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Abstract— We investigate the performance of time-switched
space-time transmit diversity schemes applied to a wireless com-
munication system with multiple antennae at the transmitter and
single antenna at the receiver. A new method of analysis of time-
switched transmit diversity schemes is presented which builds on
an information theoretic equivalent channel and a generalized def-
inition of diversity for coded systems. We show that coded time-
switched Alamouti space-time block codes actually outperform all
coded orthogonal space-time block codes which use more than two
antennae. Cutoff rate analysis for modulated signals, proves their
performance to be close to optimum in a range of code-rates, which
is interesting for wireless communication.

I. Introduction

In communication systems operating over fading wireless
channels, multiple antennae at the transmit side can be used to
provide space diversity, which is crucial when the channel is
neither time- nor frequency selective enough to provide a reli-
able link. Currently, a couple of ways are discussed to achieve
this aim [1]. Among them are two promising approaches. The
first one uses space-time coding which uses all transmit an-
tennae simultaneously to achieve maximum possible diversity
advantage [2], [3], [4]. This is referred to as space-time trans-
mit diversity (STTD). In the second approach – time-switched
transmit diversity (TSTD) – the data stream is cycled through
the transmit antennae in a round ribbon fashion such that only
one antenna is used at a time [5]. This leads to a time-selective
link. In contrast to STTD, a TSTD scheme can provide diversity
only by channel coding which takes advantage of the time selec-
tivity. While TSTD has lower diversity advantage than STTD,
the latter has the critical problem, that efficiently decodeable
space-time codes suffer from rate loss, if more than two transmit
antennae are used [3]. In this paper we look at the combination
of STTD and TSTD schemes for digitally modulated signals.
We show that a simple time-switchedAlamouti scheme actually
outperforms all orthogonal space-time block codes which use
more than two antennae. The performance is also very close to
hypothetical ideal space-time block codes. Besides its simplic-
ity and good performance, a combined TSTD-STTD scheme
is also attractive, because the number of transmit antennae can
be changed without the receiver having to know, which makes
such a scheme fairly independent of standardization.
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Fig. 1. Space-Time Diversity scheme (A) and equivalent channel (B)

II. Space-Time Transmit Diversity

In the STTD scheme shown in Fig. 1 the data signal is en-
coded into a space-time block code (STBC) and transmitted
simultaneously over M antennae. As the channel is assumed
to be unknown to the transmitter, the total transmit power PT
is shared equally among the M transmit antennae. The sig-
nals then propagate through a frequency and time non-selective
channel with complex fading coefficients hi, 1 ≤ i ≤ M , and
arrive at a single receive antenna where they get perturbed by
additive, temporally white Gaussian noise with variance σ2

n (up-
per part of Fig. 1). After passing a STBC decoder/combiner,
the system behaves like an equivalent single-input single-output
(SISO) system [6], with complex fading coefficient hST, such
that

|hST|2 =
1
M

M∑
i=1

|hi|2. (1)

In the equivalent SISO channel the signal is launched with
transmit power PT and gets perturbed with zero-mean com-
plex Gaussian noise of variance σ2

n, as is depicted in the lower
half of Fig. 1. For i.i.d. symmetric, zero-mean and unity vari-
ance complex Gaussian distributed hi, i.e. Rayleigh fading, the
equivalent channel’s fading statistics is given by a M -th order
Nakagami distribution:

pγST(γST) =
MM

Γ(M)
· γM−1

ST · exp (−γST · M) , (2)

where we used the abbreviation γST = |hST|2. The instanta-
neous channel capacity reads as

C = RST · log2

(
1 +

PT

σ2
n

γST

)
, (3)

0-7803-7467-3/02/$17.00 ©2002 IEEE. 710



1

M

hTS

s(t)

n(t)

y(t)

y0(t)s0(t)

h1

n(t)

p
PT

p
PT

p
PT

B

A

hM

Fig. 2. Time-Switched Transmit Diversity scheme (A) and its equiv-
alent channel (B)

where RST is the rate of the STBC used. While the Alamouti
space-time coding scheme [2] does not involve rate loss, i.e.
maintains RST = 1, orthogonal STBC used with M > 2 trans-
mit antennae introduce some loss of rate [3], which may causes
severe performance degradation, as we shall see later.

