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Abstract

A single atom strongly coupled to a single mode of a high-finesse cavity is the principal
system of matter-light interaction. Experimental studies of fundamental effects in this
system require a reliable localization of the atom in the cavity mode.

This thesis reports the realization of a novel blue-detuned intracavity dipole trap.
The blue trap combines the perfectly aligned, high-contrast modes of the high-finesse
cavity to form a potential landscape in which an atom is stored close to a dark cen-
ter, where the Stark shift vanishes. As a consequence, the free-space properties of the
confined atom are largely retained, while it is well isolated by the surrounding repellant
blue light. The flexibility to individually tailor the radial and axial confinement enables
efficient loading. Cavity cooling is used to reliably prepare strong coupling.

The performance of the blue trap is demonstrated by spectroscopy of the normal
modes of the coupled system. Good localization in a region of strong coupling and a Stark
shift below the atomic linewidth are deduced from the spectrum by comparison with the
analytical theory. Moreover, the preserved large atom-cavity detunings implement the
dispersive regime, where the presence of the atom is detected while it spontaneously
scatters only about one photon. Hence, single atoms are trapped and observed in the
dark. Since strong cavity-induced heating can be avoided, the blue trap stores atoms in a
parameter regime compatible with three-dimensional cavity cooling, which can increase
storage times by orders of magnitude.

A first application of the intracavity dipole trap is the spectroscopy of the Jaynes-
Cummings ladder. The vacuum-Rabi splitting for a single trapped atom is a direct proof
for strong coupling and can be fully explained by semiclassical theory. In contrast, the
splitting of the higher doublets is a distinct signature of field quantization. A first ob-
servation of two-photon excitation to the second doublet using bichromatic spectroscopy
was enabled by the blue trap. This illustrates the potential of the blue intracavity dipole
trap for the study of fundamental quantum effects.

An impressive feature of the strong coupling regime is the ability to infer the spatial
position of a single atom from the cavity transmission. Single atom transits are observed
with an experimental adaption of the atomic kaleidoscope that uses a combination of
higher-order modes to obtain position information in the transverse plane.
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Chapter 1

Introduction

Fundamental quantum effects are expected to be observed for systems with only a few
relevant states and are generally susceptible to the coupling to an environment, which
destroys the coherent evolution (1). The success of quantum mechanics to correctly
predict and describe experimental results has long been accompanied by a controversy
about the philosophical difficulties in the understanding of the establishment of a con-
crete measurement outcome, referred to as the ’quantum measurement problem’ (2).
Up to now, this problem could be largely ignored in favor of a pragmatic view, because
in experiments the outcome of the repeated measurements is well described by the sta-
tistical prediction of an ensemble average (3). For a finite system dissipation is largely
accepted as the mechanism to explain the appearance of the classical world in quantum
mechanics (4; 5). In recent years repeated measurements on single quantum systems as
well as macroscopic quantum systems have become technologically feasible. Particularly
interesting are open quantum systems that can be effectively monitored via their decay
channel (6). Here, also the back action of a measurement and the evolution under con-
tinuous (incomplete) measurements play a role (7; 8; 9). This is particularly apparent
in quantum feedback on an individual system (10), because a successful correction relies
on an accurate prediction of the influence of the measurement on the system. Quantum
feedback allows to establish a desired target state (11; 12), e.g., to realize spin-squeezing
(13; 14) and adaptive quantum measurements of the optical phase (15; 16). Feedback-
mediated quantum measurement at the fundamental quantum limit has recently been
studied on coherent states of a photon field (17). To further explore fundamental quan-
tum mechanics, experimental research depends upon suitable, well isolated laboratory
systems prepared by external control.

In quantum optics the preparation of quantum systems largely relies on laser cooling
and trapping methods (18; 19; 20). The field was initiated by laser cooling techniques
(21; 22; 23; 24) which have first been realized in ion traps (25; 26) and later for neutral
atoms (27). Cold samples of neutral atoms have been prepared in magnetic traps (28),
magneto-optical traps (29; 30) and dipole traps (31). Sub-Doppler temperatures have
been achieved in optical molasses (32) with polarization-gradient cooling (33; 34) and
velocity-selective coherent population trapping (35). These systems were further devel-
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10 1. Introduction

oped to the single particle level (36; 37; 38; 39) and to manipulate the quantum state of
single (40) or small sets of particles (41; 42; 43). However, the external control imposes
a significant modification to the system under study. This problem is illustrated by high
precision experiments, like atomic clocks (44). While trapped systems have the poten-
tial for accuracies exceeding the free flight fountain experiments by orders of magnitude,
they are limited by unregulated clock shifts induced by the confinement. Hence, the
ultimate goal is to eliminate the uncertainty in the influence of the external control.

1.1 The strongly-coupled atom-cavity system

A single atom strongly coupled to the mode of a high-finesse cavity constitutes a fun-
damental combined quantum system of matter-light interaction (45). It consists of two
different, well understood subsystems: a single two-level atom and a single mode of the
electromagnetic field described by a quantum-harmonic oscillator. In the strong-coupling
regime the coherent interaction between the atom and the mode exceeds the decay rates
of the cavity mode and the atomic polarization. The experimental challenge to realize
this system is to achieve strong constant coupling over a sufficiently long interaction
time with good isolation from the environment. Pioneering experiments with Rydberg
atoms were enabled by microwave cavities at cryogenic temperatures. The implemen-
tation of the one-atom maser (46; 47) enabled the observation of quantum collapse and
revival (48) and the vacuum-Rabi oscillation (49) for many atoms. Strong coupling in
the optical domain only became feasible with the development of high-quality dielectric
coatings (50). A coupling exceeding the decay rates is demonstrated by the observation
of a normal-mode splitting. The normal-mode splitting was studied for many atoms in
a beam acting as an ’effective atom’ (51; 52), realized for a single atom on average
(53; 54) and a single transiting atom (55).

The experiments in the microwave and optical regimes complement each other. The
field inside the microwave cavity is manipulated and observed by the Rydberg atoms
passing the mode (56) since the atomic state can be detected with very high efficiency.
By now, many of these deliberate interactions are possible before the cavity field decays.
A characteristic example for experiments in the microwave regime is the recent obser-
vation of quantum jumps in the photon field (57) by a sequence of quantum nondemoli-
tion (QND) measurements (58). This advancement should allow to further explore the
quantum-to-classical boundary (59) by, e.g., analyzing the decoherence of mesoscopic
entangled states involving an increasing number of particles (60) or testing comple-
mentarity with an interferometer (61). In contrast, in the optical regime the photons
emitted from the cavity are detected with high efficiency and provide continuous obser-
vation of the system. Because the emitted photons can easily be distributed via optical
fibres, driving applications in the optical domain include the realization of deterministic
single photon sources (62; 63; 64; 65; 66) for linear optical quantum computation (67)
and a matter-light interface for quantum networks (68; 69; 70) to reversibly map the
quantum state of an atom onto a photon (68; 65).

Solid state systems fundamentally solve the problem of localization. A fixed strong
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coupling is achieved by a sophisticated production process. The vacuum-Rabi splitting
has been measured for a cooper pair box coupled to a superconducting coplanar waveg-
uide resonator (71), a flux qubit (72) coupled to a superconducting resonator, and in
the optical regime for single quantum dots coupled to a photonic crystal (73; 74), a
micro-pillar (75) and a microdisk cavity (76).

From the very beginning of cavity QED the question was raised whether distinct
quantum effects could be observed, but as Jaynes and Cummings state ’... the prospects
of detecting such a difference are extremely dubious, for we will see that the semiclassical
theory actually reproduces many of the features which one commonly supposes can be
found only with field quantization’ (45). This holds true for the vacuum-Rabi splitting
observed in this experiment which is the signature of the excitation to the first doublet of
states in the Jaynes-Cummings ladder. The vacuum-Rabi splitting can be fully explained
by the semiclassical theory where an atom exchanges energy with a cavity mode. It is
accounted for by Bloch equations, the analytical solution in the low excitation limit as
well as by linear-dispersion theory (51). In contrast, the spectroscopy of the higher lying
doublets would constitute an immediate test for nonperturbative cavity QED (77). Con-
versely, these resonances do not occur in the low saturation theory at all. Experimental
evidence has been observed in the fourier components of the Rabi oscillations (78) in
the microwave regime. A direct spectroscopic measurement is strongly anticipated and
a major goal for experiments where the normal-mode splitting has been observed (79).
A first signal of a two-photon resonance was reported in a quantum dot system (80),
but a different explanation of a similar three peak structure exists (74). The photon
blockade is a closely related effect which has been observed in an atom-cavity system
(81). Experimental observation of quantum effects become feasible with the progress in
the experimental control in the preparation of the system.

1.2 The present work

In the context of this thesis, the atom-cavity system was extended by a far-detuned
intracavity dipole trap (82) to achieve good localization of the atom. Compared to
trapping in the near-resonant mode (83; 84) where the motion is driven by strong dipole
force fluctuations (85; 86) and photon recoils due to spontaneous emission, the far-
detuned dipole trap provides a near conservative potential. The oscillatory motion in this
conservative potential of the dipole trap has been observed and the storage times achieved
are about an order of magnitude longer than in the near-resonant case (87). The red-
detuned intracavity dipole trap allowed for the first observation of cavity cooling (88).
In contrast to all standard free-space laser cooling techniques which rely on spontaneous
emission from the atom to remove energy and entropy from the system, cavity cooling
does not rely on the excitation of the atom. Instead the excitation is transferred via
the contribution of the cavity state to the normal modes and the blue-detuned photons
emitted from the cavity remove kinetic energy from the coupled atom (89; 90; 91).
Cavity cooling was demonstrated to be at least five times more efficient than standard
free-space techniques at equal atomic excitation (88). Because cavity cooling does not
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rely on repeated excitation cycles, it has the potential to make new systems accessible
to laser cooling, e.g. molecules (92) or atoms carrying a quantum bit (93).

The measurement of the vacuum-Rabi splitting of a single trapped atom-cavity sys-
tem was made possible by the combination of the red dipole trap with repeated cav-
ity cooling to restore good coupling (94). In the red-detuned dipole trap the atom is
stored close to an intensity maximum where the atomic detuning is modified by the AC
Stark shift. The variation of the atom-cavity detuning by the trap depth allowed to
scan through the anticrossing of the normal modes, but restricts the feasible detuning
regimes and trap depths. A red-detuned dipole trap at the ’magic wavelength’ for
Cs (95) stores atoms without a differential energy shift: including the coupling to higher
lying electronic states, the Stark shift induced on the excited state exactly matches the
ground state shift. Since a dipole trap at a magic wavelength relies on a special level
scheme it is only possible for some atoms. For rubidium the red magic wavelength is
experimentally impracticable.

In this thesis, a more fundamental approach to remove the influence of the trap on
the stored particle is realized by blue-detuned intracavity dipole trap (96). The high-
finesse cavity provides perfectly aligned modes. A combination of higher-order modes
is used in the blue intracavity dipole trap to guide and store single atoms in regions
of strong coupling to the near-resonant mode. The close-to-perfect visibility of the
standing wave creates a trap center that is accurately dark. The blue trap has a number
of advantages for the preparation of a strongly coupled atom-cavity system. The atom
is stored close to a dark center, where the Stark shift vanishes, completely surrounded
by blue light. Since the trap height does not contribute to the Stark shift, much higher
confinement can be realized. Moreover, since the free-space detuning of the atom is
preserved during the loading, there is no restriction to the accessible parameter regimes
and strong cavity-induced heating (85; 86) can be avoided. Because the atom is repelled
from the blue-detuned light it can be loaded by creating a two-dimensional funnel. Slow
atoms are guided to the trap center and captured without increase in energy. Weakly
coupled atoms that are not collected by the funnel are rejected. An atom inside the trap
is well isolated by the surrounding potential barrier, outside atoms are repelled.

The advantages of the blue trap are demonstrated by normal-mode spectroscopy.
Good localization of the atom is restored and qualified by intervals of cavity cooling. The
normal-mode spectrum of the strongly coupled atom-cavity system prepared in the blue
trap is well described by the analytical theory in the limit of low excitation. The Stark
shift is found to be smaller than the atomic linewidth even for high potential barriers of
blue light. In contrast to the red-detuned trap, the large bare detuning between atom
and mode is preserved. This allows the dispersive detection of the presence of a single
atom in 10µs with 95% probability for a correct decision, while the atom scatters only
about one photon during that time. Dispersive detection is complementary to cavity
cooling in the sense that both mechanisms do not rely on the excitation of the atom, but
use the cavity-like normal mode instead. Moreover, atoms are stored in the blue trap in
a parameter regime that is compatible with three-dimensional cavity cooling, which is
shown to extend the storage times by several orders of magnitude (97).
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Normal-mode spectroscopy of the Jaynes-Cummings ladder is a milestone in cavity
QED. The observation of the vacuum-Rabi splitting, as the excitation to the first doublet,
directly shows reliable strong coupling and is well described by the low excitation limit.
In contrast excitations to the second doublet are not included in the semiclassical theory
and are hence a direct observation of field quantization. The experimental observation
requires a good control of the atom-cavity coupling. A proposal for an atomic beam
experiment uses a ’hole-burning’ technique to only address a certain class of atoms (77).
In the present experiment a single atom is strongly confined and cavity cooling is used to
restore and qualify for strong coupling. For this setting different schemes of mono- and
bichromatic excitations are developed in this thesis. A first observation of a two-photon
resonance in bichromatic spectroscopy is realized in the blue trap. This demonstrates
the potential of the blue intracavity dipole trap for the anticipated fundamental studies
of a single combined quantum system.

This experiment relies on the capability to detect a single atom (98; 99) to prepare
a strongly-coupled atom-cavity system. The atom is trapped by switching the potential
upon its detection. The strong influence of a single atom on the light field in the cavity
given by the position-dependent coupling enables high-bandwidth detection with high
spatial resolution (100; 101). It allows to implement feedback on the motion of the
single atom (102). The ’atomic kaleidoscope’ (103; 104) uses higher-order modes to
obtain more detailed position information in the transverse plane. The transit of a
single atom through higher-order modes is observed with a technique adopted to the
experiment (105).

This thesis is organized as follows: Chapter 2 introduces the theoretical background of
the atom-cavity system and derives the analytical description in the low excitation limit.
In Chap. 3, the idea of the blue intracavity dipole trap is developed and its advantages
are discussed with special emphasis on two different parameter regimes of cavity cooling
(Chap. 4). The analytical findings are supported by numerical simulations in Chap. 5.
After presenting the general experimental system in Chap. 6 the implementation of the
blue trap and the experimental results are discussed in Chap. 7. The spectroscopy of the
Jaynes-Cummings ladder is presented in Chap. 8. The atomic kaleidoscope is discussed
in Chap. 9. An outlook puts the results of this thesis into a larger perspective (Chap. 10).





Chapter 2

Theory of the atom-cavity-trap
system

This chapter introduces the theory of the strongly-coupled atom-mode system as the fun-
damental system of matter-light interaction in cavity quantum electrodynamics (CQED).
It is a combined quantum system of two different well understood subsystems: a single
atom described by a two-level system and the light field of a single cavity mode is rep-
resented by a quantized harmonic oscillator (Fig. 2.1). The coupling between the atom
and the mode is given by the dipole interaction. Neglecting the interaction with the envi-
ronment leads to the well-known Jaynes-Cummings Model (45) discussed in section 2.1.
The dipole interaction couples pairs of states with equal number of excitations, which
therefore split into new normal modes called ’dressed-states’ (33). The closed system is
extended to an open system by including the decays of the subsystems into the vacuum
modes (Sec. 2.2). At low excitation the master equation can be solved analytically for an
atom at rest (Sec. 2.4). The strong-coupling regime defined by a coupling g that exceeds
both decay rates of the cavity field κ and the atomic polarization γ is characterized by
well resolved normal modes. The position dependence of the coupling in the standing
wave mode leads to strong light forces (Sec. 2.3). The emission of photons from the
system is compensated by a weak probe beam. Since the cavity transmits photons into
a well-defined mode they can be efficiently detected and allow for a continuous observa-
tion of the system. The dissipation also leads to strong velocity-dependent forces, both
heating and cooling (Sec. 2.6). In addition to the free-space diffusion term which can
be interpreted as a fluctuating dipole interacting with a mean field, the additional fluc-
tuation of the intracavity field interacting with a mean atomic polarization contributes
an extra term (Sec. 2.5). Both the velocity-dependent forces as well as the diffusion are
particulary strong near the normal modes of the coupled system. Note that the normal
modes and the forces can be derived in a classical model of dispersion and absorption
of a massive, point-like dipole (51; 106). This is not the case for the diffusion, which is
given by the correlations of the dipole-force fluctuations.

To take advantage of the system, the interaction time has to be much larger than
the decay times. Therefore, atoms are trapped in far detuned intracavity dipole traps
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2 level atom

g|e〉
|g〉

aω

cω

|e〉
|g〉

QMHO

|1〉
|0〉

|3〉
|2〉

|4〉

g

Figure 2.1: Strongly coupled atom-cavity system: A single two-level atom is coupled via
the dipole interaction to the field of a single cavity mode described as a quantum harmonic
oscillator (QMHO). The subsystems of this combined quantum system are well understood. The
combined system constitutes an archetype of matter-light interaction.

which are introduced into the description in Sec. 2.7.

2.1 Jaynes-Cummings model

The Jaynes-Cummings model (45) describes the fundamental system of matter-light in-
teraction: a two-level atom ({|e〉 , |g〉}) with transition frequency ωa coupled to a quan-
tized mode with Fock states {|n〉 , n ∈ N0} of a cavity with resonance frequency ωc
(Fig. 2.1). The atom is fixed in position with constant coupling g and the interaction
with the environment is neglected.

The interaction Hamiltonian Hdp = −d · E describes the coupling of the atomic
dipole d to the electric field E and is considered in dipole and rotating wave approxi-
mation. Assuming that the wavelength of the light is large compared to the extension
of the atomic wave packet, the field is regarded constant over the extension of the atom.
In the dipole approximation the field is replaced by the value at the position of the
atom E(r, t). For a quantized field the operator E is replaced by four products (a†σ−,
h.c.,a†σ+, h.c.) of photon creation and annihilation operators (a†, a) and the pseudospin
operators of the atom (σ+, σ−). In the uncoupled subsystems the phases of these oper-
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ators develop according to the Heisenberg equations of motion with their characteristic
optical frequencies ωc and ωa. The first two products (a†σ−, h.c.) correspond to the
exchange of an excitation between atom and field. They evolve with the much smaller
difference frequency ∆ac = ωa − ωc � (ωa, ωc) and are preserved in the rotating-wave
approximation. The ’anti-resonant’ terms (a†σ+, h.c.) rotate with the sum of the fre-
quencies. Their contributions average out on timescales shorter than the characteristic
propagation of the system given by the detunings (∆i, iε{a, c}) with respect to the excit-
ing laser (∆i = ωi − ωl) and the coupling g (and decay rates {γ, κ} for the open system
in Sec. 2.2). In the optical regime this rotating-wave approximation is generally well
fulfilled.

The resultant Jaynes-Cummings Hamiltonian reads:

HJC = Ha +Hc +Hac (2.1)
Ha = ~ωaσ+σ− (2.2)
Hc = ~ωca†a (2.3)
Hac = ~g(a†σ− + aσ+). (2.4)

The first two contributions describe the atom and the field mode, respectively.
{σ+, σ−, σz} are the pseudospin operators of the atom and {a†, a} the creation and
annihilation operators of a photon in the mode. These operators fulfill the pseudospin
algebra and commutation relation of the harmonic oscillator, respectively: (2.6):

[σ+, σ−] = σz, [σz, σ±] = ±2σ±. (2.5)
[a, a+] = 1. (2.6)

The dipole interaction couples product states (|i, n〉 := |i〉 ⊗ |n〉 ; i ∈ {e, g}, n ∈ N0)
only pairwise in the subspaces {|g, n〉 , |e, n− 1〉} of a given number of excitations n. The
new eigenstates |n,±〉 and eigenenergies En,± for the coupled system are given by:

|n,±〉 = cn,± (|g, n〉 ± αn,± |e, n− 1〉) (2.7)

En,± = ~(nωc +
1
2

(∆ac ± Ωn)) (2.8)

αn,± =
1

Ω̄n
(−∆ac ∓ Ωn) (2.9)

cn,± = (1 + α2
n,±)−1/2 (2.10)

Ωn =
√

∆2
ac + (Ω̄n)2 (2.11)

Ω̄n = 2g
√
n. (2.12)

where ∆ac = ωa−ωc is the atom-cavity detuning and Ω̄n the n photon Rabi frequency.
The generalized Rabi frequency Ωn corresponds to the full energy difference between
the energy levels of the coupled system (Fig. 2.2). For the degenerate case ∆ac = 0
the generalized Rabi frequency Ωn reduces to the n photon Rabi frequency Ω̄n. The
absolute value of the levelshift in this resonant case given by Ω̄ is proportional to the
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acΔ
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⇒
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Figure 2.2: Normal modes of the Jaynes-Cummings model. For a bare frequency difference
much smaller than the optical frequencies ∆ac = ωa − ωc � (ωa, ωc) the product states form a
ladder of pairs of states with equal number of excitations n ∈ N≥1. The distance between the
center of two ladder steps (n > 1) is ωc. Note that the distance between the center of the first
doublet and the ground state is instead given by the frequency mean (ωa + ωc)/2.
The dipole interaction, in the rotating-wave approximation, couples product states of equal n ∈
N≥1 with a bare frequency difference of ∆ac = ωa−ωc. These states split by the generalized Rabi
frequency Ωn into two ’dressed states’ {|n,+〉 , |n,−〉} which are obtained by a rotation R(Θn)
in this subspace. Since these new eigenstates are generally not product states, the excitation
and decays (γ, κ) of the subsystems induce transitions between all combinations of states with
∆n = ±1.
For low excitation one can restrict the discussion to the ground state |g, 0〉 and the lowest lying
excited states |1,±〉. When scanning a probe beam across the normal modes one expects to see
two resolved lines. In the degenerate case ∆ac ≡ 0 the splitting of the n-th doublet is given by
Ω̄n = 2

√
ng.
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coupling constant g and scales with the square root of the number of excitations n. For
n = 1 this corresponds to the interaction of an excited atom with the vacuum field – the
splitting by 2g is therefore called ’vacuum-Rabi splitting’.

The new eigenstates of the coupled system of a two-level atom and cavity mode are
called ’dressed states’ (33). They arise from a rotation of the product states by an
angle Θn in the two dimensional subspaces of equal number of excitation:(

|n,+〉
|n,−〉

)
= R(Θn)

(
|g, n〉
|e, n− 1〉

)
(2.13)

sin(Θn) =
Ω̄n√

(Ωn −∆ac)2 + (Ω̄n)2
. (2.14)

The rotary matrix R(Θn) connects quantities (operators, probability amplitudes) in
the bare state and in the dressed state basis. The progression of the coupled states with
respect to the detuning ∆ac corresponds to an ’anticrossing’ (see Fig. 2.3). The smallest
distance (Ωn = Ω̄n) between the dressed states is reached for the degenerate case. In this
case the coupled states |n,±〉 have equal contributions from the bare states (Θn = 45◦).

For ∆ac 6= 0 one of the normal modes is closer to the bare cavity (atom) state.
The contribution of the cavity (atom) to this dressed state is larger than the one of the
further detuned atom (cavity). This normal mode is hence called ’cavity like’ (’atom
like’). For large detuning |∆ac|/g � 1, the dressed states coincide with the bare states
apart from a small shift in energy and admixture of the other product state:

|+〉 ≈ |g, n〉+ 1/2
Ω̄

∆ac
|e, n− 1〉 , E+ ≈ ~

(
ωc +

Ω̄2

4∆ac

)
(2.15)

|−〉 ≈ 1/2
Ω̄

∆ac
|g, n〉 − |e, n− 1〉 , E− ≈ ~

(
ωa −

Ω̄2

4∆ac

)
(i.). (2.16)

The state |n,+〉 is defined to be the state of higher energy. In the limit of large
detuning ωc � ωa and ωc � ωa, it approaches the bare state of the atom |e, n− 1〉 and
mode |g, n〉, respectively.

A weak probe beam exciting the system via the cavity drives transitions by adding an
excitation to the cavity. It can be described by a time-dependent interaction Hamiltonian

Hs(t) = −~η(a†e−iωlt + h.c.). (2.17)
(2.18)

The strength of the coherent excitation is given by the Rabi frequency 2η, which can be
chosen to be real. In the theory of the open system in Sec. 2.2 (η/κ)2 will turn out to
be the steady state on resonance expectation value of the photon number in the empty
cavity field. The perturbation Hs(t) only drives transitions that add an excitation to the

(i.)For ∆ac > 0 the mapping of the left hand sides to the normal modes |±〉 have to be interchanged to
satisfy E+ > E−. For low excitation, considering the ground state and the first excited pair only n = 1,
the Rabi frequency is given by Ω̄ = 2g
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Figure 2.3: The normal modes versus the atom-cavity detuning ∆ac: For large detuning
the normal modes converge to the uncoupled product states of atom and mode. Due to the
coupling the normal modes show an avoided crossing. In the degenerate case (∆ac = 0) the
normal modes consist of equal contributions of the bare states. The labels on the left side refer
to the limiting product states (green,blue) for large detuning, while the right ones generally label
the dressed states of the coupled system (red).

cavity mode. Restricting the discussion ground and first excited states(ii.),the strength
of the absorption lines to the first coupled states at ωl = ±

√
∆2
ac + 4g2 are given by the

modulus square of the transition matrix elements:

〈0|Hs(t) |+〉 = −~ηeiωlt cos(Θ) (2.19)

〈0|Hs(t) |−〉 = −~ηeiωlt sin(Θ) (2.20)

with tan(2Θ) = −2g
∆

(2.21)

The excitation of the two normal modes (2.19, 2.20), hence, differ in the detuned case.
In the limit of large detuning |∆ac/g| � 1 the spectrum will by dominated by the
cavity-like dressed state, i.e. a resonance slightly shifted with respect to the bare cavity.

The Jaynes-Cummings Model can be extended to the Tavis-Cummings Model (107)
to account for N identical atoms with given couplings gi to a common mode. The
many atoms turn out to behave like a single ’effective’ atom with coupling geff =√∑

i g
2
i . The reason is that there is a single superposition of the atomic states (|egg..g〉

(ii.)At this point (until Chap. 8) we will restrict the discussion to the ground state and the lowest lying
doublet: |0〉 ≡ |g, 0〉 , |±〉 ≡ |1,±〉 (Θ := Θ0)
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detector

γ
κ

v
ηc
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Figure 2.4: Atom-cavity system with losses. Both the atom and the cavity mode individually
couple to the environment resulting in losses described by the cavity field decay rate κ and decay
rate of the atomic dipole γ. To compensate for the emitted energy, the system is pumped with
probe fields via the cavity ηc and/or the atom ηa. The retarded adoption of the system to
variations of the coupling leads to strong velocity-dependent forces that can be both heating and
cooling.

and permutations) that couples maximally to the mode while N − 1 superpositions are
uncoupled.

