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Notations

Abbreviations

BVP Boundary Value Problem
CoM Center of Mass
FRI Foot Rotation Indicator
HSM Hybrid State Model
ODE Ordinary Differential Equation
ZMP Zero Moment Point

Scalars, Vectors, and Matrices

Scalars are denoted by upper and lower case letters in italic type. Vectors are denoted
by lower case letters in boldface type, and a vector x is composed of elements xi. Only
vectorial forces are denoted by upper case letters, and a force vector F is composed of
elements Fx, Fy, and Fz. Matrices are denoted by upper case letters in boldface type, and
a matrix M is composed of elements mij (i-th row, j-th column).

x scalar
x vector
X matrix or force
f(·) scalar function
f(·) vector function

ẋ, ẍ equivalent to d
dt
x and d2

dt2
x

MT transposed of matrix M
M−1 inverse of matrix M
M+ pseudoinverse of matrix M

Subscripts and Superscripts

vx, vy, vz component of vector v in x-, y-, z-direction
t−, t+ limit from the left, limit from the right of time t
x−, x+ state x at time t− or time t+

t0, tf initial time, final time
x0, xf initial value, final value of state x
xd desired trajectory for x
xl, xb upper boundary, lower boundary for x
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Notations

General

R real numbers
Z integers
ex, ey, ez cartesian directions

Hybrid Modeling

t time
ζ hybrid state vector
x continuous state vector
xd discrete state
n dimension of x
Nd number of discrete states xd

u continuous control input
ud discrete control input
y continuous output vector
yd discrete output
f(·) right hand side of differential equation
S transition surface
s(·) = 0 algebraic description of transition surface
ϕ(·) jump map for hybrid state ζ
g(·) jump map for continuous state x
gd(·) jump map for discrete state xd

h(·) output function
δi,j Kronecker delta

Modeling of Legged Locomotion

q generalized coordinate vector
nq dimension of q
ξ coordinate in cartesian x-direction
η coordinate in cartesian y-direction
αi coordinates for passive joint angles
βi coordinates for actuated joint angles
U kinetic energy
V potential energy
L(·), L∗(·) Lagrange function
I(·), I∗(·) cost function
mi masses of links
M inertia matrix
n vector of coriolis, centrifugal, and inertia terms
g earth acceleration g = 9.81 m/s2

c(·) vector of holonomic constraints
Nxd

number of holonomic constraints in contact situation xd
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λ Lagrange multipliers
J Jacobian matrix
Λ impulsive reaction force
tc collision time
Ry, Ry,L, Ry,R vertical component of contact force
Tz horizontal component of contact moment
lL, lR foot geometry constants
Ri force acting on link i
T i moment acting on link i
ri position vector of center of mass of link i
rzmp position of Zero Moment Point (ZMP)
T feet, T edges symmetry transformations
B, b elements of complementarity problem
Fx, Fy spring-damper forces
ki, i = 1, ..., 4 spring-damper parameterization

Compass Gait Robot

ml mass of leg
mh mass of hip
l length of leg
a, b geometry constants of leg

Monoped Robot

mf mass of foot
ml mass of link
lf length of half foot
hf height of foot
ll length of link
hcm,f geometry constant of foot
If , I l principal moments of inertia of foot and link

Gymnast Robot

mf mass of foot
ml mass of link
lf length of foot
ll length of link
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Trajectory Planning

T period length
KP , KD proportional gain matrix, derivative gain matrix
v control input after feedback linearization
f int(·) right hand side of internal dynamics ODE
̺(·) boundary conditions
p, pin, pout parameter vectors
np dimension of parameter vector p
t0, t1, t2, . . . , tf initial time, switching times, and final time
A, B, ω shape parameters of trajectory planning

Stability

φt(·), φH
t (·) flux of (hybrid) dynamical system

Φt(·), ΦH
t (·) trajectory sensitivity of (hybrid) initial value problem

Uε environment
ε, δ small scalar values
P (·), DP (·) Poincaré map, derivative of Poincaré map
τ(·), Dτ(·) first return time, derivative of first return time
γ invariant set, closed orbit
Σ transversal cross section
TΣ tangent space of transversal cross section
x∗ fixed point
ψ coordinate chart for local coordinates
SS switching sequence of hybrid system
θ normalized time
x̃ enhanced state vector
λ eigenvalue of DP
σ singular value of DP
V discrete-time Lyapunov function
v locomotion progression velocity

Balance Control

f , g, G, h components of control system
unom, ucorr nominal/corrective control signal
vnom, vcorr nominal/corrective control signal for feedback controlled system
A matrix for linear equation of constraint compliance
b right hand side for linear equation of constraint compliance
W weighting matrix
I identity matrix
τ torque vector of refined model
K parameter matrix of motor model
F push pushing force
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Abstract/Kurzfassung

Abstract

This thesis investigates the variable contact situations of rigid robot feet in legged robot
locomotion. One major goal is to include the rotation around foot edges in locomotion
cycles. For walking robots they are referred to as the toe roll phase and the heel roll
phase. The alternation between underactuated motion phases and completely actuated
motion phases is believed to contribute in a decisive manner in enabling dynamic loco-
motion. Dynamic locomotion comprises e.g. walking, running, hopping, standing up, and
many more motion patterns characterized by variable contact with the environment. A
control-theoretic approach to legged robot locomotion is presented that uses an event-based
hybrid (discrete-continuous) model with underlying rigid-body assumption. Events occur
whenever the ground contact situation changes; this is either when a contact resolves or
when a contact is established. The continuous time dynamics that is generally different
for all contact situations is allowed to switch at these contact changes. Then discontinuous
collision behavior is taken into account. To obtain periodic locomotion cycles, a trajectory
planning algorithm is proposed where the boundary value problem is solved that relates
the initial and final configuration of the robot. The resulting periodic robot locomotion
is investigated for orbital stability using Poincaré map analysis of the hybrid trajectories.
Finally, a hybrid control strategy is presented for balance control which makes use of the
invariance control method. Throughout this thesis, the methods are demonstrated for
three example robots: a compass gait robot, a monoped robot, and a gymnast robot.

Kurzfassung

In dieser Arbeit werden die variablen, wechselnden Kontaktsituationen zwischen Boden
und Füßen bei zweibeiniger Roboterfortbewegung untersucht. Schwerpunkt dabei ist die
Integration von nichtvollaktuierten Kontaktarten in die Bewegung, wie das Abrollen über
Ferse oder Zehen bei einer Laufbewegung. Speziell der Wechsel zwischen unteraktuier-
ten Kontaktsituationen und vollaktuierten Kontaktsitationen prägt den Charakter dyna-
mischer Fortbewegung. Bewegungen wie gehen, rennen, springen oder aufstehen sind
nur Beispiele für Bewegungen, bei welchen das Eingehen und das Lösen von Kontakten
wichtiger Bestandteil ist. In der vorliegenden Arbeit wird ein regelungstechnischer Ansatz
zur Realisierung von Fortbewegung zweibeiniger Roboter vorgestellt. Basis ist ein ereignis-
orientiertes hybrides (diskret-kontinuierliches) Modell der Starrkörperdynamik des Robo-
ters. Ereignisse treten auf, wenn sich die Kontaktsituation verändert, also wenn sich
ein Kontakt löst oder wenn ein neuer Kontakt eingegangen wird. Die kontinuierliche
dynamische Beschreibung unterscheidet sich je nach Kontaktsituation. Bei einem Kon-
taktartwechsel müssen außerdem Kollisionen mitberücksichtigt werden. Eine Methode
zur Trajektorienplanung für periodische Fortbewegung wird vorgestellt. Dazu wird das
Randwertproblem gelöst, dass den Anfangszustand der Bewegung mit dem Endzustand
verknüpft. Die orbitale Stabilität der resultierenden Trajektorien wird mit Hilfe von
Poincaré Abbildungen untersucht. Abschließend wird ein Verfahren zur Gleichgewichts-
regelung vorgestellt, basierend auf einer Modifikation der Invarianzregelung. Begleitend zur
allgemeinen Darstellung werden die vorgestellten Methoden an drei Beispielrobotern illus-
triert: dem compass gait Roboter, einem monoped Roboter und einem Gymnastikroboter.

x



1 Introduction

The human environment is constructed by humans and in first place for humans. For
robots that are meant to assist in a human environment, it is thus potentially easier to
cope with this environment if they have humanoid properties; see Fig. 1.1 for an assistance
robot. There are yet some areas where robot skills already exceed human skills, even in a
human-made environment. One example are tasks that have to be repeated many times in
exactly the same way, e.g. at an assembly line. In other areas robot skills are nevertheless
still inferior to human skills. So it is assumed that it will still take until 2050 when a
robot soccer team has a chance to win a match against a human team [107]. Figure 1.1
shows a snapshot from a robot soccer match in the humanoid league at the championship
RoboCup 2006. The reasons for todays inferiority are manifold: The artificial vision
systems of humanoid robots can not compete with the human eye and visual pathway in
the brain, and also intelligent decision making in cooperation with team members is not
developed far enough. However, still also machine locomotion on legs is one of the major
problems. It is not yet as stable, dexterous, versatile, and fast as needed. Biped robots that
perform a bicycle kick and stand up afterwards without any damage are hard to imagine
if one has in mind even todays most powerful walking machines like Honda Asimo [63] or
the entertainment robot Sony Qrio [94].

Figure 1.1: Robots in human environments. Left: Honda Asimo as assistance robot ( c© Honda
Motor Corp.) [63]. Right: Robots playing football at RoboCup 2006 ( c© RoboCup
Humanoid League) [107].

Research on legged locomotion, monoped, biped, or even multiped, is an interdisciplinary
area. Approaches from kinesiology are biology-oriented, and it is believed that a thorough
understanding of biological locomotion principles is the key for successful legged robot
construction and control. Areas of research include for example the investigation of the
energetics of human and animal locomotion. Here, Cavagna et al. [29] were one of the
first to find out that human locomotion on level ground has a large portion of passive leg
swinging. Another research area is the construction of artificial muscles providing actuators
for robot design with energy storage and stiffness similar to human muscles [33]. Closely
related are approaches from rehabilitation science, where e.g. actuated orthoses are used

1



1 Introduction

to substitute limbs after an amputation [17]. From a mechanical engineering point of view
the best construction of robots may but most not be humanlike: Still all humanoid robots
have only a fraction of the joints that human beings have. There, the Sony QRIO [94]
with yet 38 joints is one of the robots with the highest number of degrees of freedom. In
electrical engineering, control theory is essential for realization of joint control for powerful
and variable drives. Actual topics of research are joints that are capable to switch between
actuated and passive modes, and complex, nonlinear control laws are needed to enable
stable switching between the modes [139, 140]. Nonlinear control theory also contributes
with results on stability and stabilization of the overall locomotion cycle to compensate for
unexpected disturbances. In addition, advanced numerical algorithms for optimal control
are used to calculate optimal motion [39].

Important for the realization of a walking motion and interesting from a control theoretic
point of view is the stability of locomotion. A first very rough and general definition of
stability implies that a stable robot is able to continue locomotion even in the presence
of unexpected disturbances. Instability leads to falling without a possibility to return to
the original desired pattern of motion. Local analysis of walking trajectories describes
the reaction on small disturbances. The return to the desired motion is generally fast
and the compensation motion is close to the desired motion. Mombaur et al. [90] present
an optimal control problem that finds the trajectory in which convergence to the desired
solution is fastest after a disturbance occurred. Much more difficult are global statements
or approaches where an appropriate reaction on any kind of disturbance has to be available.
In this case it might be necessary to leave the planned motion pattern, insert a correction
motion, and continue the desired motion after some delay.

This thesis presents a control-theoretic approach to legged locomotion. Of special interest
is the variable ground contact situation of a robot foot resulting in a consecution of ground
contact situations with different dynamical properties in one locomotion cycle. A hybrid
(discrete-continuous) model is used as basis for trajectory planning and control because
hybrid models can account for the variable dynamical properties.

1.1 Legged Locomotion and Hybrid Systems

Essential for theoretical analysis and simulation as well as for application of model-based
control methods is a mathematical model of the robot dynamics. This model can be used
to preview robot motion when a torque trajectory or a control law is applied thus providing
a basis for trajectory planning, control design, and stability analysis. The formulation and
degree of abstraction of the model determines the possible areas of application. A struc-
turally simplified model that considers only a single support phase and neglects collisions
might still be useful for trajectory planning if the foot is desired to touch the ground with
zero velocity. For simulation, in contrast, the model has to be refined because collisions
between foot and ground will nevertheless occur under disturbances. In general, for a
comprehensive control-theoretic analysis, models are used that consider the exchange of
the stance legs with the associated collision. It is believed that the collisions between feet
and ground in a locomotion cycle are a major characteristic of legged locomotion [72].

2



1.1 Legged Locomotion and Hybrid Systems

Two distinct modeling approaches for numerical simulation are found in literature: Under
the assumption that ground or foot are slightly compliant, the robot feet are allowed to
just a little intrude into the ground. The ground contact is thereby modeled by spring-
damper elements [38]. In contrast, one can also assume a rigid ground, where after making
contact the robot foot either sticks to the ground or the contact between foot and ground
immediately dissolves [72].

In both approaches the dynamical description of the robot depends on the actual robot
configuration. The more contact points between ground and robot, the more degrees of
freedom are either constrained by spring-damper dynamics or constrained by constraint
equations. The model is thus required to account for changes in the contact situation when
a foot touches ground or detaches from ground. A hybrid modeling framework can be used
to formalize the dynamical description of these contact changes.

Most hybrid modeling frameworks allow an event-based description of the underlying dy-
namics. That means, the model is continuous almost everywhere with ordinary differential
equations to describe the behavior. If the trajectory arrives at a specific submanifold of
the state space, an event is triggered and specific event actions are allowed to take place.
For example, it is possible to exchange the dynamical properties to account for a modified
number of contact points [20]. It is thus possible to combine different ordinary differential
equations in one model. Some hybrid system formulations also allow discontinuities in the
state vector as event action [26]. State discontinuities are necessary to account for velocity
jumps that result when collisions are assumed to be instantaneous.

A theory of hybrid dynamical systems has been first proposed by Witsenhausen in
1966 [136], and since then various publications proposed hybrid modeling frameworks, see
for example [25] for an overview. A unified theory with general results is still in progress.
A description of an application in the hybrid framework is advantageous since it allows
to use results that are formulated for general problems. And also the reverse: Results
that are derived for specific applications can be generalized for arbitrary hybrid dynamical
systems with equivalent structure.

The variety of topics in research on hybrid control systems is large. Many results and
methods that are available for continuous control systems have yet been adapted to be
applicable also for hybrid systems. So there are existence and uniqueness results for so-
lutions and stability analysis tools for fixed points of hybrid dynamics using Lyapunov
methods [75]. Also spadework from nonlinear control theory is in focus of adaptation for
hybrid system control, e.g. identification methods [92] or observer design methods [12].
Actual areas of research are reachability, verification, and safety [7], with strong interest in
industrial application [44]. In recent years hybrid systems with stochastic properties have
been investigated [65].

The range of application of hybrid dynamical system modeling is manifold. Many systems
subject to control have intrinsic hybrid properties. That means, neither a continuous nor a
discrete dynamical description is satisfactory and covers all important properties. Exam-
ples for this class, besides legged robots, are mechatronic systems like robot hands where
grasping implies repeatedly making and dissolving contact [111]. Also manipulators that
come in contact with the environment have similar modeling properties. See for example
Botturi et al. [18] for hybrid optimal control of a puncturing task. In automotive engineer-
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1 Introduction

ing, hybrid modeling finds application in engine modeling and control [13]. Also in process
engineering, hybrid models are sometimes the only means appropriate to describe the dy-
namics of an underlying reaction process [43]. Further application of hybrid dynamical
system models in nontechnical applications are found for example in models of neuronal
activity [37]. Also systems where the hybrid character is not intrinsic are sometimes sub-
ject to hybrid control theory if the control strategy is chosen hybrid. In controller design
hybrid systems result if a switching control law is applied as for example in invariance
control [137], where a nominal controller and a corrective controller alternate.

Certainly, legged robotic systems also have very special properties that make them unique
in the hybrid system context, and where special approaches have to be found that cannot
be shared with the whole range of hybrid dynamical systems. In first place many insights
can be drawn from observing human locomotion behavior. Balancing on one foot is a
unique problem that is not carried forward to many other applications. In control theory
much work is done on inverted pendulum control [8], and certainly results can be used to
improve legged locomotion since a balancing system is very similar to an inverted pendu-
lum. Another particular characteristic of legged locomotion is that underactuated contact
phases occur in alternation with completely actuated contact situations where the number
of actuators is equal to the degrees of freedom of the robot and that collision separate the
contact situations.

1.2 Passive Joints versus Active Joints

From 1990 on, starting with McGeers findings on the similarities of a rolling rimless wheel
and an unactuated walking motion [88], passive walking is a field of intensive and successful
research [35]. Passive walking machines do not need actuation in the joints, therefore
locomotion is only possible downhill, where the energy loss due to the collisions with the
ground is compensated by potential energy. The appeal of passive walking is that the
robotic system realizes an inherent, natural dynamical trajectory. The main drawback is
the lacking versatility of passive walking machines. With their natural dynamics most of
them are only robust against small changes in inclination of the walking plane.

A first step to compensate for this drawback is to allow small supporting controllers that
mainly enhance the robustness on changes in inclination and widen the region of attraction
resulting in acceptance of small disturbances, see results on nearly-passive walking [80].
Still, comparison of the specific costs of transport reveals that nearly-passive walking ma-
chines can compete with humans in walking at constant speed, thereby consuming a tenth
of the energy of other walking machines [36]. Nevertheless, versatility cannot be enhanced
as much as to allow motion patterns different from walking at constant speed. Examples
for motion patterns that are not possible with standard passive approaches are climbing
stairs, stopping, falling and standing up, etc. All of these are task which, also for a human,
require powerful joints.

Versatility demands justify the need of full actuation that means actuators in every joint.
Robots with full actuation are for example the HONDA Asimo robot [63], the enter-
tainment robot Sony QRIO [94], the Toyota partner robots [129], the japanese research
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1.2 Passive Joints versus Active Joints

platform HRP [78], or the Johnnie robot and its successor Lola from TU München [76].
The present challenge is to link the energy-efficiency and natural motion generation of pas-
sive walking with the versatility of actuated robots. Passive and nearly-passive locomotion
is well suited for periodic tasks that do not need much force, whereas actuation is neces-
sary for any other tasks. Yet, besides the nearly-passive walkers, robots and robot control
approaches are developed that combine passive and actuated properties: One group of
robots are those that have mainly actuated joints, but some joints like the knee joint are
passive or at least allowed to switch between an actuated mode and a passive mode, like
the UT-Theta from University of Tokyo [98]. Another robot type is actuated in all joints,
but the contact between robot foot and ground is assumed to be passive. The foot has
only point contact with the ground, and the lower leg rotates freely around the contact
point. Acceleration of this passive joint is a consequence of dynamic coupling between
active and passive degrees of freedom. An example robot is the RABBIT platform [31]
that is designed specifically for running. Finally, there are robots with actuated joints
and ground contact that alternates between free rotation around foot edges, ballistic flight
phases, and stable support. Allowing for alternation of the contact type between foot and
ground is essential for dynamic motion patterns, as for example hopping [14]. Robots of
this type must not differ from fully actuated robots in construction, but more in the meth-
ods that are applied to realize locomotion with the variable ground contact situation [34].
In Fig. 1.2 robots with different passivity properties are shown for illustration.

Figure 1.2: Walking robots from left to right: McGeer’s passive walker ( c© Simon Fraser
University, Canada) [88], Collins and Ruina’s nearly-passive walker ( c© Cornell University,
US) [36], Honda Asimo ( c© Honda Motor Corp.) [63], UT-Theta ( c© University of Tokyo,
Japan) [98], and RABBIT ( c© INRIA, France) [31].

Trajectory planning for robots with variable ground contact is a challenge, although there
are planning methods that are applicable for robots with only actuated joints as well
as for robots with passive joints or with a mixture of passive and actuated joints. For
example, the notation framework and solution algorithm in optimal control trajectory
planning does not explicitly make a difference between actuated joints and non-actuated
joints. Only the complexity of the numerical problem increases for passive joints and thus
the convergence rate to solutions decreases or regions of attraction shrink, and often a
numerical solution is not found. Walking trajectories with different consecutive contact
situations under consideration of constraints were determined by Buss et al. [27] and in
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parallel by Denk et al. [39] with the direct collocation algorithm DIRCOL [131]. But in
both approaches the transition times between different contact situations were preset and
not subject to optimization. In addition the considered contact situations were completely
actuated. Approaches including an underactuated contact situation to humanoid walking
trajectory planning using DIRCOL failed until now [16] and still present a challenge. One
of the few approaches where optimization-based trajectory planning was successful, even
with a passive joint, was presented by Fujimoto [45] for a five-link biped.

Nevertheless many methods for trajectory planning that were developed for actuated robots
fail for underactuated machines. These methods include in particular any static planning
approaches [68] because of the dynamic coupling between actuated and nonactuated joints.
The inverted pendulum method [77] is, in principal, applicable at least for robots with
nonactuated ground contact. For this method the actuated ankle joint is often used to
stabilize the walking motion. There is no reference yet how inverted pendulum methods
apply to robots with alternating actuated and underactuated dynamical description.

1.3 Stability and Control in Legged Locomotion

For stability and stability control two definitions have to be discerned carefully. On the
one hand stability is often used in the meaning of balance, and then stability control is
the equivalent to balance control. On the other hand stability is defined in an orbital
sense. Balance controllers prevent the robot from falling via unwanted tilting around the
foot edges and are thus used for robots with full actuation to prevent underactuation.
The control algorithm is often based on measurement of the Zero Moment Point that was
introduced by Vukobratović in 1969 [133] and that provides a measure for balance in the
distance of the Zero Moment Point to the closest foot edge. In most approaches, it is
switched between the nominal controller and a corrective controller where the corrective
controller acts whenever a violation of the Zero Moment Point invariance is predicted [99].
Other approaches modify the desired trajectory to avoid balance loss [66]. The resulting
deviation from the original desired trajectory, however, makes it necessary to introduce an
additional foot landing time control [66].

Orbital stability for a periodic locomotion cycle implies that small deviations from the
desired trajectory can be compensated. Investigation of orbital stability began with Raib-
erts pneumatically actuated hopping robots [105] in the 1980s, and similar robots and
concepts are used today to explore robot running. Simplifications of the governing equa-
tions of motion that assume legs with springs yield analytical results that give insight in
the mechanisms of stability of running [47]. Stability is commonly investigated by first-
return maps (Poincaré maps) [60]. Stability analysis for the periodic continuous system
is then reduced to stability analysis of an underlying discrete map that considers the or-
bit only once in a period. In the approach from Westervelt et al. [134] the first-return
map of the hybrid zero dynamics is considered while the walking motion is achieved by an
input-output linearizing controller. The method was originally presented for a robot with
underactuated ground contact. In recent times, modifications of the method have been
published that account for variable ground contact. This occurs for running where a ballis-
tic phase and a single support phase alternate [32] and also for walking where an actuated
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1.4 Main Contribution and Outline of Dissertation

contact situation alternates with an underactuated contact situation [34]. While stability
in this approach is obtained and improved by offline optimization of the first-return map,
in Tedrakes approach [128] stability is optimized online by reinforcement learning. This
strategy is successfully implemented in the robot Toddler.

Few other approaches are not based on first-return maps, nevertheless providing provable
stability for walking robots. Song et al. [123] presented an approach splitting the coor-
dinates into a part transverse to the trajectory and a tangential part, finally designing a
controller by solving linear matrix inequality equations. Duindam et al. [41] present an
approach based on a port-Hamiltonian formulation of the equations of motion. The robot
is fully actuated in this particular approach. Here, the question arises what role orbital
stability is playing for fully actuated robots. Hurmuzlu gave reference in 1993 [70] that
also for actuated robots, unstable periodic trajectories exist. In this context, also results of
Djoudi et al. [40] are interesting: they consider a Zero Moment Point controlled actuated
robot as underactuated system in the sense that there are more outputs than inputs if the
Zero Moment Point is considered as additional output.

The above cited approaches consider stability either in the sense of balance or as local
property of trajectory control. Wieber [135] points out that still this is not comprehensive
enough. He proposes to consider a viability region that comprises all states of the robot
that are consistent with force constraints of the ground and excludes conditions where the
robot is fallen. The primary goal of control is then to keep the viability region invariant
which results in global stable behavior of the legged robot.

1.4 Main Contribution and Outline of Dissertation

Passive Contact Situations. One of the goals in legged robots research is to achieve
energy-efficient and nevertheless versatile locomotion. In most actuated robots, passive
rotation around foot edges is not used. Including passive rotation around foot edges is
the most intuitive approach to adapt fully actuated robots to the challenge of dynamic
locomotion and furthermore does not need major reconstruction of the robots. Modeling,
trajectory planning, stability analysis, and control have to be designed such that they
can cope with passive ground contact on the one hand and alternating ground contact
situations, that means, switching between actuated and underactuated behavior, on the
other hand.

In this work, robots are considered that are allowed to take underactuated ground contact.
For simplification only planar robots with simple geometrical construction are analyzed to
concentrate on the problem of variable ground contact. A compass gait robot, a monoped
robot, and a gymnast robot are subject of investigation, see Fig. 1.3 for illustration. The
gymnast robot with five links, two feet, and three possible contact situations for every
foot combines the features of the compass gait with one possible contact situation for
the feet and the features of the monoped with three possible contact situations for the
single foot. The robots are introduced in Chap. 2. Variable contact situations of robotic
feet are still rarely considered. One reason is certainly that models and the following
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trajectory synthesis and stability investigation become more complicated. See [34, 126] for
comparable approaches.

α

β

β β1

β2

β3
β4

β5

α

Figure 1.3: Investigated legged robots. Left: Compass gait robot. Middle: Monoped robot.
Right: Gymnast robot.

Hybrid Modeling. Dynamical models are needed that are tractable for control theory.
On the one hand, a model is required to approximate real behavior as good as possible.
On the other hand, the model should be as accessible for control theory as possible. The
model is basis for trajectory planning, stability analysis, and control.

In this work a hybrid model is chosen. The hybrid formulation of the legged locomotion
problem is convenient if only a small number of contact situations is considered. If in addi-
tion, double support and sliding on the ground are taken into account, e.g., a formulation
as a complementarity problem is useful. In the following, research on legged locomotion
is embedded in hybrid systems theory. In Chap. 2 the three robots are described by
their hybrid models. The basics for dynamical modeling, as e.g. derivation of continuous
descriptions, collision equations, and contact forces, are presented in advance.

Trajectory Planning. The trajectory planning method has to account for the hybrid
character of the legged robot model. Interesting trajectories include switching of the ground
contact situation. Some of the contact phases might even be underactuated. Examples are
walking, hopping, and similar patterns. General optimal control approaches are not easy
to apply since the trajectory planning problem is complex. The main difficulties are the
underactuatedness and the unknown transition times between different contact situations.

In this thesis, a simplified problem is solved for trajectory planning that reduces the opti-
mal control problem to the underlying boundary value problem. The trajectory planning
method is specified and illustrated using the example robotic systems in Chap. 3. Solving
for trajectories as solutions of boundary value problems is common in the literature [69].
The approach presented in this thesis expands the boundary value trajectory planning to
robots with several contact phases where multi-point boundary value problems arise.

Stability of Periodic Locomotion. Important for the practibility of trajectories is their
orbital stability. Unstable trajectories are completely useless because only a tiny distur-
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bance results in non-correctable deviations from the desired trajectory and, for a legged
robot, finally to falling. Poincaré map analysis is applied to determine orbital stability.
Poincaré maps are an analysis tool that is usable for stability analysis of cyclic orbits of
arbitrary hybrid systems.

In Chap. 4 the conditions for stability are presented, and stability is discussed for trajec-
tories of the example robots. Due to the nonlinearity of the equations of motion, stability
results can only be obtained numerically. Since legged robots are supposed to perform in
versatile tasks, the ability of periodic locomotion has to be enhanced making for exam-
ple stopping and starting possible, as well as accelerated and decelerated motion. It is
shown for the gymnast robot in simulation how switching between trajectories determined
in Chap. 3 enables decelerated and accelerated walking. It is used that the trajectories
exist as parameterized family where parameters can be changed at a set of allowed times.
There, the mathematical foundation is the intersection of basins of attractions. Still, con-
trol for walking at constant speed presents a challenge and approaches beyond that are
rare. Although the trajectory generation and stability control presented in this work is
still basic, it is believed that further development towards dexterous locomotion is one of
the important goals.

Balance Control. Improved balance control is decisive for dynamic locomotion. Balance
control avoids non-actuated tilting around foot edges and should be able to compensate
a range of disturbances as large as possible. Balance control in general results in a non-
minimum phase control system. There, only switching between different control laws yields
stability of the overall control system. A key question is also, how the nominal control
task interacts with necessary balance control.

