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Abstract

Ultrasound is a popular, cost-effective and non-invasive medical imaging modality. If an ul-
trasound probe is equipped with a 3D position sensor, the acquired images can be obtained
in their spatial context, a technique commonly denoted “3D freehand ultrasound”.
Combining ultrasound and a pre-operative Computed Tomography (CT) scan of the same
patient can be beneficial for a number of clinical applications. The core of this thesis is the
development of novel methods for fully automatic alignment (i.e. registration) of 3D freehand
ultrasound and CT data, based on the image content and the physical properties of both
modalities.
In particular, a new method is proposed which simultaneously optimizes the linear com-
bination of different ultrasonic effects simulated from CT, and the parameters for spatial
alignment. This original concept allows local as well as global optimization of the simulation
parameters, resulting in optimal registration of any modalities, where usual registration so-
lutions do not succeed and explicit simulation of complex effects are necessary.
Furthermore, we introduce new techniques for 3D freehand ultrasound calibration and recon-
struction, as well as visualization of fused CT and ultrasound data.
Two clinical applications are investigated in detail. We use a designated version of an au-
tomatic registration algorithm to integrate diagnostic ultrasound into radiation treatment
planning for head and neck cancer. Our simultaneous optimization of simulation and reg-
istration is applied, in the context of treating liver and kidney metastases, for fusing CT
with both diagnostic and interventional ultrasound of the abdomen. While diagnostic fusion
helps doctors to assess indeterminate lesions in those organs, interventional fusion using our
techniques allows for advanced image-guided navigation, in particular, for needle biopsies and
radio-frequency ablations.





Zusammenfassung

Ultraschall ist ein weit verbreitetes, kostengünstiges und nicht-invasives bildgebendes Verfah-
ren in der Medizin. Wird der Schallkopf mit einem 3D-Positionssensor versehen, so können
die Aufnahmen in ihrem räumlichen Zusammenhang gewonnen werden, eine Technik die 3D-
Freihand-Ultraschall bezeichnet wird.
Für bestimmte klinische Anwendungen ist es vorteilhaft, Ultraschallaufnahmen mit prä-
operativer Computertomographie (CT) desselben Patienten zu verknüpfen. Der Schwerpunkt
dieser Arbeit liegt in der Entwicklung neuartiger Methoden, die einen vollautomatischen
räumlichen Abgleich (auch: Registrierung) von 3D-Freihand-Ultraschall und CT-Daten er-
möglichen, basierend auf dem Bildinhalt und den physikalischen Eigenschaften beider Bild-
verfahren.
Wir stellen insbesondere ein neues Verfahren vor, welches gleichzeitig eine Linearkombination
von aus dem CT simulierten Ultraschalleffekten und den räumlichen Registrierparametern
optimiert. Dieses neuartige Konzept ermöglicht sowohl lokale als auch globale Optimierung
der Simulationsparameter für bestmögliche Registrierung beliebiger Modalitäten, wo Stan-
dardmethoden scheitern und eine explizite Simulation komplexer Vorgänge notwendig ist.
Darüber hinaus wurden neue Methoden für Kalibrierung und Rekonstruktion von 3D-Freihand-
Ultraschall, sowie Visualisierung fusionierter CT-Ultraschalldaten entwickelt.
Zwei klinische Anwendungsfelder werden im Detail untersucht. Ein designiertes automatisches
Registrierverfahren wird verwendet, um diagnostischen Ultraschall in die Strahlentherapiepla-
nung von Kopf-Hals-Tumoren zu integrieren. Die Methoden zur gleichzeitigen Optimierung
von Simulation und Registrierung erlauben die Fusion von sowohl diagnostischem als auch
interventionellem Ultraschall des Abdomens mit CT-Aufnahmen, im Zusammenhang der Be-
handlung von Leber- und Nierenmetastasen. Während die Fusion in einem diagnostischen
Kontext den Ärzten hilft, die Dignität suspekter Läsionen in diesen Organen genauer einzu-
schätzen, ermöglicht die Fusion bei der Intervention, basierend auf den vorgestellen Methoden,
eine fortgeschrittene bildbasierte Navigation, insbesondere für Biopsien und Radiofrequenz-
ablationen.
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1. Introduction

Healthcare is in the middle of an important and exciting transition. In the past, most medical
imaging devices have been regarded as separate sources of information, integrated only by
written documents about patient history, pathology and treatment, and inherently in the mind
of the clinicians. While the oldest imaging modality, X-Ray, used to be a completely analogue
device, most other imaging techniques have always relied to some extend on electronics and
computers. Today, virtually all imaging is available in a digital representation, and the
possibilities arising there have by no means been fully exploited yet. Hospitals are aiming
at converting to integrated digital patient records combining all written documents with all
available imaging. The now available networking bandwidth allows the seamless transfer
of large three-dimensional patient images not only within a hospital, but on a global scale.
This has dramatic consequences, and has for instance lead to the whole new market of Tele-
Radiology.
Every single medical imaging technology has enjoyed tremendous improvements over the
last decades, based on research in physics, electrical, biological and mechanical engineering,
and computer science. Not only the quality of the depicted information has increased, but
often also its applicability, cost effectiveness and, minimal-invasiveness has improved. Many
modalities are now able to provide three-dimensional and four-dimensional information (i.e.
3D imaging over time). This is also changing the way images are presented and interpreted.
For an increasing number of applications, 3D- and 4D-visualization techniques are used instead
of traditional representations, like cross-sectional 2D slice images that are still predominantly
used in radiology. High-quality digital displays are emerging from radiology reading rooms
into interventional settings and even portable devices. Instead of looking at X-Ray films and
side-by-side CT slice images on a back-lit panel in the operating room, surgeons can now
use any appropriate three- and four-dimensional representation of image data, combined with
planning data and live interventional imaging.
This combination of multiple imaging data of the same patient, acquired at different times
and by different modalities, is termed Multi-Modal Fusion. Putting together pre-operative
3D anatomical imaging and 3D ultrasound, is the focus of this dissertation.

1.1. Medical Imaging

1.1.1. Anatomical Imaging

X-Ray

The patient is exposed to a small amount of ionizing electromagnetic radiation, generated
by an X-Ray tube. A detector panel on the other side of the patient creates a 2D image of
the incoming radiation. Therefore an X-Ray image, or radiograph, is a projection image of
the X-Ray attenuation along the lines from the source through the patient to the detector.
X-Ray Fluoroscopy is a variation, where the X-Ray system is imaging for a longer period
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(a) CT slice (b) MRI slice (c) Ultrasound image

Figure 1.1.: Comparison of three modalities as 2D slice images of a liver

of time with less dose than for acquiring static X-Rays, such that live imaging is obtained,
e.g. for guiding catheter interventions. Many of the technological improvements in the recent
years have been centered around replacing the image intensifiers, which are detecting and
amplifying the remaining X-Ray radiation behind the patient, by superior (however also way
more expensive) flat detectors. Besides, the reconstruction of 3D images is possible if an
adequate system, usually a C-arm, is slowly rotated around the patient, acquiring 200-400
individual X-Ray images.

Computed Tomography (CT)

Here X-Ray physics are used to create three-dimensional images. A CT scanner has an X-
Ray tube mounted on a rotating gantry, one or several line detectors are on the opposite side.
Sophisticated mathematical reconstruction techniques allow to create cross-sectional images
of X-Ray attenuation inside the human body. During a CT scan, the patient couch is slowly
moved through the gantry, and the scanner acquires a stack of axial cross-section images,
comprising a three-dimensional dataset. Current scanners have up to 64 detector lines, and
the gantry rotates so fast that four-dimensional data sets of the human heart can be acquired.
Both for X-Ray and CT, the patient’s vasculature can be emphasized by injecting a fluid with
high X-Ray attenuation, a so-called Contrast Agent, prior to imaging. The overall imaging is
then denoted Angiography or Computed Tomography Angiography (CTA).

Magnetic Resonance Imaging (MRI)

In contrast to the X-Ray based imaging techniques above, MRI does not use any ionizing
radiation, and is therefore considered a non-invasive modality. The magnetic nuclei (mostly
protons) of the anatomy are aligned in a strong uniform magnetic field generated by the scan-
ner. They absorb energy from tuned radiofrequency pulses, and emit radiofrequency signals
as their excitation decays. These signals, which vary in intensity according to nuclear abun-
dance and molecular chemical environment, are converted into sets of tomographic (selected
planes) images by using field gradients in the magnetic field, which permits 3-dimensional
localization of the point sources of the signals.
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Ultrasound

Ultrasound is substantially different from the tomographic modalities. Unlike CT or MRI
scanners, an ultrasound system is a portable device, and it allows for interactive real-time
imaging. In its basic operation, it acquires 2D slice images from within the patient, depicting
the amount of ultrasonic reflections (figure 1.1(c)). Since this work is centered around the
use of ultrasound, we provide some more detailed information about this modality in section
1.2.

1.1.2. Functional Imaging
The modalities described so far fall within the category of anatomical imaging. On the
contrary, functional imaging includes techniques which measure biological and physiological
processes. In the field of Nuclear Medicine, radioactive tracers are injected into the patient
to be examined. They accumulate in certain tissue due to biochemical reactions, often they
are used to label malignant tumors within the body. A nuclear imaging device like Positron
Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) or
hand-held devices like Beta- and Gamma-probes measure the activity originating from within
the patient’s body after a given uptake time.
Some of the anatomical imaging techniques can be modified in order to perform functional
imaging as well. In functional Magnetic Resonance Imaging (fMRI), a designated MR pulse
sequence detects different levels of blood oxygenation, and can therefore be used to image
brain activity. MR studies after injection of certain contrast agents, and MRI Diffusion
Tensor Imaging (DTI) are related techniques. Regarding ultrasound, there is active research
in developing functional contrast agents for ultrasound imaging, which accumulate at tumor
sites and hence increase their echogeneity.

1.2. Ultrasound
1.2.1. Basic Operation
A hand-held transducer is put in direct contact with the patient’s skin, using some coupling
gel to avoid any air in-between. The transducer emits short ultrasound pulses with a fre-
quency of 1-15 MHz. As the sound pulses propagates deeper into the body, part of them
are reflected by the anatomic structures. The transducer records and amplifies the received
echoes. In B-Mode imaging, those echoes are converted into brightness values and displayed
on the screen as a 2D image, representing a slice of anatomic information pointed from the
transducer downwards into the patient.
Both for creating the necessary mechanical vibrations and converting received echoes to elec-
trical signals, an array of transducer elements is used. These elements are denoted the aperture
of an ultrasound system. They were exclusively piezoelectric elements for many decades, but
recently new silicon-based technology, so-called Capacitive Micro-machined Ultrasonic Trans-
ducers (CMUT) is evolving, potentially enabling to manufacture ultrasound systems with
smaller transducer size (some of the signal processing can be done on the transducer itself),
higher bandwidth, and flexible 2D-arrays for imaging [96].
In order to steer and focus the ultrasonic pulses for optimal imaging, neighboring transducer
elements are controlled together with a certain delay pattern, a technique denoted as beam-
forming (figure 1.2). Derived from linear systems theory, the impulse response of imaging an
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Figure 1.2.: Transmit and receive beamforming on a phased array ultrasound transducer.

ideal single target point is denoted as the Point Spread Function (PSF). Its size and shape
ultimately determines the fidelity of an ultrasound image. The base frequency (and therefore
in inverse relation the wavelength) and bandwidth of the used pulse sequence affect the PSF
in axial direction, i.e. along the beam. Hence the resolution is higher for higher frequencies,
but unfortunately the ultrasound pulse is attenuated proportional to the square of it. There-
fore high-frequency transducers are used mainly for applications requiring imaging in shallow
areas of the body (e.g. neck, muscles), while lower frequencies are better for acquiring larger
images e.g. of the abdomen. The PSF’s shape perpendicular to the beam, i.e. in the lateral
and elevational directions, depends upon the beamforming.
For reconstructing the images, the ultrasound system assumes that the sound propagates
through the human tissue with a constant velocity, and the received echoes are directly
backscattered from point reflectors. Unfortunately, those assumptions are in reality often vi-
olated, causing a number of image artifacts whose severity depends on the particular patient
and anatomy. Some of these artifacts provide useful information to the clinicians, while oth-
ers just degrade the images. Most of the advancements made in recent years on ultrasound
systems are targeted to reduce those unwanted image degradations.
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(a) linear (b) phased (c) curvilinear

Figure 1.3.: Different 2D ultrasound transducer types.

Besides B-mode imaging, a number of Doppler imaging modes are usually available. Spectral
Doppler retrieves the blood flow at a particular location as 1D-signal over time. Color Doppler
displays the flow information within a selected region, overlaid on the B-Mode image.

1.2.2. Types of Systems

The most common types of 2D transducers are depicted in figure 1.3. A linear array transducer
has a flat aperture and parallel beam-steering, therefore the images acquired are rectangular
strips from the aperture down into the body (see figure 1.4 left). They are used for clinical
applications that do not require a large field of view within the body, and often feature rel-
atively high frequencies. A phased array transducer has a flat surface as well, but performs
angulated beam-steering, therefore the imaged area within the body is larger. They are used
primarily for anatomical sites where a larger imaging area is desirable while the access on the
patient’s skin is limited, e.g. for imaging the heart or kidney through the ribs. Curvilinear
array transducers have a curved surface, and acquire images similar to phased arrays in terms
of the geometry. However, since many more transducer elements can be used, higher quality
images are obtained, given that its larger footprint is not an issue (e.g. for scans of the liver
& abdomen).
Nowadays, most of the ultrasound vendors offer 3D transducers, which allow volumetric 3D
and 4D (i.e. 3D volumes with real-time update) imaging. Two main techniques are used. Wob-
blers basically consist of a regular curvilinear array transducer that can be rotated (wobbled)
around the lateral axis within the transducer housing. Depending on the quality settings,
the acquisition of a single 3D volume can take 0.2 − 20 seconds (4D imaging vs. acquisition
of high-quality volumes, optionally with Doppler information). On the contrary, 2D array
transducers do not require any mechanical system, but rather acquire 3D volumes by elec-
tronic beam steering in both the lateral and elevational direction. They are potentially better
for 4D imaging, but due to the very large number of array elements required within the 2D
grid, the imaging quality is somewhat limited. It is expected that the upcoming CMUT-based
products will significantly shuffle around this market segment, since they will allow volumetric
acquisitions with both higher frame rate and imaging quality.
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1.2.3. Image Characteristics

The appearance of B-mode ultrasound images is composed by two main effects. Different
acoustical impedance of human tissue causes strong reflection of the ultrasonic pulses. There-
fore the interfaces between different anatomical structures and tissue types are highlighted as
strong reflections. This can be seen in figure 1.1(c) for instance on the lower surface of the
liver, at the bottom left of the image. Some of the hepatic vasculature in this image is tagged
with a border as well, due to a fat layer surrounding the actual vessel. The other effect is
caused by tissue inhomogeneities that are smaller than the ultrasound pulse wavelength. They
cause seemingly random reflection and scattering, resulting in the typical ultrasound speckle
patterns. While often just considered as useless noise by beginners, they actual carry signifi-
cant information about the imaged tissue. Based on both the direct appearance of speckle and
its dynamic change when slightly moving the probe, sonographers can draw conclusions about
important tissue properties. For image processing, ultrasonic speckle is statistically modeled
as Raleigh noise [159]. Examples for further ultrasound effects that convey information are
refraction at tubular structures (causing the streaks downward from some of the vessels in
figure 1.1(c)), and full occlusion behind bone surfaces (the spine in the lower right of the
image). Aberration is an unwanted imaging artifact, caused by inhomogeneities mostly in the
compressed fat layers on top of the image. Essentially, they randomly delay the individual
ultrasound pulses, impairing the resolution of the lower part of the image.

1.2.4. 3D Freehand Ultrasound

If a 2D ultrasound transducer is equipped with a 3D position tracking system, every single
ultrasound image can be regarded in its spatial context. This can be used to either construct
three-dimensional information (potentially on a more global scale than with designated 3D-
ultrasound devices, see figure 1.5 left for an example), or for establishing a 3D visualization
of the live ultrasound image, e.g. for navigating certain clinical interventions. We use 3D
freehand ultrasound throughout this work, since we require both. There is a number of
choices to be made when setting up such a system, the most important one being the type
of tracking system used to record the motion of the ultrasound probe. Besides, a calibration
has to be performed to precisely know the position and orientation of the ultrasound image
plane (which is basically invisible to the user) with respect to the tracking sensor or target.
Further questions are how to present or process a set of arbitrarily placed ultrasound images.

1.3. Multi-Modal Fusion

The term multi-modal fusion describes the combination of two or more medical images of the
same patient, acquired by different types of imaging systems. Different imaging often reveals
different information about the same anatomy, hence providing complementary value. Com-
bining the images in an appropriate manner can yield more information to the clinicians than
just the “sum” of individual findings. In Nuclear Medicine, for instance, the combination of
anatomical and functional imaging has become so essential that integrated PET-CT scanners
are now generally used.
In the following we describe scenarios where 3D ultrasound is to be combined with a Com-
puted Tomography of the same patient, for improving clinical diagnostics, treatment planning
and interventions.
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Figure 1.4.: Ultrasound images of neck lymph nodes (left) and their relation to the CT slices
(right) used for radiotherapeutic treatment planning.

1.3.1. Clinical Need

Radiation Therapy

For inoperable tumors, External Beam Radiation Therapy is a technique where the malignant
target volume is irradiated with a high-energy beam (typically ≈ 6 MV) generated by a
linear accelerator (LINAC). To spare surrounding healthy tissue as much as possible, the
target volume within the patient is aligned with the iso-center of the radiation device, and
the irradiation is repeated with beams from a number of angles, always passing through
this iso-center. The treatment planning involves the definition of target volumes and safety
margins to assure that the malignant tissue can effectively be destroyed in spite of positioning
uncertainty and breathing motion, as well as the definition of critical areas to be spared. It
is done based on a CT-scan of the patient.
For some anatomical sites, in particular the head and neck, diagnostic ultrasound can reveal
important information not obtained by CT, e.g. about the internal nodal architecture. To
improve the accuracy of the treatment planning, it is therefore desirable to combine the
high-resolution information of the small ultrasound images with the rather global anatomy of
CT on which the planning is based upon, as illustrated by figure 1.4. In this context, three-
dimensional ultrasound would add even more value, since small and difficult to localize lesions
can be assigned more easily, given that the CT and ultrasound data is properly aligned.
Ultrasound could then also be used for patient positioning, i.e. the proper setup of the patient
in the treatment room, such that the target volume is aligned with the iso-center of the Linear
Accelerator. Extending upon this idea, the anatomy could be monitored during irradiation for
breathing-induced motion and patient shift. The potential applications are limited though,
as ultrasound can not be used in some of the anatomic sites primarily targeted by Radiation
Therapy. Ultrasound imaging of the chest and head is not possible. Echography of the
prostate is possible and actually used, but the resulting images are of limited quality and more
difficult to interpret than for other organs. Radiation Therapy is currently not a treatment
option for the liver due to its enhanced sensitivity to ionizing radiation, while ultrasound
would provide excellent imaging there. It is however being introduced on an experimental
basis using advanced respiration-gating techniques [31].
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Figure 1.5.: Ultrasound and CT of a liver with widespread metastatic disease. The left side de-
picts the whole 3D freehand ultrasound sweep. On the right, two CT-Ultrasound
planes are shown side-by-side. The top image represents an original recorded
ultrasound plane from the sweep, at the bottom an oblique reconstruction from
the ultrasound is shown, at the location illustrated by the green plane in the left
image. The intersection of the respective other plane is drawn as blue line.

Diagnostic Fusion

Often suspicious masses are identified in patients using CT or MRI imaging. If they are
indeterminate, additional imaging like Ultrasound or PET can reveal the missing clues to
conclude if it is a benign or malignant tumor mass. As last resort, a tissue sample from the
volume in question is obtained using a biopsy procedure. Here, a special needle is inserted
into the patient, and a mechanism at the needle tip carves out a small tissue sample. Then
the needle is retracted, and the sample is transferred for pathological examination.
Examining the CT combined with ultrasound can reveal more information compared to sep-
arate reading of the images, potentially sparing a biopsy. Figure 1.5 shows an example for
metastases in the liver.

Interventional Navigation

Radio-Frequency Ablation is one of the treatment options for liver and kidney cancer. One or
several needle electrodes are inserted into the patient, depending on the number and size of
the lesions. Electrical current is induced between the needles and a grounding pad attached
to the patient’s skin, such that the malignant tissue is essentially burned (coagulated). The
insertion of the needles has to be guided by interventional imaging, to ensure their accurate
placement within the lesions. Mostly CT and ultrasound are used. With CT, the intervention
is performed in a CT room with the patient outside of the bore of the scanner. Occasionally,
the patient couch is moved into the scanner, and a small number of slices are acquired to
verify the current needle location. The patient is moved out of the scanner, then the needle(s)
are further advanced. Those steps are repeated until the tip of the needles reach the planned
target. If the insertion is guided by ultrasound, the physician places the ultrasound transducer
arbitrarily to obtain images, whenever necessary, of both the lesion and the needles (figure
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Figure 1.6.: Ultrasound-guided Radio-Frequency Ablation of a kidney. Two electrodes are
inserted in the patient, the ultrasound transducer is visible behind, enclosed in a
sterile plastic wrap.

1.6). If a single RF electrode is sufficient, a needle guide mounted on the ultrasound trans-
ducer can be used instead. Since the needle path is rigidly connected to the image location,
it can be outlined right on the ultrasound image. Guidance is then achieved by lining up the
lesion with the shown needle path in the ultrasound image and advancing the electrode until
it reaches the lesion. A related treatment technique is Cryo-Ablation, here the tumor tissue
is basically “frozen to death”. Some research-oriented clinics use interventional MRI to guide
those procedures. While a promising approach, it is not in widespread use yet due to the
extremely high cost of such a system, and limited image quality & patient access. It is con-
troversial which of the imaging modalities is best for guiding RF- and Cryo-Ablations. Many
interventional radiologists prefer ultrasound, since the imaging can be done whenever needed,
and is very cost-effective. However it requires profound expertise in sonography, and hepatic
lesions might be not well visualized unless contrast-enhanced ultrasound is used. CT-based
procedures take longer, since the needle insertion has to be interrupted for imaging; this not
only makes the treatment more expensive, but also requires the patient to be sedated longer,
if general anesthesia is used.
The pre-operative contrasted CT scan is used to plan those procedures, in terms of optimal
needle access, hepatic vasculature that must not be ruptured, and overall needle placement to
fully ablate all lesions. If tracked ultrasound is used during procedure, and - again - CT and
ultrasound are correctly aligned, both oblique slices from CT and planning information can
be shown in real-time. This can provide a tremendous advantage during execution of those
procedures, potentially revolutionizing the way they are performed. In fact, a future workflow
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(a) Photo (b) CT volume rendering

Figure 1.7.: Radio-opaque markers attached to a patient’s skin

for RF-Ablation might resemble more the way Radiation Therapy is done nowadays; it would
include very sophisticated treatment planning. Using intra-operative ultrasound and proper
alignment with the CT, the plan can then be implemented precisely.

This application belongs to the discipline of interventional radiology, where navigation is
often achieved using registered pre- and intra-operative images. A broad review about this
field of Image-Guided Surgery or Image-Guided Intervention can be found in [106].

1.3.2. Challenges

Registration

For the scenarios described above, CT and ultrasound have to be precisely aligned within a
common coordinate system, such that the anatomy can be correctly superimposed from both
modalities. This problem is commonly referred to as Registration, which has become a fairly
large field of research.
A straightforward method to achieve registration in the described scenarios uses small fiducial
markers attached to the patient’s skin (figure 1.7). Those radio-opaque markers are visible
in the CT scan, and can be located with a calibrated, tracked pointer. By computing the 3D
rigid motion of the corresponding points from CT to the tracked points, the CT data is regis-
tered to the tracking coordinate system, which is also used by the tracked ultrasound probe.
A drawback is that the CT scan has to be acquired right before the freehand ultrasound exam
or the intervention - which is often not possible depending on the clinical setting. Besides,
the quality of the alignment will be limited within the patient, since the registration is based
on skin markers.
Alternatively, manual registration can be performed by the physician. One or several ultra-
sound images with tracking are recorded, then the CT reconstruction planes are moved and
re-oriented such that the anatomy lines up. Here the tracking of the ultrasound transducer
can serve as a convenient user input device with the necessary 6 Degrees-Of-Freedom (DOF)
for translation and rotation. However, it is very cumbersome and challenging to achieve a
good registration based on visual alignment of 2D planes. On one hand, it might be feasible
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to align a single plane reasonably quick. In practice, an image that contains as much uniquely
identifiable structures as possible is used, for abdominal applications e.g. an umbilical plane
(producing a large shadow in the ultrasound image). That does by no means guarantee that
different planes are correctly registered as well, since there can be multiple ambiguous align-
ments of a 2D plane within a 3D volume. On the other hand, it is difficult and time-consuming
to manually align multiple oblique ultrasound images within the CT volume. Last but not
least, yet another option for manual registration is to define anatomical landmarks in both
modalities, which will serve as internal fiducial markers for computing the spatial mapping.
Those landmarks have to be precisely locatable in 3D. This both limits the possible structures
to be used (e.g. vessel bifurcations or small lesions), and poses additional requirements for
the user interface - optimally the CT/Ultrasound data should be presented with two or three
oblique planes to ascertain the true three-dimensional location of the landmarks.
It would be an enormous advantage to have an automatic method that computes the registra-
tion between CT and ultrasound images. A lot of the additional effort required for registration
could be spared, improving the clinical workflow and therefore increasing the acceptance of
CT-Ultrasound fusion imaging amongst clinicians. Given the unique properties of ultrasound
images and the very different representation of anatomy compared to CT, one can see that
this is not going to be easy. Automatic image-based registration of CT and ultrasound is
the core topic of this dissertation. We will introduce methods that bring the two modalities
closer together, and devise new mathematical means to compare them. Some of the specific
artifacts of ultrasound imaging can be turned from being a hassle to providing important
clues for registration.

Fusion

Once the spatial relationship between CT and tracked ultrasound is established, both modal-
ities have to be presented in a way such that their fusion provides meaningful information
for a given clinical application. This is only possible with a profound understanding of the
clinical practice without multi-modal fusion. We will discuss the actual clinical workflow for a
number of applications, and make suggestions on how to adapt it to integrate CT-ultrasound
fusion.
Visualizing CT and freehand ultrasound is not a trivial issue either, since both are inher-
ently three-dimensional, and each of them shows a very different representation of the same
anatomy. Therefore a simple overlay will not be sufficient in general. An arsenal of existing
and new techniques can be used, including showing the live or recorded ultrasound in its 3D
context with adapted volumetric visualization of CT, using a number of different superimpo-
sition methods, and computing and displaying oblique cross-sections from both modalities.
Besides, additional planning information can be shown as well. We will propose specific
visualization techniques for every investigated clinical application.

1.4. Contributions
Following is a summary of the technical contributions in this thesis, along with the corre-
sponding publications:

• We have developed new methods for image-based registration of CT and ultrasound
data, and applied it to integrate diagnostic ultrasound of the neck with the planning CT
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for Radiotherapy [169, 120]. Particular focus has been the derivation of an appropriate
similarity measure, taking the physical properties of ultrasound, and its artifacts into
account. An overall workflow that includes the freehand ultrasound acquisition, global
pre-registration based on the head surface, and validation, is described in detail in the
journal publication [170].

• Continued research resulted in a technique to simulate ultrasound from CT in real-time.
This is combined with a novel similarity measure that assesses the correlation of a com-
bination of multiple signals extracted from CT (using the simulation) with ultrasound.
Together, it comprises a framework for simultaneous optimization of simulation and reg-
istration parameters, serving as the foundation of a fully automatic registration, which
aligns a freehand ultrasound sweep with the corresponding 3D modality using a rigid or
an affine transformation model [166]. Those methods have been validated on abdominal
CTA and ultrasound imaging of 10 patients, within the context of a diagnostic fusion
study.

• In order to reconstruct the ultrasound B-Mode slices scattered in space into rectilinear
3D-volumes, we have devised an efficient algorithm for spatial compounding, based on a
backward-warping strategy [167]. It also enables one to compute arbitrary MPR slices
directly from the freehand ultrasound slice set, without the need of an extra volumetric
reconstruction step.

• Building upon the spatial compounding technique, we also developed a method for
freehand ultrasound calibration based on the acquisition of one or two sweeps with in-
terleaved information [165]. The calibration parameters are estimated such that the
similarity of a number of ultrasound slices with reconstructions computed from perpen-
dicular slices becomes maximal. This calibration can be applied in-vivo on the patient,
no designated calibration phantom is required.

Besides, I was involved in research efforts regarding the fusion of intracardiac ultrasound with
C-Arm CT for electrophysiology [65]. We also investigated methods for mono-modal regis-
tration of 3D ultrasound data sets for various application scenarios. This includes the use of
variational methods for deformable registration of abdominal 3D ultrasound volumes [183],
and the stitching (or “mosaicking”) of overlapping 3D ultrasound volumes using multivariate
registration techniques [156]. In further work we developed and applied a blind shift-variant
deconvolution method to create ultrasound reconstructions of superior quality from a number
of acquisitions taken at different angles [17]. A novel visualization paradigm for multi-modal
imaging is introduced in [24], where contextual cutaways within a CT volume rendering allow
a clear yet informative view on a live tracked ultrasound image.
At the beginning of my Ph.D. studies, I had followed up research on 2D-3D registration
(based on the subject of my diploma thesis [163], see also [70]). This resulted in a novel
method for 2D/3D registration based on volume gradients [168], it also describes the parallel
implementation used. Inspired by the advantages of 2D/3D registration, we came up with a
projection-based 3D-3D registration technique that uses GPU acceleration, and explores the
possibility of computing image similarity metrics on a graphics processor [71]. Last but not
least, we developed a technique to incorporate voxel-wise quality information into a 3D-3D
registration algorithm for optical tomography volumes [164].

12



1.5. Outline

Some of the technology described in this document has been protected by Siemens Corpo-
rate Research Inc., please contact me for further details.

1.5. Outline
Chapter 2 provides a comprehensive technical introduction to image-based registration. The
underlying mathematical concepts in particular of image similarity measures are described in
detail. Practical issues for anyone who is to develop an automatic registration method, are
addressed as well.
In chapter 3, 3D freehand ultrasound systems are introduced in terms of the required hard-
ware, system setup, calibration and reconstruction issues. The newly developed methods for
image-based calibration and efficient backward-warping compounding can be found here as
well.
Then, chapter 4 describes the novel methods for automatic registration of freehand ultra-
sound to CT, constituting the core contribution of this thesis.
The clinical applications are described in chapter 5, including the evaluation of the new
registration methods within their context.
Chapter 6 concludes the work by summarizing the outcome, discussing benefits and draw-
backs, and pointing at future work.
The appendices each present a self-contained publication or internal report, which is not
within the core research subject, but still is closely related in terms of the methodology.
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2. Image-Based Registration

Medical Image Registration has become a huge scientific field, with research efforts by many
interdisciplinary groups all over the world. It is about establishing a common coordinate
system for a number of different medical images. In fact, it seems to be a rather special
meaning of the english word “register”, as can be seen in figure 2.1. The dictionary entry for
“registration” (left) does not contain anything related to the topic we would like to address.
Only after digging further into "1) the act of registering" (right box), we find that item 2.
matches to what we call registration here.
There are many reasons why one would like to register medical images, e.g. to create anatom-
ical atlases, for follow-up studies by matching images of the same patient taken at different
times, to enable interventional guidance by integrating pre-operative with intra-operative
imaging, and many more. Some clinical scenarios that are the focus of this thesis have been
pointed out in the introduction.
The book [53], as well as chapter 8 of [143] provide a detailed introduction to Medical Image
Registration for a novice reader. An overview article proposing a classification of registration
techniques into nine criteria is [86]. A later literature survey can be found in [58]. We were
unable to find any surveys after 2001, which might be due to the explosion of literature in
that field (which has also been pointed out in [108], 2003).

From a technical standpoint, an important distinction is the underlying information used
in the registration process.
Feature-based methods use indirect information extracted from the images beforehand, like
point sets or surfaces. Aligning those structures then allows one to align the images as well.
If a set of corresponding points is determined, using e.g. skin surface markers, markers im-
planted into the patient, or manually selected anatomical landmarks (see also section 1.3.2),
the rigid motion between the two point sets can be computed with a closed-form solution
[152]. If surfaces are extracted, they can be matched with the famous Iterative Closest Point
(ICP) algorithm [179]. In both cases, often one of the information entities arises not from an
image, but from the actual physical patient (e.g. when establishing points or surfaces using
pointers or laser-scanners before an intervention).
Image-based methods, on the contrary, use the images themselves rather than an indirect rep-
resentation to compute the registration. The synonymous terms Intensity-based and Voxel-
based registration are often used as well. All terms imply that the image content is directly
used to compute the correct alignment, however a certain amount of pre-processing can be
performed on the images. This category of registration techniques if often associated with
automatic algorithms. This is not always true, since defining an initial alignment, a region-
of-interest (ROI), or other parameters, might require manual interaction. In this context,
registration methods are often also denoted semi-automatic. On the other hand, feature-
based methods can be automatic as well, given that the feature extraction step is automatic.
This thesis centers around the use of image-based registration to integrate ultrasound with
other modalities, with a certain degree of automation. Therefore we will introduce the math-

15



2. Image-Based Registration

Main Entry:
reg · is · tra · tion
Pronunciation:
"re-j&-’strA-sh&n
Function: noun

1. the act of registering

2. an entry in a register

3. the number of indi-
viduals registered :
ENROLLMENT

4. a) the art or act of
selecting and adjust-
ing pipe organ stops
b) the combination
of stops selected for
performing a partic-
ular organ work

5. a document certify-
ing an act of register-
ing

Main Entry: 2register
Function: verb
Inflected Form(s): reg · is · tered; reg · is · ter · ing
/-st(&-)ri[ng]/
transitive verb

1. a) to make or secure official entry of in a register
b) to enroll formally especially as a voter or student
c) to record automatically : INDICATE
d) to make a record of : NOTE
e) PERCEIVE; also : COMPREHEND

2. to make or adjust so as to correspond exactly
3. to secure special protection for (a piece of mail) by prepayment

of a fee
4. to convey an impression of : EXPRESS
5. ACHIEVE <registered an impressive victory>

intransitive verb
1. a) to enroll one’s name in a register <registered at the hotel>

b) to enroll one’s name officially as a prerequisite for voting c) to
enroll formally as a student

2. a) to correspond exactly
b) to be in correct alignment or register

3. to make or convey an impression

Figure 2.1.: Entries about registration and register from the Merriam-Webster Online Dictio-
nary (www.m-w.com)

ematical and technical foundation of image-based registration, as well as practical issues, in
the remainder of this chapter. The main focus is on describing multi-modal registration tech-
niques that use a global transformation model (typically rigid), rather than local deformable
models (which is a large sub-field of research termed Non-linear registration).

2.1. General Formulation

In the following we model Images as scalar functions defined on vectors:

I : Ω→ R (2.1)

with Ω ⊆ R being the region where the image I is defined (i.e. the domain). At the position
~x ∈ Ω, the Image has the intensity i = I(~x). Typically, ~x denotes a location in a two- or
three-dimensional cartesian coordinate system, in physical units like mm or voxel indices.
This will be the case for CT and MRI images, mostly for 2D and 3D ultrasound as well.
However, depending on the dimensionality and type of images used, every component of ~x
can carry a different physical meaning. For example, four-dimensional images are often de-
fined on three spatial coordinates and time. The two coordinate components of an X-Ray
projection denotes the 2D position on a detector plane, however the image intensity can not
be associated with one physical location, since it is an integral over the X-Ray attenuation
along the line from the X-Ray source to the detector. If ultrasound images are available as
so-called scanline data, ~x might refer to a location in a curvilinear coordinate system, which
has to be converted to cartesian coordinates before presentation on a screen.
Medical imaging devices in fact only provide measurements at a discrete number of locations
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2.1. General Formulation

Moving Image J

Interpolation φ(J) Similarity Measure S

Similarity ValueOptimizationTransformation φ

Fixed Image I

Iterative Refinement

Initial φ

Finalφ

Figure 2.2.: Iterative scheme of an image-based registration algorithm.

{ ~xk} ⊂ Ω, k = 1 . . . N . For cartesian cordinate systems, those sample locations often represent
an equal-spaced grid in two or three dimensions, N is the total number of measurements (aka.
pixels for 2D images, voxels for 3D). However, a large number of image-processing algorithms
(including image registration) needs to evaluate the image function at non-grid locations.
Therefore, whenever I(~x) is queried with ~x /∈ { ~xk}, some sort of interpolation is necessary
(section 2.4). The assumption that interpolation is implicitly performed when required, allows
us to stick to the definition of images on a continuous region Ω. Likewise, the measured image
intensities are only available as a discrete number of values (e.g. as 12 Bit = 4096 values for
CT and MRI, 8 Bit = 256 values for most ultrasound systems), rather than the set of real
numbers R. For a theoretical discussion of image registration, incorporating the discreteness
of I does not provide any benefit, though. Besides, the results of interpolation are usually
floating-point numbers with 32 or 64 Bit machine precision that can be approximately treated
as R.