A corresponding generalization to many degenerate modes also leads to an ’effec-
tive’ mode. It is given by the one superposition of the modes that maximally couples

to the atom ψ = (
∑

i giψi)/(
√∑

i g
2
i ). Since the transverse mode structure depends on

the location of the atom it can be used to gain position information. This is the basis
for the atomic kaleidoscope presented in Chap. 9.

2.2 Open quantum system

In the experiment the coupling to the environment leads to losses which cannot be
neglected. The spontaneous emission of the atom and the transmission of the cavity
mirrors are irreversible loss processes and lead to damping. The directed transmission
via the cavity mirrors is well suited to continuously observe the system. To replenish
the emitted energy, the system is pumped via the cavity (ηc 6= 0) and/or the atom with
Rabi frequencies (ηa 6= 0), where 2ηi is the Rabi frequency (Fig. 2.4).

The discussion of the interaction with the environment in this section follows the
Schrödinger picture and leads to the master equation. The environment is introduced
by coupling the system S to a bath of harmonic oscillators or reservoir R. The total
Hamiltonian is the sum of Hamiltonians describing system, reservoir, their interaction
and the pump

Htot = HS +HR +HSR +HP . (2.22)

The Hilbert space is the by the tensor product H = HS ⊗ HR. The reservoir can be
modelled as a bath of harmonic oscillators, representing the modes of the light field
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outside the cavity, described by the Hamiltonian

HR =
∑
k

ωk

(
b†kbk +

1
2

)
, (2.23)

where b†k, bk are the photon creation and annihilation operator for photons in mode k and
ωk is the frequency of the oscillator. In case of the atom-cavity system (HS = HJC), it is
assumed that the reservoir is weakly coupled to the atom and the cavity, with coupling
constants ga,k and gc,k, respectively. The system reservoir interaction is given by:

HSR =
∑
k

gc,k

(
b†ka+ a†bk

)
+
∑
k

ga,k

(
b†kσ
− + σ+bk

)
. (2.24)

The exchange of energy between system and reservoir is thus assumed to consist of the
simultaneous creation of one quantum of excitation of the system and annihilation of a
quantum in the k-th mode of the bath or vice versa.

The time evolution of the total system is formally given by the von-Neumann equation
for the density matrix ρSR

ρ̇tot = −i[Htot, ρtot], (2.25)

which in general cannot be solved analytically. Since the interest is in the time evolution
of the system only, the reduced density operator of the system is obtained by tracing
over the reservoir, yielding

ρS = TrR (ρtot) . (2.26)

It is assumed that the reservoir has a large bandwidth such that correlations decay much
faster than the timescale of the interaction with the system. The state of the reservoir
does not depend on the state of the system at an earlier time, i.e. it has no memory of
the dynamics of the system. Therefore, the influence of the environment on the system
only depends on the current state of the system (Markov approximation). At room
temperature the relevant modes of the reservoir at optical frequencies are not excited
(iii.). Tracing out the reservoir in thevacuum state, the master equation for the Jaynes-
Cummings system, which is weakly coupled to the environment, reduces in Born-Markov
approximations to (108):

ρ̇ = Lρ = − i
~

[HJC +HP , ρ]

+ κ
(
2aρa† − a†aρ− ρa†a

)
+ γ
(
2σ−ρσ+ − σ+σ−ρ− ρσ+σ−

)
.

(2.27)

Here, L is called the Liouville super operator. The interaction with the environment is
represented by the decay rates κ and γ for the field of the cavity mode and the atom

(iii.)For a finite temperature T only the mean occupation of the modes n̄(ωk, T ) = e−~ωk/kBT

1−e−~ωk/kBT would

enter as a factor (n̄+ 1) to γ and κ, as well as, to the conjugate Lindblad forms in (2.27) with a factor
of n̄. However, ~ωk/kBT � 1 and therefore n(ωk, T ) ≈ n(ωk, 0) = 0
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polarization, respectively. Even though the mirrors change the mode density along the
axial direction, the spontaneous emission rate is assumed not to be influenced by the
cavity surrounding the atom. This is a reasonable approximation since the cavity nor-
mally covers only a small fraction of the solid angle.

2.2.1 Quantum regression theorem

The equation of motion for the expectation value of any system operator O can be
calculated from the density operator ρ:

〈Ȯ〉 = Tr S{Oρ̇} = Tr S{OL(ρ)}. (2.28)

The forces and the diffusion in the system are given by two-time expectation values
〈O1(t)O2(t+ τ)〉 of two system operators O1, O2. These can be evaluated using the
quantum regression theorem (108):

〈O1(t)O2(t+ τ)〉 = Tr S
{
O2(0)eLτ [ρ(t)O1(0)]

}
(2.29)

〈O1(t+ τ)O2(t)〉 = Tr S
{
O1(0)eLτ [O2(0)ρ(t)]

}
. (2.30)

In this formal solution the time propagation is given by the Liouville super operator L.
It can be reduced to a form more appropriate for evaluation by introducing a complete
set of system operators combined to a vector A. If the time evolution of A is a set of
linear equations given by the evolution matrix M:

〈Ȧ〉 = M 〈A〉 , (2.31)

the two-time averages with an arbitrary system operator O can be calculated as (τ ≥ 0):

d
dτ
〈O1(t)A(t+ τ)〉 = M 〈O1(t)A(t+ τ)〉 (2.32)

d
dτ
〈A(t+ τ)O2(t)〉 = M 〈A(t+ τ)O2(t)〉 . (2.33)

According to this equation, the equation of motion for the correlation functions (two-time
averages) can be directly deduced from the equation of motion for the system operators
(one-time averages).

For the atom-cavity system linear equations of motion can be obtained in the limit
of low excitation or in the harmonic limit. A full set of system operators is then given
by the photon annihilation operator a and the Pauli pseudo-spin operator σ−. Since the
normal-ordered operator products factorize, the evaluation generates extra terms when
reordering the products only.

2.3 Atomic motion and light force

To include the light forces acting on the atom, the motional degrees of freedom have to
be included. The coupling is proportional to the field at the atomic position. Hence, its
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spatial dependence g(r) = g0φ(r) is given by the mode function φ(r) normalized to 1 at
an antinode where the maximum coupling g0 is reached (for more details see 9.1). The
force operator can be derived from the full position dependent Hamiltonian. However,
because in the current system the DeBroglie wavelength of the atom is small compared to
the wavelength, it is sufficient to ultimately treat the motional degrees semi-classically.

2.3.1 Force operator

Introducing the spatial dependence of the parameters and the kinetic energy P2/2m of
the atom with mass m, the full position-dependent Hamiltonian is given by:

H(r) =
P2

2m
+ ~ωaσ+σ− + ~ωca+a+ ~gφ(r)(a+σ− + σ+a)

+HP +HR +HSR. (2.34)

The force operator is defined as the time derivative of the momentum and given by the
Heisenberg equation of motion for the atomic momentum operator:

F = Ṗ =
i

~
[H,P]. (2.35)

Using eqn. (2.34), the expectation value of the force is given by

〈F〉 = −~g0(∇φ(r))
〈
a+σ− + σ+a

〉
. (2.36)

It can be evaluated once the steady-state expectation values of the operators involved
are known, e.g. in the low excitation limit (Sec. 2.4). Other terms contribute only to
the fluctuations of the force, leading to a spreading of the atomic wavepacket. The first
moment of this spreading is the momentum diffusion coefficient discussed in Sec. 2.5.

2.4 Low-excitation limit

The equations of motion for the expectation values of the system operators σ− and a
can be calculated using (2.25) and the master equation (2.27). In the rotating-wave
approximation with respect to the laser frequency ωp, the following detunings are intro-
duced (109):

∆a := ωp − ωa ∆̃a := ∆a + iγ (2.37)

∆c := ωp − ωc ∆̃c := ∆c + iκ. (2.38)

The equations of motion for the expectation values of the system operators 〈a〉, 〈σ−〉
and 〈σz〉 can be written as

〈ȧ〉 = i∆̃c 〈a〉 − ig(r)
〈
σ−
〉

+ ηc (2.39)〈
σ̇−
〉

= ig(r) 〈σza〉+ i∆̃a

〈
σ−
〉

+ ηa (2.40)
〈σ̇z〉 = ig(r)

〈
a+σ− − σ+a

〉
− 2γ

〈
σ+σ−

〉
. (2.41)
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An analytical solution for this system of non-linear differential equations leads to optical
bistability (110). In the limit of weak atomic excitation, the algebra of the pseudo-spin
operators (2.5) can be approximated by the algebra of the harmonic oscillator (2.6), i.e.
[σ−, σ+] = 1. This corresponds to replacing 〈σza〉 by −〈a〉 in (2.40) and dropping (2.41).
The linearized equation of motion can be written in matrix notation:

〈Ẏ〉 = Z 〈Y〉+ I (2.42)

Y :=
(
a
σ−

)
,Z : =

(
i∆̃c −ig
−ig i∆̃a

)
, I :=

(
ηc

ηa

)
. (2.43)

By inverting (2.42) the steady state solution is obtained:

〈Y〉 = −Z−1I. (2.44)

In the following the pump term will be restricted to pumping the cavity as implemented
in the experiment, to avoid complication i.e. ηa ≡ 0. The steady state solution is then
given by

〈Y〉0 =
〈(

a
σ−

)〉
0

=
iη

g2 − ∆̃a∆̃c

(
∆̃a

g

)
. (2.45)

Since the expectation value of normal ordered products of operators factorise in the
coupled oscillator model ((111), page 27), various expectation values for physical quan-
tities can directly be calculated from (2.45). The steady state expectation values for the
intracavity photon number 〈a+a〉 = 〈a+〉 〈a〉, the atomic excitation 〈σ+σ−〉 = 〈σ+〉 〈σ−〉
and the dipole force are given by〈

a+a
〉

0
= η2 |∆̃a|2

|g2 − ∆̃a∆̃c|2
(2.46)

〈
σ+σ−

〉
0

= η2 g2

|g2 − ∆̃a∆̃c|2
=

g2

∆2
a + γ2

〈
a+a

〉
0

(2.47)

The dipole force acting on an atom at rest is obtained from (2.36)

〈F(r)〉0 = −~η2(∇g(r))
2∆ag(r)

|g2 − ∆̃a∆̃c|2
(2.48)

= −~
∆a(∇g2(r))

∆2
a + γ2

〈
a+a

〉
0
. (2.49)

The conservative dipole force can be written as the derivative of a potential 〈F(r)〉0 =
−∇V (r):

V (r) = − ~η2∆a

Im (A)
arctan(

Re (A)
Im (A)

), Im (A) 6= 0 (2.50)

V (r) = − 2~η2∆a

Re (A)3
, Im (A) = 0 (2.51)

A := g2 − ∆̃a∆̃c. (2.52)
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Depending on the sign of the laser-atom detuning ∆a, the atom is attracted to regions
of high (low) intensity for ∆a < 0 (∆a > 0), i.e. red (blue) detuned light field.

2.5 Momentum diffusion

The mean value of the dipole force (2.48) is driving the center of mass motion of the
atomic wavepacket. In addition, the fluctuation of this force leads to a spreading of the
atomic momentum distribution quantified by the variance of the momentum

(∆P )2(t) =
〈
[P(t)− 〈P(t)〉]2

〉
. (2.53)

In linear order the spreading is characterized by the diffusion tensor. Restricting the
discussion to the one-dimensional case, it is given by the diffusion coefficient D, defined
as

2D =
d
dt

(∆P )2(t). (2.54)

The diffusion coefficient can be rewritten in terms of two-time correlations of the force
operator starting with the formal solution using eqn. (2.53):

d
dt
〈
[P(t)− 〈P(t)〉]2

〉
=

d
dt
〈
P2
〉
− 2 〈P〉 d

dt
〈P〉

= 〈F ·P + P · F〉 − 2 〈P〉 · 〈F〉 .
(2.55)

Inserting the formal solution

P(t) =
∫ ∞

0
dτ F(t− τ) + P(0) (2.56)

for the atomic momentum and (2.55) into eqn. (2.54) yields

2D = 2Re
∫ ∞

0
dτ (〈F(t) · F(t− τ)〉 − 〈F(t)〉 · 〈F(t− τ)〉)

= 2Re
∫ ∞

0
dτ 〈δF(t) · δF(t− τ)〉 .

(2.57)

The eqn. (2.57) can be used to calculate the momentum diffusion coefficient. For a fixed
atom and weak atomic excitation, the momentum diffusion coefficient was calculated by
Hechenblaikner et al. (85). The result reads

D = Dse +Ddp (2.58)

Dse = ~2k2γ
〈
σ+σ−

〉
= ~2k2γ

η2g2

|g2 − ∆̃a∆̃c|2
(2.59)

Ddp = ~2(∇g)2 η2γ

|g2 − ∆̃a∆̃c|2

(
1 +

4∆ag
2

γ

∆cγ + ∆aκ

|g2 − ∆̃a∆̃c|2

)
= Dfree

(
1 +

4∆ag
2

γ

∆cγ + ∆aκ

|g2 − ∆̃a∆̃c|2

)
.

(2.60)
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Here, the momentum diffusion coefficient Dse is generated by spontaneous emission of
photons from the atom, while Ddp is due to fluctuations of the dipole force.

Dfree = ~2(∇g)2 η2γ

|g2 − ∆̃a∆̃c|2
(2.61)

is the diffusion coefficient for an atom in a free-space standing wave light field (112).
Equation (2.60) shows that the diffusion in a cavity can be much stronger than in free-
space. Ddp can be rewritten in the invariant form of two symmetric terms (86):

Ddp = |~∇
〈
σ−
〉
|2γ + |~∇〈a〉 |2κ (2.62)

The first term can be interpreted as a fluctuating dipole coupled to a classical field, as
in free space. The second term corresponds to a classical dipole coupled to a fluctuating
field. Note that the effect of the mutual backaction of the subsystems is included in the
evaluation of the steady-state expectation values. Their evaluation lead to the known
complicated expression obtained for the different configurations.

2.6 Velocity-dependent forces

A point-like atom moving within the cavity mode experiences a locally varying coupling.
The steady state of the atom-cavity system depends on the coupling strength, but its
value is not established instantaneously. The system can only adopt to the new steady
state on the timescale of the atomic and cavity decay. Hence, in the case of a moving
atom, the system does not reach the steady state corresponding to the actual atomic
position but lags behind it. To describe this effect, the dipole force for a resting atom
(2.48) must be extended by a velocity-dependent correction.

For an atom which moves only a small fraction of a wavelength during the relaxation
time of the system, k · v � (γ, κ), the velocity-dependent force can be approximated
by a term linear in the velocity. This can be derived by expanding the density operator
of the system in powers of the atomic velocity: ρ = ρ0 + ρ1 + · · · . To calculate the
expectation values up to the first order of the atomic velocity, the total derivative of the
density matrix can be split into partial derivatives (hydrodynamic derivative)

d
dt

ρ =
∂

∂t
ρ+ v · ∇ρ. (2.63)

In the same way the total derivative of 〈Y〉 can be written as〈
Ẏ
〉

=
(
∂

∂t
+ v · ∇

)
〈Y〉 . (2.64)

It is assumed that there is no explicit (external) time-dependence of the Hamiltonian
and therefore ∂

∂t 〈Y〉 = 0. Using equation (2.42) and considering only the first order in
the atomic velocity, the first-order correction for the expectation values is

〈Y〉1 = Z−1v · ∇ 〈Y〉0 , (2.65)
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where 〈Y〉0 is the steady-state solution for a fixed atom. This result can be used to
calculate the expectation value of the force operator in first order of the velocity v,

〈F〉1 = −~(∇g)
(〈
a+
〉

0

〈
σ−
〉

1
+
〈
a+
〉

1

〈
σ−
〉

0

)
+ c.c. (2.66)

=: −βv (2.67)

The coefficient β is called friction coefficient. The analytic result for this velocity-
dependent force evaluated for the given setting is lengthy and can be found in (85).

2.7 Intracavity dipole trap

As discussed above, heating due to dipole force fluctuations induced by the probe can
be particularly strong in a cavity. It is therefore favorable to separate the trapping
mechanism from the near resonant cavity QED mode. An established tool to localize
polarizable particles like atoms are far-detuned optical dipole traps (113), because the
scattering rate decreases linearly with the detuning at fixed trap depth. In the cavity
setting, far-detuned modes are well suited to localize the atom (82). The description
of the dipole modes simplifies because the back action of the atom on the field can be
neglected for very large detunings ∆trap � g and large photon numbers ntrap � 1.
Therefore, the far-detuned intracavity dipole trap can be included into the description
by a position dependent atomic detuning, ∆a(r) = ∆a − 2∆S(r), modified according to
the Stark shift ∆S(r) introduced by the trapping field:

∆S(r) = −
g2

trap|ψtrap(r)|2ntrap

∆trap
. (2.68)

Where the maximum coupling gtrap is calculated for the detuned cavity mode ψtrap(r).
The low excitation limit (91; 85) is extended by introducing ∆a(r) into the Hamiltonian
to obtain analytical equations including the trap.The steady-state expectation values are
obtained by direct substitution of ∆a(r). In contrast, all quantities containing derivatives
are generally extended by extra terms involving gradients of the position dependent
atomic detuning, as well as mixed terms with the gradient of the coupling. The full
dipole force is hence given by the contributions of the near-resonant mode and all dipole
fields which can be described by a combined position-dependent Stark shift ∆S(r). In
three dimensions, this results in tensor quantities for the diffusion and velocity-dependent
force. The expressions for a given pump geometry can be found elsewhere (87), where
the spatial dependence of the Stark shift is given by the detunings and geometry of all
dipole modes.

In fact, any spatial parameter variation leads to extra terms. Analogous to the
variation of the coupling discussed above, this generally leads to velocity-dependent
forces which can be heating or cooling. Because strong forces are induced by pronounced
gradients the velocity-dependent force due to the variation of the coupling mostly acts in
the axial direction. Three-dimensional cavity cooling can be implemented by additional
spatial parameter variations in the directions orthogonal to the cavity axis. For example,
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pumping the system from the side with varying amplitude or polarization, or modulating
the atom-cavity detuning by the AC-Stark shift of additional orthogonal dipole fields.

If instead of the cavity the system is pumped via the atom only (ηa 6= 0, ηc ≡ 0) a
symmetric picture is obtained with the roles of atom and cavity interchanged. Inevitably,
the gradients of the coupling still result in axial cavity cooling. Moreover, including a
spatial structure in ηa(r) will lead to velocity-dependent forces in the direction of the
side pump, i.e. ∇ηa. As discussed in detail in sections 4.1.2 and 7.9 there is a common
parameter regime which allows for three-dimensional cavity cooling. A major motivation
for the development of the blue trap presented in the next Chap. 3 is the possibility to
trap atoms in this parameter regime as presented in Sec. 7.9.





Chapter 3

The idea of the blue intracavity
dipole trap

A strongly-coupled atom-mode system is prepared by guiding and trapping single atoms
in the region of strong coupling using intracavity modes. The atom can be stored in
the near resonant red-detuned probe field (101; 84). However, the trap depth in the low
excitation limit is limited to < 1 mK, and therefore, trapping times are restricted to a
few times the transit time or inverse radial trap frequency. To improve localization of
the atom additional far-detuned light fields are used for trapping. At a given trap depth,
the excitation of the atom by the trapping field, and hence heating due to spontaneous
emission, is suppressed inversely with the detuning from the atomic transition frequency.

For small Fabry-Perot cavities that allow for strong-coupling, optical access from
the side is limited; therefore, intracavity dipole traps are preferred (Sec. 3.1) . Since an
atom is attracted to the intensity maxima, the antinodes of a single far red-detuned mode
provides a one-dimensional array of traps (Sec. 3.2). In the red trap the energy levels are
shifted by the AC-Stark effect with respect to the free atom. A repellant blue-detuned
standing-wave light field only provides one-dimensional confinement to the nodal planes.
Additional higher-order modes are necessary for complete three-dimensional confinement
(Sec. 3.3). In the blue trap the atom is completely surrounded by blue light and stored
close to the dark center where the free-space energy levels are preserved. A number of
advantages result from this characteristic of the blue-detuned intracavity dipole trap.
The discussion is extended in Chap. 4, where two experimentally relevant parameter
regimes are introduced.

3.1 Intracavity dipole traps

An intracavity dipole trap is composed out of a set of far-detuned eigenmodes of the
high-finesse cavity. These modes have a well defined spatial structure and orientation.
Because the intracavity field is enhanced by a factor in the order of the finesse, strong
fields can be built up by coupling only a weak laser beam to the mode. In addition,
the high-finesse cavity provides single-atom detection capability in the strong-coupling
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regime (100; 98; 99), which is a prerequisite to prepare a single-atom cavity-system.
The preparation of a strongly coupled single atom-mode system is a multi-step pro-

cess: 1. The atom has to be guided into regions of strong coupling. 2. It is detected
via its strong influence on the cavity field transmission. 3. Upon detection it is trapped
by switching the conservative dipole trap. 4. To improve the localization, the atom is
cooled to compensate for any energy increase during loading and the presence of heating.

3.2 The red trap

A red detuned dipole trap can be realized by a single standing-wave cavity mode. The
atoms are attracted to the intensity maxima at the antinodes which define local trap
centers. When the mode is an even number of free-spectral ranges (FSR) detuned from
the near-resonant cavity mode, the antinodes of the probe mode are aligned with the
trap centers half-way between the mirrors, see Fig. 3.1. Since the atom is trapped at
maximum field intensity, its transition frequency is modified by the differential Stark
shift of the ground and excited state. For a two-state atom the Stark shift equals twice
the trap depth because ground and excited state repel from each other by the same level
shift. In a real atom, higher lying states have to be included and lead to a combined
shift that strongly depends on the detuning in the proximity of other resonances. Note
that for experiments on the D2-line of 85Rb at 780.24 nm the detuning for the dipole
trap is restricted to values smaller than half way to the D1-line at 795 nm, or much
larger detunings, for all but the extreme hyperfine sublevel. In the experiment the
probe and trap field are both circularly polarized and optically pump the atom into this
extreme hyperfine sublevel providing a true ’two-level’ system. Due to the individual
level structure in Cesium, there is a special ’magic wavelength’ for which the coupling
to higher levels leads to an combined downward Starkshift on the excited state that
matches the ground state shift (95). At this wavelength the atomic transition frequency
is not altered by the trap. In 85Rb a red-detuned magic wavelength exists in the far
infrared at 1529 nm but is experimentally impractical. There is, on the other hand, a
blue-detuned magic wavelength close to 776 nm.

To load the red-detuned trap, slow atoms are guided by the potential of a weak
dipole field. Since the atom ’rolls down’ the potential dimple, at any time its energy
is sufficient to reside anywhere in the mode. When an atom, strongly coupled to the
near-resonant mode is detected, the conservative potential is switched to trap the atom.
The coupling and hence, the radial position can be directly observed and qualified via
the cavity transmission. In contrast, the axial motion is about one and a half orders
of magnitude faster and cannot be resolved. Therefore, the position at the switching
time along the standing wave is arbitrary. Atoms that are close to the node are not
trapped by the switching. Generally, the average axial energy gain will be about half
the potential depth. Still, when efficient cavity cooling in axial direction is present, close
to unity trapping efficiencies are achieved, i.e. no extra losses on a short timescale are
observed (88). In the far-detuned dipole trap the storage times are an order of magnitude
larger than in the near-resonant field. In the dark trap, without probe light, the storage
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Figure 3.1: Red intracavity dipole trap. The basic red detuned intracavity dipole trap
consists of a single TEM00 mode. It is an odd number of free-spectral ranges red detuned from
the probe, such that the local trap centers given by the intensity maxima (red) overlap with the
antinodes of the near-resonant probe field (green) at the cavity center. An atom is guided by a
weak conservative dipole field which is switched upon the detection of a well-coupled atom. The
potential landscape corresponds to a one-dimensional array of elongated dimples.

times are on the order of a few ten ms and can be approximately doubled with respect
to the dark dipole trap by introducing cavity cooling with a weak near-resonant probe.
The combination of the red intracavity dipole trap with cavity cooling achieves reliable
strong coupling and enabled the first measurement of the normal-mode splitting of a
single trapped atom.

In the trap the effective atomic detuning is altered due to the Stark shift. This direct
dependence of the effective atomic detuning on the trap depth was deliberately used to
measure the anticrossing in the normal-mode spectrum presented in Sec. 8.2 and (94).
However, the calibration of the dipole intensity measured in transmission is only possible
to within a few percent and in addition to the motion in the standing wave light field,
the atomic detuning at the trap center varies with the dipole intensity.

3.3 The blue trap

An atom is repelled from blue-detuned light and hence confined to regions of low Stark
shift. Hence, the idea of the blue trap is to use far-detuned cavity modes to shape a
potential landscape which realizes three-dimensional confinement at a dark trap center
(Fig. 3.2 and Fig. 3.3). Such a blue trap has a number of advantages for experiments
in cavity QED: (1) Since the trap height does not contribute to the atomic detuning, it
can be made large for good confinement. (2) An atom inside the trap is well isolated
by the surrounding potential barrier, outside atoms are repelled. (3) The blue trap can
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Figure 3.2: Blue intracavity dipole trap. The idea of the blue trap is to use far-detuned
cavity modes (blue) to shape a potential landscape which realizes three-dimensional confinement
around a dark trap center. The slow atoms are bound to stay in regions of vanishing field
intensity. To load an atom, the trap has to be opened. A nodal line guides the atoms to the trap
center. Upon detection of an atom strongly coupled to the probe mode (green), the transverse
confinement is closed. The energy gain due to guiding and switching is kept small and the atom
is stored at a dark trap center largely preserving the free-space properties.

be loaded by creating a dark funnel to guide a slow atom to the trap center. As the
atom is repelled from the blue light, the kinetic energy does not increase during the
capture process. Moreover, weakly coupled atoms that are not collected by the funnel
are rejected. (4) The funnel can be closed upon detection of the strongly coupled atom
in the trap center. Because the energy gain due to guiding and switching is kept small,
the requirement to cool the atom after the capture process is relaxed. (5) Since during
the whole loading sequence the atomic detuning is preserved, parameter regimes of large
cavity-enhanced heating (85; 86) can be avoided.