The concept of balance control is embedded in the control theoretic framework of invariance
control in Chap. 5, using the Zero Moment Point as output that has to be kept in an
invariance region. The presented description provides a general and clear concept for
balance control and does not assume a specific robot structure as this is the case for many
other published approaches. Also, the control theory based approach will allow an analytic
analysis of balance control, concerning stability and robustness.
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2 Modeling of Legged Locomotion

2.1 Introduction and State of the Art

Locomotion on legs is characterized by repetitive contacting and detaching of feet and
ground which results in a sequence of distinguishable contact situations. A transition
between two contact situations occurs if contact forces or contact moments become zero
or if a robot foot collides with the ground with non-zero velocity.

A hybrid, event-based modeling approach is well-suited to describe the dynamics of legged
locomotion. It allows to describe the variable dynamical properties of the different ground
contact situations. Furthermore, a collision model is included that quantifies the instanta-
neous changes in joint velocities. An event for a legged system is either the incorporation
of a constraint when a robot foot makes contact or the elimination of a constraint when
a contact force becomes zero. Hence, in order to detect the occurrence of events, contact
forces and moments as well as the position of the robot foot edges have to be supervised.

Different formulations of the hybrid model are possible depending on how to include ground
contact. If the ground is chosen compliant, small penetrations of the foot into the ground
are allowed and ground contact is modeled by spring-damper elements, see [38]. If ground
and robot foot are assumed to be rigid bodies, penetration is not allowed and the transition
between contact situations is instantaneous. Both modeling assumptions yield a hybrid
model. For compliant ground models, the dimension of the generalized coordinates is
constant, independent from the contact situation. The constrained degrees of freedom are
coupled with the ground by spring-damper elements. Rigid ground models allow to use
minimal coordinates for every contact situation. In the following, a description in minimal
coordinates is chosen that is advantageous for control theory since the complexity of control
is reduced if the model equations are simple in structure. Another variant for modeling
of legged locomotion is the complementarity framework [72]. Therefore a solution of the
dynamical equations requires the repetitive solution of linear complementarity systems.
The complementarity formulation is based on the assumption of rigid ground. However,
the description of the individual contact situation is not in minimal coordinates.

A formal introduction of legged robotic systems is given in Sec. 2.1.1, and the hybrid sys-
tem modeling framework used throughout the thesis is introduced in Sec. 2.1.2. Section 2.2
provides the prerequisites needed for modeling of legged systems in any modeling frame-
work. Then in Sec. 2.3, hybrid modeling of legged robots is formalized and illustrated
in examples. In Sec. 2.4 two alternative modeling approaches are shortly introduced and
discussed, complementarity modeling and compliant ground modeling. The chapter is
summarized in Sec. 2.5.
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2.1 Introduction and State of the Art

2.1.1 Legged Robotic Systems

Legged robotic systems are made up from rigid links that are connected by rotational or
translational joints. A foot is a special link that may but must not take ground contact.
For simplicity only planar constructions are considered where motion is restricted to the
xy-plane of a reference frame. Figure 2.1 displays example robots.

ex

ey

Figure 2.1: Examples of legged robots. Left: Robot with two links, two feet, and one actuated
joint. The contact between foot and ground is passive. Right: Robot with four links, two
feet, and five actuated joints. The robot is fully actuated as long as no rotation around
foot edges occurs.

The robot is driven by motors in the joints that apply torques. A motor-driven joint is
also termed an actuated joint. If a joint is not motor-controlled, it is called passive or
unactuated. With this convention, the degrees of freedom that connect ground and robot
are passive links, see Fig. 2.2 for an example. A contact situation is underactuated if the
number of actuators is smaller than the number of degrees of freedom.

α

β

Figure 2.2: Passive and actuated links. The orientation α of the foot is passive, the deflection
of the leg β is assumed to be actuated.

The generalized coordinates q define the configuration of the mechanical system and are
hence the joint angles. Often the set of generalized coordinates is termed joint space.
In what follows, greek letters ξ, η, αi, and βi are used for the components of the joint
vector, where ξ and η are used for cartesian distances. Rotational deflections are generally
described by angles αi and βi, where passive rotational degrees of freedom are labeled αi

and actuated rotational degrees of freedom are labeled βi. The state of the control system
comprises generalized coordinates q and associated generalized velocities q̇ summarized in
the state vector

x =

(
q

q̇

)

. (2.1)
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2 Modeling of Legged Locomotion

Furthermore, external torques that act in the joints are denoted by u. A cartesian descrip-
tion of the posture with cartesian coordinates of the links is in general redundant.

2.1.2 Hybrid Control Systems

Many systems that appear in control applications can neither be described by a purely
continuous nor by a purely discrete model. The continuous and the discrete aspects of
the dynamics are coupled in a way such that neglecting one of the aspects yields useless
results for modeling and controller design. In the literature those systems are termed hybrid
(discrete-continuous) dynamical systems. See Witsenhausen’s publication in 1966 [136] for
one of the first definitions of a hybrid system, the book series “Hybrid Systems” [2–5, 56]
for a collection of publications on hybrid systems from 1993 to 1999, and the collection
edited by Engell et al. [42] in 2002.

The hybrid state model (HSM) describes discrete-continuous control systems and is out-
lined in the following. The HSM was introduced for control of robot finger grasping [109].
For example [24] gives a detailed description of this hybrid modeling framework in a general
context.

Hybrid State Vector. In accordance with the state vector definition for a purely con-
tinuous system, the hybrid state vector ζ(t) is composed from the continuous state vector
x(t) ∈ R

n and the discrete scalar state variable xd(t) ∈ Z. Let Nd denote the number of
possible discrete states, then xd ∈ {i1, i2, . . . , iNd

} ⊂ Z and

ζ(t) =

(
x(t)
xd(t)

)

∈ R
n × Z. (2.2)

For hybrid systems without external excitation, the system behavior is manifested for all
times t > t0 if the state vector ζ is known for an initial time t0.

Inputs and Outputs. Possible external inputs are divided into continuous control inputs
u(t) ∈ R

m and discrete control inputs ud(t) ∈ Z. In addition, hybrid systems are allowed
to have continuous as well as discrete outputs, denoted as y(t) and yd(t). The outputs are
determined by an output function h(x,u, xd, ud, t).

Continuous Dynamics. It is assumed that the system shows continuous behavior almost
everywhere and that the dynamics for a constant discrete state xd is modeled by ordinary
differential equations.

ẋ = f(x,u, xd, t)

The vector field f(x,u, xd, t) is a smooth function of the continuous state x, the continuous
control input u, and of time t. If the discrete states are xd = 1, 2, . . . , Nd, vector field
switches between the corresponding vector fields f 1(x,u, t), . . . ,fNd

(x,u, t) are allowed
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2.1 Introduction and State of the Art

and realized by choosing f(x,u, xd, t) as follows:

f(x,u, xd, t) =
∑

k

δk,xd
fk(x,u, t) =







f 1(x,u, t) if xd = 1
f 2(x,u, t) if xd = 2

...
fNd

(x,u, t) if xd = Nd

(2.3)

Here the Kronecker delta δk,xd
is 1 if k = xd and zero elsewhere.

Discrete Dynamics. The occurrence of an event is defined through the extended state
vector (x,u, xd, ud) crossing one of the transition surfaces Si that are denoted by

Si : si(x,u, xd, ud) = 0, i ∈ I.

The set I ⊂ Z is a finite index set. Discontinuous behavior in the hybrid state is allowed
at event times and is realized by jump (transition) maps ϕi(x,u, xd, ud, t

−) that determine
the hybrid state

ζ+ = ϕi(x,u, xd, ud, t
−)

immediately after the event given the hybrid state ζ− immediately before the event. The
notation ζ+ = ζ(t+) denotes the successor state (limit from the right) of ζ at time t. The
hybrid state ζ− = ζ(t−) is the predecessor state (limit from the left). The transition map
ζ+ = ϕi(x,u, xd, ud, t

−) allows a discontinuity in the continuous state x and a reset of the
discrete state xd. The latter may then result in a vector field switch.

Sometimes it is convenient to split the jump map into two parts to separate the continuous
state behavior from the discrete state behavior. Then ϕ is split into mappings g and gd:

(
x+

x+
d

)

= ϕ(x,u, xd, ud, t
−) =

(
g(x,u, xd, ud, t

−)
gd(x,u, xd, ud, t

−)

)

In many applications transition surfaces are only valid for one particular transition from
x−d to x+

d and will be denoted by sx−

d
,x+

d
(x,u, ud). Then the corresponding jump map is

ϕx−

d
,x+

d
(x,u, ud, t

−).

To fit the hybrid state model, an isomorphism

si(x,u, xd, ud) =

{
sx−

d
,x+

d
(x,u, ud) if i(x−d , x

+
d ) = i

1 else

is introduced, where i : Z × Z → I.

Discrete-Continuous Dynamics. In summary, the above introduced notation allows a
compact form for the hybrid state model:

ẋ = f(x,u, xd, t) if si(x,u, xd, ud, t) 6= 0 for all i (2.4a)

ζ+ = ϕj(x,u, xd, ud, t
−) if sj(x,u, xd, ud, t

−) = 0 for j ∈ I (2.4b)

(
y

yd

)

= h(x,u, xd, ud, t). (2.4c)

Figure 2.3 illustrates this structure.
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Figure 2.3: Interaction of continuous and discrete aspect in HSM. Figure adapted from [25].

Hybrid State Model and State Space Model. The hybrid state model (2.4) provides
an extension to the state space model

ẋ = f(x,u, t)

y = h(x,u, t)

that is used in control theory [73]. Hence, the hybrid state model offers a framework for
hybrid system control theory. Many other frameworks from different application fields
can be found in literature. Buss [25] outlines and compares between approaches from
Tavernini [127], Back et al. [11], Nerode et al. [97], Antsaklis et al. [6], Brockett [21], and
Branicky et al. [19]. Other propositions come from Peleties et al., [102], Michel et al. [89],
or Simić et al. [115].

Hybrid Modeling of Mechatronic Systems. For mechatronic systems, the continuous
state vector x has a position component q and a velocity component q̇, see (2.1). The
vector q ∈ R

nq summarizes the generalized coordinates. Generalized coordinates are a
minimal set of variables necessary to describe the posture. Since x ∈ R

n, n = 2nq.

For mechatronic systems, the discrete state variable xd can for example be used to code
the contact situation with the environment, different charging, or different control modes.
For the legged robotic systems considered henceforth, the discrete state codes the ground
contact situation of the feet.

2.2 Underlying Mechanical Equations

The following derivation of equations of motion (Sec. 2.2.1), collision law (Sec. 2.2.2), and
transition conditions (Sec. 2.2.3) provides the components for legged robot models in any
modeling framework.
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2.2 Underlying Mechanical Equations

2.2.1 Equations of Motion

The equations of motion connect the input torques u and the resulting trajectories in
joint space (q, q̇) in a differential way. A robot is a mechanical system and robot motion
results from an equilibrium of external torques and internal forces, respectively moments. A
Lagrangian analysis can be used to derive equations of motion using generalized coordinates
q = (q1, . . . , qnq

)T that form a minimal set of coordinates specifying the posture of the
robot. The generalized coordinate vector contains joint angles as well as the cartesian
position of one reference point on the robot relative to the origin. We use q̇ for the
derivatives of the generalized coordinates that correspond to angular or linear velocities in
joint space.

The Hamiltonian principle of least action says that for a dynamical system without external
excitation the action integral

I [q(t), q̇(t)] =

tf∫

t0

U (q(t), q̇(t)) − V (q(t)) dt (2.5)

takes its extremal value. The total kinetic energy is denoted by U(q, q̇), and V (q) is the
total potential energy. For a given initial configuration (q(t0), q̇(t0)) and a given initial
and final time t0 and tf , the extremal value of I defines the path q(t) of the generalized
coordinates. The Lagrange function L(q, q̇) abbreviates the difference between total kinetic
energy U(q, q̇) and total potential energy V (q) of the robot.

L(q, q̇) = U(q, q̇) − V (q) (2.6)

The total kinetic energy is commonly written as U(q, q̇) = 1
2
q̇TM (q)q̇, where M (q) is

the symmetric inertia matrix. Obviously M (q) is positive semidefinite since the kinetic
energy takes only values greater or equal than zero.

Extremal value analysis leads to the Euler-Lagrange equations

∂L

∂q
− d

dt

∂L

∂q̇
= 0 (2.7)

that determine solutions for the optimization problem in (2.5) in terms of differential
equations. If the robot has nq degrees of freedom, one obtains nq second order ordinary
differential equations.

Externally applied forces and torques denoted by u = (u1, . . . , unq
)T can be included in

(2.7) through
d

dt

∂L

∂q̇
− ∂L

∂q
= u. (2.8)

If the i-th joint is passive, the respective force vanishes, ui = 0. This is in particular the
case for the joints that connect ground and foot in underactuated motion phases.

In robotics literature, the equations of motion are often denoted as

M (q)q̈ + n(q, q̇) = u, (2.9)
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2 Modeling of Legged Locomotion

which results from rearranging (2.8). In n(q, q̇) the influence of coriolis, centrifugal, and
gravitational forces is summarized. If necessary, the equations of motion are transformed
to n = 2nq first-order differential equations with state vector x = (qT , q̇T )T from (2.1):

ẋ = f(x,u) =

(
q̇

M (x)−1 [u− n(x)]

)

(2.10)

For further details on the derivation of equations of motion see an introduction to theo-
retical mechanics, e.g. [49], for a robotics oriented introduction see [93].

2.2.2 Constraints and Collisions

The equations of motion of a robot are different for different contact situations, e.g. due to
the actual number of degrees of freedom. One possibility to derive equations of motion for
all contact situations is to use the Euler-Lagrange approach with different sets of gener-
alized coordinates. A more convenient approach is to incorporate constraining conditions
to the full dynamics of the robot. The constraints characterize the contact situation. The
benefit of this approach is that one obtains additional equations for contact forces and
moments.

Impact modeling is closely related to constraint modeling. Whenever the number of acting
constraints increases, a collision has to be considered to conserve the angular momentum
of the system. Using Newtons law results in discontinuities in the velocities.

Constraints. Every contact situation is specified by a set of scalar holonomic constraints
represented by a set of constraint equations

ci(q) = 0 i = 1, . . . , Nxd
,

where Nxd
is the number of constraint conditions that act in the contact situation xd.

It is assumed that the constraints are independent, so Nxd
is the minimal number of

equations needed to characterize the contact situation. Figure 2.4 illustrates the definition
of constraint equations.

The constraints can be considered in the optimization problem (2.5) and as a consequence
in the equations of motion (2.9) using Lagrange multipliers λ = (λ1, . . . , λNxd

)T . The cost

function for a motion subject to constraints c(q) = (c1(q), . . . , cNxd
(q))T = 0 is

I∗ [q(t), q̇(t),λ(t)] =

tf∫

t0

U (q(t), q̇(t)) − V (q(t)) + λ(t)Tc (q(t)) dt. (2.11)

Evaluation of the Euler-Lagrange equations (2.7) for the extended Lagrange function

L∗(q, q̇,λ) = U(q, q̇) − V (q)
︸ ︷︷ ︸

L(q, q̇)

+λTc(q)
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β

c1(q) c2(q)

Figure 2.4: Holonomic constraints. If both constraints c1(q) = 0 and c2(q) = 0 are fulfilled,
the robot has contact with the whole foot.

yields

∂L

∂q
− d

dt

∂L

∂q̇
+

(
∂c(q)

∂q

)T

λ = 0 (2.12a)

and

c(q) = 0. (2.12b)

The first equation (2.12a) results from application of the Lagrange equations (2.7) with
respect to q, the second equation (2.12b) from application with respect to λ. The Jaco-
bian J(q) of the constraints is used to abbreviate the derivative of the constraint func-
tion c(q):

J(q) =
∂c(q)

∂q
=







∂c1
∂q1

. . . ∂c1
∂qnd

... . . .
...

∂cNxd

∂q1
. . .

∂cNxd

∂qnd







The constraint equations c(q) = 0 are satisfied if c (q(t)) = 0 for all times t, and thus

d

dt
c(q) = J(q)q̇ = 0.

Since c (q(t)) = 0 and ċ (q(t)) = 0 there is also

d2

dt2
c(q) = J(q)q̈ + J̇(q)q̇ = 0. (2.13)

Reformulation of (2.12a) in the usual notation with external forces u then provides

M(q)q̈ + n(q, q̇) = u+ J(q)Tλ. (2.14)

A physical interpretation is that λ are auxiliary forces and torques that have to act to
satisfy the constraints. Therefore the components of λ are the contact forces and moments
that act in the particular contact situation.
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2 Modeling of Legged Locomotion

The system of equations (2.13) and (2.14) can now be solved for λ resulting in separate
equations for the contact forces and new equations of motion. A combination of (2.13)
and (2.14) yields contact forces:

λ = (JM−1JT )−1(JM−1n− J̇ q̇) − (JM−1JT )−1JM−1u (2.15)

The new dynamical equations are (2.14) with (2.15) substituted. The number of generalized
coordinates that are necessary to describe the system is reduced by the number Nxd

of
constraints. With the reduced vector of generalized coordinates and the reduced input
torque u

Mxd
(q)q̈ + nxd

(q, q̇) = u

is obtained, in which an appropriate mass matrixMxd
(q) and appropriate forces nxd

(q, q̇)
for the contact situation are used.

An overview how to incorporate constraints is given in [93] for the example of robotic
hands. Also, treatises on non-smooth mechanics, e.g. [22] and [48] cover the topic.

Collisions. For legged robots, impacts occur if either robot and ground get in contact or
if the robot links collide with themselves. Internal collisions of robot links are neglected
in the following, only robot to ground collisions are considered.

The following assumptions are made to derive collision equations following Newtons ap-
proach:

• the duration of the collision is arbitrarily short,

• no friction is considered,

• there is only a finite number of collisions in finite time,

• the collision is inelastic, and

• a collision acts at the same time for all robot links.

In (2.14), the dynamical equations of the robotic system with acting external forces λ are
written as

M (q)q̈ + n(q, q̇) = u+ J(q)Tλ.

For a collision investigation, J(q) is the Jacobian of the contact points that participate
in the collision. The participating set of contact points is a subset of the points where
c(q) = 0 is true. It is assumed that the collision is instantaneous that means it takes place
for a time tc. The times t−c = lim

t
<
→tc

t and t+c = lim
t

>
→tc

t are immediately before collision
and immediately after collision. Conservation of momentum results in

t+c∫

t−c

M(q)q̈ + n(q, q̇) dt =

t+c∫

t−c

u+ J(q)Tλ dt. (2.16)
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2.2 Underlying Mechanical Equations

If discontinuities in the positions are not possible, such that q(t+c ) = q(t−c ), evaluation of
the integral (2.16) yields

M (q)
(
q̇(t+c ) − q̇(t−c )

)
= J(q)T

t+c∫

t−c

λ dt. (2.17)

The inelasticity assumption realizes that after collision no rebound is allowed

J(q)q̇(t+c ) = ċ
(
q(t+c )

)
= 0. (2.18)

Equation (2.17) together with (2.18) provides an equation system that can be solved
for q̇(t+c ) and the acting impulsive reaction force

Λ =

t+c∫

t−c

λ dt.

Finally, combining (2.17) and (2.18), it is stated that:

Λ = −
(
JM−1JT

)−1
Jq̇−

q̇+ = q̇− −M−1JT
(
JM−1JT

)−1
Jq̇− (2.19)

Not all points that have ground contact at collision time necessarily participate in the
collision, and the set of participating contact points can only be determined by iterative
evaluation of possible collision equations. After evaluation of the collision law for an initial
assumption of participating points, it has to be verified that all components of the impulsive
force Λ are greater than zero to agree with the demand of unilateral constraints. If it turns
out that one or more components are less or equal than zero, the corresponding points do
not participate in the collisions and the collision law (2.17) has to be reevaluated using a
modified set of participating points. Analog checking has to be done for the contact points
that were assumed not to participate. If the velocity of one of those points is negative after
evaluation of the collision law, the collision has to be reevaluated including this contact
point in the set of participating points.

The above derivation presented the simple collision model using Newtons approach that
is widely used in legged robot modeling [14, 53, 103]. Details on the Newton method as
well as on the Poisson collision model, which considers friction, are introduced in [22, 48].
Hurmuzlu et al. [71] address the problem of collision modeling specifically for mechanical
actuators with chain structure.

2.2.3 Contact Forces and Moments

For simulation and control of legged robots, it is important to know the contact forces and
moments between feet and ground. The ground acts as unilateral constraint to the robotic
system. That means, the forces between ground and robot act only in one direction: The
robot is supported by ground reaction forces but not attracted to ground.
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2 Modeling of Legged Locomotion
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Figure 2.5: Contact force Ry and contact
moment Tz.
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Figure 2.6: Contact force for left (Ry,L)
and right foot edge (Ry,R).

In order to derive conditions for detachment, one considers the contact forces. It is shown
that the condition for tipping over can be expressed in terms of contact forces and mo-
ments which leads to the common concept of Zero Moment Point (ZMP) or Foot Rotation
Indicator (FRI).

Derivation of Detachment Condition for Planar Robots. To detect detachment, the
vertical contact force component Ry has to be observed, see Fig. 2.5. As long as Ry > 0,
the ground supports the robot weight. If Ry = 0, the support stops. Since attraction is
impossible, the foot detaches, and a new contact phase starts.

Derivation of Tipping-over Condition for Planar Robots. Consider again the robot foot
with its vertical contact force Ry and its horizontal contact moment Tz to find a condition
for tipping over around one foot edge. Figure 2.5 depicts the total vertical contact force
Ry and the total horizontal contact moment Tz with reference to the origin O of a given
world coordinate system.

Alternatively, the total vertical contact force Ry is considered split up into two components

Ry = Ry,L +Ry,R, (2.20)

where Ry,L is the contact force for the left foot edge and Ry,R for the right foot edge, see
Fig. 2.6. As a consequence, the contact moment Tz can also be split up into two parts

Tz = lRRy,R − lLRy,L, (2.21)

where l = lL+ lR is the length of the foot. If the contact force at the left foot edge vanishes,
Ry,L = 0, the foot begins to tip over the right foot edge. Combination of (2.20) and (2.21)
with Ry,L = 0 yields the tip-over condition:

Tz

Ry

= lR (2.22a)

Analogously, the tip-over condition for the left foot edge is derived as

Tz

Ry

= −lL. (2.22b)
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2.2 Underlying Mechanical Equations

In the robotics literature the fraction Tz/Ry is often referred to as Zero Moment Point
(ZMP) initially introduced by Vukobratović et al. [132, 133] and used by many other
research groups for balance control, e.g. [59, 100, 125]. In this thesis, the vertical axis
is the y-axis, whereas in other publications, the vertical axis is denoted as z-axis. This
results in different signs of the ZMP expression in terms of contact forces and moments.

Tipping-over and Zero Moment Point. Following one of several possible equivalent
definitions, the ZMP is the point on the walking ground surface, at which the horizontal
components of the resultant moment generated by active forces and moments acting on
the robot links are equal to zero.

To formalize this definition, some notations have to be introduced. Still O is the origin of
a reference frame. The considered robots are allowed to have a finite number of rigid links.
The mass center of link i has the position ri. Then, the force acting at the mass center of
link i is Ri = mir̈i −mi(0, −g, 0)T . Here, g = 9.81m/s2 abbreviates earth acceleration.
Due to inertia properties of the links, an additional moment T i acts for every link mass
center.

The ZMP rzmp = (rzmp,x, 0, rzmp,z)
T follows from the equilibrium of the total horizontal

moments. The vertical moment is allowed to take arbitrary values, denoted by an asterisk
on the right hand side of the following equilibrium equation.

∑

i

(ri − rzmp) ×Ri +
∑

i

T i =





0
∗
0



 (2.23)

A component-wise evaluation yields again (2.22):

rzmp,x =
Tz

Ry

and rzmp,z = − Tx

Ry

Here Tz and Tx are the z and x-component of
∑
T i+

∑
ri×Ri, and Ry is the y-component

of
∑
Ri.

An equivalent definition of ZMP is the point on ground level where a vertical force has
to act to balance the system. If the ZMP is in the supporting area, which is the region
covered by the foot, the ground reaction force balances the system. If the ZMP leaves the
supporting area, the robot cannot be balanced by the ground reaction force any more and
starts tipping over the foot edge. Thus the condition for tipping over derived from the
ZMP is consistent with the results in (2.22).

The ZMP is equal to the Center of Pressure [51], the point on ground level where the
contact force actually acts. The Center of Pressure is of practical relevance because it is
obtained by measurements of the contact force distribution of the foot.

The Foot Rotation Indicator (FRI) was introduced by Goswami in 1999 [51] to replace
ZMP and is a generalization. For a balanced system where the foot is at rest, FRI equals
ZMP. But unlike the ZMP, the FRI is also defined for a robot that is already tipping over
and gives a measure of postural instability.
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2 Modeling of Legged Locomotion

Computation of Contact Forces and Contact Moments. Since in the following the
discussion is restricted to planar robots where is motion confined to the xy-plane, the
z-component of ZMP is zero. Hence the notation

rzmp = rzmp,x =
Tz

Ry

(2.24)

is used to avoid unnecessary indices. The contact force Ry is obtained by summation over
all mass points

Ry =
∑

i

mi (r̈i,y + g) .

In the same way Tz is evaluated, considering the cross product between force components
and position vector of mass points.

Tz =
∑

i

miri,x (r̈i,y + g) −miri,y r̈i,x + Ti,z

2.3 Hybrid Models for Legged Locomotion Systems

The hybrid model combines the equations of motion from Sec. 2.2.1, conditions for a
contact situation transition from Sec. 2.2.3, and reinitialization rules given by the impact
law in Sec. 2.2.2. Transitions between contact situations are assumed to be instantaneous.
This enables a differential description in minimal coordinates for every contact situation.
That means variables qi for constrained degrees of freedom i vanish in the differential
equations for the contact situation. To formally keep the system order constant, auxiliary
differential equations q̇i = 0 and q̈i = 0 can be added. The auxiliary degrees of freedom
are necessary for simulation purposes to achieve a constant size of the state vector in all
contact situations. In trajectory planning and control, the auxiliary differential equations
are omitted.

Hybrid State Vector. The hybrid state vector ζ for the legged robot model according to

(2.2) is introduced that is a combination of the continuous state x =
(
qT , q̇T

)T ∈ R
n and

the discrete state xd ∈ Z. The discrete state xd codes the contact situation.

Equations of Motion. It is assumed that an equation of motionMxd
(q)q̈+nxd

(q, q̇) = u

is available for any possible contact situation xd. The derivation was presented in Sec. 2.2.2.
The vector q is the set of minimal coordinates needed to define the posture uniquely for the
particular contact situation. After the equations are transformed to first-order differential
equations with state vector x = (qT , q̇T )T , compare (2.10),

ẋ = fxd
(x,u) =

(
q̇

M−1
xd

[u− nxd
]

)

.
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2.3 Hybrid Models for Legged Locomotion Systems

The notation corresponds with the hybrid state model notation introduced in (2.3). The
dynamical behavior of the robot is determined by the differential equations as long as no
events occur and the contact situation remains unaltered. Expressions for the equations of
motion can be derived using the symbolic manipulation tool Autolev [9] that is based on
Kane’s algorithm. Autolev offers a convenient possibility to obtain equations of motion in
symbolic form, ready for implementation in Matlab, Fortran, or C-code.

In the following, two categories of events, collision events and detachment events, will be
distinguished:

Collision Event. A collision event occurs if a foot edge that had no ground contact before
touches ground. The occurrence of collision events is supervised by transition equations
of the distance between foot edges and ground. This category of transition surface thus
depends only on the actual configuration, not on velocities or acting forces:

s(x,u) = s(q) = 0

If the foot edge touches ground with nonzero velocity, an impact occurs. In the hybrid
model, the impact law is accounted for by a reinitialization rule for the hybrid state. More
precisely only the velocities and the discrete state are reset, compare (2.19).





q+

q̇+

x+
d



 =





q−

q̇− −M−1JT (JM−1JT )−1Jq̇−

gd(x
−, x−d )





Detachment Event. A foot edge detaches from ground if a contact force changes sign or
the ZMP crosses a boundary of the foot support area. The conditions to supervise depend
on state x and control input u:

s(x,u) = 0

The reinitialization rule does not affect positions and velocities. Only the discrete state
variable xd is reset.





q+

q̇+

x+
d



 =





q−

q̇−

gd(x
−, x−d )





Simulation. For the simulation of hybrid systems an integrator for ordinary differential
equations has to be augmented by additional features. It is required that the integration
process stops whenever an event occurs. Then, the integration may be restarted after
the execution of the reset rules. Therefore all transition conditions have to be evaluated
for every integration step. Then, if one transition condition becomes true, an iterative
procedure is started to find the exact time of transition [110]. The technical computing
environment Matlab [87] provides numerical algorithms for the integration of ordinary
differential equations with parallel surveillance of event functions. If an event is detected,
the event time is determined precisely and the integration is stopped to allow for state
resets.
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2 Modeling of Legged Locomotion

2.3.1 Compass Gait Robot

Introduction. The simplest robot construction that can show a walking motion is a robot
with two legs that are linked by one actuator, as shown in Fig. 2.7. This robot is often
used as passive walker and referred to as compass gait robot in the literature. The rotation
around the foot contact point is always passive. The joint between the two legs is assumed
to be passive or active.

ex ex

eyey

ξ

η

mh

ml

ml
l

a

b

α

β

r1

r2

r3

Figure 2.7: Compass gait robot. Illustration of geometry, masses, and coordinate system.
The robot is made up from two links and one actuated joint. Leg masses are ml, hip
mass is mh. Foot length is l; a and b are distances of leg mass centers from foot or hip.
Generalized coordinates are q = (ξ, η, α, β)T . The vectors r1, r2, and r3 are position
vectors of mass points.