If two images I and J are to be coregistered, we are searching for the parameters of a
transformation φ, that correctly maps every point ~x ∈ ΩI of the Image I onto a point φ(~x) in
J , such that the alignment of the imaged anatomy is correct. Here we have assumed without
loss of generality, that I is used as fixed image, since it’s original imaging area is used. J is
then the moving image, because it’s content is evaluated at the transformed locations. An-
other synonymous terminology declares I as reference and J as template image.
An image-based registration algorithm seeks the optimal parameters of φ, such that a Simi-
larity Measure S between the two images is maximized:

φ′ = arg max
φ

S (I, φ(J)) (2.2)

Here we use the symbol φ in an additional meaning, namely as an operator which transforms
the whole image J . The Similarity Measure assesses the quality of anatomical alignment
between the two modalities, and is a function of the image gray values. This prohibits
elegant closed-form solutions that can often be defined for feature-based methods. Therefore,
the registration is usually an iterative process, as outlined in Figure 2.2. The following
sections describe the components of an image-based registration algorithm in further detail.
In 2.2, the commonly used Similarity Measures S are introduced, 2.3 describes possible spatial
transformations φ and their parameterization, interpolation is treated in 2.3 and 2.5 lists
numerical optimization algorithms that can optimize those parameters.
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2. Image-Based Registration

2.2. Similarity Measures

The best choice of a similarity measure S depends heavily on the underlying images to be
registered, however some general requirements can be stated. A similarity measure should
have its global maximum when the two images are correctly aligned. It should also increase
smoothly towards this optimum for slightly wrong transformation parameters, as the opti-
mizer iteratively refines φ based on the Similarity Measure. Besides, S should be robust with
respect to noise in the images, as well as outliers. The latter is typically some image content
that is only present in one of the images, and hence will not line up even for a correct align-
ment of the images.
In sections 2.2.2 and 2.2.3 we will first restrict ourselves to Similarity Measures that only
evaluate tuples of image intensities, regardless of their location in the images. The general
registration formulation in equation 2.2 can then be rewritten as

φ′ = arg max
φ

S ({ik, jk}) with ik := I( ~xk); jk := J(φ( ~xk)) (2.3)

For simplifying the notation, we define jk as the intensity of image J at the transformed
location φ( ~xk). Within the context of similarity measures for registration, there is usually no
need to evaluate J at its original voxel locations. Whenever the original voxel grid positions
of J are used, we will explicitely state it.
The maximization of a similarity measure is equivalent to the mimimization of an error metric,
which expresses the dissimilarity of two images. Similarity can be transformed to dissimilarity
in many ways, for instance by using its negative value −S or computing its inverse 1/S.

2.2.1. Images as Random Variables

A convenient representation is to treat the actual image intensities as random variables. This
allows one to apply many concepts from statistics and probability theory. The basic notation
assigns a probability to an image having a particular intensity:

P (I=i) = PI(i) (2.4)

Without assigning a relationship to the images, those probabilites can be estimated from
a given image just by using the actual occurences of each intensity. Typically, the image
intensities are treated as discrete values. If necessary, some scaling and rounding can be
applied, resulting in so-called binning of the values. The probability of an image intensity is
then the number of its occurences divided by the total number of samples:

PI(i) = Ni

N
= |Ω

i
I |
|ΩI |

with Ωi
I = { ~xk|I( ~xk) = i} (2.5)

Ωi
I is the iso-intensity set of image I for the intensity value i. That describes the probability

density function (PDF) of the random variable I, estimated from the image histogram. For
image registration, the joint probability of I and J is often of importance:

PIJ(i, j) = P (I=i,J=j) = |{ ~xk|I( ~xk) = i ∧ J(φ( ~xk)) = j}|
|ΩIJ |

(2.6)
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2.2. Similarity Measures

2.2.2. Maximum-Likelihood Formulation
Various researchers have proposed to regard image-based registration as a Maximum Like-
lihood Estimation [116, 154]. It allows to derive a number of popular similarity measures
using certain assumptions about the image intensities. Therefore we will briefly introduce
the statistical concepts behind the Maximum-Likelihood. We model the dependency of the
image intensities I and J as follows:

I(~x) = f (J(φ(~x))) + ε (2.7)

That means the image intensity of I can be described by a functional mapping f on the
intensities of J at locations transformed by φ, plus an extra noise term ε, which represents
the measurement error of the imaging system. The probability of an image pixel I(~x) is then
described by

P (I|J, φ, ε, f) = P (I(~x)− f(J(φ(~x))) = ε) (2.8)

Assuming that the image pixels of individual images are independent of their spatial location,
the probability of the image I, given image J , the transformation φ, error term ε and intensity
mapping f , then writes as

P (I|J, φ, ε, f) =
∏
k

P (I( ~xk)− f(J(φ( ~xk))) = ε) (2.9)

=
∏
k

P (ik − f(jk) = ε)

with k ∈ {k| ~xk ∈ ΩI ∧ φ( ~xk) ∈ ΩJ}

The entities J , φ, ε and f constitute the model that I is predicted from. Here they act as
parameters of a probability density function (PDF). We now want to maximize the likelihood
of that PDF to the known images, which is the same equation 2.9 for given I and J . In
particular we are interested in obtaining optimal parameters for φ. The logarithm of eq. 2.9
leads to the so-called log-likelihood, which is often preferred, as it transforms products to sums
that are easier to deal with. Since the logarithm is a continuous strictly increasing function
over the range of the likelihood, maximizing the likelihood is equivalent to maximizing its
logarithm. We therefore seek a maximum of the following term:

L(φ, ε, f) =
∑
k

logP (ik − f(jk) = ε) (2.10)

Now ε is assumed to be stationary zero-centered Gaussian noise with variance σ. The prob-
ability of a particular pixel intensity is then

P (ik − f(jk) = ε) = 1√
2πσ

exp
(
−(ik − f(jk))2

2σ2

)
(2.11)

and the corresponding log-likelihood writes as

L(φ, σ, f) = −N log
(√

2πσ
)
− 1

2
∑
k

(ik − f(jk))2

σ2 (2.12)

The similarity measures presented below each make a specific assumption about the intensity
mapping f that supposedly underlies the two images I and J to be registered.
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2. Image-Based Registration

2.2.3. Commonly Used Measures
Sum of Squared Differences (SSD)

SSD = 1
N

N∑
k=1

(ik − jk)2 (2.13)

In its original form stated here, SSD sums over the squared differences of the image intensities,
and is therefore an error measure. To use it in a similarity maximization framework, its
negated value −SSD can be used instead. The error will be minimal if the image intensities
at the correct alignment are identical. Therefore this measure is mostly useful for registering
images of the same modality, e.g. CT or MRI acquisitions acquired at different times [52].
The local error contribution of every voxel pair makes it especially useful for deformable
registration techniques, where local image dissimilarity or force fields based on intensity errors
are often required. Besides, it can be optimized by least-squares optimization techniques (see
section 2.5). The main disadvantage of SSD is the restrictive assumption that the image
intensities are identical. Therefore non-matching structures entering one of the images easily
cause larger increases of the error value than the shift to a correct alignment. In that sense, its
robustness with respect to outliers and noise is generally bad. In fact, SSD is to be considered
an optimal error measure, if the image intensities only differ by stationary Gaussian noise, as
defined above. That can easily be shown by inserting f(j) = j in equation 2.12

LSSD(φ, σ) = −N log
(√

2πσ
)
− 1

2
∑
k

(ik − jk)2

σ2 (2.14)

= −N
(

log
(√

2πσ
)

+ 1
2σ2SSD

)
which is increasing with −SSD. One common modification to reduce the sensitivity with
respect to outliers is to use the Sum of Absolute Differences (SAD) instead:

SAD = 1
N

N∑
k=1
|ik − jk| (2.15)

Mathematically, this would be the correct measure for a Lagrangian noise model. Unfortu-
nately, the property of the absolute value operator being non-differentiable at zero, makes it
difficult to integrate it into analytical expressions. In general, an arbitrary hull function can
be designed that is applied to the intensity differences, details will be explained in section
2.2.4.

Normalized Cross-Correlation (NCC)

NCC = 1
σiσiN

∑
k

(
ik − i

) (
jk − j

)
(2.16)

with i = 1
N

∑
k

ik; σi =
√
Var(i) =

√
1
N

∑
k

(
ik − i

)2 (2.17)

Normalized Cross-Correlation, often also denoted as Correlation Coefficient (CC) is a very
common technique throughout statistics, signal processing and many other fields. It assesses
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2.2. Similarity Measures

the amount of linear correlation of two signals by computing the average product of its de-
meaned values, divided by their standard deviation. The arithmetic mean i is used, equivalent
to the expectation value E(i), if i is interpreted as random variable. The standard deviation
σi, is the square root of the statistical variance. The mean and standard deviation of j is then
defined equivalently. Note that there is a bit of confusion among mathematicians, if N or
N − 1 should be used in the denominator for computing the variance, see [115]. The bottom
line is, that if that difference matters, the number of samples (i.e. image content) is by far not
sufficient anyway. Putting it together, the equation for Normalized Cross Correlation writes

NCC =
∑
k

(
ik − i

) (
jk − j

)√∑
k

(
ik − i

)2∑
k

(
jk − j

)2 (2.18)

=
∑
k ikjk −Nij√(∑

k i
2
k −Ni

2) (∑
k j

2
k −Nj

2) (2.19)

The mean intensities i and j have to be established before equation 2.18 can be computed.
In contrast, equation 2.19 has the advantage that it can be computed in one traversal of the
images, by basically accumulating five sums (the intensity product ikjk, the original intensi-
ties ik, jk, as well as their squares i2k, j2k , respectively). It is however less numerically stable
(compare [115], section 14.1), since potentially large sums are substracted from small ones.

In the case of our two images, the assumed intensity mapping is a linear one, f(j) = αj+β.
Therefore the NCC measure is independent of both a change in the brightness (β) and
contrast (α) between the two images. If the intensities i and j are completely independent,
the value of NCC will be around zero. If the linear mapping is correct for all intensities, its
value will be 1 or −1 (depending if the linear mapping is positive or negative). This is easily
confirmed by inserting f(j) = αj + β in eq. 2.17 and then eq. 2.16:

i = αj + β; σi =
√
α2 1
N

∑
k

(
jk − j

)2 = |α|σj (2.20)

NCC = 1
σiσjN

∑
k

α
(
jk − j

) (
jk − j

)
=

ασ2
j

|α|σ2
j

= sgn(α) = ±1

Equation 2.20 can in a reverse manner be used to estimate the parameters α and β. Assuming
a positive linear relationship, i.e. α > 0, we obtain:

α = σi
σj

; β = i− σi
σj
j (2.21)

Note that this is not necessarily the best method to estimate the parameters, since a linear
relationship between ik and jk was implicitly assumed in deriving it. Therefore, some other
technique like linear regression might produce better results if the correlation of the images is
poor. We will do just that later in this thesis (section 4.3.2) to yield an improved similarity
measure for CT-Ultrasound registration. By using eq. 2.21, we can show that Normalized
Cross Correlation is consistent with the maximum log-likelihood. To help us in the derivation,
we use the normalized image intensities

ĩk = ik − i
σi

; j̃k = jk − j
σj

(2.22)

21



2. Image-Based Registration

that have some convenient properties:

E
(
ĩk
)

= E
(
j̃k
)

= 0; Var
(
ĩk
)

= Var
(
j̃k
)

= 1

E
(
ĩk

2) = E
(
j̃k

2) = 1

NCC(I, J) = 1
N

∑
k ĩk j̃k = E

(
ĩk j̃k

)
Expanding only the sum in equation 2.12 yields∑

k

(ik − f(jk))2 =
∑
k

(ik − αjk − β)2

=
∑
k

(
ik −

σi
σj
jk − i+

σi
σj
j

)2

= σ2
i

∑
k

(
ik − i
σi
− jk − j

σj

)2

= σ2
i

∑
k

(
ĩk − j̃k

)2

= σ2
i

∑
k

(
ĩk

2 − 2ĩk j̃k + j̃k
2)

= σ2
iN

(
E
(
ĩk

2)− 2E
(
ĩk j̃k

)
+ E

(
j̃k

2))
= 2Var(I)N (1−NCC(I, J))

The log-likelihood for Normalized Cross Correlation is then

LNCC(φ, σ) = −N log
(√

2πσ
)

+ Var(I)N
σ2 (NCC(I, J)− 1) (2.23)

Normalized Cross Correlation has been used extensively for mono-modal registration prob-
lems, in particular 2D-3D registration algorithms [105, 60, 129]. An original idea was to use
NCC to non-iteratively register images in the spatial frequency domain , see [68] and [53],
page 54-55. This approach however suffers from the common problems of applying fourier
transformations to discrete images on a limited domain.

Correlation Ratio

η(I|J) = Var(E(I|J))
Var(I)

(2.24)

Again, the images I and J are treated as random variables. Introduced by Roche et al. [117],
Correlation Ratio then measures how well I is explained by J . Here’s how it works intuitively:
Assuming that I is totally independent of J , the expectation E(I|J) = E(I) is constant and
its variance is zero. On the other hand, full functional dependency implies that every value
of I can be predicted from J , therefore E(I|J) = I, resulting in a measure value of 1. Note
that this similarity measure is not symetric. One therefore has to decide in advance which
of the images can be used better to predict the other one (and therefore serves as a model).
Without loss of generality, we assume for the derivations here that the moving image J is the
model, however note that those roles can be interchanged.
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2.2. Similarity Measures

Without assuming any parameterization of the functional relationship, a popular method
to compute η uses the variances of the prediction for all discrete intensities in J . The re-
quired one- and two-dimensional probability density functions are commonly derived from
the respective image histograms.

η(I|J) = 1− Ej(Var(X|J = j))
Var(I)

= 1− 1
Var(I)

∑
j

σ2
jPJ(j) (2.25)

σ2
j =

(
1

PJ(j)
∑
i

i2PIJ(i, j)
)
−
(

1
PJ(j)

∑
i

iPIJ(i, j)
)2

Var(I) = σ2
I =

(∑
i

i2PI(i)
)
−
(∑

i

iPI(i)
)2

The actual prediction of the I intensities based on J , i.e. f(jk), is now a function that is
piece-wise defined on the PDFs:

fj = 1
PJ(j)

∑
i

iPIJ(i, j) (2.26)

Roche et al. had further generalized this measure [118] to include arbitrary functional map-
pings f (not necessarily estimated from the image PDFs):

η(I|J) = 1−
∑
k(ik − f(jk))2

NVar(I)
(2.27)

That equation is now closely related to the formulation of the log-likelihood in equation 2.12.
This actually causes a lot of fame for the authors, since almost everything can now be called
Correlation Ratio. They probably deserve it though, since they nicely describe a consistent
theory, which helps to deeply understand this class of similarity measures.

The original version of Correlation Ratio can be put in relation to the log-likelihood as well.
We rewrite equation 2.12 to incorporate the piece-wise defined function mapping:

L(φ, σ, f) = −N log
(√

2πσ
)
− 1

2
∑
j

∑
~xk∈Ωj

(ik − fj)2

σ2 (2.28)

with Ωj = { ~xk ∈ Ω|f( ~xk) = j} being the iso-intensity set in the transformed image for
every j. Both the intensity mapping f and σ should be estimated such that the likelihood is
maximized, therefore we derive L and obtain

∂L
∂fj

= 1
σ2

∑
Ωj

(ik − fj) =⇒ f̂j = 1
|Ωj |

∑
Ωj
ik

∂L
∂σ

= −N
σ

+ 1
σ3

∑
j

∑
Ωj

(ik − fj)2 =⇒ σ̂2 =
∑
j

|Ωj |
N

σ̂j
2

where σ̂j2 = 1
|Ωj |

∑
Ωj (ik − f̂j)2 are the variances for every iso-intensity set. Note that both

f̂j and σ̂j2 correspond exactly to the histogram-based estimations in equations 2.26 and 2.25,
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2. Image-Based Registration

(a) CT slice (b) MRI slice (c) Joint Histogram

Figure 2.3.: Registered head CT and MRI slices and their joint and individual histograms.

respectively. Using equation 2.25 again, the final maximum likelihood relates to Correlation
Ratio:

Lη = N log
[√

2πVar(I)(1− η(I|J))
]

Figure 2.3 illustrates the intensity relationship for a multi-modal CT-MRI registration prob-
lem. Note that the CT slice (a) is displayed within a very narrow intensity window, due to the
poor soft tissue contrast. Looking at the joint histogram in (c), it becomes obvious that MRI
should be used as the model image (in our notation J), since it distinguishes the soft tissue
with more detail. On the other hand, high intensities in CT can not be predicted, as MRI
does not image bony structures. Thus, while Correlation Ratio might still work reasonably
well in this scenario, one can see that the assumption of an intensity mapping f is violated
in several parts of the histogram.

Mutual Information

MI =
∑
i

∑
j

PIJ(i, j) log PIJ(i, j)
PI(i)PJ(j)

(2.29)

The idea behind Mutual Information is that a correct alignment of two images minimizes the
amount of information in a shared representation of them. Put your hands together while
spreading your fingers, and look at them from the front (figure 2.4). If they’re misaligned,
you can distinguish all ten fingers. If they’re fully aligned, you only see five fingers, which
can be considered the least information possible in the shared representation (the projection
of your hands that you’re looking at).
Transferring this idea to images, we again make use of their incarnation as random variables.
A measure of how much information is present in an image is needed. The most common
measure of information is the Shannon entropy:

H(I) = −
∑
i

PI(i) logPI(i) (2.30)

One can easily see that the value of H(I) will be zero if there is just one constant intensity in
the images, since p log p equals 0 for both p = 0 and p = 1. On the other hand, the maximum
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(a) misaligned (b) aligned

Figure 2.4.: Example illustrating the information content in a shared representation of two
images.

entropy is obtained if every intensity is equally likely to occur.
As a joint representation (the entropy of which expresses the misalignment) we use the inten-
sity tuples {ik, jk} and their joint probability. The joint entropy of I and J is then

H(I, J) = −
∑
i

∑
j

PIJ(i, j) logPIJ(i, j) (2.31)

In the majority of applications, the individual and joint probability distributions are estimated
using histogramming, as defined in section 2.2.1. Mutual Information now simple writes as

MI = H(I) +H(J)−H(I, J) (2.32)

which corresponds to equation 2.29. Historically, the minimization of the Joint Entropy
H(I, J) alone was used for registration too [59], just before Mutual Information was developed.
The value of Mutual Information is in the range [0 . . . Hmax], with Hmax being the maximum
entropy of either of the images. Normalizing it to [0 . . . 1] is easily possible by [53]:

MI ′ = 2MI

H(I) +H(J)
= 2− 2H(I, J)

H(I) +H(J)
(2.33)

An alternative normalization scheme is to use the ratio between the individual entropies and
the joint entropy. This has been shown to be more invariant to changes in the overlapping
area of the images [147], but nevertheless is only a rewriting of the first normalized equation:

MI ′′ = H(I) +H(J)
H(I, J)

= 1
MI ′ − 2

(2.34)

Equation 2.33 becomes zero if one of the images is constant. It assumes a value of one if the
images are identical; it remains one even if any perturbation of the histogram intensity bins
is applied to I and/or J . The number of histogram bins has a significant effect on MI cost
function. The more bins are used, the sharper the peak will be at the best alignment. How-
ever, using less bins might ensure a more smooth monotonic increase towards the optimum.
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(a) identical (b) 0.3mm displaced (c) 2cm displaced

Figure 2.5.: Joint histograms of a CT slice with itself, for various displacements.

Figure 2.5 shows a joint histogram with 256 bins for various displacements of an identical CT
slice. For a misalignment as small as 0.3mm (b), the intensity values are spread away from
the identity axis significantly.

Mutual Information is perfectly suited for multi-modal registration. In particular for CT-
MRI registration (as shown in figure 2.3), it is well established and used in commercial
products. Many other registration problems are addressed with Mutual Information, either
used exclusively or in combination with application-specific additions. See Pluim et al. [109]
for an overview on Mutual Information based registration.

Last but not least, following is the maximum-likelihood derivation, similar to [116]. The
assumption of a functional mapping with a gaussian noise channel is not used anymore, we
rather only require that the conditional densities P (ik|jk) are stationary, i.e. independent of
~xk. Therefore the following likelihood term is to be maximized:

L(φ, F ) = logP (I|J, φ, F ) =
∑
~xk∈Ω

log f(ik|jk) (2.35)

with parameter vector F now representing the unknown conditional densities

F = (f(0|0), f(1|0), . . . , f(1|1), . . . , f(2|0), . . .)

with the contraints
∀j : Cj =

∑
i

f(i|j)− 1 = 0

The groups of intensity pairs are written as

Ωi,j = { ~xk ∈ Ω|I( ~xk) = i ∧ J(φ( ~xk)) = j} ; Ni,j = |Ωi,j |

The log-likelihood becomes:
L(φ, F ) =

∑
i,j

Ni,j log f(i|j)
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In order to maximize it, we force its partial derivatives with respect to all f(i|j) to be zero.
To incorporate the constraints Cj , additional Lagrange multipliers λj are used:

∂L
∂f(i|j)

−
∑
j′

λj′
∂Cj′

∂f(i|j)
= Ni,j

f(i|j)
− λj = 0

Subject to the constraints
∑
i f(i|j) = 1, the optimal parameters are:

f̂(i|j) = Ni,j

Nj
= PIJ(i, j)

PJ(j)

The joint probabilities PIJ(i, j) and the marginal probabilities PJ(j) are again computed
from the joint and individual histograms, respectively. The final log-likelihood writes as

LMI(φ) = N
∑
i,j

PIJ(i, j) log PIJ(i, j)
PJ(j)

= N (H(I)−MI(I, φ(J)))

Under the simplification of a constant marginal entropy H(I) of the fixed image, it is directly
proportional to Mutual Information.

2.2.4. Robust Functions

All similarity measures except Mutual Information can be written such that they incorporate
a sum of a function ρ of intensity differences:

∑
k

ρ(ik − f(jk))

usually with ρ(d) = d2 (for Sum of Absolute Differences ρ(d) = |d|). This formulation is
not robust with respect to outliers, therefore large intensity differences can affect this error
term significantly. Since the similarity measures have been defined under somewhat idealized
assumptions (namely that the image intensities correspond up to a stationary gaussian noise
term), such outliers will occur in most practical situations. It is therefore wise to restrict the
influence of large intensity differences with a Robust Function ρ, a popular choice is

ρ(d) = d2

σ2 + d2 ; ρ(0) = 0; limd→∞ρ(d) = 1

The sensitivity of the similarity measure on the differences d can be adjusted by σ. ρ′(d) is
maximal for

ρ′′(d) = −2σ2(3d2 − σ2)
(d2 + σ2)3

= 0 =⇒ d = ± σ√
3

Compare [163], page 14. The same function is used with a slightly different notation in [118]
for MR-Ultrasound registration. General information on robust statistics can be found e.g.
in [62].
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2.2.5. Remarks about Normalization
All similarity measures use some sort of normalization, to make the resulting value indepen-
dent of the number of voxels in the overlapping region, some of them also normalize basic
image properties like the intensity variance or entropy. It is not a trivial step though, one
has to be aware about the problems that can arise due to normalization. Choosing the right
equation is always a trade-off favoring one or another scenario when the image similarity will
become maximized, therefore the right choice depends highly on the application. Here are
some examples to illustrate problems of the introduced similarity measures with normaliza-
tion:

• The Sum of Squared Differences (SSD) contains a division by the number of voxels in
the overlapping region. If the SSD value does only have a small minimum at the correct
alignment (which can happen if there is significant amount of noise in the images,
or a lot of modality-specific differences), a global minimum might be reached just by
fully overlapping the images, since the denominator (the number of overlapping voxels)
reaches a maximum there. On the contrary, if that division is omitted, a minimum error
can arise, if the transformation just overlaps a couple of similar voxels (in the extreme
case one voxel with identical intensity, the error becomes zero then).

• In addition to the number of voxels, Normalized Cross-Correlation (NCC) divides by
the standard deviations of both images. Therefore, the measure can reach a maximum
if either of those is small, which usually corresponds with little structure in the images.
If that division is omitted for one or both of the standard deviations, there is danger of
reaching a maximum when some structures with a lot of contrast are in the overlapping
region (but not necessarily well aligned).

• Correlation Ratio divides by the variance of image I, the potential normalization prob-
lems are similar to NCC.

• Mutual Information somehow has to weight between the individual image entropies and
the joint entropy. It is obvious that this is a difficult issue just by the fact that at least
four different equations have been commonly used in the literature - the joint entropy
alone, as well as equations 2.32, 2.33 and 2.34.

2.2.6. Incorporating Spatial Information
All measures presented so far were just functions of image intensity tuples, not including
the location within the images. Likewise, in the maximum likelihood formulation, the image
intensities were defined to be independent. In reality that is not true though, and therefore
we may actually be discarding a lot of valuable information. In the following we would like
to give an overview about ways of treating images within their spatial context.

Neighborhood Operations

Any of the presented basic similarity measures can be applied on smoothed versions of the
original images. This includes e.g. smoothing with a Gaussian kernel filter, as well as down-
sampling the images to a different resolution. This may have the advantage that the similarity
criterion converges more monotonically towards its optimum, since the image structures grad-
ually line up. Imagine a thin line structure in 2D images to be registered. Only for very close
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alignment, the overlap of the lines contributes to the image similarity, while larger displace-
ments will produce the same value, since the lines do not touch. For strongly smoothed
images, the similarity measure will increase when the lines are moved towards each other,
since their blurred seams start to overlap long before the actual lines.
Working on smaller copies of the original images by down-sampling can also drastically im-
prove the computation speed. It is in fact a popular technique to run a registration algorithm
subsequently on resampled images with increasing resolution. It is commonly referred to as
Image Resolution Pyramid. In computer vision, local image operators and feature detectors
work in Scale Space.
Similarity Measures can be computed on gradient images, computed from the original images
e.g. using a Sobel filter kernel. This has been used especially for 2D-3D registration [163].
Gradient Correlation computes the average of the NCC values of both horizontal and vertical
gradient images. Similarly, Gradient Difference applies a robust function on the differences of
gradient images. Pattern Intensity assesses the amount of structure in a substraction of the
original image intensities, by computing local differences within that difference image. Those
three measures are described and compared in [104].

Local Averaging

Another option is to compute a Similarity Measure repeatedly on small patches of the im-
ages and average the result. A prominent example is Local Normalized Cross Correlation
(LNCC) as described in [78]. Since the mean and standard deviation values are now com-
puted locally, the new measure is robust against local brightness and contrast changes in
the images. Important parameters that affect the performance are the size of the patches,
as well as their overlap. An extension of LNCC is to weight each of the local values with
the variance of one of the images [78]. It makes the measure more immune regarding newly
introduced structures present only in the other image. Local Normalized Cross-Correlation
has been extensively used for 2D-3D registration [163], but has also applications for mono-
modal 3D-3D registration (e.g. for registering different contrast phases of a CT study). In
general, similarity measures that can be defined locally are suited for deformable registration
methods, see section 2.3.4.

Using Image Location

Similarity Measures can be extended by incorporating the location vectors, then the underly-
ing information is {ik, jk, ~xk}. First of all, the location ~xk can be used to derive a weighting
for every intensity pair. The weight might be defined as proximity to the position of a clinical
target, where the maximum accuracy is desired. It could also make use of some knowledge
of the image acquisition process, and therefore define higher weights at locations where the
intensity measurement is supposedly more accurate (we will apply such a technique later).
As a continuation of that idea, the image location can be directly integrated into Informa-
tion Theoretic Measures. A significant amount of research has been done regarding Higher-
Dimensional Mutual Information. It allows one to treat not only a scalar image intensity
ik, but a whole vector, e.g. {ik, ~xk} as a single random variable. It helps to overcome one
of the drawbacks of Mutual Information: the fact that it considers no proximity in both
image and intensity space. It adds a lot of additional problems, though. Entropy and joint
entropy have to be estimated in high dimensions. A histogram-based technique is usually
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not feasible then, since every occurence of a multi-component vector is likely to have a very
sparse distribution. Therefore, different techniques have been developed to directly estimate
entropy (for an older overview see [13]), without actually computing the underlying PDFs.
One solution is to use the distances of the vectors representing the random variables, and
compute their minimum spanning tree (MST) for entropy estimation [57]. High-dimensional
entropy estimation based on Voronoi & Delaunay regions is introduced in [92]. If a stable
entropy estimation is in place, any kind of extra information can be used, besides intensity
and location. In [75], higher-dimensional Mutual Information using both 3-dimensional color
image feature vectors and 25-dimensional neighborhood feature vectors is investigated. The
Maximum Distance-Gradient-Magnitude (MDGM) is developed in [46] as a feature with more
global properties then local image gradients, and combined with the image intensity as 2D
feature vectors. Mutual Information is estimated based on histogramming (resulting in a
four-dimensional joint PDF), and applied to register CT and MRI volumes.

2.2.7. Incorporating Prior Information

Especially in multi-modal registration scenarios, where the two images do not have much in
common, feeding in a little more a priori knowledge can boost the robustness, or allow a
working algorithm in the first place. Often knowledge about the joint probability distribution
function of registered images is used as an intensity prior. The Kullback-Leibler divergence
(KLD) expresses the error between the observed joint PDF PIJ and a reference PDF P̂ :

D(PIJ |P̂ ) =
∑
i,j

PIJ(i, j) log PIJ(i, j)
P̂ (i, j)

In the registration community it is often referred to as Kullback-Leibler Distance as well,
strictly speaking it is not a distance though, since it is not symetric (symetric versions have
been proposed as well). This error term can be used to exclusively drive the registration, as
done in [29] for rigid 2D-3D registration of DSA to MRA images, as well as 3D-3D registration
of T1 and T2 phase MRI. It can also be used as a weighted component that also includes a
regular similarity metric, see [51] for deformable registration of functional PET and SPECT
imaging with CT. For a stable registration based on such intensity priors, it is crucial that the
intensity distributions are normalized (or equal in the first place) with respect to contrast and
brightness, which is often not trivial to achieve. If the intensity prior information is obtained
by computing the distributions based on a number of training data sets, the algorithm falls
within the category of Learning-based methods.
There are additional means to include prior, learned information. An image pre-processing
operator can be trained to extract significant features for registration, as done in [102] for
MRI-Ultrasound registration. Boosting of a similarity measure can be achieved by learning
which image features contain information about the alignment, such as in [181] for motion
estimation on cardiac echography.
Learning-based methods can help to solve tough image registration problems, however they
often require large additional effort to establish the training database.
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2.2.8. Multi-signal Similarity
Similarity Measures can be further generalized beyond using intensity information and the
spatial context. The original formulation in equation 2.2 was S(I, φ(J)). We extend it to

S (Θ1(I),Θ2(φ(J))) (2.36)

The Θi operators perform some processing on the whole image and return a vector-valued
image with the same input dimensions and an arbitrary number of output dimensions. In
the simplest case, both Θi = Id are the identity operator, therefore the similarity measure is
computed directly on the input images. The point is, that an arbitrary number of signals can
be extracted from each image. This is in particular important in multi-modal registration,
where the two images to be compared have very different properties. An example from the
literature is the MR-Ultrasound registration from Roche et al. [118]. Here the MR volume I is
pre-processed such that the intensity and gradient information are compared to the ultrasound
image J using a Correlation Ratio framework. Using the notation just introduced, we have
the operators Θ1(I) = (I,∇I) and Θ2(J) = J . Another example is the MRI-Ultrasound
registration method presented by Penney et al. [102]. There, the operators convert both
modalities to vessel probability maps, learned from a number of training data sets, which are
then registered using a simple cross-correlation similarity measure. In a complex scenario,
each Θi can create a whole structural tensor from its input image. In fact, those operators
could even describe a full simulation of one modality from the other. We make use of this
idea when developing our new CT-ultrasound registration algorithms in chapter 4.

2.2.9. Multi-variate Similarity
Scenarios exist where it is appropriate to register more than two images at once. It basically
requires that the pair-wise similarity measure S(I, φ(J)), as defined in equation 2.2, be ex-
tended to an arbitrary number of n images S(φ1(I1), φ2(I2), . . . , φn(In)). In the limited body
of literature on this, mainly Mututal Information has been extended to register multiple MRI
phases. In [20], MI is extended with three-dimensional histogramming, [84] use just the sum
of all combinations of regular MI on image pairs, and a new entropy estimation on sparse
high-dimensional histograms combined with a multi-variate similarity measure related to MI
is used in [178].
In [156] we systematically extended all similarity measures from section 2.2.3, with the goal
of “mosaicking” multiple 3D-ultrasound volumes. More details on multi-variate registration,
including the discussion on normalizing multiple pair-wise registration results versus full-
simultaneous optimization of all images, can be found in [155].

2.3. Spatial Transformations
Now we will introduce different transformation models that can be used to transform the
moving image J to eventually achieve a correct alignment to I. Figure 2.6 depicts an overview
of the transformation models we will cover in this section. Not only the type of transformation
is important, but also its parameterization, i.e. the way a transformation is described as
parameter vector φ for optimization. In the following, transformations are only described for
three dimensions, since most registration problems are three-dimensional.
We start using homogenous coordinates at this point, and expect the reader is familiar with
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original rigid affine projective deformable

Figure 2.6.: Illustration of different transformation models applied to a simple 2D scene.

this notation. Basically, a 3D-vector is extended with a fourth coordinate that is initially set
to 1. In particular, it allows for the compact representation of all global 3D transformations
as a 4x4 matrix. Its full strength is deployed when it comes to projective transformations, see
[38] or [54] for details. Homogenous coordinates are also the standard notation in the area of
computer graphics [41]. Nowadays, all 3D graphics hardware natively supports computations
on 4-vectors and 4x4 matrices.

2.3.1. Rigid

A rigid transformation applies a translation and rotation to every location in J . In fact,
it only changes its coordinate system, all geometric properties (length, volume, parallelity
etc.) are preserved. It has six degrees of freedom (DOF), three for translation and three for
rotation.

φ(~x) = R~x+ ~t (2.37)

where ~t = (tx, ty, tz)T is a 3-vector describing the translation, and R is a special orthogonal
3x3-matrix. In homogenous coordinates, a 4x4 rigid transformation matrix is written as

Trigid =
(
R ~t
~0 1

)
=


r11 r11 r31 tx
r12 r22 r32 ty
r13 r23 r33 tz
0 0 0 1



As R is a special orthogonal matrix, its determinant is one, its transposed equals its inverse
RT = R−1, and its three column vectors are the basis vectors of the rotated coordinate
systems, i.e. they have unit length and are all perpendicular. Because of those constraints,
the values of R can not be directly modified, but an appropriate parameterization is needed.
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Euler Angles

This is a very common parameterization of 3D-rotations, it describes R as consecutive rota-
tions around the three coordinate axes with the angles θx, θy and θz:

R = Rz(θz) ·Ry(θy) ·Rx(θx)

=

 1 0 0
0 1 0
0 0 1


 cz −sz 0
sz cz 0
0 0 1


 cy 0 sy

0 1 0
−sy 0 cy


 1 0 0

0 cx −sx
0 sx cx


=

 cycz (sxsycz − cxsz) (cxsycz + sxsz)
cysz (sxsysz + cxcz) (cxsysz − sxcz)
−sy sxcy cxcy

 (2.38)

sx = sin(θx), cx = cos(θx), sy = sin(θy), cy = cos(θy), sz = sin(θz), cz = cos(θz)

Note that this is only one of many ways of composing the rotations. Any permutation of
both the rotation direction (clockwise vs. counter-clockwise with respect to the positive axis
vectors) and the order might be used.
Vice versa, the angles can be computed from the matrix R in equation 2.38:

θx = tan−1
(
R23
R33

)
θy = sin−1 (R31)

θz = tan−1
(
R12
R11

)

where Rij denots the element in row i and column j from R. An alternative which we suspect
to be more stable, computes θz as above, and the other two angles based on it:

θz = tan−1
(
R12
R11

)
θx = tan−1

(
R31 sin(θz)−R32 cos(θz)
R22 cos(θz)−R21 sin(θz)

)
θy = tan−1

( −R13
R11 cos(θz) +R12 sin(θz)

)

This exploits more of the information inherent in R, and uses the arcus tangens tan−1 as only
inverse trigonometric function. For the actual computation, one should always use the func-
tion atan2(a, b), available in virtually all programming environments, instead of tan−1(a/b),
since it distincts between the signs of both nominator and denominator and therefore properly
computes angles in all quadrants.
The Euler Angles parameterization is minimal, since it only comprises three values. Its
biggest disadvantage is that it shows singularities at some specific angles. This can be shown
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by calculating the derivatives of a rotated point R~x with respect to the rotation angles: x′

y′

z′

 = R

 x
y
z


∂

∂θx

 x′

y′

z′

 =

 (cxsycz + sxsz)y + (−sxsycz + cxsz)z
(cxsysz − sxcz)y + (−sxsysz − cxcz)z

cxcyy − sxcyz


∂

∂θy

 x′

y′

z′

 =

 −syczx+ sxcyczy + cxcyczz
−syszx+ sxcyszy + cxcyszz
−cyx− sxsyy − cxsyz


∂

∂θz

 x′

y′

z′

 =

 −cyszx− (sxsysz + cxcz)y − (cxsysz − sxcz)z
cyczx+ (sxsycz − cxsz)y + (cxsycz + sxsz)z

0


If we now specify the angles θx and θy accordingly, some of the derivatives become identical:

θx = π
2 , θy = −π

2 ⇒

∂
∂θx

 x′

y′

z′

 = ∂
∂θz

 x′

y′

z′

 =

 szy + czz
−czy + szz

0


Thus the three rotations are not independent of each other anymore - the angles θx and θz

rotate around the same axis. This problem is also referred to as Gimbal Lock. Nevertheless,
Euler Angles can well be used for registration if only relative rotations are applied such that
configurations with large angles never occur.
Last but not least, another slight disadvantage is that Euler Angles can be ambiguous, mostly
at large angles as well. That means that two different sets of angles can describe the same
rotation in 3D. However, as a particular Euler Angles configuration describes just one rotation
R, it can be used without restriction to describe rotations, as long as the exact rotation order
and direction is documented (compare eq. 2.38). One should only exercise caution when
comparing rotations solely based on their Euler Angles.