The potential landscape of the blue trap consists of mountains insuperable for the
slow atoms. The perfectly aligned cavity modes are well suited to generate a one-
dimensional array of traps. Several higher-order modes of the cavity are combined to
create axial and transverse confinement (Fig. 3.2). Persistent axial confinement can be
realized analogous to the red case by a TEM00 mode which is an odd number of FSRs
blue-detuned. This field constitutes a shifted array of repellent oblate antinodes, resem-
bling a stack of pancakes. In this case the nodes overlap with the antinodes of the probe
field at the cavity center. transverse confinement can be realized by a (combination
of) higher-order mode(s) with zero field on the cavity axis, transversely completely sur-
rounded by high intensity regions, e.g. a combination of TEM10 +TEM01 modes forming
a doughnut mode. To be aligned with the probe maxima, the modes are an even number
of FSRs blue-detuned. The high-finesse cavity guarantees maximum contrast of the in-
terference pattern. The quality of the destructive interference at a node in the standing
wave mode is extremely good. A residual imbalance of the counter-propagating waves
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can only be induced by the single sided pumping of the cavity mode and different losses
in the mirror coatings. These effects given by the mirror parameters are in the order
of a few parts per million. By symmetry, the higher order mode used for the radial
confinement has a perfect nodal line in the cavity center. The trap center is therefore
accurately dark. Since the kinetic energy of the atoms is small compared to the potential
barriers formed by the blue-detuned light fields, atoms are bound to stay in the regions
of vanishing blue light intensity. To load an atom, the trap has to be opened. This is
achieved by a nodal line of a higher-order mode oriented in the direction of the arriving
atoms. Upon detection, only the transverse confinement has to be closed while the axial
confinement is preserved. Because the transverse motion of the atom is monitored by
the cavity transmission, the energy gain due to switching can be minimized. Since at
the trap center the atom is stored at zero intensity, guiding is not accompanied by an
increase in kinetic energy and the free-space properties of the atom at the trap center
are preserved.

trap

funnel

z

exploded

view

Figure 3.3: The vicinity of the trap center for trapping (left) and guiding (right). Because
the trapped atom is completely surrounded by blue-detuned light, an exploded view shows the
atom sitting close to the dark center of the doughnut.





Chapter 4

Cooling and detection

All conventional methods of laser cooling rely on repeated cycles of optical pumping
and spontaneous emission of a photon. Spontaneous emission provides the dissipative
mechanism required to remove entropy, while each emission imprints a recoil in a random
direction. Cavity cooling is an alternative method to cool a particle strongly coupled to a
high-finesse cavity (90; 91; 92). Instead of exciting the atom, the photon can be emitted
from the cavity. Appropriate parameters for cavity cooling are chosen such that: (1) the
emitted photon is blue detuned with respect to the absorbed and (2) the excitation is
predominantly exchanged via the cavity contribution to the dressed states.

This chapter introduces two experimentally relevant parameter regimes that allow for
axial cavity cooling, but differ with respect to the position dependence of the forces and
are referred to as nodal- and antinodal-cooling (Sec. 4.1). The character of the detection
also differs between the two regimes (Sec. 4.2). In cooling region I (CRI, Sec. 4.1.1),
resonant detection is very robust and provides a high signal to noise ratio. In cooling
region II (CRII, Sec. 4.1.2), off-resonant detection allows to discriminate and qualify
high couplings. If we consider pumping the system with a laser exciting the atom from
the side, the corresponding parameters for the atom and the mode change their roles.
Therefore, only cooling region II overlaps with its analog for side pumping and hence,
qualifies for the implementation of three-dimensional cavity cooling.

Cavity cooling in the axial direction was first observed in this experiment (88) and
is introduced in Sec. 4.1. The three-dimensional extension of cavity cooling was realized
in a different experiment in the group (97).

4.1 Cavity cooling

The velocity-dependent force along the cavity axis to the linear order in velocity can be
expressed by the friction coefficient β. Figure 4.1 shows the friction coefficient β as a
function of the laser detuning with respect to the bare atom ∆a and cavity ∆c, respec-
tively. A possible Stark shift due to the trap is neglected. In Fig. 4.1 A., the friction
coefficient is averaged over the vicinity of the antinode of the probe mode ([−λ/10, λ/10]),
i.e. as appropriate for a well-coupled atom. A scan of the laser corresponds to a diagonal
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Figure 4.1: Friction coefficient: Nodal cooling (cross) and anti-nodal cooling (plus).
A. Friction coefficient averaged over ±λ/10 in the vicinity of an antinode, i.e. trap center. B.
Friction coefficient averaged over the a full period along the standing wave direction. C. & D.
Sisyphus cooling cycles in the dressed states along the cavity axis: the system undergoes multiple
excitations and emissions. The extra energy of the bluedetuned photons emitted is extracted
from the kinetic energy and cools the atomic motion. Heating occurs when one of the modulated
dressed states is excited at its maximum. Scanning the probe laser will hence result in strong
cooling and heating in the vicinity of the normal modes.

in the two dimensional plot for a given atom-cavity detuning. Starting from negative
detunings, such a scan hits two pairs of cooling and heating regions. These cooling (heat-
ing) regions, situated on the red(blue)-detuned slope of the normal mode, correspond to
the ’Doppler-type’ cooling (heating) on the resonances of the coupled system. For the
symmetric case, ∆c ≡ ∆a, both normal modes consist of equal contributions of the bare
states and are equally well excited. For |∆c| < |∆a|, the laser is closer to the normal
mode that is ’cavity like’ and the excitation of the system is stronger when pumping
the cavity. Since the excitation is mainly exchanged via the cavity mode, this is where
the advantage of cavity cooling is effective, i.e. cooling forces are large compared to
free-space at equal excitation of the atom.
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If the spatial interval for averaging is enlarged, the same picture like Fig. 4.1 A. for
a slightly less coupled atom is added. Due to the reduced coupling, the normal modes
and hence the cooling and heating regions move towards the origin. The outer regions
of the lesser coupled atom largely compensate the corresponding inner regions of the
stronger coupled. Averaging over the full standing wave only the extreme regions survive,
see Fig. 4.1 B., all heating and cooling contributions that lie in between are canceled.
The remaining regions can be attributed to nodal cooling (heating): |∆c| < κ,∆a > 0
(|∆c| < κ,∆a < 0) and antinodal cooling (heating): ∆a < ∆c < 0 (∆a > ∆c > 0).

The trapping potential confines the atom to regions of strong coupling. If the atom
moves away from the trap center the coupling is reduced and at the same time the atomic
detuning is shifted to lower values when the detuning ∆a is taken at the trap center,
i.e. including the Stark shift in the red trap. The additional shift during the averaging
leads to nodal heating and cooling regions on the ∆c = 0 axis that correspond to the
free-space detunings, and antinodal heating and cooling regions that are positioned with
respect to the coupled detuning, i.e. the origin.

The preceding analysis thus identifies two cooling regions which are discussed in more
detail:

4.1.1 Cooling region I (|∆c| < κ,∆a > 0)

In cooling region I (CRI, cross in Fig. 4.1) the probe laser is on resonance with the
empty cavity, see Fig. 4.1 C.. The system is predominantly excited when the atom is
uncoupled at the node. Due to the finite response time given by the decay rates (κ, γ),
the photon is emitted after the system has followed the upper dressed state for some
time. Since due to the coupling the dressed states repel each other, the emitted photon
is blue detuned. The extra energy is extracted from the kinetic energy of the atom which
is cooled. This cooling cycle repeats multiple times in this Sisyphus-type cooling (85).
Note that the cooling is most effective for an atom that reaches the node and ceases for
a well-coupled atom. Then again the probe excites the bare cavity which leads to very
effective cooling at low atomic excitation, i.e. a good ratio of cooling rate to heating by
spontaneous emission. Experimentally, a cooling rate at least five times larger than for
free-space cooling at equal atomic excitation was observed.

4.1.2 Cooling region II (∆a < ∆c < 0)

In cooling region II (CRII, plus in Fig. 4.1) the probe laser is resonant with the lower
dressed state in the coupled case, see Fig. 4.1 D.. The cooling can again be understood as
multiple Sisyphus type cooling cycles. Here, cooling is effective at the antinode, i.e. for a
well-coupled atom. In this parameter regime the probe laser is red detuned with respect
to both normal modes. To allow for effective cavity cooling the lower dressed state must
be cavity-like. Then, the excitation is mainly transferred via the cavity contribution to
the normal mode and the excitation of the atom is kept low.

If we consider pumping the system via the atom with a laser from the side (ηa 6= 0),
the roles of atom and cavity are interchanged. Hence, the plot of the friction coefficient
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Fig. 4.1 A. is then given by the mirror image with respect to the diagonal (∆c ≡ ∆a).
Therefore, an overlap of the resulting cooling regions is only given for the CRII. Moreover,
in CRII the laser is red detuned with respect to both normal modes such that any (off-
resonant) excitation of the system by energy conservation can only lead to cooling.
Hence, this parameter regime allows for cavity cooling in three dimensions (Sec. 7.9).

4.2 Resonant and off-resonant detection

One characteristic difference between the two cooling regions is that the probe is resonant
with the bare cavity in CRI and resonant with the strongly coupled cavity-like dressed
state in CRII. This also results in a distinct difference in the detection of an atom, see
Fig. 4.2: When the probe is resonant with the empty cavity as in CRI, the presence
of an atom will lead to a decrease in transmission. For any detuning on the order of
the maximum coupling |∆a| . g2

0/κ (cf. eqn. (2.16)), the induced shift of the cavity-
like state will be in the order of the linewidth, resulting in a steep drop in transmission.
Therefore, the detection of an atom is very robust. Moreover, since the atom switches
off the light, the excitation of the coupled system is reduced.

In CRII the probe is resonant with the coupled system (dashed-dotted). The pres-
ence of a coupled atom switches the light on and the excitation of the system is increased.
This off-resonant detection allows to discriminate between large couplings. The map-
ping between coupling and transmission can be tailored: A larger atom-cavity detuning
reduces the shift induced by the coupling leading to a smoother transition. In CRII the
probe detuning with respect to the maximum shift defines which part of the normal
mode that is swept with increasing coupling.

4.3 Cooling regions and Stark shift

Figure 4.3 shows the dressed-state Sisyphus picture of cavity cooling for the different
cooling regions in the dipole traps. For a fixed trap depth two completely analogous
dressed state configurations with respect to the cavity axis can be found for the red
and blue-detuned traps at appropriately chosen bare detunings. The variation of a
dressed state due to changes in the trapping field intensity vanishes close to the free-
space detunings. The obvious difference between the red and the blue dipole trap is the
position where the free-space detunings are preserved, i.e. the Stark shift is zero. In the
red trap this is the case at the node, where the system is uncoupled. The advantage
of the blue trap is that the free space detunings are preserved at the antinode which
is the target position for a well-coupled system. Note that even though the difference
appears small for the CRII, cooling and detection sensitively depends on the detuning
at maximum coupling, i.e. on the order of κ. Experimentally trapping in CRII was
not realized in the red-detuned dipole trap, because the Stark shift sweeps the atom
detuning across a heating region during the loading. Successful trapping of atoms in the
blue-detuned intracavity dipole trap in CRII is presented in Sec. 7.9.
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Figure 4.2: Resonant and off-resonant detection. The probe is resonant with the bare
cavity (red, solid). The coupled system is tuned out of resonance with the probe such that
the excitation and hence the transmission of the cavity drops steeply, when the shift exceeds the
linewidth. Resonant detection allows for a high signal to noise and is very robust. In off-resonant
detection the coupled system is tuned into resonance with the probe (blue, dash-dotted). The
part of the normal mode that is swept with increasing coupling is defined by the probe detuning.
Typically, the bare detuning is chosen such that the probe is resonant for maximum coupling. In
this case the excitation of the system increases monotonously with increasing coupling. It allows
to distinguish between high couplings.
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Figure 4.3: Cooling regions in dipole traps: Sisyphus picture of cavity cooling along the
cavity axis in the red- and blue-detuned dipole traps for the different cooling regions. The bare
states are shown as horizontal lines. The trap is introduced with a corresponding Stark shift:
the modulated ground state potential is shown in green (dash-dotted). To simplify the energy
balance in the Sisyphus picture, the Stark shift in the atomic transition is entirely attributed to
the atomic excited state (blue, dashed). Finally, the coupling is included and the dressed states
(red, solid) are obtained. To show the effect of variations in the trap depth two neighboring
configurations of different trap depths are shown. Note that the variation vanishes close to the
free-space detunings. The obvious advantage of the blue trap is that this position is at the
antinode corresponding to a well-coupled system.



Chapter 5

Numerical simulation

Numerical simulations can be considered as the link between experiment and theory.
The theory presented in Chap. 2 can be solved analytically for an atom at rest in the
limit of low excitation and lowest order in the velocity. Moreover, the light forces and the
diffusion are strongly position dependent via the coupling and the Stark shift. Therefore,
the spatial distribution of atoms is the result of a complicated motion, which is obtained
by numerical simulation. In this chapter the results of the numerical simulations of atoms
guided and trapped in blue intracavity light fields are presented and discussed, see also
(114). The properties and advantages of the blue intracavity dipole trap identified in
(Chap. 3) are confirmed. In particular, the possibility to access the cooling region II
(CRII) is supported. The results are used to identify the interesting parameter regimes
for the experiments discussed in chapter 7.

The development of numerical simulation for this experiment are reviewed in Sec. 5.1
before introducing the algorithm is introduced in Sec. 5.2. The rest of the chapter will
present the results of the numerical trajectory simulations in both the cooling regions I
and II (Sec. 5.3).

5.1 Background

The progress of the experiment has been accompanied by the development of numerical
simulations, which show remarkable quantitative agreement with the experimental data.
In the simulations all physical quantities can be calculated, also those which are exper-
imentally not accessible. The ability to perform numerical simulations has been a key
to the understanding of the experimental observations and the underlying physics: the
different contributions of forces and diffusion to the autocorrelation of the transmitted
intensity when atoms are traversing the mode were identified (115; 116). Guiding and
trapping atoms in the near-resonant probe field (84) as well as in a far red-detuned
mode has been studied. The simulations were extended to account for the presence of
a red-detuned intracavity dipole trap. In the ’dark’ dipole trap - without probe light -
storage times are limited by parametric heating due to fluctuations of the dipole field.
When the simulated parametric heating is adapted to the losses observed in the dark
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trap, good quantitative agreement is found for the dependence of cavity cooling on the
power of the near-resonant probe (88). The simulations show that the onset of axial
cooling is reflected in a change in the preferred loss channel. Cavity cooling overcom-
pensates axial parametric heating by the trap light, but the increasing number of recoils
from spontaneous emission result in radial losses. The normal-mode spectra of a qual-
ified strongly-coupled atom-cavity system close to the anticrossing in transmission and
excess loss rate are reproduced by the simulations, see Sec. 8.2. The simulations allow
to verify that the qualification (see Sec. 7.6) completely eliminates the contributions of
low coupling g.

For the numerical studies of the blue trap, the extra light fields with their spatial
dependencies were added to the simulation. The Stark shift of the blue-detuned lasers
is calculated taking into account transitions to higher excited states of the atom. In
the experiment all dipole lasers are independently locked to the same transfer cavity.
Therefore, it is reasonable to assume the parametric heating to be the same as for the
red laser. This fixes all additional parameters in the simulations.

5.2 Algorithm

At low excitation the steady state of the atom-cavity-trap system is solved analytically
for an atom fixed in space at a given coupling and developed to first order in velocity
(Chap. 2). The analytical expressions allow for efficient, three-dimensional simulation
of sample traces based on a trajectory propagation. Further details on the numerical
simulations can be found in (87).

The atom is well described by a point-like particle, because at the temperatures con-
sidered its de Broglie wavelength is much smaller than the optical wavelength. A moving
atom is subject to conservative dipole forces of the light fields, velocity-dependent forces
due to the delayed adjustment of the system to changes of position dependent parameters
and diffusion caused by random momentum kicks. Given the steady-state expectation
values, the Newtonian equations of motion for the position r(t), and momentum p(t)
can be written as

ṙ(t) =
p(t)
mRb

(5.1)

ṗ(t) = 〈Fdp(r(t))〉+ 〈Fv(r(t),p(t))〉+ ṗdp(r(t)) + ṗse (r(t)). (5.2)

Here, 〈Fdp(r(t))〉 and 〈Fv(r(t),p(t))〉 are the expectation values for the dipole force and
the velocity-dependent force, respectively. They are completely defined by the current
position r(t) and momentum p(t) of the atom.

The diffusive heating mechanisms are represented by stochastic processes. The ef-
fect of spontaneous emission and fluctuations of the dipole force (2.36) are modeled by
the random momentum kicks ṗse/dp(r(t)). The dipole force as well as the momentum
diffusion Ddp (2.60) preferentially act in the axial direction, because they are propor-
tional to the gradient of the coupling. The gradient is proportional to the typical inverse
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Figure 5.1: Initial conditions in simulations. The atoms are started at y0 = −2w0 below
the cavity center with a randomly chosen position in the x − z plane in symmetric intervals of
x ∈ [−x0, x0]× w0 and z ∈ [−z0, z0]× λ.

length scale, which is w0
λ/2 ≈ 60 times larger in the axial direction. The implementa-

tion of the diffusion due to spontaneous emission Dsp (2.59) takes the dipole emission
pattern into account by reproducing the probability distribution of the recoils. The
85Rb atom is optically pumped to the 5S1/2, F = 3,mF = 3 state and excited on the
5S1/2, F = 3,mF = 3→ 5P3/2, F = 4,mF = 4 transition with circularly polarized light.
The diffusion by spontaneous emission is therefore 2

5 in the direction of the quantization
axis and 3

10 in both orthogonal radial directions. The parametric heating with contribu-
tions from all dipole lasers is included by a stochastic rescaling of the Stark shift and the
expectation value of the dipole force of the trap fields 〈Fdp,trap(r(t))〉, see Sec. 2.7. The
rescaling leads to a Gaussian distribution around the expectation value with a width
chosen to reproduce the first moment, i.e. the diffusion constant. The experimental ori-
gins are both direct intensity variations of the trap beams as well as frequency variations
of the lasers, which are converted into intensity variations by the transfer-function of
the cavity. The parametric heating is proportional to the noise density at twice the trap
frequency and the square of the trap frequency (117). Because of the different scaling
(λ/2� w0), parametric heating in axial direction is two orders of magnitude larger than
in radial direction.

The initial conditions in the simulations (Fig. 5.1) are chosen to closely mimic the
experiment (Chap. 6). Atoms are started at a random position in the (x− z) plane, in
symmetric intervals of x ∈ [−0.4, 0.4]×w0 and z ∈ [−20, 20]×λ(i.), at y0 = 2w0 beneath
the cavity. The vertical velocity is fixed at vy ≈ 0.1m

s . The horizontal velocity along the
cavity axis z is restricted to about one recoil (vz = 6mm

s ) by geometrical selection. The

(i.)In reality, the length of the cavity corresponds to 156× λ.
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parameters used in the simulations and their meaning are compiled in table B.1 in the
appendix.

The atom is propagated by integrating the equations of motion (5.1, 5.2) using
a Runge-Kutta algorithm. To trap the atom, the conservative dipole trap has to be
switched upon the detection of a strongly coupled atom. For most measurements the
probe is on resonance with the empty cavity such that the atom causes a dip in the trans-
mitted intensity. The transmission is sampled with a low-pass filter with a bandwidth
of 100 kHz and the trap is switched when the transmission drops below a preselected
threshold. For off-resonant detection the transmission increases with the coupling and
correspondingly has to be larger than the trigger level. Finally, the propagation of the
trajectory is stopped when the atom hits one of the mirrors or the radial distance exceeds
2w0. These two loss directions are represented by the ’exitway’. For axial and radial
loss the exitway is defined as exitway = 1 and exitway = 1, respectively. After imple-
menting the additional blue-detuned laser fields the numerical simulations are checked
to reproduce the results of the simulations for the red trap (88).

In the simulations presented in this chapter, the blue TEM00 mode is only one free-
spectral range (FSR) detuned at 777 nm. In the experiment a three FSR detuned mode
was implemented to facilitate the separation of the light beams in the detection.

5.3 Results

This section discusses the numerical simulations of the blue trap. The properties and
advantages found in the analytical studies of Chap. 3 are confirmed by the numerical
results. As discussed in Sec. 4.2 there is a correspondence between the two parameter
regimes for cooling and the preferred way of detection. The discussion starts with the
parameters of cooling region I (CRI), also used in the red intracavity dipole trap. Then
the possibility to access the second cooling region II (CRII) is addressed.

5.3.1 Cooling region I (|∆c| < κ,∆a > 0)

The red trap was realized in cooling region I (CRI) (∆a > 0,∆c = 0). An increase
of the storage time by a factor of two with respect to the dark trap was achieved by
applying near-resonant probe light (Fig. 5.2). Since cavity cooling overcompensates
axial parametric heating due to intensity variations of the dipole field (117), the exit
way changes from axial to radial. In red-detuned laser fields atoms are attracted to the
intensity maxima. The guiding field is therefore given by a conservative potential well.
’Rolling’ into this well, the atom gains enough kinetic energy to reach any location in
the cavity mode. In contrast to the radial motion, the axial motion is much faster than
the detection bandwidth and can hence not be resolved. Particularly, when the trap is
switched, the atom has an arbitrary position in the standing wave direction. On average
the atom gains half the potential depth in axial energy by switching. This energy gain
can then be counteracted by axial cavity cooling.

In this cooling region, the probe is on resonance with the empty cavity to excite the
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Figure 5.2: Cavity cooling in the red trap. Storage time and exit way in the
red intracavity dipole trap versus the power in the near-resonant probe mode. For
high probe powers the storage time is inversely proportional to the power P−1

nr (curve).
With the axial cavity cooling compensating for the parametric heating due to fluc-
tuations of the trap, the preferred exit way changes from axial (0) to radial (1).
{Ttrig = 0.1(ii.);Pnr = 1;x0 = [−0.4, 0.4]; y0 = −2; z0 = [−20, 20]; (∆a,∆c) = (35, 0);
(Pr, Prs) = (80, 160) · 103}. The parameters and their meaning are listed in Appendix B.

upper dressed state in the minimum, i.e. nodal cooling. It is therefore blue detuned
with respect to the atom. To compensate for the repellent dipole force a far-detuned red
dipole field is used.

Blue-detuned light fields correspond to potential hills. The slow atoms do not have
the energy to climb the potential hills and are bound to stay close to zero intensity. A
blue TEM00 mode and a TEM10 with the nodal line oriented in the vertical direction
can be combined to form ’funnels’. These funnels allow for 2D guiding of the atoms to
regions of strong coupling. Figure 5.3 shows the effect of the guiding fields on the average
trigger position of the atom. The guiding field power is given for the 1FSR blue detuned
TEM00 mode at 777 nm, the 2FSR detuned TEM01 guiding mode at 775 nm is excited
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Figure 5.3: Localization with increasing guiding field power: The graph shows the av-
erage axial and radial trigger position and corresponding coupling g depending on the guid-
ing field power. With increasing guiding field power, the localization in x direction improves
while the y position is given by the trigger value. The guiding field power is given for the
TEM00 mode, the power in the TEM01 mode is twice as high. Here, the relevant parameters are
{Ttrig = 0.04;Pnr = 1;x0 = [−0.4, 0.4]; y0 = −0.5; z0 = [−20, 20];Pr = 36 · 103;
(∆a,∆c) = (35, 0)}.

at twice the power, (Pb1 = 2Pb0). The trigger threshold is set to 4% of the empty cavity
transmission. With increasing field strength in the guiding fields the atoms are more and
more restricted to the nodal line. The average position in the x-direction is reduced by
more than a factor of 2. With better localization in x the coupling necessary to trigger
is reached earlier in the y direction. This explains the small increase in the vertical y
direction. The trigger threshold defines the high offset value of the coupling g ≈ 0.9g0.
Still an increase in the average coupling is observed due to the better localization in the z
direction. While the atom enters radially, the funnel centers the atom to the nodal line.
It is expected that at some guiding field strength the funnel will be so tight that atoms
are reflected. This can be analyzed on the relative trigger probability Ptrig. For guiding
fields Pb0 ≤ 5×104 photons Ptrig > 94%, i.e. most of the atoms reach a coupling sufficient
to reduce the transmission to the threshold value. For a guiding field of Pb0 = 7.5× 104

photons the relative trigger probability is reduced to Ptrig ≈ 80%. According to Fig. 5.3
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Figure 5.4: Relative trigger probability with increasing guiding field. At very high
guiding field intensities the funnels lace up and the atom does not reach the required coupling to
trigger before it is reflected. However, the reflection of the atom only happens after significant
guiding is achieved, as Fig. 5.3 shows. Parameters are the same as in Fig. 5.3.

guiding by the blue-detuned light fields is effective before a significant fraction of atoms
is repelled (see Fig. 5.3).

Once the atom is detected, it is trapped by switching the blue-detuned light fields
from (Pb0, Pb1) = (50, 100) × 103 to (Pb0s, Pb1s) = (100, 300) × 103 photons and adding
the TEM01 mode. The power in the TEM01 after switching is the same as for the TEM10

mode to form the doughnut. Switching the guiding modes is in principle not necessary,
because with the TEM01 mode full 3D confinement is realized. However, a lower guiding
intensity avoids the problem of the reduced relative trigger probability and the effect
of the switching on the energy of the atom in the vertical direction can be studied.
Figure 5.5 shows the signature of cavity cooling in the blue trap. The storage times
show an increase by a factor of about three at Pnr ≈ 0.15 photons. At this intensity
the axial, dominantly parametric heating is compensated by cavity cooling. For even
higher probe powers storage times decrease as Pnr

−1, because of radial heating due to
spontaneous emission. Compared to the case of the red dipole trap (Fig. 5.2), there are
additional points below the maximum storage time for low probe intensity. The change
in exit way is not as pronounced in the blue trap, because once the atom is able to escape
the trap it will ’roll down’ the outer slopes. This will be discussed in more detail on a



50 5. Numerical simulation

0

 0.2

 0.4

 0.6

 0.8

1

0

5

 10

 15

 20

 25

 30

 35

 40

 45

0  0.1  0.2  0.3  0.4  0.5

s
to

ra
g

e
 t

im
e

 [
m

s
]

power in near-resonant mode [photons]

e
x
it
 w

a
y

ra
d

ia
l

a
x
ia

l

exit way
storage time

Figure 5.5: Cavity cooling in the blue trap in cooling region I. (∆a > 0,∆c =
0). An increase in storage time as a signature of cavity cooling is observed for low pow-
ers of near-resonant probe light. With the onset of cavity cooling overcompensating ax-
ial parametric heating due to the dipole trap, the exit way changes to completely radial.
{Ttrig = 0.04;Pnr = 1;x0 = [−0.4, 0.4]; y0 = −0.5; z0 = [−20, 20];Pr = 36 · 103;
(Pb0, Pb0s) = (50, 100) · 103; (Pb1, Pb1s) = (150, 300) · 103; (∆a,∆c) = (35, 0)}.

sample trace in subsection 5.3.3.