For simplicity, it is assumed that masses are point masses. The legs have mass ml, and
the hip has mass mh. The legs have length l, where the mass center is at distance a from
the foot. The position of the reference foot is (ξ, η), α is the orientation of the reference
foot, and β is the angle between the legs. The generalized coordinates are thus

q =







ξ
η
α
β






.

In accordance with publications of Goswami et al. [52], Hiskens [61], or Spong et al. [80]
the masses and lengths are chosen:

ml 5.0 kg
mh 10.0 kg
l 1.0 m
a, b 0.5 m

Hybrid State Vector. For the compass gait robot three contact situations are distin-
guished. The robot is either in flight, has contact with the reference foot, or contact with
the non-reference foot. Other contact situations, as double support or sliding, are not
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2.3 Hybrid Models for Legged Locomotion Systems

considered. A discrete valued state variable xd(t) ∈ {−1, 0, 1} ⊂ Z encodes the contact
situation as assigned in Fig. 2.8.

xd = 0

xd = 1 xd = −1

0 constraints

2 constraints

detachment

collision collision

collision

collision

eventevent

event

event

events

Figure 2.8: Transition graph for the compass gait robot.

The continuous state vector of the robot is composed from the vector of generalized co-
ordinates q = (ξ, η, α, β)T and its derivative q̇ that are concatenated to the continuous
state x. The hybrid state vector ζ combines the continuous and the discrete state. The
actuator in the hip applies a torque u to actuate the joint angle β.

Equations of Motion for the Hybrid System. The equations of motion for the un-
constrained robot are derived using the Euler-Lagrange approach outlined in Sec. 2.2.1.
Through incorporation of constraint conditions, equations of motion and expressions for
contact forces for the single support phases are generated. Equations of motion are needed
for all three possible contact situations. If the three equations of motion are formulated
as first order differential equations ẋ = f 0(x, u), ẋ = f 1(x, u), and ẋ = f−1(x, u), the
differential equations for the hybrid system are

ẋ = f(x, xd, u) = δxd,0f 0(x, u) + δxd,1f 1(x, u) + δxd,−1f−1(x, u),

where δi,j is one only for i = j, else it is zero. Compare (2.3).

Equations of Motion for the Unconstrained System (xd = 0). Before denoting the
Lagrange function as basis for the derivation of the equations of motion, position vectors
r1, r2, and r3 for the masses are introduced, compare Fig. 2.7 and Sec. A.1.1. If it is
assumed that all masses are point masses, the Lagrange function reads

L(q, q̇) =
1

2
ml‖ṙ1‖2 +

1

2
mh‖ṙ2‖2 +

1

2
ml‖ṙ3‖2

︸ ︷︷ ︸

U(q, q̇)

− (mlgr1,y +mhgr2,y +mlgr3,y)
︸ ︷︷ ︸

V (q)

,

where ri,y is the y-component of ri = (ri,x, ri,y)
T .
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2 Modeling of Legged Locomotion

Application of Euler-Lagrange equations (2.8) yields the equations of motion for q =
(ξ, η, α, β)T :







m11 m12 m13 m14

m12 m22 m23 m24

m13 m23 m33 m34

m14 m24 m34 m44







︸ ︷︷ ︸

M 0

q̈ +







n1

n2

n3

n4







︸ ︷︷ ︸

n0

=







0
0
0
u







(2.25)

See Sec. A.1.2 for explicit expressions of the matrix and vector elements mij and ni. The
equations of motion above describe the robot behavior for the robot in the ballistic motion
phase coded by xd = 0. The equations can be transformed to a first-order system of
differential equations denoted by ẋ = f 0(x, u).

Equations of Motion for Single Support on Reference Foot (xd = 1). For a single
support phase, constraints have to be introduced that guarantee that the reference foot
has persistent contact with the ground.

c(q) =

(
ξ − ξ0
η

)

= 0 (2.26)

Here (ξ0, 0) is the desired cartesian position of the foot. The corresponding Jacobian J1 is

J1 =

(
1 0 0 0
0 1 0 0

)

. (2.27)

Coupling of the Jacobian J1 to (2.25) results in the equations of motion for q = (α, β)T

(
m11 m12

m12 m22

)

︸ ︷︷ ︸

M 1

q̈ +

(
n1

n2

)

︸ ︷︷ ︸

n1

=

(
0
u

)

. (2.28)

See again Sec. A.1.2 for expressions of the matrix and vector elements mij and ni. The
equations of motion do not consider the dynamics of ξ and η any more. They are re-
stated in first-order differential equations ẋ = f 1(x, u). The contact forces are obtained
by evaluation of λ = (Rx, Ry)

T . Explicit expressions are given in Sec. A.1.3.

Equations of Motion for Single Support with Non-reference Foot (xd = −1). Con-
straints for persistent contact with the non-reference foot are

c(q) =

(
ξ + l cosα+ l cos(α+ β) − ξ0
η + l sinα+ l sin(α+ β)

)

= 0 (2.29)

where the corresponding Jacobian J−1 is

J−1 =

(
1 0 −l sinα− l sin(α+ β) −l sin(α+ β)
0 1 l cosα+ l cos(α+ β) l cos(α+ β)

)

. (2.30)
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2.3 Hybrid Models for Legged Locomotion Systems

The constraints attach the x-coordinate and the y-coordinate of the non-reference foot
to the ground. The equations of motion ẋ = f−1(x, u) are derived in analogy to the
derivation in the previous section for (2.28).

For practical implementations the equations of motion for contact with the non-reference
foot (xd = −1) are obtained by a coordinate transformation of the equations of motion for
contact with the reference foot (xd = 1) in (2.28). This is possible due to the symmetric
construction. The transformation that maps coordinates of one foot to coordinates of the
other foot is

T feet(x) =















ξ + l sinα+ l sin(α+ β)
η + l cosα+ l cos(α+ β)

α+ β − π
2π − β

ξ̇ + l cosαα̇ + l cos(α+ β)(α̇+ β̇)

η̇ − l sinαα̇− l sin(α+ β)(α̇+ β̇)

α̇+ β̇

−β̇















. (2.31)

Necessarily, applying the transformation T feet twice results in the original state

x = T feet (T feet(x)) .

Transition Conditions. If the robot is in a ballistic motion phase (xd = 0), two transitions
are modeled. The robot lands on the reference foot (xd = 1) or on the non-reference foot
(xd = −1). Hence the transition surfaces are s0,1 = 0 for the transition from ballistic
(xd = 0) to contact with the reference foot (xd = 1) and s0,−1 = 0 for landing on the
non-reference foot (xd = −1). The algebraic expressions

s0,1(x) = η

s0,−1(x) = η + l sinα+ l sin(α+ β)

that describe the y-coordinate of the feet have to be supervised on zero crossing.

Also if the robot is in contact with the reference foot (xd = 1), two transitions may occur.
Landing on the swing foot (xd = −1) with a consecutive stance foot exchange is supervised
by the transition surface

s1,−1(x) = η + l sinα+ l sin(α+ β).

A transition is though not allowed if β = ±π. This is denoted foot scuffing problem in
the literature: Due to the simple robot construction, it is not possible for the feet to pass
each other without touching the ground of the swing foot when β = ±π. For theoretical
analysis this problem is neglected. In experimental studies flap mechanisms or similar
auxiliary mechanisms are used.

Detaching to begin a ballistic phase (xd = 0) occurs if the contact force Ry becomes zero:

s1,0(x, u) = Ry(x, u) (2.32)
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An expression for Ry is given in (A.6) in terms of (q, q̇, q̈). To express Ry in terms of
(q, q̇, u), α̈ and β̈ are replaced by

(
α̈

β̈

)

= M−1
1

[

−n1 +

(
0
u

)]

Analogously, the transition surfaces s−1,1 = 0 and s−1,0 = 0 for the robot in contact with
the non-reference foot are derived.

Reinitialization. A collision event occurs either when landing from a ballistic motion
phase or when the roles of stance and swing foot change. Then, the hybrid state and in
particular the joint velocities are allowed to behave discontinuous, ζ+ = ϕ(ζ−). A general
expression for the impact law is from (2.19)

q̇+ = q̇− −M−1JT (JM−1JT )−1Jq̇− (2.33)

with M = M 0 from (2.25) and J chosen according to the constraints that participate in
the collision.

For the transition from a ballistic phase (xd = 0) to contact with the reference foot (xd = 1)
or from non-reference foot contact (xd = −1) to reference foot contact (xd = 1), the active
constraints are given in (2.26) with Jacobian J1. The constraints result in reset functions
ϕ0,1(ζ) and ϕ−1,1(ζ) written as

ϕ−1,1(ζ) = ϕ0,1(ζ) =





q−

q̇− −M−1
0 J

T
1 (J1M

−1
0 J

T
1 )−1J1q̇

−

1



 .

For the transition from a ballistic phase (xd = 0) to a contact situation where the non-
reference foot has contact (xd = −1) or from contact with the reference foot (xd = 1) to
contact with the non-reference foot (xd = 1), reset functions ϕ0,−1(ζ) and ϕ1,−1(ζ) are
used. The corresponding constraints can be found in (2.29).

For the case when the swing foot and the stance foot change its roles, both feet have
instantaneous contact:

c1(q) = ξ − ξ0 = 0

c2(q) = η = 0.

c3(q) = ξ + l cosα+ l cos(α+ β) − ξ1 = 0

c4(q) = η + l sinα+ l sin(α+ β) = 0.

If, after the collision, ċ1(q) 6> 0 or ċ2(q) 6> 0, the stance foot participates in the collision
and c1 and c2 have to be considered in the Jacobian J . The resulting contact situation is
a double support phase which, however, is not considered in the model. The simulation is
aborted if double support occurs.
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2.3 Hybrid Models for Legged Locomotion Systems

Any transitions where constraints are dissolved do not induce discontinuities in the ve-
locities. These are in particular the transition from reference foot contact (xd = 1) to a
ballistic phase (xd = 0) and from non-reference foot contact (xd = −1) to a ballistic phase
(xd = 0).

ϕ1,0(ζ) = ϕ−1,0(ζ) =





q−

q̇−

0



 .

The detailed transition graph in Fig. 2.9 gives a summary of the hybrid model for the
compass gait robot.

ẋ = f 0(x, u)

ẋ = f 1(x, u) ẋ = f−1(x, u)

s1,0 = 0
ζ+ = ϕ1,0(ζ

−)

s0,1 = 0
ζ+ = ϕ0,1(ζ

−)

s−1,1 = 0
ζ+ = ϕ1,1(ζ

−)

s−1,0 = 0
ζ+ = ϕ−1,0(ζ

−)
s0,−1 = 0
ζ+ = ϕ0,−1(ζ

−)

s1,−1 = 0
ζ+ = ϕ1,−1(ζ

−)

Figure 2.9: Detailed transition graph for the compass gait robot.

2.3.2 Monoped Robot

Introduction. The monoped robot has two links and one actuated joint that are arranged
different than for the compass gait robot. One of the links is a foot that is allowed to
have plane contact with the ground, thereby enabling a fully actuated contact situation.
Figure 2.10 illustrates the robot construction, and Fig. 2.11 gives a magnified view of the
foot.

An experimental platform is the basis for modeling, thus no simplification are presumed
concerning the mass distribution and the positions of the mass centers. From the CAD
model of the robot, the following parameter values are taken:
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replacemen

ml

mf

α

β

ex

ey
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lf
ξ

η

Figure 2.10: Monoped robot. Illustration of geometry, masses, and coordinate system. Masses
are denoted mf and ml. Dimensions are denoted by ll and lf . The mass distribution is
considered by principal moments of inertia If,z and Il,z that are taken from a CAD model
of the experimental platform depicted on the right hand side.

hcm,f

hf

Figure 2.11: Details of monoped foot. The foot has height hf , the center of mass of the foot
has height hcm,f .

mf 0.299 kg
ml 0.607 kg
ll 0.405 m
lf 0.1 m
hf 0.025 m
hcm,f 0.00353 m
If,z 0.0011573165 kg/m2

Il,z 0.00061034433 kg/m2

Hybrid State Vector. For the monoped robot four contact situations are distinguished.
The robot is either in flight, tilted around the left foot edge, tilted around the right foot
edge, or has stable ground contact with the whole foot. Other ground contact situations
are not considered in the model. A discrete state variable xd(t) ∈ {0, 1, 2, 3} encodes the
contact situation as depicted in Fig. 2.12. The continuous state vector x of the robot is
composed from the vector of generalized coordinates q = (ξ, η, α, β)T and its derivative q̇.
The actuator applies a torque u to actuate the joint angle β.

Equations of Motion for the Hybrid System. First, differential descriptions are estab-
lished for the unconstrained system according to the derivation in Sec. 2.2.1. The remaining
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xd = 0

xd = 1

xd = 2 xd = 3

collision

collision

collision

collision

collision

event

event

event

event

event

events
detachment

0 constraints

2 constraints

3 constraints

Figure 2.12: Transition graph for the monoped robot.

equations of motion are obtained by introduction of constraints. The differential equations
fxd

(x, u) are combined to one vector field to fit into the hybrid state model notation (2.3):

f(x, xd, u) =
∑

i

δxd,if i(x, u)

Equations of Motion for the Unconstrained System (xd = 0). Again, to prepare
the Lagrange function, position vectors r1 and r2 for the mass centers of the links are
introduced. See Sec. A.2.1 in the appendix for the exact expressions. Then the Lagrange
function is

L(q, q̇) =
1

2
mf‖ṙ1‖2 +

1

2
If,zα̇

2 +
1

2
ml‖ṙ2‖2 +

1

2
Il,z(α̇+ β̇)2

︸ ︷︷ ︸

U(q, q̇)

− (mfgr1,y +mlgr2,y)
︸ ︷︷ ︸

V (q)

, (2.34)

in which If,z is the inertia of the foot and Il,z the inertia of the link. This results in
equations of motion

M 0 q̈ + n0 = u (2.35)

with details in (A.9). The equations of motion can be transformed to a first-order system
ẋ = f 0(x,u).

Equations of Motion for Stable Support Contact (xd = 1). Ground contact is in-
troduced by algebraic constraints for the equations of motion for the unconstrained sys-
tem (2.35). For stable contact with the ground, the foot has zero velocity relative to the
ground. Therefore the constraints are

c(q) =





ξ − ξ0
η
α



 = 0. (2.36)
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2 Modeling of Legged Locomotion

The resulting equations of motion are

(Il,z +mll
2
l )

︸ ︷︷ ︸

M1

β̈ +mlgll cos β
︸ ︷︷ ︸

n1

= u (2.37)

and can be abbreviated ẋ = f 1(x,u). Additionally, equations for the contact forces and
moments are produced, due to λ = (Rx, Ry, Tz)

T . (See Sec. A.2.3.)

Equations of Motion for Contact on the Left Edge (xd = 2). Accordingly, for contact
on the left foot edge the constraints are

c(q) =

(
ξ − ξ0
η

)

= 0.

The corresponding Jacobian matrix scaled by a multiplier λ is added to the equation of
motion (2.35) resulting in

M 2 q̈ + n2 = u (2.38)

with matrix and vector elements mij and ni given in Sec. A.2.2. An alternative notation is
ẋ = f 2(x,u). For tilted ground contact λ = (Rx, Ry)

T consists only of the contact forces,
see Sec. A.2.3.

Equations of Motion for Contact on the Right Edge (xd = 3). The constraints for
contact on the right foot edge are

c(q) =

(
ξ + 2lf cosα− ξ0
η + 2lf sinα

)

= 0

and constrain the x and y-coordinate of the right foot edge.

The equations of motion for right tilting are obtained by a coordinate transformation of
the equations for left tilting in (2.38) due to the symmetric construction. The symmetry
transformation is:

T edges(x) =















ξ + 2lf sinα
η + 2lf cosα

−α
π − β

ξ̇ + 2lf cosα α̇
η̇ − 2lf sinα α̇

−α̇
−β̇















(2.39)

Transition Conditions If the robot is in a ballistic phase (xd = 0), three kinematic
relations are supervised to detect a transition from this contact situation to another contact
situation (xd = 1, 2, 3):

s0,1(x) = η = 0

s0,2(x) = η + 2lf sinα = 0

s0,3(x) = η2 + α2 = 0
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2.3 Hybrid Models for Legged Locomotion Systems

If the robot is tilted on the left foot edge (xd = 2), it is supervised if

s2,1(x) = α = 0

to detect landing with the whole foot (xd = 1). On the other hand the ground contact
force is monitored to detect detaching:

s2,0(x, u) = Ry(x, u)

Analog transition surfaces s3,1 and s3,0 are defined for contact with the right foot edge
(xd = 3). In the stable support contact phase (xd = 1) the robot may detach either to
reach a ballistic phase (xd = 0) if

s1,0(x, u) = Ry(x, u) = 0

or begins to tip over around one of the edges (xd = 2, 3) where

s1,2(x, u) = rzmp(x, u) = 0 or

s1,3(x, u) = rzmp(x, u) − 2lf = 0.

The ZMP rzmp is calculated from the contact moment Tz and the contact force Ry. (See
Sec. 2.2.3.)

Reinitialization. A collision event occurs either when landing from a ballistic motion
phase or when landing from tilted. Again the hybrid state and in particular the joint
velocities are allowed to behave discontinuous ζ+ = ϕ(ζ−).

If the robot is in a ballistic phase (xd = 0) and makes contact, the contact is either with
the left foot edge, the right foot edge, or with the whole foot. Then the mass matrix M 0

from (2.35) is used with the appropriate Jacobian that differs for the three collision types.
The resulting jump map is:

ϕ0,{1,2,3}(ζ) =





q−

q̇− −M−1
0 J

T
{1,2,3}(J{1,2,3}M

−1
0 J

T
{1,2,3})

−1J{1,2,3}q̇
−

{1, 2, 3}





If the robot is in a tilting contact situation, and the tilt angle α becomes zero, the model
is simplified in the following way: It is assumed that even if right tilting and left tilting
consecute directly, the contact situation stable support is taken for a very short time. This
assumption makes it possible to use the same collision law for all possible contact situations
following a tilting contact phase. For a more accurate model, the collision law depends
on the following contact situation and has thus to be chosen different if the next contact
situation is stable contact or if the next contact situation is tilting contact again.

Again, M 0 is taken from (2.35) and J1 is assumed to realize the constraints (2.36). Then,
the collision law is:

ϕ2,1(ζ) =





q−

q̇− −M−1
0 J

T
1 (J1M

−1
0 J

T
1 )−1J1q̇

−

1



 (2.40)
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2 Modeling of Legged Locomotion

In analogy an equation can be derived for ϕ3,1(ζ). Detachment events again do not cause
discontinuities in q or q̇.

The transition graph in Fig. 2.13 gives a summary of the hybrid model for the monoped
robot.

ẋ = f 0(x, u)

ẋ = f 1(x, u)

ẋ = f 2(x, u) ẋ = f 3(x, u)

s1,0 = 0

s2,0 = 0

s3,0 = 0

ζ+ = ϕ1,0(ζ
−)

ζ+ = ϕ2,0(ζ
−)

ζ+ = ϕ3,0(ζ
−)

s0,1 = 0

s2,1 = 0 s3,1 = 0

ζ+ = ϕ0,1(ζ
−)

ζ+ = ϕ2,1(ζ
−) ζ+ = ϕ3,1(ζ

−)

s0,2 = 0

s1,2 = 0

ζ+ = ϕ0,2(ζ
−)

ζ+ = ϕ1,2(ζ
−)

s0,3 = 0

s1,3 = 0

ζ+ = ϕ0,3(ζ
−)

ζ+ = ϕ1,3(ζ
−)

Figure 2.13: Detailed transition graph for the monoped robot.

2.3.3 Gymnast Robot

The gymnast robot that is considered in this section combines features of the compass
gait robot from Sec. 2.3.1 and the monoped robot from Sec. 2.3.2. A sketch is given in
Fig. 2.14. Like the compass gait robot, the gymnast has two feet. In contrast, the feet
are not point feet but have an extended surface where contact is possible, similar to the
monoped robot. Again, not all possible contact situation are considered in the hybrid
model. Double support and sliding are omitted. Furthermore no direct transition between
left tilted and right tilted is allowed. This results in seven possible contact situations and
transitions as depicted in Fig. 2.15.

Figure 2.15 also gives an insight on how the gymnast robot is related to compass gait and
monoped robot. The transition graph is equivalent to the compass gait transition graph in
Fig. 2.8 if the contents of the shaded boxes are each summarized to one contact situation.
The transition structure inside the shaded boxes is alike the transition structure of the
monoped in Fig. 2.12.
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Figure 2.14: Gymnast robot with four links, five actuated joints, and two feet. The distance
on a link between the joint axes is ll, the total height is about 90 cm. Joint axes are
parallel, allowing locomotion only in x-direction. Foot length is lf . A foot has mass mf ,
a link has mass ml. The mass distribution is accounted for by inertia tensors that are
obtained from a CAD model of the experimental platform.

For the unconstrained, ballistic contact situation, the robot has eight degrees of freedom,
five of those are actuated by motors. The generalized coordinates vector for this robot is

q =












ξ
η
α
β1
...
β5












.

The masses and lengths used in the following chapters for trajectory planning and motion
analysis are taken from a CAD model of an experimental platform.

mf 0.300 kg
mh 0.107 kg
ll 20.5 cm
lf 18.0 cm

The derivation of the hybrid model is analog to the derivation for compass gait or monoped
robot, although analytic expression for equations of motion or transition conditions are
lengthy and thus omitted here.
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xd = 0

xd = 1

xd = 2 xd = 3

xd = −1

xd = −2xd = −3

0 constraints
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Figure 2.15: Transition graph for the gymnast robot.

2.4 Alternative Modeling Approaches

2.4.1 Complementarity Modeling

The complementarity modeling approach enables a compact description of the dynamics
of a mechanical system with unilateral constraints [48, 72, 84]. The idea is to use linear
complementarity problems to solve the dynamics with unilateral constraints and was intro-
duced by Moreau in 1966 [91]. A simulation based on the complementarity model is easy
to realize and allows to consider a higher number of contact situations without increasing
effort of programming. Hence it is possible to consider also double support contact phases.
An adaptation to sliding contact is also tractable and outlined in [48].

In the following, a mechanical complementarity model is presented in the simplest possible
form. Therefore, consider again a robotic system with nq degrees of freedom. In order
to assure that no robot parts intersect ground the constraints ci(q) ≥ 0 are introduced,
where ci (1 ≤ i ≤ Nc) is a distance function of a potential contact point to the ground.
The number of imposed constraints cannot exceed the number of degrees of freedom of the
robot, Nc ≤ nq. See Fig. 2.16 for an illustration of the definition of constraint functions.
In addition, it is required that the constraints are independent that means their Jacobian
J(q) has full rank.

J(q) =
∂c(q)

∂q
=






∂c1
∂q1

. . . ∂c1
∂qn

... . . .
...

∂cNc

∂q1
. . .

∂cNc

∂qn






An expression for the equations of motion subject to inequality constraints c(q) ≥ 0 can
be derived by coupling of the inequality constraints to the dynamics (2.9) using Lagrange
multipliers and auxiliary (slack) variables. The auxiliary variables are necessary to trans-
form inequality constraints to equality constraints. See [84] for a derivation of the following
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β

c1(q) ≥ 0 c2(q) ≥ 0

Figure 2.16: Constraint functions ci(q) ≥ 0 for complementarity modeling.

equation system:

M (q)q̈ + n(q, q̇) = u+ J(q)Tλ (2.41)

c ≥ 0, λ ≥ 0 (2.42)

λTc = 0 (2.43)

The mechanical interpretation is intuitive: The inequalities in (2.42) demand compliance
with the constraints c(q) ≥ 0, and on the other hand ensure that ground contact forces
act unilateral and only support is possible and not attraction. The equality constraint
in (2.43) demands that either the contact force λi is zero or the distance ci is zero. The
resulting acceleration of the system subject to the acting constraint forces is obtained as
solution of the equation of motion (2.41).

A solution of (2.41) respecting (2.42) and (2.43) is possible by solution of related linear
complementarity problems. A linear complementarity problem solves for unknown vari-
ables y and z in:

y −Bz = b

y ≥ 0, z ≥ 0

yTz = 0

See [84] for solution algorithms and geometrical interpretation of the linear complemen-
tarity problem. Equations (2.41), (2.42), and (2.43) can be reformulated to yield a linear
complementarity problem if c(q) ≥ 0 is differentiated twice. Then B = JTM−1J and
b = −JTM−1n + J̇ q̇, and the linear complementarity problem solves for the unknowns
y = c̈ and z = λ. Substituting λ into (2.41) enables a solution of the dynamics. The
non-zero entries in λ indicate that the corresponding contact point participates in contact.
Solving for the contact forces λ is in particular important when a collision occurs. It is
then not clear which of the contacting points participate in collision and which of the
contacting point dissolve while collision.
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2 Modeling of Legged Locomotion

A related possibility for legged robot modeling is to apply a complementarity system in
an event based formulation as proposed in [84]. It is then not necessary to calculate the
contact situation in every integration step. Of interest are only times where a possible
change of the contact situation occurs. This is either if a contact force becomes zero or if
a new constraint is added to the set of active constraints. If the set of active constraints
becomes larger, also collisions have to be considered. If neither of the events occur, the
contact situation is not altered and a differential description in minimal coordinates can
be used to integrate between events.

The above introduced formulation is still simplified. If only horizontal distances are con-
strained, vertical sliding with zero friction will occur in the simulation. Thus, also vertical
constraints can be considered in the complementarity problem. Therefore friction between
ground and contact points is introduced and additional auxiliary constraint forces are
used. Since the constraint in the vertical direction is not unilateral, the auxiliary forces
are not constrained to positive values. Also stiction and sliding friction have to be dis-
cerned. Glocker et al. [48] provide a formulation of the complementarity problem with
frictional effects considered, where additional auxiliary states are introduced to transform
the problem with mixed constraints to a complementarity problem.

2.4.2 Compliant Ground Modeling

The hybrid model presented in Sec. 2.3 and its complementarity formulation in Sec. 2.4.1
were based on a rigid body assumption. Another class of modeling approaches uses a
compliant body assumption. Then contact situation changes and collisions are not modeled
as instantaneous actions. Compliant ground models are used by Denk et al. [38] to model
the controlled behavior for optimal trajectories. Also the simulation framework for the
humanoid robots Johnnie and Lola at Technische Universität München [23] is based on
the compliance assumption. Albro et al. [1] even use a compliant contact formulation as
basis for optimization.

In compliant modeling of ground contact, virtual spring-damper elements are attached to
contacting foot points to simulate the contact. The spring-damper elements apply forces
that hold the robot foot on the walking plane after it makes contact. Therefore, methods
that rely on compliance are also termed penalty methods.

The simulation framework of Denk et al. [38] applies the idea of Marhefka et al. [86] to use
nonlinear spring-damper characteristics for the vertical contact. The horizontal contact is
modeled by linear elements. Figure 2.17 illustrates the set-up for modeling. If the point of
first contact is denoted r0, the force in vertical direction as Fy, the horizontal component
as Fx, and the actual position of the contacting foot edge as r, then the penalizing forces
are computed as:

Fx = −k1(rx − r0,x) − k2ṙx

Fy =

{
−k3ry − k4ry ṙy if − k3ry − k4ryṙy ≥ 0

0 if − k3ry − k4ryṙy < 0

The case distinction for the vertical force components Fy inhibits attracting ground contact
forces. The nonlinearity ry ṙy inhibits discontinuities in the force when the foot looses
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contact for ry = 0. The parameters k1, k2, k3, and k4 are constant. The contact forces are
coupled into the dynamical model as input forces.

footr0

r

ex

ey

Fy

Fx

Figure 2.17: Compliant ground assumption. Action of the spring-damper elements connected
to a contacting foot edge.

Compliant ground modeling is often used to simplify modeling of ground contact because
the model has a constant number of degrees of freedom for all contact situations and a
collision model is implicitly included. But nevertheless the modeling framework has hybrid
characteristics. A surveillance function has to be included in the simulation to detect when
the foot makes contact (ry = 0, ṙy < 0) and when contact is dissolved (ry = 0, ṙy > 0).
The above stated formulation yields a smooth trajectory for the vertical contact force
due to the nonlinearity that was included. But the horizontal force component behaves
discontinuous at penetration time as well as at dissolving time. For reliable simulation
results, the numerical integrator has to be stopped and restarted for these event times.

