ( if (s 0 ) = []

then (inf nth (inf tl (inf drop
(LEAST i . (s i) 6= []) s)) k )

else inf nth (inf tl s) k ))

3The nth operator is defined in Isabelle/HOL only for nonempty streams: the definition of
this operator is given by recursion on the list, and the base case (the list is an empty one)
of the recursion is omitted, see [Nip05]).
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2.4.2. Length of a Stream

The length of an infinite untimed stream is by definition equal to ∞. It is
insufficient to use the length operator for infinite timed streams, because this
operator counts a number of messages in a stream, thus, it argues over single
messages of a stream and not over its time intervals. In general, the length of
an infinite timed stream (i.e. a number of messages in this stream) can also
be finite. The notion that a timed stream has infinitely many messages can
be expressed by the property “the stream has infinitely many nonempty time
intervals” (see Section 2.5.3).

For a finite untimed stream s we can use the Isabelle/HOL operator length,
predefined in the theory List.thy:

[[#s]]Isab = length [[s]]Isab

For a finite timed stream we define operator fin length that counts the number
of messages of all time intervals of the stream:

consts
fin length :: ′a fstream ⇒ nat

primrec
fin length [] = 0
fin length (x#xs) = (length x ) + (fin length xs)

According to this definition, we get for an finite timed stream s

[[#s]]Isab = fin length [[s]]Isab

2.4.3. Concatenation Operator

We represent the concatenation operator on streams x and y , x _y , according
to the types of x and y in Table 2.4.3. This operator is defined only if both
streams are timed or both streams are untimed, the mix version makes no
sense. If both streams are finite, we use the function @ that is predefined in the
Isabelle/HOL theory List.thy as concatenation function for two lists. If the first
stream is finite, and the second stream is infinite, we have as result an infinite
stream generated by a function fin inf append. If the first stream is infinite, we
have as result this stream, otherwise we append the second stream to the first
one.

We define the function fin inf append as follows:

constdefs
fin inf append :: ′a list ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a)

fin inf append us s ≡
(λ i . ( if (i < (length us))

then (nth us i)
else s (i − (length us)) ))

29



2. Focus on Isabelle

type of x type of y [[x _y ]]Isab
finite timed finite timed [[x ]]Isab @ [[y ]]Isab
finite timed finite untimed –

finite timed infinite timed fin inf append [[x ]]Isab [[y ]]Isab
finite timed infinite untimed –

finite untimed finite timed –

finite untimed finite untimed [[x ]]Isab @ [[y ]]Isab
finite untimed infinite timed –

finite untimed infinite untimed fin inf append [[x ]]Isab [[y ]]Isab
infinite timed finite timed [[x ]]Isab
infinite timed finite untimed –

infinite timed infinite timed [[x ]]Isab
infinite timed infinite untimed –

infinite untimed finite timed –

infinite untimed finite untimed [[x ]]Isab
infinite untimed infinite timed –

infinite untimed infinite untimed [[x ]]Isab

Table 2.2.: Isabelle/HOL representation of the prefix ordering on streams

For the concatenation operator we have proved a number of lemmas (see the
Isabelle/HOL theory stream.thy in Appendix A.1), e.g.:

#x ,#y ∈ N : #x _y = #x + #y

〈〉_z = z

s1 = 〈x 〉_s ⇒ ti(s1, i + 1) = ti(s, i)

#x ,#y ∈ N, #z = ∞ : x _(y _z ) = (x _y)_z

Remark: The following equality holds: m & s ≡ 〈m〉_s

2.4.4. Prefix of a Stream

If the stream x is infinite, the predicate x v y will be True only if the stream
y is infinite and equal to the first one. If both streams are finite, we can use
the predicate ≤ predefined in the Isabelle theory List.thy as the prefix predicate
for lists. For the case if the first stream is finite and the second one is infinite
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we define an Isabelle/HOL function inf prefix. The prefix ordering on streams
x and y , x v y , is represented according to the types of the streams in Table
2.4.4.

consts
inf prefix :: ′a list ⇒ (nat ⇒ ′a) ⇒ nat ⇒ bool

primrec
inf prefix [] s k = True
inf prefix (x#xs) s k =

( (x = (s k)) ∧ (inf prefix xs s (Suc k)) )

type of x type of y [[x v y ]]Isab
finite timed finite timed [[x ]]Isab ≤ [[y ]]Isab
finite timed finite untimed False

finite timed infinite timed inf prefix [[x ]]Isab [[y ]]Isab 0

finite timed infinite untimed False

finite untimed finite timed False

finite untimed finite untimed [[x ]]Isab ≤ [[y ]]Isab
finite untimed infinite timed False

finite untimed infinite untimed inf prefix [[x ]]Isab [[y ]]Isab 0

infinite timed finite timed False

infinite timed finite untimed False

infinite timed infinite timed (∀ i. [[x ]]Isab i = [[y ]]Isab i)

infinite timed infinite untimed False

infinite untimed finite timed False

infinite untimed finite untimed False

infinite untimed infinite timed False

infinite untimed infinite untimed (∀ i. [[x ]]Isab i = [[y ]]Isab i)

Table 2.3.: Isabelle/HOL representation of the prefix ordering on streams

2.4.5. Truncate a Stream

The operator s ↓t is defined in Focus to truncate a timed infinite stream s at
a certain point t in time. We define the corresponding Isabelle/HOL operator
first only for t ∈ N, i.e. for t 6= ∞:
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consts
inf truncate :: (nat ⇒ ′a) ⇒ nat ⇒ ′a list

primrec
inf truncate s 0 = [ s 0 ]
inf truncate s (Suc k) = (inf truncate s k) @ [s (Suc k)]

For the case t can be also equal to ∞, we define another Isabelle/HOL oper-
ator, inf truncate plus (the Isabelle/HOL type inat denotes the type of natural
numbers extended by a special value ∞ indicating infinity).4 If the stream is
of type M , the result will be of type M ω.

constdefs
inf truncate plus :: ′a istream ⇒ inat ⇒ ′a stream

infT truncate plus s n
≡
case n of (Fin i) ⇒ FinT (inf truncate s i)

| ∞ ⇒ InfT s

2.4.6. Domain and Range of a Stream

It is insufficient to use the domain operator (see Section 1.3.2) for timed streams,
because the argumentation will be not over time interval of a stream, but over
single messages. Thus, we present here the Focus domain operator in Is-
abelle/HOL only for untimed, finite and infinite, streams.

(1) Domain of a finite untimed stream will be defined in two ways: the function
finU dom s returns the domain of the stream s as subset of nat, and the function
finU dom inat s returns the domain of the stream s as subset of inat.

consts
finU dom :: ′a list ⇒ nat set

primrec
finU dom [] = {}
finU dom (x#xs) = {length xs} ∪ (finU dom xs)

constdefs
finU dom inat :: ′a list ⇒ inat set

finU dom inat s ≡ {x . ∃ i . x = (Fin i) ∧ i < (length s)}

We define here the domain operator for finite untimed streams (Isabelle/HOL
lists) recursively, because the main part of the Isabelle/HOL function over lists
is defined in this way. However, for the funU dom operator the following property
holds:

funU dom xs = {i . i < length xs}

4This type is defined in the Isabelle/HOL theory Nat Infinity.thy (see [vO]).
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(2) Domain of an infinite untimed stream (the whole set of natural numbers
extended by a special value indicating infinity):

constdefs
infU dom :: inat set

infU dom ≡ {x . ∃ i . x = (Fin i)} ∪ {∞}

The Focus range operator (see Section 1.3.2) will be represented in Isabelle/HOL
for all kinds of streams.

(1) Range of a finite timed stream:

consts
finT range :: ′a fstream ⇒ ′a set

primrec
finT range [] = {}
finT range (x#xs) = (set x ) ∪ finT range xs

(2) Range of a finite untimed stream:

constdefs
finU range :: ′a list ⇒ ′a set

finU range x ≡ set x

(3) Range of an infinite timed stream:

constdefs
infT range :: ′a istream ⇒ ′a set

infT range s ≡ {y . ∃ i ::nat . y mem (s i)}

(4) Range of an infinite untimed stream:

constdefs
infU range :: (nat ⇒ ′a) ⇒ ′a set

infU range s ≡ { y . ∃ i ::nat . y = (s i) }

2.4.7. Time-synchronous Stream

We represent the Focus predicate ts ∈ M ∞ → Bool in Isabelle/HOL as follows:

constdefs
ts :: ′a istream ⇒ bool

ts s ≡ ∀ i . (length (s i) = 1 )

We have proved a number of lemmas about properties of the predicate ts and
its correlation with other operators (for the proofs see the Isabelle/HOL theory
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stream.thy in Appendix A.1), e.g.:

∀ x : ts(x ) → (∀ t ∈ N : ft.ti(x , t) = x .(t + 1)) (2.1)

2.4.8. Make Untimed

We define the operator s in Isabelle/HOL as follows. For the case of a finite
(timed) stream s we use a function fin make untimed. For the case of an in-
finite (timed) stream s we have two subcases: if from some time interval all
time intervals are empty, we truncate the stream on this time by the function
inf truncate (see Section 2.4.5), and use the function fin make untimed, otherwise
we use the function inf make untimed (in this case the output stream still be an
infinite one).

The function fin make untimed converts the finite timed stream to the cor-
responding finite untimed stream – the resulting stream will be represented
by a single list of all messages. The function inf make untimed converts the
infinite timed stream to infinite untimed one – it is assumed that the input
stream has no infinite sequence of empty lists. The Isabelle/HOL definitions of
the functions fin make untimed and inf make untimed are presented in the theory
stream.thy (see Appendix A.1). The Isabelle/HOL function make untimed gives
an example how such kind of functions can be used, if we have no information
about finiteness of a stream:

constdefs
make untimed :: ′a stream ⇒ ′a stream

make untimed s ≡
case s of (FinT x ) ⇒ FinU (fin make untimed x )

| (FinU x ) ⇒ FinU x
| (InfT x ) ⇒

(if (∃ i .∀ j . i < j −→ (x j ) = [])
then FinU (fin make untimed (inf truncate x

(LEAST i .∀ j . i < j −→ (x j ) = [])))
else InfU (inf make untimed x ))

| (InfU x ) ⇒ InfU x

2.4.9. Time Stamp Operator

The Focus time stamp operator has the signature

tm ∈ M ω × N+ → N

and yields for a timed stream s and a natural number k the index of time
interval in which the kth message in the stream s is transmitted. This operator
is defined in Focus only for such numbers k that k ∈ dom.s̄.

To represent this operator for infinite timed streams in Isabelle/HOL, we
have defined the function inf tm recursively on the number of messages using
recdef kind of definition (the recursion goes here not uniformly – the primitive
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recursion does not work and an additional auxiliary lemma about termination
is needed).

consts
fin tm :: ′a fstream ⇒ nat ⇒ nat

primrec
fin tm [] k = k
fin tm (x#xs) k =

(if k = 0
then 0
else (if (k ≤ length x )

then (Suc 0 )
else Suc(fin tm xs (k − length x ))))

consts
inf tm :: ( ′a istream × nat) ⇒ nat

recdef inf tm measure(λ(s,n). n)
inf tm (s, 0 ) = 0

inf tm (s, Suc i) =
( if (∀ j . s j = [])

then 0
else

(let
k = (LEAST x WRT (λn. n). s x 6= [])

in
(if (Suc i) ≤ (length(s k))
then (Suc k)
else (let

i2 = (Suc i) − (length (s k));
s2 = inf drop (Suc k) s

in
inf tm (s2 , i2 ) )

) )
) (hints intro: inf tm hint [rule format ])

2.4.10. Filtering Operator

We define the filter function M SO s in Isabelle/HOL as follows. If the stream s
is a finite untimed one, we use the function filter predefined in the Isabelle/HOL
theory List.thy:

[[M SO s]]Isab ≡ filter (λ y .y ∈ [[M ]]Isab) [[s]]Isab

If the stream s is an infinite untimed stream one, we use the function filter inf
defined in the Isabelle/HOL theory Filter.thy (see [Ber05]):

[[M SO s]]Isab ≡ filter inf (λ y .y ∈ [[M ]]Isab) [[s]]Isab

For the cases when s is a timed stream, finite or infinite, we define the corre-
sponding functions finT filter and infT filter, which apply the filter function to
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each time interval. Thus, the filtering operator is defined for the timed streams
in such way, that the time ticks

√
are ignored.

constdefs
finT filter :: ′a set => ′a fstream => ′a fstream

finT filter m s ≡ map (λ s. filter (λ y . y ∈ m) s) s

infT filter :: ′a set => ′a istream => ′a istream
infT filter m s ≡ (λi .( filter (λ x . x ∈ m) (s i)))

The function map is predefined in the Isabelle theory List.thy – it applies a
function that is the first argument of the map to the list that is its second
argument.

2.4.11. Application Operator

The application operator map is defined in Focus only for untimed streams.
For a finite stream s we represent this operator by the Isabelle/HOL function
map predefined in the theory List.thy:

[[map(s, f )]]Isab = map [[f ]]Isab [[s]]Isab

For the case of an infinite stream s we use the predefined composition function ◦:

[[map(s, f )]]Isab = [[f ]]Isab ◦ [[s]]Isab

Remark: If the function f is defined over M ∗ (i.e. over lists of messages)
we can also use the operator map(s, f ) for a timed stream s.

2.4.12. Stuttering Removal Operator

The stuttering removal operator∝ is defined in Focus only for untimed streams.
For the case of finite untimed streams we will use an Isabelle/HOL function
remdups, which removes all duplications from the list (see the Isabelle/HOL
theory List.thy):

[[∝ .s]]Isab = remdups [[s]]Isab

Having this restriction we do not use the infinite untimed streams in Focus
specifications directly, but use the corresponding construction in Isabelle/HOL
to represent local and state variables (see Appendix 2.7). Thus, the situa-
tion where we can use the stuttering removal operator ∝ to an infinite un-
timed stream is quite uncommon, but possible. For the case of infinite untimed
streams we define the function inf remdups:

[[∝ .s]]Isab = inf remdups [[s]]Isab

The definition of the function inf remdups is kind of complicated (see Sec-
tion A.1): the situation

∃ i : ∀ j > i : s.i = s.j

must be taking into account. Thus, the stream ∝ .s can be also a finite one.
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2.5. FOCUS Operators: Extensions

In this section we introduce a number of new Focus operators for the argu-
mentation over time intervals as well as their representation in Isabelle/HOL.

2.5.1. Number of Time Intervals in a Finite Stream

We define the operator

Nti ∈ M ∗ → N

to denote the number of time intervals in a finite timed stream as follows:

Nti(s) def=

{
#({

√
} SO s) if s.#s =

√

#({
√
} SO s) + 1 otherwise

For example,

Nti(〈a1, a2,
√

, a3,
√
〉) = 2

Nti(〈a1, a2,
√

, a3,
√

, a4〉) = 3

Nti(〈a1, a2,
√

, a3,
√

, a4,
√
〉) = 3

Nti(〈a1〉) = 1

Nti(〈〉) = 0

The Isabelle/HOL definition of this operator is very simple, we just need to
count the number of lists representing time intervals of the stream:

[[Nti(s)]]Isab ≡ length [[s]]Isab

Using our Isabelle/HOL representation of timed stream, we do not need to
distinguish between the cases “is

√
the last message of the stream” or not,

because in this representation, e.g., the following holds

[[〈a1, a2,
√

, a3,
√

, a4,
√
〉]]Isab

≡ [[〈a1, a2,
√

, a3,
√

, a4〉]]Isab
≡ [ [ [[a1]]Isab , [[a2]]Isab ], [ [[a3]]Isab ], [ [[a4]]Isab ] ]

2.5.2. Timed Truncation Operator

The original Focus operator s ↓t is defined in [BS01] only for a timed infinite
stream. We extend this operator also to finite timed streams:

s↓n
def=



s if n = ∞
〈〉 if n = 0

r otherwise, where

if #s = ∞∨ (#s 6= ∞∧ (n < Nti(s) ∨ n = Nti(s) ∧ s.#s =
√

))

then r v s ∧#{
√
} SO r = n ∧ r .#r =

√

else r = s

fi
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Now, the last message in the truncated stream s↓n is not a tick
√

not only if s
is empty, but also if Nti(s) < n, and also if Nti(s) = s and the last entity of s
is not a

√
.

We define the corresponding Isabelle/HOL operator first only for t ∈ N, i.e.
t 6= ∞ :

consts
fin truncate :: ′a list ⇒ nat ⇒ ′a list

primrec
fin truncate [] n = []
fin truncate (x#xs) i =

(case i of 0 ⇒ []
| (Suc n) ⇒ x # (fin truncate xs n))

For the case t can be also equal to ∞, we define another Isabelle/HOL operator,
fin truncate plus:

constdefs
fin truncate plus :: ′a list ⇒ inat ⇒ ′a list

fin truncate plus s n
≡
case n of (Fin i) ⇒ fin truncate s i

| ∞ ⇒ s

2.5.3. Time Interval

The operator ti(s,n) denotes the sequence of messages that are present on the
channel s at the time interval between nth and (n + 1)th ticks:

ti ∈ M ω × N → M ∗

We define this operator in the Focus syntax as follows:

ti(s,n) def= r , where s ↓n+1= s ↓n_ r _ 〈
√
〉 (2.2)

For example, let

s = 〈m1,
√

,m2,m3,
√

,m4,m5,m6,
√

,m7,
√

. . . 〉,

then

ti(s, 0) = 〈m1〉
ti(s, 1) = 〈m2,m3〉
ti(s, 2) = 〈m4,m5,m6〉
. . .
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Remark: The Focus operator ti(s,n) corresponds to the Janus “.” op-
erator: we can define the operator ti(s,n) in the Janus syntax by

ti(s,n) def= s.(n + 1)

In Isabelle/HOL we represent the operator ti(s,n) as follows:

X for the case of a finite stream s, we define operator ti as extended version
of Isabelle/HOL operator nth for lists, [[ti(s, t)]]Isab ≡ ti [[s]]Isab [[t ]]Isab :

constdefs
ti :: ′a fstream ⇒ nat ⇒ ′a list

ti s i ≡
(if s = []
then []
else (nth s i))

X if s is an infinite stream, which is specified in Isabelle/HOL as map-
ping from natural numbers to lists, we can simply use expression s n:
[[ti(s, t)]]Isab ≡ [[s]]Isab [[t ]]Isab .

2.5.4. Drop a Stream

The operator s ↑n denotes in Janus the timed stream s without first n time
intervals:

↑ ∈ M ω → N → M ω

We define this operator for timed streams in Focus as follows:

∀ t ∈ N : ti(s ↑k , t) = ti(s, t + k) (2.3)

We can also extend this operator in Focus to the operation with untimed
streams:

〈〉 ↑k = 〈〉
(〈x 〉_ s) ↑k = if k = 0 then 〈x 〉_ s else s ↑k−1 fi

(2.4)

To represent the drop operator for finite streams in Isabelle/HOL we can use
the Isabelle/HOL operator drop, defined in the theory List.thy:

[[s ↑n ]]Isab = drop [[n]]Isab [[s]]Isab

For infinite streams we define Isabelle/HOL operator inf drop:

constdefs
inf drop :: nat ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a)

inf drop i s ≡ λ j . s (i+j )
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According to this definition, we get for an infinite stream s

[[s ↑n ]]Isab = inf drop [[n]]Isab [[s]]Isab

The syntax of the operators drop and inf drop is the same for timed and untimed
streams, but the semantics is different: in the timed case these operators remove
the first k time intervals, where in the untimed case they remove the first k
elements of the stream.

2.5.5. Timed Merge

We introduce the timed merge operator mergeti(s,r), which concatenates the
sequences of messages that are present on the channels (streams) s and r at
the same time interval:

mergeti ∈ M ω ×M ω → M ω

Formally it is defined in Focus syntax as follows:

∀ t . ti(mergeti(s, r), t) = ti(s, t)_ ti(r , t) (2.5)

For example, let

s1 = 〈a1,
√

, a2, a3,
√

, a4, a5, a6,
√

,
√

, a7,
√

. . . 〉, and

s2 = 〈b1, b2,
√

, b3,
√

, b4,
√

,
√

, b5,
√

. . . 〉,

then

mergeti(s1, s2) = 〈a1, b1, b2,
√

, a2, a3, b3,
√

, a4, a5, a6, b4,
√

,
√

, a7, b5,
√

. . . 〉

In Isabelle/HOL we represent this operator as follows:

X For finite streams we define the operator fin merge ti,
[[mergeti(s1, s2)]]Isab ≡ fin merge ti [[s1]]Isab [[s2]]Isab :

consts
fin merge ti :: ′a fstream ⇒ ′a fstream ⇒ ′a fstream

primrec
fin merge ti [] y = y
fin merge ti (x#xs) y =

( case y of [] ⇒ (x#xs)
| (z#zs) ⇒ (x@z ) # (fin merge ti xs zs))

X For infinite streams we define the operator inf merge ti,
[[mergeti(s1, s2)]]Isab ≡ inf merge ti [[s1]]Isab [[s2]]Isab :

constdefs
inf merge ti :: ′a istream ⇒ ′a istream ⇒ ′a istream
inf merge ti x y
≡
λ i . (x i)@(y i)
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2.5.6. Concatenation of Time Intervals

The operator tik (s,n) denotes the sequence of messages that are present on the
channel s at the time interval between ticks n − 1 and n + k :

tik (s,n) = ti(s,n) _ . . . _ ti(s,n + k)

We define this operator formally in Focus syntax as follows:

tik (s,n) def=

{
ti(s,n) if k = 0

tik−1(s,n) _ ti(s,n + k) otherwise
(2.6)

The Isabelle/HOL representation of the operator tik (s,n) for finite and infinite
streams is identical modulo type of streams and is given below.

[[ti0(s,n)]]Isab ≡ join ti [[s]]Isab [[n]]Isab [[0]]Isab
≡ [[ti(s,n)]]Isab

[[tii+1(s,n)]]Isab ≡ [[tii(s,n) _ ti(s,n + i + 1)]]Isab
≡ [[tii(s,n)]]Isab@[[ti(s,n + i + 1)]]Isab

For finite streams:

[[tik (s,n)]]Isab ≡ fin join ti [[s]]Isab [[n]]Isab [[k ]]Isab ,

more precisely,

[[ti0(s,n)]]Isab ≡ fin join ti [[s]]Isab [[n]]Isab [[0]]Isab
≡ nth [[s]]Isab [[n]]Isab

[[tii+1(s,n)]]Isab ≡ fin join ti [[s]]Isab [[n]]Isab [[i + 1]]Isab
≡ [[tii(s,n)]]Isab@[[ti(s,n + i + 1)]]Isab
≡ fin join ti [[s]]Isab [[n]]Isab [[i ]]Isab@nth [[s]]Isab [[n + i + 1]]Isab

consts
fin join ti :: ′a fstream ⇒ nat ⇒ nat ⇒ ′a list

primrec
fin join ti 0 :
fin join ti s x 0 = nth s x

fin join ti Suc:
fin join ti s x (Suc i) = (fin join ti s x i) @ (nth s (x + (Suc i)))
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For infinite streams:

[[tik (s,n)]]Isab ≡ join ti [[s]]Isab [[n]]Isab [[k ]]Isab ,

more precisely,

[[ti0(s,n)]]Isab ≡ join ti [[s]]Isab [[n]]Isab [[0]]Isab
≡ [[s]]Isab [[n]]Isab

[[tii+1(s,n)]]Isab ≡ join ti [[s]]Isab [[n]]Isab [[i + 1]]Isab
≡ [[tii(s,n)]]Isab@[[ti(s,n + i + 1)]]Isab
≡ (join ti [[s]]Isab [[n]]Isab [[i ]]Isab)@([[s]]Isab ([[n + i + 1]]Isab))

consts
join ti :: ′a istream ⇒ nat ⇒ nat ⇒ ′a list

primrec
join ti 0 :
join ti s x 0 = s x

join ti Suc:
join ti s x (Suc i) = (join ti s x i) @ (s (x + (Suc i)))

A number of properties of this operator (for the finite and the infinite cases)
is proved in the theory join ti.thy (see Appendix A.2). We present here one of
these properties as Lemma 2.1.

Lemma 2.1:
If the operator tik (s,n) yields am empty stream 〈〉, every j th time interval,
n ≤ j ≤ n + k , is empty:

tik (s,n) = 〈〉 → ∀ i ≤ k : ti(s,n + i) = 〈〉

The opposite also holds:

(∀ i ≤ k : ti(s,n + i) = 〈〉) → tik (s,n) = 〈〉

2

2.5.7. Limited Number of Messages

The predicate msgn(s) is true iff the stream s has at every time interval at most
n messages. This predicate can be used both in Focus and in Janus.

msg ∈ N×M ω → B
msgn(s) def= ∀ t ∈ N. #ti(s, t) ≤ n

(2.7)

The Isabelle/HOL representation of this predicate has also two cases, for infinite
and for finite streams:
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constdefs
msg :: nat ⇒ ′a istream ⇒ bool

msg n s ≡ ∀ t . length (s t) ≤ n

consts
fin msg :: nat ⇒ ′a list list ⇒ bool

primrec
fin msg n [] = True
fin msg n (x#xs) = (((length x ) ≤ n) ∧ (fin msg n xs))

Lemma 2.2:
For any infinite timed stream s of type M the following relation holds: if the
stream s has at every time interval at most one message, then every nonempty
tth time interval, ti(s, t), consists exactly of one message, which can be defined
as the first element of this time interval: ft.ti(s, t).

msg1(s) ⇒
∀ t : ti(s, t) 6= 〈〉 ⇒ ∃ a ∈ M : ti(s, t) = 〈a〉 ∧ a = ft.ti(s, t)

(2.8)

Proof

By the definition of the predicate msg the stream s can have at every
time interval at most one message, i.e. the message sequence repre-
senting a time interval can be either empty or it can contain exactly
one message. The message sequence x representing a time interval t is
nonempty. Thus, this sequence contains exactly one message, which is
by the definition of the operator ft. the first element of this sequence.
The proof of Lemma 2.2 in Isabelle/HOL is presented in Appendix A.1.

2

Additionally we have shown for every stream s, that if the predicate ts(s) holds,
then the predicate msg1(s) also must hold:

ts p =⇒ msg 1 p

Remark: The relation 2.8 does not hold in the opposite direction:

¬(ti(s, t) = x ∧ x 6= 〈〉 ⇐ ∃ a ∈ M : ti(s, t) = 〈a〉 ∧ a = ft.x )

The message sequence ti(s, t) = x contains exactly one message a, which is a
first element of some sequence x . From this we can conclude, that the sequence
x is nonempty, but this does not imply that ti(s, t) = x .
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2.5.8. Stuttering Removal Operator for Timed Streams

As mentioned in Section 2.4.12, the stuttering removal operator ∝ operator is
defined in Focus only for untimed streams. We define here an extended version
of the stuttering removal operator for timed streams:

∝T∈ M ω → M ω

∝T removes all duplications in every time interval. The Focus
√

will be
treated as a special element and not removed:

∀ t : ti(∝T .s, t) = ∝ (ti(s, t))

In Isabelle/HOL we will have two definitions for this operator, for a finite and
an infinite streams respectively. For the case of finite timed streams we define
Isabelle/HOL function finT remdups:

[[∝T .s]]Isab = finT remdups [[s]]Isab

and for the case of infinite timed streams we define Isabelle/HOL function
infT remdups

[[∝T .s)]]Isab = infT remdups [[s]]Isab

constdefs
finT remdups :: ′a fstream ⇒ ′a fstream

finT remdups s ≡ map (λ s. remdups s) s

infT remdups :: ′a istream ⇒ ′a istream
infT remdups s ≡ (λi .( remdups (s i)))

2.5.9. Changing Time Granularity

In many cases it is useful to change time granularity of the specification (fre-
quency of the streams, the time raster, see [Bro01], [Bro04]). For this reason
we define new operators on timed streams to change the time granularity.

The operator s 'n refines the time granularity – it splits every time interval
of the stream s into n time intervals in such a way that all messages from the
original time interval belong to the first of the n intervals:

'∈ M ω × N → M ω

ti(s 'n , t) def=

{
ti(s, t/n) mod(t ,n) = 0

〈〉 otherwise
(2.9)

The operator s .n makes the time granularity more coarse – it joins n time
intervals of the stream s into a single time interval:

.∈ M ω × N+ → M ω
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ti(s .n , t) def= tin−1(s,n ∗ t) (2.10)

It is also possible to define another kinds of the operator s 'n , e.g.

X all messages from the time interval of the original stream belong to the
last of the n corresponding intervals,

X the messages from the time interval of the original stream are distributed
to the n corresponding intervals.

Example 2.1:
Fig. 2.1 illustrates the duplication of the time raster of the stream x : y = x '2

(or y .2= x ), which is defined as simplification of Equations 2.9 and 2.10 using
the equation mod(t , 2) = 0 ⇔ even(t):

ti(x '2, t)
def=

{
ti(x , t/2) even(t)

〈〉 otherwise

ti(y .2, t)
def= ti(y , 2 ∗ t)_ ti(y , 2 ∗ t + 1)

2

Figure 2.1.: Duplicated time raster

We define these operators in Isabelle/HOL for two kinds of timed streams, finite
and infinite, in theories fin time raster.thy and time raster.thy respectively:

X if s is a finite timed stream, we specify

[[s 'n ]]Isab ≡ fin split time [[s]]Isab [[n]]Isab
and

[[s .n ]]Isab ≡ fin join time [[s]]Isab [[n]]Isab

X if s is an infinite timed stream, we specify

[[s 'n ]]Isab ≡ split time [[s]]Isab [[n]]Isab
and

[[s .n ]]Isab ≡ join time [[s]]Isab [[n]]Isab

The Isabelle/HOL definitions of the functions fin split time, fin join time, split time
and join time are presented in Appendix A.3.
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Lemma 2.3:
For any infinite timed stream x and for any natural number n > 0 the following
equation holds:

(x 'n) .n= x (2.11)

2

The proof of the lemma (for finite and infinite timed streams) in Isabelle/HOL
is presented in Appendix A.3.

2.5.10. Deleting the First Time Interval

The operator ttl(s) denotes a timed stream which is obtained from the stream
s deleting the first time interval:

ttl ∈ M ω → M ω

We define this operator formally in Focus syntax as follows:

∀ t ∈ N : ti(ttl(s), t) = ti(s, t + 1) (2.12)

The Isabelle/HOL semantics of this operator for the case of finite stream s is
equal to the semantics Isabelle/HOL operator tl from the theory List.thy:

[[ttl(s)]]Isab ≡ tl [[s]]Isab

For the case of infinite timed stream s we define in Isabelle/HOL the corre-
sponding operator inf tl, [[ttl(s)]]Isab ≡ inf tl [[s]]Isab :

constdefs
inf tl :: (nat ⇒ ′a) ⇒ (nat ⇒ ′a)

inf tl s ≡ (λ i . s (Suc i))

2.5.11. First Nonempty Time Interval

The operators ftifin(s) and ftiinf(s) denote the first nonempty time interval of a
finite and an infinite timed stream respectively

ftifin ∈ M ∗ → M ∗

ftiinf ∈ M ∞ → M ∗

To cover the exception that all the time intervals of a timed stream s are empty,
we add to the formal Focus definition of this operator the rule “the operator
returns an empty stream (an empty list), if the stream s consists of only empty
time intervals”:

ftifin(s) = if ∃ i ≤ Nti(s) : ti(s, i) 6= 〈〉
then ti(s,min{{i | ti(s, i) 6= 〈〉}})
else 〈〉 fi

(2.13)
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ftiinf(s) = if ∃ ∈ N : ti(s, i) 6= 〈〉
then ti(s,min{{i | ti(s, i) 6= 〈〉}})
else 〈〉 fi

(2.14)

The corresponding Isabelle/HOL definitions for the case of finite stream:

[[ftifin(s)]]Isab
≡ [[if ∃ i ≤ Nti(s) : ti(s, i) 6= 〈〉 then ti(s,min{{i | ti(s, i) 6= 〈〉}}) else 〈〉 fi ]]Isab
≡ (if [[∃ i ≤ Nti(s) : ti(s, i) 6= 〈〉]]Isab

then [[ti(s,min{{i | ti(s, i) 6= 〈〉}})]]Isab
else [[〈〉]]Isab)

≡ (if ∃ i < [[Nti(s)]]Isab . [[ti(s, i) 6= 〈〉]]Isab
then ti [[s]]Isab [[min{{i | ti(s, i) 6= 〈〉}}]]Isab
else [])

≡ (if ∃ i < length [[s]]Isab . ti [[s]]Isab [[i ]]Isab 6= [[〈〉]]Isab
then ti [[s]]Isab [[min{{i | ti(s, i) 6= 〈〉}}]]Isab
else [])

≡ (if ∃ i < length s. ti s i 6= []

then ti s (LEAST i. ti s i 6= [])

else [])

≡ fin find1nonemp s

consts
fin find1nonemp :: ′a fstream ⇒ ′a list

primrec
fin find1nonemp [] = []
fin find1nonemp (x#xs) =

( if x = []
then fin find1nonemp xs
else x )

The corresponding Isabelle/HOL definitions for the case of infinite stream:

[[ftiinf(s)]]Isab
≡ [[if ∃ i ∈ N : ti(s, i) 6= 〈〉 then ti(s,min{{i | ti(s, i) 6= 〈〉}}) else 〈〉 fi ]]Isab
≡ (if [[∃ i ∈ N : ti(s, i) 6= 〈〉]]Isab

then [[ti(s,min{{i | ti(s, i) 6= 〈〉}})]]Isab
else [[〈〉]]Isab)
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≡ (if ∃ (i::nat). [[ti(s, i) 6= 〈〉]]Isab
then [[s]]Isab [[min{{i | ti(s, i) 6= 〈〉}}]]Isab
else [])

≡ (if ∃ (i::nat). s i 6= []

then s (LEAST i. s i 6= [])

else [])

≡ inf find1nonemp s

constdefs
inf find1nonemp :: ′a istream ⇒ ′a list

inf find1nonemp s
≡
( if (∃ i . s i 6= [])

then s (LEAST i . s i 6= [])
else [] )

2.5.12. Index of the First Nonempty Time Interval

The operators indfin
fti (s) and indinf

fti (s) denote the index of the first nonempty time
interval of a finite and an infinite streams respectively:

indfin
fti ∈ M ∗ → N

indinf
fti ∈ M ∞ → N

To cover the exception that all the time intervals of a timed stream s are empty,
we add to the formal Focus definition of this operator the rule “the operator
indfin

fti (s) returns a number n + 1, if the stream s consists of only n empty time
intervals”. The operator indfin

fti (s) returns 1, if the stream s is empty (contains
no time intervals) – the result is the same as for the case “the first time interval
is nonempty”.

indfin
fti (s) = if ∃ i ≤ Nti(s) : ti(s, i) 6= 〈〉

then min{{i | ti(s, i) 6= 〈〉}}
else 1 fi

(2.15)

indinf
fti (s) = if ∃ i ∈ N : ti(s, i) 6= 〈〉

then min{{i | ti(s, i) 6= 〈〉}}
else 1 fi

(2.16)

The corresponding Isabelle/HOL definitions are equal modulo syntax:

[[indfin
fti (s)]]Isab = fin find1nonemp index [[s]]Isab
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consts
fin find1nonemp index :: ′a fstream ⇒ nat

primrec
fin find1nonemp index [] = 0
fin find1nonemp index (x#xs) =

( if x = []
then Suc (fin find1nonemp index xs)
else 0 )

[[indinf
fti (s)]]Isab = inf find1nonemp index [[s]]Isab

constdefs
inf find1nonemp index :: ′a istream ⇒ nat

inf find1nonemp index s
≡
( if (∃ i . s i 6= [])

then (LEAST i . s i 6= [])
else 0 )

2.5.13. Last Nonempty Time Interval

We define an operator lastti(s,t), which returns the last nonempty time interval
of the timed stream s until the tth time interval. If until the tth time interval
all intervals were empty, the empty message list is returned.

lastti ∈ M ω × N → M ∗

lastti(s, 0) = ti(s, 0)

lastti(s, t + 1) = if ti(s, t + 1) 6= 〈〉 then ti(s, t + 1) else lastti(s, t) fi

In Isabelle/HOL we will have two definitions for this operator, for finite and
infinite streams respectively:

consts
fin last ti :: ( ′a list) list ⇒ nat ⇒ ′a list
inf last ti :: ′a istream ⇒ nat ⇒ ′a list

primrec
fin last ti s 0 = hd s
fin last ti s (Suc i) =

( if s!(Suc i) 6= []
then s!(Suc i)
else fin last ti s i)

primrec
inf last ti s 0 = s 0
inf last ti s (Suc i) =

( if s (Suc i) 6= []
then s (Suc i)
else inf last ti s i)
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2.6. tiTable

State transition tables are used in Focus to characterize relations between
values in more readable way. The argumentation about streams in a classical
Focus table treats message-by-message. We introduce here a new variant of the
Focus 5 state transition tables – tiTable – to have a more clear representation of
component assurances when one argues about a component in the time interval
manner. The tiTable differs from the classical Focus table on the following
points:

X The argumentation about streams treats on time intervals – the possible
combinations of message sequences on component channels at the time
interval t between ticks t − 1 and t are treated.

X For the case, when some additional assumptions are needed an extra As-
sumption column can be used. It is needed only relations over the current
values of the local (and state) variables and the current time intervals of
the input streams.

Like in a standard Focus table, the names of streams (channels) and local or
state variables in a tiTable must be equal to the names that are used in the
corresponding specification.

A tiTable C looks in general as follows:

tiTable C : ∀ t ∈ N

i1 . . . im o1 . . . on v ′1 . . . v ′p Assumption

1

2

. . .

j a1 . . . am b1 . . . bn d1 . . . dp a

. . .

N

N denotes here the number of table lines (the number of possible combinations
for the tth time interval), i1, . . . , im denote the input channels, o1, . . . , on denote
the output channels and v1, . . . , vp denote the local variables of the component,
for which the table C is defined. a1, . . . , am , b1, . . . , bn , d1, . . . , dp denote here
the corresponding values of the streams and local variables for the tiTable line j .

By v ′ we denote the value of the local variable v after the transition, i.e. the
value at the time interval t + 1.

In the case the weak causality is not enough and the strong causality, i.e.
the argumentation about the values of output streams that are produced after
some delay, is needed, e.g. “if a component C has on its input channel i at the
time interval t a message sequence a, then at the time interval t + k , 1 ≤ k
it produces on the output channel o the message sequence b”, the following
notation for the tiTable-head must be used: if the column of an output stream

5 A tiTable can be used in Janus in the same manner as in Focus, without any changes.
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oi is labeled by ok
i , then the corresponding output will be produced with the

delay k .
Arguing about time intervals we can ensure the causality property of a defined

component (or system), specifying time interval values of output streams via
input and local values from the previous (for the strong causality) or the same
(for the weak causality) time intervals. Specifying a component by tiTable we
ensure the weak causality, where specifying a component by tiTable with delays
we ensure strong causality (if every output stream in the table is defined using
some nonzero delay).

The tiTable C presents the most general case, where all the possible columns
are presented. In most cases not all of the columns are used specifying a com-
ponent. For the functional representation (see Equation 2.18) this means that
the expression for an omitted column il will be also omitted, i.e. ti(il , t) = al

can be replaced by true.
The representation as a tiTable of a relation between input and output streams,

and local variables can be schematically reformulated to the corresponding for-
mula in a purely textual manner as shown below.

Definition: 2.1
The representation of a tiTable C in the functional form is defined as formula:

N∧
j=1

LC
j (2.17)

where the subformula LC
j denotes the j th line of the table C and is specified as

follows:

LC
j

def=
(a ∧ ti(i1, t) = a1 ∧ · · · ∧ ti(in , t) = an)

→ ti(o1, t) = b1 ∧ · · · ∧ ti(om , t) = bm ∧ v ′1 = d1 ∧ . . . v ′p = dp

(2.18)
2

Thus, we represent an externally defined (not inside the specification body, but
as single element) tiTable C in plain text by a predicate titable C.

titable C

i1 ∈ I1
∞; . . . ; im ∈ Im

∞;
v1 ∈ V1; . . . ; vp ∈ Vp ;
o1 ∈ O1

∞; . . . ; on ∈ On
∞;

LC
1

. . .
LC

N

The corresponding predicate in Isabelle/HOL will have in general6 p extra
parameters to represent the local variables, because their values before and after

6In special case, where the values before computation only of k , k < p, local variables are
used, we will need respectively k extra parameters.
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computation will be treated separately. Thus, for a value of a local variable v
at time t we will have [[v ]]Isab = v in t and [[v ′]]Isab = v out t.

constdefs
titable C ::
[[I1]]Isab istream ⇒ . . . ⇒ [[In ]]Isab istream ⇒
(nat ⇒ [[V1]]Isab) ⇒ . . . ⇒ (nat ⇒ [[Vp ]]Isab) ⇒
[[O1]]Isab istream ⇒ . . . ⇒ [[On ]]Isab istream ⇒
(nat ⇒ [[V1]]Isab) ⇒ . . . ⇒ (nat ⇒ [[Vp ]]Isab) ⇒ bool

titable C i1 . . . im v1 in . . . vp in o1 . . . on v1 out . . . vp out
≡
∀ t . [[LC

1 ]]Isab ∧ . . . ∧ [[LC
N ]]Isab

Like in a standard Focus table, any auxiliary logical variable, which is needed
in the tiTable, must be declared using the keyword univ 7. If a tiTable is defined
inside of the specification, the univ declaration of this variable must be written
in the corresponding part of the Focus specification (see Example 2.2). For
the case of externally defined tiTable the univ declaration must be written in
brackets after the name of the tiTable, e.g. tiTable (univ k ∈ N) TimerT1.

Using in a tiTable such an universally quantified variable, we can often omit
the translation of input (stream) cells with such a variable, if this variable is
not used in this line neither in the assumption nor to define the output (stream)
cells (see Example 2.2 and Section 4.3.7 for more details).

Remark: From Lemma 2.2 follows: If the predicate msg1(s) holds for
some stream s, the notation x in a call of a tiTable that belongs to the column
representing this stream s, together with the assumption x 6= 〈〉 is semantically
equal to the notation 〈a〉 in this cell.

Example 2.2:
Let us discuss a simple timer specification. The component Timer has one
input channel s (of type N) to set the timer and one output channel r (of type
{timeout}) to signal the timeout. At every time interval it can receive at most
one message of type N. If the timer receives a message n, it waits n time
intervals (counts down from n) and gives out the timeout signal timeout . If
during countdown a new message comes, the timer will be reset.

The datatype {timeout} can be specified in Isabelle/HOL as follows:

datatype timeoutType = timeout

We specify the timer in Focus by tiTable:

7Any variable declared by the keyword univ is universally quantified within the scope of the
table.
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Timer timed

in x : N

out y : {timeout}

local l ∈ N
univ k ∈ N

init l = 0

asm
msg1(x )

gar

tiTable TimerT1 : ∀ t ∈ N

x y l ′ Assumption

1 〈k〉 〈〉 k true

2 〈〉 〈〉 l − 1 l > 1

3 〈〉 〈timeout〉 l − 1 l = 1

4 〈〉 〈〉 0 l = 0

The formula below represents the semantics of the tiTable TimerT1.

∀ k , t : (ti(x , t) = 〈k〉 ∧ true → ti(y , t) = 〈〉 ∧ l ′ = k)

∧ (ti(x , t) = 〈〉 ∧ l > 1 → ti(y , t) = 〈〉 ∧ l ′ = l − 1)

∧ (ti(x , t) = 〈〉 ∧ l = 1 → ti(y , t) = 〈timeout〉 ∧ l ′ = l − 1)

∧ (ti(x , t) = 〈〉 ∧ l = 0 → ti(y , t) = 〈〉 ∧ l ′ = 0)

(2.19)

Because of the assumption msg1(x ), we have that for every t

ti(x , t) = 〈〉 ∨ ∃ k ∈ N : ti(x , t) = 〈k〉

We can rewrite the formula 2.19 in the following way (the ∀-quantifier does not
be needed here, because the variable k does not to be used any more)

∀ t : (ti(x , t) 6= 〈〉 → ti(y , t) = 〈〉 ∧ l ′ = ft.ti(x , t))

∧ (ti(x , t) = 〈〉 ∧ l > 1 → ti(y , t) = 〈〉 ∧ l ′ = l − 1)

∧ (ti(x , t) = 〈〉 ∧ l = 1 → ti(y , t) = 〈timeout〉 ∧ l ′ = l − 1)

∧ (ti(x , t) = 〈〉 ∧ l = 0 → ti(y , t) = 〈〉 ∧ l ′ = 0)

(2.20)

This logic formula can be also represented as an encapsulated “if then else” ex-
pression (some argue that such kind of representation is easier to comprehend as
a logic formula like in the definition of the tiTable), because the tiTable TimerT1
covers all possible combinations of the left implication parts of subformulas (so,
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all “else”-parts of expressions are presented):

∀ t :

if ti(x , t) 6= 〈〉
then ti(y , t) = 〈〉 ∧ l ′ = ft.ti(x , t)

else if l > 1

then ti(y , t) = 〈〉 ∧ l ′ = l − 1

else if l = 1

then ti(y , t) = 〈timeout〉 ∧ l ′ = l − 1

else ti(y , t) = 〈〉 ∧ l ′ = 0

fi

fi

fi

(2.21)

The semantically equal representation will be also the following one

∀ t ∈ N :

l ′ = (if ti(s, t) = 〈〉 then l else ft.ti(s, t) fi )

ti(r , t) = (if l = 0 then 〈timeout〉 else 〈〉 fi )

(2.22)

2

In the general case, we can translate a tiTable to the plain text representation
as a Focus predicate.

More examples of tiTables are given in Sections 4.1 and 4.3.

Remark: The tabular representation does not equal in general to an
encapsulated “if then else” expression: the “if then else” expression assumes
that the “else”-part is always defined, what is not the case for the tabular
representation.

2.7. Encapsulated States

An encapsulated state in Focus is a tuple of attributes of arbitrary types.
Encapsulated states are decomposed in Focus into three kinds of substates:

X local states that store some computed information (internal data memory
of the component);

X control states that record the flow of control;

X oracles that capture nondeterminism.

The states are introduced in Focus by declaration state variables using the
keyword local, and oracles are introduced using the keyword orac.
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We define a Focus specification S with m input channels i1, . . . , im of types
I1, . . . , Im , k output channels r1, . . . , rk of types R1, . . . ,Rk , and with n state
variables st1, . . . , stn of types M1, . . . ,Mn in Isabelle/HOL in the following way.
First of all we define a predicate S L adding 2n extra parameters to the signa-
ture of S , stIn1, . . . , stInn and stOut1, . . . , stOutn , where the j th element of the
stream stIni represents the value of the variable sti before the j computation,
and the j th element of the stream stOuti represents the value of the variable
sti after the j th computation.

These extra parameters can be seen as untimed infinite streams stIni and
stOuti of type Mi , 1 ≤ i ≤ n, for which the following equations hold:

stIni = 〈InitVi〉_ stOuti

where InitVi represents the initial values of the state variable sti . More pre-
cisely, these streams are time-synchronous8 ones – they have some message in
every time interval. In the special case, where the type M represents a list of
some type T , M = T ∗, the message of these streams that can be equal to 〈〉
at some time intervals.

After that we define a predicate S in the following way:

constdefs
S :: [[I1]]Isab istream ⇒ . . . [[Im ]]Isab istream ⇒

(nat ⇒ [[M1]]Isab) ⇒ . . . (nat ⇒ [[Mn ]]Isab) ⇒
[[R1]]Isab istream ⇒ . . . [[Rk ]]Isab istream ⇒
(nat ⇒ [[M1]]Isab) ⇒ . . . (nat ⇒ [[Mn ]]Isab) ⇒
bool

S i1 . . . im r1 . . . rk ≡
(∃ l1 . . . ln.

S L i1 . . . in
(fin inf append [InitV1] l1) . . .
(fin inf append [InitVn] ln) r1 . . . rk l1 . . . ln)

Remark: A specification of an initial value (of a local or a state variable)
has in some cases no influence on the computations and can be omitted in
Focus. This kind of specification must be refined by fixing initial values of all
local state variable to make the translation to Isabelle/HOL possible.

Example 2.3:
In the specification of ther timer (see Example 2.2) one local variable is used.
Thus, to represent the specification Timer in Isabelle/HOL we need to add two
extra parameters of type N to the corresponding predicate.

8In the original Focus meaning.
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constdefs
Timer L ::

“nat istream ⇒ (nat ⇒ nat) ⇒
timeoutType istream ⇒ (nat ⇒ nat) ⇒ bool”

“Timer x lIn y lOut
≡
(msg (Suc 0) x)
−→
(lOut t = (if (x t = []) then (lIn t) else hd (x t) ) ∧
y t = (if (lIn t) = 0 then [timeout] else []) )”

Now we can define the semantics of the specification Timer :

[[(y) := Timer(x )]]Isab
≡
constdefs
Timer ::

nat istream ⇒ timeoutType istream ⇒ bool
Timer x y
≡
(∃ l. Timer L x (fin inf append [InitVn] l) y l)

2

More examples are given in Sections 4.1 and 4.3.

Oracles differs from the local and control states in that they are independent
of the information received trough the input channels. Thus, oracles are some
∃-quantified variables used in the specification (in contrast to the variables
introduced by the keyword univ – the last ones are ∀-quantified in the specifi-
cation). Therefore, we apply to the oracles the standard translation rules (see
Sections 2.14 and 3.5).

2.8. Timed State Transition Diagrams

In this section we introduce timed state transition diagrams (TSTDs), which
are visualizations of timed state transition tables (tiTables). The main differ-
ence between the proposed TSTDs and the standard state transition diagrams
(STDs, see [GKRB96, KPR97]) is similar to the difference between a standard
Focus table and a tiTable (see also Section 2.6) – specification of transitions
between system states is based on time intervals. A node of a TSTD repre-
sents a control state. A transition of a TSTD is described by a row in the
corresponding tiTable.

In comparison to the timed transition diagrams, introduced by T.A. Hen-
zinger, Z. Manna and A. Pnueli (see [HMP91]), where for any transition a
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delay interval [l , u] is specified (l ∈ N denotes a minimal delay, u ∈ N ∪ {∞}
denotes a maximal delay), we are argue here about concrete delays, i.e. l = u.
To specify the case, where some messages occurs in a stream s during some
time interval [l , u], where l < u, we can use the operator for concatenation of
time intervals: tiu−l (s, l) (see Section 2.5.6).

If some rows of a tiTable differ only in the assumption cells, they can be “com-
pressed” in one row, s.t. the assumptions are composed by logical disjunction
operator ∨. Thus, one tiTable line can describe a number of TSTD transitions.
In some cases this property of a tiTable results more compact representation
then by a TSTD. On the other hand represents a TSTD also an information,
that is not contained in a tiTable – which of the control states is an initial one
(for the case of specification by a tiTable, this must be defined by the keyword
init in a Focus specification).

We suggest the following notation for TSTDs:

X The argumentation is over time intervals, the “current” time interval num-
ber is t , t ∈ N.

X For any stream x , its tth time interval, ti(x , t), will be denoted on the
TSTD labels by x . To denote ti(x , t +k) the abbreviation x k can be used.
The same notation is used in tiTables.

X For any input stream y (y belongs to the list of input channels used in
the TSTD): if an expression of the form ti(y , t) = SomeTimeInterval is
omitted, the value of the tth time interval of the stream y can be arbitrary.

X For any output stream z (z belongs to the list of output channels used in
the TSTD) all expression of the form ti(z , t) = 〈〉 are omitted.

X For any local (or state) variable l all expression of the form l ′ = l are
omitted.

Example 2.4:
The component Kbit has one input and one output channel, both of type Bit.
The component stays in its initial state, S0, until the first nonempty time
interval of the input stream. If it receives some messages in the initial state, it
outputs in the same time interval the message 1 and goes to the next state, S1,
where it stays also until the first nonempty time interval of the input stream.
If it receives some messages in the state S1, it outputs them in the same time
interval and goes to the state S2. The component Kbit stays in the state
S2 until first empty time interval of the input stream and forwards all input
messages to the output stream without any delay. If in some time interval no
messages are received, it outputs message 0 and goes in the initial state S0.