5.3.2 Cooling region II (∆a < ∆c < 0)

In cooling region II (∆a � ∆c < 0) the probe light is guaranteed to be red detuned
with respect to both dressed states. By energy conservation this setting can only lead
to a velocity-dependent force that is cooling. This cooling region coincides with the
corresponding cooling region (∆c < 0,∆a < 0) for an excitation of the atom from the
side (Sec. 2.7). Exciting the atom from the side leads to cavity cooling in the radial
direction. Strong cooling forces are induced by counter-propagating transverse beams
with intensity (or polarization) variation on the scale of the wavelength λ. Guiding and
trapping in this cooling region could not be achieved with the red-detuned dipole trap,
because due to the Stark shift of the trap the system will generally pass a region of
cavity heating in the trapping process.

The cooling region (∆c < 0,∆a < 0) is given by the excitation of the lower dressed
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Figure 5.6: Localization depending on the trigger level: With increasing trig-
ger level the atoms are better localized at the cavity center at the trigger time.
{Pnr = 1;x0 = [−0.4, 0.4]; y0 = −0.5; z0 = [−20, 20];Pr = 0;Pb0 = 10 · 103;
Pb1 = 20 · 103; (∆a,∆c) = (−45,−6)} .

state at minimum energy, corresponding to the maximum coupling and hence, ’antin-
odal’ cooling (Sec. 4.1.2). Since the lower bare state is repelled to lower energies, the
probe beam has to be red detuned with respect to this bare state. Because cavity cool-
ing relies on the idea of predominantly exciting the cavity part of the system, the lower
dressed state must be more cavity-like (∆a � ∆c < 0). Hence, the lower bare state is
the cavity and the probe is red detuned to be resonant with the coupled state.

When the off-resonant cooling laser is at the same time used to detect the atom,
the presence of the atom increases the cavity transmission. As discussed, this allows to
discriminate high couplings (Fig. 4.2). Figure 5.6 shows the average trigger position de-
pending on the trigger level Ttrig in units of the bare cavity transmission. The maximum
value of 0.6 corresponds to the transmission on the normal-mode peak. An improved lo-
calization is achieved in all directions. Note that, given in natural units, the localization
in z is already very good for all trigger values, i.e. the repellant blue axial mode confines
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the atom to the nodal planes. With increasing value of Ttrig first (Ttrig . 0.58) the y
position is selected. This corresponds to a later trigger time, waiting for the atom to
reach the center of the mode. For Ttrig approaching the optimum value there is a strong
selection to couplings arbitrarily close to the maximum coupling g0 (Fig. 5.7). However,
this is accompanied by a strong reduction in the relative trigger probability. A good
compromise of a coupling of 0.98g0 can be achieved while the trigger probability is close
to Ptrig ≈ 90%. In the experiment the technical noise on the detection signal will lead
to a reduced discrimination capability. Moreover, the delay in the switching of the trap
will effectively shift the optimum detection level to lower values.

To study the effects of cavity cooling in the axial direction, again the storage time
with respect to the near-resonant probe light is considered (Fig. 5.8). To exclude effects
of radial heating, spontaneous emission was switched off in the simulation. Also the
diffusion terms due to the dipole-force fluctuations of the far detuned light fields are not
included. These scale inversely with the detuning and should therefore be negligible for
large detunings. As noted above, the scaling of the parametric heating by fluctuations
of the dipole field intensities has been transferred from the well established value in the
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When triggering on increasing transmission, high couplings can be discriminated. For high trigger
levels (Ttrig > 0.58) atoms with very high couplings are selected and at the same time the relative
trigger probability decreases. Parameters are the same as in Fig. 5.6.
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red trap. However, the fluctuations of this field where chosen to correctly reproduce the
axial heating. Therefore, it is not a priori clear that contributions to radial losses are
equally well simulated.

An increase in the storage times is observed for very low probe powers. For low
probe powers the losses are driven by the parametric heating due to the trap fields and
the additional dipole diffusion due to the near-resonant probe. At a probe intensity of
Pnr = 1 × 10−4 these effects are overcompensated by cavity cooling. This is confirmed
by the change in the preferred exit way. With spontaneous emission included, (magenta
point in Fig. 5.8), the storage time is reduced, but the enhancement in storage time
remains visible. Adding the diffusion due to the dipole force fluctuation of the far-
detuned trap light, the storage time in the dark trap is reduced. No enhancement
is obtained; hence, the effect of cavity cooling is masked. The diffusion due to the
dipole trap can be reduced by a larger detuning of the trap lasers, as is the case in the
experimental realization (see section 7).

s
to

ra
g

e
 t

im
e

 [
s
]

e
x
it
 w

a
y

ra
d

ia
l

a
x
ia

l

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1e-05  1e-04  0.001  0.01  0.1 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1.0

 0.9

 0.6

 0.7

 0.8

probe mode power [photons]

exit way

without Dpa, Ddp & Dsp

without Dpa & Ddp

all included

storage time:

Figure 5.8: Cavity cooling in the blue trap in cooling region II. Cavity cooling increases
the storage time for low powers of the near-resonant light field. Once cavity cooling domi-
nates, the exit way changes from axial to radial. Parameters are the same as for Fig. 5.6 with
{Ttrig = 0.5}. The diffusion due to the dipole force fluctuations of the far detuned fields and due
to spontaneous emission were switched off in the simulation.
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Figure 5.9: Sample trajectory: transverse motion. Simulated trajectory of an atom in the
blue trap. The storage time of the atom is 529 ms. The left plot shows the first 30 ms the right
one the last 1.6 ms of the trajectory. According to the initial conditions, the trajectory in the
beginning follows elliptical orbits that rotate around the symmetry center. Once the atom is
able to overcome the saddle points transverse motion is distorted due to the ’hopping’ along the
cavity axes, see Fig. 5.10.
{Ttrig = 0.5;Pnr = 1;x0 = −0.016; y0 = −0.05; z0 = −0.012;Pr = 0;
(Pb0, Pb0s) = (37, 37) · 103; (Pb1, Pb1s) = (100, 100) · 103; (∆a,∆c) = (−50,−6)}

5.3.3 Sample trajectory

To gain insight into the dynamics of the system for a typical trapping event a sample
trajectory is shown in Fig. 5.9. The atom is positioned in the center antinode of the
cavity. In the beginning the motion of the atom is defined by the starting conditions. The
atom moves in an elliptic orbit which turns around the symmetry axis. Towards the end
of the trajectory the orbit is nearly circular while the angular momentum only slightly
increased. The potential landscape of the blue trap is depicted in Fig. 3.2. A saddle point
is formed between the on axis maxima of the TEM00 and the shifted off-axis ring type
maximum of the doughnut (TEM10 + TEM01) mode at approximately (z = 0.35λnr, r =
0.43w0). The potential height at the saddle point is about 70% of the maximum value
when the maxima have equal heights. Since, the saddle is strongly elongated in the
radial direction it will be traced for every radial excursion, due to the much faster axial
oscillation . The necessity to overcome the elongated saddle corresponds to a well defined
energy filter. This shows up as a narrow axial energy distribution (5.4± 0.3 MHz) of the
atom leaving the trap with a saddle point of 5.4 MHz. In contrast, the average radial
energy is lower and has a much broader distribution.

At the very end of the trapping event, the trajectory shows distortions from a regular
orbit. These ’bumps’ coincide with flights along the standing wave direction, where the
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Figure 5.10: Sample trajectory: axial motion. Towards the end of the trajectory the atom
has gained enough energy to overcome the saddle points. The atom then hops between different
potential wells a few times. Finally, it leaves the trap by running down the outer slopes of the
TEM00 mode.

atom changes between antinodes some wavelength apart (Fig. 5.10). These flights are
possible once the atom can overcome the saddles. For a few more radial oscillations the
atom will pass through some other trap well. Finally, it will run down one of the outer
channels formed by the slopes of the TEM00 mode and the maxima of the doughnut.
This is the reason why in the blue trap the exit ways are not as well distinguishable and
tend to be radial.

The close to circular orbit is a disadvantage, because efficient cooling is located close
to the trap center. This problem can be solved by applying transverse cooling with extra
laser beams from the side. Alternatively, higher order modes could be used to break the
cylindrical symmetry and allow for azimuthal cooling.

The numerical simulations presented in this chapter confirm the properties and ad-
vantages of the blue trap projected in the discussion in Sec. 3.3, including improved
localization at the trigger and decrease in energy gain while guiding and switching.
Further conclusions and prospects are discussed in Sec. 7.10 after the experimental re-
alization of the blue trap is presented.





Chapter 6

Experimental setup

The experiment is designed to prepare single atoms strongly coupled to the mode of a
high-finesse resonator. Slow atoms are delivered from a magneto-optical trap (MOT) by
means of an atomic fountain. The launch velocity is chosen such that the turning point
of the ballistic trajectory is close to the position of the cavity mode. The atomic fountain
is well suited to deliver atoms to small volume Fabry-Perot cavies in the strong-coupling
regime. Here, optical access from the side is limited and hence orthogonal dipole traps to
deterministically transport atoms to the mode (39; 118) are challenging (119). Instead,
an intracavity dipole trap is used to store the atom.

In the cavity, single atoms are guided to regions of strong coupling by the dipole force
of additional far-detuned cavity modes. They are detected in the cavity by their strong
influence on the transmission of a near-resonant probe laser and stored by switching
an intracavity dipole trap upon detection. For properly chosen parameters, the strong
velocity-dependent forces cool the atom in the axial direction. At the same time, the
coupling of the trapped atom to the cavity mode can be continuously observed via the
cavity transmission. This enables measurements on a qualified strongly-coupled atom-
cavity system, like the spectroscopy presented in Chap. 8.

The different subsystems of the experimental setup are presented in the subsequent
sections. Some of them are explained in detail in previous work. The emphasis is
therefore laid on the various modifications and extensions that are implemented to realize
the blue intracavity dipole trap. The magneto-optical trap (120), vacuum system and
atomic fountain (121) are introduced in Sec. 6.1. On their way to the high-finesse
cavity (122) (Sec. 6.4), the atoms pass several laser beams used for characterization and
preparation (111) (Sec. 6.2 and Sec. 6.3). The laser system (Sec. 6.5), cavity stabilization
(106) (Sec. 6.5) and detection (Sec. 6.7) require major modification compared to the red
dipole trap (123; 87). Finally, systematic measurements and analysis are based on the
computer controlled data acquisition presented in Sec. 6.8.

57
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Figure 6.1: Experimental apparatus: Left: Schematic view of the atomic fountain and the
high-finesse cavity with the different on-axis lasers. Right: Sketch of the vacuum chamber. The
MOT cube is hanging from the lower part of the vacuum chamber. The upper (UHV) part,
where the cavity is situated, is separated by a differential pumping tube.

6.1 Magneto-optical trap and atomic fountain

The magneto-optical trap (MOT) is located in a cube connected to the lower end of
the main vacuum chamber by a differential pumping tube (Fig. 6.1, right). The space
diagonal of the cube is oriented in the vertical. Six circularly-polarized laser beams are
incident on the faces of the cube. They divide into two sets of three lower and three upper
trapping beams. The repumper is superposed with the lower trapping beams. In the
MOT 107 85Rb atoms are trapped from the background pressure, which is enhanced
by a pulsed dispenser (SAES Getter) during the loading phase. They are cooled to
temperatures of ' 5µK in an optical molasses. The atoms are accelerated upward by
continuously detuning the lower beams to the blue by ' 1 MHz/ms. Thereby, the atoms
are adiabatically transferred and cooled into a moving molasses. In the moving frame,
the detuning of upper and lower trap beams is exactly compensated by the Doppler-shift.
The maximum detuning at the end of the acceleration phase defines the launch velocity
of ' 0.7 m/s. The atomic fountain conveys the atoms through the differential pumping
tube (stainless steel, 2 mm × 20 mm) into the main vacuum chamber. The pressure in
the main chamber is a few times 10−10 mbar such that collisions with background gas
can be neglected. The final velocities of the atoms at the position of the cavity mode
can be chosen by the detuning of the lower beams from 0.1 m/s to a few m/s. A further
selection on the arriving times of the late tail of the atom cloud guarantees velocities
v < 0.1 m/s.

The relevant transition for the MOT and the atomic fountain are shown in Fig. 6.2.
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Figure 6.2: Level scheme of 85Rb for the relevant transitions between the 5S1/2 and 5P3/2

states. The probe mode is close to the 5S1/2, F=3→ 5P3/2, F=4 cycling transition also used for
trapping in the MOT. The repumper returns atoms from the 5S1/2, F = 2 state back into the
cycling transition. See appendix A for the level scheme including higher states.

To cool the atoms into a moving frame in the atomic fountain, the MOT beams can
be independently red detuned in the range of 0 to 40 MHz with respect to the trap
transition 5S1/2, F=3 → 5P3/2, F=4 (Fig. 6.2). With a small residual probability, the
atoms are non-resonantly excited to the 5P3/2, F=3 state. From this state they can
decay to the lower ground state 5S1/2, F=2. The repumper excites these atoms to the
state 5P3/2, F=3, from which they are eventually transferred back to the upper ground
state and the cycling transition. Because of the large detuning with respect to the pump
laser of 2915 MHz, the repumper is directly stabilized on the repumping transition by
Doppler-free saturation spectroscopy. See Fig. 6.4 for an overview of the laser system.
To increase the reliability all trapping beams pass through polarization maintaining
single-mode fibers (PMSMF) and are intensity stabilized. An additional, more powerful
external-cavity diode laser (ECDL; DL100, Toptica) in Littrow configuration has been
installed as a new repumper and delivers about five times more intensity-stabilized power
in an improved spatial mode.

On their way to the cavity the atoms optionally pass the fluorescence beam used
for alignment and characterization and the optical pumping beam used to define the
magnetic field at the cavity and for preparation of the internal atomic state.

6.2 Fluorescence laser

The fluorescence beam is used for the alignment of the atomic fountain. It is derived from
light of the lower MOT beams containing repumper light and crosses the upper UHV
chamber below the cavity. The fluorescence signal measured with a photomultiplier tube
(PMT) is proportional to the number of atoms that reach the upper vacuum chamber.
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To prevent the atoms from deflection by unbalanced recoils the fluorescence beam is
retroreflected. If the beam is not retroreflected, it can also be used to cut into the atom
distribution of the cloud.

6.3 Optical pumping beam

The optical pumping beam can be used to pump the atoms into the desired Zeeman
sublevel just before entering into the cavity. The pumping beam is resonant with the
5S1/2, F=3 → 5P3/2, F=3 transition and contains some repumping light. In a magnetic
field collinear with the cavity axis and the direction of the σ+-polarized beam, the atoms
are pumped into the 5S1/2, F=3, mF=3 dark state. The beam is also retroreflected to
prevent deflection of the atoms. In the experiments described later, this beam is not
necessary, because optical pumping is achieved by the intracavity probe field.

Inside the cavity the quantization axis is given by a residual magnetic field aligned
along the cavity axis. The magnetic field in the cavity is defined by switching the coils
used to compensate the earth magnetic field at the position of the MOT to a predefined
value. The existence of the dark state can be used to compensate the orthogonal field
components. If the magnetic field is well aligned in the cavity, the limited number of
recoils transferred to the atoms by an unbalanced beam will not lead to a large deflection
sufficient to prevent detection of the atoms in the cavity (106).

6.4 High-finesse cavity

The science cavity (Fig. 6.3) is a Fabry-Perot resonator. The field in the cavity can be
treated in the paraxial approximation given by an axial standing wave and a transverse
mode pattern. The cavity length l = 156 × λnr = 122µm is calculated from the free-
spectral rage measured as half the frequency difference of two resonant lasers (TiSa780,
ECDL785)(i.) to ∆νFSR = 2π × 1.23 THz. Because the length is much smaller than the
radii of curvature R = 200 mm of the two mirrors, the science cavity is near-planar. In
the near-planar limit l/R � 1 the Rayleigh length zr is much larger than the length

(i.)The abbreviations for the different lasers are constructed from the type and the wavelength. TiSa
denotes a diode-pumped solid-state (DPSS) pumped titanium saphire ring laser system (MBR-110 Mono-
lithic Block Resonator pumped by a Verdi V10, Coherent). ECDL stands for external-cavity diode laser
in Littrow configuration (mostly DL 100 (XL), Toptica, the old repumper and trapping lasers are home-
build).
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(l/zr � 1) and the cavity parameters can be further simplified:
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where z is the coordinate along the cavity axis.
The waist of the near-resonant mode is given by the wave length λnr = 780.2 nm, the

cavity length and the mirror curvature (124). In the near-planar limit the waist does
not change much within the mirrors, cf. eqn. (6.3). The coupling between the atom and
the field is given by:

g =
√

ωc
2ε0~V

dge = 2π × 16 MHz. (6.4)

Here, dge is the dipole matrix element of the transition (5S1/2, F = 3,mF = 3 →
5P3/2, F = 4,mF = 4) and ε0 is the vacuum permittivity. The small mode volume
V leads to a large dipole coupling g ∝ V −1/2. The cavity field decay rate of κ =
2π×1.4 MHz is measured by observing the exponential decay of the cavity transmission.
With the free-spectral range (FSR) of ∆νFSR = 1.23 THz, the finesse of the cavity
is evaluated to F = 4.4 · 105. The transmission (2.8 ppm) and losses (7.3 ppm) of each
mirror are characterized by the simultaneous measurement of reflection and transmission
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Figure 6.3: High-finesse cavity. Left: technical drawing of the cavity setup. The mirrors are
glued stress-free to aluminum holders, which are tight-fit into the piezo tube. Right: photograph
of the complete cavity setup including the Teflon bracket and the vibration isolation stage with
Viton cylinders.
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Parameter Value Comment
radius of curvature R = 200 mm

mirror diameter d = 7.75 mm
mirror transmission T = 2.8 ppm

mirror losses L = 7.3 ppm
length l = 122µm from ∆νFSR = c

2l

free spectral range ∆νFSR = 1.28 THz
linewidth ∆νFWHM = 2.8 MHz

field decay rate κ = 2π × 1.4 MHz
finesse F = 4.4× 105 F = ∆νFSR

∆νFWHM
mode waist w0 = 29.1µm

coupling constant g0 = 2π × 16 MHz g0 =
√

ωc
2ε0V ~ dge

Ptrans for
〈
a†a
〉

= 1 (iii.) 0.86 pW

Table 6.1: Parameters of the high-finesse cavity.

under the assumption of two identical mirrors (125). An alternative method to measure
the field decay time is to scan across the resonance and observe a frequency beat of
the Doppler-shifted circulating field on top of an exponential decay (126). The cavity
parameters are summarized in table 6.1.

The dielectric mirrors are glued stress-free to aluminum holders which are tight-fit
into both sides of a piezo-ceramic tube(ii.). This setup is compressed by the teflon frame
as shown in Fig. 6.3. By applying a high voltage to the piezo the cavity length can
be varied by several 100 nm. The cavity does not show a significant splitting in the
transmission of σ+- and σ−- circularly polarized light, i.e. the observed birefringence is
within the linewidth. An analysis of the polarization dependence on the modes of order
one is given in appendix C. The cavity length is stabilized independently of the probe
with a Pound-Drever-Hall stabilization in reflection (Sec. 6.6).

6.5 Laser system

A functional overview of the laser system is shown in Fig. 6.4. All near-resonant light
beams are derived from the main laser (TiSa780) by double-pass acousto-optical modu-

(ii.)Within the framework of this thesis a new science cavity design has been developed together with
Mr. Bayerl. The coned mirrors are now tight-fitted into a ’crown’ of springs, machined from solid
aluminum. These holders are UHV compatible and do not seem to induce any extra birefringence. With
supplemental tools, they allow to exchange the mirrors during the setup and characterization of the
cavity. They are incorporated in the new cavity setups using coned mirrors
(iii.)Transmitted power for an mean photon number of one in the cavity, i.e. (

〈
a†a
〉
≡

1)2κ1/2 T
L+T

EPhoton, where 2κ is the decay rate of the field. Assumed the mirrors are identical, half

of the T
L+T

≈ 0.183 the photons with energy EPhoton ≈ 2.51E − 19 J are emitted through one of the
mirrors which corresponds to a power of 0.86 pW. T,L are the transmission and losses per mirror
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Figure 6.4: Overview of the laser system: Laser beams are derived from five different
lasers for different applications in the experiment. Acousto-optical modulators (AOMs) allow
to independently adjust the frequencies and stabilize the intensities behind the polarization
maintaining single-mode fibres (PMSMF). The main TiSa780 and the repumper are locked to
rubidium, all far-detuned dipole lasers are locked to the transfer cavity. Electro-optical phase
modulators are used for the Pound-Drever-Hall locks. A total of five different beams delivered
through three fibers pump the cavity on axis. For the detection the beams are separated by a
grating and directed to different detectors.



64 6. Experimental setup

lators (AOM). The beams for the magneto-optical trap (MOT) are delivered by polar-
ization maintaining single-mode fibres (PMSMF). The polarization-cleaned output of all
fibre-based beams is intensity stabilized by feedback onto the radio-frequency (rf) power
of the AOMs. Both the TiSa780 as well as the repumper are stabilized by Doppler-free
saturation spectroscopy. All far-detuned dipole lasers (ECDL785, ECDL775, TiSa772)
are stabilized in reflection by a Pound-Drever-Hall lock onto the transfer cavity, which
itself is stabilized to the TiSa780. Five beams are delivered to the cavity by three fibres
(PMSMF) and mode-matched to the science cavity. In transmission, the different major
beams are split by wavelength and directed to different detectors. The mode matching
of the on-axis beams, the cavity stabilization and the detection will be discussed in more
detail below.

6.5.1 Dipole laser stabilization

The general concept of the laser stabilization of the far-detuned dipole laser is illustrated
in Fig. 6.5. Two beams are individually frequency shifted by double-pass AOM setups
and mode cleaned by polarization maintaining single-mode fibres. One is sent to the
science cavity, the other to the transfer cavity.

The transfer cavity is a near-planar Fabry-Perot cavity (127). It has a length of
470 mm, a free-spectral range of 310 MHz and a full-width half-maximum (FWHM)
linewidth of 100 kHz. Owing to the ultralow expansion (ULE) spacers, vibration isolation
and mounting in a vacuum tube the transfer cavity is mechanically very stable with a
temperature induced frequency drift of ∼ 100 kHz/ s. On timescales larger than 1 s
the transfer cavity is stabilized to the main laser (TiSa780) with a low pass defined
bandwidth of about 100 Hz.

To realize the Pound-Drever-Hall lock (128), sidebands are modulated onto the dipole
laser beam by an electro-optical phase modulator (P EOM). The rf-frequency of about
20 MHz is much larger than the linewidth of the transfer cavity. It allows for a high
bandwidth (4 MHz) of the error signal and determines the capture range. The error
signal, obtained by mixing the signal of the photo diode with the local oscillator with
the appropriate phase, shows a steep slope in the range of the transfer cavity linewidth.
The error signal is fed back by three branches of decreasing non overlapping frequency
ranges (similar to (129)): (1) Directly to the laser diode current (bias-T), (2) with a
servo (proportional plus integral plus derivative controller, PID) to the laser current
(∼ 100 kHz bandwidth, forgetting integrator), (3) via a PID to the piezo tilt of the
external cavity grating. An amplifier picks up the signal for the two low bandwidth
feedbacks from the 50 Ohm line to the bias-T.

Both frequency locks of the external cavity diode lasers (Toptica DL100 (XL), Littrow
configuration) share the same local oscillator and EOM producing 19 MHz sidebands.
Their linewidths are reduced from about 1 MHz to . 20 kHz (r.m.s., root mean square).
The noise power at low frequencies is strongly suppressed, the residual noise power
spectrum peaks at about 1 MHz. The linewidth of the TiSa772 is also about 20 kHz
(r.m.s.) using sidebands with 17 MHz modulation frequency. To allow for independent
stabilizations, the laser beams are separated by a holographic grating (Edmund Scientific,
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2400 lines/mm, ∼ 50% efficiency) and directed to individual rf photodiodes.

6.5.2 On-axis cavity excitation

All beams that are coupled to the science cavity on axis through one of the mirrors are
mode cleaned by a polarization maintaining single-mode fiber (PMSMF). The intensity
is stabilized behind an additional, high extinction-ratio (> 10−6) linear polarizer (Po-
lacor, Corning) by varying the rf-intensity on the AOM. The beams are coupled to the
corresponding cavity modes using appropriate telescopes and periscopes and are super-
imposed by an arrangement of beam splitters. Since they all pass the final polarizing
beamsplitter (PBS) and quarter-wave plate (QWP), they are circularly polarized when
reaching the cavity. The reflected beams leave the PBS through the other port. The
far-detuned beams are frequency shifted by a multiple of the free-spectral range of the
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Figure 6.5: Stabilization of the far-detuned dipole lasers is realized by a Pound-Drever-
Hall lock to the transfer cavity which itself is stabilized to the main TiSa780 laser. The error
signal is obtained in reflection by radio-frequency (rf) phase modulation with an electro-optical
modulator and mixing the photo diode output with the local oscillator. The error signal is
directly fed to the laser diode via a Bias-T À. A lower bandwidth error signal from a pickup
amplifier is provided to two PID servos. The correction signals with decreasing non overlapping
frequency rages are applied to the current Á and the grating Â. The linewidths of the dipole
lasers are about 20 kHz.
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science-cavity which corresponds to a detuning of ' 2.5 nm. The beam used for stabiliza-
tion is split from the others by a holographic grating (Edmund Scientific) and directed
to an avalanche photo diode (APD) (see Sec. 6.6 for details).

6.5.3 Probe beam (780.24 nm)

The weak probe beam with an intensity on the order of one pW can be shifted by '
±50 MHz with respect to the 5S1/2, F=3→ 5P3/2, F=4 transition. In most experiments
it is coupled to the fundamental TEM00 cavity mode.

6.5.4 Red trap and stabilization laser (785.2 nm)

The stabilization of the red dipole trap laser (Toptica DL100 XL) was improved by
implementing a specifically designed pick-up amplifier to reduce the phase shift in the
feedback loop. In most of the experiments discussed in Chap. 7, the red dipole laser
is used for the stabilization of the cavity. In the measurement of the anti-crossing of a
single trapped atom strongly coupled to the mode presented in Sec. 8.2 it served as a
red-detuned intracavity dipole trap.

The blue trap consists of two more laser beams (for details on the geometry of the
trap see 7.1):

6.5.5 Axial confinement laser: pancakes (772.5 nm)

The laser beam pumping the TEM00mode used for axial confinement is delivered from the
TiSa772 to the cavity via the same fibre (PMSM) as the stabilization laser(ECDL785).
For intensity stabilization the two beams are split by a holographic grating (Edmund
Scientific) and are directed to two photo diodes. It excites a TEM00 cavity mode to form
a one-dimensional array of oblate repellent field antinodes, i.e a ’stack of pancakes’.