Unit Quaternion

Representing 3D transformations with quaternions is very common in computer graphics and
robotics. A rigid transformation can be described as a vector [tx, ty, tz, qx, qy, qz, qw]T , which
combines three translational parameters and the four elements of a quaternion, denoting a
rotation in space.
Quaternions are defined in the form Q = iqx + jqy + kqz + qw = [(qx, qy, qz), qw], where i, j,
and k have the following properties:

i2 = −1, j2 = −1, k2 = −1,
ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j (2.39)

All basic arithmetic operations can be derived from those properties, the behavior is consistent
with the one of complex numbers, as quaternions can be seen as an extension of them. Refer to
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[6] for a more detailed introduction to quaternions and their use in 3D computer applications.
Here we will just present the very convenient way of describing a rotation in 3D with them.
For this to work, the quaternion has to be normalized, i.e. q′2x + q′2y + q′2z + q′2w = 1. This can
be achieved easily by dividing by the size of the original quaternion

q′x = qx
|Q| , q

′
y = qy

|Q| , q
′
z = qz

|Q| , q
′
w = qw

|Q| (2.40)

|Q| =
√
q2x + q2y + q2z + q2w

If this is valid, the vector (q′x, q′y, q′z) represents the axis of rotation, and the angle θ is denoted
indirectly by θ = 2 cos−1(q′w). The respective rotation matrix is

R(qx, qy, qz, qw) =


1− 2q′2y − 2q′2z 2q′xq′y − 2q′wq′z 2q′xq′z + 2q′wq′y 0
2q′xq′y + 2q′wq′z 1− 2q′2x − 2q′2z 2q′yq′z − 2q′wq′x 0
2q′xq′z − 2q′wq′y 2q′yq′z + 2q′wq′x 1− 2q′2x − 2q′2y 0

0 0 0 1

 (2.41)

As this only valid for unit quaternions, the normalization in equation 2.40 should be carried
out for every set of parameters implicitly. We can therefore use the original scaled quaternion
Q = [(qx, qy, qz), qw] as rotational parameters. However, this results in having four parameters
for the rotation - one more as degrees of freedom.

2.3.2. Affine
An affine transformation includes a rigid one, and provides in addition shearing and non-
uniform scaling. It might be well suited for registration scenarios where geometric distortion
of the imaging system has to be corrected. Besides, large-scale anatomic deformations caused
e.g. by respiratory motion can be approximately recovered with this transformation model
(how well depends on the exact anatomical site, region/volume of interest etc.).

φ(~x) = HSR~x+ ~t

with

H =

 1 hxy hxz
0 1 hyz
0 0 1

 ; S =

 sx 0 0
0 sy 0
0 0 sz


S is a scaling matrix, the components sx, sy, sz define a non-uniform scaling in the three axis
directions. H is a shearing matrix, the components hxy, hyz and hxz define a shearing in the x-
y, x-z and y-z-planes, respectively. In fact, every plane can be sheared in each of their spanning
directions, therefore additional components hyx, hzy and hzx would be needed, arranged in a
matrix like HT . It can be shown however, that those additional shearing parameters can be
expressed with the first three shearing parameters and the rotation and scaling values [133].
Therefore a total of 12 parameters (each three for translation, rotation, scaling and shearing)
define an affine transformation in 3D. This confirms with the homogenous representation

A = HSR; Taffine =
(
A ~t
~0 1

)
where 3 degrees of freedom are in the translation and the remaining 9 in the now unconstrained
matrix A. Usually it is not a good idea to directly optimize the entries of A though, since
the effects on the image transformation vary greatly depending on the particular element of
A and the actual value.
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2.3.3. Projective

The most prominent use of a projective transformation is to describe the geometric map-
ping from locations in 3D onto the 2D view of e.g. the human eye or a camera. In terms
of a homogenous 4x4-matrix, all entries are unconstrained for this type of transformation,
resulting in 15 degrees of freedom, as the matrix is defined up to scale. The vast majority of
applications are in Computer Vision [54]. In the area of medical image registration, projective
transformations arise mostly for 2D-3D registration e.g. of X-Ray projections to CT volumes.
However, typically not the full projective transformation is sought for registration, since most
of its parameters would be included in the geometric calibration of the X-Ray unit.

2.3.4. Deformable

If a global rigid, affine, or projective transformation is not appropriate, but local tissue mo-
tion is to be compensated as well, deformable registration is required. Also termed Non-linear
registration, it has become a large field of research on its own [93].
The methodology introduced in this chapter can be extended in a straightforward manner
for deformable registration, if a control point scheme is used. The sought transformation
parameters are defined as the displacements of a set of control points, arranged in a uniform
grid or adaptively selected. The deformable mapping of the moving onto the fixed image
is interpolated using certain basis functions (popular ones being Thin-Plate Splines, Radial
Basis Functions, B-Splines). An optimization algorithm still tries to maximize a global sim-
ilarity measure, however with respect to a much larger number of parameters (up to many
thousand). Such an approach is then only feasible if a gradient estimation of the similarity
measure is available.

Dense-field deformable registration is a very different approach. Here a deformation field ~u
is to be established that denotes the displacement of every voxel in the moving image:

u : Ω→ Ω
φ(J(~x) = J(~x+ ~u(~x))

It is integrated in a global energy minimization formulation:

S(I, φ(J)) + αR(~u) = min (2.42)

Here S represents a dissimilarity measure (e.g. SSD for mono-modal registration), R is a
regularization term that penalizes physically unlikely deformations ~u, and α > 0 a weighting
factor. Usually, methods of variational calculus are used to find the solution for ~u. Equation
2.42 is derived with respect to ~u, which yields Euler-Lagrange equations for both S and R.
A large system of non-linear Partial Differential Equations (PDE) is obtained, which can be
solved by iterative methods, see [182] and [93] for details.
Deriving the (dis-)similarity measure S with respect to ~u implies that it is used as a force
term, that “drags” the image at every voxel location toward the correct alignment. As a
consequence, only similarity measures are eligible which can be locally defined, or at least
feature meaningful local derivatives.
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2.3. Spatial Transformations

2.3.5. Parameter Scaling and Centering

For any optimizer to work best, changing each of the parameters in φ should have a comparable
affect on the cost function value. This implies that altering any parameter value should change
the similarity of the two images in the same order of magnitude.

Rigid Translation versus Rotation

In the case of a rigid transformation, we need to introduce an appropriate scaling between
the translational and rotational parameters. To derive it, we use the corners of the bounding
box of a volume of interest used in the registration. Translating the box a specific amount
should then displace its corners equally than if rotating it around the center about the same
amount. Using a cube with edge width d around the origin and considering one corner point
p, the scaling can be derived as follows:

tx = ∆p

θxs = ∆p = θxd

√
3

2

s = d

√
3

2

tx is a translation in millimeters, θx a rotation in radiant, ∆p is the displacement of the point
p and s is the sought scaling between translational and rotational values. It is convenient
to use translation values in millimeters and rotation in degrees, corresponding to a scaling
s = 180

π . Then the width of the respective bounding box satisfying the former constraints is
d = 360

π
√

3 ≈ 66mm. If the size of the images involved in the registration problem is roughly
in that order of magnitude, one might stick with it, otherwise a different scaling has to be
applied.

Affine Scaling

Concerning the additional parameters for affine registration, the non-uniform scaling pa-
rameters sx, sy and sz deserve a little attention. They should not be directly used in an
optimization, since limsx→0 makes an image dimension infinitely small, while for s � 1 the
size barely changes. This is a consequence of the fact that sx expresses the ratio between the
size of images I and J . Since ratios are well expressed using logarithmic units (e.g. decibel),
we should do likewise and therefore compute the image scaling as

φsx = log
(
sx
1

)
⇒ sx = exp (φsx)

Centering

For rigid and affine transformations, the choice of the used coordinate system can significantly
affect the registration performance. The origin of the physical coordinate system used to
specify image locations, will be the effective center of rotation. Defining it at the corner of
the images seems straightforward, but is a rather bad choice, since it causes a strong coupling
of translation and rotation parameters. Depending on the used optimizer, such a dependency
might be difficult to handle, and result in non-convergence even for relatively easy registration

37



2. Image-Based Registration

→ →

φ φ(J)J

Figure 2.7.: Rotating an image while keeping the rasterization grid requires interpolation.

tasks. Using the center of the images as coordinate system offset should be a good general
choice, however there might be application-specific indications that suggest a different center.
As an example, for patient positioning in Radiation Therapy, one would use the iso-center of
the linear accelerator, as the target anatomy is located there.

2.4. Interpolation

So far we have assumed that the image I is evaluated at its original grid locations, while J
is mapped with the transformation φ. We did not point out, however, how the transformed
image intensities jk := J(φ( ~xk)) are computed. It requires Interpolation, as illustrated for a
2D rotation in figure 2.7. There are two contrary approaches to it. An empty target image in
the desired grid of I can be created and every pixel of J be “splatted” onto it with a certain
footprint (using the inverse transformation φ−1), typically a gaussian kernel. This is known
as Forward-Warping; it is mostly used for interpolating scattered data into grids (see also
section 3.3), in general it is problematic due to potential holes in the target image (depending
on the transformation & kernel size), and limited efficiency. Therefore, in the majority of
cases Backward-Warping is used, as described in the following.

2.4.1. Kernels

For every pixel ~xk of the target image, an interpolation kernel centered at ~xk considers neigh-
boring grid values around φ( ~xk). Mathematically, this corresponds to a convolution of the
image J with a filter kernel h. In the following we make the simplification that physical
image locations are equivalent to pixel/voxel coordinates, i.e. the grid spacing is 1. In reality,
one has to divide by the actual spacing in every dimension before applying the subsequent
equations. The convolution expands to:

J(~x) = (J ∗ h)(~x) (2.43)
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Figure 2.8.: Plots of 1D-Interpolation kernel functions.

Discretized for one, two or three dimensions, this expands to:

J(x) =
∑
k

J(k)h(x− k)

J
(
(x, y)T

)
=

∑
k

∑
l

J
(
(k, l)T

)
h2D

(
(x− k, y − l)T

)
J
(
(x, y, z)T

)
=

∑
k

∑
l

∑
m

J
(
(k, l,m)T

)
h3D

(
(x− k, y − l, z −m)T

)
where k, l and m are integer pixel grid locations of J , and ~x (and thus its components x, y
and z as well) denotes an arbitrary non-grid location.
Usually, interpolation kernels are symmetric and separable, hence two- and three-dimensional
interpolation can be achieved by successively using h in each dimension:

h2D
(
(x, y)T

)
= h(x)h(y)

h3D
(
(x, y, z)T

)
= h(x)h(y)h(z)

Following are the most relevant choices for a polynomial interpolation kernel:

nearest neighbor: h(x) =
{

1 |x| < 0.5
0 otherwise (2.44)

linear: h(x) =
{

1− |x| |x| < 1
0 otherwise (2.45)

cubic: h(x) =


1− 2|x|2 + |x|3 |x| < 1
4− 8|x|+ 5|x|2 − |t|3 1 ≤ |x| < 2
0 otherwise

(2.46)
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2. Image-Based Registration

A plot of those kernels is shown in figure 2.8. In the listed order, they are fast → slow,
and low-quality → high-quality. The nearest neighbor interpolator just picks the closest
grid point, which can easily be seen by the fact that for any x there is exactly one integer
satisfying |x− k| < 0.5. Linear interpolation uses two grid points in every dimensions, cubic
interpolation four.
There is many more choices for interpolation kernels, see Lehmann et al. [80] for an excellent
survey. Further options are quadratic, cubic B-Spline, Lagrange, Gaussian and sinc-Kernels.
An optimal interpolation kernel reflects the multiplication with a rectangular function in the
fourier domain, which is in theory achieved by the sinc function (also shown in figure 2.8):

h(x) = sin(πx)
πx

= sinc(x) (2.47)

However, this kernel requires infinite support and is therefore computationally prohibitive in
most applications. A variety of windowed and truncated versions exist; look-up tables are
used since sine computations are expensive.

2.4.2. Implementation

A note about the nomenclature beforehand: If interpolation is applied in two or three dimen-
sions, the prefixes “bi-” and “tri-” are often used, therefore one would write e.g. “bi-cubic” or
“tri-linear” interpolation. In the following, the operators bc and de determine the next smaller
and larger integer, respectively. Computing the intensity of J at an arbitrarily (transformed)
location ~x = (x, y, z)T with nearest neighbor interpolation in 3D is simple:

J(~x) = J (bx+ 0.5c, by + 0.5c, bz + 0.5c) (2.48)

Linear interpolation in 3D is computed as:

u = x− bxc; v = y − byc; w = z − bzc

J(~x) = (1− u)(1− v)(1− w) · J (bxc, byc, bzc) +
u(1− v)(1− w) · J (dxe, byc, bzc) +
(1− u)v(1− w) · J (bxc, dye, bzc) +
(1− u)(1− v)w · J (bxc, byc, dze) +

u(1− v)w · J (dxe, byc, dze) +
(1− u)vw · J (bxc, dye, dze) +
uv(1− w) · J (dxe, dye, bzc) +

uvw · J (dxe, dye, dze) (2.49)

The image intensities are evaluated at the 8 corners of the grid cube where ~x falls within, and
summed with the corresponding linear weights. A special adaption of this tri-linear interpola-
tion is Partial Volume Interpolation (PVI), for improving the smoothness of histogram-based
similarity measures. Here the Joint Histogram is updated with the intensity of all 8 voxels,
for each of them the corresponding weight at the left side of equation 2.49 is added.
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2.5. Optimization Algorithms

2.4.3. Choosing the Right Method
The requirements of registration algorithms with respect to interpolation are different than
for other imaging applications. In general, applying interpolation can introduce artifacts and
act as a low-pass filter, i.e. results in smoothing. For high-fidelity visual displays, none of
these are acceptable, therefore often more sophisticated techniques are used. For registration,
however, a certain amount of smoothing might even have a positive effect. On the other hand,
an efficient technique is necessary here, since voxels need to be transformed millions of times
per second. Following are some aspects that might clarify the right choice.

• Linear interpolation is often the best tradeoff. It introduces a limited amount of smooth-
ing, however also results in a smooth transition of intensity values. In contrast, Nearest
Neighbor interpolation just picks the closest voxel, therefore an image similarity cri-
terion might end up with discontinuities when transformed voxels “jump” from one
neighbor to the next. Cubic interpolation in turn can be too expensive to compute,
especially in 3D, where 4× 4× 4 = 64 voxels need to be queried.

• If one rather smooth image is used as the moving image in registration, nearest neighbor
interpolation can be sufficient, while providing a significant speed-up (one voxel access
in 3D instead of 8). An example is multi-modal registration of MRI with functional
PET/SPECT data, the latter containing rather fuzzy clouds of nuclear activity.

• Different interpolation can be used along different axes in two- or three-dimensional
images, especially when their scaling is non-isotropic. Nearest neighbor interpolation
might make sense for a rather over-sampled dimension in an image, while the other
axes should be linearly interpolated. On the other hand, e.g. a CT scan often has
high resolution within the axial cross-sections, but a very large spacing within the slices
(10mm or more for a chest CT, for instance). Here cubic interpolation might be used for
the head-feet axis, and linear one for the other two. This idea taken to an extreme, one
can spend even more effort to reconstruct within sparse CT slices by registration-based
interpolation [103].

• Partial Volume Interpolation is a very good idea for Correlation Ratio, Mutual Informa-
tion, or other similarity measures that require a joint histogram. The only additional
computational effort with respect to tri-linear interpolation are the extra insertions
(and therefore memory accesses) into the joint histogram, 8 instead of a single one. The
smaller the size of the used histograms is, the less improvement PVI will yield over
ordinary interpolation.

2.5. Optimization Algorithms
The goal of an optimization algorithm is to find the parameter vector x̂ that minimizes (or
maximizes) the value of a cost function F .

x̂ = arg min
~x
F (~x) (2.50)

The algorithm searches the parameter space with a specific scheme iteratively. It terminates
once some abortion criteria has been satisfied, for instance if the change in the cost function
value is below a limit (functional tolerance) or the search distances in the parameter space
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(a) Hill Climbing (b) Simplex (c) Powell-Brent (d) Steepest Descent

Figure 2.9.: Search strategies of different optimizers on a two-dimensional function. Red dots
in (a) and (b) represent single cost function evaluations, red lines in (c) and (d)
whole line minimizations.

drop below a given value (parameter tolerance). Optimization schemes have always been
developed with the aim of getting along with as few cost function evaluations as possible,
therefore taking rare samples of the cost function value and using a nifty strategy to decide
where to set the next try in the parameter space. This is especially crucial for image-based
registration, as the cost function F equals the similarity measure S, whose computation
requires the traversal of possibly quite large images. Besides, since it depends on the actual
image content, this similarity is usually highly non-linear. Therefore the class of optimization
problems that we have to solve is unconstrained non-linear optimization.

2.5.1. Direct Search Methods

Hill Climbing

Probably the simplest optimization scheme, Hill Climbing (also: Best Neighbor Search) evalu-
ates a number of neighbors of the current parameter estimate in every iteration. The neighbor
which yields the best cost function value is adopted as the central estimate for the successive
iteration. A popular strategy to select the neighbors is to just add and subtract a certain step
size to every parameter separately. This results in 2N cost function evaluations per iteration,
N being the dimension of the cost function (e.g. N = 6 for a similarity measure wrt. a rigid
transformation). If no better estimate is obtained, either the step size is reduced, or the
algorithm terminates. The popularity of this Optimizer probably arises from its simplicity,
however it has several limitations that one should be aware of. Since the step size is altered
for all parameters together, it is important that a proper parameter scaling has been applied
before, such that the effect of individual parameters on the cost function are in the same
order of magnitude (see section 2.3.5). Besides, if the path toward the optimum is along a
narrow rim, the step size will be drastically reduced until the optimizer starts heading in the
right direction, converging then requires a large number of evaluations. The straightforward
implementation does not include a strategy to ever increase the step size again, after it had
been reduced. Figure 2.9(a) depicts an example where the step size is actually too small from
the beginning. Because this search strategy is so simple, different researchers often imple-
ment their own variations. We have used a method that evaluates all combinations of the
tree parameter changes [forward, keep, backward], and termed it Exhaustive Hill Climbing
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2.5. Optimization Algorithms

[169]. For a rigid transformation, it requires 36 = 729 cost function evaluations per iteration,
however it achieves better convergence for rough cost functions.

Nelder-Mead Simplex

A more advanced search strategy is the Simplex algorithm [115]. A simplex is a minimal
geometric shape, consisting of N + 1 corners in N-dimensional space (a triangle in 2D, a
tetrahedron in 3D, and so on). Around the initial parameter estimate, a starting simplex
is defined, and the cost function is evaluated at its corners. Depending on the results, the
shape of the simplex is changed according to rules for reflection, extension and contraction,
see figure 2.9(b). Advantages of this method are that it relies on no assumptions on the cost
function whatsoever, and it uses the minimal number of evaluations that span the parameter
space. Besides, since the Simplex shape is flexible in all dimensions, this optimizer is much
more efficient traveling through narrow regions, as opposed to Hill Climbing.

Pattern Search

The concept of the described two methods can be generalized as Pattern Search algorithms.
They all have in common that they use an adaptive search pattern, independent of the type
of cost function, in order to explore the cost function. According to the evaluation results,
the position, orientation and shape of that pattern is altered successively in each iteration.
A general discussion of Pattern Search algorithms, including a theory of the convergence
behavior, can be found in [151]. Besides the Hill Climbing and Simplex methods, this category
contains for instance the Hooke-Jeeves pattern search method. Surrogate optimization is a
related approach where the cost function values are approximated based on some underlying
knowledge on F and prior evaluations. Due to the non-predictability of image similarity
metrics, it is usually not well applicable for image registration.

Powell’s Direction Set Method

This algorithm starts at a given position in the parameter space, and minimizes the cost
function successively along certain directions. Therefore the problem is split up in two parts:
Finding the best directions in n-dimensional space, and doing efficient line minimization on a
new cost function with only one parameter. The latter problem can be solved efficiently with
the Brent Line Minimization method. It uses both parabolic interpolation and golden section
search, choosing dynamically in each step which is is more appropriate. It is described very
detailed in [115], other methods for bracketing a minimum and root finding can be found in
[87].
The second problem is now to find directions in the parameter space, such that a line mini-
mization along one of them does not spoil the minimizations done along the former directions.
According to Powell’s scheme, the first set of directions are the individual degrees of freedom
themselves. After N line minimizations, a new first direction is established as the vector that
leads from the last to the current estimate. This makes sure that the first line minimization
of each new iteration is done along the way that the parameters improve most. From the old
directions, the one where the largest move took place among the previous line minimizations
gets ”fired”. It is most likely to be contained in the newly selected direction anyway, therefore
the directions are kept as independent as possible. Figure 2.9(c) shows an example optimiza-
tion run.
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The only settings that need to be defined affect the line minimizer, such as termination con-
straints. The implementation proposed in [115] spends a large number of evaluations in each
line minimization. Depending on the actual problem, one might consider adapting the line
minimization termination parameters, linking them to the overall number of iterations (i.e.
perform faster line searches in the beginning).

2.5.2. Least-Squares Methods

Another important set of methods can be used if the cost function is a sum of squares of
non-linear functions:

F (~x) = 1
2

m∑
i=1

fi(~x)2 = 1
2
||~f(~x)||22 (2.51)

This type of function often occurs if a model is to be fitted to data, where ~x is a parameter
vector for the model function and the individual fi(~x) express the distance from a specific
part of the model to a data element. Both the gradient vector and the Hessian matrix of eq.
2.51 have a special structure, allowing adapted optimization algorithms like Gauss-Newton
and Levenberg-Marquardt to be used [48].
In particular the SSD similarity measure can efficiently be optimized by such methods.

2.5.3. Derivative-based Methods

If the gradient vector of F is available, it can be used as base for determining the next steps,
as done in the Gradient Descent or Conjugate Gradient methods. There are applications
where the cost function gradient can be calculated much faster than the function value itself,
boosting the optimization time accordingly. Some registration approaches use derivative
approximations, especially when Mutual Information is used as similarity measure [154, 172].

Gradient Descent Method

A very basic way to find a maximum is to step successively in the direction of the function
gradient.

~xk+1 = λ
df( ~xk)
d ~xk

The factor λ is a constant known as the learning rate. It is positive if we are seeking for a
maximum, and negative otherwise. Unfortunately the success of the optimization depends
very much on the right choice of λ. If it is too big, steps are taken too far and may skip
the optimal position repeatedly. However, if it is set too small, the algorithm may get stuck
before the optimum, as the step size depends both on λ and the absolute size of the function
gradient. For that reason, various approaches have been developed to adapt the learning rate,
often based on particular knowledge about the cost function.
An extension of this algorithm conducts line maximizations along the direction of the gradi-
ent, resulting in the Steepest Descent method. This does not rely on the empirical definition
of a learning rate anymore. Every new iteration then starts from on optimum on the direction
of the previous gradient, thus the component of the new gradient in that old direction will
always be zero. This means that all iterative steps are perpendicular to each other, which is
not very efficient (figure 2.9).
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This drawback has lead to the development of more sophisticated algorithms involving multi-
ple old directions, the Conjugate Gradient methods. Yet another category are Quasi-Newton
methods, which construct an estimate of the Hessian matrix of F to achieve faster conver-
gence. See [115] for details.

2.5.4. Quasi-global Methods

For many optimization problems a danger exists of getting trapped in local optima of the
cost function. One possible solution is to repeatedly start the optimization from different
starting points in the parameter space, eventually choosing the best result as optimum. An-
other workaround comprises adding noise to the cost function value, either purposedly, or
as byproduct of an randomized cost function approximation [154]. This results in a stochas-
tic optimization approach. Another widely used technique to overcome local optimas are
Simulated Annealing methods, which sometimes take steps in bad directions with decreas-
ing probability. That ”bouncing around” in the parameter space reflects the movement of
molecules when matter is in the transition from fluid to solid state. Particle Swarm methods
perform a number of concurrent searches with a certain collaboration strategy [158]. Yet
another class are Genetic Algorithms [107].
Note that one has to decide beforehand if the goal is indeed to find a global optimum, since
many similarity measures produce only a local optimum at the correct alignment.

2.5.5. The Right Optimizer for Registration

The selection of an optimizer for an image-based registration affects mostly its computation
speed, robustness and capture range, in the sense of a trade-off between those factors.
Direct search techniques can mainly be distinguished by how broad the path is they explore
within the parameter space. Hill Climbing uses more evaluations than Simplex, and therefore
might work better in certain cases, in particular if the individal parameters have little depen-
dencies. On the other hand, Simplex is generally more efficient and flexible at the same time.
For highly non-linear and “bumpy” cost functions, a more exhaustive local search might be
required. The Powell-Brent method is based on robust successive line minimizations, which
might come in handy, on the other hand it is usually considered one of the less efficient tech-
niques.
Least-squares methods can provide a significant boost in speed and robustness, given that
it is possible to express the similarity measure as a sum of squares. This is natively given
for the simple SSD (dis-)similarity measure. A word of caution here: Many of the other
measures presented in section 2.2.3 appear to have a least-squares form, in particular if they
are rewritten based on Generalized Correlation Ratio (equation 2.27). Since other variables
in the equations, like the functional intensity mapping f or the image variances, change in
every computation, they are in fact not valid least-squares expressions, and should therefore
be maximized by general non-linear optimizers.
Derivative-based methods should definitely be used when there is an efficient means to com-
pute the similarity measure gradient, and its values are numerically stable. It is a bad idea
to estimate the gradient by using finite difference evaluations around the current estimate,
since this will negatively affect both speed and robustness.
Quasi-global methods are only eligible if one’s intention is indeed to achieve the global op-
timum in the parameter space, independently from the starting location. Designing the
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Figure 2.10.: Parallelized scheme of an image-based registration algorithm.

similarity measure in a way that it actually produces the highest similarity value at the cor-
rect alignment is not trivial, to some extend because of the normalization issues pointed out
in section 2.2.5. Often however, a registration algorithm requires an initial estimate within
a certain proximity to the correct solution. A local search method then iterates towards the
closest local optimum, which supposedly represents the correct alignment.

2.6. Acceleration Techniques

The requirements in terms of the computation time that a registration algorithm may need,
vary greatly depending on the clinical application. They can be quite demanding in situations
where the patient is present when the registration is performed (often an interventional setup).

2.6.1. Parallel Computing

In general, the future of high-performance computing seems to be highly parallel and dis-
tributed. Common buzz-words in this context are Grid Computing and Ubiquitous Com-
puting. Computing clusters, where a number of workstations are connected with a very fast
network, have been around for a long time. Consumer PCs used to have a single CPU, though,
which has changed rapidly. It started with tricks like Intel’s Hyperthreading, now Core Duo
chips (two CPUs), IBM cell (8+1 CPUs) etc. Today, virtually no new PCs are sold anymore
that feature only a single CPU, so software application developers better get used to the new
opportunities & challenges of multi-threaded programming.
Most of the non-linear optimization strategies suited for image-based registration provide a
good anchor point for distributed computing. All cost function evaluations within one itera-
tion, i.e. before the algorithm decides on a new parameter estimate from which to launch all
further evaluations, can be processed in parallel. An illustration of this is provided in figure
2.10. The parallel implementation of a number of different optimizers for image registration
is described in [157]. In own work, [168] and Appendix A, we had achieved a speedup of one
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order of magnitude for a 2D-3D registration algorithm, by distributing the 12 evaluations per
iteration of a Hill-Climbing optimizer onto an Infiniband-based cluster.

2.6.2. GPU Processing

The demand of consumer industry for more and more complex graphics has driven a fast-
paced development of affordable yet powerful Graphics Processing Units (GPU) in the last
decade. Since it is straightforward to parallelize the visualization of 3D geometry, graphics
hardware today features a large number of computing units. A recent consumer graphics
card at the time of writing (summer 2007, NVidia GeForce 8800 Ultra) features 128 parallel
processing units, 768 MB of memory and 103.7 GB/sec memory bandwidth, for less than
800 dollars. This by far exceeds the specifications of current PC hardware. Together with
full programmability, supported by high-level GPU programming languages and APIs (Cg,
GLSL, Cuda, to name a few), GPUs have become an ideal platform for scientific computing.
The research field that has emerged is called General Purpose GPU (GPGPU), see [97] for
an overview.
Graphics hardware has been used in particular for 2D-3D registration, since the involved
computation of DRRs is a special case of Volume Rendering which can ideally be performed on
a GPU [70, 163]. We had evaluated projection-based 3D-3D registration method on graphics
hardware in [71]. Additional focus was on the computation of image similarity measures on
the GPU [27].

2.6.3. Random Sampling

In particular when registering 3D volumes, most of the computation time is spent traversing
the volumes while evaluating the similarity measure. An alternative approach is to just pick
a number of intensity tuples (i, j), randomly selected from Ω. Such a random sampling
approach can potentially yield an immense speed up, however it requires significant adaption
of the overall algorithm. A similarity measure computed based on random samples will have
a certain amount of jitter, depending on the number of samples used. Special optimization
algorithms that take randomness into account, can be used to deal with it. A well-known
technique based on a Stochastic Maximization of Mutual Information has been proposed by
Viola et al. [154, 153].

2.7. Evaluation
A crucial part of the development of an image-based, potentially automatic, registration al-
gorithm is its evaluation. Most importantly, the quality of alignment has to be assessed.
This can be done purely qualitatively by visual assessment. A number of experts in the
involved image modalities should visually determine on a statistically significant number of
image pairs and executed registrations, if the alignment is satisfactory. Unfortunately, the
outcome will depend to a certain degree on “human factors”, as well as the actual visualization
used to present the registration result (e.g. color overlay, checkerboard overlay, superimposi-
tion of outlines, linked pointer etc.).
Quantitative assessment is generally preferred, but often requires more effort. In general,
a so-called Gold Standard technique is used to compute an image alignment that is known
to be better than the method under investigation. If that is not guaranteed, then at least
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its accuracy has to be known; in this context manual techniques are often denoted “Bronze
Standard” [64]. Applying a Gold Standard method results in a so-called Ground Truth reg-
istration, which is then compared with the image-based algorithm.

2.7.1. Establishing Ground Truth

Since image-based registration registers anatomy within the patient, the method for establish-
ing the Ground Truth has to do likewise. Often a registration based on corresponding points
is used, which can be computed in a closed-form manner with [152] or [160]. The points
can be anatomical landmarks defined by an expert, or actual fiducial markers visible in both
modalities. The first is again subject to human variability, the locatability of the landmarks,
and the used visualization. With reasonable effort though, a solid Ground Truth registration
can be established using such a manual landmark definition. Fiducial landmarks provide ulti-
mate accuracy, however they are invasive. Implanting fiducials into patients therefore might
be difficult to justify within research about a proposed registration technique, unless it is
part of the current clinical procedure to achieve registration (as the case e.g. in stereotactic
radiosurgery). Often an iterative evaluation is done starting with synthetic data and ending
with real patient data. As for synthetic data, one of the images involved in the registration
process is usually generated, therefore the Ground Truth is known. Then a number of more or
less realistic phantoms can be used, which enclose fiducial markers or other means to establish
the correct registration. If appropriate, cadaver studies might be conducted. While marker
implantation is not an issue here, imaging on a dead body might not yield useful results,
depending on the modalities and target anatomy. Eventually, the final stage of evaluation
has to be done on real clinical data, with whatever methods to establish Ground Truth are
feasible.

2.7.2. Alignment Errors

Target Registration Error

The most direct measure of misalignment stems from the use of point correspondences. Let
~p be a point in image I, and ~q represent the same point, i.e. the same anatomical location, in
image J . The Target Registration Error (TRE) then simply writes as

TRE = |φ(~p)− ~q| (2.52)

The significance of this error lies within the notion that ~p, ~q should reflect a clinical target
point. For registration in the context of interventional oncology, it would typically be the
center of a malignant structure that is to be ablated, irradiated or resected. Therefore it
denotes the location within the patient’s body, where the highest accuracy of alignment is
required.
It is possible, and often meaningful, to establish multiple clinical targets. Those points can
reflect several lesions spread over the organ, or border points of a single large tumor. The
error is then usually expressed as Root-Mean-Square (RMS) value:

TRE =

√√√√ 1
N

N∑
i=1
|φ(~p)− ~q|2 (2.53)
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Generally it is preferred to use multiple target points for evaluation, as the size of the target
is reflected in the error value then. Besides, rotational errors of a registration algorithm can
be detected better, while in the case of a single target a wrong rotation might not increase
the TRE significantly (given that the rotation center is close to the target). If this is not
possible, e.g. for a rather homogeneous tumor mass, the target might be defined as a sphere.
A special variant of a TRE (with reciprocal meaning) would then be the amount of sphere
overlap.

Fiducial Registration Error

This error uses point correspondences as well, however they are specifically selected for best
possible locatability. They might also be the location of implanted fiducial markers for estab-
lishing Ground Truth, as discussed above. If {(~pi, ~qi)} is a set of corresponding fiducial points
in both images, the Fiducial Registration Error (FRE) is in analogy to the TRE expressed as
an RMS value:

FRE =

√√√√ 1
N

N∑
i=1
|φ(~p)− ~q|2 (2.54)

An FRE error value does not have clinical significance, but it might be more precise, since
the fiducial points are selected for their uniquely identifiable location in 3D. For a rigid
transformation, at least three non-collinear targets also allow to establish the Ground Truth
transformation by directly computing the motion between the point sets (see above). For
this, and the computation of FRE values, the accuracy of the actual point localization plays
an important role. It is denoted Fiducial Localization Error (FLE) and should be taken into
account when establishing error statistics. See also [53] chapter 6, and Fitzpatrick et al. [40]
for a detailed study of the mathematical dependencies between TRE, FRE and FLE.

Deviation of Transformation Parameters

A measure of misalignment that is often used, but has purely technical meaning, is to compute
some distance of the resulting registration transformation to the Ground Truth one. Rigid
transformations are often parameterized as two 3-vectors denoting translation and rotation
in Euler angles (see section 2.3.1). Stating the deviation in all components can reveal more
information about the spatial behavior of an registration algorithm, however it results in six
values which makes it difficult to summarize the algorithm performance. For more compact-
ness, often the RMS or mean values of each the translation and rotation components are
computed, resulting in two error values. Note that it is not meaningful to directly average
translation and rotation error, since they describe two different geometric properties. To work
around this, people often translate the errors by computing the displacement of the corners
of a target bounding box, which is affected by both translation and rotation. This brings
us back to the Target Registration Error though, with the box as an approximation for the
actual clinical target.

2.7.3. Robustness

The robustness of a registration algorithm determines how well the correct alignment is
reached for repeated execution of the algorithm, and on different image data. The first
case is also defined as repeatability. A very common tool in this context are randomized
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studies. The initial transformation parameters are randomly displaced a certain amount from
the Ground Truth, then the registration algorithm is executed. This process is repeated,
typically 100− 1000 times. The resulting distribution allows one to draw conclusions on the
overall robustness, the number of outliers, and the performance in the individual transfor-
mation parameters. Often the mean and standard deviation of the individual transformation
parameters are computed for studying the spatial behavior of the algorithm. If such studies
are repeated with successively increased variance of the random displacements, one can also
systematically evaluate the capture range of the algorithm, i.e. determine how far off the
initial transformation may be to still reach the correct alignment.
Eventually, such an evaluation has to be done on a large number of realistic clinical data sets,
to be statistically meaningful.

2.7.4. Similarity Measure
Often the Similarity Measure is the most crucial component in a new registration algorithm,
it therefore deserves special attention with respect to evaluation as well. Investigating the
measure usually happens at an earlier stage in the development. When it is known to behave
as expected, one can turn toward optimizing the remaining algorithmic components and
conduct the overall evaluation (by means described above).
When designing and tweaking a similarity measure, one usually computes a large number of
plots that show the measure value with respect to a transformation parameter changed within
some range from the correct alignment. Two parameters can be changed as well, resulting
in a surface plot (see e.g. figure 5.6 further down in this document). This allows in addition
to assess the amount of dependency between the chosen parameters, for instance if there is
a rim of high similarity diagonally through the plot. One has to be aware though, that it
only reflects a small portion of the parameter space to be evaluated. Any third parameter
altered somewhat from the Ground Truth might totally change a plot with respect to the
first two transformation parameters. Unfortunately there are no practical means to visualize
plots in more than three dimensions in an intuitive way. Therefore one has to get back to a
pure mathematical framework to cover, say, a full rigid parameter space. Skerl et al. [139]
have proposed an evaluation protocol that includes scheme to properly sample the parameter
space.