We specify this component firstly by a timed STD and after that we present
the corresponding tiTable.
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Kbit timed

in x : Bit

out y : Bit

local st : {S0,S1,S2}

init st = S0;

S0 S1 S2

ti(x,t) = ‹› / ─
ti(x,t) ≠ ‹› / 
ti(y,t) = ‹1›

ti(x,t) = ‹› /  ─

ti(x,t) ≠ ‹› / 
ti(y,t) = ti(x,t)

ti(x,t) ≠ ‹› / 
ti(y,t) = ti(x,t)

ti(x,t) = ‹› /  ti(y,t) = ‹0›

tiTable KbitT (univ r : Bit ∗): ∀ t ∈ N

x y st ′ Assumption

1 〈〉 〈〉 S0 st = S0

2 r 〈1〉 S1 st = S0 ∧ r 6= 〈〉
3 〈〉 〈〉 S1 st = S1

4 r r S2 st = S1 ∧ r 6= 〈〉
5 r r S2 st = S2 ∧ r 6= 〈〉
6 〈〉 〈0〉 S0 st = S2

It easy to see, that the 4th and the 5th rows of the tiTable KbitT differ only
by the assumption cells. Thus, we can specify the semantically equal tiTable
KbitT c, which is a “compressed” version of KbitT.

tiTable KbitT c (univ r : Bit ∗): ∀ t ∈ N

x y st ′ Assumption

1 〈〉 〈〉 S0 st = S0

2 r 〈1〉 S1 st = S0 ∧ r 6= 〈〉
3 〈〉 〈〉 S1 st = S1

4 r r S2 (st = S1 ∨ st = S2) ∧ r 6= 〈〉
5 〈〉 〈0〉 S0 st = S2

2
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A more extensive example of a TSTD is given in the Automotive-Gateway case
study (see Section 4.3.7).

2.9. Mutually Recursive Functions

Specification of mutually recursive functions in Isabelle/HOL and especially the
argumentation about them is extensive: first of all the corresponding mutually
recursive datatypes (which will be basis for such a recursion) must be defined
and only after that we can define the mutually recursive functions (see [NPW02]
for details).

Mutually recursive functions can be used in a Focus specification to repre-
sent some local (internal) states of a component (see [BS01]). Thus, to solve
the problem with translation of specified mutually recursive functions to Is-
abelle/HOL, we can simply use in Focus specification local variables (see Sec-
tion 2.7) instead of mutual recursion.

For example, let two mutually recursive functions are used in some (existing)
Focus specification of a component: one of them is chosen for the next step
(e.g. to process the rest of some stream) according to the current values of com-
ponent streams or states. We specify these functions as a joint function with
extra parameter to deal with the current state (corresponds to the values of
component streams or states) and add to the specification a new local variable
to encode which part of the joint function must be used in the next step. This
variable must be set initially to the value representing the corresponding part
of joint function. An example of such a transformation is given in Section 4.1.6.

2.10. Time-Synchronous Streams

As mentioned in Section 2.2, time-synchronous streams are a special kind of
streams, where each message represents one time interval. In Focus these
streams are represented as untimed streams given a particular timed interpre-
tation, i.e. their semantics is timed, but the syntax is equal to the syntax of
untimed streams – a time-synchronous stream does not contain any

√
.

Combination of timed and time-synchronous streams leads to problems with
type checking: the Focus time-synchronous streams cannot be combined in a
composite Focus specification with any other kind of streams, neither with un-
timed streams, because of different semantics, nor with timed streams, because
of different syntax. To have a possibility to use together a specification with
time-synchronous streams and a specification with timed stream, we suggest to
model a time-synchronous stream as a timed stream for which a predicate ts
holds.

Thus, if we have a completed Focus specification with frame label “time-
synchronous”, the following changes must be done:
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1. The specification frame label time-synchronous must be replaced by the
label timed.

2. The assumption that all input streams are time-synchronous, as well as
the guarantee that all output streams are also time-synchronous must be
added.

3. The argumentation over elements of the stream must be replaced by the
argumentation over the first (and unique) element of the corresponding
time stream:

s.t 7−→ ft.ti(s, t)

If this argumentation was over the set N+(the elements in a stream are
counted from 1), we will argue now over the set N, because the time
intervals are counted from 0 (see Section 2.5).

For the case of a Focus specification with frame label “timed”, where some of
its input and/or output streams are time-synchronous, the changes are more
minor:

1. The assumption that the corresponding input streams are time-synchronous,
as well as the guarantee that the corresponding output streams are also
time-synchronous must be added.

2. The argumentation over elements of the corresponding stream must be
replaced to the argumentation over the first (and unique) element of the
corresponding time stream:

s.t 7−→ ft.ti(s, t)

If this argumentation was over the set N+, we will argue now over the
set N.
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2.11. Isabelle/HOL Semantics of Elementary and Composite
FOCUS Specifications

We can represent the Focus styles of elementary and composite specifications
in Isabelle/HOL in the following way:

X The equational and the relational styles are similar to the style that is
used in Isabelle. Thus, we represent a Focus component that is described
in equational or relational style in Isabelle/HOL as a predicate.

X We represent a Focus component that is specified in A/G style by im-
plication: the assumption predicate implies the guarantee predicate.

X A Focus specification in graphical style can be schematically translated
into a Focus specification of equational or relational style.

The Focus semantics of an assumption part as well as the semantics of a guar-
antee part of a Focus specification in A/G style is a predicate representing
relations over streams. The semantics of the Body-part of an Focus specifica-
tion in A/G style is a predicate that is build as an implication A → G , where
A denotes the assumption predicate and G denotes the guarantee predicate.

Remark: The A/G style is a most general one and we suggest to use
this style in the most cases. The only exception is the pure system architecture
specification, which serves only to show in a readable way how the subcompo-
nents are connected. If for some component we have not any assumption, we
can also fill the assumption part with true. In such a way we can partially9

solve the problem with forgotten assumptions (see Section 3.5).

2.11.1. Auxiliary Datatypes, Functions and Predicates

We will use the expression specification group to denote the set of

X specifications of the system on all refinement steps (both requirements
and architecture specifications), and

X specifications of all subcomponents (or, more precisely, all subcomponent
trees) on all refinement steps.

To represent the Isabelle/HOL semantics of the lists (sets) of input, output and
local channel identifiers of a Focus specification S , we need to define first of all
the following datatypes (using Isabelle/HOL keyword datatype, see Section 1.2)

X chanID – the type of all needed channel identifiers Id1,. . . , IdN :

9 Here the “human factor” is taken into account: having the assumption-part in a specifica-
tion, one needs to reflect how this part must be filled out. Thus, the probability to forget
the necessary assumptions and to write true to fill out this part instead of the assumptions
is much less in comparison to the possibility to use any kind (“Assumption/Guarantee” or
only “Guarantee”) of specification.
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datatype chanID =
ch Id1 | · · · | ch IdN

X specID – the type of all needed specification names S1,. . . , SM (specifica-
tion identifiers):

datatype specID =
sS1 | · · · | sSM

These types must be defined for the specification group as whole in the theory
SpecificationGroupName types.thy (see Sections 2.11.5). Then we specify the sets
of input, output and local identifiers of the specification S as functions ins10,
out and loc, which returns for a given specification name a set of corresponding
channel identifiers – input, output and local respectively. For an elementary
specification the function loc returns an empty set.

After that we introduce predicates inStream, outStream and locStream over spec-
ification names and channel identifiers. The predicate inStream S x (outStream
S x, locStream S x) is True, if the set of channel identifiers x corresponds to the
specification name S.

We also specify a function subcomponents which returns for a given compo-
nent a set of its subcomponents. For an elementary specification the function
subcomponents returns an empty set.

2.11.2. Elementary Specification

The definition of the Focus semantics of an elementary timed specification S
(see Definition 1.1) with the input channels i1, . . . , in and the output channels
o1, . . . , om (in the case of parameterized specification: also with parameters
p1, . . . , pk for some k ∈ N):

S (const p1 ∈ P1; . . . ; pk ∈ Pk ) timed

in i1 : I1; . . . ; in : In

out o1 : O1; . . . ; om : Om

BS

can be represented in Isabelle/HOL as the following conjunction

[[iS ]]Isab ∧ [[oS ]]Isab ∧ [[BS ]]Isab (2.23)

where
10The name in is a predefined Isabelle/HOL expression and cannot be used here as a function

name.
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X [[BS ]]Isab is an Isabelle/HOL predicate representing the Isabelle/HOL se-
mantics of the body BS of the Focus specification S .

[[BS ]]Isab describes here the relation (in the case of parameterized specifi-
cation: with k extra parameters) between the input and output streams
and is equal modulo syntax to BS ;

X [[iS ]]Isab is a predicate representing the Isabelle/HOL semantics of the set
of input identifiers iS of the Focus specification S :

[[iS ]]Isab
def= inStream S (ins S) (2.24)

X [[oS ]]Isab is a predicate representing the Isabelle/HOL semantics of the set
of output identifiers oS of the Focus specification S :

[[oS ]]Isab
def= outStream S (out S) (2.25)

The body BS of an elementary11 Focus specification S (except the A/G spec-
ification) represented by a number of logic formulas – each formula represents
some logic property – looks as follows:

P1

P2

. . .

Pn

The line breaks denote in Focus conjunction. Thus, the representation of BS

in Isabelle/HOL will be conjunction of the Isabelle/HOL representations of the
properties:

[[BS ]]Isab =
n∧

i=1

[[Pi ]]Isab (2.26)

In the case of the A/G specification the body BS consists of two parts – the
assumption part BA

S and the guarantee part BG
S . The semantics of such a

specification in Focus is logical implication

[[BAG
S ]]Isab = [[BA

S ]]Isab −→ [[BG
S ]]Isab (2.27)

where for BA
S and BG

S hold the presented above rules for a non-A/G specifica-
tion.

The suggested order of the parameters in the relation is the following one:
number of channels in the sheaf, input streams, specification parameters, out-
put streams.

11The representation of an elementary parameterized Focus specification is analog.
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For the proofs of the properties of the specification S we need only the predicate
body that represents [[BS ]]Isab . Therefore, only this part will be denoted later
as Isabelle/HOL semantic of the specification:

[[S ]]Isab
def= [[BS ]]Isab (2.28)

More precisely, the representation of the Focus specification S in Isabelle/HOL
will have the following form:

constdefs
S :: [[I1]]Isab ⇒ . . . ⇒ [[In ]]Isab ⇒

[[P1]]Isab ⇒ . . . ⇒ [[Pk ]]Isab ⇒
[[O1]]Isab ⇒ . . . ⇒ [[Om ]]Isab ⇒ Bool

S i1 . . . inp1 . . . pko1 . . . om

≡
[[BS ]]Isab

Correctness of the relations between the sets of input and output channels,
[[iS ]]Isab and [[oS ]]Isab , as well as [[lS ]]Isab , will be shown separately in the Is-
abelle/HOL theory SpecificationGroupName inout.thy (see Sections 2.11.5).

We define the Isabelle/HOL semantics of an elementary parameterized timed
specification (see Definition 1.2 for the definition for Focus representation) with
the input channels i1, . . . , in and the output channels o1, . . . , om in Isabelle, and
with parameters p1, . . . , pk analogous, but now the Isabelle/HOL predicates in
the relation [[BS ]]Isab correspondingly have k extra parameters.

For a time-synchronous elementary specification with the input channels i1,
. . . , in and the output channels o1, . . . , om we need additional constraints to
define that the input and output streams are time-synchronous ones:

[[S ]]Isab
def=

n∧
1

ts(ij ) ∧
m∧
1

ts(oj ) ∧ [[BS ]]Isab (2.29)

Remark: For the specifications with sheaves of channels extra additional
constraints are needed - we need to make sure that the sheaves are nonempty,
i.e. that every sheaf contains least one channel (see Sections 2.13 for more de-
tails).

The specification frames influence not only the semantics, but also syntax of
the specification. The frame untimed (timed, time-synchronous) means that all
input, output and local streams of the specified component must be untimed
(timed, time-synchronous). The frame untimed implies, that all operations on
the timed (and also time-synchronous) streams must be excluded. The frame
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timed does not exclude that some of these streams behave like time-synchronous
ones, i.e. contain at each time interval exactly one message.

Remark: For any Focus specification S the sets iS and oS must be
disjoint:

iS ∩ oS = ∅ (2.30)

2.11.3. Composite Specification

We define the Isabelle/HOL semantics of a composite specification S in Is-
abelle/HOL accordingly to the corresponding definition in Focus (see Defini-
tion 1.3):

[[S ]]Isab
def= ∃ lS ∈ LS :

n∧
j=1

[[Sj ]]Isab (2.31)

where lS denotes a set of local streams and LS denotes their corresponding
types, [[Sj ]]Isab denotes the Isabelle/HOL semantics of the Focus specification
Sj , 1 ≤ j ≤ n, which is a specification of subcomponent of S .

Remark: For any composite Focus specification S the sets iS , oS and lS
must be pairwise disjoint, i.e. additionally to Equation 2.30 also the following
equations must hold:

iS ∩ lS = ∅
lS ∩ oS = ∅

(2.32)

Equation 2.32 trivially holds for any elementary specification, because for any
elementary specification S the set lS is empty. Thus, Equations 2.30 and 2.32
build together the common property of correct relations between the sets of
input, output and local channels that we specify in Isabelle/HOL as predicate
correctInOutLoc over specID. We need to prove that this predicate holds for every
specification in the system.

The sets iS and oS of input and output channel identifiers of a composite
specification S consist of all sets of input and output channel identifiers of
composing specifications S1, . . . ,Sn excluding the channels which are used for
the local communication:

iS
def=

n⋃
j=1

(iSj ∈ I∞S ) \ lS (2.33)

oS
def=

n⋃
j=1

(oSj ∈ O∞
Sj

) \ lS (2.34)

For the specification of the system S that is composed from the specifications
S1, . . . ,Sn the following properties must hold:
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X For the set of input streams of the system S :
Equation 2.33 holds. No input stream i can be an output stream of any
subcomponent.

iS =
n⋃

j=1

(iSj ∈ I∞S ) \ lS ∧ iS ∩
n⋃

j=1

oSj = ∅ (2.35)

We define this property in Isabelle/HOL by the predicate on the specifi-
cation identifiers, CorrectCompositionIn (see Section 2.11.4).

X For the set of output streams of the system S :
Equation 2.34 holds. No output stream i of the system S can be an input
stream of any subcomponent.

oS =
n⋃

j=1

(oSj ∈ O∞
Sj

) \ lS ∧ oS ∩
n⋃

j=1

iSj = ∅ (2.36)

The predicate CorrectCompositionOut on the specifications identifiers (see
Section 2.11.4) presents this property in Isabelle/HOL.

X Every local stream l of the system S must be both an input stream of
some subcomponent Sj1 , 1 ≤ j1 ≤ n, and an output stream of some
subcomponent Sj2 , 1 ≤ j2 ≤ n (j1 6= j2):

lS =
n⋃

j=1

iSj ∩
n⋃

j=1

oSj (2.37)

This property is specified Isabelle/HOL by the predicate on the specifi-
cations identifiers, CorrectCompositionLoc (see Section 2.11.4).

We also define a predicate correctComposition (see Section 2.11.4) that describes
the following property: if a component S has no subcomponents, subcomponents
spec S = [], the set of local channels of this component, loc spec S, must be empty.

The fulfillment of the properties presented above must be proved for every com-
posite specification (see Sections 2.11.5).

Remark: Equation 2.32 means amongst others, that the situation where
some output stream of a component S is at the same time an input stream for
some subcomponent of S is excluded. This restriction allows us to have clear
separation of the global (input and output) and local streams (channels), which
is very important to argue about system interfaces in the precise, formal, way.

Example 2.5:
Assuming a system that consists of three components: A, B and C and has
two inputs (i1 and i2) and two outputs (o1 and o2). The representation S (see
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Figure 2.2) is not correct, because the stream o2, the output of the component
C , is an input of the component B and at the same time an output of the
system. The representation S ′, where the extra-output l of the component C
is defined in the specification of C to be equal to the stream o2, is correct.

2

S

A

B

C

S’

A

B

C

i1 i2 i1 i2

o2

l1 l1
l2

o2o1o1

Figure 2.2.: Wrong and correct specification of subcomponents

2.11.4. Relations between Sets of Channels

In this section we discuss the Isabelle/HOL specification of relations between
sets of channels for the cases without specification replication and sheaves of
channels. The Isabelle/HOL specification of relation between sets of channels
and sheaves of channels as well as specification replication will be discussed in
Section 2.13.3.

The Isabelle/HOL theory inout.thy uses the (user-defined) theory Specification-
GroupName types.thy, which contains all user-defined datatypes (including specID
and chanID) used in the the specification group. This theory is a general one and
can be used without any changes (except the name of the theory “Specification-
GroupName” that can be seen as parameter). We define here the signatures of
the functions subcomponents, ins, loc, and out, as well as all predicates that specify
the correctness properties of the relations between the sets of channels (see
Sections 2.11.2 and 2.11.3): the predicates correctInOutLoc and correctComposition
must hold for all components of the specification group, where the predicates
correctCompositionIn, correctCompositionOut and correctCompositionLoc must hold
only for composite components.

The functions subcomponents, ins, loc, and out will be defined in the theory
SpecificationGroupName inout.thy (that must be based on the theory inout.thy)
by primitive recursion on the specification identifiers (see Section 2.11.5 for an
example).
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theory inout = Main + SteamBoiler types:

consts
subcomponents :: specID ⇒ specID set

consts
ins :: specID ⇒ chanID set
loc :: specID ⇒ chanID set
out :: specID ⇒ chanID set

constdefs
inStream :: specID ⇒ chanID set ⇒ bool
inStream x y ≡ (ins x = y)

constdefs
locStream :: specID ⇒ chanID set ⇒ bool
locStream x y ≡ (loc x = y)

constdefs
outStream :: specID ⇒ chanID set ⇒ bool
outStream x y ≡ (out x = y)

constdefs
correctInOutLoc :: specID ⇒ bool
correctInOutLoc x ≡
(ins x ) ∩ (out x ) = {}
∧ (ins x ) ∩ (loc x ) = {}
∧ (loc x ) ∩ (out x ) = {}

constdefs
correctComposition :: specID ⇒ bool
correctComposition x ≡

subcomponents x = {} −→ loc x = {}

constdefs
correctCompositionIn :: specID ⇒ bool
correctCompositionIn x ≡
(ins x ) = (

⋃
(ins ‘ (subcomponents x )) − (loc x ))

∧ (ins x ) ∩ (
⋃

(out ‘ (subcomponents x ))) = {}

constdefs
correctCompositionOut :: specID ⇒ bool
correctCompositionOut x ≡
(out x ) = (

⋃
(out ‘ (subcomponents x ))− (loc x ))

∧ (out x ) ∩ (
⋃

(ins ‘ (subcomponents x ))) = {}

constdefs
correctCompositionLoc :: specID ⇒ bool
correctCompositionLoc x ≡
(loc x ) =

⋃
(ins ‘ (subcomponents x )) ∩

⋃
(out ‘ (subcomponents x ))

end
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The proof schema for the correctness properties above is standard and can be
used automatically (if the proof fails, the specification of corresponding set
is incorrect and must be changed) using the definition of the corresponding
predicate and the Isabelle/HOL automatic proof strategy:

X For the property correctInOutLoc:

by (simp add: correctInOutLoc def)

X For the property correctComposition:

by (simp add: correctComposition def)

X for the property correctCompositionIn:

by (simp add: correctCompositionIn def, auto)

X for the property correctCompositionOut:

by (simp add: correctCompositionOut def, auto)

X for the property correctCompositionLoc:

by (simp add: correctCompositionLoc def, auto)

2.11.5. Example: Steam Boiler

In this section we start to present the case study “Steam Boiler”. Fig. 2.3
presents an architecture of the system. In this section we discuss only the
datatypes used to represent relations between sets of channels. The semantics of
the components will be discussed later. In the specification group SteamBoiler
will be used

X components ControlSystem (specification of requirements), ControlSys-
temArch (specification of system architecture presented on Fig. 2.3),
SteamBoiler, Converter, and Controller ;

X channels s, x , y and z .

The Isabelle/HOL specification of these types as well as component and channel
identifiers is presented below by the theory SteamBoiler types.thy. This theory
does not contain any other type definitions, because the specification group
SteamBoiler does not use any non-standard datatypes.

Remark: The theory inout.thy (see Section 2.11.4) must be copied into the
same folder as the theory stream.thy, SteamBoiler types.thy, SteamBoiler inout.thy
etc. The “SpecificationGroupName” must be replaced by the name of specifi-
cation group – by SteamBoiler.
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Converter

SteamBoiler Controller

x : B

y : N

s : N

z : B

Figure 2.3.: Architecture of the Steam Boiler System

theory SteamBoiler types = Main + stream:

datatype specID =
sControlSystem

| sControlSystemArch
| sSteamBoiler
| sController
| sConverter

datatype chanID =
ch s

| ch x
| ch y
| ch z

end

The theory SteamBoiler inout.thy is based only on the theory inout.thy. First of
all we specify the subcomponent relations for all components of the system by
the function subcomponents. Then we specify the list of input, output and local
channels for all components by the functions ins, out and loc respectively. After
that we prove that the predicates correctInOutLoc and correctComposition hold for
all components, and also that the predicates correctCompositionIn, correctCompo-
sitionOut and correctCompositionLoc hold for the component ControlSystemArch,
which is the only composite component of the specification group.

Remark: We do not need to use the Isabelle/HOL automatic proof strat-
egy to prove that the predicates correctCompositionIn and correctCompositionOut
hold for the component ControlSystemArch, because this component has no
input channels. Thus, to prove these correctness properties it is enough to use
simply the definition of the corresponding predicate.
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theory SteamBoiler inout = Main + inout :

primrec
subcomponents sControlSystem = {}
subcomponents sControlSystemArch

= {sSteamBoiler , sController , sConverter}
subcomponents sSteamBoiler = {}
subcomponents sController = {}
subcomponents sConverter = {}

primrec
ins sControlSystem = {}
ins sControlSystemArch = {}
ins sSteamBoiler = {ch x}
ins sController = {ch y}
ins sConverter = {ch z}

primrec
loc sControlSystem = {}
loc sControlSystemArch = {ch x , ch y , ch z}
loc sSteamBoiler = {}
loc sController = {}
loc sConverter = {}

primrec
out sControlSystem = {ch s}
out sControlSystemArch = {ch s}
out sSteamBoiler = {ch y , ch s}
out sController = {ch z}
out sConverter = {ch x}

Proofs for components

ControlSystem:

lemma spec ControlSystem1 :
correctInOutLoc sControlSystem
by (simp add : correctInOutLoc def )

lemma spec ControlSystem2 :
correctComposition sControlSystem
by (simp add : correctComposition def )

ControlSystemArch:

lemma spec ControlSystemArch1 :
correctInOutLoc sControlSystemArch
by (simp add : correctInOutLoc def )

lemma spec ControlSystemArch2 :
correctComposition sControlSystemArch
by (simp add : correctComposition def )
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lemma spec ControlSystemArch3 :
correctCompositionIn sControlSystemArch
by (simp add : correctCompositionIn def )

lemma spec ControlSystemarch4 :
correctCompositionOut sControlSystemArch
by (simp add : correctCompositionOut def )

lemma spec ControlSystemArch5 :
correctCompositionLoc sControlSystemArch
by (simp add : correctCompositionLoc def , auto)

SteamBoiler:

lemma spec SteamBoiler1 :
correctInOutLoc sSteamBoiler
by (simp add : correctInOutLoc def )

lemma spec SteamBoiler2 :
correctComposition sSteamBoiler
by (simp add : correctComposition def )

Controller:

lemma spec Controller1 :
correctInOutLoc sController
by (simp add : correctInOutLoc def )

lemma spec Controller2 :
correctComposition sController
by (simp add : correctComposition def )

Converter:

lemma spec Converter1 :
correctInOutLoc sConverter
by (simp add : correctInOutLoc def )

lemma spec Converter2 :
correctComposition sConverter
by (simp add : correctComposition def )

end
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2.12. Composition types

Composite specifications can be divided in the four types:

X sequential composition,
X parallel composition,
X “mix”-composition, and
X loops.

For all these types the specification semantics is defined according to Defini-
tion 1.3, but some of specification properties are different. Let us discuss now
these types of composite specifications in more detail.

2.12.1. Sequential composition

The system GraphSeqC is a sequential composition of components C1 and C2.
The component specifications C1 and C2 are represented by corresponding con-
straint on the communication histories of the channels. The Focus specification
of the system in graphical style is given below.

The set of input channel identifiers of sequential composition of components
C1 and C2 is equal to the set of input channels oC1 of the component C1, and
set of output channels identifiers is equal to the set of output channels oC2 of
the component C2.

GraphSeqC glass-box

C1

x1 : M1

xm : Mm
C2

l1 : L1

lk : Lk

s1 : S1

sn : Sn

... ......

The semantics of the specification GraphSeqC is defined according to Defini-
tion 1.3 by

[GraphSeqC ]
def
= ∃ l1 ∈ L∞1 , . . . lk ∈ L∞k : [C1] ∧ [C2] (2.38)

The specification GraphSeqC can be reformulated schematically (see [BS01])
into a specification ConstrSeqC in constraint style as shown below. The speci-
fications GraphSeqC and ConstrSeqC have the same semantics:

[GraphSeqC ] = [ConstrSeqC ]

ConstrSeqC timed

in x1 : M1; . . . ; xm : Mm

out s1 : S1; . . . ; sn : Sn

loc l1 : L1; . . . ; lk : Lk

(l1, . . . , lk ) := C1(i1, . . . , im)
(s1, . . . , sn) := C2(l1, . . . , lk )
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The representation in Isabelle/HOL will be exactly the definition of the seman-
tics of a composite specification modulo Isabelle/HOL syntax:

∃ l1 :: L1 istream. . . . ∃ lk :: Lk istream.
(c1 x1 . . . xm l1 . . . lk ) ∧ (c2 l1 . . . lk s1 . . . sn)
=⇒ constrSeqC x1 . . . xm s1 . . . sn

2.12.2. Parallel composition

The system GraphParC is a parallel composition of components C1 and C2. The
component specifications C1 and C2 are represented by corresponding constraint
on the communication histories of the channels. The Focus specification12 of
the system in graphical style is given below.

GraphParC glass-box

C1

C2

x1 : M1

xm : Mm

...
...

s1 : S1

sp : Sp

...

sp+1 : Sp+1

sn : Sn

...

In general, the set of input channels identifiers of parallel composition of com-
ponents C1 and C2 is a union (not always disjoint) of the sets of input channels
iC1 and iC2 of the components C1 and C2 correspondingly. The system Graph-
ParC shows the case, when all input streams of the component GraphParC are
input streams of both components C1 and C2. It is also possible that the set of
input channels identifiers of parallel composition of components C1 and C2 is a
disjoint union of the sets of input channels iC1 and iC2 .

The set of output channels identifiers of parallel composition of components
C1 and C2 is always a disjoint union of the sets of output channels oC1 and oC2 of
the components C1 and C2 correspondingly. The semantics of the specification
GraphParC is defined according to Definition 1.3 by

[GraphParC ]
def
= [C1] ∧ [C2] (2.39)

12 The natural number p is here less than natural number n: p < n.
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The specification GraphParC can be reformulated schematically into a specifi-
cation ConstrParC , which has the same semantics as in the constraint style:

[GraphParC ] = [ConstrParC ]

ConstrParC timed

in x1 : M1; . . . ; xm : Mm

out s1 : S1; . . . ; sn : Sn

(s1, . . . , sp) := C1(x1, . . . , xm)
(sp+1, . . . , sn) := C2(x1, . . . , xm)

The representation in Isabelle will be exactly the definition of semantics of com-
posite specification modulo Isabelle/HOL syntax:

(c1 x1 . . . xm s1 . . . sp) ∧ (c2 x1 . . . xm sp+1 . . . sn)
=⇒ (constrParC x1 . . . xm s1 . . . sn)

The specification GraphParC (ConstrParC ) can be time-synchronous only if
both the specifications C1 and C2 are time-synchronous ones.

Remark: This kind of composition does not use any local channel.

2.12.3. “Mix”-composition

Let the component specifications C1 and C2 are represented by correspond-
ing constraint on the communication histories of the channels. The system
GraphMixC is a “mix”-composition of components C1 and C2. The Focus
specification13 of the system in graphical style is given below.

GraphMixC glass-box

C1

C2

x1 : M1

xr : Mr

...

xr+1 : Mr+1

xm : Mm

...

s1 : S1

sp : Sp

...

sp+1 : Sp+1

sn : Sn

...

l1 : L1

lk : Lk

...

13 The natural number p is here less than natural number n, and the natural number r is
here less than natural number m: p < n and r < m.
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The semantics of the specification GraphMixC is defined according to Defini-
tion 1.3 by

[GraphMixC ]
def
= ∃ l1 ∈ L∞1 , . . . lk ∈ L∞k : [C1] ∧ [C2] (2.40)

The specification GraphMixC can be reformulated schematically into a specifi-
cation ConstrMixC , which has the same semantics as in constraint style:

[GraphMixC ] = [ConstrMixC ]

ConstrMixC timed

in x1 : M1; . . . ; xm : Mm

out s1 : S1; . . . ; sn : Sn

loc l1 : L1; . . . ; lk : Lk

(s1, . . . , sp) := C1(x1, . . . , xr )
(sp+1, . . . , sn) := C2(l1, . . . , lk , xr+1, . . . , xm)

The representation in Isabelle will be exactly the definition of semantics of com-
posite specification modulo Isabelle/HOL syntax:

∃ l1 :: L1 istream. . . . ∃ lk :: Lk istream.
(c1 x1 . . . xr l1 lk s1 . . . sp) ∧ (c2 l1 . . . lk xr+1 . . . xm sp+1 . . . sn)
=⇒ constrMixC x1 . . . xm s1 . . . sn

2.12.4. Loop

Let the component specification C is represented by corresponding constraint on
the communication histories of the channels. When a component GraphLoopC
is build from a component C connecting its output channel with input one, this
channel makes a communication loop. The Focus specification GraphLoopC
of a system in graphical style is given below.

GraphLoopC glass-box

C1

x1 : M1 s1 : S1

l1 : M

sn : Snxm : Mm

... ...
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The semantics of the specification GraphLoopC is defined according to Defini-
tion 1.3 by

[GraphLoopC ]
def
= ∃ l1 ∈ M∞ : [C1] (2.41)

The specification GraphLoopC can be reformulated schematically into a speci-
fication ConstrLoopC , which has the same semantics as in the specification in
constraint style:

[GraphLoopC ] = [ConstrLoopC ]

ConstrLoopC timed

in x1 : M1; . . . ; xm : Mm

out s1 : S1; . . . ; sn : Sn

loc l1 : M

(s1, . . . , sn , l1) := C (x1, . . . , xr , l1)

If the specification of the C component is only weakly causal, this leads to Zeno
paradoxes. To prevent Zeno paradoxes some delays for the “loop”-channels are
needed (in each time interval only finite sequence of messages can be presented
on a channel). Thus, for the “loop”-composition the original component must
be strong causal (with delays) and an additional initial value of the connected
stream must be specified. The component specification ConstrLoopCInit is
an extension of the ConstrLoopC by using an initial value InitValue of the
connected stream:

ConstrLoopCInit timed

in x1 : M1; . . . ; xm : Mm

out s1 : S1; . . . ; sn : Sn

loc l1 : M

(s1, . . . , sn , l1) := C (x1, . . . , xr , l2)
where l2 so that

ti(l2, 1) = 〈InitV alue〉
ti(l2, i + 1)) = ti(l1, i)

We can also see such a composed specification as a composition of two compo-
nents C and InitV , as shown in the specification GraphLoopCInitV :

[GraphLoopCInitV ] = [ConstrLoopCInit]
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GraphLoopCInitV glass-box

C1

x1 : M1 s1 : S1

l2 : M

sn : Snxm : Mm
... ...

l1 : M
InitV(initvalue)

We specify the component InitV as a parameterized one – the parameter is
an initial value of a stream, more precisely, the list of messages that must be
produced at the first time interval.

InitV (InitValue ∈ M ∗) timed

in l1 : M

out l2 : M

ti(l2, 1) = 〈InitV alue〉
ti(l2, i + 1) = ti(l1, i)

The corresponding specifications in constraint style are given below:

ConstrLoopCInitV timed

in x1 : M1; . . . ; xm : Mm

out s1 : S1; . . . ; sn : Sn

loc l1 : M ; l2 : M

(s1, . . . , sn , l1) := C (x1, . . . , xm , l2)
(l1) := InitV(InitV alue)(l2)

The representation in Isabelle will be exactly the definition of semantics of com-
posite specification modulo Isabelle/HOL syntax:

∃ l1 :: L1 istream. (c x1 . . . xm l2 s1 . . . sn l2) ∧ (initV l2 l1)
=⇒ constrLoopCInit x1 . . . xm s1 . . . sn

Remark: If the delay between input and output streams in the main
component (in this case, in the component GraphLoopCInit) is greater than
one, i.e. some natural number d , 1 < d , then the initial values must be defined
not only for the first time interval, but for the first d time intervals.
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2.13. Sheaves and Replications

As mentioned in Section 1.3.5, a specified system can contain a number of
copies of channel of the same type or several instances of the same component.
If this number of copies is finite, fixed and small enough, we can use the simple
composition kinds, which are introduced in Section 2.11. But if the number of
copies must be specified as some variable of type N or if the number of copies
is finite and fixed, but too large to have a readable system specification, the
notions of sheaf of channels and replication of specifications must be used (see
Section 1.3.5).

2.13.1. Sheaves of Channels

In addition to the notation presented in Section 1.3.5

x [{1, . . . , k}] : M ,

the following notation can also be used to specify a sheaf of channels in Focus:

x1, . . . , xk : M .

From here we prefer the notation x1, . . . , xk : M .

We say that a sheaf of channels x1, . . . , xn is correct, if all the channels x1, . . . , xn

are of the same type and the number n is greater than zero.
To represent in Isabelle/HOL a sheaf of timed infinite streams x1, . . . , xn of

some type Streamtype we propose to use the following kind of functional types:

types nStreamtype = nat ⇒ streamtype istream

A sheaf will be specified in Isabelle/HOL as a single variable of correspond-
ing type, e.g. the sheaf x1, . . . , xn will be represented as a variable nX of type
nStreamtype. To translate the Focus formula over channels (streams) from
a sheaf, e.g. to say that the predicate p is true for any stream of the sheaf
send1, . . . , sendn (in Focus this formula is represented by ∀ i ∈ [1..n] : p(si))
the following notation can be used14:

∀ i < n. p (nSend i)

To argue about sheaves of channels in Isabelle/HOL we need to make sure
that the sheaf is nonempty15. For this purpose the Isabelle/HOL predicate
CorrectSheaf n is used. This predicate is true, if the number n of channels is
greater than zero. From now on we will refer to this number n as sheaf upper
bound.
14 The relation < must be used, because the elements in Isabelle/HOL are counted from 0,

in contrast to Focus, where the count goes from 1.
15 In Focus this is automatically true: the notation x1, . . . , xn implies that 0 < n.

79



2. Focus on Isabelle

The Isabelle/HOL semantics of a Focus specification that uses sheaf(s)
of channels will be specified in the same manner as for a specification with-
out sheaves of channels (see Section 2.11). The only extension is that the
predicate(s) CorrectSheaf over the corresponding sheaf(s) of streams must be
added as extra conjunct(s) to the definition of the specification semantics in
Isabelle/HOL (see Equations 2.23 and 2.29).

The Isabelle/HOL specification of relation between sets of channels and
sheaves of channels is more complicated than for “simple” channels. The cor-
rectness proofs are also more complicated, but still be schematic. We will
discuss this difference in Section 2.13.3.

Remark: Lists of specification parameters of the same type will be rep-
resented in a similar way as sheaves of channels. In this case we can speak of a
sheaf of parameters.

In more general case16, when the set Id of indexes in the sheaf is not a subset
of the set of natural numbers, e.g. Id = {a, b, c, d}, we understand by the sheaf
upper bound the whole set Id.

First of all we need to specify the type of elements of the set Id :

datatype Id = a | b | c | d

To represent a sheaf x [Id ] of timed infinite streams of some type Streamtype
in Isabelle/HOL we will use the following kind of functional types:

types nStreamtype = Id set ⇒ streamtype istream

A sheaf of this kind will be specified in Isabelle/HOL also as a single variable
of corresponding type, e.g. the sheaf x [Id ] will be represented as a variable nX
of type nStreamtype. To translate the Focus formula over channels (streams)
from a sheaf, e.g. to say that the predicate p is true for any stream of the sheaf
x [Id ] (∀ i ∈ Id : p(xi)), a similar notation will be used:

∀ (i :: IdSet). p (x i)

The predicate CorrectSheaf is not needed in this case, because the set (type) Id
is nonempty one.

Hence, the Isabelle/HOL predicate that represent the semantics of a Focus
specification with sheaf(s) of channels must have an extra parameter for each
sheaf upper bound. For example, the following four sheaves of channels in some
specification

X a1, . . . , an ,
X b1, . . . , bm ,
X c1, . . . , cn , and
X d [i ], i ∈ Id

correspond to three upper bounds m, n, and Id. Thus, the Isabelle/HOL pred-
icate that represent the semantics of this specification must have three extra
parameters: two of type nat and one of type Id.
16This case implies often less readability of a specification.
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Example 2.6:
The Focus specification of FlexRay communication protocol requirements (for
details see Section 4.2) is an example of a system, that requires to use the no-
tion of sheaf of channels.

FlexRay (constant c1, ..., cn ∈ Config) timed

in return1, ..., returnn : Frame

out store1, ..., storen : Frame; get1, ..., getn : N

asm ∀ i ∈ [1..n] : msg1(returni)

DisjointSchedules(c1, ..., cn)

IdenticCycleLength(c1, ..., cn)

gar FrameTransmission(return1, ..., returnn , store1, ..., storen , get1, ..., getn ,

c1..., cn)

∀ i ∈ [1..n] : msg1(geti) ∧msg1(storei)

In the specification FlexRay we have four sheaves of channels: store1, ..., storen

(of type Frame), get1, ..., getn (of type N), return1, ..., returnn (of type Frame)
and also a list of parameters c1, . . . , cn (of type Config). To represent them
we define in Isabelle/HOL the special types nFrame, nNat, and nConfig. For
example, the type nNat is used to represent sheaf of channels of type N:

types nNat = nat ⇒ nat istream

The representation of the Focus specification FlexRay of the communication
protocol requirements in Isabelle/HOL is give below. The whole Focus specifi-
cations and its translations to Isabelle/HOL together with corresponding proofs
is discussed in details in Section 4.2.

constdefs
FlexRay ::

nat ⇒ ′a nFrame ⇒ nConfig ⇒ ′a nFrame ⇒ nNat ⇒ bool
FlexRay n nReturn nC nStore nGet
≡
(CorrectSheaf n ∧
(∀ i < n. maxmsg 1 (nReturn i)) ∧
(DisjointSchedules n nC ) ∧ (IdenticCycleLength n nC )
−→

((FrameTransmission n nReturn nStore nGet nC ) ∧
(∀ i < n. maxmsg 1 (nGet i) ∧ maxmsg 1 (nStore i))))

2
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2.13.2. Specification Replications

Let us recall the specification RepC from Section 1.3.5. To make a specification
more readable and the corresponding proofs simpler, we take the set Cid as a
subset of natural numbers

Cid = {1, . . . ,N }

where N is the number of replications. For such a case is more suited the
“uncompressed” graphical representation:

RepCN(const p1, . . . , pN ∈ P) glass-box

C(p1)

i11: I1 in1: In… 

o11: O1 om1: Om… 

C(pN)

i1N: I1 inN: In… 

o1N: O1 omN: Om… 

… 

Hence the semantics of the specifications RepC and RepCN is equal, they have
the same Focus representation as plain text (constraint style):

RepCN(const p1, . . . , pN ∈ P) timed

in i11 : I1, . . . i1N : I1; . . . ; in1 : In , . . . inN : In

out o11 : O1, . . . o1N : O1; . . . ; om1 : Om , . . . omN : Om

∀ j ∈ [1..N ] :
(o1j , . . . , omj ) := C (pj )(i1j , . . . , inj )

Remark: The advantage of the “uncompressed” representation is a bet-
ter readability for the cases when we have in a specification not only sheaves of
channels, but also some single channel which is an input for all replications.

The Isabelle/HOL representation of a specification replication is based on the
representation of sheaves of channels and parameters:

constdefs
RepCN ::

nat ⇒ nI1 ⇒ ... ⇒ nIn ⇒ nP ⇒ nO1 ⇒ ... ⇒ nOm ⇒ bool
RenCN n ni1 ... nin nP nO1 ... nOm ≡
(CorrectSheaf n ∧
(∀ i < n. C (ni1 i) ... (nin i) (nP i) (nO1 i) ... (nOm i) ))

The Isabelle/HOL notation

∀ i < n. SomePredicate
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means in the internal Isabelle/HOL representation

∀ i. i < n −→ SomePredicate

In the case we do not take for some reasons Cid = {1, . . . ,N } for some N ∈ N,
but define some datatype Id (see the previous section for details), the represen-
tation will be similar one:

constdefs
RepCN ::

Id set ⇒ nI1 ⇒ ... ⇒ nIn ⇒ nP ⇒ nO1 ⇒ ... ⇒ nOm ⇒ bool
RenCN IdSet ni1 ... nin nP nO1 ... nOm ≡
(∀ (i :: IdSet). C (ni1 i) ... (nin i) (nP i) (nO1 i) ... (nOm i))

Remark: The concepts of sheaves and replications can be used for the
Janus specifications in the same manner as for the Focus specifications. The
corresponding representation in Isabelle/HOL will be the same.

Example 2.7:
Specifications FlexRayArchitecture and FlexRayArchitectureR represent the sa-
me system (the guarantee part architecture of the FlexRay, for details see Sec-
tion 4.2). They are semantically equal, but they use different kinds of replica-
tion representation: in the specification FlexRayArchitecture the “compressed”
kind of representation was used, where the specification FlexRayArchitectureR
is presented in the “uncompressed” kind.

2

FlexRayArchitecture (constant c1, ..., cn ∈ Config) glass-box

Cable

FlexRayController(c1)

st
or

e 1
: F

ra
m

e

FlexRayController(cn)...

ge
t 1

: N

re
tu

rn
1

: F
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se
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: F

ra
m

e

recv : Frame

st
or

e n
: F
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FlexRayArchitectureR (constant c1, ..., cn ∈ Config) glass-box

Cable

FlexRayController(cj)

st
or

e[
j] 

: F
ra

m
e

ge
t[j

] :
 N

re
tu

rn
[j]

 : 
Fr

am
e

send[j] : Frame recv : Frame

j {1,…,n}

2.13.3. Isabelle/HOL Specification of Relations between Sets of Channels

To represent the Isabelle/HOL semantics of the sets of input, output and local
channel and sheaf identifiers of a Focus specification S , we need to define first
of all the following datatypes:

X chanID – the type of all needed channel indetifiers Id1,. . . , IdN :

datatype chanID = ch Id1 | · · · | ch IdN

X specID – the type of all needed specification names S1,. . . , SM (specifica-
tion identifiers):

datatype specID = sS1 | · · · | sSM

After that we add the definition of

X csID – the joint type of channel and sheaves identifiers, as well as

X spID – the joint type of specification and specification replications identi-
fiers:

datatype csID = ch chanID | sheaf csID nat

datatype spID = spec specID | repl spID nat
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These types must be defined for the specification group as whole in the theory
SpecificationGroupName types.thy (see Sections 2.13.5). In this theory we also
need to declare variables which represents the upper bounds of the sheaves and
replications and specify the corresponding list sheafNumbers of all upper bounds,
used in the specification group, e.g.

consts sN :: nat

constdefs
sheafNumbers :: nat list
sheafNumbers ≡ [sN ]

If a local stream x in a composite specification S is split into a sheaf of channels,
we need to add this information to the Isabelle/HOL theory SpecificationGroup-
Name types.thy to argue about the composition correctness. We represent this
information by the schematically defined predicate ch split over the types csID
and nat. The predicate ch split holds for a channel identifier c and a natural
number n, if the channel (stream) c is split in a sheaf with upper bound n, e.g.
(for a detailed example see Sections 2.13.5 and 4.2):

constdefs
ch split :: csID ⇒ nat ⇒ bool

ch split x l ≡
(x = ch ch recv ∧ l = sN )

To argue about the composition correctness in the case of split channel, we also
need to define the following auxiliary predicates:

X eqSplit: to specify the relation between two sets of sheaf or channels iden-
tifiers, which represents equality modulo split channels;

X chan2Sheaf: to convert a channel identifier to a sheaf identifier with a given
upper bound;

X cs2Sheaf: to convert a channel or a sheaf identifier to a sheaf identifier with
a given upper bound (this predicate can also be used to build sheaves of
sheaves of channels);

X makeSheafs: to build set of sheaf identifiers from a channel or a sheaf iden-
tifier and the given upper bound (based on the definition of the predicate
ch split);

X split2sheaf: to build set of sheaf identifiers from a channel or a sheaf iden-
tifier and the list of sheaf upper bounds sheafNumbers (based on the defi-
nition of the predicate makeSheafs);

X extSplit: to extend a set of channel or sheaf identifiers by the sheaf iden-
tifiers, which have been got by splitting;
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X split2loc: to convert a channel or a sheaf identifier into a set, where an
identifier of a sheaf, which has been got by splitting, is replaced by the
corresponding channel identifier.

In the similar manner as for specifications without sheaves and replications we
specify the sets of input, output and local identifiers of the specification S as
functions ins, out and loc, which return for a given specification name the list of
corresponding channel or sheaf identifiers – input, output and local respectively.

Then we specify extensions of these functions to work also with specification
replication identifiers: the functions insS, outS and locS returns for a given
specification or specification replication name the list of corresponding channel
or sheaf identifiers – input, output and local respectively.

We also introduce predicates inStream, outStream and locStream over specifica-
tion or specification replication names and channel or sheaves identifiers. The
predicate inStream S x (outStream S x, locStream S x) holds, if the list of identifiers
x corresponds to the specification (replication) name S.

We specify the function subcomponents which returns for a given component
the list of its subcomponents in the same way as for specification group with-
out replications. The analog defined function subcomponentS returns the list of
subcomponents for a given component or component replication.

The definitions of the functions insS, outS, locS and subcomponentS are inde-
pendent from the concrete system specification. They can be seen as a part of
the schema and simply copied without any changes to the theory Specification-
GroupName inout.thy.

The predicates to express the correctness properties (correctInOutLoc, correct-
Composition, correctCompositionIn, correctCompositionOut, and correctComposition-
Loc) are defined similar to the case of specification groups without sheaves and
replications (see Section 2.11.4), but now they are specified over the set spID
and taking into account the possibility that some channels are split into sheaves.

Remark: The theory inout sheaf.thy is independent of the way the the
sheaves of channels are defined – over the set N with some variables as the
sheaves upper bound, or over some extra defined finite nonempty set.
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theory inout sheaf = Main + FR types:

consts
subcomponents :: specID ⇒ spID set

consts
subcomponentS :: spID ⇒ spID set

consts
ins :: specID ⇒ csID set
loc :: specID ⇒ csID set
out :: specID ⇒ csID set

consts
insS :: spID ⇒ csID set
locS :: spID ⇒ csID set
outS :: spID ⇒ csID set

constdefs
chan2Sheaf :: chanID ⇒ nat ⇒ csID

chan2Sheaf x i ≡ sheaf (ch x ) i

constdefs
cs2Sheaf :: nat ⇒ csID ⇒ csID

cs2Sheaf i x ≡ sheaf x i

constdefs
inStream :: spID ⇒ csID set ⇒ bool
inStream x y ≡ (insS x = y)

constdefs
locStream :: spID ⇒ csID set ⇒ bool
locStream x y ≡ (locS x = y)

constdefs
outStream :: spID ⇒ csID set ⇒ bool
outStream x y ≡ (outS x = y)

constdefs
eqSplit :: csID set ⇒ csID set ⇒ bool
eqSplit x y
≡
(∀ i ∈ x . i ∈ y ∨ (∃ (n::nat).(ch split i n) ∧ (sheaf i n) ∈ y)) ∧
(∀ j ∈ y . j ∈ x ∨ (∃ c ∈ x . ∃ (n::nat).

(sheaf c n) = j ∧ (ch split c n)))

constdefs
correctInOutLoc :: spID ⇒ bool
correctInOutLoc x ≡

(insS x ) ∩ (outS x ) = {}
∧ (insS x ) ∩ (locS x ) = {}
∧ (locS x ) ∩ (outS x ) = {}
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constdefs
correctComposition :: spID ⇒ bool
correctComposition x ≡

subcomponentS x = {} −→ locS x = {}

constdefs
makeSheafs :: csID ⇒ nat ⇒ csID set
makeSheafs x n ≡

if (ch split x n)
then {sheaf x n}
else {}

constdefs
split2sheaf :: csID ⇒ csID set

split2sheaf x ≡
(if (∃ n. (n mem sheafNumbers) ∧ ch split x n)
then

⋃
((makeSheafs x ) ‘ (set sheafNumbers))

else {})

constdefs
extSplit :: csID set ⇒ csID set

extSplit x ≡ x ∪
⋃

(split2sheaf ‘ x )

constdefs
correctCompositionIn :: spID ⇒ bool
correctCompositionIn x ≡
eqSplit (insS x ) (

⋃
(insS ‘ (subcomponentS x )) − extSplit (locS x ))

∧ (insS x ) ∩
⋃

(outS ‘ (subcomponentS x )) = {}

constdefs
correctCompositionOut :: spID ⇒ bool
correctCompositionOut x ≡
eqSplit (

⋃
(outS ‘ (subcomponentS x )) − extSplit (locS x )) (outS x )

∧ (outS x ) ∩
⋃

(insS ‘ (subcomponentS x )) = {}

constdefs
split2loc :: csID ⇒ csID set

split2loc x ≡
(case x of

ch i ⇒ {x}
| sheaf j n ⇒ ( if ch split j n

then {j}
else {x}))

constdefs
correctCompositionLoc :: spID ⇒ bool
correctCompositionLoc x ≡
eqSplit (locS x )

(
⋃

( (split2loc ‘ (
⋃

(insS ‘ (subcomponentS x ))))
∩ (split2loc ‘ (

⋃
(outS ‘ (subcomponentS x )))) ))

end
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The Isabelle/HOL theory inout sheaf.thy, like the theory inout.thy for specifica-
tion groups without sheaves and replications, uses the (user-defined) theory
SpecificationGroupName types.thy, which contains all user-defined datatypes (in-
cluding specID and chanID, as well as schematically defined scID and spID)
used in the specification group. The theory inout sheaf.thy must be copied
into the same folder as the theory stream.thy, SpecificationGroupName types.thy,
SpecificationGroupName inout.thy etc. “SpecificationGroupName” must be re-
placed by the actual name of specification group.

The proof schema for the case of specification replications and sheaves of
channels is also standard: 17

X for the property correctInOutLoc:

by (simp add: correctInOutLoc def)

X for the property correctComposition:

by (simp add: correctComposition def)

X for the property correctCompositionIn:

by (simp add: correctCompositionIn def extSplit def
ch split def sheafNumbers def eqSplit def
cs2Sheaf def split2sheaf def makeSheafs def,
auto)

In some cases applying of the Isabelle/HOL automatic proof strategy can
be omitted. For the special case, where a composite specification has
no local channels, it is enough to use the definitions of the predicates
correctCompositionIn, extSplit and eqSplit.

X for the property correctCompositionOut:

by (simp add: correctCompositionOut def
extSplit def ch split def eqSplit def
cs2Sheaf def split2sheaf def makeSheafs def,
auto)

For the special case, where a composite specification has no local channels,
it is enough to use the definitions of the predicates correctCompositionOut,
extSplit and eqSplit.

X for the property correctCompositionLoc:

by (simp add: correctCompositionLoc def
eqSplit def ch split def split2loc def cs2Sheaf def, auto)

For the special case, where a composite specification has no local channels,
it is enough to use the definitions of the predicates correctCompositionLoc,
eqSplit and split2loc.

17The proofs of the properties correctInOutLoc and correctComposition are the same as for
the specifications without replications and sheaves of channels.
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2.13.4. Disjoint Channels in a Sheaf

In some cases we need to have such a sheaf of channels of some type M (with
the identifier set IdSet), where at most one channel is “active” per time interval,
i.e. at every time interval at most one channel contains some messages. For this
reasons we define Focus operator

disjinf
s ∈ M ∞[IdSet ] → Bool

disjinf
S (s[IdSet ]) def=

∀ t ∈ N : ∀ i , j ∈ IdSet , i 6= j : ti(s[i ], t) 6= 〈〉 → ti(s[j ], t) = 〈〉

We translate the Focus operator disjinf
s into the Isabelle/HOL predicate inf disjS

(the type variables ′a corresponds here to the polymorphic types M and IdSet
respectively):

constdefs
inf disjS :: ′b set ⇒ ( ′b ⇒ ′a istream) ⇒ bool

inf disjS IdSet nS
≡
∀ (t ::nat) i j . (i :IdSet) ∧ (j :IdSet) ∧ ((nS i) t) 6= []
−→ ((nS j ) t) = []

For the case IdSet = {1..n}, n ∈ N we can represent the Focus operator disjinf
s

in Isabelle/HOL as follows:

disjinf ∈ M ∞ × · · · ×M ∞ → Bool

disjinf(s1, . . . , sn) def=

∀ t ∈ N : ∀ i , j ∈ [1..n], i 6= j : ti(s[i ], t) 6= 〈〉
→ ti(s[j ], t) = 〈〉

We translate the Focus operator disjinf into the Isabelle/HOL predicate inf disj
(the type variable ’a corresponds here to the polymorphic type M ):

constdefs
inf disj :: nat ⇒ (nat ⇒ ′a istream) ⇒ bool

inf disj n nS
≡
∀ (t ::nat) (i ::nat) (j ::nat).
i < n ∧ j < n ∧ i 6= j ∧ ((nS i) t) 6= [] −→
((nS j ) t) = []
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2.13.5. Example: System with Sheaves of Channels

We discuss an example of a system with sheaf of channels. For this system we
have two specifications – KReq, a specification of system requirements, and K,
a specification of a system architecture. The specification K is a composite one.
The subcomponents of K are components A, B1, . . . , Bn , and F . Specifications
of these components are elementary ones.