6.5.6 Transverse guiding & trapping: funnels & doughnut (775.2 nm)

The laser (ECDL775) for transverse guiding and trapping actually consists of two beams
that can be independently detuned in frequencies by acousto-optical modulators. For
guiding, only one of the beams is exciting a superposition of the TEM10 and TEM01

eigenmodes, which are oriented at ±45◦ with respect to the vertical. This superposi-
tion corresponds to a TEM10 mode, restricting the atoms to its nodal line oriented in
the vertical direction. To trap the atoms upon detection in the near-resonant cavity
mode, both eigenmodes are excited on resonance to from a doughnut shaped ring for full
confinement, see Fig. 7.2 for details. The higher-order modes are excited by the mode
cleaned TEM00 mode from the polarization maintaining single-mode fibre (PMSMF). It
is therefore necessary to have independent control on the coupling to the science cavity
and the achievable mode matching is limited. Since the mode matched intensity of the
ECDL775 laser is the limitation for the attainable (transverse) trap height, its intensity
was boosted by a tapered amplifier (BoosTA, Toptica). Alternatively, an adapted phase
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plate (programmable LCD) for the mode-matching would greatly improve the coupling
efficiency.

6.6 Science cavity stabilization

The science cavity is stabilized in reflection by a Pound-Drever-Hall lock. The reflected
beam used for stabilization is separated from the other on-axis beams by a grating and
directed to an avalanche photo diode (APD). The ECDL785 and the TiSa772 reach the
cavity via the same fibre and mode matching optics. They both pass the P EOM that
modulates rf-sidebands at 10.7 MHz and hence, can be used alternatively for stabiliza-
tion. The signal of the APD is mixed with the local oscillator to obtain the error signal.
The low-voltage correction signal generated by a PID servo is fed back to the piezo to
stabilize the length of science cavity. The correction signal is applied to one of the con-
tacts floating on an additional low bandwidth, well-stabilized high-voltage offset (0 to
200 V) for coarse adjustment.

If the intensity of the stabilization light is switched for trapping, the scaling of the
error signal is compensated by dividing it by the impinging intensity. In addition, nonlin-
ear contributions are counterbalanced by an electro-optical intensity modulator (I EOM)
in the path to the APD. With this compensation the intensity of the laser intensity can
be switched by a factor of 10 without affecting the cavity stabilization. This is crucial
for the implementation of the red intracavity dipole trap, where the ECDL785 is both
stabilization and trapping laser. Note that the TiSa772 laser is particularly suited for
the stabilization, because it need not be switched for the blue trap.

6.7 Detection

For the detection the different light beams emitted from the cavity are separated by a
high-quality holographic reflection grating (American Holographics) with 2300 lines/mm
and a maximum efficiency of 90% for vertically polarized light. To benefit from the
maximum efficiency, the light is split into linear components with a polarizing beam
splitter (PBS). The horizontal polarization is rotated by a half wave plate (λ/2). After
reflection from the grating the originally vertically polarized beam is rotated by a half
wave plate (λ/2) and the beams are recombined on a second PBS (see Fig. 6.7). The
dipole beams are picked up by sharp-edged mirrors, which are positioned in the beam in
the focal plane of a lens (L) using micro translation stages. The beams are then directed
to the photo-multiplier modules (H6780-20, Hamamatsu) and the signal is amplified by
a 500 kΩ transimpedance amplifier (Femto) with 4 MHz bandwidth.

In the experiment, the atom-cavity-trap system is observed by detecting the trans-
mitted probe light. Measurements are performed in the low excitation regime at very
low probe intensities. One photon in the cavity mode corresponds to 0.9 pW transmitted
power or a single photon rate of 3.5 MHz. The probe light is detected by two single pho-
ton counting modules (SPCM AQR-13, Perkin & Elmer) that allow for a high quantum
efficiency of about 50% at a low dark count rate of a few 100 Hz and a dead time of
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Figure 6.6: Stabilization of the high-finesse cavity. The science cavity can be alternatively
locked to intensity-stabilized beams of the ECDL785 or TiSa772 laser using a Pound-Drever-Hall
rf-lock at 10.7 MHz in reflection.

50 ns. Because the trapping light (a few 10 nW to µW) is about six orders of magnitude
stronger than the probe light (a few 10 fW to 1 pW), special care has to be taken to
reduce residual trapping light on the SPCMs. The separation by the grating reduces the
dipole light by about 50 dB. The remaining light is mainly diffuse reflection from the
grating. To further reduce the dipole light by about 33 dB, the probe light passes a nar-
row band interference filter (NanoLayers) with a pass band of 1 nm centered at 780 nm
and a maximum transmission of 80%. The overall detection efficiency for the detection of
probe light transmitted by the cavity is about 30%. This includes the propagation losses
through the optics and the quantum efficiency of the detectors (SPCMs). The single
photon clicks are registered with 1 ns time resolution (P7888, FASTComptec computer
card) and stored for later analysis. A custom-made count rate to voltage converter using
ECL electronics (87) generates an analog signal with an update rate of 100 kHz. A low
pass filtered version of this analog signal is used for the single atom detection to trigger
the trap. Alternatively to a simple level trigger a ’smart trigger’ circuit triggers when
the signal stays to one side of a threshold for a preselected time.

6.8 Data acquisition

The experiment is completely computer controlled by a system of four Linux operated
computers with custom server-client software written in C++. The system typically
cycles between different measurement sequences and corresponding parameter sets. All
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Figure 6.7: Detection behind the high-finesse cavity. The transmitted beams are separated
by a holographic grating. To use the maximum efficiency of 90%, the linear polarizations are
split and adapted before the grating, and recombined afterwards with polarization optics. In
the focal plane of a lens (L, f = 150 mm) the dipole lasers are reflected from edge mirrors to
their corresponding photo-multiplier modules (PMM). To further reduce residual dipole light, the
probe beam passes narrow bandpass interference filters before hitting the single-photon counters
(SPCM).

physical parameters like laser frequencies and intensities are calibrated by gauge mea-
surements. The results of the gauges, the parameter sets used and additional measure-
ments during the sequences are stored in a relational database (PostgreSQL). Continuous
traces, e.g. of the transmission of the probe and all dipole lasers are stored in separate
files referenced in the database. They are later analyzed with additional evaluation
programs and the results are again stored in the database.

The relational database allows for studies of parameter dependencies and systematics,
which are of major importance because most experiments involve statistical analysis of
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a large number of events. The system runs stable for a few hours and data was taken
continuously for about four months.



Chapter 7

Experimental realization of the
blue trap

In this chapter the realization of the blue-detuned intracavity dipole trap is discussed
and the experimental results are presented (96). In Sec. 7.1 the concept of the blue-
detuned light-field forming the trap is introduced. Next, a sample trace of a trapping
event is presented in Sec. 7.2. For convenience the cavity is stabilized onto a very weak
red-detuned stabilization laser, but a trap consisting of blue light only is also realized
(Sec. 7.3). The essential feature of the blue trap is to preserve free-space properties for
an atom stored in a region of strong coupling. The qualified strong coupling and the
absence of the AC-Stark shift are directly observable in the normal-mode spectroscopy
of the system (Sec. 7.4). The detection of the presence of an atom while it sponta-
neously scatters only about one photon is analyzed in more detail taking into account
the Poissonian distribution of the detected photons (Sec. 7.5). The qualification of the
coupling is discussed with respect to the spectrum of the cavity-like normal mode for
larger detuning (Sec. 7.6). The Doppler-type dependence of cavity cooling on detuning is
directly discernible by comparison of the transmission spectrum with the loss spectrum
in Sec. 7.7. Finally, cavity cooling in the blue trap (Sec. 7.8) and trapping atoms in the
parameter regime compatible with three-dimensional cooling (Sec. 7.9) are presented.

7.1 Blue-detuned modes for guiding and trapping

An atom is repelled by a blue-detuned light field. To achieve trapping of an atom at an
intensity minimum, it must be completely surrounded by light. This generally renders
a blue trap more complex than a red dipole trap. In a red dipole trap the atom is
attracted to intensity maxima and it can therefore be realized by a simple beam focus
or the antinode of a standing wave. To achieve guiding and trapping in a blue-detuned
intracavity light field several modes have to be combined.

A high-finesse Fabry-Perot cavity only supports well defined sets of eigenmodes. In
the paraxial approximation higher order cavity modes are given by a standing wave
along the cavity axis and a transverse mode pattern generated by superpositions of,

71



72 7. Experimental realization of the blue trap

e.g., the Hermite-Gaussian basis (Sec. 9.1). The number of axial antinodes defines the
longitudinal mode order. The fundamental mode is given by the TEM00 mode with
a Gaussian profile. The frequency difference between consecutive longitudinal TEM00

modes is the free-spectral range (FSR). For the present cavity the FSR/2π = 1.23 THz.
In a cavity with ideal spherical mirrors the modes of one transverse order are degenerate.
In the near-planar cavity used in the experiment, different transverse mode orders are
separated by a few ten GHz. Therefore, the mode patterns in the transverse plane
are superpositions of the Hermite-Gaussian modes spanning the given mode order. The
manifold of order one is spanned by the TEM10 and TEM01 modes.

For trapping the intracavity dipole potential is created by a combination of standing-
wave cavity modes of different longitudinal and transverse mode order, see Fig. 7.1 and
Fig. 3.3 for a three-dimensional impression. All modes are blue detuned with respect to
the near-resonant cavity QED probe field: persistent axial confinement along the cavity
axis is provided by a TEM00 mode Á detuned by an odd number of free-spectral ranges
(FSR). For an arriving atom the potential landscape looks like a one-dimensional array
of mountains rising from the plane, which form long and narrow valleys in between.
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Figure 7.1: Blue intracavity dipole trap from the perspective of an entering atom. The
slow atom is restricted to the field minima of the blue light fields that coincide with the antinodes
of the near-resonant probe mode À at the cavity center. Persistent axial confinement is provided
by a TEM00 mode Á, pancakes. Combined with the transverse nodal line of a TEM10 mode
Â, funnels are formed to guide the atom to a strong-coupling region. Full three-dimensional
confinement is achieved by adding a TEM01 mode to complete a transverse ’doughnut’ mode Ã.
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The very oblate antinodes - resembling a ’stack of pancakes’ - confine the atom to the
nodal planes. Halfway between the mirrors the nodal planes overlap with the antinodes
of the probe mode À . Transverse confinement is provided by a ’doughnut’ mode Ã

formed by a combination of TEM10 and TEM01 modes detuned by an even number of
FSR. To load an atom into the trap, the transverse confinement is relaxed by using
the TEM10 mode only. Slow atoms from an atomic fountain are injected from below
along the y-direction. They are guided towards the cavity center at x = 0 along the
nodal line of this TEM10 mode Â. The combination of axial confinement and transverse
guiding creates funnels that direct the atom to the antinodes of the probe mode. The
trap is closed by adding the TEM01 mode to complete the transverse confinement. Note
that the axial confinement need not be switched to close the trap. Since the axial and
transverse characteristics of the trap are defined by independent modes at different laser
frequencies, they can be controlled individually.

In a real cavity the degeneracy of the higher order modes is generally lifted by small
imperfections. For the modes of order one, the commonly observed symmetry breaking
with respect to two main axes can be explained by the main axes of the mirror curvature
ellipsoids. The broken symmetry corresponds to the freedom in orientation of the two
eigenmodes. Figure 7.2 shows the spectrum of the cavity modes of order one, which agree
well with TEM10 À and TEM01 Á modes oriented at about −45◦ and +45◦, respectively.
These modes are split by about 6 MHz. The structure of the excited mode depends on the
detuning as well as the mode matching of the pump mode. On resonance the respective
eigenmode is predominantly excited. For off-resonant excitation both eigenmodes are
pumped at the given frequency and the resultant mode is a superposition. The intensity
and phase of the two contributions are given by the overlap with the pump. For the
mode matching chosen in Fig. 7.2 the superposition mode that forms between the two
eigenmodes is close to a TEM10 mode with the nodal lines oriented in the vertical
direction. While between the resonances the two modes are excited with the opposite
phase, there is no phase-shift between the excitation of the modes for large detunings
(|∆| � κ). Hence, in the far-detuned limit the excited intensity pattern is a TEM10

mode with the nodal line oriented in the horizontal. It is orthogonal to the former mode
used for guiding the atom.

The doughnut mode pattern for complete transverse confinement consists of a bright
ring with a dark center. Experimentally, it is formed by the sum of both eigenmodes
each resonantly excited by independent laser beams. By choosing the relative intensities
the shape and orientation of the doughnut can be fine tuned (Fig. 7.2 C.). The radial
confinement is given by the interference of the two modes. the resulting potential is
modulated in the azimuthal direction. At a given time, it consists of a ring with two
minima and maxima in orthogonal directions. The orientation of this potential rotates
with the difference frequency of the two laser beams. At the same time, the modulation
depth varies. Full modulation is reached when both modes are excited with the same
or opposite phase to form a TEM10and TEM01mode, respectively. At a phase of ±45◦

a normal doughnut is formed. Because the beat frequency of 6 MHz is more than a
magnitude larger than the typical radial oscillation frequency, the atom only sees the
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Figure 7.2: Spectrum of first-order modes. A. The spectrum of the first-order cavity modes
consists of two orthogonal eigenmodes of the cavity which are close to the TEM10 + TEM01

modes (À + Á) oriented at ±45◦ and split by 6 MHz. Exciting both modes at a frequency in
between these resonances, with a relative phase given by the impinging TEM00 mode, allows
to excite a superposition mode which resembles a TEM01 mode with the nodal line oriented
vertically, appropriate to guide the atoms Â. By exciting both eigenmodes with two laser beams,
the time-averaged excited light field corresponds to a bright doughnut Ã providing full transverse
confinement. B. Scan of mode patterns excited at different detunings for a given mode matching.
The superposition excited for large detuning |∆| � κ is orthogonal to the guiding mode Â. C.
The shape of the doughnut mode Ã can be fine-tuned by choosing the relative intensities of the
two constituents [%]. D. The orientation of the guiding mode depends on the detuning of the
pump.
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time-averaged potential. By symmetry, the time-averaged potential is a complete regular
doughnut as observed in the transmission in the experiment (Fig. 7.2). Note that since
the potential is never anti-binding, stability is not an issue for this time-varying potential.

7.2 Sample trace

A sample trace of a trapping event is presented in Fig. 7.3. The cavity transmission of
the near-resonant probe laser at 780.2 nm and of the blue-detuned dipole laser providing
the transverse confinement are shown. The cavity is continuously stabilized on the weak,
two free spectral-ranges (FSR) red-detuned, stabilization laser ECDL785 (not shown).
The persistent axial confinement generated by a TEM00mode at 772 nm (3 FSR detuned
from the atom) Á amounts to a maximum potential height of Ua = h × 346 MHz. The
guiding field at 775 nm (2 FSR detuned from the atom) Â produces a potential with
height Ug = h × 2 × 10.3 MHz (i.). The probe laser is on resonance with the bare (ii.)

cavity, ∆c = 0. Thus, the presence of an atom detunes the cavity from resonance
and causes a decrease in the transmission. Slow atoms are guided to regions of strong
coupling and cause sharp transmission drops Ä. The trigger is armed t = 205 ms after
launch of the atoms from the atomic fountain to select late atoms arriving with velocities
below 0.1 m s−1. Upon detection of a strongly coupled atom in the cavity center (A),
the atom is trapped by converting the transverse guiding mode to a confining doughnut
mode Ã with a maximum potential height of h × 30 MHz. Simultaneously, the probe
laser intensity is reduced. When the atom leaves the mode, the cavity transmission
increases to the bare cavity value for the reduced observation power (B). After each
trapping event, the stabilization of all lasers and the cavity is checked Å.

7.3 Sample trace for blue only trap

In most experiments the cavity is stabilized to a +2 FSR red-detuned TEM00 mode
(ECDL785) which is independent of the blue-detuned trapping beams. This is convenient
to study the blue trap, because the intensities of the blue modes can be freely adjusted
without affecting the cavity stabilization. However, the weak red-detuned stabilization
beam contributes a shallow trapping potential with an associated Stark shift in the order
of a few MHz. Generally, the axial confinement provided by the ECDL775 is constant
throughout the trapping events and therefore this laser is equally well suited for the
cavity stabilization. To that end, the grating that splits the reflected light is tilted to
direct the TiSa772 beam onto the avalanche photodiode. Since the trap beam is much
stronger, it is attenuated and the gain is adjusted. Figure 7.4 shows a sample trace in a
blue-only trap where the trap center is completely dark.

(i.)The maximum transverse trap height in Fig. 7.3 is given for the doughnut mode. Since it scales with
the ratio of the maximum intensity to the integrated intensity, the trap height for the TEM01 guiding
mode is a factor 2 larger.
(ii.)bare refers to the free-space subsystems,i.e. uncoupled and not trapped.
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Figure 7.3: A blue-trapping event. A. Experimental intensity patterns of the different modes
(cf.Fig. 7.1 & 7.2). B. Sample trace: The transmitted probe power (lighter trace) in units of
intracavity photon number [〈a+a〉] (left scale) and the maximum transverse trap height (darker
trace, right scale) are shown. The axial confinement of a TEM00 (+3 FSR) mode Á combined
with the nodal lines of a TEM10 (+2 FSR) Â form funnels that guide single atoms to regions of
strong coupling. Before the trigger is armed at t = 205 ms, a single passing atom causes a steep
dip in the cavity transmission Ä. Upon detection of an atom (a) the probe intensity is decreased
and the trap is closed by switching to a doughnut TEM10 + TEM01 Ã. When the atom leaves
(b), the empty cavity transmission is observed. Finally, the stability of the system is checked Å.
The noise on the transmission of the near-resonant probe is mainly shot noise.
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Figure 7.4: Sample trace for blue only trap. It is possible to omit the far red-detuned
stabilization laser. Since the axial confinement need not be switched, the high-finesse cavity
can be stabilized to the blue TiSa772laser. The traces of the trap modes for persistent axial
TiSa772(red) and the switched radial ECDL775(blue) confinement correspond to Fig. 7.3.

7.4 Normal-mode splitting

To characterize the coupling and the Stark shift in the blue trap, Fig. 7.5 shows the
normal-mode splitting of the qualified well-coupled atom-cavity system. The transmis-
sion spectrum is measured by alternating 0.5 ms long cooling and 0.1 ms short probing
intervals. See Fig. 7.9 for a sample trace of the measurement sequence. The probe laser
detuning in the probe intervals is scanned with respect to the bare cavity frequency,
which is ∆ac/2π = 35(1) MHz blue detuned from the atomic frequency, where the uncer-
tainty comes from the Zeeman shift in the residual magnetic field. During the cooling
intervals the probe laser is on resonance with the bare cavity (∆c = 0), which allows
for cavity cooling in the axial direction as well as independent qualification of the atom-
cavity coupling. Details on the qualification can be found in section 7.6. A probe interval
qualifies for strong atom-cavity coupling, when the cavity transmission in the neighbor-
ing cooling intervals is below 10 % of the bare cavity transmission. The expectation
value of the photon number in the cavity mode is calculated from the measured photon-
detection rate and the known detection efficiency, including propagation losses from the
cavity to the detectors. Experimental results are displayed in Fig. 7.5. Analytical results
for an atom with fixed coupling at low excitation (solid curve) fit the data (points) well.
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Comparison between theory and experiment gives an atom-cavity coupling constant of
83(12) % of the maximum possible value at a cavity antinode, g0/2π = 16 MHz, much
larger than the atomic and cavity decay rates. This proves that a strongly-coupled
atom-cavity system has been prepared. The empty cavity Lorentzian centered at 0 MHz
is shown for reference. In this case the probe intervals are qualified in the opposite
fashion to be above 90 % of the empty cavity transmission.

The normal-mode spectrum measured in the red trap for the same free-space detun-
ings of the subsystems is shifted close to the degenerate case (see also (94) and Sec. 8.2).
In a red trap the atomic resonance is shifted by approximately twice the ground-state
trap depth, effectively bringing the atomic transition frequency close to resonance with
the cavity. The close to symmetric normal modes are dynamically broadened and well
described by the result of numerical stimulations. In contrast, the normal-mode spec-
trum of an atom stored in the blue-detuned trap does not show any shift of the atomic
frequency, as expected for an atom trapped at the node of the blue field. Since the large
atom-cavity detuning is preserved, the character of the normal modes emerging from the
bare states remains largely atom-like and cavity-like. The strong asymmetry of the peak
heights arises from the fact that the system is excited via the cavity and observed in
transmission. Therefore, the atom-like resonance is much weaker than the cavity-like res-
onance. The plots on shaded background are a blow-up of the spectrum (∼ 130×) to
present the atom-like peak located at approximately ∆c/2π = −40 MHz. This peak is
broadened by the spatial distribution of the atoms in the mode. An analytical fit for a
fixed atom to the data including a Stark shift results in a coupling g = 85(13)% × g0

and a Stark shift of ∆S/2π = 0.25(1.42)× g0. A conservative upper bound for the Stark
shift of ∆S/2π < 4 MHz can be extracted by fitting the slopes of the atom-like normal
mode only. The Stark shift is hence much smaller than the axial and transverse trap
heights, Ua = h×265(6) MHz and Ur = h×30(1) MHz, respectively. The Stark shift due
to the red-detuned stabilization laser at 785.2 nm is ∆stab/2π = 2.2(1) MHz. Thus, the
shift of the atomic transition frequency due to the blue trap is smaller than the atomic
linewidth.

7.5 Single atom detection

One of the fascinating capabilities readily accessible in the strong-coupling regime is
the possibility to detect a single atom in a cavity with a high bandwidth (100). The
motion of a single bound atom in a cavity can be observed (101). Alternatively, the
state of a localized atom can be detected (130). High-finesse cavities are well suited
for single atom detectors in integrated systems (131; 132; 133; 134). The analysis of
the statistical properties of an atom laser coupled out of a Bose-Einstein condensate is
a first experimental application (135). In the low excitation limit the signal generally
scales with the excitation but at the same time heating due to spontaneous emission
increases. Hence, a benchmark for detection is the achievable bandwidth at a given
atomic excitation. Of particular interest is resonant dispersive detection, where the probe
is resonant with the empty cavity but detuned from the atom. Two effects contribute
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Figure 7.5: Normal-mode splitting for ∆ac/2π = −35 MHz. The average transmission of
a well-coupled system shows a well resolved normal-mode splitting (red squares and crosses).
The bare atom (A) is detuned from the bare cavity resonance (C) by ∆ac/2π = −35 MHz. A
transmission of 1 pW corresponds to 1.2 intracavity photons. Intervals contribute to the spectrum
if the transmission in the neighboring cooling intervals is < 10 % of the bare cavity value 〈n0〉.
An analytical fit (solid line) for a fixed coupling g at low excitation results in g = 0.83(12)× g0
and a residual Stark shift of ∆S/2π = 0.7(1.3) MHz. The empty cavity transmission Lorentzian
at 0 MHz (C) is shown for reference.
The insert shows the same curves magnified by ∼ 130× to make the atom-like normal mode
visible. A fit to the slopes of this peak leads to a conservative upper bound of the Stark shift in
the blue trap of ∆S/2π < 4 MHz.
The normal-mode spectrum measured in the red trap for the same bare detunings is shown for
comparison (green circles). Due to the Stark shift in the trap, the atom is effectively shifted
close to resonance with the cavity. The near-symmetric normal modes are broadened by the
dynamics of the atom and are well reproduced by the numerical Monte Carlo simulations (green
dashed-dotted line).
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in favor of detection in this regime as discussed next, and further analyzed taking into
account the Poissonian distribution of the photon detection.

7.5.1 Resonant dispersive detection

The preserved large atom-cavity detuning (∆ac > 2g) facilitates dispersive measure-
ments (98; 99), while at the same time the blue trap provides strong confinement. This
is exemplified by the detection of an atom in the cavity via the induced shift of the
cavity-like normal mode. To estimate the average number of spontaneously scattered
photons during a certain observation time interval, we consider probing the system
on resonance with the bare cavity (∆c,∆a)/2π = (0,−35) MHz. In the presence of a
strongly coupled atom, the cavity transmission of the probe is reduced by a factor of
20.3(5). The transmission is a direct measure of the excitation of the mode correspond-
ing to 〈a+a〉 photons. In the limit of weak excitation, the excitation probability of the
atom is proportional to the photon number in the mode times the atomic Lorentzian:
〈σ+σ−〉 = 〈a+a〉 g2

/
(∆2

ac+γ2), cf. eqn. 2.47. The atomic excitation 〈σ+σ−〉 is therefore
given by the cavity excitation 〈a+a〉 = 0.022 (cf. Fig. 7.5 C) times a constant which
depends on the effective coupling, g, the atom-cavity detuning, ∆ac, and the atomic
linewidth, γ. The effective coupling was obtained from the experimental data in Fig. 7.5,
and γ and ∆ac are well known. The average atomic excitation of 〈σ+σ−〉 = 3.1 × 10−3

leads to a scattering rate into free space given by 2γ 〈σ+σ−〉 ≈ 117 kHz. Thus, during a
time interval of 10µs the atom scatters 1.2(3) photons. A detailed analysis in the next
Subsec. 7.5.2, which takes into account the Poissonian statistics of the detected photons,
results in a 95% correct decision concerning the presence of the atom in this 10µs long
time interval. This includes an overall experimental detection efficiency of 5% for pho-
tons lost from the cavity mode. The required observation time interval scales inversely
with the photon-detection efficiency which can be improved considerably. Detecting the
(lack of) photons emitted from the cavity does not rely on the excitation of the atom
and is in that sense complementary to cavity cooling.

The efficient detection of a single, well-coupled atom on resonance with the bare
cavity at large atom-cavity detuning, (∆c,∆ac)/2π = (0,−35) MHz, relies on two effects.
First, the presence of the atom reduces the probe transmission by more than an order of
magnitude

(
1 + |g2|/(κ∆ac)

)−1 ' 0.05 leading to a high signal-to-noise ratio as well as
reducing the excitation of the system. Second, the fact that the bare atomic state is far
detuned results in an additional reduction of the excitation of the atom by a factor of
(|g|/∆ac)2 ' 0.14 with respect to the cavity excitation. Since this effect increases with
the detuning of the bare atom ∆ac, while the reduction in the cavity excitation due to
the coupled atom decreases, there is an optimum value for ∆ac. The analysis in the next
section will show that the detection efficiency is about the same when going to a larger
detuning of ∆a = 50 MHz. In fact, using eqns. 2.47 and 2.46 it can be shown that for
constant atomic excitation the detection efficiency is constant to first approximation once
∆ac is larger than g. Note that the detection bandwidth can directly be increased with
larger probe power resulting in higher count rates, but unfortunately, this will increase
the transverse heating and decrease the lifetime of the atom in the trap accordingly.
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Figure 7.6: Poissonian distributions for the mean number of detected photons in an interval
of length τ = 10µs for the empty cavity (blue) and a well-coupled atom (red). A threshold
photon number n0 is chosen such that for n ≤ n0 (n > n0) a strongly coupled atom is assumed
to be present (not present).