2.8. Summary
Designing a successful image-based registration algorithm requires careful consideration of
their essential components.
In the case of multi-modal registration emphasized in this thesis, the similarity measure is
arguably the most crucial ingredient. It should be designed based on all available knowledge
about the involved imaging modalities. We have introduced the most common similarity mea-
sures with respect to assumed functional relationships of the image intensities and a noise
term. A maximum-likelihood derivation has proven their consistency. Additional strategies
exist to incorporate more information about the registration problem, and to make the simi-
larity measure more robust with respect to deviations from the underlying model.
Deciding on the appropriate transformation model, as well as an interpolation which applies
this transformation to the moving image, is usually much easier, yet very important for the
overall outcome. An optimization algorithm has to be picked as well. This is often done
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in a rather experimental way, however the best choice here also depends on some similarity
measure properties, such as its smoothness with respect to the transformation parameters,
the size of local and/or global optima, the availability of gradient information and the appli-
cability of a least-squares formulation.
Last but not least, the evaluation and validation of a registration technique is not to be un-
derestimated. For precise and realistic evaluation, Ground Truth information eventually has
to be established right within the human body.
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3. 3D Freehand Ultrasound

While 3D ultrasound transducers are now available by most of the manufacturers, tracked
freehand ultrasound is nevertheless a very important technology. On one hand, it allows
for having larger field-of-view required for acquisitions of whole organs. On the other hand,
it is a preferred modality for interventional navigation applications, as both the ultrasound
images and their location in space are acquired in real-time. A broad overview about different
approaches to acquire three-dimensional ultrasound is provided in [39].

3.1. General Setup

A 3D freehand ultrasound system consists of an ultrasound machine, a tracking system, and
a computer workstation (figure 3.1). The tracking system provides the transformation TT ,
which is the position and orientation (commonly denoted as Pose) of a tracking sensor or
target attached to the ultrasound transducer. The computer workstation records both the
tracking information and the ultrasound images. The latter is typically achieved by using
frame grabber hardware, which retrieves the analogue video signal from a corresponding
output of the ultrasound machine. Depending on the ultrasound machine vendor, digital
interfaces can be used instead to transfer the image information without loss of quality. The
workstation runs a software which records the streams of tracking and image information in
a proprietary file format on the hard drive. Often, it also features algorithms to load, view
and reconstruct 3D ultrasound from the recorded sweeps.

Tracking systems that can be used for 3D freehand ultrasound, are briefly described in
section 3.2.
To exploit the three-dimensional information contained in 3D freehand ultrasound record-
ings, often a reconstruction into a cartesian volume, or oblique plane, is required. We review
possible strategies for this Spatial Compounding, and present a new efficient technique for it,
in section 3.3.
Given a 3D pose provided by a tracking system, the transformation TC to the actual ultra-
sound image plane has to be established. This problem of spatial calibration is addressed
in section 3.4. Eventually, when combining tracking and image information, they should be
synchronized as well. A constant delay between tracking and images can be recovered using
temporal calibration methods. Depending on the hardware setup, this delay might vary over
time - in particular when the tracking and ultrasound imaging occur with different update
frequencies. This problem is further amplified if video grabbing is used, since the video frame
rate is usually not synchronized with the update frequency of the actual ultrasound image.
A method to recover the constant temporal lag is presented in section 3.4 as well.
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Figure 3.1.: Overview of a 3D freehand ultrasound system.

3.2. Tracking
A detailed description of the physical principles underlying most tracking systems can be
found in [171]. In this work we use the optical and magnetic position sensing systems shown
in figures 3.2 and 3.3.

3.2.1. Optical Tracking

An optical tracking system usually consists of two or more video cameras mounted at a fixed
location, and optical markers that are attached in a certain pattern to the target to be tracked.
Markers can be active (i.e. light-emitting) or passive (reflective to visible or infrared light).
Exemplary systems are the NDI Polaris and Optotrack products, or ARTTrack2 (figure 3.2)
by Advanced Realtime Tracking (ART) GmbH, Germany. The 3D location of every marker
is precisely computed by triangulation from detected 2D locations in the video images. A
special case is tracking with just one camera, possible if the marker arrangement is known. An
example is the RAMP Augmented Reality System developed by SCR [73], which has watched
over me during the last year of my dissertation (since my office is in the SCR Imaging Lab).
Optical tracking can be extremely precise, depending on the amount of money one is willing
to spend. Some systems are scalable in the sense that any number of cameras can be mounted
somewhere in the workspace (16 for ART systems, for instance), a room calibration proce-
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(a) camera pair (b) targets

Figure 3.2.: The ARTtrack2 optical tracking system.

dure then recognizes their spatial relationship. The greatest disadvantage of optical tracking
systems is that they always require a direct line of sight between the tracking markers and
the cameras (actually, at least two cameras if more are installed). Besides, marker balls can
be too large and bulky for not being in the way, depending on the clinical use.

3.2.2. Magnetic Tracking

Magnetic position sensing uses a field generator, which generates a weak yet precisely defined
electromagnetic field over a certain working volume. Small sensors, containing two or three
miniature coils arranged in a perpendicular fashion, pick up the magnetic field, allowing to
compute their location and orientation in space. Popular systems are the NDI Aurora and
Ascension 3D Guidance (figure 3.3, their previous system was MicroBIRD) products.
Magnetic tracking sensors can be extremely small, and can therefore be integrated in catheters
that are inserted into the human body for particular interventions. No line of sight is required
between the field generator and the sensors. However, magnetic tracking is very susceptible
to magnetic field distortion, arising whenever other ferro-magnetic material is brought close
to the system. Note that it can be very challenging to remove all metal around the patient in
a clinical environment. In particular, most patient beds and bed-rails contain a large amount
of metal. Addressing this issue, Ascencion has developed a new Flat Transmitter for the
3D Guidance system (figure 3.3(a)), which can easily be placed below the mattress of the
patient bed, shielding all metal below it. Even in an ideal metal-free environment, accuracy
of magnetic tracking is rather low compared to their optical counterparts.

3.2.3. Image-based Tracking

If no external position sensing system is to be used, the content of the 2D ultrasound images
can be used to estimate the frame-to-frame displacement. This is easy if the transducer is
moved such that the ultrasound images stay in the same plane, and is used in panoramic
imaging techniques which are nowadays available on products by all major ultrasound ven-
dors [42]. On the contrary, estimating the out-of-plane motion is a more challenging task.
Researchers have mainly used the fact that ultrasonic speckle patterns enter and exit the
image plane when the transducer is slowly moved in elevational direction. Linear regression
[112] or speckle decorrelation [47] are proposed techniques to compute the inter-frame dis-
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(a) flat and mid-range transmitter (b) sensors

(c) electronics unit

Figure 3.3.: The 3D Guidance magnetic tracking system.

placement. This technology is still in its infancy, the problem mainly being that the speckle
statistics needs to be precisely known. However, depending on the anatomy, every portion
of the image may contain anything from no speckle (e.g. a clear, bright tissue interface) to
fully developed speckle. Besides, either the raw RF-signals have to be used to derive speckle
statistics, or the parameters used for preparing the data for visual display, in particular the
log-compression, have to be known. Since the motion between successive frames is estimated,
this approach also suffers from error accumulation, resulting in a drift of later parts of the
acquisition, and thus potentially a wrong scaling and/or shearing of the 3D sweep.

3.3. Compounding
Using the three-dimensional characteristics of 3D freehand ultrasound sweeps, in particular
any-plane views, has many medical advantages, including

• independency from examiner and, to some extent, used probe positions

• freedom to display pathological process in any angle, e.g. along and perpendicular to
its main axis for visualizing its full extend, or planes that focus on relations to relevant
neighbouring normal tissue structures

• possibility to visualize planes parallel to the skin, that cannot directly be derived from
diagnostic sweeps in B-mode

• upvalue ultrasonography into a comparable line with other sectional imaging modalities
that allow for free choice of plane at acquisition (e.g. MRT) or reconstruction (e.g.
multi-slice CT)
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Figure 3.4.: Volume traversal scheme for advancing only one voxel at a time.

To exploit them, a reformatting either into a cartesian volume or a plane arbitrarily located
in space is necessary. We denote this process Spatial Compounding, however there is some
confusion about this term. Spatial Compounding is sometimes used to describe the integration
of ultrasound pulses focused in different directions, to decrease the amount of speckle in the
images (e.g. the SonoCT feature available on Philipps systems). This is a feature directly
implemented on the respective ultrasound systems, while the compounding we are addressing
is the reconstruction of 3D ultrasonic information from scattered 2D slices. For that reason,
a number of researchers use the general term Ultrasound Reconstruction instead [122]. There
are two distinct approaches to it, as already pointed out by [12].
A footprint of each of the B-mode images scattered in space can be created in the initially
empty 3D volume. If an additional volume channel is used, an averaging can be achieved
where several ultrasound planes intersect the same voxels, otherwise often the maximum
is used as final intensity [123]. This so-called forward-warping is computationally efficient,
while it has the potential to cause gaps in the reconstruction. It can also be used to directly
create Multi-Planar Reconstructions (MPRs) by assuming a constant elevational thickness of
each ultrasound image [111]. For this purpose, a polygon depicting the intersection of each
ultrasound image with the desired plane is drawn onto the screen with hardware-accelerated
texture-mapping.
A backward-warping strategy would traverse the target plane or volume, for each grid point
identify the relevant original ultrasound information and accumulate the voxel intensity using
e.g. distance-weighted interpolation or other merging schemes. In the following, we present an
algorithm implementing this approach efficiently, despite the obviously high computational
effort. A simplified approach is taken in [32], where a continuous probe motion without any
ultrasound plane intersections is assumed, henceforth each voxel intensity is weighted from the
two neighboring ultrasound slices, using the probe trajectory rather than the perpendicular
projections.

3.3.1. New Methods
For every discrete position ~xi ∈ V in the reconstruction volume V , we need to compute a set
of tuples Ai = {(d, y)} where d is the distance of an original ultrasound data point to ~xi and
y its intensity value.

∀~xi ∈ V : Ai = {(d, y)|d < D; d = ‖~p− ~xi‖} (3.1)
~p = Hj(u, v, 0, 1)T ; y = Yj(u, v) (3.2)
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Here, D is the maximum distance at which points should be taken into account for accumu-
lation of the voxel intensity. The homogenous 4x4 transformation matrix Hj for a particular
ultrasound slice j maps a 2D point (u, v)T of the slice plane into a point ~p in 3D. The corre-
sponding ultrasound image intensity is denoted Yj(u, v). The main effort is now to determine
the set Ai for each voxel from the whole ultrasound information available. However, we can
restrict ourselves to points ~p originating from slices whose perpendicular distance to ~xi is
smaller than D:

Si = {j|di,j < D; di,j = (0, 0, 1, 0)H−1
j ~xi} (3.3)

Fast slice selection

In the following we devise an efficient means to successively compute Si for all voxels, using
the following facts:

• We can traverse the volume in a way such that the distance of two successive voxels is
always ‖ ~xi+1− ~xi‖ ≤ k, where k is the maximum voxel spacing. Figure 3.4 illustrates a
simple possible scheme.

• If the distance of ultrasound slice j to ~xi is di,j , then the distance of the same slice to
voxel ~xi+1 can not be smaller than di,j − k.

• Hence this mentioned slice j can only be required for an voxel index i+bdi,j/kc or later.

We use a rotation queue with dk/DV e elements (DV being the volume diagonal), which is
equivalent to the maximum distance of a slice contributing to the reconstruction, from a par-
ticular voxel. Each element contains a set of slice indices, at the beginning all slices are in
the head element of the queue. For every voxel ~xi, all slices in the queue head are removed,
their distance d is computed and they are reinserted into the rotation queue corresponding
to that distance. If d < D, then the slice is added to Si and considered for accumulation of
the voxel intensities. For the next voxel ~xi+1, the rotation queue head is advanced.
This will allow us to implement efficient backward-warping compounding methods to re-
construct three-dimensional volumes of ultrasound information. In order to create online
Multi-Planar Reconstructions (MPRs) directly from the original data, we will just consider a
reconstruction volume with a single slice, arbitrarily located in space.

Intensity accumulation

For a voxel ~xi, all pixels on each slice ∈ Si that satisfy d < D are added to the set of distance-
intensity tuples Ai defined in equation 3.1. For a given set A = {(di, yi)}, the reconstructed
voxel intensity can be any weighting or selection function f(A). We considered the following
functions in our work:

Inverse Distance Weighting. Originally defined in [135], it assures that the reconstructed
intensity approximates the original data values for d→ 0 (µ > 1 being a smoothness param-
eter):

f(A) =
n∑
i=1

yi
d−µi∑n
j=1 d

−µ
j

(3.4)
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Gaussian Weighting. A 3D Gaussian kernel with size σ can be used to weight the data
values as well:

f(A) =
∑n
i=1 yie

−d2
i /σ

2∑n
i=1 e

−d2
i /σ

2 (3.5)

Nearest Sample. Here, the data value closest to the considered voxel is directly accepted
as reconstructed intensity:

f(A) = yi|di = min{di} (3.6)

Weighted Median. Using the median has the advantage that one of the original intensities
is chosen, which would be the centermost one from the sorted intensities [yi]. In order to
incorporate the distances, we ”stretch” the sorted list with their respective inverse linear
weightings 1

∀k ∈ [1 . . . n] : yk+1 ≥ yk, wk = 1− dk
D

f(A) = yi

∣∣∣∣∣
i−1∑
k=1

wk ≤
∑n
k wk
2

≤
i∑

k=1
wk (3.7)

3.3.2. Results

Computation time

We implemented a forward-warping compounding algorithm for comparison purposes, which
averages all ultrasound pixel hits onto reconstruction volume voxels, as described in [123].
The following table compares the impact of volume and slice resolution on both forward and
backward compounding.

forward backward multiple backward single
DV DS = 256 DS = 454 DS = 256 DS = 454 DS = 256 DS = 454
16 517s 1687s 226s 401s 119s 295s
134 538s 1915s 712s 942s 442s 510s

DV denotes the number of million voxels of the reconstruction volume, DS is the width and
height of the input ultrasound slices. The times were taken using a set of 1024 slices, on
an AMD64 3200+ with 1GB RAM. While forward compounding is largely unaffected by the
number of voxels, the amount of pixels to be processed linearly affect the computation time.
Backward compounding reacts to changes in both input and target data, however the increase
depending on the size of the slices can be largely eliminated if only a single pixel of each slice
is required for each voxel as in a nearest neighbor accumulation.

Qualitative and Quantitative Comparison

Figure 3.5(a) shows one reslice approximately orthogonal to the original slices. 200 slices
were processed using different accumulation schemes. Mean-Squared-Error (MSE) values
were calculated according to the leave-one-out strategy for the whole reconstruction volumes,

1Linear mapping [0, D]→ [1, 0], pixel beyond distance D are disregarded and therefore have weight 0.
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(a) MPR slice (b) backward weighted
median (MSE 54)

(c) forward with
smoothing (MSE 59)

(d) online MPR, back-
ward w. median

(e) backward nearest
sample (MSE 55)

(f) backward gauss
(MSE 57)

Figure 3.5.: Longitudinal MPR (a) from an axial freehand sweep of a right neck created using
backward compounding with weighted median. Anatomical details, from superfi-
cial to deep structures: skin, subcutaneous tissue, platysma,sternocleidomastoid
muscle, lymph nodes (left: normal, center+right: malignant), internal jugular
vein with physiological pulsation, marginal section of carotid artery with arte-
riosclerotic plaque. Enlarged details of images interpolated from compounded
volume (b,c,e,f) and online MPR (d).

as described in [32]. Each method has its own merits for specific applications. The more
homogenous appearance of the gaussian and smoothing kernels are favourable for volume
rendering and segmentation. On the other hand, methods that retain original intensities,
median and nearest sample produce more diagnostically relevant images than methods re-
computing the values. Nearest Neighbor is the fastest but also the most unforgiving on noisy
datasources and jittery tracking information. The online MPR reconstruction (fig. 3.5(a)(d))
provides the sharpest and detailed images, as one data resampling step is skipped.

Interleaved 3D-Ultrasound Data

Using the online backward-warping MPR reconstruction it is possible to fuse multiple freehand
ultrasound sweeps regardless of their relative spatial positions. The samples presented here
were created using three sequences. A selected slice of the center sequence was recreated
using data from sequences to the right and left, see figure 3.6. Reconstruction using backward
compounding with weighted median accumulation of one 256 × 256 slice from sweeps with
a total of over 1000 slices takes about 1 second on an AMD64 3200+ processor using high
quality settings.
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(a) left sequence
(SMD 667)

(b) right sequence
(SMD 1007)

(c) combination
(SMD 476)

(d) reference

Figure 3.6.: The MPR Viewport was frozen in place at the spatial location of the original slice
(d). The individual contributions of the right and left sequence are (a) and (b).
The SMD (Squared Mean Differences) of the reconstruction drops significantly
when both sequences are combined in (c).

Figure 3.7.: Examples for spatially related ultrasound images from the neck: Original axial
slices (a+b) and longitudinal MPRs (c+d) using our reconstruction technique.

Improving Registration

For multi-modal registration of freehand ultrasound images with a CT scan, we present au-
tomatic image-based registration techniques later in section 4.2. There, a set of axial images
from a continuous caudo-cranial sweep along the neck is selected and used for registration,
see section 5.1 for details on the data acquisition. Using our compounding methods, arbitrary
planes of ultrasound information can be considered in addition. Figure 3.7 shows two original
transversal images from a freehand ultrasound sequence along the jugular vessels, as well as
two additional MPR-reconstructed slice images.
One could argue that the examiner should rotate the ultrasound probe after the continu-
ous caudo-cranial motion to acquire longitudinal images supporting the registration. This
however will introduce significant deformation errors due to tissue compression distributed
differently on the patient’s skin, as well as motion induced by the blood pulsating through
the vessels (see section 5.1.8 for a detailed discussion of the error sources). For a rigid regis-
tration, it is preferred to use additional planes derived directly from the data of the original
continuous probe motion. This is done using our MPR reconstruction method, which allows
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in addition to create planes of information parallel to the skin surface within the body, which
cannot be acquired by ultrasound itself.
The robustness of automatic rigid CT-Ultrasound registration on such a sequence improved
significantly when oblique reconstruction planes were considered for registration. The stan-
dard deviation of the Target Registration Error on a lymph node decreased from 3.2mm to
1.5mm for a random displacement study for the sequence depicted in figure 3.7, when two
MPRs where considered in addition to 5 slices from the original sweep (only two of which are
shown in the figure for better spatial impression).

3.3.3. Discussion
We have developed new methods for spatial compounding of freehand ultrasound data, using
a backward-warping approach which collects the scattered image information for each voxel
in an efficient manner. They allow to perform reconstructions with superior quality and
shorter computation time compared to forward-projection techniques known from literature,
while a choice of smoothness and continuity versus retaining original image characteristics
can be made using different accumulation functions. These algorithms can also be used to
compute Multi-Planar Reconstructions (MPRs) in real-time from the original data. This
further increases the image quality, as an extra interpolation step is saved that would be
necessary when rendering MPRs from previously compounded 3D-volumes. As a result,
more detailed diagnostic information can be gathered and visualized not only for the person
performing the ultrasound examination, but also for demonstration to colleagues at a later
point of time without the presence of the patient necessary. Pathological changes in tissue
texture and their relation to anatomical landmarks can be demonstrated in an optimized plane
without haste, which gives the possibility to combine the advantages of ultrasonography (high
spatial resolution and tissue contrast depending on the frequency of the ultrasound device)
with the advantages of sectional imaging in any plane. Furthermore, multi-modal image-
registration can be improved by adding oblique ultrasound information in addition to original
image data. Finally, the online MPR algorithm can yield high-quality real-time visualization
of oblique slices for freehand ultrasound systems.

3.4. Calibration
For 3D freehand ultrasound systems it is crucial that the spatial relation between the position
sensor and the image plane is precisely determined. This is a rather complex problem, which
tends to be underrated. A large body of literature deals with spatial ultrasound calibration,
a concise survey is [91]. Most of the methods are based on imaging a designated phantom
object with some known geometric properties. Acquiring a number of images from different
orientations then allows to establish the relation of the image content to the tracking sensor’s
coordinate system. Optimal phantoms contain material mimicking human tissue, and are pre-
cisely manufactured according to a geometric model used for the mathematical computation
of the calibration parameters. Such phantoms are mostly used for commercial freehand ul-
trasound systems, and potentially allow for a very convenient calibration workflow, that can
be performed by sonographers & physicians. However, purchasing or manufacturing them
is often not an option for research facilities. On the contrary, the Single-Wall calibration
method [113] only relies on a rough-textured plane submerged in water. A number of sub-
sequent research effort has been conducted to further automate this method [124]. However,
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Figure 3.8.: Used coordinate systems and image planes for computing reconstruction errors.

its precision is still limited by the narrow range of imaging orientations and depths. The
varying elevational beam thickness causes the Single Wall phantom to appear as line with
different thickness and fuzziness, depending on the depth and focus settings used. Another
problem arises as the speed of sound in water is different than the reference speed assumed
by ultrasound machines (1540m/s in average human soft tissue). An additional source of
errors is introduced when trying to overcome this problem, either by using a particular fluid
with the desired speed (mixture of water with NaCl), or estimating the actual speed of sound
and henceforth compensating for the image distortion. Phantom-less calibration methods
[72, 94] use the intersections of a tracked tool with the ultrasound image plane to derive the
calibration. They suffer from the speed-of-sound problem as well, as the calibration has to
be performed underwater. Besides, two more error sources are added: The tracking accuracy
of the tool itself, as well as the calibration of the tool. For magnetic tracking, especially the
rotational accuracy is rather poor, making it difficult to achieve a good tool calibration. For
optical tracking, the target markers have to be considerably far away from the tool tip, as
they always need to be above the water surface.
In [15], an image-based approach is used, which maximizes Mutual Information of tracked
ultrasound images and reconstructions from an MRI scan of a custom-built Agar gel phantom.

Building upon the efficient compounding method presented in section 3.3, we developed a
new calibration approach, that can avoid a number of the problems pointed out above. It
uses the spatial consistency of interleaved freehand ultrasound acquisitions as the underlying
information for calibration. The proposed method can be performed using in vivo tissue,
making it possible to calibrate ultrasound prior to the procedure, or even validate the cali-
bration during an exam. While in [19] tracking of in-plane motion on successive frames is used
to monitor some calibration parameters, we are using large-scale consistency of the anatomy
to recover all parameters, including the temporal lag.
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3.4.1. New Sweep-based Calibration Method

If two slow angulated freehand ultrasound sweeps are acquired from the same anatomy at
approximately perpendicular orientation, they should measure the same image intensities at
every point in 3D-space, assuming the right calibration parameters Tc are known. Hence
a maximization of the similarity measure S of images Ij from the first sweep with recon-
structions Ĩj from the second sweep (and vice versa) should yield the correct optimization
parameters:

T̃c = arg max
Tc

∑
j

S
(
Ij(~p), Ĩj(~p)

)
(3.8)

Geometric Formulation

In homogenous coordinates, we denote the sought calibration Tc as rigid transformation from
image to sensor coordinates, and Tij = T−1

j Ti the relative transformation between two sensor
measurements. Then the transformation between two images is described as

T−1
c TijTc =

[
R−1
c −R−1

c tc
0 0 0 1

] [
Rij tij
0 0 0 1

] [
Rc tc

0 0 0 1

]
=

=
[
R−1
c −R−1

c tc
0 0 0 1

] [
RijRc Rijtc + tij
0 0 0 1

]
=

=
[
R−1
c RijRc R−1

c (Rijtc + tij − tc)
0 0 0 1

]
(3.9)

If the rotation Rij is close to identity, the influence of both Rc and tc in equation 3.9 dimin-
ishes, which means that frames used for calibration should be angulated as far as possible
from each other. For further examination, we use a more specific setup with T12 = T−1

2 T1
and two locations ~p1 = (u1, v1, 0, 1)T and ~p2 = (u2, v2, 0, 1)T in image coordinate systems that
represent the same point ~pw in 3D-space:

T−1
c T−1

2 T1Tc ~p1 = ~p2 (3.10)

The image locations ~p1 and ~p2 are in physical units (mm), i.e. we assume the correct pixel
spacing to be known. We are now interested in the reconstruction error e of the 3D positions,
if an error-prone calibration matrix T̃c is used.

e = |T2T̃c ~p2 − T1T̃c ~p1| (3.11)
Using eq. 3.10: e = |T2T̃cT

−1
c T−1

2 T1Tc ~p1 − T1T̃c ~p1| (3.12)

In the setup used to analytically derive the error, Tc consists solely of a translation d = 100mm
along the negative y-axis, T1 a rotation of α around the x-axis, T2 a rotation of β around the
x-axis first and 90◦ around the y-axis (see figure 3.8). The 3D point ~pw is

~pw = T1Tc ~p1 =


u1

(v − d) cosα
(v − d) sinα

1

 (3.13)
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Figure 3.9.: Plots of reconstruction error. The configuration is ~p1=(40, 20, 0, 1)T and
α=β=−30◦.

The angle β is defined such that the second imaging plane intersects ~pw as well:

β = − arctan −u1
(v − d) cosα

(3.14)

An error-prone calibration T̃c is defined as a translation about (tx, ty − d, tz)T . Inserting in
equation 3.12 yields

e =

∥∥∥∥∥∥∥∥∥


sin(β)ty + cos(β)tz − tx

cos(β)ty − sin(β)tz − cos(α)ty + sin(α)tz
−tx − sin(α)ty − cos(α)tz

0


∥∥∥∥∥∥∥∥∥ (3.15)

For applying error in one translation component at a time, the error results to:

ex = |tx|
√

2 (3.16)

ey = |ty|
√

2(1− cosα cosβ) (3.17)

ez = |tz|
√

2(1− sinα sin β) (3.18)

The reconstruction error linearly increases with respect to the calibration error, and is in-
dependent of the position in the image plane (apart from the dependency of the angle β in
equation 3.14). Only if the angles α and β are small, the error in the y direction remains
unchanged (eq. 3.17). This is obvious as in that case the change of ty moves the two image
planes along parallel lines in 3D space. Hence the calibration sweeps have to be sufficiently
angulated, two linear motions would not recover the y translation of the calibration transfor-
mation. Similarly, eq. 3.18 shows that for angles approaching 90◦ a change in tz would not
affect the reconstruction error. However, such a configuration is not possible with transcuta-
neous ultrasound anyway (the image planes would be parallel to the patient’s skin).
Expanding the equations with rotations in T̃c yields very large trigonometric equations. Es-
sentially, the only situations where a wrong rotation would not increase the reconstruction
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(a) 3D view (b) ultrasound image (c) reconstruction

Figure 3.10.: Phantom images, acquired with the Antares wobbler. The NCC measure for
those images is 0.86.

error, are: a) that ~p1 and ~p2 both lie on the x- or y-axis of the respective image coordinate
system (which would only be the case for a minority of the pixels in an ultrasound image); b)
both α and β are very small, then the θy rotation cannot be recovered. Figure 3.9 displays
the reconstruction error for all 6 calibration parameters.
We have shown that the described setup allows to recover all 6 calibration parameters. If an
appropriate image similarity measure between original ultrasound intensities Iim(u, v) and a
reconstruction at its 3D location Irec( ~pw) from the respective other sweep can be described as
a monotonous function of the reciprocal reconstruction error e, its maximization will result
in the correct calibration.

Algorithm

We use the compounding algorithm described in section 3.3 to efficiently reconstruct ar-
bitrary planes directly from a freehand ultrasound sweep. 5-10 images from every sweep
are compared against reconstructions from the other sweep, respectively. Normalized Cross-
Correlation (NCC) is computed on every pair, its average is used as a cost function for
non-linear optimization (i.e. S = NCC in equation 3.8). This assures that brightness and
contrast differences of an ultrasound image and its reconstruction do not impose the registra-
tion accuracy. Such differences can occur, as the respective intensities originate from different
scan orientations. The Amoeba Simplex algorithm (see section 2.5.1) then finds the optimal
calibration transformation maximizing the image similarity. Instead of directly modifying the
calibration parameters, a relative calibration matrix composed from zero-initialized transla-
tion and Euler angles is right-multiplied onto the initial estimate. This avoids the inherent
Gimbal lock problem of the Euler-angles parameterization.

3.4.2. Results
Ground Truth Study

To derive the absolute precision of our new calibration method, we used a Siemens Antares
ultrasound machine with the C5F1 3D transducer. It acquires 30-70 2D frames per volume,
mechanically wobbling over an angulation of 35 − 75◦. Two perpendicular volumes have
been acquired from a multi-modal abdominal phantom (CIRS Inc, Norfolk VA USA, figure
3.10(a)). Using the imaging geometry from the saved pre-scan-converted DICOM volumes,
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Figure 3.11.: Similarity measure plots for the Antares phantom data, altering two calibration
parameters at once.

tx(mm) ty(mm) tz(mm) θx(◦) θy(◦) θz(◦) NCC time(s) error(mm)
Antares Ground Truth data

mean -0.15 2.01 -0.63 -0.06 0.00 0.01 0.91 168.6 2.39
σ 0.20 0.75 0.30 0.38 0.17 0.15 0.00 45.9 0.74

Sequoia freehand ultrasound, phantom vs. in-vivo
phantom 115.5 -3.5 27.3 -172.7 7.3 -90.3 0.85 115.9

liver 114.4 -2.0 25.8 -172.8 6.8 -86.6 0.68 89.2

Table 3.1.: Results of precision and robustness study.

we perform a 2D scan-conversion into a set of cartesian 2D images, and tag the images
with calibration and tracking matrices to resemble a freehand ultrasound acquisition. The
tracking effectively consists of an x-rotation angle α, the calibration of a negative y offset d,
similarly to the setup in figure 3.8. A standard image-based registration technique is used to
register 3D-scan-converted representations of the volumes, using NCC as similarity metric.
The registration result is then applied to the tracking matrices of the second sweep. Table
3.1 (top) depicts the mean and standard deviation values for execution of 183 optimizations,
each randomly displaced from the ground truth calibration (every parameter in ±20mm,
±20◦ mean distribution). The method reliably finds the same calibration. Only in the y
axis is a systematic bias of 2mm. This might be due to interpolation in the 2D- and 3D-
scan-conversion algorithms, or a difference between the 3D imaging geometry provided by the
manufacturer, and the physical transducer properties. The error value in the right column
depicts the relocation error of a point in the center of the ultrasound image (around 7cm
depth). It is mostly composed from that deviation in ty. Figure 3.11 depicts 2D plots of the
sum-of-NCCs similarity function used, for changing two parameters from the ground truth
calibration each.

Calibration on Human Liver

Here we used a freehand ultrasound system based on a Siemens Sequoia ultrasound machine
in conjunction with an Ascension 3D Guidance magnetic tracking system and a PC with a
video grabber. Three transducers (4C1, 4V1 and 6C2) were calibrated for a permanent clinical
setup, using the same CIRS phantom. For every transducer, two perpendicular sweeps were
recorded at 12cm, 18cm and 26cm depth setting, and two focal zones (the minimum on that
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(a) 3D view (b) ultrasound image (c) reconstruction

Figure 3.12.: Freehand ultrasound sweep of the human liver. NCC for the shown images is
0.60.

machine) evenly distributed over the image.
We repeated a particular calibration (4C1 transducer at 18cm depth) in-vivo on a human liver.
The two required sweeps were combined to achieve a consistent data set within one breath-
hold, and without removing the probe from the skin (see figure 3.12(a), angulated, twisted
90◦, angulated back). The result deviates in the calibration parameters from the phantom-
based results less than 2mm and 4◦, see table 3.1 (bottom). If the patient or volunteer
steadily maintains the breath-hold and does not shift his position during the acquisition (10-
20 seconds), the only additional error source with respect to phantom data arises from lower
structures pulsating with the heart-beat (e.g. the portal vein).

Temporal Calibration

We achieved temporal calibration by performing a linear forward-backward motion on the
phantom. Each 4 images in the forward motion were reconstructed from the backward mo-
tion, and vice versa. A one-dimensional Brent-line-optimization [115] was run on the temporal
delay parameter. It alters the spatial information of every recorded frame by interpolating
between the neighboring tracking matrices, using a quaternion-based method [137]. We con-
sistently obtained a lag between the video-frames and tracking information of 100ms.
The linear motion used here makes the temporal calibration mostly independent of the spatial
calibration parameters. For bootstrapping the calibration, it is sufficient to optimize the spa-
tial calibration parameters with zero temporal lag, successively run the temporal calibration,
and refine the spatial calibration with the temporal result. In our experience, the temporal
delay is very similar for all different transducers and depth settings, and in fact only needs
to be established once for a certain hardware setup.

3.4.3. Discussion

We presented novel methods for spatial and temporal ultrasound calibration, that can be
performed on any ultrasound phantom or in-vivo. We have expanded on the theoretical foun-
dation of the method, and proved that the chosen acquisition geometry allows one to recover
all spatial calibration parameters. Our result on a ground-truth 3D ultrasound machine, as
well as freehand ultrasound calibration on both phantom and human liver data show that the
method is reliable and precise. We believe it is a very convenient alternative to other methods
published in the literature, that might especially be beneficial if the availability of specialized
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tools, phantoms and 3D imaging of those phantoms, is limited. As an advanced application,
freehand ultrasound systems continuously recording during an exam or procedure could de-
tect perpendicular image frames from analyzing the tracking trajectories, and automatically
verify and correct some or all calibration parameters in the background. Besides, our algo-
rithm might be used in conjunction with methods based on motion of successive ultrasound
frames[19], to increase overall stability and accuracy by combining small- and large-scale
anatomic clues.

69





4. CT-Ultrasound Registration

4.1. Related Work

4.1.1. Modeling and Simulation of Ultrasound

A first step toward registration methods involving ultrasound images, is to model and simu-
late the physical effects that take place in ultrasound imaging. The book [85], chapters 9 and
10, explain the physics of ultrasound imaging in terms of linear system theory. A detailed
description of ultrasound physics, as well as transducer instrumentation is contained in the
textbook [56].
In [35] the authors model the ultrasound wave propagation for a multi-layered medium, with
constant properties within each layer. Experimental validation on a phantom with a single-
element ultrasound transducer is also conducted.
A detailed mathematical description of ultrasound imaging systems is [67]. The concept of
spatial impulse response is used in order to approximate the whole ultrasound imaging pro-
cess in a numerical manner. It leads to the full simulation of 2D images based on a ultrasonic
scattering map as input. This is implemented in the software FIELD II [66], a MATLAB
based simulation program. It has become a standard tool in the community to study, teach
and research ultrasound systems, however the used approach is hardly applicable for multi-
modal registration. On one hand, the extremely realistic simulation of aperture, scattering
and speckle noise yields no benefit for comparison with other modalities. On the other hand,
the computation times are quite large, ranging from several minutes to many hours for a
single image. The nature of ultrasound speckle is examined in [34], leading to a model which
allows to use less point scatterers, while producing the same simulated speckle data.
Another, more general (i.e. not restricted to medical ultrasound) simulation software is
Wave2500, capable of simulating the wave propagation for two-dimensional models, with
arbitrarily placed senders and receivers [69]. It solves the acoustic wave equations using a
finite differences method. In the medical domain it is used e.g. for assessment of ultrasound
interaction with bone [10].
Most of the real-time medical ultrasound simulation systems available today, use previously
established 3D ultrasound data sets. An overview of systems in use and their clinical benefit
in particular in prenatal diagnosis is given in [88]. A specific implementation is presented in
[4]. This work contains many implementation details about efficient voxel traversal for slice
interpolation, which probably can be solved differently today, e.g. by GPU processing. A
similar system for education and training is described in [37].

4.1.2. Image-based Mono-modal Registration

Before addressing multi-modal registration, one should have a glance at how mono-modal
registration of ultrasound images is adressed in the community. This can provide clues about
dealing with the common ultrasonic properties and artifacts within an image-based registra-
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tion method.

Intra-modal registration of multiple compounded ultrasound volumes is done in [123]. In
particular, the correlation of the 3D gradient magnitude, together with a hierarchical reso-
lution approach leads to a robust registration technique, which is used to compound several
free-hand 3D ultrasound sweeps.
The popular Mutual Information similarity measure is also used in this context, for rigid
and non-rigid registration of ultrasound volumes [133]. An application of both temporal and
spatial registration using MI is 3D stress echocardiography [134]. [175] have applied a non-
rigid registration of free-hand US volumes of the breast, using the correlation coefficient and
local statistics for the measure. [95] perform 2D rigid registration of breast ultrasound using
an adapted alpha-entropy similarity criteria. Registration using a deformation model which
consists of a global affine transformation and local free-form deformations, applied to 3D ul-
trasound data acquired during neurosurgery (before and after opening the dura, respectively),
is presented in [82]. Here an existing software package for non-rigid registration of MR data
[126] is used.
In [30], a new similarity measure for motion estimation from ultrasound images is proposed.
It is derived by modeling the ultrasound intensities with multiplicative Raleigh noise (instead
of an additive Gaussian noise term, as used for deriving the common similarity measures in
section 2.2.3). This measure is also used in a block-matching based velocity estimation in [22],
and a learning-based algorithm in [181]. In the latter, weak learners based on local rectangle
features are used to boost a discriminative similarity function, for motion estimation of stress
echocardiography.
In [15, 16] an ultrasound calibration method is derived, which uses intensity-based registration
of acquired ultrasound slices of a gelatin phantom with a MR scan of it. Normalized Mutual
Information and a Best Neighbor optimizer are used in order to find the most appropriate
calibration transformation.
Texture information from ultrasound images can also serve as significant features for registra-
tion. In [43], spatial Gabor filters are applied to create localized feature vectors, describing
the texture components in various directions and frequencies. These features are in turn used
for deriving a statistical similarity measure in order to register two 3D ultrasound volumes.
In [5] the authors determine a global rigid transformation for two ultrasonic volumes, which
is later refined using an elastic registration on 2D seam planes.
In own studies we registered multiple 3D-ultrasound volumes of the author’s liver, acquired
with a Siemens Antares C5F1 probe at different breathing states, using a non-linear vari-
ational approach [183]. A scenario which has been adressed rarely in literature so far, is
the simultaneous registration of more than two 3D ultrasound datasets. We conducted a
study of registering multiple 3D-US volumes by extending popular similarity measures to the
multi-variate case [156].