K glass-box

A

B1

FBn

s1 : SType

sn : SType

...c : cType

d : DType

z1 : ZType

zm : ZType

x : XType

y : YType

...

Thus, the specification group Group has specifications of five kinds: KReq, K ,
A, B , and F , and channels of six kinds: x , y , c, d , s, and z .

In the specification K the stream c is split a sheaf of channels. Therefore, we
need to add this information to the Isabelle/HOL specification Group types.thy
defining the ch split predicate.

The constant sN is declared for the number of channels in sheaves (specifica-
tion in replications).

Remark: If the corresponding types XType, YType, CType, SType, and
ZType are not basic ones and do not inherit from some other predefined the-
ories, they also need to be defined in this theory. In the case we inherit some
type of a theory T we need to add its name to the theory header.

The Isabelle/HOL theory Group inout.thy is based only on the Isabelle/HOL
theory inout sheaf.thy (see Section 2.13.3), which is in the case of the specification
group Group based on the theory Group types.thy. First of all we specify in this
theory the subcomponent relations for all components of the system by the
function subcomponents. Then we specify the list of input, output and local
channels for all components by the functions ins, out and loc respectively.

91



2. Focus on Isabelle

theory Group types = Main + stream:

consts sN :: nat

constdefs
sheafNumbers :: nat list
sheafNumbers ≡ [sN ]

datatype chanID =
ch x

| ch y
| ch c
| ch s
| ch d
| ch z

datatype specID =
sKReq

| sK
| sA
| sB
| sF

datatype csID = ch chanID | sheaf csID nat
datatype spID = spec specID | repl spID nat

constdefs
ch split :: csID ⇒ nat ⇒ bool

ch split x n ≡ (x = ch ch c ∧ n = sN )
end

theory Group inout = Main + inout sheaf :

primrec
subcomponents sKReq = {}
subcomponents sK = {spec sA, repl (spec sB) sN , spec sF}
subcomponents sA = {}
subcomponents sB = {}
subcomponents sF = {}

primrec
subcomponentS (spec x ) = subcomponents x
subcomponentS (repl x y) = subcomponentS x

primrec
ins sKReq = {ch ch x , ch ch y}
ins sK = {ch ch x , ch ch y}
ins sA = {ch ch x , ch ch y}
ins sB = {ch ch c}
ins sF = {sheaf (ch ch s) sN , ch ch d}
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primrec
insS (spec x ) = ins x
insS (repl x i) = (cs2Sheaf i ‘ (insS x ))

primrec
loc sKReq = {}
loc sK = {ch ch c, sheaf (ch ch s) sN , ch ch d}
loc sA = {}
loc sB = {}
loc sF = {}

primrec
locS (spec x ) = loc x
locS (repl x i) = (cs2Sheaf i ‘ (locS x ))

primrec
outS (spec x ) = out x
outS (repl x i) = (cs2Sheaf i ‘ (outS x ))

primrec
out sKReq = {sheaf (ch ch z ) sN }
out sK = {sheaf (ch ch z ) sN }
out sA = {ch ch c, ch ch d}
out sB = {ch ch s}
out sF = {sheaf (ch ch z ) sN }

Proofs for components

lemma spec KReq1 :
correctInOutLoc (spec sKReq)
by (simp add : correctInOutLoc def )

lemma spec KReq2 :
correctComposition (spec sKReq)
by (simp add : correctComposition def )

lemma spec K1 :
correctInOutLoc (spec sK )
by (simp add : correctInOutLoc def )

lemma spec K2 :
correctComposition (spec sK )
by (simp add : correctComposition def )

lemma spec K3 :
correctCompositionIn (spec sK )
by (simp add : correctCompositionIn def

extSplit def eqSplit def split2sheaf def
cs2Sheaf def sheafNumbers def ch split def
makeSheafs def )
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lemma spec K4 :
correctCompositionOut (spec sK )
by (simp add : correctCompositionOut def

extSplit def ch split def eqSplit def
split2sheaf def makeSheafs def cs2Sheaf def ,
auto)

lemma spec K5 :
correctCompositionLoc (spec sK )
by (simp add : correctCompositionLoc def ch split def

eqSplit def split2loc def cs2Sheaf def ,
auto)

lemma spec A1 :
correctInOutLoc (spec sA)
by (simp add : correctInOutLoc def )

lemma spec A2 :
correctComposition (spec sA)
by (simp add : correctComposition def )

lemma spec B1 :
correctInOutLoc (spec sB)
by (simp add : correctInOutLoc def )

lemma spec B2 :
correctComposition (spec sB)
by (simp add : correctComposition def )

lemma spec F1 :
correctInOutLoc (spec sF )
by (simp add : correctInOutLoc def )

lemma spec F2 :
correctComposition (spec sF )
by (simp add : correctComposition def )

end

94



2.14. Translation schema: From FOCUS to Isabelle/HOL

2.14. Translation schema: From FOCUS to Isabelle/HOL

The transition schema for the Focus types was given in Section 2.2. The
translation of a Focus specification into Isabelle/HOL was presented in general
in Section 2.11 by Equations 2.23 (elementary specification) and 2.33 (composite
specification). Representation of sheaf channels and specification replications
was discussed in Section 2.13.

The body of an elementary specification can be represented in Focus in the
following ways:

X tiTable;

X state transition diagram;

X a number of properties defined as logic formulas.

The translation of a Focus tiTable into Isabelle/HOL was presented in Sec-
tion 2.6, and the representation of a state transition diagram was given in
Section 2.8. In this section we summarise the results of Sections 2.2 und 2.5
(representation of the Focus operators in Isabelle/HOL) in Tables 2.4–2.7 and
discuss the transition schema for the Focus types, expressions, function and
predicates.18 The transition schema for the Focus formulas is given in Table
2.8.

Focus operator, f Isabelle/HOL representation, [[f ]]Isab
〈〉 [] (an empty list)

#s length [[s]]Isab
s.(n + 1) nth [[s]]Isab [[n]]Isab , [[s]]Isab ! [[n]]Isab
x _y [[x ]]Isab @ [[y ]]Isab
x v y [[x ]]Isab ≤ [[y ]]Isab , x , y ∈ M ∗

x v y False, x ∈ M ∗, x ∈ M ω

dom.s finU dom [[s]]Isab ( or finU dom inat [[s]]Isab)

rng.s finU range [[s]]Isab
x ∈ s (s ∈ M ∗ for some M ) [[x ]]Isab mem [[s]]Isab
ft.s hd [[s]]Isab
M SO s filter (λ y .y ∈ [[M ]]Isab) [[s]]Isab
map(f , s) map [[f ]]Isab [[s]]Isab
∝.s remdups [[s]]Isab

Table 2.4.: Isabelle/HOL representation of the FOCUS operators on finite un-
timed streams

18 In these tables do not represent operators with complicated type combinations: prefix of a
stream x v y , concatenation operator x _y ,
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Focus operator, f Isabelle/HOL representation, [[f ]]Isab
#s ∞
s.(n + 1) [[s]]Isab [[n]]Isab
x _y [[x ]]Isab , x is infinite

x _y fin inf append [[x ]]Isab [[y ]]Isab (x ∈ M ∗, y ∈ M ∞)

x v y (∀ i. [[x ]]Isab i = [[y ]]Isab i), x , y ∈ M ∞

x v y False, x ∈ M ∞, y 6∈ M ∞

dom.s infU dom [[s]]Isab
rng.s infU range [[s]]Isab
M SO s filter inf (λ y .y ∈ [[M ]]Isab) [[s]]Isab
map(f , s) [[f ]]Isab ◦ [[s]]Isab
∝.s inf remdups [[s]]Isab

Table 2.5.: Isabelle/HOL representation of the FOCUS operators on infinite
untimed streams

Remarks to Table 2.8:

X In Isabelle/HOL can be used only the mathematical symbols < and ≤,
the symbols > and ≥ do not belong to the Isabelle/HOL syntax.

X The mathematical symbols < and ≤ can be used in Isabelle/HOL only for
two arguments, because they are relations which results a boolean value
(True or False). This implies that the expressions like A < B < C contains
type error.

X F denotes here some Focus function or predicate. If the expression is
used in a simple definition, without any nestings, brackets can be omitted.

X P denotes here the name of some Focus predicate.

X T denotes some Focus datatype.
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Focus operator, f Isabelle/HOL representation, [[f ]]Isab
〈〉 [] (an empty list)

#s fin length [[s]]Isab
s.n fin nth [[s]]Isab [[n]]Isab
x _y [[x ]]Isab @ [[y ]]Isab
x v y [[x ]]Isab ≤ [[y ]]Isab , x , y ∈ M ∗

x v y inf prefix [[x ]]Isab [[y ]]Isab , x ∈ M ∗, x ∈ M ∞

x v y False, x ∈ M ∗, y ∈ M ω

s ↓t fin truncate plus [[s]]Isab [[t ]]Isab (t ∈ N∞)

s ↓t fin truncate [[s]]Isab [[t ]]Isab (t ∈ N)

rng.s finT range [[s]]Isab
s fin make untimed [[s]]Isab
tm(s,n) fin tm [[s]]Isab [[n]]Isab
M SO s finT filter [[M ]]Isab [[s]]Isab
map(f , s) map [[f ]]Isab [[s]]Isab
∝.s finT remdups [[s]]Isab
Nti(s) length [[s]]Isab
ti(s,t) ti [[s]]Isab [[t ]]Isab
s ↑t drop [[s]]Isab [[t ]]Isab
mergeti(s,r) fin merge ti [[s]]Isab [[r ]]Isab
tik (s,n) fin join ti [[s]]Isab [[n]]Isab [[k ]]Isab
msgn(s) fin msg [[n]]Isab [[s]]Isab
s .k fin join time [[s]]Isab [[k ]]Isab
s 'k fin split time [[s]]Isab [[k ]]Isab
ttl(s) tl [[s]]Isab
ftifin(s) fin find1nonemp [[s]]Isab
indfin

fti (s) fin find1nonemp index [[s]]Isab
lastti(s, t) fin last ti [[s]]Isab [[t ]]Isab

Table 2.6.: Isabelle/HOL representation of the FOCUS operators on finite
timed streams
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Focus operator, f Isabelle/HOL representation, [[f ]]Isab
s.n inf nth [[s]]Isab [[n]]Isab
x _y [[x ]]Isab , x is infinite

x _y fin inf append [[x ]]Isab [[y ]]Isab (x ∈ M ∗, y ∈ M ∞)

x v y (∀ i. [[x ]]Isab i = [[y ]]Isab i), x , y ∈ M ∞

x v y False, x ∈ M ∞, y 6∈ M ∞

s ↓t (∗) inf truncate plus [[s]]Isab [[t ]]Isab (t ∈ N∞)

s ↓t (∗) inf truncate [[s]]Isab [[t ]]Isab (t ∈ N)

dom.s inf dom x

rng.s infT range x

ts(s) ts [[s]]Isab
s make untimed (InfT [[s]]Isab) (∗∗)
tm(s,n) inf tm [[s]]Isab [[n]]Isab
M SO s infT filter [[M ]]Isab [[s]]Isab
map(f , s) [[f ]]Isab ◦ [[s]]Isab
∝.s infT remdups [[s]]Isab
ti(s,t) [[s]]Isab [[t ]]Isab
s ↑t inf drop [[s]]Isab [[t ]]Isab
mergeti(s,r) inf merge ti [[s]]Isab [[r ]]Isab
tik (s,n) join ti [[s]]Isab [[n]]Isab [[k ]]Isab
msgn(s) msg [[n]]Isab [[s]]Isab
s .k join time [[s]]Isab [[k ]]Isab
s 'k split time [[s]]Isab [[k ]]Isab
ttl(s) inf tl [[s]]Isab
ftiinf(s) inf find1nonemp [[s]]Isab
indinf

fti (s) inf find1nonemp index [[s]]Isab
lastti(s, t) inf last ti [[s]]Isab [[t ]]Isab
disjinf

S (l) inf disjS [[l ]]Isab
disjinf(l) inf disj [[l ]]Isab

Table 2.7.: Isabelle/HOL representation of the FOCUS operators on infinite
timed streams (Remarks: (∗) be careful with stream types; (∗∗) the
resulting type is α stream.)
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Focus expression E Isabelle/HOL representation, [[E ]]Isab
true True

false False

A = B [[A]]Isab = [[B ]]Isab
A 6= B [[A]]Isab 6= [[B ]]Isab
A < B , B > A [[A]]Isab < [[B ]]Isab
A ≤ B , B ≥ A [[A]]Isab ≤ [[B ]]Isab
A < B < C , C > B > A [[A]]Isab < [[B ]]Isab ∧ [[B ]]Isab < [[C ]]Isab
A ≤ B ≤ C , C ≥ B ≥ A [[A]]Isab ≤ [[B ]]Isab ∧ [[B ]]Isab ≤ [[C ]]Isab
¬Q ¬[[Q ]]Isab
Q1 ∨Q2 [[Q1]]Isab ∨ [[Q1]]Isab
Q1 ∧Q2 [[Q1]]Isab ∧ [[Q2]]Isab
Q1 ⇒ Q2 [[Q1]]Isab −→ [[Q2]]Isab
Q1 ⇔ Q2 [[Q2]]Isab = [[Q2]]Isab
x x (x is a variable)

∃ x : Q ∃ x . [[Q ]]Isab
∃ x1 . . . xn : Q ∃ x1 . . . xn . [[Q ]]Isab
∀ x : Q ∀ x . [[Q ]]Isab
if F then F1 else F2 fi (if [[F ]]Isab then [[F1]]Isab else [[F2]]Isab)

let A in B let [[A]]Isab in ([[B ]]Isab)

F (x1, . . . , xn) (F [[x1]]Isab . . . [[xn ]]Isab)

∀ x1 . . . xn ∈ T : Q ∀ (x1::[[T ]]Isab) . . . (xn ::[[T ]]Isab). [[Q ]]Isab
∃ x1 . . . xn ∈ T : Q ∃ (x1::[[T ]]Isab) . . . (xn ::[[T ]]Isab). [[Q ]]Isab
∃ x1 . . . xn ∈ [1..m] : Q ∃ x1 . . . xn .

x1 < m ∧ · · · ∧ xn < m ∧ [[Q ]]Isab
∀ x1 . . . xn ∈ [1..m] : Q ∀ x1 . . . xn .

x1 < m ∧ · · · ∧ xn < m −→ [[Q ]]Isab
∀ x1 . . . xn , P(x1, . . . , xn) : Q ∀ x1 . . . xn .[[P(x1, . . . , xn)]]Isab −→ [[Q ]]Isab
∃ x1 . . . xn , P(x1, . . . , xn) : Q ∃ x1 . . . xn .[[P(x1, . . . , xn)]]Isab ∧ [[Q ]]Isab

Table 2.8.: Isabelle/HOL representation of the FOCUS expressions
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For example, according to Table 2.8 the Focus expression

∀ x1 . . . xn ∈ [1, . . . ,m], P(x1, . . . , xn) : Q

where P(x1, . . . , xn) is some Focus predicate, will be translated into Isabelle
by

∀ x1 . . . xn .x1 < m ∧ · · · ∧ xn < m ∧ [[P(x1, . . . , xn)]]Isab −→ [[Q ]]Isab

The where statement is in Focus of the form

F where v1, . . . , vn so that G

where v1, . . . , vn are logical variables and F , G are formulas (the formula G
defines the values of the variables v1, . . . , vn). The semantics of this statement
is defined in Focus by the formula

∃ v1, . . . , vn : F ∧G

The original Focus definition allows to have as vi (1 ≤ i ≤ n) also a function
name – the function is then specified by the formula G . To have more clear
syntax, we recommend to restrict the where statement the cases where v1, . . . , vn

do not represent recursive functions or predicates. Always, if in the specification
some auxiliary recursive function or predicate is needed, we recommend to
define this function or predicate externally, in the special Focus frame.

For the case of non-recursive predicates defined in the where statement, we
can say that the where statement is dual to the let statement

let G in F

For this case we have

[[F where v1, . . . , vn so that G ]]Isab = let [[G ]]Isab in ([[F ]]Isab)

A Focus specification of a function Name with the signature M1×· · ·×Mn →
Mn+1 will be given using the following Focus frame:

Name

M1 × · · · ×Mn → Mn+1

Body

A Focus specification of a predicate Name with the signature M1×· · ·×Mn →
Bool will be given in a similar way:
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Name

x1 ∈ M1; . . . ; xn ∈ Mn

Body

Body of the function or predicate Name can be of two types

X recursive definition19, and

X non-recursive definition, abbreviation.

Remark: The semantics of the Focus functions (predicates) types is
defined as follows:

[[M1 × · · · ×Mn → Mn+1]]Isab ≡ [[M1]]Isab ⇒ . . . ⇒ [[Mn ]]Isab ⇒ [[Mn+1]]Isab

Body of recursive defined function or predicate looks like

BaseCase

InductionCase

The Isabelle/HOL semantics of this function will be the following one (for the
case of predicate Mn+1 = Bool):

consts

Name :: [[M1]]Isab ⇒ . . . ⇒ [[Mn ]]Isab ⇒ [[Mn+1]]Isab
primrec

[[BaseCase]]Isab
[[InductionCase]]Isab

Remark: If in the Focus specification of a function or of a predicate non-
primitive recursion is used (e.g. the recursion steps are larger as the recursion
definition of the datatype of the parameter choosen for recursion), the syntax
will be more complicated:

consts

Name :: [[M1]]Isab × · · · × [[Mn ]]Isab ⇒ [[Mn+1]]Isab
recdef Name measure TerminationFunction

[[BaseCases]]Isab
[[InductionCases]]Isab

where TerminationFunction is some function over [[M1]]Isab×· · ·× [[Mn ]]Isab which
shows that the function (the predicate) Name terminates.

Body of a function Name defined by Formula, i.e. like

Name(x1, . . . , xn) = Formula

Its Isabelle/HOL semantics will be
19We strongly recommend to use primitive recursion (like Isabelle/HOL primrec-definition,

see Section 1.2) to have simpler proofs about function (or predicate) properties.
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constdefs

Name :: [[M1]]Isab ⇒ . . . ⇒ [[Mn ]]Isab ⇒ [[Mn+1]]Isab
Name x1 . . . xn ≡ [[Formula]]Isab

Body of recursive defined predicate looks like

Formula1

. . .

Formulam

The Isabelle/HOL semantics of such a predicate will be the following one:

constdefs

Name :: [[M1]]Isab ⇒ . . . ⇒ [[Mn ]]Isab ⇒ Bool
Name x1 . . . xn ≡
[[Formula1]]Isab
∧ . . .
∧ [[Formulam ]]Isab

where x1, . . . , xn represent the predicate parameters used in formulas Formula1,
. . . , Formulam .

Remark: Mi , 1 ≤ i ≤ n + 1 can be some datatype as well as a stream of
some datatype D , timed or untimed, finite or infinite:

Mi = D | D ∗ | D ∞ | D ∗ | D ∞

We not allow to use the cases Mi = D ω and Mi = D ω (there is no such a
restriction in original Focus), because they imply too complicated proofs in
Isabelle/HOL.

Example 2.8:
The function Unpack converts a finite list of entities of type

type Package = pack(package id ∈ N, package data ∈ D)

where D is some datatype with [[D ]]Isab = D.
Focus specification of the function Unpack can be represented as follows:

Unpack

Package ∗ → D ∗

Unpack(〈〉) = 〈〉
Unpack(x & xs) = package data(x )&Unpack(xs)

Now we translate this function by the schema:
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consts

Unpack :: “[[Package]]Isab ⇒ [[D ]]Isab”
primrec

[[Unpack(〈〉) = 〈〉]]Isab
[[Unpack(x & xs) = package data(x ) &Unpack(xs)]]Isab

where

[[Package]]Isab ≡ record Package =
package id :: nat
package data :: D

[[Unpack(〈〉) = 〈〉]]Isab
≡ Unpack [[〈〉]]Isab = [[〈〉]]Isab
≡ Unpack [] = []

[[Unpack(x & xs) = package data(x ) &Unpack(xs)]]Isab
≡ Unpack [[x & xs]]Isab = [[package data(x ) &Unpack(xs)]]Isab
≡ Unpack ([[x ]]Isab # [[xs]]Isab) = [[package data(x )]]Isab # [[Unpack(xs)]]Isab
≡ Unpack (x # xs) = (package data [[x ]]Isab) # (Unpack [[xs]]Isab)
≡ Unpack (x # xs) = (package data x) # (Unpack xs)

Thus, we get at the end of translation of the definition of the corresponding
function in Isabelle/HOL:

consts

Unpack :: Package ⇒ D
primrec

Unpack [] = []
Unpack (x # xs) = (package data x) # (Unpack xs)

2

2.15. Summary

In this chapter we have introduced the implementation of the formal specifi-
cation framework Focus in Isabelle/HOL. The following questions have been
discussed here: which of the streams representation approaches is more ap-
propriate for the case of Focus specifications of embedded real-time systems,
which kind of graphical specification techniques is especially appropriated in
this case, as well as which kind of Focus constructions are not very well sit-
uated to the direct translation to Isabelle/HOL and how we can reformulate
them without changing their semantics.

We have presented in this chapter the translation of the Focus specifica-
tions of embedded real-time systems into Isabelle/HOL for proving properties
of these systems. As result we get the deep embedding of that part of the
framework Focus, which is appropriate for specification of real-time systems,
into Isabelle/HOL:
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X representation of Focus datatypes in Isabelle/HOL,

X representation of Focus streams in Isabelle/HOL,

X representation of the Focus operators on streams (length of a stream, nth
message of a stream, concatenation operator, prefix of a stream, trunca-
tion operator, domain and range of a stream, time stamp operator, and
stuttering removal operator),

X specification semantics and techniques,

X representation of the Focus extras: encapsulated states (local variables,
control states, oracles), sheaf of channels and specification replication.

We have specified in this chapter the syntax extensions for Focus for the ar-
gumentation over time intervals: a special kind of tables tiTable, timed state
transition diagrams and a number of new operators (the deep embedding in-
cludes these extensions), s.t. time interval operator, timed merge, timed trunca-
tion operator, limited number of messages per time interval, stuttering removal
operator for timed streams, changing time granularity, deleting the first time
interval, the last nonempty time interval until some time interval, and number
of time intervals in a finite timed stream.

To prove correctness of the relations between the sets of input, output and lo-
cal channels in Isabelle/HOL automatically, we have provided here a number
of Isabelle/HOL theories and the corresponding proof schemata. These proof
schemata for the correctness properties are standard and can be used automat-
ically. If the proof fails, the specification of corresponding set is incorrect and
must be changed.
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This chapter presents the ideas of the specification and verification method-
ology for the approach “Focus on Isabelle”, as well as the ideas of the so-
called refinement-based verification. A number of case studies (see Chapter 4)
has shown that we can influence on the Isabelle/HOL proofs complexity and
reusability for a translated Focus specification also on the specification phase
and not only on the verification phase.1 Therefore, we want to concentrate on
the possible specification modifications (reformulations), which can simplify the
Isabelle/HOL proofs for a translated Focus specification. The proof strategy
is also important, but plays at this point only a secondary role. Like in natural
language a question contains a part of its answer, the proof of component or
system properties is partially contained in the corresponding specification (see
also Section 3.4). To simplify the work at the phase, when properties are ver-
ified, ones need to specify a component or system in the methodological way,
taking into account the special properties of embedded real-time systems as well
as the properties of Isabelle/HOL. Thus, we see specification and verification
as strong bound phases.

The main questions discussed in this chapter are:

X In which way the refinement relation between specifications can be proved
in Isabelle/HOL?

X Which parts in the specifications must be done more carefully and what
is important to check to prevent mistakes, that are as experience more
usual than another ones?

X Can we use the same (or similar) translation technics also for Janus?
Which kinds of specifications and operators of refinement steps are differ-
ent from the corresponding ones in Focus?

3.1. Refinement

We can see any proof about a system as the proof that a (more concrete) system
is a refinement of a (more abstract) one. The case when one needs to prove
a single property of a system specification S can also be seen as a refinement
relation: this property can be defined as a Focus specification S ′ itself and
then one needs just show that the system specification S is a refinement of the
specification S ′.

1Here we mean proofs of system properties and not not proofs of correct relations between
sets of channels, which were discussed in Sections 2.11.4 and 2.13.3.
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In Focus (and in Janus also) we can have a general specification S0 of a
system that corresponds to the formalization of system requirements. There-
fore, in order to show that our concrete specification Sn that we get after n
refinement steps fulfills the system requirements, we only need to show that the
specification Sn is a refinement ([BS01, Bro97, Bro97]) of the specification S0.

In this context, it is an important point what exactly a developer means
by “refinement” on each refinement step (a behavioral refinement, an interface
refinement, or a conditional refinement, changing time granularity etc.) and
which specification semantics (Focus or Janus, and respectively component
or service) is used.

In this section we discuss first of all the representation of the refinement
layers of a specification group and the general ways of their representation
in Isabelle/HOL. After that we discuss the representation in Isabelle/HOL of
different kinds of refinement – behavioral, interface, and conditional refinement.

3.1.1. Refinement Layers of a Specification Group

Figure 3.1 represents the hierarchy in a specification group S in general. It has
m refinement layers:

X specification S 1 is a refinement specification of S ,

X S 2 is a refinement specification of S 1,

X . . . ,

X S j is a composition of specifications S j
1 , . . . ,S j

n (where for the specifi-
cations S j

1 , . . . ,S j
n the refinement layer j is the most abstract one) that

builds a refinement of S j−1.

X . . . ,

X Sm
i , 1 ≤ i ≤ n is a composition of specifications Sm

1,k1, . . . ,S
m
n,kn that

builds a refinement of Sm−1, where the specifications Sm
1,k1, . . . ,S

m
n,kn are

elementary ones.

The number N of all specification in the group is larger or equal2 to the number
of layers.

3.1.2. Behavioral Refinement

According to the definition of behavioral refinement (Definition 1.4), in order
to show that the more concrete specification S2 (e.g. a specification of a system
architecture) fulfills the more abstract S1 (e.g. system requirements), we only
need to show

[S2] ⇒ [S1] (3.1)

2 Equality is possible only in the case, when we do not have any compositional specification
in the group.

106



3.1. Refinement

S

Sn
jS1

j

Sn
mS1

m

S1

S2

Sj

… 

… 

… 

… 

… 

Sn,knSn,1 … S1,k1S1,1 … 

Layer 0

Layer 1

Layer 2

Layer j

Layer m

Figure 3.1.: Refinement Layers of a Specification Group S

In Isabelle it means to prove that the formula that corresponds to [S2] implies
the formula that corresponds to [S1].
Definitions 1.1 and 1.3 (semantics of an elementary an a composite specification
respectively) imply that the semantics of any Focus specification S can be
represented by

iS ∈ I∞S ∧ oS ∈ O∞
S ∧ BS (3.2)

where iS and oS denote sets of input and output channel identifiers, IS and
OS denote their corresponding types, and BS is a logic formula. In the case of
composite specification consisting of n subspecifications S1, . . . ,Sn :

X The formula [[BS ]]Isab is equal to formula

∃ lS ∈ L∞S :
∧n

j=1[[BSj ]]Isab
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where lS denotes a list of local channel identifiers and LS denotes their
corresponding types, and BSj denotes the logic formula describing the
body of the specification Sj .

X The lists of input and output channel identifiers, iS and oS , is a concate-
nation of corresponding lists of specifications S1, . . . ,Sn , except those that
are used as local channels (belong to lS ).

Together with Equation 1.5, this implies that the formal definition of the be-
havioral refinement [BS01] allows that the refined specification may have more
input and output channels in addition to the input and output channels of the
abstract specification. Let the specification S2 be a behavioral refinement of the
specification S1 in the meaning of Definition 1.4: S1  S2. According to the
Equation 3.2 the semantics of these specification can be represented as follows:

[S1] = iS1 ∈ I∞S1
∧ oS1 ∈ O∞

S1
∧ BS1

[S2] = iS2 ∈ I∞S2
∧ oS2 ∈ O∞

S2
∧ BS2

Then, according to the Equation 1.5 we can conclude the following:

(S1  S2) ⇐⇒
([S2] ⇒ [S1]) ⇔
(iS2 ∈ I∞S2

∧ oS2 ∈ O∞
S2

∧ BS2) ⇒ (iS1 ∈ I∞S1
∧ oS1 ∈ O∞

S1
∧ BS1)

⇔
(iS2 ∈ I∞S2

⇒ iS1 ∈ I∞S1
) ∧ (oS2 ∈ O∞

S2
⇒ oS1 ∈ O∞

S1
) ∧ (BS2 ⇒ BS1)

The conjunct

iS2 ∈ I∞S2
⇒ iS1 ∈ I∞S1

means that the set of input channels of the specification S1 is a subset of the
set of input channels of the specification S2: iS2 ⊆ iS1 .

On the other hand the conjunct

oS2 ∈ O∞
S2
⇒ oS1 ∈ O∞

S1

means that the set of output channels of the specification S1 is a subset of the
set of output channels of the specification S2: oS2 ⊆ oS1 .

For the cases when the more strict version of behavioral refinement is needed,
where both specifications (an abstract one and a refined one) must have exactly
the same syntactic interface, we introduce a new definition of the behavioral
refinement – the strict behavioral refinement.

Definition: 3.2
A specification S2 is called a strict behavioral refinement (S1 ; S2) of a speci-
fication S1 if

X they have exactly the same syntactic interface and
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3.1. Refinement

X any I/O history of S2 is also an I/O history of S1.

We define the relation ; of strict behavioral refinement by equivalence

(S1 ; S2)

⇔
((iS1 ∈ I∞S1

= iS2 ∈ I∞S2
) ∧ (oS1 ∈ O∞

S1
= oS2 ∈ O∞

S2
) ∧ (BS2 ⇒ BS1))

(3.3)

where iS1 and iS2 (oS1 and oS2) denote lists of input (output) channel identifiers
of the specifications S1 and S2 respectively, IS1 , IS2 , OS1 and OS2 denote their
corresponding types, BS1 and BS2 are logic formulas in terms of the Equation
3.2.

2

Remark: The definition of refinement does not exclude that the set of
I/O histories of S2 is empty. It means [S2] is false and the refinement relation
is true. This can happen if the specification S2 is inconsistent (see Section 3.2).

3.1.3. Interface Refinement

Interface refinement (see Section 1.3.6 and Figure 1.3) can be interpreted as be-
havioral refinement modulo two representation specifications D and U , there-
fore we can use here the same ideas like in Section 3.1.2:

[[S1
(D ,U )
 S2]]Isab ≡ [[D � S2 � U ]]Isab → [[S1]]Isab

3.1.4. Conditional Refinement

Conditional refinement (see Section 1.3.6 and Figure 1.4) is generalisation of
interface refinement (which is again a generalisation of behavioral refinement),
therefore we can again use here the same ideas like in Section 3.1.2:

[[S1
(D ,U )
 C S2]]Isab ≡ [[C ]]Isab ∧ [[D � S2 � U ]]Isab → [[S1]]Isab

For the case of conditional behavioral refinement the relation is rather simpler:

[[S1  C S2]]Isab ≡ [[C ]]Isab ∧ [[S2]]Isab → [[S1]]Isab

In some cases we also need to extend the specification of a component (of a
system) by some new properties. For example, we have to specify a system
S1 without taking into account possible errors in the behavior and want to
represent this kind of behavior in the next step as an extended specification S2

which guarantee part G2 will be looks like

G2 = if X then G1 else G ′
1

where X is some case-variable (in most cases an oracle), that indicates for each
time interval whether an error occur does occur, G1 denotes the guarantee part
of the specification S1 and G ′

1 denotes the extension of the guarantee part to
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3. Specification and Verification Methodology

represent errors in the behavior. This extensions of the specification does not
fulfill the refinement definition, but we can prove that the extended specification
S2 is a refinement of the specification S ′1, where S ′1 is exactly the specification
S1 with the extra assumption about error-free behavior. This means that we
can verify that S2 has the same behavior for the an error-free case as S1.

Example 3.9:
Let A1 be the assumption part of a specification S1 and let A2 be the assump-
tion part of a specification S2, assuming A1 = A2. Let G1 be the guarantee
part of a specification S1 and let G2 be the guarantee part of a specification S2,
where G2 = if X then G1 else G ′

1, i.e. G2 = (X → G1) ∧ (¬X → G ′
1):

S1 = A1 → G1 and S2 = A2 → G2.

We need to show that [S2] ⇒ [S1].

1. Let A1 = A2 = false, then
(false → G2) → (false → G1)
true → true
true

2. Let A1 = A2 = true, then
(true → G2) → (true → G1)
G2 → G1)
(X → G1) ∧ (¬X → G ′

1) → G1

This formula does not hold for the case X = false.

We cannot prove the property (A2 → G2) → (A1 → G1) without the additional
assumption about X . Thus, we can only prove the property (A2 → G2) →
(A1 ∧X → G1).

2

3.2. Consistency of a Specification

The definition of a refinement relation does not exclude that the set of I/O
histories of refined specification is empty. In this case the semantics of this
specification is false (the specification is inconsistent) and the refinement rela-
tion is trivially true.

Let a specification S2 be a refinement of a specification S1. To show consis-
tency is important only for the specification S2, because the consistency of the
abstract specification S1 follows automatically from the proof of a refinement:
if the specification S1 is inconsistent (its semantics is false), the refinement
relation holds only if the specification S2 is also inconsistent.

There are two ways to prove consistency of the specification S2:

(1) Inconsistency of the specification S2 can be found out proving the refine-
ment relation between S1 and S2: when the assumption part consisting of
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the semantics of the specification S2 becomes false without contradiction
to some extra predicates that comes during the proof from the right part
(semantics of S1), the specification S2 is inconsistent.

(2) The specification S2 is consistent, if the set of its I/O histories is nonempty
– if one shows that there exist some streams fulfilling the specification S2,
the specification S2 is a consistent one. Thus, to show consistency in
formal way it is enough to find an example of streams that fulfill the
specification S2. This way is more precise and formal, as the first one,
but to find such an example is not trivial and for complicated, real systems
it may be very difficult task.

3.3. Refinement-Based Verification

In the context of hardware and software systems, the definition of (formal)
verification is “the act of proving or disproving the correctness of a system
with respect to a certain formal specification or property, using formal methods
of mathematics”, where the definition of validation is “the quality control and
testing tasks and techniques used to determine if a work product (either an
application or one of its components) conforms to its specified requirements,
including operational, quality, interface, and design constraints”.

Thus, the verification means to proof properties of a system (more precisely, of
a system specification) as some lemmas, where validation means to show that
the refinement relation between specifications (more abstract one and more
concrete one) holds. These concepts are very similar. Moreover, we can see
verification of a system as a special case of validation: if the property to prove
is presented as an abstract specification, it remains to validate the system spec-
ification with respect to these abstract specification, i.e. to show that the refine-
ment relation holds. For example, the Focus specification FlexRayArchitecture
(see Section 2.13.2) fulfills the property

∀ i ∈ [1..n] : msg1(geti) ∧msg1(storei) (3.4)

and

FrameTransmission(return1, ..., returnn , store1, ..., storen , get1, ..., getn , c1..., cn)
(3.5)

under assumption that the properties

∀ i ∈ [1..n] : msg1(returni)

DisjointSchedules(c1, ..., cn)

IdenticCycleLength(c1, ..., cn)

(3.6)

hold. Thus, the specification FlexRayArchitecture can be seen as

X a (behavioral) refinement of the specification FlexRay ′ that is combination
of assumption from Equation 3.6 and guarantee from Equation 3.4.
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X a (behavioral) refinement of the specification FlexRay ′′ that is combina-
tion of assumption from Equation 3.6 and guarantee from Equation 3.5.

In most cases a system must be verified with respect not to a single property, but
with respect to a number of properties. In this case it more sufficient to specify
these properties as a single specification to exclude possible inconsistencies.
Therefore, we verify that the specification FlexRayArchitecture is a (behavioral)
refinement of the specification FlexRay that is combination of assumption from
Equation 3.6 and guarantee from Equations 3.4 and 3.5. The semantics of this
specification will be conjunction of the properties.

Let S be some specification of a system and let a specification L consist
of properties L1, . . . ,Ln of this system. The corresponding refinement lemma
looks like

[[ S ]] ⇒ [[ L ]]

Applying the definition of the Isabelle/HOL predicate which corresponds to
[[ L ]] we get

[[ S ]] ⇒ ([[ L1 ]] ∧ · · · ∧ [[ Ln ]])

Then we can split the verification goal into n subgoals, each of them can be
proved as a separate lemma.

[[ S ]] ⇒ [[ L1 ]]

. . .

[[ S ]] ⇒ [[ Ln ]]

In some cases the requirements (properties) can be sorted to get a nested hi-
erarchy. Assuming e.g. the following two requirements, namely L1 and L2, of
some system S1 that has an output channel y of type N:

∀ t : ti(y , t) 6= 〈〉 (3.7)

und
∀ t : #ti(y , t) = 2 (3.8)

The second requirement, L2, is a refinement of the first one, L1. Therefore, if we
show that the system S1 fulfills the second requirement, we do not need to show
that it fulfills the first requirement, but we need to show that the refinement
relation between L1 and L2 holds, which in most cases is easer than to show
that S1 fulfills L1.

Assuming a system S with corresponding list of requirements L = [L1, . . . ,Ln ]:

[[ S ]] ⇒ [[ L ]]

where

[[ L ]] = [[ L1 ]] ∧ · · · ∧ [[ Ln ]]

For any new requirement R on the system S that we need to add to the list
of its requirements L, L ∪ {R} (assuming R does not belong to the list of
requirements) we can have the following cases.
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(1) The system S has some requirement Li that is less abstract than R:
R 6∈ L ∧ ∃Li ∈ L : Li ⇒ R.

We add R to the next level of abstraction L′ (to the list with more abstract
requirements, [[ L ]] ⇒ [[ L′ ]]) using the same schema: L′ ∪ {R}, see
Figure 3.2 (a).

(2) The list of requirements of the system S has a requirement that is more
abstract than R:
R 6∈ L ∧ ∃Li ∈ L : R ⇒ Li .

We replace the requirement Li in L by R, Li will be added to the next
level of abstraction L′ (to the list with more abstract requirements), see
Figure 3.2 (b).

If S does not fulfill R, then S must be changed according to the new list
of requirements.

(3) The system S has no requirements that are in some relation (more/less
abstract) to R (R opens some new “dimension” of S ):
R 6∈ L ∧ ∀Li ∈ L : ¬(Li ⇒ R) ∧ ¬(R ⇒ Li).

For example, assuming the properties L1 (see Equation 3.7) and L2 (see
Equation 3.8). The property R, defined by

∀ t : ft.ti(y , t + 2) = 5,

does not imply L1, because it is only about time intervals 2, 4, 6, 8 etc.,
and it also does not imply L2, because it says nothing about the length
of message list at the time intervals. Neither L1 nor L2 imply R, because
they say nothing about the message values.

The R will be added to the list of requirements L, see Figure 3.2 (c). If
S dos not fulfill R, then S must be changed according the new list of
requirements.

The lists of requirements are specifications itself. Thus, we allude the specifi-
cation hierarchy.

The legitimate question is, where we need to argue about such more abstract
requirement like L1 at all having more precise requirements like L2, and why we
cannot just remove them. The point is, that a number of system requirements
comes out from the argumentation about interaction with another components
or systems. Considering a system S3 that consist of two subsystems: the system
S1 and some system S2, and let the channel y be a local one for the system S3,
i.e. this output channel channel of S1 will be an input channel for S2. Thus, all
assumptions of S2 about this input channel y must be fulfilled by S1 as its new
requirements.
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S

L = L1 Λ … Λ Li Λ … Λ  Ln

L′ U {R}

(a)

S

L = L1 Λ … Λ R Λ … Λ  Ln

L′ U {Li}

(b)

S

L = L1 Λ … Λ Li Λ … Λ  Ln Λ R 

L′ 

(c)

Figure 3.2.: Adding new requirement R to the list L of requirements of the
specification S , L ∪ {R}

3.4. Key Ideas of the Specification and Verification
Methodology

To represent all the components of a specification group S in Isabelle/HOL we
can use one of three definitions styles:

(1) All components are be specified as a joined Isabelle/HOL theory. In this
case, we get only one theory S.thy with all (“body”) specifications (see
Fig. 3.3). This definition style is appropriate for systems with simple
component specifications.

(2) Every component is specified as a single (separate) Isabelle/HOL theory.
We get n Isabelle/HOL theories, where n is the number of all Focus
component specifications in the specification group (see Fig. 3.4). This
style is appropriate for systems with complicated component specifications
and a small number of abstraction layers.

(3) All components of the same abstraction layer are specified as a joined
Isabelle/HOL theory. We get m Isabelle/HOL theories, s.t. m ≤ n, where
m is the number of abstraction layers and n is the number of all Focus
component specifications in the specification group (see Fig. 3.5). This
style is appropriate for systems with complicated component specifications
and a large number of abstraction layers.

The gray marked theories on Fig. 3.3-3.3 are predefined ones (see Sections 2.11.4
and 2.13.3, as well as Appendix A), the green marked theories are user-defined
ones – they need to be defined doing the specification and verification of the
group S .
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S_Types.thy

Inout(_sheaf).thy

S_inout.thy

Stream.thy

ListExtras.thy ArithExtras.thy ListLemmas.thy Filter.thy

S.thy

S_proof.thy

S_Aux.thy

Figure 3.3.: Specification Group S : Representation of the whole group by a
joined Isabelle/HOL theory

In all these cases we need to take into account that Isabelle/HOL representa-
tions3 of all subcomponents C1, . . . ,Cn of the component C need to be defined

X for the cases (1) and (2): “above” the definition (or declaration) of the
component C in the same theory as C .

X for the case (2) – in the theories on which is based the Isabelle/HOL
theory for the component C :

C = Main + C1 + · · ·+ Cn

Verification of a large system S can be done in top-down as well as in bottom-up
manner. Starting this process, we write the lemma S L0 which says that the
system architecture specification S fulfills its requirements specification SReq.
The goal of this (main) lemma will be split into n subgoals, if the specifica-
tion SReq consists of n requirements. To make the prove of the main lemma
readable, the lemmas S L, . . . , S Ln are defined. Proving these lemmas we
can find out, which properties of the subcomponents (or of composition of the
subcomponents) are needed to solve the proof goals. The needed properties of
a (single) subcomponent must either belong to the requirements specification of
this subcomponent or are derivable from this specification (or from the architec-
ture specification of this subcomponent). Thus, if the requirement specification
is already defined, we deal with it as recommended in Section 3.3, otherwise we
just define this specification to be conjunction of these properties.

3 We speak about the same abstraction layer.
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S_Types.thy

Inout(_sheaf).thy

S_inout.thy

Stream.thy

ListExtras.thy ArithExtras.thy ListLemmas.thy Filter.thy

S1,1.thy Sn,kn.thyS1,k1.thy Sn,1.thy

… … 

… 

S1
m.thy Sn

m.thy

… … 

Sj.thy

… 

S1
m-1.thy Sn

m-1.thy

S1
j.thy Sn

j.thy

S1.thy

S.thy

… … 

… 

S_proof.thy

S_Aux.thy

Figure 3.4.: Specification Group S : Representation of every component by a
single (separate) Isabelle/HOL theory
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S_Types.thy

Inout(_sheaf).thy

S_inout.thy

Stream.thy

ListExtras.thy ArithExtras.thy ListLemmas.thy Filter.thy

Sm.thy

S1.thy

S.thy

… 

S_proof.thy

S_Aux.thy

Figure 3.5.: Specification Group S : Representation of all components of the
same abstraction layer by a joined Isabelle/HOL theory

Assuming we have composite specifications A, . . . ,Z , their subcomponents A1,
. . . , Am , . . . , Z1, . . . ,Zn and the corresponding requirements specifications
AReq , . . . ,ZReq . If the refinement relations AReq  A, . . . , ZReq  Z have
been proved, these requirements can be used to prove some properties some
specification S , which is composed of A, . . . ,Z – in most cases it is easier to
prove the main lemma using these requirements specification, than to use the
architecture specifications directly (see Section 4.3.10 for examples).

A main part of proofs of component (systems) properties in Isabelle/HOL could
be done by functions and predicates definitions (defined by constdefs), induc-
tion (for recursive defined functions and predicates), Case-Tactics (if we have in
the definition case or if then else parts), Isabelle/HOL automatic proof strate-
gies, rules of natural induction, auxiliary arithmetics lemmas and lemmas about
properties of system components.

The parts of proof, when we need to apply rules of natural deduction, as well
as to define auxiliary arithmetics lemmas or lemmas about properties of system
components, are really interactive and need efforts, but the cases of applying
functions and predicates definitions, induction, Case-Tactics and simplifier can
be solved schematically.
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Remark: Isabelle/HOL is sensitive to the format in which the natural
number are written, because the digit representation of a number corresponds
to polymorphic numeral, i.e. such a number can also be of the integer type.
Thus, it is always better to write its type explicit like (0 :: nat), (45 :: nat)
etc. But even this can not prevent the following problem: the goal seems to be
trivial to solve, but this does not happen, because the terms, which have equal
semantics of a natural number, have different syntax. For example, if we have
in the assumption part (Suc (Suc (Suc (t + m)))) and in the goal (t + 3 + m) this
goal cannot be solved directly. In this case the predefined nat number lemma4

must be used.
For the case we have a number of parenthesis, which lead to the different rep-

resentation syntax of the natural number in the assumption and in the guarantee
parts, e.g. 4 + (t + (k + d)) and 4 + (d + (t + k)), we need to define a subgoal
that says 4 + (t + (k + d)) = 4 + (d + (t + k)) (such kind of subgoals can be
solved trivially - by arith, simp or auto), and after that the proof of the goal is
also trivial (see Section 4.3.10 for examples).

3.5. Specification Hints and Mistakes

A building of a formal specification and its refinements can also be error-prone.
There is a number of mistakes classes that are as experience more usual than
another ones. In this section we will discuss these classes to show which parts in
the specifications must be done more carefully and what is important to check.

The following properties must be taken into account:

X System S is described by two Focus specifications S1 (abstract one, e.g.
requirement specification) and S2 (more detailed one, e.g. architecture
specification). If some assumptions in the definition of S1 have been lost,
we can find it out proving the refinement relation S1  S2 ([S2] ⇒ [S1]).
“Lost assumption” means here such an assumption, that cannot be de-
rived from the definition of S2 or, if S2 is a composite specification, from
the definition(s) of some subspecification(s) of S2, but, conversely, in used
in this definition (these definitions).

This rule does not work in the opposite direction.

X In Isabelle/HOL all functions and predicates used in the definition of some
function or predicate f must be defined previous to the definition of f.

X Using the operator ti and the tiTable, as well as TSTDs to describe
a component (a system) we can more easy prove the property of the
component (the system), as arguing about the whole streams or single
messages of the the streams. Arguing about time intervals, we need to

4The lemma nat number converts the representations of all natural numbers to the Suc-
form.
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keep in mind, that a time interval is not a single message, but a list of
messages (possibly containing a single message or empty).

X To avoid complicated specifications and proofs in Isabelle/HOL, addi-
tional local states instead of mutual recursive functions (see Section 2.9)
must be used.

X Clear separation of the datatypes and the operation over datatypes leads
to faster translation. In some cases type-mix can also lead to problems
with type checker (see Section 4.1.1 for a concrete example).

X Combination of timed and time-synchronous streams also leads to prob-
lems with type checking. To avoid such problems, a time-synchronous
stream must be represented as a timed stream for which a predicate
ts holds. If we already have a completed Focus specification with the
frame label “time-synchronous” or some input and/or output streams of
a completed Focus specification with the frame label “timed” are time-
synchronous, the translation schema from Section 2.10 must be used.

X “Time-synchronous” is more strict property of some stream s as msg1(s).

X Specification using the operator “make stream untimed” leads to more
complicated proofs, because many cases must be covered, e.g. if a stream
contains infinitely many messages, the untimed version of this stream will
be also infinite, otherwise the untimed version will be finite.

X It is simpler to use natural numbers instead of integer of rational numbers,
because the argumentation over the set nat is much more straightforward.

X If a component receives some messages via some channel not regular and
must forward every time interval the last of them, the following specifica-
tion strategy is recommended: If it must be described how the component
processes its input streams, it is better to use the representation with a
local variable (this local variable models a buffer, where the last mes-
sage will be stored). But in the case we describe a requirement on this
component, it is better to use the operator lastti (see Section 2.5 for the
definition of the operator and Section 4.3.5 for an example).

X Avoid to use the filter operator on infinite untimed streams. The method-
ology “Focus on Isabelle” is mostly oriented on the timed streams, and,
therefore, this application can be only the case for oracles. Thus, we can
always reformulate the definition of an oracle, e.g.

#{true} SO r = ∞ ∧ #{false} SO r = ∞
≡
∀ t : (r .t = true ⇒ ∃ i .t < i ∧ r .i = false)∧

(r .t = false ⇒ ∃ j .t < j ∧ r .j = true)
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or

{true} SO p 6= 〈〉
≡
∃ i : r .i = true

X Do not name any stream o, because the letter o is reserved in Isabelle/HOL
for the name of the composition operator.

X If the definition of some new type is not necessary, it is better to use
predefined types (Bool, N, etc.).

3.6. Complementary Approach: Janus on Isabelle

As mentioned in Section 1.4, the results of “Focus on Isabelle” can be also
extended to a complementary approach, “Janus on Isabelle”, that presents a
coupling of a Janus with Isabelle/HOL.

The translation schema for functions and predicates will be exactly the same
as for Focus (see Section 2.14). Isabelle/HOL specification of relation between
sets of channels, as well as sheaves of channels, i.e. for both cases – with and
without component (specification) replication, – an proof of their correctness
(correctness of the syntactic interfaces) will be done exactly in the same way
as presented in Sections 2.11.4 and 2.13.3 for the Focus specification.

Thus, we will have only two small varieties:

X The semantics of an A/G specification will be defined differently from
the semantics of such a specification in Focus (see Section 2.11.2, Equa-
tion 2.27). In the case of the A/G specification of an Janus service its
body BS consists of two parts – the assumption part BA

S and the guar-
antee part BG

S . The semantics of such a specification in Janus is logical
conjunction (in comparison with implication for the case of a component)

[[BAG
S ]]Isab = [[BA

S ]]Isab ∧ [[BG
S ]]Isab (3.9)

where for BA
S and BG

S hold the same rules as in Focus (see Section 2.11.2).

X Some Janus operators has other syntax or names as in Focus, as well
Janus has some new operators. These operators can easily be defined in
Isabelle/HOL. For example:

� The Janus operator s.k , kth sequence of the stream s – the sequence
of messages communicated at time t in the stream s, corresponds to
the time interval operator (see Section 2.5.3):

ti(s,n) def= s.(n + 1)
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� The Janus operator s ↓ k , prefix of the first k sequences in the
timed stream s, corresponds to the timed truncation operator (see
Section 2.5.2):

s ↓ k = s ↓k

� The Isabelle/HOL semantics of the Janus operator A SO s, sub-stream
of s with only the elements in the set A, corresponds to the Is-
abelle/HOL semantics of the Focus filtering operator, because we
have to define it in such way, that the time ticks

√
are ignored (see

Section 2.4.10).

� The Janus operator s ↑ k , stream s without the first k sequences,
corresponds to the Focus operator s ↑k (see Section 2.5.4).

3.7. Summary

In this chapter we have discussed the ideas of the specification and verification
methodology for the approach “Focus on Isabelle”, as well as the ideas of the
so-called refinement-based verification. Specification and verification are seen
here as strong bound phases to focus at proofs approaches and Isabelle/HOL
influences also during specification. We have discussed, in which way the refine-
ment relation between two Focus specifications can be proved in Isabelle/HOL,
as well as how all these ideas can be extended for the Janus approach.

We have also introduced here the definition of strict behavioral refinement as
well as presented a number of specification mistakes classes that are as expe-
rience more usual than another ones and the corresponding hints how one can
prevent them.