7.5.2 Poisson analysis

A more detailed analysis of the time necessary to detect the presence of an atom takes
into account the Poissonian statistics of the emitted photons. For the given parameters
in the experiment the cavity mode is to very good approximation in a coherent state.
Therefore, the mean photon detection rates for ’no atom’ rnat = 426.8(4) kHz and
’one well-coupled atom present’ rat = 21.0(5) kHz are extracted from fitting Poissonian
distributions to the measured qualified data. The photon distributions for the different
detunings and the fitted mean values are summarized in Fig. 7.7 for the normal-mode
spectra at ∆a/2π = −35 MHz and at ∆a/2π = −50 MHz.

For a given detection time τ the mean number µ of detected photons is µ = τr. The
probability to detect n photons is given by the Poisson distribution P (n, µ) with a mean
photon number of µ. Figure 7.6 shows the Poisson distribution for the experimentally
detected mean numbers of photons in the cases of no atom µnat = 4.268(4) and one
well-coupled atom present µat = 0.210(5) for τ = 10µs.

To decide on the question whether an atom is present, we set a limit of n0 photons,
such that for n ≤ n0 (n > n0) we conclude, ”yes” (”no”), an atom is (not) present.
The probabilities for a correct Patc and incorrect Patnc decision about the presence of
an atom and the corresponding quantities for the absence of an atom Pnatc and Pnatnc,
respectively, are given by:
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Figure 7.7: Normal-mode splitting: Poisson statistics. A. for ∆ac/2π = −35 MHz and B.
for ∆ac/2π = −50 MHz. The distribution of photons observed in the 0.1 ms detection intervals
is plotted in color code (left: uncoupled system, right: coupled system). The horizontal axis is
distorted because only the measured detunings are included. The points are the mean values
of a fitted poissonian distribution with 95% confidence intervals. As expected for these param-
eters, the photon field is in good approximation in a coherent state. The residual systematic
experimental broadening is small. The qualified transmission shows a well resolved normal-mode
spectrum. The empty cavity is at 0 MHz, the bare atom at ∆a/2π = −35 MHz and −50 MHz,
respectively. The analytical fits are included by quadratic splines (with Stark shift dashed green,
without solid black). They result in a coupling of g = 83(12)% × g0 and a residual stark shift
of ∆S/2π = 0.7± 1.3 MHz for the ∆a/2π = −35 MHz spectrum. The atom-like normal-mode is
magnified in the inset (white box).
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Patc =
n0∑
n=0

P (n, µat) , Patnc =
∞∑

n=n0+1

P (n, µat) (7.1)

Pnatnc =
n0∑
n=0

P (n, µnat) , Pnatc =
∞∑

n=n0+1

P (n, µnat). (7.2)

For a statistical analysis of the probability of a correct decision, we have to assume
an a priori probability Papri for an atom being present. The probability to correctly
determine the presence of an atom is then given by:

Pc = Papri Patc + (1− Papri)Pnatc. (7.3)

In the following we assume an a priori probability Papri = 0.5 for the presence of the
atom in the cavity, which corresponds to maximum possible ignorance. This is a rather
conservative assumption given that the atom was recently conditioned to be there. A
refined analysis would include the trapping efficiency and life time with multiple condi-
tioned probabilities, which would get rather specific and involved. Figure 7.8 shows the
dependence of the probability for a correct determination on the length of the detection
interval τ . For small τ the optimum reference level is n0 = 0. With increasing detection
interval length τ , at some point even detecting one photon will more likely indicate the
presence of an atom. For each τ the threshold photon number n0 is chosen to optimize
Pc. In Fig. 7.8 two sets of curves are shown for the different atom-cavity detunings
∆ac/2π = −35 MHz upper and ∆ac/2π = −50 MHz lower set, respectively. The optimal
probability for correct determination Pc,opt are shown for a continuous n0 ∈ R>0 and
for the discrete optimal n0 ∈ N (non-continuously differentiable curve). The optimal
choice of n0 is plotted in the inset for ∆ac/2π = −35 MHz. The lines represent the
linear increase in the mean number of spontaneously scattered photons during the time
τ . The analysis shows that a 10µs long detection interval, as in the last subsection, is a
reasonable choice and allows to detect the presence of the atom while it spontaneously
scatters only about one photon.

7.6 Qualification

To achieve good localization of the atom even in the presence of unavoidable heating
during the probing of the system at different detunings, the probe intervals are sur-
rounded by longer intervals of cavity cooling. Cavity cooling restores good localization
in the axial direction. For cooling the probe is on resonance with the bare cavity (CRI),
such that the transmission drops with increasing coupling. The coupling in the probe
intervals can thus be independently qualified by a transmission below a threshold frac-
tion of the empty cavity in the neighboring cooling intervals, see Fig. 7.9. This type of
qualification strongly reduces the contribution of weakly coupled atoms (87). Due to
the timescales it can only qualify for the radial motion it is therefore advantageous that



84 7. Experimental realization of the blue trap

0 0.01 0.02 0.03 0.04 0.05

60

70

80

90

100

50 0

2

4

6

8

detection time τ [ms]

p
ro

b
a

b
ili

ty
 o

f 
co

rr
e

ct
 d

e
te

rm
in

a
ti

o
n

 [
%

]

m
e

a
n

 n
u

m
b

e
r 

o
f 

sp
o

n
ta

n
e

o
u

sl
y

 

sc
a

tt
e

re
d

 p
h

o
to

n
s

0 0.01 0.02 0.03 0.04 0.05

0

1

2

3

4

5
n

0 
,opt

Figure 7.8: Single atom detection. Optimum detection probability Pc,opt for ∆ac/2π =
−35 MHz in blue and ∆ac/2π = −50 MHz in red (left scale) provided an optimal threshold n0 is
chosen (Fig. 7.6). Note that the curves start at the a priori probability of 50 % for τ = 0. The
dashed-dotted lines show the corresponding mean number of spontaneously scattered photons
(right scale). The inset shows the optimum choice for n0 (for ∆ac/2π = −35 MHz). A probability
exceeding 95 % is for example achieved for a detection time τ = 10µs for ∆ac/2π = −35 MHz and
τ = 17µs for ∆ac/2π = −50 MHz while the atom spontaneously scatters 1.23 and 1.19 photons,
respectively. The solid (dashed) lines correspond to a discrete (continuous) choice of n0.

the blue trap allows for strong axial confinement. The empty cavity can, conversely, be
qualified by a transmission greater than a threshold fraction close to unity.

As an example, Figure 7.10 shows the effect of increasing qualification on the cavity-
like normal-mode peak for a larger atom-cavity detuning of ∆ac/2π = −50 MHz. The
transmission of the empty cavity (C) is approximated by the empty cavity Lorentzian.
The other curves represent the data for increasing qualification. A probe interval is
included in the calculation of the averaged transmission if the transmission in both
neighboring cooling intervals nc is below a fraction ξ of the empty cavity transmission
nc < η × 〈n0〉. The distribution of the transmission in the cooling intervals shows a
bimodal structure, such that there are only very few intervals with qualification 0.1 ×
〈n0〉 < nc < 0.9 × 〈n0〉. With increasing coupling of the atom the transmission on the
bare cavity at 0 MHz is reduced while the transmission on the normal mode at 4 MHz
increases. The analytical results for an atom with fixed coupling fit the data well. The
result for the coupling is g = 0.87(1) × g0 and g = 0.85(12) × g0 for a fit without and
with a fitted Stark shift of ∆S/2π = 0.3(1.4) MHz.
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Figure 7.9: Sample trace for multiple switching. A. To compensate for strong heating for
certain detunings and to restore good coupling the 0.1 ms short probe intervals are surrounded
by 0.5 ms long intervals of cavity cooling. During the cooling intervals the probe in on resonance
with the bare cavity (CRI). The coupling in the probe intervals can then be independently
qualified for good coupling by the transmission during the neighboring cooling intervals to be
below a threshold fraction ξ of the empty cavity. In this particular case, the detuning in the probe
intervals is largely detuned as can be seen by the dips, when the atom has left the mode after
(b). The traces of the trap modes TiSa772(red) and ECDL775(blue) correspond to Fig. 7.4 and
Fig. 7.3. B. Zoom into the transmission trace where the atom leaves the trap. The transmission
during the cooling intervals returns to the empty cavity value which is the reference for the
qualification. It corresponds to the upper level of the multiple step function which indicates the
alternating sequence of intervals also shown in the bar below the time axis.

7.7 Velocity-dependent forces

Cavity cooling can be understood as Doppler-like cooling on the normal modes of the
coupled system (see Sec. 4.1). The sign of the induced velocity-dependent force can
be deduced from the energy balance. A probe laser red detuned with respect to the
resonance of the system will lead to cooling and blue-detuned to heating. The major
advantage of cavity cooling is that the excitation and dissipation necessary to remove
energy and entropy from this system is preferentially realized via the cavity contribution
of the dressed state. The excitation of the atom and spontaneous emission are unnec-
essary side effects, which can in principle be reduced by scaling both the coupling and
the detuning. Appropriate detunings are thus given when the probe is red detuned with
respect to the cavity-like normal mode.

The analogy of cavity cooling to Doppler cooling on the resonances of the coupled
system is directly observed in Fig. 7.11. It shows the qualified average transmission and
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Figure 7.10: Normal mode for large detuning (∆ac/2π = −50 MHz). The progressively
qualified transmission on the cavity-like normal-mode peak is shown from the empty cavity
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increasing coupling until the signal of the empty cavity is completely removed. The analytical
expression at low excitation for an atom with fixed coupling fit the data well. Without an
additional Stark shift the coupling is g = 0.87(1)× g0 and g = 0.85(12)× g0 for fitted Stark shift
of ∆S/2π = 0.3(1.4) MHz.

the loss rate on the cavity-like normal-mode peak for the bare cavity at 0 MHz and an
atom-cavity detuning of ∆ac/2π = −50 MHz. The loss rate is defined as the inverse
mean storage time and is a measure for the heating during the probe intervals. The
loss peak is narrower than the transmission peak and shifted to its blue slope. This
corresponds to the fact that the velocity-dependent forces cool for a red-detuned probe
and heat for a blue-detuned probe, respectively.

7.8 Cavity cooling in the blue trap

Cavity cooling allows to restore strong coupling and compensate for heating which is
unavoidable, e.g., when probing the spectrum. In the red intracavity trap an increase of
the average storage times for low intensity of the near-resonant probe by about a factor
of two with respect to the dark trap has been shown (88). In the dark trap, without any
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Figure 7.11: Heating and cooling on the cavity-like normal mode. The graph shows the
qualified average transmission and the excess loss rate on the cavity-like normal-mode peak for
the bare cavity (C) at 0 MHz and an atom-cavity detuning of ∆ac/2π = −50 MHz. The shift
and the reduced width of the loss rate are signatures of the velocity-dependent forces which cool
(heat) for a red (blue) detuned probe.

probe light, the storage time is limited by parametric heating due to the fluctuations of
the trap depth at twice the trap frequency (117). At low probe intensity the axial cavity
cooling compensates for this heating and leads to an increase in storage time. At the
same time the excitation of the system scales with the probe power Pnr and transverse
heating due to spontaneous emission recoils grows. Hence, the storage time shows a P−1

nr

dependence on the probe power. In the blue trap this P−1
nr is also observed, see Fig. 7.12.

However, at the given parameters an increase in storage time with respect to the dark
trap cannot directly be observed. The storage time at the lowest measured probe power,
chosen to be compatible with continuous detection of the atom, is about the same as
in the dark trap. The P−1

nr dependence on the probe power is the same as observed in
the red trap and supports the presence of cavity cooling. An increase in storage time
is expected for even lower probe powers. A possible reason for the reduced effect of
cavity cooling is the strong asymmetry in the achievable trap heights. Due to limited
laser power the transverse confinement was much weaker than the axial one. The data
presented in this section was taken before the laser power could be further increased by
the implementation of the tapered amplifier.
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7.9 Towards three-dimensional cavity cooling in the blue
trap

An increase of the storage time by several orders of magnitude can be achieved for
cavity cooling in three dimensions, which requires lasers illuminating the system from
the side (97). In this scheme, all probe lasers are red detuned from both normal modes,
such that scattered photons are preferentially emitted with higher energy. The extra
energy is extracted from the kinetic energy of the atom, which is cooled. Since effective
cavity cooling requires the photons to be predominantly emitted via the cavity mode, this
requires the lower dressed state to be cavity-like. An advantage of this cooling scheme
is that it is effective for a strongly coupled atom at the trap center, cf. Sec. 4.1.2. In
contrast, the cooling laser is resonant with the bare cavity in cooling region I (CRI, see
Sec. 4.1.1), as in the experiment underlying Fig.7.5, and cooling is achieved only for an
atom close to a node and ceases for an atom cooled to the trap center.

As a first step, we have successfully captured and stored single atoms in the blue trap
for the cooling region II (CRII), appropriate for 3D cavity cooling. Unfortunately the
geometrical access in the current experiment prohibits well defined beams from the side.
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The edges of the cylindrical mirror substrates define two slits of about 60µm width at a
distance of 7.75 mm, incompatible with a focussed beam. Nevertheless, transverse beams
have been implemented in the present setup with transmissions of about 30%. This
restriction can be relaxed by using coned substrates, where the cavity length shadowed by
the mirror curvatures is negligible and the distance of the slits is reduced to about 1 mm.
An alternative to a near-resonant probe is a dipole field used to imprint a wavelength
scale parameter modulation in the transverse directions. In addition the current vacuum
chamber does not allow for direct implementation of pairs of beams in two transverse
directions. A new cavity setup with coned mirrors has already been developed and
should allow to implement three-dimensional cavity cooling by pairs of probe or dipole
beams in the plane perpendicular to the cavity axis.

7.10 Conclusions and prospects

The blue trap allows to store atoms with storage times comparable to the red trap at
equal trap depth. This is expected, because the dominating transverse losses due to
diffusion, induced by spontaneous emission, are the same in both traps and cannot be
compensated by axial cavity cooling. However, in contrast to the red trap atoms are
stored close to zero intensity at the trap center, where the Stark shift vanishes and the
trap height does not contribute to the effective atomic detuning. This allows for much
stronger confinement, especially in the axial direction. The detection bandwidth for
photon counting is limited by shot noise and cannot resolve the axial motion which is
about two orders of magnitude faster than the transverse. Because the axial position
cannot be directly observed nor qualified, strong axial confinement is advantageous.
Losses from the dark dipole trap are induced by axial parametric heating due to field
intensity fluctuations at twice the trap frequency. For strong axial confinement, this
frequency exceeds the linewidth of the cavity mode of 2π × 1.4 MHz, which should lead
to a suppression of field fluctuations and hence, of the heating. High trap frequencies
facilitate to resolve the motional sidebands. Ground-state cavity cooling can only be
achieved, when the sidebands are larger than the cavity linewidth (136). This regime
should be accessible in the blue trap. Trapping field intensities of a few times 106 photons,
corresponding to trap heights on the order of 100 MHz, are limited experimentally by
the available laser power. The loss-induced heat load on the mirrors when switching
the dipole power cause length changes, which have to be compensated by the cavity
stabilization. This limits the achievable trap depth in the red trap. In the blue trap the
axial confinement and the transverse guiding need not be switched and the system can
stabilize. In this case, only adding the mode to complete the transverse confinement will
change the heat load.

A further advantage of this trapping scheme as compared to a red trap is that guiding
slow atoms with blue fields to regions of strong coupling is not accompanied by an
increase in kinetic energy. Switching the axial confinement is not necessary for trapping,
such that the axial energy is not increased. Therefore, a strongly-coupled system can
be prepared by guiding only and stabilized by full three-dimensional confinement. In
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contrast, in the red trap guiding is accompanied by gain in kinetic energy and cavity
cooling is needed to compensate for the potential energy gained axially while switching.

Since the bare atom detuning is conserved in the blue trap, the parameters (∆c,∆a)
can be chosen to simultaneously allow for efficient detection as well as cooling. In
particular, this enables trapping in the cooling region II (Sec. 4.1.2). At the same
time the off-resonant detection of the atom can distinguish between high couplings (cf.
Fig. 4.2). In this parameter regime the probe beam is red detuned with respect to both
normal modes. This allows, in principle, to extend the system to include transverse cavity
cooling induced by additional side beams. It was shown (137) that three-dimensional
cavity cooling achieves temperatures that correspond to a dominant population in the
ground state of the trapping potential.

An alternative concept is parametric cooling by applying feedback onto the transverse
confinement based on the measured transmission in real time (102). In this case the
blue trap has the advantage that the transverse confinement can be switched while
axial confinement is preserved. The idea of the feedback can be extended by using two
dimensional position information, as obtained by the atomic kaleidoscope presented in
Chap. 9.

Slow atoms collected by the blue funnels are efficiently guided to regions of strong
coupling. Other atoms are repelled from the cavity. In experiments where optical cavities
are investigated as single-atom detectors (131; 132; 133; 134; 135) this could lead to a
more pronounced distinction and, for sufficiently well collimated atoms, to an enhanced
detection efficiency. Since the passing atoms are either well coupled or expelled, the
number statistics of a beam of atoms is enhanced as atoms in the tails of the mode
are excluded. This corresponds to the masking invoked in the theoretical study of
photon correlation spectroscopy of the two-photon excitations of the Jaynes-Cummings
ladder (77).

Apart from the larger accessible parameter range in the blue trap, a major advantage
for future experiments on the system is the combination of improved localization and
reduced dynamical broadening due to the Stark shift. The potential of the blue trap is
further demonstrated by the first signal of an excitation to the second doublet of the
Jaynes-Cummings level structure presented in the next chapter.



Chapter 8

Spectroscopy of the atom-cavity
system

The vacuum-Rabi splitting for a single trapped atom was first observed with this appa-
ratus (94) and, shortly after, on a single trapping event (138). A well resolved spectrum
is a direct confirmation of strong coupling. The vacuum-Rabi splitting, as the excita-
tion to the first doublet of the Jaynes-Cummings ladder (Fig. 2.2), is well described
by semiclassical theory. It shows good agreement with the analytical theory in the low
excitation or harmonic limit (Chap. 2). It can equally well be accounted for by Bloch
equations as well as linear dispersion theory (51). In contrast, the spectroscopy of the
higher lying states would discriminate the quantum description of the field from a semi-
classical description. Inversely, these resonances are not at all included in the theory of
the low excitation limit.

The interest in the spectroscopy of the second doublet of the Jaynes-Cummings lad-
der (Fig. 2.2) is actually present since the beginning of the field of cavity quantum
electrodynamics (45). Signatures of the higher doublet frequencies in the Fourier spec-
trum were found in the microwave regime (78). The related effect of the photon blockade
was recently observed in the optical regime (81).

In the present experiment the analysis of the spectroscopy of the second doublet was
encouraged by the observation of the vacuum-Rabi splitting, which is discussed in detail
in the thesis of Peter Maunz (87). In fact, the high signal to noise measurement of the
anticrossing in the first doublet was also the first attempt to observe two-photon tran-
sitions with a monochromatic excitation to the second doublet. It serves as a reference
to observe two-photon transitions using the excitation with two laser frequencies.

This chapter presents the spectroscopy of the strongly coupled atom-cavity system.
Sec. 8.1 introduces the spectroscopy from a conceptional point of view. The measurement
of the vacuum-Rabi splitting in the red trap will be reviewed in Sec. 8.2. The rest of the
chapter will be devoted to the spectroscopy of the second doublet. After summarizing
the considerations based on simple model systems (Sec. 8.3) the numerical simulations
of the bichromatic spectroscopy will be discussed (Sec. 8.4). The development of the
spectroscopy in the red intracavity dipole trap for the near-degenerate case leads the

91
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Figure 8.1: Jaynes-Cummings states. Anti-crossing of the normal modes in the first two
doublets. The cavity detuning is held fixed such that the harmonic oscillator states are given by
horizontal lines (dashed blue). The atomic state is varied (dashed-dotted green). The transitions
between these states are shown in Fig. 8.2.

way to the first signal of a two-photon resonance with detuned bichromatic excitation
enabled by the blue trap (Sec. 8.5).

8.1 Analytical concept

The anti-crossing of the normal mode is shown in Fig. 8.1, where the ground state and
the first two doublets of the Jaynes-Cummings ladder are plotted versus the atom-cavity
detuning ∆ac. The cavity bare state is held fixed, such that the states of the harmonic
oscillator are given by horizontal lines (dashed green) while the atomic state is varied
(dashed-dotted blue). As discussed in Sec. 2.1, for the degenerate case (∆ac = 0) the
dressed states (solid red) will split by 2× g and 2×

√
2g in the first and second doublet,

respectively. The coupled states are labeled by the order of the doublet n, i.e. number
of excitations, and as lower |n,−〉 and upper state |n,+〉, respectively.

The detunings of all transitions from the ground state to the first and second manifold
are plotted in Fig. 8.2. Two times two resonances occur for monochromatic excitation
from the ground state to the first doublet and second doublet, respectively. A second
set of four resonances arises from stepwise bichromatic excitation with two probes. In
this case one laser resonantly excites a state in the first doublet and the second probes
the transitions from that state to the second doublet.

In Fig. 8.2 the bare atomic resonance |1, g〉, is shown for reference (blue dashed-
dotted line). The red lines (À, Á) are the transitions to the first doublet |0, g〉 → |1,∓〉.
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Figure 8.2: Transitions up to the second doublet of the Jaynes-Cummings ladder:
The two transitions to the first excited doublet are shown in red (À, Á) and the monochromatic
transitions to the second doublet in orange (Â, Ã). The step-wise bichromatic excitations divide
into two groups: the single sided (blue, (Ä, Å)) and the crossed (dark blue, (Æ, Ç)). In detuned
case ∆ac 6= 0 the transitions on one side of the cavity resonance are well separated. This is due
to the difference in the distance between the ground state and first doublet and first and second
doublet, cf. Fig. 8.1. The near-resonant case of the red trap and the detuned case in the blue
trap are indicated by vertical lines corresponding to a scan in laser frequency.

They represent the anticrossing of the vacuum-Rabi spectrum. Two photons of the same
detuning (orange, Â, Ã) excite the system to the second doublet |0, g〉 ⇒ |2,∓〉 via a
virtual level close to the first doublet, i.e. at

√
g/2 for ∆ac = 0. A second group of

excitations to the second doublet are bichromatic stepwise excitations, assuming that a
second frequency is exciting one of the first-order normal modes resonantly. These can
be single sided via lower state to the lower state |0, g〉 → |1,−〉 → |2,−〉 (Ä) or upper
to upper state |0, g〉 → |1,+〉 → |2,+〉 (Å) or crossed transitions via the upper to the
lower states |0, g〉 → |1,+〉 → |2,−〉 (Æ) or vice versa |0, g〉 → |1,−〉 → |2,+〉 (Ç). The
single-sided transitions lay within the two monochromatic two-photon transitions. The
crossed resonances are expected to be well separated at the outside of the normal-modes
at ±(1 +

√
2)× g for ∆ac = 0.

The natural way to probe the system in the experiment is to vary the laser while
keeping the atom-cavity detuning fixed. This corresponds to a frequency scan along a
vertical line in Fig. 8.2 at a given ∆ac. Note that in the detuned case ∆ac 6= 0 the
distance between the ground state and first doublet, given by (∆a + ∆c)/2, differs from
the separation of the first to second doublet which is ∆c (cf. Fig. 8.1). It is clear from
Fig. 8.2 that by choosing an atom-cavity detuning different from zero ∆ac > 0 (∆ac < 0)
one set of transitions above (below) the bare cavity will split by a larger amount and
hence, the resonances to the second doublet are better resolved from transitions to the
first doublet. This is particularly important in the experiment where the resonances are
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Figure 8.3: Anticrossing in the vacuum-Rabi splitting observed in the cavity transmission.
The atomic state (A) is tuned through resonance with the bare cavity state (C) by varying the
Stark shift induced by the depth of the red trap. A. Theoretical transmission: because the system
is both excited and detected via the cavity mode, the cavity-like state is more pronounced. B.
Measured transmission for intervals of qualified good coupling for the parameter region of the
white box in A.

broadened by the dynamics of the atom in the mode. On the other hand, an increasing
atom-cavity detuning ∆ac reduces the mixing angle between the bare states such that
the dressed states are dominated by the contribution of one of the bare states (see
2.8). The strengths of the transitions between the levels is determined by the overlap
between the involved states with respect to the way the system is excited as well as
detected. Especially in the case of a stepwise two-photon excitation in the detuned case,
the different transition strength can be used to optimize the excitation path, as will be
discussed in more detail in Sec. 8.5.2.

For cavity QED experiments in the optical regime the continuous detection is realized
by the transmission through the cavity mirror. In the current experiment the system is
excited by a probe laser via the cavity mirrors. Both processes address the cavity part
of the coupled states, thus the normal-mode splitting shows a clear asymmetry in the
peak heights, which interchanges when scanning through the anticrossing (cf. Fig. 8.3).
In the limit of large detuning the cavity-like state (C) will dominate the spectrum. In
the degenerate case both normal modes are observed with equal heights, since their
contributions to the dressed states are equal.

8.2 Normal-mode splitting

The measurement and analysis of the normal-mode splitting in the red intracavity dipole
trap (Fig. 8.4) is presented in detail in the thesis of Peter Maunz (87). The picture
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Figure 8.4: Transmission spectra of the normal-mode splitting observed in the cavity
transmission for qualified strong coupling (points). The atom-cavity detuning ∆ac is scanned
through the anticrossing by variation of the Stark shift ∆S induced by the red trap. The Stark
shift ∆S effectively shifts the bare state of the atom at −35 MHz close to resonance with the
empty cavity at 0 MHz. A scan of the probe detuning corresponds to a vertical line in Fig. 8.3.
The increasing ∆ac in the consecutive scans is given by the power of the trap field P. The probe
power corresponds to 0.3 photons in the empty cavity or about 300 fW transmission. The solid
lines are the result of a Monte Carlo simulation based on the semiclassical theory in the low
excitation limit.
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Figure 8.5: Spectra of the normal-mode splitting observed in the excess loss rate induced
by the probing at different detunings (parameters are the same as in Fig. 8.4). The lines are
the result of Monte Carlo simulations: The diffusion due to spontaneous emission by the atom
(dashed) cannot account for the losses near the normal modes. The pronounced spectrum is
a signature of the large diffusion due to dipole-force fluctuations in the atom-cavity system
(dotted). The simulation including both contributions is shown as solid lines.
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shows the average transmission (points) of the cavity for probe intervals of good qualified
coupling between atom and cavity mode. The spectra are taken close to the resonant case
∆ac = 0 MHz at the center of the anticrossing (see Fig. 8.3, white box). To effectively
scan the atomic detuning through the resonance with the cavity at ∆c = 0 MHz, the
Stark shift at the trap center is varied by changing the depth of the red intracavity dipole
trap. The experimental difficulty in observing the spectra is to eliminate the problem of
variations of the coupling and Stark shift due to the atomic motion inside the standing
wave mode. A well resolved near-resonant normal-mode spectrum proves reliable strong
coupling. Since the empty cavity transmission with an amplitude of 0.3 pW is more than
an order of magnitude larger than on the normal-modes resonances of the coupled system,
any residual signal of a weakly coupled atom results in a large spurious contribution to
the spectrum. Strong velocity-dependent forces as well as strong diffusion are present
in the vicinity of the normal modes and drive the spatial distribution of the atom. To
compensate for the heating, probe intervals are embedded in-between cooling intervals.
The transmission during these cooling intervals at the same time serves as an independent
qualification. The spectra show good agreement with the Monte Carlo simulations (solid
lines). A pronounced structure is also observed in the corresponding loss spectra shown
in Fig. 8.5. The excess losses on the normal modes cannot be explained by heating due
to spontaneous emission, but are dominated by the enhanced dipole force fluctuations
in the atom-cavity system (139).