4.1.3. Feature-based Multi-modal Registration

Due to the difficult properties of ultrasound, a lot of research has been carried out using
features extracted from the ultrasound images, in order to align them with corresponding
structures in other modalities. In the context of thermal ablation for liver cancer, the most
significant structures in the ultrasound images are the liver surface and major vessels inside
the liver. In [104], those structures are segmented in an MRI scan, and points on the surface
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of the same structures are manually picked in the ultrasound images. A method based on the
Iterative Closest Point (ICP) algorithm is then used to compute the transformation between
the two modalities. The organ surface of the prostate is used in [174].
Bone structures can be well identified using ultrasonic imaging, as they produce a strong
(though also specular and hence position-dependant) reflection and full occlusion behind the
reflection. Thus it is feasible to use such structures in a more automated manner for regis-
tration [8, 23]. In [8], a modified ICP algorithm is used in order to register the bone surface
extracted from CT with points in the ultrasound images likely to reflect the bone surface.
Therefore they minimize the point distances weighted with a probability of each point being
on the bone surface. This probability is computed from three components: The so-called
spatial prior, which is the proximity of the point to the surface from the CT, the US intensity,
and the result of a directional edge filter applied to the ultrasound images. Thus this method
pursuits a combined registration and segmentation approach. In [11], a similar point-based
registration based on point features is executed simultaneously while refining the freehand
ultrasound calibration parameters, which improves the accuracy by compensating speed-of-
sound induced scaling changes in soft tissue.
Manual segmentation of MRI scans of the brain is used in [9] to create “Pseudo US” images,
which are non-linearly registered to intra-operative 3D ultrasound (compounded from a free-
hand acquisition), using a correlation-based similarity metric.
The use of color Doppler ultrasound aids the automatic feature extraction of vessel struc-
tures, which can in turn be used for feature-based registration [77, 110, 140]. In [77], liver
vessel features are extracted from both preoperative MRI/CT data and intraoperative 3D
Power-Doppler ultrasound data. The registration is initiated with a few manually selected
landmarks, and a rigid transformation is then estimated using a modified ICP method, which
takes the vessel topology into account. Eventually, the registration is further improved using a
transformation grid modeled with deformable B-Splines. Rigid registration of Power-Doppler
3D ultrasound with MRI scans of the carotid artery was evaluated in [140].
A special yet interesting case is when no pre-operative data is to be used. An alignment with
respect to a Statistical Shape Model (SSM) can be desirable then. In [26], bone surface points
originating from intraoperative 3D Ultrasound are registered with SSMs of the pelvis and
femur. SSMs serve a different purpose in [74], where they are created as liver surface motion
models from pre-operative MR sequences. They are then registered to intra-operative tracked
ultrasound acquisitions in a Bayesian framework, to compensate for breathing motion.

4.1.4. Intensity-based Multi-modal Registration

Pure intensity-based registration with other modalities has been performed mainly for 3D
ultrasonic data. Roche et al. [118] use an adapted correlation ratio similarity measure in
order to register the ultrasonic data simultaneously to both the intensity and the gradient
information of an MRI scan. This method is used in [100] together with successive non-rigid
tracking of intra-operative deformations for neurosurgery. In [146], the Kullback-Leibler di-
vergence (KLD) is minimized for the registration of 3D-US and MRI. A registration involving
a trained mapping of MRI and ultrasound data to “vessel probability values" and successive
registration of this information driven by the NCC similarity measure is proposed in [102].
The liver registration method is also extended in [14] in order to incorporate a deformable
model generated from MRI acquisitions of the liver at different stages in the breathing cycle.
Single tracked ultrasound slices can hence be registered to the pre-operative information in a
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non-rigid manner. In [90] the image phase is proposed as underlying data for a Mutual Infor-
mation based registration. It includes experiments on 2D data with brain MRI and simulated
ultrasound images, where early results on deformable registration are presented.
To our knowledge the published data on true image-based registration of CT with ultrasound
is sparse. A Mutual Information based registration of CT with tracked 3D ultrasound for
prostate localization is presented in [25]. It is aided by the manual segmentation of prostate
and bladder and the application of pre-processing steps on both modalities. In [81], in the
CT data of a kidney, the intensity values are enhanced with strong edges from the gradient.
Successively an automatic registration with freehand 3D ultrasound is performed. In [101],
an approach related to their previous work [102] uses bone probability values generated from
the CT intensity and gradient in order to perform a rigid registration of CT with tracked
ultrasound, for orthopedic applications.

In this thesis, we focus on developing advanced intensity-based techniques. In section 4.2,
we present methods based on a combination of different information and physical properties
of both modalities to introduce a more stable measure for automatic registration. They are
targeted on small linear ultrasound data of the head and neck, and have also been published
in [169, 170]. In section 4.3, those methods are expanded upon by introducing a simulation
approach that reproduces the major ultrasonic imaging effects, for making the modalities more
comparable. A special new similarity measure based on the correlation of multiple simulated
effects with ultrasound is then presented. Here, larger curvilinear abdominal ultrasound
images are used. These methods have been introduced to the community in [166].

4.2. New Methods 1: Semi-automatic Image-based Registration

4.2.1. General Considerations

A tomographic data set will usually enclose the respective ultrasound data, be it two- or
three-dimensional. Hence, data from the CT volume, according to the spatial extent of the
ultrasound data (a slice or cone with specific thickness etc.), can be extracted at a location
where the anatomy contained in the ultrasound images is presumed. This should establish
a representation that can be compared with the respective ultrasound data. In the ideal
case, it would be a realistic reconstruction of ultrasound image intensities, i.e. a simulation of
ultrasound from CT. Using the terminology we had introduced in chapter 2, the CT volume
is therefore the moving image, ultrasound the fixed one. This might be somewhat counter-
intuitive, since the fact, that we are looking for the location of ultrasound images within the
CT volume, suggests opposite roles.
Any computation step that brings the modalities closer together in terms of comparability,
is useful. If an intermediate representation is established for comparison, it might be a
simulation of ultrasound from CT, but just as well a simulation of CT from ultrasound, as
well as anything in between. An ultrasound image depicts the strength of echoes whose
magnitude increases at boundaries between different types of tissue. This can be related to
CT data as the gradient magnitude of the X-Ray attenuation (from a simplified point of view,
see e.g. [119] section 2.2). Hence the derivative of the CT voxel intensity yields information
that can be compared to ultrasound. On the other hand, numerical integration of the edge
information depicted in ultrasound unfortunately does not result in values that can be put in
relation to the CT data, as we are missing directional information.
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As a consequence, the resemblance of ultrasound images to CT can only be increased by
reducing imaging artifacts, however a simulation of CT intensities from ultrasound is not
possible solely based on the image data (but might be feasible with learning-based approaches
and methods for incorporating prior information).

4.2.2. Information Extraction from CT

Instead of a realistic, possibly very slow, simulation of ultrasound, we need an intelligent
and efficient intermediate representation of the CT data at arbitrary cut-planes, such that
an iterative registration can be performed in an acceptable time. These slices have multiple
components containing intensity, gradient and edge information, which are used to derive
various parts of a similarity metric, so that the correspondence of anatomy contained therein
with structures in 2D B-mode ultrasound images can be determined.
The use of gradient and edge information is justified, as medical ultrasound mainly depicts tis-
sue interfaces, caused by ultrasonic reflections at a boundary of different acoustic impedances.
Those will also produce different intensities in CT and hence a visible edge. The strength
of such a boundary gradient can however not be put into a mathematical relation to the
strength of the respective ultrasound reflection. On the other hand, the original Computed
Tomography attenuation values are of importance as well, as they reveal different types of
human soft tissue, which in turn cause different effects in ultrasound, such as attenuation,
speckle characteristics, reflection etc.
In our approach, first the three-dimensional gradient vector values are computed from the
CT data set by convolution with a Sobel filter cube. They are stored in a 4-channel vol-
ume together with the original voxel intensity (i.e. channels 1-3 contain the gradient vector,
channel 4 the CT Hounsfield intensity). The interpolated slices contain four channels as well.
For each pixel, the 4-vector is computed from the volume using trilinear interpolation. In
the first channel of the slice, the original CT intensity is stored. The 3D gradient vector is
scalar multiplied with each of the vectors indicating the horizontal and vertical slice plane
directions, respectively. The resulting values, corresponding to the 2D gradient of the CT
intensity within the slice, are stored in the second and third channel.
The 2D slice gradient values are then used to perform Canny edge-detection on the slice data,
and the result is stored in the fourth channel. The most time-consuming steps within the
Canny algorithm are the computation of the 2D gradients, as well as filtering them with a
sufficiently large Gaussian kernel for smoothing. As we compute the 2D gradients directly
from the precomputed 3D gradient values, we do not need to run a 2D filtering for gra-
dient computation. In addition, those gradients are fairly smooth, as they originate from a
three-dimensional Sobel filter using a 27-neighborhood. This makes further Gaussian filtering
unnecessary. The two remaining steps for the Canny algorithm, non-maxima suppression and
hysteresis thresholding, can each be performed in one traversal of the 2D slice. The horizontal
gradient is weighted with a user-defined factor between 0 and 1, as the ultrasound data tends
to show mainly edges along the lateral direction, parallel to the transducer array.
Thus we are able to construct intermediate slices from the CT data at estimated transforma-
tions of the US scan plane in very short time (1.1ms for a 1282 pixel slice, interpolated from a
5122 · 100 CT/gradient volume, on an AMD Opteron 2.2GHz machine). The individual com-
ponents of the slice pixels are then used to compute a similarity metric with the ultrasound
data.
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4.2.3. Occlusion Handling

If an ultrasonic pulse hits bony structures, all image intensities in the ultrasound image further
along the specific ray are occluded, and mainly determined by noise. Therefore, all ultrasound
intensity values on a ray below such an occlusion should be disregarded in the registration
method. In our implementation, we scan the US image from bottom to top, updating the
variances for all ultrasonic pulse rays. Where they exceed a threshold σ2

y (which is easily
determined in the user interface), the first pixel to be considered is defined. Thus, our Region
of Interest (ROI) Ω is expressed by the following equations:

Ω = {(x, y) | (y < ytop) ∧ (y ≥ b(x))} (4.1)

b(x)=min

y : 1
y

y−1∑
i=0

U(x, i)2−

1
y

y−1∑
i=0

U(x, i)

2

<σ2
y

 (4.2)

where x is the lateral (increasing to the right) and y the axial (increasing upward) pixel
index of an ultrasound image U . By applying a median filter on the bottom function b(x),
discontinuities are removed before defining the ROI. In addition, we discard all pixels which
are located above ytop = 9

10sizey, as we observed that the anatomy is highly compressed
there due to the probe pressure on the patient’s skin. This compressed region is very distinct
from the remaining anatomical structures; its size (3.6mm) being consistent on all data we
obtained from patients (Figure 5.4(a)). This ROI definition is similar to the ones used in [102]
and [81]. It can be adapted to curved-array transducers as well, by accumulating Equation
4.2 along the actual ultrasound pulse rays (which do not coincide with the image columns
as in our case; hence some interpolation would be required). However, using a sector probe
will markedly enhance all remaining problems relating to tissue compression and distortion,
as there is no simple function available for correcting the tissue shift.

4.2.4. Similarity Measure

Deriving a similarity measure for image-based registration of ultrasound with CT, based on
tissue attenuation values and their edges reconstructed from CT, is a demanding issue. Based
on both the physical properties of the imaging modalities, as well as the visible appearance
of their images, we introduce several components for a similarity measure, which can in turn
be weighted to define a global cost function with respect to the transformation parameters.

Skin Surface Clamping

In the topmost part of the ultrasound image, which contains subcutaneous compressed tissue,
we run the interpolation from CT with 6 times the vertical scaling (see Figure 5.4(a) on top,
the 6× factor has been manually optimized). As result, the border between skin and air in
the CT volume always has to be within that region, producing a large vertical gradient in the
interpolated slice. When all vertical gradient pixels in this uncompressed stripe are summed
to t, high and low thresholds th, tl can be defined in order to decide if the skin surface lies
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Figure 4.1.: Registered image pair and edge detection result (red=CT, green=US)

inside, outside or close to it:

f(t) =


1 if t > th
0 if t < tl

(t− tl)/(th − tl) otherwise

 ;

S0 = 3f(t)2 − 2f(t)3 (4.3)

A cubic polynomial is used instead of the linear one in order to avoid discontinuities. As a
component in a cost function, S0 penalizes transformations that are physically impossible,
as the patient’s skin is always located at the top of the ultrasound images. th and tl have
been manually defined by displaying the value of t while gradually moving the transformation
towards the patient, and visually assessing the skin surface alignment, on sweeps from all
patients.
Note that another option for evaluating the distance to the patient’s skin would be to perform
lookups in the distance volume that was used for the global pre-registration in section 5.1.4.
However, we prefer the described method as we do not have to load another volume (or another
intensity channel) into the computer’s main memory, which is already largely occupied by the
CT/Gradient volume. Furthermore, the above computations can be performed with little
additional computational cost.

Edge Alignment

As we have detected the edges in the simulated images, we would like to derive a similarity
estimate based on the distance to edge structures in the ultrasound images. The straight-
forward approach would be to 1) compute an edge-detection for the ultrasound images, 2)
compute a 2D distance map for those edges and 3) sum over the distance map values at the
locations indicated by the edges of the simulated data. Steps 1) and 2) need to be performed
once for each ultrasound slice, while 3) establishes a similarity metric and thus has to be
computed for each simulated slice during pose estimation.
However, due to the different nature of CT and ultrasound data, the detected edges do not
correspond in general, as shown by figure 4.1. We therefore propose to skip the ultrasound
edge detection, using the original ultrasound intensity just as an indicator for edges instead.
Given a binary edge image, the distance of an image point ~x to the edge structures Y = {~yi}
is defined as d(~x) = mini |~x− ~yi|. Instead of the Euclidean distance, we can also express the
proximity to edges by using a Gaussian expression, which allows us to adjust the sensitivity
of the cost function value with respect to the distances, using σ2:

p(~x) = max
i

exp−(~x− ~yi)2

σ2 (4.4)
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Taking into account that we do not have precise edge information, a proximity value can be
defined as

p(~x) =
∑
i

ui exp−(~x− ~yi)2

σ2 (4.5)

where ui ∈ [0 . . . 1] is the probability for the image pixel ~yi being an edge. Assuming that the
ultrasound image intensity directly scales with the edge probability (i.e. ui ∝ U(~yy), a two-
dimensional proximity function p(~x) can be computed according to eq. 4.5 by just convoluting
the ultrasound image with a large Gaussian kernel. From this, we define a similarity measure
component S1 = (pe − p)/σp, where p is the mean of all values in the proximity image, pe is
the mean of just the pixels at locations where an edge is present in the simulated image, and
σp is the standard deviation of the proximity image values.

Statistical Correspondence

In addition to tissue interfaces, different tissues by themselves cause different ultrasonic scat-
tering characteristics, in particular characteristic speckle patterns and echogeneity. These
are in turn reflected in the average ultrasound image intensities for a given tissue type. It is
therefore applicable to assess the statistical dependence of the CT intensities, which classify
the tissue according to the X-Ray attenuation property, with the intensity in the ultrasound
image. We use Mutual Information (see section 2.2.3) on the CT and ultrasound intensities.
The Normalized Mutual Information term uses the entropies of the combined and individual
images, which are computed with the Shannon entropy from probability distributions of the
image intensities:

NMI(U,C) = 2− 2H(U,C)/(H(U) +H(C))
H(U) = −

∑
j

pu(j) log pu(j)

H(C) = −
∑
i

pc(i) log pc(i)

H(U,C) = −
∑
i

∑
j

p(i, j) log p(i, j)

Here U denotes an ultrasound image, and C the corresponding simulated image, i.e. the slice
interpolation of CT attenuation values. The probability distributions can be estimated using
histogram information from the images:

pu(i) = 1
nΩ
|{(x, y) ∈ Ω|U(x, y) = i}| (4.6)

pc(j) = 1
nΩ
|{(x, y) ∈ Ω|C(x, y) = j}| (4.7)

p(i, j) = 1
nΩ
|{(x, y) ∈ Ω|U(x, y) = i ∧ C(x, y) = j}| (4.8)

Here we assume that each intensity value is mapped into one histogram bin, and nΩ is the
number of pixels in the region of interest,

nΩ = |Ω| =
nx−1∑
x=0

(ytop − b(x)) (4.9)
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An equivalent formulation for constructing the probability distribution from a histogram can
be written using a binary count function cu

pu(i) = 1
nΩ

∑
(x,y)∈Ω

cu(x, y, i) (4.10)

cu(x, y, i) =
{

1 if U(x, y) = i
0 otherwise

(4.11)

Due to the various physical effects in ultrasound imaging, both the chance that an image
intensity reflects the anatomy (due to refraction, reverberation and other artifacts), and the
Signal to Noise Ratio (SNR), decrease with the distance from the ultrasound transducer.
Thus we would like to give more weight to image pixels that are closer to the probe, i.e.
with higher y values. In our approach, we introduce an integer weighting for estimating the
probability distribution:

p′u(i) = 1
n′Ω

∑
(x,y)∈Ω

(y + c0)cu(x, y, i) (4.12)

n′Ω =
nx−1∑
x=0

ytop−1∑
y=b(x)

(y + c0) (4.13)

Every intensity value is inserted y + c0 times into the histograms and the joint histogram.
c0 is a shifting constant that affects the amount of weighting. We set c0 = ny (ny being the
number of image rows); hence the top of the image is weighted twice as much as the bottom.
For c0 → ∞ the original Mutual Information notation is obtained. Our weighted Mutual
Information component NMI ′ of the similarity measure is assembled by inserting all used
ultrasound slice images and the corresponding simulations into one histogram, as it increases
the statistical significance of the derived entropy terms. See section 4.2.6 for details on the
weighting of Mutual Information.

Cost Function

The final similarity measure from a set of n ultrasound slices {Ui} and their CT simulations
{Ci} is

cf = w0
1
n

n∑
i=1

S0(Ci) + w1
1
n

n∑
i=1

S1(Ui, Ci)

+w2NMI ′({Ui}, {Ci}) (4.14)

where w0, w1, w2 are fractional weights of the individual measure components adding to one
(w0 + w1 + w2 = 1), and Si are the measure components as defined in the previous sections.

4.2.5. Registration

For automatic registration, a non-linear optimization method maximizes the cost function cf
iteratively with respect to the parameters of a rigid transformation (6 DOF, translation and
Euler angles), which is initialized with zero and affects the current location of all slices. We
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used three optimization schemes: simple Hill-Climbing (aka Best-Neighbor search), Powell-
Brent and an Exhaustive Hill Climbing (see also section 2.5). The latter one evaluates all
combinations of [forward, keep, backward] for all parameters, using the best result of all
36 = 729 evaluations as estimate for the next iteration. When the optimization terminates,
the resulting relative transformation is multiplied onto the overall registration transformation.

4.2.6. Weighted Mutual Information

In this section we would like to study the effect of weighted image histograms in more detail,
by using an artificial set of test images.

Basics

I0

I1

I2

I0

I2

I1

o2=0.0

o1=0.5

Figure 4.2.: Test images containing 3 intensities, the boxes I1 and I2 are displaced in the
moving image, resulting in relative overlaps o1 and o2. An overlap of 1 means
the boxes are at identical positions, 0 corresponds to no overlap.

We consider the images shown in figure 4.2. Half of the fixed (reference) image A has
intensity I0, and each one fourth is covered with a box of intensity I1 and I2, respectively. In
the moving image B those boxes are shifted to the right, resulting in an overlap o1, o2 ∈ [0 . . . 1]
with respect to the boxes in the fixed image. The entropy in the images is independent of the
overlaps:

p(I0) = 1
2
; p(I1) = 1

4
; p(I2) = 1

4
(4.15)

Ha = Hb = −
∑
i

p(i) log p(i) =

= −
(1

2
log 1

2
+ 21

4
log 1

4

)
= 3

2
log 2 (4.16)

The joint probability distribution is a table listing the probability of every pair of intensities
in the left and right images, respectively, and depends on the overlap values:

pab I0 I1 I2
I0

1
4(o1 + o2) 1

4(1− o1) 1
4(1− o2)

I1
1
4(1− o1) 1

4o1 0
I2

1
4(1− o2) 0 1

4o2
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The joint entropy computed from it results in:

Hab = −1
4

(
o1 log o1

4
+ 2(1− o1) log 1− o1

4
+ o2 log o2

4

+2(1− o2) log 1− o2
4

+ (o1 + o2) log o1 + o2
4

)
(4.17)

Histogram Weighting

If we are more confident that the overlap of the upper box reflects the image alignment than
the lower one, we would like to weight the image intensities depending on the vertical position.
We therefore multiply the histogram values with two integer count variables c1 and c2. They
correspond to weights w1, w2 adding to one:

w1 = c1
c1 + c2

; w2 = c2
c1 + c2

(4.18)

The marginal image entropies are still independent of the overlap, however they depend on
the weights:

p(I0) = 1
2
; p(I1) = w1

2
; p(I2) = w2

2
(4.19)

Ha = Hb = −
∑
i

p(i) log p(i) = (4.20)

= −1
2

(
w1 log w1

2
+ w2 log w2

2
+ log 1

2

)
(4.21)

The joint entropy is affected by both the overlap and the weight values now.

pab I0 I1 I2
I0

1
2(o1w1 + o2w2) 1

2(1− o1)w1
1
2(1− o2)w2

I1
1
2(1− o1)w1

1
2o1w1 0

I2
1
2(1− o2)w2 0 1

2o2w2

l(x) = −x log x (4.22)

Hab = l

(1
2
o1w1

)
+ 2l

(1
2
(1− o1)w1

)
+ l

(1
2
o2w2

)
+

+2l
(1

2
(1− o2)w2

)
+ l

(1
2
(o1w1 + o2w2)

)
(4.23)

Figure 4.3 plots the Weighted Mutual information (WMI) term over a translation to the left
of the moving image from figure 4.2. The left diagram illustrates that WMI contains a higher
peak at the alignment of the upper box (translation=0.25) for an overlap function rising
linearly with respect to the translation (derived from the test images). For a smooth overlap
function that causes a single similarity measure peak in the center (right diagram), that peak
is shifted towards the alignment of the upper box with our weighting. Here not the linear
overlap o1, o2 wrt. translation is used, but a Gaussian function. The Mutual Information term
used is 2− (2Hab)/(Ha +Hb) (equal to eq. 2.33).
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Figure 4.3.: Weighted Mutual Information (WMI) wrt. translation of the moving image, for
different overlap functions and weightings. The dashed lines show the relative
overlaps o1, o2 for the test images (upper diagram) and a Gaussian overlap func-
tion (lower diagram).

4.3. New Methods 2: Improved Registration Based on Ultrasound
Simulation

The methods presented above are only capable of achieving a local alignment, and also require
manual selection of adequate ultrasound frames, as well as the adjustment of a number of
threshold values and other algorithm parameters. We therefore investigated further ideas,
heading in a somewhat different direction. It resulted in methods that allow better simulation
of ultrasonic effects from CT without compromising the computation speed. Besides, a robust
new similarity measure is developed that assesses the correlation of a combination of multiple
signals extracted from CT with ultrasound, without knowing the influence of each signal.
It overcomes the main weaknesses of the previous methods, especially the instability of the
Mutual Information component.

4.3.1. Simulation of Ultrasound from CT

An ultrasound wave is partly reflected whenever a change in acoustic impedance is encountered
in the imaged tissue. The acoustic impedance Z = ρc depends on the tissue density ρ and
the speed of sound c. Ultrasound machines assume a constant c = 1540m/s in human soft
tissue, while a significantly different speed of sound occurs e.g. in air and bone. Table 4.1
lists the relevant values for various tissue types, from [131]. The ratio of an ultrasound
wave intensity reflected at a tissue interface with different acoustic impedances Z1 and Z2 is
(Z2−Z1)2/(Z2 +Z1)2, given a specular interface with angle of incidence equal to the angle of
reflection. The diffuse reflection, reflected straight back to the ultrasound transducer depends
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Material µ ρ c Z

Bone 1000 1912 4080 7.8
Muscle 10..40 1080 1580 1.7
Liver 40..60 1060 1550 1.64
Blood 40 1057 1575 1.62
Kidney 30 1038 1560 1.62
Brain 43..46 994 1560 1.55
Water 0 1000 1480 1.48
Fat -100..-50 952 1459 1.38
Air -1000 1.2 330 0.0004

Table 4.1.: CT Hounsfield Units µ and physical properties of various tissues (density ρ, speed
of sound c and acoustic impedance Z).
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Figure 4.4.: Plot of CT Hounsfield Units against Tissue Density.

on the angle:

∆r(Z1, Z2, θ) = (cos θ)n
(
Z2 − Z1
Z2 + Z1

)2
(4.24)

t(Z1, Z2) = 1−
(
Z2 − Z1
Z2 + Z1

)2
= 4Z2Z1

(Z2 + Z1)2
(4.25)

The exponent n describes the heterogenity on the interface, causing the amount of reflection
to be more or less narrow around the perpendicular of the tissue interface. We lack detailed
physical knowledge from CT, hence we use n = 1, it produces good results and simplifies
the equations. Higher values would restrict the reflections of non-perpendicular interfaces,
possibly missing to extract some features from the CT intensities. On the other hand, the
similarity measure that will be introduced below is to some extent capable of ignoring addi-
tional information not present in ultrasound. The transmitted intensity t(Z1, Z2) does not
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depend on the angle of incidence, if refraction is neglected.
The X-Ray attenuation µ measured by a CT scanner is approximately proportional to the
tissue density, see figure 4.4. As tissue density is in turn proportional to acoustic impedance,
we can directly derive the an incremental acoustic intensity reflection from it:

∆r(~x, ~d) =
(
~dT
∇µ(~x)
|∇µ(~x)|

)n ( |∇µ(~x)|
2µ(~x)

)2
(4.26)

for n = 1 : ∆r(~x, ~d) =
(
~dT∇µ(~x)

) |∇µ(~x)|
(2µ(~x))2

(4.27)

t(~x) = 1−
( |∇µ(~x)|

2µ(~x)

)2
(4.28)

µ(~x) is the CT attenuation value at position ~x, ∇µ(~x) its spatial derivative. ~d is a unit
vector denoting the direction of the ultrasound wave propagation, the scalar multiplication
with the normed CT gradient vector yields the angular dependency equivalent to cos(θ). The
ultrasound wave intensity is reduced according to t(~x) at each tissue interface, while ∆r(~x, ~d)
contributes to the wave intensity detected by the probe. Integrating over this reflection and
transmission behavior yields for any depth along a scanline:

I(~x) = I0 exp

− ∫ λx

0

(
|∇µ( ~x0 + λ~d)|
2µ( ~x0 + λ~d)

)2

dλ

(~dT∇µ(~x)
) |∇µ(~x)|

(2µ(~x))2
(4.29)

where I0 is the original intensity of the ultrasound pulse, we define it as I0 = 1. In addition, we
apply a log-compression with one parameter a, which amplifies smaller reflections (resembling
the Dynamic Range knob on the ultrasound machine), yielding the resulting value of the
simulation:

r(~x) = (log(1 + aI(~x)))(log(1 + a)) (4.30)

For a linear array probe, the integral in equation 4.29 can be computed efficiently by travers-
ing the columns in the simulated ultrasound image from top to bottom while updating the
transmitted intensity based on the interpolated CT intensity and gradient values. For curvi-
linear arrays, we compute the image row-wise from top to bottom, while using an auxiliary
channel storing the remaining transmitted ultrasound wave intensity (starting with 1 in the
first row). For every pixel, this transmission value is retrieved by linear interpolation from two
pixels in the above row, according to the ultrasound ray angle derived from the curvilinear
geometry.
This provides a means to simulate large-scale ultrasonic reflection at tissue boundaries, and

the related shadowing effects at strong interfaces like bone. However, individual tissue types
have specific echogeneity and speckle patterns by themselves, based on the microscopic tissue
inhomogenities. There is no simple relationship between tissue echogeneity and CT hounsfield
units, therefore we add an intensity mapping p(~x) (further described in section 4.3.2) on a
narrow soft-tissue range to the simulated large-scale reflection r(~x). Figure 4.5 depicts the
simulation result for a transversal liver image, computed from a native CT scan. Figure 4.6
shows similar results for a portal-venous phase CTA scan.

4.3.2. Registration Algorithm
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(a) reflection r (b) transmission t (c) simulation r + p (d) ultrasound

Figure 4.5.: Simulation of ultrasonic effects from CT.

Figure 4.6.: Ultrasound simulation from portal-venous phase CTA, from left to right: Reflec-
tion r, transmission t, simulation r+ p, original ultrasound. Here, 3-dimensional
Perlin noise has been added to the occluded part of the simulation.

Automatic frame selection

Since we simulate ultrasound imaging effects with respect to the probe geometry, the original
B-mode scan planes of the sweep have to be used rather than a 3D reconstruction. Neighboring
frames of the freehand sweep contain similar information, hence we use always the one out
of n frames that has the highest image entropy. This assures that frames which contain
unique fine vascularity, that can be located in CT as well, are picked for registration. If two
neighboring frames have the highest entropy out of their group of n, only one of them (again
with the highest entropy) is used. Furthermore, a threshold is used to discard frames at the
beginning and end of the sweep with little structures. In our experiments, n=3 was used,
resulting in 15-22 frames per sweep for registration.

Idealized Intensity Prior

It seems appropriate to use statistical similarity metrics like Mutual Information (MI) and
Correlation Ratio (CR) for assessing the correspondence of original CT and ultrasound in-
tensities. In their general formulation, however, they do not work well for our registration
problem, since there are too many possible configurations where the Joint Entropy is minimal
(for MI), or the intensities from one image can be predicted well from the other one (for CR).
At correct alignment of CT and US, they typically produced only a small local optimum.
Known approaches for restricting the possible intensity distributions are distance metrics to
Joint Histograms learnt from correct registrations (e.g. Kullback-Leibler-Divergence), as well
as bootstrapping parameters for a polynomial intensity mapping in the actual registration
process itself [118]. In both cases, very important information is disregarded, as e.g. small
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Figure 4.7.: Intensity mapping p for CT (red, dashed) and portal-venous CTA (blue) soft
tissue. Note that the liver-vasculature relation is inverted in the two modalities.

vascularity is essential for a correct registration within the liver, but due its appearance on
a relatively small fraction of the image content, it would neither affect a Joint Histogram
or a least-squares estimate of a polynomial intensity mapping. Since CT attenuation mea-
surements are mostly reproducible, we define a mapping function p(µ) based on a number
of correspondences (liver tissue, liver vasculature, kidney, gall bladder) between CT/CTA
intensities and tissue echogeneity in ultrasound, see figure 4.7.

Similarity Measure

In a Correlation Ratio framework, the registration transformation parameters are modified
in order to maximize

CR = 1−
∑
x∈Ω(U(x)− f(µ(T (x))))2

|Ω|Var(I)
(4.31)

with f denoting the mapping function which estimates the intensities of the image U from
the transformed image µ. If a linear mapping f(µ) = αµ+β is assumed, equation 4.31 can be
directly related to the common Normalized Cross-Correlation (NCC) similarity metric (see
section 2.2.3).
For a pixel intensity in the ultrasound image, it is unknown how much the contribution of
large-scale reflections and general tissue echogeneity is. Hence both the mapped CT intensity
p(µ) and the simulated reflection r have to be integrated in a correlation framework with the
ultrasound intensity. Using the notation pi = p(µ(T (~xi))), ri = r(T (~xi)), ui = U(~xi) for the
intensity triple at a certain voxel, we define the intensity function as

f(~xi) = αpi + βri + γ (4.32)

The unknown parameters α, β and γ then have to minimize

∥∥∥∥∥∥∥M
 α
β
γ

−
 u1

...
un


∥∥∥∥∥∥∥
2

with M =

 p1 r1 1
...

...
...

pn rn 1

 (4.33)
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(a) α = 0.58, β = 0.64, γ = 0.20

(b) α = 0.11, β = 0.14, γ = 0.29

Figure 4.8.: The effect of simultaneous simulation and registration. (a) is well registered, (b)
is 1cm displaced.
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Direct inversion of the symetric matrixMTM results in a closed-form solution for the param-
eters. They are then inserted in equation 4.31 to yield a novel registration similarity metric,
which we denote Linear Correlation of Linear Combination (LC2). It assesses the correlation
of ultrasound intensities ui and a linear combination with unknown weights of signals pi, ri
extracted from CT. The value of LC2 is constant with respect to brightness and contrast
changes of the ultrasound image (as NCC), but also independent to how much of the two
described physical effects contributes to the image intensities. The latter is important, since
e.g. hepatic vasculature or the gall bladder is represented mostly by p (different intensities
due to echogeneity in ultrasound, no borders), while large-scale tissue interfaces correspond
to r (strong edge in ultrasound, comparable intensities on both sides).
We compute equations 4.34 and 4.31 for every ultrasound frame in the set, and use the
mean of the results as cost function. Note that an extension similarly to Local Normalized
Cross-Correlation (LNCC) is possible by averaging over smaller overlapping patches in every
ultrasound frame. More specifically, arranging the patches over 8 rings at different depths
can fully compensate the time gain compensation (TGC) sliders on the ultrasound machine.
This implicit computation of the parameters α, β and γ in every pose evaluation equals a

simultaneous optimization of simulation and registration parameters. Figure 4.8 illustrates it
by showing the simulated intensity according to αpi + βri + γ for an aligned and displaced
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image of the liver. In the aligned image, the parameters α and β are higher, denoting a good
least-squares matching of the structures. In the displaced image in turn, they are very small,
causing both the vasculature and liver border to almost disappear. The value of γ is expressed
with respect to a normalized intensity range [0 . . . 1].
Both for disregarding fine speckle information in the registration, as well as speed-up of the
computation, the ultrasound images are down-scaled to ∼156x116 pixels. The top 3cm along
the ultrasonic rays are ignored for the measure computation, since they contain only com-
pressed subcutaneous tissue.

Note: The fact that the weightings for p and r are unknown, suggests that a higher-
dimensional Mutual Information approach could be used as well. Here, each p, r and u would
represent one axis in a three-dimensional joint probability distribution. We had investigated
this approach, computing modified versions of both Correlation Ratio and Mutual Information
on a 3D joint histogram; it however resulted in a quite unstable similarity metric. One reason
is that the reflection term r has an intensity distribution containing mostly small values (no
reflections) and few yet important large values (representing reflections at tissue interfaces).
A non-linear histogram equalization approach would be a pre-requesite to use r in such a
framework. Another problem, as pointed out before in section 4.3.2, is the unconstrained
huge number of intensity configurations that lead to a local optimum.

Optimization Strategy

A rough initial estimate of the orientation is obtained either from the tracking setup or by map-
ping the center slice of a sweep onto a transformation preset of typical transversal/longitudinal
liver, and kidney sweeps, respectively. The large-scale translation is determined by perform-
ing a brute-force scan of the translation space. On the configuration which yields the highest
similarity measure value (for a number of similar high results, the one closest to the preset
transform is used), a local optimization of the translation is executed using a Simplex-based
non-linear optimizer (see section 2.5.1). Successively, all six parameters of the rigid trans-
formation are refined. As an optional last step, an optimization is executed on all rigid and
three selected affine transformation parameters. These are the two scaling parameters and
the one shearing of the sagittal plane, since respiratory motion mainly causes deformation in
that plane [121].

