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Zusammenfassung

Die vorliegende Arbeit behandelt Fragestellungen im Zusammenhang mit der
Quantifizierung, der Erzeugung sowie der Anwendung von Verschränktheit.

Verschränktheit hat ihre Ursache in der Beschränkung auf lokale Operatio-
nen und klassische Kommunikation. Wir untersuchen, wie sich das Konzept von
Verschränktheit unter der zusätzlichen Einschränkung durch Superauswahlregeln
ändert und zeigen, dass diese zu einer neuen Ressource führen. Wir charakteri-
sieren diese Ressource und demonstrieren, wie sie verwendet werden kann, um
die Einschränkung zu überwinden, ebenso wie Verschränktheit verwendet wer-
den kann, um die Einschränkung auf lokale Operationen mittels Teleportation zu
überwinden.

Anschließend betrachten wir die optimale Erzeugung von Ressourcen. Wir
zeigen, wie aus verrauschten Operationen unter Zuhilfenahme perfekter passiver
Operationen Squeezing bestmöglich erzeugt werden kann und diskutieren die Im-
plikationen dieses Ergebnisses für die optimale Erzeugung von Verschränktheit.

Die Komplexität korrelierter Vielteilchensysteme rührt letztlich von der kom-
plizierten Verschränktheitsstruktur des zugrundeliegenden multipartiten Zustands
her. Wir untersuchen die Grundzustandseigenschaften von Gittern harmonischer
Oszillatoren unter Verwendung von Methoden der Quanteninformation. Wir zei-
gen, dass für Systeme mit einer Energielücke die Korrelationen exponentiell ab-
fallen, leiten die Beziehung zwischen Lücke und Korrelationslänge her und un-
tersuchen das Konzept von Kritikalität, indem wir die Verbindung zwischen ver-
schwindender Energielücke und algebraisch abfallenden Korrelationen herstellen.

In letzter Zeit sind Konzepte aus der Verschränktheitstheorie verstärkt zur Be-
schreibung von Vielteilchensystemen verwendet worden. Matrixproduktzustände
(MPS), die eine äußerst einfache quanteninformationstheoretische Interpretation
haben, können Grundzustände lokaler Hamiltonians mit hervorragender Genauig-
keit approximieren. Dies wird allgemein dem Umstand zugeschrieben, dass sowohl
diese Grundzustände als auch MPS eine beschränkte Blockentropie haben. Wir
untersuchen den Zusammenhang zwischen der Skalierung von Blockentropien und
der Approximierbarkeit durch MPS und finden insbesondere, dass auch Zustände
mit beschränkter Entropie nicht stets durch MPS approximiert werden können.

Ausgehend von der quanteninformationstheoretischen Beschreibung von MPS
kann eine zweidimensionale Verallgemeinerung konstruiert werden, sog. projected
entangled pair states (PEPS). Während MPS effizient präpariert und simuliert
werden können, scheint dies für PEPS nicht mehr zu gelten. Wir gehen dieser
Frage nach und bestimmen sowohl für die Präparation als auch für die Simulation
von PEPS deren komplexitätstheoretischen Schwierigkeitsgrad.

Schließlich führen wir Gaußsche MPS ein, eine Verallgemeinerung von MPS
und PEPS auf bosonische Vielteilchensysteme, und leiten ihre Eigenschaften in
Analogie zum endlichdimensionalen Fall her.





Summary

This thesis deals with various questions concerning the quantification, the
creation, and the application of quantum entanglement.

Entanglement arises due to the restriction to local operations and classical
communication. We investigate how the notion of entanglement changes if ad-
ditional restrictions in form of a superselection rule are imposed and show that
they give rise to a new resource. We characterize this resource and demonstrate
that it can be used to overcome the restrictions, very much as entanglement can
overcome the restriction to local operations by teleportation.

We next turn towards the optimal generation of resources. We show how
squeezing can be generated as efficiently as possible from noisy squeezing opera-
tions supplemented by noiseless passive operations, and discuss the implications
of this result to the optimal generation of entanglement.

The difficulty in describing the behaviour of correlated quantum many-body
systems is ultimately due to the complicated entanglement structure of multi-
partite states. Using quantum information techniques, we investigate the ground
state properties of lattices of harmonic oscillators. We derive an exponential de-
cay of correlations for gapped systems, compute the dependence of correlation
length and gap, and investigate the notion of criticality by relating a vanishing
energy gap to an algebraic decay of correlations.

Recently, ideas from entanglement theory have been applied to the description
of many-body systems. Matrix Product States (MPS), which have a particularly
simple interpretation from the point of quantum information, perform extremely
well in approximating the ground states of local Hamiltonians. It is generally
believed that this is due to the fact that both ground states and MPS obey an
entropic area law. We clarify the relation between entropy scaling laws and ap-
proximability by MPS, and in particular find that an area law does not necessarily
imply approximability.

Using the quantum information perspective on MPS, a natural extension to
two dimensions, so-called projected entangled pair states (PEPS), can be found.
While MPS can be both created and simulated efficiently, this does not seem to
hold for PEPS any more. We make this rigorous by deriving the exact computa-
tional complexity of both the creation and the simulation of PEPS.

Finally, motivated by the success of MPS and PEPS in describing lattices of
finite-dimensional systems, we introduce Gaussian MPS, i.e. MPS for states with
a Gaussian Wigner function, and derive their properties in analogy to the finite
dimensional case.
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Chapter 1

Introduction

Entanglement is one of the most intriguing features of quantum physics, and it is
at the heart of applications such as quantum cryptography [1, 2], teleportation [3],
dense coding [4], and quantum computation [5]. On the other hand, it is also
a key ingredient for a variety of phenomena observed in many-particle physics,
as e.g. superconductivity [6], quantum phase transitions [7, 8], or the fractional
quantum Hall effect [9]. Quantum information, starting from the observation that
information is inherently physical, aims to describe quantum mechanics as a the-
ory of information processing, and, vice versa, investigates the possibilities and
limitations of information processing in systems governed by the laws of quan-
tum mechanics. Entanglement theory is one of the principal topics in quantum
information, where research is carried out in several different directions.

A central aim is to get a better understanding of entanglement, both quali-
tatively and quantitatively. What different types of entanglement exist, and how
can they be classified? Is there a well defined way to measure how much entan-
glement is contained in a given state, and what is the meaning of such a number?
Another direction is to explore in which way entanglement can be utilized. In
which situations does it help to have entanglement, and how can it be obtained
in a given scenario under certain restrictions? Finally, since entanglement under-
lies the complexity of correlated quantum many-body systems, can entanglement
theory help to get a better understanding of the behaviour of those systems, and
to develop techniques for their description and simulation?

From the perspective of information theory, entanglement is viewed as a re-
source. Generally, a resource allows to do things which are otherwise impossible.
Entanglement, for instance, can be used to teleport quantum states between two
separated parties which are restricted to local operations and classical commu-
nication (LOCC), and thus to overcome the restriction. On the other hand,
resources only exist due to the very restriction: entanglement, for instance, arises
only due to the restriction to LOCC.

A central aim of information theory is to quantify resources. Given a noisy
communication line between two parties, can it be used to simulate a differ-
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ent communication line or to establish perfect communication, and how much
bandwidth has to be used? Correspondingly, in entanglement theory one asks
whether a non-perfectly entangled state can be used to substitute a perfect one,
and at which cost. It has been a most important discovery that the amount of
entanglement contained in any pure bipartite state can be quantified by a single
number, the entropy of entanglement [10]. Asymptotically, any two states can
be converted into each other and thus into a maximally entangled state as long
as the total amount of entanglement is conserved. The entanglement of mixed
states however cannot be quantified in a unique way: On the one hand, one can
ask how much entanglement is needed to create a certain state [11], and on the
other hand, how much entanglement can be extracted from it [12]. Different
from the case of pure states, these measures do not coincide, which makes the
entanglement of mixed states a more involved but also more rich subject.

Entanglement is used in many different tasks such as teleportation, dense
coding, or quantum cryptography. In order to generate entanglement in a given
scenario, one wants to use the available resources as efficiently as possible. Various
ideas have been investigated: to establish entanglement between two distant
parties, relay stations—so-called quantum repeaters—might prove useful [13],
and percolation ideas can be applied to create entanglement using a network
of intermediate parties [14]. On the other hand, if one considers two particles
which can interact directly via some—possibly noisy—evolution, protocols to
create entanglement as efficiently as possible from the given interaction are being
sought [15, 16].

The complexity of correlated many-particle states, as e.g. ground or thermal
states of local Hamiltonians in solid state systems, has its source in the ex-
ponential dimension of the underlying Hilbert space, and thus ultimately in the
complicated entanglement structure of the quantum state under investigation. In
the last few years, ideas from quantum entanglement theory have been applied
to describe such systems and to achieve a better understanding of the structure
of the underlying states. It has been shown that the Density Matrix Renormal-
ization Group (DMRG) [17, 18], which performs extremely well in numerically
describing the ground states of one-dimensional systems, can be interpreted as a
variational method over a class of states called Matrix Product States (MPS) [19].
These states have in turn a very intuitive description from the quantum informa-
tion perspective, namely as maximally entangled pairs which are projected into
a subspace [20]. This gave rise to improved algorithms [20–22] as well as to new
classes of states, in particular Matrix Product Density Operators (MPDOs) and
Projected Entangled Pair States (PEPS), which were successfully applied to nu-
merically simulate thermal states [23] and states of two-dimensional systems [24],
respectively.

This thesis deals with different aspects of entanglement and other quantum re-
sources. In Chapter 2, we investigate how the notion of entanglement is changed
if additional constraints beyond LOCC are imposed, and develop a theory of
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entanglement in the presence of superselection rules, as e.g. particle number or
charge conservation. We show that the additional constraints give rise to a new
nonlocal resource, the superselection induced variance (SiV), which for pure bi-
partite states can be quantified by a single number in addition to the entropy of
entanglement. We also investigate the mixed state case, where we derive several
results on the quantification and transformation of the new resource, in analogy
to the existing results on mixed state entanglement. We then illustrate that SiV
is indeed a resource, as it can be used to overcome the restrictions imposed by
the superselection rule. Finally, we show that the new resource also gives rise
to new applications, and demonstrate how perfect data hiding protocols can be
implemented.

We then turn towards bosonic systems, as given e.g. by light modes. For such
systems, a new resource naturally arises: typically, particle-number preserving
(passive) operations, i.e., phase shifters and beam splitters, are easy to realize,
while operations which do not preserve particle number (squeezing operations)
are usually hard to implement. The resource which arises from this restriction
are squeezed states, i.e., states with a reduced uncertainty in one quadrature.
In fact, squeezing is closely related to entanglement, since every entangled state
with Gaussian Wigner function is also squeezed [25]. In Chapter 3, we investigate
how squeezing can be generated in an optimal way from a noisy squeezing device,
given free access to noiseless passive operations. We show how to maximize the
squeezing obtained with one use of the device, and then consider the case of mul-
tiple iterations, where we prove a surprising result: In order to generate as much
squeezing as quickly as possible, the best strategy is to maximize the amount
of squeezing created in each iteration. This is indeed unexpected, as this is a
global optimization problem which a priori need not be solvable locally. Finally,
we investigate the corresponding question of optimal entanglement generation,
where we show that for certain cases analogous results hold.

The remaining part of the thesis deals with the application of quantum infor-
mation concepts, in particular entanglement theory, to the description of quantum
many-body systems. We start in Chapter 4 by discussing ground state proper-
ties of lattices of harmonic oscillators subject to a quadratic Hamiltonian. These
so-called Gaussian systems have a particularly simple description in terms of sec-
ond moments, and therefore allow to derive analytic results for otherwise hardly
tractable problems. We derive explicit expressions for the ground state and the
excitation spectrum, and use these results to discuss the decay of correlations as a
function of the spectral properties. For gapped systems, we show that the corre-
lations decay exponentially; for one-dimensional systems, we explicitly compute
the correlation length and find that it scales with the inverse of the energy gap,
which is in accordance to what is known for finite-dimensional systems. We then
consider critical systems, i.e., systems with a vanishing energy gap, and show
that this implies a power law decay of the correlations, where the power depends
on the dimension.
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Matrix Product States (MPS) provide an efficient description of quantum
states on lattices and perform extremely well in approximating ground states of
local Hamiltonians. It is generally believed that the good performance of MPS in
approximating ground states is due to the fact that both ground states of gapped
local Hamiltonians and MPS obey a so-called area law, i.e. the entropy of any
block of spins is bounded by a constant. In Chapter 5, we look more closely
at the relation between the scaling of block entropies and the approximability
by MPS. While an at most logarithmic scaling of the block entropy for Rényi
entropies with α < 1 (but not any more for the von Neumann entropy, α = 1)
indeed implies approximability by MPS [26], we find that conversely a faster than
logarithmic increase for α > 1, as well as a linear increase of the von Neumann
entropy, implies non-approximability. For all other cases, we show that the scaling
of entropies does not allow for conclusions about approximability. This includes
the case of bounded von Neumann entropy, thus demonstrating that the reason
for the approximability of ground states by MPS is not simply the fact that they
obey an area law. We then apply the obtained results to show that MPS cannot
be used to simulate the time evolution of one-dimensional quantum systems,
not even for the case of translational invariant and time indepentent evolutions,
starting with a translational invariant initial state.

A main reason for the performance of MPS-based numerical methods lies in
the fact that expectation values of local observables can be efficiently evaluated
classically on these states. Analogously, it has been shown that any MPS can
be generated efficiently by a sequential “hen and egg” scheme, as e.g. given by
atoms passing through a cavity [27]. Projected Entangled Pair States (PEPS)
provide a natural extension of MPS to higher dimensions and have successfully
been applied for numerical simulations [24]. However, there is evidence that those
states can neither be created nor simulated efficiently: it has been demonstrated
that thermal states of classical spin systems can be mapped to PEPS, and since
finding ground states of spin glasses in two dimensions is NP-hard, this poses
lower bounds on their complexity [28]. In Chapter 6, we therefore investigate
two questions: First, what is the power of creating PEPS, and second, what is
the complexity of simulating them? We exactly determine the computational
complexity for the two cases, which is given by the complexity classes PP and
#P, respectively. Our central tool is a duality between PEPS and postselection,
which allows to use well-established tools from quantum complexity theory. The
result for the simulation of PEPS can be extended to the contraction of arbitary
tensor networks, thus giving a quantum proof for a completely classical prob-
lem. We also find that all the complexity of PEPS is already contained in the
two-dimensional case, which makes it an even more interesting subject to inves-
tigations. At the end of the chapter, we discuss the implications of these results
for the approximation of ground states by PEPS and give evidence why creat-
ing ground states of gapped Hamiltonians might be an easier task than creating
arbitrary PEPS.
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Given the the success of MPS in the description of systems with a finite
Hilbert space dimension per site, it is natural to look for extensions to continu-
ous variables. In the last chapter, we introduce Gaussian Matrix Product States
(GMPS), i.e., MPS for bosonic systems with a Gaussian phase space distribu-
tion. We prove that GMPS form a complete family, and in particular that any
translational invariant state has a translational invariant GMPS representation.
We then show that correlation functions of GMPS decay exponentially and that
the correlation length can be directly computed from the GMPS representation,
and finally that every GMPS is a ground state of a local Hamiltonian.

The results presented in this thesis have been published in [29–36].
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Chapter 2

Entanglement in the presence of
superselection rules

2.1 Introduction

One of the central results in quantum information theory has been the discovery
that the amount of nonlocality contained in a bipartite quantum system can be
quantified by a single number, the entropy of entanglement (EoE). Asymptot-
ically, multiple copies of any two states can be converted into each other and
thus into singlets provided that the total EoE is conserved [10]. On the other
hand, entanglement is the key resource for some of the most interesting tasks in
quantum information, as teleportation [3] and dense coding [4].

Entanglement has its origin in the restriction to those transformations which
can be implemented by local operations and classical communication (LOCC) [37,
38]. In the same way, any additional restriction should lead to another nonlo-
cal quantity and thus to new effects and applications. It has been noted by
Popescu [39] that in many physical systems of interest such a restriction is given
by a superselection rule (SSR). In the following, we will consider the superse-
lection rule given by particle number or charge conservation; this is motivated,
e.g., by recent quantum optical experiments on cold atomic gases. Indeed, the
notion of entanglement is affected by the additional restrictions [40, 41], and new
protocols arise, e.g., perfect data hiding [42] becomes possible [40]. On the other
hand, it has been shown [40, 43] that the extra resource of a shared reference
frame (i.e., a nonlocal state) allows to overcome the restrictions imposed by the
SSR; conversely, private reference frames restrict the possible operations of an
eavesdropper and can thus be employed for cryptographic tasks [44].

In this chapter, we quantify the nonlocal resource induced by particle number
conservation both for pure and mixed states. We start by discussing the pure
state case, where the main result is that the nonlocality contained in a bipar-
tite pure state subject to SSR can be quantified by only one additional number,
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the superselection induced variance (SiV): any two states can be interconverted
asymptotically as long as the total EoE and SiV are conserved. Therefore, we dis-
cuss how the majorization criterion [45] which governs the conversion of quantum
states has to be changed when SSR are present, and show that it asymptotically
converges to the conservation of EoE (as it is the case without SSR) and SiV.
We prove this result in detail for arbitrary states and show that it motivates the
definition of two different types of standard forms for SiV which carry a linear
and logarithmic amount of EoE, respectively.

While there exist pure states which carry only EoE, there are no pure states
which contain solely SiV. On the other hand, it has been demonstrated [40] that
there exist separable but nonlocal mixed states, i.e., states which have a separable
decomposition and thus do not contain EoE, but are still nonlocal as all these
decompositions violate the SSR, and therefore should contain SiV. In order to
make these statements quantitative, we extend the concepts of EoE and SiV
to mixed states subject to SSR. One natural way to do this is to consider the
amount of pure states resources needed to create the state [11]; we show that this
extension can be done in a meaningful way and that there indeed exist states
which contain SiV but no EoE. The converse way is to ask whether it is possible
to distill pure state resources from some mixed state [12]; we provide ways to
distill both EoE and SiV, and we show that it is even possible to distill the SiV
contained in separable states.

EoE is a resource—it allows to overcome the LOCC restrictions by teleporta-
tion. It is reasonable to assume that any restriction leads to a nonlocal quantity
which in turn allows to overcome this restriction. Indeed, we give evidence that
SiV can be used as a resource which allows to overcome the additional restrictions
imposed by the SSR in a bipartite setting. Therefore, we will use two tasks: dis-
tinguishing locally undistinguishable quantum states and teleporting states with
nonconstant local particle number [40]. We will show that not only pure states
can be used as share reference frames for these tasks, but that there even exist
separable states which together with one ebit of entanglement allow to perfectly
teleport one qubit and thus to overcome all restrictions. Still, we find that there
is a fundamental difference between EoE and SiV as a resource, as a finite amount
of nonlocality does not allow to perfectly overcome the restrictions, which is due
to the structure of the underlying Hilbert space.

The chapter is organized as follows. In Section 2.2, we introduce the concept
of a superselection rule and show how it restricts the operations which can be
implemented in a bipartite setting. In Section 2.3, we consider the conversion of
pure states. We start with the conversion of single copies, which motivates the
definition of SiV as a nonlocal monotone; then, we prove that asymptotically all
states can be converted given that both SiV and EoE are conserved. Section 2.4
is devoted to mixed state nonlocality. First, we discuss formation of mixed states;
beyond other results, we provide explicit formulas for the case of qubits. Second,
we give different methods for the distillation of both EoE and SiV independently

10



as well as simultaneously. Finally, Section 2.5 discusses SiV as a resource; there,
we quantify how well states with SiV can be used as shared reference frames
which allow to overcome the new restrictions, and we demonstrate that one ebit
of entanglement is still sufficient for teleportation.

2.2 Particle number conservation as a superse-

lection rule

We will focus on particle number conservation as a SSR, but the results also
apply to charge and other discrete quantities. In this case, the Hilbert space
of the system H can be decomposed into a direct sum H =

⊕∞
N=0HN of the

eigenspaces of the particle number operator N̂ , and the SSR imposes that for
any operator O, [O, N̂ ] = 0 must hold; thus, any operator can be written as a
sum of operators ON which have support on HN only, O =

⊕∞
N=0ON , and thus

O =
∑
N

PNOPN , (2.1)

where PN projects onto HN . As the same restriction holds for the admissible
density operators, all states can be converted into each other, and no interesting
new effects can be found.

Therefore, we consider SSR in a bipartite setting. Then, we have local particle
number operators N̂A and N̂B, and the total particle number operator is given
by

N̂AB = N̂A ⊗ 1B + 1A ⊗ N̂B . (2.2)

While the admissible states have to commute with the global particle number op-
erator N̂AB, the local operations have to commute with the local particle number
operators N̂A and N̂B. This restriction is stronger than the one given by the bi-
partite setting alone and should therefore lead to a new nonlocal resource. More
precisely, the operations on subspaces with fixed total particle number N = NAB

are given by

OABN =
⊕

NA+NB=N

(
OANA ⊗ 1BNB

)
(2.3)

(and vice versa)—in addition to the restriction to products OA ⊗ 1 imposed by
the bipartite setting, a direct sum structure arises from the SSR. This product
vs. sum structure will be present throughout the chapter, and is the reason for
some fundamental differences between EoE (arising for the product structure)
and SiV (arising from the direct sum).

The restriction to block-diagonal operations, Eq. (2.1), can be relaxed by
adding ancilla modes with m0 particles, performing a block-diagonal unitary U ,
and measuring resp. tracing out the ancillas. Then, the admissible (POVM/Kraus)
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operators are given by O = P anc
m UP anc

m0
; by applying (2.1) to U , this leads to

O =
∑

N PN+∆OPN (resp. [N̂ ,O] = ∆O, ∆ might differ for each O): O can
shift the particle number by some ∆. (Note that O†O remains block-diagonal).
As most of the results are only affected marginally by including ancillas, we will
usually neglect them and just briefly comment on their effect as appropriate.

At the end of this section, let us introduce a few notational conventions.
Logarithms are taken to the basis 2. A ket |N〉 denotes a state with N particles.
We will use this notation even if the underlying eigenspace is degenerate, unless
the nonlocal properties under consideration depend on this degeneracy.

The restrictions imposed by the SSR on the allowed operations can be easily
overcome by defining a new computational basis |0̂〉 ≡ |01〉, |1̂〉 ≡ |10〉 in which
all states have the same particle number [40]. This motivates the definition of
two different types of maximally entangled two-qubit states,

|V-EPR〉 = |0〉A|1〉B + |1〉A|0〉B

(a “variance-EPR”, as there is some variance in the local particle number), and

|E-EPR〉 = |01〉A|10〉B + |10〉A|01〉B ≡ |0̂〉A|1̂〉B + |1̂〉A|0̂〉B

(an “entanglement-EPR”, which is defined within an unrestricted subspace and
only carries entanglement). The very difference between these two states will be
a central issue in what follows.

2.3 Characterization of pure states

In this section, we characterize pure states in a bipartite setting, i.e., we de-
termine the possible conversions by LOCC and thus quantify the nonlocality
contained in a bipartite state. Without superselection rules, the majorization
criterion determines whether the conversion between two bipartite pure states
is possible [45, 46]. The conversion of multiple copies is governed by a much
simpler criterion: it has been shown [10] that multiple copies of any two states
can be interconverted reversibly. The conversion ratio is determined by only one
quantity which fully characterizes the nonlocal properties of a bipartite state, the
entropy of entanglement (EoE).

As we have seen in the preceding section, in addition to the tensor product
structure induced by the bipartite setting the operators have to obey a direct
sum structure. In this section, we show that these two structures lead to two
complementary resources: while the tensor product again induces the majoriza-
tion criterion and (asymptotically) EoE as a nonlocal resource, the direct sum
gives rise to additional restrictions on the conversions of states and in turn leads
to an own nonlocal resource.
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2.3.1 The single copy case

Let us consider the following problem: given pure bipartite states φ and ψ, is it
possible to convert φ to ψ by LOCC? This task can be generalized naturally to
a set of outcomes {(pi, ψi)}, where each outcome ψi is obtained with probability
pi.

Let us first see how this can be solved without SSR [45]. Therefore, let
λ = (λk) and µi = (µik) be the Schmidt coefficients of φ and ψi, respectively,
which completely characterize the states up to local unitaries. Without loss of
generality, the Schmidt vectors may be taken decreasing (λk ≥ λk+1) and of
equal dimension (by appending zeros). Following [45], an LOCC strategy for the
conversion

φ −→ {(pi, ψi)}

exists if and only if

λ ≺
∑
i

piµ
i .

Here, for two ordered vectors λ and µ, we say that λ is majorized by µ, λ ≺ µ,
if
∑d

k=1 λk ≤
∑d

k=1 µk for all 1 ≤ d < dim λ, where equality holds for d = dim λ.
As an example, consider the states

|φ〉 =
√

1
2
|0〉A|1〉B +

√
1
2
|1〉A|0〉B and

|ψ〉 =
√

1
3
|0〉A|1〉B +

√
2
3
|1〉A|0〉B ,

which have the ordered Schmidt vectors λ = (1/2, 1/2) and µ = (2/3, 1/3), re-
spectively. Since λ ≺ µ, it is possible to convert φ→ ψ; for instance, Alice might
start with the POVM measurement given by M1 =

√
1/3|0〉〈0|+

√
2/3|1〉〈1| and

M2 =
√

1/3|0〉〈0|+
√

2/3|1〉〈1| which yields the two states

|ψ1〉 =
√

1
3
|0〉A|1〉B +

√
2
3
|1〉A|0〉B and

|ψ2〉 =
√

2
3
|0〉A|1〉B +

√
1
3
|1〉A|0〉B .

with equal probabilities: ψ1 is already equal to ψ, and ψ2 can be converted to ψ
by a bilateral not operation.

Let us now see what is different when SSR apply: while the POVM measure-
ment {M1,M2} is compatible with the superselection rule, the local application
of not operations is not; indeed, it is not possible at all to carry out φ→ ψ de-
terministically in the presence of SSR. In order to see this, define block-diagonal
POVM operators Mi =

⊕
nM

i
n on one local system. Then, the completeness

relation
∑
M †

iMi = 1 yields
∑

iM
i†
nM

i
n = 1 for all n. Therefore, any POVM

operator is simply a direct sum of POVM operators acting within the subspaces
with constant local particle number, i.e., the usual conditions for convertibility
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have to hold for each subspace separately. Particularly, this implies that for pure
states the average weight of each subspace with constant local particle number
cannot be changed by local operations.

The impossibility to change the average weight of a subspace with fixed local
particle number can even be proven at a much more fundamental level. Take
multiple copies of some state |φ〉 with nonconstant local particle number, and
assume there is a way for Alice to change her local particle number distribution
on average. As the total particle number is constant, this implies that the average
particle number distribution of Bob’s system is changed the other way round.
Therewith, Alice can change Bob’s density matrix remotely which would allow
for supraluminal communication and therefore has to be ruled out. Classical
communication between Alice and Bob, on the other hand, will increase Bob’s
knowledge of the actual particle number distribution, but it cannot influence the
average distribution obtained.

In order to formulate this result precisely, note that any bipartite state φ ∈ HN

subject to SSR can be written as φ = φ0 ⊕ · · · ⊕ φN with φn ∈ HA
n ⊗HB

N−n, i.e.,
as a direct sum of unnormalized pure states with constant local particle num-
ber. Call the (ordered) unnormalized Schmidt coefficients of φn λn. Then, φ is
characterized up to local (SSR-compatible) unitaries by its SSR-ordered Schmidt
vector λ = (λ0, . . . ,λN).

Theorem 2.1. Let φ, ψi be pure states and λ, µi their SSR-ordered Schmidt
vectors. Then,1

φ
SSR−→ {(pi, ψi)} (2.4)

(i.e., there exists a SSR-compatible conversion strategy) if and only if

λn ≺
∑
i

piµ
n
i ∀n = 0, . . . , N. (2.5)

In order to see the connection to the conversions within the subspaces, let us
re-express (2.5) by normalizing the SSR-ordered Schmidt vectors,

λ̂n ≺
∑
i

pi
‖µi‖
‖λ‖︸ ︷︷ ︸

=:p′i

µ̂n
i ∀n = 0, . . . , N ,

where in the following a hat ·̂ denotes the normalized vector. According to the
usual majorization result, this holds iff we can convert

φ̂n −→ {p′i, ψ̂ni } ∀n = 0, . . . , N . (2.6)

1 If one includes ancillas, the Theorem only holds up to shifts in the local particle number
performed on the output states, i.e., Eq. (2.5) has to be replaced by ∃νi ∈ N ∀n = 0, . . . , N :
λn ≺

∑
i piµ

n+νi
i . Formally, up to local unitaries each state is then described by an equivalence

class of SSR-ordered Schmidt vectors which are equal up to a shift in the particle number,
and there have to exist vectors in these equivalence classes which satisfy Eq. (2.5). The proof
transfers directly if one replaces ψ̂n by ψ̂n+νi .
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Here, φ = φ0 ⊕ · · · ⊕ φN and ψi = ψ0
i ⊕ · · · ⊕ ψNi .

Proof. Exactly as without SSR, the most general strategy consists of Alice
performing a generalized measurement and communicating the result to Bob,
who then applies a unitary operation depending on the measurement outcome;
the proof [47] can be directly transferred.

We show (2.4)⇔(2.6). The proof can be restricted to the case where each
conversion φ→ (p, ψ) in (2.4) resp. (2.6) can be accomplished by a single POVM
operator M , i.e., Mφ =

√
pψ—otherwise, we can split φ → (p, ψ) into φ →

(pk, ψ),
∑
pk = p, where each conversion is the result of one of the POVM

operators. This can be done as well for the system of conversions (2.6), where we
have to split all subspaces simultaneously (this can be always done by additionally
splitting single POVM operators into copies of itself).

First, assume that (2.4) holds. Then there exist POVM operators Mi =⊕
nM

n
i on Alices side for which Miφ ∼=B

√
piψ (i.e., up to a unitary on Bob’s

side). Decomposing this into the subspaces in the direct sum, one obtains
Mn

i φ
n ∼=B

√
piψ

n
i and thus

Mn
i φ̂

n ∼=B

√
pi
〈ψi|ψi〉
〈φ|φ〉︸ ︷︷ ︸

≡
√
p′i

ψ̂ni

for all N , i.e., the Mn
i accomplish the set of conversions given by Eq. (2.6).

Especially, as

1 =
∑
i

(⊕
n

Mn
i

)†(⊕
n

Mn
i

)
=
⊕
n

(∑
i

Mn†
i M

n
i

)
,

the Mn
i obey the completeness relation for POVM operators. As all arguments

hold in both directions, this completes the proof. �

2.3.2 Variance as a nonlocal monotone

Let us now formulate an asymptotic version of the previous theorem. It is known
that without SSR for a large number of copies the majorization criterion con-
verges to the entropic criterion, i.e., the conservation of the total EoE [10]. With
SSR, the probability distribution associated to the variation of the local particle
number, pn =

∑
i p

n
i , has to be conserved as well. Asymptotically, this distri-

bution converges to a Gaussian which is completely characterized by its mean
(which can be shifted using ancillas) and its variance. Therefore we define

Definition 2.1. For a bipartite pure state φ shared by A and B, define the su-
perselection induced variance (SiV)

V (φ) := 4
[
〈φ|N̂2

A|φ〉 − 〈φ|N̂A|φ〉2
]
,
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where NA is the particle number operator for Alice.2 (One could equally well take
N̂B, as N̂A + N̂B = N = const.)