8.3 Theoretical analysis of the two-photon spectroscopy

The theoretical analysis of the two-photon spectroscopy was developed together with
Niels Syassen and details can be found in his diploma thesis (140). Starting from ana-
lytical studies of simple lossless model systems, finally, the open atom-cavity system was
studied by numerical simulation of the master equation with two probe frequencies.

8.3.1 Model systems

Before considering the spectroscopy of the Jaynes-Cummings ladder, some basic insight
can be obtained from the analysis of simple model systems. The simplest system that
allows for two-photon excitation is the three-level system. Generally, systems without
dissipation do not reach a steady state such that physical quantities, like the populations,
show oscillations. These oscillations on the order of the couplings and detunings are
assumed to be much faster than the integration time of the detection. Hence, relevant
mean values of physical quantities are established by time-averaging over a sufficiently
long interval.

The equidistant lossless three-level system, depicted in Fig. 8.6, A., can be solved
analytically. For zero detuning δ = 0 the system undergoes full population oscillations
between the ground state |g〉 and the final state |f〉. The population of the intermediate
state |e〉 oscillates out of phase at twice the frequency and is zero if either of the others
is 1. If the detuning is increased to twice the pump strength (δ = 2η), all populations



98 8. Spectroscopy of the atom-cavity system

A. B.

Figure 8.6: Lossless three-level system. A. In the equidistant three-level system a bichro-
matic excitation is equivalent to an oscillating Rabi frequency. B. In a non-equidistant three-level
system one excitation path can be preferred.

oscillate at the same frequency such that the full inversion cannot be reached. Instead,
the population Pf is smaller than the population in Pe. In the limit of large detuning
and low excitation the populations are small and Pf ∝ P 2

e scales quadratically with Pe.
To achieve a population of Pf exceeding that of Pe, it is therefore necessary to work in
the limit of low detuning (δ . η).

In contrast, the non-equidistant lossless three-level system (Fig. 8.6, B.) shows a
true two-photon transition when the detuning from the intermediate level |e〉 is larger
than the pump strength η (Fig. 8.7). The population of the intermediate level |e〉 drops
as Pe ∝ η2/∆2 corresponding to off-resonant excitation. The population in the ground
and final state converge to Pg, Pf → 0.5. If losses are included, a numerical simulation
of the master equation shows that to reach significant populations, the driving η has to
be larger than the losses η > (γe, γf ). In this case the intermediate state is populated
by the decays from the final state. A final state population exceeding the one of the
intermediate state Pf > Pe is possible for strong driving if γf < γe, i.e. the final state
decay rate is smaller than the decay rate of the intermediate state.

8.3.2 Spectroscopy of the atom-cavity system

The atom-cavity system is well described by the semiclassical analytical theory in the
low-excitation limit. In this limit the theory includes the normal modes as excitations
to the first doublet, but does not include excitation to the second doublet. Hence,
the analytical solution in the low-excitation limit is inadequate for the study of the
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Figure 8.7: Populations in the lossless non-equidistant three-level system In a non-
equidistant three-level system the population of the final level |f〉 can exceed that of the inter-
mediate one |e〉.

two-photon excitations. The analysis of the two-photon excitations has to include at
least the states up to the second doublet. Depending on the experimental parameters
in a Jaynes-Cummings level system, possible analogies to three-level systems allow to
conclude some basic prerequisites for the two-photon spectroscopy. One conclusion is
that for the near-degenerate case (∆ac ≈ 0), the two probe fields should be of about
equal strength. Quite generally the two-photon transition should be resonant with the
final state and the detuning to an intermediate state should be on the order of the pump
strength to achieve a noticeable population in the second manifold.

The system is excited whenever (a combination of) the detuning(s) of the probe
beam(s) match a resonance of the system. The system can then relax either by sponta-
neous emission from the atom or by photons lost from the cavity mode. In most experi-
ments the directed photons emitted from the cavity are detected. The linewidths of the
various transitions are given by combinations of decay rates for the atomic dipole γ and
cavity field κ. They can be calculated from the master equation in the secular approx-
imation which neglects coherences (141). When the system is excited via a two-photon
transition, it will relax by a consecutive emission of two photons of different frequencies
on the timescale of the lifetime of the intermediate level. In principle, efficient frequency
resolved detection would be possible with heterodyne detection, not implemented in
the experiment. An alternative approach to discriminating two-photon events is photon
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correlation spectroscopy, where enhanced two-photon correlations are expected in the
auto-correlation function g(2)(ω1, ω2, τ) of the detected photon stream (77). Since the
detected photons are emitted by the cavity, the signal is proportional to the probability
of a contribution of more than one photons in the cavity mode given by

〈
a†a†aa

〉
.

8.4 Numerical simulations

To analyze the possibility to observe the two-photon signal in the transmission or by
correlation spectroscopy, numerical simulations of the master equation were performed.
Truncating the Hilbert space at the second excited manifold keeps the complexity at a
minimum, while the sought-after qualitative effects are preserved. Saturation effects will
be negligible at low excitation and overestimated for higher excitation.

8.4.1 Algorithm

The master equation (2.27) up to the mth doublet can be written as a set of n2 (n =
2 × m + 1) coupled linear differential equations, for the complex valued populations
ρkk and the coherences ρkl = ρ∗lk (l 6= k). Because the density matrix ρ is hermitian
the system can be reduced to a matrix equation for a real-valued vector R ∈ Rn2

:
Ṙ = MR. The product MR is explicitly evaluated to eliminate vanishing entries and
reduce the computation time. The resultant ordinary differential equation is solved using
an explicit Runge-Kutta method with variable step size (142), for sets of parameters
(η1, η2,∆1,∆2, g, κ, γ,∆ac) and initial conditions R(0) = R0.

The pump term now includes two different lasers with detunings ∆1 = ω1 − ωa and
∆2 = ω2 − ωa:

HP(t) =
(
η1e
−i∆1t + η2e

−i∆2t
)
a† + h.c.. (8.1)

Due to the explicit time dependence of HP(t), the asymptotic solution to the master
equation will oscillate with the difference frequency ∆ = |∆1 −∆2|. The dc-component
ρ0 of the asymptotic solution of the density matrix ρ(t) can be found using a Bloch
function expansion ρ(t) =

∑∞
k=−∞ ρk(t)e

−ik∆ in frequency components of multiples of
∆ (77).

Here, the quasi-stationary density matrix ρ̄ is calculated as the mean value of a
adequately long sample of the oscillating asymptotic solution instead. This is practical
for sufficiently large ∆ ' (κ, γ). For ∆ = 0 the two fields can effectively be treated as
one field with double the field strength and hence, the asymptotic solution is stationary
in the rotating frame.

Once the quasi stationary solution ρ̄ is known, expectation values of operators O are
calculated by

〈O〉ss = lim
t→∞

Tr (Oρ(t)) ≈ Tr (Oρ̄) . (8.2)

The result of the simulations was verified on basic configurations and by comparison to
other results (77). An example of bichromatic spectroscopy of the atom-cavity system
will be presented in the next subsection.
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8.4.2 Bichromatic spectroscopy of the Jaynes-Cummings ladder

Numerical simulations of the spectroscopy with two probes were performed in the de-
generate case (∆ac = 0) for a fixed atom, as appropriate for measurements in the red
trap. Figure 8.8 shows the spectra of the populations of the ground state and the first
two doublets with respect to one of the probe frequencies, while the other is fixed. The
resonances in the populations can be assigned to different transitions between the states.
Because the fixed probe is close to resonance with the state |1,+〉, this state shows a
constant background excitation. Moreover, a small contribution of monochromatic two-
photon excitation is observed for the |2,+〉 in the second doublet. The populations of
the first doublet show the vacuum-Rabi resonances, when the second probe comes into
resonance with the corresponding state. The populations of the states in the second
doublet show resonances for the four different mono- and bichromatic excitation paths.
In the present experiment the arrival times of the transmitted photons are recorded.
The photon stream can hence either be evaluated for the transmission spectrum

〈
a†a
〉

or two-photon correlations
〈
a†a†aa

〉
. Scanning both probe fields, the strong resonances

are expected in the transmission whenever one of the probes is resonant with a one-
photon transition. In the simulation presented in Fig. 8.8, the strength of the probes is
low, such that saturation effects do not play a significant role. The populations in the
second doublet scale with the square of the populations in the first doublet and are there-
fore much smaller. Hence, the transmission is dominated by the excitations to the first
doublet, which completely mask the contributions of the second doublet. Correlation
spectroscopy extracts the two-photon signal from the transmission. The nonlinearity of
the Jaynes-Cummings ladder is observed in a shift of the resonances towards smaller
coupling.

Experimentally, the observation of the two-photon resonance for the near-degenerate
case using photon counting is difficult because the transmission is completely dominated
by the first-order excitation which is moreover broadened by dynamical effects. Correla-
tion spectroscopy is hampered by the quadratic effect of the limited detection efficiency
on the detected coincidences. Simulations for higher probe powers show an enhance-
ment of the two-photon contribution due to saturation effects. However, to prevent
perturbing effects of the atomic motion driven by large cavity heating the experimental
studies presented in the following are restricted to the low excitation limit. As outlined
in the analytical discussion in Sec. 8.1 the key to the measurement in the blue trap is
to separate the two-photon signal from the vacuum-Rabi spectrum by using a non-zero
atom-cavity detuning.

8.5 Experimental two-photon spectra

First experimental measurements on two-photon excitations were done in the red trap
where the bichromatic spectroscopy with two probe fields was implemented.
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Figure 8.8: Simulation of bichromatic spectroscopy of the Jaynes-Cummings ladder.
Population in the ground state (A.) and the first (B.) and second (C.) doublet for bichromatic
excitation. One probe detuning is fixed close to the transition to |1,+〉, the second probe is
scanned. The observed resonances can be attributed to the different possible transitions (D.).
E. Cavity transmission and F. two-photon correlation spectrum. The parameters are ∆ac =
0,∆1 = 11

10g0, η1 = η2 = 1
3κ.
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8.5.1 Two-photon spectrum in the red trap

The transmission spectrum of the qualified strongly-coupled atom-cavity system in the
red intracavity dipole trap is depicted in Fig. 8.9. For comparison the one laser normal-
mode spectrum at the same trap depth is plotted (cf. Fig. 8.4 c). For the dipole trap
power of P = 310 nW the Stark shift largely compensates the bare atom detuning of
∆ac/2π = −35 MHz such that the atomic state is close to resonance with the empty
cavity at 0 MHz. A coupling of g/2π = 12 MHz and atom-cavity detuning ∆ac = 2π ×
−3.8 MHz are obtained by Gaussian fits to the experimental spectrum and confirmed
by comparison with Monte Carlo simulations (g = 2π × 13 MHz). The single frequency
two-photon transitions at ∆l ≈ ±(

√
2 − 1)g ≈ ±5 MHz with respect to the bare states,

should be observable as small bumps on the inner slopes of the normal-mode peaks.
No signatures of these resonances are discernable from the noise, which is in agreement
with the simulations at the low excitation level of 0.3 photons in the empty cavity (i.).
Unfortunately, the experimental two-photon correlation signal scales quadratically with
the small count rate given by the limited detection efficiency and hence does not show
a conclusive signal.

As discussed before, a larger separation from the first-order resonances can be realized
for the crossed transitions using two probes. The green spectrum Fig. 8.9 is taken with
the first probe at a fixed detuning of ∆1 = 2π× 11 MHz ≈ g, exciting the upper normal
mode (|0, g〉 → |1,+〉) near the center. The second probe is scanned across the lower
slope of the lower normal mode (|0, g〉 → |1,+〉) where the crossed transition to the
lower state in the second doublet |1,+〉 → |2,−〉 is expected at ∆2 ≈

√
2g + ∆1.

The transmission is averaged for probe intervals of 0.1 ms, qualified by the transmis-
sion of a single frequency in both neighboring cooling intervals to be below 4 % of the
empty cavity value. During the 0.5 ms cooling intervals a single probe resonant with
the empty cavity at 0 MHz and a power of Ip = 0.3 pW is used to compensate for the
introduced heating by cavity cooling. During the probe intervals each probe beam has
a power of Ip = 0.1 pW. The power is switched in less than 10µs.

In the spectrum a bump is noticeable at the position of the expected crossed tran-
sition. The two (one) Gaussian least square fits shows a reduced χ2 of 0.83(1.71),
respectively. The fitted position and width (FWHM) of the normal mode is ∆nm/2π =
−10.8 MHz, δnm/2π = 11.1 ± 0.6 MHz, respectively. The shoulder is at ∆ct/2π =
−21.1 MHz with a width of δct/2π = 3.3± 0.7 MHz.

The position of the resonances can be analyzed by evaluating the ratio of the detun-
ings with respect to the known empty cavity. This ratio can be expanded taking into
account a small residual atom-cavity detuning ∆ac:

(i.)Note that all the spectra in Fig. 8.4 indicate a peak structure on the lower tail of the upper normal-
mode peak, which is even more pronounced in the numerical simulation which do not take into account
excitation into higher states. Therefore, this effect is most likely explained by a combination of the
atomic motion and the qualification. Since the qualification removes the contribution of weakly coupled
atoms it effects the spectrum the strongest in the vicinity of the empty cavity (−2.5 to 5 MHz).
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Figure 8.9: Two-photon transition in the red dipole trap. The bichromatic spectrum
taken with one probe exciting the upper normal mode (|1,+〉) at 11 MHz and the second probe
scanned across the expected crossed transition to the lower state of the second manifold |2,−〉.
Fits of a single (orange dashed-dotted) and two Gaussians (red solid, separate as red dashed )
to quantify the observed structure are discussed in the text. The position of the shoulder at
∆2ph = 2π × −21.1 MHz of the normal-mode peak at ∆nm = 2π × −10.8 MHz coincides with
the expected resonance and is enlarged in the insert. The near-resonant normal-mode spectrum
(blue dashed-dotted) for a trap depth of P = 310 nW is shown for reference (right scale).

R∆ =
E2,- − E1,+

E1,+
(8.3)

≈ (1 +
√

2)(1− ∆ac

2g
) +O(

∆ac

g
)2. (8.4)

Solving this equation with respect to the atom-cavity detuning, the calculated value
∆ac/2π = 2.3 MHz is in good agreement with the value of about 3 MHz derived from a
fit to the normal-mode spectrum.

The ratio of the fitted width to the expected values correspond to inhomogeneous
line broadening by factors of 2 and 2.5, respectively. The broadening of the spectrum
is explained by the simultaneous variation of the coupling and the Stark shift for dif-
ferent positions of the atom in the mode. The dynamics of the atom is driven by the
light forces and diffusion which show a strong dependency on the detuning in the probe
interval. It remains to be explained, why the two-photon excitation is less susceptible to
the broadening mechanism. Good agreement with the numerical simulation is found for
the normal-mode splitting (see Sec. 8.2). Further insight into the influence of dynamical
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effects could be gained by numerical simulation including the motion of the atom as
presented for the vacuum-Rabi splitting in Sec. 8.2. However, simulations are compli-
cated by the fact that the low-excitation limit does not hold and moreover, by the time
dependence introduced by using two probe fields.

In an additional measurement with a different detuning of the first frequency ∆1/2π =
13 MHz a structure shifted correspondingly to the opposite direction was observed. This
excludes effects based on the frequency difference of the two probe beams like, e.g., Ra-
man transitions between motional states of the trap. The weak pumping is a negligible
perturbation such that the resonance structure is defined by the system. It was checked
that a detailed measurement of the empty cavity transmission does not show any feature
at the position of the shoulder. This excludes a signal from higher-order cavity modes.

8.5.2 Two-photon spectrum in the blue trap

To improve the conditions for measurements on the qualified strongly-coupled atom-
cavity system, the blue trap was developed and implemented (Chap. 7). Because the
atom is stored close to zero intensity of the trapping fields, the contribution of the trap
depth to the Stark shift is eliminated. This reduces the broadening of the spectra and al-
lows to use very high confinement in the axial direction, which cannot be qualified. Since
the bare atom detuning is preserved, the blue trap allows to access a larger parameter
regime compatible with guiding and detecting the atom.

Figure 8.10 shows the measurement of the bichromatic two-photon step transitions
for ∆ac = −20 MHz. As discussed before, the detuning allows to better separate the tran-
sition from first to second doublet from the transition to the first doublet (see Fig. 8.1,
dashed line). The first laser is fixed at resonance with the lower dressed state |1,−〉.
This is the atom-like normal mode, therefore the system is only excited via the cavity,
when the atom is strongly coupled. The second probe is scanned across the expected
transitions from |1,−〉 to the second doublet. The cross-transition |1,−〉 → |2,+〉 is
expected at ≈ 40 MHz. The data (not shown) does not show any structure neither in
the transmission nor in the loss rate. This can be explained by the fact that this tran-
sition is nearly forbidden. The overlap is small because it corresponds to putting one
extra excitation into the cavity while transferring the excitation from the atom to the
mode. In contrast, the step-wise excitation |1,−〉 → |2,−〉 expected at ≈ −5 MHz has a
strong overlap with the pump, because it largely corresponds to an extra excitation of
the mode. However, it is only possible when the strongly coupled system is excited by
the first probe. The measured data shows an enhanced transmission at the position of
the expected transition. The theory in the low-excitation limit does not include the exci-
tations to the second doublet and is hence inadequate for the description of two-photon
spectrum. However, it is well established to correctly reproduce the vacuum-Rabi split-
ting as shown in Fig. 7.5 for ∆ac/2π = −35 MHz. The corresponding transmission for a
well coupled atom-cavity system (g = 0.8 × g0) and ∆ac/2π = −20 MHz including the
excitations to the first doublet only, is plotted for comparison. A coupling of > 0.8× g0

was achieved for the normal-mode splitting in the blue trap (section 7.4). The observed
structure is well separated from the resonance to the first doublet. Moreover, its posi-
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Figure 8.10: Two-photon transition in the blue dipole trap. The plot shows the trans-
mission spectrum of the uncoupled (red) and coupled system (blue) on the left and right scale,
respectively. The expected vacuum-Rabi spectrum (blue line) and the empty cavity (red line)
are plotted for reference. One of the probes excites the atom-like normal mode. The other is
scanned across the expected single-sided two-photon resonance, cf. Fig. 8.2. The transmission
shows an increase at this position. This resonance is confirmed by a peak in the inverse storage
time due to the induced heating on the resonance (green, left scale zero baseline).

tion is red detuned with respect to the bare cavity resonance. The transmission signal is
confirmed by a pronounced peak in the excess loss rate representing a clear resonance.

To further confirm the signal, it is straightforward to repeat the experimental checks
performed for the measurement in the red trap: 1. Measuring the one photon background
without the fixed frequency probe to outline the normal mode (Fig. 7.5). 2. Using
a different fixed frequency to observe a corresponding shift in the peak position. As
discussed before, such measurements exclude effects that depend on the difference of the
two probe frequencies.

The first signals of two-photon transitions of a strongly-coupled atom-cavity system
with a single trapped atom demonstrate the potential for future experiments on the quan-
tum nature of this fundamental combined quantum system. The developed bichromatic
spectroscopy in the detuned system prepared in the blue trap is particularly promising
for further investigations.



Chapter 9

Kaleidoscope

The measurement of the position of the atom is based on its significant modification of
both the amplitude and the phase of a weak light beam transmitted through the cavity.
It has been predicted that the position of a slowly moving atom can be measured with
an accuracy well below the standard diffraction limit, defined as half the wavelength of
the employed light (100; 143). However, experimental requirements are challenging.
The current status of the experiment allows to prepare a strongly-coupled atom cavity-
system with a slow atom passing the mode or stored in a dipole trap. The shot noise
limited transmitted signal obtained from the single photon counters does not allow to
observe the axial motion in real time. Assuming a given averaging in the axial direction
the transmission is a measure for the mean coupling and therefore the atomic position
in the transverse plane. Most of the experiments use the fundamental TEM00 mode
with a Gaussian profile. In this case the coupling is cylindrically symmetric. A one-
time measurement of the transmission only allows to deduce the transverse distance
corresponding to single value measured. Based on the assumption of nearly conserved
angular momentum, the trajectory of the atom can be dynamically reconstructed for a
subgroup of traces (101). This is confirmed by comparison with simulated trajectories.
The atomic ’kaleidoscope’ utilizes higher order modes to obtain more detailed position
information at one time. Before going into the details of the atomic kaleidoscope the
next section shortly introduces the higher-order modes.

9.1 Higher order modes

In a near-planar Fabry-Perot cavity the field is well described in paraxial approxima-
tion by a standing wave in direction of the cavity axis (z) and Hermite-Gaussian mode
patterns ψn,m(r) in the transverse plane:

ψn,m(r) = (w2
0π/2)−

1
2 cos(kz)e−(x2+y2)/w2

0Hn,m(x, y), (9.1)

where k = 2π
λ is the wave vector and λ the wavelength. The waist of the mode w0 =

√
λ
πzr

is given by the Rayleigh length zr = l
2

√
2R
l − 1 which depends on the radius of curvature

107
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of the mirrors in units of the cavity length l. The Hermite-Gaussian mode patterns are
given by products of Hermite polynomials in x and y

Hn,m(x, y) = Cn,mHn(
√

2x
w0

)Hm(
√

2y
w0

) (9.2)

Cn,m = (2n2mm!n!)−
1
2 (9.3)

The normalization constant Cn,m is chosen to fulfill∫ ∞
−∞

dx

∫ ∞
−∞

dyHn,m(x, y) = 1. (9.4)

The coupling constant g(r) scales with the field at the atomic position r. It is given by
g0ψn,m(r)/ψ0,0(r), where g0 is the maximum coupling in the antinode of the fundamental
TEM00 mode. For ideal spherical mirrors the eigenfrequencies of the modes ψn,m(r) are
given by

ωq,n,m = 2π × [q + (n+m+ 1)ξtrans]
c

2l
(9.5)

ξtrans :=
arccos(

√
gigo)

π
, (9.6)

where q is the longitudinal mode order and the g parameters given by (gx = 1− ḡx, ḡx :=
l
Rx
, x ∈ i, o with the radii of curvatures Ri(Ro) for the input and output mirror, re-

spectively. For a near-planar cavity R � l the distance between higher order modes
of consecutive order is ω̄trans ≈

√
ḡi+ḡo

ḡiḡo
/π × F in units of the cavity linewidth κ. For

the cavity in the experiment this frequency distance is 0.01 times the free-spectral range
or 4.9 × 103 times the linewidth. The higher mode orders are closely spaced to higher
frequency next to the fundamental TEM00 modes, when compared to the FSR, but well
separated by many linewidths.

9.2 Idea of the kaleidoscope

The theoretical proposal of the atomic kaleidoscope (103) is based on using a set of
frequency-degenerated higher-order transverse modes in combination with a spatially
resolved detection. The underlying effect is that an atom positioned off axis breaks the
otherwise perfect rotational symmetry of the cavity. With the atom present, there will
be a unique superposition of the higher-order modes called the effective mode which
maximizes the coupling at the given position (104; 111). The effective coupling depends
only on the radial distance, owing to the common point symmetry of a set of higher-
order modes for a given order. Therefore, only information on the radial position can
be obtained from the integrated transmission. For higher-order modes, the mapping of
the coupling to radial position is not unique and the spatial mode pattern is needed to
extract the correct radial position. The azimuthal position is encoded in the orienta-
tion of the mode. When the system is excited via the atom from the side, the pattern
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emitted from the cavity will be given by this effective mode. It will generally show a
bright area in the vicinity of the atomic position. Note that for a given mode order
N all modes have a common point symmetry, which will be preserved in the resulting
mode pattern. This ambiguity could be removed by the choice of a special cavity length
to achieve degeneracy of two sets of modes with odd and even order. If instead the
cavity is excited, the excitation of the modes additionally depends on the overlap with
the pump mode. For a given pump mode there is a second special superposition, the
uncoupled pumped mode, which is the projection of the pump mode onto the uncoupled
subspace. The transmission will then be the interference pattern of the effective mode
and the uncoupled pumped mode. The amplitudes are determined by the overlap with
the given pump and correspond to the coupled and uncoupled case of the single mode
theory. The observed effect therefore depends on the detunings chosen for detection. For
resonant detection the effective mode will be tuned out of resonance. For a strongly cou-
pled atom the transmission will therefore largely correspond to the uncoupled pumped
mode defined by the atomic position, i.e. the intensity in the vicinity of the atomic
position will be decreased. With decreasing coupling this effect will be reduced by an
increasing contribution of the effective mode. For dispersive detection the empty cavity
transmission will be low. The effective mode will be tuned in resonance with the laser
and, hence, there will be an increasingly bright region in the vicinity of the atom for
increasing coupling.

9.3 Experimental cavity modes

In the current experiment, the perfect rotation symmetry is broken and the modes of
each transverse order will generally be nondegenerate. The broken symmetry can be
explained, e.g. by a deviation of the mirror surfaces from an ideal sphere. They can be
considered as ellipsoids with two slightly different radii of curvature in the main axis. In
a high-finesse cavity even a small deviation leads to an appreciable splitting with respect
to the linewidth. The (N + 1) modes of the given mode order N are therefore given by
superpositions of the Hermite-Gaussian basis with coefficients αi,n,m

φi(r) =

( ∑
n+m≡N

α2
i,n,m

)− 1
2 ∑
n+m≡N

αi,n,mψn,m(r), i = [0..N + 1]. (9.7)

Already the modes of order N = 1 (Fig. 9.1) are separated by many linewidths
(25 MHz). The eigenmodes of the cavity closely resemble the TEM10 and TEM01

Hermite-Gaussian modes, apart from a small tilt by approximately 5◦. This is consistent
with breaking the cylindrical symmetry with respect to two main axis as predicted with
ellipsoidal mirror surfaces. Note that the main axis of the mirrors will generally not be
aligned and the orientation of the modes is a residual degree of freedom. The frequency
splitting and orientation of these modes actually changed in a time interval of about two
years. During that time the vacuum system was vented once, but the cavity remained
otherwise untouched. Now, the splitting is much smaller (6 MHz) and the orientation is
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Figure 9.1: Experimental cavity modes of order N = 1. The experimentally observed
transmission patterns of the modes of order N = 1 closely resemble the TEM10 and TEM01

Hermite functions. They are split by 25 MHz which is much larger than the linewidth.

at 45◦ (see Fig. 7.2). Fortunately, the significant overlap between the modes allows to
excite superpositions as required for the blue trap, Chap. 7.