III. Time-Switched Transmit Diversity

In a TSTD system depicted in Fig. 2 only one antenna is used
at a time, transmitting at full transmit power PT. Assuming
equal air-time of the antennae - which is the best strategy if
the channel is unknown to the transmitter - the instantaneous
channel capacity C is the average of the capacities Ci, 1 ≤ i ≤
M of the individual links:

C =
1
M

M∑
m=1

log2

(
1 +

PT

σ2
n

γm

)
, (4)

where we used the abbreviation γm = |hm|2. Unlike in the
STTD system, a diversity advantage can not be obtained by
linear processing, as the transmit-switching procedure merely
introduces an artificial time selectivity, but does not directly
alter the fading statistics. However diversity gain is exploitable
with proper channel coding which makes use of the introduced
time variance, by interleaving the code symbols over successive
antenna switches. In the following we will therefore assume a
coded TSTD system, and later compare its performance to a
coded STTD system.

It is interesting to note, that a coded TSTD system can be
described by a non-switched SISO equivalent channel, with
complex random fading coefficient hTS, suitably distributed.
Again writing γTS = |hTS|2, this equivalent SISO channel has
capacity

CTS = log2

(
1 +

PT

σ2
n

γTS

)
. (5)

Comparison of (5) with (4) shows the dependence of γTS on
the γm:

γTS =
σ2

n

PT
·


[

M∏
m=1

(
1 +

PT

σ2
n

γm

)]1/M

− 1


 , (6)

which is necessary for the equivalent channel to have the same
capacity as the original TSTD system, i.e. maintain equivalence
of (4) and (5). From (6) the probability density function (pdf)

of γTS can be computed. For i.i.d. γm, it can be shown [7],
that the pdf can be expressed as

pγTS(γTS) = M · PT/σ2
n

1 + PT
σ2

n
γTS

∫ +∞

−∞
F (x) ·

(
1 +

PT

σ2
n

γTS

)−j2πMx

dx (7)

where

F (x) =

(
Eγi

{(
1 +

PT

σ2
n

γi

)j2πx
})M

. (8)

Note, that (7) is a function of transmit power, which means that
the statistical properties of a coded TSTD system are dependent
on transmit power, i.e. the chosen operating point. We refer to
such a behavior as statistical nonlinearity.

IV. Time-Switched Space-Time Transmit Diversity

STTD and TSTD can be used in combination as shown in
Fig. 3 for the case M = 8. Space-time block codes designed
for m ≤ M antennae are used, and time-switching between T
blocks comprised of m antennae is applied, such that T · m =
M . The instantaneous channel capacity is now

C =
RST

T

T∑
t=1

log2

(
1 +

PT

σ2
n

γm,t

)
, (9)

where γm,t with t = 1, 2, . . . , T are the squared equivalent
fading coefficient magnitudes, which are provided by the space-
time block-code. In the case of Rayleigh fading, we have from
(2) the pdf of γm,t given as

pγm,t(γm,t) =
mm

Γ(m)
· γm−1

m,t · exp (−γm,t · m) . (10)

For i.i.d. γm,t the capacity equivalent channel can be obtained
similarly as for the purely time-switched system.

Before beginning the analysis and comparison of TSTD,
STTD and combined schemes, let us first introduce the no-
tion of diversity for coded communication systems, which will
be helpful in providing some insight into different behavior of
TSTD and STTD systems.