Let us now show that SiV is really an entanglement monotone [48] when SSR
are present, namely that it cannot be increased on average by SSR-LOCC and
vanishes on separable states. (On the contrary, note that V (φ) = 0 does not
imply that φ is separable—this is due to the fact that there exist two different
nonlocal quantities when SSR are present.) Moreover, SiV is symmetric under
interchange of A and B and additive: given two subsystems 1 and 2 shared by A
and B, V (φ1⊗φ2) = V (φ1) +V (φ2), as can be readily seen by applying Eq. (2.2)
to the two subsystems 1 and 2, N̂A1A2 = N̂A1 ⊗ 1A2 + 1A1 ⊗ N̂A2.

To show the monotonicity of SiV under SSR-LOCC, consider a POVM mea-
surement {MA

i } on Alice’s side. Then, the average SiV after the application of
{MA

i } is given by

V̄M(φ) =
∑
i

〈φ|MA†
i N̂2

AM
A
i |φ〉 −

∑
i

〈φ|MA†
i N̂AM

A
i |φ〉2

〈φ|MA†
i MA

i |φ〉
.

The first part reduces to 〈φ|N̂2
A|φ〉 (using [N̂A,M

A
i ] = 0 and

∑
iM

A†
i MA

i = 1),
while for the second part

∑
i

〈φ|MA†
i N̂AM

A
i |φ〉2

〈φ|MA†
i MA

i |φ〉

(∗)
≥

(∑
i

〈φ|MA†
i N̂AM

A
i |φ〉

)2

= 〈φ|N̂A|φ〉2 .

Here, (∗) has been derived using the Cauchy-Schwarz inequality(∑
i

yi

)2

=

(∑
i

√
pi

yi√
pi

)2

≤
∑
i

y2
i

pi

∑
i′

pi′ . (2.7)

Ancillas leave the result unaffected, as the extra contributions in V̄M(φ) originat-
ing from [N̂ ,O] = νO cancel out.

2.3.3 Reversible conversion of multiple copies

The introduction of SiV as a nonlocal monotone was motivated by the conversion
of multiple copies, as it characterizes the joint particle number distribution. In
the following, we will show that asymptotically SiV and EoE quantify the two
complementary resources which completely characterize biparitite states up to
SSR-LOCC.

2 The factor 4 in the definition normalizes the SiV: V (|V-EPR〉) = 1.
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Theorem 2.2. In the presence of SSR, there exists an asymtotically reversible
conversion

|φ〉⊗N ⊗ |0̂〉⊗E(φ)N ←→
∑
n

cn|n〉|N − n〉 ⊗ |E-EPR〉⊗E(φ)N ,

where the coefficients cn are distributed Gaussian with SiV N V (|φ〉).

Note that on the left hand side we have added ancilla states in the unrestricted
“hat”–basis (cf. Sec. 2.2). The conversion transfers the entanglement contained
in |φ〉⊗N to this second register as “accessible” entanglement in the form of
|E-EPR〉s, while the SiV stays in the first register.

Proof. First, we restrict ourself to the case of qubits, where |φ〉 =
√
p0|0〉|1〉 +√

p1|1〉|0〉. We will generalize the result in two steps: in a first step, we consider
qu-d-its, where the local basis is {|0〉, . . . , |d−1〉}, while in a second step we allow
for arbitrary bipartite states, i.e., the local bases might contain several states with
the same particle number.

For the beginning, let us only look at the first register. Taking N copies of
|φ〉, we have

|φ〉⊗N =
∑
x

√
pn0

0 p
n1
1 |x〉|¬x〉 ,

where the sum is taken over all possible N -bit strings x. Here, n0 and n1 are the
numbers of zeroes and ones in x, respectively, and ¬x denotes the bitwise not
of x. This state can be grouped naturally as

|φ〉⊗N =
∑
n0

√
pn0

0 p
N−n0
1

(
N

n0

)
|χN−n0,n0〉 , (2.8)

where the state |χN−n0,n0〉 ∈ HA
N−n0

⊗ HB
n0

is a maximally entangled state with

Schmidt number
(
N
n0

)
.

In the following, we show how to transfer the entanglement of |φ〉⊗N to the
second register. Therefore, we have to break the tensor product structure |φ〉⊗N
of the first register and create a new tensor product structure by properly trans-
ferring the entanglement to the second register. To this end, let us introduce the
concept of typical subspaces [49]. An ε-typical subspace of our Hilbert space is
defined as Hε =

⊕
n0∈SεH

A
N−n0

⊗HB
n0

, where the ε-typical n0 are those lying in
Sε = {n0 : |n0/N − p0| < ε}. It can be shown [49, 50] that projecting |φ〉⊗N onto
Hε gives an error which vanishes for N → ∞ such that we can restrict the sum
in (2.8) to n0 ∈ Sε. Then,(

N

n0

)
≥ 1

(N + 1)2
2NH(n0

N ) ≥ 2N [H(p0)−Kε] (2.9)
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with some K > 0 holds for all n0 ∈ Sε (ε � 1 and N � 1) [49]; here H(p) =
H(p, 1 − p) is the Shannon entropy of the probability distribution (p, 1 − p).
According to Theorem 2.1, we can transform

|χN−n0,n0〉 →
1√
E

E∑
i=1

|iN−n0〉A|i′n0
〉B ; E = H(p0)−Kε

coherently in all subspaces in the restricted sum, where |in〉 are orthogonal states
with n particles. Then by local maps |in〉|0̂〉 7→ |n〉|̂i〉, where |̂i〉 are orthogonal
and |n〉 = |1 · · · 10 · · · 0〉, the entanglement H(p0)−Kε can be transferred to the
second register which gives∑

n0∈Sε

cn0|N − n0〉|n0〉 ⊗
[
|01〉|10〉+ |10〉|01〉

]⊗N [H(p0)−Kε]
, (2.10)

where

cn0 =

√
pn0

0 p
N−n0
1

(
N

n0

)
.

The sum can be extended to all n0 with high fidelity, and the |cn0 |2 approach
a Gaussian distribution with variance Np0(1 − p0) = V (φ)/4. This is the only
parameter characterizing the state (2.10), since the mean can be shifted by locally
adding ancillas. As H(p0) is just E(φ), this completes the distillation direction
of the proof.

The dilution direction can be proven using the converse of (2.9),(
N

n0

)
≤ 2NH(n0

N ) ≤ 2N [H(p0)+Kε] ,

in an ε-typical subspace. Starting from∑
n0∈Sε

cn0|N − n0〉|n0〉 ⊗
[
|01〉|10〉+ |10〉|01〉

]⊗N [H(p0)+Kε]

,

we can transfer the entanglement to the first register and then (again by The-

orem 2.1) reduce the Schmidt number of each subspace to
(
N
n0

)
, obtaining the

projection of |φ〉⊗N onto the ε-typical subspace, so that the dilution works as
well. This completes the proof for qubits.

In a first step, we generalize the proof from qubits to (I + 1)-level systems,

|φ〉 =
I∑
i=0

√
pi|i〉|I − i〉 . (2.11)

(Note that the coefficients can be made positive by local operations.) Again, for
N copies of |φ〉, an ε-typical subspace can be defined by restricting the number
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ni of occurences of the state |i〉|I − i〉 in the product by |ni/N − pi| < ε for all
i. Projecting the state onto an ε-typical subspace again only yields a vanishingly
small error, and the Schmidt number of the states with fixed numbers (n0, . . . , nI)

is given by the multinomial coefficient
(

N
n0 ··· nI

)
and obeys the bounds [49]

2N [E(φ)−Kε] ≤
(

N

n0 · · · nI

)
≤ 2N [E(φ)+Kε] .

Thus, it is possible to extract the entanglement E(φ) reversibly. Yet, there are
several possible configurations (n0, . . . , nI) which yield the same local particle
number n =

∑
i ini such that there is still some entanglement left in each sub-

space. But as for N copies of |φ〉 the number of these configurations is bounded
by N I , this entanglement is logarithmic in N and can be removed reversibly.
Therefore, we can reversibly transform |φ〉⊗N ⊗ |0̂〉⊗NE(φ) into∑

cn|n〉|IN − n〉 ⊗
[
|01〉|10〉+ |10〉|01〉

]⊗NE(φ)

, (2.12)

where the cn are given by the sum over all coefficients for which the particle
number on Alice’s side is n,

cn =

√√√√√ ∑
P
i ini=nP
i ni=N

pn0
0 · · · p

nI
I

(
N

n0 · · · nI

)
.

It remains to be shown that the |cn|2 approach a Gaussian distribution. As
long as all pi 6= 0, this can be shown by expanding each ni within the typical
subspace as ni = N(pi + δi) with δi < ε. This will work fine whenever Npi � 1
and ε � pi for all i. Yet, this condition cannot be satisfied if pi = 0 for some i.
This might (but need not!) lead to a periodic gap in the distribution of the |cn|2,
e.g., for I = 2, p0 = p2 = 1/2. In that case, |cn|2 = 0 for all odd n.

In principle, such a gap has to be considered as a third nonlocal characteristic
of a bipartite state. Still, it can be removed easily. In the example given above
the gap is readily removed by adding one |V-EPR〉, such that the fraction of
|V-EPR〉 per copies of |φ〉 vanishes. By further adding an |E-EPR〉 (those are
obtained anyway in the distillation) the |V-EPR〉 can be re-obtained—it therefore
merely acts as a catalyst, “freeing” the subspaces with odd particle number.

The generalization to an arbitrary state is straightforward. Take

|φ〉 =
I∑
i=0

√
pi|ψi,I−i〉 , (2.13)

where |ψi,I−i〉 ∈ HA
i ⊗HB

I−i might themselves be entangled states. Applying the
concept of typical subspaces to Eq. (2.13), we find that the number of occurences

19



0 0.5 1 EoE
0

1
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V( ψ )×
|V−EPR 〉

|ψ〉  = √ 1
6
_
_

|0〉Α |1〉 Β+√ 5
6
_
_

|1〉Α |0〉 Β

V( ψ )

E( ψ )

[E( ψ ) −V( ψ )]×|E−EPR〉

|E−EPR〉

|V−EPR 〉

Figure 2.1: Char-
acterization of pure
qubit states in an
E-V diagram. All the
states reside on the
solid curve; asymptoti-
cally, any state can be
converted into V (ψ)
copies of a |V-EPR〉
and E(ψ) − V (ψ) of an
|E-EPR〉.

of each |ψi,I−i〉 in the typical subspace is bounded by (pi ± ε)N , and thus the
entanglement E(ψi,I−i) contained in these states—which is already “accessible
entanglement”—can be extracted reversibly. The remaining state is of the type
of Eq. (2.11) (with the same coefficients pi) and thus can be transformed reversibly
into a Gaussian distributed state with width NV (φ) and NH(p0, . . . , pI) ebits
of entanglement. It can be checked easily that the total number of Bell pairs is
NE(φ). �

For qubits, Theorem 2.2 can be re-expressed.

Corollary 2.3. For bipartite qubit states |φ〉,

|φ〉 ←→ |E-EPR〉⊗[E(φ)−V (φ)]|V-EPR〉⊗V (φ)

in the asymptotic limit.

This can be shown by applying Theorem 2.2 twice, together with E(φ) ≥ V (φ)
(which only holds for qubits).

Fig. 2.1 illustrates this characterization of states in the E-V diagram. Fig. 2.2
shows the E-V diagram for qutrits, which is considerably more complex. The
bounds are given by the states with highest variance α|0〉A|2〉B + β|2〉A|0〉B and
the states with highest entanglement α|0〉A|2〉B + β|1〉A|1〉A + α|0〉A|2〉B. A de-
composition as in the corollary is still possible if one replaces the |V-EPR〉 by
|0〉A|2〉B + |2〉A|0〉B which has maximal variance.
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Figure 2.2: E-V dia-
gram for qutrits, where
the boundary states and
the extremal states are
given. The possi-
ble states reside in the
gray area, the solid
line within this area is
the subset realizable by
qubits.

2.4 Mixed states in the presence of superselec-

tion rules

2.4.1 Introduction

In the following section, we consider mixed states. We will show how the concepts
of EoE and SiV as two complementary resources can be extended to mixed states,
and discuss the connection with normal (SSR-free) entanglement measures.

Let us start by introducing a particularly interesting mixed state,

ρsep =
1

4


1

1 1
1 1

1

 (2.14)

in the basis {|0〉A|0〉B, |0〉A|1〉B, |1〉A|0〉B, |1〉A|1〉B}. This state has first been con-
sidered in [40], where it was shown that it is separable but nonlocal. Namely, it
can be obtained by mixing (|0〉A+ω|1〉A)(|0〉B+ω|1〉B) for ω ∈ {1, i,−1,−i} with
equal probabilities, and therefore does not contain EoE. On the other hand, it is
easy to see that there is no decomposition of ρsep which is separable and compat-
ible with the superselection rule, i.e., it cannot be created locally. Clearly, this
can not happen with pure states.

Considering the results of the preceding section, it is natural to assume that
ρsep contains SiV but no EoE. In order to give quantitative meaning to such
statements, we discuss two genuine extensions of nonlocal quantities to mixed
states, defined by the asymptotic amount of pure state resources which are needed
to create them and which can be extracted again.
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2.4.2 Formation of mixed states

Let us start with the creation of mixed state in the presence of SSR. Similar to
the normal case [11], we define:

Definition 2.2. The entanglement of formation and the variance of formation
in the presence of superselection rules are defined as

ESSR
F (ρ) = min

{pi,ψi}

∑
i

piE(ψi)

and
V SSR
F (ρ) = min

{pi,ψi}

∑
i

piV (ψi) ,

respectively. The minimum is taken over all possible decompositions of ρ, where
the ψi have to obey the SSR (i.e., they all have constant particle number).

The entanglement cost [51] and the variance cost in the presence of super-
selection rules are accordingly defined as the regularized versions of ESSR

F and
V SSR
F ,

ESSR
c (ρ) = lim

N→∞

ESSR
F (ρ⊗N)

N

and

V SSR
c (ρ) = lim

N→∞

ESSR
F (ρ⊗N)

N
.

These definitions make sense, as they quantify the nonlocal resources we need
at least to prepare the state ρ with SSR [51].

As shown at the beginning of the section there exist states which do not
contain any entanglement yet are nonlocal, as ρsep [Eq. (2.14)]. One easily finds
that ESSR

F (ρsep) = 1/2, V SSR
F (ρsep) = 1/2, as each of the subblocks in ρsep has to

be created separately. On the other hand, it seems reasonable to assume that ρsep

can be prepared asymptotically without using entanglement. In the following, we
prove an even stronger result: asymptotically, the entanglement needed to create
any state ρ is just the entanglement needed without SSR.

Theorem 2.4. For any ρ with bounded maximal particle number,

ESSR
c (ρ) = Ec(ρ) ,

i.e., the entanglement cost with SSR is the entanglement cost without SSR.

Proof. Consider a mixed state σ compatible with the SSR and let
∑

i pi|ψi〉〈ψi| =
σ be the optimal decomposition without SSR, i.e., EF (ρ) =

∑
i piE(ψi). Clearly,

this decomposition need not obey the SSR, but we can use it to constuct a com-
patible decomposition with vanishing overhead. From (2.1), σ =

∑N
n=0 PnσPn,
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where Pn is the projector onto the subspace with totally n particles and N the
maximum total particle number in σ; therefore,

σ =
∑
n,i

pipi,n
Pn|ψi〉〈ψi|Pn

pi,n

with pi,n = 〈ψi|Pn|ψi〉 is a decomposition of σ which is compatible with the SSR.
For any |ψ〉 with at most N particles, it holds that the measurement of the total
particle number creates at most log(N + 1) entanglement on average,

∑
n

〈ψ|Pn|ψ〉E

(
Pn|ψ〉√
〈ψ|Pn|ψ〉

)
≤ E(|ψ〉) + log(N + 1) (2.15)

and with σ = ρ⊗M , the claim follows.
In order to see why (2.15) holds, we need the inequality S(piρi) ≤ piS(ρi) +

H(pi) (see, e.g., [50] for a proof), and that Pn =
∑n

i=0 P
A
i ⊗ PB

n−i. Toghether,
this gives the estimate

E

(
Pn|ψ〉√
〈ψ|Pn|ψ〉

)
= S

(
trB
∑n

i=0 P
A
i ⊗ PB

n−i|ψ〉〈ψ|PA
i ⊗ PB

n−i

〈ψ|Pn|ψ〉

)
≤

≤
n∑
i=0

〈ψ|PA
i ⊗ PB

n−i|ψ〉
〈ψ|Pn|ψ〉

S

(
trBP

A
i ⊗ PB

n−i|ψ〉〈ψ|PA
i ⊗ PB

n−i

〈ψ|PA
i ⊗ PB

n−i|ψ〉

)
+

+H

({
〈ψ|PA

i ⊗ PB
n−i|ψ〉

〈ψ|Pn|ψ〉

}n
i=0

)
.

Clearly, the Shannon entropy H is bounded by log(n+ 1) ≤ log(N + 1), and thus
the l.h.s. of Eq. (2.15), i.e., the entanglement averaged over n, is bounded by

N∑
n=0

n∑
i=0

〈ψ|PA
i ⊗ PB

n−i|ψ〉 S
(

trBP
A
i ⊗ PB

n−i|ψ〉〈ψ|PA
i ⊗ PB

n−i

〈ψ|PA
i ⊗ PB

n−i|ψ〉

)
+ log[N + 1] .

The sum can be extended to i = 0, . . . , N , n − i = 0, . . . , N as |ψ〉 has at
most N particles, and by the concavity of the von Neumann entropy, Eq. (2.15)
follows. �

Note that this also implies that ESSR
F is not additive [41]; ESSR

F (ρ⊗Nsep ), e.g., grows
at most logarithmically.

Let us now consider V SSR
F and V SSR

c . As expected, the entanglement cost of
ρsep vanishes. But as ρsep still contains some kind of nonlocality, it is natural to
assume that its variance cost is strictly nonzero. In the following, we prove a
more general result, namely that V SSR

F is additive on all states which are a direct
sum of pure states (i.e., ρ is block-diagonal and each block is a pure state); this
holds, e.g., for ρsep.
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Theorem 2.5. Let ρ =
⊕

i pi|φi〉〈φi|, σ =
⊕

j qj|ψj〉〈ψj|, where
∑

i pi =
∑

j qj =
1. Then

V SSR
F (ρ⊗ σ) = V SSR

F (ρ) + V SSR
F (σ) .

Proof.

V SSR
F (ρ⊗ σ) = V SSR

F

(⊕
i,j

piqj|φi〉〈φi| ⊗ |ψj〉〈ψj|

)
(∗)
=

∑
i,j

piqjV (φi ⊗ ψj)

=
∑
i

piV (φi) +
∑
j

qjV (ψj)

(∗)
= V SSR

F (ρ) + V SSR
F (σ) ,

where in (∗) we used that V SSR
F (

⊕
i ri|χi〉〈χi|) =

∑
i riV (χi), with

∑
i ri = 1. As

subadditivity is clear from the convexity of V SSR
F , we only have to show superad-

ditivity. For an arbitrary decomposition |ζj〉 =
∑

i uji
√
ri|χi〉 of

⊕
i ri|χi〉〈χi| =∑

j |ζj〉〈ζj| [with an isometry (uji)], this follows from

∑
j

〈ζj|N̂A|ζj〉2

〈ζj|ζj〉
(a)
=
∑
j

(
∑

i u
∗
jiujipi〈χi|N̂A|χi〉)2∑

i u
∗
jiujipi

(2.7)

≤
∑
i,j

(u∗jiujipi〈χi|N̂A|χi〉)2

u∗jiujipi

(b)
=
∑
i

pi〈χi|N̂A|χi〉2 .

Here, we used that (a) 〈χi|χi′〉 = δii′ , 〈χi|N̂A|χi′〉 ∝ δii′ ; and (b)
∑

j u
∗
jiuji = 1.

�

While it seems plausible that V SSR
F is additive on all states and we did not find

any counterexamples, this is apparently hard to prove. Let us note that unlike
for EF , the additivity of V SSR

F is probably not related to its superadditivity. A
counterexample for the superadditivity of V SSR

F can easily be found,3 and the
direct equivalence proof of Pomeransky [52] cannot be transferred to SiV due to
the different structure of the nonlinearity.

3 E.g, for class of 2×2 qubit states given by |φ〉 = α|00〉A|11〉B+β|01〉A|10〉B+β|10〉A|01〉B+
α|11〉A|00〉B with α =

√
p/2, β =

√
(1− p)/2, and p < 1/2, V SSR

F is not superadditive with
respect to the two subsystems, since V (|φ〉) = 4p and V SSR

F (tri[|φ〉〈φ|]) = 4p(1− p).
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Figure 2.3: Relation of p, C̄, ESSR
F and V SSR

F (see Section 2.4.3). The gray
area gives the allowed range of ESSR

F and V SSR
F for qubits. The lower bound is

obtained by plotting E(C̄) vs. C̄2. The point characterizing a mixed state ρ can
be found by dividing the line between the origin and the point (E(C̄), C̄2) located
on the boundary at the ratio of p : 1− p.

2.4.3 Formation of qubits

In the following, we compute explicit formulas for ESSR
F and V SSR

F of qubits. A
general bipartite two-qubit state subject to SSR is given by

ρ =


w00

w01 γ
γ w10

w11

 ,

where γ ≥ 0 (this can be achieved by local unitaries). Using the results of
Wootters [53], we find EF (ρ) = E(C), where E(C) = H(1/2 +

√
1− C2/2), H is

the binary entropy, and the concurrence C ≡ C(ρ) is here given by

C = max(0, 2γ − 2
√
w00w11) .

With SSR, ρ has to be built subspace by subspace, where the one-particle sub-
space ρ1 is the only one which might be entangled. The concurrence for ρ1/tr[ρ1]
is

C̄ = 2γ/p

with p = w01 + w10 = tr[ρ1], and thus

ESSR
F (ρ) = pE(C̄) .
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particle number (p=1)

|EPR〉 Figure 2.4: Different re-
gions of mixed states in
the E-V diagram. The
solid line corresponds to
the states with fixed total
particle number, i.e., p =
1. Separable states have
to stay within the dashed
area (although there exist
entangled states as well).
Note that ρsep [Eq. (2.14)]
is the “extremal separable
state”.

The relation between the normal concurrence C and the SSR-concurrence C̄ is
given by the bounds pC̄−(1−p) ≤ C ≤ pC̄, i.e., EF and ESSR

F are not completely
independent. As E is concave, EF ≤ ESSR

F , as necessary.
An optimal decomposition of ρ1 can be found as follows. Define s as a root of

C̄/2 =
√
s(1− s). Then, ρ1 can be written as a mixture of

√
s|01〉+

√
1− s|10〉

and
√

1− s|01〉+
√
s|10〉, and both have the desired EoE.

The same decomposition gives the optimal variance as well (note that this only
holds for qubits). Therefore, observe that both states have SiV 4s(1 − s) = C̄2,
i.e., C̄2 is an upper bound for V SSR

F (ρ), and for pure states equality holds. On
the other hand, C̄2 is convex: for any one-particle subblock ρ1 = pσ + (1− p)σ′
with off-diagonal elements v = pw+(1−p)w′ it holds that v2 ≤ pw2 +(1−p)w′2.
Therefore equality holds, and

V SSR
F (ρ) = pC̄2 . (2.16)

Thus, with respect to formation 1 × 1 qubit states are characterized by two
parameters: the weight of ρ1, p, and the concurrence of ρ1, C̄. It can be checked
easily that 0 ≤ p, C̄ ≤ 1 in order for ρ to be positive. A necessary condition for
separable states is C̄ ≤ (1 − p)/p (this is tight, but p, C̄ do not tell everything
about separability, cf. the inequality relating C, C̄ given above).

Fig. 2.3 shows how for a particular state p and C̄ can be determined from the
E-V diagram, and Fig. 2.4 gives a “phase diagram” for mixed states.

2.4.4 Distillation of nonlocal resources

In the following, we consider the problem complementary to formation: given
a mixed state, is it possible to distill the nonlocal resources contained in this
state? This distilled state could then be used to perform some nonlocal task as
teleportation with high fidelity. Naturally, there exist two types of distillation
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protocols: the first one aims to increase the fidelity of the states being distilled
with the final state, while the second returns the target state itself with some
finite yield in the asymptotic limit.

In the following, we will focus on qubits. Without SSR, it has been shown
for both types of distillation how they can be implemented: in the so-called
recurrence protocol [12], both parties apply an xor operation (a bilateral xor or
bxor) to two copies of the state and then measure one of them; thus, on average
they increase their knowledge about the second. Hashing protocols [11], on the
contrary, are aimed to asymptotically return a finite yield of pure states: by
subsequent application of bxor operations partial information about the states
can be collected in a subset which is then measured; by the law of large numbers,
this partial information asymptotically fully determines the remaining states.

The presence of superselection rules inposes severe restrictions on distillation
procedures. It has been shown, e.g., that the entanglement contained in one
copy of a |V-EPR〉 cannot be accessed, while for multiple copies of |V-EPR〉, all
entanglement up to a logarithmic amount can be used [41], as also follows from
Theorem 2.2. The central problem in distilling states containing SiV is that the
bxor operation is ruled out by the SSR, and there is no adequate replacement.
One way to overcome this problem is to use a third copy of the state as an
(imperfect) shared reference frame and to construct a three-copy protocol which
probabilistically implements bxor. Indeed, we will show that one needs three-
copy protocols to distill both EoE and SiV. Unfortunately, this is of no use for the
implementation of hashing protocols, as the errors of the bxor-approximation
accumulate, and each bxor uses up the reference frame copy of the state whereas
hashing would require O(N2) bxor operations.

The existence of two distinct resources makes the field of distillation much
more rich: there will occur trade-offs between the two resources in distillation,
and one might even think of spending one resource to distill the other. For
instance, we will show that it is possible to distill all separable but nonlocal
states towards ρsep [Eq. (2.14)], and in turn, if one adds some entanglement, all
the SiV contained in ρsep can be converted to a |V-EPR〉.

Reduction to standard states

To simplify analysis, in [11] the distillation of qubits has been considered for a
standard form, namely Bell-diagonal states; any state can be made Bell-diagonal
by LOCC. Yet, these operations are ruled out by the SSR, so that we have to
introduce a different normal form. Therefore, consider a general bipartite qubit
state with SSR

ρ =


w00

w01 γ
γ∗ w10

w11

 , (2.17)
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where wij ≥ 0 and γ ≥ 0 (the latter can be accomplished by local unitaries). By
local filtering operations [54]

FA ∝ 4
√
w10w11|0〉〈0|+ 4

√
w00w01|1〉〈1| ,

FB ∝ 4
√
w01w11|0〉〈0|+ 4

√
w00w10|1〉〈1| ,

this can be transformed probabilistically to

ρ̃ =
1

2(1 + w)


w

1 v
v 1

w

 . (2.18)

Here,

w =

√
w00w11

w01w10

, v =
|γ|

√
w01w10

.

In the following, we will call (2.18) the standard form ρ̃ of a two-qubit state ρ and
only consider states of this type. The standard form is Bell-diagonal and unique
for each ρ, and by the reverse POVM F ′A ∝ F−1

A , F ′B ∝ F−1
B , ρ̃ is converted back

to ρ. Thus, any state can be transformed probabilistically to its standard form
and back by LOCC, and therefore the standard form of states containing EoE
and SiV still contains EoE and SiV.4

Note that the two parameters (w, v) describing the standard form ρ̃ are di-
rectly related to (p, C̄) used to characterize ESSR

F (ρ̃) and V SSR
F (ρ̃) in Section 2.4.3:

v = C̄ and w = 1/p− 1.

Distilling entanglement

Let us first demonstrate that it is possible to distill all entangled qubit states, as
it is the case without SSR. Therefore, take two copies of an arbitrary state ρ in its
standard form ρ̃ [Eq. (2.18)] and project locally onto the one-particle subspaces.
The resulting state in the {|0̂〉, |1̂〉}-basis is

ρ̂ =


w2

1 v2

v2 1
w2

 .

4 Some special cases for ρ have to be considered separately. Note that if v = 0, ρ can be
created by LOCC, and v = 0 follows if w01 = 0 or w10 = 0. If w00 = w11 = 0, filtering
still works in both directions if w00 and w11 are deleted from the filtering operators. In case
w00 = 0, w11 > 0 or vice versa, the situation gets more complicated. In order to distill ρ,
one adds |00〉〈00| with some weight which does not destroy the entanglement; then, ρ can be
distilled to |V-EPR〉, from where it can be easily reconstructed.
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Obviously, ρ̂ is entangled iff ρ̃ is entangled iff ρ is entangled, and as ρ̂ has constant
local particle number, it can be distilled as usual [11, 12]. Therefore, it is possible
to distill any entangled two-qubit state if we do not care about its SiV. Even more,
if we have an infinite amount of SiV available, we can distill with the same rate
as without SSR by using the SiV as a perfect reference frame.

Distilling separable states

Clearly, the SiV contained in separable but nonlocal states cannot be distilled, as
pure states with SiV always contain entanglement. One solution to this problem
is to distill towards ρsep [Eq. (2.14)]; we will show how this can be done (and
why ρsep is a good choice) in the next subsection. Alternatively, one might try to
add entanglement (e.g., |E-EPR〉s) and then distill the SiV of separable states to
|V-EPR〉s.

In the following, we show how ρsep ⊗ |E-EPR〉〈E-EPR| can be transformed
to a |V-EPR〉 with probability 1/2, thereby distilling all the SiV contained in
ρsep to a pure state. Clearly, |V-EPR〉 can be obtained from an |E-EPR〉 =
|01〉|10〉 + |10〉|01〉 by applying a bxor operation, but this is ruled out by the
SSR. The idea in the following is to use the SiV contained in ρsep as a shared
reference frame in order to carry out the bxor operation probabilistically. In
order to see how this works, write ρsep as a mixture of (|0〉+ ω|1〉)A(|0〉+ ω|1〉)B
over all ω = eiφ. If we manage to project the total state onto subspaces where ω
simply gives a global phase, we can make use of the SiV of ρsep. Therefore, start
with the state |E-EPR〉〈E-EPR| ⊗ ρsep which can be written as a mixture of the
states

|ψ0〉 ∝ |010〉|100〉+ |100〉|010〉 ,
|ψ1〉 ∝ |010〉|101〉+ |100〉|011〉+ |011〉|100〉+ |101〉|010〉 ,
|ψ2〉 ∝ |011〉|101〉+ |101〉|011〉

with probabilities 1/4, 1/2, and 1/4. Clearly, there is no measurement which
tells us which |ψi〉 we actually have without either destroying the entanglement
contained in |ψ0〉 and/or |ψ2〉 or the variance contained in |ψ1〉. As we want
to extract the variance, we have to sacrifice the EoE of |ψ0,2〉: both parties
do a projective measurement onto the subspaces spanned by {|010〉, |101〉} and
{|100〉, |011〉}. If the measurement outcomes match, Alice and Bob share a known
state with EoE and SiV 1 which can be converted to a |V-EPR〉; otherwise, the
entanglement is lost. Both cases are equally likely, and thus the average yield of
SiV is 1/2 = V SSR

F (ρsep) which is optimal. On the other hand, we had to sacrifice
half of the entanglement—there is a trade-off between the two resources.