4.4. Summary
After reviewing related work, we have devised two new methods for image-based registration
of CT and ultrasound. They both incorporate knowledge about the underlying physics and
image formation process in the two modalities, and are therefore able to compare the images
without the need for learning-based techniques. The algorithm presented in section 4.2 is
centered around a multi-component similarity measure. A combination of a weighted Mu-
tual Information term, edge correlation, clamping to the patient’s skin surface and occlusion
detection is able to assess the alignment of structures in ultrasound images and information
extracted from CT.
In section 4.3 we have developed a means to simulate the two main ultrasonic effects from
CT, namely large-scale reflections and tissue echogeneity. Instead of weighting them in a
multi-component measure, we presented the novel LC2 similarity measure, which assesses
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4.4. Summary

the correlation of a linear combination of multiple signals, independently of the influence of
each of the signals. It implicitly optimizes the weight of each of the signals in the simulation
for every similarity measure evaluation. While being an ideal measure for comparing our
simulation result with ultrasound, this multi-signal correlation is a general concept than can
serve in other difficult multi-modal registration problems as well.
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5. Clinical Applications

5.1. Radiation Therapy of Head and Neck Cancer

5.1.1. Clinical Context

In radiation treatment planning for inoperable head and neck cancer, the identification of
metastatic neck lymph nodes is mandatory for the correct target volume delineation. This can
be achieved with a reported accuracy of 80-95% using high-frequency ultrasound [3, 161, 176].
In direct comparison with ultrasonography, diagnostic CT was equally predictive in revealing
lymph node size, but achieved lower performance in depicting internal nodal architecture,
leading to a lower sensitivity and specificity than ultrasonography [149]. In planning CTs for
radiotherapy, contrast medium is usually omitted, and consequently their diagnostic proper-
ties are particularly poor.
Omitting the CT and performing the treatment planning and execution solely based on ultra-
sound has its place only in brachytherapy (e.g. in prostate cancer), where a small treatment
volume can be visualized together with the radiation source(s) by ultrasound without arti-
facts from bone or air, the dose distribution being dependent on distance rather than on tissue
properties. However, in the context of external-beam radiotherapy (EBRT) delivered from
different angles, axial sections of the whole body are mandatory and cannot be provided by
ultrasound.
Thus, for external-beam radiotherapy, CT remains the base imaging modality of choice for
treatment planning and simulation, as it provides a coordinate systems with stable geometric
fidelity and the necessary electron density information for the computation of the accurate
dose distribution within the CT anatomy. Consequently, the wish to integrate the diagnostic
properties of other imaging modalities into the planning process has usually been met by
registration with CT, either based on external markers or anatomy information (e.g. registra-
tion of MRI and CT) or with dedicated combined systems like PET-CT. Similar solutions of
registration between freehand ultrasonography and planning CT seem to be a valuable goal,
as the additional US information may enable the radiation oncologist to refine the target
volume definition and individualize treatment planning. For example, in studies on integrat-
ing PET into the treatment planning process of brain or lung tumors significant changes in
gross tumor volume (GTV) delineation could be demonstrated (review by [50]). It is quite
possible to have a similar impact of ultrasound information for GTV definition in head and
neck cancer.

5.1.2. Related Systems

In the context of radiotherapy, tracked ultrasound has been used mainly to quantify and
reduce daily set-up errors so far. The commercial NOMOS B-mode acquisition and targeting
system (BAT)1 allows to integrate the CT planning contours with tracked ultrasound acqui-

1Website: http://www.nomos.com
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sitions prior to each treatment fraction. A description of the system, as well as a comparative
study of prostate localization based on BAT and CT can be found in [89]. Though the largest
experience has been gathered with prostate cancer [44], some data on other sites such as the
upper abdomen is available as well [45]. A similar commercial solution is SonArray [44, 130]
by Varian Medical Systems2. The RESTITU system (Resonant Medical)3 uses two calibrated
3D ultrasound devices, in the CT and treatment room, respectively [33]. Hence the prob-
lem of aligning planning information within the coordinate system of the treatment room is
reduced to a monomodal registration of the fractional 3DUS acquisition with the reference
3DUS scan taken in the CT room.

5.1.3. Proposed Medical Workflow
For the described application of radiotherapy planning, a workflow (steps 1-8) is needed to
integrate the diagnostic ultrasound with the current treatment planning processes. The plan-
ning CT is usually performed with the patient fixed onto a head pad with a thermoplastic
mask individually molded. This minimizes the spatial deviation between the anatomy de-
picted in the CT scan and the daily radiation treatment delivery.

1. Just before ultrasonography the patient is immobilized likewise to ensure the same
reclination of the head. Then, the mask is carefully removed while the patient is told
to keep his position for the following examination.

2. The diagnostic ultrasound is performed by slow freehand sweeps of the probe in lateral
and craniocaudal directions along the patient’s neck and chin with special regards to
the lymph node regions (i.e. submental, submandibular, digastric, jugular chain, spinal
accessory and occipital nodes). In our scenario, a position sensor is attached to the ultra-
sound probe. All diagnostic sweeps are recorded as a combination of videos containing
the actual ultrasound images, alongside the tracker readings. An off-line calibration step
allows us to place all recorded ultrasound images in the spatial context of the tracking
world coordinate system (Figure 5.1). Hence, three-dimensional ultrasound information
is obtained with full coverage of the patient’s neck and chin.

3. Our system now applies an automatic pre-registration step by aligning the lines denoting
the top of the numerous ultrasound images in 3D-space with the skin surface extracted
from the CT data set, see section 5.1.4 for details.

4. From all sweeps with relevant lymph nodes, the physician picks some particular frames
containing structures that are identifiable in both modalities, like the carotid artery
(maybe with individual calcifications), internal jugular vein (preferably with little or no
compression), certain muscles or thyroidal/salivary gland tissue.

5. These frames serve for reviewing the first results from global skin surface registration.

6. In case of excessive deviation, manual drag and drop of the stack of ultrasound pictures
into a closer range of corresponding CT anatomy is performed. Any frame can be
selected and its relative location and orientation modified, while the spatial relation to
all other frames (given by the position sensor) is maintained. This allows a convenient

2Website: http://www.varian.com
3Website: http://www.resonantmedical.com
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5.1. Radiation Therapy of Head and Neck Cancer

Figure 5.1.: Left: Spatial overview of all ultrasound images of Patient 3. Right: Extracted
surface points (red) with volume rendering of CT and some individual ultrasound
slices.

navigation, as in-plane and out-of-plane transformation parameters can be manipulated
separately. Either a 3D display of the data or side-by-side visualization is used, as shown
in figures 5.4(b), 5.5.

7. This allows an automatic image-based registration to be performed on these images
successively, as has been described in Section 4.2.

8. The results from image-based registration are evaluated and may serve for target volume
delineation. In particular, our method overlays pathological lymph nodes areas, which
need to be identified and irradiated with a certain dose, but are barely visible in and
extractable from the CT data alone.

An adapted treatment planning software should allow the physician to scroll through the
registered ultrasound frames, displayed alongside corresponding Multi-Planar Reconstructions
(MPRs) interpolated from the CT data, and vice versa through the original axial CT slices
overlaid with the registered three-dimensional US data in order to account for all additional
information during target volume delineation.
In the following sections, we present details of the proposed registration steps, involving
the image-based algorithm introduced in section 4.2, and describe the setup and results of
experiments used for validation.

5.1.4. Global skin surface registration
The set of all ultrasound images recorded from a patient including the submental and sub-
mandibular regions as well as both sides of the neck (Robbins level I-VI) can be used to
derive an approximate registration to the CT scan. In each ultrasound image, the horizontal
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line denoting the top of the image roughly lies on the skin surface. As the images are con-
tinuously recorded and tagged with position information, all frames acquired from a patient
(up to several thousand images) yield a complete coverage of the neck surface in the tracking
coordinate system. Thus a surface-based registration with the three-dimensional skin surface
segmented from CT will provide a fairly good global initial registration.
The CT scan is automatically segmented with a region-growing method [1], using a seed point
in the surrounding air and inverting the result afterwards. Successively, a border detection
algorithm is run, and a Chamfer distance map transformation [21] is applied to the surface. It
results in a distance volume where the voxel values reflect the closest approximate Euclidean
distance to the surface. 10 equal-spaced points on the top of each ultrasound image form
the 3D point set. The global rigid transformation is initialized with a 90-degree rotation that
brings the tracking world coordinate system in the same orientation than the CT volume, and
a translation which consists of the subtracted mean of all points (hence the point set is cen-
tered in the CT volume). For each estimate of the global rigid transformation, the distance of
the transformed points to the CT surface can be efficiently looked up in the distance volume.
The transformation parameters are iteratively refined until the error converges. Figure 5.1
shows the recorded ultrasound images in a three-dimensional visualization, as well as the 3D
point set derived from them, overlaid onto a volume rendering of the CT scan.

For refining the obtained initial registration, the image-based registration algorithm de-
scribed in section 4.2 is then executed.

5.1.5. Data Acquisition

We conducted a study on five patients. For the freehand ultrasound acquisitions, we decided
to install both optical and magnetic tracking. However for the evaluation of our algorithms,
we used solely the optical tracking data. In the future, information from both tracking
technologies will allow interesting comparative studies. All ultrasound examinations were
performed with a GE Logiq 500-scanner and a 8.5-11MHz transducer with a 40mm linear
probe (LA39, GE Healthcare Technologies, Waukesha, Wisconsin, USA). An optical tracking
target, consisting of four infrared marker balls, was mounted on the handle of the ultrasound
probe using cable ties and a layer of Varihesive bandage-aid between probe and target (see
(Figure 5.2(a)). We tested the tracking setup extensively to assure that the target does not
hinder the physicians flexibility when scanning a patient, in particular that the optical target
does not touch the patient’s skin. On the other hand, the target should be recognized by the
tracking cameras at all times.
The final setup contained four optical ARTtrack2 cameras (A.R.T. GmbH, Weilheim, Ger-

many) arranged behind the head of the patient (Figure 5.2(c)). A two-camera system would
have been sufficient if mounted somewhat higher. As we had four cameras at our disposal, we
used them to obtain a symmetric setup, so that the expected tracking precision is comparable
on both sides of the patient’s neck. The ultrasound data was recorded using an IDS FALCON
frame grabber card (IDS Imaging Development Systems GmbH, Obersulm, Germany)4. The
ART tracking data was received over UDP network transmission from the separate PC run-
ning the ART DTrack software. We used the CAMPAR framework for Medical Augmented
Reality Applications [138], which was developed by colleagues in our group, for the acqui-

4Website: www.ids-imaging.com
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5.1. Radiation Therapy of Head and Neck Cancer

(a) Ultrasound transducer with optical and magnetic tracking
targets

(b) Positioning with mask

(c) Actual patient scanning

Figure 5.2.: Setup for 3D freehand ultrasound acquisitions.

sition. We implemented the recording of sequences by storing the gray-valued video region
containing the actual ultrasound image (size 454x454) on disk, alongside with its timestamp
and the corresponding 4x4 tracking matrices. The resulting performance was the frame grab-
ber’s full speed of 25 frames per second; 5 MB/s are written to disk. On mouse clicks, the
corresponding 2D position in the ultrasound video was logged in an additional text file, along
with the current tracker poses. We included an additional pose of a tracked tool, whose tip
intersected the ultrasound image, for calibration purposes (see section 5.1.6).
For the actual freehand ultrasound examinations, patients were positioned supine on the
examination couch with the head pad supporting the neck and the individual thermoplas-
tic immobilization mask covering the face, as shown in Figure 5.2(b). Then the mask was
removed, taking care not to move the head that was still stabilized by the preformed pad
beneath, and the patient was told to keep this posture. From each patient, 11-16 ultrasound
sequences, up to 45 seconds each, were recorded. It resulted in 5000-11000 ultrasound images
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(a) Straight, deep (b) Straight, shallow (c) Rotated Probe (d) Tilted Probe

Figure 5.3.: Ultrasound images from the water bath calibration scan, red dots show points
used for the floor reconstruction.

per patient.
Right after the examination, we took a CT scan of each patient in the radiology depart-
ment. The device was a Siemens Sensation Cardiac 64, used with the standard neck scanning
protocol and reconstruction with 0.6mm slice thickness.

5.1.6. Calibration
In order to obtain the position and orientation of the ultrasound image plane with respect to
the tracker’s world coordinate system, a calibration is necessary to derive the transformation
that relates the image plane to the tracking sensor coordinates, see section 3.4. Here, we
adapted the Single-Wall calibration technique [113] to our experimental setting, in order to
yield an easy yet sufficiently accurate calibration, as described in the following.
For any point ~p = (u, v, 0, 1)T in the ultrasound imaging plane, the corresponding point ~pw
in the tracker’s world coordinate system is obtained by:

~pw = TTTC~p (5.1)

The calibration transformation TC maps a point from the ultrasound coordinate system to the
tracking target, while TT in turn transforms it to the tracker’s world coordinate system. The
ultrasound probe is dispensed in a shallow water bath, and moved in a variety of locations
and orientations. The floor then appears as a line in the ultrasound image, and the user clicks
on positions of that line in the video image. 100-200 of those 2D positions in the ultrasound
image (2-3 positions per still frame) are recorded alongside the tracking matrices in a file.
Using a water-level device, we assured that both the floor of the water bath and the rim of
the container are exactly parallel to the water surface. By means of the ART DTrack room
calibration [2], the tracker world coordinate system could be defined such that the water bath
floor is exactly in the x-y plane.
Thus the calibration transformation TC can be recovered by minimizing the variance of the
z component of the points {pw} reconstructed with Equation 5.1. The Matlab Simplex opti-
mizer was used to estimate the Euler angles parameterization of TC . The resulting standard
deviation of the reconstructed points in the z direction is about 1.1mm for multiple calibra-
tion runs.
We manually selected points on the line representing the floor in the ultrasound image. De-
pending on the angle of the probe, the appearance of the floor becomes manifold and blurred,
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P.-S./side anatomy target LN / diameter surface TRE auto. TRE
1-6/left LNL IV-II, CA, ĲV with some compression normal / 5 mm 28.9 mm 4.1 mm
2-1/left LNL IV-II, CA, ĲV, chain of LN metastases metast. / 12 mm 54.5 mm 3.3 mm

2-10/right LNL IV-II, CA, ĲV, sternocleidoid muscle normal / 7 mm 53.4 mm 2.8 mm
3-6/right LNL III-II, larynx, bifurcation, submand. gland suspect / 12 mm 4.9 mm 3.5 mm
3-7/left LNL IV-II medial, trachea, thyroid, larynx, CA normal / 5 mm 4.9 mm 3.8 mm

4-2/right LNL IV-III, thyroid, CA, ĲV metast. / 12 mm 4.1 mm 3.0 mm
4-6/right IB-IIA-IIB-V, bulky lymph node disease metast. > US probe 7.7 mm 6.1 mm
5-5/right IIA-craniocaudal, parotis, submandibular gland suspect / 19 mm 6.1 mm 4.6 mm
5-6/right IA-IIA, chin, jaw, digastric muscle, sm.gland normal / 10 mm 10.7 mm 4.0 mm

Abbreviations: P.-S.=patient and sweep number, LN=lymph node, diameter=maximal nodal diameter accord-
ing to US sections, surface TRE=Target registration error after skin surface registration, auto. TRE=Target
registration error left after additional image-based registration, LNL=lymph node level (Robbins), CA=carotid
artery, ĲV=internal jugular vein

Table 5.1.: Description of datasets and target registration errors.

rather than showing a sharp line (Figure 5.3). Using careful adjustment of a single focal zone,
the floor plane can be determined even for difficult angles. In particular, when slowly moving
the probe from a perpendicular to a steep position, one can see how the first characteristic
sharp line of the floor merges into a more complex structure, while the actual position of
the floor is still identifyable. This approach allowed us to avoid manufacturing calibration
hardware such as the Cambridge phantom [113], which overcomes this problem by providing
an obstacle always perpendicular to the image plane. Furthermore, as the calibration did
not need to be done on a regular basis by physicians, we did not consider more automated
approaches involving complex algorithms for estimating the correct floor points, as in [124].
For Single-Wall calibration with automatic floor line extraction, a reconstruction precision of
3.4mm is reported in [113] with magnetic tracking, and 2.7mm in [124] using optical track-
ing. In a more recent study [125], these two methods are quantitatively evaluated both with
optical tracking, the authors report mean 3D point localization errors of 2.7mm and 1.67mm,
respectively.
Medical ultrasound devices usually assume a constant speed of sound of 1540m/s, which is
the average in human soft tissue. In our water bath at room temperature, however, the speed
is approximately 1485m/s. Objects visible in the images are thus closer to the probe than
indicated by the rulers on the image borders. Hence for our calibration, the vertical direction
of the ultrasound image was scaled accordingly with a factor of 1485/1540 = 0.964 (compare
[91], page 458, Equation 7).
We used a second tracked tool to intersect the ultrasound image plane in the water bath. By
means of a 3D visualization of the tool and the ultrasound image we visually confirmed the
calibration was correct (i.e. the optimization had not minimized the floor plane to a wrong
local optimum). It also allowed us to assess the latency of the ultrasound image with respect
to the tracker readings, by means of periodic pointer movement. We concluded that no sys-
tematic temporal calibration is necessary. One would expect the ultrasound image to be up to
one frame older than the tracker readings (due to the image processing and reconstruction on
the ultrasound machine, as well as frame grabber delay). This equals to a maximum of 40ms
delay, or 0.2mm error if a continuous sweep with the typical speed of 5mm/s is considered.
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(a) Three corresponding CT (1st column) and ultrasound slices (2nd column) from Patient
2, right neck, with edges from CT (3rd column) and blurred ultrasound for edge alignment
(4th column), positioned above, in the middle and below a normal target lymph node (blue
outline, cross denotes center for TRE computation). Examples for corresponding anatomy:
1-sternocleidomastoid muscle, 2-internal jugular vein, 3-carotid artery. ROI is delineated in
red on the 3rd and 4th column. The physical image size is 4× 4cm.

(b) Fused visualization of several reg-
istered sequences of Patient 5

(c) Volume Rendering of compounded
ultrasound sweep from Patient 2,
clipped to show a profile of the internal
jugular vein (note the ripple artifacts
due to blood pulsation)

Figure 5.4.: Image data from different patients used for the evaluation
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5.1.7. Results

For each of the five patients, all of the recorded tracked ultrasound sequences were reg-
istered onto the skin surface extracted from the CT scan, as described in Section 5.1.4.
This registration always converged, with computation times being 1-5 seconds. The mean
residual point distances (based on the Chamfer distance lookups) for the five patients were
2.36, 3.67, 2.41, 2.31, 2.70mm, respectively.
For studying the accuracy and robustness of the intensity-based registration methods (sec-
tion 4.2), one or two ultrasound sweeps were selected from each patient, 9 in total. Together,
the selections should cover the whole range of the expected clinical applications, including
the typical lymph node sites on both sides of the neck and displaying pathological as well
as normal lymph nodes of different sizes. Of each sweep in turn, 4 − 7 frames were picked
for automatic image-based registration. For validation purposes, the physician carefully es-
tablished a Ground-Truth transformation for each set of images using anatomical landmarks
such as calcifications in the carotid artery, well-defined lymph nodes or gland tissue etc. For
each set, one particular lymph node of interest was selected as the target, its deviation after
the automatic registration with respect to the manually defined Ground Truth represented
the Target Registration Error (TRE). The Hill-Climbing optimizer was used with an initial
step size of 5mm/5◦, and the similarity measure weightings were w0 = w1 = w2 = 0.33.
Before registration, the ultrasound images were downsampled to 128 x 128 resolution, as
their original high spatial sampling rate is not given in the CT data set and hence cannot be
exploited for registration. In addition, downsampling the ultrasound images positively affects
the computation speed.
Table 5.1 depicts the registration accuracy with respect to the selected target for all 9 se-
quences, after surface registration (column 5, surface TRE) and image-based registration (col-
umn 6, auto. TRE). In the first two patients, large translational misalignments between pure
surface registration and Ground Truth were noted, mainly in the lateral or superior/inferior
dimension. In the next three patients the deviations for surface registration ranged between
4.1 and 10.7mm. After subsequent image-based automatic registration (in case of the first
three sequences after some manual adjustment in order to lie within the capture range), the
remaining mean Target Registration Error was 3.9mm. Apart from sweep 4-6, where the size
of the lymph node metastasis exceeded the 40mm linear ultrasound probe and little anatomic
distinction was given in the CT data, the Target Registration Error after image-based fusion
remained below 5mm in all cases.
Based on the findings above the physician would have to expect the following clinical workload
and estimated additional time consumption per patient to enable registration of ultrasonog-
raphy with planning CT (with the setup of the camera system/calibration of optical tracking
provided and planning-CT performed routinely):

1. Patient positioning with mask and head pad on the ultrasound examination table, re-
moving the mask (preferable following the diagnostic ultrasound examination): 1 min

2. Acquisition of 1-6 freehand ultrasound sweeps (each 20-30 sec) containing all patholog-
ical lymph nodes on both sides of the neck: 4 min

3. Computation of US-CT global skin surface registration: 5 sec

4. Selection of 4-7 US frames per sweep for image-based registration: 4 min
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Figure 5.5.: Images used for registration from Patient 4, 6 consecutive ultrasound and CT
slice pairs; a malignant target lymph node (blue outline and TRE cross; 1-
sternocleidomastoid muscle, green, 2-internal jugular vein, purple, 3-carotid
artery, red, 4-thyroid, yellow)

5. Visual control, if global skin surface registration is good enough to allow for image-based
registration: 3 min

6. if not, manual drag and drop of the > 1cm deviating sweep(s) into the range of successful
image-based registration: 5 min

7. Computation of image-based registration: 30 sec

8. Re-evaluation: 2 min

Thus, in case the global surface registration deviates substantially, performing all steps would
amount to approximately 20 minutes additional working time for the physician (patients 1
and 2), which could be cut down to 15 minutes by leaving out step 6 in case of sufficient
global surface registration to allow for a meaningful image-based registration (patients 3-5).
In order to evaluate the robustness of the different optimization strategies, 130 registra-

tions were launched from initial transformations randomly displaced up to 4mm/4◦ in each
parameter around the ground truth pose. It was executed for all three optimizers on a set of
7 ultrasound images from sequence 10 of Patient 2, three of which are shown in Figure 5.4(a).
The same set of random numbers was used in each case, to assure sufficient statistical signifi-
cance of the randomized study. Table 5.2 denotes the variance of the error in the translational
and rotational components of the resulting transformation in Euler angle parameterization,
as well as the mean target registration error (TRE) for a lymph node (Figure 5.4(a)) picked
as target, and the computation time (on a 2.2GHz AMD Opteron machine with 2GB RAM
running Linux). The Hill Climbing Optimizer is stable while requiring the least number of
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Optimizer σt(mm) σr(mm) TRE(mm) time(s)
Hill Climbing 1.74 2.92 2.78 4.70
Powell-Brent 1.96 2.90 3.04 23.38
Exhaustive H.C. 1.11 3.14 2.26 336.30

Abbrev: σt=translational deviation, σr=rotational deviation, TRE=mean Target Registra-
tion Error, time=computation time

Table 5.2.: Robustness and speed of different optimizers, evaluated by repeatedly registering
from displaced starting estimates.
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Figure 5.6.: Plots of the individual similarity measure components against two translational
transformation parameters.

cost function evaluations, resulting in a very small computation time. Due to the expensive
line minimizations, the Powell-Brent optimizer takes significantly more time but does not
outperform the Hill-Climbing method. Exhaustive Hill-Climbing achieves the highest robust-
ness, as it evaluates all combinations of possible search directions in each iteration, and hence
always reaches the closest local optimum in the parameter space. As its computation time is
very high though, we prefer to use the Hill-Climbing strategy as best tradeoff between speed
and robustness. To show the contribution of the various similarity measure components to
the overall registration process, Figure 5.6 plots their value against changes in two transla-
tional parameters, with respect to the ground-truth transformation. The Edge correlation
term provides a smooth component, globally converging towards the optimum, hence driving
the stability of the algorithm. Weighted Mutual Information contributes with a local peak
denoting the highest statistical correspondence, however for larger translations, the individual
image entropies used for normalization might change significantly, as the image contents be-
come different. This can affect the Mutual Information value in a way that it produces wrong
local optima (left side on the center plot). In order not to compromise the global convergence
range, we have to limit the influence of the WMI term with respect to Edge Correlation. As
its values are much smaller (0.01− 0.1) compared to Edge Correlation (0.02− 0.35), an equal
weighting w1 = w2 = 0.33 represents a good balance between the two components. The skin
surface clamping plot depicts a rim of value 1, dropping smoothly to zero when some of the
ultrasound images drift away from the patient’s skin. In fact, for our weight w0 = 0.33, the
optimization never allows any values other than one for this component.

101



5. Clinical Applications

5.1.8. Discussion
The described setup allows acquisition of freehand ultrasound data from all sides and orien-
tations required for thorough examination of the patient’s neck, while knowing the location
of each image in 3D-space. However, several sources for error might affect a registration of
this information to the corresponding CT data:
Tracking inaccuracy. In our particular case, this error is very small due to the use of the
high-end ART tracking system with four cameras5.
Calibration error. Our calibration method yielded a reconstruction plane standard de-
viation of 1.1mm (see Section 5.1.6). Considering that we perform sweeps in a continuous
motion (without many angulations) and register them individually, we expect the calibration
accuracy to have limited impact on the registration. However we did not perform a complete
calibration accuracy study in the scope of this work.
Patient immobilization. Even though the patient was placed on the immobilization head
pad also used for treatment, slight movements of the patient’s head might have happened
during the examination, as the thermoplastic mask was removed after the initial positioning.
In addition, involuntary movements are possible in the context of counterbalancing the mild
ultrasound probe pressure. The head pad was not fixed on the examination couch, thus only
gravity and friction prevented its displacement. Similarly, the examination couch itself was
a mobile design with parking brakes in use that did not completely prevent translational
movement if leaning against it (e.g. examination of the patient´s left neck from his right
side). These latter two aspects could be responsible for the large deviations in patient 1 and
2 and should be addressed in subsequent studies by using a stationary examination couch
and firm fixation of the head pad. The former aspects are more difficult to counteract: leav-
ing the thermoplastic mask in place would impede access to two thirds of the lymph nodes
under question, cutting it according to the requirements of ultrasonography would lead to
an unstable mask no longer sufficient for subsequent radiotherapy. Special face masks that
gain stability from an individually moulded mouth piece are poorly tolerated by head and
neck cancer patients due to hypersalivation and tumoros obstruction of airways. Because of
these problems, the global skin surface registration of the whole exam may serve as initial
estimation, but a more precise registration should be performed for individual sweeps, which
is the case in our approach.
Internal tissue movement. The heart-beat causes the vessels to pulsate with a character-
istic rhythm over time, with a single high pressure pulse per heart beat for arteries and a low
pressure double pulse for veins resulting in tissue movements of 1-3mm; see Figure 5.4(c). In
addition, some of the patients had to swallow during the examination, resulting in a strong
shift of internal structures in the whole neck region. If deep breath-taking happens, other
deformations occur. Hence we asked the patients for quiet, regular breathing throughout the
examination, where only minor changes in the anatomy are expected.
Ultrasound image distortion. Speed-of-sound variations can cause geometric distortion in
the ultrasound images. The speed of sound varies slightly in soft tissue (fat 1476m/s, water
at body temp. 1529m/s, muscle 1568m/s, blood 1570m/s), while the ultrasound machine
assumes 1540m/s for the image reconstruction. The maximum deviation here is about 4%,
hence e.g. a 1cm fat layer would cause the tissue below to appear 0.4mm displaced. Fur-
ther distortion can appear due to refraction. In the given data a lateral shadowing effect
on the carotid artery was a frequent finding, however we do not expect implications for the

50.4mm RMS position error over the whole measurement volume, as stated on http://www.ar-tracking.de
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registration. The shadowing itself is excluded by our algorithm (see Section 4.2.3), and the
slightly displaced echos below the carotid artery contribute with a low weight to the similarity
measure, as they are on the bottom of the image.
Ultrasound probe pressure. In any ultrasound exam, some minimum pressure has to be
applied in order to keep direct contact with the patient’s skin. Where the skin surface is
convex, the linear ultrasound probe will flatten the surface underneath, and the compres-
sion should be strongest in the middle of the probe. This causes deformation of the skin,
subcutaneous fat, muscular layers and vessels. Placing and removing the ultrasound probe
repeatedly at neighboring locations will thus lead to different distortion of the same struc-
tures. In particular, vessel structures, as well as lymph nodes close to the skin are affected:
Due to different inherent blood pressures between the arterial (60-140 mmHg) and venous
(2-10 mmHg) blood system, the external compression effect imposed by the ultrasound probe
is much more pronounced in veins; see anatomy contours in figure 5.4(a). In some of the
sweeps, we could observe that the internal jugular vein would be totally collapsed due to
compression in some parts of the sweep, while it was visible with little or no deformation
in others. Non-fixed lymph nodes may be shifted slightly sideways by the ultrasound probe,
depending on the consistency of surrounding tissue. In the study presented, we handled these
issues by manual selection of ultrasound image frames well-suited for registration, as opposed
to a 3D-3D registration of all information available from a sweep with the CT scan. Thus,
when two sweeps of freehand ultrasound with overlapping structures of interest are recorded,
one can not expect to have an exact match of the corresponding anatomy in both sequences.
Again, this supports our supposition that a precise image-based co-registration of anatomic
structures to CT is restricted to individual freehand ultrasound sweeps.

Some of the issues mentioned above suggest the integration of deformable models into our
registration methods, which we consider an important topic for future research. However, this
will require a high degree of distinction between different tissue types with different deforma-
bility (arteries, veins, subcutaneous layers, muscle, fat etc.) and thus in turn will depend
on segmentation algorithms and feature-based methods. Furthermore, validating the correct-
ness of all registered CT-Ultrasound data in terms of a deformable mapping would be a very
time-consuming effort, left with many uncertainties concerning the relation of physiological
flexible soft tissues and rigid tumor tissue.
Considering a feature-based approach as an option for automatic registration between US
and CT, the carotid artery would be a structure of choice, as it appears well in the ultra-
sound images, is less prone to artifacts from probe pressure as opposed to veins, and sited
in close proximity to several lymph node regions. But for CT, it is angiographic acquisitions
with contrast agent that allow one to precisely extract the tubular shape of the carotids [128].
However, standard planning CT scans for radiotherapy are performed without contrast agent;
thus we made use of native CT scans in order to minimize the additional workload in the
treatment planning process and to enhance the acceptance for the clinical routine.
According to our time estimates for the proposed procedure, the physician faces a maximum
of 20 min additional workload in case of the global surface registration not meeting the re-
quirements for subsequent image-based registration (patients 1-2). Avoiding pitfalls like an
unstable head pad fixation and examination couch along with careful patient positioning will
supposedly lead to a sufficient global surface registration like in our patients 3-5, in which
case step 6 is dispensable, resulting in 15 min workload per patient. In view of the complexity
of planning process in Intensity-Modulated Radiotherapy (IMRT), usually involving the ra-
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diation oncologist and medical physicist for more than an hour, this may deem acceptable, if
substantial sparing of tissue irradiation in non-effected lymph node sites and dose-escalation
in clearly identified nodal metastases due to on-site ultrasound visualization is to be the gain.
Still, from the clinician´s point of view further reduction of personal involvement is desirable.
As a next step, the manual selection of US-frames should be replaced by automation (e.g.
every 20th frame of a sweep). In fact, in this study we selected frames not only for being
less distorted than others, but also for being helpful to establish the ground truth validation.
If image-guided registration is possible on frames selected automatically as well, preceded
by a stable skin surface registration, steps 4 and 5 will become dispensable as well, cutting
the manual involvement time down to below 8 minutes, which should be the aim of coming
research.
Altogether, we found a Target Registration Error of 3− 5mm for all lymph nodes other than
bulky disease, which is in accordance with the literature for the BAT-system compared to
gold marker verification of the prostate [89]. In view of the internal movements and tissue
deformation mentioned above this seems to be acceptable. Studies on positioning head and
neck patients with a thermoplastic mask reported on a daily setup variation of around 3mm,
but the reported measurements usually relied on osseous landmarks in portal films. Translat-
ing the traditional three-point laser setup error of mean 3.33mm in any single direction into
a mean composite vector, deriving from a high-precision, optically guided patient localization
system and considering all six degrees of freedom (like in our TRE), the offset was 6.97mm
with a standard deviation of 3.63mm [61]. In fact, the planning CT alone, imaging the neck
tissue at a certain time point, pretends to resemble an accurate picture of a region that is in
fact in motion all the time due to pulsating vessels, breathing, swallowing etc. These effects
are mirrored in the ultrasound examination, which gives a more realistic imaging along the
time scale, e.g. when watching the pulsation without moving the probe. Thus, part of the reg-
istration error cannot be attributed to pressure effects from the ultrasound probe but rather
relies on inherent tissue movement. This will not be overcome by optimizing positioning and
should be allowed for when defining the margins (additional zones around GTV) for planning
target volume definition. There is a growing interest on this issue of soft tissue movement, as
the widths of margins determine to what extent dose escalation and normal tissue sparing is
possible in high-precision radiotherapy. The magnitude of TRE values derived from CT-US
registration may help to define the minimal margin to ensure full dose coverage in macroscopic
tumor surrounded by soft tissue.
From a clinician’s point of view, 3 − 5mm uncertainty about the exact site of each image
voxel seems acceptable for radiotherapy planning purposes in soft tissue. Given the tracking
system is set up and calibrated, the expected additional workload for the physician amounts
to 15 min per patient with adequate fixation. This might be further halved by automation of
frame selection for image-based registration, which should be addressed in studies to come. In
principle, ultrasonography findings have been made available for treatment planning, where
benefits for target volume definition might be expected.

5.2. Abdominal Cancer

5.2.1. Clinical Context

Liver cancer is one of the leading causes of death world-wide, Hepatocellular Carcinoma
(HCC) being one of the most common primary cancers. Regarding metastatic disease, col-
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Figure 5.7.: Radiofrequency ablation of the liver guided by ultrasound.

orectal cancer is the most common malignancy in the liver. Despite all the recent advances in
cancer therapy, treatment of primary and metastatic tumors of the liver remains a challenge,
with often very small survival rates.
Potentially curative therapy options are surgical resection and liver transplantation, however
the majority of patients is not eligible for these treatments. There is nowadays a large focus
on ablative procedures for the treatment of unresectable liver tumors [28]. They use image-
guided placement of an electrode within the target area in the liver parenchyma (figure 5.7).
In Radiofrequency Ablation (RFA), heat created around the electrode affects the surrounding
tumor tissue, causing coagulative necrosis between 50◦ and 100◦. Often local tissue ablation
is performed with lower morbidity than surgical resection, besides it can be performed as
a minimally invasive procedure, including percutaneously and laparascopically. RFA is the
most common ablative procedure, however other techniques are in use as well, such as cryoab-
lation and ethanol injection.
Successful RF-ablation requires the precise placement of the end-effector tip, typically within
the volumetric center of the tumor in order to achieve adequate destruction. The tumor
itself and a ∼ 1cm margin of surrounding normal parenchyma can then be ablated. The
tumor(s) are identified in pre-operative imaging, primarily contrasted CT and MRI. For per-
cutaneous (i.e. through the skin) ablation, often ultrasonography is used as the guidance
modality. While it provides excellent visualization of tumors, in particular in combination
with ultrasonic contrast agents, its inherently two-dimensional nature and strong dependency
on the sonographer’s skills still limit its effectiveness [173]. Liver deformation due to needle
placement, ultrasound probe pressure, respiratory and cardiac motion poses additional prob-
lems.

One can clearly see that the use of tracked ultrasound, alongside with multi-modal reg-
istration of ultrasound to the pre-operative CT data, bears immense potential of improving
RF-ablation treatments. Many of the uncertainties regarding intra-operative tumor localiza-
tion and delivery can be removed by precisely mapping the pre-operative and planning data
into the coordinate system of tracked ultrasound during the actual procedure.

Even before an actual procedure, multimodal fusion can benefit the diagnostic process. For
assessment of indeterminate lesions, usually a contrasted CT scan is used in the first place.
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Figure 5.8.: Tracked transducer & electrode (yellow arrow), and software user interface of the
Virtual Navigator system, from [141].

Optionally, an additional ultrasound exam is performed. If the malignancy can still not be
determined with sufficient confidence, a biopsy has to be performed, where a small needle is
inserted into the patient to obtain a tissue sample for further pathological examination. In
this context, the fusion of CT and ultrasound can improve the diagnostic value to an extend
beyond the “sum” of the individual modalities, potentially sparing an invasive biopsy.

5.2.2. Related Systems

A company named Ultraguide (est. 1996, Haifa, Israel) had offered a system that used mag-
netically tracked ultrasound along with an additional tracking sensor on the electrode to guide
ablation procedures [145]. It seems that this system was not well perceived among interven-
tional radiologists. A number of studies could not provide strong evidence of the clinical
benefit of it, in particular in comparison to procedures with a needle guide affixed to the
ultrasound transducer [132]. The company went into bancruptcy in 2003.

The ultrasound vendor Biosound Esaote (Genoa, Italy)6 features a solution denoted Virtual
Navigator, integrated on some of its products, the software of which is developed as Navi-
Suite by MedCom (Darmstadt, Germany)7. It uses magnetic tracking as well, of both the
ultrasound transducer and, optionally, one ablation electrode (figure 5.8). The pre-operative
CT data is integrated before the procedure using manual registration, two approaches are
available:
For skin marker registration, 6-9 CT-visible markers are attached to the patient before CT
acquisition. The CT scan is preferably done in full inhale, if there is a choice. If a previously
recorded CT (e.g. from another hospital) is used, the patient is asked to redo the same state
of inhalation for registration. The skin markers are then pointed at with a tracked and cali-
brated tool just before the procedure.
The second manual registration option is to select the umbilical plane with the ultrasound
probe (it shows a shadow in the center of the image), and then manually navigate to the

6Website: http://www.biosound.com
7Website: http://www.medcom-online.de
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Figure 5.9.: Magnetic tracking sensor hot-glued onto the ultrasound probe.

corresponding plane in CT. This seems to be sufficient for registration in some cases [141]. If
not, 3-5 internal landmarks (entrance of portal vein into liver, liver margin etc.) are located
in both modalities, to allow a more precise point-based registration. At any point before or
even during the intervention, the registration can be manually refined - the physician freezes
an ultrasound image, and can then move the ultrasound probe which alters the registration
pose, until the CT MPR is aligned. In particular if contrast-enhanced ultrasound is used,
opportunities arise to confirm the registration directly on the target lesion.
According to [141], the clinical indications of using this fusion system are lesions difficult to de-
tect solely with ultrasound, large lesions only partially visible in ultrasound, lesions requiring
multiple insertions, lesions adjacent to anatomical structures at risk, as well as re-treatment
of previously partially ablated tumors.