2.4.3 Discussion

The hybrid model has advantages for control theory. The dynamical description for every
individual contact phase has a description in minimal coordinates. This enables efficient
controller design based on fundamental methods of nonlinear control, as feedback lin-
earization. Another advantage of hybrid models is that they enable efficient numerical
simulation. In contrast, for compliant ground modeling the differential equations are often
stiff and numerical integration is slow.

The present approach of hybrid modeling of legged locomotion also has weaknesses. Until
now, for the sake of simplicity, for every event it was assumed that the consecutive contact
situation is unique. A first model refinement should account for an iterative search for the
consecutive contact situation after a collision occurred.

The present hybrid model considers only few of the possible contact situations and also
the planned motion considers only few contact situations. As long as the simulated motion
does not differ too much from the motion obtained from trajectory planning, unmodeled
transitions will not occur in simulation. If in the simulation, an unmodeled contact situa-
tion is entered, the simulation is aborted. This applies in particular when double-support
contact situations occur. Also, neglecting of sliding ground contact is seen as model simpli-
fication. Considering more contact situations in the hybrid modeling framework, however,
enhances the programming complexity, in particular because the number of possible tran-
sitions increases.
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Complementarity modeling is well suited for models with a high number of possible contact
situations because the calculation of the consecutive ground contact situation is subject of
an optimization problem. There, the dynamical description is not in minimal coordinates
for every contact situation. A compromise is to solve the transitions as complementarity
problem and nevertheless do the integration between the transitions in minimal coordi-
nates. Although the complementarity formulation allows fast implementation of a high
number of contact situations, complexity also increases with model refinements. Exam-
ples are the consideration of three-dimensional dynamics or the inclusion of friction during
collisions. Until now, the complementarity formulation is not yet widely used in control
theory for legged robots. Certainly, it will find its applications if the basic problems of
stability and trajectory planning are solved for simple examples and new challenges are
sought in refined models.

The compliant ground assumption in modeling results in numerically stiff differential equa-
tions, and hence, simulation is slow. Also for this modeling framework, the dynamical
system is not in minimal coordinates. Since also in compliant ground modeling, colli-
sion detection is necessary resulting in a hybrid system description, it is believed that the
simulation simplifies not very much. An additional question is how to parameterize the
spring-damper elements to achieve realistic behavior.

Out of the scope of the presented approach, but still an important open question, is to
judge how well the model approximates physical reality.
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2.5 Summary

A modeling environment that allows variable ground contacts is essential for motion plan-
ning and controller design of legged locomotion systems. Also collisions between limbs and
environment must be accounted for by the modeling framework. The variable ground con-
tact situation when feet detach or make contact and collision events are seen as essential
characteristics of legged robot locomotion.

The chapter illustrates how a hybrid (discrete-continuous) modeling framework fits the
demands of legged robot modeling and how a hybrid model that is based on a rigid body
assumption is related to compliant ground models. Also the similarities between com-
plementarity models and hybrid models are discussed. Both approaches are rigid body
formulations of the multi-body dynamics.

Hybrid models allow switches in the dynamical properties of the system description when
the ground contact situation of a legged robot changes. In addition, the hybrid model allows
for discontinuities in the states to represent instantaneously acting collisions. The discrete
dynamics interacts when an event occurs. Events for legged robots occur when contact
forces become zero or robot feet touch the ground. After introduction of the underlying
mechanical equations, a hybrid model was presented for three example systems: a compass
gait robot, a monoped robot, and a gymnast robot. In the following chapters, the models
are used for trajectory planning, control, and stability analysis.

In the literature, the application of hybrid models is common for legged robot locomotion
modeling. In the presented approach, robots are considered to especially have feet with
various possibilities of contact. In particular, the alternation between tilting around the
toe, tilting around the heel, and stable support is often neglected and presents a challenge
for trajectory planning and control.
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3.1 Introduction and State of the Art

Planning trajectories offline and replaying them during experiment is a common approach
to realize locomotion of legged robotic systems, where a set of different preplanned trajec-
tories is summarized in a database. For example in the approach of Denk et al. [38, 39],
the database elements are trajectories that are determined by optimal control. The ap-
propriate trajectory in the experiment is chosen depending on sensory information to fit
actual requirements, e.g. in step length, velocity, or step height. The online planning task
can thus be reduced to footstep planning [30]. Of special interest are periodic trajectories
where repeated execution enables long locomotion cycles with small planning effort. This
thesis considers preplanning of trajectories for dexterous locomotion in which different
ground contact situations are part of the desired locomotion cycle. In particular underac-
tuated contact situations will be part of the planned motion, such as free rotation around
foot edges or ballistic phases. Online planning of trajectories is rarely possible with todays
limited computing power because of the numerical complexity of the problem. Kondak et
al. [82] propose an online planning method for biped robots where the trajectories do not
include underactuated contact phases. Another type of online planning is the reinforce-
ment learning approach by Tedrake [128]. There, the numerical optimization process is
performed on the experimental platform Toddler.

A common and powerful tool for offline planning of trajectories is optimal control [124].
One of the most advanced numerical realizations of optimal control methods is the com-
bination of direct collocation with sequential quadratic programming (SQP), e.g. used in
the software package DIRCOL [130]. Optimal control is powerful but not easy to apply. In
general, a good starting value has to be known to achieve convergence. The desired solution
often results from an iterative process of problem refinement beginning with a rough ap-
proximation where a good initial guess is available. Trajectory planning for legged systems
is therefore often not based on optimal control. Sometimes static approaches are used [68],
or trajectories are adapted from human motion captured data [96]. Also common is the
inverted pendulum approach [77], where the legged robot is approximated by an inverted
pendulum pivoting around the ground contact point.

Optimal control has yet been applied successfully for hybrid system problems [28], and
much research is done to generalize optimal control formulations and algorithms for the
special requirements of hybrid systems, see [74] for an overview. One special field of
mechatronic hybrid systems are legged robots. In [38, 39] optimization for a humanoid
robot with full actuation is presented. For simplification of the optimization, transition
times between different contact situations are preset and not subject to optimization. This
is only possible if transition conditions are static in the sense that they are only functions of

42



3.2 Boundary Value Problems in Trajectory Planning

the posture. As soon as transition conditions are dynamic and depend nonlinearly on the
full state and input torques, this simplification is not applicable any more. Similar results
for optimal trajectories of a walking robot are given in [58]. Optimal control formulations
allow to include constraints, as angle or torque limitations for the joints or contact force
and ZMP restrictions. In the approach of Mombaur et al. [90], the eigenvalues of the
first-return map are used to find periodic solutions with fastest convergence to the desired
trajectories after disturbances.

The problems considered in this thesis address some difficulties of optimization: Underac-
tuated motion phases are an essential part of planned motion resulting in an alternation of
fully actuated and underactuated motion phases. Additionally, the transition times cannot
be defined in advance since transition conditions depend nonlinearly on the state and the
input. One of the few successful applications of optimal control for legged robots with
underactuation was presented by Fujimoto [45] using a conjugate gradient method. In this
thesis a simplified problem is treated and solved for the example robots. By introduction
of parameters, a boundary value problem is derived and the solution reduces to finding
zeros of the boundary function. Although the problem is now simple enough to be solved
in short time, some limitations have to be accepted: Planned trajectories are not optimal
in energy consumption and side conditions, such as force or position constraints, are not
taken into account.

A restriction in all approaches for trajectory planning of legged robots is still that the
sequence of contact situations, in other words the discrete trajectory, has to be predefined
and is not subject of optimization.

This chapter introduces the trajectory planning method for robotic systems with hybrid
model by solution of boundary value problems (Sec. 3.2) which is illustrated for the compass
gait robot in Sec. 3.3, for the monoped robot in Sec. 3.4, and for the gymnast robot in
Sec. 3.5. The chapter is resumed in Sec. 3.6.

3.2 Boundary Value Problems in Trajectory Planning

Trajectory planning for legged robotic systems solves the problem of finding a dynamically
feasible motion that accomplishes desired behavior like walking, jogging, hopping, etc.
Dynamically feasible means that a combination of hybrid state trajectory ζ and torque
trajectory u exists that is a valid solution of the hybrid dynamical system. Therefore the
result of trajectory planning is not only the trajectory in the hybrid state space but also
the adequate input torque that realizes the tracking of the joint trajectory.

Periodicity is a key feature of planned motion for legged systems. One periodic motion
pattern can be repeated several times, e.g. to overcome a long distance, without increasing
the planning effort. Therefore the emphasis in this thesis is laid on planning periodic
locomotion.

The presented method uses knowledge of the control structure in the trajectory planning
formulation. If the controller inputs are desired trajectories, the trajectory design task is
transformed to a calculation of feasible desired joint trajectories βd and resulting hybrid
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3 Trajectory Planning for Legged Robots

state trajectory ζ. Here a feedback linearizing controller is chosen that decouples the
actuated degrees of freedom. Information on control is thus included in the trajectory
planning process. See Fig. 3.1 for an overview.

robotcontrol

trajectory planning

trajectory planning including controller

βd u ζ

Figure 3.1: Trajectory planning and control law. In trajectory planning feasible pairs of desired
trajectory βd and hybrid state vector ζ are determined.

In the following subsections, trajectory planning is described beginning with the choice of
parameter-dependent desired trajectories in Sec. 3.2.1. Then the feedback linearization and
the control law are presented in Sec. 3.2.2. Boundary conditions for locomotion problems
are discussed in Sec. 3.2.3, and it is concluded with notes on numerical realization in
Sec. 3.2.4.

3.2.1 Desired Trajectories

Desired trajectories are periodic, not only in the continuous states but also in the discrete
sense demanding

ζ(t) = ζ(t+ T ),

where T > 0 is the period length of the trajectory. Periodic behavior for an actuated
joint is obtained by choosing periodic desired trajectories βd(t) and a controller that yields
tracking. The boundary value problem has to make sure that also the nonactuated joint
trajectories are periodic, as well as the discrete trajectory xd(t).

3.2.2 Feedback Linearization

For the feedback linearization, it is essential that the dynamical system is in minimal coor-
dinates for every individual contact situation. The feedback linearization for fully actuated
motion phases differs from that for underactuated motion phases by the occurrence of an
internal dynamics.

Actuated Case. If the robot is fully actuated, the feedback linearizing controller reduces
to a computed torque controller. Starting from the equations of motion

M (β)β̈ + n(β, β̇) = u,

the choice of u(v) = M(β)v + n(β, β̇) yields a complete linearization

β̈ = v. (3.1)
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3.2 Boundary Value Problems in Trajectory Planning

Underactuated Case. If the robot is in an underactuated motion phase, an internal
dynamics remains after linearization of the actuated degrees of freedom. A descriptive
reason is that the dimension of the input is smaller than the dimension of the state. Here,
it is started from

(
M a M ab

M ab M b

)(
α̈

β̈

)

+

(
na

nb

)

=

(
0
u

)

,

where α collects unactuated joint angles and β collects actuated joint angles. The choice
of a transformation

u(v) =
(
M b −M abM

−1
a M ab

)
v −M abM

−1
a na + nb

yields a linearization for the actuated degrees of freedom

β̈ = v,

but for this case the nonlinear internal dynamics

α̈ = M−1
a (−na −M bv)

remains for the unactuated degrees of freedom. Thus, using f int(α,β, α̇, β̇,v) =
M−1

a (−na −M bv), the complete transformed dynamics can be summarized in:

(
α̈

β̈

)

=

(

f int(α,β, α̇, β̇,v)
v

)

(3.2)

Linear Controller Design. Ideal tracking for the actuated joints in the absence of dis-
turbances is accomplished by application of the linear control law

v = β̈
d
+KD(β̇

d − β̇) +KP (βd − β). (3.3)

The controller corrects whenever β̇ 6= β̇
d

or β 6= βd and enables asymptotic convergence to
the desired trajectory. The dynamic characteristics, such as transient time and transient
overshoot, are determined by the eigenvalues of the characteristic polynomial of the linear
control law and can be defined by diagonal gain matrices KP and KD.

Solving for a trajectory has thus been transformed from a search for the appropriate control
torque u to a search for the appropriate desired trajectory βd, since (3.1) and (3.2) are
control systems that have βd as control input by the choice of v in (3.3).

The transformation into a system with linear subsystem is essential for convergence of the
numerical solution of the boundary value problem. Application of a simpler PD control
law in the formulation of the problem did not result in solutions.
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3 Trajectory Planning for Legged Robots

3.2.3 Boundary Conditions

To assure periodicity of legged locomotion, the initial configuration and the final
configuration have to be equal: For most legged robots in addition the symmetric con-
struction can be taken into account to simplify the trajectory planning problem. Then
only half of the periodic cycle is planned and the second half is mirrored. Therefore the
boundary condition relates the mirrored final configuration after half the period with the
initial configuration. If the desired motion pattern consists of several contact situations,
a boundary condition is added for every intermediate transition times. The boundary
conditions also account for reinitialization rules that come from collision modeling. In the
sequel, general formulations for boundary value problems are introduced.

If an initial value problem is denoted

ẋ = f(x) x(t0) = x0

with x ∈ R
n, then a corresponding (two-point) boundary value problem has the form

ẋ = f(x) ̺ (x(t0),x(tf )) = 0. (3.4)

Here, ̺(x(t0),x(tf )) : R
n × R

n → R
n collects the boundary conditions. That means, the

n conditions that constitute the behavior of the system are distributed between initial
time and final time conditions and allow pure initial conditions, pure final conditions, and
combinations of initial and final conditions. For locomotion systems, to achieve periodic
trajectories, in particular the combined conditions are important to relate the initial and
the final configuration. Obviously, it is not guaranteed that a solution for a boundary value
problem exists.

Often a parameter vector p is introduced for a boundary value problem to include unknown
parameters.

ẋ = f(x,p) ̺ (x(t0),x(tf ),p) = 0

If p ∈ R
np , the mapping ̺ is allowed to be of dimension n + np, and a solution of the

boundary value problem consists of state trajectories x(t) and appropriate parameters p.

For trajectories with more than one contact situation, multi-point boundary value problems
arise that are denoted by:

ẋ =







f 0(x,p) for t0 < t < t1
...

...
fm−1(x,p) for tm−1 < t < tm = tf

̺(x(t0),x(t1), . . . ,x(tm−1),x(tf ),p) = 0

Here, for every time range tk < t < tk+1, a different dynamical description ẋ = fk(x,p)
is given. Boundary conditions are also allowed for intermediate transition times tk with
k = 1, . . . ,m−1. Introducing the additional possibility that transitions between the phases
are discontinuous x(t−k ) 6= x(t+k ), the boundary condition can be rewritten

̺(x(t0),x(t−1 ),x(t+1 ), . . . ,x(t−m−1),x(t+m−1),x(tf ),p) = 0.
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3.2 Boundary Value Problems in Trajectory Planning

After scaling time from tk < t < tk+1 onto 0 < t̃ < 1, the multi-point boundary value
problem is transformed to a two-point boundary value problem:

˙̃x =






ẋ0
...

ẋm−1




 =






f̃ 0(x0,p) for 0 < t̃ < 1
...

...

f̃m−1(xm−1,p) for 0 < t̃ < 1




 ˜̺(x̃(0), x̃(1),p) = 0

A solution can now be found using a standard boundary value problem solver since the
transformed boundary value problem is in standard form (3.4):

˙̃x = f̃(x̃,p) ˜̺(x̃(0), x̃(1),p) = 0 (3.5)

Obviously, the more contact situations a planned motion pattern consists of, the higher
is the problem dimension of the numerical problem. The reason is that every additional
contact phase adds n differential equations to the boundary value problem in the trans-
formation from the multi-point boundary value problem to the two-point boundary value
problem. If initial, final, or any transition time for the problem is not known in advance,
they enter the boundary value problem as a parameter in the parameter vector p due to
time scaling.

Before motion planning for a certain robotic system, it is required to split the number
of unknown parameters p into a set of input parameters pin that will be defined before
solution and a set of output parameters pout that can be determined as solution of the
boundary value problem. Assume nbvp is the dimension of the vector x̃ and rbvp is the
dimension of the boundary function ˜̺. Then np = rbvp − nbvp parameters in pout can be
determined by solution of the boundary value problem. The remaining parameters are
summarized in pin and have to be specified before solution.

3.2.4 Numerical Solution

For the boundary value problem in standard form (3.5), any numerical solver for boundary
value problems can be applied. Here, the Matlab solver bvp4c [113] is used that relies
on a collocation method. Therefore, the time domain is split into subdomains where the
solution is approximated by cubic splines. The cubic splines are determined such that
the concatenated trajectory is smooth, fulfills the differential equation at the grid points,
and meets the boundary conditions. The differential equation system is linearized using
the Lobatto IIIa formula, and the solution is found iteratively along the gradient by line
search. If necessary, the grid is refined and the process is repeated [113].

Simple shooting methods [104] turned out not to find a solution even for simple legged
systems as for the compass gait robot. In shooting methods the differential equation is
integrated for an initial value, and a new initial value is chosen based on the gradient
information of the boundary condition. A possible reason for non-convergence of shooting
methods is the unstable characteristics of the inverted pendulum-like contact situation
where integration errors blow up resulting in useless gradient information.

Also applicable is the Newton-Raphson method for finding zeros of the boundary func-
tion ̺. A Newton-Raphson method was not investigated in this research but is used in
approaches of passive walking to find the periodic passive trajectories [83].

47



3 Trajectory Planning for Legged Robots

3.3 Compass Gait Robot

Introduction. The compass gait robot, as introduced in Sec. 2.3.1, is often used as a
passive walker without actuation in the hip joint [53]. Thus an optimization of trajectories
is not necessary because the robot follows a periodic path that is determined by its dynamic
properties and the inclination of the walking plane. Nevertheless, for investigation in
simulation, possible paths can be determined numerically. Solutions are sets of initial
conditions that result in periodic trajectories. A boundary value problem has to be solved
that relates the initial configuration with the final configuration to achieve periodicity.
Also for the actuated case, where a torque u is applied in the hip, possible trajectories can
be found by solution of a similar boundary value problem.

Due to the symmetric construction of the robot, the problem of finding periodic walking
trajectories has only one phase. Only the first step is planned, the second step is symmetric
to the first step. Then step one and the symmetric step two are repeated. For illustration
see Fig. 3.2.

ẋ = f 1(x, u) ẋ = f 1(x, u)ẋ = f−1(x, u)

s1,−1 = 0

s−1,1 = 0
s1,−1 = 0

x+ = g1,−1(x
−)

x+ = g−1,1(x
−)

x+ = T feet

(
g1,−1(x

−)
)

Figure 3.2: Transition graph for trajectory planning of the compass gait robot. Left: Transition
graph for a complete stride consisting of two steps. Right: Transition graph accounting
for the symmetric construction that makes planning necessary only for one step.

Desired Trajectories. In the following the compass gait robot is considered on a non-
inclined walking plane with actuating torque u in the hip. A desired periodic trajectory
βd for the step angle is defined as

βd(t) = π + A cos ωt, (3.6)

where A is the maximum step width and ω is the step frequency.

Feedback Linearization. The solution of the boundary value problem answers the ques-
tion when and in what configuration walking has to be initiated to obtain periodicity.
Therefore, at first, a control law is chosen that yields tracking of the desired trajectory
βd(t). A feedback linearization approach is chosen in which the motion of the nonactu-
ated joint is the internal dynamics, see Sec. 3.2.2. With appropriate choice of u(v), the
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3.3 Compass Gait Robot

equations of motion M 1(q)q̈ + n1(q, q̇) = u from (2.28) are transformed into

(
α̈

β̈

)

=

(

fint(α, β, α̇, β̇, v)
v

)

.

The linear control law v = β̈d + KP (βd − β) +KD(β̇d − β̇) yields asymptotic tracking of
the desired trajectory for β.

Boundary Conditions. The initial but still unknown time for the walking motion is
denoted t0, the final time tf corresponds to half the period of the excitatory motion (3.6)
and is tf = t0 + π

ω
. It is assumed that the step starts at the time where the roles of the

feet exchange and both feet are in contact with the ground for a very short time. For
this configuration α and β are coupled by α(t0) = π − β(t0)

2
. See Fig. 3.3 for geometrical

illustration.

α0

β0

Figure 3.3: Initial configuration of the compass gait robot. The equation (β0 − π) + 2α0 = π
that sums up the interior triangle angles relates α0 and β0 resulting in α0 = π − β0

2
.

The initial unknown configuration x0 = x(t0) is then x0 =
(

π − β0

2
, β0, α̇0, β̇0

)T
, with

unknown parameters β0 = β(t0), α̇0 = α̇(t0), and β̇0 = β̇(t0). Additionally, the initial
time t0 is unknown. The solution of the boundary value problem is thus defined by the
parameter vector pout =

(

t0, β0, α̇0, β̇0

)
.

Then, the boundary conditions ̺ (x(t0),x(tf ),p) = 0 that are necessary to achieve periodic
steps are:

̺1(x(t0),x(tf ),p) = α(t0) − (π − β0

2
) Initial condition for α

̺2(x(t0),x(tf ),p) = β(t0) − β0 Initial condition for β

̺3(x(t0),x(tf ),p) = α̇(t0) − α̇0 Initial condition for α̇

̺4(x(t0),x(tf ),p) = β̇(t0) − β̇0 Initial condition for β̇

̺5(x(t0),x(tf ),p) = l sinα(tf ) + l sin (α(tf ) + β(tf )) Foot touches ground at final time

̺6(x(t0),x(tf ),p) = β(tf ) + β0 − 2π Final position for β

̺7(x(t0),x(tf ),p) = α̇(t+f ) + β̇(t+f ) − α̇0 Final velocity for α

̺8(x(t0),x(tf ),p) = β̇(t+f ) + β̇0 Final velocity for β
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3 Trajectory Planning for Legged Robots

Again, no explicit condition for α(tf ) is given since α(tf ) is implicitly defined from ̺5.
In the boundary conditions ̺ (x(t0),x(tf ),p) = 0, α̇(t+f ) and β̇(t+f ) are velocities after
collision. The collision transition is given by the algebraic relation x+ = g1,−1(x

−) from
(2.33). The boundary conditions ̺6, ̺7, and ̺8 yield symmetry since they realize x0 =
T feet

(
g1,−1(x

−)
)
. Geometrical illustration of the boundary conditions is given in Fig. 3.4.

α0

β0

αf

βf

walking
direction

Figure 3.4: Boundary conditions for the compass gait robot. To achieve symmetry (π−αf )+
α0 + (π − βf ) = π has to hold which results in boundary condition ̺5. Furthermore
βf + β0 = 2π has to hold constituting boundary conditions ̺6.

The differential equation is of fourth order allowing for four boundary conditions. Since
eight boundary conditions are defined, the four-dimensional parameter vector pout can
be determined. The parameters A and ω are input parameters to the boundary value
problem. Thus, for every pair pin = (A, ω), a solution pout = (t0, β0, α̇0, β̇0) is determined
if it exists.

Numerical Example. For illustration, three different input parameter pairs pin = (A, ω)
are chosen. The control law v = β̈d + KP (βd − β) + KD(β̇d − β̇) is parameterized by
KP = 100 and KD = 10

√
2. Figure 3.5 depicts a snapshot series of the corresponding

walking motion.

Small step amplitude: pin = (0.2 rad, 4.5 rad
s

)
Medium step amplitude: pin = (0.4 rad, 4.5 rad

s
)

Large step amplitude: pin = (0.6 rad, 4.5 rad
s

)

Figure 3.6 gives details of the solutions. In particular, it has to be checked if the following
necessary constraint conditions hold since this cannot be considered by the solver for the
boundary value problem: The ground contact force has to be positive. In addition, the
swing foot should touch ground only at transition times. In the figures, it is seen that the
swing foot height is negative for some time. Thus, the trajectories are not feasible unless
foot lifting is introduced to solve this foot scuffing problem.

3.4 Monoped Robot

Introduction. The monoped robot cannot perform steps because there is only one foot,
see model in Sec. 2.3.2. Nevertheless, its investigation is interesting as the single foot has
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3.4 Monoped Robot

Figure 3.5: Snapshot series of compass gait walking. Left: Small step amplitude A = 0.2 rad.
Middle: Medium step amplitude A = 0.4 rad. Right: Large step amplitude A = 0.6 rad.
Every picture shows four steps in 2.8 s. The robot is walking from right to left. Supple-
mentary video material in [116].

various options for contacting the ground. A consecution of an underactuated contact
situation and a completely actuated contact situation is possible. Since most humanoid
robots have rigid feet, research on tilting around foot edges is essential to improve dynamic
humanoid walking.

Due to the limited number of actuators, only few motion patterns are possible with the
monoped robot. The goal to be considered is to swing the actuated link back and forth
around the upright position and excite rhythmic detaching and landing of the foot plate.
It is assumed that left tilting and right tilting are symmetric such that only left tilting
has to be planned and the symmetry is assured by boundary conditions. So, consideration
of the second half of the motion is replaced by an appropriate boundary condition. Two
possibilities for motion planning arise: The excitation motion is chosen such that tilting
left and tilting right are directly consecuting motion phases. Trajectory planning has to
consider one contact phase only, the second half of the motion is mirrored to the first
half (Sec. 3.4.1). The second scenario is that tilting left and tilting right is separated by
a stable support contact phase. Then the trajectory planning algorithm has to consider
two contact phases, e.g. tilting left and stable support. Tilting right is again mirrored to
tilting left (Sec. 3.4.2).

Both planning scenarios still have the desired trajectory and the feedback linearization in
common:

Desired Trajectories. The desired trajectory βd(t) for the actuated arm that is attached
on the foot plate is chosen sinusoidal:

βd(t) =
π

2
+ A sin ωt (3.7)

The constant A is the amplitude, and ω is the frequency of the motion of the arm. The
goal of trajectory planning is to find appropriate values for amplitude A, frequency ω,
initial time t0, and initial value x0 such that the robot performs periodic rocking back and
forth for t > t0. For small values of A and ω, the foot will not detach at all; for large
values of A and ω the foot detaches but does not return.
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Figure 3.6: Details of compass gait walking with parameters as in Fig. 3.5. Upper Left:
Phaseplots for large (dashed), medium (solid), and small (dash-dotted) step amplitudes.
Upper Right: Small step amplitude. Lower Left: Medium step amplitude. Lower Right:
Large step amplitude. The upper subfigures show respective contact forces Ry, the lower
subfigures show respective swing leg heights.

Feedback Linearization. Trajectory planning requires knowledge on the control law that
ensures tracking of the desired trajectory βd with the actuated arm. The control is switched
depending on the contact situation. For the fully actuated case (xd = 1) the feedback
linearizing controller reduces to a computed torque controller without internal dynamics.
The equation of motion (2.37) is by the choice of an appropriate mapping u(v) transformed
to β̈ = v. The tilt angle α is constantly zero. For the underactuated motion phases, as
tilting left and tilting right (xd = 2, 3), the equations of motion (2.38) are transformed to

(
α̈

β̈

)

=

(

fint(α, β, α̇, β̇, v)
v

)

.

Here the internal dynamics is the dynamics of the tilt angle α. The choice v = β̈d +
KP (βd − β) + KD(β̇d − β̇) for the linear control law with appropriate gains KP and KD

result in asymptotic tracking of the desired trajectory for the actuated arm.

The motion cycle begins at an unknown initial time t0 and ends at tf = t0 + π
ω
, which

corresponds to half the period of the excitatory motion (3.7). It is thereby assumed that
t0 is the time just after landing from tilted right. Thus the motion either begins with a
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3.4 Monoped Robot

stable contact phase or with tilting left. In any case the planned motion ends when the
foot lands from tilting left.

3.4.1 2-Point BVP for Tilting without Stable Support Phase

Boundary Conditions. At first the boundary value problem for direct consecution of
tilting right and tilting left is presented. The trajectory is planned for tilting left. Tilting
right is obtained as the mirrored motion. See Fig. 3.7 for illustration.

ẋ = f 2(x, u)ẋ = f 2(x, u) ẋ = f 3(x, u)

s2,1 = 0

s2,1 = 0
s3,1 = 0

x+ = g3,1(x
−)

x+ = g2,1(x
−)

x+ = T edges

(
g2,1(x

−)
)

Figure 3.7: Transition graph for trajectory planning of the monoped robot. Left: Transition
graph for a complete period, consisting of tilting left and tilting right. Right: Transition
graph accounting for the symmetric construction that makes planning necessary only for
tilting left.

The initial unknown configuration x0 = x(t0) is then x0 =
(

0, β0, 0, β̇0

)T
, and the contact

situation is assumed to be tilting left (xd = 2). A solution is desired to account for the
parameters pin = (A, ω). The unknown parameters are the initial time t0, the initial angle
β0, and the initial velocity β̇0, summarized in pout = (t0, β0, β̇0).