The procedure described above can be generalized to arbitrary states, where
it allows to distill the one-particle subblock. Note that if ρ is entangled, the
required |E-EPR〉’s can be distilled from ρ itself.
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Recurrence protocols

In the following, we will look for protocols which allow to distill EoE and SiV.
Particularly, we would like to have a protocol which allows to concentrate the
SiV contained in separable states. As already mentioned at the beginning of
the section, the usual recurrence protocols cannot be applied as bxor cannot
be implemented. (In fact, it is not even possible to find an operation doing a
comparable job, i.e., computing the parity, only for |0〉|1〉 ± |1〉|0〉.) Yet, similar
to the preceding subsection we can use a third copy as a shared reference frame
which allows to implement the desired recurrence operation in a probabilistic
way. Indeed, we will see that three-copy protocols suffice for all distillation tasks.

General N -copy recurrence protocols can be represented by local POVM op-
erators which act on N qubits and leave one qubit (i.e., 2× 2N matrices). These
operators must be realizable by SSR-compatible operations, i.e., by an N -qubit
POVM, followed by a measurement of all but one qubit (omitting the measure-
ment decreases our information about the state and thus does not help). There-
fore, the POVM operators must have the shape of two adjacent rows of SSR-
compatible N -qubit operations [Eq. (2.1)]; except normalization, this is the only
condition.

Possible protocols are illustrated in Fig. 2.5. Any state can be brought to
standard form Eq. (2.18) by local filtering operations and can be parametrized
by a tuple (v, w), 0 ≤ v ≤ 1, 0 ≤ w; the states with v > w are entangled
(Fig. 2.5a).

Given a single copy of ρ̃(v, w), Alice and Bob can either increase w (by adding
|00〉〈00|+|11〉〈11|) or decrease v and w by the same fraction (by adding |01〉〈01|+
|10〉〈10|), or anything inbetween, as is illustrated in Fig. 2.5b. Obviously, ρsep

can be transformed to any other separable state deterministically—therefore, it is
indeed the standard separable but nonlocal state, as an EPR is for entanglement.

Let us turn our attention to two-copy protocols. As the output state will not
necessarily have standard form, we have to include filtering in the local POVM
operators which restricts their degrees of freedom to one complex number each,
so that it is easy to check that the best protocols are given by

MA = MB ∝
(

1 0 0 0
0 1 1 0

)
and

M ′
A ∝

(
1 0 0 0
0 1 1 0

)
, M ′

B ∝
(

0 1 1 0
0 0 0 1

)
.

The resulting transformations are

(v, w) 7→ (v,

√
1 + v2 + w2

2
)

30



0 00 01 11 1v vv v0 00 0

1 11 1

w ww w

entangled

separable

ρsep

|V−EPR〉

a) c)b) d)

Figure 2.5: a) Diagram characterizing mixed states according to their standard
form. The entangled states are exactly those in the gray area. b) Transforma-
tions possible by one-copy operations: w can be increased, or w and v can be
decreased simultaneously. Thereby, the |V-EPR〉 can be transformed to any state,
while ρsep can generate any separable state. c) Additional transformations real-
izable by two-copy recurrence protocols. Thereby, it is not possible to reach ρsep

or |V-EPR〉. d) Three-copy protocols allow to distill all separable states towards
ρsep and all entangled ones towards |V-EPR〉.

and

(v, w) 7→
√

2

1 + v2 + w2
(v, w) ,

respectively. Fig. 2.5c shows where this gives an advantage over the one-copy pro-
tocol Fig. 2.5b. Obviously, two-copy protocols do neither allow to distill separable
state to ρsep nor do they allow to distill entangled states to |V-EPR〉.

For three copies, though, the following two pairs of POVM operators provide
a way to distill all states:

MA = MB ∝
(

0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0

)
distills all separable states to ρsep by virtue of

(v, w) 7→
(
v +

v − v3

1 + 2v2 + 2w2
,
w(2 + 2v2 + w2)

1 + 2v2 + 2w2

)
whereas

M ′
A ∝

(
0 1 1 0 −1 0 0 0
0 0 0 1 0 1 1 0

)
, M ′

B ∝
(

0 1 1 0 1 0 0 0
0 0 0 −1 0 1 1 0

)
distills entangled states towards a |V-EPR〉, and

(v, w) 7→
(
v(6 + 3v2 − 2w2)

3 + 6v2 + 6w2
,
w(6− 2v2 + 3w2)

3 + 6v2 + 6w2

)
.

This is illustrated in Fig. 2.5d.
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2.5 SiV as a resource

2.5.1 Introduction

In its standard form, i.e., as a singlet, EoE can be used to teleport quantum bits
and thus allows to overcome the restriction to LOCC. In this section, we will show
that SiV is a resource in very much the same way, namely it allows to overcome
the restrictions imposed by SSR in a bipartite setting. Despite the similarities,
there are some major differences. Firstly, while for EoE there only exists one
standard form (the maximally entangled state depending on the dimension of the
system), for SiV there exist two different standard states: singlets |0〉|N〉+ |N〉|0〉
with SiV N2 (as in Corollary 2.3) and the Gaussian distributed states with large
variance (as in Theorem 2.2). Second, there are no pure states which carry only
SiV—SiV as a resource which is independent of EoE only exists for mixed states
where resources are difficult to quantify. Finally, we will find that we need an
infinite amount of nonlocality in order to completely overcome the restrictions
imposed by the SSR—this is fundamentally different from EoE where one ebit of
entanglement is sufficient to perfectly teleport one quantum bit.

In order to demonstrate (and partly quantify) that SiV is useful to overcome
the restrictions imposed by the SSR, we will use the tasks of distinguishing and
teleportation. It has been shown that with SSR there exists a perfect data hiding
protocol [42] which allows to encode a classical bit in a bipartite state such that
it cannot be revealed by LOCC [40]. This protocol can be extended to a protocol
hiding logN bits in the Fourier states

|ζNk 〉 =
1√
N

N−1∑
n=0

e2πikn/N |n〉A|N − 1− n〉B . (2.19)

These states can be distinguished perfectly by LOCC if no SSR are present (there-
fore, both parties measure in the Fourier basis and compare their outcomes), but
with SSR, they become totally indistinguishable (see Theorem 2.6 below).

The second task we use to show that SiV is a resource is teleportation of
a state with nonconstant local particle number: Alice holds one half of a state
|φ〉AC which she wants to teleport to Bob using an in general mixed helper state
ρAB. Clearly, one ebit of EoE is necessary for this task, but if V (|φ〉) > 0, also
SiV is needed [40]. We will show that one ebit of EoE is still sufficient, but the
amount of SiV has to grow superlinearly with V (|φ〉) and is infinite for perfect
teleportation.

2.5.2 A general protocol

Let us first quote a Theorem from [40] which will be very useful in the following.
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Theorem 2.6 ([40]). In the presence of superselection rules, the states ρ and
NA|B(ρ) cannot be distinguished by LOCC. Here, NA|B is the “dephasing map”

NA|B(ρ) =
∑
nA,nB

PA
nA
⊗ PB

nB
ρPA

nA
⊗ PB

nB
,

with PX
nX

the local projector onto the subspace with nX particles.

By this theorem, we can highly restrict the class of allowed protocols. Let
us show this for the task of distinguishing, where Alice and Bob initially share
ρ = |ζNk 〉〈ζNk |⊗σ [cf. Eq. (2.19)], and they have to determine k. At the end of the
protocol, Alice and Bob get an answer k′ according to a probability distribution
{pk′}. But if they had started with NA|B(ρ) instead, Theorem 2.6 tells us that the
probability distribution of their outcomes would have been just the same. There-
fore, Alice and Bob can start their protocol by measuring their particle number
operators N̂A and N̂B—if they discard their outcomes, they just implemented
NA|B, and their knowledge of NA and NB will not affect the average probability
distribution which is solely relevant unless the figure of merit is nonlinear. The
same holds for the teleportation scenario with respect to the partition A|BC,
i.e., in this case only Alice is allowed to measure her particle number (this map is
actually weaker than NA|BC). Note that for a pure state, measuring N̂A also de-
termines NBC (and thus implements NA|BC), which is different in the mixed state
case and closely connected to the fact that mixed states alone are not sufficient
for teleportation.

2.5.3 Pure states

Assume Alice wants to teleport her share of the state

|φ〉 =
∑
n

αn|n〉A| − n〉C

to Bob using

|ψ〉 =
∑
m

βm|m〉A| −m〉B .

Here, we use a simplified notation, where −∞ < n,m <∞,
∑
|αn|2 =

∑
|βm|2 =

1, and the support of the αn, βm is bounded below such that the particle number
can be made positive by adding ancillas. As shown before, Alice can start any
protocol by measuring NA = K, yielding

√
pK |χK〉ABC =

∑
n+m=K

αnβm|n,m〉A| − n〉C | −m〉B (2.20)

with included probability pK . If Alice now measures in the Fourier basis and
communicates her result, the originally tripartite state can be reconstructed by
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Bob and Charlie; this strategy is optimal as no information is lost and the state
gets less nonlocal. Up to shifts in the particle number, the state is then

√
pK |χK〉BC =

∑
n

αnβK−n|n〉B| − n〉 .

We will use the average entanglement fidelity as the figure of merit,

F̄ =

〈∑
K

pK |〈φ|χK〉|2
〉

=
∑

∆

Π(∆)C(∆)

where Π(∆) =
∑

n 〈pnpn+∆〉 (pn = |αn|2) and C(∆) =
∑

m β
∗
mβm−∆. The aver-

age 〈·〉 is taken over all states φ, where for teleportation we assume a unitarily
invariant distribution. It is straightforward to check that local filtering opera-
tions cannot increase F̄ . Also, for the task of distinguishing it can be shown
that F̄ gives the optimal success probability for the inconclusive case [55]. For
distinguishing, ΠD(∆) = max(N − |∆|, 0)/N2, while for teleportation, ΠT (∆) =
[max(N−|∆|, 0)+δ∆,0]/N(N+1) [56]. In both cases, αn 6= 0 for n = 0, . . . , N−1.

We will analyze two natural types of helper states: states with constant
distribution βm = 1/

√
M , m = 0, . . . ,M − 1, and states with Gaussian dis-

tribution with variance V (ψ). One finds CC(∆) = max(M − |∆|, 0)/M , and
CG(∆) = exp[−∆2/2V ] ≈ 1 − ∆2/2V . The resulting error probabilities for all
four cases are given in Table 2.1. Note that for the Gaussian distributed |ψ〉, in
both cases

perr =

〈
V (φ)

〉
4V (ψ)

holds, i.e., the error probability is given by the ratio of the variances. (Actually,
this even holds without taking the average over φ.)

In all cases, the error vanishes only if the size of the helper state grows super-
linearly with the size of the unknown state; thus, the scaling of SiV as a resource
is unfavorable compared to the behaviour of EoE. This is a direct consequence of
the direct sum structure in (2.3) which is opposed to the tensor product structure
leading to EoE: while with a tensor product structure, N particles generate a 2N -
dimensional Hilbert space, for the direct sum structure the underlying space only
has dimension N+1. This also holds for mixed states, where this is the size of the
largest coherent subspace. For the same reason, the data hiding scheme Eq. (2.19)
is optimal in the sense that the available Hilbert space has only dimension N .

2.5.4 Mixed states

Let us now demonstrate that separable mixed states with SiV can also be used
as a shared reference frame [40]. First, we demonstrate how Alice and Bob can
use the state ρsep to distinguish the states |01〉 ± |10〉. By very much the same
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task

helper distinguish teleport

constant perr = (N+1)(N−1)
3MN

perr = N
3M

Gaussian perr = (N+1)(N−1)
12V (ψ)

perr = N(N−1)
12V (ψ)

Table 2.1: Error probabilities for distinguishing and teleportation where the
helper state is either a maximally entangled state with Schmidt number N or a
Gaussian distributed state with variance V (ψ).

argument as before Alice and Bob can start their protocol by measuring their
local particle number. By adding their outcomes, Alice and Bob immediately
know whether they are dealing with the |0〉|0〉/|1〉|1〉 part of ρsep or with the
|V-EPR〉. In the first case all information is lost while in the second case they
can just proceed as if they had started with |V-EPR〉 itself. This case occurs
with probability 1/2, i.e., all the SiV contained in ρsep can be used. Clearly, this

protocol can not be used for teleportation as N̂BC cannot be implemented locally.
Let us now show that separable but nonlocal states can be used to overcome

locality constraints arbitrarily well, i.e., they can serve as arbitrarily precise ref-
erence frames. Therefore, we use the separable state [40, 57]

ρcoh(α) =

∫
dφ

2π
|αeiφ〉〈αeiφ| ⊗ |αeiφ〉〈αeiφ|

where for α > 0,

|αeiφ〉 = e−α
2/2

∞∑
n=0

αn√
n!
einφ

is a coherent state with amplitude αeiφ. It has been shown [40] that for α→∞,
ρcoh(α) can be used to distinguish |01〉 ± |01〉 with arbitrary precision. In the
following, we will show that this state together with one |E-EPR〉 can be used to
perfectly teleport a state with nonconstant local particle number and therefore
may serve as an arbitrarily precise reference frame.

First, let us use Theorem 2.5 to show that this state has indeed infinite SiV
for α→∞. Therefore, it is enough to note that

ρcoh(α) =
∞∑
N=0

pN |θN〉〈θN | with

pN = e−2α2 (2α2)N

N !
,

|θN〉 =
1√
2N

N∑
n=0

(
N

n

)1/2

|n,N − n〉 ,
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and thus V SSR
F (ρcoh(α)) = V SSR

c (ρcoh(α)) = α2/2→∞ for α→∞. In is interest-
ing to note that each of the |θN〉 approximates a state with Gaussian distribution
such that ρcoh(α) might be considered as the EoE-free mixed state version of
Gaussian distributed states.

In order to see how a mixed state can be used to teleport, let Alice and Charlie
initially share |φ〉 = α|01〉+β|10〉 (the proof is completely analogous for qu-d-its),
and assume Alice wants to teleport her share to Bob. Therefore, Alice and Bob
are provided with an |E-EPR〉AB and with some mixed state

ρ =
∑

n,m,n′,m′
n+m=n′+m′

ρn
′,m′

n,m |n〉A〈n′| ⊗ |m〉B〈m′| , (2.21)

where the condition n+m = n′+m′ comes from the SSR, Eq. (2.1). For simplicity,
let us assume that all ρn

′,m′
n,m are nonnegative. Alice once more starts by measuring

her local particle number operator on |φ〉〈φ| ⊗ ρ. (In this step, we do not have
to care about the |E-EPR〉 which has constant local particle number.) For a
measurement outcome n, the resulting state (probability included) is∑

m

[
|α|2ρn,m−1

n,m−1|0, n〉A〈0, n| ⊗ |m− 1〉B〈m− 1| ⊗ |1〉C〈1|

+|β|2ρn−1,m
n−1,m|1, n− 1〉A〈1, n− 1| ⊗ |m〉B〈m| ⊗ |0〉C〈0|

+αβ∗ρn−1,m
n,m−1|0, n〉A〈1, n− 1| ⊗ |m− 1〉B〈m| ⊗ |1〉C〈0|

+α∗βρn,m−1
n−1,m|1, n− 1〉A〈0, n| ⊗ |m〉B〈m− 1| ⊗ |0〉C〈1|

]
As Alice’s share now has constant particle number and lies within a two-dimensional
subspace, she can use the |E-EPR〉AB to teleport her share to Bob. If we label
the two teleported basis states |â〉 = |0, n〉, |b̂〉 = |1, n− 1〉, Bob and Charlie then
share the state ∑

m

[
|α|2ρn,m−1

n,m−1|â,m− 1〉B〈â,m− 1| ⊗ |1〉C〈1|

+|β|2ρn−1,m
n−1,m|b̂, m〉B〈b̂, m| ⊗ |0〉C〈0|

+αβ∗ρn−1,m
n,m−1|â,m− 1〉B〈b̂, m| ⊗ |1〉C〈0|

+α∗βρn,m−1
n−1,m|b̂, m〉B〈â,m− 1| ⊗ |0〉C〈1|

]
Bob now projects onto the subspaces spanned by the pairs of states |0m〉 ≡
|â,m− 1〉 and |1m〉 ≡ |b̂, m〉 and obtains

|α|2ρn,m−1
n,m−1|0〉B〈0| ⊗ |1〉C〈1|

+|β|2ρn−1,m
n−1,m|1〉B〈1| ⊗ |0〉C〈0|

+αβ∗ρn−1,m
n,m−1|0〉B〈1| ⊗ |1〉C〈0|

+α∗βρn,m−1
n−1,m|1〉B〈0| ⊗ |0〉C〈1|

(2.22)
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(where we omitted the subscript m). By looking at the average fidelity with the
original state, we find that the error vanishes iff∑

n,m

ρn,m−1
n,m−1 =

∑
n,m

ρn−1,m
n−1,m =

∑
n,m

ρn,m−1
n−1,m . (2.23)

Since ρ is positive this implies that ρn,m−1
n,m−1 ≈ ρn−1,m

n−1,m ≈ ρn,m−1
n−1,m for most n,m, as

one would expect from Eq. (2.22). It is straightforward to check that Eq. (2.23)
holds for ρcoh(α) for α→∞, and that the 2× 2 subblocks of the density matrix
really approximate pure states.

One might expect that N → ∞ copies of ρsep could be used just the same
way, but the situation is quite different: filtering operations which bring ρ⊗Nsep into
a form (2.21) destroy the off-diagonal elements of the density matrix with high
probability so that (2.23) cannot be satisfied; therefore it is questionable whether
multiple copies of ρsep can be used as an arbitrarily precise reference frame. On
the other hand, this is not so much different from the pure state scenario: while
multiple copies of a |V-EPR〉 might indeed be used as a perfect reference frame,
these states carry an amount of entanglement which grows linearly with the
precision of the reference frame, whereas a single Gaussian distributed state with
large SiV only has logarithmic—and thus in some sense vanishing—entanglement
and is therefore much closer to the case of separable reference frames.

Let us note that the teleportation scenario can be altered by joining B and
C. This is no longer teleportation, of course, and can be accomplished by LOCC
without SSR. On the other hand, it is still an impossible task if SSR are present
and is thus suitable to characterize mixed states as reference frames without the
need for additional entanglement.

2.5.5 Hiding quantum states

Let us close by showing that the data hiding protocol given in [40] resp. its
extension Eq. (2.19) can be used to construct a mixed state scheme to hide
quantum data as well. At a first glance, one might try to encode the two degrees
of freedom of a qubit in the phases of the state |02〉 + eiφ|11〉 + eiφ

′|20〉, but
this cannot be accomplished by a linear map. Therefore, we encode the qubit
α|01〉+ β|10〉 in one of the states |φ0〉 = α|01〉+ β|10〉, |φ1〉 = β|01〉+α|10〉 with
equal probabilities which is then distributed between Alice and Bob. Additionally,
Alice and Bob are provided with a state |ψ0/1〉 = |02〉 ± |20〉 which encodes the
state Alice and Bob actually share. Thus, Alice and Bob share a state which
they cannot distinguish from the totally mixed state by LOCC (Theorem 2.6),
but they can perfectly recover the original qubit if they join. This scheme can be
extended to hide N -level quantum states using one of the states

|φk〉 =
N−1∑
n=0

αn+kmodN |n,N − 1− n〉 ; k = 0, . . . , N − 1 .
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Together with the state encoding k, N2−1 particles are needed, and the associated
Hilbert space dimension is N2.

2.6 Conclusions

Adding restrictions to the operations permissible on a quantum system gives
rise to a new resource which in turn allows to overcome this restriction. The
restriction to LOCC, for example, leads to EoE as a nonlocal resource. Adding
SSR to a bipartite system leads to an additional resource, the superselection
induced variance SiV. We could show that SiV and EoE together completely
characterize bipartite states in the asymptotic limit. Thereby, two different kind
of standard forms arise, namely singlets and Gaussian distributed states with
logarithmic EoE.

The search for states which only carry SiV led us to mixed states, where
we considered entanglement and variance of formation. We could show that the
concept of entanglement does not have to be changed and thus there exist states
which carry SiV but no EoE, and we provided explicit formulas for the case of
qubits. As to distillation, we could show that both EoE and SiV can be distilled,
and we provided various ways to do that. Thereby, we found that there exist
mixed standard states for SiV which do not carry EoE. While it is possible to
extend recurrence protocols such that they work with SSR by using a third copy
as a reference frame, it is unlikely that protocols with asymptotic yield work.

Finally, we showed that SiV is a resource which allows to overcome the restric-
tions imposed by the SSR, but we also saw that there are fundamental differences
to EoE as the size of the reference frame has to grow superlinearly with the prob-
lem size, which is due to direct sum structure of the underlying Hilbert space.
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Chapter 3

Optimal generation of squeezing
and entanglement

3.1 Introduction

Squeezed states are a valuable resource for different fields of physics. They can
increase the resolution of precision measurements, as exploited in gravitational
wave detectors [58], improve spectroscopic sensitivity [59, 60], and enhance signal-
to-noise ratios [61, 62], e.g., in optical communication. Moreover, squeezing
acts as a basic building block for the generation of continuous variable entan-
glement [63–65], which in turn is a cornerstone for quantum information pur-
poses. Unfortunately, squeezing is an expensive resource as well: squeezed states
are hard to create and the involved operations are subject to losses and noise
inevitably restricting the attainable amount of squeezing. On the other hand,
passive operations—in quantum optical setups implemented by beam-splitters
and phase shifters—can often be performed at low cost and they are, compared
to the squeezers, relatively noiseless.

In this chapter, we address the following question: How can we exploit a given
noisy squeezing device in an optimal way, when supplemented by arbitrary noise-
less passive operations? We derive the optimal strategy for single and repeated
use of the squeezing device, calculate the achievable squeezing, and finally dis-
cuss what this implies for the optimal generation of entanglement. To this end,
we will use a black box model for the physical squeezing device: This gives us
the possibility to derive optimality results which are equally applicable to a wide
range of physical implementations.

The argumentation will make use of the covariance matrix formalism, which
was mainly developed in the context of continuous variable states having a Gaus-
sian Wigner distribution—so called Gaussian states [66]. The latter naturally
appear in quantum optical settings (the field of a light mode) as well as in atomic
ensembles (collective spin degrees) and ion traps (vibrational modes). We restrict
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ourselves to the natural class of Gaussian operations, i.e., operations preserving
the Gaussian character of a state [67–69]. This includes all time evolutions gov-
erned by operators quadratic in bosonic creation and annihilation operators. All
the presented results hold for an arbitrary number of modes, and although it
might be reasonable to think in terms of Gaussian states, we do not have to
restrict the input states to be Gaussian.

3.2 Gaussian states and operations

We will begin with introducing the notation and some basic results [66–70].
Consider a system of N bosonic modes with the respective canonical opera-
tors (Q1, P1, . . . , QN , PN) = ~R. These are related to the annihilation opera-
tors via aj = (Qj + iPj)/

√
2 and satisfy the canonical commutation relations

[Rk, Rl] = iσkl1 governed by the symplectic matrix

σ =
N⊕
i=1

(
0 1
−1 0

)
.

The displacement ~d in phase space and the covariance matrix (CM) γ correspond-
ing to a state ρ are then given by

di = tr[ρRi] ,

γij = tr
[
ρ{(Ri − di), (Rj − dj)}+

]
,

where {·, ·}+ denotes the anti-commutator.
While for coherent states γ = 1, a state is called squeezed if its uncertainty in

some direction in phase space is below the uncertainty of the coherent state, i.e.,
if s(γ) ≡ λmin(γ) < 1, where s(γ) is the squeezing of γ measured by its smallest
eigenvalue [71]. Note that by this definition, more squeezing means a smaller s.

As the squeezing is independent of the displacement ~d, we omit the latter in the
following.

Let us now focus on Gaussian operations. Unitary Gaussian operations are
precisely those realizable by quadratic Hamiltonians, so that they naturally ap-
pear in many physical systems. In phase space they act as symplectic opera-
tions S ∈ Sp(2N) on the covariance matrix γ 7→ STγS. Symplectic operations
preserve the canonical commutation relations and are thus given by the group
Sp(2N) = {S ∈ R2N×2N : STσS = σ}. An important subgroup is given by the
group of orthogonal symplectic transformations K(2N) = O(2N) ∩ Sp(2N) [71].
Physically, these correspond to passive operations, which can, in quantum opti-
cal setups, be implemented by beam-splitters and phase shifters [72]. Obviously,
passive transformations cannot change the squeezing, since elements from K(2N)
preserve the spectrum and in particular the smallest eigenvalue of the CM.
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We will now introduce the model we use to describe the squeezing device.
In general, a noisy operation E can be regarded as a noiseless map on a larger
system including the environment, which is discarded afterwards. If the overall
time-evolution is governed by a quadratic Hamiltonian and the environment is in
a Gaussian state (e.g., a thermal reservoir), it can be shown that these operations
are exactly the ones which act as

γ 7→ E(γ) = XTγX + Y , XT iσX + Y ≥ iσ (3.1)

with X, Y ∈ R2N×2N [67]. Here, the equation on the right hand side ensures
complete positivity, i.e., guarantees that the operation is physically reasonable.
While the XTγX part of E represents a joint rotation and distortion of the input
γ, the Y contribution is a noise term which may consist of quantum as well as
classical noise. In the following, we will consider squeezing devices of the type in
Eq. (3.1), as these are the ones which naturally appear in many experiments. We
will however show later on that the results even hold for arbitrary Gaussian oper-
ations (which may include measurements and conditional feedback operations).

The question we are going to investigate is the following: Given some noisy
device E and the set of passive operations K(2N), how can we generate squeeezing
as efficiently as possible from a given input state? Naturally, this general question
can be asked in several specific ways. First of all, one might ask how much
squeezing can be generated by a single application of the device given a certain
initial state, as in Fig. 3.1a.

The much more interesting question, of course, relates to an iterative scenario,
i.e., how can we generate squeezing as efficiently as possible by repeated applica-
tion of E with passive operations Ki inbetween (Fig. 3.1b)? In this scenario we
may either allow for different Ki or choose them identically as it is for instance
the case in a ring cavity setup (Fig. 3.1c).

Figure 3.1: Various scenarios
for the optimization of squeezing:
a) single iteration case: from a
given input γin, we want to gen-
erate as much squeezing as possi-
ble by properly choosing K and
using the noisy device E ; b) mul-
tiple iteration case: the device
can be applied repeatedly, and
we have to determine the Ki’s
such as to maximize the finally
obtained squeezing; c) circular
setup: with identical Ki = K.
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Figure 3.2: Illustration of the single iteration optimality proof. Left: the input
state is decomposed into a coherent kernel s1 and into some extra noise N with a
null eigenvector |ν〉. Right: after the application of the operation E , the coherent
kernel is squeezed in the direction |φ〉. By choice ofK, one can achieveK(X|φ〉) ∝
|ν〉, i.e., the noise N leads to no contribution in the most squeezed direction.

3.3 Single iteration case

In order to prepare for the more complicated scenarios, let us first have a look
at the case of a single iteration (Fig. 3.1a), starting from a given input CM γ.
This is the basic building block for all the iterative protocols. We now use a
formal trick in order to facilitate the derivation: we split the CM into two parts
(Fig. 3.2a),

γ = s1 +N , (3.2)

where s = s(γ) is the squeezing of γ. The first part can be regarded as a “coherent
kernel” of γ. It may have sub-Heisenberg variance (if s < 1) and it is invariant
under passive operations. The second part is a “noise term” N which ensures
that γ is a physical state. As s is the smallest eigenvalue of γ, N ≥ 0 has a null
space.

Let us now see what happens if we rotate γ = s1 + N by some passive
operation K and then send it through E : the coherent kernel is invariant under
K, and thus

γ′ ≡ E(KTγK) = E(s1) +XTKTNKX ,

i.e., the action of the squeezing device on the “coherent kernel” plus the “noise”
part which has been rotated and squeezed by X. Note that the first part no
more depends on the choice of the passive operation; furthermore, as N ≥ 0
and thus XTKTNKX ≥ 0, the smallest eigenvalue of E(s1) gives a bound to
the squeezing of the output. In the following, we show that this bound can be
achieved. Therefore, let s0 = s(E(s1)) = λmin[sXTX + Y ] be the squeezing
obtained from the input s1 with corresponding eigenvector |φ〉.1 On the one

1 Throughout this chapter, we use bra-kets to denote ordinary vectors. This is not a quantum
state.
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Figure 3.3: The function s′ = fE(s) describes the optimal output squeezing s′

which can be obtained from input squeezing s by an operation E . The straight
line is the identity, and the gray zig-zag line describes the evolution of f when
using the optimal strategy for multiple iterations, cf. Fig. 3.1b.

hand, s′ ≡ s(γ′) ≥ s0, and on the other hand,

s′ ≤ 〈φ|E(KTγK)|φ〉 = 〈φ|E(s1) +XTKTNKX|φ〉
= s0 + 〈φ|XTKTNKX|φ〉 .

Recall that by definition (3.2), N has a null eigenvector which we denote by
|ν〉, N |ν〉 = 0. By choosing K such that K(X|φ〉) ∝ |ν〉 (which can be always
done with passive K, cf. [71]), the second term vanishes, and we indeed find that
s′ = s0 = s(E(s1)).

The proof is also illustrated in Fig. 3.2: Choosing K appropriately ensures
that the noise N does not contribute in the most squeezed direction. Note that
for a given E it is now straight forward to derive an optimal K and by exploiting
the results of [72] to decompose it into an array of beam-splitters and phase
shifters.

For a single iteration of E this shows that the optimally achievable squeezing
s′ at the output is given by the squeezing obtained from the non-physical input
s1:

s′ = fE(s) := λmin[sXTX + Y ] . (3.3)

It is highly interesting to note that, therefore, the optimal value of the final
squeezing does only depend on the initial squeezing (and on the properties of E),
but on no other property of the initial state, irrespective of the number of modes
considered. It can be easily checked that the respective function fE in Eq. (3.3)
is concave, monotonously increasing, and fE(0) ≥ 0 (Fig. 3.3).
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3.4 Multiple iteration case

The fact that the optimal output squeezing does only depend on the input squeez-
ing immediately implies that in the case of multiple iterations the passive oper-
ations Ki can be optimized successively in order to obtain the global optimum.
This is a remarkable result, as in general problems of this kind require opti-
mization over all parameters (i.e., over all Ki) simultaneously. Graphically, the
squeezing in each iteration step moves along a zig-zag line between fE(s) and the
identity, as shown in Fig. 3.3. The optimal output squeezing s∞ (for number
of iterations → ∞) is determined by fE(s∞) = s∞, s∞ ≥ 0. By inserting the
definition (3.3) of fE and solving for s∞ we obtain

s∞ =
−1

λmin[(XTX − 1)Y −1]
.