Traxtal Inc. (Toronto, Canada)8 recently released the PercuNav system for Image-Guided
Needle Interventions. It uses miniature electromagnetic tracking sensors integrated in the tip
of ablation and biopsy needles, providing accurate navigation even for flexible instruments.
Integration of pre-operative imaging and intra-operative tracked ultrasound is featured as well.

The proposed automatic registration techniques could directly add value to such multi-
modal fusion systems, and improve the clinical workflow and reliability.

5.2.3. Experiments
In order to evaluate the performance of the novel registration algorithm proposed in section
4.3, we performed a study on abdominal data of 10 patients with various pathology. Since
that project is ultimately targeted towards the interventional application, the decision was
made to use a magnetic tracking system. The small tracking sensor can be attached right
to the ultrasound transducer (optionally inside a sterile plastic wrap), and does not require
a line of sight to the transmitter. This is advantageous in the crammed RFA setup (see also
figure 1.6), furthermore tracking of one or more of the ablation electrodes is possible as well.
Our freehand ultrasound system uses an Ascension MicroBird tracking system with a Siemens
Sequoia ultrasound machine and progressive RGBS video fed into a PC with frame grabber.

8Website: http://www.traxtal.com
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(a) kidney of patient 5, rigid (b) liver of patient 6, affine

Figure 5.10.: Result of the automatic registration on kidney and liver images.

Patient no. points manual pt-based rigid affine remarks
1 8 13.8 9.0 17.0 11.4 strong compresson at top
2 7 16.8 10.0 14.4 8.5
3 11 10.6 8.9 12.0 11.2 10cm renal tumor
5 5 10.0 8.4 15.5 8.7 kidney
6 7 8.0 6.2 10.7 9.9
7 11 9.1 6.5 10.8 9.3 pt-based reg. visually bad
9 15 4.2 3.5 7.6 6.8 rigid and affine reg. excellent
11 8 11.1 5.6 8.2 8.2
13 5 11.6 10.7 13.4 12.3
14 13 6.6 5.4 7.8 8.0

Table 5.3.: Registration results on 10 patient data sets in terms of the Fiducial Registration
Error (FRE) as root mean square (RMS) values in mm.

The position sensor was affixed to the transducer using hot-melt adhesive (figure 5.9), a
method based on [124] was used to determine the calibration. Transversal liver sweeps on
9 patients, and one kidney sweep from the 10th patient were used, acquired during breath-
hold. They were co-registered with portal-venous phase CTA scans, acquired on a dual-source
Siemens Somatom Definition scanner before, however not necessarily within the same position
in the breathing cycle.

5.2.4. Results

After manually aligning each of the data sets, a physician selected 5-15 point correspondences
on anatomical landmarks, including portal & hepativ vein, biliary duct, aorta vena cava and
heart atrium. Table 5.3 lists the RMS distances after manual alignment, point-based rigid
registration according to [160], and rigid & semi-affine registration using our methods. The
automatic registration converges correctly for all patients with an execution time of ∼ 20 sec-
onds. At the initial estimate (before the translation search), the FRE was between 11−62mm.
The errors after automatic alignment are in the same range of the manual ones, but larger than
the residual errors after point-based registration. Since all of the registrations seem visually
correct (exemplary results for liver & kidney are depicted in figure 5.10), we assume to have a
fairly large uncertainty in the definition of point correspondences, especially in cranio-caudal
direction. This confirms that manual CT-ultrasound registration is error-prone, as it usually
reduces the problem to definition of points on 2D-planes, or manually aligning a single 2D
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(a) rigid

(b) affine

Figure 5.11.: Comparison of rigid and affine registration results.

plane (as in use in existing products for interventional CT-US navigation) - not guaranteeing
a correct matching in 3D. This confirms again, that an automatic method which intrinsically
takes full 3D image information into account, is beneficial.
Affine registration with the three parameters of the sagittal plane in general yielded better
registration results, accounting for the majority of errors caused by probe pressure, breathing
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Figure 5.12.: Left: Registered liver of patient 9 with fiducial points (yellow=CT, green=initial
US, red=registered US), an oblique CT plane and contextual cutaway volume
rendering of CT. Right: Another example of the importance-driven visualiza-
tion, transversal ultrasound image of the liver with early-arterial phase CTA.

and different patient setup. As can be seen in figure 5.11, displacements on top of the images
were further reduced, in particular large shifts of the gall bladder were decreased. In fact, the
rigid-body assumption might be valid for a sub-volume of hepatic vasculature, but certainly
not for the overall shape of the liver. Therefore the rigid registration usually finds a local
optimum where the liver surface lines up best, not achieving a precise alignment of the fine
vasculature. The semi-affine model was more often able to match up both the organ surface
and the vasculature (figure 5.11).
All fiducial registration error (FRE) values are below 2cm. We expect that they represent an
upper bound for a target registration error (TRE) on liver lesions, which we did not define in
the scope of this study due to difficult locatability of relevant clinical targets in most of the
data sets.

Regarding the diagnostic value of the study, reading of the registered CT/US data could
exclude a number of suspicions on a total of five patients, including partial portal vein throm-
bosis, acute inflammation of the gall bladder and infiltration of renal cancer into liver tissue.

5.2.5. Visualization

It is desirable to visualize the pre-operative CT together with real-time ultrasound imaging for
guiding ablation procedures. However, it is difficult to provide a fused visualization that allows
sufficient spatial perception of the anatomy of interest, as derived from the rich pre-operative
scan, while not occluding the real-time image displayed embedded within the volume. In [24],
we have proposed an importance-driven approach that presents the embedded data such that
it is clearly visible along with its spatial relation to the surrounding volumetric material. To
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allow this, novel techniques for importance specification, feature emphasis, and contextual
cutaway generation have been developed. Essentially, an importance function is defined in
addition to the standard one- or two-dimensional transfer function for volume rendering (the
latter maps CT intensity and gradient magnitude on red/green/blue color components and
opacity). Contextual cutaways then specify the regions of the volume that should only show
and emphasize vasculature in order not to occlude the live ultrasound image. A more opaque
representation of the anatomy is exposed in the surrounding area, in order maintain the
spatial context of the ultrasound image. Results of this visualization approach are depicted
in figure 5.12.

5.2.6. Discussion

We have initially evaluated a system for fully automatic alignment of a single freehand ultra-
sound sweep with CT and CTA data, based on the algorithm developed in section 4.3. We
expect this to greatly increase the acceptance of multimodal fusion for diagnosis and treat-
ment, since it provides a simple workflow and enables more precise registration.

Currently, a further study is conducted with a 3D freehand ultrasound system permanently
installed at a clinical site. For this system, we used the spatial calibration method presented
in section 3.4.1 to prepare a number of transducers for freehand acquisitions. Based on the
problems pointed out above, we put particular focus on deriving appropriate ground truth
data. For liver sweeps, we visualize both original ultrasound frames and an arbitrary number
of cross-sections, compounded using the direct MPR technique from section 3.3.1, each with
the respective CT plane (similar to figure 1.5). Using a linked pointer and superimposition
options, physicians precisely locate vessel bifurcations, defining fiducial landmarks truly in
3D.
The developed similarity metric LC2 can easily be extended to handle a larger number of
signals from both modalities. We are particularly interested in registering CT with a com-
bination of ultrasound B-mode and contrast (CPS) imaging, since a dual imaging mode is
commonly used for ultrasound-guided procedures. Further issues to be adressed are real-time
compensation of respiratory motion, as well as deformable mapping techniques.

5.3. Intracardiac Ultrasound for Electrophysiology
The following studies have been mainly executed by John, Sun et al. [65]. I was involved in the
development of the image-based registration technique, however it is not related to the novel
methods introduced in chapter 4. Since it describes a further very interesting application,
where CT/Ultrasound fusion can provide navigation for a very difficult clinical intervention,
we present it here as well.

5.3.1. Clinical Context

Atrial fibrillation is the most common heart arrhythmia and the major cause of stroke. Over
2 million people are affected in the U.S. alone. Atrial fibrillation can be treated using a
pulmonary vein isolation procedure. Here the pulmonary veins are electrically isolated from
the left atrium by a radio frequency ablation catheter, with image guidance provided today
mainly by x-ray fluoroscopy. Only highly trained electrophysiologists are able to perform the
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procedure, because of the complex and patient specific anatomy of the left atrium. Cardiac
CT and MR can deliver high resolution 3D images of the individual heart anatomy. In the
future, this pre-interventional imaging could be replaced by a rotational C-arm technique,
that is able to produce such images immediately before or during the intervention [79]. An
imaging modality that is already used today in many EP labs is Intracardiac Echo (ICE) - a
steerable catheter that contains an ultrasound transducer in its tip. By placing the catheter
tip into the right atrium the physician is able to image the whole left atrium and some
neighboring structures in real time. Therefore it has become an excellent tool for visualization
of anatomical structures and instruments, and to monitor critical events.
The combination of 3D cardiac rotational C-arm imaging with ICE and a future integration
in the EP lab could help the electrophysiologists to guide ICE and the ablation catheter. It
could improve the learning curve for the use of ICE and therefore the whole Pulmonary vein
isolation procedure.
Also for electrophysiological applications ultrasound was fused with CT data. In [180] a
registration between conventional cardiac CT data and Intracardiac Echo is described. A
point-to-surface registration, by first extracting surface point sets of the left atrium from the
ICE images, is used. To the best of our knowledge, our results are the first on fusing the two
image modalities Intracardiac Echo and cardiac C-arm CT.

5.3.2. Experiments

System Setup

In our system 3D images are acquired on a Angiographic C-arm system (AXIOM Artis,
Siemens Medical Solutions). To image the left atrium of a patient we acquire images during 4
consecutive rotational 190o C-arm runs. Therefore we get enough images to reconstruct a 3D
image of one cardiac phase. The images are reconstructed and processed on a PC workstation.
The left atrium and other heart structures can be segmented using dedicated software.
The images acquired by the ICE catheter (AcuNav, Siemens Medical Solutions) are transferred
via a frame grabber card into the PC. To track the position of the ICE catheter tip we used
a magnetic tracking system (Microbird, Ascension). Its position sensor has been integrated
in the same tubing with the ultrasound transducer. The transmitter is installed under the
table of the C-arm system, such that an ICE catheter above the table can be tracked during
an intervention.
During ICE imaging we record the ECG signal of the patient, and track the position of the
ICE position sensor and a position sensor at the patient’s chest (for correcting respiratory
motion) synchronously.

Acquired Animal Data

In an animal experiment a 3D cardiac C-arm CT data set from a pig was taken. We addition-
ally took various Intracardiac Echo image sequences from the pig’s heart. The catheter was
inserted by the physician into the right atrium of the pig. All image sequences were taken
from this position by rotating and slightly moving the catheter tip. As mentioned above we
also recorded the ECG signal and the coordinates of the two position sensors at catheter tip
and chest. Based on these images we performed the following preprocessing and registration
procedure offline.

112



5.3. Intracardiac Ultrasound for Electrophysiology

Figure 5.13.: Preprocessing of a pig heart cardiac C-arm CT image: original image (left),
gradient magnitude image (middle), and after applying a mask with a threshold
of 67 (right). From [65]

Motion Gating for ICE Images

The main difficulty of a good registration is the cardiac motion from the beating heart and
the motion due to respiration in the ICE images. Therefore we need a good preselection of
useful ICE images.
If we ignore patient movement we can observe the cyclic respiration motion in the graph of
the vertical dimension of the 3D position sensor at the chest. This graph has regular peaks
separated by long plateaus. The plateaus are of nearly constant height. We compute for
every image the variation of this image and its previous images for a fixed time frame. For
images with a low variation we can assume that these images were taken in a respiratory
phase corresponding to a plateau. So we select those ‘low variation’ images from the whole
sequence.
To compensate for cardiac motion we further select those images with a fixed time distance
to the previous R-wave in the ECG signal.

Registration

For an initial registration the user has to select a point in the 3D data set that is close to the
position of the catheter tip of the ultrasound image sequence. This gives an initial transla-
tion. For an initial rotation we assume that the tracking device is installed under the C-arm
table in a fixed and given direction. This initial registration is followed by an automatic local
optimization step to find a good rigid body transformation. First we preprocess the C-arm
CT data. We extract the magnitudes of the local gradients by applying a 3D Sobel filter [49].
Because there are many regions outside the heart with strong gradients that can worsen the
registration quality, we apply a mask based on the grey values of the original volume to focus
on the edges representing the heart walls (see fig. 5.13). The ultrasound images are downsized
by a factor of 4 in each dimension to improve the runtime. We optimize the transformation
according to the following similarity measure: We re-slice the C-arm CT gradient magnitude
data in the ultrasound image planes using tri-linear interpolation. Now the similarity measure
is computed using Normalized Cross-Correlation (see section 2.2.3) on the sequence of gated
US images and resliced planes from the C-arm CT gradient magnitude volume.
The optimization is done using a best neighbor method. For an initial step size all trans-
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Figure 5.14.: Registration using a sequence of 12 gated ICE images. From [65]

formation parameters are changed in turn with the step size and the resulting value of the
similarity measure is computed. The change with the best improvement is taken and the step
is repeated until there is no further improvement. Then the step size is decreased and the
whole procedure starts again. We use an initial step size of 5.5 mm and 5.5 degrees. Both
are reduced by a factor of 2 repeatedly until we reach a step size of 0.1 mm or 0.1 degree.

5.3.3. Results
The registration was done offline with the cardiac C-arm CT and ICE data obtained from
the animal experiment. A visual comparison of the registration can be obtained by aligning
the ICE images side by side with their corresponding cardiac C-arm CT cut planes (see fig.
5.14).
For a quantitative validation of the registration results we compared segmentations of cardiac
chambers. For the 3D segmentation of the C-arm CT data set we used a semi-automatic tool
developed for cardiac CT data. The segmentation of the ICE data was done manually by an
expert.
We generated registrations and segmentations of 29 pairs of ICE images and their correspond-
ing C-arm CT cut planes. For visual assessment we compared the contour of the ultrasound
segmentation and the registered C-arm CT segmentation contour (see fig. 5.15). For quan-
titative assessment we computed the shortest distance from each contour pixel of the C-arm
CT segmentation to the registered ultrasound contour. The mean error was 3.14 ± 3.13 mm.
The whole registration procedure implemented in C++ took less than a minute on a system
with an Intel P4 processor with 2.8 GHz and 2 GB DDR memory.

5.3.4. Discussion
The results show a good alignment of ICE images and their registered cardiac C-arm CT
planes. Nevertheless, the quantitative analysis of registration accuracy shows some variation.
The question is, whether this is related to the registration algorithm. A non-negligible ad-
ditional source of registration and fusion errors that we currently ignore might be patient
movement. Furthermore the registration algorithm is based on grey values, whereas the val-
idation of these results is based on segmentations. Some segmented anatomical details and
their contour lines might be different in both image modalities. In particular, a precise man-
ual segmentation of the ultrasound images is difficult to achieve.
In the future our proposed methods can be used to build a system that makes it easy to
integrate and fuse 3D cardiac rotational C-arm imaging and Intracardiac Echo in the EP
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Figure 5.15.: Contour of a cardiac chamber manually segmented from ultrasound (left). The
contour of the same chamber segmented from the cardiac C-arm CT image and
projected to the registered ultrasound image (middle). A fusion of an ICE image
with segmented cardiac chambers from the 3D cardiac C-arm CT image (right).
From [65]

suite. Both image modalities will be available during the EP procedure, in contrast with
MR and CT which are acquired pre-intervention. A further step could be the fusion with
Electro-anatomical mapping data. We believe that these image integrations make it much
easier for physicians to learn and perform complex EP ablation procedures.
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6.1. Summary
The main problem adressed in this thesis is automatic image-based registration of CT and
3D freehand ultrasound imaging of the same patient. The dynamic nature of ultrasonog-
raphy and the very different representation of anatomy in the two modalities make this an
extremely difficult problem. Hence no complete solution, but rather only initial ideas can
be found in the literature to date. In order to tackle it, profound knowledge of the state of
the art is a prerequesite. Therefore, we provided a comprehensive introduction to current
image-based registration and its mathematical and technical foundation in chapter 2, with
particular emphasis on image similarity measures, the key component to multi-modal regis-
tration algorithms.

The system basics and technical issues of 3D freehand ultrasound have been described in
chapter 3. When setting up different hardware and developing software for 3D freehand ultra-
sound acquisition, we came along some novel ideas regarding calibration and compounding,
they are described in this chapter as well.

Our new CT-Ultrasound registration methods are proposed in chapter 4, which constitutes
the core contribution of this dissertation. In section 4.2, we first developed a method based
on an adapted similarity measure, which considers the most important ultrasound imaging
effects that can be recovered to some extent from CT. A combination of a weighted Mutual
Information term, edge correlation, clamping to the skin surface and occlusion detection is
able to assess the alignment of structures in ultrasound images and information reconstructed
from the CT data.
While those methods achieve a good local alignment, they also require manual selection of
adequate ultrasound frames, and the adjustment of a number of threshold values and other
algorithm parameters. Based on these limitations, we tried to come up with an improved,
more integrated registration approach. In section 4.3, we discovered that the transmission
and reflection of ultrasonic pulses can be simulated from CT, based on the known geometry
of the transducer. This allows to reproduce the imaging of tissue interfaces and shadowing &
occlusion effects. Combined with an approximated intensity mapping of the CT hounsfield
units to ultrasonic echogeneity, we have achieved a simulation of ultrasound from CT with
higher accuracy than we expected. Instead of weighting the two effects reproduced from CT,
we developed a novel similarity metric that assesses the linear correlation of their combination
with ultrasound, regardless of their individual influence. In fact this equals a simultaneous
optimization of simulation and registration parameters, which is applicable for many other
multi-modal registration problems. Put together with an automatic frame selection strategy
and a global initial transformation parameter search, it resulted in a fully automatic algo-
rithm for CT-ultrasound registration.
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The clinical applications have been presented in chapter 5. In section 5.1, we developed
a clinical workflow for integrating diagnostic ultrasound of the head and neck with CT for
improved radiation treatment planning (section 5.1). A global initial registration is achieved
by matching the skin surface derived from both CT and all freehand ultrasound sweeps.
Successively, the first semi-automatic registration algorithm from section 4.2 is applied. In
a study on five patients with head and neck tumors and cervical lymph node metastases,
we found a mean target registration error of 3.9mm. In a detailed discussion, we described
the individual error sources, and pointed out that there is significant overall clinical benefit,
despite the additional time required for the 3D ultrasound exam and registration.
The second registration algorithm was evaluated in a diagnostic fusion study on 10 patients
with hepatic and renal cancer (section 5.2). Fully automatic alignment was achieved on all
data sets, we reported a registration error of always < 2cm with respect to a number of
fiducial points throughout liver or kidney, for both rigid and affine transformation models.
Furthermore, a novel importance-driven visualization, based on contextual cutaway rendering,
has been applied to the registration results.

6.2. Discussion and Future Work

6.2.1. Clinical Evaluation

Regarding the Radiation Therapy application, the next steps would be to integrate our pro-
posed fusion workflow into a prototypical planning software, by collaborating closely with a
vendor of existing software solutions. A clinical study can then be executed on a large number
of patients, to precisely determine the amount of improved planning confidence. Besides, the
registration procedure could be further advanced by adapting the second, automatic algo-
rithm from section 4.3 to the head and neck data.
On abdominal imaging of liver and kidney, the developed automatic registration proved to
be a valuable tool to achieve alignment of CTA and ultrasound, as opposed to cumbersome
manual registration. With respect to diagnostic CTA-Ultrasound fusion, a larger clinical
follow-up study is necessary, as it can reveal how much better indeterminate lesions can be
assessed, and how the overall diagnostic workflow is changed & improved.
The most challenging clinical application is certainly the fusion for interventional procedures.
The performance of our automatic registration techniques has to be evaluated in an online
fusion system, to see if it can keep up with its promises in a realistic environment with un-
predictable patients and hard time constraints.
A field of further investigation that might benefit all aforementioned applications, is how
to cope with anatomic deformations between the CT and ultrasound acquisitions. Providing
real-time update and validation on the quality of alignment, will be particularly important for
the interventional application. In the following, we would like to highlight some of the tech-
nical research topics that should be adressed in the future, based on our presented automatic
registration method.

6.2.2. Deformable Registration

In all clinical scenarios described in this thesis, the rigid registration of CT and ultrasound is
only an approximation, since the anatomy will always be deformed to some extent. This does
not only impair the resulting accuracy of alignment, but can also prevent a robust registration
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in the first place, if the data just does not line up within the assumption of rigidity. Before
enthusiastically assuming all those problems can be solved by deformable registration, one has
to carefully examine the requirements of the clinical scenario. Deforming three-dimensional
measurements of patient anatomy is a significant modification, which might not be acceptable
in certain settings. Besides, validation of deformable registration results is a very difficult is-
sue which has not been solved satisfactorily to date. This can also pose additional difficulties
for approving respective medical systems with regulatory authorities, such as the U.S. Food
and Drug Administration (FDA).
Nevertheless, deformable registration can and should be used to more precisely register CT
and ultrasound imaging. In most cases, there is a certain target area (usually lesions) within
the images where the highest accuracy of registration is desired. Given that the target site
contains enough anatomical structures, a simple improvement is possible by weighting the
similarity measure contributions with their proximity to the target. Going a step further,
a good deformable registration of CT and ultrasound can be used to obtain a precise rigid
alignment of the target subvolume.
We have started heading in the direction of deformable registration by executing our regis-
tration techniques with an affine transformation model, that can compensate large-scale liver
motion. Our new LC2 similarity measure (section 4.3.2) can be computed locally, an efficient
implementation would use recursive filters. This will allow to use it as force in a dense-
field deformable registration algorithm. Together with an adapted regularization term, which
should adress ultrasound-specific properties like larger deformation close to the skin due to
probe pressure, an automatic image-based deformable registration of CT and ultrasound will
be feasible.

6.2.3. Real-time Update
In the interventional scenario, a single tracked ultrasound sweep is used to register CT into the
tracking coordinate system. Henceforth, the alignment is only correct if there is no patient
shift, anatomic deformation, accidental movement of the tracking reference, etc. It would
therefore be desirable to have real-time feedback about the correctness of the registration.
Due to the challenges of the multi-modal registration scenario, it is difficult do register a single
live ultrasound image with CT. We propose to take a detour instead, computing a real-time
update of the alignment by registering the live ultrasound image with the 3D ultrasound sweep
recorded beforehand. The latter has been registered to CT, and therefore allows to connect
the actual live frame with CT. While computing those incremental registration updates, one
should decide based on the image content, if the current frame provides a sufficient amount
of structures to yield a relevant update of the alignment. Besides, it has to be studied which
transformation models are suited here. While a single live image alone would not provide
sufficient information to compute a deformable update of the alignment, rigid or local affine
models might make sense.
Such a real-time update will be computationally demanding. It can be regarded as repeated
slice-to-volume registration of the live ultrasound frame with a 3D-ultrasound sweep that has
been compounded into a cartesian grid. This is perfectly suited for GPU acceleration, as
slices can be extracted from 3D-textures with just insane speed. Combined with predictive
filtering of the incremental transformation changes, it would certainly be possible to assess,
and optionally correct, the multi-modal alignment in real-time during an intervention.
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Figure 6.1.: Simultaneous CPS contrast (left) and B-mode imaging on the Sequoia system.

6.2.4. Motion Management

In particular for abdominal and cardiac interventions, the single most significant source of
mis-alignment is periodic respiratory and cardiac motion. If four-dimensional pre-operative
imaging is available, a patient-specific motion model can be established. The actual intra-
operative imaging can then be used to measure the motion and correlate it with the model
[55]. That way, even deformable updates can be achieved based on sparse live ultrasound
imaging [14], because the image-to-model alignment dramatically reduces the number of re-
quired registration parameters. While four-dimensional imaging might not be available on a
regular basis (due to high radiation exposure for 4D-CT, and high costs & long duration for
4D-MRI), alternatives that provide approximate motion models can be used as well. These in-
clude organ-specific statistical shape models (SSM) and atlas-based models. We have achieved
promising registration results in section 5.2.4 using a sub-set of the affine transformation pa-
rameters, as it has been shown before that they sufficiently represent large-scale abdominal
respiratory motion [121]. This can actually be considered as an initial, very coarse motion
model.
We have, and continue to acquire a large number of 3D freehand ultrasound exams with an
additional tracking sensor attached to the patient’s stomach. Together with aforementioned
techniques for real-time update, both intra- and pre-operative imaging can be used to grad-
ually refine a model of the patient-specific motion, starting from a patient-independent prior
motion model of the respective organ.

6.2.5. Other Imaging Channels

We have used the novel registration framework based on the LC2 similarity measure, to reg-
ister two information channels (large-scale reflections and echogeneity) from CT with the
ultrasound image intensity. However, it can be extended to assess the alignment of any
number of imaging signals. In ultrasound-guided RF-ablation procedures, contrast-enhanced
ultrasound (CEUS) is nowadays the preferred imaging technique, since it can visualize tu-
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mors with superior distinction and highlight fine vasculature [142]. The Siemens Sequoia
ultrasound platform features a split-screen mode, simultaneously showing Contrast Pulse Se-
quencing (CPS) and regular B-mode images (figure 6.1). We intend to use both of those
ultrasound information channels to achieve an improved registration, especially within the
liver. A further extension would be to integrate multiple CTA contrast phases, since fusion
of multi-phase CT is a common trend in liver perfusion imaging [98].
New ultrasonic imaging modes, the most prominent one being elasticity imaging, bear great
potential for improving both diagnostics and ultrasound-guided interventions. Caused by
the large academic interest in this field, ultrasound vendors have started to provide research
interfaces that allow to customize the beam-forming and pulse sequencing, as well as access
raw radiofrequency data of the returned echoes. Along with the shift away from proprietary
digital signal processing (DSP) boards towards using powerful PC hardware for the signal
processing, it is now easier than ever to modify the internals of ultrasound systems. In this
context, not only elasticity imaging could provide an extra channel of information for CT-
ultrasound registration. One could furthermore design specific ultrasound imaging modes that
carry CT-like characteristics, e.g. using statistical classification on the raw echoes. This would
also circumvent the main problem of ultrasound texture classification approaches operating
on the final images, namely the dependency on many of the parameters that are adjustable
by the sonographer.

Its unique flexibility, versatility and real-time capabilities have always distinguished ultra-
sound from the other modalities. Enhancing it with 3D position sensing turns it into a full-
fledged three-dimensional imaging modality in addition. Based on the achievements in this
thesis regarding multi-modal registration and fusion, as well as the proposed future research,
seamless integration with other pre-operative imaging, as well as interventional navigation,
will be easier than ever before. We believe that this will further strengthen the position of
medical ultrasound as a premier, integrated imaging modality for diagnosis and treatment,
especially in the areas of radiation therapy and interventional oncology.
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A. 2D/3D Registration Based on Volume
Gradients

We present a set of new methods for efficient and precise registration of any X-Ray
modality (fluoroscopy, portal imaging or regular X-Ray imaging) to a CT data
set. These methods require neither feature extraction nor 2D or 3D segmentation.
Our main contribution is to directly perform the computations on the gradient
vector volume of the CT data, which has several advantages. It can increase the
precision of the registration as it assesses mainly the alignment of intensity edges
in both CT and X-Ray images. By using only significant areas of the gradient
vector volume, the amount of information needed in each registration step can be
reduced up to a factor of 10. This both speeds up the registration process and
allows for using the CT data with full precision, e.g. 5123 voxels. We introduce
a Volume Gradient Rendering (VGR) as well as a Volume Gradient Correlation
(VGC) method, where the latter one can be used directly for computing the image
similarity without DRR generation. This work was published in [168].

A.1. Introduction

2D-3D Registration has numerous applications in computer-aided diagnosis and therapy, in-
cluding intraoperative navigation with fluoroscopy, patient positioning for radiation therapy
and multimodal data fusion for diagnosis and therapy planning. These applications usually
involve a two-dimensional X-Ray projection image and a preoperative CT data set. The
task is to define a common coordinate frame, in a way that corresponding structures of the
patient’s anatomy are properly aligned in both data sets. The general workflow of a 2D-3D
registration algorithm is to simulate X-Ray images by computing two-dimensional projec-
tions of the CT volume at an estimate of the pose of the real X-Ray image. This digitally
reconstructed radiograph (DRR) is iteratively compared to the real X-Ray image and the
DRR pose is altered. Finding a rigid pose which maximizes the similarity of two images is a
non-linear optimization problem, where adequate algorithms can be used in order to find the
maximum as fast as possible.

A.2. Related Work

For performing an intensity-based 2D/3D registration, numerous DRRs have to be created,
each of them requiring processing of the full volumetric data set. Plenty of research has
been done on speeding up DRR computation. Contrary to the classical back-projection
approach, Ray Casting, algorithms like Shear-Warping [162, 76], precomputation of DRR
rays [78], light field rendering [127] and hardware-accelerated 2D Texture rendering [78] are
more efficient in some orders of magnitude, however they all use simplifications which reduce
the DRR quality and produce artifacts which may affect the registration accuracy. Using the
3D texturing feature of modern graphics hardware, combined with rendering to floating-point
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Figure A.1.: Scheme of X-Ray projection imaging

color buffers, it is possible to accumulate slices trilinearly interpolated from a 3D volume.
Based on this feature, the 3D texture volume rendering algorithms are today the methods of
choice, because they are efficient and produce high-quality DRRs without artifacts. However,
their implementation imposes a lot of technical difficulties, and designated software usually
works only for a specific graphics board manufacturer.
The DRR and X-Ray images to be compared can be considered as two different modalities,
mainly because of different energy spectrums used for the acquisition of CT slices and X-
Ray images. This difference can be enormous if Portal Images with MegaVolt energies are
acquired [70]. By applying an adequate transfer function on the volume this can be taken
care of partly. Nevertheless the images will have different structures, and it is tough to assess
the quality of alignment automatically. In this context many Similarity Measures have been
developed. Some are using just sum-of-squares or correlation of the intensity differences, some
are working on two-dimensional gradient images. Information theory approaches assess the
alignment based on the properties of histograms and joint histograms, as the very popular
Mutual Information measure [154], or Correlation Ratio [117]. Correlation of small image
regions weighted with local variances is another very stable measure [78]. Various researchers
compared the performance of 2D/3D registration using different similarity measures [105, 60]
and [163].
Our approach yields efficient use of volume gradients, in order to obtain either the two-
dimensional DRR image gradients or directly the gradient based similarity measures. The
underlying idea of using volume gradient vectors has been described in two other recent papers.
Tomazevic et al. [150] backproject the gradients from the X-Ray image into the volume and
compute a similarity based on their correspondence with 3D gradient vectors, which are
defined on the surface of (previously segmented) bony structures. Livyatan et al. [83] use, as
final stage in their registration algorithm, the correspondence of the 2D gradients on the X-
Ray image with ray-casted sums of 3D gradient vectors in the volume. These correspondences
are only evaluated for border areas in the 2D image, which they define by applying a Canny
edge detector algorithm on the X-Ray image. In contrast to those algorithms, we are using the
CT gradient information in order to perform a purely intensity-based registration, without
prior feature extraction.

A.3. Methods

124



A.3. Methods

A.3.1. Foundation for DRR Computation
The pixel values in a X-Ray image originate from the number of particles reaching the detector
plane after passing the imaged object. The basic equation is

I(u, v) =
∫ Emax

0
I0(E)exp

(
−
∫
r(u,v)

µ(x, y, z, E)dr
)
dE (A.1)

where u, v defines a pixel of the X-Ray detector, r(u, v) is the ray from the source to this
pixel, µ(x, y, z, E) is the attenuation coefficient at a specific position in space and a X-Ray
energy E (figure A.1). As X-Ray sources are always polychromatic, the attenuation has
to be integrated not only along the ray, but also over the incident energy spectrum I0(E).
Those spectrums unfortunately vary greatly depending on the imaging devices. Therefore
attenuation coefficients are being treated in a simplified manner, denoting the attenuation of
a monochromatic X-Ray source at an effective energy E0:

I(u, v) = I0exp

(
−
∫
r(u,v)

µ(x, y, z, Eeff )dr
)

(A.2)

Most X-Ray imaging devices measure the logarithm of equation A.2, thus the pixel intensities
are reduced to a simple integral term, which we will use for our computations.
A heuristic means to compensate for the different effective energies in CT and X-Ray images
is to apply a scaling and truncation of the CT intensities. The CT values are cropped with
a user-defined window/level setting, the line integrals are evaluated (e.g. with a ray-casting
algorithm) and the resulting pixels are scaled in order to fully cover the gray-scale range of
the X-Ray image. This process can be referred to as radiometric calibration [70], it has to
be done only once for a specific combination of CT and X-Ray imagers. This even allows to
compute highly realistic DRRs of MegaVolt Portal Images from CT.

A.3.2. Determining Quality of Alignment
In order to search for the best DRR pose, the DRR and X-Ray images have to be compared
iteratively and the quality of alignment has to be assessed by some measure of similarity.
Gradient Correlation [105] is a very powerful one, its robustness originating from the use of
gradient images. It uses Normalized Cross Correlation, which expresses the linear dependency
between the intensities in the images I1 and I2:

NCC(I1, I2) = 1
σ1σ2

1
n

∑
u,v

(
I1(u, v)− I1

)
·
(
I2(u, v)− I2

)
= (A.3)

=
∑

(I1(u,v)−I1)·(I2(u,v)−I2)√∑
(I1(u,v)−I1)2·

√∑
(I2(u,v)−I2)2

Gradient Correlation is then the mean of the NCC values for both pairs of the horizontal and
vertical gradient images, respectively:

GC = 1
2

(
NCC

(
∂I1
∂u

,
∂I2
∂u

)
+NCC

(
∂I1
∂v

,
∂I2
∂v

))
(A.4)

It reaches its maximum value 1 if both the horizontal and vertical components of the DRR
and X-Ray gradients are fully linearly dependent. This assumes a looser dependency on the
image content itself [163], which is especially beneficial if the data to be registered has been
taken at very different energies, as the is case with Portal Images / CT.
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A.3.3. Direct Computation of DRR Gradient
A DRR pixel is the attenuation along the ray originating in the X-Ray source ~rs and passing
through the location of the pixel in the image plane ~rd(u, v). Each position on this ray can
be parameterized:

~r(u, v, λ) = ~rs + λ (~rd(u, v)− ~rs) , λ ∈ [0 . . . 1] (A.5)

The refined equation for the resulting intensity value at the pixel u, v (corresponding to the
logarithm of equation A.2) is

I(u, v) =
∫
µ(~r(u, v, λ)T )dλ (A.6)

For computing the similarity measure, equation A.4, we need the partial derivatives of I(u, v)
with respect to the pixel locations u and v, i.e. ∂I

∂u(u, v) and ∂I
∂v (u, v). Given the three-

dimensional gradient ∇µ(x, y, z) of the attenuation in space, we can directly compute this
information:

∂I

∂u
(u, v) =

(∫
λ∇µ(~r(u, v, λ)T )dλ

)T
· ~u (A.7)

∂I

∂v
(u, v) =

(∫
λ∇µ(~r(u, v, λ)T )dλ

)T
· ~v (A.8)

The volumetric gradient ∇µ(x, y, z) has to be incorporated into the line integral by scaling it
with λ. This is due to the fact that the rays belonging to neighbored pixels are further apart
from each other proportional to the distance from the X-Ray source (see figure A.1).
The length of the gradient vectors is to a big extent close to zero. It is therefore applicable
to consider only gradient vectors of significant size, e.g. 1% of the maximum size. Neglecting
all smaller vectors has the side effect of improving the registration quality further, as the
important edges from rigid, bony anatomy are emphasized, while too small ones, likely to
belong to deformable tissue, are discarded.