121



3. Specification and Verification Methodology

122



4. Case Studies

Case studies are very important for research in the development of formal meth-
ods. They help us to find problems that we can get using methodology and also
the corresponding solution to these problems. In this chapter we present three
case studies that cover different application areas and the different specification
elements to show feasibility of the approach:

X Steam Boiler System (process control),

X FlexRay communication protocol (data transmission),

X Automotive-Gateway System (memory and processing components, data
transmission).

4.1. Steam Boiler System

For the first case study we choose a process control system, namely, a steam
boiler control system. It can be represent as a distributed system consisting of a
number of communicating components and must fulfill real time requirements.
This case study shows how we can deal with local variables (states) and in
which way we can represent mutually recursive functions to avoid problems in
proofs. The main idea of the steam boiler specification was taken from [BS01].
The steam boiler has a water tank, which contains a number of gallons of water,
and a pump, which adds 10 gallons of water per time unit to its water tank,
if the pump is on. At most 10 gallons of water are consumed per time unit by
the steam production, if the pump is off. The steam boiler has a sensor that
measures the water level.

As mentioned in Section 2.11.5, where the syntactic interface of the system
was discussed, the specification group SteamBoiler consists of the following
components: ControlSystem (general requirements specification), ControlSys-
temArch (system architecture), SteamBoiler, Converter, and Controller. Thus,
the steam boiler system is relatively small, and all its components can be speci-
fied as a joined Isabelle/HOL theory (see Section 3.4). We present the following
Isabelle/HOL theories for this system:

X SteamBoiler types.thy – the datatype definitions (presented in Section 2.11.5),
X SteamBoiler inout.thy – the specification of component interfaces (relations

between the sets of input and output channels) and the corresponding
correctness proofs (presented in Section 2.11.5),

X SteamBoiler.thy – the Isabelle/HOL specifications of the system compo-
nents,
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X SteamBoiler proof – the proof of refinement relation between the require-
ments and the architecture specifications.

In this section we discuss first of all the datatypes used in the case study.
Then the Focus specifications of the components and their translation into
Isabelle/HOL using the schema from Section 2.14 will be presented. After
that the proof of the behavioral refinement relation between the requirements
specification and the architecture specification will be discussed. The resulting
Isabelle/HOL theories SteamBoiler.thy and SteamBoiler proof.thy are presented in
Appendix B.

4.1.1. Datatypes

The original steam boiler specification [BS01] in Focus uses two additional,
user-defined, datatypes:

type Gallons = {r ∈ R | 0 ≤ r ≤ 1000}
type Switch = {−1,+1}

The type Gallons can be replaced simply by the type N, because specification
of the water level by a rational number as well as the restriction of upper bound
1000 does not play an important role in this specification (especially taking into
account the specification of requirements). Thus, we will replace in the whole
steam boiler specification [BS01] the type Gallons by the type N.

Introduction of the datatype Switch in the specification [BS01] aims to com-
bine a number with arithmetical operations (“+” and “−”) over it, to have
shorter and clearer representation. But the use this type leads to problems
with type checking: it is neither a subtype of Gallons nor of N. This type
was used in the steam boiler specification to represent the state of steam boiler
pump (on/off). We will replace the type Switch by the type Bit (1 for“+1”, 0
for “−1”). Thus, instead of

o.j + (x .j ) ∗ r

where x .j was of type Switch we will use the representation

if r = 0 then o.j − r else o.j + r fi

Because not only time-synchronous specifications are used here, but also timed
ones, we need to represent all of them in the timed frame and make correspond-
ing changes to avoid problems with type checking (see also Section 3.5).

To have explicit difference between 0, 1 : N and 0, 1 : Bit we define in Is-
abelle/HOL the type Bit as follows:

datatype bit = Zero | One

4.1.2. Requirement Specification

The specification ControlSystem describes the requirements for the steam boiler
system: in each time interval the system outputs it current water level in gallons
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and this level should always be between 200 and 800 gallons (the system works in
the time-synchronous manner). The original Focus specification of the control
system component [BS01] is the following one:

ControlSystem time-synchronous

out o : Gallons

∀ j ∈ N+ : 200 ≤ o.j ≤ 800

We make a number of changes wrt. the original specification:

X Types Gallons is replaced by N.

X The stream o is renamed to s (see Section 3.5).

X Frame label time-synchronous is replaced by timed. We add new guaran-
tee that the output stream is a time-synchronous one. The argumentation
over elements of the stream s.t is replaced by the argumentation over the
first (and unique) element of the corresponding timed stream: ft.ti(s, t),
and it goes now over the set N instead of the set N+(see Section 2.10).

As result we get the following Focus specification of the component Control-
System:

ControlSystem timed

out s : N

ts(s)
∀ j ∈ N : 200 ≤ ft.ti(s, j ) ≤ 800

Now we convert the Focus specification into the corresponding Isabelle/HOL
predicate schematically:

[[(s) := ControlSystem]]Isab
≡
constdefs

ControlSystem :: nat istream ⇒ bool
ControlSystem s ≡ [[ts(s)]]Isab ∧ [[∀ j ∈ N : 200 ≤ ft.ti(s, j ) ≤ 800]]Isab

where

[[ts(s)]]Isab ∧ [[∀ j ∈ N : 200 ≤ ft.ti(s, j ) ≤ 800]]Isab
≡
(ts s) ∧ (∀ (j::nat). 200 ≤ [[ft.ti(s, j )]]Isab ∧ [[ft.ti(s, j )]]Isab ≤ 800)
≡
(ts s) ∧ (∀ (j::nat). 200 ≤ hd [[ti(s, j )]]Isab ∧ hd [[ti(s, j )]]Isab ≤ 800)
≡
(ts s) ∧ (∀ (j::nat). 200 ≤ hd (s j) ∧ hd (s j) ≤ 800)
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Thus, we get the following Isabelle/HOL definition:

constdefs
ControlSystem :: nat istream ⇒ bool
ControlSystem s
≡
(ts s) ∧ (∀ (j::nat). 200 ≤ hd (ti s j) ∧ hd (ti s j) ≤ 800)

4.1.3. Architecture Specification

The specification ControlSystemArch describes one possible architecture of the
steam boiler system. The system consists of three components: a steam boiler,
a converter, and a controller.

ControlSystemArch glass-box

Converter

SteamBoiler Controller

x : B

y : N

s : N

z : B

The corresponding Focus representation of this specification as plain text (con-
straint style):

ControlSystemArch timed

out s : N

loc x , z : Bit; y : N

(s, y) := SteamBoiler(x )
(z ) := Controller(y)
(x ) := Converter(z )

Now we convert the Focus specification into Isabelle/HOL predicate Control-
SystemArch according to the definition of semantics of composite specifications
schematically (the Isabelle/HOL predicates SteamBoiler, Converter and Controller
represent the Isabelle/HOL semantics of the Focus specifications of the com-
ponents SteamBoiler, Converter, and Controller respectively).

[[(s) := ControlSystemArch]]Isab
≡
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constdefs
ControlSystemArch :: nat istream ⇒ bool
ControlSystemArch s
≡
[[ ∃ x , z ∈ Bit∞ : ∃ y ∈ N∞ :

(s, y) := SteamBoiler(x ) ∧
(z ) := Controller(y) ∧
(x ) := Converter(z ) ]]Isab

where

[[ ∃ x , z ∈ Bit∞ : ∃ y ∈ N∞ :
(s, y) := SteamBoiler(x ) ∧ (z ) := Controller(y) ∧ (x ) := Converter(z )]]Isab
≡
∃ x z :: bit istream. ∃ y :: nat istream.
(SteamBoiler x s y) ∧ (Controller y z) ∧ (Converter z x)

Remark: The following Isabelle/HOL definition rule must be taken into
account: all functions and predicates used in the definition of some function
or predicate f must be defined previous to the definition of f. Thus, in the
Isabelle/HOL theory SteamBoiler.thy the predicate ControlSystemArch must be
defined after the predicates SteamBoiler, Converter and Controller. The predicate
ControlSystem can be defined on any place before the proof part of the theory.

4.1.4. Steam Boiler Component

The specification SteamBoiler describes steam boiler component. The steam
boiler works in time-synchronous manner: the current water level is controlled
every time interval. The boiler has two output channels with equal streams
(y = s) and it fixes the initial water level to be 500 gallons. For every point of
time the following must be true: if the pump is off, the boiler consumes at most
10 gallons of water, otherwise (the pump is on) at most 10 gallons of water will
be added to its water tank.

The original Focus specification of this component [BS01] is the following
one:

SteamBoiler time-synchronous

in x : Switch

out y , o : Gallons

y = s ∧ s.1 = 500
∀ j ∈ N+ : ∃ r ∈ Gallons : 0 < r ≤ 10 ∧

s.(j + 1) = o.j + (x .j ) ∗ r

The changes wrt. the original specification:
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X Types Gallons and Switch are replaced by N and Bit respectively.

X The stream o is renamed to s (see Section 3.5).

X Frame label time-synchronous is replaced by timed. We add new assump-
tion that the input stream is time-synchronous, as well as new guarantee
that the output streams are time-synchronous. The argumentation over
elements of the stream s.(t +1) is replaced by the argumentation over the
first (and unique) element of the corresponding time stream: ft.ti(s, t),
and it goes now over the set N instead of the set N+(see Section 2.10).

As result we get the following Focus specification:

SteamBoiler timed

in x : Bit

out y , s : N

asm ts(x )

gar ts(y)
ts(s)
y = s ∧ ft.ti(s, 0) = 500
∀ j ∈ N : ∃ r ∈ N : 0 < r ≤ 10 ∧

ft.ti(s, j + 1) = if ft.ti(x , j ) = 0 then ft.ti(s, j )− r else ft.ti(s, j ) + r fi

Now we represent the specification SteamBoiler in Isabelle/HOL.

[[(s, y) = SteamBoiler(x )]]Isab
≡
constdefs

SteamBoiler :: bit istream ⇒ nat istream ⇒ nat istream ⇒ bool
SteamBoiler x s y
≡
(ts x)
−→
((ts y) ∧ (ts s) ∧ (y = s) ∧
[[ft.ti(s, 0) = 500]]Isab ∧
[[∀ j ∈ N : ∃ r ∈ N : 0 < r ≤ 10 ∧

ft.ti(s, j + 1) =
if ft.ti(x , j ) = 0 then ft.ti(s, j )− r else ft.ti(s, j ) + r fi ]]Isab)

where

[[ft.ti(s, 0) = 500]]Isab = (hd (s 0) = (500::nat))

and

[[∀ j ∈ N : ∃ r ∈ N : 0 < r ≤ 10 ∧
ft.ti(s, j + 1) =
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if ft.ti(x , j ) = 0 then ft.ti(s, j )− r else ft.ti(s, j ) + r fi ]]Isab
≡
∀ (j::nat). (∃ (r::nat).
(0::nat) < r ∧ r ≤ (10::nat) ∧
hd (s (Suc j)) =

(if (hd (x j)) = Zero
then (hd (s j)) - r
else (hd (s j)) + r))

4.1.5. Converter Component

The specification Converter describes the converter component. It converts the
asynchronous output produced by the controller to time-synchronous input for
the steam boiler. Initially the pump is off, and at every later point of time
(from receiving the first instruction from the controller) the output will be the
last input from the controller (z↓t .(#z↓t)). The original Focus specification of
this component [BS01] is the following one:

Converter timed

in z : Switch

out x : Switch

ts(x ) ∧ ∀ t ∈ N : x .(t + 1) = if z↓t = 〈〉 then − 1 else z↓t .(#z↓t) fi

The changes wrt. the original specification:

X Type Gallons is replaced by the type Bit.

X The expression x .(t + 1) is replaced by ft.ti(x , t) (according to Equation
2.1) to have simpler proofs.

As result we get the following Focus specification:

Converter timed

in z : Bit

out x : Bit

ts(x ) ∧ ∀ t ∈ N : ft.ti(x , t) = if z↓t = 〈〉 then 0 else z↓t .(#z↓t) fi

Now we convert the Focus specification into Isabelle/HOL predicate Converter
schematically:

[[(x ) := Converter(z )]]Isab
≡
constdefs

Converter :: bit istream ⇒ bit istream ⇒ bool
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Converter z x
≡
(ts x) ∧
[[∀ t ∈ N : ft.ti(x , t) = if z↓t = 〈〉 then 0 else z↓t .(#z↓t) fi ]]Isab

where

[[∀ t ∈ N : ft.ti(x , t) = if z↓t = 〈〉 then 0 else z↓t .(#z↓t) fi ]]Isab
≡
(∀ (t::nat). hd (x t) =

(if [[z↓t ]]Isab = []
then Zero
else [[z↓t .(#z↓t)]]Isab))

≡
(∀ (t::nat). hd (x t) =

(if (fin make untimed (inf truncate z t) = [])
then Zero
else (fin make untimed (inf truncate z t)) !

((length (fin make untimed (inf truncate z t))) -1) ))

Here the streams z↓t and z↓t are a finite timed one and a finite untimed one
respectively, where the stream z is an infinite timed one.

4.1.6. Controller Component

The specification Controller describes the controller component. Contrary to
the steam boiler the controller behaves in a purely asynchronous manner to
keep the number of control signals small, it means it might not be desirable
to switch the pump on and off more often than necessary. The controller is
responsible for switching the steam boiler pump on and off.

If the pump is off (off (〈r〉_ y)): if the current water level is above 300 gallons
the pump stays off (〈

√
〉_off(y)), otherwise the pump is started

〈+1〉_〈
√
〉_ on(y)

and will run until the water level reaches 700 gallons.
If the pump is on (on(〈r〉_ y)): if the current water level is below 700 gallons

the pump stays on (〈
√
〉_on(y)), otherwise the pump is turned off

〈−1〉_〈
√
〉_ off (y)

and will be off until the water level reaches 300 gallons.
The original Focus specification of this component [BS01] is the following

one:
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Controller timed

in y : Gallons

out z : Switch

z = 〈−1〉_〈
√
〉_ off (y)

where off so that ∀ r ∈ Gallons; y ∈ Gallons ω :
off (〈r〉_ y) = if r > 300 then 〈

√
〉_ off (y) else 〈+1〉_〈

√
〉_ on(y) fi

on(〈r〉_ y) = if r < 700 then 〈
√
〉_ on(y) else 〈−1〉_〈

√
〉_ off (y) fi

The specification of the controller is a timed one, but making a proof in Is-
abelle/HOL that the architecture specification ControlSystemArch is a behav-
ioral refinement of the requirement specification ControlSystem, we found out
that to argue about its properties we need an assumption about the input
stream y , that the stream y is a time-synchronous one: ts(y). In the steam
boiler system specified by ControlSystemArch this assumption for the compo-
nent Controller will be always true because the stream y is an output stream
of the time-synchronous component SteamBoiler, but if we look at the compo-
nent1 Controller without taking into account its later combination2 with the
component SteamBoiler, then we may have some problems. More precisely, the
specification Controller says, that when some input message comes, the incre-
ment by 1 of the global digital clock (

√
in the output stream) happens. This

means the following:

X If in some time interval there is no message in the input stream y , no
increment of the clock happens.

X If in some time interval a number of messages comes, the clock will be
incremented for each message.

Both cases lead to the wrong behavior of the component Controller, but for
the steam boiler controller system it never happens, because the stream y is an
output stream of the time-synchronous component SteamBoiler.

To argue about properties of controller and to have a possibility to reuse
the component later, we extend the specification Controller by assumption
predicate ts(y) to the specification ControllerExt (the datatypes Gallons and
Switch are also replaced by N and Bit respectively).

Remark: The specification ControllerExt is not a behavioral refinement
of component Controller.

1 This is true also for the case of service semantics.
2 In most cases it is much more simpler to argue about a single component and its properties

as about the whole system.
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ControllerExt timed

in y : N

out z : Bit

asm ts(y)

gar
z = 〈0〉_〈

√
〉_ off (y)

where off so that ∀ r ∈ N; y ∈ N ω :
off (〈r〉_ y) = if r > 300 then 〈

√
〉_ off (y) else 〈1〉_〈

√
〉_ on(y) fi

on(〈r〉_ y) = if r < 700 then 〈
√
〉_ on(y) else 〈0〉_〈

√
〉_ off (y) fi

The specification above uses mutually recursive functions on and off to specify
the local state of the component, more precisely, the state of the steam boiler
pump. Because the translation of such functions to Isabelle/HOL and argumen-
tation about them is very complicated (see Section 2.9), we need to reformulate
the specification ControllerExt into a semantically equal specification that uses
local states instead of mutually recursive functions. Therefore, we introduce
a new local variable l ∈ Bit (0 corresponds to “off”, 1 corresponds to “on”)
and set it initially to 0. Thus, we get Focus specification Controller1 that is
semantically equal to the Focus specification ControllerExt.

Controller1 timed

in y : N

out z : Bit

local l ∈ Bit
univ r ∈ N

init l = 0

asm
ts(y)

gar
ti(z , 0) = 〈0〉

tiTable ControllerT1: ∀ t ∈ N

y z ′ l ′ Assumption

1 〈r〉 〈〉 0 300 < r ∧ l = 0

2 〈r〉 〈1〉 1 r ≤ 300 ∧ l = 0

3 〈r〉 〈〉 1 r < 700 ∧ l = 1

4 〈r〉 〈0〉 0 700 ≤ r ∧ l = 1

How it was shown in Section 2.6, we can rewrite the formula that represents
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semantics of the tiTable ControllerT1 to the formula

if l = 0

then if 300 < r

then ti(z , t + 1) = 〈〉 ∧ l ′ = 0

else ti(z , t + 1) = 〈1〉 ∧ l ′ = 1 fi

else if r < 700

then ti(z , t + 1) = 〈〉 ∧ l ′ = 1

else ti(z , t + 1) = 〈0〉 ∧ l ′ = 0 fi

fi

where r = ft.ti(y , t)

The proof that the formula above describes the behavior of the mutually recur-
sive functions on and off from the specifications Controller and ControllerExt
is straightforward.

We convert the Focus specification Controller1 into Isabelle/HOL predicate
Controller schematically:

[[(z ) := Controller1(y)]]Isab
≡
constdefs

Controller :: nat istream ⇒ bit istream ⇒ bool
Controller y z
≡
(ts y) −→ (∃ l. Controller L y (fin inf append [Zero] l) r1 . . . rk l1 )

where Controller L is an auxiliary Isabelle/HOL predicate to represent the local
variable l in the specification:

constdefs
Controller L ::

nat istream ⇒ bit iustream ⇒ bit iustream ⇒ bit istream ⇒ bool
Controller y lIn lOut z
≡
[[ti(z , 0) = 〈0〉]]Isab ∧

[[∀ t ∈ N :
if l = 0
then if 300 < r

then ti(z , t + 1) = 〈〉 ∧ l ′ = 0
else ti(z , t + 1) = 〈1〉 ∧ l ′ = 1 fi

else if r < 700
then ti(z , t + 1) = 〈〉 ∧ l ′ = 1
else ti(z , t + 1) = 〈0〉 ∧ l ′ = 0 fi

fi
where r = ft.ti(y , t) ]]Isab)

where
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[[ti(z , 0) = 〈0〉]]Isab = ((z 0) = [Zero])

[[∀ t ∈ N :
if l = 0
then if 300 < r

then ti(z , t + 1) = 〈〉 ∧ l ′ = 0
else ti(z , t + 1) = 〈1〉 ∧ l ′ = 1 fi

else if r < 700
then ti(z , t + 1) = 〈〉 ∧ l ′ = 1
else ti(z , t + 1) = 〈0〉 ∧ l ′ = 0 fi

fi
where ti(y , t) = 〈r〉 ]]Isab)

≡
∀ (t::nat).
( if (lIn t) = Zero

then ( if 300 < hd (y t)
then (z t) = [] ∧ (lOut t) = Zero
else (z t) = [One] ∧ (lOut t) = One
)

else ( if hd (y t) < 700
then (z t) = [] ∧ (lOut t) = One
else (z t) = [Zero] ∧ (lOut t) = Zero ) )

4.1.7. Verification of the Steam Boiler System

To show that the specified system fulfills the requirements we need to show
that the specification ControlSystemArch is a refinement of the specification
ControlSystem. It follows from the definition of behavioral refinement that in
order to verify that

ControlSystem ; ControlSystemArch (4.1)

it is enough to prove that

[ControlSystemArch] ⇒ [ControlSystem] (4.2)

Therefore, we have to define and to prove a lemma (let us call it L0 ControlSystem),
that says the specification ControlSystemArch is a refinement of the specifica-
tion ControlSystem:

lemma L0 ControlSystem:
[[ ControlSystemArch s]] =⇒ ControlSystem s

To prove this lemma we used first of all the definition of the predicate Control-
System and then split the goal into three subgoals:

1. Stream s is a time-synchronous one:
ControlSystemArch s =⇒ ts s
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2. The water level is always greater than 200 gallons:
∧ j. ControlSystemArch s =⇒ 200 ≤ hd (s j)

3. The water level is always less than 800 gallons:
∧ j. ControlSystemArch s =⇒ hd (s j) ≤ 800

The predicate ts holds for the stream s according to the definitions of the compo-
nents ControlSystemArch, SteamBoiler and Converter. Thus, to solve the first
goal we apply the definitions of the corresponding Isabelle/HOL predicates and
the Isabelle/HOL automatic proof strategy.

To solve the second and the third goals we apply lemmas L1 ControlSystem and
L2 ControlSystem respectively. These lemmas say that if the predicate Control-
SystemArch holds for a stream s, then the first element of any time interval of
this stream3 is less or equal than 200 and greater or equal than 800 respectively.

lemma L1 ControlSystem:
ControlSystemArch s =⇒ (200 ::nat) ≤ hd (s i)

lemma L2 ControlSystem:
ControlSystemArch s =⇒ hd (s i) ≤ (800 :: nat)

To prove the lemma L1 ControlSystem we used first of all the definition of the
predicate ControlSystemArch. According to the definition of the component
SteamBoiler, the value of hd (s 0) is specified as 500 and the value of hd (s
(Suc i)) is evaluated from the value of hd (s i). Therefore, we need to apply the
induction rule. The base case of induction can be proved by the definitions of
the predicates SteamBoiler and Converter.

To prove the induction step we apply the definitions of all the components,
the Isabelle/HOL automatic proof strategies, split the if then else-expressions,
apply lemma fin make untimed nth length from the theory stream.thy (see Ap-
pendix A.1)4 and lemma last nth length from the theory ListExtras.thy (see Ap-
pendix A.5)5 , as well as lemmas about controllers properties, L4 Controller and
L3 Controller).

The proof of the lemma L2 ControlSystem is analogous.

The lemma L4 Controller says that if for streams s, (fin inf append [Zero] l), l,
and z the predicate Controller L holds, then the stream z , which was truncated
after ith time interval and after that made untimed, is a nonempty one:

3The stream s is defined in our system as time-synchronous one. Thus, every time interval
of this stream consists of exactly one element.

4The lemma fin make untimed nth length says that if the ith time interval of the stream
z consists of the element a, then the j th element of the stream z , which was truncated
after ith time interval and after that made untimed, is equal a (where j is the length of
the untimed truncated stream z ).

5The lemma last nth length says that if the list x is nonempty one, then the nth its element,
where n is the length of x , is the last element of the list.
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lemma L4 Controller :
[[ Controller L s (fin inf append [Zero] l) l z ]]
=⇒ fin make untimed (inf truncate z i) 6= []

To prove this lemma we used first of all the definition of the predicate Controller L.
Then we add to the assumptions the fact, that the stream z , which was trun-
cated after ith time interval and after that made untimed, is a nonempty one,
and use the Isabelle/HOL automatic proof strategy.

The lemma L3 Controller says that if for streams s, (fin inf append [Zero] l), l, and
z the predicate Controller L holds, then the last message of the stream z until
the time i is equal to the ith message of the stream l:

L3 Controller :
[[ Controller L y (fin inf append [Zero] l) l z ]]
=⇒
last (fin make untimed (inf truncate z t)) = l t

This lemma is proved using the case tactics over the value of the local variable l
at time t (Zero, One), as well ass lemmas L1 Controller and L2 Controller, which
describe properties combinations of the controller component and the operators
fin make untimed and fin inf append (see Appendix A.1) and the Isabelle/HOL
automatic proof strategy.

The whole proofs of the system properties are represented in the Appendix B.2.

4.1.8. Results of the Case Study

In this case study we have shown how we can deal with local variables (states)
and in which way we can represent mutual recursive functions to avoid problems
in proofs.

The Focus specification of the steam boiler system [BS01] was first of all
extended according 3.5, after that the Focus specifications of all components
of the system were translated schematically to Isabelle/HOL and the refine-
ment relation between the requirement and the architecture specification of the
system was proved. Proving this relation in Isabelle/HOL, we found out that to
argue about properties of the Controller component of the system we need an
additional (wrt. the original specification from [BS01]) assumption about the
input stream y , that the stream y is a time-synchronous one.

The correctness of the input/output relations was also proved for all compo-
nents of the system.
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4.2. FlexRay Communication Protocol

In this section we present the Case Study on FlexRay, communication protocol
for safety-critical real-time applications. This protocol has been developed by
the FlexRay Consortium [Fle] for embedded systems in vehicles. The advan-
tages of FlexRay over a CAN protocol (Controller Area Network, see [Rob91]),
which is the most currently used protocol for such kind of systems, are determin-
istic real-time message transmission, fault tolerance, integrated functionality for
clock synchronisation and higher bandwidth.

FlexRay contains a set of complex algorithms to provide the communication
services. From the view of the software layers above FlexRay only a few of
these properties become visible. The most important ones are static cyclic
communication schedules and system-wide synchronous clocks. These provide
a suitable platform for distributed control algorithms as used e.g. in drive-by-
wire applications. The formalization described here is based on the ”Protocol
Specification 2.0”[Fle04].

The static message transmission model of FlexRay is based on rounds. Flex-
Ray rounds consist of a constant number of time slices of the same length, so
called slots. A node can broadcast its messages to other nodes at statically
defined slots. At most one node can do it during any slot.

We have presented the first version of the formal specification of FlexRay
in Focus and its verification in Isabelle/HOL were presented in [KS06a] and
[Spi06] respectively. We have discussed the general introduction to the Flex-
Ray formalization also in [KS06b] and [KSed]. To reduce the complexity of the
system several aspects of FlexRay have been abstracted in this formalization:

(1) There is no clock synchronization or start-up phase since clocks are as-
sumed to be synchronous. This corresponds very well with the time-
synchronous notion of Focus.

(2) The model does not contain bus guardians that protect channels on the
physical layer from interference caused by communication that is not
aligned with FlexRay schedules.

(3) Only the static segment of the communication cycle has been included
not the dynamic, as we are mainly interested in time-triggered systems.

(4) The time-basis for the system is one slot i.e. one slot FlexRay corresponds
to one tick in in the formalization.

(5) The system contains only one FlexRay channel. Adding a second channel
would mean simply doubling the FlexRay component with a different
configuration and adding extra channels for the access to the CNI Buffer
component.

A formal verification of the clock synchronization algorithm and of the bus
guardian of FlexRay is in progress at INRIA [Zha06].

The specification group FR consists of the following specifications, which
describe the FlexRay components accordingly to the FlexRay standard [Fle04]:
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X FlexRay (general requirements specification),
X FlexRayArch (system architecture),
X FlexRayArchitecture (guarantee part of the system architecture, for details

see Section 4.2.5),
X Cable,
X Controller,
X Scheduler, and
X BusInterface.

We specify all these components as a joined Isabelle/HOL theory FR.thy(see
Section 3.4). We present the following Isabelle/HOL theories in this case study:

X FR types.thy – the datatype definitions,
X FR inout.thy – the specification of component interfaces and the corre-

sponding correctness proofs,
X FR.thy – the Isabelle/HOL specifications of the system components and

auxiliary functions and predicates,
X FR proof – the proof of refinement relation between the requirements and

the architecture specifications.

Here we present first of all meaning of the non-standard datatypes used in
the specification group, and the specification of the relations between sets of
(sheaves of) channels of the components, as well as proofs of their correctness
(see Section FR inout.thy). Then we specify all the components from the spec-
ification group and auxiliary functions and predicates. After that we discuss
translation of the Focus component specifications into Isabelle/HOL, as well
as the proof of refinement relation between the requirements specification and
the architecture specification of FlexRay.

The resulting Isabelle/HOL theories FR.thy and FR proof.thy are presented in
Appendix B.

4.2.1. Datatypes

The type Frame that describes a FlexRay frame consists of a slot identifier of
type N and the payload. The type of payload is defined as a finite list of type
Message. The type Config represents the bus configuration and contains the
scheduling table schedule of a node and the length of the communication round
cycleLength. A scheduling table of a node consists of a number of slots in which
this node should be sending a frame with the corresponding identifier (identifier
that is equal to the slot).

type Message = msg (message id : N, ftcdata : Data)

type Frame = frm (slot : N, data : Data)

type Config = conf (schedule : N ∗, cycleLength : N)

The Isabelle/HOL specifications of these types are equal modulo syntax to the
corresponding types in the Focus specification (see Section 2.3). We do not
specify the type Data here to have a polymorphic specification of FlexRay (this
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type can be underspecified later to any datatype), therefore, in Isabelle/HOL
it will be also defined as a polymorphic type ′a.

The types ′a nFrame, nNat and nConfig are used to represent sheaves of chan-
nels of types Frame, N and Config respectively (see Sections 2.3 and 2.13).

In the specification group will be used channels recv and activations, as well
as sheaves of channels (return1, . . . ,returnn), (c1, . . . , cn), (store1, . . . , storen),
(get1, . . . , getn), and (send1, . . . , sendn). We also need to declare some con-
stant, sN, for the number of specification replication and the corresponding
number of channels in sheaves, as well as to define the list of sheaf upper
bounds, sheafNumbers:

In the specification FlexRayArchitecture the stream recv is split into n streams
(into a sheaf of channels). Therefore, we need to add this information to the
Isabelle/HOL specification FR types.thy – to add the definition of the ch split
predicate.

The Isabelle/HOL specification of these types and (component and channel)
identifiers is presented below by the theory FR types.thy.

theory FR types = Main + stream:

record ′a Message =
message id :: nat
ftcdata :: ′a

record ′a Frame =
slot :: nat
data :: ( ′a Message) list

record Config =
schedule :: nat list
cycleLength :: nat

types ′a nFrame = nat ⇒ ( ′a Frame) istream
types nNat = nat ⇒ nat istream
types nConfig = nat ⇒ Config

consts sN :: nat

constdefs
sheafNumbers :: nat list
sheafNumbers ≡ [sN ]

datatype chanID =
ch return

| ch c
| ch store
| ch get
| ch send
| ch recv
| ch activation

139



4. Case Studies

datatype specID =
sFlexRay

| sFlexRayArch
| sFlexRayArchitecture
| sCable
| sFlexRayController
| sScheduler
| sBusInterface

datatype csID = ch chanID | sheaf csID nat

datatype spID = spec specID | repl spID nat

constdefs
ch split :: csID ⇒ nat ⇒ bool

ch split x l ≡
(x = ch ch recv ∧ l = sN )

end

4.2.2. Input/Output Relations between Channels

The Isabelle/HOL theory FR inout.thy is based only on the Isabelle/HOL theory
inout sheaf.thy (see Section 2.13.3), which is in the case of the specification group
FR based on the theory FR types.thy. First of all we specify in this theory
the subcomponents relations for all components of the system by the function
subcomponents. Then we specify the list of input, output and local channels for
all components by the functions ins, out and loc respectively.

After the definition part we prove correctness of the interface relations show-
ing that the predicates correctInOutLoc, correctComposition, correctCompositionIn,
correctCompositionOut, and correctCompositionLoc hold for the components of the
specification group by the standard proof schema (see Section 2.13.3).

theory FR inout = Main + inout sheaf :

primrec
subcomponents sFlexRay = {}
subcomponents sFlexRayArch = {spec sFlexRayArchitecture}
subcomponents sFlexRayArchitecture

= {repl (spec sFlexRayController) sN , spec sCable}
subcomponents sCable = {}
subcomponents sFlexRayController

= {spec sScheduler , spec sBusInterface}
subcomponents sScheduler = {}
subcomponents sBusInterface = {}

primrec
subcomponentS (spec x ) = subcomponents x
subcomponentS (repl x y) = subcomponentS x
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primrec
ins sFlexRay = {sheaf (ch ch return) sN }
ins sFlexRayArch = {sheaf (ch ch return) sN }
ins sFlexRayArchitecture = {sheaf (ch ch return) sN }
ins sCable = {sheaf (ch ch send) sN }
ins sFlexRayController = {ch ch return, ch ch recv}
ins sScheduler = {}
ins sBusInterface = {ch ch activation, ch ch recv , ch ch return}

primrec
insS (spec x ) = ins x
insS (repl x i) = (cs2Sheaf i ‘ (insS x ))

primrec
loc sFlexRay = {}
loc sFlexRayArch = {}
loc sFlexRayArchitecture = {sheaf (ch ch send) sN , ch ch recv}
loc sCable = {}
loc sFlexRayController = {ch ch activation}
loc sScheduler = {}
loc sBusInterface = {}

primrec
locS (spec x ) = loc x
locS (repl x i) = (cs2Sheaf i ‘ (locS x ))

primrec
outS (spec x ) = out x
outS (repl x i) = (cs2Sheaf i ‘ (outS x ))

primrec
out sFlexRay = {sheaf (ch ch store) sN , sheaf (ch ch get) sN }
out sFlexRayArch = {sheaf (ch ch store) sN , sheaf (ch ch get) sN }
out sFlexRayArchitecture = {sheaf (ch ch store) sN , sheaf (ch ch get) sN }
out sCable = {ch ch recv}
out sFlexRayController = {ch ch store, ch ch get , ch ch send}
out sScheduler = {ch ch activation}
out sBusInterface = {ch ch store, ch ch get , ch ch send}

Proofs for components

lemma spec FlexRay1 :
correctInOutLoc (spec sFlexRay)
by (simp add : correctInOutLoc def )

lemma spec FlexRay2 :
correctComposition (spec sFlexRay)
by (simp add : correctComposition def )
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lemma spec FlexRayArch1 :
correctInOutLoc (spec sFlexRayArch)
by (simp add : correctInOutLoc def )

lemma spec FlexRayArch2 :
correctComposition (spec sFlexRayArch)
by (simp add : correctComposition def )

lemma spec FlexRayArch3 :
correctCompositionIn (spec sFlexRayArch)
by (simp add : correctCompositionIn def

extSplit def eqSplit def )

lemma spec FlexRayArch4 :
correctCompositionOut (spec sFlexRayArch)
by (simp add : correctCompositionOut def

extSplit def eqSplit def )

lemma spec FlexRayArch5 :
correctCompositionLoc (spec sFlexRayArch)
by (simp add : correctCompositionLoc def eqSplit def

split2loc def )

lemma spec FlexRayArchitecture1 :
correctInOutLoc (spec sFlexRayArchitecture)
by (simp add : correctInOutLoc def )

lemma spec FlexRayArchitecture2 :
correctComposition (spec sFlexRayArchitecture)
by (simp add : correctComposition def )

lemma spec FlexRayArchitecture3 :
correctCompositionIn (spec sFlexRayArchitecture)
by (simp add : correctCompositionIn def

extSplit def ch split def
sheafNumbers def eqSplit def
cs2Sheaf def split2sheaf def makeSheafs def , auto)

lemma spec FlexRayArchitecture4 :
correctCompositionOut (spec sFlexRayArchitecture)
by (simp add : correctCompositionOut def

extSplit def ch split def eqSplit def
cs2Sheaf def split2sheaf def makeSheafs def , auto)

lemma spec FlexRayArchitecture5 :
correctCompositionLoc (spec sFlexRayArchitecture)
by (simp add : correctCompositionLoc def

eqSplit def ch split def split2loc def
cs2Sheaf def , auto)
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lemma spec Cable1 :
correctInOutLoc (spec sCable)
by (simp add : correctInOutLoc def )

lemma spec Cable2 :
correctComposition (spec sCable)
by (simp add : correctComposition def )lemma spec FlexRayController1 :

correctInOutLoc (spec sFlexRayController)
by (simp add : correctInOutLoc def )

lemma spec FlexRayController2 :
correctComposition (spec sFlexRayController)
by (simp add : correctComposition def )

lemma spec FlexRayController3 :
correctCompositionIn (spec sFlexRayController)
by (simp add : correctCompositionIn def

extSplit def ch split def eqSplit def split2sheaf def )

lemma spec FlexRayController4 :
correctCompositionOut (spec sFlexRayController)
by (simp add : correctCompositionOut def

extSplit def ch split def eqSplit def split2sheaf def , auto)

lemma spec FlexRayController5 :
correctCompositionLoc (spec sFlexRayController)
by (simp add : correctCompositionLoc def

ch split def eqSplit def split2loc def , auto)lemma spec Scheduler1 :
correctInOutLoc (spec sScheduler)
by (simp add : correctInOutLoc def )

lemma spec Scheduler2 :
correctComposition (spec sScheduler)
by (simp add : correctComposition def )lemma spec BusInterface1 :

correctInOutLoc (spec sBusInterface)
by (simp add : correctInOutLoc def )

lemma spec BusInterface2 :
correctComposition (spec sBusInterface)
by (simp add : correctComposition def )

end

Remark: To prove the lemma spec FlexRayArch5 we have used only the
definitions of the predicates correctCompositionLoc, eqSplit and split2loc, because
the specification FlexRayArch does not have any local channel, even though
this specification is a composite one.
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4.2.3. Auxiliary Predicates

In the specification of the group FR we will need three auxiliary predicates:
DisjointSchedules, IdenticCycleLength, and FrameTransmission.

The predicate DisjointSchedules is true for sheaf of channels of type Config,
if all bus configurations have disjoint scheduling tables:

DisjointSchedules
c1, ..., cn ∈ Config

∀ i , j ∈ [1..n], j 6= i :

∀ x ∈ rng.schedule(ci), y ∈ rng.schedule(cj ) :

x 6= y

To represent this predicate in Isabelle/HOL we need to translate into Isabelle
the expression

∀ x ∈ rng.schedule(ci), y ∈ rng.schedule(cj )

For this representation we define a new predicate disjoint in the Isabelle/HOL
theory ListExtras.thy (see Appendix A.5). This predicate holds for two lists l1
and l2 of the same type, if the sets of elements of the lists l1 and l2 (rng.l1 and
rng.l1) are pairwise disjoint.

According to the translation schema and the definition of the predicate dis-
joint, we get the following equalities (mem is here the predefined Isabelle/HOL
operator “member of the list”):

[[rng.x ]]Isab ≡ finU range [[x ]]Isab ≡ set [[x ]]Isab

[[∀ i ∈ rng.l1, j ∈ rng.l2 : i 6= j ]]Isab
≡ ∀ i mem (set [[l1]]Isab), j mem (set [[l2]]Isab). i 6= j
≡ (set [[l1]]Isab) ∩ (set [[l2]]Isab) = {}
≡ disjoint [[l1]]Isab [[l2]]Isab

Therefore, we can write the following equality:

[[∀ x ∈ rng.schedule(ci), y ∈ rng.schedule(cj ) : x 6= y ]]Isab
≡ disjiont [[schedule(ci)]]Isab [[schedule(cj )]]Isab
≡ disjiont (schedule nC i) (schedule nC j)

We get the representation of the Focus predicate DisjointSchedules in Is-
abelle/HOL:

constdefs
DisjointSchedules :: nat ⇒ nConfig ⇒ bool

DisjointSchedules n nC
≡
∀ i j . i < n ∧ j < n ∧ i 6= j −→
disjoint (schedule (nC i)) (schedule (nC j ))
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The predicate IdenticCycleLength is true for sheaf of channels of type Config,
if all bus configurations have the equal length of the communication round:

IdenticCycleLength
c1, ..., cn ∈ Config

∀ i , j ∈ [1..n] :

cycleLength(ci) = cycleLength(cj )

The corresponding representation in Isabelle/HOL:

constdefs
IdenticCycleLength :: nat ⇒ nConfig ⇒ bool

IdenticCycleLength n nC
≡
∀ i j . i < n ∧ j < n −→
cycleLength (nC i) = cycleLength (nC j )

The predicate FrameTransmission defines the correct message transmission: if
the time t is equal modulo the length of the cycle (FlexRay communication
round) to the element of the scheduler table of the node k , then this and only
this node can send a data atn the tth time interval.

FrameTransmission
store1, ..., storen , return1, ..., returnn ∈ Frame ω

get1, ..., getn ∈ N ω

c1, ..., cn ∈ Config

∀ t ∈ N, k ∈ [1..n] :
let s = mod(t , cycleLength(ck )) in

s ∈ schedule(ck ) →

ti(getk , t) = 〈s〉 ∧

∀ j ∈ [1..n], j 6= k : ti(storej , t) = ti(returnk , t)

The corresponding representation in Isabelle/HOL:

constdefs
FrameTransmission ::

nat ⇒ ’a nFrame ⇒ ’a nFrame ⇒ nNat ⇒ nConfig ⇒ bool
FrameTransmission n nStore nReturn nGet nC

≡
∀ (t::nat) (k::nat). k < n −→

( let s = [[mod(t , cycleLength(ck ))]]Isab in
[[s ∈ schedule(ck )]]Isab −→ (nGet k) t = [s]

∧ (∀ j. j < k ∧ j 6= n −→ ((nStore j) t) = ((nReturn k) t)) ))
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where

[[mod(t , cycleLength(ck ))]]Isab = t mod (cycleLength (nC k))
[[s ∈ schedule(ck )]]Isab ≡ (s mem (schedule (nC k))

Thus, the whole Isabelle/HOL definition of the predicate FrameTransmission
is

constdefs
FrameTransmission ::

nat ⇒ ′a nFrame ⇒ ′a nFrame ⇒ nNat ⇒ nConfig ⇒ bool
FrameTransmission n nStore nReturn nGet nC
≡
∀ (t ::nat) (k ::nat). k < n −→
( let s = t mod (cycleLength (nC k))

in
( s mem (schedule (nC k))
−→
(nGet k t) = [s] ∧
(∀ j . j < n ∧ j 6= k −→ ((nStore j ) t) = ((nReturn k) t)) ))

The Focus predicate Broadcast describes properties of FlexRay broadcast. The
schematical translation of this predicate into Isabelle/HOL predicate Broadcast
is trivial.

Broadcast
send1, ..., sendn , recv ∈ Frame ω

∀ t ∈ N :

if ∃ k ∈ [1...n] : ti(sendk , t) 6= 〈〉

then ti(recv , t) = ti(sendk , t)

else ti(recv , t) = 〈〉

fi

constdefs
Broadcast ::

nat ⇒ ′a nFrame ⇒ ′a Frame istream ⇒ bool
Broadcast n nSend recv
≡
∀ (t ::nat).
( if ∃ k . k < n ∧ ((nSend k) t) 6= []

then (recv t) = ((nSend (SOME k . k < n ∧ ((nSend k) t) 6= [])) t)
else (recv t) = [] )

The predicates Send and Receive define the Focus relations on the streams to
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represent respectively data send and data receive by FlexRay controller. Their
schematical translation into Isabelle/HOL predicates is also trivial.

Send
return, send ∈ Frame ω; get , activation ∈ N ω

∀ t ∈ N :

if ti(activation, t) = 〈〉

then ti(get , t) = 〈〉 ∧ ti(send , t) = 〈〉

else ti(get , t) = ti(activation, t) ∧ ti(send , t) = ti(return, t)

fi

constdefs
Send ::
′a Frame istream ⇒ ′a Frame istream ⇒ nat istream ⇒ nat istream ⇒ bool
Send return send get activation
≡
∀ (t ::nat).
( if (activation t) = []

then (get t) = [] ∧ (send t) = []
else (get t) = (activation t) ∧ (send t) = (return t) )

Receive
recv , store ∈ Frame ω; activation ∈ N ω

∀ t ∈ N :

if ti(activation, t) = 〈〉

then ti(store, t) = ti(recv , t)

else ti(store, t) = 〈〉

fi

constdefs
Receive ::

Frame istream ⇒ Frame istream ⇒ nat istream ⇒ bool
Receive recv store activation
≡
∀ (t::nat).
( if (activation t) = []

then (store t) = (recv t)
else (store t) = [])
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4.2.4. Requirement Specification

The Focus specification FlexRay describes the interface of the FlexRay commu-
nication protocol and represents requirements on the protocol: If the scheduling
tables are correct in terms of the predicates DisjointSchedules and IdenticCycle-
Length presented above, and also the FlexRay component receives in every time
interval at most one message from each node (via channels returni , 1 ≤ i ≤ n),
then

X the frame transmission by FlexRay must be correct in terms of the pred-
icate FrameTransmission presented above,

X FlexRay component sends in every time interval at most one message to
each node via channels geti and storei , 1 ≤ i ≤ n).

FlexRay (constant c1, ..., cn ∈ Config) timed

in return1, . . . , returnn : Frame

out store1, . . . , storen : Frame; get1, . . . , getn : N

asm ∀ i ∈ [1..n] : msg1(returni)

DisjointSchedules(c1, ..., cn)

IdenticCycleLength(c1, ..., cn)

gar FrameTransmission(return1, . . . , returnn , store1, . . . , storen , get1, . . . , getn ,

c1, . . . , cn)

∀ i ∈ [1..n] : msg1(geti) ∧msg1(storei)

We convert the Focus specification FlexRay into Isabelle/HOL predicate FlexRay
schematically.

constdefs
FlexRay ::

nat ⇒ ′a nFrame ⇒ nConfig ⇒ ′a nFrame ⇒ nNat ⇒ bool
FlexRay n nReturn nC nStore nGet
≡
(CorrectSheaf n) ∧
((∀ (i ::nat). i < n −→ (msg 1 (nReturn i))) ∧
(DisjointSchedules n nC ) ∧ (IdenticCycleLength n nC )
−→
(FrameTransmission n nStore nReturn nGet nC ) ∧
(∀ (i ::nat). i < n −→ (msg 1 (nGet i)) ∧ (msg 1 (nStore i))) )

4.2.5. Architecture Specification

The architecture of the FlexRay communication protocol, which is a refinement
of the specification FlexRay (this will be shown in Section 4.2.8), is specified
as the Focus specification FlexRayArch that is an A/G one. The assumption
part of the specification FlexRayArch is equal to the assumption part of the
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specification FlexRay. The guarantee part is represented by the specification
FlexRayArchitecture (see below).

FlexRayArch (constant c1, ..., cn ∈ Config) timed

in return1, ..., returnn : Frame

out store1, ..., storen : Frame; get1, ..., getn : N

asm ∀ i ∈ [1..n] : msg1(returni)

DisjointSchedules(c1, . . . , cn)

IdenticCycleLength(c1, . . . , cn)

gar (store1, . . . , storen , get1, . . . , getn) :=

FlexRayArchitecture(c1, . . . , cn)(return1, dots, returnn)

The schematic translation of the Focus predicate FlexRayArch into Isabelle/HOL
predicate FlexRayArch is straightforward:

constdefs
FlexRayArch :: nat ⇒ ’a nFrame ⇒ nConfig ⇒ ’a nFrame ⇒ nNat ⇒ bool
FlexRayArch n nReturn nC nStore nGet
≡
(CorrectSheaf n) ∧
( (∀ (i::nat). i < n −→ (msg 1 (nReturn i))) ∧

(DisjointSchedules n nC) ∧ (IdenticCycleLength n nC) )
−→
FlexRayArchitecture n nReturn nC nStore nGet )

The specification FlexRayArchitecture (see below) represents architecture of
the FlexRay communication protocol without taking into account the refine-
ment relation with the specification of the requirements. FlexRayArchitecture
is a composite one and consists of the component Cable and n components
FlexRay Controller (for n nodes).

The Focus representation of the specification FlexRayArchitecture as plain
text (constraint style):

FlexRayArchitecture (constant c1, ..., cn ∈ Config) timed

in return1, ..., returnn : Frame

out store1, ..., storen : Frame; get1, ..., getn : N

loc send1, . . . , sendn : Frame; recv : Frame

(recv) := Cable(send1, . . . , sendn)
∀ i ∈ [1..n] : (storei , sendi , geti) := FlexRayController(ci)(returni , recv)
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FlexRayArchitecture (constant c1, ..., cn ∈ Config) glass-box
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We convert the Focus specification FlexRayArchitecture into Isabelle/HOL
predicate FlexRayArchitecture schematically:

constdefs
FlexRayArchitecture ::

nat ⇒ ’a nFrame ⇒ nConfig ⇒ ’a nFrame ⇒ nNat ⇒ bool
FlexRayArchitecture n nReturn nC nStore nGet
≡
(CorrectSheaf n) ∧
(∃ nSend recv.

(Cable n nSend recv) ∧
(∀ i. i < n −→
FlexRayController (nReturn i) recv (nC i) (nStore i) (nSend i) (nGet i)) )

4.2.6. Cable Component

The Focus specification Cable describes properties of FlexRay broadcast and is
an A/G specification. The component Cable simulate the broadcast properties
of the physical network cable – every received FlexRay frame is resent to all
connected nodes. Thus, if one FlexRayController send some frame, this frame
will be resent to all nodes (to all FlexRayControllers of the system).

The assumption is that all input streams of the component Cable are dis-
joint – this holds by the properties of the FlexRayController components and
the overall system assumption that the scheduling tables of all nodes are dis-
joint. This assumption is expressed using the Focus operator disjinf for sheaves
of channels (see Section 2.13.4). The guarantee is specified by the predicate
Broadcast defined in Section 4.2.3. The schematic translation of the Focus
predicate Cable into Isabelle/HOL predicate Cable is straightforward.
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Cable timed

in send1, ..., sendn : Frame

out recv : Frame

asm disjinf(send1, ..., sendn)

gar Broadcast(send1, ..., sendn , recv)

constdefs
Cable :: nat ⇒ ’a nFrame ⇒ ’a Frame istream ⇒ bool
Cable n nSend recv
≡
(CorrectSheaf n) ∧ (inf disj n nSend −→ Broadcast n nSend recv)

4.2.7. Controller Component

The Focus specification FlexRayController represent the controller component
for a single node of the system. This specification is a composite one and
consists of the components Scheduler and BusInterface. The Scheduler signals
the BusInterface, that is responsible for the interaction with other nodes of the
system, on which time which FlexRay frames must be send from the node.

FlexRayController(const c ∈ Config) glass-box

BusInterface

store : Frame

get : N

return : Frame

activation : N

recv : Frame

send : Frame

Scheduler(c)

The Focus representation of the specification FlexRayController as plain text
(constraint style):

FlexRayController(const c ∈ Config) timed

in return, recv : Frame

out store, send : Frame; get : N

loc activation : N

(activation) := Scheduler(c)
(store, send , get) := BusInterface(activation, return, recv)
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The schematic translation of the Focus predicate FlexRayController into Is-
abelle/HOL predicate FlexRayController:

constdefs
FlexRayController ::

’a Frame istream ⇒ ’a Frame istream ⇒ Config ⇒
’a Frame istream ⇒ ’a Frame istream ⇒ nat istream ⇒ bool

FlexRayController return recv c store send get
≡
(∃ activation. (Scheduler c activation) ∧

(BusInterface activation return recv store send get))

The Scheduler describes the communication scheduler. It sends at every time t
interval, which is equal modulo the length of the communication cycle to some
FlexRay frame identifier (that corresponds to the number of the slot in the
communication round) from the scheduler table, this frame identifier.

Scheduler(const c ∈ Config) timed

out activation : N

univ s ∈ N

∀ t ∈ N :

s = mod(t , cycleLength(c))

if s ∈ schedule(c)

then ti(activation, t) = 〈s〉

else ti(activation, t) = 〈〉

fi

We convert the Focus specification Scheduler into Isabelle/HOL predicate
Scheduler schematically:

constdefs
Scheduler :: Config ⇒ nat ⇒ bool

Scheduler c activation
≡
∀ (t::nat).

(let s = t mod (cycleLength c)
in

(if s mem (schedule c)
then activation t = [s]
else activation t = [] ))
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The component BusInterface is responsible for the real send and receive of
frames. We specify this component using by two predicates, Send and Re-
ceive. The schematic translation of the Focus specification BusInterface into
Isabelle/HOL predicate is straightforward.