The convergence of s(γi) to the optimal value is exponentially fast and bounded
from above and below by the slope of fE at s∞ and the slope from (s∞, fE(s∞)) to
the starting point (s0, fE(s0)), respectively. Note that for s(γin) < s∞, however,
s(γout) > s(γin), so that squeezing is destroyed by applying the operation E .

In realistic physical scenarios, it might be difficult to tune the passive op-
erations independently and it is more likely that the same physical device will
be passed again and again, e.g., in a ring cavity (cf. Fig. 3.1c), and thus only
one fixed passive operation K ≡ Ki ∀i can be implemented. In the following,
we demonstrate that this is already sufficient to reach the optimal squeezing s∞.
The proper K is the one which preserves the squeezing at the optimality point,
corresponding to a zig-zag line along the tangent of fE at s∞. The convergence
is thus still exponentially fast.

In order to see how this works, consider the non-physical output

γ̃ = E(s∞1) = s∞X
TX + Y

obtained from the input s∞1. By the properties of s∞, it is clear that λmin(γ̃) =
s∞ with a corresponding normalized eigenvector |ψ∞〉. Now choose K∞ such that

|ψ∞〉 ∝ K∞X|ψ∞〉 . (3.4)

This is exactly the K which preserves the optimality point, as |ψ∞〉 is the null
eigenvector of γ̃ − s∞1. For any initial state γ with s(γ) > s∞, choose the
decomposition γ0 = s∞1 + P , where P > 0 and λmin(P ) + s∞ = s0 ≡ s(γ0).
After one iteration γ1 = E(KT

∞γ0K∞), we have

s1 ≤ 〈ψ∞|γ1|ψ∞〉 = s∞ + 〈ψ∞|XTKT
∞PK∞X|ψ∞〉

(3.4)
= s∞ + 〈ψ∞|P |ψ∞〉 〈ψ∞|XTX|ψ∞〉︸ ︷︷ ︸

α

.
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As we will show in a moment, α < 1, and for the squeezing sn ≡ s(γn) after n
iterations it holds by recursion that sn ≤ s∞ + αn〈ψ∞|P |ψ∞〉, which converges
exponentially to s∞. From

s∞〈ψ∞|XTX|ψ∞〉+ 〈ψ∞|Y |ψ∞〉 = s∞

it follows that

α ≡ 〈ψ∞|XTX|ψ∞〉 =
s∞ − 〈ψ∞|Y |ψ∞〉

s∞

which is positive and strictly smaller than 1 as long as 〈ψ∞|Y |ψ∞〉 > 0, which is
generically the case.2

3.5 General Gaussian maps

In the following, we show that the results just obtained for channels of the
type (3.1) also hold for the most general type of Gaussian channels which may
include measurements and postprocessing. Channels of this kind appear, e.g., in
the creation of spin squeezing using quantum nondemolition measurements with
feedback [73]. The most general memoryless operation on N modes can described
by a 2N mode covariance matrix Γ via the Jamiolkowski isomorphism [69] as

E(γ) = A− C(B + γ)−1CT , where Γ̃ =

(
A C
CT B

)
, (3.5)

and Γ̃ is the partial transpose of Γ. Again, s ≡ s(γ), |ψ〉 is the eigenvector corre-
sponding to the smallest eigenvalue of E(s1), and we need to show that K can be
choosen such that s(E(s1)) = s(E(KγKT )), i.e., that 〈ψ|C(B + s1)−1CT |ψ〉 =
〈ψ|C(B+KγKT )−1CT |ψ〉. This means that for |χ〉 ≡ CT |ψ〉, P ≡ (B+ s1) > 0,
and N ≡ γ − s1 ≥ 0 with a null eigenspace we have to find a K such that

〈χ|P−1 − (P +KNKT )−1|χ〉 = (3.6)

〈χ|P−1/2
[
1−

[
1 + P−1/2KNKTP−1/2

]−1
]

︸ ︷︷ ︸
(∗)

P−1/2|χ〉

vanishes. Since (∗) has the same null eigenspace as P−1/2KNKTP−1/2, the ex-
pression (3.6) can be indeed made zero by choosing K such that |ν〉 ∝ KTP−1|χ〉
(where N |ν〉 = 0). This proves that for any Gaussian operation the optimal
output squeezing can be computed on s1, thus generalizing the previous results.

2For singular Y , the same result follows after a straightforward but tedious discussion.
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3.6 An example

Let us now consider an example which illustrates how the representation of the
operation in Eq. (3.1) is related to the master equation ρ̇ = i[ρ,H] + L[ρ] of a
system. From it, one obtains a master equation for the evolution of the covariance
matrix,

γ̇ = Aγ + γAT +N . (3.7)

For the case of photon losses to a vacuum reservoir, L[ρ] = ν(2aρa†−a†aρ−ρa†a),
one obtains A = 2σH − ν1 and N = 2ν1, where H is the Hamiltonian matrix,
i.e., H = (Q,P )H(Q,P )†. By integration, one finds that applying (3.7) for a
time t leads to a map Et : γ 7→ XTγX + Y with X = e−νt exp[−2Hσt] and

Y = XT

[
2ν

∫ t

0

e2ντe−2σHτe2Hστdτ

]
X .

At this point, the previously derived results can be applied. Fig. 3.4 shows a one
mode example with H = 3

4
a†a − 1

4
a†a† + h.c. and the noise level ν = 0.1. Note

that additional passive operations enhance the attainable squeezing although the
noise N is rotationally invariant.
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Figure 3.4: Optimization results for a physical device Et which is given by
applying the master equation for a time t, with H = 3

4a
†a − 1

4a
†a† + h.c. and

ν = 0.1 (cf. text). The dotted line shows the squeezing obtained by simply
applying Et to a coherent state, while the solid line gives the asymptotically
attainable optimum as derived. The dashed line shows the rotation angle which
leads to the optimal value.
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3.7 Optimal entanglement generation

Let us now consider the optimal generation of entanglement from noisy oper-
ations. In a practical scenario, this question corresponds to a situation where
we are again given arbitrary passive operations, including such which couple
the modes which we want to entangle. In this setting, the optimality result on
squeezing generation has direct implications: It has been shown that the amount
of entanglement which can be generated by passive operations starting from two
squeezed Gaussian input states only depends on their squeezing irrespective of
the number of modes [25]; for two modes, e.g., this is done by sending the states
onto a beam splitter after rotating them into orthogonal directions. Using this
result, we can immediately determine how much entanglement we can generate
from Gaussian inputs using a black box E supplemented by passive operations,
namely EN ,opt = log(s−1

opt), where sopt is the maximal squeezing generated by E
and the entanglement is measured by the logarithmic negativity [74]. Moreover,
by combining the results it is straightforward to explicitly derive the optimal
entangling protocol for any given Gaussian device.

While this answers the question of optimal entanglement generation from the
practical point of view, where squeezing is typically expensive while entangling
passive operations as beam splitters are cheap, there remains the quantum in-
formation theoretic perspective of entanglement as a resource. In that case, the
natural setup would be the following: Given two parties, Alice and Bob, wo have
access to some entangling channel plus free local operations, what is the best
way to create as much entanglement between them as quickly as possible? In the
following, we show for a specific instance of this problem that exactly as for the
case of squeezing, the maximum amount of entanglement for multiple interations
is obtained by maximizing the entanglement created in each step.

We restrict to channels E which act on 1 + 1 modes and are symmetric, i.e.,
invariant under interchange of Alice and Bob. These channels are of the form

E : γ 7→ XTγX + Y

with

X =

(
A C
C A

)
and X =

(
B D
D B

)
(in Alice-Bob partition) where B = BT , D = DT .

In the following, we show that starting from a symmetric state γ, the maximal
entanglement of

γ′ = E
(
(SA ⊕ SB)Tγ(SA ⊕ SB)

)
(3.8)

(where the maximization is over the local operations SA, SB) solely depends
on the entanglement of γ. This in turn implies once more that in the iterative
scenario where starting from a coherent state, (3.8) is repeated several times, the
global optimum can be obtained by maximizing the entanglement generated in
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each step. However, this result is based on the conjecture that the optimal output
entanglement in (3.8) for a symmetric input γ can obtained with a symmetric
sympectic operation, SA = SB. We have tested this conjecture extensively for
both the robustness and the Gaussian entanglement of formation (see below) and
it seems to hold, even for the case of symmetric channels of the more general form
(3.5). On the other hand, for finite-dimensional systems a counterexample can
be easily found.3

We will measure the entanglement using the so-called “robustness” [69]

p(γ) := sup{0 ≤ p ≤ 1|p(γA ⊕ γB) ≤ γ)} , (3.9)

where γA, γB ≥ iσ. For p = 1, the state is separable, while for p = 0, the state is
infinitely entangled; thus, strictly speaking 1 − p is an entanglement monotone.
For symmetric 1 + 1 mode states, it coincides with the negativity as well as with
the entanglement of formation.

It holds that every symmetric state γ can be written up to a sympectic trans-
formation S ⊕ S as4

γ = p1 + λP+
q + µP−p , (3.10)

where p ≡ p(γ), and P±q,p = |ω±q,p〉〈ω±q,p| are projectors onto 〈ω±q | = (1, 0,±1, 0)
and 〈ω±p | = (0, 1, 0,±1). Note the close analogy to the decomposition (3.2) for
squeezed states. We will use a linearized version of the robustness for symmetric
states,

p(γ) =
1

2
inf
L2

tr
[
LT2 γL2(P+

p + P−q )
]
,

where L2 = L⊕ L is a local and symmetric sympectic operation [77].

In order to simplify the following derivation, we now change to a “magic
basis”, which in this case is the basis spanned by

{
|ω+
q 〉, |ω+

p 〉, |ω−q 〉, |ω−p 〉
}

. Effec-
tively, this transformation exchanges the role of “product” and “symmetric”. In

3 This counterexample is due to K. G. Vollbrecht [75]: Consider the channel

ρ 7→ E(ρ) = |ψ〉〈ψ| 〈01|ρ|01〉 + F|ψ〉〈ψ|F 〈10|ρ|10〉 + |00〉〈00| (〈00|ρ|00〉+ 〈11|ρ|11〉)

where F flips Alice’s and Bob’s system. This channel is clearly symmetric, and the maximum
entanglement is obtained for |01〉 and |10〉 at the input—a state |ψ〉 for which the entanglement
of formation strictly decreases when it is mixed with F|ψ〉 or |00〉 can easily be found.

4 This can be seen as follows: Take the symmetric γ in the standard form ( n c
c n )q⊕ ( n −d

−d n )p
in q-p partition, which can be always obtained by symmetric transformations [76]. By local
symmetric squeezing, this can be transformed to ( r cc r )q ⊕ ( s −d

−d s )p, where r − c = s− d. The
optimal γA⊕γB in (3.9) is then of the form ( x y )A⊕( x y )B (if not, twirl with the transposition
θ ⊕ θ, θ = ( 1

−1 ), and with the flip). It is now easy to see that this implies that x = y for the
optimal p, and the representation (3.10) follows.
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particular, the matrices involved transform as

S2 =

(
S

S

)
→ S2 =

(
S

S

)
,

X =

(
A B
B A

)
→ X =

(
A+B

A−B

)
=:

(
F+

F−

)
,

Y =

(
C D
D C

)
→ Y =

(
C +D

C −D

)
=:

(
G+

G−

)
.

Thus, the original non-local symmetric channel is replaced by non-symmetric
product (i.e. local) channel. The linearized robustness in the magic basis reads

p(γ) =
1

2
inf
L

tr

(L⊕ L)Tγ(L⊕ L)


0

1
1

0


 . (3.11)

In the following, we will show that a result analogous to the squeezing case
holds, namely that one can determine the optimal output robustness by consider-
ing the non-physical input p1 instead of γ, which in turn yields the corresponding
result that the optimal entanglement solely depends on the entanglement of the
input. Let S ⊕S be the transformation which has to be applied to p1 to achieve
the maximum output robustness, and let L be the optimal choice for that output
in (3.11). Then, the optimal output robustness is

popt(γout) =
1

2

{
p〈1|LTF T

+S
T1 SF+L|1〉︸ ︷︷ ︸

=:|v+〉

+〈1|LTG+L|1〉+

p〈0|LTF T
−S

T1SF−L|0〉︸ ︷︷ ︸
=:|v−〉

+〈0|LTG−L|0〉
}
.

(3.12)

We will now show that adding P+
q and P−p to the input [cf. Eq. (3.10)] does not

affect the optimal robustness; therefore, we will use the up to now unused passive
degree of freedom of S. As the symplectic operation S is chosen optimally, any
change of S—corresponding to an arbitrary change of the input CM 1 in (3.12)—
will lead to an increase of the sum in (3.12). Thus, for any CM γ,

〈v+|γ|v+〉+ 〈v−|γ|v−〉 ≥ 〈v+|1|v+〉+ 〈v−|1|v−〉 , (3.13)

with |v±〉 defined in (3.12). This implies that

〈v+|v+〉 = 〈v−|v−〉 (3.14)
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[otherwise, if w.l.o.g. 〈v+|v+〉 > 〈v−|v−〉, a state properly squeezed in direction of
|v+〉 will violate (3.13)], and

〈v+|v−〉 = 0

[otherwise, again a state properly squeezed in direction of |v+〉, together with
(3.14), will violate (3.13)].

Thus, there exists a compact operation K s.th. KT
(

1
0

)
∝ |v−〉, KT

(
0
1

)
∝ |v+〉,

and we replace S by KS in (3.12). Then, one immediately sees that adding
λP+

q + µP−p to p1, which corresponds to adding λ ( 1
0 ) ⊕ µ ( 0

1 ) in the magic
basis, does not change the optimum in (3.12), since

〈1|LTF T
+S

T︸ ︷︷ ︸
〈v+|

KT ( 1
0 )K SF+L|1〉︸ ︷︷ ︸

|v+〉

= 0

and
〈1|LTF T

−S
T︸ ︷︷ ︸

〈v−|

KT ( 0
1 )K SF−L|1〉︸ ︷︷ ︸

|v−〉

= 0 .
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Chapter 4

Gaussian states on harmonic
lattices

4.1 Introduction

The importance of bosonic Gaussian states arises from two facts. First, they
provide a very good description for accessible states of a large variety of phys-
ical systems. In fact, every ground and thermal state of a quadratic bosonic
Hamiltonian is Gaussian and remains so under quadratic time evolutions. In this
way quadratic approximations naturally lead to Gaussian states. Hence, they are
ubiquitous in quantum optics as well as in the description of vibrational modes
in solid states, ion traps or nanomechanical oscillators.

The second point for the relevance of Gaussian states is that they admit
a powerful phase space description which enables us to solve quantum many-
body problems which are otherwise (e.g., for spin systems) hardly tractable. In
particular, the phase space dimension, and with it the complexity of many tasks,
scales linearly rather than exponentially in the number of involved subsystems.
For this reason quadratic Hamiltonians and the corresponding Gaussian states
also play a paradigmatic role as they may serve as an exactly solvable toy model
from which insight into other quantum systems may be gained.

Exploiting the symplectic tools of the phase space description, exact solutions
have been found for various problems in quantum information theory as well as in
quantum statistical mechanics. In fact, many recent works form a bridge between
these two fields as they address entanglement questions for asymptotically large
lattices of quadratically coupled harmonic oscillators: the entropic area law [78–
80] has been investigated as well as entanglement statics [81–83], dynamics [84–
86], and frustration [77, 87].

In this chapter, we analytically derive general properties of ground states
of translationally invariant quadratic Hamiltonians on a cubic lattice. Related
investigations of correlation functions were recently carried out in [88, 89] for

51



interaction non-critical critical

local
O∗
(
e−n/ξ

)
d = 1: ξ ∼ 1√

∆m∗ = v
∆

d = 1 : O∗
( 1

n2

)
d > 1 : O

( log n

nd+1

)O
(
n−∞

)
O
(
n−∞

)
O
( 1

nα

)
α > 2d+ 1

O
( 1

nν−d

)
α > ν ∈ N

c

nα

d = 1

α ≥ 2 : Θ
( 1

nα

) α = 3 :

{
Θ
(

1
n2

)
, c > 0

Θ
(√

logn
n2

)
, c < 0

α > 3 : Θ
(

1
n2

)
Table 4.1: Summary of the bounds derived on the asymptotic scaling of ground
state correlations, depending on the scaling of the interaction (left column). Here,
n is the distance between two points (harmonic oscillators) on a cubic lattice of
dimension d. O denotes upper bounds, O∗ tight upper bounds, and Θ the exact
asyptotics. The table shows the results for generic interactions—special cases are
discussed in the text.

finite dimensional spin systems and in [78, 90] for generic harmonic lattices with
non-critical finite range interactions.

We start by giving an outlook and a non-technical summary of the main
results. The results on the asymptotic scaling of ground state correlations are
summarized in Table 4.1.

In Section 4.2, we introduce some basic results on quadratic Hamiltonians
together with the used notation. We then turn towards translationally invariant
systems in Section 4.3. First, we show that every pure translational invariant
Gaussian state is point symmetric: This implies that the spectral gap of the
symmetrized rather than the original Hamiltonian determines the characteristic
properties of the ground state. We provide a general formula for the latter and
express its covariance matrix in terms of a product of the inverse of the Fourier
transformed spectral function and the Hamiltonian matrix.

We then investigate the behavior of non-critical systems (Section 4.4) and
show that if the Hamiltonian is gapped, the correlations decay according to the
interaction: a (super) polynomial decay of the interaction leads to the same
(super) polynomial decay for the correlations, and (following Ref. [78]) finite
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range interactions lead to exponentially decaying correlations. In Section 4.5,
we particularly focus on the relation of correlation length and gap. We derive
an explicit formula for the correlation length for gapped 1D-Hamiltonians with
finite range interactions. The correlation length ξ is expressed in terms of the
dominating zero of the complex spectral function, which close to a critical point
is in turn determined by the spectral gap ∆ and the effective mass m∗ at the
band gap via ξ ∼ (m∗∆)−1/2. When the change in the Hamiltonian is given by a
global scaling of the interactions, this proves the folk theorem ξ ∼ 1/∆.

Finally, in Section 4.6 we turn towards critical systems. We show that for
generic d-dimensional critical systems the correlations decay as 1/nd+1, where n
is the distance between two points on the lattice. Whereas for sufficiently fast
decreasing interactions in d = 1 the asymptotic bound is exactly polynomial, it
contains an additional logarithmic correction for d ≥ 2. Similarly for d = 1 a
logarithmic deviation is found if the interaction decays exactly like −1/n3.

4.2 Quadratic Hamiltonians and their ground

states

Consider a system of N bosonic modes which are characterized by N pairs of
canonical operators (Q1, P1, . . . , QN , PN) =: R. The canonical commutation re-
lations (CCR) are governed by the symplectic matrix σ via

[
Rk, Rl

]
= iσkl , σ =

N⊕
n=1

(
0 1
−1 0

)
,

and the system may be equivalently described in terms of bosonic creation and
annihilation operators al = (Ql + iPl)/

√
2. Quadratic Hamiltonians are of the

form

H =
1

2

∑
kl

HklRkRl ,

where the Hamiltonian matrix H is real and positive semidefinite due to the
Hermiticity and lower semi-boundedness of the Hamiltonian H. Without loss of
generality we neglect linear and constant terms since they can easily be incorpo-
rated by a displacement of the canonical operators and a change of the energy
offset. Before we discuss the general case we mention some important special
instances of quadratic Hamiltonians: a well studied 1D example of this class is
the case of nearest neighbor interactions in the position operators of harmonic
oscillators on a chain with periodic boundary conditions

Hκ =
1

2

N∑
i=1

Q2
i + P 2

i − κ QiQi+1 , κ ∈ [−1, 1] . (4.1)
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This kind of spring-like interaction was studied in the context of information
transfer [84], entanglement statics [81–83] and entanglement dynamics [86]. More-
over, it can be considered as the discretization of a massive bosonic continuum
theory given by the Klein-Gordon Hamiltonian

HKG =
1

2

∫ L/2

−L/2

[
φ̇(x)2 +

(
Oφ(x)

)2
+m2φ(x)2

]
dx ,

where the coupling κ is related to the mass m by κ−1 = 1 + 1
2

(
mL
N

)2
[82]. Other

finite range quadratic Hamiltonians appear as limiting cases of finite range spin
Hamiltonians via the Holstein–Primakoff approximation [91]. In this way the
xy-spin model with transverse magnetic field can for instance be mapped onto
a quadratic bosonic Hamiltonian in the limit of strong polarization where a '
(σx + iσy)/2. Longer range interactions appear naturally for instance in 1D
systems of trapped ions. These can either be implemented as Coulomb crystals in
Paul traps or in arrays of ion microtraps. When expanding around the equilibrium
positions, the interaction between two ions at position i and j 6= i is—in harmonic
approximation—of the form

c QiQj
|i−j|3 , where c > 0 (c < 0) if Qi, Qj are position

operators in radial (axial) direction [92].
Let us now return to the general case and briefly recall the normal mode de-

composition [93]: every Hamiltonian matrix can be brought to a diagonal normal
form by a congruence transformation with a symplectic matrix S ∈ Sp(2N,R) =
{S|SσST = σ}:1

SHST =
I⊕
i=1

(
εi 0
0 εi

)
⊕

J⊕
j=1

(
0 0
0 1

)
, εi > 0 , (4.2)

where the symplectic eigenvalues εi are the square roots of the duplicate nonzero
eigenvalues of σHσTH. The diagonalizing symplectic transformation S has a
unitary representation US on Hilbert space which transforms the Hamiltonian
according to

USHU †S = 1
2

I∑
i=1

(
Q2
i + P 2

i

)
εi + 1

2

J∑
j=1

P 2
j =

I∑
i=1

(
a†iai + 1

2

)
εi + 1

2

J∑
j=1

P 2
j . (4.3)

Hence, by Eq. (4.3) the ground state energy E0 and the energy gap ∆ can easily
be expressed in terms of the symplectic eigenvalues of the Hamiltonian matrix:

E0 = 1
2

I∑
i=1

εi , ∆ =

{
mini εi , J = 0
0 , J > 0

. (4.4)

1Note that we disregard systems where the Hamiltonian contains irrelevant normal modes.
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The case of a vanishing energy gap ∆ = 0 is called critical and the respective
ground states are often qualitatively different from those of non-critical Hamil-
tonians. For the Hamiltonian Hκ, Eq. (4.1), this happens in the strong coupling
limit |κ| = 1−∆2 → 1, and in the case of 1D Coulomb crystals a vanishing en-
ergy gap in the radial modes can be considered as the origin of a structural phase
transition where the linear alignment of the ions becomes unstable and changes
to a zig-zag configuration [94–96]. Needless to say that these phase transitions
appear as well in higher dimensions and for various different configurations [97].

Ground and thermal states of quadratic Hamiltonians are Gaussian states, i.e,
states having a Gaussian Wigner distribution in phase space. In the mathematical
physics literature they are known as bosonic quasi-free states [98, 99]. These
states are completely characterized by their first moments dk = tr

[
ρRk

]
(which

are w.l.o.g. set to zero in our case) and their covariance matrix (CM)

γkl = tr
[
ρ
{
Rk − dk, Rl − dl

}
+

]
, (4.5)

where {·, ·}+ is the anticommutator. The CM satisfies γ ≥ iσ, which expresses
Heisenberg’s uncertainty relation and is equivalent to the positivity of the corre-
sponding density operator ρ ≥ 0. In order to find the ground state of a quadratic
Hamiltonian, observe that

1
2

∑
i

εi
(4.4)
= E0 = inf

ρ
tr[ρH]

(4.5)
= 1

4
inf
γ

tr[γH] . (4.6)

By virtue of Eqs. (4.2,4.3) the infimum is attained for the ground state covariance
matrix

γ = lim
s→∞

ST

[
I⊕
i=1

(
1 0
0 1

)
⊕

J⊕
j=1

(
s 0
0 s−1

)]
S , (4.7)

which reduces to γ = STS in the non-critical case. Note that the ground state
is unique as long as H does not contain irrelevant normal modes [which we have
neglected from the very beginning in Eq. (4.2)].

In many cases it is convenient to change the order of the canonical operators
such that R = (Q1, . . . , QN , P1, . . . , PN). Then the covariance matrix as well as
the Hamiltonian matrix can be written in block form

H =

(
HQ HQP

HT
QP HP

)
.

In this representation a quadratic Hamiltonian is particle number preserving iff
HQ = HP and HQP = −HT

QP , that is, the Hamiltonian contains only terms

of the kind a†iaj + a†jai. In quantum optics terms of the form a†ia
†
j, which are

not number preserving, are neglected within the framework of the rotating wave
approximation. The resulting Hamiltonians have particular simple ground states:
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Theorem 4.1a. The ground state of any particle number preserving Hamiltonian
is the vacuum with γ = 1, and the corresponding ground state energy is given by
E0 = 1

4
trH.

Proof. Number preserving Hamiltonians are most easily expressed in terms of
creation and annihilation operators. For this reason we change to the respective
complex representation via the transformation

H 7→ ΩHΩT =

(
0 X
X̄ 0

)
, Ω =

1√
2

(
1 −i1
1 i1

)
.

In this basis H is transformed to normal form via a block diagonal unitary trans-
formation U ⊕ Ū which in turn corresponds to an element of the orthogonal
subgroup of the symplectic group Sp(2N,R)∩SO(2N) ' U(N) [100]. Hence, the
diagonalizing S in Eqs. (4.2,4.7) is orthogonal and since J = 0 due to particle
number conservation, we have γ = STS = 1. E0 follows then immediately from
Eq. (4.6). �

Another important class of quadratic Hamiltonians for which the ground state
CM takes on a particular simple form corresponds to the case HQP = 0 where
there is no coupling between the momentum and position operators:

Theorem 4.1b. For a quadratic Hamiltonian with Hamiltonian matrix H =
HQ ⊕HP the ground state energy and the ground state CM are given by

E0 = 1
2
tr
[√

HQ

√
HP

]
, γ = X ⊕X−1, X = H

−1/2
Q

√
H

1/2
Q HPH

1/2
Q H

−1/2
Q . (4.8)

Proof. Since σHσTH = HPHQ ⊕ HQHP , the symplectic eigenvalues of H are
given by the eigenvalues of

√
HQ

√
HP and thus E0 = 1

2
tr
[√

HQ

√
HP

]
. Moreover,

by the uniqueness of the ground state and the fact that E0 = 1
4
tr[γH] with γ

from Eq. (4.8) we know that γ is the ground state CM (as it is an admissible
pure state CM by construction). �

Finally we give a general formula for the ground state CM in cases where the
blocks in the Hamiltonian matrix can be diagonalized simultaneously. This is
of particular importance as it applies to all translational invariant Hamiltonians
discussed in the following sections.

Theorem 4.1c. Consider a quadratic Hamiltonian for which the blocks HQ, HP ,
HQP of the Hamiltonian matrix can be diagonalized simultaneously and in addi-
tion HQP = HT

QP . Then with

Ê =
√
HQHP −H2

QP we have (4.9)

E0 = 1
2
tr[Ê ] , ∆ = λmin

(
Ê
)
, γ = (Ê ⊕ Ê)−1σHσT . (4.10)
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Proof. Since σHσTH = Ê2 ⊕ Ê2 we have indeed E0 = 1
2
tr[Ê ] and ∆ = λmin

(
Ê
)
.

Positivity γ ≥ 0 is implied by H ≥ 0 such that we can safely talk about the
symplectic eigenvalues of γ. The latter are, however, all equal to one due to
(γσ)2 = −1 so that γ is an admissible pure state CM. Moreover it belongs to the
ground state since 1

4
tr[Hγ] = E0. �

4.3 Translationally invariant systems

Let us now turn towards translationally invariant systems. We consider cubic
lattices in d dimensions with periodic boundary conditions. For simplicity we
assume that the size of the lattice is Nd. The system is again characterized
by a Hamiltonian matrix Hkl, where the indices k, l, which correspond to two
points (harmonic oscillators) on the lattice, are now d-component vectors in Zd

N .
Translational invariance is then reflected by the fact that any matrix element
Akl, A ∈ {HQ, HP , HQP} depends only on the relative position k − l of the
two points on the lattice, and we will therefore often write Ak−l = Akl. Note
that due to the periodic boundary conditions k − l is understood modulo N
in each component. Matrices of this type are called circulant, and they are all
simultaneously diagonalized via the Fourier transform

Fαβ =
1√
N
e

2πi
N
αβ , α, β ∈ ZN , such that

Â := F⊗dAF †⊗d = diag

∑
n∈ZdN

An e
− 2πi

N
mn


m

,

where mn is the usual scalar product in Zd
N . It follows immediately that all

circulant matrices mutually commute.
In the following, we will show that we can without loss of generality restrict

ourselves to point-symmetric Hamiltonians, i.e., those for which HQP = HT
QP

(which means that H contains only pairs QkPl+QlPk). For dimension d = 1 this
is often called reflection symmetry.

Theorem 4.2. Any translationally invariant pure state CM Γ is point symmetric.

Proof. For the proof, we use that any pure state covariance matrix can be
written as

Γ =

(
ΓQ ΓQP

ΓTQP ΓP

)
=

(
X XY
Y X X−1 + Y XY

)
,

where X ≥ 0 and Y is real and symmetric [101]. From translational invariance,
it follows that all blocks and thus X and Y have to be circulant and therefore
commute. Hence, ΓQP = XY = Y X = ΓTQP , i.e., Γ is point symmetric. �
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Let P : Zd
N → Zd

N be the reflection on the lattice and define the symmetriza-
tion operation S(A) = 1

2
(A + PAP) such that by the above theorem S(γ) = γ

for every translational invariant pure state CM. Then due to the cyclicity of the
trace we have for any translational invariant Hamiltonian

inf
γ

tr
[
Hγ
]

= inf
γ

tr
[
S(H)γ

]
.

Hence, the point-symmetrized Hamiltonian S(H), which differs from H by the
off-diagonal block S(HQP ) = 1

2
(HQP + HT

QP ) has both the same ground state
energy and the same ground state as H. Together with Theorem 4.1c this leads
us to the following:

Theorem 4.3. Consider any translationally invariant quadratic Hamiltonian.

With Ê =
[
HQHP − 1

4
(HQP +HT

QP )2
]1/2

the ground state CM and the correspond-
ing ground state energy are given by

E0 = 1
2
tr[Ê ] , γ =

(
Ê ⊕ Ê

)−1
σS(H)σT . (4.11)

It is important to note that the energy gaps of H and S(H) will in general
be different. In particular H might be gapless while S(H) is gapped. However,
as we will see in the following sections, the properties of γ depend on the gap
∆ = λmin(Ê) of the symmetrized Hamiltonian rather than on that of the original
H. For this reason we will in the following for simplicity assume HQP = HT

QP .
By Theorem 4.3 all results can then also be applied to the general case without
point symmetry if one only keeps in mind that ∆ is the gap corresponding to
S(H).

Note that the eigenvalues of Ê are the symplectic eigenvalues of S(H), i.e.,
E = F⊗dÊF †⊗d is the excitation spectrum of the Hamiltonian. This is the reason
for the notation where E resides in Fourier space and Ê in real space, which is
differs from the normal usage of the hat.