The boundary conditions ̺ (x(t0),x(tf ),p) = 0 that are necessary to achieve periodic
tilting back and forth are:

̺1(x(t0),x(tf ),p) = α(t0) Initial condition for α

̺2(x(t0),x(tf ),p) = β(t0) − β0 Initial condition for β

̺3(x(t0),x(tf ),p) = α̇(t0) Initial condition for α̇

̺4(x(t0),x(tf ),p) = β̇(t0) − β̇0 Initial condition for β̇

̺5(x(t0),x(tf ),p) = α(tf ) Foot touches ground at final time

̺6(x(t0),x(tf ),p) = β(tf ) + β0 − π Final position for β

̺7(x(t0),x(tf ),p) = β̇(t+f ) + β̇0 Final velocity for β

The collision transition is given by the algebraic relation x+ = g2,1(x
−) from (2.33), and

̺6 and ̺7 follow from taking into account the symmetry x0 = T edges

(
g2,1(x

−)
)
.
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3 Trajectory Planning for Legged Robots

After transformation to a first order system, the differential equations are of fourth order
and allow for four boundary conditions. Since seven boundary conditions are defined, the
parameter vector pout has three entries. The parameters A and ω are input parameters to
the boundary value problem. For every pair pin = (A, ω), a solution pout = (t0, β0, β̇0) is
determined, if existing.

Numerical Results. It turns out that two solutions exist for most realizations of pin =
(A, ω). The first solution is characterized by an initial time close to zero. That means,
the tilting left motion corresponds to a motion of the actuated arm to the left side. The
second solution family has initial values close to π

ω
. For this case, the tilting left motion

corresponds to a deflection of the arm to the right side. In Fig. 3.8 trajectories for the tilt
angle α and the actuated angle β from simulation of the planned trajectory are plotted over
time. The controller for all following investigations of the monoped robot is parameterized
by KP = 100 and KD = 10

√
2. It is in particular interesting to observe the size of

the control error for the actuated degree of freedom. The control error is always large
immediately after a collision to compensate for the velocity error. In the following contact
phase, the control error is reduced due to the control law. Since the control law is part
of the trajectory planning, the compensation motion after collisions does not result in
destabilization of the trajectory.
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Figure 3.8: Details of monoped trajectories. Left: Initial time is close to zero (ω = 7 rad
s
, A =

0.05 rad, t0 = 0.0398π
ω
). Right: Initial time is close to π

ω
(ω = 7 rad

s
, A = 0.05 rad, t0 =

0.9341π
ω
). Top: Tilting angle α over time. Tilting left are positive angles, tilting right are

negative angles. Bottom: Actuated Angle β over time (solid) in comparison to the desired
trajectory (dashed).

3.4.2 3-Point BVP for Tilting with Stable Support Phase

Boundary Conditions. If a stable contact phase is assumed to separate left tilting and
right tilting, the trajectory planning problem has two phases and a multi-point boundary
value problem has to be solved.
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3.4 Monoped Robot

ẋ = f1(x, u)ẋ = f1(x, u)

ẋ = f2(x, u)ẋ = f2(x, u) ẋ = f3(x, u)
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Figure 3.9: Transition graph for trajectory planning for the monoped robot. Left: Transition
graph for a complete period, consisting of tilting left, stable support, and tilting right.
Right: Transition graph accounting for the symmetric construction that makes planning
necessary only for tilting left and stable support.

It is assumed that the first phase is a stable support phase (xd = 1) until the ZMP
becomes zero and a tilting left phase follows (xd = 2). The initial unknown configuration

x0 = x(t0) for unknown initial time t0 is again x0 =
(

0, β0, 0, β̇0

)T
, and the contact

situation is assumed to be stable support contact (xd = 1). Tilting time t1 is unknown
and is part of the solution. The state x(t1) is the initial value for the tilting left contact
phase with xd = 2. Summarized, the multi-point boundary value problem will solve for
pout = (t0, t1, β0, β̇0) for a given pair of parameters pin = (A, ω).

The boundary conditions ̺(x(t0),x(t1),x(tf ),p) = 0 that are necessary to achieve periodic
tilting back and forth with intermediate stable support phase are:

̺1(x(t0),x(t1),x(tf ),p) = β(t0) − β0 Initial condition for β

̺2(x(t0),x(t1),x(tf ),p) = β̇(t0) − β̇0 Initial condition for β̇

̺3(x(t0),x(t1),x(tf ),p) = rzmp(t1) Foot begins to tilt

̺4(x(t0),x(t1),x(tf ),p) = α(t1) Transition condition for α

̺5(x(t0),x(t1),x(tf ),p) = α̇(t1) Transition condition for α̇

̺6(x(t0),x(t1),x(tf ),p) = β(t+1 ) − β(t−1 ) Transition condition for β

̺7(x(t0),x(t1),x(tf ),p) = β̇(t+1 ) − β̇(t−1 ) Transition condition for β̇

̺8(x(t0),x(t1),x(tf ),p) = β(tf ) + β0 − π Final position for β

̺9(x(t0),x(t1),x(tf ),p) = β̇(t+f ) + β̇0 Final velocity for β

̺10(x(t0),x(t1),x(tf ),p) = α(tf ) Foot touches ground again

The collision transition is given by the algebraic relation x(t+f ) = g2,1

(
x(t−f )

)
from (2.40).

The choice of ̺8 and ̺9 ensures symmetric right tilting by x0 = T edges

(
g2,1

(
x(t−f )

))
.

The differential equation for the first phase (standing on the whole foot plate) is of second
order and for the second phase (tilting right) of fourth order. That allows six boundary
conditions. Since ten boundary conditions are specified, the parameter vector pout is
four-dimensional. The parameters A and ω are input parameters to the boundary value
problem. For every pair pin = (A, ω), a solution pout = (t0, t1, β0, β̇0) is determined.
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3 Trajectory Planning for Legged Robots

Numerical Results. Figure 3.10 depicts details on a result of the trajectory planning
by solution of the boundary value problem specified above. A severe drawback of the
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Figure 3.10: Details of monoped trajectories for A = 0.2 rad, ω = 5.0 rad
s

. Top: Tilting angle
α over time. Middle: Actuated angle β over time (solid line) in comparison to the desired
trajectory βd (dashed line). Bottom: ZMP. The ZMP is only evaluated in stable support
phases. The shaded area indicates the foot contact area.

trajectory planning procedure is that the solution of the boundary value problem does only
consider the states at transition times. For the considered example, it is not assured that
the ZMP does not leave the supporting area while stable support is assumed. Thus, after
computation of the trajectories as solution of the boundary value problems, trajectories
have to be checked on constraint compliance for every contact phase.

3.4.3 Discussion

In general, the maximal tilt angle is higher for solutions without stable support phase.
For existence of a stable support phase, it is required that the ZMP does not leave the
supporting area after the collisions. This is, due to control action, only possible if the
disturbance from the collision is small and thus if the landing velocity is small implying
a small maximal tilt angle. From Fig. 3.8 and Fig. 3.10, it is seen see that the nominal
trajectory deviates much more from the desired trajectory in the case of large tilting angles.
In order to allow larger tilting angles for motion patterns with stable support phase, it is
possible to introduce more contact phases into the sequence of contact phases. For example
allowing an additional tilting right phase immediately after tilting left to compensate the
collision would lead to new feasible motion patterns.
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3.5 Gymnast Robot

An underlying assumption of the model is that even if tilting right follows tilting left
immediately, for an arbitrarily short time, the whole foot has contact. This is considered
in the model by the collision law and physically motivated by sticking effects of the foot.

Trajectory planning without consideration of the collision is much easier, compare [118].
Then it is assumed that the collision acts as a disturbance to the system and the controller
compensates the disturbance. It was shown in [118] for the monoped robot that only
few trajectories, preplanned disregarding collision, could be applied in simulations where
collisions are considered.

3.5 Gymnast Robot

Introduction. Trajectory planning for the gymnast robot introduced in Sec. 2.3.3 is more
challenging than planning for the other two example systems compass gait robot and
monoped robot. Much more periodic motion patterns are possible due to the higher number
of degrees of freedom. Possible patterns include walking, hopping, or even somersault. But
the complexity of the boundary value problem increases not only because of the increased
number of degrees of freedom. Also the increased number of consecutive contact situations
that are necessary to realize locomotion, e.g. a walking motion, contributes. Another
problem in motion planning is to decide which sequence of contact situations is appropriate
for achieving a desired motion pattern.

As a first example a walking motion is considered. Again it is taken advantage of symme-
tries, and only one step is planned. A step of the walking motion of the gymnast robot
comprises three contact situations: It starts with a stable support phase (xd = 1) that
lasts until the ZMP crosses the foot edge in walking direction. Then the foot rolls around
the toe (xd = 2) until the heel of the second foot touches ground. Before coming back to
the stable support contact situation of the foot that was swing foot first, the robot tilts
around the heel of its former swing foot (xd = −3). For illustration of the contact situa-
tions considered in a walking motion, see Fig. 3.11, which is a subgraph of the transition
graph for the gymnast robot in Fig. 2.15.

For the gymnast robot, two symmetries are used in trajectory planning. On the one hand,
there is a symmetry between the two legs. Thus any contact situation on the non-reference
foot is transformed into the corresponding contact situation of the reference foot by the
transformation T feet that is defined according to that of the compass gait robot (2.31).
Moreover there is a symmetry between left and right foot edge. Thus any right tilting
contact situation is transformed into a left tilting contact situation by the transformation
T edges that is defined alike for the monoped robot in (2.39). In summary, only two contact
situations remain.

Desired Trajectories. Desired trajectories βd
1 , . . . , β

d
5 are defined for the five actuated

joints to achieve a walking motion. Thereby, constant desired trajectories βd
1 , β

d
5 are defined

for both ankle joints. The step width angle is defined to open and close periodically just
like for the compass gait robot realized by definition of βd

3 . The definitions for the knee
joint angles differ depending on which of the feet is assumed to be the supporting foot.
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3 Trajectory Planning for Legged Robots

ẋ = f1(x,u)
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Figure 3.11: Using symmetry in trajectory planning for walking of the gymnast robot.

In the first half of the motion, the reference foot is supposed to be supporting foot, and
the knee of the supporting foot is allowed to bend with a small amplitude B

2
. At the same

time, the knee of the swing foot bends with a larger amplitude 2B to avoid foot scuffing.
For the second half of the period, the feet change roles.

if t mod
2π

ω
≤ π

ω
βd

1(t) =
π

2

βd
2(t) =

B

2
cos 2ωt− B

2
βd

3(t) = π + A cosωt

βd
4(t) = −2B cos 2ωt+ 2B

βd
5(t) =

π

2
(3.8)

if t mod
2π

ω
>
π

ω
βd

1(t) =
π

2
βd

2(t) = 2B cos 2ωt− 2B

βd
3(t) = π + A cosωt

βd
4(t) = −B

2
cos 2ωt+

B

2

βd
5(t) =

π

2

The concatenated desired trajectory is smooth in the positions but not smooth in the
velocities. Since the discontinuity in the desired velocities results in a discontinuity in the
vector field, which is the right hand side of the differential equation, the numerics have to
account for this discontinuity. Another transition at td = π

ω
has to be introduced to the

problem. Thus the following boundary value problem has four phases for the numerical
solution instead of three, which is the number of contact situations. The transition time
td = π

ω
is chosen to separate the toe roll phase in two phases that are connected by smooth

transitions. In the following, the fourth motion phase is not further considered in the
derivation of the boundary problem to avoid complicated notation.
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3.5 Gymnast Robot

Feedback Linearization. A control law is chosen that yields tracking of the desired tra-
jectory βd with vanishing control error in absence of disturbances. A feedback linearization
approach is used, and as a consequence, the motion of the nonactuated joints is the internal
dynamics, see Sec. 3.2.2. For the gymnast robot, the feedback linearization controller has
to be defined for the stable support phase and for the underactuated tilting contact phase.

Boundary Conditions. The initial but still unknown time for the walking motion is
denoted by t0, the final time corresponds to half the period of the excitatory motion
tf = t0 + π

ω
. At time t1 the transition from stable support to the “tilting on toe” contact

situation occurs. The ZMP has to be at the left foot edge at rzmp = 0. Then for t = t2
landing on the heel of the swing foot preludes the tilting on the heel contact phase. The
transition back to stable support is triggered when the tilt angle becomes zero. The
definition of transition times is illustrated in Fig. 3.12 together with the relevant transition
conditions. The transition conditions are a subset of the boundary conditions for the
trajectory planning boundary value problem, see below.

stable contact tilting on toe tilting on heel

t1 t2

t0 + π
ω

rzmp(t1) = 0 rheel(t2) = 0

α(t0 + π
ω
) = 0

Figure 3.12: Definition of transitions for a walking trajectory of the gymnast robot.

The remaining boundary conditions are made up from ten initial conditions and assign
the ten states of the stable support phase yet unknown initial conditions. Then, twelve
conditions for the first transition are given that ensure that the initial configuration for
the tilting on toe phase has to equal the final configuration of the stable support phase.
The twelve boundary conditions for the transition from the reference foot toe to the non-
reference foot heel connect the final configuration of the toe roll phase with the initial
configuration of the heel roll phase and take into account the collision and symmetry
transformations. Eventually, the final configuration of the heel roll phase is related to the
initial configuration by ten boundary conditions, where again collision law and symmetry
transformations are taken into account. See Fig. 3.11 for graphical illustration.

For the dynamics with three contact phases, the state vector of the boundary value problem
has dimension 10+12+12=34. There are ten initial conditions, twelve transition conditions
for the first transition, twelve transition condition for the second transition, and ten bound-
ary conditions. Additionally for every transition one transition condition is added resulting
in 47 boundary conditions. As a consequence 13 parameters are solution of the boundary
value problem. Here the parameter vector pout =

(

t0, t1, t2, β1,0, . . . , β5,0, β̇1,0, . . . , β̇5,0

)

is chosen to be the solution, where the parameters in pin =
(
A, ω, B

)
are specified as

input to the problem.
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3 Trajectory Planning for Legged Robots

Numerical Example. For illustration two different input parameter realizations pin =
(A, ω, B) are chosen. The control law is parameterized by KP = 17.52 and KD = 17.5

√
2.

Slow walking: pin = (0.64 rad, 1.9 rad
s
, 0.4 rad)

Fast walking: pin = (0.92 rad, 3.8 rad
s
, 0.4 rad)

In Fig. 3.13 snapshot series of the corresponding walking motion are given.

Figure 3.13: Snapshot series of gymnast robot walking for two parameterizations. Top: Slow
walking. Bottom: Fast walking. In both cases 3.3 s of locomotion are depicted.

The results of the boundary value problem have to be checked if they are feasible walking
trajectories. One major condition is that t2 > t1 > t0. Then all constraints for the contact
situations have to be checked. This is for example the ZMP in the stable support phase
or the tilt angle in the tilting phases.

Hopping. Hopping and somersault motion is interesting because of the alternation be-
tween actuated stable support, underactuated tilting motion, and finally a ballistic phase.
In Fig. 3.14 a snapshot series of a somersault trajectory is given, see [10] for reference.
Also here, periodicity requires the initial posture and the final posture to be related. But
for this motion, the stable support phase takes the major part of the period. Although
the trajectory is solution of a boundary value problem, the depicted cycle was not found
by numerical solution of the boundary value problem. For cyclic stable trajectories, there
is always the possibility to find periodic solutions just by simulation. If the initial value of
the integration is close enough to the periodic cycle, the trajectory converges to the cycle in
simulation. Finding solutions by simulation becomes even easier if stable support contact
phases exist. Then, finding an initial posture close to the periodic cycle is relatively easy
if the initial condition is assumed in the stable support phase.
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3.6 Summary

Figure 3.14: Snapshot series of gymnast robot somersault. The complete depicted motion
last 4.4 s, the snapshots are taken every 0.25 s. Supplementary video material in [116].

3.6 Summary

Trajectory planning for dexterous motion of legged systems combines two challenges. The
first one is the hybrid character of the legged system, where different ground contact situ-
ations have different dynamical descriptions and the times of transitions are variable. The
second challenge is the underactuatedness in some contact situations, where the nonactu-
ated degrees of freedom are not directly controllable and fewer actuators than degrees of
freedom are available.

In this chapter, a trajectory planning method was presented that is a simplification of the
optimal control problem in that it considers only the underlying boundary value problem.
With this formulation, trajectories for legged robotic systems can be determined numeri-
cally without high computational cost. This is in particular important for motion cycles
with a higher number of consecutive contact situations including underactuation, where
optimal control still often fails. In order to formulate the boundary value problem, as-
sumptions for the desired trajectories are made and a controller for the actuated joints
is chosen. It is possible to calculate a set of trajectories with different parameterization
concerning e.g. velocity or step width. The boundary value problem was established in this
section for the compass gait robot, the monoped robot, and the gymnast robot. Though,
the planning method does not consider optimality of the motion or physical constraints to
the planning problem and the solutions that are obtained have to be checked on constraint
violation prior to application in experiments.

The planning method is closely related to the approach that is used to control the legged
robot RABBIT [31]. There, the desired trajectories are not defined on joint level but by the
choice of output functions to the control system. The output functions are chosen heuris-
tically and describe desired walking properties as swing foot motion or hip motion. The
present approach is a generalization in the sense that an arbitrary number of consecutive
contact situations can be allowed.
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4 Stability of Periodic Robot Locomotion

4.1 Introduction and State of the Art

For all periodic trajectories, the initial configuration is equal to the configuration after
one period. This enables locomotion by successive execution of the periodic trajectories.
Nevertheless, simulation experiments give evidence that also the appropriate reaction on
disturbances is important to decide on the usefulness of a particular trajectory: Only for
some of it, it is possible to simulate the dynamical system for an arbitrary amount of
time. For other trajectories, the simulation has to be aborted because the robot leaves the
precalculated trajectory already after a tiny disturbance and finally falls. The reason for
the failure is the lack of orbital stability.

Orbital stability assures that the solution returns to the precalculated periodic trajectory
after small disturbances. To analyse orbital stability, one investigates if small perturbations
of the initial configuration blow up or die out in the following motion cycles. Only if small
perturbations decay, the periodic trajectory is said to be orbitally stable, and only then the
precalculated trajectory is useful for experiments. A common analysis method for periodic
orbits of ordinary differential equations uses Poincaré maps (first-return maps) [57, 60].

It was shown by Hiskens [62] that Poincaré map based stability analysis is applicable also
for hybrid dynamical systems and in particular for stability analysis of periodic motion of
legged robots [61]. Simić et al. [114] presented a method for stability analysis that only
yields sufficient conditions for stability. A related method was presented by Rubensson et
al. [108] using multiple Lyapunov functions for piecewise linear hybrid systems.

Poincaré maps for analysis of locomotion stability were used for many passive walking ma-
chines [15, 35, 46, 54, 88]. But also, they are a tool that is applied for actuated robots with
nonactuated degrees of freedom, e.g. a nonactuated foot ground contact [40, 55]. Hurmuzlu
demonstrated that even robots with full actuation can show orbital instability [70].

However, fast disturbance compensation does not correlate with a large region of attrac-
tion of the orbit. That means, even if it is known that small disturbances are compensated
fast, nothing is known on how large acceptable disturbances are. A numerical approxima-
tion of the region of attraction is given in [112] for a simplified passive walking machine.
Estimation of the region of attraction is important to realize transitions between motion
patterns without additional planning of transition trajectories. If the region of attraction
of a desired motion pattern is large, it may cover the final configuration of the actual
motion pattern and a stable transition is possible.

A stability analysis was yet presented for the monoped robot in [120] and for the gymnast
robot in [121]. In the following, results on stability of periodic orbits are presented in
detail in Sec. 4.2, first for ordinary differential equations and then for hybrid systems. In
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4.2 Poincaré Map Analysis for Periodic Solutions

Sec. 4.3 the orbital stability of trajectories found by solution of boundary value problems
in Chap. 3 is investigated for the compass gait robot, for the monoped robot, and for the
gymnast robot. Finally, for gymnast robot walking, the feasibility of transitions between
slow and fast walking is investigated. A summary in Sec. 4.4 concludes this chapter.

4.2 Poincaré Map Analysis for Periodic Solutions

Prerequisites for analysis methods for periodic dynamical behavior of hybrid systems are
analysis tools for ordinary differential equations. These will be discussed in the following
Sec. 4.2.1. Section 4.2.2 gives references on related results for hybrid dynamical systems.

4.2.1 Stability of Periodic Solutions of Ordinary Differential Equations

Preliminary Definitions. The following basic definitions and theorems can be found in
textbooks from Khalil [79] or Parker et al. [101]. An autonomous ordinary differential
equation (ODE) is considered

ẋ = f(x), (4.1)

where x ∈ R
n is the system state and f : R

n → R
n is a Lipschitz-continuous vector field.

Thus, there exists exactly one solution for every initial condition x(t0) = x0. The solution
is denoted by the trajectory x(t) or by the flux φt(x0). The flux φt(x0) assigns a trajectory
x(t) to every initial value x0.

Trajectory sensitivities provide information about the dependence of the solution φt(x0)
of (4.1) on the initial value x0.

Definition 4.2.1 (Trajectory Sensitivity) The trajectory sensitivity Φt(x) is defined
as

Φt(x) =
∂φt(x)

∂x
.

If it is presumed that x1 = x(T ) = φT (x0), the trajectory sensitivity describes the trajec-
tory deviation δx1 after small perturbations δx0 in the initial values

δx1 = ΦT (x0)δx0.

In the same way, the trajectory sensitivity acts for the vector-fields:

f(x1) = ΦT (x0)f(x0) (4.2)

Definition 4.2.2 (Periodic Solution, Periodic Orbit) A solution φt(x0) of (4.1) is a
periodic solution with period length T > 0 if

φT+t(x0) = φt(x0)

holds for all times t ∈ R. The choice of x0 is not unique, any point of the periodic solution
is a valid starting value. A periodic orbit (closed orbit) is the image of a periodic solution
in the phase portrait.
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4 Stability of Periodic Robot Locomotion

A periodic solution will in the following be abbreviated by γ and is a closed invariant set
of the differential equation. Invariance means that for any x0 ∈ γ, it holds that φt(x0) ∈ γ
for arbitrary times t.

The definition of Lyapunov stability for invariant sets of an ODE is similar to the definition
of Lyapunov stability for an equilibrium point. Since also a fixed point is an invariant set,
the stability definition for invariant sets generalizes the definition for fixed points.

Definition 4.2.3 (Lyapunov Stability of Closed Invariant Sets) Let γ ⊂ R
n be a

closed invariant set for (4.1), and let

Uε = {x ∈ R
n| dist(x, γ) < ε}

be an ε-neighborhood of γ with

dist(x, γ) = inf
y∈γ

‖x− y‖.

The closed invariant set γ is stable if, for each ε > 0 there exists a δ > 0, such that
if x(t0) ∈ Uδ, it follows that x(t) ∈ Uε for all times t. The closed invariant set γ
is asymptotically stable if there exists a δ > 0, such that if x(t0) ∈ Uδ it follows that
limt→∞ dist(x, γ) = 0.

Poincaré Map. For stability analysis often an approach applying first-return maps
(Poincaré maps) is used. The stability investigation of the periodic orbit is reduced to
stability investigation of a fixed point of a lower-dimensional discrete mapping. The pre-
sented results can be found in the books by Guckenheimer and Holmes [57], Hirsch and
Smale [60], or Parker and Chua [101].

Definition 4.2.4 (Poincaré Map) The set γ is a periodic orbit for (4.1), and Σ is a
local transversal cross section of dimension n− 1. A cross section is defined as transversal
if n(x)Tf(x) 6= 0, where n is the normal vector to Σ. Let x∗ denote the unique point
of intersection between γ and Σ. Then the Poincaré map P : U → Σ is defined in a
neighborhood U ⊂ Σ of x∗ as

P (x) = φτ(x)(x). (4.3)

The time τ(x) denotes the first time of intersection of the orbit and the cross section after
starting the integration in x ∈ U . The mapping has a fixed point x∗, where P (x∗) = x∗.

The definition is illustrated in Fig. 4.1, and in the following the idea of the proof that orbital
stability of the periodic solution can be concluded from the eigenvalues of the linearization
of the Poincaré map is outlined. If all eigenvalues of the linearization around the fixed
point have an absolute value smaller than one, the periodic trajectory is asymptotically
stable. For details, see [60].

At first it has to be assured that the Poincaré map is well defined. It can be shown that
the map τ(x) exists in a neighborhood of x∗. The differentiability of P (x) is concluded
from differentiability of the flow φt(x).
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4.2 Poincaré Map Analysis for Periodic Solutions

x∗ = P (x∗)

x

P (x)

Σ

γ

Figure 4.1: Poincaré map.

By definition, the Poincaré map has a fixed point x∗, where P (x∗) = x∗. It can be proved
that asymptotic stability of the fixed point x∗ implies asymptotic orbital stability of the
periodic solution. The stability of the fixed point x∗ of the nonlinear difference equation
xk+1 = P (xk) is related to the fixed point stability of its linearization

∂P (x)

∂x

∣
∣
∣
∣
x=x∗

. (4.4)

This procedure is usually referenced as Lyapunov’s indirect method. The linearized differ-
ence equation has an asymptotically stable fixed point if all eigenvalues of the linearization
(4.4) are strictly inside the unit circle. The asymptotical stability is carried forward to the
fixed point of the nonlinear difference equation and finally to the periodic orbit.

An expression for (4.4) is derived from the definition of P (x) from (4.3):

∂P (x)

∂x

∣
∣
∣
∣
x=x∗

= Φτ (x
∗) + f(x∗)Dτ(x∗) (4.5)

It is assumed that the cross section Σ is determined by an algebraic relation s(x) = 0,
then n(x)T = ∂s(x)/∂x is normal to the cross section Σ. The derivative of the return
time τ in (4.5) is obtained from evaluation of

d

dx
s
(
φτ(x)(x)

)
= 0, resulting in Dτ(x∗) =

∂τ(x)

∂x

∣
∣
∣
∣
x=x∗

= −n(x∗)TΦτ (x
∗)

n(x∗)Tf(x∗)
.

The vector field f(x∗) is eigenvector for (4.5) with eigenvalue 0. This is seen using (4.2)
and (4.5) to evaluate

∂P (x)

∂x

∣
∣
∣
∣
x=x∗

f(x∗) = 0.

Chart for the Cross Section Σ. The above notation is made more precise if it is con-
sidered that the Poincaré map P maps points on the cross-section Σ to the cross-section
Σ and is therefore a mapping that acts on a lower-dimensional manifold. For stability
investigation, the derivative of P is restricted to the tangent space TΣ of the manifold Σ
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4 Stability of Periodic Robot Locomotion

and denoted asDP . In order to derive an expression forDP , local coordinates z are intro-
duced for Σ, and a chart ψ is used that maps an element x ∈ Σ ⊂ R

n to the corresponding
local coordinates z ∈ R

n−1 of the manifold Σ

z = ψ(x). (4.6)

In new coordinates z the iterative Poincaré map is denoted by

zk+1 = ψ ◦ P ◦ψ−1(zk).

Here the operator ◦ is used for the composition of mappings ψ ◦ P ◦ ψ−1(zk) =
ψ

(
P

(
ψ−1 (zk)

))
. The derivative can be determined by application of the chain rule

for differentiation:

DP (zk) = Dψ(xk+1)
∂P (x)

∂x

∣
∣
∣
∣
x=xk

Dψ−1 (zk)

Using this local coordinate representation, the eigenvalue 0 with eigenvector f(x∗) disap-
pears in the spectrum of DP (z∗). The derivative DP (z∗) in local coordinates has only
n− 1 eigenvalues.

Trajectory Sensitivities. The derivative of the Poincaré map DP is closely related to
trajectory sensitivities Φt(x) as it can be seen in (4.5). The eigenvalues of the linearized
Poincaré map DP are a subset of the eigenvalues of the corresponding trajectory sensitiv-
ity ΦT (x∗). The trajectory sensitivity ΦT (x∗), or monodromy matrix, has an additional
eigenvalue which is 1 with eigenvector f(x∗), compare (4.2). The eigenvalues of the tra-
jectory sensitivity are often termed characteristic multipliers or Floquet multipliers.

In the following section, after introduction of the necessary definitions, the Poincaré map
method is generalized to hybrid systems.

4.2.2 Stability of Periodic Solutions of Hybrid Dynamical Systems

Preliminary Definitions. For the following considerations a version of the hybrid state
model (2.4) is considered that neglects external inputs and outputs. In addition, the
functions f , ϕi, and si, i ∈ I, are assumed to have no direct time dependence.

ẋ = f(x, xd) if si(x, xd) 6= 0 for all i ∈ I

ζ+ = ϕj(x
−, x−d ) if sj(x, xd) = 0 for j ∈ I

(4.7)

A solution of (4.7) is denoted by the time trajectory of the hybrid state vector ζ(t).
Sometimes, it is useful to consider the hybrid flow φH

t (x0), in which every initial condition
x0 is mapped to its trajectory x(t) like in the ODE case. For a hybrid flow, discontinuities
are allowed in x(t). The discrete state is neglected in this notation. Alternatively, the
corresponding switching sequence SS can be used:

SS = x0; (i0, t0), (i1, t1), (i2, t2), (i3, t3), . . .
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4.2 Poincaré Map Analysis for Periodic Solutions

That means, the k-th discrete state is xd = ik for tk ≤ t < tk+1, and the continuous
state x evolves according to ẋ = f(x, xd = ik), where the initial value is x+

k = x(t+k ).
The transition surface sjk+1

(x−
k+1, ik) = 0 is met for t = tk+1 allowing for the jump map

ζ+ = ϕjk+1
(x−

k+1, ik) to act, where the continuous fraction is x+ = gjk+1
(x−

k+1, ik) and the

abbreviation x−
k+1 = x(t−k+1) is used. See Fig. 4.2 for illustration.

sjk+1
(x−

k+1) = 0

x−
k+1

x+
k+1

gjk+1
(x−

k+1, ik)

ẋ = f(x, ik)

ẋ = f(x, ik+1)

tk < t < tk+1

tk+1 < t < tk+2

Figure 4.2: Hybrid trajectory.