BusInterface timed

in activation : N; return, recv : Frame

out send , store : Frame; get : N

Receive(recv , store, activation)

Send(return, send , get , activation)

constdefs
BusInterface ::

nat istream ⇒ ’a Frame istream ⇒ ’a Frame istream ⇒
’a Frame istream ⇒ ’a Frame istream ⇒ nat istream ⇒ bool

BusInterface activation return recv store send get
≡
(Receive recv store activation) ∧ (Send return send get activation)

4.2.8. Verification of the FlexRay System wrt. its Requirements

To show that the specified system fulfill the requirements we need to show that
the specification FlexRayArch is a refinement of the specification FlexRay. It
follows from the definition of behavioral refinement that in order to verify that

FlexRay ; FlexRayArch (4.3)

it is enough to prove that

[FlexRayArch] ⇒ [FlexRay] (4.4)

Therefore, we have to define and to prove a lemma, that says the specification
FlexRayArch is a refinement of the specification FlexRay (let us call this lemma
main fr refinement ):

lemma main fr refinement :
FlexRayArch n nReturn nC nStore nGet =⇒ FlexRay n nReturn nC nStore nGet

To prove this lemma we used first of all the definition of the predicates FlexRa-
yArch, FlexRay, FlexRayArchitecture, and CorrectSheaf. After that we split the
goal into three subgoals using the Isabelle/HOL automatic proof strategy:

1. The predicate FrameTransmission holds, if
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X every stream of the sheaf nReturn has at every time interval at most
one message;

X the number n of channels in the sheaf is greater then zero;

X the predicate Cable holds for the corresponding streams;

X the predicate FlexRayController holds the corresponding streams on
every node i of the n nodes;

X the predicates DisjointSchedules and IdenticCycleLength hold for a sheaf
of parameters nC.

[∀i < n. msg (Suc 0) (nReturn i); 0 < n; DisjointSchedules n nC;
IdenticCycleLength n nC; Cable n nSend recv;
∀i<n. FlexRayController (nReturn i) recv (nC i) (nStore i) (nSend i) (nGet i)]
−→ FrameTransmission n nStore nReturn nGet nC

2. The ith stream of the sheaf nGet has at every time interval at most one
message, if

X the index i is less then the number of channels in the sheaf;

X every stream of the sheaf nReturn has at every time interval at most
one message;

X the number n of channels in the sheaf is greater then zero;

X the predicate Cable holds for the corresponding streams;

X the predicate FlexRayController holds the corresponding streams on
every node i of the n nodes;

X the predicates DisjointSchedules and IdenticCycleLength hold for a sheaf
of parameters nC.

[∀i < n. msg (Suc 0) (nReturn i); DisjointSchedules n nC;
IdenticCycleLength n nC; Cable n nSend recv; i < n;
∀i<n. FlexRayController (nReturn i) recv (nC i) (nStore i) (nSend i) (nGet i)]
−→ msg (Suc 0) (nGet i)

3. The ith stream of the sheaf nStore has at every time interval at most one
message, if

X the index i is less then the number of channels in the sheaf;

X every stream of the sheaf nReturn has at every time interval at most
one message;

X the number n of channels in the sheaf is greater then zero;

X the predicate Cable holds for the corresponding streams;

X the predicate FlexRayController holds the corresponding streams on
every node i of the n nodes;

X the predicates DisjointSchedules and IdenticCycleLength hold for a sheaf
of parameters nC.
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[∀i < n. msg (Suc 0) (nReturn i); DisjointSchedules n nC;
IdenticCycleLength n nC; Cable n nSend recv; i < n;
∀i<n. FlexRayController (nReturn i) recv (nC i) (nStore i) (nSend i) (nGet i)]
−→ msg (Suc 0) (nStore i)

We define a lemma fr refinement FrameTransmission (see below) which is equal to
the first subgoal and prove it externally. Thus, the first subgoal can be solved
by lemma fr refinement FrameTransmission.

The last two subgoals have the same assumption part and differ only in their
goals, which also have a similar structure. We define a lemma fr refinement msg
(see below) which assumption part is equal to the assumption parts of these
subgoals and the goal is the conjunction of their goals. Thus, the second and
the third subgoal can be solved by lemma fr refinement msg.

When the proof of a new lemma succeeds, we can test, which of its assump-
tions are real necessary and which of them can be removed. E.g., in the case of
lemma fr refinement FrameTransmission the assumption

∀i < n. msg (Suc 0) (nReturn i)

can be removed. Thus, the lemma fr refinement FrameTransmission has the
following form:

The predicate FrameTransmission holds, if

X the number n of channels in the sheaf is greater then zero;

X the predicate Cable holds for the corresponding streams;

X the predicate FlexRayController holds the corresponding streams on every
node i of the n nodes;

X the predicates DisjointSchedules and IdenticCycleLength hold for a sheaf of
parameters nC.

lemma fr refinement FrameTransmission:
[[ Cable n nSend recv ; 0 < n;
∀ i<n. FlexRayController (nReturn i) recv (nC i) (nStore i) (nSend i) (nGet i);
DisjointSchedules n nC ; IdenticCycleLength n nC ]]

=⇒ FrameTransmission n nStore nReturn nGet nC

To prove the lemma we use first the definition of the predicate FrameTrans-
mission and the let-expression, the Isabelle/HOL automatic proof strategies,
and the lemma fr nStore nReturn (see below).

After that we get a goal, where the argumentation is over the kth node.
Therefore, we instantiate the ∀ quantifier (over the index of a node) with k.
Then we apply the definition of the predicates FlexRayController, BusInterface,
Send and Scheduler, as well as the Isabelle/HOL automatic proof strategies.

To solve the resulting goal we instantiate all the ∀ quantifiers with t (number
of the time interval) and apply the definition of the let-expression.
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The lemma fr nStore nReturn says, that at the time interval t the list of mes-
sages of the output stream store of any jth node (j 6= k) is equal to the list of
messages of the input stream return of the node k, if

X the number n is greater then zero and the number k is less then n;

X the predicate Cable holds for the corresponding streams;

X the time t modulo the length of the communication cycle is an element of
the communication scheduling table of the kth node;

X for a sheaf of parameters nC hold the predicates DisjointSchedules and
IdenticCycleLength;

X the predicate FlexRayController holds for the corresponding streams on
every node i of the n nodes.

lemma fr nStore nReturn:
[[Cable n nSend recv ;
∀ i<n. FlexRayController (nReturn i) recv (nC i) (nStore i) (nSend i) (nGet i);
0 < n; k < n; DisjointSchedules n nC ; IdenticCycleLength n nC ;
t mod cycleLength (nC k) mem schedule (nC k)]]
=⇒ ∀ j . j < n ∧ j 6= k −→ nStore j t = nReturn k t

To prove the lemma we first of all use the Isabelle/HOL automatic proof strat-
egy and add new assumption according lemma fr nC Send (see below), which
says that then at the time interval t the list of messages of the output stream
send of any jth node (j 6= k) must be empty.

After that we apply the definitions of the predicates Cable and CorrectSheaf,
as well as add new assumption according the lemma disjointFrame lemma (see
below), which says that all streams in the sheaf nSend are disjoint.

To argue at next steps about two nodes, j and k, of the system we duplicate
the assumption about the FlexRay controller and instantiate the ∀ quantifiers
in the duplicated assumption with j and k.

After that we apply the definition of the predicate Broadcast and instantiate
the ∀ quantifiers in the definition of the Broadcast component with the number
of the time interval t.

As the next proof steps we apply the definitions of the predicates FlexRay-
Controller and Scheduler and use the Isabelle/HOL automatic proof strategies.
Then we instantiate the ∀ quantifiers in the definition of the Scheduler com-
ponent with the number of the time interval t, and apply the definition of the
let-expression.

Now we can split the current goal on two cases: whether the time t mod-
ulo the length of the communication cycle is an element of the communica-
tion scheduling table of the jth node. The first goal can be solved by lemma
correct DisjointSchedules1 (see below). To solve the second goal we apply the
definitions of the predicates BusInterface and Send, instantiate the ∀ quantifiers
in the definition of the Send component with the number of the time interval
t, and split split the if then else-expressions.
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To solve the resulting goals we apply the lemma inf disj index (property of
disjoint channels in a sheaf, see Section A.1), the definitions of the predicates
inf disj and Receive, as well as use the Isabelle/HOL automatic proof strategies.

The lemma fr nC Send says, that at any time interval t the list of messages of
the output stream send of any jth node (j 6= k) must be empty, if

X the predicate FlexRayController holds for the corresponding streams on
every node i of the n nodes;

X the number n is greater then zero and the number k is less then n;

X for a sheaf of parameters nC hold the predicates DisjointSchedules and
IdenticCycleLength;

X the time t modulo the length of the communication cycle is an element of
the communication scheduling table of the kth node.

lemma fr nC Send :
[[ ∀ i<n. FlexRayController (nReturn i) recv (nC i) (nStore i) (nSend i) (nGet i);
0 < n; k < n;
DisjointSchedules n nC ; IdenticCycleLength n nC ;
t mod cycleLength (nC k) mem schedule (nC k)]]
=⇒
∀ j . j < n ∧ j 6= k −→ (nSend j ) t = []

To prove this lemma we use first of all use the Isabelle/HOL automatic proof
strategy and add new assumption according the lemma correct DisjointSchedules1
(see below), which says that the time t modulo the length of the communication
cycle is not an element of the communication scheduling table of the jth node.
To solve the resulting goal we instantiate the ∀ quantifier with j (index of the
treated node) and apply the lemma fr Send (see below).

The lemma fr Send says, that at any time interval t the list of messages of the
output stream send of any ith node must be empty, if

X the predicate FlexRayController holds for the corresponding streams on a
node i;

X the time t modulo the length of the communication cycle is an element of
the communication scheduling table of the ith node.

lemma fr Send :
[[ FlexRayController (nReturn i) recv (nC i) (nStore i) (nSend i) (nGet i);
¬ (t mod cycleLength (nC i) mem schedule (nC i))]]
=⇒ (nSend i) t = []

To prove this lemma we apply first of all the definitions of the predicates Flex-
RayController and Scheduler, and use the Isabelle/HOL automatic proof strategy.
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As the next steps we instantiate the ∀ quantifier with t, and apply the definition
of the let-expression and of the predicates BusInteface and Send, as well as the
Isabelle/HOL automatic proof strategy.

The lemma correct DisjointSchedules1 says, that at any time interval t, t modulo
the length of the communication cycle cannot be an element of the communi-
cation scheduling table of the jth node, if

X the number n is greater then zero, and the numbers k and j are less then n
(k 6= j);

X t, the index of the time interval modulo the length of the communication
cycle is an element of the communication scheduling table of the kth node;

X the predicates DisjointSchedules and IdenticCycleLength hold for a sheaf of
parameters nC;

lemma correct DisjointSchedules1 :
[[ DisjointSchedules n nC ; IdenticCycleLength n nC ;

(t mod cycleLength (nC k)) mem schedule (nC k); k < n; j < n; k 6= j ]]
=⇒ ¬ (t mod cycleLength (nC j ) mem schedule (nC j ))

To prove this lemma we apply first of all the definition of the predicate Disjoint-
Schedules and we instantiate the ∀ quantifiers with the indexes of the nodes k
and j. After that we use the Isabelle/HOL automatic proof strategy, apply the
definition of the predicate IdenticCycleLength and instantiate the ∀ quantifiers
with the indexes of the nodes k and j again.

To solve the resulting goal we add new assumption according the lemma
mem notdisjoint (from the Isabelle/HOL theory ListExtras.thy, see Section A.5),
which says that the communication scheduling tables of the nodes k and j are
not disjoint, and use the Isabelle/HOL automatic proof strategy.

The lemma disjointFrame lemma says, that all the streams of the sheaf nSend
are disjont, if

X the number n is greater then zero;

X the predicates DisjointSchedules and IdenticCycleLength hold for the sheaf
of parameters nC;

X the predicate FlexRayController holds for the corresponding streams on
every node i of the n nodes.

lemma disjointFrame lemma:
[[ DisjointSchedules n nC ; 0 < n; IdenticCycleLength n nC ;
∀ i < n. FlexRayController (nReturn i) rcv (nC i) (nStore i) (nSend i) (nGet i) ]]

=⇒ inf disj n nSend

To argue at next steps about two nodes of the system we duplicate the assump-
tion about the FlexRay controller. Then we apply the definition of the predicate
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inf disj, use the Isabelle/HOL automatic proof strategy and instantiate the ∀
quantifiers with the indexes of the nodes k and j.

After that we apply the definitions of the predicates FlexRayController and
DisjointSchedules, instantiate the ∀ quantifiers with the indexes of the nodes k
and j again, apply the definitions of the predicates BusInterface and Send.

As the next step we instantiate all the ∀ quantifiers with the index of the
current time interval, t, apply the definitions of the if then else expression and
the predicate Scheduler. Then we instantiate all the ∀ quantifiers with t, and
apply the definitions of the if then else and let expressions. As the next step we
apply the definition of the predicate IdenticCycleLength.

To solve the resulting goal we instantiate the ∀ quantifiers with indexes of
nodes i and j, and show that the assumptions contain contradiction.

The lemma fr refinement msg says, that the streams geti and storei must con-
tain at every time interval at most one FlexRay frame, if

X the number n is greater then zero and the number i is less then n;

X the predicates Cable and FlexRayController hold for the corresponding streams;

X the streams return1, . . . , returnn contain at every time interval at most
one FlexRay frame;

X for a sheaf of parameters nC hold the predicates DisjointSchedules and
IdenticCycleLength;

lemma fr refinement msg :
[[ Cable n nSend recv ; DisjointSchedules n nC ; IdenticCycleLength n nC ;

i < n; 0 < n; ∀ i<n. msg (Suc 0 ) (nReturn i);
∀ i<n. FlexRayController (nReturn i) recv (nC i) (nStore i) (nSend i) (nGet i)]]

=⇒ msg (Suc 0 ) (nGet i) ∧ msg (Suc 0 ) (nStore i)

To prove the lemma we prove first that the streams of the sheaf nSend are
disjoint (an additional subgoal “inf disj n nSend”) using an auxiliary lemma
disjointFrame lemma. After that we split the goal by the conjunction rule in two
subgoals und solve them using lemmas fr refinement msg nGet and fr refinement-
msg nStore (see below), as well as the Isabelle/HOL automatic proof strategy.

The lemma fr refinement msg nGet says, that the stream geti must contain at
every time interval at most one FlexRay frame, if

X the number i is less then the number n;

X the predicate FlexRayController holds for the corresponding streams on
every node i of the n nodes.

lemma fr refinement msg nGet :
[[ ∀ i<n. FlexRayController (nReturn i) recv (nC i) (nStore i) (nSend i) (nGet i);

< n]] =⇒ msg (Suc 0 ) (nGet i)
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To prove this lemma we apply first of all the definition of the predicate FlexRay-
Controller and instantiate all the ∀ quantifier with i, use the Isabelle/HOL au-
tomatic proof strategy and apply the definitions of the predicates BusInterface,
msg, Send and Scheduler.

To solve the resulting goal we instantiate all the ∀ quantifiers with the index
of the current time interval, t, and apply the definitions of the let and if then else
expressions.

The lemma fr refinement msg nStore says, that the stream storei must contain
at every time interval at most one FlexRay frame, if

X for a sheaf of parameters nC hold the predicates DisjointSchedules and
IdenticCycleLength;

X the streams return1, . . . , returnn contain at every time interval at most
one FlexRay frame;

X the predicate Cable holds for the corresponding streams;

X the streams of the sheaf nSend are disjoint;

X the predicate FlexRayController holds for the corresponding streams on
every node i of the n nodes;

lemma fr refinement msg nStore:
[[ DisjointSchedules n nC ; IdenticCycleLength n nC ;

inf disj n nSend ; i < n; 0 < n;
∀ i<n. msg (Suc 0 ) (nReturn i); Cable n nSend recv ;
∀ i<n. FlexRayController (nReturn i) recv (nC i) (nStore i) (nSend i) (nGet i)]]

=⇒ msg (Suc 0 ) (nStore i)

To prove this lemma we apply first of all the definitions of the predicates msg,
Cable, CorrectSheaf and Broadcast, instantiate the ∀ quantifier with t in the last
assumption, and apply the the definition of the if then else expression. As result
we get two cases:

X The case “kth stream of the sheaf nSend is nonempty at time interval t”.

To solve this goal we add first new assumption according the lemma
inf disj index (property of disjoint channels in a sheaf, see Section A.1),
use the Isabelle/HOL automatic proof strategy and apply the definition
of the predicate inf disj.

After that we instantiate the ∀ quantifiers with t, the index of the current
time interval, and k, the index of the stream which is currently nonempty,
and duplicate the assumption about FlexRay controllers (to argue later
about two nodes of the system, k and i ). Then we instantiate the ∀
quantifiers with k and i in the assumptions about FlexRay controller and
apply the definition of the corresponding predicate.
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As the next step we instantiate the ∀ quantifiers with k, and add new as-
sumption according the lemma fr refinement msg nSend (see above), which
says that the kthe stream of the sheaf nSend contains at most one message
in each time interval.

After applying the definitions of the predicates BusInterface and Receive, we
instantiate the ∀ quantifiers with t in the assumptions about the stream
activation, apply the the definition of the if then else expression of the
predicate msg.

X The case “All streams of the sheaf nSend are empty at time interval t”.

To solve this goal we apply the definitions of the predicates FlexRay-
Controller, BusInterface and Receive, as well as instantiation rules, the defi-
nition of the if then else expression and the Isabelle/HOL automatic proof
strategy.

The lemma fr refinement msg nSend says, that the stream sendi must contain
at every time interval at most one FlexRay frame, if

X the streams return1, . . . , returnn contain at every time interval at most
one FlexRay frame;

X for a sheaf of parameters nC hold the predicates DisjointSchedules and
IdenticCycleLength;

X the predicate BusInterface is true for the corresponding streams on the
node i.

lemma fr refinement msg nSend :
[[ msg (Suc 0 ) (nReturn i);

BusInterface activation (nReturn i) recv (nStore i) (nSend i) (nGet i)]]
=⇒ msg (Suc 0 ) (nSend i)

We prove this lemma using the definitions of the predicates msg, BusInterface
and Send, as well as instantiation rules, the definition of the if then else expres-
sion, and the Isabelle/HOL automatic proof strategy.

The whole proofs of the system properties are represented in the Appendix
B.4.

4.2.9. Results of the Case Study

In this case study we have shown how we can deal with sheaves of channels ans
parameters, as well as with specification replications.

The Focus specifications of all components of the FlexRay system were trans-
lated schematically to Isabelle/HOL and the refinement relation between the
requirement and the architecture specification of the system was proved.

The correctness of the input/output relations was also proved for all compo-
nents of the system.
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4.3. Automotive-Gateway

This section introduces the case study on telematics (electronic data transmis-
sion) gateway that was done for the Verisoft project (see [Ver] and [Autb]).
If the gateway receives (from a ECall application of a vehicle) a signal about
crash (more precise, the command to initiate the call to the Emergency Service
Center), and after the establishing the connection it receives the command to
send the crash data (these data were already received and stored in the inter-
nal buffer of the gateway), these data will be resent to the Emercency Service
Center and the voice communication will be established, assuming that there
is no connection fails.

The specification group Gateway consists of the following components com-
ponents:

X GatewaySystem (gateway system architecture),

X GatewaySystemReq (gateway system requirements),

X ServiceCenter (Emergency Service Center),

X Gateway (gateway architecture),

X GatewayReq (gateway requirements),

X Sample (the main subcomponent of the gateway, which describes its logic),

X Delay (the subcomponent of the Gateway to model the communication
delay), and

X Loss (the subcomponent of the Gateway to model the communication
loss).

We specify all these components as a joined Isabelle/HOL theory (see Section
3.4). We present the following Isabelle/HOL theories in this case study:

X Gateway types.thy – the datatype definitions,

X Gateway inout.thy – the specification of component interfaces and the cor-
responding correctness proofs,

X Gateway.thy – the Isabelle/HOL specifications of the system components,

X Gateway proof – the proofs of refinement relations between the require-
ments and the architecture specifications (for the components Gateway
and GatewaySystem), as well as the equality proof of the compressed and
simple translations of the tiTable (see Section 2.6).

Here we present first of all meaning of the non-standard datatypes used in
the specification group and the specification of the relations between sets of
channels of the components, as well as proofs of their correctness (see Section
Gateway inout.thy). Then we specify all the components from the specification
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group and auxiliary functions and predicates. After that we discuss transla-
tion of the Focus component specifications into Isabelle/HOL, as well as the
proof of refinement relations between the requirements specifications and the
architecture specifications.

The resulting Isabelle/HOL theories Gateway.thy and Gateway proof.thy are
presented in Appendix B.

4.3.1. Datatypes

The datatype ECall Info represents a tuple, consisting of the data that the
Emergency Service Center needs – here we specify these data to contain the
vehicle coordinates and the collision speed, they can also extend by some other
information. The datatype GatewayStatus represents the status (internal state)
of the gateway.

type Coordinates = N× N
type CollisionSpeed = N
type ECall Info = ecall(coord ∈ Coordinates, speed ∈ CollisionSpeed)

type GatewayStatus = { init state, call , connection ok ,

sending data, voice com }

The Isabelle/HOL specifications of these types are equal modulo syntax to the
corresponding types in the Focus specification (see Section 2.3).

To specify the automotive gateway we will use a number of datatypes con-
sisting of one or two elements: {init , send}, {stop vc}, {vc com} and {sc ack}.
We name these types reqType, stopType, vcType and aType correspondingly,
and represent them in Isabelle/HOL schematically (see Section 2.3). The Is-
abelle/HOL specification of these types as well as of the component and channel
identifiers is presented below by the theory Gateway types.thy.

theory Gateway types = Main + stream:

types
Coordinates = nat × nat

types
CollisionSpeed = nat

record ECall Info =
coord :: Coordinates
speed :: CollisionSpeed

datatype GatewayStatus =
init state

| call
| connection ok
| sending data
| voice com
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datatype reqType = init | send

datatype stopType = stop vc

datatype vcType = vc com

datatype aType = sc ack

datatype chanID =
ch req

| ch dt
| ch ack
| ch stop
| ch lose
| ch i
| ch a
| ch vc
| ch a1
| ch a2
| ch i1
| ch i2

datatype specID =
sGatewaySystem

| sGatewaySystemReq
| sServiceCenter
| sGatewayReq
| sGateway
| sLoss
| sDelay
| sSample

end

4.3.2. Input/Output Relations between Channels

The Isabelle/HOL theory Gateway inout.thy is based only on the Isabelle/HOL
theory inout.thy (see Section 2.11.4), which is in the case of the specification
group Gateway based on the theory Gateway types.thy. First of all we specify in
this theory the subcomponents relations for all components of the system by
the function subcomponents. Then we specify the sets of input, output and local
channels for all components by the functions ins, out and loc respectively. After
that we prove that the predicates correctInOutLoc and correctComposition hold
for all components, and also that the predicates correctCompositionIn, correct-
CompositionOut and correctCompositionLoc holds for composite components.
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theory Gateway inout = Main + inout :

primrec
subcomponents sGatewaySystem =

{sGateway , sServiceCenter}
subcomponents sGatewaySystemReq = {}
subcomponents sServiceCenter = {}
subcomponents sGatewayReq = {}
subcomponents sGateway = {sSample, sDelay , sLoss}
subcomponents sLoss = {}
subcomponents sDelay = {}
subcomponents sSample = {}

primrec
ins sGatewaySystem =

{ch req , ch dt , ch stop, ch lose}
ins sGatewaySystemReq =

{ch req , ch dt , ch stop, ch lose}
ins sServiceCenter = {ch i}
ins sGatewayReq =

{ch req , ch dt , ch stop, ch lose, ch a}
ins sGateway =

{ch req , ch dt , ch stop, ch lose, ch a}
ins sLoss = {ch a, ch i2 , ch lose}
ins sDelay = {ch a2 , ch i1}
ins sSample =

{ch req , ch dt , ch stop, ch lose, ch a1}

primrec
loc sGatewaySystem =

{ch i , ch a}
loc sGatewaySystemReq = {}
loc sServiceCenter = {}
loc sGatewayReq = {}
loc sGateway = {ch a1 , ch a2 , ch i1 , ch i2}
loc sLoss = {}
loc sDelay = {}
loc sSample = {}

primrec
out sGatewaySystem =

{ch ack , ch vc}
out sGatewaySystemReq = {ch ack , ch vc}
out sServiceCenter = {ch a}
out sGatewayReq = {ch ack , ch vc, ch i}
out sGateway = {ch ack , ch vc, ch i}
out sLoss = {ch i , ch a2}
out sDelay = {ch a1 , ch i2}
out sSample = {ch ack , ch vc, ch i1}
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Proofs for components

GatewaySystem:

lemma spec GatewaySystem1 :
correctInOutLoc sGatewaySystem
by (simp add : correctInOutLoc def )

lemma spec GatewaySystem2 :
correctComposition sGatewaySystem
by (simp add : correctComposition def )

lemma spec GatewaySystem3 :
correctCompositionIn sGatewaySystem
by (simp add : correctCompositionIn def , auto)

lemma spec GatewaySystem4 :
correctCompositionOut sGatewaySystem
by (simp add : correctCompositionOut def , auto)

lemma spec GatewaySystem5 :
correctCompositionLoc sGatewaySystem
by (simp add : correctCompositionLoc def , auto)

GatewaySystemReq:

lemma spec GatewaySystemReq1 :
correctInOutLoc sGatewaySystemReq
by (simp add : correctInOutLoc def )

lemma spec GatewaySystemReq2 :
correctComposition sGatewaySystemReq
by (simp add : correctComposition def )

ServiceCenter:

lemma spec ServiceCenter1 :
correctInOutLoc sServiceCenter
by (simp add : correctInOutLoc def )

lemma spec ServiceCenter2 :
correctComposition sServiceCenter
by (simp add : correctComposition def )

GatewayReq:

lemma spec GatewayReq1 :
correctInOutLoc sGatewayReq
by (simp add : correctInOutLoc def disjoint def )

lemma spec GatewayReq2 :
correctComposition sGatewayReq
by (simp add : correctComposition def )
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Gateway:

lemma spec Gateway1 :
correctInOutLoc sGateway
by (simp add : correctInOutLoc def disjoint def )

lemma spec Gateway2 :
correctComposition sGateway
by (simp add : correctComposition def )

lemma spec Gateway3 :
correctCompositionIn sGateway
by (simp add : correctCompositionIn def disjoint def , auto)

lemma spec Gateway4 :
correctCompositionOut sGateway
by (simp add : correctCompositionOut def disjoint def , auto)

lemma spec Gateway5 :
correctCompositionLoc sGateway
by (simp add : correctCompositionLoc def , auto)

Loss:

lemma spec Loss1 :
correctInOutLoc sLoss
by (simp add : correctInOutLoc def disjoint def )

lemma spec Loss2 :
correctComposition sLoss
by (simp add : correctComposition def )

Delay:

lemma spec Delay1 :
correctInOutLoc sDelay
by (simp add : correctInOutLoc def disjoint def )

lemma spec Delay2 :
correctComposition sDelay
by (simp add : correctComposition def )

Sample:

lemma spec Sample1 :
correctInOutLoc sSample
by (simp add : correctInOutLoc def disjoint def )

lemma spec Sample2 :
correctComposition sSample
by (simp add : correctComposition def )

end
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4.3.3. Gateway System: Architecture and Requirements

The Focus specification of the gateway system is presented below:

GatewaySystem(const d ∈ N) glass-box

Gateway(d)

ServiceCenter

req: {init, send}

ack: GatewayStatus 

i : ECall_Info

a: {sc_ack}

vc: {vc_com}

dt : ECall_Info

stop: {stop_vc}

lose: Bool

The stream loss is a time-synchronous one. It represents the connection status:
the message true at the time interval t corresponds to the connection failure at
this time interval, the message false at the time interval t means that at this
time interval no data loss on the gateway connection.

The Focus representation of the specification GatewaySystem as plain text
(constraint style):

GatewaySystem(const d ∈ N) timed

in
req : {init , send}; dt : ECall Info;
stop : stop vc; lose : Bool

out ack : GatewayStatus; vc : {vc com}
loc a : {sc ack}; i : ECall Info

(ack , i , vc) := Gateway(d)(req , dt , a, stop, lose)
(a) := ServiceCenter(i)

We convert the Focus specification GatewaySystem into Isabelle/HOL predi-
cate GatewaySystem schematically:

constdefs
GatewaySystem ::
reqType istream ⇒ ECall Info istream ⇒
stopType istream ⇒ bool istream ⇒ nat ⇒
GatewayStatus istream ⇒ vcType istream ⇒ bool

GatewaySystem req dt stop lose d ack vc
≡
∃ a i . (Gateway req dt a stop lose d ack i vc) ∧ (ServiceCenter i a)

The specification GatewaySystemReq specifies the requirements for the compo-
nent GatewaySystem:

Assuming that the input streams req and stop can contain at every time
interval at most one message, and assuming that the stream lose contains at
every time interval exactly one message. If
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X at any time interval t the gateway system is in the initial state, ti(ack , t) =
〈init state〉, and

X at time interval t +1 the signal about crash comes at first time (more pre-
cise, the command to initiate the call to the Emergency Service Center),
ti(req , t + 1) = 〈init〉 ∧ (∀ t1 ∈ N : t1 ≤ t → ti(req , t1) = 〈〉), and

X after 3 + m time intervals the command to send the crash data comes at
first time
(∀m ∈ N : m ≤ k + 3 → ti(req , t + m) 6= 〈send〉) ∧ ti(req , t + 3 + k) =
〈send〉, and

X the gateway system has received until the time interval t + 2 the crash
data, lastti(dt , t + 2) 6= 〈〉

X there is no connection fails from the time interval t until the time interval
t + 4 + k + 2d ,
∀ j ∈ N : j ≤ (4 + k + d + d) → ti(lose, t + j ) = 〈false〉

then at time interval t + 4 + k + 2d the voice communication is established,
ti(vc, t + 4 + k + d + d) = 〈vc com〉.

GatewaySystemReq(const d ∈ N) timed

in
req : {init , send}; dt : ECall Info;
stop : stop vc; lose : Bool

out ack : GatewayStatus; vc : {vc com}

asm msg1(req) ∧ msg1(stop) ∧ ts(lose)

gar
∀ t , k ∈ N :

ti(ack , t) = 〈init state〉 ∧ ti(req , t + 1) = 〈init〉
∧ ti(req , t + 2) = 〈〉
∧ (∀ t1 ∈ N : t1 ≤ t → ti(req , t1) = 〈〉)
∧ (∀m ∈ N : m ≤ k + 3 → ti(req , t + m) 6= 〈send〉)
∧ ti(req , t + 3 + k) = 〈send〉 ∧ lastti(dt , t + 2) 6= 〈〉
∧ (∀ j ∈ N : j ≤ (4 + k + d + d) → ti(lose, t + j ) = 〈false〉)
→
ti(vc, t + 4 + k + d + d) = 〈vc com〉

We convert the Focus specification GatewaySystemReq into Isabelle/HOL pred-
icate GatewaySystemReq schematically:
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constdefs
GatewaySystemReq ::
reqType istream ⇒ ECall Info istream ⇒
stopType istream ⇒ bool istream ⇒ nat ⇒
GatewayStatus istream ⇒ vcType istream ⇒ bool

GatewaySystemReq req dt stop lose d ack vc
≡

((msg (1 ::nat) req) ∧ (msg (1 ::nat) stop) ∧ (ts lose))
−→

(∀ (t ::nat) (k ::nat).
( ack t = [init state] ∧ req (Suc t) = [init ]
∧ (∀ t1 . t1 ≤ t −→ req t1 = [])
∧ req (t+2 ) = []
∧ (∀ m. m < k + 3 −→ req (t + m) 6= [send ])
∧ req (t+3+k) = [send ] ∧ inf last ti dt (t+2 ) 6= []
∧ (∀ (j ::nat).

j ≤ (4 + k + d + d) −→ lose (t+j ) = [False])
−→ vc (t + 4 + k + d + d) = [vc com]) )

4.3.4. ECall Service Center

The component ServiceCenter represents the behavior of the Emergency (ECall)
Service Center from the gateway point of view: if at time t a message about
a vehicle crash comes, it acknowledges this event by sending the at time t + 1
message sc ack that represents the attempt to establish the voice communica-
tion with the driver or a passenger of the vehicle (voice communication output
message of the Gateway component) – if there is no connection failure, after d
time intervals the voice communication will be started.

ServiceCenter timed

in i : ECall Info

out a : {sc ack}

∀ t ∈ N :
ti(a, 0) = 〈〉
ti(a, t + 1) = if ti(i , t) = 〈〉 then 〈〉 else 〈sc ack〉 fi

The translation of this Focus specification into Isabelle/HOL predicate Ser-
viceCenter is straightforward:

constdefs
ServiceCenter ::

ECall Info istream ⇒ aType istream ⇒ bool
ServiceCenter i a
≡
∀ (t ::nat).
a 0 = [] ∧ a (Suc t) = (if (i t) = [] then [] else [sc ack ])
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4.3.5. Gateway: Requirements Specification

We define the formal specification of the gateway requirement, presented in the
previous section, as Focus specification GatewayReq :

1. If at time t the gateway is in the initial state init state, and it gets
the command to establish the connection with the central station, and
also there is no environment connection problems during the next 2 time
intervals, it establishes the connection at the time interval t + 2,
ti(ack , t + 2) = 〈connection ok〉.

2. If at time t the gateway has establish the connection,
ti(ack , t) = 〈connection ok〉, and it gets the command to send the E-Call
data to the central station (ti(req , t + 1) = 〈send〉), and also there is no
environment connection problems during the next d + 1 time intervals,
∀ k ∈ N : k ≤ d + 1 → ti(lose, t + k) = 〈false〉, then it sends the last
corresponding data.6 The central station becomes these date at the time
t + d .

3. If the gateway becomes the acknowledgment from the central station that
it has receives the sent E-Call data, and also there is no environment
connection problems, then the voice communication is started.

The translation of this Focus specification into Isabelle/HOL predicate Gate-
wayReq is straightforward.

GatewayReq(constd ∈ N) timed

in
req : {init connect}; dt : ECall Info; a : {sc ack};
stop : stop vc; lose : Bool

out ack : GatewayStatus; i : ECall Info; vc : {voice com}

asm msg1(req) ∧ msg1(a) ∧ msg1(stop) ∧ ts(lose)

gar
∀ t ∈ N :

ti(ack , t) = 〈init state〉 ∧ ti(req , t + 1) = 〈init〉
∧ti(lose, t + 1) = 〈false〉 ∧ ti(lose, t + 2) = 〈false〉

→ ti(ack , t + 2) = 〈connection ok〉

ti(ack , t) = 〈connection ok〉 ∧ ti(req , t + 1) = 〈send〉
∧(∀ k ∈ N : k ≤ d + 1 → ti(lose, t + k) = 〈false〉)

→ ti(i , t + d + 1) = lastti(dt , t) ∧ ti(ack , t + 1) = 〈sending data〉

ti(ack , t + d) = 〈sending data〉 ∧ ti(a, t + 1) = 〈sc ack〉
∧ (∀ k ∈ N : k ≤ d + 1 → ti(lose, t + k) = 〈false〉)

→ ti(vc, t + d + 1) = 〈vc com〉

6The Focus operator lastti(s,t) returns the last nonempty time interval of the stream s until
the tth time interval (see Section 2.5.13). If until the time t all intervals were empty, the
empty message list is returned.
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constdefs
GatewayReq ::

reqType istream ⇒ ECall Info istream ⇒ aType istream ⇒
stopType istream ⇒ bool istream ⇒ nat ⇒
GatewayStatus istream ⇒ ECall Info istream ⇒ vcType istream
⇒ bool

GatewayReq req dt a stop lose d ack i vc
≡

((msg (1 ::nat) req) ∧ (msg (1 ::nat) a) ∧
(msg (1 ::nat) stop) ∧ (ts lose))
−→

(∀ (t ::nat).
( ack t = [init state] ∧ req (Suc t) = [init ] ∧

lose (t+1 ) = [False] ∧ lose (t+2 ) = [False]
−→ ack (t+2 ) = [connection ok ])

∧
( ack t = [connection ok ] ∧ req (Suc t) = [send ] ∧

(∀ (k ::nat). k ≤ (d+1 ) −→ lose (t+k) = [False])
−→ i ((Suc t) + d) = inf last ti dt t

∧ ack (Suc t) = [sending data])
∧
( ack (t+d) = [sending data] ∧ a (Suc t) = [sc ack ] ∧

(∀ (k ::nat). k ≤ (d+1 ) −→ lose (t+k) = [False])
−→ vc ((Suc t) + d) = [vc com]) )

4.3.6. Gateway: Architecture Specification

The specification of the gateway architecture, Gateway, is parameterized one:
the paramether d ∈ N denotes the communication delay (between the cen-
tral station and a vehicle). This component consists of three subcomponents:
Sample, Delay, and Loss.

Gateway(const d ∈ N) timed

Delay(d)i1 : ECall_Info

vc: {vc_com}

Sample

ack: 
GatewayStatus 

a1: {sc_ack}req: {init, send}

dt : ECall_Info

stop: {stop_vc}

Loss

i2 : ECall_Info i : ECall_Info

lose: Bool

a: {sc_ack}a2: {sc_ack}

The Focus representation of the specification Gateway as plain text (constraint
style):
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Gateway(const d ∈ N) timed

in
req : {init , send}; dt : ECall Info; a : {sc ack};
stop : stop vc; lose : Bool

out ack : GatewayStatus; i : ECall Info; vc : {vc com}
loc i1, i2 : ECall Info; a1, a2 : {sc ack}

(ack , i1, vc) := Sample(req , dt , a1, stop, lose)
(a1, i2) := Delay(d)(a2, i1)
(a2, i) := Loss(lose, a, i2)

We convert the Focus specification Gateway into Isabelle/HOL predicate Gate-
way schematically:

constdefs
Gateway ::

reqType istream ⇒ ECall Info istream ⇒ aType istream ⇒
stopType istream ⇒ bool istream ⇒ nat ⇒
GatewayStatus istream ⇒ ECall Info istream ⇒ vcType istream ⇒ bool

Gateway req dt a stop lose d ack i vc
≡ ∃ i1 i2 a1 a2 .

(Sample req dt a1 stop lose ack i1 vc) ∧
(Delay a2 i1 d a1 i2 ) ∧
(Loss lose a i2 a2 i)

4.3.7. Sample Component

The component Sample represents the logic of the gateway component. If it
receives from a ECall application of a vehicle the command to initiate the
call to the Emergency Service Center it tries to establish the connection. If
the connection is established, and the component Sample receives from a ECall
application of a vehicle the command to send the crash data, which were already
received and stored in the internal buffer of the gateway, these data will be
resent to the Emergency Service Center. After that this component waits to the
acknowledgment from the Emergency Service Center. If the acknowledgment
is received, the voice communication will be established, assuming that there is
no connection fails.

We present here two variants of the Focus specification of the component
Sample: using a new variant of the Focus tables, tiTable, and using the plain
text Focus notation. These two specification kinds are semantically equivalent
according the definition of the tiTable.

For the component Sample we have the assumption, that the streams req , a1,
and stop can contain at every time interval at most one message, and also that
the stream loss must contain at every time interval exactly one message. This
component uses local variables st and buffer (more precisely, a local variable
buffer and a state variable st). The guarantee part of the component Sample
consists of an externally defined tiTable SampleT (see below) and an expression
which says how the local variable buffer is computed.
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Sample timed

in
req : {init , send}; dt : ECall Info; a1 : {sc ack};
stop : {stop vc}; lose : Bool

out ack : GatewayStatus; i1 : ECall Info; vc : {voice com}

local st : GatewayStatus; buffer : ECall Info ∗

init st = init state; buffer = 〈〉;

asm msg1(req) ∧ msg1(a1) ∧ msg1(stop) ∧ ts(lose)

gar
∀ t ∈ N :

buffer ′ = if ti(dt , t) = 〈〉 then buffer else ti(dt , t) fi

tiTable SampleT

Towards Section 2.7, the representation of the component Sample in Isabelle/HOL
must consist of three predicates: tiTable SampleT (Isabelle/HOL representation
of the corresponding tiTable), Sample L (an auxiliary predicate to represent the
local and the state variables in Isabelle/HOL), and the “main” predicate Sample.
The definition of the predicates Sample and Sample L can be done straightfor-
ward according to the translation schema (see Sections 2.14 and 2.7).

constdefs
Sample ::
reqType istream ⇒ ECall Info istream ⇒ aType istream ⇒
stopType istream ⇒ bool istream ⇒
GatewayStatus istream ⇒ ECall Info istream ⇒ vcType istream
⇒ bool

Sample req dt a1 stop lose ack i1 vc
≡
((msg (1 ::nat) req) ∧
(msg (1 ::nat) a1 ) ∧
(msg (1 ::nat) stop))
−→
(∃ st buffer .
(Sample L req dt a1 stop lose

(fin inf append [init state] st)
(fin inf append [[]] buffer)
ack i1 vc st buffer) )
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constdefs
Sample L ::
reqType istream ⇒ ECall Info istream ⇒ aType istream ⇒
stopType istream ⇒ bool istream ⇒
(nat ⇒ GatewayStatus) ⇒ (nat ⇒ ECall Info list) ⇒
GatewayStatus istream ⇒ ECall Info istream ⇒ vcType istream
⇒ (nat ⇒ GatewayStatus) ⇒ (nat ⇒ ECall Info list) ⇒ bool

Sample L req dt a1 stop lose st in buffer in
ack i1 vc st out buffer out

≡
(∀ (t ::nat).
buffer out t = (if dt t = [] then buffer in t else dt t) )
∧
(tiTable SampleT req a1 stop lose st in buffer in ack i1 vc st out)

The Focus predicate tiTable SampleT is the plain text of the tiTable SampleT.
The schematic translation of its Focus specification into Isabelle/HOL predi-
cate tiTable SampleT is trivial (see Section B.5).

Remark: In this tiTable we have used universally quantified variables,
r , x , y , and z . We can omit the input stream cells with such an variable, if
this variable does not to be used in this line neither in the assumption nor
to define the output (stream) cells. As shown in the predicate specification
tiTable SampleT, we can also replace a variable by the corresponding expres-
sion with the time interval operator, for example, the variable r in the cells
of the stream req corresponds to the expression ti(req , t). But we also can use
more direct, non-simplified, representation, as shown in the predicate specifica-
tion tiTable SampleT ext (see below). The schematic translation of its Focus
specification into Isabelle/HOL predicate tiTable SampleT ext is also trivial (see
Section B.5). The equivalence of these representation is proved by a lemma
univ tiTable Sample (see Section B.7).

We can also represent the logic of this component as a timed state transition
diagram (TSTD, see Section 2.8). The TSTD from Fig.4.1 is semantically
equivalent to the following tiTable SampleT ext, which is an “extraction” of the
tiTable SampleT : lines of the tiTable SampleT, which assumption cells contain
disjunctions, are “split” into x lines in the “extracted” tiTable, where x is the
number of elements in the disjunction. Thus, if we compare the tables SampleT
and SampleT ext, we can easily see, the following relation between their lines:

SampleT 1 2 3 4 5 6 7 8 9 10

SampleT ext 1 2 3, 4 5, 6, 7 8 9 10 11 12 13
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tiTable SampleT

req ∈ {init , send}∞; dt ∈ ECall Info ∞; a1 ∈ {sc ack}∞;
stop ∈ {stop vc}∞; lose ∈ Bool∞;
st ∈ GatewayStatus; buffer ∈ ECall Info ∗;
ack ∈ GatewayStatus ∞; i1 ∈ ECall Info ∞; vc ∈ {vc com}∞;

∀ t ∈ N :
st = init state ∧ ti(req , t) = 〈init〉

⇒ ti(ack , t) = 〈call〉 ∧ ti(i1, t) = 〈〉 ∧ ti(vc, t) = 〈〉 ∧ st ′ = call

st = init state ∧ ti(req , t) 6= 〈init〉
⇒ ti(ack , t) = 〈init state〉 ∧ ti(i1, t) = 〈〉 ∧ ti(vc, t) = 〈〉 ∧ st ′ = init state

(st = call ∨ (st = connection ok ∧ ti(req , t) 6= 〈send〉)) ∧ ti(lose, t) = 〈false〉
⇒ ti(ack , t) = 〈connection ok〉 ∧ ti(i1, t) = 〈〉 ∧

ti(vc, t) = 〈〉 ∧ st ′ = connection ok

(st = call ∨ st = connection ok ∨ st = sending data) ∧ ti(lose, t) = 〈true〉
⇒ ti(ack , t) = 〈init state〉 ∧ ti(i1, t) = 〈〉 ∧

ti(vc, t) = 〈〉 ∧ st ′ = init state

st = connection ok ∧ ti(lose, t) = 〈false〉 ∧ ti(req , t) = 〈send〉
⇒ ti(ack , t) = 〈sending data〉 ∧ ti(i1, t) = buffer ∧

ti(vc, t) = 〈〉 ∧ st ′ = sending data

st = sending data ∧ ti(lose, t) = 〈false〉 ∧ ti(a1, t) = 〈〉
⇒ ti(ack , t) = 〈sending data〉 ∧ ti(i1, t) = 〈〉 ∧

ti(vc, t) = 〈〉 ∧ st ′ = sending data

st = sending data ∧ ti(lose, t) = 〈false〉 ∧ ti(a1, t) = 〈sc ack〉
⇒ ti(ack , t) = 〈voice com〉 ∧ ti(i1, t) = 〈〉 ∧

ti(vc, t) = 〈vc com〉 ∧ st ′ = voice com

st = voice com ∧ ti(lose, t) = 〈false〉 ∧ ti(stop, t) = 〈〉
⇒ ti(ack , t) = 〈voice com〉 ∧ ti(i1, t) = 〈〉 ∧

ti(vc, t) = 〈vc com〉 ∧ st ′ = 〈voice com〉

st = voice com ∧ ti(lose, t) = 〈true〉 ∧ ti(stop, t) = 〈〉
⇒ ti(ack , t) = 〈voice com〉 ∧ ti(i1, t) = 〈〉 ∧

ti(vc, t) = 〈〉 ∧ st ′ = 〈voice com〉

st = voice com ∧ ti(stop, t) = 〈stop vc〉
⇒ ti(ack , t) = 〈init state〉 ∧ ti(i1, t) = 〈〉 ∧

ti(vc, t) = 〈〉 ∧ st ′ = 〈init state〉
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tiTable SampleT ext

req ∈ {init , send}∞; dt ∈ ECall Info ∞; a1 ∈ {sc ack}∞;
stop ∈ {stop vc}∞; lose ∈ Bool∞;
st ∈ GatewayStatus; buffer ∈ ECall Info ∗;
ack ∈ GatewayStatus ∞; i1 ∈ ECall Info ∞; vc ∈ {vc com}∞;

∀ t ∈ N, r ∈ {init , send} ∗, x ∈ {sc ack} ∗, y ∈ {stop vc} ∗, z ∈ Bool ∗ :

st = init state ∧ ti(req , t) = 〈init〉 ∧
ti(a1, t) = x ∧ ti(stop, t) = y ∧ ti(lose, t) = z ∧

⇒ ti(ack , t) = 〈call〉 ∧ ti(i1, t) = 〈〉 ∧ ti(vc, t) = 〈〉 ∧ st ′ = call

st = init state ∧ r 6= 〈init〉 ∧
ti(req , t) = r ∧ ti(a1, t) = x ∧ ti(stop, t) = y ∧ ti(lose, t) = z

⇒ ti(ack , t) = 〈init state〉 ∧ ti(i1, t) = 〈〉 ∧
ti(vc, t) = 〈〉 ∧ st ′ = init state

(st = call ∨ (st = connection ok ∧ r 6= 〈send〉))∧
ti(req , t) = r ∧ ti(a1, t) = x ∧ ti(stop, t) = y ∧ ti(lose, t) = 〈false〉

⇒ ti(ack , t) = 〈connection ok〉 ∧
ti(i1, t) = 〈〉 ∧ ti(vc, t) = 〈〉 ∧ st ′ = connection ok

(st = call ∨ st = connection ok ∨ st = sending data) ∧ ti(req , t) = r ∧
ti(a1, t) = x ∧ ti(stop, t) = y ∧ ti(lose, t) = 〈true〉

⇒ ti(ack , t) = 〈init state〉 ∧ ti(i1, t) = 〈〉 ∧
ti(vc, t) = 〈〉 ∧ st ′ = init state

st = connection ok ∧ ti(req , t) = 〈send〉 ∧
ti(a1, t) = x ∧ ti(stop, t) = y ∧ ti(lose, t) = 〈false〉

⇒ ti(ack , t) = 〈sending data〉
∧ti(i1, t) = buffer ∧ ti(vc, t) = 〈〉 ∧ st ′ = sending data

st = sending data ∧ ti(req , t) = r ∧
ti(a1, t) = 〈〉 ∧ ti(stop, t) = y ∧ ti(lose, t) = 〈false〉

⇒ ti(ack , t) = 〈sending data〉 ∧ ti(i1, t) = 〈〉 ∧
ti(vc, t) = 〈〉 ∧ st ′ = sending data

st = sending data ∧ ti(req , t) = r ∧
ti(a1, t) = 〈sc ack〉 ∧ ti(stop, t) = y ∧ ti(lose, t) = 〈false〉

⇒ ti(ack , t) = 〈voice com〉 ∧ ti(i1, t) = 〈〉 ∧
ti(vc, t) = 〈vc com〉 ∧ st ′ = voice com

st = voice com ∧ ti(req , t) = r ∧
ti(a1, t) = x ∧ ti(stop, t) = 〈〉 ∧ ti(lose, t) = 〈false〉

⇒ ti(ack , t) = 〈voice com〉 ∧ ti(i1, t) = 〈〉 ∧
ti(vc, t) = 〈vc com〉 ∧ st ′ = 〈voice com〉

st = voice com ∧ ti(req , t) = r ∧
ti(a1, t) = x ∧ ti(stop, t) = 〈〉 ∧ ti(lose, t) = 〈true〉

⇒ ti(ack , t) = 〈voice com〉 ∧ ti(i1, t) = 〈〉 ∧
ti(vc, t) = 〈〉 ∧ st ′ = 〈voice com〉

st = voice com ∧ ti(req , t) = r ∧
ti(a1, t) = x ∧ ti(stop, t) = 〈stop vc〉 ∧ ti(lose, t) = z

⇒ ti(ack , t) = 〈init state〉 ∧ ti(i1, t) = 〈〉 ∧
ti(vc, t) = 〈〉 ∧ st ′ = 〈init state〉
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init_state

call

connection_ok

sending_data

voice_com

ti(req,t) = ‹init› / ti(ack,t) = ‹call›

ti(req,t) ≠ ‹init› / 
ti(ack,t) = ‹call›

ti(lose,t) = ‹false› / 
ti(ack,t) = ‹connection_ok›

ti(lose,t) = ‹false›, 
ti(req,t) ≠ ‹send› / 
ti(ack,t) = ‹connection_ok›

ti(lose,t) = ‹true› / 
ti(ack,t) = ‹init_state›

ti(lose,t) = ‹true› /  ti(ack,t) = ‹init_state›

ti(lose,t) = ‹true› / 
ti(ack,t) = ‹init_state›

ti(lose,t) = ‹false›, 
ti(req,t) = ‹send› / 
ti(ack,t) = ‹sending_data›,
ti(i1,t) = buffer

ti(lose,t) = ‹false›, 
ti(a1,t) = ‹› / 
ti(ack,t) = ‹connection_ok›ti(lose,t) = ‹false›, 

ti(a1,t) = ‹sc_ack›  / 
ti(ack,t) = ‹voice_com›, 
ti(vc,t) = ‹vc_com›

ti(lose,t) = ‹false›, 
ti(stop,t) = ‹›  / 
ti(ack,t) = ‹voice_com›, 
ti(vc,t) = ‹vc_com›

ti(lose,t) = ‹true›, 
ti(stop,t) = ‹›  / 
ti(ack,t) = ‹voice_com›

ti(stop,t) = ‹stop_vc›  / 
ti(ack,t) = ‹init_state›

Figure 4.1.: Timed state transition diagram for the component Sample
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4.3.8. Delay Component

The component Delay models the communication delay. Its specification is
parameterized one: it inherits the parameter of the component Gateway. This
component simply delays all input messages on d time intervals. During the
first d time intervals no output message will be produced. We convert this
Focus specification into Isabelle/HOL predicate Delay schematically.

Delay(const d ∈ N) timed

in a2 : {sc ack}; i1 : ECall Info

out a1 : {sc ack}; i2 : ECall Info

∀ t ∈ N :
t < d → ti(a1, t) = 〈〉 ∧ ti(i2, t) = 〈〉
ti(a1, t + d) = ti(a2, t)
ti(i2, t + d) = ti(i1, t)

constdefs
Delay ::
aType istream ⇒ ECall Info istream ⇒ nat ⇒
aType istream ⇒ ECall Info istream ⇒ bool

Delay a2 i1 d a1 i2
≡
∀ (t ::nat).
(t < d −→ a1 t = [] ∧ i2 t = []) ∧
(a1 (t+d) = a2 t) ∧ (i2 (t+d) = i1 t)

4.3.9. Loss Component

The component Loss models the communication loss between the central sta-
tion and the vehicle gateway: if during time interval t from the component
Loss Oracle no message about a lost connection comes, ti(lose,t) = 〈false〉, the
messages come during time interval t via the input channels a and i2 will be
forwarded without any delay via channels a2 and i respectivelly. Otherwiese
all messages come during time interval t will be lost.