Correlation functions

According to Eqs. (4.9–4.11) we have to compute the entries of functions of
matrices in order to learn about the entries of the covariance matrix. This is
most conveniently done by a double Fourier transformation, where one uses that

f̂(M) = f(M̂), and we find

[f(M)]nm =
1

Nd

∑
r,s

e−
2πi
N

nr[f(M̂)]rse
2πi
N
sm . (4.12)

As we consider translationally invariant systems, M is circulant and thus M̂ is
diagonal. We define the function
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M̂(φ) =
∑
n∈ZdN

Mn e
−inφ (4.13)

such that M̂(2πr/N) = M̂r,r. As f(M) is solely determined by its first row, we
can write

[f(M)]n =
1

Nd

∑
r∈ZdN

e2πi nr/Nf(M̂(2πr/N)) . (4.14)

In the following we will use the index n ∈ Zd for the relative position of two points
on the lattice. Their distance will be measured either by the l1, l2 or l∞ norm.
Since we are considering finite dimensional lattices these are all equivalent for
our purpose and we will simply write ‖n‖. In the thermodynamic limit N →∞,
the sum in Eq. (4.14) converges to the integral

[f(M)]n =
1

(2π)d

∫
T d

dφ f(M̂(φ)) einφ with M̂(φ) =
∑
n∈Zd

Mn e
−inφ , (4.15)

where T d is the d-dimensional torus, i.e., [0, 2π]d with periodic boundary con-
ditions. The convergence holds as soon as

∑
|Mn| < ∞ [which holds e.g. for

Mn = O(‖n‖−α) with some α > d] and f is continuous on an open interval which
contains the range of M̂ .

From the definition (4.15) of M̂ , it follows that M̂ ∈ C k(T d) (the n times
continuously differentiable functions on T d) whenever the entries Mn decay at
least as fast as ‖n‖−α for some α > k + d, since then the sum of the derivatives
converges uniformly. Particularly, if the entries of M decay faster than any
polynomial, then M̂ ∈ C∞(T d). In the following the most important function of
the type f ◦ M̂ will be the spectral function

E(φ) =

√∑
n∈Zd

e−inφ
(

[HQHP ]n − [H2
QP ]n

)
. (4.16)

Asymptotic notation

In this chapter, we investigate the asymptotic scaling of correlations, which we
will describe using the Landau symbols o, O, and Θ, as well as the symbol O∗

for tight bounds:

• f(x) = o(g(x)) means lim
x→∞

f(x)
g(x)

= 0, i.e., f vanishes strictly faster than g

for x→∞;

• f(x) = O(g(x)), if lim sup
x→∞

∣∣∣f(x)
g(x)

∣∣∣ <∞, i.e., f vanishes at least as fast as g;

• f(x) = Θ(g(x)), if f(x) = O(g(x)) and g(x) = O(f(x)) (i.e., exact asymp-
totics);
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• f(x) = O∗(g(x)), if f(x) = O(g(x)) but f(x) 6= o(g(x)), i.e., g is a tight
bound on f .2 If f is taken from a set (e.g., those function consistent with
the assumptions of a theorem) we will write f = O∗(g) if g is a tight bound
for at least one f (i.e., the best possible universal bound under the given
assumptions).

If talking about Hamiltonians, the scaling is meant to hold for all blocks, e.g.,
if the interaction vanishes as O(‖n‖−α) for n → ∞, this holds for all the blocks
HQ, HP , and HQP = HT

PQ. The same holds for covariance matrices in the non-
critical case. By the shorthand notation f(n) = o(‖n‖−∞), we mean that f(n) =
o(‖n‖−α) ∀α > 0. Note finally that the Landau symbols are also used in (Taylor)
expansions around a point x0 where the considered limit is x → x0 rather than
x→∞.

4.4 Non-critical systems

In this section, we analyze the ground state correlations of non-critical systems,
i.e., those which exhibit an energy gap ∆ > 0 between the ground an the first
excited state. Simply speaking, we will show that the decay of correlations re-
flects the decay of the interaction. While local (super-polynomially decaying)
interactions imply exponentially (super-polynomially) decaying correlations, a
polynomial decay of interactions will lead to the same polynomial law for the
correlations.

According to Theorem 4.3, we will consider a translationally invariant system
with a point-symmetric Hamiltonian (HQP = HT

QP ). Following (4.10, 4.11), we

have to determine the entries of (Ê−1⊕Ê−1)σHσT , with Ê = (HQHP+H2
QP )1/2. In

Lemma 4.4 we will first show that it is possible to consider the two contributions
independently, and as the asymptotics of σHσT is known, we only have to care
about the entries of Ê−1, i.e., we have to determine the asymptotic behavior of
the integral

(Ê−1)n =
1

(2π)d

∫
T d

dφ E−1(φ)einφ ,

where E = (ĤQĤP + Ĥ2
QP )1/2.

Lemma 4.4. Given two asymptotic circulant matrices A, B in d dimensions with
polynomially decaying entries, An = O(‖n‖−α), Bn = O(‖n‖−β), α, β > d. Then

(AB)n = O∗(‖n‖−µ) , µ := min{α, β} .
2 In order to see the difference to Θ, take an f(x) = g(x) for even x, f(x) = 0 for odd x,

x ∈ N. Although f does not bound g, thus f(x) 6= Θ(g(x)), the bound g is certainly tight.
A situation like this is met, e.g., in Theorem 4.9, where the correlations oscillate within an
exponentially decaying envelope.
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Proof. With Qη(n) := min{1, ‖n‖−η}, we know that |An| = O(Qα) and |Bn| =
O(Qβ), and

|(AB)n| =

∣∣∣∣∣∑
j

A0,jBj,n

∣∣∣∣∣ ≤∑
j

|Aj||Bn−j| = O
(∑

j

Qα(j)Qβ(n− j)
)
. (4.17)

We consider only one half space ‖j‖ ≤ ‖n − j‖, where we bound Qβ(n −
j) ≤ Qβ(n/2). As Qα(j) is summable, the contribution of this half-plane is
O
(
Qβ(n/2)

)
. The other half-plane gives the same result with α and β inter-

changed, which proves the bound, while tightness follows by taking all An, Bn

positive. �

We now determine the asymptotics of (Ê−1)n for different types of Hamilto-
nians.

Lemma 4.5. For non-critical systems with rapidly decaying interactions, i.e., as
o(‖n‖−∞), the entries of Ê−1 decay rapidly as well. That is,

∆ > 0 ⇒ (Ê−1)n = o(‖n‖−∞) .

Proof. As the interactions decay as o(‖n‖−∞), Ĥ• ∈ C∞(T d) (• = Q,P, PQ),
and thus E2 = ĤQĤP + Ĥ2

QP ∈ C∞(T d). Since the system is gapped, i.e.,
E ≥ ∆ > 0, it follows that also g := E−1 ∈ C∞(T d). For the proof, we need to
bound

(Ê−1)n =
1

(2π)d

∫
T d

dφ g(φ)einφ

by ‖n‖−κ for all κ ∈ N. First, let us have a look at the one-dimensional case. By
integration by parts, we get

(Ê−1)n =
1

2π

[
1

in
g(φ)einφ

]π
φ=−π

− 1

2πin

∫ π

−π
dφ g′(φ)einφ ,

where the first part vanishes due to the periodicity of g. As g ∈ C∞(T 1), the
integration by parts can be iterated arbitrarily often and all the brackets vanish,
such that after κ iterations,

(Ê−1)n =
1

2π(in)κ

∫ π

−π
dφ g(κ)(φ)einφ .

As g(κ)(φ) is continuous, the integral can be bounded by
∫
|g(κ)(φ)|dφ =: Cκ <∞,

such that finally

|(Ê−1)n| ≤
Cκ
nκ

∀κ ∈ N ,

which completes the proof of the one-dimensional case.

61



The extension to higher dimensions is straightforward. For a given n =
(n1, . . . , nd), integrate by parts with respect to the φi for which |ni| = ‖n‖∞;
we assume i = 1 without loss of generality. As g(·, φ2, . . . , φd) ∈ C∞(S1), the
same arguments as in the 1D case show

|(Ê−1)n| ≤
1

(2π)d|n1|κ

∫
T d

∣∣∣∣ ∂κ∂φκ1 g(φ)

∣∣∣∣ dφ =
Cκ
‖n‖κ∞

.

�

For systems with local interactions, a stronger version of Lemma 4.5 can be
obtained:

Lemma 4.6. For a system with finite range interaction, the entries of Ê−1 decay
exponentially.

This has been proven in [78] for Hamiltonians of the type H = V ⊕ 1, ex-
ploiting a result on functions of banded matrices [102]. Following Eqs. (4.9,4.11)
the generalization to arbitrary translational invariant Hamiltonians is straight-
forward by replacing V with HQHP −H2

QP . In fact, it has been shown recently
that the result even extends to non translational invariant Hamiltonians of the
form in Theorem 4.1b [90].

Finally, we consider systems with polynomially decaying interaction.

Lemma 4.7. For a 1D lattice with H = V ⊕ 1 > 0 and an exactly polynomially
decaying interaction

Vij =

{
i = j : a

i 6= j : b
|i−j|ν

, 2 ≤ ν ∈ N ,

Ê−1 decays polynomially with the same exponent, (Ê−1)n = (V 1/2)n = Θ(|n|−ν).

Hamiltonians of this type appear, e.g., for the vibrational degrees of freedom
of ions in a linear trap, where ν = 3.

Proof. We need to estimate (Ê−1)n
(4.9)
= (V −1/2)n = 1

2π

∫ 2π

0
V̂ −1/2(φ)einφdφ . Note

that

V̂ (φ) = a+ 2b
∞∑
n=1

cos(nφ)

nν
= a+ 2bRe

[
Liν(e

iφ)
]
> 0 , (4.18)

where Liν(z) =
∑

n≥1 z
n/nν is the polylogarithm. The polynomial decay of coeffi-

cients implies V̂ ∈ C ν−2(S1), and as the system is non-critical, V̂ −1/2 ∈ C ν−2(S1).
As Liν has an analytic continuation to C\[1;∞), V̂ ∈ C∞((0; 2π)) and thus
V̂ −1/2 ∈ C∞((0; 2π)). We can therefore integrate by parts ν − 1 times, and as all
brackets vanish due to periodicity, we obtain

(Ê−1)n =
1

2π(in)ν−1

∫ 2π

0

[
dν−1

dφν−1
V̂ −1/2(φ)

]
einφdφ , (4.19)
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and

dν−1

dφν−1
V̂ −1/2(φ) = − V̂

(ν−1)(φ)

2V̂ (φ)3/2
+

3(ν − 2)V̂ (ν−2)(φ)V̂ (1)(φ)

4V̂ (φ)5/2
+ g(φ) . (4.20)

Note that the second term only appears if ν ≥ 3, and g only if ν ≥ 4. As
g(φ) ∈ C 1(S1), its Fourier coefficients vanish as O(n−1), as can be shown by
integrating by parts. The second term can be integrated by parts as well, the
bracket vanishes due to continuity, and we remain with

1

in

∫ 2π

0

[
3(ν − 2)V̂ (ν−1)(φ)V̂ (1)(φ)

4V̂ (φ)5/2
+ h(φ)

]
einφdφ ,

with h ∈ C (S1). [For ν = 3, a factor 2 appears as (V̂ (1))′ = V̂ (ν−1).] As we will
show later, V̂ (ν−1) is absolutely integrable, hence the integral exists, and thus the
Fourier coefficients of the second term in Eq. (4.20) vanish as O(n−1) as well.
Finally, it remains to bound ∫ 2π

0

V̂ (ν−1)(φ)

2V̂ (φ)3/2
einφdφ . (4.21)

As Li′ν(x) = Liν−1(x)/x, it follows from Eq. (4.18) that

V (ν−1)(φ) = 2bRe
[
iν−1Li1(eiφ)

]
= 2bRe

[
−iν−1 log(1− eiφ)

]
,

where the last step is from the definition of Li1.
We now distinguish two cases. First, assume that ν is even. Then,

V (ν−1)(φ) ∝ Im log(1− eiφ) = arg(1− eiφ) = (φ− π)/2

on (0; 2π), hence the integrand in Eq. (4.21) is bounded and has a bounded
derivative, and by integration by parts, the integral Eq. (4.21) is O(n−1). In case
ν is odd we have

V (ν−1)(φ) ∝ Re log(1− eiφ) = log
∣∣1− eiφ∣∣ = log(2 sin(φ/2))

on (0; 2π). With h(φ) := V̂ −3/2(φ)/2, the integrand in Eq. (4.21) can be written
as

V̂ (ν−1)(φ)h(φ) ∝ log(2 sin(φ/2)) h(0) + log(2 sin(φ/2)) [h(φ)− h(0)] . (4.22)

The first term gives a contribution proportional to∫ 2π

0

log(2 sin(φ/2)) cos(nφ)dφ = − 1

2n
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as it is the back-transform of −1
2

∑
n≥1 cos(nφ)/n. For the second term, note that

h ∈ C 1(S1) for ν ≥ 3 and thus h(φ)− h(0) = h′(0)φ+ o(φ) by Taylor’s theorem.
Therefore, the log singularity vanishes, and we can once more integrate by parts.
The derivative is

1

2
cot(φ/2) [h(φ)− h(0)] + log(2 sin(φ/2)) h′(φ) .

In the left part, the 1/φ singularity of cot(φ/2) is cancelled out by h(φ)− h(0) =
O(φ), and the second part is integrable as h′ ∈ C (S1), so that the contribution
of the integral (4.21) is O(n−1) as well.

In order to show that n−ν is also a lower bound on (V̂ −1/2)n, one has to analyze
the asymptotics more carefully. Using the Riemann-Lebesgue lemma—which says
that the Fourier coefficients of absolutely integrable functions are o(1)—one finds
that all terms in (4.19) vanish as o(1/nν), except for the integral (4.21). Now for
even ν, (4.21) can be integrated by parts, and while the brackets give a Θ(n−ν)
term, the remaining integral is o(n−ν), which proves that (V̂ −1/2)n = Θ(n−ν).
For odd ν, on the other hand, the first part of (4.22) gives exactly a polynomial
decay, while the contributions from the second part vanishes as o(n−ν), which
proves (V̂ −1/2)n = Θ(n−ν) for odd ν as well. �

Generalizations of Lemma 4.7

The preceding lemma can be extended to non-integer exponents α 6∈ N: If Vn ∝
n−α, n 6= 0, then (Ê−1)n = O(n−α).

For the proof, define α = ν + ε, ν ∈ N, 0 < ε < 1. Then V̂ ∈ C ν−1(S1), V̂ ∈
C∞((0; 2π)), and one can integrate by parts ν times, where all brackets vanish.
What remains is to bound the Fourier integral of the ν’th derivative of V̂ −1/2 by
n−ε. An upper bound can be established by noting that |V̂ (ν)(φ)| ≤ |Liε(e

iφ)| =
O(φε−1) and |V̂ (ν+1)(φ)| = O(φε−2). It follows that all contributions in the Fourier
integral except the singularity from V̂ (ν) lead to o(1/n) contributions as can be
shown by another integration by parts. In order to bound the Fourier integral of
the O(φε−1) term, split the Fourier integral at 1

n
. The integral over [0; 1

n
] can be

directly bounded by n−ε, while for [ 1
n
; 1], an equivalent bound can be established

after integration by parts, using V̂ (ν+1) = O(φε−2). This method is discussed in
more detail in the proof of Theorem 4.15, following Eq. (4.44).

The proof that n−ε is also a lower bound to (Ê−1)n is more involved. From a
series expansion of V̂ and its derivatives, it can be seen that it suffices to bound
the sine and cosine Fourier coefficients of φε−1 from below. As in the proof of
Theorem 4.14, this is accomplished by splitting the integral into single oscillations
of the sine or cosine and bounding each part by the derivative of φε−1.

For polynomially bounded interactions Vn = O(n−α), α > 1, not very much
can be said without further knowledge. With ν < α, ν ∈ N the largest integer
strictly smaller than α, we know that V̂ ∈ C ν−1(S1). Thus, one can integrate
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by parts ν − 1 times, the brackets vanish, and the remaining Fourier integral is
o(1) using the Riemann-Lebesgue lemma. It follows that (Ê−1)n = o

(
n−(ν−1)

)
.

In contrast to the case of an exactly polynomial decay, this can be extended to
higher spatial dimensions d > 1 by replacing ν − 1 with ν − d, which yields
(Ê−1)n = o

(
n−(ν−d)

)
.

We now use the preceding lemmas about the entries of Ê−1 (Lemma 4.5–4.7)
to derive corresponding results on the correlations of ground states of non-critical
systems.

Theorem 4.8. For systems with ∆ > 0, the following holds:

(i) If the Hamiltonian H has finite range, the ground state correlations decay
exponentially.

(ii) If H decays as o(‖n‖−∞), the ground state correlations decay as o(‖n‖−∞)
as well.

(iii) For a 1D system with H = V ⊕ 1 where V decays with a power law |n|−ν,
ν ≥ 2, the ground state correlations decay as Θ(|n|−ν).

Proof. In all cases, we have to find the scaling of the ground state γ which is
the product γ = (Ê−1 ⊕ Ê−1)σHσT , Eq. (4.10). Part (i) follows directly from
Lemma 4.6, as multiplying with a finite-range σHσT doesn’t change the expo-
nential decay, while (ii) follows from Lemma 4.5, the o(‖n‖−∞) decay of σHσT ,
and Lemma 4.4. To show (iii), note that for H = V ⊕ 1, the ground state is
γ = V −1/2 ⊕ V 1/2, and from Lemma 4.7, O(n−ν) follows. For V̂ −1/2, Lemma 4.7
also includes that the bound is exact, while for V̂ 1/2, it can be shown by trans-
ferring the proof of the lemma one-to-one. �

Note that a simple converse of Theorem 4.8 always holds: for each transla-
tionally invariant pure state CM γ, there exists a Hamiltonian H with the same
asymptotic behavior as γ such that γ is the ground state of H. This can be
trivially seen by choosing H = σγσT .

4.5 Correlation length and gap

In this section, we consider one-dimensional chains with local gapped Hamiltoni-
ans. We compute the correlation length for these systems and use this result to
derive a relation between correlation length and gap.

Theorem 4.9. Consider a non-critical 1D chain with a local Hamiltonian. De-
fine the complex extension of the spectral function

E(φ) =
[ L∑
n=0

cn cos(nφ)
]1/2
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in Eq. (4.16) as

g(z) :=
L∑
n=0

cn
zn + z−n

2
,

such that

g(eiφ) = E2(φ)
(4.9)
= ĤQ(φ)ĤP (φ)− Ĥ2

QP (φ) ,

and let z̃ be zero of g with the largest magnitude smaller than one. Then, the
correlation length

ξ = − 1

log |z̃|
determines the asymptotic scaling of the correlations which is given by

• O∗(e−n/ξ/
√
n), if z̃ is a zero of order one,

• O∗(e−n/ξ), if z̃ is a zero of even order,

• o(e−n/(ξ+ε)) for all ε > 0, if z̃ is a zero of odd order larger than one.

For the nearest neighbor interaction HamiltonianHκ from Eq. (4.1) one has for in-
stance E(φ) =

√
1− κ cos(φ), so that g has simple zeros at z0 = (1±

√
1− κ2)/κ.

Therefore z̃ = (1−
√

1− κ2)/κ, and the correlations decay as Θ(e−n/ξ/
√
n) where

ξ = −1/ log |z̃|.

Proof. For local Hamiltonians, the correlations decay as the matrix elements of
Ê−1 [Eq. (4.10)]. By Fourier transforming (4.9), we have that

E(φ) =
√
g(eiφ) ,

with

g(eiφ) = ĤQ(φ)ĤP (φ)− Ĥ2
QP (φ) =

L∑
n=0

cn cos(nφ)

an even trigonometric polynomial (we assume cL 6= 0 without loss of generality),
and min(g(eiφ)) = ∆2. We have to compute

(Ê−1)n =
1

2π

∫ 2π

0

1

E(φ)
einφdφ =

1

2πi

∫
S1

zn−1√
g(z)

dz , (4.23)

where S1 is the unit circle. The function g(z) has a pole of order L at zero
and 2L zeros altogether. Since min(g(φ)) = ∆2 > 0, g has no zeros on the unit
circle. As g(z) = g(1/z), the zeros come in pairs, and L of them are inside
the unit circle. Also, the conjugate of a zero is a zero as well. From each zero
with odd multiplicity emerges a branch cut of

√
g(z). We arrange all the branch

cuts inside the unit circle such that they go straight to the middle where they
annihilate with another cut. In case L is odd, the last cut is annihilated by the
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Figure 4.1: Sample arrangement of
branch cuts and poles of

√
g inside the

unit circle. From each odd order zero of
g, a branch cut emerges. All cuts go to
0 where they cancel with another cut. In
case their number is odd, there is an ad-
ditional branch point at 0 cancelling the
last cut. In case two zeros are on a line
to the origin, the cuts are chosen curved.
The integral of

√
g around the unit circle

is equal to the integral around the cuts,
plus integrals around the residues which
originate from the even order zeros of g.

singularity of
√
g(z) at 0. If two zeros lie on a line, one cut curves slightly. A

sample arrangement is shown in Fig. 4.1.

Following Cauchy’s theorem, the integral can be decomposed into integrals
along the different branch cuts and around the residues of 1/

√
g, and one has to

estimate the contributions from the different types of zeros of g. The simplest
case is given by zeros z0 with even multiplicity 2m. In that case, define h(z) :=
g(z)/(z − z0)2m which has no zero around z0. The contribution from z0 to the
correlations is then given by the residue at z0 and is

1

(m− 1)!

dm−1

dzm−1

(
zn−1√
h(z)

)∣∣∣∣∣
z=z0

∝ z
n−(m−1)
0

for n − (m − 1) > 0, i.e., it scales as |z0|n. Note that for z0 6∈ R, the imaginary
parts originating from z0 and its conjugate z̄0 exactly cancel out, but the scaling is
still given by |z0|n = en log |z0|, i.e., ξ = −1/ log |z0| is the corresponding correlation
length.

If z0 is a simple zero of g(z), we have to integrate around the branch cut.
Assume first that the cut goes to zero in a straight line, and consider a contour
with distance ε to the slit. Both the contribution from the ε region around zero
and the ε semicircle at z0 vanish as ε → 0, and the total integral is therefore
given by twice the integral along the cut,

1

πi

∫ z0

0

zn−1

√
z − z0

√
h(z)

dz ,

where again h(z) = g(z)/(z − z0). Intuitively, for growing n the part of the
integral close to z0 becomes more and more dominating, i.e., the integral is well
approximated by the modified integral where h(z) has been replaced by h(z0).
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After rotating it onto the real axis, this integral—up to a phase—reads

1

π
√
|h(z0)|

∫ |z0|
0

rn−1√
|z0| − r

dr =
|z0|n−1/2Γ(n)√
π|h(z0)| Γ(n+ 1

2
)

(4.24)

which for large n is

1√
π|z0h(z0)|

|z0|n√
n

+O

(
|z0|n

n3/2

)
. (4.25)

In order to justify the approximation h(z) h(z0), consider the difference of the
two respective integrals. It is bounded by∣∣∣∣∣

∫ z0

0

|z|n−1√
|z − z0|

∣∣∣∣∣ 1√
h(z)

− 1√
h(z0)

∣∣∣∣∣︸ ︷︷ ︸
(∗)

dz

∣∣∣∣∣ .

On [z0/2, z0], h(z) is analytic and has no zeros, thus, |h(z)−1/2 − h(z0)−1/2| <
C|z− z0|, where C is the maximum of the derivative of h(z)−1/2 on [z0/2, z0]. On
[0, z0/2], the same bound is obtained by choosing C the supremum of |h(z)−1/2−
h(z0)−1/2|/|z0/2| on [0, z0/2]. Together, (∗) ≤ C|z − z0|, and the above integral
is bounded by

C

∫ |z0|
0

rn−1
√
|z0| − r dr = C

√
π|z0|n+1/2Γ(n)

2Γ(n+ 3
2
)

= O

(
|z0|n

n3/2

)
,

i.e., it vanishes by 1/n faster than the asymptotics derived in Eq. (4.25), which
justifies fixing h(z) at h(z0).

From Eq. (4.25), it follows that the scaling is e−n/ξ/
√
n, where the correlation

length is again ξ = −1/ log |z0|. The same scaling behavior can be shown to hold
for appropriately chosen curved branch cuts from z0 to 0 by relating the curved
to a straight integral.

The situation gets more complicated if zeros of odd order > 1 appear. In
order to get an estimate which holds in all scenarios, we apply Cauchy’s theorem
to contract the unit circle in the integration (4.23) to a circle of radius r > |z0|,
where z0 is the largest zero inside the unit circle. Then, the integrand can be
bounded by Crr

n−1 (where Cr <∞ is the supremum of 1/
√
g on the circle), and

this gives a bound 2πCrr
n−1 for the integral. This holds for all r > |z0|, i.e., the

correlation decay faster than en log r for all r > |z0|. This does not imply that the
correlations decay as en log |z0|, but it is still reasonable to define −1/ log |z0| as
the correlation length. �

Theorem 4.10. Consider a 1D chain together with a family of Hamiltonians
H(∆) with gap ∆ > 0, where H(∆) is continuous for ∆→ 0 in the sense that all
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entries of H converge. Then, the ground state correlations scale exponentially,
and for sufficiently small ∆ the correlation length is

ξ ' 1√
∆m∗

.

Here, m∗ =

(
d2E(φ)

dφ2

∣∣∣
φ=φ∆

)−1

is the effective mass at the band gap.

For the discretized Klein-Gordon field (4.1), e.g., we have ∆ =
√

1− |κ| and

m∗ = 2
√

1− |κ|/|κ|, and for small ∆ (corresponding to |κ| close to 1), one
obtains

ξ '

√
|κ|

2(1− |κ|)
' 1√

2∆
.

Hence, the ξ ∝ 1/∆ law holds if the coupling is increased relative to the on-site
energy (in which case m∗ ∝ ∆).

More generally, if we expand the spectral function [Eq. (4.16)] around the
band gap we are generically3 led to the dispersion relation E(k) '

√
∆2 + v2k2

(k ≡ φ). By the definition of the effective mass and Theorem 4.10 this leads
exactly to the folk theorem

ξ ' v

∆
. (4.26)

Proof. According to Theorem 4.9, what remains to be done is to determine
the position of the largest zero z̃ of g in the unit circle. Due to the restriction
on H(∆), the coefficients of the polynomial g(z)zL and thus also the zeros of g
continuously depend on ∆, i.e., for sufficiently small ∆, the zero closest to the
unit circle is the one closest to the gap. In order to determine the position of
this zero, we will expand g around the gap. We only discuss the generic case
where the gap appears only for one angle φ0, g(φ0) = ∆. In the case of multiple
occurrences of the gap in the spectrum, one will pick the gap which gives the
zero closest to the unit circle, i.e., the largest correlation length. Furthermore,
we assume φ0 = 0 without loss of generality. Otherwise, one considers g(ze−iφ0)
instead of g(z), which on the unit circle coincides with the (rotated) spectrum.

The knowledge on g =: u + iv (with u, v : C → R) which will be used in the
proof is

u(1) = ∆2 v(1) = 0
uφ(1) = 0 vφ(1) = 0
uφφ(1) = 2∆/m∗ > 0 vφφ(1) = 0

(4.27)

3This makes the natural assumption that the minimum under the square root is quadratic.
In fact, if it is of higher order, then m∗ = ∞ and thus ξ = 0, which is consistent with the
findings of the following section. An example of such a behavior is given by so called ‘quadratic
interactions’ [79] for which H = V ⊕ 1, where V is the square of a banded matrix.
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where the subscripts denote the partial derivative with respect to the respective
subscript (in Euclidean coordinates z ≡ x + iy, in polar coordinates z ≡ reiφ).
Note that z = 1 is the point where the gap appears, and that g(eiφ) = E(φ)2 is
real. Therefore, the derivatives of the imaginary part v along the circle vanish,
while the derivatives of the real part u are found to be u(1) = E(0)2 = ∆2,
uφ(1) = 2E(0)E ′(0) = 0, and uφφ(0) = 2E ′(0)2 + 2E(0)E ′′(0) = 2∆/m∗, where
m∗ = 1/E ′′(φ) is the effective mass at the band gap.

We need to exploit the relation between Euclidean and polar coordinates,

gx(1) = gr(1) ; gy(1) = gφ(1)
gxx(1) = grr(1) ; gyy(1) = gφφ(1) + gr(1)

and the Cauchy-Riemann equations ux = vy, uy = −vx, and gxx + gyy = 0, which
together with the information (4.27) lead to

u(1) = ∆2 ; v(1) = 0 ;

ux(1) = uy(1) = vx(1) = vy(1) = 0 ;

uxx(1) = −2∆/m∗ ; uyy(1) = 2∆/m∗ ;

vxx(1) = 0 ; vyy(1) = 0 .

Note that it is not possible to derive information about the mixed second derivates
using only the information (4.27). However, as long as vxy does not vanish at 1,
v will only stay zero in direction of x or y, but not diagonally. Since ∆2 > 0 and
2∆/m∗ > 0, the closest zero is—to second order—approximately located along
the x axis. By intersecting with the parabola ∆2− ∆

m∗
(x− 1)2, one finds that the

zero is located at x0 ≈ 1−
√

∆m∗. For small ∆, the correlations thus decay with
correlation length ξ ≈ −1/ log(1−

√
∆m∗) ≈ 1/

√
∆m∗. �

4.6 Critical systems

We now turn towards critical systems, i.e., systems without an energy gap,
∆ = 0.4 In that case, the Hamiltonian will get singular and some entries of
the ground state covariance matrix will diverge, which leads to difficulties and
ambiguities in the description of the asymptotic behavior of correlations. We will
therefore restrict to Hamiltonians of the type

H = V ⊕ 1 ,

for which the ground state CM is γ = V −1/2 ⊕ V 1/2. While the Q part diverges,
the entries of the P -block stay finite. Following Theorem 4.1b the extension to
interactions of the form H = HQ ⊕HP is straight forward.

4Note that there are different meanings of the notion criticality referring either to a vanishing
energy gap or to an algebraic decay of correlations. In this section we discuss in which cases
these two properties are equivalent.
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In order to compute the correlations we have to determine the asymptotics of
V 1/2, i.e.,

(V 1/2)n =
1

(2π)d

∫
T d

√
V̂ (φ)einφdφ .

We will restrict to the cases in which the excitation spectrum E =
√
V̂ has only a

finite number of zeros, i.e., finitely many points of criticality. In addition, we will
also consider the special case in which the Hamiltonian exhibits a tensor product
structure.

We proceed as follows. First, we consider one-dimensional critical chains and
show that the correlations decay typically as O(n−2) and characterize those spe-
cial cases where the correlations decay more rapidly. The practically important
case of exactly cubic decaying interactions will be investigated in greater detail.
Depending on the sign of the interaction this case will lead to a logarithmic de-
viation from the n−2 behavior. Then, we turn to higher dimensional systems
and show that generically the correlations decay as n−(d+1) log n, where d is the
spatial dimension of the lattice.

4.6.1 One dimension

First, we prove a lemma which shows that although taking the square root of a
smooth function destroys its differentiability, the derivatives will stay bounded.