V. Diversity in Coded Communication Systems

The amount of diversity D provided by a coded communi-
cation system is measured by the slope of the frame error rate
(FER) after channel decoding with respect to transmit power:

D := − d log FER
d log PT/σ2

n

. (11)

It is in general a function of FER and/or PT/σ2
n, which define

the operating point the communication system is used in. The
diversity order Dmax is defined as the maximum of D with re-
spect to FER and PT/σ2

n. Assuming ideal, i.e. capacity achiev-
ing channel codes, the relationship between FER and PT/σ2

n

is governed by the outage capacity Cout(PT/σ2
n, p), where p
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Fig. 3. Time-Switched Space-Time Transmit Diversity. The M transmit antennae are divided into T groups of m antennae each, such that
T · m = M . At each time instant only one group is transmitting a space-time block code, designed for m antennae, while a switching between
blocks occurs in a random, or round ribbon fashion. The diagram shows different setups of T and m.

is the probability, that the instantaneous channel capacity C is
lower than Cout, i.e.

Prob {C < Cout} = p. (12)

Assuming a data rate equal to Cout a frame error will occur after
channel decoding with probability p, hence (11) can be written
as

D := − dlog p

dlog PT/σ2
n

∣∣∣∣
Cout(PT/σ2

n,p) = const
(13)

The operating point is specified by either the pair (p, PT/σ2
n)

or the pair (Cout, PT/σ2
n) or the pair (Cout, p), where the

latter seems to be the most descriptive. A coded commu-
nication system set up to provide outage capacity Cout with
outage probability p, can achieve diversity D given by (13),
which can also be stated in a more explicit way, by writing
Cout(PT/σ2

n, p) = const in form of a total differential:

0 = dCout =
∂Cout

∂PT/σ2
n

dPT/σ2
n +

∂Cout

∂p
dp. (14)

This leads immediately to

dp

dPT/σ2
n

= − ∂Cout

∂PT/σ2
n

·
(

∂Cout

∂p

)−1

, (15)

and finally (13) can be written explicitly as

D =
PT/σ2

n

p
· ∂Cout

∂PT/σ2
n

·
(

∂Cout

∂p

)−1

. (16)

For purpose of illustration have a look at a simple example
of a Rayleigh fading SISO system where the zero-mean unity
variance signal s(t) is launched with transmit power PT and
arrives at the receiver scaled by a Rayleigh distributed path
coefficient h, which is normalized to unity average power, and
perturbed with additive temporally white zero-mean complex
Gaussian noise n(t) with variance σ2

n at the receiver:

y(t) = h ·
√

PT · s(t) + n(t).

The outage capacity can readily be computed as

Cout = log2

(
1 − PT

σ2
n

loge (1 − p)
)

,

and applying (16) we get the diversity

D = −(1 − p) · loge (1 − p) /p,

which is merely a function of the outage probability p and
therefore independent of the outage capacity or transmit power.
While this independency property holds for all STBC diversity
schemes, it does not hold for the TSTD case, which is due to the
dependency of the effective fading statistics on transmit power.
In Section III we referred to this behaviour as statistical non-
linearity. We will elaborate on this in the following sections.
Note, that the maximum of D is obtained for p → 0 and yields
the diversity order of Dmax = 1, as expected.

VI. Influence of Interleaving

Coded communication systems operated over time selective
fading channels can be used in conjunction with interleaving,
where the code-symbols forming the code-words are spread
in time to be affected by different channel situations (time-
hopping). In the following we will assume for simplicity a
block fading channel, which remains constant during the co-
herence time Tcoh and then changes abruptly to take on a new,
independent realization. Assuming the interleaver length cov-
ers Lint coherence times, the decoder is allowed to make its
decision after seeing Lint independent realizations of the fad-
ing channel. The effective channel capacity C ′ is therefore
given as

C ′(Lint) =
1

Lint

Lint∑
l=1

Cl, (17)

where Cl with l = 1, 2, . . . , Lint are the instantaneous ca-
pacities corresponding to the different channel realizations
during interleaving time. The notion of outage capacity is
carried over, such as Prob {C ′ < Csmo} = p, where
Csmo(PT/σ2

n, p, Lint) is called sample-mean outage capacity
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Fig. 4. Transmit power dependent equivalent fading pdf of a coded but
non-interleaved M = 2 antenna TSTD. The squared magnitude of the
fading coefficients are i.i.d. uniformly distributed. In the low transmit
power region the pdf equals the one obtained by the Alamouti STTD
scheme, while deviations to less favorable distributions occur for high
transmit powers.