Loss timed

in lose : Bool ; a : {sc ack}; i2 : ECall Info

out a2 : {sc ack}; i : ECall Info

∀ t ∈ N :
if ti(lose, t) = 〈false〉
then ti(a2, t) = ti(a, t) ∧ ti(i , t) = ti(i2, t)
else ti(a2, t) = 〈〉 ∧ ti(i , t) = 〈〉
fi

We convert the Focus specification Loss into Isabelle/HOL predicate Loss
schematically:
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constdefs
Loss ::
bool istream ⇒ aType istream ⇒ ECall Info istream ⇒
aType istream ⇒ ECall Info istream ⇒ bool

Loss lose a i2 a2 i
≡
∀ (t ::nat).
( if lose t = [False]

then a2 t = a t ∧ i t = i2 t
else a2 t = [] ∧ i t = [] )

4.3.10. Verification of the Gateway

To show that the specified gateway architecture fulfills the requirements we
need to show that the specification Gateway is a refinement of the specification
GatewayReq. Therefore, we need to define and to prove the following lemma:

lemma Gateway L0 :
Gateway req dt a stop lose d ack i vc
=⇒
GatewayReq req dt a stop lose d ack i vc

To prove this lemma we used first of all the definition of the predicate Gate-
wayReq, use the Isabelle/HOL automatic proof strategies, and apply the follow-
ing lemmas: lemma Gateway L1 represents the first requirement from the spec-
ification GatewayReq (see Section 4.3.5), lemmas Gateway L2 and Gateway L3
represent two conjuncts of the second requirement from the specification Gate-
wayReq, and lemma Gateway L4 corresponds to the third requirement from the
specification GatewayReq. The Isabelle/HOL proofs of all these lemmas are
given in Appendix Section B.7.

X
lemma Gateway L1 :
[[ Gateway req dt a stop lose d ack i vc;

msg (Suc 0 ) req ; msg (Suc 0 ) a; msg (Suc 0 ) stop;
ack t = [init state]; req (Suc t) = [init ]; ts lose;
lose (Suc t) = [False]; lose (Suc (Suc t)) = [False]]]

=⇒ ack (Suc (Suc t)) = [connection ok ]

Assuming that for the stream lose the predicate ts holds, and assuming
also that the streams req, a, stop have at every time interval at most one
message (msg (Suc 0) req, msg (Suc 0) a, msg (Suc 0) stop). If at time t
the gateway is in the initial state, ack t = [init state], it gets the command
to establish the connection with the central station, req (Suc t) = [init],
and also there is no environment connection problems during the next 2
time intervals, (lose (Suc t) = [False] and lose (Suc (Suc t)) = [False], thet it
establishes the connection at the time interval t + 2: ack (Suc (Suc t)) =
[connection ok].
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X
lemma Gateway L2 :
[[ Gateway req dt a stop lose d ack i vc;

msg (Suc 0 ) req ; msg (Suc 0 ) a; msg (Suc 0 ) stop;
ack t = [connection ok ]; req (Suc t) = [send ];
∀ k≤Suc d . lose (t + k) = [False]; ts lose ]]

=⇒ i (Suc (t + d)) = inf last ti dt t

Assuming that for the stream lose the predicate ts holds, and assuming
also that the streams req, a, stop have at every time interval at most one
message (msg (Suc 0) req, msg (Suc 0) a, msg (Suc 0) stop). If at time t
the gateway is in the state where the connection is established, ack t =
[connection ok], and it gets the command to send the crash data to the
central station, req (Suc t) = [send], and also there is no environment con-
nection problems during the next d + 1 time intervals7, ∀k ≤ Suc d. lose (t
+ k) = [False], then it sends the last crash data, which it has received via
the channel dt before the time t , at the time interval t + d + 1:
i (Suc (t + d)) = inf last ti dt t.

X
lemma Gateway L3 :
[[ Gateway req dt a stop lose d ack i vc;

msg (Suc 0 ) req ; msg (Suc 0 ) a; msg (Suc 0 ) stop;
ts lose; ack t = [connection ok ];
req (Suc t) = [send ]; ∀ k≤Suc d . lose (t + k) = [False]]]

=⇒ ack (Suc t) = [sending data]

Assuming that for the stream lose the predicate ts holds, and assuming
also that the streams req, a, stop have at every time interval at most one
message (msg (Suc 0) req, msg (Suc 0) a, msg (Suc 0) stop). If at time
t the gateway is in the state where the connection is established, ack
t = [connection ok], and it gets the command to send the crash data to
the central station, req (Suc t) = [send], and also there is no environment
connection problems during the next d+1 time intervals (∀k ≤ Suc d. lose (t
+ k) = [False]), then it sends the crash data and goes in the corresponding
control state: ack (Suc t) = [sending data].

X
lemma Gateway L4 :

[[ Gateway req dt a stop lose d ack i vc;
msg (Suc 0 ) req ; msg (Suc 0 ) a; msg (Suc 0 ) stop;
ts lose; ack (t + d) = [sending data]; a (Suc t) = [sc ack ];
∀ k≤Suc d . lose (t + k) = [False]]]

=⇒ vc (Suc (t + d)) = [vc com]

Assuming that for the stream lose the predicate ts holds, and assuming
also that the streams req, a, stop have at every time interval at most one
message (msg (Suc 0) req, msg (Suc 0) a, msg (Suc 0) stop).

7d is the delay of trasnsmission between the gateway and the central station.

183



4. Case Studies

If at time t + d the gateway is in the state where the crash data were
sent, ack (t+d) = [sending data], and the central station sends at time t +1
the acknowledgment that this data were received, a (Suc t) = [sc ack], and
also there is no environment connection problems during the d + 1 time
intervals from the time t , ∀k ≤ Suc d. lose (t + k) = [False], then the voice
connection is established at time interval t + d + 1:
vc (Suc (t+d)) = [vc com].

4.3.11. Verification of the Gateway System

To show that the specified gateway architecture fulfills the requirements we need
to show that the specification GatewaySystem is a refinement of the specification
GatewaySystemReq. Therefore, we need to define and to prove the following
lemma:

lemma GatewaySystem L0 :
GatewaySystem req dt stop lose d ack vc
=⇒
GatewaySystemReq req dt stop lose d ack vc

To prove this lemma we used first of all the definitions of the predicates Gateway-
SystemReq and GatewaySystem, and clarify the resulting goal. After that we add
two new assumptions to the goal:

X The stream a has at very time interval at most one message (this property
of the central station component is proved as lemma ServiceCenter a msg,
see Section B.7).8 This assumption is necessary as one of the gateway
assumptions about the environment.

X The predicate GatewayReq holds for the corresponding streams, i.e. that
the gateway fulfills its requirements (according lemma Gateway L0, see
Sections 4.3.10 and B.7).

This assumption is needed to simplify the proof – now we can prove a
number of system properties directly from the properties of the gateway,
without extraction the definitions of the gateway architecture and the
properties of its components.

Now we split the goal into 4 subgoals (these 4 cases are needed because of
the definition of the predicate inf last ti): ti(dt , t + 1) = 〈〉 ∧ ti(dt , t + 2) = 〈〉,
ti(dt , t + 1) = 〈〉 ∧ ti(dt , t + 2) 6= 〈〉, ti(dt , t + 1) 6= 〈〉 ∧ ti(dt , t + 2) = 〈〉,
and ti(dt , t + 1) 6= 〈〉 ∧ ti(dt , t + 2) 6= 〈〉. We solve these subgoals using the
Isabelle/HOL automatic proof strategies as well as lemmas GatewaySystem L2
(for the 1. case) and GatewaySystem L3 (for the cases 2–4).

The lemma GatewaySystem L2 says: the voice communication must be estab-
lished at the time interval 2 ∗ d + t + 4 + k , if

8This stream goes from the central station to the gateway, see Section 4.3.3.
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X The predicate ts holds for the stream lose, and the streams req, a, stop
have at every time interval at most one message;

X The predicates Gateway, GatewayReq, and ServiceCenter are true for the
corresponding streams;

X At time t the gateway is in the initial state (ack t = [init state]), and it
gets the command to establish the connection with the central station
(req (Suc t) = [init]), besides there was no such command before the time
t (∀t1 < t. req t1 = []);

X After at least 2 time intervals the gateway get (ones) the command to
send the crash data to the central station (req (t + 3 + k) = [send], ∀m ≤
k + 2. req (t + m) 6= [send]);

X The gateway has received until the time t some crash data (inf last ti dt t
6= []);

X There is no environment connection problems during the next 2∗d +4+k
time intervals, where d is the communication delay between the gateway
and the central station.

lemma GatewaySystem L2 :
[[Gateway req dt a stop lose d ack i vc; ServiceCenter i a;

GatewayReq req dt a stop lose d ack i vc;
msg (Suc 0 ) req ; msg (Suc 0 ) stop; ts lose; msg (Suc 0 ) a;
ack t = [init state]; req (Suc t) = [init ];
∀ t1≤t . req t1 = [];
∀m ≤ k + 2 . req (t + m) 6= [send ]; req (t + 3 + k) = [send ];
inf last ti dt t 6= []; ∀ j≤2 ∗ d + (4 + k). lose (t + j ) = [False]]]

=⇒ vc (2 ∗ d + (t + (4 + k))) = [vc com]

To prove this lemma we add first of all the following assumptions:

(1) The gateway establishes the connection at the time interval t + 2,
ack (Suc (Suc t)) = [connection ok]. This subgoal can be proved from the
gateway requirements.

(2) The gateway stays in the state connection ok also the next k time in-
tervals, ∀m ≤ k. ack (t + 2 + m) = [connection ok]. This subgoal can be
proved using the specification of the gateway architecture. For this pur-
poses an additional lemma about the gateway architecture, Gateway L6,
is proved (for details see Section B.7).

(3) At time t + 3 + k the gateway is in the state where the crash data were
sent, ack (t+3+k) = [sending data]. This subgoal can be proved from the
gateway requirements.

(4) At time t + 3 + k + d the central station receives the crash data (the
message list is nonempty), i (t+3+k+d) 6= []. This subgoal can be proved
also from the gateway requirements.
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(5) The central station has received no crash data before the time t + 3 +
k + d (the message lists are empty), ∀t2 < (t+3+k+d). i t2 = []. This
subgoal can be proved using the specification of the gateway architecture.
For this purposes an additional lemma about the gateway architecture,
Gateway L7, is proved (for details see Section B.7).

(6) The central station has sent no acknowledgment before the time t + 3 +
k + d , ∀t3 ≤ (t+3+k+d). a t3 = []. This subgoal can be proved using the
service center specification.

(7) The gateway waits for the acknowledgment from the central station 2d
time intervals. All this time it stays in the state where the crash data were
sent, ∀x ≤ d + d. ack (t+3+k + x) = [sending data]). This subgoal can be
proved using the specification of the gateway architecture. For this pur-
poses an additional lemma about the gateway architecture, Gateway L8,
is proved (for details see Section B.7).

Having all these assumptions, we can prove that the gateway establishes the
voice communication at time interval 2 ∗ d + t + 4 + k . The goal is solven using
the lemma GatewaySystem L1 (see Section B.7).

The lemma GatewaySystem L3 says: the voice communication must be estab-
lished at the time interval 2 ∗ d + t + 4 + k , if

X The predicate ts holds for the stream lose, and the streams req, a, stop
have at every time interval at most one message;

X The predicates Gateway, GatewayReq, and ServiceCenter are true for the
corresponding streams;

X At time t the gateway is in the initial state (ack t = [init state]), and it
gets the command to establish the connection with the central station
(req (Suc t) = [init]), besides there was no such command before the time
t (∀t1 < t. req t1 = []);

X After at least 2 time intervals the gateway get (ones) the command to
send the crash data to the central station,
req (t + 3 + k) = [send], ∀m ≤ k + 2. req (t + m) 6= [send];

X The gateway has received some crash data either at the time interval t +1
or at time interval t + 2,
dt (Suc t) 6= [] ∨ dt (Suc (Suc t)) 6= [];

X There is no environment connection problems during the next 2∗d +4+k
time intervals, where d is the communication delay between the gateway
and the central station;
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lemma GatewaySystem L3 :
[[ Gateway req dt a stop lose d ack i vc; ServiceCenter i a; msg (Suc 0 ) req ;

GatewayReq req dt a stop lose d ack i vc;
msg (Suc 0 ) stop; ts lose; msg (Suc 0 ) a;
(dt (Suc t) 6= [] ∨ dt (Suc (Suc t)) 6= []);
ack t = [init state]; req (Suc t) = [init ];
∀ t1≤t . req t1 = []; ∀m ≤ k + 2 . req (t + m) 6= [send ];
req (t + 3 + k) = [send ]; ∀ j≤2 ∗ d + (4 + k). lose (t + j ) = [False]]]

=⇒ vc (2 ∗ d + (t + (4 + k))) = [vc com]

The proof of this lemma is analog to the proof of the lemma GatewaySystem L2.

The lemma Gateway L6 says: the gateway stays in the state connection ok at
the time time intervals t , . . . , t + k , if

X The predicate ts holds for the stream lose, and the streams req, a, stop
have at every time interval at most one message;

X The predicate Gateway holds for the corresponding streams;

X At time t the gateway is in the state where the connection is established
(ack t = [connection ok], and it gets no command to send the crash data
next k time intervals, ∀m ≤ k. req (t + m) 6= [send];

X There is no environment connection problems during the next k time
intervals;

The lemma Gateway L7 says: all time intervals of the output stream i are
empty before the time t + 3 + k + d , if

X The predicate ts holds for the stream lose, and the streams req, a, stop
have at every time interval at most one message;

X The predicate Gateway holds for the corresponding streams;

X At time t the gateway is in the initial state, ack t = [init state], and it
gets the command to establish the connection with the central station,
req (Suc t) = [init], besides there was no such command before the time t ,
∀t1 ≤ t. req t1 = [];

X After at least 2 time intervals the gateway get (ones) the command to
send the crash data to the central station,
req (t + 3 + k) = [send], ∀m < (k + 3). req (t + m) 6= [send];

X There is no environment connection problems during the next k + d + 3
time intervals, where d is the communication delay between the gateway
and the central station;

The lemma Gateway L8 says: the gateway stays in the state “the crash data
were sent” next 2d time intervals, if
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X The predicate ts holds for the stream lose, and the streams req, a, stop
have at every time interval at most one message;

X The predicate Gateway holds for the corresponding streams;

X At time t the gateway is in the state where the crash data were sent (ack
t = [sending data]);

X Until the time t + d no acknowledgment is received,
∀t3 ≤ t + d. a t3 = [];

X There is no environment connection problems during the next 2d time
intervals, where d is the communication delay between the gateway and
the central station;

4.3.12. Extended Requirements Specification of the Gateway

Proving the lemma GatewaySystem L0, we found out a number of gateway prop-
erties which can be seen as requirements to the gateway:

X If at the tth point in time the gateway has establish the connection, and it
does not get any command to send the E-Call data to the central station
until the (t +k)th time interval, and also there is no environment connec-
tion problems during these time intervals, then it stays it the same state
waiting for the command to send the E-Call data (lemma Gateway L6).

X If at tth time interval the gateway is in the initial state, and at time
interval t + 1 the signal about crash comes at first time, and after 3 + m
time intervals the command to send the crash data comes at first time,
and there is no connection fails from the time t until the (t + 3 + k)th
time interval, then until the (t + 3 + k + d)th time interval the output
stream i contains no messages (lemma Gateway L7).

X If before the tth point in time the gateway has send the E-Call data, but
time interval became no acknowledgment from the central station until
the (t + d)th point in time, and also there is no environment connection
problems, then it stays it the same state waiting for the acknowledgment
(lemma Gateway L8).

We can add these properties to the specification of the gateway requirements
(according to Section 3.1.1). The extended version of the gateway requirements
specification GatewayReqExt is shown below (the new requirements are marked
with green color).
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GatewayReqExt(const d ∈ N) timed

in
req : {init connect}; dt : ECall Info; a : {sc ack};
stop : stop vc; lose : Bool

out ack : GatewayStatus; i : ECall Info; vc : {voice com}

univ k ∈ N

asm msg1(req) ∧ msg1(a) ∧ msg1(stop) ∧ ts(lose)

gar
∀ t ∈ N :

ti(ack , t) = 〈init state〉 ∧ ti(req , t + 1) = 〈init〉
∧ti(lose, t + 1) = 〈false〉 ∧ ti(lose, t + 2) = 〈false〉

→ ti(ack , t + 2) = 〈connection ok〉

ti(ack , t) = 〈init state〉 ∧ ti(req , t + 1) = 〈init〉 ∧ ti(req , t + 3 + k) = 〈send〉
∧ ∀ t1 ≤ t : ti(req , t1) = 〈〉 ∧ ∀m ≤ k + 3 : ti(req , t + m) 6= 〈send〉
∧ ∀ j ≤ k + d + 3 : ti(lose, t + j ) = 〈false〉

→ ∀ t2 ≤ t + 3 + k + d : ti(i , t2) = 〈〉

ti(ack , t) = 〈connection ok〉 ∧ ∀m ≤ k : ti(req , t + m) 6= 〈send〉
∧ ∀ j ≤ k : ti(lose, t + j ) = 〈false〉

→ ∀ y ≤ k : ti(ack , t + y) = 〈connection ok〉

ti(ack , t) = 〈connection ok〉 ∧ ti(req , t + 1) = 〈send〉
∧(∀ k ∈ N : k ≤ d + 1 → ti(lose, t + k) = 〈false〉)

→ ti(i , t + d + 1) = lastti(dt , t) ∧ ti(ack , t + 1) = 〈sending data〉

ti(ack , t) = 〈sending data〉 ∧ ∀ t3 ≤ t + d : ti(a, t3) = 〈〉
∧ ∀ j ≤ d + d : ti(lose, t + j ) = 〈false〉

→ ∀ x ≤ d + d : ti(ack , t + x ) = 〈sending data〉

ti(ack , t + d) = 〈sending data〉 ∧ ti(a, t + 1) = 〈sc ack〉
∧ (∀ k ∈ N : k ≤ d + 1 → ti(lose, t + k) = 〈false〉)

→ ti(vc, t + d + 1) = 〈vc com〉

The specified gateway architecture fulfills certainly the extended requirements,
i.e. that the specification Gateway is a refinement of the specification by the
following lemma (the specification GatewayReqExt is then translated schemat-
ically into the Isabelle/HOL predicate GatewayReqExt, see Section B.7):

lemma Gateway Ext :
Gateway req dt a stop lose d ack i vc
=⇒
GatewayReqExt req dt a stop lose d ack i vc

Using the extended version of the gateway requirements specification, we can
do the proofs of system properties directly from the properties of the gateway,
without extraction the definitions of the gateway architecture and the properties
of its components.
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The whole Isabelle/HOL proofs of the lemmas Gateway Ext, GatewaySystem L0–
GatewaySystem L3, Gateway L6 le, Gateway L7, Gateway L8 and of all other aux-
iliary lemmas are presented in Section B.7.

4.3.13. Results of the Case Study

In this case study we have shown how we can verify larger systems using the idea
of the refinement-based verification. The proofs of a number of system proper-
ties were done directly from the properties of the gateway, without extraction
the definitions of the gateway architecture and the properties of its components.
We also present an example of extension of the requirements specification by
the new properties (according to Section 3.3).

The Focus specifications of all components of the gateway system were trans-
lated schematically to Isabelle/HOL and the refinement relation between the
requirement and the architecture specification was proved both for the gateway
component and for the gateway system. The correctness of the input/output
relations was also proved for all components of the system.

4.4. Summary

We have presented in this chapter three case studies that cover different ap-
plication areas and different specification elements to show feasibility of the
approach:

X Steam Boiler System (process control),

X FlexRay communication protocol (data transmission),

X Automotive-Gateway System (memory and processing components, data
transmission).

The following has been done within every case study:

X The Focus specifications of all components of the system have been trans-
lated schematically to Isabelle/HOL and the refinement relation between
the requirement and the architecture specification of the system has been
proved.

X The correctness of the input/output relations has been also proved for all
components of the system (automatically, according to the proof schemata
from Sections 2.11.4 and 2.13.3).

Proving the refinement relation for the steam boiler system specifications in
Isabelle/HOL, we found out that to argue about properties of the Controller
component of the system we need an additional (wrt. the original specification
from [BS01]) assumption about the input stream y – that the stream y is a
time-synchronous one.
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The proofs for the steam boiler system take ca. 200 lop9, the proofs for the
FlexRay communication protocol take ca. 300 lop – for both these systems
no extra decomposition of proofs and components is needed. The proofs for
the gateway system are more complicated and take ca. 1700 lop – using two
decomposition layers (the architecture specification of the whole system and
the architecture specification of the gateway component) instead a single one
we have got a clear proof structure, applying the ideas of refinement layers (see
Section 3.1.1) we can also reuse the proofs about the gateway component later.

In these case studies we have shown

X how to reformulate Focus constructions which are not very well situated
to the direct translation to Isabelle/HOL and without changing their se-
mantics;

X how we can deal with local variables (states);

X in which way we can represent mutual recursive functions to avoid prob-
lems in proofs;

X how we can deal with sheaves of channels ans parameters, as well as with
specification replications;

X how we can verify larger systems using the idea of the refinement-based
verification.

9lines of proof
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This chapter presents the summary of the key contributions of the thesis and
gives a short overview of future work.

The increasing complexity and the safety and quality requirements of em-
bedded real-time systems implies that it is insufficient only to test them, be-
cause testing can only demonstrate the presence, but not the absence of errors.
Formal methods can provide the level of assurance required by the increasing
complexity and the high safety and quality requirements to such systems, be-
cause these allow not only to test correctness and safety, but also to prove them:
verification guarantees fulfillment of the requirements. A formal specification
is more precise than a natural language one, but it can also contain mistakes
or disagree with requirements. Therefore, for safety critical systems it is not
enough to have detached formal specifications – in this case formal verification
is needed. This is the only way to be sure that the specification conforms to its
requirements and is consistent.

In this thesis we have introduced the coupling of the formal specification
framework Focus in the generic theorem prover Isabelle/HOL with focus on
specification and verification of systems that are especially safety critical –
embedded real-time systems.

5.1. Summary

The result of the coupling of the formal specification framework Focus in the
generic theorem prover Isabelle/HOL is the framework “Focus on Isabelle”.
By considering this framework we can influence the complexity of proofs and
their reusability already during the specification phase, because the specification
and verification/validation methodologies are treated here as a single, joined,
methodology with the main focus on the specification part. Given a system,
represented in a formal specification framework, we can verify its properties by
translating the specification to a Higher-Order Logic and subsequently using
the theorem prover Isabelle/HOL (or the point of disagreement will be found).

The key contributions of the thesis are

X Deep embedding of that part of the framework Focus, which is appro-
priate for specification of real-time systems, into Isabelle/HOL:

� representation of Focus datatypes in Isabelle/HOL,

� representation of Focus streams in Isabelle/HOL,

� representation of the Focus operators on streams:

∗ length of a stream,
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∗ nth message of a stream,
∗ concatenation operator,
∗ prefix of a stream,
∗ truncation operator,
∗ domain and range of a stream,
∗ time stamp operator, and
∗ stuttering removal operator.

� specification semantics and techniques,

� representation of the Focus extras:

∗ encapsulated states (local variables, control states, oracles),
∗ sheaf of channels and specification replication.

X Syntax extensions for Focus for the argumentation over time intervals:

� a special kind of Focus tables – tiTable,

� timed state transition diagrams (TSTDs),

� a number of new operators, such as:

∗ time interval operator,
∗ timed merge,
∗ timed truncation operator,
∗ limited number of messages per time interval,
∗ stuttering removal operator for timed streams,
∗ changing time granularity,
∗ deleting the first time interval,
∗ the last nonempty time interval until some time interval, and
∗ number of time intervals in a finite timed stream.

The deep embedding into Isabelle/HOL includes all these extensions.

X A number of Isabelle/HOL theories and the corresponding schemata to
prove correctness of the relations between the sets of input, output and
local channels of a specified system. These proof schemata for the correct-
ness properties are standard and can be used automatically. If the proof
fails, the specification of the corresponding set is incorrect and must be
changed.

X The specification and verification/validation methodology, which enables
to validate and verify the system specifications in a methodological way.
Using this approach we can validate the refinement relation between two
given systems. This methodology uses particularly the idea of refinement-
based verification, where a verification of system properties can be treated
as a validation of a system specification with respect to the specification
representing the properties. Thus, designing a system, a refinement re-
lation must be shown not only between requirements and architecture
specifications, but for every step at which a more abstract specification
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is refined to a more precise one. The proofs of the refinement relations
between specifications of neighbor levels of abstractions are in general
simpler and shorter as the proof of the refinement relation between the
more abstract and the more concrete specifications.

The feasibility of this approach was evaluated on three case studies that cover
different application areas:

X Steam Boiler System (process control),

X FlexRay communication protocol (data transmission),

X Automotive-Gateway System (memory and processing components, data
transmission)

Scalability of the investment of time needed for the verification of a concrete
property of a concrete system is another interesting point. As mentioned above,
the size and reusability of proofs depend on the nature of specifications and on
the granularity of the refinement steps – by proving the properties of subcompo-
nents first, we can reuse the results later. Starting from the proof of properties
of some large system, we also will find out the needed subcomponent properties.
We add them to the requirements specifications of the subcomponent proper-
ties, in order to have possibility to reuse them later easily (see Section 3.3,
4.3.12). Thus, the modularity and reusability play here a major role.

Isabelle/HOL is an interactive semi-automatic theorem prover and the time
needed for the verification of system properties is also human depended. To
simplify the proof process the clear overview of the (sub)components and their
properties is needed – this must be established during the specification phase.
It is sufficient and worth while to spend more time into the specification phase,
because this will reduce the time needed for the verification extensively.

The results of “Focus on Isabelle” can be also extended to a complementary
approach, “Janus on Isabelle”, that represents a coupling of a Janus with Is-
abelle/HOL. Janus is a specification framework for services, which is developed
on the base of Focus and uses different, but similar syntax and semantics.

5.2. Outlook

We have presented here how one can influence the complexity of proofs and
their reusability already doing the specification in Focus – avoid the untimed
specifications, specify the behavior via time intervals to express the causality
property (weak or strong) explicitly, use extended operator definitions, etc.
However, the results of our approach give rise to another interesting research
challenges:

X Can we define on the basis of the presented specification syntax some proof
schemata or, more concrete, Isabelle/HOL tactics which can be applied
automatically?
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X Is it possible to have such a schema for every syntax construction?

X How can we find out the optimal decomposition of a component into
subcomponents in order to get simpler proofs?

Another promising topic which was only touched in this thesis is the formal
refinement of timing properties, e.g. changing time granularity. We have pre-
sented here in which way this kind of operators on timed streams can be defined
as well as how the proofs of their properties can be done. Based on this results
the formal theory of time refinement can be build.

An interesting research area where the findings of the thesis also can be
extended is an enhancement of the specification technics and the refinement
relations between them. The first step in this direction is the application of the
results of the thesis, especially the syntax extensions for Focus, to elaborate
a model-based process supporting structured development for the CoCoME
Modelling Contest (Common Component Modelling Example, see [Auta] and
[BFH+07]).
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Appendix A.

Isabelle Definitions and Lemmas about
Focus Operators

A.1. Theory stream.thy (FOCUS streams)

theory stream = Main + ListExtras + ListLemmas + ArithExtras + Filter :

types ′a fstream = ′a list list

types ′a istream = nat ⇒ ′a list

types ′a iustream = nat ⇒ ′a

datatype ′a stream = FinT ′a fstream
| FinU ′a list
| InfT ′a istream
| InfU ′a iustream

consts
nticks :: nat ⇒ ′a fstream
finU dom :: ′a list ⇒ nat set
finT range :: ′a fstream ⇒ ′a set
fin find1nonemp :: ′a fstream ⇒ ′a list
fin find1nonemp index :: ′a fstream ⇒ nat
fin length :: ′a fstream ⇒ nat
fin nth :: ′a fstream ⇒ nat ⇒ ′a
inf nth :: ′a istream ⇒ nat ⇒ ′a
inf prefix :: ′a list ⇒ (nat ⇒ ′a) ⇒ nat ⇒ bool
fin truncate :: ′a list ⇒ nat ⇒ ′a list
inf truncate :: (nat ⇒ ′a) ⇒ nat ⇒ ′a list
fin msg :: nat ⇒ ′a list list ⇒ bool
inf make untimed1 :: ′a istream ⇒ nat ⇒ ′a
fin tm :: ′a fstream ⇒ nat ⇒ nat
inf tm :: ( ′a istream × nat) ⇒ nat
fst remdups :: ′a list ⇒ ′a list
inf inf remdups :: (nat ⇒ ′a) ⇒ (nat ⇒ ′a)
fin get prefix :: ( ′a fstream × nat) ⇒ ′a fstream
infT get prefix :: ( ′a istream × nat) ⇒ ′a fstream
infU get prefix :: (nat ⇒ ′a) ⇒ nat ⇒ ′a list
fin merge ti :: ′a fstream ⇒ ′a fstream ⇒ ′a fstream
fin last ti :: ( ′a list) list ⇒ nat ⇒ ′a list
inf last ti :: ′a istream ⇒ nat ⇒ ′a list

constdefs
finU dom inat :: ′a list ⇒ inat set
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finU dom inat s ≡ {x . ∃ i . x = (Fin i) ∧ i < (length s)}

constdefs
infU dom :: inat set

infU dom ≡ {x . ∃ i . x = (Fin i)} ∪ {∞}

primrec
nticks 0 = []
nticks (Suc i) = [] # (nticks i)

primrec
finU dom [] = {}
finU dom (x#xs) = {length xs} ∪ (finU dom xs)

primrec
finT range [] = {}
finT range (x#xs) = (set x ) ∪ finT range xs

constdefs
finU range :: ′a list ⇒ ′a set

finU range x ≡ set x

constdefs
infT range :: ′a istream ⇒ ′a set

infT range s ≡ {y . ∃ i ::nat . y mem (s i)}

constdefs
infU range :: (nat ⇒ ′a) ⇒ ′a set

infU range s ≡ { y . ∃ i ::nat . y = (s i) }

constdefs
stream range :: ′a stream ⇒ ′a set

stream range s ≡ case s of
FinT x ⇒ finT range x

| FinU x ⇒ finU range x
| InfT x ⇒ infT range x
| InfU x ⇒ infU range x

constdefs
inf tl :: (nat ⇒ ′a) ⇒ (nat ⇒ ′a)

inf tl s ≡ (λ i . s (Suc i))

primrec
fin find1nonemp [] = []
fin find1nonemp (x#xs) =

( if x = []
then fin find1nonemp xs
else x )

constdefs
inf find1nonemp :: ′a istream ⇒ ′a list

inf find1nonemp s
≡
( if (∃ i . s i 6= [])

then s (LEAST i . s i 6= [])
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else [] )

primrec
fin find1nonemp index [] = 0
fin find1nonemp index (x#xs) =

( if x = []
then Suc (fin find1nonemp index xs)
else 0 )

constdefs
inf find1nonemp index :: ′a istream ⇒ nat

inf find1nonemp index s
≡
( if (∃ i . s i 6= [])

then (LEAST i . s i 6= [])
else 0 )

constdefs
inf drop :: nat ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a)

inf drop i s ≡ λ j . s (i+j )

primrec
fin length [] = 0
fin length (x#xs) = (length x ) + (fin length xs)

constdefs
stream length :: ′a stream ⇒ inat

stream length s ≡
case s of (FinT x ) ⇒ Fin (fin length x )

| (FinU x ) ⇒ Fin (length x )
| (InfT x ) ⇒ ∞
| (InfU x ) ⇒ ∞

primrec
fin nth Cons:

fin nth (hds # tls) k =
( if hds = []

then fin nth tls k
else ( if (k < (length hds))

then nth hds k
else fin nth tls (k − length hds) ))

primrec
inf nth s 0 =

hd (s (LEAST i .(s i) 6= []))

inf nth s (Suc k) =
( if ((Suc k) < (length (s 0 )))

then (nth (s 0 ) (Suc k))
else ( if (s 0 ) = []

then (inf nth (inf tl (inf drop
(LEAST i . (s i) 6= []) s)) k )

else inf nth (inf tl s) k ))
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constdefs
stream nth :: ′a stream ⇒ nat ⇒ ′a

stream nth s k ≡
case s of (FinT x ) ⇒ fin nth x k

| (FinU x ) ⇒ nth x k
| (InfT x ) ⇒ inf nth x k
| (InfU x ) ⇒ x k

primrec
inf prefix [] s k = True
inf prefix (x#xs) s k =

( (x = (s k)) ∧ (inf prefix xs s (Suc k)) )

constdefs
stream prefix :: ′a stream ⇒ ′a stream ⇒ bool

stream prefix p s ≡
(case p of

(FinT x ) ⇒
(case s of (FinT y) ⇒ (x ≤ y)

| (FinU y) ⇒ False
| (InfT y) ⇒ inf prefix x y 0
| (InfU y) ⇒ False )

| (FinU x ) ⇒
(case s of (FinT y) ⇒ False

| (FinU y) ⇒ (x ≤ y)
| (InfT y) ⇒ False
| (InfU y) ⇒ inf prefix x y 0 )

| (InfT x ) ⇒
(case s of (FinT y) ⇒ False

| (FinU y) ⇒ False
| (InfT y) ⇒ (∀ i . x i = y i)
| (InfU y) ⇒ False )

| (InfU x ) ⇒
(case s of (FinT y) ⇒ False

| (FinU y) ⇒ False
| (InfT y) ⇒ False
| (InfU y) ⇒ (∀ i . x i = y i) ) )

primrec
fin truncate [] n = []
fin truncate (x#xs) i =

(case i of 0 ⇒ []
| (Suc n) ⇒ x # (fin truncate xs n))

constdefs
fin truncate plus :: ′a list ⇒ inat ⇒ ′a list

fin truncate plus s n
≡
case n of (Fin i) ⇒ fin truncate s i

| ∞ ⇒ s

primrec
inf truncate s 0 = [ s 0 ]
inf truncate s (Suc k) = (inf truncate s k) @ [s (Suc k)]

constdefs
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inf truncate plus :: ′a istream ⇒ inat ⇒ ′a stream
inf truncate plus s n
≡
case n of (Fin i) ⇒ FinT (inf truncate s i)

| ∞ ⇒ InfT s

constdefs
fin inf append ::

′a list ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a)
fin inf append us s ≡

(λ i . ( if (i < (length us))
then (nth us i)
else s (i − (length us)) ))

constdefs
ts :: ′a istream ⇒ bool

ts s ≡ ∀ i . (length (s i) = 1 )

constdefs
msg :: nat ⇒ ′a istream ⇒ bool

msg n s ≡ ∀ t . length (s t) ≤ n

primrec
fin msg n [] = True
fin msg n (x#xs) = (((length x ) ≤ n) ∧ (fin msg n xs))

constdefs
fin make untimed :: ′a fstream ⇒ ′a list

fin make untimed x ≡ concat x

primrec
inf make untimed1 0 :

inf make untimed1 s 0 =
hd (s (LEAST i .(s i) 6= []))

inf make untimed1 Suc:
inf make untimed1 s (Suc k) =

( if ((Suc k) < length (s 0 ))
then nth (s 0 ) (Suc k)
else ( if (s 0 ) = []

then (inf make untimed1 (inf tl (inf drop
(LEAST i . ∀ j . j < i −→ (s j ) = [])
s)) k )

else inf make untimed1 (inf tl s) k ))

constdefs
inf make untimed :: ′a istream ⇒ (nat ⇒ ′a)

inf make untimed s
≡
λ i . inf make untimed1 s i
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constdefs
make untimed :: ′a stream ⇒ ′a stream

make untimed s ≡
case s of (FinT x ) ⇒ FinU (fin make untimed x )

| (FinU x ) ⇒ FinU x
| (InfT x ) ⇒

(if (∃ i .∀ j . i < j −→ (x j ) = [])
then FinU (fin make untimed (inf truncate x

(LEAST i .∀ j . i < j −→ (x j ) = [])))
else InfU (inf make untimed x ))

| (InfU x ) ⇒ InfU x

primrec
fin tm [] k = k
fin tm (x#xs) k =

(if k = 0
then 0
else (if (k ≤ length x )

then (Suc 0 )
else Suc(fin tm xs (k − length x ))))

lemma inf tm hint1 :
[[ i2 = Suc i − length a; ¬ Suc i ≤ length a; a 6= [] ]]
=⇒ i2 < Suc i
by auto

lemma inf tm hint :
[[ i2 = Suc i − length ((s:: ′a istream) (LEAST x WRT (λn. n). s x 6= []));
¬ Suc i ≤ length (s (LEAST x WRT (λn. n). s x 6= [])); ∃ j . s j 6= [] ]]

=⇒ i2 < Suc i
apply (rule inf tm hint1 , assumption+)
apply (erule exE , rule LeastM natI , assumption)
done

recdef inf tm measure(λ(s,n). n)
inf tm (s, 0 ) = 0

inf tm (s, Suc i) =
( if (∀ j . s j = [])

then 0
else

(let
k = (LEAST x WRT (λn. n). s x 6= [])

in
(if (Suc i) ≤ (length(s k))
then (Suc k)
else (let

i2 = (Suc i) − (length (s k));
s2 = inf drop (Suc k) s

in
inf tm (s2 , i2 ) )

) )
)

(hints intro: inf tm hint [rule format ])
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constdefs
finT filter :: ′a set ⇒ ′a fstream ⇒ ′a fstream

finT filter m s ≡ map (λ s. filter (λ y . y ∈ m) s) s

infT filter :: ′a set ⇒ ′a istream ⇒ ′a istream
infT filter m s ≡ (λi .( filter (λ x . x ∈ m) (s i)))

constdefs
finT remdups :: ′a fstream ⇒ ′a fstream

finT remdups s ≡ map (λ s. remdups s) s

infT remdups :: ′a istream ⇒ ′a istream
infT remdups s ≡ (λi .( remdups (s i)))

primrec
fst remdups [] = []
fst remdups (x#xs) =

(if xs = []
then [x ]
else (if x = (hd xs)

then fst remdups xs
else (x#xs)))

constdefs
fst inf inf remdups :: (nat ⇒ ′a) ⇒ (nat ⇒ ′a)

fst inf inf remdups s
≡ drop seq (LEAST i . ∀ j . j < i −→ s i = s j ) s

constdefs
fst inf remdups :: (nat ⇒ ′a) ⇒ ′a stream

fst inf remdups s
≡
( if (∀ i . (s 0 ) = (s i))

then FinU [s 0 ]
else InfU (fst inf inf remdups s))

primrec
inf inf remdups s 0 = s 0
inf inf remdups s (Suc i) =

(let x = (fst inf inf remdups s)
in
inf inf remdups (drop seq (Suc 0 ) x ) i )

constdefs
inf remdups :: (nat ⇒ ′a) ⇒ ′a stream

inf remdups s ≡
( if (∃ i . ∀ j . i ≤ j −→ (s i) = (s j ))

then FinU (remdups (inf truncate s
(LEAST i . ∀ j . i ≤ j −→ (s i) = (s j ))))

else InfU (inf inf remdups s) )

constdefs
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ti :: ′a fstream ⇒ nat ⇒ ′a list
ti s i ≡

(if s = []
then []
else (nth s i))

constdefs
CorrectSheaf :: nat ⇒ bool

CorrectSheaf n ≡ 0 < n

constdefs
inf disjS :: ′b set ⇒ ( ′b ⇒ ′a istream) ⇒ bool

inf disjS IdSet nS
≡
∀ (t ::nat) i j . (i :IdSet) ∧ (j :IdSet) ∧
((nS i) t) 6= [] −→ ((nS j ) t) = []

constdefs
inf disj :: nat ⇒ (nat ⇒ ′a istream) ⇒ bool

inf disj n nS
≡
∀ (t ::nat) (i ::nat) (j ::nat).
i < n ∧ j < n ∧ i 6= j ∧ ((nS i) t) 6= [] −→
((nS j ) t) = []

recdef
fin get prefix measure(λ(s,n). length s + n)

fin get prefix ([], n) = []
fin get prefix (x#xs, i) =

( if (length x ) < i
then x # fin get prefix (xs, (i − (length x )))
else [take i x ] )

constdefs
fin get prefix plus :: ′a fstream ⇒ inat ⇒ ′a fstream

fin get prefix plus s n
≡
case n of (Fin i) ⇒ fin get prefix (s, i)

| ∞ ⇒ s

lemma length inf drop hint1 :
s k 6= [] =⇒ length (inf drop k s 0 ) 6= 0
by (simp add : inf drop def )

lemma length inf drop hint2 :
(s 0 6= [] −→ length (inf drop 0 s 0 ) < Suc i
−→ Suc i − length (inf drop 0 s 0 ) < Suc i)
by (simp add : inf drop def list length hint1 )

recdef
infT get prefix measure(λ(s,n). n)
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infT get prefix (s, 0 ) = []

infT get prefix (s, Suc i) =
( if (s 0 ) = []

then ( if (∀ i . s i = [])
then []
else (let

k = (LEAST k . s k 6= [] ∧ (∀ i . i < k −→ s i = []));
s2 = inf drop (k+1 ) s

in (if (length (s k)=0 )
then []
else (if (length (s k) < (Suc i))

then s k # infT get prefix (s2 ,Suc i − length (s k))
else [take (Suc i) (s k)] )))

)
else

(if ((length (s 0 )) < (Suc i))
then (s 0 ) # infT get prefix ( inf drop 1 s, (Suc i) − (length (s 0 )))
else [take (Suc i) (s 0 )]
)

)
(hints recdef simp: list length hint1 Add Less)

primrec
infU get prefix s 0 = []
infU get prefix s (Suc i)

= (infU get prefix s i) @ [s i ]

constdefs
infT get prefix plus :: ′a istream ⇒ inat ⇒ ′a stream

infT get prefix plus s n
≡
case n of (Fin i) ⇒ FinT (infT get prefix (s, i))

| ∞ ⇒ InfT s

constdefs
infU get prefix plus :: (nat ⇒ ′a) ⇒ inat ⇒ ′a stream

infU get prefix plus s n
≡
case n of (Fin i) ⇒ FinU (infU get prefix s i)

| ∞ ⇒ InfU s

constdefs
take plus :: inat ⇒ ′a list ⇒ ′a list

take plus n s
≡
case n of (Fin i) ⇒ (take i s)

| ∞ ⇒ s

constdefs
get prefix :: ′a stream ⇒ inat ⇒ ′a stream
get prefix s k ≡

case s of (FinT x ) ⇒ FinT (fin get prefix plus x k)
| (FinU x ) ⇒ FinU (take plus k x )
| (InfT x ) ⇒ infT get prefix plus x k
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| (InfU x ) ⇒ infU get prefix plus x k

primrec
fin merge ti [] y = y
fin merge ti (x#xs) y =

( case y of [] ⇒ (x#xs)
| (z#zs) ⇒ (x@z ) # (fin merge ti xs zs))

constdefs
inf merge ti :: ′a istream ⇒ ′a istream ⇒ ′a istream
inf merge ti x y
≡
λ i . (x i)@(y i)

primrec
fin last ti s 0 = hd s
fin last ti s (Suc i) =

( if s!(Suc i) 6= []
then s!(Suc i)
else fin last ti s i)

primrec
inf last ti s 0 = s 0
inf last ti s (Suc i) =

( if s (Suc i) 6= []
then s (Suc i)
else inf last ti s i)

lemma inf last ti nonempty k :
inf last ti dt t 6= []
=⇒ inf last ti dt (t + k) 6= []
by (induct k , auto)

lemma inf last ti nonempty :
s t 6= [] =⇒ inf last ti s (t + k) 6= []
apply (induct k , auto)
apply (induct t , auto)
done

Lemmas for Concatenation Operator

lemma fin length append :
fin length (x@y) = (fin length x ) + (fin length y)
apply (induct x )
apply auto
done

lemma fin append Nil :
fin inf append [] z = z
by (simp add : fin inf append def )

lemma correct fin inf append1 :
s1 = fin inf append [x ] s =⇒ s1 (Suc i) = s i
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by (simp add : fin inf append def )

lemma correct fin inf append2 :
fin inf append [x ] s (Suc i) = s i
by (simp add : fin inf append def )

lemma fin append com Nil1 :
fin inf append [] (fin inf append y z )
= fin inf append ([] @ y) z
by (simp add : fin append Nil)

lemma fin append com Nil2 :
fin inf append x (fin inf append [] z ) = fin inf append (x @ []) z
by (simp add : fin append Nil)

lemma fin append com i :
fin inf append x (fin inf append y z ) i = fin inf append (x @ y) z i
apply (case tac x )
apply (simp add : fin append com Nil1 )
apply (case tac y)
apply (simp add : fin append com Nil2 )
apply (simp add : fin inf append def )
apply auto
apply (simp add : list nth append2 )
apply (simp add : list nth append3 )
apply (simp add : list nth append9 )
apply (simp add : list nth append10 )
done

Lemmas for Operators ts and msg

lemma ts msg1 :
ts p =⇒ msg 1 p
by (simp add : ts def msg def )

lemma msg time interval :
∀ s. msg 1 s =⇒
(∀ t x . s t = x ∧ x 6= [] =⇒
(∃ a. s t = [a] ∧ a = hd x ))

by simp

lemma ts inf tl :
ts x =⇒ ts (inf tl x )
by (simp add : ts def inf tl def )

lemma ts Least 0 :
ts x =⇒ (LEAST i . (x i) 6= [] ) = (0 ::nat)
apply (simp add : ts def )
apply (erule tac x=0 ::nat in allE)
apply (subgoal tac x 0 6= [])
prefer 2
apply (simp add : list length hint3 )

apply (simp add : Least def )
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apply auto
done

lemma lambda Suc:
(λi . x (Suc i)) i = x (Suc i)
by auto

lemma inf tl Suc:
inf tl x i = x (Suc i)
by (simp add : inf tl def )

lemma ts length hint3 :
ts x =⇒ x i 6= []
apply (simp add : ts def )
apply (erule tac x=i in allE)
apply (simp add : list length hint3 )
done

lemma ts Least Suc0 :
ts x =⇒ (LEAST i . x (Suc i) 6= []) = 0
apply (subgoal tac ∀ j . x j 6= [])
prefer 2
apply (simp add : ts length hint3 )

apply auto
apply (simp add : ts def )
apply (erule tac x=0 ::nat in allE)
apply (simp add : Least def )
apply auto
done

lemma ts inf make untimed hd :∧
x . ts x =⇒ (inf make untimed x ) i = hd (x i)

apply (simp add : inf make untimed def )
apply (induct i)
apply auto
apply (simp add : ts Least 0 )

apply (simp add : ts def list length hint3 )
apply (simp add : ts def )
apply (subgoal tac ts (inf tl x ))
prefer 2
apply (simp add : ts inf tl)

apply (case tac i)
apply simp
apply (simp add : inf tl Suc)
apply atomize
apply (erule tac x=inf tl x in allE)
apply clarify
apply (subgoal tac inf tl x (Suc nat) = x (Suc (Suc nat)))
prefer 2
apply (simp add : inf tl Suc)

apply simp
done
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A.1.1. Lemmas about inf truncate

lemma inf truncate nonempty :
[[ z i 6= []]] =⇒ inf truncate z i 6= []

by (induct i , auto)

lemma concat inf truncate nonempty :
[[ z i 6= []]] =⇒ concat (inf truncate z i) 6= []

by (induct i , auto)

lemma concat inf truncate nonempty el :
[[ z i = [a]]] =⇒ concat (inf truncate z i) 6= []

by (induct i , auto)

lemma inf truncate append :
(inf truncate z i @ [z (Suc i)]) = inf truncate z (Suc i)
by (induct i , simp+)

A.1.2. Lemmas about fin make untimed

lemma fin make untimed append :
fin make untimed x 6= [] =⇒ fin make untimed (x @ y) 6= []
by (simp add : fin make untimed def )

lemma fin make untimed inf truncate Nonempty :∧
z . [[ z k 6= []; k ≤ i ]]

=⇒ fin make untimed (inf truncate z i) 6= []
apply (simp add : fin make untimed def )
apply (induct i)
apply simp
apply atomize
apply (erule tac x=z in allE)
apply simp
apply (case tac z (Suc i) = [])
apply auto
apply (induct k)
apply simp
apply atomize
apply (erule tac x=i in allE)
apply (erule tac x=z in allE)
apply simp
apply (subgoal tac k = i)
prefer 2
apply simp

apply simp
done

lemma last fin make untimed append :
last (fin make untimed (z @ [[a]])) = a
by (simp add : fin make untimed def )

lemma last fin make untimed inf truncate:
[[ z i = [a] ]] =⇒
last (fin make untimed (inf truncate z i)) = a
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apply (simp add : fin make untimed def )
apply (induct i)
apply auto
done

lemma fin make untimed append empty :
fin make untimed (z @ [[]]) = fin make untimed z
by (simp add : fin make untimed def )

lemma fin make untimed inf truncate append a:
fin make untimed (inf truncate z i @ [[a]]) !

(length (fin make untimed (inf truncate z i @ [[a]])) − Suc 0 ) = a
by (simp add : fin make untimed def )

lemma fin make untimed inf truncate Nonempty all :
[[ z k 6= []]]
=⇒ ∀ i . k ≤ i −→ fin make untimed (inf truncate z i) 6= []
by (simp add : fin make untimed inf truncate Nonempty)

lemma fin make untimed inf truncate Nonempty all0 :
[[ z 0 6= []]]
=⇒ ∀ i . fin make untimed (inf truncate z i) 6= []
by (simp add : fin make untimed inf truncate Nonempty)

lemma fin make untimed inf truncate Nonempty all0a:
[[ z 0 = [a]]]
=⇒ ∀ i . fin make untimed (inf truncate z i) 6= []
by (simp add : fin make untimed inf truncate Nonempty all0 )

lemma fin make untimed inf truncate Nonempty all app:
[[ z 0 = [a]]]
=⇒ ∀ i . fin make untimed (inf truncate z i @ [z (Suc i)]) 6= []
apply clarify
apply (subgoal tac fin make untimed (inf truncate z i) 6= [] )
prefer 2

apply (simp add : fin make untimed inf truncate Nonempty all0a)
apply (simp add : fin make untimed append)
done

lemma fin make untimed nth length:
[[ z i = [a]]] =⇒
fin make untimed (inf truncate z i) !