To define a periodic solution for a hybrid system, the continuous and the discrete state
trajectory have to be considered:

Definition 4.2.5 (Hybrid Periodic Solution, Hybrid Periodic Orbit) A solution
ζ of (4.7) is a hybrid periodic solution with period length T > 0 if

ζ(t+ T ) = ζ(t)

holds for all times t ∈ R.

A periodic solution ζ(t) has a corresponding periodic switching sequence, where tk+Nd
=

tk + T and ik+Nd
= ik.

SS = x∗; (i0, t0), . . . , (iNd−1, tNd−1), (i0, t0 + T ), (i1, t1 + T ), . . .

The orbit passesNd, not necessarily distinct, discrete domains. The initial value is x0 = x∗.

A periodic orbit is an invariant set for the hybrid dynamics. Stability in the sense of
Lyapunov of a hybrid periodic solution can be defined in analogy to stability for solutions of
ordinary differential equations. Therefore a metric on the hybrid state space is introduced.
One possible valid metric is

dist(ζ1, ζ2) = ‖x1 − x2‖ + δxd,1,xd,2
,

where ζ1 = (xT
1 , xd,1)

T and ζ2 = (xT
2 , xd,2)

T are points in the hybrid state space.

There are few general definitions available for stability of invariant sets of hybrid systems.
The definition from Simić et al. [114] is based on a glued phasespace, the so called hybrifold.
In most papers that deal with stability of hybrid periodic solutions, a definition is implicitly
assumed by statement of stability results. In many cases, stability of the hybrid orbit is
identified with stability of the underlying discrete mapping.
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4 Stability of Periodic Robot Locomotion

Hybrid Poincaré Map. Let γ be a hybrid periodic solution, denoted by

SSγ = x∗; (i0, t0), . . . , (iNd−1, tNd−1), (i0, t0 + T ), (i1, t1 + T ), . . .

The corresponding vector fields are abbreviated

f 0(x) = f(x, i0), f 1(x) = f(x, i1), . . . ,fNd−1(x) = f(x, iNd−1),

the series of crossed transition surfaces is indexed

s1(x) = sj1(x, i0), s2(x) = sj2(x, i1), . . . , sNd
(x) = sjNd

(x, iNd−1),

and the consecution of acting jump maps is

g1(x) = gj1
(x, i0), g2(x) = gj2

(x, i1), . . . , gNd
(x) = gjNd

(x, iNd−1).

At first, a cross section Σ that is transversal to the flow of the hybrid dynamics is chosen.
The hybrid Poincaré map is defined to map initial values on the cross section Σ to the
next occurrence of a crossing of Σ. The construction of the Poincaré map is as follows:

Assume that Σ is chosen for the orbit in the discrete state xd = i0. Then a mapping
P 0(x) = φ

f0

τ0(x)(x) can be defined that maps points on the Poincaré cross section Σ to the

crossing of the first transition surface S1 : s1(x) = 0 at time τ0(x). The argument for exis-
tence and differentiability of P 0 is analog to the continuous case. Then the corresponding
jump map g1(x) maps from the transition surface S1 to the image of S1, which is denoted
Σ1. Again, differentiability of g1(x) has to be provided. Iteratively, flow maps P i−1 and
jump maps gi are repeated with appropriate first-return times τi until the orbit is closed
and the state trajectory reaches Σ again. For illustration see Fig. 4.3.

Σ

S1
Σ1x∗ = x0

x−
1 x+

1

g1(x)

P 0(x) = φ
f0
τ0 (x)

P 1(x) = φ
f1
τ1 (x)

Figure 4.3: Hybrid periodic trajectory.

With maps defined as

P 0 : Σ → S1, P 1 : Σ1 → S2, . . . , PNd−1 : ΣNd−1 → SNd
, PNd

: ΣNd
→ Σ,
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4.2 Poincaré Map Analysis for Periodic Solutions

g1 : S1 → Σ1, g2 : S2 → Σ2, . . . , gNd
: SNd

→ ΣNd

the Poincaré map
P : Σ → Σ

is constructed as

P (x) = PNd
◦ gNd

◦ PNd−1 ◦ . . . ◦ g2 ◦ P 1 ◦ g1 ◦ P 0(x). (4.8)

For practical reasons, the cross section Σ is chosen in correspondence with an event, e.g.
Σ = ΣNd

. Then PNd
vanishes in (4.8) because yet gNd

maps into Σ.

An expression for the derivative of P is obtained by application of the chain rule of differ-
entiation. For the special case Nd = 1 with P (x) = g1 ◦ P 0(x), it results:

∂P (x)

∂x

∣
∣
∣
∣
x=x∗

= Dg1(x
−
1 )

[
Φf0

τ0
(x∗) + f 0(x

−
1 )Dτ0(x

∗)
]

(4.9)

with

Dτ0(x
∗) = −Ds1(x

−
1 )Φf0

τ0
(x∗)

Ds1(x
−
1 )f 0(x

−
1 )

Again, an expression for DP (x∗) can be obtained by introducing local coordinates using
a chart function ψ from (4.6) to restrict the derivative to the tangent space TΣ.

Hybrid Trajectory Sensitivities. Also for hybrid systems, trajectory sensitivity analysis
is possible to investigate stability properties of periodic solution, and the result is consistent
with the results presented in Sec. 4.2.1. Hiskens et al. [62] present a derivation for hybrid
systems with differential algebraic aspect. Here a version is given that is reduced to hybrid
systems of the form (4.7). Again the special case Nd = 1 is considered. Then only the
vector fields f 0 and f 1, the transition surface s1, and the jump map g1 have to be taken
into account. The hybrid flow is denoted by φH

t (x), and the sensitivity of the hybrid flow
to perturbations in initial value is ΦH(x).

The following expression can be derived that relates the sensitivity after the event ΦH

τ+

0

(x∗)

and the sensitivity before the event ΦH

τ−

0

(x∗)

ΦH

τ+

0

(x∗) = Dg1(x
−
1 )ΦH

τ−

0

(x∗) −
(
f 1(x

+
1 ) −Dg1(x

−
1 )f 0(x

−
1 )

)
Dτ(x∗). (4.10)

Here, the abbreviations

ΦH

τ+

0

(x∗) =
∂φH

t (x)

∂x

∣
∣
∣
∣
t=τ+

0
, x=x∗

and ΦH

τ−

0

(x∗) =
∂φf0

t (x)

∂x

∣
∣
∣
∣
∣
t=τ−

0
, x=x∗

are used. The time τ0 is the time of transition surface crossing, and τ+
0 is the time imme-

diately after the jump map was executed.

The derivation of (4.10) is as follows. The total derivatives before and after the jump map
acts are connected by the derivative of the jump map g1:

dφH
t (x)

dx

∣
∣
∣
∣
t=τ+

0
, x=x∗

= Dg1(x
−
1 )

dφH
t (x)

dx

∣
∣
∣
∣
t=τ−

0
, x=x∗

(4.11)
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4 Stability of Periodic Robot Locomotion

The total derivative on the transition surface are calculated from partial derivatives:

dφH
t (x)

dx

∣
∣
∣
∣
t=τ+

0
, x=x∗

= ΦH

τ+

0

(x∗) + f 1(x
+
1 )Dτ(x∗) (4.12)

dφH
t (x)

dx

∣
∣
∣
∣
t=τ−

0
, x=x∗

= ΦH

τ−

0

(x∗) + f 0(x
−
1 )Dτ(x∗) (4.13)

Combination of (4.11), (4.12), and (4.13) yields the result (4.10).

Again, the eigenvalues of the trajectory sensitivity matrix indicate asymptotic stability for
a closed hybrid orbit if n − 1 eigenvalues are in the unit circle. In contrast to ∂P /∂x
from (4.9) where the n-th eigenvalue is 0, here the n-th eigenvalue is 1 in consistency with
the ordinary differential equation case. A transformation to coordinates of the manifold Σ
again removes the n-th dimension and the n−1 eigenvalues remain that provide information
on stability of the periodic orbit.

Numerical Evaluation. In the following the evaluation of the Poincaré map is done nu-
merically. Therefore the linearized Poincaré map DP is approximated numerically by
application of perturbations in independent directions of the cross section. Central differ-
ences approximate the derivative along the direction r by

P (x∗ + εr) − P (x∗ − εr)

2ε
. (4.14)

Here, ε is a small positive scalar value, and r are directions in the tangent space of Σ.

Discussion. Although the derivative of the hybrid Poincaré map ∂P /∂x = Dg1 ∂P 0/∂x
is a composition of the derivatives of the continuous Poincaré map ∂P 0/∂x and the jump
map Dg1, compare (4.9), no conclusions can be drawn for the eigenvalues of ∂P /∂x from
the eigenvalues of Dg1 and ∂P 1/∂x alone. Without loss of generality Nd = 1 is assumed
again. In general,

λmax(∂P /∂x) 6≤ λmax(Dg1)λmax(∂P 0/∂x),

where λmax(A) = max |λi(A)|. The inequality, however, does hold for singular values σ of
the maps:

σmax(∂P /∂x) ≤ σmax(Dg1)σmax(∂P 0/∂x)

The singular values are only equal to the eigenvalues if the matrices have orthonormal bases
of eigenvectors. Thus, using singular values for stability analysis has severe drawbacks:
Since λmax ≤ σmax, singular-value-based stability analysis yields only necessary stability
conditions and some stable solutions are not classified as stable. A second problem is seen
in the valid inequality approximation

σmax(AB) ≤ σmax(A)σmax(B).

This inequality is not strict for most realization of matrices A and B.
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4.3 Application for Legged Locomotion

The difference of singular value-based stability analysis and eigenvalue-based stability anal-
ysis is illustrated in the following: A candidate discrete-time Lyapunov function for sta-
bility analysis of the periodic orbit is

V (xk) = (xk − x∗)T (xk − x∗),

in which xk denotes the state at the k-th time of crossing Σ and x∗ is the intersection
point between the periodic orbit and the cross section Σ. This discrete-time Lyapunov
function is only evaluated on the cross section Σ. If the discrete-time stability condition
V (xk+1) ≤ V (xk) is used with xk+1 = P (xk), it follows that ‖P (xk) − x∗‖ ≤ ‖xk − x∗‖
has to hold. This is only true if the operator norm ‖P ‖ of P (x) is smaller than one.
For a linear map P (x) one operator norm is equal to the largest singular value. Other
operator norms can be equivalently used, but for all of them λmax ≤ ‖P ‖ holds. Obviously,
the inequality V (xk+1) ≤ V (xk) with V (xk) = (xk − x∗)T (xk − x∗) is too restrictive to
cover all solutions that are stable. Lyapunov stable solutions are allowed to violate the
inequality, to allow e.g. for overshoot. Modification of the Lyapunov function

V (xk) = (xk − x∗)TW (xk − x∗).

may yield better results, but only for linear systems there are analytical methods to de-
termine an appropriate choice of the weighting matrix W . Rubensson et al. [108] use
that kind of Lyapunov functions for stability analysis of periodic cycles of linear hybrid
systems. In the approach of Simić et al. [114] operator norms are used for stability analysis
resulting in above discussed results concerning necessity and sufficiency. See [50] for basic
underlying results on eigenvalues and singular values.

4.3 Application for Legged Locomotion

It was demonstrated in Chap. 3 that periodic solutions of the hybrid system can be achieved
by control laws for desired trajectories of the actuated joints with appropriate initial values
and time. The initial values are solutions of a boundary value problem that was solved
numerically. The stability of periodic trajectories for legged robots can be analyzed using
hybrid Poincaré maps. A stability investigation is presented for trajectories of the com-
pass gait robot in Sec. 4.3.1, the monoped robot in Sec. 4.3.2, and the gymnast robot in
Sec. 4.3.3.

4.3.1 Compass Gait Robot

The trajectories for the compass gait robot are obtained by numerical solution of a bound-
ary value problem according to Sec. 3.3, and their stability will be determined. For con-
sistency a short summary repeats the model and the trajectory planning.

Model and Trajectories Revisited. Trajectory planning for periodic walking made use
of the symmetric construction of the robot. It was shown how one step is planned, where
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4 Stability of Periodic Robot Locomotion

boundary conditions assure that the following step has the same initial conditions after a
symmetry transformation of the state. The symmetry property is also useful for stability
investigation: Only a single step has to be investigated. Figure 4.4 displays the subsystem
of the hybrid system model of the compass gait robot that was basis for trajectory planning
and will now be basis for stability analysis. Compare also Fig. 3.2.

ẋ = f 1(x, t)

x+ = T feet

(
g1,−1(x

−)
)

if s1,−1(x) = 0

Σ

Figure 4.4: Subgraph of hybrid transition graph for the compass gait robot. Due to symmetry
only one step is considered in trajectory planning and stability analysis. The transformation
T feet accounts for the coordinate transformation that maps coordinates of the second step
on coordinates of the first step.

For trajectory planning, a desired periodic trajectory βd(t) for the actuated joint was de-
fined with period length T , and a control law was chosen that yields tracking. Substituting
the control into the dynamical equations for contact with the reference foot (xd = 1) results
in

ẋ = f 1(x, t) .

The vector field f 1(x, t) depends explicitly on time because of the time dependence of
the desired trajectory βd(t). The jump map to consider collision modeling g1,−1 and the
symmetry transformation T feet are combined in

(
x+

x+
d

)

=

(
T feet

(
g1,−1(x

−)
)

x−d

)

.

This jump map becomes active when the swing foot touches ground:

s1,−1(x) = α+
β

2
− π = 0. (4.15)

For an appropriate initial value x0 =
(

π − β0

2
, β0, α̇0, β̇0

)T
at appropriate initial time t0,

periodic behavior is achieved and can be expressed as

T feet

(

g1,−1

(

φ
f1
T
2

(x0, t0)
))

= x0.

In summary the hybrid system trajectories rely on a hybrid system with only one discrete
state xd = 1. The continuous dynamics is interrupted by a jump map that acts at transition
time.

ẋ = f 1(x, t) if s1,−1(x) 6= 0
(
x+

x+
d

)

=

(
T feet

(
g1,−1 (x−)

)

x−d

)

if s1,−1(x) = 0

72
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Extension for Nonautonomy. The desired trajectories are functions in time, so the or-
dinary differential equation system is non-autonomous. To apply Poincaré analysis as
introduced above, time has to be considered as additional system state. Therefore a new
periodic state variable is introduced:

θ =
2π

T/2
t mod 2π (4.16)

For the following considerations the state vector x̃ is used that includes the new auxiliary
state θ:

x̃ =

(
x

θ

)

The jump map does not change θ when the extended state x̃ crosses the transition surface:
(
ẋ

θ̇

)

=

(
f 1(x, t)

1

)

if s1,−1(x) 6= 0





x+

θ+

x+
d



 =





T feet

(
g1,−1(x

−)
)

θ−

x−d



 if s1,−1(x) = 0

Cross Section. For the compass gait robot, the cross section is chosen when stance foot
and swing foot exchange roles denoted by the transition condition

Σ : s1,−1(x̃) = α+
β

2
− π = 0.

The surface Σ is assumed to separate the jump map from the continuous dynamics, where
the jump map maps into Σ and the continuous dynamics has initial values on Σ, compare
Fig. 4.4.

Poincaré Map. The Poincaré map x̃k+1 = P (x̃k) is composed from the integration of
the vector field and the execution of the jump map.

P (x̃) = T feet

(
g1,−1 (φτ (x̃))

)

Here x̃ = (α, β, α̇, β̇, θ)T , and τ(x) is the time when the transitions surface Σ is reached
after one cycle. The discrete dynamics that maps from cross section to cross section has
a lower dimension than the hybrid dynamics: On the transition surface α is explicitly
determined by the choice of β through the algebraic relation s1,−1(x̃) = 0, see (4.15).

Numerical Evaluation of the Poincaré Map. An analytic expression for the Poincaré
map P (x) is not available due to the nonlinearity of the hybrid system. Thus the Poincaré
map P (x) and its linearization DP (x∗) have to be determined numerically.

The Poincaré map maps x̃k ∈ Σ ⊂ R
5 to x̃k+1 ∈ Σ ⊂ R

5. Due to the constraint
s1,−1(x̃k) = 0, four independent directions can be chosen in Σ. To determine DP ∈ R

4×4

by an approximation with central differences, eight integrations of the hybrid dynamics are
necessary. The stability of the considered trajectory is characterized by four eigenvalues
λi, i = 1, 2, 3, 4, of the linearization DP (x̃).
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4 Stability of Periodic Robot Locomotion

For the numerical computation of eigenvalues the perturbation was chosen ε = 10−5, see
(4.14). The optimization procedure as well as the integration are performed with absolute
error bounds of 10−12. Thus the eigenvalues are precise in about seven digits. Smaller
values for ε for the same absolute error bound reduce the accuracy of the eigenvalues. Pre-
cision in the eigenvalues can then only be enhanced if the integration accuracy is increased.
Larger values for ε also decrease accuracy because the precision of the linearization is de-
creased. Thus ε = 10−5 is a compromise between accuracy of the linearization concerning
the methodical error and accuracy of the linearization concerning numerical errors.

Stability of Precalculated Trajectories. The planning algorithm determines trajectories
for combinations of step angle A and step frequency ω. Figure 4.5 depicts a grid of
(A,ω)-pairs, where for pairs labeled by crosses the corresponding periodic solution is not
asymptotically stable. Only solutions for (A,ω)-pairs labeled by circles are asymptotically
stable and feasible. The larger the circle, the smaller the maximum eigenvalue and the
faster is the convergence to the periodic cycle after disturbances. The smallest maximum
absolute value λ = max |λi| = 0.2606 occurs for (A,ω) = (0.4 rad, 4 rad

s
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Figure 4.5: Stability and feasibility of compass gait trajectories for pairs (A,ω). Circles
label asymptotically stable trajectories. Large markers correspond to a small maximum
eigenvalue. Crosses label unstable trajectories. Squares label infeasible trajectories. Left:
Trajectories are infeasible if the vertical contact force becomes zero. Right: Trajectories
are infeasible if in addition a friction condition is violated.

Squares in Fig. 4.5 label infeasible trajectories. In the left graph, it is only checked if
the ground contact force of the precalculated trajectories is positive. The set of stable
trajectories is thus diminished: Fast trajectories with large step widths are not feasible.
In the right graph additionally friction between ground and robot foot is considered. A
robot foot sticks to the ground as long as the vertical contact force Ry and the horizontal
contact force Rx fulfill |Rx| < ν |Ry|, where ν is a friction coefficient that depends on the
texture of ground and foot. Using ν = 0.8 for contact between rubber and concrete, the
set of feasible trajectories is further diminished.

Finally, Fig. 4.6 gives evidence that increasing the step frequency does not necessarily in-
crease walking velocity. Therefore, to realize a desired walking velocity, several trajectories
are available and a trajectory with faster disturbance compensation is to be preferred. The
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Figure 4.6: Walking velocity v (in m
s
) is calculated as progression in x-direction per period.

The size of the marker increases with walking velocity.

trajectory with the fastest disturbance compensation (A,ω) = (0.4 rad, 4 rad
s

) results in a
walking velocity of v = 0.37 m

s
.

4.3.2 Monoped Robot

The periodic trajectories for the monoped robot that are basis for stability analysis in
what follows are computed as solution of boundary value problems according to Sec. 3.4.
A short summary of the model and of trajectories is given next.

Model and Trajectories Revisited. In Sec. 3.4 it was demonstrated that control on de-
sired trajectories βd(t) with appropriate starting values results in a periodic tilting left
and right of the robot foot. The starting values that yield a periodic motion are solution
of a boundary value problem. Two trajectory patterns were discerned. In the first set-
ting, tilting left and tilting right follow each other immediately. In the second setting, a
stable support phase separates left and right tilting. Due to symmetry of the construc-
tion only half the motion has to be planned, the second half is mirrored. Thus, also
stability is discussed for half the motion. Figure 4.7 presents the subgraphs of the transi-
tion graphs that are relevant for trajectory planning and stability analysis. Compare also
Fig. 3.7 and Fig. 3.9.

In the first trajectory planning problem, trajectories are considered where the tilting to
the left side (xd = 2) and the tilting to the right side (xd = 3) consecute directly. Due to
symmetry the planning problem only comprises the left tilting phase (xd = 2), where the
differential equation is denoted:

ẋ = f 2(x, t)

The time dependence of the vector field f 2(x, t) is caused by time dependence of the
control law that uses time-dependent desired trajectories. Tilting left ends when the foot
makes flat ground contact:

s2,1(x) = α = 0
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ẋ = f 1(x, t)

ẋ = f 2(x, t)ẋ = f 2(x, t)

if s1,2(x) = 0

if s2,1(x) = 0

if s2,1(x) = 0

Σ

Σ

x+ = g1,2(x
−)

x+ = T edges

(
g2,1(x

−)
)

x+ = T edges

(
g2,1(x

−)
)

Figure 4.7: Subgraph of hybrid transition graph for the monoped robot. Left: Planning
for direct consecution of left and right tilting. Right: Planning for left and right tilting
separated by stable support. Due to symmetry only half of a cycle is considered in trajectory
planning and stability analysis. The transformation T edges accounts for the symmetry
transformation.

The jump map includes the coordinate transformation T edges,

(
x+

x+
d

)

=

(
T edges

(
g2,1(x

−)
)

x−d

)

.

An appropriate initial value x0 =
(

0, β0, 0, β̇0

)T
at initial time t0 yields periodic behavior:

The right tilting phase is symmetric to the left tilting phase.

T edges

(

g2,1

(

φ
f2
T
2

(x0, t0)
))

= x0.

In the second trajectory planning approach, an additional stable support phase (xd = 1)
was assumed to separate left (xd = 2) and right (xd = 3) tilting. The differential equation
is switched between

ẋ = f 1(x, t) and ẋ = f 2(x, t).

A transition between the stable support and tilting occurs when the ZMP leaves the foot
supported area

s1,2(x, u) = rzmp(x, u) = 0.

This transition is smooth and no symmetry transformations are applied:

(
x+

x+
d

)

=

(
g1,2(x

−)
2

)

After the second transition at landing from tilted supervised by

s2,1(x) = α = 0,
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a discontinuous reset
(
x+

x+
d

)

=

(
T edges

(
g2,1(x

−)
)

1

)

occurs, where T edges transforms right tilting in left tilting coordinates. Periodicity in left
and right tilting is summarized using t1 + t2 = T

2
:

T edges

(

g2,1

(

φ
f2

t2

(

φ
f1

t1
(x0, t0), t0 + t1

)))

= x0.

Extension for Nonautonomy. Again the desired trajectories are functions of time, so
the ordinary differential equation system is non-autonomous. For a Poincaré analysis as
introduced above, time has to be considered as additional cyclic system state θ, like in
(4.16). The state is then extended to x̃ = (xT , θ)T .

Cross Section. For the monoped robot in both trajectory settings, the cross section is
chosen when the foot touches ground:

Σ : s2,1(x̃) = α = 0

The choice of cross section is illustrated in Fig. 4.7.

Poincaré Map. The Poincaré map is defined to map an initial configuration on Σ to the
next occurrence of landing. This is either after one left tilting phase for the first trajectory
planning scenario

P (x̃) = T edges

(
g2,1

(
φf2

τ (x̃)
))
,

or after a a stable support phase and a left tilting phase for the second planning scenario:

P (x̃) = T edges

(
g2,1

(
φf2

τ2

(
φf1

τ1
(x̃)

)))
.

Here x̃ = (α, β, α̇, β̇, θ)T and τ , τ1, and τ2 are the appropriate times needed to reach the
next transition surface, where τ ≈ T

2
and τ1 + τ2 ≈ T

2
. The Poincaré map has a lower

dimension than the hybrid dynamics since α = 0 and α̇ = 0 on the cross section.

Numerical Evaluation of the Poincaré Map. Again the Poincaré map and its derivative
cannot be evaluated analytically. The derivative of the Poincaré map is approximated by
central differences. Here DP ∈ R

3×3 because there are three independent directions in the
tangent space of the cross section Σ, since for the cross-section α = 0 and α̇ = 0.
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4 Stability of Periodic Robot Locomotion

Stability of Precalculated Trajectories with one Contact Situation. For the trajectory
planning problem with direct consecution of left tilting and right tilting, two types of
trajectories were obtained by solution of the boundary value problem, see Sec. 3.4.1. For
trajectories of the first type, the initial time t0 is close to zero. That means tilting left
and swinging left of the actuated arm are synchronous. In stability investigation, it turns
out that none of those trajectories is stable. Trajectories were computed for values of
the excitation amplitude A between 0.05 rad and 0.35 rad and for values of the excitation
frequency ω in a range from 0.5 rad

s
to 7.0 rad

s
. For most of the trajectories, instability

is obvious after simulations of few cycles as the monoped turns out to fall. Often the
Poincaré map cannot be evaluated numerically because the integration does not reach the
cross section Σ because of the high sensitivity of the trajectory to perturbations in the
initial values.

Trajectories of the second type have values of t0 that are close to π
ω
. That means tilting

left is in phase with swinging right of the desired motion of the actuated arm. For small
values of A asymptotically stable solutions exist. For an overview of orbitally stable and
orbitally unstable solutions see Fig. 4.8. Here parameter pairs (A,ω) that correspond to
asymptotically stable solutions are marked by circles. Small markers indicate that the
maximum eigenvalue is close to the unit circle. Crosses label solutions that are unstable.
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Figure 4.8: Stability of monoped trajectories of second type for the one phase problem. Cir-
cles label asymptotically stable trajectories. Huge circles correspond to small maximum
eigenvalues. Crosses indicate that the maximum eigenvalue is outside the unit circle.

Figure 4.9 compares a trajectory of the first type with a trajectory of the second type to
illustrate the decisive differences that could be responsible for the different stability prop-
erties. Both trajectories have excitation amplitude A = 0.05 rad and excitation frequency
ω = 5.5 rad

s
. In the first three graphs, the trajectories for α, α̇, and α̈ are displayed. The

trajectories for α and its derivatives do not differ much. One of the main differences is
seen in the fourth plot, where β and the desired trajectory βd is plotted. The β trajectory
starts with nearly zero control error, but then the control error becomes large. This is
caused by the control error in the velocity β̇ that was caused by the collision and that
has to be compensated for by the controller. For both trajectory types the desired trajec-
tory for β is asymptotically reached some time before the next collision. For the type-1
trajectory the desired trajectory is still left from the upright position, so slightly negative
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Figure 4.9: Differences in type-1 (left column) and type-2 (right column) trajectories resulting
in different stability properties. Desired trajectories for the actuated joints are pictured
dashed.

accelerations in β are needed to achieve tracking. For the type-2 trajectories the desired
trajectory is right from the upright position of the arm, so slightly positive accelerations in
β are needed for tracking. The acceleration in β influences the acceleration in α, where a
negative acceleration in α is important at that time because only then landing is possible.
The interaction of α̈ and β̈ is seen in the equations of motion from (2.38)

M 2

(
α̈

β̈

)

+ n2 =

(
0
u

)

. (4.17)

The first line of (4.17) can be solved for α̈ resulting in α̈ = 1
m11

(−m12 β̈ − n1) . It is
seen that the trajectory for α is influenced by gravity, centrifugal, and coriolis effects
−n1

m11
and also directly by accelerations in β via −m12

m11
β̈. The last graph in Fig. 4.9

splits the acceleration α̈ into the −n1

m11
-part (dash-dotted) and the −m12

m11
β̈-part (solid).

For the unstable trajectory in the left column the acceleration part is in competition
with the gravity/coriolis/centrifugal-part, for the stable trajectory in the right column the
acceleration-part and the gravity/coriolis/centrifugal-part act in the same direction and
support landing of the foot.
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4 Stability of Periodic Robot Locomotion

Stability of Precalculated Trajectories for Two Contact Situations. Now an additional
stable support phase is included into the motion pattern that separates left tilting and right
tilting. Of special interest is that in the stable support phase the robot is fully actuated
and does thus not have an internal dynamics. The trajectories that are found by solving
the boundary value problem resemble the type-1 trajectories of the problem with only one
phase in the sense that tilting left and left deflection of the actuated arm are synchronous.

Figure 4.10 shows that only few trajectories exist. The set of trajectories that are found by
solution of the boundary value problem is diminished since not all solutions of the boundary
value problem are physically reasonable. There are trajectories where tilting time is earlier
than initial time, which violates causality. Then, also trajectories where the ZMP leaves
the supporting area in the stable support phase have to be taken out, though the ZMP
is zero again at transition time. Furthermore, a check of non-violation of the constraint
that the foot cannot penetrate ground in the tilting phase has to be done. This excludes
trajectories where the tilt angle α becomes smaller then zero. Pairs of parameters (A,ω)
where the boundary value problem finds an unfeasible solution are marked by squares.
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Figure 4.10: Stability of monoped trajectories for the two phase problem. Circles label asymp-
totically stable trajectories. A large circle corresponds to a small eigenvalue. Crosses label
unstable trajectories. Squares indicate that the solution is not feasible.