In the mode order N = 2, one of the modes À is well separated by 35 MHz from
the other two (Fig. 9.2). This mode is similar to a rotated TEM20 mode. The other
two are superpositions of the Hermite-Gaussian modes as can be seen by inspecting
the center region. Especially mode Á shows a bottleneck reminiscent of contribution of
the TEM11 mode. As mentioned before, all modes are point symmetric and deviations
thereof are attributed to abberations in the imaging system. The modes Á and Â overlap
significantly. When one of the modes is probed resonantly, the other is still significantly
excited off-resonantly. In between these modes superpositions can be excited. Because
the relative phase of the excited eigenmodes depends on the geometry of the pump field,
the resultant interference patterns observed in transmission do so as well.

The current spectrum of the modes of order N = 2 is shown in Fig. 9.3. The splitting
of the modes by approximately 12 MHz is much more symmetric. Again all modes show
three bright regions separated by two nodal lines and are turned by about 60◦. Note
that the orientation of the two higher frequency modes have changed. Since the modes
significantly overlap, the spectrum of mode patterns shows different superpositions of
eigenmodes. For the chosen pump geometry the mode patterns excited at the minima
between the eigenmodes are close to TEM11 modes at 0◦ and 45◦ degrees, respectively.
The 0◦ mode has a nodal line that would be suited for guiding the atoms. The simul-
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Figure 9.2: Experimental cavity modes of order N = 2. The experimentally observed
transmission patterns of the modes of order N = 2 span a frequency range of 35 MHz. Each
mode shows three bright regions separated by two nodal lines, turned by about 60◦. The intensity
pattern of the well separated mode À is close to a TEM20 mode while the significantly overlapping
modes Á & Â are superpositions.

taneous excitation of both modes would allow for three-dimensional confinement with a
larger dark center region, when compared to the TEM01 + TEM10 case. In principle a
’dark doughnut’ consisting of a bright ring with a bright center is a possible superpo-
sition of the modes of order N = 2. It would allow to trap atoms in dark toroids and
the circular orbit could be observed by switching between TEM10 and TEM01 detection
modes as shown for passing atoms in the next section.

9.4 Transits through TEM10 + TEM01

A direct realization of the idea of the atomic kaleidoscope(Sec. 9.2) is not possible,
because the cylindrical symmetry is already broken, as shown in the last section. The
experimental cavity modes of a given order split by a few MHz and the geometry of the
eigenmodes is fixed by the cavity. On the other hand, the frequency splitting can be
utilized to deliberately address only one of the modes. In this case it is not necessary to
spatially separate the transmission. The coupling of the TEM00 pump beam is adjusted
to pump the modes of order N = 2 (Fig. 9.3) with approximately the same strength.
When the probe beam resonantly excites one of the modes, the other is detuned by
≈ 25 MHz. Its off-resonant excitation is reduced by a factor of > 300 and can safely be
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Figure 9.3: Current spectrum of the experimental cavity modes of order N = 2.
Currently, also the splitting of the modes of order N = 2 is smaller (25 MHz) than in Fig. 9.2.
The lowest frequency mode is still approximately oriented in the same direction but shows some
deviation from the TEM20 mode. Now the highest frequency mode is close to a TEM20 mode,
while the center mode again shows a contribution of the TEM11 mode. The continuous change
in the spectrum of the mode patterns shows two TEM11 modes, at 0◦ and 45◦, excited at the
minima between the eigenmodes.
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neglected. Traces for resonant detection of single atom transits are shown in Fig. 9.4.
For resonant detection the transmission is the smaller the larger the coupling of the atom
to the mode is. The transits through the TEM10 show a single dip while for the TEM01,
double-dip structures are observed. These correspond to the two maxima in the coupling
when the atoms pass the mode in vertical direction. For a detailed analysis the analytic
theory (Sec. 2.4) is used to find an expression for the transmission signal averaging over
the axial direction. Even though the entrance velocity in axial direction is geometrically
selected to below one recoil (6mm

s ), simulations show that due to momentum diffusion the
axial momentum will be largely broadened(i.). Hence, averaging the position dependent
transmission (2.46) given by

T (r)
T0

=
κ2|∆̃a|2

|A|2
(9.8)

along the standing wave direction is well justified. The transverse velocity (vy) is assumed
to be constant neglecting the small effect due to the light forces of the cavity probe field.
The straight trajectory of an atom is therefore given by the velocity vy and the minimum
radial distance x0. The single atom transits through TEM10 and TEM01 modes are
discussed in the following.

9.4.1 Transits through TEM10

A transit through the TEM10 mode shows a single dip (Fig. 9.4, A.) Both x0 and vy

enter into the width of the dip. The transverse velocity (vy) is therefore fixed by the
arrival time of the atom in the cavity mode by the ballistic trajectory to within the
knowledge of the position of atomic cloud in the magneto-optic trap (MOT). For the
sample trajectory at t = 147.13 ms, i.e. vy = 1.07m

s , the closest distance to the cavity
axis is fitted to x0 = 0.48(16)w0. Note that for a given signal a total of four equally
possible trajectories at x0 = ±0.48w0 and x0 = ±1.64w0 exist.

9.4.2 Transits through TEM01

In contrast, for the double-dip structure of transits through the TEM01 (Fig. 9.4, B.)
the fixed vertical distance of

√
2w0 between the two coupling maxima defines a natural

ruler and the arrival time is well defined by the center peak. Hence, it is possible to
independently determine the vertical velocity vy = 1.1(1)m

s and the two times degenerate
minimum distance x0 = ±1.0(1)w0 at t = 147.06 ms. The velocity vy agrees with the
one expected from the ballistic trajectory vbal = 1.07m

s .

9.4.3 Simultaneous transits through TEM01 & TEM10

The transits discussed so far are taken for both atom and probe beam resonant with
the chosen eigenmode. The transmission is a direct measure of the coupling g to the

(i.)Note that in the experiment discussed here no dipole trap was installed
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Figure 9.4: Transits through modes of order N = 1: A single atom passing through a
TEM10 mode (A.) and a TEM10 mode (B.) is observed by monitoring the transmission of the
cavity. The weak probe laser is resonant with both the atom (∆a = 0) and the respective cavity
mode (∆c = 0). From a fit based on equation (2.45) (smooth curve), the arrival time of the
atom at the center of the cavity, t0, the minimum distance to the cavity axis, x0, and in case of
the TEM01 mode also the vertical velocity, vy, can be determined. C. Transmission during the
transit of a single atom through alternatively excited TEM10 and TEM01 modes. The detunings
are (∆a,∆c)/2π× = (−25, 0) MHz for the TEM10 mode, and (∆a,∆c)2π× = (0, 0) MHz for the
TEM01 mode. The left (right) vertical axis denotes the photon flux at the TEM10 (TEM01)
mode frequency. Fitting a constant-velocity vertical trajectory to the experimental data, the
velocity, v = 0.8(1)m

s , and the minimum distance to the cavity axis, x0 = 0.8(2)w0, the arrival
time of t0 = 169.15 ms, is obtained.The signal-to-noise ratio of the observed events is given by
the shot noise of the small number of photons detected. The rates are limited by the condition
of weak probing.
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given higher-order mode. For sufficiently high signal-to-noise, the atomic position can
be inferred from the contours of equal coupling. Multiple quasi simultaneous recordings
of the coupling to different modes allow to pin the position of the atom to one of the
intersection points of these contours. Using both TEM01 and TEM10 allows to determine
the atomic position from one time measurements to one of the eight crossings of the two
pairs of rings.

Figure 9.4 (C.) shows the alternating measurement of the couplings to the TEM01

and TEM10 modes. The atom is resonant with the TEM01 mode while the probe laser
is rapidly switched between the two modes with a frequency of 200 kHz. The intervals
of 2.5µs are much shorter than the timescale of the transit of a few 100µs. Because the
light field in the cavity equilibrates in 300 ns after switching, photons during these times
are discarded. Unfortunately, the signal-to-noise of the experimental signal, limited by
fundamental shot noise, is not sufficient to derive an atomic position from a single pair
of couplings. However, for the displayed transit event, enough information is available to
estimate the velocity and the horizontal position of the trajectory. The fit to the TEM01

determines the velocity, v = 0.8(1)m
s , the minimal distance x0 = 0.8(2)w0, and the arrival

time of t = 169.15 ms. The velocity agrees with the expected vbal = 0.72m
s . The deduced

transmission signal for the TEM01 mode calculated without any further free parameter
matches the experimental data reasonably well. The effect that the experimentally
observed transmission of the TEM10 mode tends to run below the theoretical expectation
could be explained by an increased atom-cavity coupling. For the TEM10 mode the probe
resonant with the cavity is red detuned from the atomic transition. Hence, the dipole
force attracts the atom towards the antinodes of the cavity mode. Note that increasing
the mode order N generally increases the effective coupling extending the transverse
detection region by

√
N . At the same time the number of contours of equal coupling

for each higher-order mode increases and renders the reconstruction of the common
intersection more complicated. Moreover, effective measurement time per mode in the
alternating switching method decreases and the shot noise issue is enhanced. In principle,
this could be counteracted by skipping a subset of modes which will not contribute to
determine the current position based on the expectation from the last measurement.
A more powerful solution would be simultaneous measurements by either geometrical
selection or frequency selection by heterodyne detection.

9.5 Atom in blue-detuned laser fields

The measurements presented in this chapter so far were done before the implementation
of an additional far-detuned intracavity dipole trap. The blue guiding fields allow to
confine the atoms to regions of strong coupling. Especially, the axial confinement to
the antinodal plane reduces position averaging. The enhanced coupling improves the
detection. An interesting application would be to trace the rotation of an atom in the
cylindrically symmetric blue trap, i.e. the ’dark doughnut’, by detecting the coupling
to the TEM10 and TEM01 modes. In a further step the azimuthal position information
could then be used to apply feedback to the TEM10 + TEM01 modes for transverse
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Figure 9.5: Guided transit through modes of order one. A single atom guided by blue
dipole fields is passing through the TEM01 and TEM10 modes at ±45◦. The probe beam alter-
nates between resonant excitation of the two modes in the different intervals indicated by the
shading.

confinement to achieve azimuthal parametric cooling. The possibility to independently
switch only the slow transverse confinement is a major advantage of the blue trap. The
typical timescale of the addressed rotational motion correspond to the transit times of
a few 100µs and is hence well within the possibilities of feedback electronics.

Fig. 9.5 shows a first signal of the transit of a guided atom through the TEM10

and TEM01 modes with alternating resonant detection. Since in the meanwhile these
modes are oriented in ±45◦ the interpretation of the signals for a simple transit is more
complicated. In the sample trace the atom couples twice to both modes with reversed
coupling strength as expected for a transit of an atom.



Chapter 10

Outlook

The blue-detuned intracavity dipole trap presented in this thesis realizes a strongly
coupled atom-cavity system, while largely preserving the free-space properties of the
atom. The atom is effectively captured without increase in energy. It is stored close to
the dark trap center where the Stark shift vanishes, well isolated from the environment
by the surrounding potential barrier. Because the trap height does not contribute to the
Stark shift, the confinement is only technically limited. The axial trap height realized is
about an order of magnitude larger than in the red trap. The accessible parameter regime
is not limited by the shift in atomic detuning. The preserved large detuning realize the
regime of dispersive detection, where the presence of an atom can be detected while it
only scatters about one photon. It is a major step towards a controlled preparation with
a minimum impact on the system under study. Its potential for fundamental studies in
cavity QED is demonstrated by the first observation of a two-photon resonance.

Combining the blue trap with three-dimensional cavity cooling would fully establish
the possibility of continuous measurements on a single open quantum system. Because
three-dimensional cavity cooling counteracts radial heating it can enhance the storage
times by several orders of magnitude (137) and achieves significant population of the
motional ground state. As a proof of principle, atoms are successfully stored in the
blue trap for the parameter regime compatible with three-dimensional cooling. Unfortu-
nately, limited optical access from the side in the current setup prohibits the immediate
implementation. An alternative method to achieve (axial) motional ground state cool-
ing in a state-insensitive trap (95) is Raman side-band cooling (130). Ground state
cooling enters the regime where in addition to the field and the atomic dipole also the
atomic motion has to be quantized. It has been realized for ions (144; 145) and enabled
quantum information processing (146). In cavity QED qualitatively new phenomena
are predicted based on the quantum correlations between the internal and the motional
degrees of freedom due to their interaction (147; 148), e.g. the transfer of a quantum
state between motion and light (149) and the realization of a Einstein-Podolsky-Rosen
state of distantly separated trapped atoms (150). Measuring one of the components will
give rise to a backaction on the dynamics of the other (151; 152; 143; 153) which can lead
to nonclassical effects, e.g. the localization of the atom (153) and motional Schrödiger

117
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cat states induced by the mode symmetry and dissipation (154).
The atomic motion of an atom in the cavity can be actively controlled by feedback

based on the radial position information obtained from the cavity transmission (102).
The blue trap now allows independent feedback on the radial potential only, while the
axial confinement is preserved. Moreover, azimuthal feedback could be implemented
based on the two-dimensional position information provided by the atomic kaleidoscope
(103; 104). Different trap topologies are possible by a combination of appropriate higher-
order modes, for example a two-dimensional closed dark ring of mesoscopic size. The
rotation of a single trapped atom could then be observed using the TEM10 + TEM01

modes (105). In combination with the ability to individually address the confinement in
different directions in the blue trap, azimuthal feedback could be applied. This config-
uration, resembling a Sagnac interferometer, realizes an atomic gallery leading to very
interesting dynamics of a matter wave (155).

A different system that aims at the study of the dynamics of matter waves in con-
trolled potentials are atom chips. The small scale structures provide strong magnetic
field gradients and hence strong confinement (156; 157; 158; 159). The chips can be
patterned to implement optics for matter waves, e.g. beam splitters (160; 161). They
are well suited for single atoms as well as convenient sources of cold atomic clouds and
Bose-Einstein condensates (162; 163). Driving applications are the realization of an
integrated mesoscopic atom interferometer (164) and the manipulation of single atoms
for quantum computing (165). Single atom detection can be provided by integrating
cavities (131; 132; 133; 134). A first application as a single atom detector has been the
study of the atom statistics in an atom laser (135). In these settings the blue funnels,
as realized in this thesis, could efficiently guide atoms to regions of large atom-cavity
coupling, thereby enhancing the detection efficiency.

Toroidal microcavities (166; 167) are a different approach to chip integration. Litho-
graphic chip technology and selective reflow is used to produce these ultrahigh-Q small
volume micro-resonators (168) based on total internal reflection. Here, the coupling
to the evanescent field mode of the cavity can be controlled via the tapered fibre (169).
Several of these resonators can be readily integrated which allows for a certain scalability
in the number of cavities. Single-atom detection (170) and strong coupling have been
observed (171), but trapping atoms in the vicinity of the surface is still a challenge.
An additional aspect are the mechanical modes of the toroidal structure which can be
cavity cooled by radiation pressure coupling (172). To achieve cavity cooling to the
ground-state the sidebands of the mechanical motion must be addressed individually by
the cavity resonance. Hence the oscillation frequency must be larger than the cavity
linewidth (136). This regime is also attainable for the axial confinement in the blue
trap.

Improved control and deterministic preparation of atom-cavity systems with a few
atoms in Fabry-Perot cavities are directed towards deterministic single photon sources
(62; 63) for quantum computing with linear optics (67; 146). Atoms can be deterministi-
cally transported (39; 119; 173) and localized in the mode of the high-finesse cavity (118).
A desired number of atoms can be prepared in a dipole trap (174) or by monitoring the
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cavity transmission (175). Recent advances in the realization of a quantum node include
the mapping of the internal state of an atom onto a photon (176) and reversible mapping
between atom and photon (65). Triggered single photon sources can now operate for
tens of seconds based on single trapped ions (177) and neutral atoms (66). They are
well suited as sources for quantum cryptography (178) and to implement a matter-light
interface for distributed entanglement in quantum networks (68). Using a blue-detuned
intracavity dipole trap to store atoms in the cavity mode would reduce the Stark shift
variations, allow for better axial localization and greatly reduce scattering of trap light,
which leads to uncontrolled background photons and will eventually limit the storage
time.

Quantum effects and measurement-induced dynamics of the atom-cavity system are
generally washed out by variations in the coupling and hence only become feasible with
improved localization. Nonlinear quantum optics for a two-state atom coupled to a cav-
ity mode with only two photons gives rise to interesting quantum effects (179): The
photon blockade observed in the magic trap (95) is based on the induced photon-photon
interaction (81). It shows a sub-Poissonian anti-bunched photon stream in cavity trans-
mission. A single photon source can hence be realized by pulsed excitation (63). The
effective photon-photon interaction is the basis for a number of proposals for quantum
information processing with photons, e.g. to realize quantum gates and entanglement.
Quantum dynamics conditioned on a detection has been observed in atomic beam exper-
iments, e.g. conditional phase shifts (180), relaxation of the intra cavity field (181) and
nonclassical correlations in the transmitted field (182). However, the detailed analysis
and understanding of such beam experiments is involved due to the presence of weakly
coupled atoms (183). The blue funnels are an experimental implementation of the mask
invoked in the proposal for photon correlation spectroscopy (77) to reduce the effect of
weekly coupled atoms. Blue intracavity light fields are well suited achieve strong con-
finement to regions of strong coupling while keeping the modification to the atom-cavity
system at a minimum.





Appendix A

Rubidium energy levels
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Figure A.1: Level scheme of Rubidium: Level scheme and transition strengths of Rubidium.
The transition rate is γ = 1
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Appendix B

Parameters in the numerical
Simulations

Symbol Parametername Unit
ttrig Triggervalue [T ] where T is the transmission

of the bare (empty resonant) cavity
Pnr Power in the near-resonant probe mode [photons]

for detecting the atom
x0 interval on x–axis in which [w0]

the atom is randomly positioned
y0 interval on y–axis [w0]
z0 interval on z–axis [λ]

(Pnr, Pnrs) Power in the guiding field of the red [photons]
dipole trap (before, after) switching

(Pb0, Pb0s) Power in the TEM00 mode [photons]
(Pb1, Pb1s) Power in the TEM10 and TEM01 modes [photons]

∆a bare atom detuning [2π MHz]
∆c bare cavity detuning [2π MHz]

Table B.1: Parameters in the numerical Simulations.
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Appendix C

Polarization of the high-finesse
cavity modes

Generally the measurements on the TEM00 mode did not show any significant birefrin-
gence. Here, the polarization of the cavity on the TEM10 + TEM01 modes is analyzed
base on cavity transmission spectrum for different settings of a λ

4 plate. The transmis-
sion T detected behind a linear polarizer dependents oscillates with different multiples
of the rotation angle α of the λ

4 plate:

T =
1
2

(S0 + S1 cos(2α)2 + S2 ∗ sin(2α) cos(2α) + S3 sin[2α). (C.1)

The Stokes parameters Si, i ∈ 0, 3 can directly be obtained from the coefficients
of a Fourier analysis. They fully describe the polarization state of the photon field.
The different characteristic parameters can be expressed in the Stokes parameters, for
example the degree of (circular/linear) polarization (DO[C/L]P) and the parameters
describing the polarization ellipse:

DOP =

√
(S2

1 + S2
2 + S2

3)
S0

(C.2)

DOLP =

√
(S2

1 + S2
2

S0
) (C.3)

DOCP =
S3

S0
(C.4)

Θ =
1
2
∗ arctan(

S2

S1
) (C.5)

r =
S0

S3
∗ (1−

√
(1− (

S3

S0
)2)). (C.6)

The average transmission spectrum of all different settings of the λ
4 plate is well fitted

by three Lorentzian showing a splitting on one of the modes of order 1 (see Fig. C.1).
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Figure C.1: Transmission spectrum for polarization analysis. The average transmission
observed for different angles of the λ

4 plate in the polarization analysis is well fitted by three
resonances
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Figure C.2: Degree of polarization in transmission for a circularly polarized pump. While
the total degree of polarization (DOP) is largely preserved, a reduced circular (DOCP) and
significant linear contribution (DOLP) is observed on the resonances. The frequency dependence
of the polarization is particularly strong on the peak that is fitted by two Lorenzians (cf. Fig. C.1)
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Figure C.2 shows the total degree of polarization as well as the circular and linear contri-
butions. The fact, that the degree of polarization decreases to the borders is an artefact
of the reduced signal. As expected, the total degree of polarization is largely preserved.
However, the intended circular polarization is altered on the resonance and a significant
linear contribution is observed. A stronger effect is observed for the resonance which
is fitted by a two peak structure in Fig. C.1. Here, the shift between the polarization
modes, defined by the cavity, limit the possibility to establish a precise polarization of
the intracavity light by a given polarization of the pump.
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Information Processing in Optical Lattices and Magnetic Microtraps. Fortschr.
Phys. 54, 702 (2006).

[166] K. J. Vahala. Optical microcavities. Nature 424, 839 (2003).

[167] M. Hossein-Zadeh and K. J. Vahala. Free ultra-high-Q microtoroid: a tool for
designing photonic devices. Opt. Express 15, 166 (2007).

[168] D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala. Ultra-high-Q
toroid microcavity on a chip. Nature 421, 925 (2003).



Bibliography 141

[169] S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala. Ideality in a
Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum
Electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

[170] M. Rosenblit, P. Horak, S. Helsby, and R. Folman. Single-atom detection using
whispering-gallery modes of microdisk resonators. Phys. Rev. A 70, 053808 (2004).

[171] T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg,
K. J. Vahala, and H. J. Kimble. Observation of strong coupling between one atom
and a monolithic microresonator. Nature 443, 671 (2007).

[172] A. Schliesser, P. Del’haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg. Radi-
ation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backac-
tion. Physical Review Letters 97 (2006).

[173] I. Dotsenko, W. Alt, M. Khudaverdyan, S. Kuhr, D. Meschede, Y. Miroshnychenko,
D. Schrader, and A. Rauschenbeutel. Submicrometer Position Control of Single
Trapped Neutral Atoms. Phys. Rev. Lett. 95, 033002 (2005).

[174] Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Forster, M. Khudaverdyan,
D. Meschede, S. Reick, and A. Rauschenbeutel. Inserting Two Atoms into a Single
Optical Micropotential. Phys. Rev. Lett. 97, 243003 (2006).

[175] J. McKeever, J. R. Buck, A. D. Boozer, and H. J. Kimble. Determination of the
number of atoms trapped in an optical cavity. Phys. Rev. Lett. 93, 143601 (2004).

[176] T. Wilk, S. C. Webster, G. Rempe, and A. Kuhn (2007). To be published.

[177] M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther. Continuous gen-
eration of single photons with controlled waveform in an ion-trap cavity system.
Nature 431, 1075 (2004).

[178] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. Quantum Cryptography. Rev.
Mod. Phys. 74, 145 (2002).

[179] L. Tian and H. Carmichael. Quantum trajectory simulations of the two-state
behavior of an optical cavity containing one atom. Phys. Rev. A 46, R6801 (1992).

[180] Q. A. Turchette, R. J. Thompson, and H. J. Kimble. One-dimensional atoms.
Appl. Phys. B 60, S1 (1995).

[181] G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J. Carmichael. Quantum
State Reduction and Conditional Time Evolution of Wave-Particle Correlations in
Cavity QED. Phys. Rev. Lett. 85, 3149 (2000).

[182] S. L. Mielke, G. T. Foster, and L. A. Orozco. Nonclassical Intensity Correlations
in Cavity QED. Phys. Rev. Lett. 80, 3948 (1998).

[183] L. Horvath and H. J. Carmichael. Effect of atomic beam alignment on photon
correlation measurements in cavity QED. arXiv: 0704.1686v1 (2007).





Publications

T. Puppe, I. Schuster, P. Maunz, K. Murr, P.W.H. Pinkse, and G. Rempe.
Light force fluctuations in a strongly coupled atom-cavity system.
arXiv:quant-ph/0702087.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P.W.H. Pinkse, and G. Rempe.
Trapping and observing single atoms in the dark.
arXiv:quant-ph/0702162.

K. Murr, P. Maunz, P.W.H. Pinkse, T. Puppe, I. Schuster, D. Vitali, and G. Rempe.
Momentum diffusion for coupled atom-cavity oscillators.
Physical Review A 74, 043412 (2006).

K. Murr, S. Nußmann, T. Puppe, M. Hijlkema, B. Weber, S. C. Webster, A. Kuhn, and
G. Rempe. Three-dimensional cavity cooling and trapping in an optical lattice.
Physical Review A 73, 063415 (2006).

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P.W.H. Pinkse, and G. Rempe.
Normal-mode spectroscopy of a single-bound-atom–cavity system.
Physical Review Letters 94, 033002 (2005).

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P.W.H. Pinkse, and G. Rempe.
Cavity cooling of a single atom.
Nature 428, 50-52 (2004).

T. Puppe, P. Maunz, T. Fischer, P.W.H. Pinkse, and G. Rempe.
Single-atom trajectories in higher-order transverse modes of a high-finesse optical
cavity. Physica Scripta, T112, p 7-12 (2004).

P. Maunz, T. Puppe, T. Fischer, P. W. H. Pinkse, and G. Rempe.
Emission pattern of an atomic dipole in a high-finesse optical cavity.
Optics Letters 28, 46 (2003).

T. Fischer, P. Maunz, P. W. H. Pinkse, T. Puppe and G. Rempe.
Feedback on the Motion of a Single Atom in an Optical Cavity.
Physical Review Letters 88, 163002 (2002).

143



144 Publications

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P.W.H. Pinkse and G. Rempe.
An optical kaleidoscope using a single atom.
Physical Review Letters 88, 043601 (2002).

T. Fischer, P. Maunz, T. Puppe, P.W.H. Pinkse and G. Rempe.
Collective light forces on atoms in a high-finesse cavity.
New Journal of Physics 3, (2001).

P.W.H. Pinkse, T. Fischer, P. Maunz, T. Puppe, and G. Rempe.
How to catch an atom with single photons.
Journal of Modern Optics 47, 2769-2787 (2000).



Danksagung

Zuallererst danke ich meinem Doktorvater Gerhard Rempe für die Möglichkeit meine
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