(length (fin make untimed (inf truncate z i)) − Suc 0 )
= a
apply (subgoal tac last (fin make untimed (inf truncate z i)) = a)
prefer 2
apply (simp add : last fin make untimed inf truncate)

apply (simp add : fin make untimed def )
apply (subgoal tac concat (inf truncate z i) 6= [])
prefer 2
apply (erule concat inf truncate nonempty el)

apply (simp add : last nth length)
done
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A.1.3. Lemmas about inf disj and inf disjS

lemma inf disj index :
[[ inf disj n nS ; nS k t 6= []; k < n ]]

=⇒ (SOME i . i < n ∧ nS i t 6= []) = k
apply (simp add : inf disj def )
apply (erule tac x=t in allE)
apply (erule tac x=k in allE)
apply auto
done

lemma inf disjS index :
[[ inf disjS IdSet nS ; k :IdSet ; nS k t 6= [] ]]

=⇒ (SOME i . (i :IdSet) ∧ nSend i t 6= []) = k
apply (simp add : inf disjS def )
apply (erule tac x=t in allE)
apply (erule tac x=k in allE)
apply auto
done

end

A.2. Theory join ti – Concatenation of time intervals

theory join ti = Main + stream + arith hints:

Definition and lemmas for infinite timed streams:

consts
join ti :: ′a istream ⇒ nat ⇒ nat ⇒ ′a list

primrec
join ti 0 :
join ti s x 0 = s x

join ti Suc:
join ti s x (Suc i) = (join ti s x i) @ (s (x + (Suc i)))

lemma join ti hint1 :
join ti s x (Suc i) = [] =⇒ join ti s x i = []
by auto

lemma join ti hint2 :
join ti s x (Suc i) = [] =⇒ s (x + (Suc i)) = []
by auto

lemma join ti hint3 :
join ti s x (Suc i) = [] =⇒ s (x + i) = []
by (induct i , auto)

lemma join ti empty join:
[[ i ≤ n; join ti s x n = [] ]] =⇒ s (x+i) = []
apply (induct n)
apply auto
apply (case tac i = Suc n)
apply simp+
done

lemma join ti empty ti :
[[ ∀ i ≤ n. s (x+i) = [] ]] =⇒ join ti s x n = []

215



Appendix A. Isabelle Definitions and Lemmas about Focus Operators

by (induct n, auto)

lemma join ti 1nempty :
[[ ∀ i . 0 < i ∧ i < Suc n −→ s (x+i) = [] ]]
=⇒ join ti s x n = s x
by (induct n, auto)

Definition and lemmas for finite timed streams:

consts
fin join ti :: ′a fstream ⇒ nat ⇒ nat ⇒ ′a list

primrec
fin join ti 0 :
fin join ti s x 0 = nth s x

fin join ti Suc:
fin join ti s x (Suc i) = (fin join ti s x i) @ (nth s (x + (Suc i)))

lemma fin join ti hint1 :
fin join ti s x (Suc i) = [] =⇒ fin join ti s x i = []
by auto

lemma fin join ti hint2 :
fin join ti s x (Suc i) = [] =⇒ nth s (x + (Suc i)) = []
by auto

lemma fin join ti hint3 :
fin join ti s x (Suc i) = [] =⇒ nth s (x + i) = []
by (induct i , auto)

lemma fin join ti empty join:
[[ i ≤ n; fin join ti s x n = [] ]] =⇒ nth s (x+i) = []
apply (induct n)
apply auto
apply (case tac i = Suc n)
apply simp+
done

lemma fin join ti empty ti :
[[ ∀ i ≤ n. nth s (x+i) = [] ]] =⇒ fin join ti s x n = []
by (induct n, auto)

lemma fin join ti 1nempty :
[[ ∀ i . 0 < i ∧ i < Suc n −→ nth s (x+i) = [] ]]
=⇒ fin join ti s x n = nth s x
by (induct n, auto)

end

A.3. Changing Time Granularity

theory fin time raster = Main + stream + join ti :

Split time intervals

consts
fin split time :: ′a fstream ⇒ nat ⇒ ′a fstream

primrec
fin split time [] n = []
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fin split time (x#xs) n =
(case n of

0 ⇒ []
| Suc i ⇒ x # (replicate i []) @ (fin split time xs n) )

lemma fin split time1 :
fin split time s (Suc 0 ) = s
by (induct s, auto)

lemma fin split time1t :∧
t . (fin split time s 1 )!t = s!t

by (simp add : fin split time1 )

lemma fin split time drop:
[[ (0 ::nat) < n ]] =⇒
drop n (fin split time (a # l) n) = fin split time l n
by (induct n, auto)

Join time intervals

lemma fin join time drop hint :
n ≤ length s ∧ 0 < n ∧ s 6= [] −→ length (drop n s) < length s
by auto

consts
fin join time :: ′a fstream × nat ⇒ ′a fstream

recdef
fin join time measure ((λ(s,n). length s))
fin join time (s, 0 ) = []
fin join time (s, Suc i) =

( if s = []
then []
else

(if (length s) < (Suc i)
then s
else (concat (take (Suc i) s))

# fin join time (drop (Suc i) s, (Suc i))) )

lemma fin join time1 :
fin join time(s, Suc 0 ) = s
by (induct tac s, simp+)

lemma fin join time1t :
∀ t . fin join time (s, Suc 0 )! t = s! t
by (simp only : fin join time1 , simp)

lemma fin join time2 :
fin join time([], i) = []
by (induct tac i , simp+)

Duality of the split and the join operators

lemma fin split time n1 :
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[[ s 6= []; n = Suc i ]] =⇒ take n (fin split time s n) = (hd s) # (replicate i [])
by (induct s, auto)

lemma fin split time n2 :
[[ s 6= []; 0 < n ]] =⇒ concat (take n (fin split time s n)) = hd s
apply (induct s)
apply auto
apply (case tac n)
apply simp
apply (rename tac a s i)
apply (subgoal tac concat (a # (replicate i [])) = a)
apply (subgoal tac
take n ( a # replicate i [] @ fin split time s n)
= a # replicate i [])

apply auto
apply (simp add : set replicate conv if )
apply (simp split : split if asm)
done

lemma fin join split :
[[ (0 ::nat) < n ]] =⇒ fin join time (fin split time s n, n) = s
apply (induct tac s)
apply (simp add : fin join time2 )
apply (rename tac a l)
apply (subgoal tac concat (take n (fin split time (a # l) n)) = a)
prefer 2
apply (erule tac V = fin join time (fin split time l n, n) = l in thin rl)
apply (subgoal tac concat (take n (fin split time (a # l) n)) = hd (a # l))
prefer 2
apply (subgoal tac a#l 6= [])
prefer 2
apply simp

apply (erule fin split time n2 , assumption)
apply simp

apply (subgoal tac drop n (fin split time (a # l) n) = fin split time l n)
prefer 2
apply (erule fin split time drop)

apply (subgoal tac
fin join time (fin split time (a # l) n, n) =
concat (take n (fin split time (a # l) n))
# fin join time ((drop n (fin split time (a # l) n)), n))

apply auto
apply (case tac n, simp+)+
done

end

theory time raster = Main + stream + join ti :

Split time intervals

constdefs
split time :: ′a istream ⇒ nat ⇒ ′a istream

split time s n t ≡
( if (t mod n = 0 )

then s (t div n)
else [])
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lemma split time1t :
∀ t . split time s 1 t = s t
by (simp add : split time def )

lemma split time1 :
split time s 1 = s
by (simp add : expand fun eq split time def )

lemma split time mod :
t mod n 6= 0 =⇒ split time s n t = []
by (simp add : split time def )

lemma split time nempty :
[[ 0 < n ]] =⇒ split time s n (n ∗ t) = s t
by (simp add : split time def )

lemma split time nempty Suc:
[[ 0 < n ]] =⇒
split time s (Suc n) ((Suc n) ∗ t) = split time s n (n ∗ t)
apply (subgoal tac split time s (Suc n) ((Suc n) ∗ t) = s t)
apply (simp add : split time nempty)
apply (subgoal tac 0 < Suc n)
apply (erule split time nempty)
apply simp
done

lemma split time empty :
[[ i < n; 0 < i ]] =⇒ split time s n (n ∗ t + i) = []
apply (simp add : split time def )
apply (subgoal tac 0 < (n ∗ t + i) mod n)
apply simp
apply (erule arith mod nzero, assumption)
done

lemma split time empty Suc:
[[ i < n; 0 < i ]] =⇒
split time s (Suc n) ((Suc n)∗ t + i) = split time s n (n ∗ t + i)
apply (subgoal tac 0 < Suc n)
apply (subgoal tac i < Suc n)
apply (subgoal tac split time s (Suc n) (Suc n ∗ t + i) = [])
apply (simp add : split time empty)
apply (erule split time empty , assumption)
apply simp+
done

lemma split time hint1 :
n = Suc m =⇒ split time s (Suc n) (i + n ∗ i + n) = []

apply (subgoal tac i + n ∗ i + n = (Suc n) ∗ i + n)
prefer 2
apply simp

apply (subgoal tac n < Suc n)
prefer 2
apply simp

apply (subgoal tac split time s (Suc n) (Suc n ∗ i + n) = [])
prefer 2
apply (rule split time empty)

apply auto
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done

Join time intervals

constdefs
join time :: ′a istream ⇒ nat ⇒ ′a istream

join time s n t ≡
(case n of

0 ⇒ []
|(Suc i) ⇒ join ti s (n∗t) i)

lemma join time1t :
∀ t . join time s (1 ::nat) t = s t
by (simp add : join time def )

lemma join time1 :
join time s 1 = s
apply (simp add : expand fun eq)
apply (simp add : join time def )
done

lemma join time empty1 :
[[ i < n; join time s n t = [] ]] =⇒ s (n∗t + i) = []
apply (simp add : join time def )
apply (case tac n)
apply simp+
apply clarify
apply (subgoal tac i ≤ nat)
prefer 2
apply simp

apply (simp add : join ti empty join)
done

Duality of the split and the join operators

lemma join split i :
[[ 0 < n ]] =⇒ join time (split time s n) n i = s i
apply (simp add : join time def )
apply (case tac n)
apply simp+
apply clarify
apply (rename tac n)
apply (subgoal tac i + n ∗ i = (Suc n) ∗ i)
prefer 2
apply simp

apply (subgoal tac 0 < Suc n)
prefer 2
apply simp

apply (subgoal tac join ti (split time s (Suc n)) ((Suc n) ∗ i) n = s i)
apply simp
apply (subgoal tac (split time s (Suc n)) (Suc n ∗ i) = s i)
prefer 2
apply (erule split time nempty)

apply (subgoal tac
∀ j . 0 < j ∧ j < Suc n −→ split time s (Suc n) (Suc n ∗ i + j ) = [])
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prefer 2
apply clarify
apply (erule split time empty , assumption)

apply (simp add : join ti 1nempty)
done

lemma join split :
[[ 0 < n ]] =⇒ join time (split time s n) n = s
by (simp add : expand fun eq join split i)

end

A.4. Theory ArithExtras.thy

theory ArithExtras = Main + Nat Infinity :

consts
nat2inat :: nat list ⇒ inat list

primrec
nat2inat [] = []
nat2inat (x#xs) = (Fin x ) # (nat2inat xs)

end

A.5. Theory ListExtras.thy

theory ListExtras = Main + List Prefix :
constdefs

disjoint :: ′a list ⇒ ′a list ⇒ bool
disjoint x y ≡ (set x ) ∩ (set y) = {}

lemma set inter mem:
[[x mem l1 ; x mem l2 ]] =⇒ set l1 ∩ set l2 6= {}

apply (induct l1 )
apply simp
apply (simp split add : split if asm)
apply auto
apply (induct l2 )
apply simp
apply (simp split add : split if asm)
apply auto
done

lemma mem notdisjoint :
[[x mem l1 ; x mem l2 ]] =⇒ ¬ disjoint l1 l2

apply (simp add : disjoint def )
apply (subgoal tac [[x mem l1 ; x mem l2 ]] =⇒ set l1 ∩ set l2 6= {})
apply simp
apply (simp add : set inter mem)
done

lemma Add Less: 0 < b =⇒ (Suc a − b < Suc a) = True
by arith

lemma list length hint1 : l ∼= [] =⇒ 0 < length l
by simp
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lemma list length hint1a: [[ l ∼= []]] =⇒ 0 < length l
by simp

lemma list length hint2 : length x = Suc 0 =⇒ [hd x ] = x
by (induct x , auto)

lemma list length hint2a: length l = Suc 0 =⇒ tl l = []
by (induct l , auto)

lemma list length hint3 : length l = Suc 0 =⇒ l 6= []
by (induct l , auto)

lemma list length hint4 :
[[length x ≤ Suc 0 ; x 6= []]] =⇒ length x = Suc 0
by (induct x , auto)

lemma list nth append1 :
[[i < length x ]] =⇒ (b # x ) ! i = (b # x @ y) ! i
apply (case tac i , auto)
apply (simp add : nth append)
done

lemma list nth append2 :
[[ i < Suc (length x )]] =⇒ (b # x ) ! i = (b # x @ a # y) ! i
apply (case tac i , auto)
apply (simp add : nth append)
done

lemma list nth append3 :
[[ ¬ i < Suc (length x ); i − Suc (length x ) < Suc (length y)]]
=⇒ (a # y) ! (i − Suc (length x )) = (b # x @ a # y) ! i
apply (case tac i , auto)
apply (simp add : nth append)
done

lemma list nth append4a:
[[ i < Suc (length x + length y); ¬ i − Suc (length x ) < Suc (length y)]]
=⇒ False
by arith

lemma list nth append4 :
[[i − length x < Suc (length y); ¬ i − Suc (length x ) < Suc (length y)]]
=⇒ ¬ i < Suc (length x + length y)
by arith

lemma list nth append5 :
[[¬ i < Suc (length x ); i − Suc (length x ) < Suc (length y)]]
=⇒ (a # y) ! (i − Suc (length x )) = (aa # x @ a # y) ! i
apply (case tac i , auto)
apply (simp add : nth append)
done

lemma list nth append6 :
[[ ¬ i − length x < Suc (length y); ¬ i − Suc (length x ) < Suc (length y)]]

=⇒ ¬ i < Suc (length x + length y)
by arith
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lemma list nth append6a:
[[i < Suc (length x + length y); ¬ i − length x < Suc (length y)]]

=⇒ False
by arith

lemma list nth append7 :
[[i − length x < Suc (length y); i − Suc (length x ) < Suc (length y)]]

=⇒ i < Suc (Suc (length x + length y))
apply arith
done

lemma list nth append8 :
[[ ¬ i < Suc (length x + length y); i < Suc (Suc (length x + length y))]]
=⇒ i = Suc (length x + length y)
by arith

lemma list nth append9 :
[[ i − Suc (length x ) < Suc (length y)]]
=⇒ i < Suc (Suc (length x + length y))
by arith

lemma list nth append10 :
[[¬ i < Suc (length x ); ¬ i − Suc (length x ) < Suc (length y)]]
=⇒ ¬ i < Suc (Suc (length x + length y))
by arith

end

A.6. Auxiliary Arithmetic Lemmas

theory arith hints = Main:

lemma arith mod neq :
[[ a mod n 6= b mod n ]] =⇒ a 6= b
by auto

lemma arith mod nzero:
[[ i < n; (0 ::nat) < i ]] =⇒ 0 < (n ∗ t + i) mod n
apply (subgoal tac (i + n ∗ t) mod n = i)
prefer 2
apply (simp add : mod mult self2 )

apply (subgoal tac n ∗ t + i = i + n ∗ t)
prefer 2
apply simp

apply (simp (no asm simp))
done

lemma arith 20 :∧
i . [[ (i ::nat) < n; 0 < i ]] =⇒ i + n ∗ t 6= n ∗ q

apply (subgoal tac (i + n ∗ t) mod n = i)
prefer 2
apply (simp add : mod mult self2 )

apply (subgoal tac (n ∗ q) mod n = 0 )
prefer 2
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apply simp
apply (subgoal tac (i + n ∗ t) mod n 6= (n ∗ q) mod n)
prefer 2
apply simp

thm arith mod neq
apply (erule arith mod neq)
done

lemma arith 21 :∧
i . [[ (i ::nat) < n; 0 < i ]] =⇒ n ∗ t + i 6= n ∗ q

apply (subgoal tac n ∗ t + i = i + n ∗ t)
prefer 2
apply simp

apply (subgoal tac i + n ∗ t 6= n ∗ q)
apply simp
apply (erule arith 20 , assumption)
done

lemma arith 22 :∧
i . [[ (i ::nat) < n; 0 < i ]] =⇒ n + n ∗ t + i 6= n ∗ qc

apply (subgoal tac n + n ∗ t + i = n ∗(Suc t) + i)
prefer 2
apply simp

apply (subgoal tac
∧

i . [[ (i ::nat) < n; 0 < i ]] =⇒ n∗(Suc t) + i 6= n ∗ qc)
prefer 2
apply (rule arith 21 , assumption+)

apply simp
done

lemma split time 0arith mod1 :
(t + n ∗ t) mod Suc n = 0
apply (subgoal tac ((Suc n) ∗ t) mod Suc n = 0 )
prefer 2
apply (rule mod mult self1 is 0 )

apply simp
done

lemma split time 0arith mod2 :
Suc (n + (t + n ∗ t)) mod Suc n = 0
apply (subgoal tac ((Suc n) ∗ (Suc t)) mod Suc n = 0 )
prefer 2
apply (rule mod mult self1 is 0 )

apply simp
done

lemma split time 0arith0 :
t + n ∗ t = (Suc n) ∗ t
by auto

lemma split time 0arith1 :
[[ Suc n ∗ t = Suc n ∗ q ]] =⇒ t = q

apply (subgoal tac Suc n ∗ t = Suc n ∗ q = (t = q | (Suc n) = (0 ::nat)))
prefer 2
thm mult cancel1
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apply (rule mult cancel1 )
apply simp
done

lemma split time 0arith2 :
(t ::nat) + (n::nat) ∗ t = (q ::nat) + n ∗ q =⇒ t = q
quickcheck
apply (subgoal tac t + n ∗ t = (Suc n) ∗ t)
prefer 2
apply (rule split time 0arith0 )

apply (subgoal tac q + n ∗ q = (Suc n) ∗ q)
prefer 2
apply (rule split time 0arith0 )

apply (subgoal tac Suc n ∗ t = Suc n ∗ q)
apply (erule split time 0arith1 )
apply (simp (no asm))
done

end
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B.1. Steam Boiler System Specification

theory SteamBoiler = Main + stream + Bit :

constdefs ControlSystem :: nat istream ⇒ bool
ControlSystem s ≡
(ts s) ∧
(∀ (j ::nat). (200 ::nat) ≤ hd (s j ) ∧ hd (s j ) ≤ (800 :: nat))

constdefs
SteamBoiler :: bit istream ⇒ nat istream ⇒ nat istream ⇒ bool

SteamBoiler x s y ≡
ts x
−→
((ts y) ∧ (ts s) ∧ (y = s) ∧
(hd (s 0 ) = (500 ::nat)) ∧
(∀ (j ::nat). (∃ (r ::nat).

(0 ::nat) < r ∧ r ≤ (10 ::nat) ∧
hd (s (Suc j )) =

(if hd (x j ) = Zero
then (hd (s j )) − r
else (hd (s j )) + r)) ))

constdefs
Converter :: bit istream ⇒ bit istream ⇒ bool

Converter z x
≡
(ts x )
∧
(∀ (t ::nat).

hd (x t) =
(if (fin make untimed (inf truncate z t) = [])
then

Zero
else

(fin make untimed (inf truncate z t)) !
((length (fin make untimed (inf truncate z t))) − (1 ::nat))

))

constdefs
Controller L ::

nat istream ⇒ bit iustream ⇒ bit iustream ⇒ bit istream ⇒ bool
Controller L y lIn lOut z
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≡
(z 0 = [Zero])
∧
(∀ (t ::nat).
( if (lIn t) = Zero

then ( if 300 < hd (y t)
then (z t) = [] ∧ (lOut t) = Zero
else (z t) = [One] ∧ (lOut t) = One

)
else ( if hd (y t) < 700

then (z t) = [] ∧ (lOut t) = One
else (z t) = [Zero] ∧ (lOut t) = Zero ) ))

constdefs
Controller :: nat istream ⇒ bit istream ⇒ bool

Controller y z
≡
(ts y)
−→
(∃ l . Controller L y (fin inf append [Zero] l) l z )

constdefs
ControlSystemArch :: nat istream ⇒ bool

ControlSystemArch s
≡
∃ x z :: bit istream. ∃ y :: nat istream.

( SteamBoiler x s y ∧ Controller y z ∧ Converter z x )

end

B.2. Proof of the Steam Boiler System Properties

theory SteamBoiler proof = Main + SteamBoiler :

B.2.1. Properties of Controller Component

lemma L1 Controller :
[[ Controller L y (fin inf append [Zero] l) l z ;

l t 6= Zero ]]
=⇒ last (fin make untimed (inf truncate z t)) = One
apply (induct t)
apply (simp add : Controller L def )
apply clarify
apply (erule tac x=0 in allE)
apply (simp split add : split if asm)
apply simp
apply (subgoal tac
Controller L y (fin inf append [Zero] l) l z )
prefer 2
apply simp

apply (simp add : Controller L def )
apply clarify
apply (erule tac x=Suc t in allE)
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apply (erule tac x=t in allE)
apply (simp split add : split if asm)
apply clarify
apply (simp add : fin make untimed append empty fin inf append def )
apply (simp add : fin make untimed def )+
apply clarify
apply (simp add : fin inf append def )
apply (simp add : fin make untimed def )+
apply clarify
apply (simp add : fin inf append def )
done

lemma L2 Controller :
[[ Controller L y (fin inf append [Zero] l) l z ;

l t = Zero ]]
=⇒ last (fin make untimed (inf truncate z t)) = Zero
apply (induct t)
apply (simp add : Controller L def )
apply clarify
apply (erule tac x=0 in allE)
apply (simp split add : split if asm)
apply (simp add : fin make untimed def )+
apply (subgoal tac

Controller L y (fin inf append [Zero] l) l z )
prefer 2
apply simp

apply (simp add : Controller L def )
apply clarify
apply (erule tac x=Suc t in allE)
apply (erule tac x=t in allE)
apply (simp split add : split if asm)
apply (simp add : correct fin inf append1 )+
done

lemma L3 Controller :
[[ Controller L y (fin inf append [Zero] l) l z ]]
=⇒
last (fin make untimed (inf truncate z t)) = l t
apply (case tac l t)
apply (simp add : L1 Controller L2 Controller)+
done

lemma L4 Controller :
[[ Controller L s (fin inf append [Zero] l) l z ]]
=⇒ fin make untimed (inf truncate z i) 6= []
apply (simp add : Controller L def )
apply (subgoal tac ∀ i . 0 ≤ i −→ fin make untimed (inf truncate z i) 6= [])
prefer 2
apply (simp add : fin make untimed inf truncate Nonempty all0a)

apply simp
done

B.2.2. Properties of the System

lemma L1 ControlSystem:
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ControlSystemArch s =⇒ (200 ::nat) ≤ hd (s i)
apply (simp only : ControlSystemArch def )
apply clarify
apply (induct i)
apply (simp add : SteamBoiler def )
apply (simp add : Converter def )
apply atomize
apply (erule tac x=x in allE)
apply (erule tac x=z in allE)
apply (erule tac x=y in allE)
apply simp
apply (simp add : SteamBoiler def Controller def Converter def )
apply clarify
apply (erule tac x=i in allE)+
apply clarify
apply (simp split add : split if asm)

apply (simp add : L4 Controller)

apply (subgoal tac last (fin make untimed (inf truncate z i)) = l i)
prefer 2
apply (simp add : L3 Controller)

apply (simp add : Controller L def )
apply clarify
apply (erule tac x=i in allE)
apply (simp split add : split if asm)
apply arith
apply (simp add : fin make untimed nth length)
apply (simp add : last nth length)
apply arith
done

lemma L2 ControlSystem:
ControlSystemArch s =⇒ hd (s i) ≤ (800 :: nat)
apply (simp only : ControlSystemArch def )
apply clarify
apply (induct i)
apply (simp add : SteamBoiler def )
apply (simp add : Converter def )
apply atomize
apply (erule tac x=x in allE)
apply (erule tac x=z in allE)
apply (erule tac x=y in allE)
apply simp
apply (simp add : SteamBoiler def Controller def Converter def )
apply clarify
apply (erule tac x=i in allE)
apply (erule tac x=i in allE)
apply clarify
apply (simp split add : split if asm)

apply (simp add : L4 Controller)

apply (subgoal tac last (fin make untimed (inf truncate z i)) = l i)
prefer 2
apply (simp add : L3 Controller)
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apply (simp add : Controller L def )
apply clarify
apply (erule tac x=i in allE)
apply (simp split add : split if asm)
apply arith+

apply (subgoal tac last (fin make untimed (inf truncate z i)) = l i)
prefer 2
apply (simp add : L3 Controller)

apply (simp add : Controller L def )
apply clarify
apply (erule tac x=i in allE)
apply (simp split add : split if asm)
apply (simp add : last nth length)+

done

B.2.3. Proof of the Refinement Relation

lemma L0 ControlSystem:
[[ ControlSystemArch s]] =⇒ ControlSystem s

apply (simp add : ControlSystem def )
apply auto
apply (simp add : ControlSystemArch def )
apply (simp add : SteamBoiler def )
apply (simp add : Converter def )
apply auto
apply (simp add : L1 ControlSystem)
apply (simp add : L2 ControlSystem)
done

B.3. Theory FR - System Specification

theory FR = Main + FR types:

B.3.1. Auxiliary predicates

constdefs
DisjointSchedules :: nat ⇒ nConfig ⇒ bool

DisjointSchedules n nC
≡
∀ i j . i < n ∧ j < n ∧ i 6= j −→
disjoint (schedule (nC i)) (schedule (nC j ))

constdefs
IdenticCycleLength :: nat ⇒ nConfig ⇒ bool

IdenticCycleLength n nC
≡
∀ i j . i < n ∧ j < n −→
cycleLength (nC i) = cycleLength (nC j )

constdefs
FrameTransmission ::

nat ⇒ ′a nFrame ⇒ ′a nFrame ⇒ nNat ⇒ nConfig ⇒ bool
FrameTransmission n nStore nReturn nGet nC
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≡
∀ (t ::nat) (k ::nat). k < n −→
( let s = t mod (cycleLength (nC k))

in
( s mem (schedule (nC k))
−→
(nGet k t) = [s] ∧
(∀ j . j < n ∧ j 6= k −→

((nStore j ) t) = ((nReturn k) t)) ))

constdefs
Broadcast ::

nat ⇒ ′a nFrame ⇒ ′a Frame istream ⇒ bool
Broadcast n nSend recv
≡
∀ (t ::nat).
( if ∃ k . k < n ∧ ((nSend k) t) 6= []

then (recv t) = ((nSend (SOME k . k < n ∧ ((nSend k) t) 6= [])) t)
else (recv t) = [] )

constdefs
Receive ::
′a Frame istream ⇒ ′a Frame istream ⇒ nat istream ⇒ bool
Receive recv store activation
≡
∀ (t ::nat).
( if (activation t) = []

then (store t) = (recv t)
else (store t) = [])

constdefs
Send ::
′a Frame istream ⇒ ′a Frame istream ⇒ nat istream ⇒ nat istream ⇒ bool
Send return send get activation
≡
∀ (t ::nat).
( if (activation t) = []

then (get t) = [] ∧ (send t) = []
else (get t) = (activation t) ∧ (send t) = (return t) )

B.3.2. Main definitions

constdefs
FlexRay ::

nat ⇒ ′a nFrame ⇒ nConfig ⇒ ′a nFrame ⇒ nNat ⇒ bool
FlexRay n nReturn nC nStore nGet
≡
(CorrectSheaf n) ∧
((∀ (i ::nat). i < n −→ (msg 1 (nReturn i))) ∧
(DisjointSchedules n nC ) ∧ (IdenticCycleLength n nC )
−→
(FrameTransmission n nStore nReturn nGet nC ) ∧
(∀ (i ::nat). i < n −→ (msg 1 (nGet i)) ∧ (msg 1 (nStore i))) )
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constdefs
Cable :: nat ⇒ ′a nFrame ⇒ ′a Frame istream ⇒ bool

Cable n nSend recv
≡
(CorrectSheaf n)
∧

((inf disj n nSend) −→ (Broadcast n nSend recv))

constdefs
Scheduler :: Config ⇒ nat istream ⇒ bool

Scheduler c activation
≡
∀ (t ::nat).
( let s = (t mod (cycleLength c))

in
( if (s mem (schedule c))

then (activation t) = [s]
else (activation t) = []) )

constdefs
BusInterface ::

nat istream ⇒ ′a Frame istream ⇒ ′a Frame istream ⇒
′a Frame istream ⇒ ′a Frame istream ⇒ nat istream ⇒ bool

BusInterface activation return recv store send get
≡
(Receive recv store activation) ∧
(Send return send get activation)

constdefs
FlexRayController ::
′a Frame istream ⇒ ′a Frame istream ⇒ Config ⇒
′a Frame istream ⇒ ′a Frame istream ⇒ nat istream ⇒ bool

FlexRayController return recv c store send get
≡

(∃ activation.
(Scheduler c activation) ∧
(BusInterface activation return recv store send get))

constdefs
FlexRayArchitecture ::
nat ⇒ ′a nFrame ⇒ nConfig ⇒ ′a nFrame ⇒ nNat ⇒ bool

FlexRayArchitecture n nReturn nC nStore nGet
≡
(CorrectSheaf n) ∧
(∃ nSend recv .

(Cable n nSend recv) ∧
(∀ (i ::nat). i < n −→

FlexRayController (nReturn i) recv (nC i)
(nStore i) (nSend i) (nGet i)))

constdefs
FlexRayArch ::
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nat ⇒ ′a nFrame ⇒ nConfig ⇒ ′a nFrame ⇒ nNat ⇒ bool
FlexRayArch n nReturn nC nStore nGet
≡
(CorrectSheaf n) ∧
((∀ (i ::nat). i < n −→ msg 1 (nReturn i)) ∧
(DisjointSchedules n nC ) ∧ (IdenticCycleLength n nC )
−→
(FlexRayArchitecture n nReturn nC nStore nGet))

B.4. Proof of the FlexRay System Properties

theory FR proof = Main + FR:

lemma disjointFrame lemma:
[[ DisjointSchedules n nC ; 0 < n;

IdenticCycleLength n nC ;
∀ i < n. FlexRayController (nReturn i) rcv

(nC i) (nStore i) (nSend i) (nGet i) ]]
=⇒ inf disj n nSend
apply (subgoal tac
∀ i<n. FlexRayController (nReturn i) rcv

(nC i) (nStore i) (nSend i) (nGet i))
prefer 2
apply simp

apply (simp only : inf disj def )
apply clarify
apply (erule tac x=i in allE)
apply (erule tac x=j in allE)
apply (simp add : FlexRayController def )
apply clarify
apply (simp add : DisjointSchedules def )
apply (erule tac x=i in allE)
apply (erule tac x=j in allE)
apply (simp add : BusInterface def )
apply clarify
apply (simp add : Send def )
apply (erule tac x=t in allE)+
apply (simp split add : split if asm)
apply clarify
apply (simp add : Scheduler def )
apply (erule tac x=t in allE)+
apply (simp add : Let def )
apply (simp split add : split if asm)
apply (simp only : IdenticCycleLength def )
apply (erule tac x=i in allE)
apply (erule tac x=j in allE)
apply (subgoal tac ¬ disjoint (schedule (nC i)) (schedule (nC j )))
prefer 2
apply (erule mem notdisjoint)
apply auto

done

lemma correct DisjointSchedules1 :
[[ DisjointSchedules n nC ; IdenticCycleLength n nC ;
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(t mod cycleLength (nC k)) mem schedule (nC k);
k < n; j < n; k 6= j ]]

=⇒
¬ (t mod cycleLength (nC j ) mem schedule (nC j ))
apply (simp add : DisjointSchedules def )
apply (erule tac x=k in allE)
apply (erule tac x=j in allE)
apply clarify
apply (simp only : IdenticCycleLength def )
apply (erule tac x=k in allE)
apply (erule tac x=j in allE)
apply simp
apply (subgoal tac ¬ disjoint (schedule (nC k)) (schedule (nC j )))
prefer 2
apply (erule mem notdisjoint)
apply auto

done

lemma fr Send :
[[ FlexRayController (nReturn i) recv (nC i)

(nStore i) (nSend i) (nGet i);
¬ (t mod cycleLength (nC i) mem schedule (nC i))]]
=⇒
(nSend i) t = []
apply (simp add : FlexRayController def )
apply (simp add : Scheduler def )
apply clarify
apply (erule tac x=t in allE)
apply (simp add : Let def )
apply (simp add : BusInterface def )
apply clarify
apply (simp add : Send def )
done

lemma fr nC Send :
[[ ∀ i<n. FlexRayController (nReturn i) recv

(nC i) (nStore i) (nSend i) (nGet i);
0 < n; k < n;
DisjointSchedules n nC ;
IdenticCycleLength n nC ;
t mod cycleLength (nC k) mem schedule (nC k)]]
=⇒
∀ j . j < n ∧ j 6= k −→ (nSend j ) t = []
apply clarify
apply (subgoal tac
¬ (t mod cycleLength (nC j ) mem schedule (nC j )))
prefer 2
apply (erule correct DisjointSchedules1 )
apply assumption+
apply simp

apply (erule tac x=j in allE)
apply (simp add : fr Send)
done

234



B.4. Proof of the FlexRay System Properties

lemma fr nStore nReturn:
[[Cable n nSend recv ;
∀ i<n. FlexRayController (nReturn i) recv

(nC i) (nStore i) (nSend i) (nGet i);
0 < n; k < n;
DisjointSchedules n nC ;
IdenticCycleLength n nC ;
t mod cycleLength (nC k) mem schedule (nC k)]]
=⇒
∀ j . j < n ∧ j 6= k −→ nStore j t = nReturn k t
apply clarify
apply (subgoal tac
∀ j . j < n ∧ j 6= k −→ (nSend j ) t = [])
prefer 2
apply (simp add : fr nC Send)

apply (simp add : Cable def )
apply (simp add : CorrectSheaf def )
apply (subgoal tac inf disj n nSend)
prefer 2
apply (simp add : disjointFrame lemma)

apply simp
apply (subgoal tac
∀ i<n. FlexRayController (nReturn i) recv

(nC i) (nStore i) (nSend i) (nGet i))
prefer 2
apply simp

apply (erule tac x=j in allE)
apply (rotate tac −2 )
apply (erule tac x=k in allE)
apply (simp add : Broadcast def )
apply (erule tac x=t in allE)
apply (simp add : FlexRayController def )
apply (simp add : Scheduler def )
apply clarify
apply (rotate tac −4 )
apply (erule tac x=t in allE)
apply (erule tac x=t in allE)
apply (simp add : Let def )

apply (case tac (t mod cycleLength (nC j ) mem schedule (nC j )))
apply (simp add : correct DisjointSchedules1 )

apply (simp add : BusInterface def )
apply clarify
apply (simp add : Send def )
apply (rotate tac −3 )
apply (erule tac x=t in allE)
apply (erule tac x=t in allE)
apply (simp split add : split if asm)
apply (subgoal tac

(SOME i . i < n ∧ nSend i t 6= []) = ka)
prefer 2
apply (simp add : inf disj index )

apply simp
apply (erule tac

V =(SOME i . i < n ∧ nSend i t 6= []) = ka
in thin rl)
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apply (simp only : inf disj def )
apply (erule tac x=ka in allE)
apply (erule tac x=t in allE)
apply (erule tac x=ka in allE)
apply (erule tac x=k in allE)
apply (simp add : Receive def )+
done

lemma fr refinement FrameTransmission:
[[ Cable n nSend recv ;
∀ i<n. FlexRayController (nReturn i) recv

(nC i) (nStore i) (nSend i) (nGet i);
0 < n;
DisjointSchedules n nC ; IdenticCycleLength n nC ]]

=⇒ FrameTransmission n nStore nReturn nGet nC
apply (simp add : FrameTransmission def )
apply clarify
apply (simp add : Let def )
apply clarify
apply (simp add : fr nStore nReturn)
apply (erule tac x=k in allE)
apply (simp add : FlexRayController def )
apply (simp add : BusInterface def )
apply clarify
apply (simp add : Send def Scheduler def )
apply (erule tac x=t in allE)+
apply (simp add : Let def )
done

lemma fr refinement msg nGet :
[[ i < n;

∀ i<n. FlexRayController (nReturn i) recv
(nC i) (nStore i) (nSend i) (nGet i)]]

=⇒ msg (Suc 0 ) (nGet i)
apply (simp add : FlexRayController def )
apply (erule tac x=i in allE)
apply clarify
apply (simp add : BusInterface def msg def )
apply (simp add : Send def Scheduler def )
apply clarify
apply (erule tac x=t in allE)+
apply (simp add : Let def )
apply (simp split add : split if asm)
done

lemma fr refinement msg nSend :
[[ msg (Suc 0 ) (nReturn i);

BusInterface activation (nReturn i) recv
(nStore i) (nSend i) (nGet i)]]

=⇒ msg (Suc 0 ) (nSend i)
apply (simp add : msg def BusInterface def )
apply clarify
apply (simp add : Send def )
apply (erule tac x=t in allE)+
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apply (simp split add : split if asm)
done

lemma fr refinement msg nStore:
[[ DisjointSchedules n nC ; IdenticCycleLength n nC ;

inf disj n nSend ; i < n; 0 < n;
∀ i<n. msg (Suc 0 ) (nReturn i);
Cable n nSend recv ;
∀ i<n. FlexRayController (nReturn i) recv

(nC i) (nStore i) (nSend i) (nGet i)]]
=⇒ msg (Suc 0 ) (nStore i)
apply (simp (no asm) add : msg def )
apply (simp add : Cable def )
apply clarify
apply (simp add : CorrectSheaf def Broadcast def )
apply (rotate tac −1 )
apply (erule tac x=t in allE)
apply (simp split add : split if asm)
apply (subgoal tac

(SOME i . i < n ∧ nSend i t 6= []) = k)
prefer 2
apply (simp add : inf disj index )

apply simp
apply (erule tac

V =(SOME i . i < n ∧ nSend i t 6= []) = k
in thin rl)

apply (simp only : inf disj def )
apply (rotate tac 2 )
apply (erule tac x=t in allE)
apply (erule tac x=k in allE)
apply simp
apply (subgoal tac
∀ i<n. FlexRayController (nReturn i) recv

(nC i) (nStore i) (nSend i) (nGet i))
prefer 2
apply simp

apply (erule tac x=k in allE)
apply (rotate tac −2 )
apply (erule tac x=i in allE)
apply clarify
apply (simp add : FlexRayController def )
apply (erule tac x=k in allE)
apply clarify
apply (subgoal tac msg (Suc 0 ) (nSend k))
prefer 2
apply (erule fr refinement msg nSend)
apply assumption

apply (simp add : BusInterface def )
apply clarify
apply (simp add : Receive def )
apply (rotate tac −4 )
apply (erule tac x=t in allE)
apply (erule tac x=t in allE)
apply (simp split add : split if asm)
apply (simp add : msg def )+
apply (rotate tac 5 )
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apply (erule tac x=i in allE)
apply (simp add : FlexRayController def )
apply (simp add : BusInterface def )
apply clarify
apply (simp add : Receive def )
apply (rotate tac −2 )
apply (erule tac x=t in allE)
apply (simp split add : split if asm)
done

lemma fr refinement msg :
[[ Cable n nSend recv ;

i < n; 0 < n; ∀ i<n. msg (Suc 0 ) (nReturn i);
DisjointSchedules n nC ; IdenticCycleLength n nC ;
∀ i<n. FlexRayController (nReturn i) recv

(nC i) (nStore i) (nSend i) (nGet i)]]
=⇒ msg (Suc 0 ) (nGet i) ∧ msg (Suc 0 ) (nStore i)
apply (subgoal tac inf disj n nSend)
prefer 2
apply (simp add : disjointFrame lemma)

apply (rule conjI )
apply (simp add : fr refinement msg nGet)
apply (erule fr refinement msg nStore)
apply auto
done

theorem main fr refinement :
FlexRayArch n nReturn nC nStore nGet
=⇒ FlexRay n nReturn nC nStore nGet
apply (simp add : FlexRayArch def FlexRay def )
apply (simp add : FlexRayArchitecture def )
apply (simp add : CorrectSheaf def )
apply auto
apply (simp add : fr refinement FrameTransmission)
apply (simp only : fr refinement msg)+
done

end

B.5. Automotive-Gateway System Specification

theory Gateway = Main + Gateway types:

constdefs
ServiceCenter ::

ECall Info istream ⇒ aType istream ⇒ bool
ServiceCenter i a
≡
∀ (t ::nat).
a 0 = [] ∧ a (Suc t) = (if (i t) = [] then [] else [sc ack ])
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constdefs
Loss ::
bool istream ⇒ aType istream ⇒ ECall Info istream ⇒
aType istream ⇒ ECall Info istream ⇒ bool

Loss lose a i2 a2 i
≡
∀ (t ::nat).
( if lose t = [False]

then a2 t = a t ∧ i t = i2 t
else a2 t = [] ∧ i t = [] )

constdefs
Delay ::
aType istream ⇒ ECall Info istream ⇒ nat ⇒
aType istream ⇒ ECall Info istream ⇒ bool

Delay a2 i1 d a1 i2
≡
∀ (t ::nat).
(t < d −→ a1 t = [] ∧ i2 t = []) ∧
(a1 (t+d) = a2 t) ∧
(i2 (t+d) = i1 t)

constdefs
tiTable SampleT ::
reqType istream ⇒ aType istream ⇒
stopType istream ⇒ bool istream ⇒
(nat ⇒ GatewayStatus) ⇒ (nat ⇒ ECall Info list) ⇒
GatewayStatus istream ⇒ ECall Info istream ⇒ vcType istream
⇒ (nat ⇒ GatewayStatus) ⇒ bool

tiTable SampleT req a1 stop lose st in buffer in
ack i1 vc st out

≡
∀ (t ::nat)

(r ::reqType list) (x ::aType list)
(y ::stopType list) (z ::bool list).

(∗1∗)
( st in t = init state ∧ req t = [init ]
−→ ack t = [call ] ∧ i1 t = [] ∧ vc t = []

∧ st out t = call )
∧
(∗2∗)
( st in t = init state ∧ req t 6= [init ]
−→ ack t = [init state] ∧ i1 t = [] ∧ vc t = []

∧ st out t = init state )
∧
(∗3∗)
( (st in t = call ∨ (st in t = connection ok ∧ r 6= [send ])) ∧

req t = r ∧ lose t = [False]
−→ ack t = [connection ok ] ∧ i1 t = [] ∧ vc t = []

∧ st out t = connection ok )
∧
(∗4∗)
( (st in t = call ∨ st in t = connection ok ∨ st in t = sending data)
∧ lose t = [True]
−→ ack t = [init state] ∧ i1 t = [] ∧ vc t = []
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∧ st out t = init state )
∧
(∗5∗)
( st in t = connection ok ∧ req t = [send ] ∧ lose t = [False]
−→ ack t = [sending data] ∧ i1 t = buffer in t ∧ vc t = []

∧ st out t = sending data )
∧
(∗6∗)
( st in t = sending data ∧ a1 t = [] ∧ lose t = [False]
−→ ack t = [sending data] ∧ i1 t = [] ∧ vc t = []

∧ st out t = sending data )
∧
(∗7∗)
( st in t = sending data ∧ a1 t = [sc ack ] ∧ lose t = [False]
−→ ack t = [voice com] ∧ i1 t = [] ∧ vc t = [vc com]

∧ st out t = voice com )
∧
(∗8∗)
( st in t = voice com ∧ stop t = [] ∧ lose t = [False]
−→ ack t = [voice com] ∧ i1 t = [] ∧ vc t = [vc com]

∧ st out t = voice com )
∧
(∗9∗)
( st in t = voice com ∧ stop t = [] ∧ lose t = [True]
−→ ack t = [voice com] ∧ i1 t = [] ∧ vc t = []

∧ st out t = voice com )
∧
(∗10∗)
( st in t = voice com ∧ stop t = [stop vc]
−→ ack t = [init state] ∧ i1 t = [] ∧ vc t = []

∧ st out t = init state )

constdefs
Sample L ::
reqType istream ⇒ ECall Info istream ⇒ aType istream ⇒
stopType istream ⇒ bool istream ⇒
(nat ⇒ GatewayStatus) ⇒ (nat ⇒ ECall Info list) ⇒
GatewayStatus istream ⇒ ECall Info istream ⇒ vcType istream
⇒ (nat ⇒ GatewayStatus) ⇒ (nat ⇒ ECall Info list)
⇒ bool

Sample L req dt a1 stop lose st in buffer in
ack i1 vc st out buffer out

≡
(∀ (t ::nat).
buffer out t =
(if dt t = [] then buffer in t else dt t) )

∧
(tiTable SampleT req a1 stop lose st in buffer in

ack i1 vc st out)

constdefs
Sample ::
reqType istream ⇒ ECall Info istream ⇒ aType istream ⇒
stopType istream ⇒ bool istream ⇒
GatewayStatus istream ⇒ ECall Info istream ⇒ vcType istream
⇒ bool

240



B.5. Automotive-Gateway System Specification

Sample req dt a1 stop lose ack i1 vc
≡
((msg (1 ::nat) req) ∧
(msg (1 ::nat) a1 ) ∧
(msg (1 ::nat) stop))
−→
(∃ st buffer .
(Sample L req dt a1 stop lose

(fin inf append [init state] st)
(fin inf append [[]] buffer)
ack i1 vc st buffer) )

constdefs
Gateway ::

reqType istream ⇒ ECall Info istream ⇒ aType istream ⇒
stopType istream ⇒ bool istream ⇒ nat ⇒
GatewayStatus istream ⇒ ECall Info istream ⇒ vcType istream
⇒ bool

Gateway req dt a stop lose d ack i vc
≡ ∃ i1 i2 a1 a2 .

(Sample req dt a1 stop lose ack i1 vc) ∧
(Delay a2 i1 d a1 i2 ) ∧
(Loss lose a i2 a2 i)

constdefs
tiTable SampleT ext ::
reqType istream ⇒ aType istream ⇒
stopType istream ⇒ bool istream ⇒
(nat ⇒ GatewayStatus) ⇒ (nat ⇒ ECall Info list) ⇒
GatewayStatus istream ⇒ ECall Info istream ⇒ vcType istream
⇒ (nat ⇒ GatewayStatus) ⇒ bool

tiTable SampleT ext req a1 stop lose st in buffer in
ack i1 vc st out

≡
∀ (t ::nat)

(r ::reqType list) (x ::aType list)
(y ::stopType list) (z ::bool list).

(∗1∗)
( st in t = init state ∧ req t = [init ]
∧ a1 t = x ∧ stop t = y ∧ lose t = z
−→ ack t = [call ] ∧ i1 t = [] ∧ vc t = []

∧ st out t = call )
∧
(∗2∗)
( st in t = init state ∧ r 6= [init ]
∧ req t = r ∧ a1 t = x ∧ stop t = y ∧ lose t = z
−→ ack t = [init state] ∧ i1 t = [] ∧ vc t = []

∧ st out t = init state )
∧
(∗3∗)
( (st in t = call ∨ (st in t = connection ok ∧ r 6= [send ])) ∧

req t = r ∧ a1 t = x ∧ stop t = y ∧ lose t = [False]
−→ ack t = [connection ok ] ∧ i1 t = [] ∧ vc t = []

∧ st out t = connection ok )
∧
(∗4∗)
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( (st in t = call ∨ st in t = connection ok ∨ st in t = sending data)
∧ req t = r ∧ a1 t = x ∧ stop t = y ∧ lose t = [True]
−→ ack t = [init state] ∧ i1 t = [] ∧ vc t = []

∧ st out t = init state )
∧
(∗5∗)
( st in t = connection ok ∧ req t = [send ] ∧ req t = r
∧ a1 t = x ∧ stop t = y ∧ lose t = [False]
−→ ack t = [sending data] ∧ i1 t = buffer in t ∧ vc t = []

∧ st out t = sending data )
∧
(∗6∗)
( st in t = sending data ∧ req t = r ∧ a1 t = []
∧ stop t = y ∧ lose t = [False]
−→ ack t = [sending data] ∧ i1 t = [] ∧ vc t = []

∧ st out t = sending data )
∧
(∗7∗)
( st in t = sending data ∧ req t = r ∧ a1 t = [sc ack ]
∧ stop t = y ∧ lose t = [False]
−→ ack t = [voice com] ∧ i1 t = [] ∧ vc t = [vc com]

∧ st out t = voice com )
∧
(∗8∗)
( st in t = voice com ∧ req t = r ∧ a1 t = x
∧ stop t = [] ∧ lose t = [False]
−→ ack t = [voice com] ∧ i1 t = [] ∧ vc t = [vc com]

∧ st out t = voice com )
∧
(∗9∗)
( st in t = voice com ∧ req t = r ∧ a1 t = x
∧ stop t = [] ∧ lose t = [True]
−→ ack t = [voice com] ∧ i1 t = [] ∧ vc t = []

∧ st out t = voice com )
∧
(∗10∗)
( st in t = voice com ∧ req t = r ∧ a1 t = x
∧ stop t = [stop vc] ∧ lose t = z
−→ ack t = [init state] ∧ i1 t = [] ∧ vc t = []

∧ st out t = init state )

constdefs
GatewaySystem ::
reqType istream ⇒ ECall Info istream ⇒
stopType istream ⇒ bool istream ⇒ nat ⇒
GatewayStatus istream ⇒ vcType istream
⇒ bool

GatewaySystem req dt stop lose d ack vc
≡
∃ a i .