Lemma 4.11. Let f ∈ Cm([−1; 1]), f(x) ≥ 0 with the only zero at x = 0, and
let 2ν ≤ m be the order of the minimum at x = 0, i.e., f (k)(0) = 0 ∀k < 2ν,
f (2ν)(0) > 0.

Define g(x) :=
√
f(x). Then, the following holds:

• For odd ν, g ∈ C ν−1([−1; 1]), and g ∈ Cm−ν([−1; 0]), g ∈ Cm−ν([0; 1]),
i.e., the first m− ν derivatives (for x 6= 0) are bounded.

• For even ν, g ∈ Cm−ν([−1; 1]).

Proof. Using the Taylor expansion f(x) =
∑m

k=2ν ckx
k +ρ(x), ρ(k)(x) = o(xm−k)

for k ≤ m, we express g as g(x) = (sgn x)νxνr(x) with

r(x) =

√√√√ m∑
k=2ν

ckxk−2ν +
ρ(x)

x2ν
,

where we used that (sgnx)νxν =
√
x2ν . Let us now consider the derivatives of

r(x). While the sum leads to a O(1) contribution, the k’th derivative of the
remainder behaves as o(1)/x2ν−m+k. Together, this leads to

r(k)(x) = O(1) 2ν −m+ k ≤ 0 ,
r(k)(x) = o(1)/x2ν−m+k 2ν −m+ k ≥ 1 .
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Now consider the k’th derivative of g(x) for x 6= 0,

g(k)(x) = (sgnx)ν
k∑
l=0

(
k

l

)[
dl

dxl
xν
]
r(k−l)(x)︸ ︷︷ ︸

sl

.

Assume first that k ≤ ν. Then, sl ∝ O(1)xν−l for 2ν − m + k − l ≤ 0, and
sl ∝ o(1)xm−ν−k for 2ν−m+k− l ≥ 1, and as m ≥ 2ν, it follows that g(k) = O(x)
for k < ν, which cancels the discontinuity originating from sgnx. For k = ν, on
the contrary, sk = O(1), and sgnx introduces a discontinuity on g(k), yet, it
remains bounded and piecewise differentiable on [−1; 0] and [0; 1]. The first non-
bounded sl is found as soon as m − ν − k = −1, and g ∈ Cm−ν([0; 1]) directly
follows.

This also implies that for m− ν − k ≥ 0, g(x)/(sgnx)ν ∈ Cm−ν([−1; 1]), i.e.,
the discontinuity is only due to (sgnx)ν . Since, however, this is only discontinuous
for odd ν, it follows that g ∈ Cm−ν([−1; 1]) if ν even. �

Theorem 4.12. Consider a one-dimensional critical chain with Hamiltonian
H = V ⊕ 1, where Vn = O(n−α), α > 4 and where V̂ has a finite number of
critical points which are all quadratic minima of V̂ . Then, (γP )n = O∗(n−2). For
Vn ∝ n−α, α > 3 it even follows that (γP ) = Θ(n−2).

Note that for Vn ∝ n−α, the extrema of V̂ are always quadratic.

Proof. We want to estimate

(V 1/2)n =
1

2π

∫
S1

g(φ)einφdφ , (4.28)

where g = V̂ 1/2. Under both assumptions, V̂ ∈ C 2(S1), and all critical points
are minima of order 2. It follows from Lemma 4.11 that g is continuous with
bounded derivative. Therefore, we can integrate by parts, the bracket vanishes,
and we obtain

(V 1/2)n = − 1

2πin

∫ 2π

0

g′(φ)einφdφ .

Now, split S1 at the zeros of g into closed intervals Ij,
⋃
j Ij = S1, and rewrite

the above integral as a sum of integrals over Ij. As g′ ∈ C (Ij) (and differentiable
on the inner of Ij), one can once more integrate by parts which yields

(V 1/2)n = − 1

2π(in)2

∑
j

([
g′(φ)einφ

]
Ij
−
∫
Ij
g′′(φ)einφdφ

)
. (4.29)

Neither of the terms will vanish, but since g′ ∈ C (Ij), the bracket is bounded.

In case Vn ∈ O(n−α), α > 4, we have V̂ ∈ C 3(S1), therefore g′′ is bounded
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(Lemma 4.11), and the integrals vanish as o(1). Unless the contributions of the
brackets for the different Ij cancel out, the n−2 bound is tight, (V 1/2)n = O∗(n−2).
The tightness of the bound is also illustrated by the example which follows the
proof.

For the case of an exactly polynomial decay, we additionally have to show
that g′′ is absolutely integrable for 3 < α ≤ 4. Then, the exactness of the bound
holds because the bracket in Eq. (4.29) does not oscillate (the critical point is
either at φ = 0 or at φ = π), and because the integral is o(1) for g′′ ∈ L1(S1). In
case the critical point is at φ = π, the latter holds since V̂ ∈ C∞((0; 2π)) implies
that g′′ is bounded at π, and V̂ ∈ C 2(S1) that g ∈ C 2((−π, π)), which together
proves that g′′ is bounded on S1.

In case the critical point is at φ = 0, the situation is more involved (and for
α = 3, a logarithmic correction appears, cf. Theorem 4.14). Since

V̂ (3)(φ) = −Im
[
Liα−3(eiφ)

]
= O(φα−4) ,

we have

V̂ ′′(φ) = V̂ ′′(0) +O(φα−3) ,

V̂ ′(φ) = V̂ ′′(0)φ+O(φα−2) ,

V̂ (φ) = 1
2
V̂ ′′(0)φ2 +O(φα−1) .

With this information,

g′′(φ) =
2V̂ (φ)V̂ ′′(φ)− V̂ ′(φ)2

4V (φ)3/2
= O(φα−4) ,

which indeed proves that g′′ ∈ L1(S1), and thus (V 1/2)n = Θ(n−2). �

As an example, consider again the discretized Klein-Gordon field of Eq. (4.1)
which is critical for κ = ±1, corresponding to V̂ (φ) = 1 ∓ cosφ. The Fourier
integral is solvable and yields

(γP )n = −2
√

2

π

(sgnκ)n

4n2 − 1
= Θ(n−2) .

Generalizations of Theorem 4.12

Using Lemma 4.11, several generalizations for the 1D critical case can be found.
In the following, we mention some of them. In all cases H = V ⊕ 1 is critical.
Critical points of even order.—If Vn = o(n−∞) and the critical points are minima
of order 2ν, ν even, the correlations decay as (γP )n = o(n−∞). This is the case,
e.g., if V = X2 with X itself rapidly decaying.
Critical points of higher order.—If V̂ has critical points of order at least 2ν, ν

73



odd, and Vn = O(n−α), α > 2ν + 2, then (γP )n = O(n−(ν+1)).
Minima of different orders.—If V̂ has minima of different orders 2νi, in gen-
eral the minimum with the lowest odd νi ≡ ν1 will determine the asymptotics,
(γP )n = O(n−(ν1+1)). As V̂ ∈ C (2 max{νi})(S1) is required anyway, the piecewise
differentiability of V̂ 1/2 is guaranteed.
Weaker requirements on V .—It is possible to ease the requirements imposed on
V in Theorem 4.12 to Vn = O(n−α), α > 3 or V̂ ∈ C 2(S1), respectively. The
price one has to pay is that one gets an additional log correction as in the mul-
tidimensional critical case, Theorem 4.15. The method to bound g′′ is the same
which is used there to derive (4.39).

The above proof does not cover the case of the relevant 1/n3 interaction, which
for instance appears for the motional degrees of freedom of trapped ions. In the
following, we separately discuss this case. It will turn out that the scaling will
depend on the sign of the coupling: while a positive sign (corresponding to the
radial degrees of freedom) again gives a Θ( 1

n2 ) scaling as before, for the negative

sign (corresponding to the axial degree of freedom) one gets Θ
(√

logn
n2

)
.

Theorem 4.13. Consider a critical 1D chain with a 1/n3 coupling with positive
sign, i.e., H = V ⊕1, Vn = c/n3, V0 = 3cζ(3)/2, c > 0, with ζ the Riemann zeta
function. Then, the ground state correlations scale as (γP )n = Θ( 1

n2 ).

Proof. We take w.l.o.g. c = 1
2
. For this sign of the coupling, the critical point

is at π, V̂ (π) = 0. From the proof of Lemma 4.7, we know that V̂ ∈ C 1(S1),
V̂ ∈ C∞((0; 2π)), and that V̂ ′′(φ) = log(2 sin(φ/2)) on (0; 2π). With g := V̂ 1/2, it
follows from Lemma 4.11 that g ∈ C (S1), g ∈ C 1([−π; π]), and g ∈ C∞((0;π]),
g ∈ C∞([−π; 0)). This means that all derivatives g(k), k ≥ 1 can exhibit jumps
at the critical point π but they all remain bounded. In contrast, around φ = 0,
g′ is continuous but g′′ has a log divergence.

Thus, the Fourier integral

(V 1/2)n =
1

2π

∫
S1

g(φ)einφdφ

can be split at 0 and π, and then integrated by parts twice. The brackets of the
first integration cancel out due to continuity of g, and one remains with

(V 1/2)n =
1

π(in)2

(
[g′(φ) cos(nφ)]

π
0 +

∫ π

0

g′′(φ) cos(nφ)dφ

)
,

where we used the symmetry of g. One finds [g′(φ) cos(nφ)]π0 = −
√

log 2
2

(−1)n,

and since g′′ is integrable, the integral is o(1) due to the Riemann-Lebesgue
lemma. Together, this proves (γP )n = Θ( 1

n2 ). �
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Theorem 4.14. Consider a critical 1D chain with a 1/n3 coupling with negative
sign, i.e., H = V ⊕ 1, Vn = −c/n3, V0 = 2cζ(3), c > 0, with ζ the Riemann zeta

function. Then, the ground state correlations scale as (γP )n = Θ
(√

logn
n2

)
.

Proof. Again, take w.l.o.g. c = 1
2
. For the negative sign of the interaction, the

critical point is at φ = 0. Since at this point V̂ ′′ diverges, Lemma 4.11 cannot be
applied, and the situation gets more involved.

As in the previous proof, we use that V̂ ∈ C 1(S1), V̂ ∈ C∞((0; 2π)), and
thus V̂ 1/2 ∈ C (S1), V̂ 1/2 ∈ C∞((0; 2π)). Further, V̂ ′′(φ) = − log(2 sin(φ/2)) on
(0; 2π), cf. the proof of Lemma 4.7, and with sinx = x(1 +O(x2)) we have

V̂ ′′(φ) = − log(φ) +O(φ2)

for φ→ 0 (and similarly for φ→ 2π), and therefore

V̂ ′(φ) = φ(1− log φ) +O(φ3) ,

V̂ (φ) = 1
4
φ2(3− 2 log φ) +O(φ4) .

(4.30)

As V̂ 1/2 ∈ C (S1), we can integrate by parts one time,

(V 1/2)n =
1

2π

∫
S1

V̂ 1/2(φ)einφdφ =
1

πn

∫ π

0

g′(φ) sin(nφ)dφ (4.31)

where we exploited the symmetry of V̂ , and with g := V̂ 1/2. Then, from (4.30),

g′(φ) =
1− log φ√
3− 2 log φ

+O

(
φ2√
| log φ|

)
,

g′′(φ) =
−2 + log φ

φ(3− 2 log φ)3/2
+O

(
φ√
| log φ|

)
,

and after another round of approximation,

g′(φ) =

√
| log φ|√

2
+O

(
1√
| log φ|

)
,

g′′(φ) = − 1

23/2

1

φ
√
| log φ|

+O

(
1

φ| log φ|3/2

)
.

This shows that the remainder g′(φ)−
√
| log φ|/2 is continuous with an absolutely

integrable derivative, and by integration by parts it follows that it only leads to
a contribution O(1/n) in the integral (4.31). Thus, it remains to investigate the
asymptotics of the sine Fourier coefficients of h(φ) =

√
| log φ|. For convenience,

we split the integral (4.31) at 1, and [1;π] only contributes with O(1/n), as h is
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continuous with absolutely integrable derivative on [1; π]. On [0; 1], we have to
compute the asymptotics of

I =

∫ 1

0

√
− log φ sin(nφ)dφ . (4.32)

Therefore, split the integral at 1/n. The left integral can be bounded directly,
and the right after integration by parts [cf. the treatment of Eq. (4.44)]. One gets

I ≤
∫ 1/n

0

√
− log φ dφ+

√
log n

n
+

1

n

∫ 1

1/n

1

2φ
√
− log φ

dφ = O

(√
log n

n

)
.

In order to prove that this is also a lower bound for the asymptotics, it suffices
to show this for the integral (4.32) as all other contributions vanish more quickly.
To this end, split the integral (4.32) into single oscillations of the sine, Jk =

[2πk
n
, 2π(k+1)

n
], k ≥ 0. As

√
− log φ has negative slope on (0; 1), each of the Jk

gives a positive contribution to I, and thus we can truncate the integral at 1
2
,

I ≥
∑

2π(k+1)
n

≤ 1
2

∫
Jk

√
− log φ sin(nφ) dφ . (4.33)

On [0; 1
2
],
√
− log φ has a positive curvature, and thus, each of the integrals can

be estimated by linearly approximating
√
− log φ at the middle of each Jk but

with the slope at 2π(k+1)
n

, which gives∫
Jk

√
− log φ sin(nφ) dφ ≥ π

n2

1

2π(k+1)
n

√
− log

[
2π(k+1)

n

] .
Now, we plug this into the sum (4.33) and bound the sum by the integral from
2π
n

to 1
2

(the integrand in monotonically decreasing), which indeed gives a lower
bound 1

n
(
√

log n
2π
−
√

log 2) on I and thus proves the Θ(
√

log n/n2) scaling. �

4.6.2 Higher dimensions

For more than one dimension, the situation is more involved. First of all, it is
clear by taking many uncoupled copies of the one-dimensional chain that there
exist cases where the correlations will decay as n−2. However, these are very
special examples corresponding to Hamiltonians with a tensor product structure
Hi1i2,j1j2 = Hi1,j1H

′
i2,j2

. In contrast, we show that for generic systems the corre-

lations in the critical case decay as O(n−(d+1) log n), where d is the dimension of
the lattice. The requirement is again that the energy spectrum E(φ) has only a
finite number of zeroes, i.e., finitely many critical points.
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Note that the case of a Hamiltonian with a tensor product structure can also
be solved, as in that case V̂ becomes a product of terms depending on one φi each
and thus the integral factorizes. Interestingly, although the correlations along
the axes decay as n−2, the correlations in a fixed diagonal direction will decay
as n−2

1 · · ·n−2
d ∝ ‖n‖−2d and thus even faster than in the following theorem. The

O
(
‖n‖−(d+1) log ‖n‖

)
decay of the theorem holds isotropically, i.e., independent

of the direction of n.

Theorem 4.15. Consider a d-dimensional bosonic lattice with a critical Hamil-
tonian H = V ⊕ 1. Then the P -correlations of the ground state decay as

O
(
‖n‖−(d+1) log ‖n‖

)
if the following holds: V̂ ∈ C d+1 [e.g., the correlations decay as O(‖n‖−(2d+1+ε)),
ε > 0], and V̂ has only a finite number of zeros which are quadratic minima, i.e.,

the Hessian
(
∂2V̂ (φ)
∂φi∂φj

)
ij

is positive definite at all zeros.

Proof. We have to evaluate the asymptotic behavior of the integral

(V̂ 1/2)n =
1

(2π)d

∫
T d

ddφ

√
V̂ (φ) cos[nφ] .

Let us first briefly sketch the proof. We start by showing that it suffices to
analyze each critical point separately. To this end, we show that is is possible
to smoothly cut out some environment of each critical point which reproduces
the asymptotic behavior. Then, we rotate the coordinate system such that we
always look at the correlations in a fixed direction, and integrate by parts—which
surprisingly can be carried out as often as V̂ is differentiable, as all the brackets
vanish. Therefore, the information about the asymptotics is contained in the
remaining integral, and after a properly chosen number of partial integrations,
we will attempt to estimate this term.

Let now ζi, i = 1, . . . , I be the zeros of V̂ . Clearly, these will be the only

points which contribute to the asymptotics as everywhere else
√
V̂ is C d+1. In

order to separate the contributions coming from the different ζi, we will make
use of so-called neutralizers [103]. For our purposes, these are functions Nξ0,r ∈
C∞(Rd → [0; 1]) which satifsy

Nξ0,r(ξ) =

{
1 : ‖ξ − ξ0‖ ≤ r/2
0 : ‖ξ − ξ0‖ ≥ r

and are rotationally symmetric (cf. [103] for an explicit construction). For each
ζi, there exists an ri such that the balls Bri(ζi) do not intersect. We now define
the functions

fi(φ) :=

√
V̂ (φ) Nζi,ri(φ) , ρ(φ) :=

√
V̂ (φ)−

I∑
i=1

fi(φ) .
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Clearly, ρ is C d+1, and so is each fi except at ζi. Furthermore, each fi is still the
square root of a C d+1 function. By definition,

(V̂ −1/2)n =
1

(2π)d

I∑
i=1

∫
T d

ddφfi(φ) cos[nφ] +
1

(2π)d

∫
T d

ddφρ(φ) cos[nφ] , (4.34)

i.e., it suffices to look at the asymptotics of each fi separately. The contribution
of ρ is O(‖n‖−(d+1)) as can be shown by successive integrations by parts just as
for the non-critial lattice (cf. the proof of Lemma 4.5).

Let us now analyze the integrals

Ii =

∫
Bri (ζi)

ddφfi(φ) cos[nφ] .

The integration range can be restriced to Bri(ζi) as fi vanishes outside the ball.
By a rotation, this can be mapped to an integral where n = (‖n‖, 0, . . . , 0),
whereas fi is rotated to another function f̃i with the same properties,

Ii =

∫
Bri (ζi)

ddφf̃i(φ) cos[‖n‖φ1] .

Since the integrand is continuous and thus bounded, it is absolutely integrable,
and from Fubini’s theorem, one finds

Ii =

∫
Bri

(ζ̃i)

dd−1φ̃

ζi,1+ri∫
ζi,1−ri

dφ1f̃i(φ1, φ̃) cos[‖n‖φ1]

︸ ︷︷ ︸
Ji(φ̃)

,

where we separated out the integration over the first component. The vector φ̃
denotes the components 2 . . . d of φ. The extension of the integration range to a
cylinder is possible as f̃i vanishes outside Bri(ζi).

Let us now require φ̃ 6= ζ̃i. This does not change the integral since the
excluded set is of measure zero, but it ensures that f̃i is in C d+1. This allows us
to integrate the inner integral Ji(φ̃) by parts up to d + 1 times, and each of the
brackets [

f̃
(k)
i (φ1, φ̃)

1

‖n‖k
cos(‖n‖φ1 − kπ/2)

]ζi,1+ri

φ1=ζi,1−ri

appearing in the k’th integration step vanishes. Here, f̃
(d)
i (φ1, φ̃) = ∂df̃i(φ1, φ̃)/∂φd1

is the d’th partial derivative with respect to the first argument. After integrating
by parts d times, we obtain

Ii =
1

‖n‖d

∫
Bri

(ζ̃i)

dd−1φ̃

ζi,1 + ri∫
ζi,1 − ri

dφ1f̃
(d)
i (φ1, φ̃) cos[‖n‖φ1 − dπ/2] . (4.35)
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Now we proceed as follows: first, we show that the order of integration can be
interchanged, and second, we show that for the function obtained after integrating
f̃

(d)
i over φ̃, the Fourier coefficients vanish as log(‖n‖)/‖n‖.

The central issue for what follows is to find suitable bounds on |f̃ (k)
i |. There-

fore, define f̃ 2
i =: hi ∈ C d+1. By virtue of Taylor’s theorem, and as hi(ζi) = 0 is

a minimum,

hi(φ) = 1
2
(φ− ζi) · (D2hi(ζi))(φ− ζi) + o(‖φ− ζi‖2)

with D2 the second derivative, i.e., the Hessian. As the first term is bounded
by 1

2
‖D2hi(ζi)‖∞‖φ− ζi‖2 and the second vanished faster than ‖φ− ζi‖2, we can

find εi > 0 and C1 > 0 such that

|hi(φ)| ≤ C1‖φ− ζi‖2 ∀‖φ− ζi‖ < εi . (4.36)

By looking at the Tayor series of h′i ≡ ∂hi/∂φ1 up to the first order we also find
that there are εi > 0 and C2 > 0 such that

|h′i(φ)| ≤ C2‖φ− ζi‖ ∀‖φ− ζi‖ < εi . (4.37)

In addition to these upper bounds, we will also need a lower bound on |hi|. Again,
by the Taylor expansion of hi around ζi, we find

|hi(φ)| ≥ 1
2
λmin

[
D2hi(ζi)

]
‖φ− ζi‖2 − o(‖φ− ζi‖2) ,

and as all the zeros are quadratic minima, i.e., λmin [D2hi(ζi)] > 0, there exist
εi > 0, C3 > 0 such that

|hi(φ)| ≥ C3‖φ− ζi‖2 ∀‖φ− ζi‖ < εi . (4.38)

Clearly, εi can be chosen equal in Eqs. (4.36–4.38). Note that the bounds can be
chosen to be invariant under rotation of hi and thus of f̃i. This holds in particular
for the εi as the remainders of Taylor series vanish uniformly. Thus, the bound
we will obtain for the correlation function indeed only depends on ‖n‖ and not
on the direction of n.

Now, we use the conditions (4.36–4.38) to derive bounds on |f̃ (k)
i |. Therefore,

note that from f̃i ≡
√
hi it follows that

f̃
(k)
i =

∑
j1+···+jk=k
jν=0,1,2,...

cj1...jkh
(j1)
i · · ·h(jk)

i

h
(2k−1)/2
i

.

One can easily check that for each term in the numerator, the numberK0 of zeroth
derivatives and the number K1 of first derivatives of hi satisfy 2K0 + K1 ≥ k.
By bounding all higher derivatives of hi from above by constants, we find that
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the modulus of each summand in the numerator, and thus the modulus of the
numerator itself, can be bounded above by C ′‖φ − ζi‖k in the ball Bεi(ζi) with
some C ′ > 0. On the other hand, it follows directly from (4.38) that the modulus
of the denominator is bounded below by C ′′‖φ − ζi‖2k−1, C ′′ > 0, such that in
total

|f̃ (k)
i (φ)| ≤ C

1

‖φ− ζi‖k−1
; 1 ≤ k ≤ d+ 1 . (4.39)

Note that this holds not only inside Bεi(ζi) but in the whole domain of fi, as
outside Bεi(ζi), fi is C d+1 and thus all the derivatives are bounded.

Eq. (4.39) is the key result for the remaining part of the proof. First, it can be
used to bound the integrand in (4.35) by an integrable singularity (this is most
easily seen in spherical coordinates, where 1/rd−1 is integrable in a d-dimensional
space). Hence, the order of integration in (4.35) can be interchanged, and it
remains to investigate the asymptotics of the integral

Ii =
1

‖n‖d

ζi,1 + ri∫
ζi,1 − ri

dφ1gi(φ1) cos[‖n‖φ1 − dπ/2] , with (4.40)

gi(φ1) ≡
∫

Bri
(ζ̃i)

dd−1φ̃ f̃
(d)
i (φ1, φ̃) . (4.41)

From (4.39), we now derive bounds on gi(φ1) and its first derivative. Again, we
may safely fix φ1 6= ζi,1 as this has measure zero. Then, using (4.39) we find that

|gi(φ1)| ≤
∫ ri

0

C

((φ1 − ζi,1)2 + r2))(d−1)/2
Sd−1r

d−2dr

where we have transformed into spherical coordinates [Sd−1 is the surface of the
(d−1)-dimensional unit sphere] and assumed the l2-norm. Since (φ1−ζ1)2 +r2 ≥
r2, the integrand can be bounded once again, and we find

|gi(φ1)| ≤
∫ ri

0

CSd−1

((φ1 − ζi,1)2 + r2)1/2
dr

= C

(
− log |φ1 − ζi,1|+ log

[
ri +

√
r2
i + (φ1 − ζi,1)2

])
≤ −C log |φ1 − ζi,1| (4.42)

where in the last step we used that in (4.40) |φ1 − ζi,1| < ri and that ri can be
chosen sufficiently small.

Next, we derive a bound on g′i(φ1). As we fix φ1 6= ζ1, the integrand in (4.41)
is C 1 and we can take the differentiation into the integral,

g′i(φ1) =

∫
Bri

(ζ̃i)

dd−1φ̃f̃
(d+1)
i (φ1, φ̃) .
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Again, we bound the integrand by virtue of Eq. (4.39) and obtain

|g′i(φ1)| ≤
∫ ri

0

CSd−1

((φ1 − ζi,1)2 + r2)
dr

= C
arctan

[
ri

|φ1−ζi,1|

]
|φ1 − ζi,1|

≤ C ′

|φ1 − ζi,1|
. (4.43)

Finally, these two bounds will allow us to estimate (4.40) and thus the asymp-
totics of the correlations in the lattice. We consider one half of the integral (4.40),

ζi,1 + ri∫
ζi,1

dφ1gi(φ1) cos[‖n‖φ1 − dπ/2] , (4.44)

as both halves contribute equally to the asymptotics. We then split the integral
at ζi,1 + ri/‖n‖. The left part gives∣∣∣∣∣∣∣
ζi,1+ri/‖n‖∫
ζi,1

dφ1gi(φ1) cos[‖n‖φ1 − dπ/2]

∣∣∣∣∣∣∣
(4.42)

≤ C

ζi,1+ri/‖n‖∫
ζi,1

dφ1(− log |φ1 − ζi,1|)

= C
ri − ri log ri + ri log ‖n‖

‖n‖
. (4.45)

The right part of the split integral (4.44) can be estimated by integration by
parts,∣∣∣∣∣∣∣

ζi,1+ri∫
ζi,1+ri/‖n‖

dφ1gi(φ1) cos[‖n‖φ1 − dπ/2]

∣∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣
[
gi(φ1)

1

‖n‖
cos[‖n‖φ1 − (d+ 1)π/2]

]ζi,1+ri

ζi,1+ri/‖n‖

∣∣∣∣∣+
1

‖n‖

ζi,1+ri∫
ζi,1+ri/‖n‖

dφ1|g′i(φ1)|

(4.42,4.43)

≤ C
log ‖n‖
‖n‖

+ C ′
| log ri|
‖n‖

. (4.46)

Thus, both halves [Eqs. (4.45),(4.46)] give a log ‖n‖/‖n‖ bound for the integral
(4.44), and therefore the integral Ii is asymptotically bounded by log ‖n‖/‖n‖d+1

following Eq. (4.40). As the number of such integrals in (4.34) is finite, this proves
that the correlations of the ground state decay at least as log ‖n‖/‖n‖d+1. �
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Chapter 5

Entropy and approximability by
Matrix Product States

5.1 Introduction

Understanding the behaviour of quantum many-body systems is a central prob-
lem in physics. Recently, Matrix Product States (MPS) have received much
interest as a variational ansatz for the simulation of correlated one-dimensional
systems. They have proven particularly powerful in approximating the ground
states of local Hamiltonians, as used in the DMRG method [17, 18], but have also
been applied, e.g., to simulate the time evolution of slightly entangled quantum
systems [22]. Despite considerable progress [104], it is still not fully understood
which property exactly a state has to fulfil to be well approximated by MPS. This
knowledge is not only of practical interest, but could also tell us how to extend
the MPS ansatz to, e.g., higher dimensional systems.

It is generally believed that the relevant criterion for efficient approximability
by MPS is that the states under consideration obey an area law, i.e., the von
Neumann entropy of a block is bounded. Although indeed both ground states
of local Hamiltonians and MPS obey an area law, there are reasons to doubt
this immediate connection: Firstly, the von Neumann entropy is an asymtotic
concept, quantifying what happens when dealing with a large number of copies
of a state. Conversely, it has been shown recently that a rigorous connection
can be established by looking at Rényi entropies instead [26]. Unfortunately, the
argument used breaks down as the von Neumann entropy is approached. Finally,
the continuity inequality for the von Neumann entropy carries a size-dependent
constant, and thus states which are close to each other need not be close in
entropy [105].

In the following, we fully explore the connection between entropy scaling and
approximability by MPS. The results are summarized in Table 5.1: An at most
logarithmic scaling of Rényi entropies Sα, α < 1, implies approximability by
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S  >1α

S const log L L,κ<1Lκ

S S1

S  <1α

α~

i n c o n c l u s i v e

non−

approximable

approximable

Table 5.1: Relation between scal-
ing of block Rényi entropies and ap-
proximability by MPS. In the “in-
conclusive” region, the scaling does
not imply anything about approx-
imability.

MPS. On the other side, a faster than logarithmic increase of Sα, α > 1, rules
out efficient approximability by MPS, as does linear growth of the von Neumann
entropy. For all other cases, the scaling of the block entropy does not allow
for conclusions about approximability. In particular, this holds for the case of
constant von Neumann entropy, which demonstates that the reason why MPS
describe ground states well is not simply that those states obey an area law, but
rather some additional property.

Finally, we apply our results to illustrate that quantum computers might out-
perform classical computers in simulating time evolutions. It is long-known that
quantum computers can simulate the evolution of quantum systems [106]. How-
ever, this does not necessarily imply that they will perform better than classical
computers in this task: e.g., ground states of gapped quantum systems appear to
be classically efficiently approximable [104]. On the other hand, it is known that
time evolution under a translational invariant Hamiltonian can implement quan-
tum computations if either translational invariance is broken by the initial [107]
or boundary conditions [108], or the Hamiltonian is time dependent [109], and
is thus hard to simulate. We extend these results by showing that even the
evolution of a translational invariant spin 1

2
system with translational invariant

initial conditions under a time independent Hamiltonian cannot be simulated ef-
ficiently using MPS; this provides strong evidence that quantum computers will
outperform classical computers in simulating these systems.

5.2 Definitions

Let us first introduce the relevant quantities and notations. We want to obtain
approximations which reproduce accurately not only the local properties such
as energy, but also the non-local ones such as correlations. This is ensured by
bounding the error made for an arbitrary observable O,

|tr[ψO]− tr[φO]| ≤ ‖O‖op‖ψ − φ‖tr ,
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where ψ ≡ |ψ〉〈ψ|. We focus on non-extensive observables,1 therefore w.l.o.g.
‖O‖op ≤ 1. It follows that by imposing

‖ψ − φ‖tr ≤ δ , (5.1)

we bound the error made in any observable by δ.
For some of the proofs it will be more convenient to consider the two-norm

distance
∣∣|ψ〉 − |φ〉∣∣

2
or the fidelity∣∣〈φ|ψ〉∣∣∣∣|φ〉∣∣

2

∣∣|ψ〉∣∣
2

=: cos(θ) .

Fortunately, these measures turn all out to be equvalent: Since the best approx-
imating MPS will generally not be normalized, it is appropriate to consider the
optimized quantities, and one finds that

T (φ, ψ) := inf
α>0

‖ψ − αφ‖tr

‖ψ‖tr

≡ sin(2θ)

and

V (φ, ψ) := inf
α∈C

∣∣|ψ〉 − α|φ〉∣∣
2

||ψ〉|2
≡ sin(θ)

for 0 ≤ θ ≤ π
4
.