Gradient Ray Casting

Equations A.7 and A.8 can be directly evaluated using a ray-casting technique. For each
pixel u, v in the DRR gradient image, the line equation A.5 is sampled at constant intervals,
while ∇µ(x, y, z) is computed at the respective positions by trilinear interpolation from the
gradient volume. For comparison purposes, we also implemented equation A.6 in the same
way, which produces regular DRRs. It is important to mention that both approaches take the
same computation time, if we make use of Single Instruction Multiple Data (SIMD) machine
commands, which are available on today’s ix86 CPUs. Hence summation and interpolation
of a 3-vector takes the same number of operations than using just scalar data. We used the
GNU C++ Compiler under Linux, where Intel’s SSE2 instructions are supported.
For skipping the huge number of unimportant small gradient vectors, we implemented a binary
Octree data structure. For every sampling step along a ray, the octree is queried. The largest
bounding cube that is empty (side width 32, 16, . . . 1 voxels) is skipped, and the first sampling
position on the ray is set, which is outside of this cube. In order to efficiently implement this
skipping, we use an algorithm similar to the one originally proposed by Amanatides and Woo
[7] for ray tracing purposes. We refer to our rendering method as Volume Gradient Rendering
(VGR).
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Gradient Splatting

Splatting is a forward-projection method, where the volume is traversed voxel-wise, and a
footprint of each projected voxel is created in the 2D image. Thus a great reduction in
computation time can be achieved by just considering the gradient voxels larger than a specific
magnitude. The footprint is usually a gaussian kernel, its size varying with the distance of the
voxels from the image plane. For each voxel, the pixel intensities of all pixels affected by the
kernel have to be updated. Unless hardware-accelerated methods are used (e.g. drawing the
kernels as OpenGL textures), this method is too slow in order to be superior to ray-casting,
even if only a small percentage of the gradient voxels is considered.
Therefore, if the objective is DRR generation, splatting would not be the preferred approach.
However, a smart algorithm could take advantage of the splatting formulation to directly use
the 3D gradient data for the similarity computation, without DRR generation.
We can leave the use of kernels out, given that the size of a projected voxel is negligible with
respect to the pixel size in the 2D image. Each gradient voxel then adds to the intensity of
just one pixel:

∂I

∂u
(u, v) =

(∑
i

λi∇µi

)T
· ~u (A.9)

∂I

∂v
(u, v) =

(∑
i

λi∇µi

)T
· ~v (A.10)

Let I1(u, v) = ∂I
∂u(u, v) be the resulting vertical gradient values, and I2(u, v) the respective

values in the X-Ray image. The Normalized Cross Correlation equation (A.4) can then be
rewritten:

1
σ1σ2

1
n

(∑
I1(u, v)I2(u, v)− I1I2

)
= (A.11)

1
σ1σ2

1
n

(∑∑[(
(λi∇µi)T · ~u

)
I2(u, v)

]
− I1I2

)
(A.12)

The expression in squared brackets can be directly evaluated for each voxel, independently of
the sum of projected voxels resulting in pixel values. We therefore compute this correlation
by multiplying each projected gradient voxel with the intensity I2(u, v) of the X-Ray image in
full resolution, i.e. 10242 pixel. This approach directly creates the correlation values, without
producing a high-quality DRR. As we do not assemble ray integrals, we do not have access
to the mean and standard deviation of the simulated image, though.
This results in a very efficient computation of gradient correlation values without normal-
ization, which uses both all significant gradient voxels directly, without interpolation and
kernel functions, and the full content of the X-Ray image. We denote this technique Volume
Gradient Correlation (VGC).

A.3.4. Implementation
A prototypical application was developed, which demonstrates the advantages of the described
methods. A CT volume is loaded with full precision (12 bit) into memory. The volume
intensities are then cropped with a defined window/level setting. Successively the gradient
volume ∇µ(x, y, z) is computed using a three-dimensional Sobel filter cube, which takes 27
values into account for each voxel, resulting in very smooth gradient information. For the

127



A. 2D/3D Registration Based on Volume Gradients

VGR method, a binary octree is constructed from the gradient volume. For the VGC method,
the gradient voxels above the threshold are saved in a run-length encoded structure for fast
traversal.
The actual registration is performed by iteratively computing the DRR/X-Ray similarity with
one of the described methods. The pose is refined according to a simple best neighbor search
strategy, which has proven to be stable and sufficiently fast [163]. At the same time it allows
to distribute the computations on multiple CPUs, as (for a 6 DOF optimization problem)
12 cost function evaluations can be done in parallel, before the pose for the next iteration is
defined. We implemented a distributed version of the described registration methods using
the Message Passing Interface (MPI), allowing for transparent distribution on any number
of nodes and/or CPUs. Several client processes receive job messages with a pose description,
and return a single scalar similarity measure value to the coordinating process. Therefore
the communication overhead is very small and the computation speed scales directly with the
number of CPUs used.

A.4. Experimental Results
The subsequent registrations were computed on a cluster comprising 3 nodes with each 4 Intel
Itanium-2 CPUs running at 1.3 GHz1. Accordingly, 12 processors were used simultaneously,
resulting in a speedup of 9.7 compared to the original sequential implementation, executed
on a Pentium M 1.6 GHz Notebook.

A.4.1. Phantom Data

For assessing the registration robustness and accuracy, we used CT and portal image data
acquired from a Rando Body Phantom, including Ground Truth information [163, 70]. The
registration was launched iteratively from a pose randomly displaced (up to 20 mm / 20◦
in each degree of freedom) from the ground truth pose. The following table denotes the
mean displacement with the respective standard deviation of the translational and rotational
components (in mm and degrees, respectively) of the resulting pose. As we primarily assessed
the registration robustness with respect to various pose parameters, we preferred this error
description over a target registration error (TRE) value, especially as we were dealing with
phantom data. We compared our novel methods to a standard registration using the 2D
gradients of a DRR rendered with a regular volume rendering technique (VRT), i.e. software
based Ray-Casting, which yields very high accuracy whilst performing relatively slow.

method ∆trans ∆rot σtrans σrot time
VRT 1.31 0.41 0.08 0.09 32 s
VGR 0.79 0.64 0.12 0.28 3.2 s
VGC 1.24 0.48 0.10 0.14 2.5 s

A.4.2. Patient Data

A second set of experiments was performed on real pelvis data of two prostate cancer patients,
comprising a pretherapeutic CT scan and scanned simulator X-Ray images for radiothera-
peutic purposes. Before the gradient computation the CT data was thresholded in order to

1InfiniBand Cluster at TU Munich, http://infiniband.in.tum.de
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Figure A.2.: DRR image registered with VGR, X-Ray image with edges from DRR

restrain the registration to the pelvis bone, successively a gradient threshold was applied.
This resulted in just 1% of the voxels being used for the similarity computation, using our
new methods. Ground Truth information was not available, thus we depict the robustness in
terms of the standard deviation of the resulting pose parameters, registered from randomly
displaced starting poses, as above. The alignment was visually assessed by a physician and
declared as optimal for all three methods (figure A.2).

method σx σy σz σalpha σbeta σgamma time
VRT 0.07 0.44 0.05 0.06 0.05 0.08 22.2 s
VGR 0.18 2.73 0.18 0.23 0.16 0.15 1.8 s
VGC 0.15 4.12 0.41 0.47 0.10 0.21 3.1 s

While the standard deviations (in mm and ◦, resp.) are exceedingly small with regular volume
rendering (VRT), the values for our new methods are still well within the range to be consid-
ered robust, apart from σy. The y values reflect the out-of-plane translation, and therefore
are higher due to the small field of view (9◦) of the images. This can be compensated by con-
currently registering a second, perpendicular X-Ray image. The inferior results of the VGC
method probably originates from the missing normalization of the correlation, in conjunction
with the relatively small region of interest of these data sets (due to the positioning grid in
the X-Ray images). Even though the pelvis was registered correctly, the highly deformable
balloon inserted manually into the patients rectum was displaced as expected (figure A.2).
Therefore both the thresholding of intensity / gradient voxels and the use of a gradient-based
similarity measure was essential for the successful registration, as the balloon and tissue had
to be excluded for registration.

A.5. Conclusion
We presented a set of new techniques for performing 2D/3D registration of X-Ray modalities,
which are based on the immediate use of gradient information. The volumetric data can be
used with both full precision (16 bit intensities) and full size for highly precise registration. By
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thresholding the gradient magnitudes, the amount of information used for the registration can
be reduced dramatically, delineating only significant (bony or contrasted) structures. These
are in fact well adapted to the use of a rigid registration algorithm, as other parts of the
patient’s anatomy often undergo deformable transformations between the image acquisitions
(which is the case in experiment A.4.2). Note moreover that no segmentation is necessary to
achieve this. The VGC method computes the gradient correlation values directly from the
thresholded gradient voxels and the full-resolution X-Ray image, therefore using all of the
available, pertinent image information.
We tested the proposed methods on both phantom (CT / Portal) and patient (CT / X-Ray)
data. In terms of robustness, they are slightly inferior to an algorithm comprising DRR
generation with highest possible quality (which can be considered the "Gold Standard" of
intensity-based registration lacking Ground Truth information), while they are an order of
magnitude faster in execution. Using a purely CPU-based registration solution, we were also
able to exploit the speed advantage of distributed computations, which resulted in overall
registration times of a few seconds on a system with 12 processors. This leads toward new
intra-operative and real-time applications of automatic image registration. In addition, it
motivates further research on parallel software-based registration solutions, as opposed to
GPU-based techniques, which are difficult to distribute.
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B. A Volume Fusion Approach to 3D Medical
Ultrasound Imaging

The following is a initial technical report which I wrote at Siemens Corporate Research in
summer 2005, while investigating the feasibility of combining several 3D ultrasound volumes
to improve the imaging quality within a slice or volume of interest. Subsequent work, carried
out together with students, resulted in novel approaches for ultrasound mosaicking by multi-
variate registration [156], and new techniques for ultrasound volume reconstruction [17].

B.1. Introduction

When using medical ultrasound, physicians often want to depict a particular slice of interest,
which might be hard to acquire directly, as a structure entailing occlusion effects is in the
way. This is for instance the case for transcutaneous ultrasound imaging of the heart, where
chest ribs are covering the theoretically optimal scanning position, and either small designated
probes have to be used, or other orientations approaching from the abdomen/liver, pointing
upwards toward the heart.
Using modern 3D ultrasound devices, a whole volume of ultrasonic reflectivity information
can be acquired at once. Successively, the physician can navigate within a 3-slice view, an
oblique MPR, or a volume-rendered representation of the data in order to see the desired
anatomy.
We propose a mosaicking of an arbitrary number of 3D ultrasound volumes, i.e. one reference
volume should be expanded with every new acquisition, while assuring insertion of the new
information at the correct spatial position. This overcomes position-dependant artifacts,
as volumes can be acquired from any orientation. In particular it can resolve occlusion
problems by merging ultrasound information from various angles aside the structure causing
the occlusion.
The workflow is as follows: The user first performs a reference acquisition, telling the system
what the volume or slice of interest is. Then an arbitrary number of additional volumes are
acquired, either in real-time 4D mode, or high resolution 3D. The information is merged with
the reference scan, using both intensity-based registration and some tracking system (optical,
magnetic or gyroscopic). In terms of the user interface, the required interaction could be very
simple and convenient for physicians used to only 2D imaging: The probe is maneuvered to
a particular position of interest, which is partly obscured. A button is pressed, the slice is
frozen, and any further probe movement creates additional information that enhances the
slice, until a satisfying view of the anatomy has been achieved.
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Figure B.1.: Transformations involved in calibration using three volumes.

B.1.1. Potential Applications
• Obstetrics: Part of the baby’s shape can be occluded from its own hands or an odd
position.

• Monitoring and Treatment of Abdominal Aortic Aneurysms (AAA). The Aorta can be
occluded partly due to refraction artifacts from the portal vein, or total reflection at
other tissue interfaces. Fusion can be also beneficial to reconstruct 3D-Powerdoppler
Information, while the registration can be achieved using the regular B-Scan data.

• Imaging of bony anatomy, for instance spine vertebrae. Scanning from slightly different
insonification angles can be used to reconstruct a completed bone surface, as a single
snapshot yields incomplete information due to the more specular reflection properties
of bone.

B.2. Methods
B.2.1. Calibration
For an efficient workflow, the position and orientation of the ultrasound volumes has to be
established in real-time. For now, we focus on the case of using an optical tracking sys-
tem, which delivers this information accurately with its full 6 Degrees of Freedom (DOF).
Therefore, the relative transformation between the tracking target coordinate system, which
is reported by the tracking system, and the coordinate system of the ultrasound volume has
to be computed.
A related approach for ”quality control” of the calibration transformation during a procedure
is proposed in [18], where only in-plane transformations from specific sliding motions are used
to update and verify the calibration solving an AX = XB type of equation systems as well.
We approach this problem by scanning a phantom object submerged in a water bath, which
yields reasonably sharp outlines in the images. Two volumes taken at varying angles, can be
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coregistered using intensity-based image registration, which results in their relative transfor-
mation R12. Given the tracking transformation matrices T1 and T2, respectively, the following
equation holds:

R12Tc = TcT
−1
2 T1 (B.1)

We are looking for the calibration transformation Tc. This is a AX = XB type of problem
on homogenous rigid transformation matrices, which is also encountered in the context of
calibrating wrist-mounted robotic sensors [136, 99]. A solution to equation B.1 has one
rotational and one translational degree of freedom. Hence, at least two such equations are
needed in order to yield a unique solution. In other words, two relative motions of the
ultrasound transducer have to be recorded, requiring the acquisition of a minimum of three
volumes. A closed-form solution to two AX = XB equations has been described in [136],
however we prefer a least-squares minimization, as its behavior is better in the presence of
noise. Furthermore, the acquisition of three volumes produces three motions, which should
all be taken into account to yield an optimal result. Hence we would like to minimize the
following term:

argminTc
∑
i 6=j

d
(
RijTc, TcT

−1
j Ti

)
(B.2)

A non-linear least-squares optimization computes the parameters of Tc, expressed in a 6-vector
containing the translation and rotation in Euler-angles. For the function d, an appropriate
distance metric on rigid transformation matrices has to be chosen, several of which have been
suggested in the literature. The general problem is that one error value is to be computed
from two physically incompatible units, i.e. angular measurements (in degree or radiant units)
and distances (in millimeters or inches), respectively. A wrong weighting can over-emphasize
the translational accuracy at the expense of the rotational one. A solution to this problem
is not to consider the transformation matrices themselves, but their effect on a bunch of
points located in the workspace where high precision is required. This results in the fiducial
registration error

d(Ta, Tb) = 1
n

n∑
i=1
|Ta~pi − Tb~pi|2 (B.3)

For our problem, we chose the fiducials {~pi} as the corners of a cuboid with approximate
extensions as the ultrasound volumes.

All acquired ultrasound volumes are reconstructed into a volume with rectangular spacing,
whose voxels are interpolated from the ultrasound scanline data using the known geometry
of the pyramidal measurement volume. Each two volumes are then registered using a manual
pre-alignment, and a successive automatic optimization of the intensity correlation of the
reference volume voxels with the interpolated ones from the floating volume:

1
n

n∑
i=1

(Ii − I)(Ji − J) (B.4)

where Ii are all non-zero voxel intensities in the reference volume and Ji the intensities at the
transformed positions in the floating volume, computed using trilinear interpolation. Note
that we do not normalize the correlation with the standard deviation of the intensity, as this
would yield a dependency on the overlap volume.
For the three volumes required for calibration, the relative motions of the volume centers R12,
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R13 and R23 are established using this registration. As the registration result directly affects
the precision of the calibration, we assess the quality of the registration by comparing parts
of the transformation loop (see figure B.1):

d(R13, R23R12) (B.5)

B.2.2. Fusion
Once the reference volume V1 is taken, every further acquisiton Vi can be merged into it
instantly, using the relative motion recovered with the tracking data Ti and the calibration
transformation Tc:

R1i = TcT
−1
i T1Tc (B.6)

For every new acquisition Vi, an intermediate volume Ii is updated, using the algorithm for
traversing a reference and floating volume, that performs the image registration as well. For
averaging all intensities, the following weighting is used:

Ii = i− 1
i

Ii−1 + 1
i
Vi (B.7)

where the variables Vi, Ii and Ii−1 reflect the indidividual voxel values here. Other possible
merging methods are to take the minimum or maximum value of the intermediate and new
volume, respectively.

If it is bearable to keep all acquired volumes in memory, one can also use more sophisticated
fusion methods. The ultimate goal is to emphasize tissue interfaces depicting anatomy of in-
terest, and disregarding all position-dependant artifacts. Even if physicians would disagree
on this, I consider speckle noise as an undesired effect of ultrasound imaging in this context.
The acquisition of data from different viewpoints will produce different speckle patterns on
the same physical location, hence altering the characteristics for different tissue types. Thus
speckle noise in 3D fused imaging can not be understood in the same way than in regular 2D
imaging.
Towards this goal, the first method to consider is median merging, i.e. the median of many
acquisitions is taken as correct intensity for the fused volume.

B.3. Experiments
B.3.1. Clay Phantom Reconstruction with Calibration and Tracking
In order to study the proposed calibration method, a clay phantom depicting several tubular
structures was scanned in a water bath. The probe with an attached optical tracking target
was mounted on a holder. In addition to the phantom, some rubber sheets were submerged in
the water to minimize multiple reflections of ultrasonic pulses on the glass walls of the used
container (figure B.2). The used ultrasound system was a Siemens Sonoline Antares with a
2.2-4.7Mhz 3D/4D curved 1D array wobbler probe.
For the first set of experiments, 10 volumes were acquired, 6 of them with an additional
plastic bar placed on top of the object to produce some occlusion. For each volume, the
optical tracking data was recorded as well. The non-occluded acquisitions were used for

134



B.3. Experiments

Figure B.2.: Clay phantom submerged in water

Figure B.3.: 3-Slice overlay of registered clay phantom volumes.

calibration, hence an intensity-based registration was performed on all volume pairs. The
three volumes that yielded the best accuracy in terms of the transformation loop equation
B.5 were used to derive the calibration transformation Tc. The resulting fiducal error of a
cube with 100mm edge length was 1.8mm. The mean calibration error (equation B.3 without
the square, in order to produce euclidian distances) was 2.1mm. Hence the resulting accuracy
depended mainly on the intensity-based registration. Possible sources of error are position-
dependant artifacts involved in the registration process, as well as a slightly wrong scaling of
the reconstructed ultrasound volumes due to the speed of sound in water. Figure B.3 shows
a 3-slice overlay visualization of one of the registration results.
Using the tracking data and the calibration transformation, the 6 volumes of the object

with the occlusion bar were averaged using the successive fusion, equation B.7. The result is
depicted in figure B.4. A particular slice of interest that is obscured in the straight acquisition,
is enhanced using the successive 5 volumes from slightly altered angles.

B.3.2. Heart Phantom Reconstruction solely based on intensity information

For this experiment, a plastic phantom of a heart was used, whose surface is more smooth
compared to the clay model used before. Therefore the ultrasonic reflections are mainly
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(a) from reference volume (b) from fused volume (c) VRT with slice

Figure B.4.: A slice of interest is enhanced using fusion of 6 volumes.

(a) Reference Volume (b) Maximum Fusion

(c) Mean Fusion (d) Median Fusion

(e) Reference VRT (f) Mean VRT

Figure B.5.: Intensity-based fusion of 9 volumes from a heart phantom.
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(a) Single Slice (b) Mean Fusion of 3 Volumes

Figure B.6.: Fusion of 3 Volumes from a kidney.

specular, resulting in an incomplete surface reconstruction that can be improved using volume
fusion. The Sonoline Antares machine supports storing a sequence of 15 volumes acquired in
4D imaging mode, hence any slow movement over the heart could be used for reconstruction
of a single fused volume. However, as the scans are taken with a 1D ”wobbling” probe which is
continuously moving, the scans would be distorted if taken while moving the probe. Therefore
I decided to perform the scans in 3D mode, manually adjusting the holder arm for each new
acquisition.
Nine volumes of the heart were established and all starting with the second were registered
to the first one using the described method. The fusion was then performed using a variety
of methods, the results can be seen in figure B.5. The reconstruction using the reference
volume only is incomplete and grainy (e), while the one using the mean of all 9 volumes
clearly depicts the shape of the heart (f). On the MPR slice one can see very well the effect
of the different fusion methods. Using the maximum intensity of all volumes assures that any
depiction of anatomy in a volume will be transferred into the final image, hence it would be
very effective in overcoming occlusion. On the other hand, all position-dependant artifacts,
in our case in particular multiple reflections in the water bath, will be accumulated from all
volumes, resulting in a lot of confusing structures in the final image (b). The mean fusion (c)
produces the most smooth image and is therefore well-suited for volume rendering or surface
reconstructions. Using the median of all volumes (d) removes outliers in individual volumes,
while it still keeps more of the noise characteristics from a single acquisition, resulting in a
less smooth volume. Hence it might be the method of choice for improving on a single slice
of interest.

B.3.3. B-Mode Reconstruction on Human Kidney and Liver

Acquisitions on the kidney of a collegue were done with 3.3 Mhz and intermediate quality
settings (a scan took approximately 4 seconds). The organ itself is fairly rigid, hence several
acquisitions from similar positions could be well registered with the automatic algorithm.
Fusion of several volumes however barely improved the visual appearance of the organ. The
edges are barely visible in the image, so the impression of the organ shape arises to a big extent
from the different speckle characteristics (figure B.6). Fusion of several volumes averages out
most of the speckle, which is hence an undesired result in this case.
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Several acquisitions with the highest quality settings were performed from the author’s liver.
The portal vein, as well as some vessel structures inside the liver and the liver border are
very well outlined. Fusion of several volumes can even improve the appearance, while it might
blur regions were small deformations occur. These are due to the pulsating aorta, and slightly
different breathing stages for the different volumes. A simple deformable registration should
overcome these problems, while requiring more processing time though.
Note: Several 3D ultrasound volumes of the author’s spine were acquired as well, however at
the time of writing no evaluation had been taken place yet.

B.3.4. Powerdoppler reconstruction of the aorta
For a reliable diagnosis of abdominal aortic aneurisms (AAA), the aorta, located close to
the spine beneath the liver, has to be imaged and measured throughout its whole length.
Using doppler ultrasound, the shape of the aorta vessel can be extracted more precisely and
conveniently, as it images the blood flowing through it. As only the flow component parallel to
the ultrasound scan pulses can be retrieved, the physician has to apply the probe at certain
angles with respect to the aorta. The Siemens Antares ultrasound machine supports the
simultaneous recording of B-Mode and Doppler 3D volumes. Fusing several volumes acquired
at different positions and angles along the patient’a abdomen can yield a complete doppler
reconstruction of the aorta. As the doppler information might not correspond due to different
insonification angles, one would use the B-mode information for registration of the individual
volumes, while a fused dataset can be created from both the B-Mode and Doppler data.
A preliminary experiment was conducted by recording several dual-channel volumes of the
author’s abdomen, however it was very difficult to get nice doppler images of the aorta
without the assistance of a physician. Hence the resulting reconstructions show mainly vessel
structures inside the liver where a sufficient flow towards the probe occurs.

B.4. Conclusion
Extended-field-of-view Imaging and similar technologies have been around for quite some
time [42], providing means to enhance 2D ultrasonic data. Now that 3D transducers are used
more and more often, it is time to create solutions to improve the experience of physicians
dealing with ultrasound, using three-dimensional data of the anatomy. We demonstrated
methods for automatic fusion of an arbitrary number of 3D ultrasound volumes, that possess
the capability of recovering occluded structures and enhancing both 2- and three-dimensional
regions of interest. While the registration and fusion was performed offline in our preliminary
experiments, we believe that an interactive solution, that can register and merge volumes as
they are acquired, is well feasible. The numerical computing capabilities of modern graphics
hardware are already used for real-time visualization of the 4D ultrasound volumes in the
pyramidal grid that they were acquired in [148]. Hence a GPU-based volume registration
on these volumes would be a straightforward extension (using GPU pixel shader programs),
yielding registration times possibly below a second.
On the other hand, we demonstrated how to utilize additional tracking information in order
to fuse the data without any registration, and introduced an adapted calibration method.
Even a hybrid solution using a very compact tracking system integrated in the ultrasound
probe (e.g. magnetic or gyroscopic), that delivers either not all degrees of freedom of the
transformation, or has very limited accuracy, could be thought of. The incomplete position
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information can then be supplemented by intensity-based registration of the volumes.
Some potential applications demand the use of a 2D-array ultrasound transducer, which allows
to acquire volumetric information in an instant of time, so that keeping the probe steady is
not necessary.
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C. Quality-based Registration of Optical
Tomography Volumes

A novel optical tomographic imaging modality, related to fluorescence microscopy,
allows to acquire cross-sectional slices of small specially prepared biological sam-
ples with astounding quality and resolution. However, scattering of the fluores-
cence light causes the quality to decrease proportional to the depth of the currently
imaged plane. Scattering and beam thickness of the excitation laser light cause
additional image degradation. We perform a physical simulation of the light scat-
tering in order to define a quantitative function of image quality with respect to
depth. This allows us to establish 3D-volumes of quality information in addition
to the image data. Volumes are acquired at different orientations of the sample,
hence providing complementary regions of high quality. We propose an algorithm
for 3D-3D registration of these volumes incorporating voxel quality information,
based on maximizing an adapted linear correlation term. The quality ratio of the
images is then used, along with the registration result, to create improved volumes
of the imaged object. The methods are applied on acquisitions of a mouse brain
and mouse embryo to create outstanding three-dimensional reconstructions. This
work was published in [164].

C.1. Introduction
Fluorescence microscopy is a technique to depict in-situ biological tissue at cell resolution
level [177]. Fluorescent molecules absorb light used for excitation, and emit light at a longer
wavelength. Using a microscope with an appropriate optical filter, the emitted light can be
measured solely. Usually cells are stained with a particular fluorescent dye, which allows to
tag e.g. proteins and to observe their interaction within the cell. A novel optical tomography
system was developed and combined with another technique [36]. Anatomical preparations
become transparent if both the tissue and surrounding liquid exhibit the same optical refrac-
tion index, which can be achieved by basically exchanging water with a mixture of benzoin
and benzyl alcohols [144, 63]. The microscope’s focal plane, arbitrarily placed within the
sample, is sideways illuminated with a laser and the fluorescent light is measured through
the microscope with a digital camera (resolution 1392 x 1024, 12 Bit grayscale). A micropo-
sitioning device advances the tray with the sample in steps of 12µm, hence a stack of slices
is recorded. The resulting data is a comprehensive three-dimensional reconstruction with
approximate isotropic voxel size of 10µm, whose size can comprise several Gigabytes. A great
number of biological questions can be addressed using this new imaging modality.
Due to tissue inhomogenity, the fluorescent light is still scattered to some extent while passing
through the substance. Hence lower slices suffer a blurring effect, in relation to the distance
that light travels through the object to the microscope. Our approach to overcome this
problem is to acquire volumes with different orientations of the sample, while establishing
corresponding volumes with quality information at the same time. This quality information
will be used for both spatial registration of the different recordings, as well as the reconstruc-

141



C. Quality-based Registration of Optical Tomography Volumes

tion of improved volumes disposed of blurring.

C.2. Quality Function
We want to establish a function

Q : Ω→ [0..1]; Ω ⊂ R3 (C.1)

which returns the relative quality at any position in the image space Ω. It is determined
by the amount of scattering of the measured light, which in turn depends on the depth that
the light is traveling through the object. Assuming that light is only being scattered in the
sample and not the surrounding liquid, we can reduce our problem to computing the amount
of scattering with respect to tissue depth. This is done using a Monte Carlo simulation of
light propagation similar to [114], which we briefly describe in the following.
Instead of tracing single photons, we consider photon packets with a certain initial weight
for efficiency. We assume that ”centers” where both scattering and absorption occur, are
distributed uniformly throughout the tissue. Photon packets are initialized with the emitting
position ~x0 = (0, 0,−z)T and weight w = 1. Then they repeatedly travel from their actual
position ~xi a certain distance si in direction ~di, until a scattering and absorption event occurs.
The photon absorption obeys the classical attenuation relationship

N(s) = N0e
−µts (C.2)

where µt is the transmission coefficient, N(s) is the number of photons remaining at distance
s from an original number N0. An adequate generating function g(x) for the probability
variable s from a uniformly distributed variable X is

g(x) = 1
µt

log(1− x) (C.3)

The mean free pathlength is < s >= 1/µt. The scattering in tissue can be characterized by the
Henyey-Greenstein phase function, which is a probability density function of the scattering
angle, given an anisotropy factor g:

fHG(φ) = 1− g2

4π(1 + g2 − 2g cosφ)
3
2

(C.4)

For our simulation it needs to be transformed to a generating function from a uniformly
distributed random variable X as well:

cosφ = 1
2g

1 + g2 −
(

1− g2

1− g + 2gX

)2
 (C.5)

In each iteration, the photon position, orientation and weight is then updated:

~xi+1 = ~xi + si~di; wi+1 = w − µa
µt

; ~di = (dx, dy, dz)T

~di+1 =


sin θ√
1−d2

z

(dxdz cosφ− dy sinφ) + dx cos θ
sin θ√
1−d2

z

(dydz cosφ+ dx sinφ) + dy cos θ

− sin θ cosφ
√

1− d2
z + dz cos θ

 (C.6)
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Figure C.1.: Results of simulated scattering and function of standard deviation per depth.

The simulation is terminated if the photon packet reaches the top of the object, x3 ≥ 0,
where ~xi = (x1, x2, x3)T . If the weight falls below a threshold wi < wT , a roulette approach
decides if the photon packet is terminated. With a defined probability pt the photon packet
is discarded, otherwise it is reinserted in the simulation with a new weight w0 = wi/pt. This
makes sure that the energy conservation is not violated.
We are interested in the distance of the virtual point, where the light seems to come from
assuming a straight line through the image plane, to the point where the simulation was
started. The variance of this distance for many photon packets directly relates to the amount
of blurring, i.e. our sought-after quality. Figure C.1 depicts the deviation results for a
simulation at particular depth, as well as the function of quality versus depth. The latter
is approximately a linear relationship, which we accordingly use for assembling volumes of
quality information Q(x).

C.3. Quality-Based Registration and Merging
For multiple acquisitions, the preparation is carefully re-oriented within the test tube. No
significant deformations occur in this context, however the coordinate system of the second
acquisition has to be mapped onto the first one with very high precision, in order to use
the combined information for reconstruction. This alignment is hence performed using an
automatic rigid intensity-based registration method (see [86] for an overview of image regis-
tration techniques). Such methods conduct a non-linear optimization of the transformation
parameters, in order to maximize a similarity criterion defined on the voxel intensities of the
reference and template volumes R and T , respectively:

φreg = arg max
φ

S ({(R(~xi), T (φ(~xi))) |~xi ∈ Ωφ}) (C.7)

where {~xi} are all discrete voxel positions of the reference volume, φ is a 6-DOF rigid trans-
formation, and Ωφ is the volume overlap region for a given φ. We use Normalized Cross-
Correlation (NCC) as similarity criterion:

r′i = ri − r; t′i = ti − t

S =
∑
i r
′
it
′
i√∑

i r
′2
i

∑
i t
′2
i

(C.8)
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(a) Reference Volume (b) Registered Template Volume

(c) Reference Quality Volume (d) Registered Template Quality

Figure C.2.: Vertical slice of intensity and quality information from registered brain data.

For all voxels ri = R(~xi) of the reference volume, the corresponding voxel ti = T (φ(~xi)) is
trilinearly interpolated from the template volume.
In order to incorporate the voxel quality information QR and QT , we do not need to alter
the registration algorithm itself. Only an adapted insertion of the voxel values with a weight
wi ∈ [0..1] into equation C.8 is needed:

wi = QR(~xi)QT (φ(~xi))
r∗i = wi(ri − r); t∗i = wi(ti − t)

S∗ =
∑
i r
∗
i t
∗
i√∑

i r
∗2
i

∑
i t
∗2
i

(C.9)

Using this weighting, voxels with high quality in both volumes affect the individual sums
of the NCC equation more. We denote this similarity measure Weighted Normalized Cross-
Correlation (WNCC).
Note that a simple, approximative alternative is to use a limited joint volume of interest
Ω, where the quality is sufficiently high in both volumes. This is in our case a manually
defined slab from the center slices. However, we would like to provide a general framework
for incorporating quality information into registration rather than a quick specialized solution.
In addition, the precision and especially robustness (as large portions of the images have to
be omitted) of this center-slab approach is not convincing, as we experienced in an early
registration study. Eventually, when the registered datasets are to be combined, the quality
information is a prerequesite in order to allow a smooth transition. For merging two registered
volumes, we consider the quality information in the following way:

M(~xi) = R(~xi)QR(~xi) + T (φ(~xi))QT (φ(~xi))
QR(~xi) +QT (φ(~xi))

(C.10)
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(a) Vertical Slice, NCC (b) Vertical Slice, WNCC

(c) Horizontal Slice, NCC (d) Horizontal Slice, WNCC

Figure C.3.: Difference of reference and template volumes of the brain preparation after reg-
istration.

C.4. Results

C.4.1. Registration Accuracy

An in-vitro preparation of a mouse brain was imaged from the top and bottom side (figure
C.2). Its total length is 9mm, the volume was downsampled to size 256x256x189 for regis-
tration. Figure C.3 shows a vertical and horizontal difference slice for the two registration
methods. The standard method results in slightly larger borders, and especially a wrong dis-
placement in vertical direction, as the blurred regions, located in opposite directions in both
images, are fully considered for the similarity measure. The robustness of the registration was
assessed with a randomized study: 236 registration computations were executed with initial
transformations randomly displaced up to 1mm and 6◦ from the manually defined starting
estimate. Both methods perform equally stable, the standard deviation of the resulting trans-
lational parameters is 6.4µm, which corresponds to the parameter abortion criteria of the used
Hill-Climbing optimizer. The translations of the two methods are 0.1mm displaced (figure
C.4).

C.4.2. Merging

Figure C.5 shows the result of merging two volumes of a mouse embryo, the preparation was
flipped sideways (approx. 180◦) between the two acquisitions. Precise image registration is
crucial, as the resulting voxels are taken from both volumes. Each single data set is heavily
blurred on one side, while the final reconstruction depicts very sharp and detailed features
throughout the whole volume without any visible reconstruction artifacts.
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Figure C.4.: Translation vectors from different registrations, Blue=NCC, Red=WNCC

C.5. Conclusion
We presented an algorithm to reduce artifacts arising from a novel optical tomographic imag-
ing modality. Depth-wise degradation of image quality can be overcome by registering multi-
ple volumetric acquisitions. A physical simulation of the light scattering in the object allows
us to derive additional volumes of relative voxel quality information. These are both used in
an adapted registration algorithm, and for weighting multiple intensities during merging of
the volumes. We believe that this straight-forward extension can be easily applied to other
modalities where quality-related information is available. We demonstrated the increased
precision of our quality-based registration on an optical tomography volume. The subsequent
merging of registered data produces continuously high quality throughout the whole image
space. The result are three-dimensional reconstructions of in-vitro biological tissue samples,
with a resolution and quality which, to our knowledge, has never been achieved before.
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C.5. Conclusion

(a) single slice (b) quality slice

(c) VRT of single acquisition (d) VRT of reconstruction result

Figure C.5.: Slices and volume rendering (VRT) & reconstruction result from two flipped
acquisitions of a whole mouse embryo.
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D. Abbreviations

CT. Computed Tomography

CAT. Computer Aided Tomography = CT

CEUS. Contrast-Enhanced Ultrasound

CMUT. Capacitive Micro-machined Ultrasonic Transducer

CR. Correlation Ratio

CPS. Contrast Pulse Sequencing

CPU. Central Processing Unit

DOF. Degree of Freedom

DSA. Digital Substraction Angiography

EBRT. External-Beam Radiotherapy

FLE. Fiducial Localization Error

FRE. Fiducial Registration Error

GPGPU. General Purpose GPU

GPU. Graphics Processing Unit

HCC. Hepato-Cellular Carcinoma

ICE. Intracardiac Echography

ICP. Iterative Closest Point

IMRT. Intensity-Modulated Radiotherapy

KLD. Kullback-Leibler Divergence

MI. Mutual Information

MRA. Magnetic Resonance Angiography

MRI. Magnetic Resoncance Imaging (also: MR)

MST. Minimum Spanning Tree

NCC. Normalized Cross Correlation
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D. Abbreviations

PDF. Probability Density Function

PSF. Point Spread Function

PVI. Partial Volume Interpolation

RFA. Radiofrequency Ablation

RMS. Root Mean Square

ROI. Region of Interest

SAD. Sum of Absolute Differences

SNR. Signal to Noise Ratio

SSD. Sum of Squared Differences

SSM. Statistical Shape Model

TRE. Target Registration Error

US. Ultrasound
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E. Own Publications

Publications as First Author

• W. Wein, B. Röper, and N. Navab. Integrating diagnostic B-mode ultrasonography
into CT-based radiation treatment planning. IEEE Trans. Med. Imag., 26:866–879,
June 2007.

• W. Wein and A. Khamene. Image-based method for in-vivo freehand ultrasound cali-
bration. In SPIE Medical Imaging 2008, San Diego, Feb. 2008.

• W. Wein, A. Khamene, D. Clevert, O. Kutter, and N. Navab. Simulation and fully
automatic multimodal registration of medical ultrasound. InMICCAI 2007 Proceedings,
Lecture Notes in Computer Science. Springer, Oct. 2007.

• W. Wein, M. Blume, U. Leischner, H. Dodt, and N. Navab. Quality-based registration
and reconstruction of optical tomography volumes. In MICCAI 2007 Proceedings,
Lecture Notes in Computer Science. Springer, Oct. 2007.

• W. Wein, F. Pache, B. Röper, and N. Navab. Backward-warping ultrasound reconstruc-
tion for improving diagnostic value and registration. In MICCAI 2006 Proceedings,
Lecture Notes in Computer Science. Springer, Oct. 2006.

• W. Wein, B. Röper, and N. Navab. Automatic registration and fusion of ultrasound
with CT for radiotherapy. In MICCAI 2005 Proceedings, volume 3750 of Lecture Notes
in Computer Science, pages 303–311. Springer, Oct. 2005.

• W. Wein, B. Röper, and N. Navab. 2D/3D registration based on volume gradients. In
SPIE Medical Imaging 2005, San Diego, Feb. 2005.

Publications as Co-Author

• M. Blume, D. Zikic, W. Wein, and N. Navab. A new and general method for blind
shift-variant deconvolution of biomedical images. InMICCAI 2007 Proceedings, Lecture
Notes in Computer Science. Springer, Oct. 2007.

• C. Wachinger, W. Wein, and N. Navab. Three-dimensional ultrasound mosaicing. In
MICCAI 2007 Proceedings, Lecture Notes in Computer Science. Springer, Oct. 2007.

• M. Burns, M. Haidacher, W. Wein, I. Viola, and E. Groeller. Feature emphasis and
contextual cutaways for multimodal medical visualization. In EuroVis 2007 Proceedings,
May 2007.
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