(Gateway req dt a stop lose d ack i vc) ∧
(ServiceCenter i a)

constdefs
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GatewayReq ::
reqType istream ⇒ ECall Info istream ⇒ aType istream ⇒
stopType istream ⇒ bool istream ⇒ nat ⇒
GatewayStatus istream ⇒ ECall Info istream ⇒ vcType istream
⇒ bool

GatewayReq req dt a stop lose d ack i vc
≡

((msg (1 ::nat) req) ∧ (msg (1 ::nat) a) ∧
(msg (1 ::nat) stop) ∧ (ts lose))
−→

(∀ (t ::nat).
( ack t = [init state] ∧ req (Suc t) = [init ] ∧

lose (t+1 ) = [False] ∧ lose (t+2 ) = [False]
−→ ack (t+2 ) = [connection ok ])

∧
( ack t = [connection ok ] ∧ req (Suc t) = [send ] ∧

(∀ (k ::nat). k ≤ (d+1 ) −→ lose (t+k) = [False])
−→ i ((Suc t) + d) = inf last ti dt t

∧ ack (Suc t) = [sending data])
∧
( ack (t+d) = [sending data] ∧ a (Suc t) = [sc ack ] ∧

(∀ (k ::nat). k ≤ (d+1 ) −→ lose (t+k) = [False])
−→ vc ((Suc t) + d) = [vc com]) )

constdefs
GatewaySystemReq ::
reqType istream ⇒ ECall Info istream ⇒
stopType istream ⇒ bool istream ⇒ nat ⇒
GatewayStatus istream ⇒ vcType istream
⇒ bool

GatewaySystemReq req dt stop lose d ack vc
≡

((msg (1 ::nat) req) ∧ (msg (1 ::nat) stop) ∧ (ts lose))
−→

(∀ (t ::nat) (k ::nat).
( ack t = [init state] ∧ req (Suc t) = [init ]
∧ (∀ t1 . t1 ≤ t −→ req t1 = [])
∧ req (t+2 ) = []
∧ (∀ m. m < k + 3 −→ req (t + m) 6= [send ])
∧ req (t+3+k) = [send ] ∧ inf last ti dt (t+2 ) 6= []
∧ (∀ (j ::nat).

j ≤ (4 + k + d + d) −→ lose (t+j ) = [False])
−→ vc (t + 4 + k + d + d) = [vc com]) )

constdefs
GatewayReqExt ::

reqType istream ⇒ ECall Info istream ⇒ aType istream ⇒
stopType istream ⇒ bool istream ⇒ nat ⇒
GatewayStatus istream ⇒ ECall Info istream ⇒ vcType istream
⇒ bool

GatewayReqExt req dt a stop lose d ack i vc
≡
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((msg (1 ::nat) req) ∧ (msg (1 ::nat) a) ∧
(msg (1 ::nat) stop) ∧ (ts lose))
−→

(∀ (t ::nat) (k ::nat).
( ack t = [init state] ∧ req (Suc t) = [init ] ∧

lose (t+1 ) = [False] ∧ lose (t+2 ) = [False]
−→ ack (t+2 ) = [connection ok ])

∧
( ack t = [init state] ∧ req (Suc t) = [init ] ∧

req (t + 3 + k) = [send ] ∧
(∀ t1 ≤ t . req t1 = []) ∧
(∀ m < (k + 3 ). req (t + m) 6= [send ]) ∧
(∀ j ≤ (k + d + 3 ). lose (t+j ) = [False])
−→ (∀ t2 < (t + 3 + k + d). i t2 = []) )

∧
( ack t = [connection ok ] ∧

(∀ m ≤ k . req (t + m) 6= [send ]) ∧
(∀ j ≤ k . lose (t+j ) = [False])
−→ (∀ y ≤ k . ack (t + y) = [connection ok ]) )

∧
( ack t = [connection ok ] ∧ req (Suc t) = [send ] ∧

(∀ (k ::nat). k ≤ (d+1 ) −→ lose (t+k) = [False])
−→ i ((Suc t) + d) = inf last ti dt t

∧ ack (Suc t) = [sending data])
∧
( ack t = [sending data] ∧ (∀ t3 ≤ t+d . a t3 = []) ∧

(∀ j ≤ (d+d). lose (t+j ) = [False])
−→ (∀ x ≤ (d+d). ack (t + x ) = [sending data] ) )

∧
( ack (t+d) = [sending data] ∧ a (Suc t) = [sc ack ] ∧

(∀ (k ::nat). k ≤ (d+1 ) −→ lose (t+k) = [False])
−→ vc ((Suc t) + d) = [vc com]) )

end

B.6. Auxiliary Proofs for the Automotive-Gateway System

theory Gateway proof aux = Main + Gateway + ts bool stream:

B.6.1. Properties of the defined datatypes

lemma aType empty :
[[msg (Suc 0 ) a; a t 6= [sc ack ] ]] =⇒ a t = []
apply (simp add : msg def )
apply (erule tac x=t in allE)
apply (case tac a t)
apply auto
apply (case tac aa)
apply auto
done

lemma stopType empty :
[[msg (Suc 0 ) a; a t 6= [stop vc] ]] =⇒ a t = []
apply (simp add : msg def )
apply (erule tac x=t in allE)
apply (case tac a t)
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apply auto
apply (case tac aa)
apply auto
done

lemma vcType empty :
[[ msg (Suc 0 ) a; a t 6= [vc com] ]] =⇒ a t = []
apply (simp add : msg def )
apply (erule tac x=t in allE)
apply (case tac a t)
apply auto
apply (case tac aa)
apply auto
done

B.6.2. Equivalence of the titable representations: SampleT and
SampleT ext

lemma univ tiTable Sample:
tiTable SampleT req a1 stop lose st in buffer in

ack i1 vc st out
=
tiTable SampleT ext req a1 stop lose st in buffer in

ack i1 vc st out
apply auto
apply (simp add : tiTable SampleT ext def tiTable SampleT def )
apply (simp add : tiTable SampleT def )
apply clarify
apply (simp add : tiTable SampleT ext def )
apply (erule tac x=t in allE)
apply (erule tac x=req t in allE)
apply (erule tac x=a1 t in allE)
apply (erule tac x=stop t in allE)
apply (erule tac x=lose t in allE)
apply simp
done

B.6.3. Auxiliary Lemmas

lemma inf last ti2 :
inf last ti dt (Suc (Suc t)) 6= []
=⇒ inf last ti dt (Suc (Suc (t + k))) 6= []
by (induct k , auto)

lemma buffer inf last ti :
[[∀ t . buffer t =

(if dt t = [] then fin inf append [[]] buffer t else dt t) ]]
=⇒
buffer t = inf last ti dt t
apply (subgoal tac
∀ t . buffer t =
(if dt t = [] then fin inf append [[]] buffer t else dt t))
prefer 2
apply simp

apply (erule tac x=t in allE)
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apply (simp split add : split if asm)
apply (induct t)
apply (simp add : fin inf append def )
apply simp
apply (simp add : correct fin inf append1 )
apply clarify
apply (case tac dt t = [])
apply (simp add : correct fin inf append1 )
apply (erule tac x=t in allE)
apply simp
done

lemma aux ack t2 :
[[ ∀m≤k . ack (Suc (Suc (t + m))) = [connection ok ];

Suc (Suc t) < t2 ; t2 < t + 3 + k ]]
=⇒ ack t2 = [connection ok ]
apply (erule tac x=(t2 − t − (2 ::nat)) in allE)
apply simp
apply (subgoal tac t2 − Suc (Suc t) ≤ k)
prefer 2
apply arith

apply (subgoal tac (Suc (Suc (t2 − 2 ))) = t2 )
prefer 2
apply arith

apply simp
done

lemma aux lemma lose 1 :
∀ j ≤ (2 ::nat) ∗ d + ((4 ::nat) + k). lose (t + j ) = x =⇒
∀ ka≤Suc d . lose (Suc (Suc (t + k + ka))) = x
apply auto
apply (erule tac x=k + 2 + ka in allE)
apply simp
apply (subgoal tac (t + (k + ka))= (t + k + ka) )
prefer 2
apply simp

apply simp
done

lemma aux lemma lose 2 :
∀ j≤(2 ::nat) ∗ d + ((4 ::nat) + k). lose (t + j ) = [False]
=⇒ ∀ x≤d + (1 ::nat). lose (t + x ) = [False]
by auto

lemma aux lemma lose 3 :
∀ j≤2 ∗ d + (4 + k). lose (t + j ) = [False]
=⇒ ∀ ka≤Suc d . lose (d + (t + (3 + k)) + ka) = [False]
apply auto
apply (erule tac x=(d + 3 + k + ka) in allE)
apply simp
apply (subgoal tac

(t + (d + 3 + k + ka)) = (d + (t + (3 + k)) + ka))
prefer 2
apply arith

apply simp
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done

lemma aux arith1 Gateway7 :
[[ t2 − t ≤ (2 ::nat) ∗ d + (t + ((4 ::nat) + k));

t2 < t + (3 ::nat) + k + d ; ¬ t2 − d < (0 ::nat) ]]
=⇒ t2 − d < t + (3 ::nat) + k
by arith

lemma Loss Delay msg a:
[[ msg (Suc 0 ) a; Delay a2 i1 d a1 i2 ; Loss lose a i2 a2 i ]]
=⇒ msg (Suc 0 ) a1
apply (simp add : msg def )
apply clarify
apply (simp add : Delay def Loss def )
apply (case tac t < d)
apply (erule tac x=t in allE)+
apply simp
apply (rotate tac 1 )
apply (erule tac x=t−d in allE)
apply simp
apply (erule tac x=t−d in allE)
apply (simp split add : split if asm)
done

lemma tiTable ack st :
[[ tiTable SampleT req a1 stop lose st in b ack i1 vc st out ;

ts lose; msg (Suc 0 ) a1 ; msg (Suc 0 ) stop]]
=⇒ ack t = [st out t ]
apply (simp add : tiTable SampleT def )
apply (erule tac x=t in allE)
apply clarify
apply (case tac st in t)
apply simp
apply (case tac req t = [init ])
apply simp+
apply (case tac lose t = [False])
apply simp
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
apply (case tac req t = [send ])
apply simp+
apply (case tac lose t = [False])
apply simp
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
apply (case tac lose t = [False])
apply simp
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
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apply (case tac lose t = [False])
apply simp
apply (case tac a1 t = [sc ack ])
apply simp
apply (subgoal tac a1 t = [])
prefer 2
apply (erule aType empty , assumption)

apply simp+
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
apply (case tac stop t = [stop vc])
apply simp
apply (subgoal tac stop t = [])
prefer 2
apply (erule stopType empty , assumption)

apply simp
apply (case tac lose t = [False])
apply simp
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp
done

lemma tiTable ack st hd :
[[ tiTable SampleT req a1 stop lose st in b ack i1 vc st out ;

ts lose; msg (Suc 0 ) a1 ; msg (Suc 0 ) stop]]
=⇒ st out t = hd (ack t)
by (simp add : tiTable ack st)

lemma tiTable i1 1 :
[[ tiTable SampleT req a1 stop lose st in b ack i1 vc st out ;

ts lose; msg (Suc 0 ) a1 ; msg (Suc 0 ) stop;
ack t = [connection ok ]]]

=⇒ i1 t = []
apply (simp add : tiTable SampleT def )
apply (erule tac x=t in allE)
apply clarify
apply (case tac st in t)
apply simp+
apply (subgoal tac lose t = [False])
prefer 2
apply (erule ts bool False, assumption)

apply simp+
apply (case tac req t = [send ])
apply simp+
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
apply (subgoal tac lose t = [False])
prefer 2
apply (erule ts bool False, assumption)
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apply simp+
apply (case tac a1 t = [sc ack ])
apply simp
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
apply (subgoal tac a1 t = [])
prefer 2
apply (erule aType empty , assumption)

apply simp+
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
apply (case tac stop t = [stop vc])
apply simp
apply (subgoal tac stop t = [])
prefer 2
apply (erule stopType empty , assumption)

apply simp
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp
done

lemma tiTable i1 2 :
[[ tiTable SampleT req a1 stop lose st in b ack i1 vc st out ;

ts lose; msg (Suc 0 ) a1 ; msg (Suc 0 ) stop;
ack t = [call ]]]

=⇒ i1 t = []
apply (simp add : tiTable SampleT def )
apply (erule tac x=t in allE)
apply clarify
apply (case tac st in t)
apply simp+
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
apply (case tac req t = [send ])
apply simp+
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
apply (subgoal tac lose t = [False])
prefer 2
apply (erule ts bool False, assumption)

apply simp+
apply (case tac a1 t = [sc ack ])
apply simp
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)
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apply simp+
apply (subgoal tac a1 t = [])
prefer 2
apply (erule aType empty , assumption)

apply simp+
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
apply (case tac stop t = [stop vc])
apply simp
apply (subgoal tac stop t = [])
prefer 2
apply (erule stopType empty , assumption)

apply simp
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp
done

lemma tiTable ack init :
[[ tiTable SampleT req a1 stop lose

(fin inf append [init state] st)
b ack i1 vc st ;

ts lose; msg (Suc 0 ) a1 ; msg (Suc 0 ) stop;
∀ t1 ≤ t . req t1 = [] ]]
=⇒ ack t = [init state]
apply (induct t)
apply (simp add : tiTable SampleT def )
apply (erule tac x=0 in allE)
apply clarify
apply (simp add : fin inf append def )

apply simp
apply (subgoal tac st t = hd (ack t))
prefer 2
apply (simp add : tiTable ack st hd)

apply (subgoal tac
(fin inf append [init state] st) (Suc t) = init state)
prefer 2
apply (simp add : correct fin inf append2 )

apply (simp add : tiTable SampleT def )
done

lemma tiTable i1 3 :
[[ tiTable SampleT req a1 stop lose

(fin inf append [init state] st)
b ack i1 vc st ;

ts lose; msg (Suc 0 ) a1 ; msg (Suc 0 ) stop;
∀ t1 ≤ t . req t1 = [] ]]
=⇒ i1 t = []
apply (subgoal tac ack t = [init state])
prefer 2
apply (simp add : tiTable ack init)
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apply (subgoal tac st t = hd (ack t))
prefer 2
apply (simp add : tiTable ack st hd)

apply (subgoal tac
(fin inf append [init state] st) (Suc t) = init state)
prefer 2
apply (simp add : correct fin inf append2 )

apply (simp add : tiTable SampleT def )
apply (erule tac x=t in allE)
apply clarify
apply (case tac fin inf append [init state] st t)
apply simp+
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
apply (case tac a1 t = [sc ack ])
apply simp
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
apply (subgoal tac a1 t = [])
prefer 2
apply (erule aType empty , assumption)

apply simp+
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp+
apply (case tac stop t = [stop vc])
apply simp
apply (subgoal tac stop t = [])
prefer 2
apply (erule stopType empty , assumption)

apply simp
apply (subgoal tac lose t = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp
done

lemma tiTable i1 4 :
[[ tiTable SampleT req a1 stop lose

(fin inf append [init state] st)
b ack i1 vc st ;

ts lose; msg (Suc 0 ) a1 ; msg (Suc 0 ) stop;
∀ t1 ≤ t . req t1 = []; req (Suc t) = [init ];
∀m < k + 3 . req (t + m) 6= [send ];
∀m ≤ k . ack (Suc (Suc (t + m))) = [connection ok ];
∀ j ≤ k + 3 . lose (t + j ) = [False] ]]

=⇒ ∀ t2 < (t + 3 + k). i1 t2 = []
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apply clarify
apply (case tac t2 ≤ t)
apply (simp add : tiTable i1 3 )

apply (subgoal tac ack t = [init state])
prefer 2
apply (simp add : tiTable ack init)

apply (subgoal tac st t = hd (ack t))
prefer 2
apply (simp add : tiTable ack st hd)

apply (subgoal tac
(fin inf append [init state] st) (Suc t) = init state)
prefer 2
apply (simp add : correct fin inf append2 )

apply (subgoal tac st (Suc t) = call)
prefer 2
apply (simp add : tiTable SampleT def )

apply (case tac t2 = Suc t)
apply (simp add : tiTable SampleT def )

apply (subgoal tac
(fin inf append [init state] st) (Suc (Suc t)) = call)
prefer 2
apply (simp add : correct fin inf append2 )

apply (subgoal tac st (Suc (Suc t)) = connection ok)
prefer 2
apply (simp add : tiTable SampleT def )
apply (erule tac x=Suc (Suc t) in allE)
apply clarify
apply simp
apply (case tac lose (Suc (Suc t)) = [False])
apply simp+
apply (subgoal tac lose (Suc (Suc t)) = [True])
prefer 2
apply (erule ts bool True, assumption)

apply simp
apply (rotate tac 7 )
apply (erule tac x=Suc (Suc 0 ) in allE)
apply simp

apply (case tac t2 = Suc (Suc t))
apply (subgoal tac ack (Suc (Suc t)) = [st (Suc (Suc t))])
prefer 2
apply (erule tiTable ack st , assumption+)

apply (simp add : tiTable i1 1 )
apply (subgoal tac Suc (Suc t) < t2 )
prefer 2
apply simp

apply (subgoal tac ack t2 = [connection ok ])
prefer 2
apply (erule aux ack t2 , assumption+)

apply (simp add : tiTable i1 1 )
done

lemma tiTable ack ok :
[[ ∀ j≤ d + 2 . lose (t + j ) = [False];

ts lose; msg (Suc 0 ) a; msg (Suc 0 ) stop;
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req (Suc t) 6= [send ];
ack t = [connection ok ]; msg (Suc 0 ) a1 ;
tiTable SampleT req a1 stop lose (fin inf append [init state] st) b ack i1 vc st ]]
=⇒ ack (Suc t) = [connection ok ]
apply (subgoal tac st t = hd (ack t))
prefer 2
apply (simp add : tiTable ack st hd)

apply (subgoal tac
(fin inf append [init state] st) (Suc t) = connection ok)
prefer 2
apply (simp add : correct fin inf append2 )

apply (simp add : tiTable SampleT def )
apply (rotate tac −3 )
apply (erule tac x=Suc t in allE)
apply clarify
apply (erule tac x=Suc 0 in allE)
apply simp
done

lemma Gateway L7a:
[[ ∀ j≤ d + 2 . lose (t + j ) = [False];

Gateway req dt a stop lose d ack i vc; ts lose;
msg (Suc 0 ) a; msg (Suc 0 ) stop;
msg (Suc 0 ) req ; req (Suc t) 6= [send ];
ack (t) = [connection ok ]]]

=⇒ ack (Suc t) = [connection ok ]
apply (simp add : Gateway def )
apply clarify
apply (simp add : Sample def )
apply (subgoal tac msg (Suc 0 ) a1 )
prefer 2
apply (simp add : Loss Delay msg a)

apply clarify
apply (simp add : Sample L def )
apply clarify
apply (erule tac
V =∀ t . buffer t =
(if dt t = [] then fin inf append [[]] buffer t else dt t)
in thin rl)
apply (simp add : tiTable ack ok)
done

lemma Sample L buffer :
[[ Sample L req dt a1 stop lose

(fin inf append [init state] st)
(fin inf append [[]] buffer)
ack i1 vc st buffer ]]

=⇒ buffer t = inf last ti dt t
apply (simp only : Sample L def )
apply clarify
apply (erule tac
V =tiTable SampleT req a1 stop lose

(fin inf append [init state] st)
(fin inf append [[]] buffer) ack i1 vc st

in thin rl)
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apply (subgoal tac
∀ t . buffer t =
(if dt t = [] then fin inf append [[]] buffer t else dt t))
prefer 2
apply simp

apply (erule tac x=t in allE)
apply (induct t)
apply (simp add : fin inf append def )
apply atomize
apply simp
apply (case tac dt t = [])
apply (simp add : correct fin inf append1 )
apply simp
apply (erule tac x=t in allE)
apply (simp add : correct fin inf append1 )
done

lemma Sample L i1 buffer :
[[ msg (Suc 0 ) req ; msg (Suc 0 ) a; msg (Suc 0 ) stop;

ack t = [connection ok ]; req (Suc t) = [send ];
∀ k≤Suc d . lose (t + k) = [False];
ts lose; msg (Suc 0 ) a1 ;
Sample L req dt a1 stop lose

(fin inf append [init state] st)
(fin inf append [[]] buffer) ack i1 vc st buffer ]]

=⇒ i1 (Suc t) = buffer t
apply (subgoal tac buffer t = inf last ti dt t)
prefer 2
apply (simp add : Sample L buffer)

apply (simp add : Sample L def )
apply clarify
apply (subgoal tac st t = hd (ack t))
prefer 2
apply (simp add : tiTable ack st hd)

apply (subgoal tac
(fin inf append [init state] st) (Suc t) = connection ok)
prefer 2
apply (simp add : correct fin inf append1 )

apply (simp add : tiTable SampleT def )
apply (rotate tac −3 )
apply (erule tac x=Suc t in allE)
apply clarify
apply simp
apply (case tac lose (Suc t) = [True])
apply simp
apply (erule tac x=Suc 0 in allE)
apply simp
apply simp
apply (subgoal tac lose (Suc t) = [False])
prefer 2
apply (simp add : ts bool False)

apply (simp add : correct fin inf append1 )
done

lemma Sample sending data:
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[[msg (Suc 0 ) stop; ts lose; msg (Suc 0 ) req ;
msg (Suc 0 ) a1 ;
∀ j≤2 ∗ d . lose (t + j ) = [False];
ack t = [sending data];
Sample req dt a1 stop lose ack i1 vc;
x ≤ d + d ;
∀ t4 ≤ t + d + d . a1 t4 = []]]

=⇒ ack (t + x ) = [sending data]
apply (simp add : Sample def )
apply clarify
apply (simp add : Sample L def )
apply clarify
apply (erule tac
V =∀ t . buffer t =
(if dt t = [] then fin inf append [[]] buffer t else dt t)
in thin rl)
apply (induct x )
apply simp

apply atomize
apply (erule tac x=st in allE)
apply (rotate tac −1 )
apply (erule tac x=buffer in allE)
apply clarify
apply simp
apply (subgoal tac st (t + x ) = hd (ack (t + x )))
prefer 2
apply (simp add : tiTable ack st hd)

apply (subgoal tac
(fin inf append [init state] st) (Suc (t + x )) = sending data)
prefer 2
apply (simp add : fin inf append def )

apply (erule tac x=Suc x in allE)
apply (simp only : tiTable SampleT def )
apply (erule tac x=Suc (t + x ) in allE)
apply (subgoal tac

Suc (t + x ) ≤ 2 ∗ d + t)
prefer 2
apply simp

apply simp
done

lemma ServiceCenter a msg :
ServiceCenter i a =⇒ msg (Suc 0 ) a
apply (simp add : ServiceCenter def msg def )
apply clarify
apply (case tac t)
apply (simp split add : split if asm)+
done

end

B.7. Proof of the Automotive-Gateway System Properties

theory Gateway proof = Main + Gateway + ts bool stream
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+ Gateway proof aux :

B.7.1. Properties of the Gateway

lemma Gateway L1 :
[[ Gateway req dt a stop lose d ack i vc;

msg (Suc 0 ) req ; msg (Suc 0 ) a; msg (Suc 0 ) stop;
ack t = [init state]; req (Suc t) = [init ];
ts lose;
lose (Suc t) = [False]; lose (Suc (Suc t)) = [False]]]

=⇒ ack (Suc (Suc t)) = [connection ok ]
apply (simp add : Gateway def )
apply clarify
apply (simp add : Sample def )
apply (subgoal tac msg (Suc 0 ) a1 )
prefer 2
apply (simp add : Loss Delay msg a)

apply (simp add : Sample L def )
apply clarify
apply (erule tac
V =∀ t . buffer t =
(if dt t = [] then fin inf append [[]] buffer t else dt t)
in thin rl)
apply (subgoal tac st t = hd (ack t))
prefer 2
apply (simp add : tiTable ack st hd)

apply (subgoal tac (fin inf append [init state] st) (Suc t) = init state)
prefer 2
apply (simp add : correct fin inf append1 )

apply (subgoal tac st (Suc t) = call)
prefer 2
apply (simp add : tiTable SampleT def )

apply (subgoal tac (fin inf append [init state] st) (Suc (Suc t)) = call)
prefer 2
apply (simp add : correct fin inf append1 )

apply (simp add : tiTable SampleT def )
done

lemma Gateway L2 :
[[ Gateway req dt a stop lose d ack i vc;

msg (Suc 0 ) req ; msg (Suc 0 ) a; msg (Suc 0 ) stop;
ack t = [connection ok ]; req (Suc t) = [send ];
∀ k≤Suc d . lose (t + k) = [False]; ts lose ]]

=⇒ i (Suc (t + d)) = inf last ti dt t
apply (simp add : Gateway def )
apply clarify
apply (simp add : Sample def )
apply (subgoal tac msg (Suc 0 ) a1 )
prefer 2
apply (simp add : Loss Delay msg a)

apply clarify
apply (subgoal tac buffer t = inf last ti dt t)
prefer 2
apply (simp add : Sample L buffer)

apply (subgoal tac i1 (Suc t) = buffer t)
prefer 2
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apply (simp add : Sample L i1 buffer)
apply (subgoal tac i2 ((Suc t) + d) = i1 (Suc t))
prefer 2
apply (simp add : Delay def )
apply (rotate tac 6 )
apply (erule tac x=Suc t in allE)
apply simp

apply (subgoal tac i ((Suc t) + d) = i2 ((Suc t) + d))
prefer 2
apply (simp add : Loss def )
apply (erule tac x=Suc d in allE)
apply (erule tac x=(Suc t) + d in allE)
apply simp

apply simp
done

lemma Gateway L3 :
[[ Gateway req dt a stop lose d ack i vc;

msg (Suc 0 ) req ; msg (Suc 0 ) a; msg (Suc 0 ) stop;
ts lose; ack t = [connection ok ];
req (Suc t) = [send ]; ∀ k≤Suc d . lose (t + k) = [False]]]

=⇒ ack (Suc t) = [sending data]
apply (simp add : Gateway def )
apply clarify
apply (simp add : Sample def )
apply (subgoal tac msg (Suc 0 ) a1 )
prefer 2
apply (simp add : Loss Delay msg a)

apply (simp add : Sample L def )
apply clarify
apply (subgoal tac st t = hd (ack t))
prefer 2
apply (simp add : tiTable ack st hd)

apply (erule tac
V =∀ t . buffer t =
(if dt t = [] then fin inf append [[]] buffer t else dt t)
in thin rl)
apply (subgoal tac (fin inf append [init state] st) (Suc t) = connection ok)
prefer 2
apply (simp add : correct fin inf append1 )

apply (subgoal tac st (Suc t) = sending data)
prefer 2
apply (simp add : tiTable SampleT def )
apply (erule tac x=Suc 0 in allE)
apply (erule tac x=Suc t in allE)
apply simp

apply (subgoal tac ack (Suc t) = [st (Suc t)])
prefer 2
apply (erule tiTable ack st , assumption+)

apply simp
done

lemma Gateway L4 :
[[ Gateway req dt a stop lose d ack i vc;

msg (Suc 0 ) req ; msg (Suc 0 ) a; msg (Suc 0 ) stop;
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ts lose; ack (t + d) = [sending data];
a (Suc t) = [sc ack ];
∀ k≤Suc d . lose (t + k) = [False]]]

=⇒ vc (Suc (t + d)) = [vc com]
apply (simp add : Gateway def )
apply clarify
apply (simp add : Sample def )
apply (subgoal tac msg (Suc 0 ) a1 )
prefer 2
apply (simp add : Loss Delay msg a)

apply clarify
apply (simp add : Sample L def )
apply clarify
apply (subgoal tac st (t+d) = hd (ack (t+d)))
prefer 2
apply (simp add : tiTable ack st hd)

apply (subgoal tac (fin inf append [init state] st) (Suc (t + d)) = sending data)
prefer 2
apply (simp add : correct fin inf append1 )

apply (subgoal tac a2 (Suc t) = a (Suc t))
prefer 2
apply (simp add : Loss def )
apply (erule tac x=Suc 0 in allE)
apply (erule tac x=(Suc t) in allE)
apply simp

apply (subgoal tac a1 ((Suc t) + d) = a2 (Suc t))
prefer 2
apply (simp add : Delay def )
apply (rotate tac 7 )
apply (erule tac x=Suc t in allE)
apply simp

apply (simp add : tiTable SampleT def )
apply (rotate tac −5 )
apply (erule tac x=Suc (t+d) in allE)
apply simp
apply (erule tac x=Suc d in allE)
apply simp
done

lemma Gateway L5 :
[[ Gateway req dt a stop lose d ack i vc;

msg (Suc 0 ) req ; msg (Suc 0 ) a; msg (Suc 0 ) stop;
∀ j ≤ Suc d . a (t+j ) = [];
ack (t+d) = [sending data];
∀ k≤(d+d). lose (t + k) = [False]; ts lose ]]

=⇒ j ≤ d −→ ack (t+d+j ) = [sending data]
apply (simp add : Gateway def )
apply (induct j )
apply simp
apply atomize
apply simp
apply auto
apply (simp add : Sample def )
apply (subgoal tac msg (Suc 0 ) a1 )
prefer 2
apply (simp add : Loss Delay msg a)
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apply clarify
apply (erule tac x=Suc j in allE)

apply (simp add : Loss def )
apply (subgoal tac ∀ k≤d + d . lose (t + k) = [False])
prefer 2
apply simp

apply (subgoal tac d + Suc j ≤ d + d)
prefer 2
apply simp

apply (simp add : Delay def )
apply (simp add : Sample L def )
apply clarify
apply (erule tac
V =∀ t . buffer t =
(if dt t = [] then fin inf append [[]] buffer t else dt t)
in thin rl)
apply (subgoal tac st (t+d+j ) = hd (ack (t+d+j )))
prefer 2
apply (simp add : tiTable ack st hd)

apply (subgoal tac
(fin inf append [init state] st) (Suc (t+d+j )) = sending data)
prefer 2
apply (simp add : correct fin inf append1 )

apply (subgoal tac Suc (d + j ) ≤ d + d)
prefer 2
apply simp

apply (subgoal tac st t = hd (ack t))
prefer 2
apply (simp add : tiTable ack st hd)

apply (simp add : tiTable SampleT def )
apply (erule tac x=Suc (t + j ) in allE)
apply (erule tac x=Suc (t + j ) in allE)
apply (erule tac x=Suc (d + j ) in allE)
apply (erule tac x=Suc (t + d + j ) in allE)
apply simp
apply (subgoal tac (Suc (t + j + d)) = Suc (t + d + j ))
prefer 2
apply simp

apply simp
apply (subgoal tac (Suc (t + (d + j ))) = Suc (t + d + j ))
prefer 2
apply simp

apply (simp split add : split if asm)
done

lemma Gateway L6 induction:
[[ msg (Suc 0 ) req ; ts lose; msg (Suc 0 ) a;

msg (Suc 0 ) stop;
∀ j≤ k . lose (t + j ) = [False];
∀m ≤ k . req (t + m) 6= [send ]; ack t = [connection ok ];
Sample req dt a1 stop lose ack i1 vc;
Delay a2 i1 d a1 i2 ; Loss lose a i2 a2 i ; m ≤ k ]]

=⇒ ack (t + m) = [connection ok ]
apply (induct m)
apply (rotate tac 5 )
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apply (erule tac x=0 in allE)
apply simp

apply (simp add : Sample def )
apply (subgoal tac msg (Suc 0 ) a1 )
prefer 2
apply (simp add : Loss Delay msg a)

apply clarify
apply (simp add : Sample L def )
apply clarify
apply (erule tac
V =∀ t . buffer t =
(if dt t = [] then fin inf append [[]] buffer t else dt t)
in thin rl)
apply (subgoal tac st (t + m) = hd (ack (t + m)))
prefer 2
apply (simp add : tiTable ack st hd)

apply (subgoal tac
(fin inf append [init state] st) (Suc (t + m)) = connection ok)
prefer 2
apply (simp add : fin inf append def )

apply (simp only : tiTable SampleT def )
apply (rotate tac −3 )
apply (erule tac x=Suc (t + m) in allE)
apply simp
apply clarify
apply (erule tac x=Suc m in allE)
apply (rotate tac 6 )
apply (erule tac x=Suc m in allE)
apply simp
done

lemma Gateway L6 :
[[ Gateway req dt a stop lose d ack i vc;

msg (Suc 0 ) req ; ts lose; msg (Suc 0 ) a;
msg (Suc 0 ) stop;
∀ j≤k . lose (t + j ) = [False];
∀m ≤ k . req (t + m) 6= [send ]; ack t = [connection ok ]]]

=⇒ ∀m ≤ k . ack (t + m) = [connection ok ]
apply (simp add : Gateway def )
apply clarify
apply (simp add : Gateway L6 induction)
done

lemma Gateway L7 :
[[ Gateway req dt a stop lose d ack i vc;

ts lose; msg (Suc 0 ) a; msg (Suc 0 ) stop;
msg (Suc 0 ) req ;
∀ t1 ≤ t . req t1 = []; req (Suc t) = [init ];
∀m < (k + 3 ). req (t + m) 6= [send ];
req (t + 3 + k) = [send ]; ack t = [init state];
∀ j≤k + d + 3 . lose (t + j ) = [False] ]]

=⇒ ∀ t2 < (t + 3 + k + d). i t2 = []
apply (subgoal tac
ack (Suc (Suc t)) = [connection ok ])
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prefer 2
apply (subgoal tac
∀ j≤k + d + 3 . lose (t + j ) = [False])
prefer 2
apply simp

apply (rotate tac −1 )
apply (erule tac x=Suc 0 in allE)
apply (rotate tac −2 )
apply (erule tac x=Suc (Suc 0 ) in allE)
apply simp
apply (simp add : Gateway L1 )

apply (subgoal tac
∀m ≤ k . ack ((t + 2 ) + m) = [connection ok ])
prefer 2
apply (erule Gateway L6 )
apply assumption+
apply clarify
apply (rotate tac −3 )
apply (erule tac x=2+j in allE)
apply simp
apply clarify
apply (rotate tac 6 )
apply (erule tac x=2+m in allE)
apply simp
apply simp

apply (subgoal tac ack (t + 2 + k) = [connection ok ])
prefer 2
apply (rotate tac −1 )
apply (erule tac x=k in allE)
apply simp

apply (simp add : Gateway def )
apply clarify
apply (simp add : Sample def )
apply (subgoal tac msg (Suc 0 ) a1 )
prefer 2
apply (simp add : Loss Delay msg a)

apply clarify
apply (simp add : Sample L def )
apply clarify
apply (erule tac

V =∀ t . buffer t =
(if dt t = [] then fin inf append [[]] buffer t else dt t)
in thin rl)

apply (subgoal tac ∀ t1 < (t + 3 + k). i1 t1 = [])
prefer 2
apply (simp add : tiTable i1 4 )

apply (simp add : Delay def Loss def )
apply (rotate tac −5 )
apply (erule tac x=t2 in allE)
apply (case tac lose t2 = [False])
apply (simp split add : split if asm)
apply (rotate tac −3 )
apply (case tac t2 < d)
apply simp
apply (erule tac x=t2 − d in allE)
apply simp
apply (subgoal tac t2 − d < t + 3 + k)
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prefer 2
apply arith

apply (case tac t2 − d < d)
apply simp
apply (erule tac x=t2 − d in allE)
apply simp
apply (simp split add : split if asm)
done

lemma Gateway L8 :
[[ Gateway req dt a stop lose d ack i vc;

msg (Suc 0 ) req ; msg (Suc 0 ) stop; ts lose;
msg (Suc 0 ) a;
∀ j≤2 ∗ d . lose (t + j ) = [False];
ack t = [sending data];
∀ t3 ≤ t + d . a t3 = [] ]]
=⇒ ∀ x ≤ d + d . ack (t + x ) = [sending data]
apply (simp add : Gateway def )
apply clarify
apply (subgoal tac ∀ t3 ≤ t + d . a2 t3 = [])
prefer 2
apply clarify
apply (simp add : Loss def )
apply (rotate tac −3 )
apply (erule tac x=t3 in allE)
apply (simp split add : split if asm)

apply (subgoal tac ∀ t4 ≤ t + d + d . a1 t4 = [])
prefer 2
apply clarify
apply (simp add : Delay def )
apply (rotate tac −5 )
apply (case tac t4 < d)
apply (erule tac x=t4 in allE)
apply simp
apply (erule tac x=t4−d in allE)
apply (case tac t4 − d < d)
apply simp+
apply clarify
apply (rotate tac 2 )
apply (erule tac x=t4−d in allE)
apply (subgoal tac t4 − d ≤ t + d)
prefer 2
apply arith

apply simp
apply (subgoal tac msg (Suc 0 ) a1 )
prefer 2
apply (simp add : Loss Delay msg a)

apply (simp add : Sample sending data)
done

B.7.2. Proof of the Refinement Relation for the Gateway Requirements

lemma Gateway L0 :
Gateway req dt a stop lose d ack i vc
=⇒
GatewayReq req dt a stop lose d ack i vc
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apply (simp add : GatewayReq def )
apply auto
apply (simp add : Gateway L1 )
apply (simp add : Gateway L2 )
apply (simp add : Gateway L3 )
apply (simp add : Gateway L4 )
done

B.7.3. Lemmas about Gateway Requirements

lemma GatewayReq L1 :
[[ msg (Suc 0 ) req ; msg (Suc 0 ) stop; ts lose; msg (Suc 0 ) a;
∀m ≤ k + 2 . req (t + m) 6= [send ];
req (t + 3 + k) = [send ];
∀ j≤2 ∗ d + (4 + k). lose (t + j ) = [False];
GatewayReq req dt a stop lose d ack i vc;
ack (Suc (Suc t)) = [connection ok ];
∀m≤ k . ack (t + 2 + m) = [connection ok ]]]

=⇒ ack (t + 3 + k) = [sending data]
apply (simp add : GatewayReq def )
apply (rotate tac −3 )
apply (erule tac x=t+2+k in allE)
apply clarify
apply (erule tac x=k in allE)
apply (subgoal tac
∀ ka≤Suc d . lose (Suc (Suc (t + k + ka))) = [False])
prefer 2
apply (simp add : aux lemma lose 1 )

apply (simp add : nat number)
done

lemma GatewayReq L2 :
[[ GatewayReq req dt a stop lose d ack i vc;

msg (Suc 0 ) req ; msg (Suc 0 ) stop; ts lose;
msg (Suc 0 ) a;
req (t + (3 ::nat) + k) = [send ]; inf last ti dt t 6= [];
∀ j≤2 ∗ d + (4 + k). lose (t + j ) = [False];
ack (Suc (Suc t)) = [connection ok ];
∀m≤k . ack (t + 2 + m) = [connection ok ] ]]
=⇒ i (t + 3 + k + d) 6= []
apply (rotate tac −1 )
apply (erule tac x=k in allE)
apply simp
apply (subgoal tac
(∀ (x ::nat). x ≤ (d+1 ) −→ lose (t+x ) = [False]))
prefer 2
apply (simp add : aux lemma lose 2 )

apply (simp add : GatewayReq def )
apply (erule tac x=(Suc (Suc (t + k))) in allE)
apply clarify
apply (subgoal tac
∀ ka≤Suc d . lose (Suc (Suc (t + k + ka))) = [False])
prefer 2
apply (simp add : aux lemma lose 1 )

apply (simp add : nat number)
apply (simp split add : split if asm)
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apply (simp add : inf last ti nonempty k)
done

B.7.4. Properties of the Gateway System

lemma GatewaySystem L1 :
[[Gateway req dt a stop lose d ack i vc;

ServiceCenter i a;
GatewayReq req dt a stop lose d ack i vc;
msg (Suc 0 ) req ; msg (Suc 0 ) stop; ts lose;
msg (Suc 0 ) a;
req (t + 3 + k) = [send ];
∀ j≤2 ∗ d + (4 + k). lose (t + j ) = [False];
ack (t + 3 + k) = [sending data]; i (t + 3 + k + d) 6= [];
∀ t2<t + 3 + k + d . i t2 = [];
∀ t3≤t + 3 + k + d . a t3 = [];
∀ x ≤ d + d . ack (t + 3 + k + x ) = [sending data] ]]
=⇒ vc (2 ∗ d + (t + (4 + k))) = [vc com]
apply (rotate tac −1 )
apply (erule tac x=2 ∗ d in allE)
apply (simp add : GatewayReq def )
apply (erule tac x=(d + (t + (3 + k))) in allE)
apply clarify
apply simp
apply (subgoal tac a (4 + (d + (t + k))) = [sc ack ])
prefer 2
apply (simp add :ServiceCenter def )
apply (erule tac x=(t + 3 + k + d) in allE)
apply (subgoal tac

4 + (t + (k + d)) = 4 + (d + (t + k)))
prefer 2
apply simp

apply simp
apply simp
apply (subgoal tac
(t + 3 + k + 2 ∗ d) = (2 ∗ d + (t + (3 + k))))
prefer 2
apply simp

apply simp
apply (subgoal tac
∀ ka≤Suc d . lose (d + (t + (3 + k)) + ka) = [False])
prefer 2
apply (simp add : aux lemma lose 3 )

apply simp
apply (subgoal tac

(4 + (2 ∗ d + (t + k))) = (2 ∗ d + (t + (4 + k))))
prefer 2
apply arith

apply simp
done

lemma GatewaySystem L2 :
[[Gateway req dt a stop lose d ack i vc;

ServiceCenter i a;
GatewayReq req dt a stop lose d ack i vc;
msg (Suc 0 ) req ; msg (Suc 0 ) stop;
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ts lose; msg (Suc 0 ) a;
ack t = [init state]; req (Suc t) = [init ];
∀ t1≤t . req t1 = [];
∀m ≤ k + 2 . req (t + m) 6= [send ]; req (t + 3 + k) = [send ];
inf last ti dt t 6= [];
∀ j≤2 ∗ d + (4 + k). lose (t + j ) = [False]]]

=⇒ vc (2 ∗ d + (t + (4 + k))) = [vc com]
apply (subgoal tac ack (Suc (Suc t)) = [connection ok ])
prefer 2
apply (erule tac

V =∀m ≤ k + 2 . req (t + m) 6= [send ]
in thin rl)

apply (simp add : GatewayReq def )
apply (rotate tac 2 )
apply (erule tac x=t in allE)
apply simp
apply (subgoal tac
∀ j≤2 ∗ d + (4 + k). lose (t + j ) = [False])
prefer 2
apply simp

apply (rotate tac −1 )
apply (erule tac x=Suc 0 in allE)
apply (rotate tac 9 )
apply (erule tac x=Suc (Suc 0 ) in allE)
apply simp

apply (subgoal tac ∀m ≤ k . ack (t + 2 + m) = [connection ok ])
prefer 2
apply (subgoal tac ∀ j≤k . lose (t + 2 + j ) = [False])
prefer 2
apply clarify
apply (rotate tac −3 )
apply (erule tac x=2 + j in allE)
apply simp

apply (erule Gateway L6 , assumption+)
apply clarify
apply (rotate tac 9 )
apply (erule tac x=2 + m in allE)
apply simp
apply simp

apply (subgoal tac ack (t + 3 + k) = [sending data])
prefer 2
apply (simp add : GatewayReq L1 )

apply (subgoal tac i (t + 3 + k + d) 6= [])
prefer 2
apply (simp add : GatewayReq L2 )

apply (subgoal tac ∀ t2 < (t + 3 + k + d). i t2 = [])
prefer 2
apply (erule Gateway L7 , assumption+)
apply clarify
apply (rotate tac 9 )
apply (erule tac x=m in allE)
apply simp
apply assumption+
apply clarify
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apply (rotate tac −5 )
apply (erule tac x=j in allE)
apply simp

apply (subgoal tac ∀ t3 ≤ (t + 3 + k + d). a t3 = [])
prefer 2
apply (simp add : ServiceCenter def )
apply clarify
apply (case tac t3 )
apply simp+

apply (erule tac x=Suc (t + 3 + k + d) in allE)
apply simp
apply (subgoal tac
∀ x ≤ d + d . ack (t + 3 + k + x ) = [sending data])
prefer 2
apply (erule Gateway L8 , assumption+)
apply clarify
apply (rotate tac 11 )
apply (erule tac x=3 + k + j in allE)
apply (subgoal tac t + (3 + k + j ) = t + 3 + k + j )
prefer 2
apply arith

apply simp
apply assumption+

apply (simp add : GatewaySystem L1 )
done

lemma GatewaySystem L3 :
[[ Gateway req dt a stop lose d ack i vc;

ServiceCenter i a; msg (Suc 0 ) req ;
GatewayReq req dt a stop lose d ack i vc;
msg (Suc 0 ) stop; ts lose; msg (Suc 0 ) a;
(dt (Suc t) 6= [] ∨ dt (Suc (Suc t)) 6= []);
ack t = [init state]; req (Suc t) = [init ];
∀ t1≤t . req t1 = []; ∀m ≤ k + 2 . req (t + m) 6= [send ];
req (t + 3 + k) = [send ];
∀ j≤2 ∗ d + (4 + k). lose (t + j ) = [False]]]

=⇒ vc (2 ∗ d + (t + (4 + k))) = [vc com]
apply (subgoal tac ack (Suc (Suc t)) = [connection ok ])
prefer 2
apply (erule tac

V =∀m ≤ k + 2 . req (t + m) 6= [send ]
in thin rl)

apply (simp add : GatewayReq def )
apply (rotate tac 2 )
apply (erule tac x=t in allE)
apply simp
apply (subgoal tac
∀ j≤2 ∗ d + (4 + k). lose (t + j ) = [False])
prefer 2
apply simp

apply (rotate tac −1 )
apply (erule tac x=Suc 0 in allE)
apply (rotate tac 9 )
apply (erule tac x=Suc (Suc 0 ) in allE)
apply simp
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apply (subgoal tac ∀m ≤ k . ack (t + 2 + m) = [connection ok ])
prefer 2
apply (erule Gateway L6 , assumption+)
apply clarify
apply (rotate tac −3 )
apply (erule tac x=2 + j in allE)
apply simp
apply clarify
apply (rotate tac −6 )
apply (erule tac x=2 + m in allE)
apply simp
apply simp

apply (subgoal tac ack (t + 3 + k) = [sending data])
prefer 2
apply (simp add : GatewayReq L1 )

apply (subgoal tac i (t + 3 + k + d) 6= [])
prefer 2
apply (simp add : GatewayReq def )
apply (erule tac x=t + 2 + k in allE)
apply simp
apply (subgoal tac
∀ ka≤Suc d . lose (Suc (Suc (t + k + ka))) = [False])
prefer 2
apply (simp add : aux lemma lose 1 )

apply simp
apply (subgoal tac inf last ti dt (Suc (Suc t)) 6= [])
prefer 2
apply simp

apply clarify
apply (subgoal tac inf last ti dt (Suc (Suc (t+k))) 6= [])
prefer 2
apply (erule inf last ti2 )

apply (subgoal tac
(if dt (Suc (Suc (t + k))) 6= [] then dt (Suc (Suc (t + k)))

else inf last ti dt (Suc (t + k)))
= inf last ti dt (Suc (Suc (t + k))))

prefer 2
apply simp

apply (simp (no asm use))
apply (simp add : nat number)

apply (subgoal tac ∀ t2 < (t + 3 + k + d). i t2 = [])
prefer 2
apply (erule Gateway L7 , assumption+)
apply clarify
apply (rotate tac 10 )
apply (erule tac x=m in allE)
apply simp
apply assumption+
apply clarify
apply (rotate tac −6 )
apply (erule tac x=j in allE)
apply simp

apply (subgoal tac ∀ t3 ≤ (t + 3 + k + d). a t3 = [])
prefer 2
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apply (simp add : ServiceCenter def )
apply clarify
apply (case tac t3 )
apply simp+

apply (erule tac x=Suc (t + 3 + k + d) in allE)
apply simp
apply (subgoal tac
∀ x ≤ d + d . ack (t + 3 + k + x ) = [sending data])
prefer 2
apply (erule Gateway L8 , assumption+)
apply clarify
apply (rotate tac 11 )
apply (erule tac x=3 + k + j in allE)
apply simp
apply (subgoal tac t + (3 + k + j ) = t + 3 + k + j )
prefer 2
apply arith

apply simp
apply assumption+

apply (simp add : GatewaySystem L1 )
done

B.7.5. Proof of the Refinement for the Gateway System

lemma GatewaySystem L0 :
GatewaySystem req dt stop lose d ack vc
=⇒
GatewaySystemReq req dt stop lose d ack vc
apply (simp add : GatewaySystemReq def )
apply (simp add : GatewaySystem def )
apply clarify
apply (subgoal tac msg (Suc 0 ) a)
prefer 2
apply (simp add : ServiceCenter a msg)

apply (subgoal tac
GatewayReq req dt a stop lose d ack i vc)
prefer 2
apply (simp add : Gateway L0 )

apply (case tac dt (Suc t) = [])
apply (case tac dt (Suc (Suc t)) = [])
apply simp
apply clarify
apply (simp add : GatewaySystem L2 )
apply simp
apply clarify
apply (simp add : GatewaySystem L3 )
apply simp
apply (case tac dt (Suc (Suc t)) = [])
apply simp
apply clarify
apply (simp add : GatewaySystem L3 )
apply simp
apply clarify
apply (simp add : GatewaySystem L3 )
done
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B.7.6. Proof of the Refinement Relation for the Extended Gateway
Requirements

lemma Gateway L0ext :
Gateway req dt a stop lose d ack i vc
=⇒
GatewayReqExt req dt a stop lose d ack i vc
apply (simp add : GatewayReqExt def )
apply auto
apply (simp add : Gateway L1 )
apply (subgoal tac
∀ t2 < t + 3 + k + d . i t2 = [])
prefer 2
apply (simp add : Gateway L7 )

apply simp
apply (subgoal tac
∀ y ≤ k . ack (t + y) = [connection ok ])
prefer 2
apply (simp add : Gateway L6 )

apply simp
apply (simp add : Gateway L2 )
apply (simp add : Gateway L3 )
apply (subgoal tac
∀ x ≤ d + d . ack (t + x ) = [sending data])
prefer 2
apply (simp add : Gateway L8 )

apply simp
apply (simp add : Gateway L4 )
done

B.7.7. Lemma about Extended Gateway Requirements

lemma GatewayReq L1ext :
[[ ServiceCenter i a; msg (Suc 0 ) req ;

msg (Suc 0 ) stop; ts lose; msg (Suc 0 ) a;
GatewayReqExt req dt a stop lose d ack i vc;
inf last ti dt (t + 2 + k) 6= [];
ack t = [init state]; req (Suc t) = [init ];
∀ t1≤t . req t1 = []; req (Suc (Suc t)) = [];
∀m< k + 3 . req (t + m) 6= [send ];
req (t + 3 + k) = [send ];
∀ j≤2 ∗ d + (4 + k). lose (t + j ) = [False]]]

=⇒ vc (2 ∗ d + (t + (4 + k))) = [vc com]

apply (subgoal tac ack (t+2 ) = [connection ok ])
prefer 2
apply (simp add : GatewayReqExt def )
apply (erule tac x=t in allE)
apply clarify
apply (rotate tac −2 )
apply (erule tac x=k in allE)
apply simp
apply (subgoal tac
∀ j≤2 ∗ d + (4 + k). lose (t + j ) = [False])
prefer 2
apply simp

apply (rotate tac −1 )
apply (erule tac x=Suc 0 in allE)
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apply (rotate tac −3 )
apply (erule tac x=Suc (Suc 0 ) in allE)
apply simp

apply (subgoal tac ∀ t2 < (t + 3 + k + d). i t2 = [])
prefer 2
apply (simp add : GatewayReqExt def )
apply (erule tac x=t in allE)
apply clarify
apply (rotate tac −2 )
apply (erule tac x=k in allE)
apply simp

apply (subgoal tac ack (t + 2 + k) = [connection ok ])
prefer 2
apply (simp add : GatewayReqExt def )
apply (erule tac x=t+2 in allE)
apply clarify
apply (rotate tac −1 )
apply (erule tac x=k in allE)
apply simp
apply clarify
apply (subgoal tac ∀m≤k . req (Suc (Suc (t + m))) 6= [send ])
prefer 2
apply clarify
apply (rotate tac 10 )
apply (erule tac x=m+2 in allE)
apply simp
apply (subgoal tac
∀ j≤k . lose (Suc (Suc (t + j ))) = [False])
prefer 2
apply clarify
apply (rotate tac 12 )
apply (erule tac x=j+2 in allE)
apply simp

apply simp

apply (subgoal tac ∀ j≤ d + 1 . lose (t + 3 + k + d + j ) = [False])
prefer 2
apply clarify
apply (rotate tac −5 )
apply (erule tac x=3 + k + d + j in allE)
apply simp
apply (subgoal tac
(t + (3 + k + d + j )) = (t + 3 + k + d + j ))
prefer 2
apply arith

apply simp

apply (subgoal tac ack ((t+3+k+d) + d) = [sending data])
prefer 2
apply (subgoal tac
∀ x ≤ (d+d). ack (t + 3 + k + x ) = [sending data])
prefer 2
apply (subgoal tac
∀ j≤ d + d . lose (t + 3 + k + j ) = [False])
prefer 2
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apply clarify
apply (rotate tac −6 )
apply (erule tac x=3 + k + j in allE)
apply simp
apply (subgoal tac
t + (3 + k + j ) = t + 3 + k + j )
prefer 2
apply simp

apply simp
apply (subgoal tac ack (t + 3 + k) = [sending data])
prefer 2
apply (subgoal tac
∀ j≤ d + 1 . lose (t + 2 + k + j ) = [False])
prefer 2
apply clarify
apply (rotate tac −7 )
apply (erule tac x=2 + k + j in allE)
apply simp
apply (subgoal tac
Suc (Suc (t + (k + j ))) = Suc (Suc (t + k + j )))
prefer 2
apply simp

apply simp
apply (simp add : GatewayReqExt def )
apply (erule tac x=t+2+k in allE)
apply clarify
apply (rotate tac −1 )
apply (erule tac x=k in allE)
apply clarify
apply (simp add : nat number)

apply (subgoal tac ∀ t3 ≤ t+3+k+d . a t3 = [])
prefer 2
apply (simp add : ServiceCenter def )
apply clarify
apply (rotate tac −2 )
apply (erule tac x=t3−(1 ::nat) in allE)
apply (rotate tac −7 )
apply (erule tac x=(t3 − (1 ::nat)) in allE)
apply (case tac t3 = 0 )
apply simp
apply (subgoal tac
(t3 − (1 ::nat)) < t + 3 + k + d)
prefer 2
apply arith

apply simp
apply (simp add : GatewayReqExt def )

apply (rotate tac −1 )
apply (erule tac x=d+d in allE)
apply simp

apply (subgoal tac a (t+4+k+d) = [sc ack ])
prefer 2
apply (simp add : GatewayReqExt def )
apply (erule tac x=t+2+k in allE)
apply clarify
apply (rotate tac −1 )
apply (erule tac x=k in allE)
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apply clarify
apply (subgoal tac
∀ ka≤Suc d . lose (Suc (Suc (t + k + ka))) = [False])
prefer 2
apply clarify
apply (rotate tac 12 )
apply (erule tac x=k + ka + 2 in allE)
apply (subgoal tac

Suc (Suc (t + (k + ka))) = Suc (Suc (t + k + ka)))
prefer 2
apply simp

apply simp
apply (subgoal tac i (Suc (t + 2 + k + d)) 6= [])
prefer 2
apply (simp add : nat number)

apply (erule tac
V = ack (t + 2 + k) = [connection ok ] ∧ req (Suc (t + 2 + k)) = [send ]

∧ (∀ ka≤Suc d . lose (t + 2 + k + ka) = [False]) −→
i (Suc (t + 2 + k + d)) = inf last ti dt (t + 2 + k)
∧ ack (Suc (t + 2 + k)) = [sending data] in thin rl)
apply (simp only : ServiceCenter def )
apply (erule tac x=t + 3 + k + d in allE)
apply clarify
apply (simp add : nat number)

apply (simp add : GatewayReqExt def )
apply (erule tac x=t+3+k+d in allE)
apply clarify
apply (rotate tac −1 )
apply (erule tac x=k in allE)
apply clarify
apply simp
apply (subgoal tac t + 4 + k + d = 4 + (t + (k + d)))
prefer 2
apply simp

apply (subgoal tac
4 + (2 ∗ d + (t + k)) = 2 ∗ d + (t + (4 + k)))
prefer 2
apply simp

apply simp
done

B.7.8. Proof of the Refinement for the Gateway System (Based on the
Extended Gateway Requirements)

lemma GatewaySystem L0ext :
GatewaySystem req dt stop lose d ack vc
=⇒
GatewaySystemReq req dt stop lose d ack vc
apply (simp add : GatewaySystemReq def )
apply (simp add : GatewaySystem def )
apply clarify
apply (subgoal tac msg (Suc 0 ) a)
prefer 2
apply (simp add : ServiceCenter a msg)

apply (subgoal tac
GatewayReqExt req dt a stop lose d ack i vc)
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prefer 2
apply (simp add : Gateway L0ext)

apply (case tac dt (Suc t) = [])
apply (case tac dt (Suc (Suc t)) = [])
apply simp
apply clarify
apply (subgoal tac
inf last ti dt (t + 2 + k) 6= [])
prefer 2
apply (simp add : inf last ti nonempty k)

apply (simp add : GatewayReq L1ext)
apply simp
apply clarify
apply (subgoal tac inf last ti dt (t + 2 + k) 6= [])
prefer 2
apply (subgoal tac dt (t+2 ) 6= [])
prefer 2
apply simp

apply (erule inf last ti nonempty)
apply (simp add : GatewayReq L1ext)
apply simp
apply (case tac dt (Suc (Suc t)) = [])
apply simp
apply clarify
apply (subgoal tac inf last ti dt (t + 1 + k) 6= [])
prefer 2
apply (subgoal tac dt (t+1 ) 6= [])
prefer 2
apply simp

apply (erule inf last ti nonempty)
apply (subgoal tac
inf last ti dt (t + 2 + k) 6= [])
prefer 2
apply (simp add : inf last ti nonempty k)

apply (simp add : GatewayReq L1ext)
apply simp
apply clarify
apply (subgoal tac inf last ti dt (t + 2 + k) 6= [])
prefer 2
apply (subgoal tac dt (t+2 ) 6= [])
prefer 2
apply simp

apply (erule inf last ti nonempty)
apply (simp add : GatewayReq L1ext)
done

end
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