[8]. Analysis of diversity of coded communication systems em-
ploying interleaving can be carried out by substituting Csmo for
Cout in (13) or (16).

VII. Analysis

Let us analyze the behavior of TSTD compared to STTD
systems now. Firstly, we will look at the fading statistics of the
equivalent channel of coded TSTD systems to see the effect of
statistical nonlinearity. Secondly, the influence of this nonlin-
earity on diversity performance will be addressed, and finally
we will use cutoff rate analysis to compare TSTD, STTD and
combined schemes including effects of linear digital modula-
tion.

A. Statistical Nonlinearity

From (6) it is evident, that the equivalent fading statistics of
a coded TSTD system depends on transmit power. In the low
transmit power region however, this dependency vanishes, for

lim
PT/σ2

n→0
γTS =

1
M

M∑
m=1

γm =
1
M

M∑
m=1

|hm|2, (18)

i.e. the equivalent fading statistics of TSTD and STTD sys-
tems are the same, and only begin to deviate for high transmit
power. To illustrate this point, have a look at a simple M = 2
antenna TSTD system, where the squared magnitudes of the
path coefficients are uniformly distributed, i.e.

pγi(γi) =
{

1/2 for 0 ≤ γi ≤ 2
0 else

, i = 1, 2.

In this case, the equivalent fading statistics from (7) can be
computed in closed form:

pγTS(γTS) =


σ2
n

PT

(
1 + PT

σ2
n

γTS

)
loge

(
1 + PT

σ2
n

γTS

)
for 0 ≤ γTS ≤ δ

σ2
n

PT

(
1 + PT

σ2
n

γTS

)
loge

(
1+2

PT
σ2

n

1+
PT
σ2

n
γTS

)
for δ ≤ γTS ≤ 2

0 else
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Fig. 5. Capacity dependent diversity of a coded but non-interleaved
M = 2 TSTD system operated over i.i.d. Rayleigh fading. For outage
capacities below 1 bit per channel use, there is essentially no loss of
diversity compared to the Alamouti STTD scheme.

with δ = σ2
n

PT

(√
1 + 2PT

σ2
n

− 1
)

. Fig. 4 shows the graphi-

cal representation of this transmit power dependent pdf. Note,
that for uniformly i.i.d. γi the Alamouti STBC scheme would
produce a triangularly shaped pdf. As expected from (18) the
TSTD system achieves the very same pdf for low enough trans-
mit power. Increase of transmit power however, leads to less
favorable distributions, which allow deep fades to happen with
higher probability than necessary, hence reducing diversity ad-
vantage. Asymptotically, we have

lim
PT/σ2

n→∞
pγTS(γTS) = γTS · loge

2
γTS

, for 0 ≤ γTS ≤ 2,

which exhibits the largest deviation from the ideal shape.

B. Diversity

To make some quantitative assertions on the diversity perfor-
mance of a coded TSTD system, we use the method derived in
Section V by computing outage capacities and applying (16).
Again we use M = 2 antennae, but this time the fading co-
efficients are drawn from independent and identical Rayleigh
distributions. To this end (16) has to be solved numerically.
The results are depicted in Fig. 5, which shows the available
diversity as a function of outage probability, i.e. frame error
rate, with outage capacity as parameter. The dashed curve rep-
resents the maximum obtainable diversity, which is achieved by
the Alamouti scheme, independent of outage capacity. We can
see from Fig. 5, that the TSTD system competes marvelously
as long as the requested outage capacities remain lower than a
few bits per channel use, which is actually rather a large value
for a MISO system. For Cout = 1 bit per channel use, there
is essentially no deviation from the ideal. Considerable loss
of diversity performance, especially at low frame error rates,
occurs only if we ask for rather huge outage capacities, like 10
or more bits per channel use.