We now introduce Matrix Product States (MPS) [19]. Consider a chain of N
d-level systems with the corresponding Hilbert space

HN := (Cd)⊗N .

We call |φD〉 ∈ HN a Matrix Product State (MPS) with bond dimension D (or,
briefly, a D-MPS) if it can be written as

|φD〉 =
d∑

i1,...,iN=1

A
[1]
i1
A

[2]
i2
· · ·A[N ]

iN
|i1, i2, . . . , iN〉 (5.2)

with A
[k]
i D ×D matrices for 2 ≤ k ≤ N − 1, and vectors for k = 1, N .

Given a family (|ψN〉) of states, |ψN〉 ∈ HN , we say that it can be approximated
efficiently by MPS if for every δ > 0, there exists a sequence |φN,D〉 of MPS with
D ≡ D(N) = O(polyδ(N)) such that ‖ψN−φN,D‖tr ≤ δ. On the contrary, if there
is some δ > 0 such that no sequence of MPS with polynomial bond dimension can

1 For extensive observables, where ‖ψ − ψD‖tr ≤ δ/N , the results are the same except that
S ∼ Nκ now implies inapproximability [replace δ by δ/N in (5.5)]. In the approximability
example for linearly growing α < 1 Rényi entropy, one has to set pN = 1/N3. As an example
of a non-approximable state with bounded von Neumann entropy, a single copy of (5.6) is now
sufficient, yielding a translation invariant example.
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approximate |ψ〉 up to δ, we say that (|ψN〉) cannot be approximated efficiently
by MPS. For brevity, we will sometimes drop the word “efficiently”.

We will measure entropies using the Rényi entropies

Sα(ρ) =
log trρα

1− α
, 0 ≤ α ≤ ∞ ,

which are a generalization of the von Neumann entropy S(ρ) = −tr[ρ log ρ]. In
particular, lim

α→1
Sα(ρ) = S(ρ). Note that all logs are to the basis 2.

5.3 Approximability and truncation error

We aim to relate approximability by MPS to the scaling of block entropies. To
this end, we first show that the error made in approximating some state by a
D-MPS is determined by the error made when truncating the Schmidt spectrum
of its bipartitions after D values. Therefore, let |ψ〉 ∈ HN , ρk = trk+1,...,N |ψ〉〈ψ|,
and let λ

[k]
1 ≥ λ

[k]
2 ≥ · · · ≥ λ

[k]

dk
be the ordered spectrum of ρk. Then, define the

truncation error

εk(D) :=
kd∑

i=D+1

λ
[k]
i .

Let us now relate the truncation error to approximability by MPS. The in-
tuition is that the best an MPS with bond dimension D (i.e., Schmidt rank D
in any bipartition) can do is preserve the D largest eigenvalues, resulting in an
error of εk(D) for the cut at k (which can, but need not, accumulate). On the
one side, it has been shown in [26] that for a state |ψ〉 ∈ HN , there always exists
an MPS |φD〉 with bond dimension D such that

∣∣|ψ〉 − |φD〉∣∣2 ≤ 2
N−1∑
k=1

εk(D) . (5.3)

On the other hand, any D-MPS |φD〉 satisfies

‖ψ − φD‖tr ≥ εk(D) ∀k , (5.4)

since with ρk = tr1,...,kψ, σD,k = tr1,...,kφD, we have

‖ψ − ψD‖tr ≥ ‖ρk − ρD,k‖tr ≥ εk(D) ,

where we have used the contractivity of the partial trace, that for fixed spectra,
the trace norm distance is extremal for commuting operators [110], and that
rank ρD,k ≤ D.
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5.4 Conclusive cases

We start the discussion of Table 5.1 by proving the cases for which conclusive
statements can be made. In the following, ρLN will denote any L-particle reduced
block of a state |ψN〉 ∈ HN . The case of at most logarithmically growing Rényi
entropy with α < 1 was discussed in [26], where is was shown that it implies
approximability. More formally, if for a family of states (|ψN〉) there exist c, c′ > 0
and 0 ≤ α < 1 such that Sα(ρLN) ≤ c log(L) + c′ for all reduced blocks ρLN , then
it can be approximated efficiently by MPS.

Let us now show that a linearly growing von Neumann entropy implies in-
approximability. Formally, if for a family (|ψN〉), S(ρLN) ≥ cL holds for some
c > 0, L ≡ L(N) ≥ ηN , η > 0, and some reduced blocks ρLN , then it cannot be
approximated efficiently by MPS.

To prove this, we use Fannes’ inequality in its improved version by Aude-
naert [105]: For density operators ρ, σ on a K-dimensional Hilbert space,

|S(ρ)− S(σ)| ≤ T log(K − 1) +H(T, 1− T ) ,

where 2T = ‖ρ − σ‖tr ≤ δ, and H(T, 1 − T ) ≤ 1 is the binary entropy. Let
(|φN,D〉) be a sequence of MPS approximating (|ψN〉) up to δ, and ρLN , σLN,D the
corresponding reduces states for which S(ρLN) ≥ cL. Then,

|S(ρLN)− S(σLN,D)| ≤ 1
2
δL log d+ 1 ,

and thus, for L ≥ ηN ,

logD(N) ≥ S(σLN,D) ≥ S(ρLN)− 1
2
δL log d− 1 (5.5)

≥ η(c− 1
2
δ log d)N − 1

as soon as the error δ < 2c/ log d, i.e., the bond dimension grows exponentially
in N , which completes the proof.

In the following, we show that a faster than logarithmic increase of any Rényi
entropy with α > 1 also implies inapproximability, i.e., if for a family (|ψN〉),
there exist α > 1 and κ > 0 s.th. Sα(ρLN) ≥ cLκ for some c > 0, L ≡ L(N) ≥ ηN ,
and some reduced blocks ρLN , then it cannot be approximated efficiently by MPS.

This is proven by lower bounding the truncation error ε ≡ ε(D) of a block ρLN
for given Sα(ρ) (α > 1) and then applying (5.4). This, however, is the same as
maximizing the entropy while keeping ε fixed. Since both the entropy and ε only
depend on the spectrum, the problem reduces to a classical one. It is easy to see
that the probability distribution

p1, . . . , pD =
1− ε
D

; pD+1, . . . , p2L =
ε

2L −D

is majorized by all decreasingly ordered probability distributions (qi) which satisfy
qD+1 + · · · + q2N = ε, and since Renyi entropies are Schur concave functions, it
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has maximal entropy [110]. Therefore, we obtain the inequality

Sα(ρLN) ≤ −1

α− 1
log

[
(1− ε)α

Dα−1
+

εα

(2L −D)α−1

]
≤ −1

α− 1
log

[
(1− ε)α

Dα−1

]
= logD − α

α− 1
log(1− ε) .

Since from (5.4) the total error is δ ≥ ε, we find

logD ≥ Sα(ρLN) +
α

α− 1

∣∣∣ log(1− δ)
∣∣∣ ,

and from Sα(ρLN) ≥ cLκ ≥ cηκNκ, we infer that D has to grow exponentially for
any δ.

5.5 Inconclusive cases

We now turn towards the inconclusive region in Table 5.1, where we provide
examples for both approximability and inapproximability. This task is greatly
simplified by the fact that approximability examples extend to the top and left
in Table 5.1, while non-approximability extends to the right and bottom. This
holds as approximability for a given scaling implies the same for more moder-
ate scalings (and conversely for non-approximability), and since Sα(ρ) decreases
monotonically in α.

We aim to clarify the relation between entropy scaling laws and the approx-
imability by MPS: Therefore, our examples are not constructed to be ground
states. Yet, all of them form uniform families of states, i.e., they can be gen-
erated by a uniform family of time dependent Hamiltonians. The existence of
time-independent realizations is plausible, as the central ingredient of the ex-
amples are properly distributed entangled pairs. These could be represented by
pairs of localized excitations which are prepared locally and then propagated by
a time-independent Hamiltonian.

All of the examples can be chosen to be translational invariant, with the only
possible exception of the inapproximability example for constant von Neumann
entropy. The question whether any translational invariant state with bounded
von Neumann entropy can be approximated efficiently by MPS thus remains
open.

The examples can be grouped into two classes; the first is based on states of
the type

|ψ2N〉 =
√

1− pN |2〉⊗2N +

√
pN
2N

∑
x∈{0,1}N

|x〉|x〉 . (5.6)

By choosing pN = 1/N , we obtain an example of a state with linearly growing
Rényi entropies for all α < 1 which can be approximated by MPS, as∣∣|ψ2N〉 −

√
1− pN |2〉⊗2N

∣∣
2

=
√
pN → 0 .
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On the other hand, for L ≤ N ,

ρL2N = (1− pN)|2〉〈2|⊗L +
pN
2L

∑
y∈{0,1}L

|y〉〈y| ,

and therefore

Sα(ρL2N) =
1

1− α
log
[
(1− pN)α + 2(1−α)LpαN

]
≥ L− α

1− α
logN .

Note that the infavourable scaling of cα := α
1−α for α → 1 can be compensated

by e.g. choosing pN = N−1/cα .
The next example provides states with algebraically (but sublinearly) growing

von Neumann entropy which can be approximated efficiently by MPS. Therefore,
fix 0 < κ < 1 and ε > 0, and set pN = N−ε(1−κ) in (5.6). As in the previous
example, pN → 0 implies approximability, and

S(ρL2N) = H(pN , 1− pN) + pN log[2L] ≥ L/N ε(1−κ) ,

which implies S(ρL2N) ≥ Lκ for L ≥ N ε.
We now construct a state which obeys a strict area law for the von Neumann

entropy but yet cannot be approximated by MPS. Therefore, set M = 2N3 and
define |χM〉 = |ψ2N〉⊗N

2
with |ψ2N〉 from (5.6), where pN = 1/N . Then, S(ρLM)

is at most twice the maximum entropy of a cut through |ψ2N〉, and thus

S(ρLM) ≤ 2 (H(pN , 1− pN) + pNN) ≤ 4 .

To prove hardness of approximation, observe that for a given D, the best MPS
approximation to |ψ2N〉⊗N

2
is of the form |φD〉⊗N

2
, i.e., it carries the same product

structure.2 From the multiplicativity of the fidelity and the relations following
Eq. (5.1) one infers

T (φ⊗K , ψ⊗K) ≥
√
K/8 T (φ, ψ)

2 It holds in full generality that the optimal D-MPS approximation to a state of the form
|ψA〉|ψB〉 ∈ HN ⊗ HM carries the same product structure: Given any normalized D-MPS
|φD〉, insert

∑
k |k〉〈k| in (5.2) between A[N ] and A[N+1]. This gives a decomposition |φD〉 =∑

k |αk〉|βk〉 with |αk〉 (|βk〉) spanning a subspace ofD-MPS, as they only differ by one boundary
condition. Thus, the same holds for the Schmidt decomposition |φD〉 =

∑
k λk|α̃k〉|β̃k〉 (with

normalized vectors). Define ak := 〈ψA|α̃k〉, bk := 〈ψB |β̃k〉, and the product approximation

|φ′D〉 =

(∑
k

λk
|ak|
ak
|α̃k〉

)(
1

|L|1/2

∑
l∈L

|bl|
bl
|β̃l〉

)
,

where L = {l : |bl| ≥ |bj | ∀j}. Then, |φ′D〉 is a normalized D-MPS, and |〈ψA, ψB |φD〉| <
|〈ψA, ψB |φ′D〉| unless the Schmidt rank of |φD〉 is one.
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for T (φ, ψ)2 ≤ 2/K. Second, from the truncation error εN(D) for |ψ2N〉,

T (φD, ψ2N) ≥ (2N − (D − 1))pN/2
N

for any D-MPS |φD〉. Together, this shows that

D ≥ 2N(1− 8T (ΦD, χM)) + 1

which is exponential in the system size M = 2N3.
It is unclear how to make this example translational invariant. However,

for the adjacent cases in Table 5.1, those examples exist: For S ∼ logL, take
the preceding example and make it translational invariant by adding a tagging
system |10 . . . 0〉⊗N2

and superposing all translations. The resulting state is hard
to approximate as the translational invariance can be broken by local projections
on the tags, and since the reduced state ρLN is the translational invariant mixture
of the original, tagged reduced states, the entropy is increased by at most logL.
For the case Sα ∼ const., α > 1, the state (5.6) with constant pN does the job.

The last two examples are of a different type: We consider N spins on an
ring and take maximally entangled pairs between opposite spins with a certain
density, while the remaining qubits are in |0〉. The first of them provides a state
with S∞ ∼ logL which is approximable. Therefore, distribute the maximally
entangled pairs with density logN/N . This state is an MPS with D = 2logN = N ,
and for any c > 0,

S∞(ρLN) ≥
⌊
L
N

logN
⌋
≥ c logL− 1 for L ≥ cN .

The example can be made translational invariant by taking the superposition of
all translations: this increases the bond dimension by at most a factor of N [111],
while the largest eigenvalue of a block of length N/ logN is 1

2
(for the |0 · · · 0〉

state), leaving the logL lower bound on the S∞ entropy unchanged.
The second example illustrates that for any κ > 0, there is a state with

S0 ∼ Nκ which cannot be approximated by MPS. Again, given N qubits on a
ring, take maximally entangled pairs between opposite spins with density Nκ/N
(κ > 0), and set all other spins to |0〉. Then,

S0(ρLN) ≤ NκL/N + 1 ≤ 2Lκ ,

while inapproximability follows from the superlogarithmic number of maximally
entangled pairs. Translational invariance is achieved by taking the superposition
of all translations for κ′ < κ. The spectrum of a block of length N/Nκ′ is

broadened to (1
2
, N

κ′

2N
, . . . , N

κ′

2N
): this clearly increases the truncation error, and

the entropy scaling gets a log correction

S0(ρLN) ≤ 2Lκ
′
(1 + (1− κ′) logL)

which is bounded by 4Lκ for properly chosen κ′ and L.
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5.6 Hardness of simulating time evolution

Let us now prove the hardness of simulating time evolutions with MPS-based
approaches, using the results obtained. To this end, take a spin 1

2
chain of N

spins which is initially in the ground state for infinite magnetic field,

|ψ(t = 0)〉 = |0 . . . 0〉 ,

and apply a critical Ising Hamiltonian

H = −1

2

∑
j

[
σxj σ

x
j+1 + σzj

]
with periodic boundary conditions. There is good evidence [112] that in this case
the block entropy of any block grows linearly in time, and indeed, a lower bound

S(ρLN(t)) ≥ 8t/3π +O(log t)

for t ≤ L/3, L ≤ N/2, can be rigorously proven [113]. By plugging this into (5.5)
with L = 3t, one finds that

logD ≥
(

8

3π
− 3δ

2

)
t+O(log t) .

Thus, for an error δ < 16/9π ≈ 0.57, the required bond dimension, and therefore
the effort to simulate the time evolution using MPS, grows exponentially in time.

5.7 Smooth Rényi entopies

At the end of this chapter, let us note that more refined criteria for approxima-
bility can be found: e.g., one can consider smooth Rényi entropies [114]

Sεα(ρ) = min{S(σ) : ‖ρ− σ‖tr ≤ ε}

and adapt the approximability proof of [26] to show that if

S1/N1+ε

α (ρLN) ≤ c logN

for some α < 1, ε > 0, and c > 0, then approximability follows. This criterion
is indeed more powerful: The state (5.6) with pN = 1/N2 has linearly growing
Rényi entropies and is thus in the “inconclusive” region, while looking at smooth
entropies shows its approximability. As smooth entropies are a lower bound on
their non-smooth counterpart, this is in fact the only region where their scaling
will imply approximability.
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5.8 Conclusions

We have fully expored the connection between the scaling of block entropies and
the approximability of families of states by MPS. We found that approximability
is implied by a logarithmic scaling of Sα for α < 1, while non-approximability
follows whenever Sα ∼ Lκ for α > 1 and κ > 0, or from a linear growth of the von
Neumann entropy. In all other cases, no conclusive statement can be made by
simply looking at the scaling of block entropies. Except for the case of constant
von Neumann entropy, this is true even under translational invariance. We then
applied these results to prove that even the evolution of completely translational
invariant and time independent systems cannot by simulated efficiently using
MPS, and finally showed that a more refined criterion is obtained from looking
at smooth Rényi entropies.

Open questions remain, in the first place whether translational invariant states
with bounded von Neumann entropy can be approximated efficiently by MPS.
(Note that this is not true for approximability w.r.t. extensive observables, see
Footnote 1 on pg. 85). Furthermore, it would be interesting to find other and
more refined criteria for approximability. As we have shown, one such criterion
is obtained by looking at smooth entropies, but there are more possibilities: one
can, e.g., consider the joint scaling behaviour of several entropies or other spectral
properties of the reduced states.
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Chapter 6

The computational complexity of
PEPS

6.1 Introduction

As we have seen in the preceding chapter, Matrix Product States (MPS) prove
very useful to describe the properties of correlated quantum many-body systems.
Indeed, the Density Matrix Renormalization Group (DMRG) method [17], which
has been extremely successful in the description of one-dimensional phenomena,
can be interpreted as a variational method over the class of MPS [18]. MPS struc-
ture the exponentially large state space into a hierarchy of states with polynomial
description complexity [111], and it turns out that already the lowest levels of
this hierarchy approximate many physical states of interest extremely well. MPS
have a natural extension to two and higher dimensional lattices, called Projected
Entangled Pair States (PEPS), which also have an efficient description and are
promising candidates for variational methods in higher dimensions [24]. It has
been shown that MPS can be created efficiently by a quantum computer [27],
and that they also can be simulated efficiently classically [21]. In contrast, in two
or more dimensions it seems to be hard to create arbitrary PEPS, as well as to
classically compute expectation values. In fact, it has been demonstrated that
there exist 2D PEPS which encode solutions to NP-complete problems [28], thus
posing lower bounds on their complexity and computational power.

In this chapter, we determine both the power of creating PEPS and the com-
plexity of classically simulating them. We investigate which kind of problems
we could solve if we had a way to efficiently create PEPS, and find that these
are exactly the problems in the complexity class PP (deciding whether a boolean
formula has more satisfying than non-satisfying assingments). Second, we show
that classically computing local expectation values on PEPS is a #P-complete
problem (counting the satisfying assignments of a boolean formula). This result
can be extended to the contraction of arbitrary tensor networks, which turns out
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to be #P-comlete as well.
The main tool in our proofs is a duality between PEPS and postselection,

which permits to use existing results from quantum complexity [115]: any PEPS
can be created by a postselected quantum circuit, and any output of such a circuit
can be written as a PEPS. We also apply this duality to show that ground states
of gapped local Hamiltonians in D dimensions can be efficiently approximated
by the boundary of a D + 1-dimensional PEPS. Finally, we compare the power
of creating PEPS to the power of creating ground states of local Hamiltonians.
While in general they are equally hard, we find that when restricting to gapped
Hamiltonians, creating ground states becomes easier: it is in the weaker class
QMA, the quantum analogue of NP.

6.2 PEPS and postselection

We start by recalling the definition of PEPS [116]. Consider an arbitrary undi-
rected graph where each of the vertices corresponds to a quantum system (a spin)
of Hilbert space dimension d. A PEPS on these N spins is constructed by placing
as many virtual spins of dimension D on each vertex as there are adjacent edges.
Along each edge, these virtual spins form maximally entanged states

∑D
i=1 |i〉|i〉.

The physical spins are now obtained from the virtual ones by applying a linear
map P [v] : CD ⊗ . . .⊗ CD → Cd at each vertex v. For the sake of readability, we
will mostly supress the dependence of P on v. The graph underlying the PEPS
will usually be chosen according to the physical setup, typically a two or higher
dimensional lattice.

Let us now turn to postselected quantum circuits [115]. Roughly speaking,
postselection means that we can measure a qubit with the promise of obtaining
a certain outcome. More precisely, the postselected circuits we consider start
from the |0 · · · 0〉 state, perform a sequence of unitary one- and two-qubit gates,
and postselect on the first qubit being |0〉. Thereby, the state α|0〉|φ0〉+β|1〉|φ1〉
is projected onto the state |φ0〉, which is the state created by the postselected
quantum circuit.1 Note that a state with α = 0 will not be considered a valid
input.

In the following, we show that the output of a postselected quantum circuit
can be expressed efficiently as a PEPS on a 2D square lattice with both D =
d = 2. We start by briefly recalling the concept of measurement based quantum
computation [118, 119]: One starts from the 2D cluster state (which is a PEPS
with D = d = 2 [116]) and implements the quantum circuit by a sequence of
projective measurements on the individual spins. Finally, the output is found

1 We do not impose polynomial-size and uniformity conditions on the circuit, which would
yield a natural extension PostΨP of the class ΨP defined in [117]. The reason is that we will
show that there exists a uniform and efficient transformation between PEPS and postselected
quantum states, although none of the two has to satisfy any efficiency or uniformity condition.
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in the unmeasured qubits, up to Pauli corrections which depend on the previous
measurement outcomes. In order to express the output of a postselected circuit as
a PEPS, we therefore start by implementing its unitary part in the measurement
based model. We do this by projecting each qubit on the outcome |a〉 which does
not give a Pauli correction, by replacing the original cluster projector PC with
|a〉〈a|PC . This leaves us with a set of qubits holding the output of the circuit,
and by projecting the first qubit on |0〉, we obtain the output of the postselected
quantum circuit. The transformation between the representations can be carried
out efficiently, and the resulting PEPS has a size polynomial in the length of the
circuit.

Conversely, any PEPS can be efficiently created by a postselected quantum
computer. This holds for PEPS on an arbitary graph with degree (the maximum
number of edges adjacent to a vertex) at most logarithmic in the system size,
which ensures that the P ’s are polynomial-size matrices. The key point is that any
linear map P can be implemented deterministically using postselection. To this
end, append rows or colums of zeros to make P a square matrix P̃ . By appropriate
normalization, we can assume w.l.o.g. that P †P ≤ 1. Hence, there exists a
unitary U on the original system and one ancilla such that 〈0|ancU |0〉anc = P̃ .
This is, by adding an ancilla |0〉anc, performing U and postselecting the ancilla
we can implement P̃ . In order to generate a PEPS using postselection, we thus
have to encode each of the virtual spins in dlogDe qubits, create the maximally
entangled pairs, and implement the U ’s corresponding to the maps P , which can
be all done efficiently. We are thus left with N ancillas, all of which we have
to postselect on |0〉. This, however, can be done with a single postselection by
computing the or of all ancillas into a new ancilla and postselecting it on |0〉.

In summary, on the one side we have that any postselected quantum circuit
can be translated efficiently into a 2D PEPS with D = d = 2, while conversely
there is also an efficient transform from any PEPS to a postselected quantum
circuit. In turn, this shows that all the features and the full complexity of PEPS
can already be found in the simplest case of two-dimensional PEPS, making them
an even more interesting subject for investigations.

6.3 The power of creating PEPS

Let us first briefly introduce the complexity classes #P and PP [120]. Consider an
efficiently computable boolean function f : {0, 1}N → {0, 1}, and let s ≡ s(f) :=
|{x : f(x) = 1}| be the number of satisfying assignments. Then, finding s defines
the counting class #P, while determining whether s ≥ 2n−1 (i.e., finding the first
bit of s) defines the decision class PP. This class contains NP and BQP as well
as QMA, the quantum version of NP.

First, we investigate the computational power of creating PEPS. More pre-
cisely, we consider the scenario of Fig. 6.1: We want to know which decision
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Figure 6.1: The power of creating PEPS: The original decision problem is
transformed into a PEPS description by a polynomial-time algorithm. The black
box creates the corresponding quantum state, and an efficient quantum postpro-
cessing returns the solution. Which kind of problems can we solve this way?

problems we can solve with one use of a PEPS oracle, i.e., a black box which cre-
ates the quantum state from its classical PEPS description, together with efficient
classical pre-processing and quantum post-processing.

We now use the PEPS–postselection duality to show that the power of creating
PEPS equals PP. It has been shown that PostBQP—the class of decision problems
which can be solved by a postselected quantum computer—equals PP, PostBQP =
PP [115]. This readily implies that a PEPS oracle allows us to solve PP problems
instantaneously by preparing the output of the postselected circuit as a PEPS
and just measuring one output qubit in the computational basis. On the other
hand, this is the best we can do with a single use of the PEPS oracle, since every
PEPS can be generated efficiently by a postselected quantum computer. BQP
postprocessing instead of a simple one-qubit measurement does not increase the
computational power, since it commutes with the postselection and can thus be
incorporated in the PEPS.

The fact that creating PEPS allows to solve PP-complete problems strongly
suggests the existence of PEPS which cannot be created efficiently by a quantum
computer. Note however that the states which appear in the PP-hardness proof
above are not of this type: once the corresponding counting problem is solved,
they can be easily constructed. While it appears very unlikely that all PEPS can
be constructed efficiently from some normal form (it would imply QMA = QCMA
and BQP/qpoly = BQP/poly [121]), an example of such a state is still missing.

6.4 The classical complexity of PEPS

Let us now investigate the complexity of classically simulating PEPS, and its
generalization, the contraction of tensor networks. For the case of PEPS, there
are at least three possible definitions of the problem: compute the normaliza-
tion of the PEPS (norm), compute the unnormalized expectation value of some
observable (uev), and compute the normalized expectation value (nev). Since
they can be transformed easily into each other,2 we will use whichever is most

2 uev of 1 gives norm, while uev of an operator A is obtained by applying norm twice,
〈ψ|A|ψ〉 = 〈ψ̃|ψ̃〉 − ‖A‖〈ψ|ψ〉. Here, |ψ̃〉 is derived from |ψ〉 by replacing the relevant P by
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appropriate.
We first show that contracting PEPS is #P-hard, i.e., that for any (polyno-

mial) boolean function f , s(f) can be found by simulating a PEPS. Therefore, we
take a quantum circuit which creates

∑
x |x〉A|f(x)〉B and encode it in a PEPS.

Then, the normalized expectation value of σz of B allows to compute s(f).
To show that the simulation of PEPS is inside #P, we have to show that the

normalization of the PEPS, or equivalently the success probability for the posts-
election, can be computed by counting the satisfying assigments of some boolean
function. This can be done by adapting well-established quantum complexity
techniques (see [115] and references therein): First, approximate the postselected
circuit using only Toffoli and Hadamard gates [122, 123]. The probability px for a
state |x〉 before postselection is obtained as a kind of path integral [124], by sum-
ming the amplitudes for all possible “computational paths” ζ = (ζ1, . . . , ζT−1),
where |ζt〉 is the state step t and T the length of the circuit:

px =
∣∣∣∑

ζ

αx,ζ

∣∣∣2 =
∑
ζ,ζ′

αx,ζα
∗
x,ζ′ ,

with αx,ζ a product over transition amplitudes Aζt→ζt+1 along the path ζ. The
normalization of the PEPS is obtained as the sum over all states where the post-
selection succeeds,

∑
x̄ p(0,x̄). This can be rewritten as the sum over an efficiently

computable function
f(x̄, ζ, ζ ′) = α(0,x̄),ζα

∗
(0,x̄),ζ′

which takes values in {0,±1}, as the circuit consisted only of Toffoli and Hadamard
gates. Now this sum can be computed by counting the satisfying assigments of
the function

fbool(ξ, z) := (f(ξ) ≥ z) , z ∈ {0, 1} ,

which shows that the simulation of PEPS is in #P. Together, we find that the
classical simulation of PEPS is #P-complete under weakly parsimonious reduc-
tions (see Footnote 2).

It is natural to ask whether this also shows that contracting general tensor
networks is in #P. For a tensor network T , let us denote its contraction by
C(T ) ∈ C. Since the contraction of PEPS is a special case, it is clear that the
problem is #P-hard. To place it within #P, observe first that |C(T )|2 = C(T⊗T ∗)
can be found by attaching a physical system of dimension one to each site and
computing the normalization of the resulting PEPS. To determine the phase of

(A + ‖A‖1)1/2P . Clearly, uev and norm allow to compute nev. Conversely, to compute the
norm of a PEPS write it as a quantum circuit, but stop before the postselection. Then, its norm
equals the nev of diag(1, 0) on the qubit to be postselected, which equals the nev on a PEPS.
All reductions are weakly parsimonious: problem A can be solved by one call to problem B,
with efficient pre-processing of the input and post-processing of the output. Note that two (or
more) parallel #P-queries can be encoded in a single one, by considering h(x, y, b), defined as
f(x) for b = 0 and g(y) for b = 1, x = 0.
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C(T ), observe that C(T ⊕ T ′) = C(T ) + C(T ′). Thus, by setting T ′ = T ∗, we
get |Re(C(T ))|, while the sign can be determined by adding another T ′′ ≡ c > 0.
This proves that contracting tensor networks is #P-complete.

The obtained hardness results are stable under approximations. To see why,
note that any counting problem can be reduced to any of our three primitives
with only linear postprocessing, and thus approximating these primitives is as
hard as approximating counting problems can be. For nev, this again works by
preparing

∑
|x〉A|f(x)〉B and computing the expectation value of B. For norm

and thus uev, note that the output of any normal quantum circuit and thus∑
|x〉A|f(x)〉B has a known norm when written as a PEPS, since the success

probability of each cluster projector is known, and the probability of the two
measurement outcomes in the cluster is unbiased [119]. Thus, the probability for
|1〉B can be readily determined from the norm of the PEPS where we postselected
on |1〉B.

6.5 PEPS and ground states

The interest in MPS and PEPS stems mainly from the fact that those states
perform extremely well in approximating ground states. In the following, we
use the PEPS–postselection duality, and a relation between postselection and
cooling, to shed new light on the connection between PEPS and ground states.
In particular, we show that the unique ground state of a gapped Hamiltonian on
a D-dimensional lattice can be approximated efficiently by the border of a PEPS
with D + 1 dimensions.

Consider a Hamiltonian on N spins, H =
∑

iHi, where each Hi acts on a
finite number of spins, with a unique ground state and a polynomial energy gap
∆ ≥ 1/poly(N). Starting from a random state |χ〉, the ground state can be effi-
ciently approximated via |ψ0〉 ≈ exp[−βH]|χ〉. The imaginary time evolution can
in turn be approximated using the Trotter decomposition, which only requires
operations exp[−β/NHi] acting on finitely many spins. Since those operations
are linear, they can be implemented using postselection, and we see that postse-
lection can be used to cool into the ground state. By embedding the postselected
cooling procedure in a PEPS, the ground state of any gapped N -particle Hamil-
tonian can be approximated up to ε by the boundary of a PEPS, where the extra
dimension has depth M ∼ poly(N, 1/ε).3 In case the Hi are local, the PEPS can
be simplified considerably since any local linear operation can be implemented
directly on the level of the PEPS without the need for ancilla qubits.

3One might object that the performance of 1D variational methods is much better. However,
there are several differences: Our method works for any dimension and for non-local Hamil-
tonians, it is constructive, it does not break translational symmetry, and it implements the
complete evolution exp[−βH].

98



6.6 The power of creating ground states

As we have seen, PEPS can encapsulate problems as hard as PP. However, these
PEPS are quite artificial, while in practice one is often interested in PEPS in
connection with ground states. Therefore, let us have a look at the computational
power of a ground state oracle, i.e., a black box which creates the ground state
from the Hamiltonian.