Asymptotic stability is checked for the remaining valid solutions, and stable trajectories
are labeled by circles at the corresponding parameter pair (A,ω). In comparison to the
type-2 trajectories with only one contact phase, it turns out for this trajectory type that
only trajectories that have a slow excitation frequency with large excitation amplitude are
stable.

Figure 4.11 illustrates what the stable trajectories have in common and in particular how
the duration of the stable support phase is related to orbital stability. From the left graph
in Fig. 4.11 it cannot be concluded that a stable support phase is necessary for orbital
stability. Trajectories exist with a short stable support phase that are nevertheless orbital
stable. But it can be concluded that a longer stable support phase makes stability more
likely. At least for the monoped robot, nearly all trajectories where the stable support
phase takes more than 50 % of the period time are asymptotically stable.
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Figure 4.11: Details of stability of monoped trajectories with stable support phase. Left:
Ratio of the stable support phase in percent of the complete cycle against maximum of
the absolute values of the eigenvalues of the Poincaré map. Right: Maximum of tilt angle
α against maximum of the absolute values of the eigenvalues of the Poincaré map.

The graph on the right hand side in Fig. 4.11 shows that orbital stability is not correlated
to the size of the maximum of the tilt angle α. Trajectories with low maximum tilt angles
have eigenvalues in the unit circle as well as eigenvalues outside.

4.3.3 Gymnast Robot

Walking trajectories for the gymnast robot are computed in Sec. 3.5 and will be investigated
for stability in this section. A short summary of the model and the trajectories will be
given in the following.

Model and Trajectories Revisited. Trajectory planning for periodic walking has made
use of the symmetric construction of the robot. Thus, it was possible to plan only one
step where the boundary conditions for that first step were chosen such that the following
second step has the same initial conditions as the first step. The symmetry property is
also used for stability investigation. Only one step has to be investigated. In Fig. 4.12
the subsystem of the hybrid system model of the gymnast robot is shown that was the
basis for trajectory planning and will now be the basis for stability analysis. Compare also
Fig. 3.11.

For trajectory planning, desired trajectories βd
1(t), . . . , β

d
5 were defined for the actuated

joint and a control law was chosen that yields tracking. For an appropriate initial value
x0 = x(t0) at appropriate initial time t0 in the stable support contact phase xd = 1
periodic behavior is achieved. That means, after the stable support phase, a tilting around
the toe phase, and a tilting around the heel phase the stable contact phase is reached again
where the final configuration is symmetric to the initial configuration with respect to the
symmetry of the two feet.

x0 = T edges ◦ g2,1 ◦ φ
f2

t3
◦ T edges ◦ T feet ◦ g2,−3 ◦ φ

f2

t2
◦ φf1

t1
(x0)
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ẋ = f 1(x, t)

ẋ = f 2(x, t)

if s1,2(x,u) = 0

if s2,−3(x) = 0

if s2,1(x) = 0
x+ = T edges

(
g2,1(x

−)
)

x+ = g1,2(x
−)

x+ = T feet,edges

(
g2,−3(x

−)
)

Σ

Figure 4.12: Subgraph of hybrid transition graph for gymnast robot walking.

Again, t1 + t2 + t3 = T
2
.

Extension for Nonautonomy. The desired trajectories are functions in time, thus the
system of ordinary differential equations is non-autonomous. To apply Poincaré analysis
as introduced above, time has to be considered as additional system state with dynamics
θ̇ = 1 and initial condition t(θ0) = t0. For the following considerations the state vector
x̃ = (xT , θ)T is used that comprises the new state θ.

Cross Section. For the gymnast robot walking trajectories, the cross section is chosen
when the heel roll motion ends and a stable support contact situation begins.

Σ : s2,1(x̃) = α = 0

Numerical Evaluation of the Poincaré Map. The Poincaré map maps x̃k ∈ Σ ⊂ R
13

to x̃k+1 ∈ Σ ⊂ R
13. The stability of the considered trajectory is characterized by eleven

eigenvalues λi, i = 1, ..., 11 of the linearization DP . For the numerical eigenvalue compu-
tation the perturbation was chosen ε = 10−4. The optimization procedure as well as the
integration are performed with absolute error bounds of 10−8. Thus the eigenvalues are
precise in about four digits.

Stability of Precalculated Trajectories. The planning algorithm determines trajectories
for combinations of step angle A, knee bend angle B, and step frequency ω, see Sec. 3.5.
Stability results are given for knee bend angle B = 0.4 rad = const. and varying pairs
of (A,ω) in Fig. 4.13 in the left subfigure. Stable solutions exist for step frequencies ω
between 1.5 rad

s
and 4 rad

s
. The smallest maximum eigenvalue is obtained for (A,ω,B) =

(0.72 rad, 1.9 rad
s
, 0.4 rad): it is λmax = max |λi| = 0.3560 · 10−5. The right subplot of

Fig. 4.13 depicts the corresponding walking velocities, evaluated as advancement in x-
direction per period. The particular choice of desired trajectories, see (3.8), results in
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walking velocities between 0.15 m
s

and 0.56 m
s
. This is slightly slower as for the compass

gait robot, compare Fig. 4.6. For the gymnast robot with the chosen desired trajectory
the velocity is limited because of instability of faster trajectory, whereas for the compass
gait robot physical feasibility limited the velocity.
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Figure 4.13: Stability and velocity v of gymnast walking trajectories for pairs (A,ω) with
constant B. Left: Circles label asymptotically stable trajectories. Crosses label unstable
trajectories. For pairs (A,ω) that are not labeled, either no solution was found by the
numerical solver, or the solution is infeasible. Right: The size of the marker increases with
the velocity v (in m

s
) of walking.

Figure 4.14 discusses how the ratio of the stable support phase in one period is related to
the eigenvalues. In the left graph, it is seen that walking with small velocity and small
step width has a longer stable support phase. Here, large markers indicate a long stable
support phase, small markers indicate a short stable support phase. The left graph shows
the maximum eigenvalue against the ratio of stable support. It can be seen that almost all
trajectories where the stable support phase takes more than 25 % are stable. In contrast,
it is not necessary for stability that the stable support phase lasts long. Trajectories with
stable support phases lasting between 5% and 25 % of the period can either be stable or
not.

Transitions Between Preplanned Trajectories. When several trajectory primitives for
different tasks are planned and saved in a trajectory database, it is important to know
if and how a transition between those trajectory primitives is possible. For example if
trajectories for several walking speeds are available, can walking be accelerated such that
it starts with a slow preplanned trajectory and reaches a fast preplanned trajectory? A
general related question is how to start-up any of the preplanned motion patterns since
initial postures for a robot are usually rest positions.

Mathematically, the feasibility of a transition is a matter of the region of attraction of
the target motion pattern. If the initial trajectory has an intersection with the region
of attraction of the target motion, a direct transition between the trajectories is possible
without calculation of special transition primitives.

The region of attraction of trajectories that were presented for the compass gait robot,
the monoped robot, or the gymnast robot cannot be determined analytically, and also a
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Figure 4.14: Details on stability of gymnast walking trajectories. Left: Ratio of the stable
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numerical approximation is difficult due to the hybrid and nonlinear character of the dy-
namics. In addition, the dimension of the example systems is too high to obtain meaningful
illustration. A numerical approximation of the region of attraction was calculated for a
simplified compass gait robot by Schwab et al. [112] on the basis of the cell-to-cell mapping
method [64]. For this simplified walking system, the basin of attraction was displayed in
the two-dimensional configuration plane.

In the following, a switching strategy for the preplanned walking trajectories of the gymnast
robot is proposed. Thereby, it is used that preplanned walking trajectories have similar
desired trajectories that differ only in parameters.

Here it will be demonstrated via simulations that the walking motion of the gymnast
robot is robust against changes in the parameters step width A and step frequency ω.
These parameters are slightly altered while walking using the knowledge of the existence
of solutions for different parameter sets. This can be used to start walking from a rest
position and accelerating to maximum velocity.

The switching time for a change of the parameters (A,ω) is chosen such that discontinu-
ities are avoided in the desired joint trajectories that cause high action of the controller.
Investigation of the desired trajectories from (3.8) results in candidate switching times.
Switching of A from A− to A+ is thus possible for

ts =
π

2ω
+ Z

π

ω
.

This is when cosωt = 0 and thus β3
d = π+A+ cosωt = π+A− cosωt. Switching of ω from

ω− to ω+ is possible without discontinuities for

ts = Z
π

2ω−
.

For these times βd
2 and βd

4 are either maximal or minimal.
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Figure 4.15 shows a snapshot series for walking, with transitions from motion pattern S0,
via pattern S1 and S2, to motion pattern S3.

S0: at rest
S1: slow (A1, ω1) = (0.64 rad, 1.9 rad

s
)

S2: medium (A2, ω2) = (0.72 rad, 3.0 rad
s

)
S3: fast (A3, ω3) = (0.92 rad, 3.8 rad

s
)

The initial time is chosen t0 = 0, the first switching time is chosen ts,1 = 3π
2ω1

, then ts,2 = 5π
2ω1

,

and finally to reach the fastest walking velocity ts,3 = 5π
2ω1

+ 2 π
2ω2

.

replacements
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Figure 4.15: Left: Snapshot series of accelerated walking motion of the gymnast robot. Right:
Participating trajectories are marked by larger circles in the (A,ω)-plane.
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4.4 Summary

Periodic trajectories for legged robots with variable ground contact that are determined
by trajectory planning are not necessarily orbitally stable, but orbital stability is a key
necessity for any kind of application of the trajectory.

In this chapter orbital stability of trajectories for the compass gait robot, the monoped
robot, and the gymnast robot was investigated. Therefore, available stability results for pe-
riodic trajectories of hybrid dynamical systems were summarized and thoroughly discussed.
Poincaré maps (first-return) maps were used for stability analysis yielding conditions for
orbital stability by evaluation of the eigenvalues of the linearization of the Poincaré map.
Stability analysis using Poincaré maps was shown to be equivalent to sensitivity based
methods. This equivalence is brought forward from the ordinary differential equation case
to the hybrid system case.

Although for the compass gait robot stable trajectories were found for arbitrary step fre-
quencies, it was demonstrated that the walking velocity does not necessarily increase if the
step frequency is increased. In most cases, trajectories with low step frequencies are avail-
able that enable the same walking velocity with better stability properties. The walking
velocity is bounded by physical limitations, e.g. when friction between ground and feet is
insufficient. Also for the gymnast robot, not all trajectories from the database of trajectory
planning are feasible. Fast walking trajectories are not feasible any more because they lack
stability. The maximum possible velocity is nevertheless comparable to that of the compass
gait robot. For the monoped robot and for the gymnast robot, it was analyzed how the
stable support phase improves walking stability. It was concluded that a stable support
phase is not necessary for orbital stability of the whole locomotion cycle but makes stabil-
ity more likely. Finally the feasibility of transition between different locomotion patterns
was discussed and demonstrated in a simulation experiment for gymnast robot walking.
Enabling transitions between planned trajectory primitives without additional trajectory
planning of transition primitives is seen as crucial for realization of dexterous locomotion.
Appropriate analysis makes use of the region of attraction of hybrid periodic limit cycles.

Poincaré map based methods are a common tool for legged locomotion analysis. They are
until now used mainly for passive robots or robots with point contacting feet. Then every
motion cycle consists of only one contact situation and one collision. It was demonstrated in
this thesis that stability analysis by Poincaré maps is a valid approach also for robots where
a locomotion cycle comprises several different contact situations and multiple collisions.
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5 Balance Control

5.1 Introduction and State of the Art

The Zero Moment Point (ZMP) [132, 133] is a point on ground level that provides a measure
for the postural balance of legged robots. Thus, control of the ZMP is widely used for
balance control. A balanced robot state is here understood to exclude underactuation in
rotation around foot edges because this is often seen to initiate falling. If the ZMP is in the
foot-ground contact area or inside the convex hull of the contact areas of multiple contacting
feet, tilting around foot edges will not occur. Therefore, a ZMP control algorithm is
necessary that yields invariance of an admissible set for the ZMP in the convex hull of the
foot margins. Approaches for balance control of legged robots were presented by many
groups [67, 81, 85, 99, 125] and in particular for the Honda Asimo [59] or the Toyota
Partner Robots [129].

In Sec. 2.2.3, it was shown for a planar robot construction that the ZMP is calculated from
the acting contact forces and moments, denoted as

rzmp =
Tz

Ry

,

where Tz is the contact moment and Ry is the vertical contact force. This gives rise
to physically motivated control laws. For example enhancing the vertical contact force
shifts the ZMP towards zero, in general resulting in better stability margins, defined as
distance between ZMP and foot edges [99]. In experimental studies, often a heuristic
control approach is used. The reference trajectory for the ankle joint is altered proportional
to the deviation of the measured ZMP from a desired ZMP [67]. Although the approach
is successfully applied in experiments, it comes with a theoretical drawback: The control
torque is set depending on the actual ZMP deviation where the ZMP is at the same time
evaluated and also depends on the torque resulting in an algebraic loop. Thus, the approach
is not applicable in simulations without solving the algebraic loop, and the validation of
the control strategy is analytically not possible. Theoretically consistent formulations
consider the ZMP dependence from the accelerations [81, 85] and calculate a prediction
of the ZMP before applying the appropriate motor torques that either yield tracking of
the desired trajectory or a correction of the ZMP. In the control method for the humanoid
robot Johnnie [85], the control of the center of gravity is replaced by control of contact
forces whenever a ZMP violation is about to occur, and also Kondak et al. [81] restrict
accelerations to an admissible plane when a violation of balance is about to occur. In
contrast to the experimental approaches that rely on heuristics, these two approaches are
model-based and realize exact ZMP tracking.

Control of the ZMP makes the control system underactuated in the sense that the number
of controlled quantities exceeds the number of control inputs [40]. Therefore a ZMP con-
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trolled robotic system has an internal dynamics. This internal dynamics is unstable and
the control system is termed non-minimum phase. Balance control for a legged robot is
only stable if it is switched between different controllers, among them the ZMP controller.

The presented approach, see also [138], is similar to the approaches in [81, 85] since it uses
model-based ZMP tracking as corrective controller that acts whenever control with the
nominal task-specific controller results in violation of the inequality

yl ≤ rzmp ≤ yu.

The range between the lower boundary yl and the upper boundary yu is the admissible set
for the ZMP that is a subset of the foot supporting area. The ZMP control problem will be
considered in the control theoretic framework of invariance control [137]. The ZMP is there
defined as a system output that is not allowed to leave the assigned admissible set. To be
applicable, the invariance control method had to be adapted to account for systems with
fewer outputs than inputs. A control theoretic problem for ZMP control is that the ZMP
and the motor torques are algebraically related. In control theory, an output like ZMP
is said to have relative degree zero. By model refinement, a control system is obtained
where the output ZMP has relative degree one, or in other words it does not depend on
the input directly. This allows for a consistent formulation of ZMP control methods also
for experimental studies.

In the following Sec. 5.2 the invariance control method is introduced. Then in Sec. 5.3
the method is applied for balance control of legged robots with a formulation where the
ZMP has relative degree zero and another formulation where the ZMP has relative degree
one. Simulation results for a humanoid robot demonstrate applicability. A summary of
the chapter is given in Sec. 5.4.

5.2 Invariance Control of Control-Affine Systems

Invariance control, as proposed by Wolff et al. in [137], considers control-affine single-input
single-output systems, denoted by

ẋ = f(x) + g(x)u

y = h(x).
(5.1)

That means, the system input u as well as the output y are scalar, the output is not
algebraically related to the input, and the differential equation is linear in the input u.
The invariance control method describes how to implement a switching control law that
takes into account an output constraint

y = h(x) ≤ 0. (5.2)

The idea of invariance control is to switch between a nominal control signal unom and a
corrective control signal ucorr. The nominal control law is chosen specific to the application
and achieves the main control task. The corrective control law and the transition time be-
tween nominal control and corrective control are chosen such that the output constraints
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x0

dh
dx

dh
dx

f(x) + g(x)unom
f(x) + g(x)ucorr

f(x) + g(x)ucorr

f(x) + g(x)unom =

x(t)

h(x) = 0

h(x) < 0h(x) > 0

Figure 5.1: Illustration of the invariance control law for relative degree one. The trajectory
starts at x0 and hits the boundary h(x) = 0 of the admissible set. At this point, the
nominal control signal unom would violate the constraint y = h(x) ≤ 0, therefore unom is
replaced by ucorr. The vector field f(x) + g(x)ucorr is then tangential to the boundary
h(x) = 0. The control signal returns to unom when the vector field f(x) + g(x)unom

begins to point inward. This is equivalent to ẏ(x, unom) < 0.

are never violated. The derivation of the corrective controller relies on input-output feed-
back linearization of the control system. Therefore the output function is differentiated
until an algebraic relation between input and derivative of the output is obtained. The
relative degree of the output is the minimum number of derivations after that the algebraic
input-output relation occurs. Since the ZMP is directly related to the input torques, see
(2.24), its relative degree is zero. A refinement of the model will be discussed later where
the relative degree of the ZMP will be one.

Wolff et al. [137] outline the invariance control method for outputs with relative degrees
one and higher. The idea is summarized in the following for relative degree one. In this
case, the first derivative of the output is assumed to be related to the input u by

ẏ =
dh

dx
[f(x) + g(x)u] =: ẏ(x, u) (5.3)

whenever dh
dx
g(x) 6= 0. The corrective control signal ucorr is obtained as solution of

ẏ(x, ucorr) = 0, and it is used if the output y reaches the boundary of the admissible
set y = h(x) = 0. It is switched back from the corrective mode to the nominal mode
if using the nominal controller does not violate the constraint any more. This is when
ẏ(x, unom) < 0. The switching scheme is illustrated in Fig. 5.1 and summarized as:

u =







unom if h(x) < 0

unom if h(x) ≥ 0 and ẏ(x, unom) < 0

ucorr if h(x) ≥ 0 and ẏ(x, unom) ≥ 0

(5.4)

The invariance control method that was described above has to be adapted to account
for the special requirements of ZMP control: In the usual notation, the ZMP is directly
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set by the motor torques, and the control system is said to have relative degree zero. In
addition, there is a vector of control inputs available that represents the torques in the
joints, and a decision has to be made how to use the numerous control inputs to manipulate
the one-dimensional ZMP.

5.2.1 Adaptation for Relative Degree Zero

The output has relative degree zero if the input directly sets the output. The control
system (5.1) is then modified to:

ẋ = f(x) + g(x)u

y = h(x, u)
(5.5)

The corrective control is obtained as solution of

y = h(x, ucorr) = 0 (5.6)

to account for constraints y = h(x, u) ≤ 0. In general, (5.6) is a nonlinear equation for
ucorr and solvability has to be examined carefully. Also, the solution must not be unique.
The corrective control signal ucorr is used when the output reaches the boundary of the
admissible set. The nominal control signal unom is used when the output is inside the
admissible set. In contrast to (5.4), the switching scheme is now:

u =

{

unom if h(x, unom) < 0

ucorr if h(x, unom) ≥ 0
(5.7)

A problem of invariance control for constrained outputs with relative degree zero is that
the control signal u has to be used to evaluate h(x, u) and, at the same time, the control
signal is used in the control law. This makes it necessary to preview the behavior of the
control system for the next integration step and then decide on the appropriate choice of
the control signal.

5.2.2 Adaptation for Non-Scalar Inputs

If the input is not restricted to be scalar, the control system (5.1) is modified to

ẋ = f(x) +G(x)u

y = h(x)
(5.8)

with G(x) ∈ R
n×m to account for u ∈ R

m. If the relative degree is one, presuming
dh
dx
G(x) 6= 0, the corrective control signal u = ucorr solves

ẏ =
dh

dx
[f(x) +G(x)u] = 0. (5.9)

In contrast to (5.3) that has a unique solution, (5.9) is an under-determined linear equation
system for the m components of ucorr. The equation system can be abbreviated by

Aucorr = b (5.10)

with A = dh
dx
G(x) and b = − dh

dx
f(x). In what follows, three propositions a) to c) are

presented how to solve (5.10).
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a.) Minimum Norm. A solution ucorr of (5.10) that has minimum norm ‖ucorr‖2 is
obtained by inversion using the pseudoinverse [95]:

ucorr = A+b (5.11)

Here A+ denotes the pseudoinverse matrix ofA. In this case, the matrix A =
(
a1, . . . , am

)

is a 1 ×m-matrix where the pseudoinverse is a m× 1 that yields AA+ = 1:

A+ =
1

a2
1 + . . .+ a2

m

(a1, . . . , am)T

It is obvious from the definition of the pseudoinverse that a solution of (5.10) exists, as
long as at least one of the components ai in A is non-zero. This requirement is equivalent
to the requirement for relative degree one, where A = dh

dx
G(x) 6= 0 was yet presumed. In

the solution all input degrees of freedom are involved in constraint allowance. This is not
necessarily the best choice, since while control with minimal norm is used, the nominal
task cannot be taken into account, and a return to the desired task may not be possible
again. Thus, this approach is modified:

b.) Minimum Distance to Nominal Control. The solution of (5.10) is chosen for the
corrective control signal ucorr that is closest to the nominal control signal unom.

ucorr = argmin
u

‖u− unom‖2

The solution is obtained by pseudoinverse application together with a projection (I −
A+A)unom of unom into the kernel of A

ucorr = A+b+ (I −A+A)unom, (5.12)

where I is the identity matrix. So, if an entry ai of the matrix A is zero, the definition
in (5.12) yields ucorr,i = unom,i, and the remaining inputs are used to achieve constraint
compliance.

c.) Weighted Minimum Distance to Nominal Control. The first two approaches yield
constraint compliance using all available inputs. Alternatively, selected inputs can be used,
or the inputs can be used with different weighting. Therefore a diagonal m×m weighting
matrixW can be introduced. The i−th diagonal element wi,i weights the impact of input i
in the minimization problem

min ‖W−1(u− unom)‖2

subject to the equality (5.10). The solution is obtained as:

ucorr = W (AW )+b+
(
I −W (AW )+A

)
unom (5.13)

Thus, for small values of wi,i the input i has a large weight and does not contribute to the
solution too much. Large values of wi,i give a small weight to the i-th component of the
optimization problem, and high values for the corresponding input ui are possible in the
solution. If wi,i = 0, the corresponding component ui of the input is not used for constraint
compliance, instead the control uses the nominal control signal.
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5.3 Invariance Control of Zero Moment Point

The balance control task for a legged robot is based on the system dynamics from Sec. 2.2.1
of the mechanical construction subject to motor torques τ

M (β)β̈ + n(β, β̇) = τ . (5.14)

A model of the generation of the motor torques τ can be included. The simplest assumption
is that motor torques are directly set by the control input u and thus u = τ . Another
model assumption that will be investigated in the following is that motor torques are
related to the input u by a first order dynamics

τ̇ +Kτ = u. (5.15)

The diagonal parameter matrix K characterizes the behavior of the motor dynamics. The
goal of invariance control is to constrain the ZMP to an admissible set inside the convex
hull of the foot contact points.

yl ≤ rzmp ≤ yu

Therefore, output functions y1 and y2 are defined according to (5.2):

y1 = rzmp − yu ≤ 0 (5.16)

y2 = yl − rzmp ≤ 0 (5.17)

The ZMP is calculated from the position β, the velocities β̇, and the accelerations β̈ or
the torques τ respectively, see Sec. 2.2.3. Depending on what model is used for the joint
actuation, the system output ZMP has either relative degree zero or relative degree one.

In what follows, an invariance control approach for the ZMP with relative degree zero is
presented in Sec. 5.3.1. Then, the model is refined such that ZMP has relative degree
one, see Sec. 5.3.2. After illustration of the method by simulations of a humanoid robot
in Sec. 5.3.3, finally in Sec. 5.3.4 the non-minimum phase characteristics and stability of
invariance ZMP control is discussed.

5.3.1 Relative Degree Zero Formulation

Control System. Basis for the controller design in this section are the equations of mo-
tion (5.14) where the torques are considered as control input u = τ . Since the ZMP
depends algebraically on the motor torques and the torques are considered as control in-
puts, the ZMP has relative degree zero in this case.

Before application of the invariance control method, the control system is transformed to
a linear differential equation with nonlinear output by input-state linearization, compare
Sec. 3.2.2. Substituting u in (5.14) by

u(v) = M(β)v + n(β, β̇).

yields

ẋ =

(

β̇

0

)

︸ ︷︷ ︸

f (x)

+

(
0 0
0 I

)

︸ ︷︷ ︸

G(x)

v
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y1 = rzmp(x,v) − yu y2 = yl − rzmp(x,v)

where v is an auxiliary control input and x summarizes β and β̇. The notation indicates
that the ZMP depends on the control input v. The control system combines properties of
(5.5) and (5.8), therefore the control law for the auxiliary control input v can be designed
by invariance control. In the following, the nominal controller and the corrective controller
are introduced.

Nominal Controller. If control is due to the nominal controller v = vnom = β̈
d
+KD(β̇

d−
β̇) +KP (βd − β), the desired trajectory βd(t) is tracked. Dynamical properties can be
set by choice of the control parameters in KD and KP .

Whenever the nominal control signal v = vnom is determined, rzmp(x,vnom) is checked
for constraint compliance. If the constraint compliance is violated, which means that the
ZMP reaches either the upper boundary yu or the lower boundary yl of the admissible set,
the output of the nominal controller is discarded, and a corrective control is switched on
to keep the ZMP on the boundary of the admissible set.

Corrective Controller. The corrective controller v = vcorr has to yield either

y1 = rzmp(x,vcorr) − yu = 0 (5.18)

if the ZMP was about to leave at the lower boundary or

y2 = yl − rzmp(x,vcorr) = 0 (5.19)

if the ZMP was about to leave at the upper boundary.

The above equations (5.18) respectively (5.19) give one determining equation for m control

inputs in vcorr =
(
v1, . . . , vm

)T
. Thus there are multiple possibilities for the choice of vcorr.

Since the contact force Ry and contact moment Tz are linear in the accelerations vi = β̈i,
which can be seen from (2.24), a linear equation has to be solved. For the lower boundary,
it can be denoted as

rzmp(x,v) =
Tz

Ry

=
Tz,0 +

∑

i Tz,ivi

Ry,0 +
∑

iRy,ivi

= yl (5.20)

with appropriate coefficients Tz,i and Ry,i. Recombination yields
∑

i

(Tz,i − ylRy,i)
︸ ︷︷ ︸

ai

vi = ylRy,0 − Tz,0
︸ ︷︷ ︸

b

.

Vector notation results in a linear equation system of the same structure as in (5.10):

Av = b (5.21)

To keep the ZMP on the boundary, any of the infinitely many solutions of (5.21) can be
used. In Sec. 5.2, possible choices were discussed respecting the distance to the nominal
control and a weighting matrix.

The corrective controller acts as long as the nominal controller still results in violations
of the output constraints. Therefore, while the corrective controller is active, the ZMP is
constantly evaluated to see what would happen if it was active. The switching rules are
to be found in (5.7).
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5.3.2 Relative Degree One Formulation

Control System. The present formulation of invariance control of the ZMP with relative
degree zero has a drawback. Since the ZMP depends on the torques and the torques are
set by the control law, the decision which controller is to be used relies on knowledge of
the ZMP behavior when the controller is used. That means, the ZMP must be previewed,
and the control torque is rejected if violation of the constraint conditions would occur.

The present formulation of the robot dynamics is also still a simplification. It is assumed
that the controller directly sets the torques. In a more detailed model, the control still has
to pass the motor dynamics. In the following it is shown how the incorporation of a simple
motor model (5.15) results in a control system where the ZMP is an output of relative
degree one. Accounting for the motor dynamics yields that the input torques τ are no
longer a system input but a system state and u is the new input. As a consequence, the
output function rzmp does not depend on the input directly.

The control system is linearized by input-state feedback linearization as preparation for
design of the nominal control law and the corrective control law. The state β of the control
system has relative degree three, because neither the joint angles β themselves nor the first
or second derivative of it depend on u.

For the transformation, β is repeatedly differentiated, up to its relative degree.

...

β = M−1(u−Kτ − ṅ) +
dM−1

dt
(τ − n) (5.22)

Here (5.15) is used to replace τ̇ . The control system is said to be input-state linearizable

because the linearization does not have an internal dynamics. Demanding
...

β = v results
in an expression u(v) that linearizes the control system:

u(v) = Mv +
dM

dt
β̈ +Kτ + ṅ

Here, the relation
dM−1

dt
= −M−1 dM

dt
M−1

is used that results from d
dt

(MM−1) = 0.