C. Cutoff Rate Performance

While capacity is a theoretical limit for infinite block length
codes and zero error probability, the cutoff-rate gives a bound
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Fig. 6. Outage cutoff rate for different setups of time-switched space-
time transmit diversity systems. See also Table I for setup details and
Fig. 3 for a schematic diagram.

for finite block length and error probability. The cutoff rate
is useful because of the cutoff-rate theorem [9], which states
that there exist (n, k)q block codes, with code-word error prob-
ability Pw after maximum likelihood decoding being upper
bounded by Pw < 2−n·(R0−Rb), provided the binary code rate
Rb := k

n · log2q is less than the cutoff-rate

R0 = − log2

∫
C

( ∑
s ∈ M

1
q

√
p(y|s)

)2

dy, (19)

where M, with |M| = q is the set of code symbols (input
alphabet) and p(y|s) is the probability density function of the
received signal y given the transmitted code symbol s. By la-
beling the elements of M = {s1, s2, · · · , sq} the instantaneous
cutoff-rate for a AWGN SISO system operated at SNR γ can
be written as [8]

R0(γ) = log2 (q) −

log2

(
1 +

2
q

q−1∑
p=1

q∑
t=p+1

exp
(
− 1

4
γ · PT

σ2
n

|sp − st|2
))

. (20)

In the general case of combined STTD-TSTD according to sec-
tion IV, where time switching between T ≥ 1 blocks consisting
of m ≤ M antennae are used in conjunction with space-time
block coding, the cutoff rate reads as

R0(m, T ) =
RST

T

T∑
t=1

R0(γm,t), (21)

where γm,t with t = 1, 2, . . . , T are the squared equivalent fad-
ing coefficient magnitudes, which are provided by the space-
time block-code. In the case of Rayleigh fading, their distribu-
tion is given by (10).

Let us take the example depicted in Fig. 3. We fix the raw,
i.e. uncoded data rate to 3 bits per channel use, and look at the
outage cutoff rate performance of the combined STTD-TSTD
schemes with different (m,T )-setups from Table I. As some of
the space-time codes exhibit rate-loss the size of the modula-
tion alphabet is expanded accordingly, as to satisfy the given
uncoded data rate (see Table I for details). The orthogonal

TABLE I
Parameters for different setups of STDD-TSTD scheme

Setup m T RST STBC Modulation

A1 8 1 1 ideal 8QAM
A2 8 1 1/2 orthogonal 64QAM
B1 4 2 1 ideal 8QAM
B2 4 2 3/4 orthogonal 16QAM
C 2 4 1 Alamouti 8QAM
D 1 8 1 none 8QAM

STBC-s refer to the best known STBC-s given in [2], [3] and [4],
while the ideal ones are hypothetical non-orthogonal STBC-s
which do not suffer from rate loss, but need a high complexity
decoder. Fig. 6 shows the outage cutoff-rate performance for
an outage probability of p = 0.01. The time-switched Alam-
outi scheme (setup C) clearly outperforms all other orthogonal
STBC-s for code-rates below 0.8. When using codes of rate
1/2, the loss compared to an ideal 8 antenna STBC (setup A1)
is fairly small. Even the purely time-switched system (setup
D) performs fairly well and outperforms all other orthogonal
STBC-s for code-rates below about 0.55. Use of orthogonal
STBC-s with more than two antennae in a time-switched sys-
tem seems only useful when operating at rather high code-rates,
uncommon in wireless communications.

VIII. Conclusion

The performance of time-switched space-time transmit di-
versity schemes in a wireless MISO channel was investigated
by means of a new method of analysis which builds on an in-
formation theoretic equivalent channel. An outage capacity
based definition of diversity of coded systems was introduced,
that provides insight in different behavior of STTD and TSTD
systems. Analysis showed, that coded time-switched Alamouti
space-time block codes outperform all coded orthogonal space-
time block codes which use more than two antennae in a range
of code-rates, which is interesting for wireless communication.
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