First, let us introduce the complexity class QMA [125]. Colloquially, QMA is
the quantum version of NP, i.e., it contains all decision problems where for the
“yes” instance, there exists an efficiently checkable quantum proof, while there is
no proof for any “no” instance. In a seminal work, Kitaev [125, 126] has shown
that the problem of determining ground state energies of local Hamiltonians up to
polynomial accuracy is QMA-complete. More precisely, in local hamiltonian
one is given an N -qubit local Hamiltonian H =

∑
Hi with the promise that

the ground state energy E0 < a or E0 > b, b − a > 1/poly(N), and the task
is to decide whether E0 < a. Clearly, the ground state of H serves as a proof
for a “yes” instance. In successive works, the class of Hamiltonians has been
restricted down to two-particle neareast neighbor Hamiltonians on a 2D lattice
of qubits [127].

Let us briefly reconsider our cooling protocol in the light of QMA. It is easy
to see that the QMA proof need not necessarily be the ground state, as long as it
is close enough in energy (depending on the verifier). Since our cooling protocol
suppresses higher energy levels exponentially, the correspondence between post-
selection and cooling shows that a postselected quantum computer can be used
to create proofs for QMA problems, or differently speaking, that any QMA proof
can be efficiently expressed as a PEPS.

In the following, we give some observations which indicate that creating
ground states of gapped Hamiltonians is easier than creating PEPS. First, note
that a ground state oracle for arbitrary Hamiltonians is still as powerful as PP.
To see why, take a PP problem and encapsulate it in a PEPS. By perturbing
the P ’s randomly by a small amount, one obtains a PEPS which is the unique
ground state of a local Hamiltonian, which can be derived efficiently from the
P ’s [111, 128]. This shows that an unrestricted ground state oracle enables us
to solve PP problems. However, the gap ∆ of the above Hamiltonian will be
exponentially small: if not, one could add a small penalty, say ∆/100, on the
“answer” qubit, and use that the original Hamiltonian has ground state energy
E0 = 0: Then, determining the value of that qubit could be solved in QMA, thus
proving QMA = PP which is considered unlikely [129].

Since ground states of general Hamiltonians are not easier to create than
PEPS, let us now assume an oracle which only works for local Hamiltonians with
a unique ground state, known ground state energy, and a polynomial spectral gap
to the first excited state. (Alternatively, one could consider “proof oracles” for
the local hamiltonian problem.) It is easy to see that this restricted oracle,
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even with BQP postprocessing, is at most as powerful as QMA. The proof is the
ground state, and the verifier is constructed as follows. Let V1 be the verifier
for the ground state, it accepts the ground state with pGS, and any excited state
with probability at most pES = pGS −∆, ∆ = 1/poly(N). Further, let V2 be the
postprocessing circuit which has a polynomial separation between the “yes” and
the “no” answer if applied to the ground state, pyes = 1/2 + δ, δ = 1/poly(N).

Take Q = ∆/2+1
∆+1

, and construct the complete verifier as follows: with probability
Q, run V1, and with (1 − Q), run V2. One can readily check that this gives a
polynomial separation between the cases where the proof is the ground state and
the postprocessing return “yes”, and the cases where either the proof is not the
ground state or the postprocessing returns “no”. The same strategy can be used
to show that a PEPS oracle cannot be tested on all inputs unless QMA = PP:
Otherwise, one could take a PP-hard PEPS and construct a verifier which either
runs the testing routine or reads out the PP solution.

These observations show that imposing a constraint on the spectral gap of
a Hamiltonian has direct implications on its computational complexity, and we
think that the complexity properties of gapped Hamiltonians are worth being
considered. On the one side, in the above scenario it is not clear whether all QMA
problems can be solved using this oracle, on the other side, it is not clear how
important the knowledge of the ground state energy is—note that we however also
had this knowledge in the PP-hard case. It is also an interesting question whether
the problem local hamiltonian remains QMA-complete when restricting to
polynomially gapped Hamiltonians. If not, gapped local hamiltonian should
be a natural candidate for a physically motivated class of problems weaker than
QMA.
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Chapter 7

Gaussian Matrix Product States

7.1 Introduction

As we have seen in the previous chapters, Matrix Product States (MPS) and
their higher dimensional generalization, Projected Entangled Pair States (PEPS),
provide an efficient and useful way to describe quantum many-body systems.
Also, we have seen in Chapter 4 that lattices of harmonic oscillators interacting
via a quadratic Hamiltonian can both be used to describe physical scenarios as
e.g. vibrational modes in solid state systems or ion traps, and can serve as an
accessible model for more complicated system due to their efficient description in
terms of Gaussian states. In this chapter, we introduce Gaussian Matrix Product
States (GMPS), a generalization of MPS and PEPS to the case of harmonic
lattices.

We define GMPS as projected entangled pairs, and prove that every (transla-
tion invariant) Gaussian state can be represented as a (translation invariant)
GMPS. We then investigate how much entanglement is really needed in the
bonds, since different from the finite dimensional case, a maximally entangled
bond would carry an infinite amount of entanglement. We continue by discussing
correlation functions and show that they can be computed efficiently from the
GMPS representation; for the case of pure one-dimensional GMPS with one mode
per site, we prove that the correlations decay exponentially (as it is the case in
finite dimensions) and explicitly derive the correlation length. Finally, again in
analogy to the finite dimensional case, we show that every GMPS is the ground
state of a local Hamiltonian.

Throughout this chapter, we will use the basic concepts and notations for
Gaussian states and lattices as introduced at the beginning of Chapter 4.
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7.2 Definition of Gaussian MPS

We start by defining Gaussian matrix product states (GMPS). The definition
resembles the physical interpretation of finite-dimensional matrix product states
as projected entangled pairs. In finite dimensions, MPS can be described by
taking maximally entangled pairs of dimension D between adjacent sites, and
applying arbitrary local operations on each site, mapping the D ×D input to a
d-dimensional output state. Similarly, GMPS are obtained by taking a number of
entangled bonds and applying local (not necessarily trace-preserving) operations
T [i], where the boundary conditions can be taken either open or closed. Any
GMPS is completely described by the type of the bonds and by the operations
T [i]. Note that this construction holds independent of the spatial dimension.
For one dimension, it is illustrated in Fig. 7.1. As matrix product states are
frequently used to describe translationally invariant systems, an inportant case
is given if all maps are identical, T [i] = T ∀i.

In order to define MPS in the Gaussian world, we have to decide on the
type of the bonds as well as on the type of operations. We choose both the
bonds to be Gaussian states and the operations to be Gaussian operations, i.e.,
operations mapping Gaussian inputs to Gaussian outputs. For now, we will
take the bonds to be maximally entangled (i.e., EPR) states, such that the only
parameter originating from the bonds is the number M of EPRs. We show later
on how the case of finitely entangled bonds can be easily embedded.

As to the operations, we will allow for arbitrary Gaussian operations. Op-
erations of this type are most easily described by the Jamiolkowski isomor-
phism [130]. There, any Gaussian operation T which maps N input modes to
M output modes can be described by an N +M mode covariance matrix Γ with
block B (input) and C (output). The corresponding map on some input state γin

in mode A is implemented by projecting the modes A and B onto an EPR state
as shown in Fig. 7.2, such that the output state T (γin) is obtained in mode C.
Conversely, the matrix Γ which represents the channel T is obtained by applying

[i+1][i]
TT

i i+1

i i+1γ

8 8 8

Figure 7.1: Construction of Gaussian Matrix Product States (GMPS). GMPS
are obtained by taking a fixed number M of maximally entangled (i.e., EPR)
pairs shared by adjacent sites, and applying an arbitrary 2M to 1 mode Gaussian
operation T [i] on site i.
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γin

γout

Γ
A

B C

Figure 7.2: The Jamiolkowski isomorphism. The
Gaussian channel described by the state Γ can
be implemented by projecting the input state γin

(mode A) and the input port of Γ (mode B) onto
the EPR state (symbolized by curly brackets). In
case of success, the output is obtained in mode
C. The operation can be made trace-preserving by
measuring in a basis of displaced EPR states, and
displacing C according to the measurement out-
come.

the channel to one half of a maximally entangled state. The duality between T
and Γ is most easily understood in terms of teleportation, and shows that this
characterization encompasses all Gaussian operations. Note that the protocol of
Fig. 7.2 can be always made trace-preserving by projecting onto the set of phase-
space displaced EPR states and correcting the displacement of mode C according
to the measurement outcome [69].

In the following, we will denote all maps T by their corresponding CM Γ.
Sometimes, we will speak of the modes B and C as input and output ports of Γ,
respectively.

We now discuss how the covariance matrix of the output will depend on the
CM of the input and on the channel Γ [68, 69]. This is most easily computed in
the framework of characteristic functions [66]. The characteristic function of the
output is given by

χC(ξC) ∝
∫
e−ξ

T
AγinξAe−ξ

T
BCΓξBCδ(xA − xB)δ(pA + pB)dξAB ,

and by integrating out subsystem A,

χC(ξC) ∝
∫
e−ξ

T
BCMξBCdξB ,

with

M =

(
θγθ + ΓB ΓBC

ΓCB ΓC

)
.

Basically, the integration
∫

dξAδ(xA − xB)δ(pA + pB) does the following: first,
it applies the partial transposition θ ≡ ( 1 0

0 −1 ) to one of the subsystems, and
second, it collapses the two systems A and B in the covariance matrix by adding
the corresponding entries. The integration over ξB, one the other hand, leads to
a state whose CM is the Schur complement of M11, M22−M21M

−1
11 M12, such that

the output state is described by the CM

γout = ΓC − ΓCB
1

ΓB + θγinθ
ΓBC .
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Let us briefly summarize how to perform projective measurements onto the
EPR state in the framework of CMs, where we denote the measured modes by A
and B, while C is the remaining part of the system. First, apply the partial trans-
position to B, second, collapse A and B, and third, take the Schur complement
of the collapsed mode AB, which gives the output CM of C.

As we discuss Gaussian matrix product states in connection with ground
states of Hamiltonians, we are mainly interested in pure GMPS. Particularly, a
GMPS is pure if the Γ[i] which describe the operations T [i] are taken to be pure,
which we assume from now on.

Let us finally emphasize that the given defintion of MPS holds independent
of the spatial dimension of the system, as do most of the following results, and
in fact applies to an arbitrary graph.

7.3 Completeness of Gaussian MPS

In the following, we show that any pure and translational invariant state can be
approximated arbitrarily well by translational invariant Gaussian matrix prod-
uct states, i.e., GMPS with identical local operations T . (Without translational
invariance, this is clear anyway: the complete state is prepared locally and tele-
ported to its destination using the bonds.) The proof is presented for one dimen-
sion, but can be extended to higher spatial dimensions.

Given a translational invariant state γ, there is a translational invariant
Hamiltonian H which transforms the separable state 1 into γ, γ = SST , S = eσH .
It has been shown [131] that this time evolution can be approximated arbitrar-
ily well by a sequence of translational invariant local (one-mode) and nearest
neighbor (two-mode) Hamiltonians Hj,

eσH ≈
J∏
j=1

e
L
n σHj , (7.1)

where the Hj act on one or two modes, respectively, and approach the identity
for growing J .

Clearly, translational invariant local Hamiltionians can be implemented by
local maps without using any EPR bonds. In the following, we show how trans-
lational invariant nearest-neighbor interactions can be implemented by exploiting
the entanglement of the bonds. The whole procedure is illustrated in Fig. 7.3 and
requires two EPR pairs per site. We start with some initial state γin onto which
we want to apply S⊕ = e

L
σHj ≈ 1 +

⊕
n σHj.

First, we perform local EPR measurements between the modes of γin and one
of the bonds in order to teleport the modes of γin to the left, cf. Fig. 7.3a. Then,
the infinitesimal symplectic operation S = eσHj is applied to the left-teleported
mode and the second bond, Fig. 7.3b. In the last step, another EPR measurement
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i i+1
γ in

8

i i+1

i+1

i i+1
S

i+2

SS

8 8

γ out

b)

a)

c)

d)

Figure 7.3: Implementa-
tion of a translational invari-
ant nearest neighbor Hamilto-
nian in a translational invari-
ant fashion. Starting from γin,
the input is first teleported to
the left, then, the infinitesi-
mal time evolution S = eσH ,
H � 1, is performed, and fi-
nally, the state is teleported
back.

is performed which teleports the left-teleported mode back to the right, and
“into” the mode on which the adjacent S was applied. As the operations eσHj ≈
1+σHj all commute, the “nested” application of the nearest neighbor symplectic
operations S indeed give S⊕. Thus, the remaining mode indeed contains the
output γout = S⊕γinS

T
⊕. The whole decomposition (7.1) can be implemented by

iterated application of the whole protocol of Fig. 7.3.

7.4 GMPS with finitely entangled bonds

In this section we show that in general, infinitely entangled bonds can be re-
placed by finitely entangled ones. Intuitively, this should be possible whenever
the channel T [i] destroys some of the entanglement of the bond anyway, i.e., Γ[i]

is non-maximally entangled. In that case, it should be possible to use a less en-
tangled bond while choosing a channel which does not destroy entanglement any
more.

The method is illustrated in Fig. 7.4. Again, for reasons of clarity we restrict
to one dimension and one bond. The argument however appies independent of
the spatial dimension and the number of bonds. The only restriction we have to
make is the restriction to pure GMPS, i.e., those with pure Γ[i].

Consider a GMPS with local channels given by Γ[i] and infinitely entangled
bonds, Fig. 7.4a. First, apply a Schmidt decomposition [132] to Γ[i] in the par-
tition A|BC, which can be always done as long as Γ[i] is pure. The Schmidt
decomposition allows us to rewrite the state as shown in Fig. 7.4b—an entangled
state between modes A and C with two-mode squeezing r[i], B in the coherent
state 1, and sympectic operations S

[i]
A and S

[i]
BC which are applied to modes A

and BC, respectively. As the bond itself is infinitely entangled, we can tele-
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Figure 7.4: How to make the bonds of GMPS finitely entangled. a) The initial
MPS. b) Do a Schmidt decomposition of the original map Γ. c) Move the S[i]

A

through the infinitely entangled bond to the next site. d) Swap the finitely and
the infinitely entangled pair.

port the sympectic operation through the bond to the next site as indicated in
Fig. 7.4b. Then, S

[i+1]
A can be merged with S

[i]
BC to a new operation S̃[i] acting

on modes B and C of site i (Fig. 7.4c). Finally, in the triples consisting of one
maximally entangled state, one non-maximally entangled state, and the projec-
tion onto the EPR state, the maximally and the non-maximally entangled state
can be swapped, resulting in Fig. 7.4d. There, we have finitely entangled bonds,
while the infinite entanglement has been moved into the new maps Γ̃[i].

It is tempting to apply this construction to the completeness proof of the
preceding section in order to obtain a construction which is less wasting with
respect to resources. However, for any iterative protocol this is most likely difficult
to achieve. The reason for this is found in the no-distillation theorem which
states that with Gaussian operations, it is not possible to increase the amount of
entanglement [69] between two parties. Particularly, this implies that in each step
of an iterative protocol, the bonds need to have at least as much entanglement as
can be obtained at the output of this step, maximized over all inputs where the
entanglement is increased. This is indeed a severe restriction, although it does
not imply the impossibility of such a protocol. One could, e.g., create a highly
entangled state in the first step and then approach the desired state by decreasing
the entanglement in each step. Still, it seems most likely that a sequence of MPS
which approach a given state efficiently will have to involve more and more bonds
simultaneously and thus cannot be constructed in an iterative manner.

7.5 Correlation functions of Gaussian MPS

In this section, we show how to compute correlations functions from the maps
Γ[i] which describe the GMPS. We show that this can be done efficiently, i.e.,
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Figure 7.5: If the local operations
are described by states Γ[i] via the
Jamiolkowski isomorphism, the con-
struction of GMPS can be simpli-
fied by replacing the measurement-
bond-measurement triples by a sim-
ple projection onto the EPR state.

in polynomial time independent of the dimension of the graph which is different
to the finite dimensional case. Of course, this is not too surprising as Gaussian
states can be fully characterized by a number of paramaters quadratic in the
number of modes.

Let us start with the general case of different Γ[i], as in Fig. 7.5a. The cal-
culation can be facilitated by the simple observation that the triples consisting
of two projective measurements and one EPR pair can be replaced by a single
projection onto the EPR state, Fig. 7.5b. It follows that we can apply the for-
malism for projective measurements onto the EPR state which we presented in
Sec. 7.2. We start from

⊕
i Γ

[i]. First we partially transpose all B modes, then
we collapse Ai+1 and Bi for all i, and finally we take the Schur complement of
the merged mode. In case of periodic boundary conditions, this can be expressed
by the transformation matrix

Π =

(
1A RθB 0
0 0 1C

)
(7.2)

which maps ABC onto A′C, where θB ≡ θ ⊗ 1 is the partial transposition on
system B, and R is the circulant right shift operator, (R)ij = δi,j+1 mod N ⊗ 1.
Then, the output state, i.e., the GMPS characterized by Γ[i], is

γ = SCA′

[
Π

(⊕
i

Γ[i]

)
ΠT

]
,

where SCX(U) is the Schur complement of the X part of U , SCX(U) = UY Y −
UY XU

−1
XXUXY . For fixed boundary conditions, the matrix Π has to be modified

accordingly at the boundaries. All the involved operations scale polynomially in
the product NM of the number of sites N and the number of modes M .

In case all the local maps are chosen equal, Γ[i] ≡ Γ ∀i, the above formula
can be simplified considerably. Therefore, note that the Fourier transform can
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be taken into the Schur complement, and that Π as well as
⊕N

i=1 Γ[i] = Γ ⊗ 1N
are blockwise circulant so that both are diagonalized by the Fourier transform.
We adapt the notation used in Section 4.3 of writing the diagonal of the Fourier
transformed matrices as functions of an angle φ. In that case, Γ ⊗ 1 is mapped
onto the constant function Γ, and the same holds for 1 and θ in (7.2). The
right shift operator R, on the other hand, is transformed to eiφ1: the EPR
measurement performed between adjacent sites leads to a complex phase of φ.
Altogether, we have

Π̂ =

(
1A eiφθB 0
0 0 1C

)
; γ̂ = SCA′

[
Π̂ Γ Π̂†

]
.

Directly expressed in terms of the map Γ, this reads

γ̂(φ) = ΓC − ΓC|AB Λ̂
1

Λ̂ ΓAB|AB Λ̂†
Λ̂† ΓAB|C (7.3)

where Λ̂ = (1A ; eiφθB) is the upper left subblock of Π̂.

7.6 States with rational trigonometric functions

as Fourier transforms

If one restricts to pure MPS (i.e., those for which Γ is pure) with one mode per
site, then it follows from Theorem 4.2 that these states have reflection symmetry,
and therefore γ̂(φ) = γ0 + 2

∑
n≥0 γn cos(nφ) is real. This implies that the sines

in (7.3) can only appear in even powers sin2n φ = (1 − cos2 φ)n. Therefore, the
Fourier transform γ̂ of any pure Gaussian MPS, which is a 2 × 2 matrix valued
function of φ, has elements which are rational functons of cos(φ), (γ̂(φ))xy =
pxy(cos(φ))/qxy(cos(φ)) with p, q polynomials. The degree of the polynomials is

limited by the size of Λ̂ΓABΛ̂†, and thus by the number M of the bonds. One
can easily check that dim p ≤ 2M + 1 and dim q ≤ 2M .

For the following discussion, let us write those rational functions with a com-
mon denominator d,

γ̂(φ) =
1

d(cos(φ))

(
q(cos(φ)) r(cos(φ))
r(cos(φ)) p(cos(φ))

)
, (7.4)

where q, p, r, and d are polynomials of degree L. Then, the set of all such γ̂
with L ≥ 2M + 1 encompasses the set of translational invariant GMPS with
M bonds. Computing correlation functions in a lattice of size N can be done
straightforwardly in this representation by taking the discrete Fourier transform
of γ̂(φ) which scales polynomially with N , and in the following section we show
that for one dimension, the correlations can be even computed exactly in the
limit of an infinite chain.
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It is interesting to note that γ(φ) is already determined up to a finite number
of possibilities by fixing r and d. Since γ is pure, 1 = det γ = det γ̂, and therefore,
pq = d2 +r2. Therefore, the zeros of pq are the zeros of d2 +r2, such that the only
freedom is to choose how to distribute the zeros on p and q. On the contrary,
fixing only q and d does not give sufficient information, while choosing p, q and
d (i.e., the diagonal of γ̂) does not ensure that there exists a polynomial r such
that pq − r2 = d2.

From the above, it follows that 2L + 1 parameters are sufficient to describe
γ̂(φ), where L is still the degree of the polynomials. This encloses all translational
invariant Gaussian MPS with bond number M ≤ (L− 1)/2, which need (2M +
1)(2M + 2) = L(L + 1) parameters. Therefore, the class of states where γ̂(φ)
is a rational function of cos(φ) is a more efficient description of translationally
invariant states than Gaussian MPS are.

Let us stress once more that the results of this section hold for arbitrary
spatial dimension.

7.7 Correlation length

In the following, we show that the correlations of one-dimensional GMPS decay
exponentially and explicitly derive the correlation length. The derivation only
makes use of the representation (7.4) of Gaussian MPS and thus holds for the
whole class of states where the Fourier transform is a rational function of the
cosine. We will restrict to the case where the state Γ associated to the GMPS
map has only finite entries, which corresponds to the case where the denominator
d(cos(φ)) in (7.4) has no zero on the unit circle.1

The correlations are directly obtained by back-transforming the elements of
γ̂(φ), which are rational functions [γ̂(φ)]s = s(cos(φ))/d(cos(φ)), s ∈ {p, q, r}; in
the limit of an infinite chain,

(γs)n =
1

2π

∫ 2π

0

s(cos(φ))

d(cos(φ))
einφdφ .

Now transform s, d to complex polynomials via cos(φ)→ (z+1/z)/2, and expand
with zK , s̃(z) := zKs(z), d̃(z) := zKd(z), where K is chosen large enough to make

1 The case where d has zeros on the unit circle corresponds to critical systems, which is why
the correlations diverge. In the case of a Hamiltonian H = V ⊕ 1, however, the ground state
correlations of P do not diverge. As in that case one has pq = d2, p/d = d/q need not have a
singularity just because q/d has one.
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s̃, d̃ polynomials in z. Then,

(γs)n =
1

2πi

∫
S1

s̃(z)zn−1

d̃(z)
dz

=
∑

zi:d̃(zi)=0

1

(νi − 1)!

dνi−1

dzνi−1

[
s̃(z)zn−1

d̃i(z)

]∣∣∣∣
z=zi︸ ︷︷ ︸

Di

by the calculus of residues, where νi is the order of the zero zi in d̃ and d̃i(z)(z−
zi)

νi = d̃(z). For n > νi, Di ∝ z
(n−νi)
i , and it follows that the correlations decay

exponentially, where the correlation length is given by the largest zero of q(z)
inside the unit circle.

This proof holds only for one-dimensional GMPS. However, it can be proven
for arbitrary spatial dimensions that the correlations decay as o(‖n‖−∞) by iter-
ated integration by parts as in Lemma 4.5.

7.8 GMPS as ground states of local Hamiltoni-

ans

Finally, we prove that every Gaussian MPS is the ground state of a local Hamil-
tonian, and show that only a special class of local Hamiltonians has a GMPS as
an exact ground state. Again, the proof only relies on the representation (7.4).

Given a state γ with Fourier transform (7.4), define H to be the Hamiltonian
matrix with Fourier transform

Ĥ(φ) =

(
p(cos(φ)) −r(cos(φ))
−r(cos(φ)) q(cos(φ))

)
. (7.5)

Then, H corresponds to a local Hamiltonian—the interaction range is the degree
of p, q, r—and according to (4.9), E(φ) =

[√
pq − r2

]
(cosφ) = d(cosφ), which

together with Eq. (4.10) proves that γ is the ground state of H.
It is interesting to have a brief look at the converse as well. Given a local

Hamiltonian, when will it have a GMPS as its ground state? Any local Hamil-
tonian has a Fourier transform which consists of polynomials in cos(φ), and thus
we adapt the notation of Eq. (7.5). Then, the ground state is represented by a
rational function of cos(φ) in Fourier space exactly if pq − r2 = d2 is the square
of another polynomial, as can be seen from Eq. (4.10). In terms of the original
Hamiltonian, this implies that HQHP − H2

QP has to be the square of another
banded matrix. For example, for the usual case H = V ⊕ 1 one would need
V = X2 with X again a banded matrix. The Klein-Gordon Hamiltonian (4.1),
e.g., does not have a GMPS as its ground state.
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Chapter 8

Conclusions and outlook

Entanglement is one of the most intriguing phenomena in quantum physics, and
it is at the core of quantum information theory. In this thesis, we investigated
several topics relating to both the theory and the application of entanglement.

We started in Chapter 2 by investigating how the notion of entanglement
changes under the constraint given by superselection rules (SSR). We introduced
a new quantity, the superselection induced variance SiV, and showed that to-
gether with the entropy of entanglement, it allows to fully quantify the amount
of nonlocality of pure states. We extended this to mixed states by generalizing
the concept of entanglement of formation and distillable entanglement to SiV
and developing protocols how to distill both SiV and entanglement. We demon-
strated that SiV is a resource as it allows to overcome the SSR restrictions, and
that the new restrictions also give rise to new protocols such as perfect quan-
tum data hiding. Further work might point in various directions: first, finding
more cryptographic tasks which become possible in the presence of SSR, second,
investigating the behaviour of other mixed state entanglement measures when
applied to SiV, and third, searching for better protocols to transform and distill
mixed states. Finally, it is an interesting direction to investigate how the concept
of entanglement is modified by restrictions beyond particle number conservation,
such as permutational symmetry, antisymmetry in fermionic systems, or the lack
of a joint reference frame [133, 134].

Next, we investigated the optimal generation of quantum resources in Chap-
ter 3. We showed how to optimally generate squeezing from a given noisy device,
and found that the optimal squeezing per iteration only depends on the squeezing
of the input. In turn, this led to the result that in order to optimally generate
squeezing in an interative scenario, it is sufficient to optimize the squeezing cre-
ated in each step. We then showed that this has direct implications for the optimal
generation of entanglement, given noiseless passive operations. The main tool for
the proof was a decomposition of the input into a sub-quantum “coherent kernel”
and an additional noise term, which should also prove useful in other contexts
where states can be optimized over some group of operations. Indeed, we showed
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that the same idea can be used to derive a very similar result for the optimal
generation of entanglement in a scenario of two separated parties which have a
noisy joint symmetric operation available. Directions of future research include
investigating the conjecture on optimal inputs for symmetric channels on which
the latter result is based, extending the result to optimal entanglement genera-
tion using non-symmetric channels, and considering entanglement generation in
the multipartite scenario.

We then turned towards quantum many-body systems. In Chapter 4, we
considered lattices of harmonic oscillators using tools developed for Gaussian
states in the context of quantum information theory. We investigated both the
case of non-critical Hamiltonians, where we found that in general the correlations
decay as the interaction, and the case of critical Hamiltonians, where we showed
that a vanishing energy gap indeed implies an algebraic decay of correlations.
In particular, we found that the correlations in one-dimensional systems decay
as 1/n2, while in higher dimension, they decay as log n/nd+1. A special case is
given for an interaction decaying as 1/n3, which corresponds to the relevant case
of ions in a trap: while for a positive sign of the interaction, the 1/n2 law still
holds, a

√
log n correction is encountered for the negative sign. Future research

directions include another look at the higher-dimensional critical case, where it
remains to be seen whether the log correction is tight, as well as the case of non-
critical Hamiltonians with exponentially decaying interaction which might imply
an exponential decay of correlations. Finally, one can try to infer more than the
asymptotic decay of correlations: especially for practical cases as ions in a trap,
the short-range scaling of correlations is of particular interest.

The remaining part of the thesis was devoted to the description of quantum
many-body systems in terms of Matrix Product States (MPS) and Projected
Entangled Pair States (PEPS). We started in Chapter 5 by investigating how ap-
proximability by MPS is related to the scaling of block entropies. We showed that
a logarithmic scaling of α < 1 Rényi entropies is sufficient for approximability,
while conversely a linear scaling of the von Neumann entropy and an faster than
logarithmic scaling of α > 1 Rényi entropies both imply non-approximability.
We also demonstrated that all other entropy scalings do not allow for conclu-
sions about approximability, which in particular holds for the case of bounded
von Neumann entropy. We then applied the tools developed to show that time
evolution even of translational invariant and time independent systems cannot
be simulated efficiently using MPS, demonstrating that a quantum computer will
likely outperform classical computers in this task. Future research will investi-
gate whether an area law does imply approximability for translational invariant
systems [135], and aim at finding better criteria for approximability, e.g., by look-
ing at the joint scaling of entropies, at smooth entropies (cf. the example at the
end of Chapter 5), or at other more refined spectral properties. More generally,
it is of big interest to get a good understanding of the mechanisms underlying
approximability by MPS and related states in order to apply these techniques in
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the best possible way.
In Chapter 6, we turned towards PEPS, the higher-dimensional generalization

of MPS, and investigated the computational complexity of creating and simulat-
ing them. We found that these tasks are PP- and #P-complete, respectively,
where the central tool for our proofs was a duality between PEPS and postselec-
tion. Future research will consider the relation between the complexity of ground
state problems and the spectral properties of the Hamiltonian, in particular the
energy gap, as hinted at the end of Chapter 6, as well as the relation of PEPS and
ground states (cf. [104]). Moreover, it remains to be investigated whether there
exist interesting subclasses of PEPS which are computationally easier than the
general case, as well as to find an example of a PEPS which cannot be created ef-
ficiently even with free classical side-processing. Finally, the PEPS–postselection
duality can likely be applied in many more contexts: for instance, the proof that
quantum messages can be simulated by classical messages of essentially the same
length [121] relies on postselected circuits on the receiver’s side, which implies
that every quantum message can be replaced by a PEPS without the need for
extra computational power. The implications of this observation, and in general
the scenarios in which PEPS can (or cannot) replace general quantum states,
remain to be investigated.

Finally, in Chapter 7 we introduced MPS for Gaussian states on a lattice,
so-called Gaussian Matrix Product States (GMPS). We showed that GMPS can
approximate every state even under translational invariance, derived a decompo-
sition bounding the entanglement contained in the bonds, clarified their relation
to local Hamiltonians, and demonstrated how to compute the scaling of corre-
lations and the correlation length. As a tool, we introduced a description of
translational invariant Gaussian states using covariance matrices with rational
functions as their Fourier transforms, which encompasses the set of GMPS and
shares a lot of their properties. As to future directions, GMPS can serve as a
toy model for spin systems due to the typically less involved structure of Gaus-
sian states, and one might investigate several questions which are of interest for
PEPS, e.g. whether GMPS can be disentangled, how well they can approximate
ground states, or how the correlations scale in higher dimensional systems. Other
directions of research are to extend GMPS to more general or different scenar-
ios, as non-Gaussian bosonic states or fermionic Gaussian states, and to combine
infinite dimensional Gaussian bonds with finite dimensional physical systems in
order to get a family of states which is more general than MPS [136].
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