The transformed control system is given in the coordinates x =
(

β, β̇, β̈
)T

with input v.
It can be summarized as

ẋ =





β̇

β̈

0





︸ ︷︷ ︸

f (x)

+





0 0 0
0 0 0
0 0 I





︸ ︷︷ ︸

G(x)

v

y1 = rzmp(x) − yu y2 = yl − rzmp(x)

to account for the formulation in (5.8). The outputs y1 and y2 each have relative degree
one.
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Nominal Controller. The input-state linearization allows a linear controller design for

the nominal control vnom =
...

β
d

+KA(β̈
d − β̈) +KD(β̇

d − β̇) +KP (βd − β). The control
parametersKA,KD, andKP are used to parameterize the linear control law. The nominal
controller acts until the ZMP reaches the boundary of the admissible set. After the model
refinement, the ZMP depends on the system state only. In hardware-implementation also
a measurement could be used.

Corrective Controller. Since the first derivative of the ZMP ṙzmp(x) depends on the input
vcorr, but not the ZMP rzmp itself, the system outputs y1 from (5.16) and y2 from (5.17)
have relative degree one. The equation to determine the invariance control signal is derived
from

ẏ1 =
∂rzmp

∂β
β̇ +

∂rzmp

∂β̇
β̈ +

∂rzmp

∂β̈

...

β = 0

Since
...

β = v is achieved by feedback linearization the invariance condition is linear in the
control input v, compare (5.9).

Avcorr = b (5.23)

with A =
∂rzmp

∂β̈
and b = −∂rzmp

∂β
β̇ − ∂rzmp

∂β̇
β̈

Equation (5.23) can be solved for vcorr but the solution is not unique since the input
dimension m is in general larger than one. Thus one of the infinitely many solutions
of (5.23) is chosen for vcorr according to (5.11), (5.12), or (5.13). For legged robot balance
control, it is important to choose a corrective motion that is as close as possible to the
nominal motion. By weighting, joints can be preferred that do not interfere too much with
the nominal task. For example in a walking motion, the acceleration of the arms could be
used to correct the ZMP position for small disturbances of the planned motion.

The nominal controller acts until the ZMP reaches the boundary of the admissible set.
The corrective control law is used after the ZMP reached the boundary of the admissible
set and keeps the ZMP on the boundary. To decide, whether the corrective controller may
stop acting and the nominal controller can be used again, the first derivative of the ZMP
with nominal control is monitored. Only if the derivative points inward the admissible set,
the nominal control can be used again. To obtain the ZMP derivative, a virtual model has
to be evaluated in parallel to the integration of the real model. See (5.4) for a formalization
of the switching rules.

5.3.3 Application for Balance Control of a Humanoid Robot

For the following illustration of invariance ZMP control, a robot similar to the gymnast
robot in Sec. 2.3.3, is considered. Here it is extended with a trunk, a head, and one arm.
The masses and lengths are adapted to suit masses and link lengths of a human being. The
total weight thus is 76 kg, and the height is 1.90 m. The desired motion is balancing on
one leg. Therefore an initial posture, a final posture, and a nominal controller are chosen.
Then at times t = 2.0 s and t = 4.0 s the robot is pushed. The first push is applied from
the front at the shoulder, acting instantaneously with 42 Ns, the second push acts from

95



5 Balance Control

the backside on the swing foot with 4.2 Ns. The externally applied forces F push result in
discontinuities in the velocities, calculated from

M (q)
(
q̇+ − q̇−

)
= J(q)TF push.

The matrix J(q) is the Jacobian of the working point of the attacking force. Compare
with (2.17) in Sec. 2.2.2 for a derivation. The applied forces are close to the maximum
possible forces that can be compensated by the proposed balance control scheme. It is seen
in Fig. 5.2 that the execution of the desired motion without corrective controller implies
that the ZMP leaves the admissible area, which is the foot contact set between 0 and 0.3.
This happens while the desired trajectory is tracked as well as after both pushes.

Invariance control with the corrective control law (5.13) is applied, and the refined model
is used, where the ZMP is an output quantity with relative degree one. For this example,
the ankle joint is weighted by w1,1 = 0.5, and the shoulder and elbow joints are weighted
by w7,7 = w8,8 = 15.0. The remaining joints have weight one. In [106] other realizations
for the weighting matrix parameterization are discussed. The corrective control is applied
whenever the ZMP leaves the admissible set. In Fig. 5.2 the ZMP trajectory with invariance
control is compared to the ZMP trajectory without correcting controller.

time t (s)

Z
M

P
(m

)

0

0

0.3

1 2 3 4 5 6 7

Figure 5.2: ZMP for balancing of the legged robot. Comparison of ZMP without invariance
control (dashed) and with corrective control (solid).

Figure 5.3 depicts an associated snapshot series. In Fig. 5.2 it can be seen that the
pushes themselves do not result in large ZMP deflections. Rather the correction motion of
the nominal controller results in large ZMP amplitudes as the correction motion involves
sudden high accelerations. The invariance control that keeps the ZMP on the boundary of
the admissible set realizes a model-based compliancy in the robot joints.

5.3.4 Discussion

Control of the ZMP results in non-minimum phase behavior of the control system. A
nonlinear control system is said to have non-minimum phase character if the zero dynamics
is unstable. The zero dynamics is obtained from the internal dynamics when the output
is constantly controlled to zero. The ZMP control task has an internal dynamics because
the relative degree of the ZMP as output function is smaller than the system order. The
instability of the zero dynamics of ZMP control is illustrated in the following considering
equations for a lumped mass model and related simulation results for the monoped.
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t = 0.0 t = 0.5 t = 1.0 t = 1.5 t = 2.0 t = 2.5

t = 3.0 t = 3.5 t = 4.0 t = 4.5 t = 5.0 t = 5.5

Figure 5.3: Snapshot series for balancing of the legged robot. Comparison of motion without
corrective control (grey) and with corrective control (black). Arrows indicate the direction
and attack point of the pushing forces at t = 2.0 s and t = 4.0 s. Supplementary video
material in [116].

The lumped (concentrated) mass at position rcom of a legged robot and the ZMP rzmp,x

are related by a differential equation

r̈com,x =
1

rcom,y

(r̈com,y + g)(rcom,x − rzmp,x)

that is obtained from (2.23). It can be seen that only if rcom,x = rzmp,x together with
ṙcom,x = 0, the acceleration of the center of mass (CoM) r̈com,x becomes zero and enables
an equilibrium position. In all other cases, a constant ZMP rzmp,x different from the CoM
rcom,x results in acceleration of the CoM that drives the CoM away from the ZMP. It is
thus only possible to control the ZMP to be constant if ZMP rzmp,x and CoM projection
to ground level rcom,x match. For other desired positions of the ZMP the control system
will accelerate for all times.

The monoped robot is an example for a lumped mass robot model since it consists of two
masses, one in the link and another one in the foot. The foot mass does not contribute to
velocities and acceleration of the CoM of the robot since this mass is constantly at rest.
For an illustration of the zero dynamics of this robot when the ZMP is controlled to a
constant position see the phase portrait in Fig. 5.4. Here, the formulation with relative
degree zero is used. The left picture shows the internal dynamics for ZMP control on
the left foot edge of the monoped. The right plot shows the phase portrait for control
of the ZMP on the right foot edge. The equilibrium point of the control system is the
configuration β where the CoM projected to ground level is at the respective foot edge
and thus, the ZMP is equal to the x-coordinate of the CoM. This equilibrium point is
a saddle point, and most trajectories will never approach this point. Besides, there is
another type of equilibrium point that correspond with the pendulum hanging down. Since
these equilibrium points are circles, ZMP control at least results in bounded trajectories.
For robot control, these trajectories are nevertheless useless because penetration into the
ground is not feasible. Separatrices divide the periodic trajectories around the circle fixed
points from the remaining phase space.
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Figure 5.4: Phase portrait of the zero dynamics for monoped ZMP control. Left: ZMP is at
the left foot edge. Right: ZMP is at the right foot edge.

Due to the non-minimum phase character, a robot subject to ZMP balance control can
only be controlled in a stable way by switching between ZMP controllers and nominal
controller. For the monoped robot, although control of the ZMP on the left foot edge
and control of the ZMP on the right foot edge are each non-minimum phase and result in
unbounded trajectories, switching between the two controllers at appropriate times results
in bounded trajectories above ground level. See therefore in Fig. 5.5 on the left side how
the two phase portraits from Fig. 5.4 intersect, giving rise to a switching surface β = π/2.
On the right side, the resulting bounded trajectories are depicted where the two ZMP
controllers alternate.
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Figure 5.5: Illustration of switching ZMP control. Left: Intersection of the zero dynamics
for the two ZMP control modes (solid: left foot edge, dashed: right foot edge). Right:
Bounded trajectories that result for switching control with switching surface β = π/2.

But certainly, not every possible disturbance can be compensated for by the corrective
controller. Also humans, if they experience a hard push from the front, they cannot
balance, but will do a stabilizing step backwards. An investigation of the limitations of
ZMP control is necessary as a basis for a comprehensive control concept for legged system
stability.
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One limitation of the applicability of ZMP control is obvious: For the case of relative
degree zero, control is only possible when the sensitivities of the ZMP concerning the
accelerations v = β̈ are non-zero. The sensitivities ∂rzmp/∂vj can be derived from (5.20),
and it is concluded that ∂rzmp/∂vj = 0 is equivalent to aj = 0, where aj is the j−th entry
of A from (5.10). Thus, if all sensitivities vanish ∂rzmp/∂vj = 0, the matrix A becomes
singular, and ZMP control is unstable since small changes in the ZMP require arbitrary
large accelerations v.

Another reason to abort ZMP control in favor of a new strategy is when it becomes obvious
that it will not be possible again for the CoM to return to the supported area without
violation of the ZMP constraint. This is important for a balancing task in a rest position
where disturbances are compensated by ZMP manipulation, whereas for a walking motion
this must not be necessary because the CoM is desired to advance in walking direction.
The upcoming failure of balance control should be detected as early as possible, and
then a controller on a higher level of hierarchy may interact. Therefore, investigations
to determine the admissible state space region for ZMP control are necessary. Figure 5.6
depicts the admissible state space region for balance control of the monoped robot. The
admissible state space region is bounded by separatrices of the zero dynamics for ZMP
control on the left foot edge and ZMP control on the right foot edge. In addition only
angles for the actuated arm between 0 and π are feasible. The shape of the admissible
state space region is concluded from investigation of the phase portraits when considering
valid directions for any point in the state space. The obtained phase space region can be
interpreted as follows: For angles of the actuated arm smaller than π/2, the velocity has to
be large enough to swing the arm back to an upright position without too high acceleration
that would trigger tilting. But also velocity is not allowed to exceed an upper limit because
then necessary deceleration before reaching the upright position results in tilting. The
reasoning is analog for angles greater than π/2. For any points in the determined state
space region the CoM can return to the region above the foot-ground contact area with
appropriate control. Therefore, it might be necessary to switch between nominal and
corrective control signal if the nominal control law alone violates ZMP constraints.
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Figure 5.6: Admissible state space region for balance control of the monoped. Configurations
in region A, B, and C for β between 0 and π (above ground) that are delimited by the
separatrices of the internal dynamics for control on the left foot edge (solid) and control
on the right foot edge (dashed) are admissible in the sense that it is possible for the center
of mass to return to the supported area while the ZMP never leaves the supported area.
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5.4 Summary

Balance control for legged robots is understood as control that avoids underactuation by
tilting around foot edges. A common measure for postural balance is the Zero Moment
Point (ZMP), and balance control methods rely on manipulation of the ZMP position.
The ZMP is a system output with relative degree zero and with non-minimum phase
characteristic and is thus challenging to control.

An approach to control the ZMP by invariance control was presented. Therefore, control is
switched between a nominal and a corrective controller to keep the ZMP in an admissible
set. The admissible set is a subset of the supporting area formed by the convex hull of the
foot contact points. The control was discussed for a formulation where the relative degree
of the ZMP is zero and for a formulation, after model refinement, where the relative degree
of the ZMP is one. Since it is switched between a nominal and a corrective control signal,
the complete trajectory is stable although the corrective controller has non-minimum phase
character. It was also discussed, when the ZMP control has to be discarded because the
sensitivity of the ZMP concerning joint acceleration is too small. The method is illustrated
in simulation experiments for a balancing task of a humanoid robot.

The application of invariance control for balance maintainance of legged robots is consid-
ered as new concept. The involved formalization of balance control is seen as advantageous
for the discussion of stability and limitations of balance control methods.
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6 Conclusions and Future Directions

6.1 Concluding Remarks

This thesis provided a theoretical and simulation study on locomotion of legged robots. It
is dealt with all necessary steps to realize stable locomotion on legs. This includes mod-
eling, trajectory planning, stability analysis, and control. Especially motion patterns are
considered in which the contact situation between feet and ground is variable and therefore
consist of a series of different contact situations. In particular the thesis investigates the
interaction of underactuated contact situations, where e.g. a foot tilts around a foot edge,
with completely actuated contact situations, where a foot has flat contact. The toe and
heel roll motion is still rarely considered in legged robot research. Taking into account
the variable contact situations during locomotion is seen as an important step towards
realization of dynamic legged robot locomotion.

The simulation based study of trajectory planning and control for legged robots relies on
a model of the mechanical system. A rigid multi-body formulation for the ground contact
was used. Decisive factors were advantages for simulation and availability of notation in
minimal coordinates. The model was formulated in a (discrete-continuous) hybrid model-
ing framework where continuous dynamical descriptions interact with discrete phenomena.
Every contact situation of a legged robot is described by equations of motion, and the hy-
brid model allows to switch between the equations whenever the contact situation changes.
Collisions are considered at the times at which transitions between contact situations occur.
It has been demonstrated that a hybrid modeling framework is adequate for modeling of
legged locomotion. The models of three example robots, a compass gait robot, a monoped
robot, and a gymnast robot were presented.

Trajectory planning for motion with variable ground contact is a challenge. One reason is
the underlying hybrid dynamical description of the legged system. In addition, planning
underactuated motion is difficult in general. And also, the complexity of the trajectory
planning problem increases with a higher number of contact situations, and therefore fewer
successful realizations of trajectory planning exist in the literature. This thesis presents a
simple trajectory planning method to find trajectories for a legged robot also if there are
more consecutive contact situations. Trajectories arise from the solution of boundary value
problems of the underlying optimal control problems. Therefore, parameter-dependent
trajectories have to be provided heuristically. A drawback of this method is that the
performance depends on a skillful choice of heuristic trajectories. The advantage, however,
is the fast numerical convergence to solutions. Also a parameterized family of trajectories
can be obtained that provides a database for motions with different speeds, different step
widths, etc. The convergence of the boundary value problem to a solution, however, does
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6 Conclusions and Future Directions

not imply orbital stability of the periodic solutions. Orbital stability has to be shown a
posteriori by stability analysis.

If after small arbitrary disturbances of the periodic behavior the system recovers and
finds back to the periodic trajectory, the trajectory is said to be orbitally stable. Several
methods to investigate orbital stability for hybrid systems are discussed in this thesis.
Then, Poincaré maps were used to investigate stability of the trajectories for the legged
robot systems. In a Poincaré map analysis the hybrid dynamics is reduced to a discrete
map on a cross section to the hybrid orbit. Stability properties of the discrete map are then
transfered to stability properties of the hybrid dynamics. For legged robots, the stability
analysis divides the set of available trajectories into a stable set and an unstable set. Only
the stable trajectories are useful in simulation and experiments. For trajectories with stable
support contact phase, it was investigated how the duration of the stable support phase
is related to the stability of the periodic motion. It was concluded that stable support is
not necessary for stability of the whole trajectory. Nevertheless, a longer fraction of stable
support in the periodic motion cycle is beneficial for its stability. Finally, the feasibility of
transitions between trajectories with different properties was investigated in simulations
for the gymnast robot. A transition is possible if the basin of attraction of the target
motion has a nonempty intersection with the primary motion pattern. The possibility to
switch between trajectories with different properties increases the dexterity of robots since
it yields transition trajectories without additional planning effort. This research field is
considered rather young.

The notion of balance of a legged robot is not directly related to the orbital stability of
the trajectory. A robot is balanced if there is no rotation around the foot edges. Control
algorithms can be applied that monitor the ZMP, which provides a balance measure, and
correct when the ZMP leaves an admissible region. The balance control method that was
presented in this thesis uses invariance control of the ZMP, which is a novel approach.
By switching between a nominal control law and a corrective control law, the ZMP is
confined to an admissible region. The method is model-based. A model refinement of
the robot dynamics is presented to make the ZMP control problem better tractable for
control theory. After refinement, the system output ZMP has relative degree one and is
not algebraically related to the input anymore. Before model refinement, it was necessary
to decide on the control input at the same time as the measurement of ZMP could be
obtained. The presented approach provides a comprehensive control concept for balance
control of legged robots.

6.2 Outlook

The long-term goal in legged robot research is to achieve performance comparable to human
beings for legged robot systems. This includes dexterity and velocity, but also robustness
against disturbances.

One line of research is optimal control for trajectory and controller design. Yet, optimal
control allows a versatile formulation of the trajectory planning task. The numerical
solution, however, is often not to be found because of unsuitable initial values, too slow
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6.2 Outlook

convergence, or an inappropriate choice of the numerical method. Legged robot trajectory
planning is presumed to profit decisively from advancements of numerical optimal control
algorithms for hybrid systems.

Advances in hybrid system theory are seen to be beneficial for improvement towards dex-
terous locomotion. The crucial point in legged robot control is to avoid that the robot
falls. Stability control should thus not be limited to correction of small disturbances where
the correction does not make it necessary to replan the series of contact situations. Some-
times falling can only be avoided if the planned motion is discarded for some time and
a correction that is different from the planned motion is performed. A correspondence
in human locomotion are stabilizing steps forward or backward or acceleration of walk-
ing after a push from behind. The hybrid system background for these control tasks are
e.g. improved reachability analysis, research on regions of attraction, stability of switching
control laws, etc.

With respect to experimental implementation of the control concepts even more detailed
models will be necessary. The presented modeling framework presents a basis for the
extension to three dimensions and the consideration of additional contact situations. The
validity of the assumptions on the collision law has to be checked in experimental studies,
and collision laws possibly have to be modified. The experimental implementation is
essential for evaluation of the theoretical results. New questions will arise in hardware
design, as the appropriate choice of components and sensors that enable application of
the theoretical results. And also the experimental validation will suggest modifications in
modeling and control.

The more legged robots enter human environments, the more it is necessary that robots are
capable of appropriate interaction with the environment. On a basic level, self-adaptation
of the robot to non-expected conditions, as ground texture or its own variable mass is
desired. In advanced scenarios, it is required that the robot aptly reacts in robot-human
interplay. These research areas will lead far beyond model-based motion planning and
control.
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Appendix Details of Hybrid Models

A.1 Model of the Compass Gait Robot

The present section provides details of the derivation of the hybrid model for the compass
gait robot that was introduced in Sec. 2.3.1. Analytic expressions are specified for the
equations of motion of different contact situations and for the contact forces and moments.

A.1.1 Geometry

ex ex
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β

r1
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Figure A.1: Compass gait robot. Illustration of geometry, masses, and coordinate system. Leg
masses are ml, hip mass is mh. Foot length is l, a and b are distances of leg mass centers
from foot or hip. Vectors r1, r2, and r3 describe positions of mass points.

Figure A.1 is renewed from Sec. 2. For derivation of the kinetic and potential energy which
are necessary to determine Lagrange functions according to (2.6) the position vectors ri of
all mass points have to be specified. Masses are assumed to be concentrated in the mass
centers of the legs and in the hip. The three positions for the masses are thus obtained
from geometrical considerations:

Leg 1 : r1 =

(
ξ + a cosα
η + a sinα

)

(A.1)

Hip : r2 =

(
ξ + l cosα
η + l sinα

)

(A.2)

Leg 2 : r3 =

(
ξ + l cosα+ b cos(α+ β)
η + l sinα+ b sin(α+ β)

)

(A.3)

The positions of the masses depend on the generalized coordinates q = (ξ, η, α, β)T that
form a minimal set of variables to describe the robot posture.
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A.1 Model of the Compass Gait Robot

A.1.2 Equations of Motion

The evaluation of Euler-Lagrange equations (2.8) yields the equations of motion for the
compass gait robot (2.25). At first, it is assumed that the robot is not in contact with the
environment (xd = 0). The corresponding equations combine a symmetric mass matrix
M 0 and a vector of coupling forces and gravitational effects n0:







m11 m12 m13 m14

m12 m22 m23 m24

m13 m23 m33 m34

m14 m24 m34 m44







︸ ︷︷ ︸

M 0

q̈ +







n1

n2

n3

n4







︸ ︷︷ ︸

n0

=







0
0
0
u







(A.4)

with

m11 = mh + 2ml

m12 = 0

m13 = −mh l sinα−ml [a sinα+ l sinα+ b sin(α+ β)]

m14 = −ml b sin(α+ β)

m22 = mh + 2ml

m23 = mh l cosα+ml [a cosα+ l cosα+ b cos(α+ β)]

m24 = ml b cos(α+ β)

m33 = mh l
2 +ml

[
a2 + b2 + l2 + 2 b l cos β

]

m34 = ml b [b+ l cos β]

m44 = ml b
2

n1 = − [mh l +ml a+ml l] cosα α̇2 −ml b cos(α+ β) (α̇+ β̇)2

n2 = − [mh l +ml a+ml l] sinα α̇2 −ml b sin(α+ β) (α̇+ β̇)2 +mh g + 2ml g

n3 = −ml b l sin β (β̇2 + α̇β̇) + [mh l +ml a+ml l] g cosα+ml b g cos(α+ β)

n4 = ml b l sin β α̇
2 +ml b g cos(α+ β)

For the equations of motion for contact with the reference foot (xd = 1) constraints are in-
troduced that reduce the degrees of freedom of the dynamics, see Sec. 2.3.1. The equations
of motion from (2.28) are denoted:

(
m11 m12

m12 m22

)

︸ ︷︷ ︸

M 1

q̈ +

(
n1

n2

)

︸ ︷︷ ︸

n1

=

(
0
u

)

(A.5)

with

m11 = mh l
2 +ml

[
a2 + b2 + l2 + 2 b l cos β

]

m12 = ml b [b+ l cos β]

m22 = ml b
2

n1 = −ml b l sin β (β̇2 + α̇β̇) + [mh l +ml a+ml l] g cosα+ml b g cos(α+ β)

n2 = ml b l sin β α̇
2 +ml b g cos(α+ β)
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Appendix Details of Hybrid Models

A.1.3 Contact Forces and Moments

If a foot of the compass gait robot is in contact with the ground (xd = 1, xd = −1) contact
forces act between ground and foot. The horizontal contact force Rx and the vertical
contact force Ry, needed in (2.32) are:

Rx = − [mh l +ml a+ml l] cosα α̇2 −ml b cos(α+ β) (α̇+ β̇)2

− [(mh l −ml a−ml l) sinα−ml b sin(α+ β)] α̈−ml b sin(α+ β)β̈

Ry =mh g + 2ml g − [mh l +ml a+ml l] sinα α̇2 −ml b sin(α+ β) (α̇+ β̇)2

+ [(mh l +ma+ml l) cosα+ml b cos(α+ β)] α̈+ml d cos(α+ β)β̈

(A.6)

Note that there is no contact moment, since the foot rotates freely around the contact
point. The contact forces are essential to detect detaching of the foot in simulation and
trajectory planning. In the present notation, the contact forces depend on position q,
velocities q̇, and accelerations q̈. If the accelerations q̈ are replaced using the equations
of motion (A.5), the contact forces are calculated from positions q, velocities q̇, and input
torques u.

A.2 Model of the Monoped Robot

In the following, analytic expressions are specified for some elements of the hybrid model
of the monoped robot from Sec. 2.3.2.

A.2.1 Geometry

ml

mf

α

β

ex

ey

ex

eyll
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ξ

η r1

r2

Figure A.2: Monoped robot. Illustration of geometry, masses, and coordinate system. Masses
are denoted mf and ml. Their position vectors are denoted r1 and r2. Distances are
denoted ll, lf , and hf .
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A.2 Model of the Monoped Robot

The position vector of the mass center of foot and actuated link can be denoted in terms
of the generalized coordinate vector q = (ξ, η, α, β)T :

Foot : r1 =

(
ξ + lf cosα+ hcm,f sinα
η + lf sinα+ hcm,f cosα

)

(A.7)

Link : r2 =

(
ξ + lf cosα+ hf sinα+ ll cos(α+ β)
η + l sinα+ hf cosα+ ll sin(α+ β)

)

(A.8)

The position vectors and their derivatives are necessary to obtain the Lagrange func-
tion (2.34).

A.2.2 Equations of Motion

From Euler-Lagrange equations (2.8) applied on the Lagrange function (2.6), the equations
of motion (2.35) for the monoped robot that is not subject to constraints (xd = 0) are
obtained as follows:







m11 m12 m13 m14

m12 m22 m23 m24

m13 m23 m33 m34

m14 m24 m34 m44







︸ ︷︷ ︸

M 0

q̈ +







n1

n2

n3

n4







︸ ︷︷ ︸

n0

=







0
0
0
u







(A.9)

with

m11 = mf +ml

m12 = 0

m13 = −mf [lf sinα+ hcm,f cosα] −ml [lf sinα+ hf cosα+ ll sin(α+ β)]

m14 = −ml ll sin(α+ β)

m22 = mf +ml

m23 = mf [lf cosα− hcm,f sinα] −ml [hf sinα− lf cosα− ll cos(α+ β)]

m24 = ml ll cos(α+ β)

m33 = If,z + Il,z +mf

[
l2f + h2

cm,f

]
+ml

[
l2f + h2

f + l2l + 2 lf ll cos β + 2hf ll sin β
]

m34 = Il,z + llml [ll + lf cos β + hf sin β]

m44 = Il,z +ml l
2
l

n1 = ml

[

hf sinα α̇2 − lf cosα α̇2 − ll cos(α+ β)(α̇+ β̇)2
]

−mf [lf cosα− hcm,f sinα] α̇2

n2 = [mf +ml] g

−mf [lf sinα+ hcm,f cosα] α̇2 −ml

[

lf sinα α̇2 + hf cosα α̇2 + ll sin(α+ β) (α̇+ β̇)2
]

n3 = mf g [lf cosα− hcm,f sinα] −ml g [hf sinα− lf cosα− ll cos(α+ β)]

−ml ll

[

hf cos β α̇2 + lf sin β (α̇+ β̇)2 − lf sin β α̇2 − hf cos β (α̇+ β̇)2
]

n4 = ml g ll cos(α+ β) +ml ll [lf sin β − hf cos β] α̇2
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Appendix Details of Hybrid Models

Constraints are introduced to derive equations of motion (2.38) for the monoped robot,
when it is in contact with one foot edge only (xd = 2, 3). The resulting equations of motion
are: (

m11 m12

m12 m22

)

︸ ︷︷ ︸

M 2

q̈ +

(
n1

n2

)

︸ ︷︷ ︸

n2

=

(
0
u

)

(A.10)

with

m11 = If3 + Il3 +mf

[
h2

cm,f + l2f
]
+ml

[
h2

f + l2f + l2l + 2hf ll sin β + 2 lf ll cos β
]

m12 = Il3 + ll ml [ll + hf sin β + lf cos β]

m22 = Il3 +ml l
2
l

n1 = ll ml [hf cos β − lf sin β] (2α̇β̇ + β̇2)

−mf g [hmc,f sinα− lf cosα] −ml g [hf sinα− lf cosα− ll cos(α+ β)]

n2 = − ll ml [hf cos β − lf sin β] α̇2 +ml g ll cos(α+ β)

A.2.3 Contact Forces and Moments

Contact forces in vertical and horizontal direction Ry and Rx act whenever the foot is in
a tilted contact phase (xd = 2, 3). The analytic expression are:

Rx = [−mf (lf sinα+ hcm,f cosα) −ml (lf sinα+ hf cosα+ ll sin(α+ β))] α̈

−ml ll sin(α+ β) β̈

+ml

[

hf sinα α̇2 − lf cosα α̇2 − ll cos(α+ β)(α̇+ β̇)2
]

−mf [lf cosα− hcm,f sinα] α̇2

Ry = [mf (lf cosα− hcm,f sinα) −ml (hf sinα− lf cosα− ll cos(α+ β))] α̈

+ml ll cos(α+ β) β̈

+ [mf +ml] g

−mf [lf sinα+ hcm,f cosα] α̇2

−ml

[

lf sinα α̇2 + hf cosα α̇2 + ll sin(α+ β) (α̇+ β̇)2
]

For a stable support contact phase (xd = 3), there is also a contact moment Tz between
foot and ground. The contact moment Tz and the vertical contact force Ry are basis for
calculation of the Zero Moment Point (2.24) that is used to monitor the onset of tilting.

Rx = −ml ll sin β β̈ −ml ll cos β β̇2

Ry =ml ll cos β β̈ + (mf +ml)g −ml ll sin β β̇
2

Tz = [Il,z + ll ml(ll + lf cos β + hf sin β)] β̈ −ml ll [lf sin β − hf cos β] β̇2

+mf g lf +ml g [lf + ll cos β]
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[114] S.N. Simić, K.H. Johansson, J. Lygeros, and S. Sastry. Hybrid limit cycles and hybrid
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